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Editorial on the Research Topic

Community series in unveiling the tumor microenvironment by machine
learning to develop new immunotherapeutic strategies, volume II
A total of 25 papers are included in this series. We selected seven as representative:

Yang et al. discussed the role of lipid metabolism in gastric cancer. Their study identified

78 genes related to fatty acid metabolism that are differentially expressed between normal and

gastric cancer tissues. The ConsensusClusterPlus R package was used to divide the genes into

two gastric cancer subtypes, cluster 1 and cluster 2. Patients in cluster 2 were found to have a

poorer prognosis than those in cluster 1. The study used machine learning to select 8

differentially expressed genes between the subtypes to construct a fatty acid prognostic risk

score (FARS) model, which displayed good prognostic efficacy. Certain anticancer drugs, such

as bortezomib, elesclomol, GW843682X, and nilotinib, showed significant sensitivity in the

high FARS score group. RGS2 was identified as the core gene in gastric cancer single-cell

analysis, and Western blotting and immunofluorescence staining results revealed high levels

of expression of this gene in gastric cancer cells. The results of immunohistochemical staining

showed that a large amount of RGS2 was deposited in the stroma in gastric cancer. The pan-

cancer analysis also revealed a significant association of RGS2 with TMB, TIDE, and CD8+ T-

cell infiltration in other cancer types as well. RGS2may thus be further studied as a new target

for immunotherapy in future studies on gastric cancer. The FARS model developed here

enhances our understanding of lipid metabolism in the TME in gastric cancer, and provides a

theoretical basis for predicting tumor prognosis and clinical treatment.

Peng et al. investigated the development of a prognostic model based on oxidative stress

for lung adenocarcinoma (LUAD). The study extracted oxidative stress-related genes

(ORGs) from Genecards and performed machine learning algorithms to build the OS-score

and OS-signature. The study identified ten ORGs with prognostic value and the OS-

signature containing three prognostic ORGs. The efficiency and accuracy of the OS-

signature in predicting the prognosis for LUAD patients was confirmed by survival ROC
frontiersin.org016
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curves and two external validation data sets. Patients with high OS-

scores were found to have lower levels of immunomodulators,

stromal score, immune score, ESTIMATE score, and infiltrating

immune cell populations. Conversely, patients with higher OS-

scores were more likely to have higher tumor purity. PCR assays

showed that MRPL44 and CYCS were significantly upregulated in

LUAD cell lines, while CAT was significantly downregulated.

Wang et al. discussed the role of MYBL1 in clear cell renal cell

carcinoma (ccRCC). The study comprehensively investigated the

role of MYBL1 in ccRCC and found that MYBL1 was correlated

with progressive clinical characteristics and worse prognosis

performance. The study also found that MYBL1 can activate

multiple oncogenic pathways in ccRCC and can remodel the

immune microenvironment of ccRCC and affect the

immunotherapy response. In vitro and in vivo assays indicated

that MYBL1 is upregulated in ccRCC cells and can promote the

cellular malignant behavior of ccRCC. Finally, a machine learning

algorithm - LASSO logistic regression was utilized to identify a

prognostic signature based on the MYBL1-derived molecules,

which showed satisfactory ability to predict patient prognosis in

both training and validation cohorts. The study concluded that

MYBL1 is a novel biomarker of ccRCC that can remodel the tumor

microenvironment, influence immunotherapy responses, and guide

precision medicine in ccRCC.

Ke et al. discussed the potential and significance of immune-

related diagnostic biomarkers in differentiating Uterine

leiomyosarcoma (ULMS) from Uterine leiomyoma (ULM). The

study downloaded two public gene expression profiles containing

ULMS and ULM samples and identified differentially expressed

genes (DEGs) among 37 ULMS and 25 ULM control samples. The

DEGs were used for Gene Ontology (GO), Kyoto Encyclopaedia of

Genes and Genomes (KEGG), and Disease Ontology (DO)

enrichment analysis in addition to gene set enrichment analysis

(GSEA). The study identified DPP6 and MFAP5 as diagnostic

biomarkers for ULMS, which were verified in the GSE9511 and

GSE68295 datasets. Low expression of DPP6 and MFAP5 was

associated with ULMS. The study concluded that DPP6 and

MFAP5 are potential diagnostic biomarkers for ULMS.

Zhang et al. investigated the development of a mitochondria-

related signature in osteosarcoma patients. Transcriptomic data and

clinical information of osteosarcoma samples were collected from

the Therapeutically Applicable Research to Generate Effective

Treatments (TARGET) and Gene Expression Omnibus (GEO)

databases. Comprehensive bioinformatics analysis was performed

on the samples at the bulk RNA sequencing level and single-cell

RNA sequencing (scRNA-seq). The study constructed a

mitochondria-related signature in osteosarcoma patients and

explored its prognostic value, predictive value in the immune

microenvironment and chemotherapeutic agents. The study also

investigated the association between mitochondria and immunity in

the tumor microenvironment of osteosarcoma at the scRNA-seq

level. The tumorigenic role of the critical mitochondria-related

gene, PCCB, was verified by in vitro validation. The study

concluded that a mitochondria-related signature was developed in

osteosarcoma with solid predictive values for the immune

microenvironment, chemotherapeutic agents, and prognosis.
Frontiers in Immunology 027
Xu et al. discussed the identification of a glycolysis and

cholesterol synthesis-related genes (GCSRGs) signature for

effective prognostic assessment of osteosarcoma patients. Gene

expression data and clinical information were obtained from the

GSE21257 and TARGET-OS datasets. Patients diagnosed with

osteosarcoma were classified into one of 4 subtypes (quiescent,

glycolysis, cholesterol, and mixed subtypes), which differed

significantly in terms of prognosis and tumor microenvironment.

Both univariate and LASSO Cox regression analyses were

conducted on the screened module genes to identify 5 GCSRGs

(RPS28, MCAM, EN1, TRAM2, and VEGFA) that constituted a

prognostic signature for osteosarcoma patients. The signature was

an effective prognostic predictor, independent of clinical

characteristics, as further verified via Kaplan-Meier analysis, ROC

curve analysis, and univariate and multivariate Cox regression

analysis. Additionally, the GCSRG signature had a strong

correlation with drug sensitivity, immune checkpoints and

immune cell infiltration.

Cholangiocarcinoma (CHOL) is a prevalent type of malignancy

and the second most common form of primary liver cancer, resulting

in high rates of morbidity and mortality. Necroptosis is a type of

regulated cell death that appears to be involved in the regulation of

several aspects of cancer biology, including tumorigenesis, metastasis,

and cancer immunity. Xu et al. aimed to construct a necroptosis-

related gene (NRG) signature to investigate the prognosis of CHOL

patients using an integrated bioinformatics analysis. CHOL patient

data were obtained from the GEO (GSE89748, GSE107943) and

TCGA databases, and NRG data from necroptosis were obtained

from the KEGG database. A total of 65 differentially expressed (DE)

NRGs were screened, of which five were selected to establish the

prognostic signature of NRGs based on multivariate Cox regression

analysis. Low-risk patients survived significantly longer than high-

risk patients. Patients with high-risk scores experienced higher

immune cell infiltration, drug resistance, and more somatic

mutations than patients with low-risk scores. Sensitivities to

GW843682X, mitomycin C, rapamycin, and S-trityl-L-cysteine

were significantly higher in the low-risk group than in the high-risk

group. Finally, the expression of five NRGs was validated.

All of the above studies select a specific geneset and identify

prognosis-related or stage-related genes using machine learning

methods, some of them further associate these genes with immune

status and finally validate them with in vitro or in vivo

experimental methods.
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Objective: Uterine leiomyosarcoma (ULMS) is the most common subtype of

uterine sarcoma and is difficult to discern from uterine leiomyoma (ULM)

preoperatively. The aim of the study was to determine the potential and

significance of immune-related diagnostic biomarkers in distinguishing ULMS

from ULM.

Methods: Two public gene expression profiles (GSE36610 and GSE64763) from

the GEO datasets containing ULMS and ULM samples were downloaded.

Differentially expressed genes (DEGs) were selected and determined among

37 ULMS and 25 ULM control samples. The DEGs were used for Gene Ontology

(GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Disease

Ontology (DO) enrichment analyses as well as gene set enrichment analysis

(GSEA). The candidate biomarkers were identified by least absolute shrinkage

and selection operator (LASSO) and support vector machine recursive feature

elimination (SVM-RFE) analyses. The receiver operating characteristic curve

(ROC) was applied to evaluate diagnostic ability. For further confirmation, the

biomarker expression levels and diagnostic value in ULMS were verified in the

GSE9511 and GSE68295 datasets (12 ULMS and 10 ULM), and validated by

immunohistochemistry (IHC). The CIBERSORT algorithm was used to calculate

the compositional patterns of 22 types of immune cells in ULMS.

Result: In total, 55 DEGs were recognized via GO analysis, and KEGG analyses

revealed that the DEGs were enriched in nuclear division, and cell cycle. The

recognized DEGs were primarily implicated in non−small cell lung carcinoma

and breast carcinoma. Gene sets related to the cell cycle and DNA replication

were activated in ULMS. DPP6 and MFAP5 were distinguished as diagnostic
frontiersin.org01
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biomarkers of ULMS (AUC = 0.957, AUC = 0.899, respectively), and they were

verified in the GSE9511 and GSE68295 datasets (AUC = 0.983, AUC = 0.942,

respectively). The low expression of DPP6 and MFAP5 were associated with

ULMS. In addition, the analysis of the immunemicroenvironment indicated that

resting mast cells were positively correlated with DPP6 and MFAP5 expression

and that eosinophils and M0 macrophages were negatively correlated with

DPP6 expression (P<0.05).

Conclusion: These findings indicated that DPP6 and MFAP5 are diagnostic

biomarkers of ULMS, thereby offering a novel perspective for future studies on

the occurrence, function and molecular mechanisms of ULMS.
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uterine leiomyosarcoma
Introduction

Uterine leiomyosarcoma (ULMS) is a rare but aggressive

tumor subtype, accounting for approximately 1% of all uterine

malignancies (1). ULMS is the most common subtype of uterine

sarcoma and originates from the smooth muscles of the

myometrium. In the past several decades, the prognosis of

ULMS patients has not changed with an overall 5-year survival

rate of only 15%‐25% (2). Currently, complete surgical resection

is the primary treatment for early-stage ULMS (3), and

chemotherapy is regarded as the standard therapy for

advanced or metastatic ULMS (4, 5), but with an estimated

recurrence rate of approximately 50 to 70% (6). ULMS

constitutes a sizable proportion of uterine cancer deaths (7).

Additionally, compared to other gynecological malignancies,

ULMS etiology, pathogenesis and earlier diagnosis are poorly

understood. Considering that ULM can currently be treated with

minimally invasive surgery, it is important to discern ULMS

from ULM preoperatively to avoid disseminated spread by

laparoscopic morcellation or delayed diagnosis with

conservative treatment (8, 9). Considering that ULMS has a

high trend towards local recurrence, metastasis and poor

prognosis, the misdiagnosis of a ULMS for a leiomyoma may

lead to therapy delays and higher morbidity (10, 11).

ULMS patients generally present with abnormal vaginal

bleeding, pelvic pain and palpable pelvic mass. Because these

symptoms resemble ULM, particularly degenerated ULM, it is

difficult to discern ULMS and ULM by pelvic ultrasound and

MRI preoperatively (12). Postoperative pathological diagnosis is

currently the only available method to distinguish the two tumor

conditions. A meta-analysis containing 133 studies has indicated

that undiagnosed ULMS estimated to be approximately 1 in
02
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2000 surgeries for presumed ULM (13). It is well

known that tumor-associated immunity plays a vital role in

the occurrence, development and metastasis of tumors (14). The

recent development of integrated microarray technology

with bioinformatics analysis may allow identification of novel

genes that might act as diagnostic and prognostic biomarkers in

cancers (15, 16). Definitive molecular diagnosis added to

histopathological diagnosis should be considered to decrease

the risk of misdiagnosis. Verification of highly novel diagnostic

biomarkers for ULMS related to immune cell infiltration will

further improve the diagnostic accuracy of ULMS.

Herein, the aim of this study was to identify novel diagnostic

immune-related genes for ULMS. Machine-learning algorithms

and logistic regression were used to verify diagnostic biomarkers

of ULMS. Furthermore, CIBERSORT was applied to compute

the quotas of infiltrating immune cells between ULMS and ULM

samples. Finally, the correlation among the recognized

diagnostic biomarkers and infiltrating immune cells was

explored to offer a foundation for further research.
Materials and methods

Microarray data processing and
identification of DEGs

First, we obtained datasets (GSE36610 and GSE64763 as the

training group; and GSE9511 and GSE68295 as the testing

group) from the GEO database (https://www.ncbi.nlm.nih.gov/

gds) (Table 1). The background correction and normalization of

raw data were processed by the limma package of R software

(http://www.bioconductor.org/). Two datasets were merged into
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a metadata cohort, and the batch effect was removed with the

SVA package of R software (17). Genes with |log fold change

(FC)| > 2 and adjusted P < 0.05 were defined as DEGs.
Functional enrichment of DEGs

TheDEGs were analyzed using the clusterProfiler, org.Hs.eg.db,

enrichplot and ggplot2 packages of R software for GO and KEGG

analyses. The clusterProfiler and DOSE packages of R software were

used to perform DO analyses on DEGs. GSEA was conducted to

recognize the most important feature between the ULMS and ULM

groups. “c2.cp.kegg.v7.4.symbols.gmt” was applied as the reference

gene set from the Molecular Signatures Database (MSigDB).

P <0.05 was considered a significant enrichment.
Screening candidate biomarker for
diagnosis of ULMS

We applied two machine-learning algorithms to increase

the prediction accuracy. LASSO is a regression-based analysis that

scrutinizes variable selection and regularization in ULMS models.

The glmnet package of R software was applied to perform LASSO

regression analysis on the identification of DEGs correlated with the

discernment betweenULMS andULM.The support vectormachine

(SVM) is an efficient and widely applied supervised machine-

learning algorithm for disease classification and regression tasks

(18). Consequently, we screened the overlapping genes by

conjugating LASSO and SVM-RFE followed by verification using

the GSE9511 and GSE68295 datasets.
Significance of diagnostic biomarkers in
ULMS

We obtained mRNA expression data from 37 ULMS and 25

ULM samples, which were applied to create ROC curves to

verify the biomarker predictive ability. The area under the ROC

curve (AUC) was utilized to determine the ability of diagnosis in

distinguishing ULMS from ULM samples followed by

verification using the GSE9511 and GSE68295 datasets.
Frontiers in Oncology 03
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Evaluating the level of immune
infiltration

We downloaded a gene signature matrix with interpretation,

known as the 22 immune cell (LM22) matrix with 1,000

permutations from CIBERSORT (http://cibersort.stanford.edu/)

(19). The CIBERSORT algorithm was applied to quantify the

proportion of 22 infiltrating immune cells in the tissue using the

expression of 547 immune-related genes. The corrplot package in

R software was applied to conduct the correlation and

visualization of 22 types of infiltrating immune cells. The

vioplot package in R software was used to study the infiltration

of immune cells between the ULMS and ULM groups. Pearson

correlation analysis was applied to explore the selected diagnostic

biomarkers correlated with the levels of infiltrating immune cells.
Patient and tissue samples

Twenty-six paraffin-embedded ULMS and twenty-three ULM

specimens were diagnosed at The Second Affiliated Hospital of

Fujian Medical University (Fujian, China) from September 2010

to February 2022. The main treatment of all patients underwent

hysterectomy with bilateral adnexal resection. The research was

approved by the Research Ethics Committee of The Second

Affiliated Hospital of Fujian Medical University prior to the study.
Immunohistochemistry

IHC staining was operated as previously described (20). The

primary antibodies included anti-DPP6 (Bioss, Beijing), anti-

MFAP5 (Proteintech, USA). The proportion of DPP6 and MFAP5

staining intensitywas scored as follows: negative = 0; light yellow= 1;

brownishyellow=2;or tan=3.The stainingwas scoredas follows: less

than 1/3 = 1; between 1/3 and 2/3 = 2; ormore than 2/3 = 3. Thefinal

score forDPP6andMFAP5expressionwascalculatedbymultiplying

the 2 scores. The slides were classified to low and high expression

group, corresponding to scores of <3 or ≥3, respectively. The

histopathological diagnosis of the patients included in our study

was establ ished by two pathologists special ized in

Gynecologic Oncology.
TABLE 1 GEO database data of preeclampsia mRNA expression profile.

Dataset ID Platform leiomyosarcoma leiomyoma

Train group

GSE36610 GPL7363-11635 12 0

GSE64763 GPL571-17391 25 25

Test group

GSE9511 GPL80-30376 9 7

GSE68295 GPL6480-9577 3 3
f
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Statistical analysis

We utilized R software to conduct (v.4.1.1) all statistical

analyses. We used the Mann–Whitney U test to compare the

different groups. LASSO regression, SVM algorithm, ROC curve,

Pearson’s correlation and unpaired t test were used as described

above. Differences with P < 0.05 were considered statistically

significant for all statistical analyses.
Result

Study procedure

The analysis procedure of the present is shown in Figure 1.

The transcriptome RNA-seq data were downloaded from the

GEO database. We identified the DEGs between the ULMS and

ULM group. DEGs were anlayzed using the GO, KEGG and DO

analyses as well as GSEA. LASSO and SVM-RFE were used to

select the candidate overlapping genes, and ROC curves were

applied to check the predictive ability of biomarkers, which was
Frontiers in Oncology 04
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further verified in the GSE9511 and GSE68295 datasets. The

compositional patterns of 22 immune cells were calculated using

CIBERSORT in ULMS. Finally, correlation analysis among the

diagnostic markers and infiltrating immune cells was performed.
Identification of DEGs in ULMS

The present study utilized two datasets (GSE36610, GSE64763)

and included37ULMSand25ULMsamples.We identified55DEGs

by comparingULMS andULM(Figure 2A). Among theseDEGs, 21

genes were significantly downregulated, and 34 genes

were significantly upregulated. The volcano plot in Figure 2B

shows the distribution of the top 50 DEGs in ULMS and ULM.
Correlation and functional enrichment
analysis

The GO analysis indicated that the DEGs mainly

participated in chromosome segregation and the cell cycle
FIGURE 1

Analysis flow diagram of this study.
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(Figure 3A). In addition, KEGG analysis showed enrichment of

the cell cycle and immune-related pathways, such as HTLV-1

infection way (Figure 3B). The DO enrichment showed that

DEGs were mostly related to solid malignant tumors and

haematological malignancies (Figure 3C). The GSEA results

revealed negative enrichment in cell adhesion and the Wnt

signalling pathway in ULM (Figure 3D, Table S1) as well as

positive enrichment in the cell cycle, DNA replication and

mismatch repair in ULMS (Figure 3E, Table S2). These results

indicated that mismatch repair, related immunity and the cell

cycle play vital roles in ULMS.
Verification and validation of diagnostic
biomarkers

We employed the LASSO and SVM-RFE algorithm methods

to select potential biomarkers. We identified 7 DEGs as

diagnostic biomarkers using LASSO regression for ULMS

(Figure 4A), and we verified 34 DEGs using the SVM-RFE

(Figure 4B). When integrating both algorithms, six

overlapping candidate genes (PRC1, SELP, PID1, DPP6,

MFAP5 and HSD17B6) were selected (Figure 4C). In addition,

with the purpose of producing more dependable and exact

DEGs, we verified the expression levels of six DEGs using the

GSE9511 and GSE68295 datasets. The DPP6 and MFAP5

expression levels in ULMS samples were significantly lower

than those in the ULM group (Figures 5A, B; P < 0.05).

However, SLEP gene expression was not significantly different

between the two groups (Figure 5C). Subsequently, we

investigated the latent ability of the two identified DEGs as

diagnostic biomarkers utilizing a logistic regression algorithm.
Frontiers in Oncology 05
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Effectiveness of diagnostic biomarkers in
ULMS

The ability of the two diagnostic biomarkers indicated good

diagnostic value in early discernment of ULMS as the AUC

values of the DPP6 and MFAP5 genes were 0.957 and 0.899,

respectively (Figure 6A). Subsequently, a persuasive screening

capacity was verified in the GSE9511 and GSE68295 datasets

with AUC values of 0.983 in DPP6 and 0.942 in MFAP5

(Figure 6B). We assessed the expression of DPP6 and MFAP5

across ULMS and ULM tissues via immunohistochemistry and

found that low expression of DPP6 and MFAP5 were associated

with ULMS. DPP6 was expressed in the cytoplasm, MFAP5 was

expressed in the stroma. (Figures 6C, D; P < 0.05). The above

results indicating that the DPP6 gene and MFAP5 had a higher

diagnostic capacity.
DPP6 and MFAP5 genes correlate
with the percentage of immune
cell infiltration

Next, we verified the correlation of the DPP6 and MFAP5

genes with immune cell infiltration. We determined the

proportions of 22 immune cells in the ULMS and ULM

samples using the CIBERSORT algorithm (Figures 7A, B). The

components of immune cells in the ULMA vs. ULM group were

explored. The ratios of resting CD4+ memory T cells (P =0.023),

activated NK cells (P = 0.031) and resting mast cells (P <0.001)

in the ULMS group were markedly lower than those in the ULM

group. However, the ratio of M0 macrophages (P = 0.011) was

significantly higher in ULMS compared to ULM (Figure 7C).
BA

FIGURE 2

Identifcation of DEGs. (A) Heatmap plots of 55 DEGs between ULMS and ULM samples from GEO database. Row name of heatmap is the gene
name, and column name is the ID of samples which not shown in plot.The colors from red toblue represent expression level from high to low
in the heatmaps. (B) Volcano plots of top 50 DEGs between ULMS and ULM samples. The red dots in the volcano plots represent up-regulation,
the green dots represent down-regulation and black dots represent genes without differential expression.
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Furthermore, we studied the relationship between the DPP6 and

MFAP5 genes and infiltrating immune cells. DPP6 was positively

related to resting mast cells (r = 0.570, p < 0.001), monocytes

(r = 0.328, P = 0.032) and activated dendritic cells (r = 0.301,

p =0.0495) but negatively related to eosinophils (r = −0.321,

P = 0.036) and M0 macrophages (r = -0.450, P =0.003)

(Figure 7D). Moreover, MFAP5 was positively related to

resting mast cells (r = 0.413, p = 0.006) (Figure 7E). These

findings supported that DPP6 and MFAP5 are related to

immune activity.
Discussion

ULMS is one of the most common subtypes in mesenchymal

neoplasms, but research on ULMS is limited. Because the

incidence rate is low, different clinical features and

histopathological appearances result in a lack of molecular

biomarkers, offering no superior treatment regimen (21). The

biological behaviour of ULMS is difficult to predict. Although

the tumor is often restricted to the uterus, recurrence and

metastasis are highly common (22). An increasing number of

studies have employed immune cells as a new bioinformatic

approach to investigate the diagnosis and prognosis of various

diseases, including gastric cancer (23), breast cancer (24) and

osteosarcoma (25). However, there are few studies on the

immune cell infiltration association with DEGs in ULMS.

Thus, we focused on the identification of significant diagnostic
Frontiers in Oncology 06
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DEGs for ULMS and determined the correlation of these DEGs

with infiltrating immune cells in ULMS.

To our knowledge, our study is the first to apply multiple

G EO d a t a s e t s f o r k n ow l e d g e m i n i n g u s i n g a

machine learning approach in ULMS to identify significant

diagnostic biomarkers related to immune cells. In the present

study, which utilized the GSE36610, GSE64763, GSE9511 and

GSE68295 datasets from the GEO database, 55 DEGs were

identified by comparing ULMS and ULM samples. DO

enrichment showed that the 55 DEGs were mainly related to

solid malignant tumors and haematological malignancies.

KEGG analysis and GSEA indicated that the DEGs were

involved in regulating immune-related pathways and the cell

cycle. Risinger et al. reported that defective postreplication

mismatch repair resulting in microsatellite instability is

present in considerable portions of sarcomas in gynecology

(26). Similarly, mismatch repair (MMR) protein has been

screened in uterine carcinosarcomas and leiomyosarcomas by

immunohistochemical assays but has not been identified in

other types of uterine mixed epithelial/mesenchymal or

mesenchymal malignancies (27). Anderson et al. found that

p53 expression may act as a prognostic biomarker for ULMS

(28). Abnormal p53 staining (null or strong/diffuse) has been

observed in ULMS with 70% sensitivity and 100% specificity

against inflammatory myofibroblastic tumors (IMTs) and is

related to genomic alterations (29). Relevant study has

demonstrated that HTLV-1 infection correlates with the

occurrence of ULMS. However, HTLV-1 has been thoroughly
B

C

D

E

A

FIGURE 3

Functional enrichment analyses to identify potential biological processes. (A) GO analysis. GO analysis divided DEGs into three functional
groups: molecular function (MF), biological processes (BP), and cell composition (CC). (B) KEGG analysis of DEGs. (C) Disease ontology
enrichment analysis of DEGs between ULMS and ULM samples. (D, E) Enrichment analyses between ULMS and ULM samples via gene set
enrichment analysis.
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studied in adult T-cell leukaemia/lymphoma (ATL) (30–32), an

aggressive CD4+ T-cell malignancy. HTLV-1 increases genomic

instability by directly altering the expression of host genes;

conversely, abnormal gene expression may influence the

longevity of infected CD+4 T cell clones and profileration rate,

allowing further mutations to accumulate and the host genome

structure to vary, ultimately leading to malignant transformation
Frontiers in Oncology 07
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(33). Because HTLV-1 mediates immune-related pathways,

it possible that regulation of the immune response is strongly

associated with the occurrence of ULMS.

We identified two diagnostic biomarkers based on

integra t ing two machine- learn ing a lgor i thms and

diagnostic ability analysis, and we verified these markers using

the GSE9511 and GSE68295 datasets. The dipeptidyl peptidase 6
B

C

A

FIGURE 4

Screening process of diagnostic biomarker candidates for ULMS diagnosis. (A) Tuning feature selection in the LASSO model. (B) A plot of
biomarkers selection via SVM-RFE algorithm. (C) Venn diagram demonstrating 6 diagnostic biomarkers shared by the LASSO and SVM-RFE
algorithms.
B CA

FIGURE 5

Validation of the expression of diagnostic biomarkers in the GSE9511 and GSE68295. (A) DPP6; (B) MFAP5; (C) SLEP.
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(DPP6) gene encodes a single transmembrane peptidase without

activity. Most likely, DPP6 enhances its expression and regulates

its gating feature by combining at the permeation and gating

modules of the potassium channel (34). In breast cancer tissues,

DPP6 has low expression at the transcription and protein levels,

and in breast cancer patients, low expression of DPP6 indicates

poor prognoses, suggesting that DPP6 may serve as a tumour

suppressor in tumour development (35), which agreed with our

study. However, in surgically treated clear cell renal cell

carcinoma (ccRCC) patients, the promoter methylation of

DPP6 genes is related to an aggressive phenotype and early

progression of distant metastasis (36). Similarly, in pancreatic

ductal adenocarcinoma tissues, the promoter methylation of
Frontiers in Oncology 08
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DPP6 genes is significantly higher than that in normal tissues

(37). Microfibril-associated protein 5 (MFAP5) is a 25 kDa

glycoprotein present in the extracellular matrix and stroma in

all tissues (38), and it is crucial for elastic microfibril assembly.

Using a microarray to investigate prostate tumors, researchers

have detected 3800 significant expression alterations between the

tumor stroma and benign stroma, and they reported that the

downregulation of MFAP5 expression is the most significant

alteration in the prostate cancer stroma among all genes

examined (39). Significant loss of MFAP5 expression in colon

cancer stroma may facilitate the difference between

pseudoinvasive and true invasive tumors with a specificity of

75% and a sensitivity of 80% in colonic adenomatous polyps
B
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FIGURE 6

The receiver operating characteristic (ROC) curve of the diagnostic effectiveness of the six diagnostic markers. (A) ROC curve of DPP6 and
MFAP5 after fitting to one variable in the metadata cohort; (B) ROC curve of DPP6 and MFAP5 after fitting to one variable in the GSE9511 and
GSE68295 dataset. (C) Significantly low DPP6 expression was observed in ULMS tissues compared with ULM specimens (ULMS=26, ULM=23).
Representative images (×50 and ×400) of IHC staining for DPP6 in 26 ULMS and 23 ULM patients (high expression vs. low expression). (D)
Significantly low MFAP5 expression was observed in ULMS tissues compared with ULM specimens (ULMS=26, ULM=23). Representative images
(×50 and ×400) of IHC staining for MFAP5 in 26 ULMS and 23 ULM patients (high expression vs. low expression). Scale bars are shown. *P <
0.05. P values were calculated by chi-square tests.
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(40). However, high expression levels of MFAP5 are associated

with a worse prognosis in ovarian cancer (both in epithelium

and stroma). In the present study, we observed significantly low

expression of MFAP5 in the stromal component of ULMS

specimens, similar to the above study.

We applied CIBERSORT to assess the types of immune cell

infiltration in ULMS and ULM. We discovered that decreased

infiltration of resting CD4+ memory T cells, activated NK cells

and resting mast cells in addition to increased infiltration of M0

macrophages were potentially correlated with the occurrence

and development of ULMS. Xiaoqing et al. found that the

infiltration of two types of immune cells (resting mast cells

resting and activated NK cells) is lower in ULMS tissues, while

the infiltration offive types of immune cells (memory B cells, M0
Frontiers in Oncology 09
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macrophages, activated mast cells, M1 macrophages and

follicular helper T cells) is higher in ULMS tissues than in

normal myometrium (NL) tissues (41). Similarly, our study

demonstrated that the infiltration of immune cell types was

lower due to the selection of the control group. Additionally, we

found that the DPP6 gene was positively correlated with resting

mast cells, monocytes and activated dendritic cells. However, M0

macrophages and eosinophils had a negative correlation with the

DPP6 gene. Together, these findings indicated that the DPP6

gene is associated with several types of immune cell infiltration

and plays an important role in ULMS, suggesting that

should be a focus in future experimental work.

The present study had limitations. First, due to the low

incidence rate of ULMS, the number of cases was not enough in
B

C
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A

FIGURE 7

Distribution and visualization of immune cell infiltration and correlation analysis. (A) Barplot showing the proportion of 22 immune cell subtypes
between ULMS and ULM samples. (B) Heatmap showing the correlation matrix of all 22 immune cell subtype compositions. Both horizontal and
vertical axes demonstrate immune cell subtypes. Immune cell subtype compositions (higher, lower, and same correlation levels are displayed in
red, blue, and white, respectively), and Pearson coefficient was used for significance test. (C) Violin plot showed the the total distribution of
immune cells in ULMS and ULM samples. Correlation between DPP6 (D), MFAP5 (E) and infiltrating immune cells in ULMS.
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the GSE36610 and GSE64763 datasets. Second, the function and

reproducibility of the DPP6 and MFAP5 genes as well as the

related immune cell infiltration should be further validated by

prospective studies with larger sample sizes in ULMS.
Conclusion

Based on the GEO database, the two hub genes and the

infiltration of five types of immune cells were related to ULMS

occurrence. DPP6 and MFAP5 genes may affect the occurrence

of ULMS through immune-related pathways. Thus, these

findings provided molecular evidence for the treatment of

ULMS in the future.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
Ethics statement

The studies involving human participants were reviewed and

approved by Ethics committee of The Second Affiliated Hospital

of Fujian Medical University. The patients/participants provided

their written informed consent to participate in this study.
Author contributions

All authors contributed to the article and approved the

submitted version.
Frontiers in Oncology 10
18
Funding

This work was supported by the Fujian Provincial Health

Technology Project (No. 2019-1-15).
Acknowledgments

The authors acknowledge the GEO database for providing

data of ULMS and ULM available.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/

fonc.2022.1084192/full#supplementary-material
References
1. Kobayashi H, Uekuri C, Akasaka J, Ito F, Shigemitsu A, Koike N, et al. The
biology of uterine sarcomas: A review and update. Mol Clin Oncol (2013) 1:599–
609. doi: 10.3892/mco.2013.124

2. Ricci S, Stone RL, Fader AN. Uterine leiomyosarcoma: Epidemiology,
contemporary treatment strategies and the impact of uterine morcellation.
Gynecol Oncol (2017) 145:208–16. doi: 10.1016/j.ygyno.2017.02.019

3. George S, Serrano C, Hensley ML, Ray-Coquard I. Soft tissue and uterine
leiomyosarcoma. J Clin Oncol (2018) 36:144–50. doi: 10.1200/JCO.2017.75.9845

4. D'Ambrosio L, Touati N, Blay JY, Grignani G, Flippot R, Czarnecka AM, et al.
Doxorubicinplusdacarbazine,doxorubicinplus ifosfamide,ordoxorubicinaloneasafirst-
line treatment for advanced leiomyosarcoma: A propensity score matching analysis from
the European organization for research and treatment of cancer soft tissue and bone
sarcoma group. Cancer (2020) 126:2637–47. doi: 10.1002/cncr.32795.European
Organization forResearchandTreatmentofCancerSoftTissueandBoneSarcomaGroup.

5. Casali PG, Abecassis N, Aro HT, Bauer S, Biagini R, Bielack S, et al. Soft tissue
and visceral sarcomas: ESMO-EURACAN clinical practice guidelines for diagnosis,
treatment and follow-up. Ann Oncol (2018) 29:iv268–9. doi: 10.1093/annonc/
mdy321
6. Kapp DS, Shin JY, Chan JK. Prognostic factors and survival in 1396 patients
with uterine leiomyosarcomas: emphasis on impact of lymphadenectomy and
oophorectomy. Cancer (2008) 112:820–30. doi: 10.1002/cncr.23245

7. Roberts ME, Aynardi JT, Chu CS. Uterine leiomyosarcoma: A review of the
literature and update on management options. Gynecol Oncol (2018) 151:562–72.
doi: 10.1016/j.ygyno.2018.09.010

8. Mori KM, Abaid LN, Mendivil AA, Brown JV3rd, Beck TL, Micha JP, et al.
The incidence of occult malignancy following uterine morcellation: A ten-year
single institution experience retrospective cohort study. Int J Surg (2018) 53:239–
42. doi: 10.1016/j.ijsu.2018.03.075

9. Kaganov H, Ades A, Fraser DS. Preoperative magnetic resonance imaging
diagnostic features of uterine leiomyosarcomas: A systematic review. Int J Technol
Assess Health Care (2018) 34:172–9. doi: 10.1017/S0266462318000168

10. Major FJ, Blessing JA, Silverberg SG, Morrow CP, Creasman WT, Currie JL,
et al. Prognostic factors in early-stage uterine sarcoma. cancer (1993) 71:1702–9.
doi: 10.1002/cncr.2820710440

11. Marret H, Fritel X, Ouldamer L, Bendifallah S, Brun JL, De Jesus I, et al. And
cngof, therapeutic management of uterine fibroid tumors: updated French
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.1084192/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.1084192/full#supplementary-material
https://doi.org/10.3892/mco.2013.124
https://doi.org/10.1016/j.ygyno.2017.02.019
https://doi.org/10.1200/JCO.2017.75.9845
https://doi.org/10.1002/cncr.32795
https://doi.org/10.1093/annonc/mdy321
https://doi.org/10.1093/annonc/mdy321
https://doi.org/10.1002/cncr.23245
https://doi.org/10.1016/j.ygyno.2018.09.010
https://doi.org/10.1016/j.ijsu.2018.03.075
https://doi.org/10.1017/S0266462318000168
https://doi.org/10.1002/cncr.2820710440
https://doi.org/10.3389/fonc.2022.1084192
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ke et al. 10.3389/fonc.2022.1084192
guidelines. Eur J Obstet Gynecol Reprod Biol (2012) 165:156–64. doi: 10.1016/
j.ejogrb.2012.07.030

12. D'Angelo E, Prat J. Uterine sarcomas: A review. Gynecol Oncol (2010)
116:131–9. doi: 10.1016/j.ygyno.2009.09.023

13. Pritts EA, Vanness DJ, Berek JS, Parker W, Feinberg R, Feinberg J, et al. The
prevalence of occult leiomyosarcoma at surgery for presumed uterine fibroids: a
meta-analysis. Gynecol Surg (2015) 12:165–77. doi: 10.1007/s10397-015-0894-4

14. Giraldo NA, Becht E, Remark R, Damotte D, Sautes-Fridman C, Fridman
WH. The immune contexture of primary and metastatic human tumours. Curr
Opin Immunol (2014) 27:8–15. doi: 10.1016/j.coi.2014.01.001

15. Wu J, Zhao Y, Zhang J, Wu Q, Wang W. Development and validation of an
immune-related gene pairs signature in colorectal cancer. Oncoimmunology (2019)
8:1596715. doi: 10.1080/2162402X.2019.1596715

16. Zhao E, Zhou C, Chen S. A signature of 14 immune-related gene pairs
predicts overall survival in gastric cancer. Clin Transl Oncol (2021) 23:265–74.
doi: 10.1007/s12094-020-02414-7

17. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics (2012) 28:882–3. doi: 10.1093/bioinformatics/bts034

18. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer
classification using support vector machines. Machine Learn. (2002) 46:389–422.
doi: 10.1023/A:1012487302797

19. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
enumeration of cell subsets from tissue expression profiles. Nat Methods (2015)
12:453–7. doi: 10.1038/nmeth.3337

20. Chen H, Wang J, Yang H, Chen D, Li P. Association between FOXM1 and
hedgehog signaling pathway in human cervical carcinoma by tissue microarray
analysis. Oncol Lett (2016) 12:2664–73. doi: 10.3892/ol.2016.4932

21. Tsuyoshi H, Yoshida Y. Molecular biomarkers for uterine leiomyosarcoma and
endometrial stromal sarcoma. Cancer Sci (2018) 109:1743–52. doi: 10.1111/cas.13613

22. Desar IME, Ottevanger PB, Benson C, van der Graaf WTA. Systemic
treatment in adult uterine sarcomas. Crit Rev Oncol Hematol (2018) 122:10–20.
doi: 10.1016/j.critrevonc.2017.12.009

23. Xiang A, Lin X, Xu L, Chen H, Guo J, Zhou F. PCOLCE is potent prognostic
biomarker and associates with immune infiltration in gastric cancer. Front Mol
Biosci (2020) 7:544895. doi: 10.3389/fmolb.2020.544895

24. Yao S, Cheng TD, Elkhanany A, Yan L, Omilian A, Abrams SI, et al. Breast
tumor microenvironment in black women: A distinct signature of CD8+ T-cell
exhaustion. J Natl Cancer Inst (2021) 113:1036–43. doi: 10.1093/jnci/djaa215

25. Zheng J-H, Zhang C, Lin Z-H, Lv H-Y, Ye Z-M, Chen Y-P, et al. Profiles of
immune cell infiltration and immune-related genes in the tumor microenvironment of
osteosarcoma. Aging (2020) 12:3486–501. doi: 10.18632/aging.102824

26. Risinger JI, Boyer JC,EvansAC,BerchuckA,KunkelTA,Barrett JC.Microsatellite
instability in gynecological sarcomas and in hMSH2 mutant uterine sarcoma cell lines
defective in mismatch repair activity. Cancer Res (1995) 55:5664–9.

27. Hoang LN, Ali RH, Lau S, Gilks CB, Lee CH. Immunohistochemical survey
of mismatch repair protein expression in uterine sarcomas and carcinosarcomas.
Int J Gynecol Pathol (2014) 33:483–91. doi: 10.1097/PGP.0b013e31829ff239
Frontiers in Oncology 11
19
28. Anderson SE, Chuai S, Olshen AB, D. CHI, Sabbatini P, Soslow RA. p53,
epidermal growth factor, and platelet-derived growth factor in uterine
leiomyosarcoma and leiomyomas. Int J Gynecol Cancer (2006) 16:849–53. doi:
10.1111/j.1525-1438.2006.00542.x

29. Schaefer IM, Hornick JL, Sholl LM, Quade BJ, Nucci MR, Parra-Herran C.
Abnormal p53 and p16 staining patterns distinguish uterine leiomyosarcoma from
inflammatory myofibroblastic tumour. Histopathology (2017) 70:1138–46.
doi: 10.1111/his.13176

30. Kannagi M, Hasegawa A, Nagano Y, Kimpara S, Suehiro Y. Impact of host
immunity on HTLV-1 pathogenesis: potential of tax-targeted immunotherapy
against ATL. Retrovirology (2019) 16:23. doi: 10.1186/s12977-019-0484-z

31. Kannagi M, Ohashi T, Harashima N, Hanabuchi S, Hasegawa A.
Immunological risks of adult T-cell leukemia at primary HTLV-I infection.
Trends Microbiol (2004) 12:346–52. doi: 10.1016/j.tim.2004.05.005

32. Matsuoka M. Human T-cell leukemia virus type I (HTLV-I) infection and
the onset of adult T-cell leukemia (ATL). Retrovirology (2005) 2:27. doi: 10.1186/
1742-4690-2-27

33. Cook L, Melamed A, Yaguchi H, Bangham CR. The impact of HTLV-1 on
the cellular genome. Curr Opin Virol (2017) 26:125–31. doi: 10.1016/
j.coviro.2017.07.013

34. Kaulin YA, De Santiago-Castillo JA, Rocha CA, Nadal MS, Rudy B,
Covarrubias M. The dipeptidyl-peptidase-like protein DPP6 determines the
unitary conductance of neuronal Kv4.2 channels. J Neurosci (2009) 29:3242–51.
doi: 10.1523/JNEUROSCI.4767-08.2009

35. Choy TK, Wang CY, Phan NN, Khoa Ta HD, Anuraga G, Liu YH, et al.
Identification of dipeptidyl peptidase (DPP) family genes in clinical breast cancer
patients via an integrated bioinformatics approach. Diagnostics (Basel) (2021) 11
(7):1204. doi: 10.3390/diagnostics11071204

36. Kang HW, Park H, Seo SP, Byun YJ, Piao XM, Kim SM, et al. Methylation
signature for prediction of progression free survival in surgically treated clear cell
renal cell carcinoma. J Korean Med Sci (2019) 34:e144. doi: 10.3346/
jkms.2019.34.e144

37. Zhao X, Cao D, Ren Z, Liu Z, Lv S, Zhu J, et al. Dipeptidyl peptidase like 6
promoter methylation is a potential prognostic biomarker for pancreatic ductal
adenocarcinoma. Biosci Rep (2020) 40(7):BSR20200214. doi: 10.1042/
BSR20200214

38. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu
A, et al. Proteomics. tissue-based map of the human proteome. Science (2015)
347:1260419. doi: 10.1126/science.1260419

39. Jia Z, Wang Y, Sawyers A, Yao H, Rahmatpanah F, Xia XQ, et al. Diagnosis
of prostate cancer using differentially expressed genes in stroma. Cancer Res (2011)
71:2476–87. doi: 10.1158/0008-5472.CAN-10-2585

40. Zhao L, Westerhoff M, Hornick JL, Krausz T, Antic T, Xiao SY, et al. Loss of
microfibril-associated protein 5 (MFAP5) expression in colon cancer stroma.
Virchows Arch (2020) 476:383–90. doi: 10.1007/s00428-019-02649-y

41. Shen X, Yang Z, Feng S, Li Y. Identification of uterine leiomyosarcoma-
associated hub genes and immune cell infiltration pattern using weighted co-
expression network analysis and CIBERSORT algorithm. World J Surg Oncol
(2021) 19:223. doi: 10.1186/s12957-021-02333-z
frontiersin.org

https://doi.org/10.1016/j.ejogrb.2012.07.030
https://doi.org/10.1016/j.ejogrb.2012.07.030
https://doi.org/10.1016/j.ygyno.2009.09.023
https://doi.org/10.1007/s10397-015-0894-4
https://doi.org/10.1016/j.coi.2014.01.001
https://doi.org/10.1080/2162402X.2019.1596715
https://doi.org/10.1007/s12094-020-02414-7
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.3892/ol.2016.4932
https://doi.org/10.1111/cas.13613
https://doi.org/10.1016/j.critrevonc.2017.12.009
https://doi.org/10.3389/fmolb.2020.544895
https://doi.org/10.1093/jnci/djaa215
https://doi.org/10.18632/aging.102824
https://doi.org/10.1097/PGP.0b013e31829ff239
https://doi.org/10.1111/j.1525-1438.2006.00542.x
https://doi.org/10.1111/his.13176
https://doi.org/10.1186/s12977-019-0484-z
https://doi.org/10.1016/j.tim.2004.05.005
https://doi.org/10.1186/1742-4690-2-27
https://doi.org/10.1186/1742-4690-2-27
https://doi.org/10.1016/j.coviro.2017.07.013
https://doi.org/10.1016/j.coviro.2017.07.013
https://doi.org/10.1523/JNEUROSCI.4767-08.2009
https://doi.org/10.3390/diagnostics11071204
https://doi.org/10.3346/jkms.2019.34.e144
https://doi.org/10.3346/jkms.2019.34.e144
https://doi.org/10.1042/BSR20200214
https://doi.org/10.1042/BSR20200214
https://doi.org/10.1126/science.1260419
https://doi.org/10.1158/0008-5472.CAN-10-2585
https://doi.org/10.1007/s00428-019-02649-y
https://doi.org/10.1186/s12957-021-02333-z
https://doi.org/10.3389/fonc.2022.1084192
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Hao Zhang,
Chongqing Medical University, China

REVIEWED BY

Lingping Yang,
Chongqing Medical University, China
Tiezhu Chen,
Hunan Provincial People’s Hospital,
China

*CORRESPONDENCE

Xu Cao
hughcaoxu@hotmail.com

SPECIALTY SECTION

This article was submitted to
Cancer Immunity
and Immunotherapy,
a section of the journal
Frontiers in Oncology

RECEIVED 31 October 2022

ACCEPTED 15 November 2022
PUBLISHED 01 December 2022

CITATION

Zhang L, Wu S, Huang J, Shi Y, Yin Y
and Cao X (2022) A mitochondria-
related signature for predicting
immune microenvironment and
therapeutic response in osteosarcoma.
Front. Oncol. 12:1085065.
doi: 10.3389/fonc.2022.1085065

COPYRIGHT

© 2022 Zhang, Wu, Huang, Shi, Yin and
Cao. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

TYPE Original Research
PUBLISHED 01 December 2022

DOI 10.3389/fonc.2022.1085065
A mitochondria-related
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Background: Osteosarcoma remains to be the most devastating malignant

tumor in children and teenagers. Mitochondria have also been proven to play

critical roles in osteosarcoma. However, a mitochondria-related signature has

been established in osteosarcoma to comprehensively evaluate the pathogenic

roles and regulatory roles of mitochondria in osteosarcoma.

Methods: In this study, osteosarcoma samples' transcriptome data and clinical

information were collected from Therapeutically Applicable Research to

Generate Effective Treatments (TARGET) and Gene Expression Omnibus

(GEO) databases. A comprehensive bioinformatics analysis was performed on

the samples at the bulk RNA sequencing level and single-cell RNA sequencing

(scRNA-seq) level. EdU, Transwell, and immunohistochemistry (IHC) were

performed on PCCB.

Results: A mitochondria-related signature was constructed in osteosarcoma

patients. The prognostic value of the mitochondria-related signature was

explored. The predictive value of the mitochondria-related signature in

the immune microenvironment and chemotherapy agents was explored.

The association between mitochondria and immunity in the tumor

microenvironment of osteosarcoma at the scRNA-seq level was investigated.

The tumorigenic role of the critical mitochondria-related gene, PCCB, was

verified by in vitro validation.

Conclusion: In conclusion, a mitochondria-related signature was developed in

osteosarcoma with solid predictive values in the immune microenvironment,

chemotherapy agents, and prognosis.

KEYWORDS

osteosarcoma, immune, mitochondria-related signature, therapeutic response,
single-cell analysis
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Introduction

Osteosarcoma remains the most devastating malignant

tumor in children and teenagers (1). Osteosarcoma develops

from the mesenchymal cell line, and the rapid growth of the

cancer is due to the direct or indirect formation of tumor osteoid

tissue and bone tissue during the chondral stage (1). The closer

the tumor site is to the trunk, the higher the mortality. The key

factors affecting the prognosis are early diagnosis, complete

tumor resection, chemotherapy, and radiotherapy before and

after surgery. In addition, it is also related to the tissue type and

size of tumor cells, the increase of serum alkaline phosphatase

before and after surgery, and whether local lymph nodes are

involved (2). The primary treatment for osteosarcoma is radical

surgical resection. Consolidation of chemical or radiation

therapy after tumor resection is significant for controlling

tumor metastasis and improving survival rate (3) .

Immunotherapy involves the intravenous infusion of

lymphocytes or interferon and transfer factors, but the efficacy

is uncertain (4).

Mitochondria have been well recognized as a critical

mediator for oncogenesis. Based on their function as major

bioenergy promoters, mitochondria are actively involved in

regulating tumor anabolism, controlling REDOX and calcium

homeostasis, participating in transcriptional regulation, and

controlling cell death. Mitochondrial dysfunction leads to the

release of cytochrome C, the production of mitochondrial

reactive oxygen species (mtROS), and the generation of

metabolites, further initiating signaling cascades that affect

gene expression, cell activation, cell proliferation, and cell

differentiation (5, 6). Mitochondria may promote malignant

transformation through three main mechanisms: (1) Reactive

oxygen species (ROS), mainly derived from the mitochondrial

respiratory chain, contribute to the accumulation of potential

oncogenic DNA defects, and the activation of potential

oncogen ic s igna l ing pathways (7) ; (2 ) Abnormal

accumulation of some mitochondrial metabolites, including

fumaric acid, succinic acid, and 2-hydroxyglutaric acid (2-Hg)

(8); (3) Defective mitochondrial permeability transition
Abbreviations: TARGET, Therapeutically Applicable Research to Generate

Effective Treatments; GEO, Gene Expression Omnibus; scRNA-seq, single-

cell RNA sequencing; mtROS, mitochondrial reactive oxygen species; LASSO,

least absolute shrinkage and selection operator; ROC, receiver operating

characteristic; AUC, area under the curve; ssGSEA, single-sample gene-set

enrichment analysis; ESTIMATE, Estimated Stromal and Immune cells in

Malignant Tumor tissues using Expression data; DEGs, differentially

expressed genes; GSVA, gene set variation analysis; GO, Gene Ontology;

KEGG, Kyoto Encyc loped ia o f Genes and Genomes ; IHC,

Immunohistochemistry; RT-qPCR, Real-time quantitative polymerase

chain reaction.
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(MPT) function promotes the formation of malignant

precursors (9).

Mitochondria have also been proven to play critical roles in

osteosarcoma. AICAR was reported to induce mitochondrial

apoptosis in osteosarcoma through an AMPK-dependent

pathway (10). The mitochondrial BIG3-PHB2 complex

formation was reported to promote the survival and

proliferation of osteosarcoma (11). Besides, targeting

autophagy was reported to enhance atezolizumab-induced

mitochondria-related apoptosis in osteosarcoma (12).

Mitochondria-regulated cell death and energetic metabolism

are intimately connected in osteosarcoma (13). However, a

mitochondria-related signature has never been established in

osteosarcoma to comprehensively evaluate the pathogenic roles

and regulatory roles of mitochondria in osteosarcoma. More

importantly, the interconnection between mitochondria and the

tumor microenvironment of osteosarcoma remains to

be deciphered.

In this study, osteosarcoma samples’ transcriptome data

and clinical information were collected from Therapeutically

Applicable Research to Generate Effective Treatments

(TARGET) and Gene Expression Omnibus (GEO) databases.

A mitochondria-related signature was constructed in

osteosarcoma patients. The prognostic value of the

mitochondria-related signature was explored. The predictive

value of the mitochondria-related signature in the immune

microenvironment was explored. The predictive value of the

mitochondria-related signature in chemotherapy agents was

explored. The association between mitochondria and

immunity in the tumor microenvironment of osteosarcoma

at the single-cell RNA sequencing (scRNA-seq) level was

invest igated . The tumorigenic role of the cr i t ica l

mitochondria-related gene, PCCB, was verified by in vitro

validation. To the best of our knowledge, this is the first

study assessing the effect of mitochondria on the prognosis,

immune microenvironment, and therapeutic efficacy

in osteosarcoma.
Materials and methods

This study was ethically approved by the institutional review

board (IRB) of the Third Xiangya Hospital, Central South

University (No: 2020-S221). All experiments involving human

tissues were performed based on guidelines approved by the IRB.

A signed informed consent form was obtained from

each patient.
Data collection and procession

84 osteosarcoma samples with transcriptome data and

clinical information were accessed from the TARGET database
frontiersin.org
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((https://xenabrowser.net/) and were designed as the training

cohort. 53 osteosarcoma samples with transcriptome data and

clinical information were accessed from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/) and were designed as the

validating cohort (GSE21257). Samples with less than one

month follow-up time and a lack of overall survival

information were excluded. The count data were normalized

using the R package ‘DEseq2’. The scRNA-seq data of

osteosarcoma samples (primary osteosarcoma lesions, ‘BC2’

and ‘BC3’) were accessed from GSE152048 in the GEO

database. The mitochondria-related genes were accessed from

the MitoCarta3.0 database (http://www.broadinstitute.

org/mitocarta).
Construction of the mitochondria-
related signature

The univariate Cox regression analysis was performed on the

mitochondria-related genes to determine their prognostic

values. The least absolute shrinkage and selection operator

(LASSO) regression analysis was performed on the prognostic

mitochondria-related genes for dimension reduction.

The stepwise multivariate Cox regression analysis was

further performed on the prognostic mitochondria-related

genes for dimension reduction. A mitochondria-related

signature was developed based on the following formula:

Risk Score=∑Expression(Gene)×Coefficient.
Prognostic value of the mitochondria-
related signature

The survival curves were generated using the R package

‘survival’. The survival curves regarding different clinical factors

were developed independently. The receiver operating

characteristic (ROC) curve was generated using the R package

‘timeROC’, and the area under the curve (AUC) value

was calculated.
Predictive value of the mitochondria-
related signature in the immune
microenvironment

The single-sample gene-set enrichment analysis (ssGSEA)

algorithm was used to quantify the abundance of 28 specific

immune cell types using the R package ‘GSVA’ (14). The

Estimated Stromal and Immune cells in Malignant Tumor

tissues using Expression data (ESTIMATE) algorithm was

used to determine the microenvironment scores using the R

package ‘estimate’ (15).
Frontiers in Oncology 03
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Functional annotation of the
mitochondria-related signature

The differentially expressed genes (DEGs) between two

mitochondria-related signature score groups were determined.

The DEGs were visualized by volcano plot using the R package

‘EnhancedVolcano’. The DEGs were visualized by heatmap

using the R package ‘pheatmap ’ . The gene sets of

‘c2.cp.kegg.v7.4.symbols’ and ‘c5.go.bp.v7.4.symbols’ were

obtained from MSigDB database for performing the gene set

variation analysis (GSVA). Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis was conducted with the R package ‘clusterProfiler’

and ‘org.Hs.eg.db’.
Prediction value of the mitochondria-
related signature in chemotherapy
agents

The transcriptome data and drug response information of

over 1,000 cancer cell lines were collected from the Genomics of

Drug Sensitivity in Cancer (GDSC, http://www.cancerrxgene.

org/) database. The mitochondria-related signature was

developed in each cancer cell line. The Spearman method was

used to evaluate the correlation between risk score and half-

maximal inhibitory concentration (IC50) of each cancer

cell line.
scRNA-seq analysis of the mitochondria-
related signature

The scRNA-seq matrix of primary osteosarcoma samples

from GSE152048 was processed using the R package ‘Seurat’.

The function ‘NormalizedData’ was used to normalize the

scRNA-seq data. The function ‘FindVariableFeatures’ was used

to identify the 1,000 most variable genes. The function ‘RunPCA’

was used for dimension reduction. A K-nearest neighbor was

analyzed using the function ‘FindNeighbors’, and the cells were

combined with the function ‘FindClusters’. The function

Uniform Manifold Approximation and Projection for

Dimension Reduction (UMAP) was used for visualization. All

cells were annotated using the R package ‘Single R’. The function

‘FindMarkers ’ was used to find DEGs between two

mitochondria-related signature score groups of osteosarcoma

cells. The pseudotime trajectory analysis was performed using

the R package ‘monocle’ (16). GO and KEGG enrichment

analysis was conducted with the R package ‘clusterProfiler’

and ‘org.Hs.eg.db’. The cell communication pattern was

explored using the R package ‘iTalk’.
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Immunohistochemistry

Three pairs of formalin-fixed paraffin-embedded

osteosarcoma tissue and para-carcinoma tissue blocks from

three osteosarcoma patients (post-chemotherapy) were

collected and used for 5 mm paraffin sections. IHC was

performed following the manufacturer’s protocol of the

Rabbit-enhanced polymer method detection system (ZSGB-

BIO, PV-9000, China). The slides were deparaffinized and

rehydrated using xylene and gradient-concentration ethyl

alcohol. The antigen retrieval was performed with sodium

citrate at 95°C. The slides were blocked using an endogenous

peroxidase blocker for 10 min at room temperature. Samples

were incubated with primary antibody against PCCB (127549,

Zenbio, China) overnight at 4°C, reaction enhancer for 20 min at

37°C, and enhanced enzyme-conjugated sheep anti-rabbit

IgG polymer for 20 min at 37°C. The slides were stained with

3, 30-diaminobenzidine tetrahydrochloride (DAB) and

counterstained with hematoxylin.
Cell culture

Two osteosarcoma cell lines (U2OS and MNNG/HOS)

were obtained from the Procell Life Science & Technology

Co., Ltd. U2OS and MNNG/HOS were correspondingly

cultured in McCoy’s 5A (Procell, China) and MEM (Procell,

China) supplemented with 10% fetal bovine serum (FBS,

Gibco, USA) and 1% penicillin-streptomycin solution

(Biosharp, China) at 37°C with saturated humidity and 5%

CO2. The average time of culture medium exchange was

24-48h. The cells were digested with trypsin-EDTA

(Gibco, USA) and passaged when cell adhesion exceeded

80% confluency.
Small interfering RNA transfection

The PCCB siRNA (si-PCCB) and the nonspecific control

siRNA (si-NC) were synthesized by JTSBio (Wuhan, China).

The siRNAs sequences are as follows: PCCB-1 (F:

CCCUAACAGACUUCACGUUTT R : AACGUGA

AGUCUGUUAGGGTT ) , PCCB - 2 ( F : CCAAGC

UUCUCUACGCAUUTT R: AAUGCGUAGAGAAG

CUUGGTT), PCCB-3 (F: CCGCAGAGAUUGCAGUCAUTT

R: AUGACUGCAAUCUCUGCGGTT). The siRNAs were

transfected into U2OS and MNNG/HOS cells using a

jetPRIME transfection reagent (Polyplus, France). RNA

extraction was performed 48h after transfection.
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Real-time quantitative polymerase chain
reaction

The primer sequences are as follows: PCCB (F:

TGTCTTCAGTCAGGATTTTACAGTT R: GGCCT

GGTCCATGATTTTGC), GAPDH (F: AATGGGCA

GCCGTTAGGAAA R: GCCCAATACGACCAAATCAGAG).

Total RNA from cultured cells was extracted using Rnafast200

(Fastagen, Japan), and cDNA was synthesized using HiScript II

Q RT SuperMix for qPCR (Vazyme, China). ChamQ Universal

SYBR qPCR Master Mix (Vazyme, China) was used to conduct

RT-qPCR based on the manufacturer’s protocol. All steps for the

RT-qPCR reaction were conducted as follows: initial

denaturation at 95°C for 30s, one cycle; denaturation at 95°C

for 10s, 40 cycles; dissolution curve at 95°C for 15s, 60°C for 60s,

95°C for 15s, one cycle. Gene expression levels were normalized

to those of GAPDH and calculated using lg2–△△Ct method.
Western blot

A mixture of RIPA (Beyotime, China) and PMSF (Beyotime,

China) was used to lyse U2OS and MNNG/HOS cells for protein

extraction. Loading Buffer (Biosharp, China) was added to the

protein supernatant, and then the sample was boiled to denature

the protein. Then proteins were separated using SDS–PAGE gel

(Biosharp, China), transferred to PVDF membranes (Millipore,

USA), and blocked in 5% skimmed milk for 1 h. Then

membranes were incubated overnight at 4°C with primary

antibodies, including PCCB (127549, Zenbio, China) and

GAPDH (10494-1-AP, Proteintech, China). The membranes

were incubated with HRP-conjugated secondary antibody

(SA00001-2, Proteintech, China) the following day. Protein

bands were captured with a UVP Chem studio PLUS 815

(Analytik Jena, Germany).
EdU assay

Proliferating U2OS and MNNG/HOS cells were identified

using the EdU Imaging Kits (APExBIO, USA), and cell nuclei

were stained using Hoechst (Invitrogen, USA). Image Pro-Plus

version 6.0 (Media Cybernetics, USA) was used for counting

EdU-positive cells.
Statistical analysis

All bioinformatics statistical analyses were performed using

the R project (version 4.0.3, https://www.r-project.org/). The
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Wilcoxon and One-way ANOVA tests were used to compare the

difference among groups. All statistical analyses in the cell

experiment are based on mean ± SD using Graphpad Prism

(version 8.0.2.263). The Benjamini-Hochberg method was used

to obtain adjusted p values. The adjusted p value< 0.05 was

considered statistically significant.
Results

Construction of the mitochondria-
related signature

The univariate Cox regression analysis was performed on the

mitochondria-related genes to determine their prognostic values

(Figure 1A). The LASSO regression analysis was performed on the

prognostic mitochondria-related genes for dimension reduction

(Figure 1B). The stepwise multivariate Cox regression analysis

was further performed on the prognostic mitochondria-related

genes for dimension reduction (Figure 1C). Survival analysis was

performed on the prognostic mitochondria-related genes, among

which nine genes predicted worse survival and eight genes predicted

better survival (Figure S1). The mitochondria-related signature was

developed based on the sum of the expression values of the

prognostic mitochondria-related genes and their corresponding

coefficients. The formula is as follows: OGDH x (1.299)+GUF1 x

(-1.34)+FDX1 x (1.115)+ACADVL x (1.335)+PCCB x (1.635)

+PDK1 x (0.658)+STOML2 x (0.727)+LACTB x (-0.852)

+UQCRB x (1.145)+MFN2 x (-2.086)+CKMT2 x (0.368)

+ALDH7A1 x (-0.688)+TRMT1 x (1.189)+EPHX2 x (0.841)

+BAK1 x (-1.113)+SPATA20 x (-0.958).
Prognostic value of the mitochondria-
related signature

Survival analysis was performed on the two mitochondria-

related signature score groups in TARGET, and the high score

group was associated with shortened survival time (Figure 1D).

Survival analysis was also performed on the two mitochondria-

related signature score groups in GSE21257, and the high score

group was associated with shortened survival time (Figure 1E).

The 1-year, 3-year, and 5-year ROC curves had values of 0.97,

0.942, and 0.951 in TARGET, while the 1-year, 3-year, and 5-

year ROC curves had values of 0.689, 0.71, and 0.656 in

GSE21257 (Figures 1F, G). The mitochondria-related signature

score was not significantly different between the two age groups

(Figure 2A). The mitochondria-related signature score was not

significantly different between the two gender groups

(Figure 2B). Notably, the mitochondria-related signature score

was significantly different between the metastatic group and the

non-metastatic group (Figure 2C). In osteosarcoma patients

with age< 18, the high score group was associated with
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shortened survival time (Figure 2D). Likewise, in osteosarcoma

patients with age > 18, the high score group was associated with

shortened survival time (Figure 2D). In male osteosarcoma

patients, the high score group was associated with shortened

survival time (Figure 2E). Likewise, in osteosarcoma patients, the

high score group was associated with shortened survival time

(Figure 2E). In metastatic osteosarcoma patients, the high score

group was associated with shortened survival time (Figure 2F).

Likewise, in non-metastatic osteosarcoma patients, the high

score group was associated with shortened survival

time (Figure 2F).
Predictive value of the mitochondria-
related signature in the immune
microenvironment

The mitochondria-related signature was negatively

associated with multiple immune cells, including T cell, B cell,

natural killer T cell, macrophage, mast cell, and neutrophil

(Figure 3A). Notably, central memory CD8 T cell, natural

killer cell, CD56bright natural killer cell, macrophage, and

activated B cell were the top five cells highly correlated with

the mitochondria-related signature (Figure 3B). The high score

group was associated with lower levels of microenvironment

scores, including stromal score, immune score, and ESTIMATE

score (Figure 3C). Besides, the mitochondria-related signature

was negatively associated with stromal score (Figure 3D),

immune score (Figure 3E), and ESTIMATE score (Figure 3F).
Functional annotation of the
mitochondria-related signature

The DEGs between the two mitochondria-related signature

score groups were identified (Figure 4A). The distribution of the

DEGs between the two mitochondria-related signature score

groups is shown in Figure 4B. GO enrichment analysis was

performed on the DEGs (Figure 4C). Ossification, embryonic

skeletal system development, and pattern specification process

were highly enriched in the high score group. T cell activation,

extracellular matrix organization, and leukocyte cell-cell

adhesion were highly enriched in the low score group. KEGG

enrichment analysis was performed on the DEGs (Figure 4D).

TGF-b signaling pathway, hippo signaling pathway, and wnt

signaling pathway were highly enriched in the high score group.

Cytokine-cytokine receptor interaction, ECM-receptor

interaction, and focal adhesion were highly enriched in the

low score group. Besides, GSVA of GO and KEGG pathways

confirmed that autophagosome-lysosome fusion, recognition of

apoptotic cell, T cell receptor signaling pathway, and B cell

receptor signaling pathway were negatively associated with the

mitochondria-related signature (Figure 4E).
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FIGURE 1

Construction of the mitochondria-related signature. (A) The univariate Cox regression analysis was performed on the mitochondria-related
genes. (B) The LASSO regression analysis was performed on the prognostic mitochondria-related genes. (C) The stepwise multivariate Cox
regression analysis was performed on the prognostic mitochondria-related genes. (D) Survival analysis was performed on the two
mitochondria-related signature score groups in TARGET. (E) Survival analysis was performed on the two mitochondria-related signature score
groups in GSE21257. (F) The 1-year, 3-year, and 5-year ROC curves of the mitochondria-related signature in TARGET. (G) The 1-year, 3-year,
and 5-year ROC curves of the mitochondria-related signature in GSE21257.
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Prediction value of the mitochondria-
related signature in
chemotherapy agents
The potential value of the mitochondria-related signature in

predicting chemotherapy agents was explored based on the GSDC

database. The correlation between IC50 of drugs and the

mitochondria-related signature in cancer cell lines was explored.

The drug sensitivity of 30 drugs was identified to be significantly

associated with the mitochondria-related signature (Figure S2A).

Besides, the targeted signaling pathways of these drugs were

exhibited (Figure S2B). 24 drugs were negatively associated with

the mitochondria-related signature, including apoptosis

regulation inhibitor AZD5991, protein stability and degradation

inhibitor ML323, and kinases inhibitor BMS-345541. In addition,
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six drugs were positively associated with the mitochondria-related

signature, including ERK MAPK signaling inhibitor Refametinib,

RTK signaling inhibitor NVP-TAE684, and kinases inhibitor A-

770041. The overall predicted drug sensitivity and drug resistance

in targeted signaling pathways are shown in Figure S2C.
scRNA-seq analysis for the
mitochondria-related signature

The identified cells in the tumor microenvironment of

osteosarcoma are shown in Figure 5A. The levels of the

mitochondria-related signature score in identified cells are shown

in Figure 5B. The DEGs between the two mitochondria-related

signature score groups of osteosarcoma cells were identified. GO

enrichment analysis was performed on the DEGs (Figure 5C). ATP
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FIGURE 2

Prognostic value of the mitochondria-related signature. (A) The different levels of the mitochondria-related signature score regarding age.
(B) The different levels of the mitochondria-related signature score regarding gender. (C) The different levels of the mitochondria-related
signature score regarding metastasis. (D) Survival analysis was performed on the two mitochondria-related signature score groups regarding age
in TARGET. (E) Survival analysis was performed on the two mitochondria-related signature score groups regarding gender in TARGET. (F)
Survival analysis was performed on the two mitochondria-related signature score groups regarding metastasis in TARGET. ns, no significance;
**p < 0.01.
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metabolic process, ossification, and energy derivation by oxidation

of organic compounds were highly enriched in the high score

group. Immune response-regulating signaling pathway,

mononuclear cell proliferation, and positive regulation of T cell

activation were highly enriched in the low score group. KEGG

enrichment analysis was performed on the DEGs (Figure 5D).

Oxidative phosphorylation, chemical carcinogenesis-reactive

oxygen species, and glycolysis/gluconeogenesis were highly

enriched in the high score group. Ferroptosis, Th1 and Th2 cell

differentiation, and natural killer cell mediated cytotoxicity were
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highly enriched in the low score group. The pseudotime trajectory

analysis was performed on the osteosarcoma cells, and five cell

states were determined (Figure 5E). As pseudotime increased

(Figure 5F), osteosarcoma cells tended to have increased

mitochondria-related signature scores (Figure 5G). The DEGs

between osteosarcoma cells around branch point 1 were

identified and clustered into four types (Figure S3A). GO

enrichment analysis was performed on the DEGs in four clusters

(Figure S3B-S3E). The expression pattern of the mitochondria-

related genes in different cell states is shown in Figure S4.
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FIGURE 3

Predictive value of the mitochondria-related signature in the immune microenvironment. (A) Heatmap depicting the association between the
mitochondria-related signature and immune cells. (B) Dot plot depicting the association between the mitochondria-related signature and
immune cells. (C) The different levels of the mitochondria-related signature score regarding microenvironment scores. (D) The association
between the mitochondria-related signature and stromal score. (E) The association between the mitochondria-related signature and immune
score. (F) The association between the mitochondria-related signature and ESTIMATE score. *p < 0.05; ***p < 0.001.
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Cell communication pattern of the
mitochondria-related signature

Different cellular signaling pathways regarding checkpoints

between two mitochondria-related signature score groups of

osteosarcoma cells and microenvironment cells are shown in

Figures 6A, B, in which ITGB2, HAVCR2, and LGALS9 were the
Frontiers in Oncology 09
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most active signaling pathways in osteosarcoma cells with the high

mitochondria-related signature score. Different cellular signaling

pathways regarding cytokine between two mitochondria-

related signature score groups of osteosarcoma cells and

microenvironment cells are shown in Figures 6C, D, in which

ITGB1 was the most active signaling pathway in osteosarcoma cells

with the high mitochondria-related signature score. Different
A
B
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C

FIGURE 4

Functional annotation of the mitochondria-related signature. (A) Volcano plot for the DEGs between the two mitochondria-related signature
score groups. (B) Heatmap for the DEGs between the two mitochondria-related signature score groups. (C) GO enrichment analysis for the
DEGs between the two mitochondria-related signature score groups. (D) KEGG enrichment analysis for the DEGs between the two
mitochondria-related signature score groups. (E) GSVA for the DEGs between the two mitochondria-related signature score groups.
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cellular signaling pathways regarding growth factor between two

mitochondria-related signature score groups of osteosarcoma cells

and microenvironment cells are shown in Figures 6E, F, in which

ITGB2, SDC2, PGF, and TGFB1 were the most active signaling

pathways in osteosarcoma cells with the high mitochondria-related

signature score. Different cellular signaling pathways regarding

other between two mitochondria-related signature score groups of

osteosarcoma cells and microenvironment cells are shown in

Figures 6G, H, in which CD63, COL1A1, COL1A2, and TIMP1
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were the most active signaling pathways in osteosarcoma cells with

the high mitochondria-related signature score.
In vitro validation on PCCB

The expression pattern of PCCB in the identified cells in the

tumor microenvironment of osteosarcoma is shown in Figures

S5A-S5C, in which PCCB was highly expressed by osteosarcoma
A B
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FIGURE 5

scRNA-seq analysis for the mitochondria-related signature. (A) The identified cells in the tumor microenvironment of osteosarcoma. (B) The
levels of the mitochondria-related signature score in identified cells. (C) GO enrichment analysis for the DEGs between the two mitochondria-
related signature score groups of osteosarcoma cells. (D) KEGG enrichment analysis for the DEGs between the two mitochondria-related
signature score groups of osteosarcoma cells. (E) Different cell states of the pseudotime trajectory analysis on the osteosarcoma cells.
(F) Pseudotime pattern of the pseudotime trajectory analysis on the osteosarcoma cells. (G) The mitochondria-related signature score of the
pseudotime trajectory analysis on the osteosarcoma cells.
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FIGURE 6

Cell communication pattern of the mitochondria-related signature. (A) Different cellular signaling pathways regarding checkpoints between two
mitochondria-related signature score groups of osteosarcoma cells and microenvironment cells. (B) Cell communication pattern regarding
checkpoints between two mitochondria-related signature score groups of osteosarcoma cells and microenvironment cells. (C) Different cellular
signaling pathways regarding cytokine between two mitochondria-related signature score groups of osteosarcoma cells and microenvironment
cells. (D) Cell communication pattern regarding cytokine between two mitochondria-related signature score groups of osteosarcoma cells and
microenvironment cells. (E) Different cellular signaling pathways regarding growth factor between two mitochondria-related signature score
groups of osteosarcoma cells and microenvironment cells. (F) Cell communication pattern regarding growth factor between two mitochondria-
related signature score groups of osteosarcoma cells and microenvironment cells. (G) Different cellular signaling pathways regarding other
between two mitochondria-related signature score groups of osteosarcoma cells and microenvironment cells. (H) Cell communication pattern
regarding other between two mitochondria-related signature score groups of osteosarcoma cells and microenvironment cells.
Frontiers in Oncology frontiersin.org11
30

https://doi.org/10.3389/fonc.2022.1085065
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2022.1085065
cells. GO enrichment analysis revealed that DNA replication,

sterol biosynthetic process, and cholesterol biosynthetic process

were highly enriched in osteosarcoma patients with high

expression of PCCB. In contrast, T cell activation, B cell

activation, and lymphocyte proliferation were highly enriched

in osteosarcoma patients with low expression of PCCB (Figure

S5D). KEGG enrichment analysis revealed that cell cycle, carbon

metabolism, and biosynthesis of amino acids were highly

enriched in osteosarcoma patients with high expression of

PCCB. In contrast, Th1 and Th2 cell differentiation, T cell

receptor signaling pathway, and B cell receptor signaling

pathway were highly enriched in osteosarcoma patients with

low expression of PCCB (Figure S5E). As the most hazardous

gene based on the stepwise multivariate Cox regression analysis,

the biological function of PCCB in osteosarcoma was explored.

RT-qPCR (Figure 7A) and western blot (Figure 7B) results

showed that the expression of PCCB was significantly

inhibited in three si-PCCB groups compared to NC and si-NC

groups in U2OS and MNNG/HOS cells. The si-PCCB, with the

most vital ability to suppress the expression of PCCB, was used

for the follow-up experiment. EdU assay revealed that the

proliferation ability of U2OS (Figure 7D) and MNNG/HOS

(Figure 7C) cells was significantly inhibited after transfection

with si-PCCB. The IHC results further confirmed that the

expression of PCCB was considerably higher in osteosarcoma

tumor tissues than in normal tissues (Figure 8).
Immunotherapy prediction of PCCB

The expression of PCCB in responders and non-responders in

immunotherapy cohorts is shown in Figure 9A, in which non-

responders had higher expression of PCCB in the Dizier cohort

2013 and Riaz cohort 2018 while responders had higher expression

of PCCB in the Hugo cohort 2016 and IMvigor210 cohort 2018.

Survival analysis was performed on the two groups regarding PCCB

expression in immunotherapy cohorts (Figure 9B). PCCB was

associated with better survival in the Hugo cohort 2016 and

IMvigor210 cohort 2018, while PCCB was associated with worse

survival in the Cho cohort 2020 and Kim cohort 2019. PCCB

showed potent efficacy in predicting immunotherapy response in

ten immunotherapy cohorts (Figure 9C).
Discussion

In the big data era, mining potential diagnostic, prognostic, and

predictive markers in cancer based on large-scale bioinformatics

analysis has been increasingly important. Many established markers

showed great potential in clinical application (17, 18).

Mitochondrial dysfunction is known as a hallmark of cancer.

Briefly, mitochondrial dysfunction can be caused by mtDNA

mutation, oxidative stress, defective mitochondrial electron
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transport chain, defective mitochondrial TCA cycle enzyme,

tumor-promoting signals, etc (19). The result is the change of cell

metabolic pathway, the destruction of intracellular REDOX

homeostasis, and the generation of apoptosis and drug resistance.

Finally, mitochondrial dysfunction would lead to genomic

instability, the aging process, and the occurrence and

development of cancer (19). Mitochondria dysfunction in CD8+

T cells has also been demonstrated to be an essential contributing

factor for cancer development and a potential target for cancer

treatment (20). Therefore, an in-depth understanding of

mitochondrial dysfunction in cancer is essential for developing

novel effective therapeutic strategies. Most studies have focused on

the pathogenic molecular mechanisms of individual mitochondria-

related genes. Although several studies have comprehensively

explored the potential values of mitochondria-related genes in

hepatocellular carcinoma, clear cell renal cell carcinoma, etc., a

comprehensive evaluation of the mitochondria-related genes in

osteosarcoma has never been conducted.

The current study developed a mitochondria-related signature

in osteosarcoma patients based on 16 mitochondria-related genes.

ACADVL was reported to be associated with the loss of

heterozygosity of 17p13 in the pathogenesis of adrenocortical

tumors (21). OGDH was a critical tumor promoter in cancer

(22). TRMT1 was found to serve as a promising biomarker in

clear cell renal cell carcinoma (23). Downregulation of

mitochondrial UQCRB was reported to inhibit cancer stem cell-

like properties in glioblastoma (24). FDX1 was revealed to impact

the prognosis and mediate the metabolism of lung adenocarcinoma

(25). EPHX2 could inhibit colon cancer progression by promoting

fatty acid degradation (26). STOML2 was reported to potentiate

metastasis of hepatocellular carcinoma by promoting PINK1-

mediated mitophagy and regulating sensitivity to Lenvatinib (27).

Glycolysis gatekeeper PDK1 could reprogram breast cancer stem

cells under hypoxia (28). ALDH7A1 knockdown significantly

reduces tumor formation in pancreatic ductal adenocarcinoma

(29). LACTB could suppress melanoma progression by

attenuating PP1A and YAP interaction (30). miR-125b/BAK1

pathway was essential in promoting tumorigenesis and inhibiting

apoptosis of cervical cancer (31). MFN2 could suppress cancer

progression by inhibiting mTORC2/Akt signaling (32).

As the most hazardous gene in the mitochondria-related

signature, PCCB was found to mediate the proliferation of

proliferation and migration of osteosarcoma cells. Besides,

PCCB was found with significantly higher expression in

osteosarcoma tumor tissues than in normal tissues. Therefore,

PCCB was a potential oncogene in osteosarcoma.

Despite different clinical factors (age, gender, metastasis),

Osteosarcoma patients with high mitochondria-related

signature scores presented decreased survival time. Besides,

the mitochondria-related signature was associated with tumor

metastasis. Therefore, the mitochondria-related signature was

a potential prognostic marker in osteosarcoma patients.

Besides, osteosarcoma patients with high mitochondria-
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FIGURE 7

In vitro validation on PCCB. (A) RT-qPCR results of the expression of PCCB in five groups (NC, si-NC, si-PCCB-1, si-PCCB-2, si-PCCB-3) in two
cell lines. (B) Western blot results of the expression of PCCB in five groups (NC, si-NC, si-PCCB-1, si-PCCB-2, si-PCCB-3) in two cell lines. (C)
EdU assay in three groups (NC, si-NC, si-PCCB) in the MNNG/HOS cell line. Statistical analysis was based on mean ± SD. (D) EdU assay in three
groups (NC, si-NC, si-PCCB) in the U2OS cell line. Statistical analysis was based on mean ± SD. The si-PCCB refers to siRNA transfection of
PCCB. The si-NC refers to siRNA transfection of nonspecific control. ns, no significance; **p < 0.01; ***p < 0.001;****p < 0.0001
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related signature scores were found with a relatively immune

cold microenvironment, indicating the un-suppressed

malignancy of the tumor. The functional annotation of the

mitochondria-related signature further confirmed that the

tumorigenic pathways were more active in osteosarcoma

patients with high mitochondria-related signature scores.

In contrast, the immunogenic pathways were more involved

in osteosarcoma patients with low mitochondria-related

signature scores. The potential value of the mitochondria-

related signature in predicting chemotherapy agents was also

confirmed. 24 drugs were negatively associated with the

mitochondria-related signature, including apoptosis regulation

inhibitor AZD5991, protein stability and degradation inhibitor

ML323, and kinases inhibitor BMS-345541. In addition, six

drugs were positively associated with the mitochondria-related

signature, including ERK MAPK signaling inhibitor

Refametinib, RTK signaling inhibitor NVP-TAE684, and

kinases inhibitor A-770041.

At the scRNA-seq level, osteosarcoma cells gradually evolved

into tumors with high mitochondria-related signature scores.

The functional annotation of the mitochondria-related
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signature also confirmed the active tumorigenic pathways and

inactive immunogenic pathways in osteosarcoma cells with

high mitochondria-related signature scores. The tumor

microenvironment has already been proven to essentially

influence the proliferation, migration, and invasion of cancer

(33, 34). Checkpoints (ITGB2, HAVCR2, and LGALS9),

cytokine (ITGB1), growth factor (ITGB2, SDC2, PGF, and

TGFB1), and other (CD63, COL1A1, COL1A2, and TIMP1)

were the most active signaling pathways involved in the cell

communication between osteosarcoma cells with a high

mitochondria-related signature score and microenvironment

cells, indicating the potential immune evasion and tumor

progression in osteosarcoma cells with a high mitochondria-

related signature score.
Conclusion

Taken together, a mitochondria-related signature was

developed in osteosarcoma with robust predictive values in the

immune microenvironment, chemotherapy agents, and prognosis.
FIGURE 8

In vitro validation on PCCB. IHC results of the expression of PCCB in osteosarcoma tumor tissues and normal tissues. The upper row is 10x
images of the sections, and the lower row is 40x images of the sections. Statistical analysis was based on mean ± SD. ****p < 0.0001.
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The potential clinical application of the mitochondria-related

signature is expected to be further validated by real-world

cohorts. PCCB was a potential oncogene in osteosarcoma, and

the related complex regulatory mechanisms remain to be

further explored.
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FIGURE 9

Immunotherapy prediction of PCCB. (A) The expression of PCCB in responders and non-responders in immunotherapy cohorts. (B) Survival
analysis was performed on the two groups regarding PCCB expression in immunotherapy cohorts. (C) The ROC curve of PCCB in predicting
immunotherapy response in immunotherapy cohorts.
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Integration analysis
identifies MYBL1 as a novel
immunotherapy biomarker
affecting the immune
microenvironment in clear
cell renal cell carcinoma:
Evidence based on machine
learning and experiments

Tengda Wang1†, Wengang Jian1†, Wei Xue1, Yuyang Meng1,
Zhinan Xia1, Qinchen Li2, Shenhao Xu2, Yu Dong2,
Anli Mao2 and Cheng Zhang1,2*

1Urology Surgery Department, The First Affiliated Hospital of Harbin Medical University,
Harbin, China, 2The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang
University School of Medicine, Yiwu, Zhejiang, China
Background: Previous studies have identified MYBL1 as a cancer-promoting

molecule in numerous types of cancer. Nevertheless, the role of MYBL in renal

cancer remains unclear.

Methods: Genomic and clinical data of clear cell renal cell carcinoma (ccRCC)

was get from the Cancer Genome Atlas (TCGA) database. CCK8, colony

formation, and 5-ethynyl-2’-deoxyuridine assay were utilized to evaluate the

performance of cell proliferation. Cell apoptosis was detected using the flow

cytometric analysis. The protein level of MYBL1 in different tissues was

evaluated using immunohistochemistry. A machine learning algorithm was

utilized to identify the prognosis signature based on MYBL1-derived molecules.

Results: Here, we comprehensively investigated the role of MYBL1 in ccRCC.

Here, we noticed a higher level of MYBL1 in ccRCC patients in both RNA and

protein levels. Further analysis showed that MYBL1 was correlated with

progressive clinical characteristics and worse prognosis performance.

Biological enrichment analysis showed that MYBL1 can activate multiple

oncogenic pathways in ccRCC. Moreover, we found that MYBL1 can remodel

the immune microenvironment of ccRCC and affect the immunotherapy

response. In vitro and in vivo assays indicated that MYBL1 was upregulated in
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ccRCC cells and can promote cellular malignant behaviors of ccRCC.

Ultimately, an machine learning algorithm – LASSO logistics regression was

utilized to identify a prognosis signature based on the MYBL1-derived

molecules, which showed satisfactory prediction ability on patient prognosis

in both training and validation cohorts.

Conclusions: Our result indicated that MYBL1 is a novel biomarker of ccRCC,

which can remodel the tumor microenvironment, affect immunotherapy

response and guide precision medicine in ccRCC.
KEYWORDS

MYBL1, immunotherapy, machine learning, prognosis, ccRCC
Introduction

Renal cancer represents a frequent malignancy globally with

approximately 4 and 1.9 million new cases and death each year,

respectively (1). Among all cases of renal cancer, clear cell renal

cell carcinoma (ccRCC) is the leading pathological subtype (2).

As a multifactorial multi-factorial disorder, ccRCC is associated

with obesity, smoking, dietary habits, environmental exposure,

genetic susceptibility, and so on (3). For ccRCC patients at the

local stage, surgical resection combined with adjuvant agents is

still the mainstay therapy choice (4). Nonetheless, the prognosis

is still unsatisfactory for patients in the advanced stage or with

distant metastasis (4). Consequently, identifying a novel target

for ccRCC diagnosis and treatment is meaningful for

clinical application.

The rapid development of bioinformatics analysis has

brought researchers great convenience in deeply understanding

specific molecules in diseases (5). For instance, Wei et al.

revealed that MX2 might be a biomarker indicating sunitinib

resistance (6). The MYBL1 has been implicated in multiple

diseases. Zhu et al. indicated that MYBL1 was tightly

associated with higher endothelial vessel density by inducing

the transcriptional activation of ANGPT2, further affecting

sorafenib resistance in liver cancer (7). Guo et al. indicated

that the O-GlcNAc can regulate MYBL1 expression in an

epigenetic modification manner, leading to an aberrant cancer

stem cell compartment and cancer progression (8). Brayer et al.

demonstrated that the fusion of MYB and MYBL1 contributes to

the oncogenic pathway in salivary gland adenoid cystic

carcinoma (9). Ramkissoon et al. indicated that MYBL1 also

acted as an oncogene factor in glioma (10). Nikolaus et al.

revealed that the MYBL1 might be a trigger for autoimmune

encephalitis, indicating its role in the disease immune (11).

However, there is no previous study focused on MYBL1

in ccRCC.
02
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In this study, we comprehensively the effects MYBL1

produces in ccRCC through bioinformatics analysis and

experiments. We noticed a higher level of MYBL1 in ccRCC

patients in both RNA and protein levels. Further analysis

showed that MYBL1 was correlated with progressive clinical

characteristics and worse prognosis performance. Biological

enrichment analysis was conducted to identify the biological

role of MYBL1 in ccRCC. Moreover, we noticed that MYBL1 can

remodel the immune microenvironment of ccRCC and affect the

immunotherapy response. In vitro and in vivo assays indicated

that MYBL1 was upregulated in ccRCC cells and can promote

cellular malignant behaviors of ccRCC. Meanwhile, the

prognosis signature based on the MYBL1-derived molecules

showed great prediction ability on patient prognosis.
Methods

Public data collection

The open-accessed data on transcriptional profiles and

clinical features were all download from The Cancer Genome

Atlas (TCGA) database, the KIRC project and the Arrayexpress

database, E-MTAB-1980 project. Initial expression profile of

ccRCC patients (STAR-Counts form) was collated to a

combined matrix (TPM” form) for subsequent analysis. We

extracted the survival and clinical information based on the bcr-

xml file in TCGA-KIRC. Pan-cancer expression data was

obtained from the UCSC Xena website (https://xenabrowser.

net/). The limma and affay packages in the R environment were

utilized for data preprocessing, consisting of background

correction, probe ID annotation, missing value completion and

normalization. Extra gene expression information of normal

tissue was get from the GETx database. The open-accessed

immunohistochemical images of renal cancer were get from
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The Human Protein Atlas (HPA) database. Baseline features of

ccRCC patients enrolled in the analysis were presented in

Tables 1, 2. The limma package in the R environment was

utilized for DEGs analysis under specific parameters.
Biological enrichment

The clueGO app built in Cytoscape software provides the

biological terms for the input molecules identified, as well as an

intuitive representation (12). Clusterprofiler in R was used to

enrich Gene Ontology (GO) terms (13). Gene Set Enrichment

Analysis (GSEA) was utilized to investigate the potential

biological differences between two selected groups based on

set reference gene sets, including Hallmark gene set (14). The

single sample GSEA (ssGSEA) was utilized to quantify the

enrichment score based on a specific reference file (15).
Immune-related analysis

The XCELL, MCPCOUNTER, CIBERSORT, TIMER,

EPIC and QUANTISEQ algorithms were utilized for
Frontiers in Immunology 03
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immune microenvironment quantification (16–19). The

Immunophenoscore (IPS), an machine learning algorithm

from The Cancer Immunome Database (TCIA), was utilized

to quantify the IPS score of ccRCC patients based on

their transcriptional profile, indicating the response to

immunotherapy (20). Meanwhile, the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm was also

utilized to assess patients immunotherapy response (21).
Genomic characterization

Two important immunotherapy markers, tumor mutation

burden (TMB) and microsatellite instability (MSI) score were

get from the TCGA database. The gene mutation characteristic

of MYBL1 in the TCGA database was obtained and visualized

based on an online website, https://www.home-for-researchers.

com/. The score of the tumor stemness index (mRNAsi) in the

TCGA-KIRC project was obtained from the previous study,

which was completed using the OCLR machine-learning

algorithm (22).
Nomogram

With the survival and rms packages, a nomogram plot was

created based on multiple factors. The calibration and Decision

Curve Analysis (DCA) plot were utilized to evaluate nomogram

performance.
TABLE 2 Baseline information of patients in E-MTAB-1980.

Clinical features Numbers Percentage (%)

Age <=65 145 60.4

>65 95 39.6

Gender Female 56 23.3

Male 184 76.7

Grade G1 42 17.5

G2 141 58.8

G3 49 20.4

G4 6 2.5

Unknown 2 0.8

T-stage T1 187 77.9

T2 18 7.5

T3 33 13.8

T4 2 0.8

M-stage M0 215 89.6

M1 25 10.4

N-stage N0 238 99.2

N1 2 0.8
TABLE 1 Baseline information of patients in TCGA-KIRC.

Clinical features Numbers Percentage (%)

Age <=65 352 65.5

>65 185 34.5

Gender Female 191 35.6

Male 346 64.4

Grade G1 14 2.6

G2 230 42.8

G3 207 38.5

G4 78 14.5

Unknown 8 1.5

Stage Stage I 269 50.1

Stage II 57 10.6

Stage III 125 23.3

Stage IV 83 15.5

Unknown 3 0.6

T-stage T1 275 51.2

T2 69 12.8

T3 182 33.9

T4 11 2.0

M-stage M0 426 79.3

M1 79 14.7

Unknown 32 6.0

N-stage N0 240 44.7

N1 17 3.2

Unknown 280 52.1
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Identification of prognosis signature
based on machine learning

For TCGA database, all patients were randomly divided into

training and internal validation cohorts according to the ratio of

1 to 1. A univariate Cox regression analysis was conducted on

the DEGs identified between high and low MYBL1 expression to

identify the molecules significantly correlated with patient

survival. Then, an machine learning algorithm, LASSO logistic

regression, was utilized for variable optimization (23). The

optimized variables were then set as the input file for

multivariate Cox regression analysis. Ultimately, a prognosis

signature was identified with the formula of “Risk score =

Expression of A * Coef A + Expression of B * Coef B + … +

Expression of X * Coef X”. The E-MTAB-1980 project was used

as the external validation cohort.
Cell culture

Four renal cancer cell lines (A498, ACHN, 786-O and OS-

RC-2) and normal cell line HK-2 were laboratory stocks. All cells

were routinely cultured using the 10% heat-inactivated fetal

bovine serum (37°C with 5% CO2) and passaged for three

days a time (24).
RNA isolation and quantitative RT-PCR

Total RNA extraction and steps for qRT-PCR were

conducted following our previous study (24). The sequence of

primers was as follows: MYBL1, forward primer, 5’-TAG

CACTCCACCAGCCATCCTC-3’, reverse primer, 5’-ACCAC

CATCGTTCAATGAGCCATC-3’.
Retroviral infection, and transfection

We purchased HBLV-h-MYBL1 shRNA#1-PURO, HBLV-

h-MYBL1 shRNA#2-PRUO and HBLV-h-MYBL1-Ctl-PURO

from Hanbio. Cell transfection was performed by jetPRIME

(Polyplus, NY, USA) referring to the manufacturer’s protocol.

We constructed the stably lentivirus-transinfected cells with

puromycin (MCE.NJ) to collect the MYBL1 stable-knockdown

cells. The sequence used for shRNA were as follow: MYBL1

sh#1, top strand, 5’-GATCCGGACGAGGATGATAAA

TTACTCGAGTAATTTATCATCCTCGTCCTTTTTTG-3’, b

ottom strand, 5’-AATTCAAAAAAGGACGAGGATGAT

AAATTACTCGAGTAATTTATCATCCTCGTCCG-3’; sh#2,

t op s t r and , 5 ’ -GATCCGCCATGGAATGCCAATT

TACTCGAGTAAATTGGCATTCCATGGCTTTTTTG-3’,
Frontiers in Immunology 04
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bottom strand, 5’-AATTCAAAAAAGCCATGGAATGCCAA

TTTACTCGAGTAAATTGGCATTCCATGGCG-3’.
CCK-8 assay

Steps for CCK-8 were completed following our previous

study based on the sh-MYBL1 and control cells (24).
Colony formation assay

Steps for colony formation assay were completed following

our previous study based on the sh-MYBL1 and control

cells (24).
5-ethynyl-2’-deoxyuridine assay

Steps for EdU assay were completed following our previous

study based on the sh-MYBL1 and control cells (24).
Cell apoptosis assays

Steps for cell apoptosis detection were completed following

our previous study based on the sh-MYBL1 and control cells

(24). The results were analyzed through FlowJo 6.2 software.
Xenograft models

Steps for xenograft model assay were completed following

our previous study based on the sh-MYBL1 and control cells

(Approximately 6 × 106 786-O cells, MYBL1 sh#Ctrl and sh#1)

(24). Animal procedures were performed in line with the

Association for Assessment and Accreditation of Laboratory

Animal Care and approved by the Animal Care and Use

Committee of the First Affiliated Hospital of Harbin

Medical University.
Patient and clinical samples

The study was admitted by the First Affiliated Hospital of

Harbin Medical University. ccRCC and adjacent tissue samples

were obtained from patients who were aware of the purpose of

the study and signed informed consent at the Medical Ethics

Committee of First Affiliated Hospital of Harbin Medical

University. After the operations of radical nephrectomy,

Half of the samples were frozen in liquid nitrogen, and half

were embedded in paraffin after being fixed with 4%
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paraformaldehyde overnight at room temperature until

further use.
Immunohistochemistry

The clinical samples and tumor tissues embedded in paraffin

were cut into 5-mm-thick sections. The sections were blocked by

5% goat serum and incubated overnight at 4°C with antibodies

against MYBL1 (1:400, Boster, Wuhan, China). We used the

DAB (Beyotime, Shanghai, China) system for detection. We

chose the three fields in each section and took photos and

analyzed the images by ImageJ software.
Statistical analysis

R and GraphPad Prism 8 software were utilized for all

statistical analysis. The statistical threshold of the P value in

comparison was 0.05. All the experiments were repeated at least

three times.
Results

Pan-cancer analysis of MYBL1 and its
clinical role in ccRCC

The flow chart of the whole study was shown in Figure S1. The

expression landscape of MYBL1 was illustrated in Figure 1A, in

which MYBL1 showed an abnormal expression pattern in most of

the cancers, indicating its important role in cancer development.

According to the GTEx and TCGA data, MYBL1 all showed a

higher expression level in ccRCC tumor tissue compared with the

control normal tissue (Figures 1B, C). Moreover, based on the

immunohistochemical result from the HPA database, a higher

protein level of MYBL1 in renal cancer tissue was observed

(Figure 1D). Furthermore, we tried to investigate the prognosis

role of MYBL1 in ccRCC. Results indicated that MYBL1 might be

correlated with worse prognosis performance of ccRCC patients,

including overall survival (OS), disease-free survival (DSS) and

progression-free survival (PFI) in both TCGA and E-MTAB-1980

cohorts (Figures 1E, F). Then, we explored the clinical correlation

of MYBL1 in ccRCC patients. No remarkable difference in

MYBL1 expression was found in patients with different T-stage

and grades (Figures 1G, H). However, a significantly higher level

of MYBL1 was noticed in patients with worse M- and N-stage,

indicating its promoting effect in cancer metastasis (Figures 1I, J).

Based on univariate and multivariate analyses, MYBL1 was an

independent risk factor for ccRCC (Figures 1K, L).
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MYBL1 exerts a wide biological
regulatory effect in ccRCC

A total of 154 downregulated and 136 upregulated DEGs were

identified in patients with high and low MYBL1 expression

(Figure 2A). These DEGs were involved in L-alpha-amino acid

transmembrane transport, inorganic anion transport, monovalent

inorganic cation homeostasis, retinoid metabolic process, active

ion transmembrane transporter activity, metanephros

development, embryonic pattern specification, excretion,

negative regulation of chemotaxis, vasodilation, negative

regulation of coagulation based on clueGO analysis (Figure 2B).

Moreover, the results of the ssGSEA algorithm indicated that

MYBL1 was positively correlated with most immune terms,

especially base excision repair, fanconi anemia pathway, and

homologous recombination; MYBL1 was negatively correlated

with most metabolism terms (Figure 2C). GO analysis indicated

that for the Biological Process (BP), the top enriched terms were

excretion, metanephros development, chloride transmembrane

transport (Figure 2D). For the Cellular Component (CC) and

Molecular Function (MF), the terms were mainly enriched in the

transport complex (Figures 2E, F). The GSEA analysis of

Hallmark gene set was mainly enriched in the terms of the

inflammatory response, G2M checkpoint and E2F targets

(Figures 2G–I).
MYBL1 can remodel the ccRCC immune
microenvironment

Based on the XCELL, MCPCOUNTER, CIBERSORT,

TIMER, EPIC and QUANTISEQ algorithms, we quantified the

immune microenvironment of ccRCC samples. A different

immune infiltration pattern was observed in patients with high

and low MYBL1 expression (Figure 3A). Immune correlation

indicated that MYBL1 can increase Tregs, M2 macrophages,

neutrophils, B cells, monocytes, CD8+ T cells, yet decrease

endothelial cells level in the ccRCC microenvironment

(Figures 3B–I). Moreover, we found that MYBL1 was

positively correlated with immune score, stromal score and

estimate score (Figures 3J–L). Interestingly, we found that the

key immune checkpoints PD-1, CTLA4, PD-L1 and PD-L2 all

present a high level in patients with higher MYBL1 expression,

indicating that MYBL1 might affect the immunotherapy

response of ccRCC patients (Figures 3M–P).
Role of MYBL in ccRCC genomic
characteristics

TMB and MSI are important markers for cancer

immunotherapy and can also indicate genomic instability. A
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FIGURE 1

Expression pattern and clinical role of MYBL in ccRCC. (A) The landscape of MYBL1 in pan-cancer; (B) Expression of MYBL1 in ccRCC tumor and
normal tissue based on the TCGA database; (C) Expression of MYBL1 in ccRCC tumor and normal tissue based on the TCGA+GTEx database;
(D) Representative immunohistochemical images of MYBL1 in HPA database; (E) Prognosis performance of MYBL1 in TCGA database; (F)
Prognosis performance of MYBL1 in E-MTAB-1980 database; (G-J) Clinical correlation of MYBL1; (K, L) Univariate and multivariate analysis of
MYBL1. *P < 0.05, **P < 0.01, ***P <0.001, ****P <0.0001, "ns" means P > 0.05.
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positive correlation was observed in MYBL1 with TMB and MSI

(Figures 4A, B; TMB: R = 0.13; MSI: R = 0.22). Nevertheless,

MYBL1 might has no significant effect on mRNAsi (Figure 4C).

The genomic mutation characteristics of MYBL1 was shown in

Figure 4D (0.6% somatic mutation rate). The top five most

differentially mutated genes in patients with high and low

MYBL1 expression were VHL, PBRM1, TTN, SETD2, and

BAP1 (Figures 4E, F).
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Immunotherapy response, drug
sensitivity and nomogram plot of MYBL1
in ccRCC

We next calculate the TIDE score of each ccRCC patient

based on the TIDE analysis. It seems that MYBL1 had no

significant influence on the TIDE score, immune exclusion,

immune dysfunction quantified by the TIDE analysis
B

C
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A

FIGURE 2

The biological role of MYBL1. (A) DEGs between the high and low MYBL1 expression; (B) clueGO analysis of DEGs; (C) Correlation of the
pathways quantified by ssGSEA algorithm; (D–F) GO analysis of the DEGs; (G–I) GSEA analysis of Hallmark gene set.
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(Figures 5A–D). Another aspect, a negative correlation was

found in MYBL1 with ips_CTLA4_pos_PD1_neg and

ips_CTLA4_neg_PD1_pos, indicating that MYBL1 could affect

the immunotherapy response of ccRCC patients (Figures 5E–H).

For the common target drugs for ccRCC, we found that MYBL1

can increase the sensitivity of vinblastine and pazopanib

(Figures 5I–L). Then, a nomogram plot was constructed by

combining the clinical features and MYBL1 expression

(Figure 5M). The calibration curve indicated that a good fit

between actual and nomogram predicted survival (Figure 5N).
Frontiers in Immunology 08
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Also, the DCA curves showed that the clinical features can

improve the performance of MYBL1 on prognosis

prediction (Figure 5O).
MYBL1 enhances the malignant
biological behaviors of ccRCC

The qRT-PCR result of cell lines indicated that the MYBL1

was overexpressed in ccRCC cells compared to the control cells
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FIGURE 3

The immune landscape of MYBL1. (A) Immune infiltration of MYBL1; (B–I) Correlation between MYBL1 and multiple immune cells; (J–L)
Correlation of MYBL1 and immune score, stromal score and estimate score; (M–P) The expression level of key immune checkpoints in patients
with high and low MYBL1 expression.
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FIGURE 4

Genomic characteristics of MYBL1. (A) Correlation of MYBL1 with TMB; (B) Correlation of MYBL1 with MSI; (C) Correlation of MYBL1 and
mRNAsi; (D–F) The mutation characteristics of MYBL1.
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(Figure 6A). Knockdown efficacy of MYBL1 was shown in

Figure 6B. CCK8 assay indicated that the inhibition of MYBL1

might remarkably increase the proliferation ability of ccRCC

cells (Figures 6C, D). The same trend was validated by colony

formation assay (Figure 6E). Meanwhile, we observed a lower

percentage of EdU-positive cells in MYBL1 knockdown cells

(Figure 6F). Flow cytometry results indicated that the

knockdown of MYBL1 could remarkably increase the

apoptosis rate of ccRCC cells (Figure 6G). In vivo assay

showed that the inhibition of MYBL1 could also hamper

tumor growth in mice (Figures 6H–J). IHC showed that

MYBL1 was overexpressed in ccRCC cancer tissue compared

with the normal tissue obtained from four patients (Figure 7).
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Machine learning identified the prognosis
signature based on MYBL1-derived
molecules

Based on the MYBL1-derived DEGs identified above,

univariate Cox regression analysis was conducted to identify

the prognosis-related molecules with P < 0.05. The top 50

significant prognosis-related genes were shown in Figure 8A.

The machine learning algorithm – LASSO logistics regression

was utilized to identify the best variable (Figures 8B, C).

Multivariate Cox regression analysis was utilized to identify a

prognosis signature with the formula of “Risk score = CASR *

-0.492 + F11 * -0.167 + IGF2BP3 * 0.262 + TAGLN3 * 0.327 +
B C D
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FIGURE 5

Immunotherapy and drug sensitivity of MYBL1. (A) Correlation of MYBL1 with TIDE; (B) Correlation of MYBL1 with immune exclusion; (C) Correlation
of MYBL1 with immune dysfunction; (D) The MYBL1 expression in immunotherapy responders and non-responders; (E–H) Correlation of MYBL1
with IPS score; (I–L) Correlation of MYBL1 and drug sensitivity; (M) The nomogram plot based on MYBL and nomogram plot; (N) The calibration
curve; (O) The DCA curve.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1080403
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2022.1080403
PLPPR1 * -0.245 + SIM2 * 0.334 + RALYL * 0.601 + RUFY4 *

0.381” (Figure 8D). In the training cohort, the patients in the

high risk group might have a worse OS (Figure 9A). Also, our

signature showed a good prediction ability in patients survival

(Figure 9A; 1-year AUC = 0.77; 3-year AUC = 0.74, 5-year AUC

= 0.71). Meanwhile, the satisfactory performance of our

signature was also observed in the internal validation and

external validation cohort (Figures 9B, C). Next, we noticed a

positive correlation between the risk score and TIDE score

(Figure 9D, R = 0.17, P < 0.001). We found that the

immunotherapy responders defined by TIDE analysis tend to

have a higher risk score level (Figure 9E). Also, the percentage of

immunotherapy responders in high risk patients was 26.7%,

greatly lower than 38.9% in low risk patients (Figure 9F). GSEA
Frontiers in Immunology 11
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analysis indicated that the in high risk patients, the pathway of

pancreas beta cells, allograft rejection, KRAS signaling, IL6/JAK/

STAT3 signaling, spermatogenesis, E2F targets, G2M

checkpoints, angiogenesis were significantly activated

(Figure S2).
Discussion

Renal cancer is still a threatening disease globally and

responsible for almost 2 million deaths per year, resulting in a

great public burden (25). Although surgical treatment can

provide reliable prognosis benefits for early patients, the

survival performance of advanced patients is still limited.
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FIGURE 6

MYBL1 enhances the malignant biological behaviors of ccRCC cells. (A) The expression level of MYBL1 in renal cancer cells; (B) Knockdown
efficiency of MYBL1 in ccRCC cells; (C, D) CCK8 assay between sh-MYBL1 and control cells; (E) Colony formation assay between sh-MYBL1 and
control cells; (F) EdU assay between sh-MYBL1 and control cells; (G) Flow cytometry detecting cell apoptosis between sh-MYBL1 and control
cells; (H–J) In vivo assay showed that the inhibition of MYBL1 could also hamper tumor growth in mice. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 8

Identification of the prognosis signature based on the machine learning algorithm from MYBL1-derived molecules. (A) The top 50 molecules
significantly correlated with patients prognosis from MYBL1-derived molecules; (B, C) LASSO logistics regression was utilized for data dimension
reduction; (D) Multivariate cox regression analysis.
FIGURE 7

IHC result of MYBL1 between ccRCC tumor and control tissue.
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Consequently, it is extremely meaningful to identify novel

biomarkers for ccRCC diagnosis and therapy options.

Our study examined the role of MYBL1 in ccRCC in depth.

According to our knowledge, this is the first study investigating

MYBL1 in ccRCC. Here, through a series of bioinformatics

analysis, we found that MYBL1 was highly expressed in

ccRCC patients in both RNA and protein levels. Prognosis

analysis revealed that MYBL1 was correlated with poor

prognosis performance, including OS, DSS and PFI. Clinical
Frontiers in Immunology 13
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correlation analysis showed that MYBL1 was higher in the worse

N- and M-stage. Furthermore, biological enrichment analysis

was conducted to explore the biological role of MYBL1 in

ccRCC. Moreover, we found that MYBL1 can remodel the

immune microenvironment of ccRCC and affect the

immunotherapy response. In vitro and in vivo assays indicated

that MYBL1 was upregulated in ccRCC cells and can promote

cellular malignant behaviors of ccRCC. Meanwhile, the

prognosis signature based on the MYBL1-derived molecules
B
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FIGURE 9

Performance of prognosis signature in predicting patients survival and immunotherapy. (A) The performance of our signature in predicting
patients survival in the training cohort; (B) The performance of our signature in predicting patients survival in the internal validation cohort;
(C) The performance of our signature in predicting patients survival in external validation cohort; (D) Correlation of risk score and TIDE; (E) The
risk score level in immunotherapy responders and non-responders; (F) Percentage of immunotherapy responder in patients with high and low
MYBL1 expression. ***P <0.001.
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showed great prediction ability on patient prognosis in both

training and validation cohorts.

We found that MYBL1 is a risk factor for ccRCC based on

bioinformatic analysis and experiments. Also, biological

enrichment analysis indicated that MYBL1 was mainly

enriched in the terms of the inflammatory response, G2M

checkpoint and E2F targets. Batova et al. indicated that the

acute inflammatory response could be regulated by Englerin A,

therefore changing the cell metabolism level and affecting renal

cancer progression (26). During the cell cycle, the G2/M

checkpoint is an important step. Ding et al. indicated that the

dioscin could hamper cell proliferation of osteosarcoma cells

based on a G2/M checkpoint-dependent manner (27).

Meanwhile, Kent et al. revealed that the dysfunction of E2F in

cancers tends to induce the carcinogenic cascade reaction (28).

Our result indicated that the MYBL1 might enhance ccRCC

progression by affecting the activity of the above pathways.

The immune microenvironment can influence cancer

development through complex biological interactions. In our

study, we found that the MYBL1 MYBL1 can increase Tregs, M2

macrophages, neutrophils, B cells, monocytes, CD8+ T cells, yet

decrease endothelial cells level in the ccRCC microenvironment.

Tregs can result in an inhibitory immune microenvironment. In

ccRCC, Ji et al. found that the hamper of Tregs in the colon

cancer microenvironment can improve the anti-tumor effect and

inhibit cancer metastasis (29). Li et al. indicated that aiduqing

formula can inhibit Treg infiltration induced by TAM/CXCL1,

further hampering breast cancer metastasis (30). In solid tumors,

M2 macrophages are generally cancer promoters (31). Chen

et al. revealed that gastric and breast cancer metastasis can be

facilitated by M2 macrophages recruited by the local tumor

microenvironment based on secreted CHI3L1 (32). Xie et al.

revealed that the CXCL13 secreted by M2 macrophages

facilitated the metastatic potential of ccRCC (33). Based on a

comprehensive review conducted by Xiong et al., carcinogenesis

and metastasis of cancer can be facilitated by neutrophils (34).

These results indicate that MYBL1 might be immune-related

molecules that can remodel the immune microenvironment of

ccRCC patients.

Moreover, we established a prognosis signature based on the

MYBL1-derived molecules. Our signature presents a good

prediction ability on patient survival performance. Moreover,

the ccRCC patients in different groups might have different

responses to immunotherapy. These results indicated the clinical

application value of MYBL1 in the clinical.

Although our research is based on high-quality analysis and

rigorous experiments, some limitations still need to be noted.

Firstly, the population used for analysis was mainly Western.

The biological difference between different races can decrease the

reliability of our conclusions. Secondly, the in-deep mechanism

of MYBL1 to enhance the cellular malignant behaviors of ccRCC

is still unclear. In the future, more basic studies focused on

MYBL1 in cancers, especially in ccRCC, are needed.
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Fatty acid metabolism is
related to the immune
microenvironment changes
of gastric cancer and RGS2
is a new tumor biomarker

Shifeng Yang1,2†, Boshi Sun1†, Wenjing Li3†, Hao Yang1,
Nana Li1 and Xinyu Zhang1*

1Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University,
Harbin, China, 2The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China,
3Department of Otorhinolaryngology, Head and Neck Surgery, Second Affiliated Hospital of Harbin
Medical University, Harbin, China
Background: Alterations in lipid metabolism promote tumor progression.

However, the role of lipid metabolism in the occurrence and development of

gastric cancer have not been fully clarified

Method: Here, genes that are related to fatty acid metabolism and

differentially-expressed between normal and gastric cancer tissues were

identified in the TCGA-STAD cohort. The intersection of identified

differentially-expressed genes with Geneset was determined to obtain 78

fatty acid metabolism-related genes. The ConsensusClusterPlus R package

was used to perform differentially-expressed genes, which yielded divided two

gastric cancer subtypes termed cluster 1 and cluster 2.

Results: Patients in cluster 2 was found to display poorer prognosis than

patients in cluster 1. Using machine learning method to select 8 differentially

expressed genes among subtypes to construct fatty acid prognostic risk score

model (FARS), which was found to display good prognostic efficacy. We also

identified that certain anticancer drugs, such as bortezomib, elesclomol,

GW843682X, and nilotinib, showed significant sensitivity in the high FARS

score group. RGS2 was selected as the core gene upon an analysis of the

gastric cancer single-cell, and Western blotting and immunofluorescence

staining results revealed high level of expression of this gene in gastric

cancer cells. The results of immunohistochemical staining showed that a

large amount of RGS2 was deposited in the stroma in gastric cancer. A pan-

cancer analysis also revealed a significant association of RGS2 with TMB, TIDE,

and CD8+ T-cell infiltration in other cancer types as well. RGS2 may thus be

studied further as a new target for immunotherapy in future studies on

gastric cancer.
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Conclusion: In summary, the FARS model developed here enhances our

understanding of lipid metabolism in the TME in gastric cancer, and provides

a theoretical basis for predicting tumor prognosis and clinical treatment.
KEYWORDS

gastric cancer, fatty acid, immunotherapy, tumor microenvironment,
machine learning
1 Introduction

Gastric cancer (GC) is one of the most prevalent malignant

digestive system tumors, characterized by a high degree of

heterogeneity, difficulty of treatment, and a poor prognosis (1,

2). The liver is the most frequently affected organ by

hematogenous metastases of gastric cancer tumors, after liver

metastasis, the survival rate was only 20% (3) The development

of neoadjuvant chemotherapy and immunotherapy for gastric

cancer treatment in recent years has led to improvements in the

diagnosis and prognosis of gastric cancer to a certain extent, yet

further improvement is still necessary (4). To this end, new

tumor markers, therapeutic targets, and treatment strategies

need to be developed (5). Previous studies have shown that the

occurrence, proliferation, and metastasis of tumors are closely

related to their microenvironment. Various tumor cell

metabolites can affect the activation of surrounding immune

cells in various ways, and suppress their antitumor activity.

Alterations in the tumor microenvironment promotes

proliferation and development of tumor cells (6). Growing

evidence suggests that reprogramming of energy metabolism

towards e.g. lactic acid production and acetylation enzymes

contributes to the progression of gastric cancer (7). An in-

depth investigation of metabolic changes in the tumor

microenvironment of gastric cancer may thus provide with a

new marker or therapeutic target to improve gastric cancer

prognosis and treatment.

In lipid metabolism and especially fatty acid (FA) synthesis,

nutrients are converted into metabolic intermediates for membrane

biosynthesis, energy storage, and signal molecule production (8).

Alterations in lipid metabolism is a hallmark and metabolic

phenotype of cancer cells. Blocking the supply of lipids to cancer

cells has a significant impact on cancer cell bioenergetics,

membrane biosynthesis, and intracellular signal transduction (9).

Most tumors were previously shown to display an abnormal lipid

metabolism (10). Polymorphonuclear myelogenous suppressor cells

(PMN-MDSCs) are pathologically-activated neutrophils that play

an important role in the regulation of cancer immune response.The

selective pharmacological inhibition of FATP2 was also found to

eliminate the activity of PMN-MDSCs, and significantly delay

tumor progression in mice. Inhibition of PMN-MDSCs thus
02
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improves the efficiency of cancer treatment (11, 12). Therefore,

targeted fatty acid-induced oxidative stress can prevent cancer-

induced cachexia.

In recent years, inhibition of FA synthesis has attracted

attention as a potential strategy for cancer treatment, yet it is not

yet implemented in clinical practice (13). The role of lipid

metabolism in gastric cancer has also not been widely studied

previously. Therefore, we conducted an in-depth study here on

the expression and significance of fatty acid disorder-related

genes in gastric cancer. We identified differentially-expressed

fatty acid metabolism-related genes in gastric cancer, and

determined two subtypes based on consistency clustering

analysis. A prognostic signature (FRAS) model was

constructed by performing a univariate Cox regression analysis

of differentially-expressed genes in different subtypes, and used

as a potential molecular marker of gastric cancer to identify

immune infiltration and genomic instability patterns.

FeaturePlot visualization was performed to display the

expression and distribution of model genes in the cell

population and to verify the accuracy of the model. A “core

gene”, RGS2 was selected for subsequent experiments, and the

relationship between the expression level of RGS2 protein and

the prognosis of patients with gastric cancer was evaluated.

Finally, we also discussed the biological significance of the

RGS2 gene in multiple cancer types to fully understand the

role of fatty acid metabolism in gastric cancer, and to provide a

theoretical basis for effective treatment.
2 Materials and methods

2.1 Patients and tissues samples

All patients were admitted to the Second Affiliated Hospital

of Harbin Medical University between May 2020 and June 2022,

and diagnosed by pathological examination.Pathological

diagnosis was based on the 8th edition of the American Joint

Commission on Cancer (14). All participants have informed

consent. The study design was approved by the Internal Audit

and Ethics Committee of the Second Affiliated Hospital of

Harbin Medical University (No : KY2021-075).
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2.2 Western blotting

The protein content of the cells was extracted, and the

expression of RGS2 protein was analyzed by Western blotting

after the cell density of cultures of AGS, HGC27, MKN-45,

MKN-1, and the GES-1 cell lines reached 90%.
2.3 Data preparation and processing

STAD clinical information and expression data were

obtained from the American Cancer Genome Map Database

(TCGA, https://cancergenome.nih.gov/) using the TCGA R

package biollinks. Tumor samples with both expression and

survival information were retained for follow-up analysis, which

included 373 cancer and 32 paracancerous samples. Fatty acid-

related genes (Geneset) are derived from fatty acid-related

factors (fattyacid) in the MsigDB database (HALLMARK,

KEGG, REACTOME). A total of 14 pathways and 342 related

genes were identified.
2.4 Clustering analysis

An intersection between the identified differentially-

expressed genes with Geneset yielded 78 differentially-expressed

fatty acid-related genes. Using the ConsensusClusterPlus R

package, differentially-expressed genes related to fatty acid

disorder were clustered based on Euclidean distance. The

maximum number of clusters was set to five, and the clustering

method toK-means, in order tofind a stable and reliable subgroup

classification. The results yielded two subtypes, and the

differential gene expression between two subtypes was analyzed

(screening condition of the difference was: absolute value of

log2FC > 1, P< 0.05).
2.5 Construction of prognostic
risk model

The genes differentially-expressed between the subtypes

were analyzed using univariate Cox regression analysis to

identify genes related to the prognosis of subtypes. For this

purpose, LASSO penalty Cox regression analysis was used via

the Rglmnet package to construct a prognostic model to

minimize the risk of overfitting. Patient scores were calculated

according to the expression levels of the pathway genes and their

corresponding regression coefficients.

Score =o
n

i=0
bi ∗ xi
Frontiers in Immunology 03
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bi: weight coefficient of each gene; ci: expression of each

gene (FPKM). Patients were divided into high and low score

groups based on the median score, and the survminer R package

was used for survival analysis of OS based on high and

low scores.
2.6 Evaluation of immune cell filtration

The CIBERSORT algorithm provided by the IOBR R

package was used to calculate the scores of immune cells in 22

types of tumor microenvironments using the default parameters.

Based on the gene expression profile in the TCGA-STAD data,

the proportion of immune cell infiltration was calculated.
2.7 Single-cell dataset analysis

The Seurat R package, which is single-cell transcriptome

analysis tool, was used to analyze the single-cell dataset. The

analysis workflow mainly included the steps of constructing

objects, data standardization, data dimensionality reduction,

clustering, and searching for marker genes. Then, the SingleR

R packagewas used to annotate the clustering results obtained

from Seurat.
2.8 Drug sensitivity

Using the pRRophetic R package and the expression data of

model genes, the sensitivity (IC50 value) of 138 drugs in the GDSC

database was predicted, and the sensitivity of STAD patients to drug

therapy was evaluated based on the predicted IC50 values.
2.9 Statistical analysis

The R program (version 4.1.2) was used for statistical analysis.

The survival curve was generated using the Kaplan-Meier method,

and the differences between groups were compared using the log-

rank test. A Cox regression model was used for univariate and

multivariate analyses combined with other clinical features to

determine the independent prognostic value of the risk score. The

R package timeROC was used for time-dependent ROC curve

analysis to evaluate the predictive value of prognostic

characteristics. ROC analysis was used to evaluate the sensitivity

and specificity of the score in predicting prognosis, and the area

under the ROC curve (AUC) was considered to judge prognosis.

Statistical significance was set at p< 0.05. The same formula is used

to calculate verification scores.
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3 Results

3.1 Differential expression of fatty acid
related genes in tumor tissues and their
biological functions

The study population included 373 STADand 32 paracancerous

tissue samples obtained from the TCGA-STAD cohort.|Using

log2FC | > 0.585, BH-corrected, and P< 0.05 as differential

expression criteria, 3857 genes were found to be differentially-

expressed in gastric cancer and paracancerous tissues, with 2801

and 1056 up- and down-regulated genes, respectively. A total of 78

fatty acid-related differentially-expressed genes were identified by

determining the intersection of these genes with the Geneset, A

volcano map and a differentially-expressed fatty acid metabolism-

relatedgene thermogram is shown inFigures 1A,B.ThePPInetwork

showed that HSP90AA1, EPHX2, ACOX2, ACADM, ACLY, and

other genes had high connectivity in the network (Figure 1C). The

correlation between the expression levels of differentially-expressed

fatty acid metabolism-related genes was also calculated. Fatty acid

metabolism-related genes were found to be classified into three

groups (Figure 1D). A functional GO enrichment t was found for

oxidoreductaseactivity, actingon theCH-OHgroupofdonors,NAD

or NADP as acceptor, acting on paired donors and binding or

reducingoxygenmolecules,CH-CHgroupactingondonor, andeasy

to bind iron ions. These enzymes participate in long-chain fatty acid

metabolism, fatty acid biosynthesis, eicosane-like metabolism, olefin

metabolism, and unsaturated fatty acidmetabolism (Figures 1E–H).

The clinical feature analysis revealed that there were significant

differences in the expression of some fatty acid metabolism-related

genes between different age, sex, stage, and grade groups (Figures

S1A-D).
3.2 Determination of molecular
subtypes based on fatty acid
metabolism related genes

Subtyping can beused to reveal distinct states of the tumor, and

thus help implement personalized treatment strategies. Cancer

samples from the TCGA gastric cancer data were subjected to

consistency clustering based on expression patterns of 78 different

fatty acid metabolism-related genes to identify groups of samples

with similar expression patterns. According to the cumulative

distribution function and incremental region map of consistent

clustering, the change in the CDF curve for the case of two clusters

(k = 2, clusters 1 and 2) was found to be close to smooth.Hence, the

samples were divided into two subtypes (Figures 2A-C).We found

that there were significant differences in survival time between

patients with different fatty acid metabolism subtypes, and the

prognosis of patients in cluster 2 was worse than that of cluster 1

patients (Figure 2D). In addition, the scores of angiogenesis-related

pathways in the HALLMARK and GOBP gene sets in theMSigDB
Frontiers in Immunology 04
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database were calculated using SSGSEA. The results showed

significant differences between the scores of all pathways related

to angiogenesis between the fatty acid metabolism related

molecular subtypes (Figure 2E). A large number of blood vessels

(Figure 2F) were found in gastric cancer tissues by HE staining.

Immune cell infiltrationwas calculated usingCIBERSORT, and the

immune score, matrix score, and tumor purity (Figure 2G) were

calculated using ESTIMATE algorithms. The heatmap of immune

cell infiltration in subtypes showed that there were significant

differences in Mast_cells_activated, Dendritic_cells_resting,

Macrophages_M0, etc. Inter-subtype immune scores and matrix

scores (Figure 2H).
3.3 Construction of a fatty acid
metabolism-related prognostic signature

We have identified 515 genes differentially-expressed between

the two subtypes under the screening condition of | log2FC | > 1 dBH

correction p< 0.05. A total of 454 and 61 genes were up- and down-

regulated, respectively. Univariate Cox regression analysis showed

that 146 genes were associated with OS. KM analysis revealed eight

genes (eight genes screened after LASSO-Cox regression analysis)

(Figure S2). The signature (Figures 3A-C) composed of eight genes,

and was determined based on the optimal value of l. The regression
coefficient of each gene is shown in Table S1.
3.4 Verification of prognostic efficacy
of FARS based on an analysis of
training and external independent
verification sets

The score of eachpatientwas calculated according to the formula

and the patients were divided into high score group and low score

group by the median score. KM curve showed that the survival

probability of patients with high score was significantly lower than

that of patients with low score (Figures 3D, E). To evaluate the

predictive efficiency of prognostic models in 1 -, 2 -, and 3-year

survival rates, we performed a time-related ROC analysis. The area

under the ROC curve (AUC) is 0.627 at 1 year, 0.643 at 2 years and

0.631 at 3 years, indicating that the prediction effect of the model is

good (Figure 3F).Univariate andmultivariateCoxanalysiswereused

todeterminewhetherScorewasan independentprognostic factor for

OS. In univariate Cox analysis, Score obtained from TCGA data

queue was significantly correlated with OS. After correcting other

confounding factors, multivariate Cox analysis showed that Score

was still an independent predictor of OS (Figure 3G).

In order to verify the stability of the model, the Score of each

sample is also calculated inGSE13861 dataset andGSE26899 dataset

based on the same algorithm. According to the median of Score,

gastric cancer samples were divided into high score group and low

score group. Consistent with the results obtained by the TCGA
frontiersin.org
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FIGURE 1

Expression disturbance of fatty acid-related genes in tumors (A) Volcanogram of fatty acid related genes differentially expressed in gastric cancer
and paracancerous tissues. (B) Heat map of differentially expressed fatty acid-related genes. (C) Based on the differentially expressed fatty acid
related genes, the PPI network was constructed by using STRING database. (D) Expression correlation analysis of genes related to differential
fatty acids. (E-H) GO functional enrichment analysis of genes related to differential fatty acids.
Frontiers in Immunology frontiersin.org05
56

https://doi.org/10.3389/fimmu.2022.1065927
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2022.1065927
A B D

E

F

G

H

C

FIGURE 2

Molecular subtype recognition of fatty acid related genes (A, B) TCGA gastric cancer samples were analyzed by consistent cluster analysis based
on 78 fatty acid related genes. (C) The consistency matrix heat map when the number of clusters is 2. (D) Survival curve of patients with fatty
acid subtypes. (E) The scores of ANGIOGENESIS-related pathways in HALLMARK,GOBP gene set in MSigDB database were calculated by
SSGSEA. (F) HE staining of gastric cancer tissue. (G) Using CIBERSORT to calculate the heat map of immune cell infiltration. (H) ESTIMATE was
used to calculate immune score, matrix score and tumor purity. ns means p > 0.05, *p<=0.05, **p<=0.01, ***p<=0.001 and ****p<=0.0001.
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FIGURE 3

Construction of hierarchical scoring system for Fatty Acid related prognosis (A) LASSO coefficient profiles of eight genes. (B) Tuning parameter
lambda (l) selected by cross-validation error curve. (C) Eight genes determined based on the optimal value of l (D) The relationship between
survival status/risk score of TCGA cohort, mRNA expression heat map of 8 genes and survival time (days)/risk score. (E) Kaplan-Meier OS
analysis of gastric cancer patients in low-risk and high-risk groups (F) The time-dependent ROC curve of TCGA training data set OS. AUC was
evaluated at 1 year, 3 years and 5 years, respectively. p value was calculated using the log-rank test. p< 0.001. (G) Univariate and multivariate
Cox analysis were used to determine whether Score was an independent prognostic factor for OS. (H) GSE13861 dataset was used to analyze
the relationship between survival status/risk score, mRNA expression heat map of 8 genes and survival time (days)/risk score. (I) Kaplan-Meier
OS analysis of gastric cancer patients in low-risk and high-risk groups based on GSE13861 data set (J) Time-dependent ROC curve of GSE13861
dataset OS. AUC was evaluated at 1 year, 3 years and 5 years, respectively. P value was calculated using the log-rank test. P< 0.001. (K) The
GSE13861 dataset uses univariate and multivariate Cox analysis to determine whether Score is an independent prognostic factor for OS. (L) The
relationship between survival status/risk score, mRNA expression heat map of 8 genes and survival time (days)/risk score was analyzed by
GSE26899 dataset. (M) Kaplan-Meier OS analysis of gastric cancer patients in low-risk and high-risk groups based on GSE26899 data set
(N) Time-dependent ROC curve of GSE26899 dataset OS. AUC was evaluated at 1 year, 3 years and 5 years, respectively. P value was calculated
using the log-rank test. P< 0.001. (O) The GSE26899 dataset uses univariate and multivariate Cox analysis to determine whether Score is an
independent prognostic factor for OS.
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cohort, patients with high scores had a lower probability of survival

than patients with low scores (Figures 3H, I, L, M). In addition ,the

prognostic model revealed that the 1- year AUC was 0.695, 2-year

AUC was 0.667, 3-year AUC was 0.685 in the GSE13861 dataset

(Figure 3J),and 1-yearAUCwas 0.705, 2-yearAUCwas 0.676, and3-

year AUC was 0.658 in the GSE26899 dataset (Figure 3N). In the

validation set, univariate and multivariate Cox analyses were also

used to determine whether Score was an independent prognostic

factor forOS.The results showthat inunivariateCoxanalysis, there is

a significant correlationbetweenScore andOS.After correctingother

confounding factors, multivariate Cox analysis shows that Score is

still an independent predictor of OS (Figures 3K, O).
3.5 FARS is related to the clinical
characteristics of tumor

We found that the score of patients with Helicobacter pylori

infection was significantly higher than that of patients without

infection and significant differences were also detected between

patients with first-, second-, and third-grade cancer: higher grades

corresponded to higher scores and poorer prognosis (Figure 4A).

Immune cell infiltration as calculated by the CIBERSORT algorithm

revealed that many immune cell types, such as Mast_cells_activated,

Dendritic_cells_resting, and Macrophages_M0, are significantly

correlated with the FARS score (Figure 4B). Figure 4C shows the

difference in gene expression of immune checkpoints in the high- and

low-risk groups of scores, in which the expression leves of CD276,

CTLA4, PDCD1, and PDCD1LG2 were significantly higher in the

high score group. This high expression level helps gastric cancer cells

escape immune surveillance and promote immune escape. Based on

the calculation of the Pearson correlation between the fatty acid risk

score (Score) and the identified gene signature score, we detected

several gene sets related to immunity and EMT from the literature,

and then performed mapping between the SSGSEA score and the

fatty acid risk score (Score) of these samples. We found a significant

correlation between the FRAS score and EMT2, EMT3, and

PanFTBRS, which promote the EMT process in gastric cancer cells

(Figure 4D). We further evaluated the relationship between fatty acid

risk score and chemotherapeutic drug resistance, and also calculated

the difference in chemotherapeutic drug resistance between

highFARS and lowFARS using the pRRophetic package. The IC50

values of bortezomib, elesclomol, and nilotinib were found to be

significantly different between highFARS and lowFARS, and with

stronger chemotherapeutic effects (Figure 4E) in the low-score group.
3.6 Single-cell dataset analysis

Using the STAD samples in the single-cell data set

downloaded from the GEO database (GSE142750), the cells

were grouped and annotated based on an t-SNE analysis. A
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total of 107597 cells (33694 features) were grouped into 13

clusters, and finally annotated as two large cell groups

(Figure 5A). Then, the union of the top 5 marker genes of in

each cluster was used to draw a heat map to show the differential

expression of each marker gene in each subtype. No genes

included in the constructed model (model genes) was detected

(Figure 5B) among these top 5 marker genes.

Feature plot visualization was used to show the expression

and distribution of model genes in the cell population. The

results showed that RGS2 and DUSP1 were significantly

expressed in the cell population, and three model genes,

CXCR4, SLCO2A1, and FNDC1, were not in the cluster,

indicating that the two model genes that were significantly

expressed could be used as marker genes (Figure 5C) of cancer.
3.7 Biological significance of RGS2 in
gastric cancer

We found that the high expression of RGS2 in gastric cancer

was significantly correlated with a shorter survival time

(Figure 6A). The TME score showed that the high expression

of RGS2 was positively correlated with the stomalscore,

Immunescore, and Estimatescore, which indicated a worse

immune response (Figure 6B). Correlation analysis of immune

cell infiltration showed that the expression of 10 types of

immune cells in 22 types of immune cells was correlated with

RGS2 expression (Figure 6C). We also analyzed the

clinicopathological features of patients with high and low

RGS2 expression, including age, sex, survival, grade grade, T

stage, and N stage. The figure shows that there is no statistical

difference in age and sex between the high and low RGS2

expression groups. High RGS2 expression was found to be

closely related to poor prognosis. This finding shows that high

expression of RGS2 represents a higher degree of malignancy

based on clinicopathological features (Figures 6D, E). We also

analyzed the relationship between expression levels of RGS2 and

immune checkpoints (Figure 6F). We found that the lower

tumor mutation load in the group with high expression of

RGS2 increased the difficulty of receiving the benefit of

immune checkpoint inhibitors for patients (Figure 6G). We

found that the TIDE score of the RGS2 high expression group

was significantly higher than that of low expression group

(Figure 6H). This also indicates that high RGS2 expression is

more likely to lead to immune dysfunction and immune

rejection. We have determined the mRNA and protein

expression levels of RGS2 in GES-1 gastric mucosal cells and

AGS, HGC-27, MKN-1, and MKN-45 gastric cancer cell lines.

Accordingly, the expression of RGS2 in gastric cancer cell line

was found to be higher than that of GES-1 (Figure 6I) at both

mRNA level and protein level. Immunofluorescence staining
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showed that RGS2 was highly expressed in gastric cancer cell

lines AGS and MKN45, and most of them were located in the

cytoplasm (Figure 6J). In order to verify the expression of RGS2

in gastric cancer, we found that RGS2 was expressed to varying

degrees in different clinical stages of gastric cancer by

immunohistochemical staining, and with the increase of

staging, the more RGS2 deposition (Figure 6K).
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3.8 Biological significance of RGS2 in
other cancer types

A pan-cancer analysis has shown that RGS2 is expressed in

many tumor types (Figures 7A, B).We found that the expression of

RGS2 in the overall survival time (OS) was significantly correlated

with the survival rates of BLAC, KIRC, LIHC, SKCM, STAD,
A B

D

E

C

FIGURE 4

Relationship between risk scoring system and immune infiltration and immunotherapy (A) Analysis of correlation between risk score and clinical
characteristics of patients with STAD (B) CIBERSORT calculated the relationship between immune cell infiltration and risk score (C) The
difference of gene expression in immune checkpoint between high and low score groups. (D) Pearson analysis of SSGSEA score and fatty acid
risk score. (E) Correlation analysis between fatty acid risk score and chemotherapy resistance. *p<=0.05, ***p<=0.001, ****p<=0.0001, ns
means p > 0.05.
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FIGURE 5

Single cell data set analysis (A) T-SNE clustering and cell group annotation based on STAD samples from single-cell data sets. (B) Draw a heat
map of the Marker gene of TOP5 in each Cluster. (C) Display the expression and distribution of model genes in the cell population by
FeaturePlot visualization.
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FIGURE 6

Biological significance of RGS2 in gastric cancer and expression level of gastric cancer cell line (A) The relationship between the high and low
expression of RGS2 in gastric cancer and prognosis (B) The relationship between the high and low expression of RGS2 and the score of TME
(C) The correlation between the high and low expression of RGS2 and immune cell infiltration. (D, E) Analysis of the correlation between the
high and low expression of RGS2 and the clinicopathological features of patients (F) The relationship between the high and low expression of
RGS2 and immune checkpoints (G) The relationship between the high and low expression of RGS2 and TMB score (H) The relationship between
high and low expression of RGS2 and TIDE score (I) Expression at mRNA level of RGS2 in gastric cancer cell lines AGS, HGC27, MKN-1, MKN45
and normal gastric mucosal cells GES-1 (J) Expression and localization of RGS2 in gastric cancer cell lines AGS and MKN45 (K) Expression of
RGS2 in different clinical stages of gastric cancer. ***p<=0.001.
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THCA, and THYM (Figure 7C). There was also no significant

difference in the expression of RGS2 between cancer and disease-

free survival (DFS) groups (Figure 7D). There was a correlation

between disease-specific survival and ACC, BLCA, KIRC, PRAD,

SKCM, STAD, and THYM (Figure 7E), and also a significant

correlation between progression-free survival andACC,KIRC, and

THYM (Figure 7F). We analyzed the correlation between RGS2,

TMB, and MSI, and found that it was significantly correlated with

TGCT, STAD, PAAD, COAD, and CESC, suggesting that it can be

used as a basis of detection for immunotherapy of the above tumors
Frontiers in Immunology 12
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(Figures 7G, H). Finally, we found that RGS2was closely related to

the level of immune cell infiltration inmost tumors, suggesting that

RGS2 participates in the regulation of the tumor immune response

in the tumor microenvironment (Figure 7I).
4 Discussion

Rapid proliferation and insufficient angiogenesis of tumor

cells lead to hypoxia, low pH levels, and depletion of nutrients in
A
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FIGURE 7

Biological significance of RGS2 in pan-cancer (A) RGS2 expression level in multiple tumors (B) Correlation analysis between RGS2 expression
level and tumor stage (C) Relationship between RGS2 expression level and OS (D) Relationship between RGS2 expression level and disease-free
survival (E) Relationship between RGS2 expression level and Disease specific survival (F) Relationship between RGS2 expression level and
Progression free survival (G) Correlation analysis between RGS2 and Tumor mutation burden (TMB) (H) Analysis of the correlation between
RGS2 and Microsatellite instability (MSI) (I) The relationship between RGS2 and immune cell infiltration. *p<=0.05, **p<=0.01,***p<=0.001.
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the tumor microenvironment (15, 16). Therefore, tumor cells

show unique metabolic characteristics that are distinct from

those of normal cells. Tumor cells deal with a variety of adverse

microenvironments by reprogramming their metabolism, and

blocking carcinogenic signals to maintain their proliferating

state and survival. Abnormal energy metabolism is thus a

hallmark of cancer, which indicates that the metabolism of

carbohydrates, lipids, and amino acids in tumor cells is

significantly different from that in normal cells. Fatty acid

metabolism was previous shown to maintain tumorigenesis,

disease progression, and therapeutic resistance by enhancing

lipid synthesis, storage, and decomposition (17, 18). Recently,

increasing attention has been paid to the role of membrane fatty

acids (with respect to e.g. the ratio of saturated fatty acids,

monounsaturated fatty acids, and polyunsaturated fatty acids) in

promoting cell survival, limiting lipotoxicity, and iron-

dependent cell death (19–21). Here, eight fatty acid

metabolism-related genes related to gastric cancer prognosis

were identified based on an analysis of genomic information

of 373 STAD samples and 32 paracancerous tissue samples using

univariate COX regression, clustering, and principal component

analyses. A model called “FRAS” was constructed, and the score

calculated using this model (FRAS score) was found to be closely

related to increased immune cell infiltration, genomic instability,

immune escape and sensitivity of immune checkpoint inhibitor

(ICIs). This fatty acid metabolism-related model was

comprehensively evaluated as well. The fatty acid prognostic

risk score model was found to be able to independently predict

the prognosis of patients with gastric cancer, and effectively

distinguish the sensitivity of patients to chemotherapeutic drugs.

In addition, the relationship between the prognostic risk score

model and characteristics of TME cell infiltration was studied.

The prognostic risk score model was found to identify patients

with gastric cancer who are suitable for anti-CTLA4 antibody

immunotherapy sucessfully, and thereby also indicated that fatty

acid metabolism is crucial for shaping individual TME

characteristics. These findings may provide a new perspective

for exploring the mechanisms of fatty acid metabolism and

treatment of gastric cancer.

Rapidly proliferating tumor cells show a high affinity for

lipids and cholesterol by increasing exogenous lipid uptake, or

by overactivating their biosynthetic pathways (22). Therefore,

fatty acid synthesis (FAS) inhibitors, especially fatty acid

synthase (FASN), have been the focus of cancer treatment

studies (23–25). RGS2, DUSP1, CXCR4, FNDC1, SNCG,

SLCO2A1, APOD, and GPX38 were selected to construct this

risk model. This model can predict the prognosis of patients with

gastric cancer more accurately that a single clinical variable,

which may be helpful for clinicians in making clinical decisions.

The model was used to classify patients with stage G2/G3,

patients aged > 65 years and< 65 years, and patients with

Helicobacter pylori infection into two groups. This was found

to have a significant impact on prognosis, as it confers the
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advantage of using genetic characteristics in predicting clinical

grouping and prognosis.

Gastric cancer patients also develop drug resistance

eventually, even though 60% of them are sensitive to

chemotherapy. This leads to a 5-year survival rate of less than

10% (26–28). Therefore, understanding the mechanism of

chemotherapy resistance in gastric cancer cells is important for

improving the prognosis and survival rate. Previous studies have

revealed that some cancer cells require fatty acid oxidation to

provide energy that is required to maintain the stem cell state.

Studies on resistance of breast tumor stem cells (BCSCs) to

chemotherapy have found that JAK/STAT3 signaling systems

help breast cancer cells maintain their stem cell status, and

resistance to chemotherapy by promoting fatty acid oxidation

(29, 30). Animal experiments have further confirmed that drugs

that inhibit the JAK/STAT3 signaling system can greatly reduce

the population of stem cells in breast cancer, and improve the

efficiency of chemotherapy (31, 32). Here, we further analyzed

the relationship between the develop fatty acid metabolism-

related risk score and chemotherapy resistance in gastric cancer

cells, and identified significant differences in sensitivity to

chemotherapeutic drugs between the high- and low-score

groups. Specifically, bortezomib, elesclomol, and nilotinib

showed better therapeutic effects in the low-score groups.

Targeting of the fatty acid metabolism may thus be a new

strategy for reversing drug resistance in gastric cancer cells.

The G protein signal transduction regulatory factor (RGS)

gene family, which includes negative regulators of G protein-

coupled receptors, are potential drug targets for the treatment of

malignant tumors (33, 34). RGS is a large family of genes with

multiple functions (35–37). These proteins share an RGS

domain with a conserved core that includes 130 amino acid

residues, which can directly bind to the activated G-a subunit to

inactivate GTP, and thus help negatively regulate GPCR-related

signaling pathways (38–40). RGS gene has been proved to be

closely related to the occurrence and development of many

systemic diseases and cancers (41–43). Here, we analyzed the

role of RGS2, in the tumor microenvironment in gastric cancer,

and also in other cancer types for the first time. The results

showed that the expression of RGS2 was correlated with

interstitial and immune scores. Therefore, we speculate that

RGS2 participates in the occurrence and development of gastric

cancer by affecting the migration of immune cells. Moreover, we

also found that the TMB score of the RGS2 high-expression

group was lower than that of the low-expression group, and the

TIDE score was higher than that of the low-expression group.

This indicates that it is more difficult for gastric cancer patients

to benefit from immunotherapy, and have a worse prognosis.

High expression levels of RGS2 were detected by Western blot

analysis, which indicates a role of RGS2 in the progression of

gastric cancer.In gastric cancer, the deposition of RGS2

increased with the increase of clinical stage. Therefore, in the

microenvironment of gastric cancer, RGS2 may predict a poor
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prognosis. RGS2 expression in various tumor types was also

found to be significantly correlated with survival, clinical stage,

immune score, TMB score, and MSI. Therefore, RGS2 could be

used as a new tumor marker as well.

However, our study has suffered from some limitations as

well. For example, further research is still needed to reveal how

fatty acid-related genes affect immune cell infiltration and

genomic instability in gastric cancer. In addition, as this study

mainly used online datasets for analysis, more clinical data

supplement is necessary.
5 Conclusion

In conclusion, we analyzed here the expression of fatty acid

metabolism-related genes in gastric cancer, and constructed a

model based on fatty acidification to calculate a disease risk score

for gastric cancer. Our analysis revealed that FARS score in

gastric cancer is closely related to tumor mutation load, genomic

instability, ICIs treatment response, immune cell infiltration,

and immune escape. This score provides with a new tool for the

diagnosis and treatment of gastric cancer, and the genes related

to FARS may become new tumor markers or therapeutic targets.

In general, the FARS score developed in this study can be used as

a potential molecular classification tool for gastric cancer, and

thus help identify immune infiltration and genomic instability

patterns in gastric cancer. FARS can also be used to evaluate

response of patients to ICIs treatment.
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Reiter RJ, et al. Melatonin regulates the daily levels of plasma amino acids,
acylcarnitines, biogenic amines, sphingomyelins, and hexoses in a xenograft
model of triple negative breast cancer. Int J Mol Sci (2022) 23(16):9105.
doi: 10.3390/ijms23169105

18. Hu C, Pang Bo., Lin G, Zhen Yu., Yi H. Energy metabolism manipulates the
fate and function of tumour myeloid-derived suppressor cells. Br J Cancer (2020)
122(1):23–9. doi: 10.1038/s41416-019-0644-x

19. Zhang M, Wei T, Zhang X, Guo D. Targeting lipid metabolism
reprogramming of immunocytes in response to the tumor microenvironment
stressor: A potential approach for tumor therapy. Front Immunol (2022) 13:937.
doi: 10.3389/fimmu.2022.937
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Comprehensive analysis of a
glycolysis and cholesterol
synthesis-related genes
signature for predicting
prognosis and immune
landscape in osteosarcoma

Fangxing Xu1, Jinglong Yan1*, Zhibin Peng2,
Jingsong Liu2 and Zecheng Li1

1Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin,
Heilongjiang, China, 2Department of Orthopedics, The First Affiliated Hospital of Harbin Medical
University, Harbin, Heilongjiang, China
Background: Glycolysis and cholesterol synthesis are crucial in cancer

metabolic reprogramming. The aim of this study was to identify a glycolysis

and cholesterol synthesis-related genes (GCSRGs) signature for effective

prognostic assessments of osteosarcoma patients.

Methods: Gene expression data and clinical information were obtained from

GSE21257 and TARGET-OS datasets. Consistent clusteringmethod was used to

identify the GCSRGs-related subtypes. Univariate Cox regression and LASSO

Cox regression analyses were used to construct the GCSRGs signature. The

ssGSEAmethodwas used to analyze the differences in immune cells infiltration.

The pRRophetic R package was utilized to assess the drug sensitivity of different

groups. Western blotting, cell viability assay, scratch assay and Transwell assay

were used to perform cytological validation.

Results: Through bioinformatics analysis, patients diagnosed with

osteosarcoma were classified into one of 4 subtypes (quiescent, glycolysis,

cholesterol, and mixed subtypes), which differed significantly in terms of

prognosis and tumor microenvironment. Weighted gene co-expression

network analysis revealed that the modules strongly correlated with

glycolysis and cholesterol synthesis were the midnight blue and the yellow

modules, respectively. Both univariate and LASSO Cox regression analyses

were conducted on screened module genes to identify 5 GCSRGs (RPS28,

MCAM, EN1, TRAM2, and VEGFA) constituting a prognostic signature for

osteosarcoma patients. The signature was an effective prognostic predictor,

independent of clinical characteristics, as verified further via Kaplan-Meier

analysis, ROC curve analysis, univariate and multivariate Cox regression

analysis. Additionally, GCSRGs signature had strong correlation with drug

sensitivity, immune checkpoints and immune cells infiltration. In cytological
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experiments, we selected TRAM2 as a representative gene to validate the

validity of GCSRGs signature, which found that TRAM2 promoted the

progression of osteosarcoma cells. Finally, at the pan-cancer level, TRAM2

had been correlated with overall survival, progression free survival, disease

specific survival, tumor mutational burden, microsatellite instability, immune

checkpoints and immune cells infiltration.

Conclusion: Therefore, we constructed a GCSRGs signature that efficiently

predicted osteosarcoma patient prognosis and guided therapy.
KEYWORDS

glycolysis, cholesterol, osteosarcoma, prognosis, signature, immune, TRAM2
1 Introduction

Osteosarcoma mostly occurs in the metaphysis of long bone

and is the second leading factor of cancer deaths in children and

adolescents (1, 2). Currently, surgical resection, chemotherapy,

radiation therapy, hormone therapy, and small molecule

targeted therapy are the mainstays in osteosarcoma treatment

(3). Although the survival rate of osteosarcoma patients has been

drastically increased with the combined chemotherapy, the 5-

year survival rate is still not ideal for patients with distant

metastasis, even with the use of large doses of adjuvant

chemotherapy combined with radical resection (4). In

addition, the psychological trauma caused by radical resection

and the side effects of chemotherapy drugs are also problems

that need to be addressed in the current treatment of

osteosarcoma. To aid in improving osteosarcoma treatment,

identifying novel therapeutic targets and biomarkers is crucial.

Unlike normal cells, cancerous cells often experience

metabolic reprogramming. Metabolic reprogramming refers to

the modifications to the tumor cells metabolic mode in the

starvation state that allow adaption to the nutritional

microenvironment; that is, to accommodate the requirements

of their own quick growth through sufficient nutrients intake,

metabolic reprogramming is a vital hallmark of malignant

tumors (5). Glycolysis produces a small amount of energy

during the entire glucose metabolism process. Normal cells

mainly obtain energy through aerobic respiration. However,

cancerous cells deviate from normal cells in various aspects.

Even in an aerobic condition, cancerous cells favor the

consumption of extra glucose for aerobic glycolysis in order

for lactate production, a phenomenon referred to as Warburg

effect (6). Calcium-binding protein A10 can accelerate glycolysis

by mediating the AKT/mTOR signaling pathway in

osteosarcoma, thereby enhancing malignancy of osteosarcoma

cells (7). In addition, the novel lncRNA HCG18 enhances
02
68
aerobic glycolysis in osteosarcoma cells via miR-365a-3p/

PGK1 signaling pathway regulation, which accelerating the

development of osteosarcoma cells (8). HIF-1a oncogene is

present in numerous malignancies, including ovarian, breast,

and bladder cancers, and can induce the glycolytic pathway in

malignant tumors (9–11).

In recent years, the reprogramming of lipid synthesis has

been considered to be another significant metabolic abnormality

required for tumor growth, in which changes within the

cholesterol biosynthetic pathway are vital (12). Cholesterol

accumulation within cancerous cells can influence cell

pro l i f era t ion and metas tas i s , and enhance tumor

microenvironmental adaptability, hence reinforcing tumor

incidence and progression (13). Studies have demonstrated

that several genes involved in cholesterol production are

overac t ive in mal ignant t i s sue , such as squa lene

monooxygenase and the cholesterol biosynthesis rate-limiting

enzyme 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase

(HMGCR), which is upregulated within several types of

malignancies, comprising glioma and prostate cancer (14, 15).

HMGCR overexpression enhances cancer progression and

metastasis, while its inhibition can suppress tumors; therefore,

HMGCR has been used to treat solid cancers, hematological

cancers, and tumors with drug resistance (16–18). In addition,

the copy number of the SQLE locus encoding squalene

monooxygenase is also increased in a variety of tumors. This

copy number increase has been related to pancreatic cancer

radiation tolerance and the development of several cancers

within breast, prostate and colorectal cancer, or a poor patient

prognosis (19, 20). However, similar to gene heterogeneity,

tumor cell metabolism is also highly heterogeneous. In other

words, no single universal change occurs within cancer

metabolism. Tumorous metabolic changes are mainly

characterized by changes in lipid and glucose metabolism.

Recently, relevant research has discovered that changes in the
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combined effects on lipid and glucose metabolism have become

vital in pancreatic cancer, breast cancer, and skin malignant

melanoma (21–23). High-throughput sequencing technologies

are developing rapidly, and researchers possess the better

understanding of pathogenic genes for various diseases, which

is helpful for the discovery of novel biomarkers and pathogenic

mechanisms (24). In recent years, differentially expressed genes

have been screened through bioinformatics analysis to construct

a prognostic signature for predicting osteosarcoma patient

prognosis. For example, Zheng et al. constructed a prognostic

signature and a nomogram relied on characteristics and clinical

variables, which are used to screen out the tumor suppressor

gene FHIT in osteosarcoma (25). However, to our knowledge, no

gene signature related to glycolysis and cholesterol synthesis has

been established to predict osteosarcoma patient prognosis.

During this research, relying on glycolysis and cholesterol

synthesis-related genes (GCSRGs), osteosarcoma patients were

categorized into one of 4 subtypes, and the differences in

patient prognosis and tumor microenvironment between

subtypes were also studied. A GCSRGs signature and an

efficient nomogram were constructed by screening gene

modules and their core genes for associations with glycolysis

and cholesterol synthesis. In addition, the relationship of

GCSRGs signature with drug sensitivity, immune infiltration

and immune checkpoints was investigated, thereby expanding

the genes signature’s prognostic values for patients with

osteosarcoma. Finally, we performed in vitro functional

experiments and pan-cancer analysis to validate the genes of

interest among the GCSRGs.
2 Materials and methods

2.1 Data download

GSE21257 dataset (n=53) was downloaded from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/) and the Therapeutically Applicable Research to

Generate Effective Treatment-Osteosarcoma (TARGET-OS)

dataset (n=95) was obtained from the TARGET database

(https://ocg.cancer.gov/programs/target). Both osteosarcoma

datasets contain RNA sequences and clinical information. To

obtain the total cohort dataset for subsequent mining, we

combined TARGET-OS normalized by log2 of the transcript

count per million (TPM) and GSE21257 with the batch effect

removed by the ComBat function. Supplementary Table 1

illustrates all patients’ clinical information in the total cohort.

GCSRGs were obtained from the “REACTOME_GLYCOLYSIS”

(n=72) and “REACTOME_CHOLESTEROL_BIOSYNTHESIS”

(n=25) datasets in the Molecular Signatures Database (MSigDB)

(https://www.gsea-msigdb.org/gsea/msigdb/). In addition,

we downloaded the original pan-cancer mRNA matrix data,

clinical data and copy number data from the University
Frontiers in Immunology 03
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of California, Santa Cruz (UCSC) database (https://

xenabrowser.net/).
2.2 Identification of the GCSRGs-related
subtypes

Based on the expression of GCSRGs, the total cohort

excluded metabolic genes with a standard deviation ≤ 0.5 and

then used the genes as the main objects to perform consistent

clustering using ConsensusClusterPlus R package to remove co-

expressed metabolic genes and obtain co-expressed GCSRGs. The

median expression level classified the metabolic subtypes, which

were the quiescent type (glycolysis ≤ 0, cholesterol synthesis ≤ 0),

glycolysis type (glycolysis > 0, cholesterol synthesis ≤ 0),

cholesterol type (glycolysis > 0, cholesterol synthesis > 0), and

mixed type (glycolysis > 0, cholesterol synthesis > 0). The prcomp

function was used for principal component analysis (PCA)

between subtypes, and survival R package and survminer R

package analyzed survival differences between subtypes. The

ESTIMATE algorithm calculated tumor purity, immune,

stromal, and ESTIMATE scores in different subtypes.
2.3 Construction of weighted gene co-
expression network and enrichment
analysis

Weighted gene co-expression network analysis (WGCNA)

employs gene expression data for scale-free network construction.

For the top 25% of expression profiles in terms of variation

coefficients, we built a network using the WGCNA R package.

The modules strongly correlated with glycolysis and cholesterol

subtype were screened, and the genes in the modules were pooled

as key metabolic genes. Enrichment analysis of GO and KEGG

pathway was conducted using clusterProfiler package.
2.4 Establishment and validation of a
GCSRGs prognostic signature

To screen prognosis-related genes, in a random manner we

categorized the total cohort into training and verification cohort,

and utilized survival R package to do univariate Cox regression

analysis upon the key modules’ genes in training cohort. In order

to further minimize the dimensionality and build the risk

signature, least absolute shrinkage and selection operator

(LASSO) Cox regression analysis has been conducted via

glmnet R package and survminer R package, and patients’ risk

scores were then determined. The training, verification, and total

cohorts were categorized into high- and low-risk groups based

on risk score’s median value. Survminer R package and
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survivalROC R package generated survival and receiver

operating characteristic (ROC) curves for the high- and low-

risk groups. Area under curve (AUC) determined the signature’s

predictive ability. Once AUC > 0.6, signature became reliably

predictive. We then performed univariate and multivariate Cox

regression analyses to see if the risk score was an independent

prognostic factor for osteosarcoma patients.
2.5 Nomogram construction and
validation

The rms R package plotted the clinical nomogram.

Performance of nomogram in predicting overall survival (OS)

of osteosarcoma patients was evaluated using independent risk

factors such as sex, age, metastatic status, and risk score. The

calibration curve then proved the nomogram’s efficacy.
2.6 Analysis of immune landscape and
drug sensitivity

The single-sample gene set enrichment analysis (ssGSEA)

method analyzed immune cells infiltration differences across the

high- and low-risk groups. Differential expression analysis of

immune checkpoints was used to assess the difference in the

efficacy of immunotherapy. The pRRophetic R package was

utilized to assess the drug sensitivity of different groups.
2.7 Pan-cancer analysis of TRAM2

To perform additional research into the role of TRAM2 in

tumors, TRAM2 differential expression was assessed in pan-

cancer, and we performed a correlation analysis of TRAM2 with

patient prognosis, tumor mutational burden (TMB), and

microsatellite instability (MSI). Furthermore, we performed a

co-expression analysis of TRMA2 with immune cells and

immune checkpoints.
2.8 Cell culture and transfection

All cell lines had been obtained from Procell (Wuhan,

China). These cell lines were cultivated into DMEM/F12

medium containing 10% fetal bovine serum. TRAM2 siRNA

and the corresponding si-control had been bought from

GenePharma (Shanghai, China). Lipofectamine 3000 reagent

(Invitrogen, California, USA) transfected cells as per the

guidelines. After 48h of transfection, cells were utilized for

protein quantification. The following sequences were utilized for
Frontiers in Immunology 04
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the targeting of TRAM2: 5’-GCGUCCUCAUCGGGCUUAUTT-

3’ (si-TRAM2-1); 5’-CCUCGGUGAUUUGGUGCUUTT-3’ (si-

TRAM2-2); 5’-GCACGCACUUCCUGAGCUATT-3’ (si-

TRAM2-3).
2.9 Western blotting

In a nutshell, the protein samples were first isolated using

SDS-PAGE. Later, proteins on the gel were moved to PVDF

membrane and blocked. Primary antibodies were incubated

overnight at a temperature of 4 °C, including anti-TRAM2

(Proteintech, 13311-1-AP, Wuhan, China), anti-E-cadherin

(Proteintech, 20874-1-AP), anti-N-cadherin (Proteintech,

22018-1-AP), anti-Vimentin (Proteintech, 10366-1-AP), and

anti-GAPDH (Zhongshanjinqiao, TA-08, Beijing, China). On

day 2, the membrane underwent secondary antibody incubation.

Next, enhanced chemiluminescence (ECL) color developing

solution was utilized to develop the membrane after it had

been rinsed with TBST three times.
2.10 Cell viability assay

The transfected cells have been cultured within 96-well

plates at 5000 cells/well. Prior to Detection, Cell Counting Kit

8 (CCK8) reagent (Dojindo, Kumamoto, Japan) was added and

incubated at 37 °C. A microplate reader took 450 nm absorbance

readings once every 24 h up until 72 h.

In order to evaluate the osteosarcoma cells’ capabilities for

colony formation, a plate cloning assay was carried out. The

transfected cells were evenly seeded in 6-well plate, and

then cultured for 12 days with periodic replacements of the

medium. Fixation and staining were accomplished with

paraformaldehyde and crystal violet staining solution. A digital

camera was used to snap photographs of the cells and

recorded data.
2.11 Migration and invasion assays

To determine if osteosarcoma cells underwent migratory

changes, a scratch assay was performed. 6-well plate was seeded

with the transfected cells. After reaching 80% - 90% cell density,

the cells were scratched using a pipettor tip oriented

perpendicular to the plate’s base. Results were photographed

and recorded at 0 h and 48 h.

The invasive potential of osteosarcoma cells was measured

using the Transwell assay. After pre-plating the Transwell

chamber with Matrigel, the transfected cells were resuspended

in fresh basal medium and added to the upper chamber. In the
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lower chamber, we put in full medium. The upper chamber’s

cells were completely removed following 48 h. The remaining

cells were stained after fixation, and photographed under

a microscope.
2.12 Statistical analysis

GraphPad Prism 7 and R (version 3.6.3) were utilized

throughout this investigation for all statistical testing and

analysis. We used ClusterProfiler R package for consistent
Frontiers in Immunology 05
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clustering. The Kaplan-Meier (KM) method was utilized for

the survival analysis, and survival R package performed the

log-rank test. In order to conduct LASSO analysis with

cross-validation, the glmnet R package was used. The

survminer R package and survival R package were used to

create the ROC curve. Features selection was performed via

univariate and multivariate Cox regression analyses.

Wilcoxon test compared the continuous variables .

Spearman correlation test was used for correlation

analysis. P < 0.05 was considered statistically significant

unless otherwise stated.
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FIGURE 1

Classification of osteosarcoma patients based on expression of GCSRGs. (A) Heatmap showing consensus clustering solution for GCSRGs in
osteosarcoma sample (B) Scatter plot depicting classification of samples based on GCSRGs expression. (C) Heatmap showing expression levels
of co-expressed GCSRGs across each subgroup. (D) PCA showing significant differentiation between different subgroups of patients. (E) Kaplan-
Meier survival curves of patients in the different subgroups. Log-rank test P values are displayed. (F–I) Violin plots showing the immune score,
stromal score, ESTIMATE score and tumor purity across different metabolic subgroups. ***P < 0.001.
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3 Results

3.1 Identification of the 4 subtypes of
osteosarcoma patients by analysis of the
expression of GCSRGs

The RNA-seq data and clinical information in the

GSE21257 dataset and the TARGET-OS dataset were

integrated after the batch effect was removed. The total

cohort was obtained for subsequent analysis. Based on the

gene sets of GCSRGs, metabolic-related genes with a standard

deviation ≤0.5 were excluded from the total cohort. Then,
Frontiers in Immunology 06
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consistent clustering was performed using the genes as the

main body, thereby removing the co-expressed mixed

metabolic genes C2 and C3, and the respective co-expressed

metabolic genes were obtained including co-expressed

glycolysis genes C1 and co-expressed cholesterol genes C4

(Figure 1A). We classified the total cohort into 4 metabolic

subtypes based on the median expression levels of GCSRGs.

Glycolysis ≤ 0 and cholesterol synthesis ≤ 0 was the quiescent

subtype, glycolysis > 0 and cholesterol synthesis ≤ 0 was the

glycolysis subtype, glycolysis ≤ 0 and cholesterol synthesis > 0

was the cholesterol subtype, and glycolysis > 0 and cholesterol

synthesis > 0 was the mixed subtype (Figure 1B). Figure 1C
B

C D

E

A

FIGURE 2

WGCNA to identify similar genes networks of GCSRGs. (A) The scale independence (left) and mean connectivity (right) of WGCNA analysis.(B)
Color coding of co-expression network modules for genes. (C) Heatmap showing the correlation of gene modules and glycolysis-cholesterol
synthesis. (D) Scatter plot displaying the correlation between module membership and gene significance in midnight blue network. (E) Scatter
plot displaying the correlation between module membership and gene significance in yellow network.
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illustrates the expression levels of GCSRGs in the 4 subtypes.

According to the PCA of the 4 subtypes, the principal

components of the 4 subtypes had a good degree of

discrimination (Figure 1D). Further analysis of the

differences in the prognosis between subtypes revealed the

significant differences in the prognosis of different subtypes.

Among them, prognosis for the glycolysis subtype was

significantly better than the cholesterol subtype, and the

quiescent subtype’s prognosis was significantly better than

the mixed subtype, and the mixed subtype’s prognosis was

similar to the cholesterol subtype (Figure 1E). In addition, to

further analyze the differences in tumor microenvironment

between different subtypes, ESTIMATE algorithm ranked the

immune, stromal, and ESTIMATE scores as quiescent subtype

> glycolysis subtype > cholesterol subtype > mixed subtype,

but the reverse trend was noted for the tumor purity

(Figures 1F–I).
3.2 GCSRGs co-expression network and
biological activity

WGCNA was used to discover additional GCSRGs for

further studies. The gene network achieved both high

internal connectivity and gene similarity when the soft

threshold was 4 (Figure 2A). Using hybrid dynamic shear

tree, with a minimum of 25 genes per gene network module,

16 networks were found to be different from one another and

were assigned distinct colors to represent them (Figure 2B).

Then, the modules with strong correlations with glycolysis and

cholesterol synthesis were screened, namely, the midnight blue

and the yellow modules (Figure 2C). Among them, the

glycolysis-related midnight blue module (P = 0.0044)

contained 35 genes, and the cholesterol synthesis-related

yellow module (P < 0.001) contained 367 genes. Figures 2D,

E illustrates gene significance and module membership of the 2

modules. A robust positive relationship was identified between

these variables’ values.

A total of 402 genes within the midnight blue and yellow

modules were pooled and used as key metabolic genes. The

ClusterProfiler R package was conducted for GO and KEGG

pathway enrichment analysis. The bubble plots showed the top

10 in GO-BP, GO-CC, and GO-MF and the top 7 in KEGG. GO

functional annotation indicated that GCSRGs were mainly

associated with hypoxia response, decreased oxygen response,

focal adhesion, cell−substrate junction, ribosome, ribosome

structural constituent, and monosaccharide binding

(Figure 3A). KEGG functional annotation showed that

GCSRGs were mainly associated with pathways including

r i bo some , HIF - 1 s i gna l i ng pa thway , g l y co l y s i s /

gluconeogenesis, and central carbon metabolism in

cancer (Figure 3B).
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3.3 Identification and construction of the
GCSRGs signature to predict OS in
osteosarcoma patients

The total cohort was categorized in a random manner into

training and verification cohorts. Univariate Cox analysis was

carried out on key metabolic genes (genes in the midnight blue

and yellow modules) in the training cohort to screen prognosis-

related genes via the survival R package, and 12 genes were

related to patient prognosis (P < 0.05) (Figure 4A). As

Figures 4B–G indicates, the Kaplan-Meier (KM) survival

curves of the top 6 genes from low to high in terms of the P

value were listed. Then, LASSO Cox regression analysis further

reduced dimensionality and constructed genes signature. In the

Cox regression based on the LASSO penalty, as log l changed,

the corresponding coefficient of the determined gene also

decreased to 0, and in the cross-validation, 12 genes reached

the partial likelihood estimation bias minimum value

(Figures 4H, I). 5 genes were identified as independent

predictors by LASSO Cox regression analysis in training

cohort, namely, RPS28, MCAM, EN1, TRAM2, and VEGFA.

We determined the risk scores via following formula: Risk

score = RPS28 × 0.513 + MCAM × 0.701 - EN1 × 0.718 +

TRAM2 × 0.575 + VEGFA × 0.467. The training, verification,

and total cohorts were all categorized into high- and low-risk

groups based on their median risk score. In each of the three

cohorts, it was discovered that the low-risk group’s survival

probability was significantly greater than the other group (P <

0.005) (Figures 5A–C). Then, ROC curve analysis evaluated

whether the GCSRGs signature is an efficient prognosis predictor

of osteosarcoma patients. The 1-, 3-, and 5-year AUC predicted by

the genes signature in training cohort were, 0.873, 0.889, and 0.856,

respectively; in verification cohort, were 0.673, 0.810, and 0.823,

respectively; in total cohort, were 0.747, 0.835, and 0.820,

respectively (Figures 5D–F). In the low-risk group, the expression

of 4 high-risk genes (RPS28, MCAM, TRAM2, and VEGFA) was

low,while the low-risk gene EN1 expressionwas high (Figures 5G–

I). Finally, we compared the survival status between the two groups

in the three cohorts (Figures 5J–L) and plotted an expression

heatmap of the risk genes (Figures 5M–O).
3.4 Independent prognostic analysis of
the GCSRGs signature

To determine if the risk score and the other clinical

characteristics are independent prognostic factors for

osteosarcoma patients, univariate and multivariate Cox

regression analyses were conducted. Univariate Cox regression

analysis revealed the risk score (P = 0.019) and the clinical

pathological parameters of metastasis (P = 0.001) were

independent prognostic factors for osteosarcoma patients
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(Figure 6A), and multivariate Cox regression analysis showed

the same results (Figure 6B). Furthermore, we developed a

prognostic nomogram for estimating the osteosarcoma

patients’ survival likelihood (Figure 6C). This prognostic

nomogram could systematically anticipate the 1-, 3-, and 5-

year OS of osteosarcoma patients. The calibration curve showed

that actual results were consistent with predicted

results (Figure 6D).
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3.5 Immune landscape and drug
sensitivity analysis of the GCSRGs
signature

For confirming if the GCSRGs signature was associated

with tumor immunity, we used the ssGSEA method for

evaluating differences in immune cells infiltration between

the two groups. As Figure 7A indicates, the expression of
B

A

FIGURE 3

Functional enrichment analysis of genes in the screened modules. (A) The results of GO functional enrichment in GCSRGs. (B) The results of
KEGG pathways enrichment in GCSRGs.
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eosinophils, macrophages, and natural killer cells had

significant difference between the two groups. Among

them, within the high-risk group, eosinophils proportion

was significantly increased, while the opposite results

occur red in macrophages and na tura l k i l l e r ce l l

proport ions . Addit ional ly , as Figure 7B indicates ,

significant differences were found in immune checkpoints

expression, including LGALS9, HAVCR2, LAIR1, TNFSF4,
Frontiers in Immunology 09
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PDCD1LG2, TNFSF15, ICOS, CD200R1, TNFSF14, and

BTLA between the two groups, with higher expression

within the low-risk group than the other, pointing to the

fact that there may be limited differences in the efficacy of

immunotherapy. Drug sensitivity analysis indicated that 11

drugs were sensitive to patients in the high-risk group

(Figure 7C), and 13 drugs were sensitive to patients in the

low-risk group (Figure S1).
B C D

E F G

H I

A

FIGURE 4

Construction of a GCSRGs prognostic signature in training cohort. (A) Forest plot of univariate cox regression analysis of the survival-related 12
differentially expressed genes. (B–G) Kaplan-Meier survival curves of patients with differential expression of prognosis-related genes. (H)
Obtainment of the optimal l value. (I) The LASSO Cox analysis identified 5 genes associated with prognosis.
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3.6 Functional verification of TRAM2 in
vitro

We searched the relevant literature of the aforementioned

GCSRGs and found that TRAM2 was crucial in some

malignancies. However, studies on the mechanism of TRAM2

action in osteosarcoma are scarce. Therefore, TRAM2 is

expected to emerge as a promising new biological target in

osteosarcoma treatment. Our study first revealed that TRAM2

expression in osteosarcoma cell lines was higher than the human

osteoblast cell line according to Western blot results (Figure 8A).

Then, si-TRAM2 was transferred to HOS and U2OS cell lines to
Frontiers in Immunology 10
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discover the effect of TRAM2 on the osteosarcoma cell

progression. Western blot results confirmed transfection

efficiency (Figure 8B), and si-TRAM2-2 was chosen for further

experiments. Based on CCK8 experiment results, TRAM2

downregulation inhibited HOS and U2OS cell lines viability

(Figure 8C). According to the results of the plate cloning assay,

downregulation of TRAM2 expression inhibited the colony-

forming ability of the HOS and U2OS cell lines (Figure 8D).

Furthermore, we conducted cell scratch and Transwell cell

invasion assays. Experimental results indicated TRAM2

downregulation inhibited HOS and U2OS cell migration

ability (Figure 8E) and invasion (Figure 8F). Prior studies have
B C

D E F

G H I

J K L

M N O

A

FIGURE 5

Prognostic value of the GCSRGs signature in training cohort, verification cohort and total cohort. (A–C) Kaplan-Meier survival curves according
to risk score in the training cohort (A), verification cohort (B), and total cohort (C). (D–F) ROC curves for predicting overall survival in the
training cohort (D), verification cohort (E), and total cohort (F). (G–I) Distribution of risk score in the high-risk group and the low-risk group in
the training cohort (G), verification cohort (H), and total cohort (I–L) Survival status between the high-risk group and the low-risk group in the
training cohort (J), verification cohort (K), and total cohort (L-O).Heatmap of the expression profile of the included glycolysis-cholesterol
synthesis related genes in the training cohort (M), verification cohort (N), and total cohort (O).
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revealed that epithelial-mesenchymal transition (EMT) was vital

in tumor progression and metastasis (26). So, we examined

TRAM2 downregulation effect on EMT-related proteins

expression. TRAM2 downregulation promoted E-cadherin

expression while suppressing N-cadherin and vimentin

expression in the HOS and U2OS cell lines, according to

Western blot results (Figure 8G).
3.7 Pan-cancer analysis of TRAM2

To further analyze the important role of TRAM2 in other

malignant tumors, we performed pan-cancer analysis of

TRAM2. Figure 9A shows the expression of TRAM2 in 33

types of cancers, where TRAM2 had the highest expression in

SARC. In addition, TRAM2 expression differed significantly

between tumor tissues and normal paracancerous tissues in

several types of cancer (Figure 9B). As shown in Figures 9C–E,

TRAM2 was relevant to OS, progression free survival (PFS) and

disease specific survival (DSS) in a range of cancers. Further

analysis of the above data obtained KM survival curves (Figure
Frontiers in Immunology 11
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S2). Moreover, TRAM2 was relevant to TMB and MSI in a range

of cancers (Figures 9F, G). To elucidate the relationship of

TRAM2 with immune-related genes and immune checkpoints,

we conducted gene co-expression analysis. As Figures 9H, I

illustrates, TRAM2 can affect immune cell infiltration and

immune checkpoint expression in pan-cancer.
4 Discussion

Osteosarcoma is a highly invasive cancer. Its poor prognosis

is related to problems with current treatments (27). Therefore,

there is a need to develop and study prognostic models of

osteosarcoma to guide targeted therapy. With the development

of bioinformatics and sequencing technology, many scholars

have constructed different prognostic models of osteosarcoma to

analyze the characteristics of the disease (28–30). However, most

of the parameters used to construct prognostic models consider

only the genome or transcriptome and do not consider biological

processes. As a result, osteosarcoma features cannot be

represented accurately within these models. Recently, tumor
B

C D

A

FIGURE 6

Assessment of the independent prognostic value and construction of the nomogram based on risk score and clinical factors. (A) Forest plot of
univariate cox regression analysis of various clinical feature and risk score in osteosarcoma. (B) Forest plot of multivariate cox regression analysis
of various clinical feature and risk score in osteosarcoma. (C) The nomogram to predict the 1-, 3- and 5-year survival risk of osteosarcoma
patients. (D) Calibration curve for the 1-, 3-, and 5-year predicted survival nomogram. **P < 0.01, ***P < 0.001.
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energy metabolism has attracted increasing interest. Glycolysis

and cholesterol synthesis pathways are involved in the metabolic

reprogramming of tumors and are crucial in tumor progression

(31, 32). In our work, for the first time, we constructed a

prognostic signature with glycolysis and cholesterol synthesis

as the main characteristics, which can effectively predict

osteosarcoma patient prognosis.

We first utilized consensus clustering to confirm the 2

groups of stable independent metabolic genes of glycolysis and

cholesterol synthesis and then divided osteosarcoma patients

into 4 subtypes (glycolysis subtype, cholesterol subtype,

quiescent subtype, and mixed subtype) on basis of median

gene expression. Survival across the subtypes showed

significant differences based on the prognostic analysis, with

the cholesterol subtype and the mixed subtype having the worst
Frontiers in Immunology 12
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prognosis. Additionally, significant differences were observed in

tumor purity, scores of immune, stroma, and ESTIMATE, which

also confirmed prognosis differences in the 4 subtypes. We used

WGCNA to screen out the modules related to glycolysis and

cholesterol synthesis and conducted GO and KEGG enrichment

analysis. Hypoxia is strongly correlated with poor prognosis,

with its pathway activated throughout cancer advancement (33).

The HIF-1 protein is heterodimeric with two different subunits,

HIF-1a and HIF-1b. This protein activates several genes

transcription that encode proteins engaged with angiogenesis,

extracellular mesenchymal remodeling, migration, invasion, and

metastasis (34). Consistent with the above conclusions, the

results of enrichment analysis, such as response to hypoxia

and decreased oxygen, and HIF-1 signaling pathway, indicated

that this module’s key metabolic genes had tight association with
B

C

A

FIGURE 7

Immune status and drug sensitivity differences between high- and low-risk groups. (A) Comparison of immune cell infiltration between the
high-risk group and low-risk group. (B) Comparison of the expression of immune checkpoints between the high-risk group and low-risk group.
(C) Drug sensitivity in the high-risk group and low-risk group. *P < 0.05, **P < 0.01.
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FIGURE 8

TRAM2 suppressed the progression of osteosarcoma in vitro. (A) The protein levels of TRAM2 in Saos2, HOS, U2OS, MG63 cells and normal
hFOB1.19 cells. (B) The protein levels of TRAM2 in HOS and U2OS cells after transfection of si-NC, si-TRAM2-1, si-TRAM2-2 and si-TRAM2-3.
(C) CCK-8 proliferation assay in HOS and U2OS cells after transfection of si-NC and si-TRAM2-2. (D) Plate cloning assay in HOS and U2OS cells
after transfection of si-NC and si-TRAM2-2. (E) Scratch assay in HOS and U2OS cells after transfection of si-NC and si-TRAM2-2. (F) Transwell
assay in HOS and U2OS cells after transfection of si-NC and si-TRAM2-2. (G) The protein levels of EMT-related proteins including E-cadherin,
vimentin and N-cadherin in HOS and U2OS cells after transfection of si-NC and si-TRAM2-2. All results are presented as mean ± SEM. *P <
0.05, **P < 0.01.
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hypoxia process. Previous studies have demonstrated that focal

adhesions, as mediators of tumor cells and the extracellular

matrix, are vital in various ways within tumor migration,

invasion, and drug resistance (35). The results of GO

enrichment analysis, such as focal adhesion and cell-substrate

junction, indicated that the key metabolic genes in the module

may be closely associated with metastasis. Subsequently,
Frontiers in Immunology 14
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univariate Cox and LASSO Cox regression analysis had been

conducted on key metabolic genes in the selected modules, and 5

genes (RPS28, MCAM, EN1, TRAM2, and VEGFA) were

screened as relevant genes for the GCSRGs signature

construction. The GCSRGs signature had good predictive

ability in all cohorts and can be utilized as an independent

prognostic factor for osteosarcoma patients. Several researchers
B

C D E

F G

H I

A

FIGURE 9

Analysis of TRAM2 in pan-cancer. (A) Expression of TRAM2 in 33 cancers. (B) Expression of TRAM2 in tumor and normal tissue in pan-cancer.
(C) Overall survival of TRAM2 in pan-cancer. (D) Progression free survival of TRAM2 in pan-cancer. (E) Disease specific survival of TRAM2 in pan-
cancer. (F) Tumor mutation burden of TRAM2 in pan-cancer. (G) Microsatellite instability of TRAM2 in pan-cancer. (H) Co-expression analysis of
TRAM2 and immune cells in pan-cancer. (I) Co-expression analysis of TRAM2 and immune checkpoints in pan-cancer. *P < 0.05, **P < 0.01,
***P < 0.001.
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have investigated the relationship among glycolysis, cholesterol

synthesis and immune responses. Regulating cholesterol

metabolism can improve CD8 (+) T cells’ anticancer effect

(36). Additionally, Li et al. indicated that the glycolysis process

of tumor tissues within breast cancer had association with low

natural killer T (NKT) cells infiltration (37). In our study,

macrophages and NKT cells expression levels within the low-

risk group were significantly higher than the other group.

According to our knowledge, NKT cells are crucial for

controlling tumor cell progression and affecting cancer patient

prognosis (38). For macrophages, high infiltration of tumor-

associated macrophages in some malignant tumors has a strong

correlation with better prognosis (39, 40). That’s consistent with

our study findings and helps explain, to a certain extent, why

patients who were classified as low-risk group had superior

survival outcomes. In addition, our study found that the total 10

immune checkpoint genes expression showed different levels

between the two groups, with low-risk group showing higher

expression than the other group, indicating that there may be

limited differences in the efficacy of immunotherapy.

In our analysis, we selected 5 GCSRGs (RPS28, MCAM,

EN1, TRAM2, and VEGFA) as the relevant genes for

constructing the risk genes signature. RPS28 is a 40S

ribosome component and is crit ical for 18S rRNA

biosynthesis (41). There are few studies on the effect of RPS28

on cancer, and most research results are only predictions

generated by bioinformatics and have not been confirmed by

corresponding biological experiments (42, 43). However, some

researchers have found that reducing the expression of RPS28

protein can reduce the cell viability of HeLa cells and induce

tumor cell apoptosis (44), indicating that RPS28 has a major

regulatory function in cancer. Additionally, RPS28 can

influence tumor immunosurveillance and regulate T cell

kill ing (45). MCAM is highly expressed in various

malignancies and has tight association with their growth and

metastasis, such as melanoma (46), prostate cancer (47), gastric

cancer (48), and lung cancer (49). Prior investigations revealed

that MCAM was associated with poor prognosis of

osteosarcoma patients and can improve the migration ability

of osteosarcoma cells (50). For immunotherapy, MCAM

deficiency significantly impairs T cell-mediated antitumor

effect (51). Solid tumor progression and metastasis are

accompanied by angiogenesis stimulation, with VEGFA as the

main factor driving tumor vascular bed expansion (52). VEGFA

is involved in angiogenesis, progression, and metastasis in

various malignancies, including osteosarcoma, and has a

strong association with a poor prognosis (53–55). Moreover,

the expression of co-inhibitory receptor and regulatory T cell

expansion are both influence by VEGFA signaling (56). Hence,

targeted VEGFA therapy is a key area for improving the

osteosarcoma prognosis (57). TRAM2 is a translocon

component and can transport proteins synthesized by
Frontiers in Immunology 15
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ribosomes to the endoplasmic reticulum (ER), acting as ER

channels for calcium concentration regulation within it (58). In

glioma, through its PI3K/AKT/mTOR signaling pathway

regulation, TRAM2 is able to enhance tumor cells migration,

invasion, proliferation, and EMT (59). In addition, TRAM2 and

YAP activity in various cancers shows a very strong expression

correlation, demonstrating that TRAM2 acts a significant role

in malignant proliferation and invasion caused by YAP (60).

However, no relevant studies have shown the relationship

between TRAM2 and osteosarcoma. Therefore, to ensure the

validity of the GCSRGs signature, we chose to use TRAM2 for

cell function validation and pan-cancer analysis.

TRAM2 protein expression was demonstrated to be

significantly different across the osteosarcoma and the human

osteoblast cell lines during experimental validation. In addition,

inhibiting of EMT-related protein expression, cell viability,

colony formation, migration, and invasion were achieved by

downregulating TRAM2 protein expression in osteosarcoma

cells. These findings provide further support for validity of

genes signature based on glycolysis and cholesterol synthesis

and suggest that TRAM2 is involved in osteosarcoma cells

progression. In addition, TRAM2 was not only involved in

osteosarcoma progression but also closely related to OS, PFS,

DSS, TMD, MSI, immune cell infiltration and immune

checkpoints in pan-cancer, suggesting that the GCSRGs

signature and the target genes in the signature have the

potential to serve as the prognostic indicators for a wide range

of cancers.

Although we confirmed the effective role of the GCSRGs

signature in predicting the prognosis of osteosarcoma patients

and confirmed the tumor-promoting effect of TRAM2 in

osteosarcoma cells in cytological experiments in vitro, this

study still has certain drawbacks that require further research.

First, the patient sample size was small within the datasets used,

and their clinical characteristics were not sufficiently detailed.

Therefore, a larger sample size with more detailed clinical

characteristics is needed. In addition, besides TRAM2, other

signature-related genes should also be verified at the

cytological level.

During this research, osteosarcoma patients were

categorized into 4 subtypes according to GCSRGs expression

matrix, and these subtypes differed significantly from one

another in terms of prognosis and tumor microenvironment.

Through WGCNA, the gene modules most closely associated

with glycolysis and cholesterol synthesis were screened, and a

risk signature of osteosarcoma consisting of 5 GCSRGs was

constructed for the first time. In addition, we found that this

signature was closely related to immune cells infiltration and

immune checkpoint expression in osteosarcoma patients. These

findings not only provide a new method to predict the prognosis

o f os teosarcoma pat ients but a l so prov ide nove l

therapeutic targets.
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SUPPLEMENTARY FIGURE 1

The 13 drugs were selected for osteosarcoma patients with the low-

risk group
SUPPLEMENTARY FIGURE 2

Correlation between the expression of TRAM2 and survival prognosis in

pan-cancer (A) Kaplan-Meier survival curves of the relationship between

TRAM2 expression and overall survival in pan-cancer. (B) Kaplan-Meier
survival curves of the relationship between TRAM2 expression and

progression free survival in pan-cancer. (C) Kaplan-Meier survival curves
of the relationship between TRAM2 expression and Disease specific

survival in pan-cancer.
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Background: As a common primary intracranial tumor, the diagnosis and therapy

of low-grade glioma (LGG) remains a pivotal barrier. Cuproptosis, a new way

induces cell death, has attracted worldwide attention. However, the relationship

between cuproptosis and LGG remains unknown. Our study is all about finding out

if there are any genes related to coproptosis that can be used to predict the

outcome of LGG.

Methods: RNA data and clinical information were selected from Cancer Genome

Atlas (TCGA) datasets and the Genotype-Tissue Expression (GTEx), 5 lncRNAs

(GAS5.AS1, MYLK.AS1, AC142472.1, AC011346.1, AL359643.3) were identified by

Cox univariate and multivariate regression, as well as LASSO Cox regression. In the

training and test sets, a dual validation of the predictive signature comprised of

these 5 lncRNAs was undertaken. The findings demonstrate that the risk model is

able to predict the survival regression of LGG patients and has a good performance

in either the KM curve approach or the ROC curve. GO, GSEA and KEGG were

carried out to explore the possible molecular processes that affecting the

prognosis of LGG. The characteristics of immune microenvironment were

investigated by using CIBERSORT, ESTIMATE and ssGSEA.

Results: We identified five lncRNAs related with cuproptosis that were closely

associated with the prognosis of LGG and used these five lncRNAs to develop a risk

model. Using this risk model, LGG patients were then divided into high-risk and

low-risk groups. The two patient groups had significantly distinct survival

characteristics. Analyses of Gene Ontology (GO) and the Kyoto Encyclopedia of

Genes and Genomes (KEGG) revealed that the differential genes of the two patient

groups were primarily concentrated in neural active ligand-receptor interaction

and cytokine-cytokine receptor interaction. The ssGSEA score determined the

information related to immune infiltration, and the two groups were differentially

expressed in immune subpopulations such as T cells and B cells as well.

Conclusion: Our study discovered 5 cuproptosis-related lncRNAs which

contribute to predicting patients’ survival of LGG and provide ideas for the

exploration of new targets for LGG in the future.
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1 Introduction

According to the classification of the World Health Organization,

gliomas can be divided into I-IV grades based on the malignant

degree of tumor cells, of which grades II-III belong to LGG and grade

IV to glioblastoma (1). Glioblastoma is the most frequent malignant

intracerebral tumor, accounting for about 57% of all gliomas and 48%

of all primary malignant central nervous system tumors (2). Its

prognosis is poor, and the median survival time is less than two

years (3, 4). With better prognosis, the life expectancy of patients with

LGG is often more than 10 years. However, The natural history of

these tumors is marked by frequent recurrences, despite the fact that

the clinical course of the majority of tumors is initially benign (5).

Some patients will ultimately worsen, posing grave risks to human life

and health (4).

Since 2016, the World Health Organization (WHO) has added

molecular characteristics, such as 1p19q co-deletion, ATRX, TP53,

and IDH mutations, in the diagnostic categorization of LGG, offering

a more thorough and accurate diagnosis (6, 7). High frequencies of

epidermal growth factor receptor (EGFR) amplification (8), TERT

promoter mutation (9), and PTEN loss are characteristic in idh wild-

type glioblastomas (10). Because the presence of these distinctions

impacts the prognosis of LGG, the current therapeutic strategy is

deeply influenced by these molecular markers.

Cuproptosis is a unique type of cell death recently discovered (11,

12). Specifically, copper binds directly to the fatty components of the

tricarboxylic acid (TCA) cycle, resulting in the accumulation of

lipoproteins and the subsequent loss of Fe-S cluster proteins,

resulting in protein toxic stress and eventually cell death (13).

Recent studies have showed higher levels of copper in lots of

malignant tumors compared with normal tissues, such as breast

(14), lung (15), colorectal (16), oral (17) and bladder cancers (18).

Change of the copper protein levels may contributes to the growth or

invasion of tumor (19). Its specific mechanism includes stabilizing the

nuclear hypoxia-inducible factor-1 (HIF-1) (19, 20), which provides

help to subsequent angiogenesis, and ultimately leads to tumor

progression and metastasis.

Long non-coding RNA (LncRNA) have a significant role in the

control of gene expression and are also implicated in the regulation of

programmed cell death (PCD), including autophagy, apoptosis,

necrotizing apoptosis, and iron death, which impact the growth of

cancer cells in cancer patients (21). In recent years, the lncRNA-

constructed LGG prognostic model has demonstrated a degree of

success. Shengchao Xu and coworkers developed a model consisting

of 19 hypoxia-related lncRNAs that accurately predicts the prognosis

and treatment response of LGG patients (22). We developed a model

of cuproptosis-related lncRNAs with the purpose of better predicting

patient prognosis. Figure 1 depicts the workflow for this research.
0285
2 Materials and methods

2.1 Data and resources

The transcriptome profiles and clinical characteristics of LGG

patients were retrieved from The Cancer Genome Atlas (TCGA,

https://www.tcga.org/) (23), and the transcriptional profiles of normal

brain tissues were collected from the Genotype-Tissue Expression

Project Database (GTEx, https://commonfund.nih.gov/GTEx). The

Counts type data are downloaded from the UCSC xena database

(http://xena.ucsc.edu/) (24). Data from patients without complete

clinical information were excluded from the study.
2.2 Identification of cuproptosis-
related lncRNAs

Firstly, the ‘LIMMA’ package (25) in R language (Version 4.1.0) is

utilized to pre-process. Then, using the limma software, adjust adj.P

values <0.05 and |logFC| > 1 condition, identify lncRNAs with

differential expression. Using “cuproptosis” as the key word, 13

related genes were selected from PubMed (https://pubmed.ncbi.

nlm.nih.gov/). Finally, by the Pearson correlation analysis (26)

(with a Correlation coefficient >0.7 and adjust P values <0.001), the

cuproptosis-related lncRNA is obtained. Protein-Protein Interaction

Networks (PPI, https://cn.string-db.org/) (27) was used to investigate

the interaction between these genes and lncRNAs.
2.3 Construction of a prognostic
cuproptosis-related lncRNA signature

523 LGG patients were randomly selected and divided into

training set and test set, in which the training set accounted for

70% and the test set accounted for 30%. According to their median

lncRNA expression, patients in the training set were separated into

two groups: high and low expressing individuals. When comparing

the median survival times of the two groups of patients, we drew KM

curves to see whether high or low lncRNA expression had an impact

on outcome (28). Univariate COX regression and LASSO regression

were used to the KM-curve-selected lncRNAs. The R packages

‘survminer’ and ‘glmnet’ (29) performed the aforementioned tasks.

We indicated that univariate and lasso Cox regression analyses were

useful in identifying candidate lncRNAs with prognostic significance

and reducing the impact of overfitting. Risk signatures were built after

a preliminary round of multivariate Cox regression analysis. Risk

score=on
1coefi ∗ xi (Coefi indicates the correlation coefficient of each

ferroptosisrelated signature, and X indicates the level of gene
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expression) was the formula used to determine the level of danger.

The median risk score was used to classify the training and testing sets

into high-risk and low-risk groups.
2.5 Independent prognostic value
of the signature

Then, we analyzed the signature’s predictive power by running

univariate and multivariate Cox regressions. The patients’ chances of

survival were also estimated using the risk score’s predictive

nomogram. The R package “survival” was used to calculate risk

scores and determine OS. The model’s accuracy was then assessed

with the use of the ROC (constructed using the ‘survminer’ package)

and Kaplan-Meier curves (generated by the ‘survivalROC’ package).

Dual validation was performed on the training set and the test set to

further assess the model’s prediction ability.
2.6 Enrichment analysis

Differentially expressed genes (DEGs) were identified between

low risk and high risk groups using the limma program in R (with

criteria of FDR< 0.05 and | log2 fold change (FC) | ≥1 or greater).

Among the many analytical tools available for functional annotation,

gene set enrichment analysis (GSEA) stands out as particularly

potent. It may be used to decode the expression profile of the whole

genome and investigate the connections between various cancer-

related, metabolic, transcriptional, and stress-related pathways and

activities. Get the HALLMARK genes set from the MSigDB database

(https://www.gsea-msigdb.org/GSEA/msigdb) (30), and then run a

GSEA analysis using the ‘GSVA’ program (P<0.05 and FDR<0.25) to

compare the high-risk and low-risk groups.
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To compare the DEGs of high-risk and low-risk groups, we used

the R tool ‘ClusterProfiler’ in conjunction with the KEGG and GO

databases (31). And infer its purpose from studies of gene sets. Several

biological activities and pathways are overrepresented in differentially

expressed genes between these two groups; we explore here whether

these could contribute to disparities in survival.
2.7 Landscape of immune cells infiltration

The “gsva” R package was used for single-sample gene set

enrichment analysis (ssGSEA) to assess the immune infiltration

status of LGG patients in various risk categories. Using the

CIBERSORT software (http://cibersort.stanford.edu/), estimate the

cell subgroup abundance by analyzing whole gene expression profiles

(32). Scores are produced using the ESTIMATE algorithm (https://

bioinformatics.mdanderson.org/public-software/estimate/) to

forecast the amount of infiltrating immune and stromal cells, which

serve as the foundation for inferring tumor immunity.
2.8 RNA extraction and rt-PCR

The U251 glioma cell line and human astrocyte cell line NHA

were purchased from Beyotime (Shanghai, China) and cultured in

Dulbecco’s Modified Eagle Medium (DMEM; Gibco, NY, USA)

containing 10% fetal bovine serum (FBS; Gibco, NY, USA),

penicillin (100 units/ml), and streptomycin (100 mg/ml) in a

humidified incubator maintained at 5% CO2 and 37° C. Extracted

total RNA from cell lines by using Universal RNA Extraction Kit

(Takara; Dalian, China). PrimeScript RT-PCR Kit and TB Green were

used for reverse transcription and relative lncRNA expression

assessment, respectively. Primer information is shown in Table 1.
FIGURE 1

The flow chart of data analysis.
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2.9 Statistical analysis

R software version 4.0.4 was used for data analysis. Unpaired

Student’s t test and Wilcoxon test were used to compare data

conforming to normal distribution and non-normal distribution,

respectively. p<0.05 was considered as the threshold for

statistical significance.
3 Results

3.1 Construction of a cuproptosis-related
lncRNAs prognostic model signature

Brain tissues from LGG patients and controls showed differential

expression for 2143 lncRNAs in TCGA (Figures 2A, B). From a search

of PubMed, we know that there are 13 genes involved in cuproptosis-

related genes: DLST, FDX1, LIAS, SLC31A1, LIPT1, ATP7A, DLD,

ATP7B, PDHB, and DBT (33, 34). The chosen genes were used to

create a correlation network map with differential expression

lncRNAs (Figure S1), from which 317 lncRNAs with cuproptosis-

related differential expression were extracted. Further confirming the

usefulness of these lncRNAs, KM curves were generated for 70% of

patients chosen from the TCGA database, and lncRNAs with minor

survival significance were omitted. Finally, 71 lncRNAs were

successfully extracted.

The lncRNAs identified in the preceding phase were subjected to

univariate and lasso regression analysis. In the univariate regression

analysis, 27 lncRNAs were discovered to be substantially related to OS
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(Figure 3A). In addition, LASSO regression analysis of these 27

lncRNAs removed 15 lncRNAs and yielded 12 lncRNAs associated

with cuproptosis (Figures 3B, C). These 12 lncRNAs underwent

multifactorial regression analysis, and a risk model for 5-cuproptosis-

related lncRNAs signature was developed (Figures 3D, E).
3.2 Validation of the prognostic model

Based on the risk scores, we plotted KM curves and time-

dependent ROC curves (Figures 4A–D) for the high-risk and low-

risk groups of patients in the training set and the test set (Figures 4A–

D). As seen in the graph, our model had a high predictive value at 1, 3,

and 5 years for both the training and validation sets (AUC were

greater than 0.75).

Subsequently, a predictive Nomogram was created, by this 5-

cuproptosis-related lncRNA signature (Figures 4E). This line graph

includes clinical characteristics such as age, gender, and grade. The

calibration curve showed that the Nomogram could accurately predict

the overall survival at 1, 3, and 5 years (Figure S2).
3.3 Functional enrichment analysis

GO enrichment and KEGG pathway were carried out to analysis

the possible molecular processes. Results showed that the differential

genes were mainly involved in signal pathways such as neuroreceptor-

ligand interaction, cytokine-cytokine interaction, and tumor

proteoglycan (Figures 5A, B). Subsequently GSEA analysis also

showed that the differential gene pathway was mainly concentrated

in MTORC1 signal pathway and apoptosis, KRAS signal pathway

(Figure 5C; Table S1).
3.4 Immune-related analysis of LGG patients

We employed the CIBERSORT and Estimate method to identify

immune cell infiltration in LGG patients, since the enrichment

analysis revealed that the association between cuproptosis and LGG
BA

FIGURE 2

The screening of differentially expressed lncRNAs lncRNAs. The volcano graph (A) and heatmap (B) showed that 1180 lncRNAs were down-regulated and
that 963 lncRNAs were up-regulated in tissues of LGG compared to normal tissues.
TABLE 1 Primer sequences.

lncRNA Primer

GAS5-AS1
Forward: 5’-TGTGCCCTTTATACCCACTTT-3’
Reverse: 5’-GCCCAACTAGTGATAGGCATTA-3’

MYLK-AS1
Forward: 5’-TTGCAGTGTTCAGCACTGGCAC-3’
Reverse: 5’-ATTCGACGACCAGTGTTTCAGT-3’

GAPDH
Forward: 5’-GGTGTGAACCATGAGAAGTATGA-3’
Reverse: 5’-GAGTCCTTCCACGATACCAAAG-3’
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is mostly reliant on the tumor inflammatory pathway. We used

CIBERSOR and Estimate algorithms to calculate the relative

proportion of 22 immune cells in each LGG patient. The

correlation analysis between risk score and the level of immune cell

infiltration showed that the infiltration degree of many immune cells

was different among subgroups (P< 0.05). The results showed that the

scores of monocytes and M1 macrophages and mast cells decreased in

the high-risk group (Figure 6).
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3.5 rt-PCR was used to verify the expression
of lncRNAs in glioma cell line

Among the 5 lncRNAs, AC142472.1, AC011346.1, and AL359643.3

lacked relevant studies, therefore MYLK.AS1 and GAS5.AS1, which have

been shown to be strongly associated with tumors in prior research, were

chosen. In the U251 cell line, the expressions of GAS5.AS1 andMYLK.AS1

were up-regulated and down-regulated, respectively (Figure 7).
B

C

D E

A

FIGURE 3

Construction of the prognostic cuproptosis-related lncRNAs signature for in the training set. (A) Based on univariate Cox regression analysis, 21 of the 71
cuproptosis-related lncRNAs were screened, as shown by the forest map. (B, C) Lasso regression analysis was used to further screen out 12 lncRNAs
based on 10-fold cross-validation. (D) Forest plot of 12 cuproptosis-related lncRNAs based on Multivariate Cox regression. (E) The riskscore distribution,
OS, and the Heat map of five lncRNAs of patients in the training set.
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4 Discussion

Low-grade gliomas are primary brain tumors that tend to occur in

young people. Common treatments include surgery and

chemotherapy, accompany with good prognosis and long survival

(35). But with our timely treatment, it will seriously affect the quality

of life. Therefore, new approaches to LGG diagnosis and treatment

are urgently needed.

Has a fundamental effect on biological processes (36), copper can

regulates several biological pathways based on external stimulation
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(37). The copper accumulation is closely related to tumor

proliferation and growth, angiogenesis, and metastasis (19, 37).

In this research, by analyzing the clinical data of LGG patients in

TCGA and combining it with coproptosis, we constructed 5

(GAS5.AS1, MYLK.AS1, AC142472.1, AC011346.1, AL359643.3)

cuproptosis-related lncRNAs prognostic models, analyzed and

predicted their clinical prognosis, and found the relationship

between them and tumor immunity.The discriminability and

precision of the developed lncRNA signatures were validated using

Kaplan-Meier survival analysis and area under the curve (AUC). The
B

C D

E

A

FIGURE 4

Verification the prognostic value of risk score. Kaplan-Meier curves of LGGs patients in the TCGA training cohort (A) and testing cohort (B). AUC values
at 1, 3, and 5 years in the TCGA training cohort (C) and testing cohort (D). (E) Nomogram integrating risk score and clinical variables predicts 1-, 3-, and
5-year OS probabilities.
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test set was then used to validate the risk model’s predictive value. The

prognostic model performed well in ROC curve analysis, with auc

values between 0.88 and 0.77. In addition, the risk score was

determined to be an independent risk factor. Thus, the model

demonstrated high clinical predictive value. In addition, the

signature consists of just five lncRNAs, making it more applicable

to clinical applications than previous signatures.

GAS5-AS1 is a down-regulated gene found in glioma tissues and

cells. Its high expression can inhibit the proliferation, migration, and

invasion of glioma cells. The expression of GAS5-AS1 is related to the

tumor grade of glioma and can be used as a new target for the

treatment and prognosis prediction of glioma (38). In glioma tissues

and cells, lncRNA GAS5-AS1 was repressed, whereas miR-106b-5p

was increased. Through the sponge effect, lncRNA GAS5-AS1 may

bind miR-106b-5p, therefore promoting the expression of its target

gene TUSC2 and inhibiting the growth and spread of glioma (38). In

addition, MYLK-AS1 has been found to promote the growth and

invasion of hepatocellular carcinoma cells through EGFR/HER2-

ERK1/2 signal pathway (39), At the same time, it can also target

miR-424-5p/E2F7 axis, activate VEGFR-2 signal pathway, and

promote tumor progression and angiogenesis (39), And promote

the invasion of nephroblastoma (40). Combined with our research, it

may help us to better understand the molecular mechanism of glioma

progression. Our research expands the field and provides a reference

and direction for their application in cuproptosis and LGG.
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Furthermore, based on the 5 lncRNA risk models developed, we

estimated the risk scores of LGG patients in the TCGA database and

categorized them into high-risk and low-risk groups. Then,

Enrichment Analysis was performed. GSEA analysis revealed that

the differences between the high-risk and low-risk groups were

primarily enriched in the mTORC1 signal, the KARS signal, and the

apoptosis. The mTOR pathway is an important regulator of cell

survival or proliferation and plays a central role in regulating many

basic cellular processes from protein synthesis to autophagy (41). It

has been reported that the expression of mTOR pathway is up-

regulated in GBM (42). At the same time, mTOR can promote the

differentiation and expansion of CD4+ FoxP3+ regulatory T cells

and CD8+ memory T cells, and inhibit CD8+ and CD4+ effector T

cells (43, 44). This is consistent with our findings in GSEA, but its

specific mechanism remains to be further studied, which provides a

reference research direction for cuproptosis-related genes to predict

the prognosis of LGG gliomas. Complex signaling cascades

stimulate RAS, which then activates downstream signaling

pathways to regulate a wide variety of cellular functions (45). The

KRAS gene, which is part of the RAS gene family, is tied with glioma

development and progression (46, 47). KRAS influences the

inflammatory milieu of cancer by activating the MAPK and PI3K

signaling pathways, which results in the release of additional IL-6/

IL-8 cytokines and cancer cell proliferation (48, 49). As for

apoptosis, it is inseparable with tumor and almost participates in

the whole process of tumor.
B

C

A

FIGURE 5

Functional analysis of DEGs. (A, B) GO and KEGG pathway enrichment analyses of DEGs in low-risk and high-risk groups. (C) In GSEA, the top 8
pathways or biological processes were sorted by P value.
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Together, these studies support our findings, while there are still

many important questions remain unanswered. The specific

mechanism of coproptosis-related lncRNAs in LGG, and how they

affect tumor development by affecting immunity need more details.

Our data provides a direction and a certain possibility for the

treatment of LGG. But there are still certain limitations. Our sample

was based entirely on public databases with limited clinical evidence.

The prognostic model established in this study needs further

experimental verification.
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FIGURE 6

Immune infiltration analysis of DEGs. (A) Immune cell subpopulations in ssGSEA. (B) Different socres in high- and low-risk group. (C) Immune cell
subpopulations in CIBERSORT. *p < 0.05, **p < 0.01, and ***p < 0.001.
FIGURE 7

Validation of the expression level of GAS5.AS1 and MYLK.AS1 in cell
lines and tissues.
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A novel prognostic model
related to oxidative stress
for treatment prediction in
lung adenocarcinoma

Haijun Peng, Xiaoqing Li, Yanchao Luan, Changjing Wang
and Wei Wang*

Department of Thoracic Surgery, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung
Disease, Shijiazhuang, Hebei, China
Background: The prognostic model based on oxidative stress for lung

adenocarcinoma (LUAD) remains unclear.

Methods: The information of LUAD patients were acquired from TCGA dataset. We

also collected two external datasets from GEO for verification. Oxidative stress-

related genes (ORGs) were extracted from Genecards. We performed machine

learning algorithms, including Univariate Cox regression, Random Survival Forest,

and Least Absolute Shrinkage and Selection Operator (Lasso) analyses on the ORGs

to build the OS-score and OS-signature. We drew the Kaplan-Meier and time-

dependent receiver operating characteristic curve (ROC) to evaluate the efficacy of

the OS-signature in predicting the prognosis of LUAD. We used GISTIC 2.0 and

maftool algorithms to explore Genomic mutation of OS-signature. To analyze

characteristic of tumor infiltrating immune cells, ESTIMATE, TIMER2.0,

MCPcounter and ssGSEA algorithms were applied, thus evaluating the

immunotherapeutic strategies. Chemotherapeutics sensitivity analysis was based

on pRRophetic package. Finally, PCR assays was also used to detect the expression

values of related genes in the OS-signature in cell lines.

Results: Ten ORGs with prognostic value and the OS-signature containing three

prognostic ORGs were identified. The significantly better prognosis of LUAD

patients was observed in LUAD patients. The efficiency and accuracy of OS-

signature in predicting prognosis for LUAD patients was confirmed by survival

ROC curves and two external validation data sets. It was clearly observed that

patients with high OS-scores had lower immunomodulators levels (with a few

exceptions), stromal score, immune score, ESTIMATE score and infiltrating

immune cell populations. On the contrary, patients with higher OS-scores were
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more likely to have higher tumor purity. PCR assays showed that, MRPL44 and

CYCS were significantly higher expressed in LUAD cell lines, while CAT was

significantly lower expressed.

Conclusion: The novel oxidative stress-related model we identified could be used

for prognosis and treatment prediction in lung adenocarcinoma.
KEYWORDS

lung adenocarcinoma, oxidative stress, prognostic model, machine learning,

tumor microenvironment
Introduction

According to the global cancer statistics analysis in 2020, the

incidence of lung cancer ranks second only to breast cancer in the

world, accounting for about 18% of all cancer deaths, and being the

leading cause of cancer death in the world (1). The causes of lung

cancer are very complex, including history of exposure to smoking

and secondhand smoke, air pollution, history of pulmonary diseases,

family history of cancer, occupational exposure to silica and asbestos,

poor diet, mental and psychological factors (2–4). The early

symptoms of lung cancer are not obvious. Generally, there are

corresponding clinical symptoms in the middle and late stage, such

as chest pain, hemoptysis, etc. According to relevant studies, 75% of

lung cancer patients have been diagnosed at stage III or IV, at which

time they have lost the opportunity for surgery, and the treatment

means are relatively limited. Conventional radiotherapy and

chemotherapy have no obvious effect, and the survival and

prognosis are very poor (5). The overall 5-year survival rate for

patients with lung cancer is 19%, which drops to 5% if distant

metastasis is present at the time of diagnosis, and approximately

57% for patients in the localized stage (6). The diagnosis and

treatment of lung cancer are still the focus of current research.

According to pathological types, lung cancer can be divided into

non-small cell lung cancer (NSCLC) and small cell lung cancer

(SCLC). NSCLC accounts for about 85% of all cases diagnosed with

lung cancer, which mainly includes lung adenocarcinoma (LUAD),

lung squamous cell carcinoma (LSCC), and large cell lung cancer

(LCLC) (7). LUAD is the most common pathological type of lung

cancer, accounting for approximately 50-70% of surgically resected

lung cancers (8) and almost 50% of all lung cancers (9). Precision
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medicine for disease requires accurate prognostic prediction, such as

the risk of future recurrence after the initial treatment and

responsiveness to different treatments (10, 11). At present, TNM

staging is still the main basis for the treatment of LUAD and has been

used clinically for many years as a prognostic predictor of LUAD (12).

However, the reproducibility and discrimination ability of TNM

staging for prognosis prediction are still not satisfied, and the

prognosis is also different among LUAD patients with the same

pathological type and stage. At the same time, although the

emerging diagnosis and treatment technologies such as gene testing,

targeted therapy and immunotherapy have been applied in the

clinical diagnosis and treatment of lung cancer, the overall survival

rate of lung cancer has only slightly improved compared with other

malignant tumors (6, 13). Therefore, there are individual differences

in LUAD, and prognosis prediction needs individual predictors.

Tumors often have oxidative stress (OXS), which is an imbalance

between oxidation and anti-oxidation in the body that causes aberrant

oxidative signal regulation and macromolecular oxidative damage

(14). Cellular OXS is caused by ROS accumulation (15). OXS is the

principal cause of cell damage, targeting intracellular macromolecules

and promoting and suppressing tumor growth (14, 16–18). Tumor

cell redox homeostasis control may improve tumor therapy. OXS

regulates tumor cell fate in various ways that depend on tumor type

and etiology. Future study will focus on controlling OXS’s anti-tumor

and tumor-promoting effects. We can evaluate OXS heterogeneity in

cancers and find new therapeutic targets using bioinformatics and

other big data analysis methods.

With the emergence of public biomedical databases such as

TCGA (The Cancer Genome Atlas) database, the use of

bioinformatics to mine disease gene data has become an important

direction of disease research (19). TCGA aims to focus on acquired

changes of cancer genes. Up to now, a total of 33 types of cancers have

been included in TCGA database (19). Clinical sample information

and sequencing data (including transcriptome data, epigenetic data,

genomic mutation data, etc.) of more than 20,000 patients can be

accessed openly, which has become an important database for cancer

research (19, 20). The gene expression data and clinical information

of LUAD patients needed in this study were obtained from public

databases. In this study, we obtained transcriptome and

corresponding clinical data from TCGA, Genecards, and GEO

databases. Firstly, Univariate Cox regression analysis was performed

and oxidative stress-related genes (ORGs) affecting overall survival of
frontiersin.org
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LUAD were selected. Random Survival Forest and Least absolute

shrinkage and selection operator (LASSO) analyses were used to

screen and construct the OS-signature. We carried out efficacy

evaluation for the OS-signature of LUAD using Kaplan-Meier and

receiver operating characteristic (ROC) curves and the LUAD-cohort

from GEO was used to validate the OS-signature. In addition, we

evaluated the somatic mutation, genomic mutation, immunological

characteristics, and sensitivity to chemotherapy for OS-signature.

Finally, Quantitative Real-time PCR assays were used to detect the

expression of the three genes establishing the OS-signature in LUAD

cell lines.
Materials and methods

Collection and preprocessing the data of
lung adenocarcinoma

The Cancer Genome Atlas (TCGA) is a major government-

funded research initiative funded by the National Cancer Institute

(NCI) and the National Human Genome Research Institute (NHGRI)

(21). Transcripts and clinical information of lung adenocarcinoma

(LUAD) were extracted from TCGA (https://xenabrowser.OS/) (19,

22). We excluded LUAD patients without information of OS (Overall

Survival), thus obtaining the clinical information and expression

profiles of 502 LUAD patients. The data form of fragments per

kilobase of transcript per million fragments mapped (FPKM) was

transformed into transcripts per kilobase million (TPM) (22). We also

used GEO data, including GSE37745 and GSE31210, generated from

Affymetrix Human Genome U133 Plus 2.0 chip based on GPL570

platform as external validation groups (23). Genecards (https://www.

genecards.org) is a comprehensive searchable gene database, where

we can obtain information about almost all known human genes (24,

25). In order to obtain genes related to oxidative stress (oxidative

stress related genes, ORGs), we set the screening threshold as

relevance score>20 (26).
Establishment of the OS-signature for LUAD

After collection and preprocessing the data of LUAD, the

Univariate Cox regression analysis was performed on the ORGs

collected to identify ORGs with prognostic value (prognostic

ORGs, P<0.05) (27). We used randomForestSRC package in R

to execute Random Survival Forest (RSF) analysis, thus

fi l trating prognostic ORGs with greater value (variable

importance>0.25) (28). Least absolute shrinkage and selection

operator (LASSO) analysis is a compression estimation method

for linear model (29). The regression coefficients can be

compressed by minimizing the sum of residual squares under

the constraint that the sum of absolute values of various

coefficients is less than a constant, thus getting a sparse model

(29). This model can effectively select variables for high

dimensional and collinearity data (30). The Cox regression

model for LASSO analysis provided by glmnet package in R

software (31) was used to calculate the OS-scores and construct

the prognostic OS-signature for LUAD.
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Efficacy evaluation for the OS-signature
of LUAD

The survminer package in R software was used to select the best

separated value (cutoff value) of gene expression or OS-scores. The

survival curves (Kaplan-Meier curves) of the high- or low-risk groups

were drawn, and the survival differences between the two groups were

compared (32). The receiver operating characteristic curve (ROC) is

also known as the sensitivity curve (33). The research method is to

analyze the Area Under the ROC Curve (AUC) of the research objects

to judge the recognition ability of different diagnostic test objects for

diseases. The timeROC package of R software was used to draw time-

dependent (1-, 3-, and 5-year) ROC curves to evaluate the diagnostic

efficacy and predictive effect of OS-signature for LUAD.
Genomic mutation analysis for OS-signature
in LUAD

Somatic mutation and copy number variation (CNV) data of

LUAD patients were downloaded from cBioPortal (http://www.

cbioportal.org/datasets) (34) and FireBrowse (http://firebrowse.org/)

(35) respectively. To determine the mutational burden in LUAD

patients, the total number of non-synonymous mutations in LUAD

was calculated. Somatic alterations of driver genes in LUAD were

evaluated by OS-signature grouping. The R software package maftool

was used to identify the driver genes of LUAD and analyze the top 20

driver genes with the highest frequency of change. We assessed

genomic characteristics by Genomic Identification of Significant

Targets in Cancer 2.0 (GISTIC 2.0, https://gatk.broadinstitute.org)

analysis (36).
Characteristic analysis of tumor infiltrating
immune cells

According to the transcriptome expression data from TCGA-

LUAD cohort, the single sample gene set enrichment analysis

(ssGSEA) algorithm in R package GSVA (Gene Set Variation

Analysis) was used to rank the genes contained in the sample

according to their expression level from high to low, and the rank

of all genes was obtained (37). Each type of immune cell is

characterized by a separate subset of genes. In this study, 783 genes

were used to characterize 28 common immune infiltrating cell types.

According to the background gene sets generated by each sample and

arranged according to the expression situation, the enrichment scores

of all samples for 28 types of immune infiltrating cells in each subset

could be obtained by systematic calculation (38, 39). The advantages

of this method are that it uses gene sets instead of single genes to

annotate immune cell subsets and combined with multiple validation

methods to improve the annotation accuracy of enrichment scores.

The ESTIMATE ((The Estimation of Stromal and Immune cells in

Malignant Tumor tissues using Expression) method was used to

evaluate the ESTIMATE score, immune score, and stromal score of

each LUAD patient (40). Besides, we assessed the levels of six kinds

immune infiltrating cells (B cell, T cell CD4, T cell CD8, Neutrophil,

Macrophage, and DC) via Tumor Immune Estimation Resource 2.0
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(TIMER 2.0; http://timer.cistrome.org/) (41). We also used the

MCPcounter algorithm to estimate the relative proportions of ten

immune cells (T cells, CD8 T cells, Cytotoxic lymphocytes, B lineage,

NK cells, Monocytic lineage, Myeloid dendritic cells, Neutrophils,

Endothelial cells, and Fibroblasts) in LUAD (42). We extracted seven

kinds of immunomodulators (Antigen presentation, Cell adhesion,

Co-inhibitor, Co-stimulator, Ligand, Other, and Receptor) from

previous study to explore the association between OS-scores and

immune processes (43).
Chemotherapeutics sensitivity analysis for
OS-signature in LUAD

The Genomics of Drug Sensitivity in Cancer (GDSC) database

was used to screen the wide range of chemotherapeutics for LUAD

(44). The prediction model was constructed based on Ridge’s

regression between drug sensitivity and expression profile of cell

lines using pRRophetic algorithm (45, 46). Subsequently, we

calculated the IC50 value of corresponding chemotherapeutics for

each LUAD patients.
Quantitative real-time PCR assays detecting
gene expression in cell lines

The human normal lung epithelial cells named BEAS-2B was

supplied by Beyotime Biotechnology (Hangzhou, China). The LUAD

cell lines, including A-549 and NCI-H1299, were purchased from

National Collection of Authenticated Cell Cultures (Shanghai,

China). BEAS-2B and NCI-H1299 were cultured in 90% RPMI

(Roswell Park Memorial Institute)-1640 with 10% FBS (fetal bovine

serum). A-549 was cultured in 89% F-12K + 10% FBS + 1% Glutamax.

We extracted the total RNA of the cell lines by RNAsimple Total RNA

Kit (Tiangen, China). Whereafter, to acquire cDNA, we reverse

transcribed the cell RNA that we have obtained applying PrimeScript

RT reagent Kit (Takara, Otsu, Japan). Finally, based on the premixed

system of 2 mL cDNA with SYBR Premix Ex Taq (Takara, Otsu, Japan)

and primers, we detected the expression values of related genes in cell

lines by Applied Biosystems StepOne Plus Real-Time PCR system (Life

Technologies, Grand Island, NY, USA). The primers of the target gene

were supplied by Sangon Biotech (Shanghai, China). The sequences of

the primers used were listed in Table 1.
Results

Establishment of OS-signature for patients
with LUAD

For LUAD, we carried out the Univariate Cox regression analysis

on a total of 80 OXRGs matched (relevance score>20). We identified a

total of ten OXRGs with prognostic value (Figure 1A), including eight

prognostic genes with HR>1 (MRPL44, CYCS, G3BP1, GFM1, SOD1,

TXN, OSGIN2, and CRP) and two prognostic genes with HR<1 (CAT
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and XBP1). Hence, we observed eight malignant factors and two

protective factors for patients with LUAD (Figure 1A). Whereafter,

we conducted Lasso (Figures 1–C) and RSF (Figures 1D–E) analyses

on the ten prognostic ORGs gained. The OS-signature ended up

containing three genes: CAT, CYCS, and MRPL44 (Figures 1B–E).

The three prognostic ORGs selected above were weighted by the

regression coefficients of Lasso regression model, and finally the

calculation formula of OS-signature for prognosis assessment of

LUAD was obtained: OS-score =1.0002*CYCS - 0.9272*CAT +

1.7096*MRPL44. Figures 1B, C displayed the lambda selection

diagram of the three genes in the OS-signature. The distribution of

error rates generated by RSF analysis was shown in Figures 1D, E.
Evaluating the efficacy of OS-signature
for LUAD

After establishing the OS-signature based on three prognostic

ORGs (CAT, CYCS, and MRPL44) for LUAD, we computed the OS-

score for each LUAD patient based on the LASSO coefficients and

expression value for each ORG. We compared the OS-score of LUAD

patients in TCGA database among clinical features (Stage, Gender,

Age and Survival Status) and the expression values of the three ORGs

included in the OS-signature, which was shown in the heatmap

(Figure 2A). Overall, patients with high OS-scores were more likely

to have high expression of MRPL44 and CYCS, whereas patients with

high OS-scores were strongly associated with low expression of CAT

(Figure 2A). Kaplan-Meier analysis was used to analyze the survival

and prognosis of LUAD patients in TCGA. As shown in the

Figure 2B, patients with low OS-score had a better prognosis, while

patients with high OS-score had a worse prognosis (Figure 2B). The

AUCs of 1-year (AUC=0.688), 3-year (AUC=0.668), and 5-year

(AUC=0.660) survival ROC curves predicted by the OS-signature

were all larger than 0.66, suggesting the efficiency of OS-signature in

predicting prognosis for LUAD to a certain extent (Figure 2C). To

further verify the conclusion, two independent external datasets

(GSE37745 and GSE31210) were included in our study, and the

significantly better clinical outcomes of LUAD patients with lower

OS-scores were observed (Figures 3A, B). Therefore, OS-signature

may serve as a malignancy factor for LUAD.
TABLE 1 The primer sequences in PCR analysis.

Symbol Sequences (5’-3’)

MRPL44-F TTGAAGACGAGTACCCAGACA

MRPL44-R GGGCTCCAATAACTGCAAAGAA

CYCS-F CTTTGGGCGGAAGACAGGTC

CYCS-R TTATTGGCGGCTGTGTAAGAG

CAT-F TGGGATCTCGTTGGAAATAACAC

CAT-R TCAGGACGTAGGCTCCAGAAG

GAPDH-F GGAGCGAGATCCCTCCAAAAT

GAPDH-R GGCTGTTGTCATACTTCTCATGG
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Genomic mutation analysis for OS-signature
in LUAD

We carried out genomic mutation analysis for OS-signature in

LUAD. From the waterfall diagram (Figures 4A, B), we could find that

TP53, TTN, CSMD3, MUC16, RYR2, ZFHX4, LRP1B, USH2A,

SPTA1, XIRP2, KEAP1, KRAS, FLG, CSMD1, MUC17,

ADAMTS12, APOB, PAPPA2, COL11A1, and FAT3 were the top

20 genes with the highest mutation rate in LUAD patients with high

OS-scores (Figure 4A). TP53, TTN, MUC16, RYR2, CSMD3, LRP1B,

USH2A, KRAS, FLG, ZFHX4, ANK2, SPTA1, XIRP2, ZNF536,

NAV3, COL11A1, FAT3, PCDH15, PCLO, and TNR were the top

20 genes with the highest mutation rate in LUAD patients with low

OS-scores (Figure 4B). Thus, the mutation rates of TP53, TTN,

MUC16, RYR2, ZFHX4, LRP1B, USH2A, SPTA1, XIRP2, KRAS,

FLG, COL11A1, and FAT3 in the two subgroups were both relatively

high. We performed Pair-wise Fisher’s Exact test to detect mutually
Frontiers in Oncology 0598
exclusive or co-occurrence events (Figures 4C, D). We also Draw

forest plot for mutation differences between cohorts.

Genomic characterization landscapes of LUADpatients with highOS-

scores or patients with low OS-scores were analyzed by GISTIC algorithm

and shown in Figure 5A. Figure 5B showed the plots significantly altered

cytobands as a function of number samples in which it is altered and

number genes it contains. Figure 5C showed a genomic plot with segments

highlighting significant Amplifications and Deletion regions. Further, we

drew the detailed amplificated or deleted CNV onco-plots of high OS-

score and low OS-score subgroups (Figure 5D).
Characteristic analysis of tumor infiltrating
immune cells

Since immunomodulators (IMs) play a critical role in tumor

immunotherapy, we assessed the correlation between the IMs
B C

D E

A

FIGURE 1

Establishment of OS-signature for patients with LUAD. (A) Forest plot for Univariate Cox regression analysis identifying ten oxidative stress related genes
(MRPL44, CYCS, G3BP1, GEM1, SOD1, TXN, OSGIN2, CRP, CAT, and XBP1). (B, C) Lambda selection diagram for Least Absolute Shrinkage and Selection
Operator (Lasso) analysis identifying three oxidative stress related genes (CAT, CYCS, and MRPL44) in the OS-signature. (D) The distribution of error rates
in Random Survival Forest model. (E) The distribution of the variable relative importance of 12 TRP-related genes (variable importance>0.25).
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levels (Antigen presentation, Cell adhesion, Co-inhibitor, Co-

stimulator, Ligand, Other, and Receptor). It was clearly

observed that patients with high OS-scores had lower IMs

levels, with a few exceptions, such as CD276, TNFSF9, and

HMGB1 (Figure 6A). From a general view, the level of stromal
Frontiers in Oncology 0699
score, immune score, ESTIMATE score and infiltrating immune

cel l populat ions decreased as the OS-scores increased

(Figure 6B). It was worth mentioning that patients with

higher OS-scores were more likely to have higher tumor

purity (Figure 6B).
B C

A

FIGURE 2

Evaluating the efficacy of OS-signature in TCGA for LUAD. (A) The heatmap displaying the distribution of the three oxidative stress related genes (CAT,
CYCS, and MRPL44) in the OS-signature, clinicopathological characteristics (Stage, Gender, Age, Survival Status), and OS-score. Red represents high
gene expression and blue represents low gene expression. (B) Kaplan-Meier curves displaying the correlation between the OS-score and LUAD patients.
The blue curve represents the patients with lower OS-score, and the red curve represents patients with higher OS-score. (C) The 1-year (0.688), 3-year
(0.668), 5-year (0.660) survival ROC curves predicted by the OS-signature. Different colored curves represent different years. ****p<0.0001.
BA

FIGURE 3

Evaluating the efficacy of OS-signature in GEO for LUAD. (A, B) Kaplan-Meier curves displaying the correlation between the OS-score and LUAD patients in
GSE37745 (A) and GSE31210 (B). The blue curve represents the patients with lower OS-score, and the red curve represents patients with higher OS-score.
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Chemotherapeutics sensitivity analysis for
OS-signature in LUAD

In order to find more effective chemotherapeutics drugs for

LUAD patients with high OS-scores, we evaluated the differences in

chemotherapeutics sensitivity between subgroups with high OS-score

or low OS-score as described in the MATERIALS AND METHODS.

The IC50 levels of nine chemotherapy drugs (Osimertinib_1919,

Sapitinib_1549, Acetalax_1804, Ibrutinib_1799, Erlotinib_1168,

Gefi t i n i b_1010 , AZD3759_1915 , A f a t i n i b_1032 , and

Lapatinib_1558) were compared between subgroups with high OS-

score or low OS-score. We found that the IC50 values of the nine

chemotherapy drugs were lower in LUAD patients with high OS-

scores than that of LUAD patients with low OS-scores, suggesting

LUAD patients with high OS-scores may be more sensitive to these

nine chemotherapeutics drugs (Figure 7).
Quantitative real-time PCR

We selected the three genes in the OS-signature to detect their

expression in cell lines.
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As could be seen from the survival curves, the higher the

expression of MRPL44 (Figure 8A) and CYCS (Figure 8B), the

worse the prognosis, while the opposite was true for CAT

(Figure 8C). Compared with control cell lines (BEAS-2B), MRPL44

(Figure 8D) and CYCS (Figure 8E) were significantly higher expressed

in cancer cell lines (A549 and H1299), while CAT (Figure 8F) was

significantly lower expressed.
Discussion

Lung cancer is a malignant tumor originating from the bronchial

epithelium. According to histopathological classification, lung cancer

is divided into non-small cell lung cancer (NSCLC) and small cell

lung cancer (SCLC). NSCLC is the main pathological type of lung

cancer, and lung adenocarcinoma (LUAD) accounts for the vast

majority of NSCLC. Lung cancer ranks second only to breast

cancer in incidence and is the most important cause of cancer-

r e l a t ed d e a th s . L a t e d i a gno s i s , p oo r s en s i t i v i t y t o

chemoradiotherapy, acquired resistance to targeted therapy and

other related factors can lead to poor prognosis of patients with

lung cancer (47, 48). At present, histopathological diagnosis and
B

C D

A

FIGURE 4

The somatic mutation features of the established OS-signature for LUAD. (A, B) The waterfall plot of somatic mutation features established with high (A)
and low (B) OS-score. (C) We performed Pair-wise Fisher’s Exact test to detect mutually exclusive or co-occurrence events. (D) Forest plot for mutation
differences between cohorts.
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tumor staging system are still the main basis for predicting the

prognosis and survival of lung cancer patients. However, traditional

methods cannot accurately assess the prognosis of patients with

LUAD. In addition, Computed Tomography (CT) and serum

tumor markers such as carcinoembryonic antigen (CEA) are often

used to determine the prognosis of lung cancer. However, traditional

methods are limited by cumulative radiation damage, low sensitivity

and specificity (49, 50). Therefore, clinicians need an accurate

prognostic prediction model to help optimize the treatment strategy

of LUAD patients. Bioinformatics is one of the emerging fields of

biological research. It uses mathematics, statistics and computer

technology to process and analyze biological data. In our study,

extracting data from public database, we identified eight prognostic

genes with HR>1 (MRPL44, CYCS, G3BP1, GFM1, SOD1, TXN,
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OSGIN2, and CRP) and two prognostic genes with HR<1 (CAT and

XBP1). And the OS-signature could be used for prognosis and

treatment prediction in LUAD.

Because of the functional correlation between genes in a cell,

diseases are rarely the result of abnormalities in a single gene, but

rather result from abnormalities in a complex intracellular gene

network (51–53). Like most diseases, the occurrence and

development of LUAD is a complex process involving multiple

genes and multiple pathogenic mechanisms, involving the

activation of proto-oncogenes and the inactivation or mutation of

tumor suppressor genes (54, 55). Therefore, the application of

network for gene interaction in LAC research can simplify and

visualize complex and high-throughput data. Compared with the

focus on local gene function in single gene and single molecule
B

C

D

A

FIGURE 5

The genomic mutation analysis of the established OS-signature for LUAD. (A) Genomic characterization landscape of groups with high OS-scores or low
OS-scores. (B) Plots significantly altered cytobands as a function of number samples in which it is altered and number genes it contains. Size of each
bubble is according to -log10 transformed q values. (C) A genomic plot with segments highlighting signififcant Amplifications and Deletion regions.
(D) The detailed amplificated or deleted CNV onco-plots of groups with high OS-scores or low OS-scores. #p<0.05.
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biological research methods, network analysis focuses more on the

integrity and systematization of biological processes (51). In the OS-

signature, there were three ORGs (CAT, CYCS, and MRPL44),

forming a network to predict the prognosis of LUAD. It is more

reliable to explore the occurrence and development of LUAD from

the perspective of multiple genes.

For early and mid-stage NSCLC that cannot be completely

resected by surgery, and for some locally evolved or metastatic

NSCLC that is advanced or advanced (stage IIIA-IV),

comprehensive systemic and local combination therapy can be

used, including surgical resection, chemotherapy, radiotherapy,

targeted therapy and immunotherapy. At present, the 3rd

generation chemotherapy drugs, including Docetaxel, Vinorelbine,

Gemcitabine and Paclitaxel, have been widely used in clinical practice,

combining platinum drugs to develop personalized treatment plans

for patients. Radiotherapy is an effective means of local treatment of

lung cancer, which plays a positive role in slowing down the clinical

symptoms, prolonging the survival time and improving the quality of

life of patients with advanced lung cancer. These treatment methods

have been widely studied and applied at home and abroad. Genomic

studies have shown that adenocarcinoma and squamous cell

carcinoma have significantly different gene mutation types, and

tyrosine kinase inhibitor (TKI) can be used to inhibit the catalytic

phosphorylation of the corresponding kinases in the treatment of

NSCLC patients with significant clinical benefits. Genomic studies

have shown that adenocarcinoma and squamous cell carcinoma have

significantly different gene mutation types, and tyrosine kinase

inhibitor (TKI) can be used to inhibit the catalytic phosphorylation

of the corresponding kinases in the treatment of NSCLC patients with
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significant clinical benefits (56, 57). A variety of effective and well-

tolerated TKIs targets, including EGFR, ALK, ROSI, HER2, etc., have

emerged continuously, and promoted significant progress in cancer

treatment. For example, EGFR driver gene mutations have a high

incidence in various subtypes of NSCLC. The most common EGFR

mutations include exon19 deletion (delE746-750, etc.) or exon 21

arginine substitution leucine (L858R) mutation. EGFR inhibitors such

as Gefitinib, Erlotinib, Afatinib, or Osimertinib play an important role

in the treatment of NSCLC patients (58). However, some studies have

shown that the proportion of NSCLC patients carrying EGFR

mutations is about 30-40%, and there are still a large number of

patients who cannot benefit directly from targeted therapy (59). With

the development of Crizotinib and next-generation ALK-TKIs,

considerable progress has been made in the treatment of patients

with ALK recombinant NSCLC (60). Crizotinib, a first-generation

ALK inhibitor originally approved for patients with ALK-positive

NSCLC, was found to have a median progression-free survival of 8-10

months in treated patients (61). Subsequent randomized controlled

trials compared Crizotinib with chemotherapy in patients undergoing

treatment with a significant improvement in progression-free

survival. Subsequently, second-generation ALK inhibitors Ceritinib,

Alectinib and Brigatinib were developed to overcome Crizotinib

resistance in patients (62). So far, other treatments, including third-

generation ALK inhibitors Lorlatinib, Entrectinib and Ensartinib,

have shown better results (60). For the above mentioned

chemotherapeutic drugs and small molecule targeted therapy drugs,

the Genomics of Drug Sensitivity in Cancer (GDSC) database was

created. The immediate goal is to identify potential therapeutic

biomarkers that may predict drug response (chemotherapeutic
BA

FIGURE 6

Evaluation of immunological characteristics for OS-signature. (A) Correlation of OS-scores with seven immunomodulators in LUAD. Red represents high
enrichment score, and blue represents low enrichment score. (B) Heatmap displaying the abundance of infiltrating immune cell populations with
different OS-scores. *p<0.05, ***p<0.001, ****p<0.0001.
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drugs, small molecule targeted drugs, and other drugs), while the

ultimate goal is to improve the current status of cancer treatment

based on biomarkers (44, 63). It has been shown that changes in the

tumor genome directly affect the therapeutic effect of the tumor (64).

With the emergence of novel compounds, the screening of predictive

biomarkers in their early development process will have a profound

impact on the entire process of new cancer drug development,

including its design, development cost and final outcome (64).

Based on the clinical and basic research background, researchers

present the results of large-scale drug screening in human cancer cell

lines in GDSC, a database that combines detailed genomic profiles

and gene expression analysis to systematically provide biomarker

identification patterns for drug sensitivity science for a variety of

cancer drugs. In our study, we compared the IC50 levels of

Osimertinib_1919, Sapitinib_1549, Acetalax_1804, Ibrutinib_1799,

Erlotinib_1168, Gefitinib_1010, AZD3759_1915, Afatinib_1032, and

Lapatinib_1558 between subgroups with high OS-score or low OS-

score based on GDSC database. We found that LUAD patients with

high OS-scores may be more sens i t ive to these nine

chemotherapeutics drugs. Our study will provide reference for the

treatment of LUAD.

Recent studies have shown that tumor microenvironment (TME)

plays an important role in the development and treatment of tumors

(65). TME refers to the microenvironment surrounding the occurrence,
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growth and metastasis of tumor cells, including not only the tumor cells

themselves, but also the immune cells, inflammatory cells, fibroblasts,

various signaling molecules, extracellular matrix and blood vessels (66).

To fully understand and overcome the complexity of TME is helpful for

clinicians to provide more feasible and precise individualized treatment

plan for tumor treatment. The rapid development of single-cell

sequencing, second-generation sequencing and other technologies has

gradually deepened researchers’ understanding of the relationship

between T cells and other immune cell populations and

immunotherapy. Tumor-associated immune cells play an important

role in tumor spread, recurrence, metastasis and influencing

immunotherapy treatment (67). They can be used as biomarkers to

predict the efficacy of immunotherapy drugs or predict the prognosis of

patients (67). Increased levels of tumor-infiltrating lymphocytes (TILs),

such as CD4+T cells and CD8+T cells, are associated with

immunotherapy response and longer survival (68). Immune

checkpoint inhibition activates existing TILs, which recognize and

eliminate abnormal and tumor cells, and TILs play a key role in

immunotherapy response. Studies have shown that increased T-cell

infiltration and increased IFN-g-related mRNA expression can increase

ICIs (immune checkpoint inhibitors) benefit and significantly improve

patient prognosis in a variety of tumor types (69, 70). In advanced

NSCLC patients, increased expression of CD8+ TILs detected by IHC or

CD8A mRNA transcripts was associated with prolonged PFS treatment
FIGURE 7

Evaluation of sensitivity to chemotherapy for OS-signature.
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with PD-L1 inhibitors, especially in combination with PD-L1 mRNA

and protein expression, suggesting that integrated biomarkers may

provide higher predictive value (71). Another study using multiple

quantitative immunofluorescences to detect TIL in paraffin tumor

specimens found that ICI treatment resulted in lasting clinical benefits

and longer OS in NSCLC patients with increased CD3+ T-cell

infiltration (72). In addition, studies have found that tumor-associated

macrophages (TAMs) secrete interleukin-10 (interleukin-10), Il-10,

Transforming growth factor-B (TGFb) and other immunosuppressive

cytokines play a variety of tumor-promoting effects, which increase the

density of TAM and inhibit other related immune cells (73).

The limitations this study remain. The OS-signature we

constructed and validated by retrospectively using the public

database hence, more prospective studies are needed for clinical

practicability. We selected the three genes in the OS-signature to

detect their expression in cell lines. Biological experiments in this

study are lacking, and more wet experiments are needed to explore

the function of related genes.

In conclusion, immunotherapy by regulating the immune

microenvironment may become a promising new strategy for cancer

treatment. The precise regulation of immune gene expression is the key

to generate strong immunity and intervene the development of cancer.

In our study, we found that patients with high OS-scores had lower

immunomodulators levels except CD276, TNFSF9, and HMGB1. From

a general view, the level of infiltrating immune cell populations

decreased as the OS-scores increased. It is necessary to further study

the tumor microenvironment (TME) of lung cancer.
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FIGURE 8

Quantitative Real-time PCR. (A–C) Kaplan-Meier curves displaying the correlation between the expression of the signature genes, including MRPL44 (A),
CYCS (B), and CAT (C), and the survival status of LUAD patients. The blue curve represents the patients with lower gene expression, and the red curve
represents patients with higher gene expression. (D–F) Quantitative Real-time PCR assays using cell lines for MRPL44 (D), CYCS (E), and CAT (F).
**p<0.01, ***p<0.001, ****p<0.0001.
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Background: Cholangiocarcinoma (CHOL) is the most prevalent type of

malignancy and the second most common form of primary liver cancer,

resulting in high rates of morbidity and mortality. Necroptosis is a type of

regulated cell death that appears to be involved in the regulation of several

aspects of cancer biology, including tumorigenesis, metastasis, and cancer

immunity. This study aimed to construct a necroptosis-related gene (NRG)

signature to investigate the prognosis of CHOL patients using an integrated

bioinformatics analysis.

Methods: CHOL patient data were acquired from the Gene Expression Omnibus

(GEO) (GSE89748, GSE107943) and The Cancer Genome Atlas (TCGA) databases,

with NRGs data from the necroptosis pathway in the Kyoto Encyclopedia of

Genes and Genomes (KEGG) database. Univariate and multivariate regression

analyses were performed to establish the NRG signatures. Kaplan–Meier (KM)

curves were used to evaluate the prognosis of patients with CHOL. Functional

enrichment analysis was performed to identify key NRG-associated biological

signaling pathways. We also applied integrative multi-omics analysis to the high-

and low-risk score groups. Spearman’s rank correlation was used to clarify the

relationship between the NRG signature and immune infiltration.

Results: 65 differentially expressed (DE) NRGs were screened, five of which were

selected to establish the prognostic signature of NRGS based onmultivariate Cox

regression analysis. We observed that low-risk patients survived significantly

longer than high-risk patients. We found that patients with high-risk scores

experienced higher immune cell infiltration, drug resistance, and more somatic

mutations than patients with low-risk scores. We further found that sensitivities

to GW843682X, mitomycin C, rapamycin, and S-trityl-L-cysteine were

significantly higher in the low-risk group than in the high-risk group. Finally,

we validated the expression of five NRGs in CHOL tissues using the TCGA

database, HPA database and our clinical data.
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Conclusion: These findings demonstrate that the five-NRG prognostic signature

for CHOL patients is reasonably accurate and valid, and it may prove to be of

considerable value for the treatment and prognosis of CHOL patients in the

future.
KEYWORDS

nec rop to s i s , c ho l ang i o c a r c i noma , p rogno s t i c s i gna tu r e , immune
microenvironment, biomarker
1 Introduction

Cholangiocarcinoma (CHOL) is a highly heterogeneous

malignancy stemming from biliary epithelia. CHOL is the most

prevalent type of malignancy and the second most common form

of primary liver cancer, accounting for approximately 20% of all

primary liver cancers (1, 2). Surgical treatment, immunotherapy,

chemotherapy, and other comprehensive tumor treatment methods

have changed the prognosis of many patients with CHOL. Patients

with CHOL nonetheless still tend to have unfavorable prognoses,

with only 10% of patients surviving for five years (3). The main

factors contributing to poor prognosis are the heterogeneity,

infiltrative nature, and rapid drug resistance of CHOL, making it

difficult to completely remove the tumor by surgical procedures and

identify the therapeutic target of CHOL (1, 4, 5). There is, therefore, a

pressing need to further explore the occurrence and progression of

CHOL to improve the treatment and survival rates of CHOL patients.

Necroptosis is a self-destruction cellular process that is regulated

via a complex signaling cascade (6), and it is closely related to key

aspects of cancer biology regulation, including tumorigenesis,

metastasis, and cancer immunity (7, 8). There is increasing evidence

that overcoming apoptosis resistance by induction of cancer cell

necroptosis may be an attractive therapeutic approach for patients

with CHOL (9–11). For instance, the application of both TNFa and

gemcitabine has been shown to induce RIPK1/RIPK3/MLKL-

dependent necrosis when apoptosis-inhibitory proteins and caspases

are blocked, as evidenced by increased expression of RIPK3 and

MLKL in CHOL cell lines (9, 12). In addition, Xu et al. found that the

alkaloid matrine can induce necroptosis in CHOL by enhancing the

expression of RIP3 and the RIP3/MLKL/ROS signaling pathway, thus

providing a new individualized strategy for overcoming

chemoresistance in CHOL therapy based on the expression of RIP3

(12). Hence, exploring the role of necroptosis in tumorigenesis and the

progression of CHOL has great potential for the diagnosis and

treatment of CHOL patients. The rapid development of high-

throughput sequencing and multi-omics studies has allowed a
e Cancer Genome Atlas;

istic; AUC, Area under

ponent analysis; DEGs,

G, Kyoto Encyclopedia

analysis; HPA, Human

02108
substantial body of reliable information to be obtained regarding the

treatment and prognosis of patients with CHOL (13–15).

In this study, we first profiled the necroptosis-related genes in

CHOL and developed a risk prediction model based on five genes to

explore their functional enrichment and ability to predict outcomes.

The performance of the prediction models was validated in three

independent cohorts (TCGA, GSE89748, and GSE107943).

Additionally, we examined the differences in drug resistance,

somatic mutations, and immune infiltration between the low- and

high-risk groups. In brief, our prognostic signature provides a

reliable method for predicting the prognosis of patients with

CHOL, and it offers clinicians a reference for early diagnosis and

treatment of CHOL.
2 Materials and methods

2.1 Data collection and preprocessing

TCGA biolinks was used to extract RNA-Seq data from 36

CHOL and 9 normal samples, as well as relevant clinical

information from TCGA database (http://portal.gdc.cancer.gov)

(16). Additionally, the University of California Santa Cruz

(UCSC) provided FPKM, somatic mutation, and clinical data on

CHOL. In the present study, CHOL datasets GSE89748 and

GSE107943 (17, 18) from the GEO database (https://

www.ncbi.nlm.nih.gov/geo) were downloaded using the GEO

query R package, which was used as the external validation set,

including available expression profile data and clinical information

of bile duct cancer samples. In total, 72 CHOL samples from the

GSE89748 dataset and 30 CHOL samples from the GSE107943

dataset were acquired. A total of 159 necroptosis-associated genes

(NRGs) were obtained from the necroptosis pathway (hsa04217) in

the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.
2.2 Identification of the expression
patterns and biological functions of
DENRGs in CHOL

First, we extracted the NRGS expression matrix from TCGA

and then screened for differentially expressed necroptosis-related

genes (DENRGs) between the CHOL and normal groups using the
frontiersin.org
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limma package (19). Significant DENRGs were visualized using

volcano plots constructed using the ggplot2 package. The criteria

for differentially expressed genes (DEGs) were FDR < 0.05 and |

log2FC| > 1. Furthermore, differences in DENRGs between the

CHOL and normal groups were visualized using boxplots. DENRGs

were also analyzed based on a protein-protein interaction (PPI)

network using the STRING database (20), and correlations between

them were visualized using heatmaps. To investigate the biological

role of DENRGs, we examined biological processes (BP), cellular

components (CC), and molecular functions (MF) according to the

Gene Ontology (GO) database and KEGG signaling pathways using

the R tool cluster Profile (21). The enrichment significance

thresholds were set at an adjusted p-value of < 0.05.
2.3 Development and validation of
DENRGs-based prognostic models

DENRGs were first identified for their prognostic values in the

TCGA cohort by univariate Cox proportional hazards regression

analysis, and the genes with p-values < 0.05 were then entered into

the multivariate Cox regression analysis. A risk score model was

built based on the expression levels of the prognosis-associated

genes and the contribution coefficient (and beta) of the multivariate

Cox proportional hazard regression model. Based on the above risk

score model, we calculated the prognostic risk value for each patient

sample in TCGA (training cohort), GSE89748 (validation cohort 1),

and GSE107943 (validation cohort 2). All CHOL samples were

divided into high- and low-risk groups, with the median risk score

as the cutoff value. Kaplan–Meier survival analyses were performed

using the ‘survival’ and ‘survminer’ (22) packages between the high-

and low-risk groups. To further assess the clinical diagnostic value

of the risk score, time-dependent receiver operating characteristic

(ROC) curves for overall survival (OS) and area under the ROC

curves (AUCs) at 1, 3, and 5 years in TCGA (training cohort),

GSE89748 (validation cohort 1), and GSE107943 (validation cohort

2) were generated using the R package “survivalROC” (23). OS is

defined as the time from randomization to death. Furthermore, we

constructed a risk plot to explore the relationship between the risk

score and the prognosis status.
2.4 Process of the screening signature for
the Cox regression model and building of
the nomogram models

Univariate Cox regression was performed to examine the

relationship between patient clinical characteristics (age, sex,

stage, pathology, weight, height, and BMI), risk score, and OS.

Significant prognostic factors (p < 0.05) in the univariate analyses

were selected for multivariate Cox regression analysis. Forest plots

were used to present the results of the univariate and multivariate

Cox analyses, including all of the above variables. A nomogram was

built based on the identified variables in the multivariate Cox

regression analysis to facilitate clinical application.
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2.5 Exploration of differences in biological
functions between CHOL subgroups

To determine the differences in biological functions between the

high- and low-risk groups, DEGs between the two groups were

screened using the limma R package with FDR thresholds of < 0.05,

and absolute log2FC > 1. A volcano plot was then used to illustrate

the DEGs using ggplot2. To visualize the expression patterns of

DEGs between the low- and high-risk groups, we used R package

(pheatmap) to generate a heatmap. All DEGs were subjected to GO

and KEGG pathway enrichment analyses using Metascape (http://

metascape.org) (24). A p-value < 0.01 and a minimum of three

counts were set as the cutoff criteria for selecting significant

enrichment results. GO and KEGG analyses were also performed

using the R package “cluster Profiler” to explore the underlying

biological roles of the DEGs (21). The enrichment results were

visualized using bar and dot plots. Gene set enrichment analysis

(GSEA) (25) was performed using cluster Profiler, with a p-value of

< 0.05 as the threshold for significantly enriched KEGG pathways.

The top 20 significantly enriched pathways ranked by normalized

enrichment scores were visualized using a ridgeline plot.
2.6 Applying integrative multi-omics
analysis between the high- and low-risk
score groups

The R package “Rcircos” (26) was used to map the

chromosomal locations of clinically significant NRGs. The

Friends tool was then used to functionally annotate these genes,

which were subsequently estimated by semantic analysis using the R

package GOSemSim (27). By building a ridgeline regression model

based on the Genomics of Drug Sensitivity in Cancer (GDSC)

database (www.cancerrxgene.org/), we predicted the half-maximal

inhibitory concentration (IC50) for chemotherapy drugs in the

high- and low-risk groups and we inferred the sensitivity of

the patients (28). To detect somatic mutations in CHOL

patients between the high-risk and low-risk subgroups, we used

the mutation annotation format (MAF) in TCGA database. The

results were visualized using a waterfall plot (oncoplot). Using the

online tool Network Analyst (29), we explored the transcriptional

regulators and chemical targets of hub necroptosis genes based on

the JASPAR Tarbase and mir-Tarbase databases.
2.7 Correlation analysis between the
prognostic DENRGs and immune
cell infiltration

Immune infiltration is a significant factor in tumor progression,

treatment, and prognosis. We used the “ESTIMATE” R package to

estimate the stromal score, immune score, and tumor purity in the

high- and low-risk subgroups (30). The R package “ggplot2” was

then applied to generate boxplots to visualize differences between

the two groups for the above-mentioned immune scores and tumor
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purity. CIBERSORT is a deconvolution algorithm that can calculate

the infiltration abundance of 22 immune cell types in all tumor

samples (31). Heatmaps were drawn using the R package pheatmap

to illustrate the fractions of immune cell types for each sample, and

a correlation analysis between 22 immune cell types and prognostic

necroptosis genes was performed using the corrplot package. The

results were visualized using the ‘pheatmap’ package. Immune

infiltration differences between the high- and low-risk groups of

CHOL patients were determined using the ggplot2 package.

Additionally, the most positively and negatively correlated gene-

immune cell pairs were displayed using a scatter plot.
2.8 Immunohistochemical analysis of five
NRGs in HPA

The protein expression of the five NRGs between CHOL and

normal tissues was measured by immunohistochemistry from the

Human Protein Atlas (HPA) (https://www.proteinatlas.org/), which

is a valuable database providing the data of immunohistochemistry

expression for specific human tissues and cells (32).
2.9 Tumor samples collection and
qRT-PCR

A total of 12 CHOL tissue samples and 10 corresponding

normal hepatobiliary duct tissues were obtained from patients

who underwent surgical resection between March 2021 and

October 2022 at the First Affiliated Hospital of Zhengzhou

University, Henan, China. The samples were immediately frozen

in liquid nitrogen after tissue resection. The total RNA of the tissue

samples was extracted using TRIzol reagent (Invitrogen) according

to the manufacturer’s protocol. The RNA samples were reverse-

transcribed into cDNA by using iScriptTM cDNA Synthesis Kit.

RT-qPCR was performed using a thermal cycler (Roche LightCycler

480) using IQTM SYBR® Green Supermixes for Real-Time PCR.

The mRNA expression was normalized to the expression of

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA

and counted by the 2−DDCt method. The PCR primer sequences

are shown in Table 1. This study conforms to the guidelines issued

in the Declaration of Helsinki and was approved by the Ethics

Committee of the First Affiliated Hospital of Zhengzhou University

(Approval Number: SS-2019-018).
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2.10 Statistical analysis

All data processing and statistical analyses were performed

using R software (version 4.2.1). A detailed description of the

bioinformatics analyses is provided in the corresponding

subsections. * p < 0.05; ** p < 0.01; *** p < 0.001. A p-value <

0.05 was taken as representing statistical significance.
3 Results

3.1 Identification of DENRGs

According to the filter criteria, a total of 67 DENRGs were

screened, including 64 upregulated genes and 3 downregulated

genes. The expression distribution of the DENRGs was visualized

using volcano plots (Figure 1A). Based on the boxplot and

heatmap, it was clear that H2AW, PYGB, PYCARD, CAPN2,

BIRC3, H2AX, CHMP4C, STAT1, CHMP3, CHMP4B, CAPN1,

H2AZ1, and BAX were highly expressed in the CHOL group,

whereas FTL, GLUD1, and PYGL were expressed at very low

levels compared with the normal group (Figure S1; Figure 1B).

Principal component analysis (PCA) of these DENRGs clearly

distinguished the CHOL group from the control group

(Figure 1C). Mutation analysis indicated that missense

mutations were the most common, and TYK2 had the highest

mutation rate, which was a missense mutation with a frameshift

deletion (Figure 1D). The heat map showed that FTL, GLUD1,

and PYGL were positively correlated with each other and

negatively correlated with the other DENRGs (Figure 1E).

Furthermore, the PPI network diagram suggested that CASP8,

MLKL, and RIPK3 exhibited the strongest interactions with the

other DENRGs (Figure 1F).
3.2 GO and KEGG functional analysis of
the DENRGs

The results show that the DENGs were mainly related to cell

death processes, such as programmed necrotic cell death, midbody

abscission, necrotic cell death, mitotic cytokinetic process,

necrotic process and virtual budding, and ESCRT complex,
TABLE 1 Primer list of PCR.

Gene Name Forward primer Reverse primer

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG

PYGB AGGTGCGGAAGAGCTTCAAC TCGCGCTCGTAGTAGTGCT

IFNGR2 CTCCTCAGCACCCGAAGATTC GCCGTGAACCATTTACTGTCG

TICAM1 GCCAGCAACTTGGAAATCAGC GGGGTCGTCACAGAGCTTG

STAT6 GTTCCGCCACTTGCCAATG TGGATCTCCCCTACTCGGTG

VPS4B ATGTCATCCACTTCGCCCAAC TTGCTTGGCTTTATCACCCTG
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nucleosome, DNA packaging complex, protein DNA complex,

nuclear chromatin, tumor necrotic factor receiver superfamily

binding, tumor necrotic factor receiver binding, cytokine

receiver binding, ubiquitin-like protein ligase binding, and

protein binding (Figure 2A; Table S1). The KEGG results

suggest that the DENRGs were mainly involved in multiple

functional pathways (e.g., Necroptosis, NOD-like receptor

signaling pathway, Apoptosis, Influenza A, TNF signaling

pathway, Th17 cell differentiation, IL-17 signaling pathway, and

Neutrophil extracellular trap formation pathway) (Figure 2B;

Table S1). A panoramic view of the necroptosis pathway in

KEGG was generated (Figure 2C).
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3.3 Construction of a prognostic model
within necroptosis-associated genes

The 67 DENRGs were subjected to univariate Cox proportional

hazard regression analysis. Five prognostic genes (PYGB, IFNGR2,

TICAM1, STAT6, and VPS4B) were selected and further analyzed

using multivariate Cox proportional hazards regression analysis.

The coefficients from the multivariate Cox proportional hazards

regression model were used to evaluate the potential prognostic

factors. Risk scores were also calculated in TCGA (training cohort),

GSE89748 (validation cohort 1), and GSE107943 (validation cohort

2) according to the prognostic gene expression values and their
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FIGURE 1

Identification of DENRGs in the CHOL group. (A) Volcano plot of the DENRGs. Genes indicated in red, blue, and gray colors were significantly
upregulated (Up), downregulated (Down), or not significantly different (Not), respectively. (B) Heatmap showing the expression of 65 DENRGs in the
normal and CHOL samples. Red, CHOL group; Blue, normal group (C) Principal components analysis (PCA) indicating the expression patterns of
DENRGs. (D) Oncoplot of the DENRG mutations. (E) Heat map of the correlation between the DENRGs. Red colors indicate positive correlations and
blue colors represent negative correlations. The darker the color, the stronger the correlation. (F) PPI network of the DENRGs. The larger the node,
the higher the number of interactions with other genes, and the thicker the line, the higher the correlation coefficient.
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regression coefficients. Taking the median risk score of the samples

as the cutoff value, CHOL patients were divided into high- and low-

risk groups. Survival analysis showed that the low-risk group

exhibited a better outcome in TCGA (log-rank test p-value <

0.05) (Figure 3A), GSE89748 (log-rank test p-value < 0.001)

(Figure 3B), and GSE107943 (log-rank test p-value < 0.001)

(Figure 3C). Next, we performed 1-, 3-, and five-year time-

dependent ROC analyses in three independent datasets (TCGA,

GSE89748, and GSE107943). The results show that the AUC of

time-dependent ROC curves was greater than 0.6 in all datasets

(Figures 3D–F). Notably, the AUC of the 1-year time-dependent

ROC exceeded 0.7, indicating that the prognostic risk score had

good prediction abilities. A risk plot also illustrated the distributions

of the risk scores and the OS status in the three dependent datasets

(Figures 3G–I). It is worth mentioning that the increase in the

prognostic risk score and the number of death events in

patients increased.
3.4 Construction and evaluation of the
nomogram model

Univariate and multivariate Cox regression analyses were

performed on the clinical characteristics and risk scores in TCGA
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to explore the prognostic factors of patients. The results show that

two factors, the risk score and pathologic N, were significantly

associated with patient prognosis (p < 0.05) (Figures 4A, B).

Subsequently, a nomogram model for predicting 1-, 3-, and 5-

year OS was constructed, which integrated the two factors that were

significantly correlated with prognosis: pathologic N and the

prognostic risk score (Figure 4C). Besides, we established

calibration curves to verify the effectiveness of nomogram model

for predicting the rates of OS for CHOL patients at 1, 3, and 5 years.

The results showed that the calibration curves displayed a suitable

agreement between the prediction by nomogram and actual survival

(Figure S2).

A risk classification system was then constructed based on the

risk scores calculated from the nomogram model for each CHOL

patient. Using this system, the enrolled patients were divided into

low- and high-risk groups. The outcomes show that the low-risk

group had the best prognosis, and the high-risk group had the worst

prognosis (Figures 4D, E). Time-dependent ROC analysis showed

that the 1-, 3-, and 5-year nomogram models exhibited AUC > 0.7,

and even the 1- and 3-year time-dependent ROC exhibited AUC >

0.8 (Figures 4F, G). We further used decision curve analysis (DCA)

to evaluate the clinical predictive models. The results showed that

the DCA curves at 1, 3, and 5 years remained above the gray and

black lines between 0 and 1.0, in TCGA CHOL and GSE89748
A

C

B

FIGURE 2

GO and KEGG enrichment analysis of DENRGs. (A) Dot plot showing the top 10 biological functions enriched in Gene Ontology (GO) terms. (B) Bar
plot showing the top 10 signaling pathways enriched in KEGG terms. (C) Diagrammatic outline of the necroptosis pathway.
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datasets, suggesting that CHOL patients may benefit from decisions

based on the prognostic model (Figures 4H, I).
3.5 Identification of DEGs and functional
enrichment analysis

Next, we performed differential expression analysis on TCGA

CHOL datasets of the high- and low-risk groups to obtain DEGs.

According to the screening thresholds (|log2FC| > 0.5 and p < 0.05),

179 DEGs were identified in the high- and low-risk groups,

including 96 upregulated genes and 83 downregulated genes

(Figure 5A). In addition, the heatmaps revealed that the

expression patterns of genes were also classified into two

categories, along with the high- and low-risk groups (Figure 5B).

GO and KEGG functional enrichment analyses of the DEGs

were performed using Metascape. The top 20 enriched biological

function terms were displayed in the network diagrams according to
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their enrichment scores (Figures 5C, D). The GO analysis results

show that the DEGs were mainly associated with mitotic cell cycle,

mitotic spindle organization, mitotic spindle assembly, intercellular

bridge, polymeric cytoskeletal fiber, hexosyltransferase activity,

DNA, Binding transcription activator activity, and protein kinase

binding (Figure 5E). According to the KEGG analysis results,

pathways in cancer, viral carcinogenesis, TNF signaling pathway,

Salmonella infection, pathogenic Escherichia coli infection, IL−17

signaling pathway, hepatitis B, chemical carcinogenesis-receptor

activation, and apoptosis were significantly enriched (Figure 5F).

The detailed results are summarized in Table S2.

To further analyze the functional implications of the five

necroptosis gene signatures in CHOL, we performed GSEA of

TCGA CHOL expression profiles according to low- and high-risk

groups. As shown in Figure 6A, the ridgeline plot reveals the top 20

enriched KEGG terms in the low- and high-risk groups. These

results show that cytokine-cytokine receptor interaction,

alcoholism, neutrophilic extracellular trap formation, influenza A,
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FIGURE 3

Construction and validation of the prognostic model. (A–C). KM survival curves for overall survival in TCGA training cohort (A), GSE89748 validation
cohort (B), and GSE107943 validation cohort (C). (D–F) Time-dependent ROC curve of TCGA cohort (D), GSE89748 cohort (E), and GSE107943
cohort (F). Sensitivity (TRP) = TP/(TP+FN) and false positive prediction rate (FPR) (1-specificity = FP/(FP+TN)) were used as the y-axis and x-axis
variables, where TPs (true positives) are positive predictions which belong to gold standard positives (GSPs), FNs (false negatives) are negative
predictions which belong to GSPs.TP, true positive; FP, false positive; TN, true negative. (G–I) Distributions of risk scores and OS status are shown
for TCGA cohort (G), GSE89748 cohort (H), and GSE107943 cohort (I).
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JAK-STAT signaling pathway, and cell adhesion molecules were

significantly enriched in the low-risk group (Figures 6B–G).

Detailed GSEA results are presented in Table S3.
3.6 Multi-omics analysis based on
prognostic risk scores

We then used the R package “Rcircos” to map the chromosomal

locations of the above five NRGs. The gene chromosome location

diagram revealed that PYGB, IFNGR2, TICAM1, STAT6, and

VPS4B are located on chr20, chr21, chr19, chr12, and chr18,

respectively (Figure 7A). Friends analyses of the necroptosis-

associated prognostic genes revealed that TICAM1 was the most
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important term (Figure 7B). In the low-risk group, the ESTIMATE,

immune, and stromal scores were all higher than those in the high-

risk group, according to violin plots (Figure 7C). The therapeutic

effects of the four drugs on CHOL are shown as boxplots. The

results show that the sensitivity to GW843682X, mitomycin C

(MMC), rapamycin, and S-trityl-L-cysteine (STLC) was

significantly higher in the low-risk group than in the high-risk

group (Figure 7D). The oncoplot demonstrated different mutation

patterns between the high- and low-risk groups (Figures 7E, F).

We further used Network-Analyst to obtain network diagrams

of the interaction between the five NRGs and miRNAs,

transcription factors (TFs), and potential chemicals. The results

show that 124 miRNAs targeting the five necroptosis prognosis

genes fit a network diagram (Figure 8A). In the TF-necroptosis
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FIGURE 4

Construction and evaluation of the nomogram model. (A) Univariate Cox proportional hazard regression analysis of the clinical characteristics.
(B) Multivariate Cox proportional hazard regression analysis of selected clinical characteristics. (C) Prediction of 1-, 3-, and 5-year survival
probabilities for CHOL patients using the nomogram model. (D, E). Survival curve for the low-risk and high-risk subgroups in the training dataset and
the validation dataset. (F, G). Time-dependent ROC curves of the training cohort and the validation cohort. Sensitivity (TRP) = TP/(TP+FN) and false
positive prediction rate (FPR) (1-specificity = FP/(FP+TN)) were used as the y-axis and x-axis variables, where TPs (true positives) are positive
predictions which belong to gold standard positives (GSPs), FNs (false negatives) are negative predictions which belong to GSPs.TP, true positive; FP,
false positive; TN, true negative (H, I). DCA curves of the training cohort and the validation cohort.
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prognosis gene network diagram, 114 TFs were observed

(Figure 8B). A total of 117 potential chemical targets were

identified using Network Analyst (Figure 8C).
3.7 Analysis of immune cell infiltration and
its correlation with the five NRGs

Immune cell infiltration is a critical factor in the progression of

CHOL, and it significantly affects the survival rate of patients with

CHOL (9, 33). We analyzed the relationship between the expression

of the five NRGs and infiltration of 22 immune cell types in CHOL.

The results show that IFNGR2 and STAT6 were negatively
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correlated with resting natural killer (NK) cells, whereas PYGB

was significantly positively correlated with CD8+ T cells, M0

macrophages, Tregs, and eosinophils. TICAM1 was positively

correlated with resting central memory CD4+ T cells and

activated NK cells, and VPS4B was positively correlated with

plasma cells and T follicular helper cells. STAT6 expression

positively correlated with monocytes and Tregs (Figure 9A). A

heatmap of the correlation between the 22 different immune cell

types indicates that M2 macrophages had a clear positive

correlation with monocytes; naive B cells had a clear positive

correlation with activated mast cells and naive CD4+ T cells;

memory B cells had a clear positive correlation with naive CD4+

T cells, while activated mast cells exhibited obvious inverse
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FIGURE 5

GO and KEGG functional enrichment analyses between the low- and high-risk groups. (A) Volcano plot of the DEGs. Red represents upregulated genes
(Up), blue represents downregulated genes (Down), and gray represents not significantly different genes (Not). (B) Heatmap of the DEGs between the
high-risk group and the low-risk group. Red indicates the high-risk group (High) and blue indicates the low-risk group (Low). (C) A network diagram of
the top 20 enriched biological functions. Cluster IDs are represented using different colors, while enriched terms are indicated by nodes. (D) Twenty
enriched biological functions are shown in this network diagram, and the p-values are displayed as different colors, while the enriched terms are
indicated as nodes. (E) Bar-plot of GO terms, with the height of the column indicating the enrichment score. (F) Dot plot of the KEGG enrichment
analyses results. The dot scale represents the number of genes in each KEGG term; the depth of the dot color represents the p-value.
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correlations with resting mast cells and M2 macrophages; activated

NK cells had an obvious inverse correlation with monocytes, M2

macrophages, and neutrophils (Figure 9B). The strongest positive

correlation was observed between IFNGR2 and eosinophils

(Figure 9C). In contrast, STAT6 exhibited the strongest negative

correlation with resting NK cells (Figure 9D). The high-risk and

low-risk groups exhibited significantly different levels of immune

cell infiltration in the heatmap (Figure 9E). The boxplot indicates

that there was a significant difference in the proportion of immune

cells between the high- and low-risk groups. B cells accounted for a

higher proportion in the low-risk group, whereas T cells accounted

for a higher proportion in the high-risk group (Figure 9F).
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3.8 Validation of the five NRGs expressions
in CHOL tissue samples

We further validated the expression of five NRGs using the

TCGA database, HPA database and our clinical data. TCGA

database results showed that PYGB (Figure 10A), IFNGR2

(Figure 10D), TICAM1 (Figure 10G), STAT6 (Figure 10J) and

VPS4B (Figure 10M) were expressed at high levels in CHOL

tissues. Based on the protein expression data from the HPA, the

immunohistochemistry results confirmed that the protein

expression levels of PYGB (Figure 10B), IFNGR2 (Figure 10E),

TICAM1 (Figure 10H), STAT6 (Figure 10K) and VPS4B
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FIGURE 6

GSEA analysis results between the low- and high-risk groups. (A) Ridgeline plots showing the top 20 enriched KEGG terms in the low- and high-risk
groups. ES (enrichment score) reflected the correlation between the gene set and the sample. B-G. Cytokine-cytokine receptor interaction
(B), alcoholism (C), neutrophilic extracellular trap formation (D), influenza A (E), JAK-STAT signaling pathway (F), and cell adhesion molecules
(G) were significantly enriched in the low-risk group.
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(Figure 10N) were higher in CHOL tissues than normal

hepatobiliary duct tissues. Finally, we detected their expression

levels in 10 non-tumor hepatobiliary duct tissues and 12 CHOL

tissues by using RT-qPCR assay. The results showed that the

expression levels of PYGB (Figure 10C), IFNGR2 (Figure 10F),

TICAM1 (Figure 10I), STAT6 (Figure 10L) and VPS4B (Figure 10O)

in CHOL tissues showed an overall upward trend compared with

non-tumor hepatobiliary duct tissues.
4 Discussion

CHOL is the second most common primary malignancy of the

liver after hepatocellular carcinoma, with a steady increase in its
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incidence and mortality rate (1). When hepatocytes die due to

necroptosis, the necroptosis-dominated microenvironment leads to

the development of CHOL. Recent studies have also found that

necroptosis plays a pivotal role in regulating carcinogenesis, cancer

subtypes, immunity, metastasis, and anticancer treatments (2, 3).

The molecular mechanism by which necroptosis is involved in the

genesis and development of CHOL remains unclear, however.

In this study, we focused on developing and validating a

prognostic signature for CHOL using necroptosis-related genes.

First, 65 DENRGs were identified between the CHOL and control

groups. Secondly, five genes (PYGB, IFNGR2, TICAM1, STAT6, and

VPS4B) were identified as prognostic signatures based on

multivariate Cox regression analysis. The Kaplan–Meier survival

curves in TCGA also indicate that the low-risk group had
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FIGURE 7

Multi-omics analysis based on the prognostic risk scores. (A) Chromosome localization map of necroptosis prognosis genes. (B) Friends analysis of
necroptosis prognosis genes. (C) Differences in ESTIMATE, immune, and stromal scores between the high- and low-risk groups. (D) Differences
between the high- and low-risk groups in terms of drug sensitivity. (E, F). Oncoplot mutations in the low- and high-risk groups.
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significantly longer patient survival than the high-risk group. The

survival results were also validated independently using the

GSE89748 and GSE107943 datasets. In addition, the nomogram

model was highly discriminatory for OS based on the pathologic N

and risk score. Moreover, patients with high-risk scores experienced

higher immune cell infiltration, drug resistance, and more somatic

mutations. In summary, these results suggest that the five genes

related to necroptosis play prominent roles in modulating drug

resistance, somatic mutations, and the tumor microenvironment,

indicating that these risk signatures were highly robust and accurate

in predicting the prognosis of patients with CHOL.

Our prognostic signature consists of five genes, PYGB, IFNGR2,

TICAM1, STAT6, and VPS4B, each of which plays a critical role in

necroptosis and tumor progression. PYGB codes for the protein

glycogen phosphorylase B, which is found predominantly in the

brain (34). PYGB has been reported to be involved in the

progression of gastric and liver cancers (35, 36). IFNGR2 codes
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for the IFN-g receptor, which has been found to mediate a non-

immunogenic tumor phenotype associated with checkpoint

inhibitor resistance in renal carcinoma (37, 38). TICAM1 codes

for an essential necrosome adaptor protein that functions as an

essential signal transducer in Toll-like receptor (TLR) 3 and TLR4

signaling pathways (39). It has been reported that TLR3/TICAM1

signaling is involved in tumor cell RIP3-dependent necroptosis,

which contributes to immune effector-mediated tumor elimination

(38). In our study, TICAM1 was highly expressed in the CHOL

group and was positively correlated with resting central memory

CD4+ T cells and NK cell activation, suggesting that the TICAM1

gene product is involved in the tumor microenvironment. STAT6 is

highly expressed in a variety of human cancers and has been

suggested to induce apoptosis and growth inhibition of

hepatocellular carcinoma-derived cells by lowering RANKL

expression (40). VPS4B codes for a protein that is involved in

autophagy that can reduce the sensitivity of T cell-mediated tumor
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C

FIGURE 8

An integrated network of TFs, miRNAs, and chemicals target the necroptosis prognosis genes. (A) The integrated network diagrams between the five
NRGs and miRNAs. (B) The integrated network diagrams between the five NRGs and TFs. (C) The integrated network diagrams between the five
NRGs and potential chemical modulators.
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cell lysis by lowering granzyme B content, and it is an essential

factor required for escaping CD8+ T cell-mediated killing in tumors

(41, 42). In keeping with this, VPS4B was negatively correlated with

follicular helper T cells and was found to be highly expressed in

CHOL in our study. Overall, our study investigated the prognostic

value of five necroptosis-related markers in CHOL. Further in-

depth experimental research is needed to explore the potential

regulatory effects of this gene set on necroptosis.

In recent years , regulation of the tumor immune

microenvironment through immunotherapy has revolutionized
Frontiers in Immunology 13119
cancer treatment (43, 44). Numerous studies have confirmed that

immunotherapy based on alteration of the tumor immune

microenvironment can affect tumor metastasis, immune escape,

and immunotherapy resistance by modifying the immune response

(45–47). For instance, a study has suggested that increasing the

number or function of NK cells may be a promising approach for

the treatment of CHOL (48). Our study found a negative correlation

of STAT6 with resting NK cells, thus suggesting that STAT6 is a

potential immunotherapy target. Higher infiltration of M1 and M2

macrophages is related to a poor prognosis by accelerating tumor
D
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FIGURE 9

Correlation between the five NRGs and immune cell infiltration of CHOL. (A) Correlation analyses between 22 different immune cell types and the
five NRGs in the CHOL group. Red color represents positive correlation whereas blue color indicates negative correlation. (B) Heatmap of the
correlation between 22 different immune cell types. Positive correlations are in red and negative correlations are in blue. The darker the color, the
stronger the correlation. (C) Correlation analysis between IFNGR2 and Eosinophils. (D) Correlation analysis between STAT6 and resting NK cells. (E) A
heatmap showing the difference in immune cell infiltration between the high-risk and low-risk groups. (F) Box plot of the proportion of immune cell
infiltration between the high-risk and low-risk groups.
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progression through the secretion of pro-angiogenic factors,

activation of the Wnt/b-catenin pathway, and suppression of the

antitumor functions of T cells (49). In our study, the high-risk

group, which had a poor prognosis, had a higher level of M0

macrophage infiltration, indicating that a greater number of non-

activated macrophages were present.

The DEGs between the high- and low-risk groups were enriched

in immune-related biological processes and pathways. The five

genes involved in our prognostic signature correlated with

different levels of immune cell infiltration, such as NK cells, T

cells, monocytes, M0 macrophages, and plasma cells. Our results
Frontiers in Immunology 14120
show that, based on the gene signature, there were clear differences

in the degree of immune cell infiltration between the high-risk and

low-risk groups. The high-risk group tended to exhibit a higher

proportion of multiple types of T cells, whereas the low-risk group

exhibited a higher proportion of multiple types of B cells. In

addition, the low-risk group had higher stromal, immune, and

ESTIMATE scores than the high-risk group. In summary, our

prognostic signature for CHOL based on necroptosis-related

genes could reflect the tumor immune microenvironment of

CHOL, which could potentially contribute to personalized

immunotherapy and targeted therapy for patients with CHOL.
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FIGURE 10

Validation of the five NRGs expressions in CHOL tissue samples (A, D, G, J, M). The expression levels of PYGB (A), IFNGR2 (D), TICAM1 (G), STAT6
(J) and VPS4B (M) between CHOL and normal samples using the TCGA database. (B, E, H, K, N). Immunohistochemistry of PYGB (B), IFNGR2 (E),
TICAM1 (H), STAT6 (K) and VPS4B (N) in CHOL and normal samples from the HPA database. (C, F, I, L, O). Relative expression of PYGB (C), IFNGR2
(F), TICAM1 (I), STAT6 (L) and VPS4B (O) was detected by qRT-PCR in CHOL and normal samples. *p < 0.05, **p < 0.01, ***p < 0.001.
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According to previous studies examining genomic alterations,

gene mutations in CHOL usually result in poor outcomes (50). Our

study also demonstrated that necroptosis-related genes were

positively correlated with genomic alterations, and the high-risk

group (mutation rate: 31.37%) exhibited more somatic mutations

than the low-risk group (mutation rate: 23.53%). In particular,

missense mutations were by far the most predominant mutation

type found in CHOL. Moreover, PBRM1 and BAP1 exhibited

significantly increased mutation rates and multiple mutation types

in the high-risk group. In addition, the high-risk group exhibited

higher levels of resistance to treatment with GW843682X,

mitomycin C, rapamycin, and S-trityl-L-cysteine. These results

show that our prognostic signature could be used as a potential

predictor of the efficacy of medical treatment for CHOL. Moreover,

the occurrence of drug resistance may be reduced by regulation of

this signature, which could potentially lead to new breakthroughs in

the choice of individual therapeutic strategies.

However, the current study has some limitations. First, the data

gathered were from public databases, which were limited in sample

size. Future research with a larger sample size is needed to overcome

these limitations. Secondly, the identified genes have complex

functions and molecular mechanisms that need to be further

verified in cellular and animal models. Finally, more detailed

clinical follow-up data are required to confirm the value of our

prognostic model.
5 Conclusion

In this study, we shed further light on the role of necroptosis in

the prognosis of CHOL. Our results indicate that the prognostic

model derived from the five NRGs can accurately predict the

prognosis of patients with CHOL. Furthermore, the risk score

derived from the necroptosis model is associated with important

biological functions and is clinically significant. Therefore, the

predictive signature of the five NRGs may help devise

individualized treatments for patients in the future.
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Identification of lactylation
related model to predict
prognostic, tumor infiltrating
immunocytes and response of
immunotherapy in gastric cancer

Hao Yang †, Xiaoming Zou*, Shifeng Yang †, Ange Zhang †,
Nana Li and Zhen Ma

Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin,
Heilongjiang, China
Background: The epigenetic regulatory chemical lactate is a product of

glycolysis. It can regulate gene expression through histone lactylation, thereby

promoting tumor proliferation, metastasis, and immunosuppression.

Methods: In this study, a lactylation-related model for gastric cancer (GC) was

constructed, and its relationships to prognosis, immune cell infiltration, and

immunotherapy were investigated. By contrasting normal tissues and tumor

tissues, four lactylation-related pathways that were substantially expressed in GC

tissues were found in the GSEA database. Six lactylation-related genes were

screened for bioinformatic analysis. The GC data sets from the TCGA and GEO

databases were downloaded and integrated to perform cluster analysis, and the

lactylation related model was constructed by secondary clustering.

Results: The fingding demonstrated that the lactylation score has a strong

correlation with the overall survival rate from GC and the progression of GC.

Mechanistic experiments showed that abundant immune cell infiltration

(macrophages showed the highest degree of infiltration) and increased genetic

instability are traits of high lactylation scores. Immune checkpoint inhibitors (ICIs)

demonstrated a reduced response rate in GC with high lactylation scores. At the

same time, tumors with high lactylation scores had high Tumor Immune

Dysfunction and Exclusion scores, which means that they had a higher risk of

immune evasion and dysfunction.

Discussion: These findings indicate that the lactylation score can be used to

predict the malignant progression and immune evasion of GC. This model also

can guide the treatment response to ICIs of GC. The constructed model of the

lactate gene is also expected to become a potential therapeutic target for GC

and diagnostic marker.
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Introduction

One of the most prevalent malignant tumors in the world is

gastric cancer (GC), which poses a severe threat to human health

(1). The evolution of GC is a complicated pathological process

involving a number of variables and phases, which is the result of

the interaction between dietary factors, host genes, Helicobacter

pylori infection, and environmental factors. Due to the atypical

symptoms of early-stage GC, majority of cases are already advanced

when they are diagnosed. GC patients typically have a poor

prognosis, a high risk of local recurrence, and distant metastasis

(2–4). As GC research has advanced, it has been found that GC is

not caused only by specific gene mutations, but cellular metabolic

dysfunction is also a key marker of GC progression (5–8). There is

mounting evidence that tumor metabolism is crucial to the

initiation and development of malignancies as well as affecting

immune cells through the release of metabolites (such as lactate and

arginine). There is metabolic competition in the tumor

environment as a outcome of this energetic transition between

tumors and immunocytes, which limits effective supply of nutrients

and leads to microenvironmental acidosis, thereby hindering the

function of immune cells (9).

Lactate was once considered only a metabolite of glycolysis and

the final product of the Warburg effect. A rising number of research

have revealed that lactate is not just an essential energy source.,

signaling molecule, and immunomodulatory molecule but can also

control body’s metabolism, immunological response, and

intercellular communication (10). When tumor cells undergo

abnormal glycolysis, they continue to intake a lot of glucose and

make a lot of lactate even when there is plenty of oxygen available to

them (11). Lactate accumulates in the cells and is exported to the

extracellular environment by activating the transport proteins on

the cell membrane, eventually forming the acidic tumor

microenvironment. In addition to providing the energy required

by cells as a fuel substrate, lactate can be utilized as a precursor

material to modify histone lysines through lactylation (12). Histone

lactylation is a crucial mechanism through which lactate performs

its duties and takes part in crucial biological processes, such as

glycolysis-related cellular functions (13), macrophage polarization

(14), neurodevelopment (15), and regulation of tumor

proliferation (16).

Although the lactylation modification has received extensive

attention, the relevant articles are still limited. In particular, there

are few articles on lactylation modification in GC. This detailed

investigation of lactylation-related gene expression and relevance in

GC was carried out by us. First, by comparing normal gastric tissues

and GC tissues, four lactylation-related pathways with significantly

elevated gene expression in GC tissues were identified by GSEA. We

hypothesize that these pathways directly or indirectly contribute to

the development of GC, leading to a poorer prognosis. After

differential analysis and univariate Cox analysis of the above

pathways, we obtained six prognostic lactylation genes. By

secondary clustering based on these six lactation-related genes, we

constructed a model (“lactylation score”) that classified as potential

screening molecules for GC, which helped to discover various

immunocellular infiltration and genetic instability patterns.
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Through further analysis, the results revealed that GC patients

with high lactylation scores possessed greater potential for immune

evasion and lower rates of immunotherapy response, which also

means that the lactylation score could become a method for

forecasting patients’ reactions to immune checkpoint inhibitor

(ICI) therapy. The scoring model’s PPI network was built, and

the hub gene PLOD2 and its downstream lactylation target gene

GLUT3 were chosen for experimental validation. Both GC cell lines

and GC tissues have significantly higher levels of PLOD2 and

GLUT3 expression. After treating GC cell lines with lactate

dehydrogenase inhibitors, their expression was decreased,

demonstrating the strong relationship between lactylation and the

expression of these two genes. Flowchart of this study shows in

Figure 1.
Materials and methods

Data retrieval and processing

Through the GSEA database (https://www.gsea-msigdb.org,

December 2021), lactylation-related pathways and their genes were

downloaded . Through the TCGA database (ht tps : / /

portal.gdc.cancer.gov/, December 2021), we obtained the raw

mRNA matrix data in fragments per kilobase million (FPKM)

format and copy number data of GC tissues. From the TCGA

database, we also obtained relevant clinical data of the GC patients.

Baseline characteristics of patients was summarized in Table 1. We

downloaded the GSE84437 dataset from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/,

December 2021) to obtain the mRNA matrix and the clinical data

of GC patients. The batch effect was removed using ComBat function

of the SVA package in R for subsequent analysis. The STRING

website (https://string-db.org/cgi/input.pl, December 2021) was used

to construct the PPI network of lactylation-related genes.
Screening of prognostic lactylation-related
genes in GC

By performing differential analysis and univariate Cox analysis

of lactylation-related pathways in all GC samples, we obtained six

prognostic lactylation-related genes. The copy number variation

frequency of lactylation-related genes was calculated from the

increase and decrease in gene copy numbers in GC samples from

the TCGA database. The number of gene mutations in GC samples

from the TCGA database was calculated to draw a waterfall plot.

The “RCircos” package of the R language was used to plot the gene

copy number circle diagram. Through Cox analysis and

coexpression analysis, the prognostic network of lactylation-

related genes was plotted. We used the Kaplan–Meier method to

calculate the survival curves of GC patients and plotted them using

the “survminer” package (17). The clinical data and lactylation

scores of all GC patients were analyzed to calculate survival time,

survival status, and risk division and to construct nomograms and

receiver operating characteristic (ROC) curves.
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Cluster analysis

We categorized the GC cohort by “ConsensusClusterPlus”

package to determine whether the expression of genes related to

lactylation was connected with GC. The intragroup correlation is

strong and the intergroup correlation is modest for k=2. Using

heatmaps, we connected the amounts of lactylation-related gene

expression in several types of GC with patient clinical information.

We measured the immune cell expression in various GC types using

the ssGSEA technique, and then plotted the data using box plots.

Through the GSEA website (https://www.gsea-msigdb.org,

December 2021), the files of the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways were

downloaded, and the functional pathways enriched in GC types

were plotted as a heatmap using the “GSEABase” and “GSVA”

packages of R.
Construction of the lactylation
score model

We developed an lactylation score scheme to quatify the

lactylation modification level of individual patients by using PCA.
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Specifically,the overlapping genes(3112) identified from two

clusters of GC were selected and employed to perform prognostic

analysis for each gene using a univariate COX regression model.

The genes with a significant prognostic were extracted for further

feature selection by using recursive feature elimination(RFE) with

random forest and the 10-fold cross-validation method in the caret

package. We then curated the expression profile of the final

determined genes to perform PCA analysis, and principal

components 1 and 2 were extracted and served as the signature

score. We then adopted a formula similar to previous studies to

define the lactylation score: lactylation score =∑(PC1i+PC2i).

We performed correlation analysis between lactylation score

and immune cells present in the tissue using the ssGSEA algorithm.

With the “ggpubr” and “reshape2” packages of R, we analyzed the

relationship between clustering classification, lactylation score, and

tumor mutation burden. With the “survival” package and the

“survminer” package, we conducted joint survival analysis of the

high-tumor-mutation-load group, low-tumor-mutation-load

group, high-lactylation-score group, and low-lactylation-score

group. With the “plyr” package and the “ggpubr” package, we

plotted the different clinicopathological features in the lactylation

score group as bar graphs and box plots. From the Cancer

Immunome Database (TCIA) (https://tcia.at/, December 2021),
TABLE 1 Baseline characteristics of patients from TCGA and GEO database.

Clinical
features

Total patients (803) TCGA (377) GSE84437 (426)

Number
Percentage

Number
Percentage

Number
Percentage

(%) (%) (%)

Age

<=65 456 56.79 176 46.68 280 65.73

>65 347 43.21 201 53.32 146 34.27

Gender

Female 265 33 130 34.48 135 31.69

Male 538 67 247 65.52 291 68.31

Fustat

Alive 451 56.16 227 60.21 224 55.58

Dead 352 43.84 150 39.79 202 47.42

Grade

1-2 135 16.81 135 35.81 0 0

3 242 30.14 242 64.19 0 0

Unkown 426 53.05 0 0 426 100

Stage T

1-2 147 18.31 98 25.99 49 11.5

3-4 656 81.69 279 74.01 377 88.5

Stage N

N0 196 24.41 116 30.77 80 18.78

N1-3 607 75.59 261 69.23 346 81.22
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the scoring data of ICI treatment and MSI status for GC were

downloaded. According to lactylation score, we analyzed the ICI

treatments CTLA-4 and PD-1 for pancreatic cancer (18). All gastric

cancer patients were divided into MSS, MSI-L and MSI-H groups,

and lactylation scores among all groups were calculated. The Tumor

Immune Dysfunction and Exclusion (TIDE) score, exclusion score,

and dysfunction data of GC were downloaded from the TIDE

database (http://tide.dfci.harvard.edu/, December 2021), and the

immune evasion and immune dysfunction in high- and low-

lactylation-score groups were analyzed. We used “pRRophetic”

package of R to predict drug sensitivity of high- and low-

lactylation score groups (p<0.001).
Collection of tissue samples from
GC patients

Tissue samples were collected from GC patients who underwent

surgical resection at the Second Affiliated Hospital of Harbin

Medical University. These GC patients had not received any other

treatments, such as radiotherapy, chemotherapy, or biological

treatment, before surgery. All specimens were histopathologically

diagnosed by two pathologists according to the diagnostic criteria

for GC. All patients provided informed consent.
Cell culture and transfection

Normal gastric mucosal epithelial cells (GES-1) and GCcells

(AGS, HGC-27, KATO3, MKN-45) were purchased from Procell

Life Science & Technology (Wuhan, China), and the cells were

cultured according to the manual instructions. A lactate

dehydrogenase A (LDHA) inhibitor (GSK2837808A, MCE) was

used to treat HGC cell lines. The HGC cell lines were cultured in

six-well plates, and plasmids were transfected using Lipofectamine

3000 according to the instructions. The target sequences of the short

hairpin RNA (shRNA) were as follows: PLOD2-RNAi (8407-1),

caGCAAGTGTCCTTAAGTCAA; PLOD2-RNAi (8408-1), ggA

AATGGACCCACCAAGATT; PLOD2-RNAi (8409-1), c

tTTGCCGAAATGCTAGAGAA.
Western blotting

WB assay was done in accordance with prior literature

descriptions (19). We used RIPA buffer to extract the proteins

needed for western blotting. The subsequent antibodies were

utilized: PLOD2 (Proteintech, China), GLUT3 (Abcam, UK) and

GAPDH (ImmunoWay, USA).
Immunohistochemistry

The tissue samples were sectioned at 5 mm after being

submerged in 4% paraformaldehyde for an entire night.

Following an overnight incubation at 4°C with anti-PLOD2 and
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anti-SLC2A3 antibodies, tissue slices were treated with secondary

antibodies conjugated to horseradish peroxidase (20).
RNA extraction and RT-PCR

TRIzol was applied to extract cellular RNA, and a cDNA

synthesis kit was applied to create single-stranded cDNA from

the recovered cellular RNA (21). The FastStart Universal SYBR

Green Master Mix’s instructions were followed to perform the

qPCR analysis. A 10-µl reaction system was prepared.
Colony formation assays

After 10 days of incubation, the GC cell lines were seeded in a

six-well plate, and colony formation was apparent to the naked eye.
Ethylenediurea experiment

EdU experiment was performed according to the previous

literature (22, 23).
Wound-healing assay

Cells were cultured in six-well plates until full confluence, then

starved with serum-free medium. We scratched a 10-ml pipette tip
across the plate, removing a line of cells. Under a microscope,

pictures were obtained at 0, 12, and 24 hours to record the extent of

wound healing (24).
Transwell assays

The GC cell lines were inoculated into a Transwell chamber

containing 200 µl of serum-free medium. Matrigel mix was coated on

the upper chamber surface of the Transwell chamber to detect the

invasion ability of the cells. When testing the cell migration ability,

the bottom of the chamber does not need to be coated with Matrigel.

Medium containing 10% FBS was added to the lower culture plate.

After 24 h of incubation, the chamber was removed and stained with

crystal violet for 30 min. Five randomly selected fields of view were

photographed, and their cells were counted under a microscope.
Data analysis

The GraphPad Prism 8.0 software was used to illustrate the

results of the data analysis, which was carried out using the SPSS

18.0 program. In particular, the means of the two groups were

compared using Student’s t tests, and one-way ANOVA analysis

was used to determine the statistical significance of the means from

multiple groups (>2). The one-way ANOVA analysis for the

corrective test was followed by the post hoc testing (Tukey test).
frontiersin.org

http://tide.dfci.harvard.edu/
https://doi.org/10.3389/fimmu.2023.1149989
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1149989
Results

Expression of lactylation-related
genes in GC

Through the GSEA database, we identified four lactylation-

related pathways that were significantly upregulated in GC tissues

(Figure 2A). We speculate that these four lactylation-related

pathways are directly linked to the incidence and evolvemetn

of GC.

After differential and Cox analysis of the above lactylation

pathways, we obtained six prognostic lactylation genes and

plotted a forest diagram (Figure 2B). Box plot showed the

expression of lactylation-related genes in normal gastric

samples and GC samples (Figure 2C). Additionally, we

examined the prevalence of copy number variation in target

genes across all GC samples (Figure 2D). Except for EFNA3 and

PLOD2, which showed increased copy number, the other four

genes all showed copy number reductions. We also plotted

single-gene mutation frequency waterfall plots (Figure 2E) and

gene copy number circle plots (Figure 2F) of the six lactylation-

related genes.

Next, we combined the TCGA and GEO data to analyze the

data of a total of 804 GC patients and performed Kaplan–Meier

survival analysis based on lactylation-related gene groups

(Figure 2G). The results showed that the survival curves of the six

lactylation-related genes all had statistically significant differences.

A prognostic network map was constructed through coexpression

analysis (Figure 2H). It can be seen from the network map that

NUP50 and EFNA3 were favorable factors, and the other four

lactylation genes were risk factors. They regulate each other

within a network, which can form a functional whole and

together affect the progression of GC.
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Cluster analysis

We separated all GC samples into two clusters using cluster analysis

of lactylation-related genes (Figures 3A–C). Significant variations

between the two clusters of GC were shown by the survival analysis

(Figure 3D). Compared to cluster 1, cluster 2 had a much lower survival

rate. We determined the ratios of 23 different immune cell types in the

two clusters of GC using the ssGSEA method. 18 types of immunocytes

were significantly different between the two clusters of GC (Figure 3E).

We also plotted the clinicopathological characteristics and lactylation

genes of GC samples into a heatmap (Figure 3F). Using the GSVA

algorithm, we plotted the GO and KEGG pathways enriched in the two

clusters of GC into a heatmap. The GO-enriched pathway in cluster 2

was mostly focused on angiogenesis and epithelial cell proliferation

(Figure 3G), such as ENDOTHELIAL_CELL_PROLIFERATION and

REGULATION_OF_VASCULATURE_DEVELOPMENT. The

KEGG-enriched pathways in cluster 2 was mostly focused on

me ta s t a s i s - r e l a t ed pa thways (F i gur e 3H) , such a s

FOCAL_ADHENSION, and TGF_BETA_SIGNALING_PATHWAY.
Constructing lactylation score model

The results of PCA on all GC samples (Figure 4A) revealed that

there was little overlap between the two GC clusters and that the

components within each GC cluster were well correlated. Figure 4B

demonstrates that cluster 2’s lactylation score was substantially

greater than cluster 1’s. The survival rate of high lactylation score

group was considerably lower than low lactylation score group

(Figure 4C), demonstrating that the prognosis is worse the higher

the lactylation score. The TMB analysis was also examined in both

groups, and the findings revealed a negative correlation between the

two (Figures 4D, E). We also constructed a Sankey plot of the cluster
FIGURE 1

Flowchart of the study.
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of GC, lactylation score, and patient survival. Figure 4F shows that

cluster 2 GC had a high correlation with a high lactylation score,

while cluster 1 was associated with a low lactylation score. While the

most part of samples in the low-lactylation-score group were in the
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survival condition, the majority of the patients who died belonged to

the high-lactylation-score group. We created a waterfall plot to

compare the prevalence of single-gene mutations in two groups

(Figures 4G, H). The low-lactylation-score group had a higher
A
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FIGURE 2

Expression of lactylation-related genes in GC. (A) Highly expressed GSEA pathway in GC tissues. (B) Univariate Cox analysis of lactylation-related
genes. (C) Expression of lactylation-related genes in GC tissues and normal gastric tissues. ***p<0.001. (D) Diagram of the copy number frequencies
of lactylation-related genes. (E) Waterfall plot of the mutation frequencies of lactylation-related genes. (F) Circle plot of the copy numbers of
lactylation-related genes. (G) Overall survival rate of lactylation-related gene patient groups. (H) Prognostic network of lactylation-related genes.
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prevalence of single-gene mutations than the high-lactylation-score

group. Figure 4I demonstrates that the high-TMB group’s survival

rate was significantly greater than the low-TMB group’s.

Additionally, we performed conjoint analysis between tumor
Frontiers in Immunology 07129
mutation burdens groups and lactylation score groups (Figure 4J).

The result revealed statistical differences, demonstrating that the

prognosis of GC patients was influenced by both TMB and

lactylation scores.
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FIGURE 3

GC classification of lactylation-related genes. (A) Changes in the length and inclination of the cumulative distribution function (CDF) curve when
k=2-9. (B) Area under the CDF curve when k=2-9. (C) GC samples were divided into two tumor clusters. (D) Kaplan–Meier survival curves of the two
clusters. (E) Immune cell infiltration of the two clusters. *p<0.05; **p<0.01; ***p<0.001; ns, no signifificance. (F) Heatmap of GC classification,
lactylation-related genes, and clinicopathological characteristics. (G) GO enrichment analysis of the two GC clusters. (H) KEGG enrichment analysis
of the two clusters.
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FIGURE 4

lactylation score model. (A) PCA of lactylation-related genes. (B) Lactylation scores of GC types. (C) Kaplan–Meier survival curve of the high- and
low-lactylation-score groups. (D) Spearman correlation analysis of the lactylation score and immune cells. (E) UBQLN4 expression in the high-
and low-lactylation-score groups. (F) Sankey plot of GC clusters, lactylation score, and patient survival. (G) Waterfall plot of mutation frequencies in
the low-lactylation-score group. (H) Waterfall plot of mutation frequencies in the high-lactylation-score group. (I) Kaplan–Meier survival curve of the
high-tumor-mutation-burden group and the low-tumor-mutation-burden group. (J) Joint survival analysis was performed in the high and low-
tumor-mutation-burden groups and the high- and low-lactylation-score groups. (K) The age, sex, survival, grade, T stage, and N stage of patients in
the high- and low-lactylation-score groups. (L) Nomogram of the lactylation score and clinical information. ***p<0.001 (M) AUC of the lactylation
score model.
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Prognosis and clinicopathological
characteristics in different lactylation
score groups

Additionally, we examined the patients’ clinicopathological traits,

as well as their lactylation score. Age, sex, and T stage showed no

significantly different between two lactylation scores groups, as shown

in Figure 4K. Additionally, a poor prognosis, a high tumor grade, and

lymph node metastases were all closely related to a high lactylation

score. This shows that a high lactylation score frequently suggests a

higher degree of malignancy from the perspective of

clinicopathological features. We also constructed the nomogram

(Figure 4L), in which we can classify risks of the patients and

predic t pat ient surv iva l by s ta t i s t i ca l ly scor ing the

clinicopathological characteristics and lactylation scores. The results

show that if the total score of the patients reached 448 points, the 1-,

2-, and 3-year mortality rates of the patients were 28%, 53.6%, and

66%, respectively. We also draweed the ROC curve of the nomogram

(Figure 4M). The area of AUCs at 1, 2, and 3 years were all greater

than 0.65.
Immune cells infiltration statement and
functional enrichment analysis

According to the ESTIMATE algorithm, the stromal and immune

scores were statistically higher in high lactylation score group than low

lactylation score group. This demonstrated that the group with a high

lactylation score had a larger proportion of stromal cell and immune

cell infiltration (25). The ESTIMATE score was considerably greater in

the group with high lactylation scores than in the group with low

lactylation scores, demonstrating a negative correlation between

lactylation score level and tumor purity (Figure 5C). By combining

various immunocytes analysis methods, we analyzed the correlation

between lactylation score and immunocytes infiltration (Figure 5A).

The findings revealed that the degree of macrophage and M2-type

macrophage infiltration was positively connected with lactylation score

(Figure 5B). KEGG and Hallmark enrichment analysis showed that

lactylation model was closely relevanted to multiple oncogenic

pathways (including WNT, TGF_BETA, MTOR, P53_SIGNALING)

(Figures 5D, E). At the same time, Hallmark enrichment analysis

revealed that the lactylation model was closely relevanted with

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION and

HALLMARK_ANGIOGENESIS (Figure 5E). This indicated that the

higher lactylation score, the stronger proliferation, metastasis and

invasion ability of gastric cancer.
Immunotherapy response and
immune evasion

Our study also revealed that the lactylation score was relevanted

to the efficacy of immune checkpoint treatment. Figure 6A shows

that patients with lower lactylation scores possessed a higher

response rate to ICIs(ctla4_pos_pd1_neg, p<0.05). Additionally,

high lactylation score group are more liabled to acquire ctla4
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immunotherapy resistance. We also predicted the drug sensitivity

of the high- and low-lactylation score groups, and found that most

drugs expressed higher sensitivity in the low-lactylation score

group, while only two drugs (Gefitinib and Metformin) showed

higher sensitivity in the high-lactylation score group (Figure S1).

Immune evasion can result in resistance to immunotherapy. An

algorithm called the TIDE score is used to determine T-cell

malfunction and rejection in different tumor types. The scores

can be used to forecast the impact of immune checkpoint therapy

in patients with tumors in addition to being consistent with

immune evasion features (26). Figure 6B demonstrates that the

high-lactylation-score group’s TIDE, Exclusion, and Dysfunction

score were all considerably greater than those in the low-lactylation-

score group. Further resulting in immune evasion and

immunotherapy resistance was the high-lactylation-score group’s

increased susceptibility to immunological dysfunction and immune

rejection. We also looked at the lactylation score and the instability

of the microsatellites. The low-lactylation-score group showed

increased microsatellite instability, as shown in Figures 6C, D.
Expression of lactylation-related
genes in GC

Figure 6E shows the correlation between the lactylation score

and lactylation genes. We constructed a PPI network of lactylation-

related genes/proteins and lactylation target genes reported in the

literature (Figure 6F). At the center of the PPI network, PLOD2 and

SLC2A3 (GLUT3) had a greater priority. Additional, there was an

interaction between PLOD2 and GLUT3. We speculate that PLOD2

may affect the lactylation level of GC through GLUT3, thereby

leading to the development and progression of GC. Figure 6G

shows the correlation between GLUT3 and lactylation genes, where

it can be seen that GLUT3 and PLOD2 showed a strong connection.

Moreover, the high-lactylation-score group’s expression level of

GLUT3 was noticeably higher than the low-lactylation-score

group’s (Figure 6H).
The relation between PLOD2, GLUT3 and
lactylation in GC

We performed immunohistochemistry in normal gastric tissues

and GC samples (Figure 7A). The figure shows that the expression

degrees of PLOD2 and GLUT3 in GC samples were all considerably

higher than those in normal gastric samples.Figures 7B, C shows

that PLOD2 and GLUT3 were expressed more highly in GC cell

lines than GES-1 cells. The PLOD2 expression was significantly

high in HGC-27 and MKN-45, while GLUT3 expression was the

highest in HGC-27.

To observe whether PLOD2 and GLUT3 were associated with

lactylation, we selected different concentrations of lactate

dehydrogenase inhibitors to treat HGC-27 cells for 48 h.

Figure 7D shows that PLOD2 and GLUT3 were both decreased

after HGC-27 were treated by the lactate dehydrogenase inhibitor.

When the lactate dehydrogenase concentration was set as 1 µM, the
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inhibitory effect on PLOD2 and GLUT3 was the most significant.

We also constructed three PLOD2-knockdown plasmids expressing

heterogeneous nuclear RNAs, namely, sh-8407, sh-8408, and sh-

8409. After transfection of each of these three plasmids individually

into HGC cells, the expression of PLOD2 was knocked down at the

protein level, and the knockdown effect of sh-8409 was the most

significant (Figure 7E). Therefore, we chose the sh-8409 plasmid to

create a PLOD2-KD group of cells. Knockdown of PLOD2 by sh-
Frontiers in Immunology 10132
8409 also downregulated the expression of GLUT3 (Figure 7E),

further supporting a PPI relationship between PLOD2 and GLUT3.

L-Lactyl is a pan-antibody of lactylation modification that reflects

the level of lactylation in tissue samples. Immunofluorescence assay

results showed that GLUT3 and L-Lactyl expression were

significantly declined after PLOD2 knockdown (Figure 7F). This

indicated that PLOD2 could regulate lactylation modification in GC

cell line.
A

B

D

E

C

FIGURE 5

Immune cells infiltration and function enrichment analysis. *p<0.05; **p<0.01; ***p<0.001. (A, B) The correlation between lactylation score and
immune cell infiltration by various immunocytes analysis methods. (C) Correlation between lactylation score and the tumor microenvironment of
gastric cancer assessed using the ESTIMATE algorithm. (D, E) GSVA analysis of lactylation score and lactylation-related genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1149989
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2023.1149989
Functional phenotype of PLOD2
in GC cells

After knocking down PLOD2, we examined the functional

phenotyoe change in GC cells. Figure 8A shows that there were

considerably fewer cell clones in PLOD2-KD than in PLOD2-NC.
Frontiers in Immunology 11133
EdU experiment also show that the cell viability of the PLOD2-KD

group was significantly reduced (Figure 8B). In the scratch assay, the

cells in the PLOD2-KD group showed considerably broader scratches

than PLOD2-NC group (Figure 8C). Similarly, the Transwell assay

demonstrated that PLOD2 gene knockdown prevented HGC-27 and

MKN45 cells from migrating and invading (Figure 8D).
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FIGURE 6

ICIs and immune evasion. *p<0.05; ***p<0.001. (A) Sensitivity analysis of the high- and low-lactylation-score groups to immunotherapy. (B) TIDE
score, Dysfunction score, and Exclusion score of the high- and low-lactylation-score groups. (C, D) Microsatellite instability in the high- and low-
lactylation-score groups. (E) Correlations between the lactylation score and lactylation-related gene expression. (F) PPI network between lactylation-
related proteins and lactylation target genes. (G) Correlation between GLUT3 and lactylation-related genes. (H) GLUT3 expression in the high- and
low-lactylation-score groups.
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Discussion

Recently, growing evidence has shown that lactate is not only

the most important direct source of nutrition for tumor cells, it can

also promote the growth, proliferation, metastasis, drug resistance,
Frontiers in Immunology 12134
and immunosuppression of tumors, such as by acidifying the

immune microenvironment and increasing the expression of

tumor resistance proteins (27, 28). More importantly, researchers

at the University of Chicago demonstrated that lactate is an

important epigenetic modification molecule that can affect degree
A

B

D E

F

C

FIGURE 7

Expression of PLOD2 and GLUT3 in GC cell lines and GC tissues. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (A) Immunohistochemistry for
PLOD2 and GLUT3 in normal gastric tissues and GC tissues. Scale bar, 100 µm. (B) Western blots for PLOD2 and GLUT3. (C) PCR results of PLOD2
and GLUT3. (D) Western blots of HGC cells treated with different concentrations of lactate dehydrogenase inhibitors (0.25 µM, 0.5 µM, and 1 µM).
(E) Western blots after transfection with the PLOD2-KD plasmid. (F) Expression levels of GLUT3 and L-Lactyl in PLOD-NC group and PLOD-KD
group were compared by immunofluorescence. Scale bar, 200 µm.
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of macrophage polarization through histone lactylation (12). The

lactylation modification of histone lysines is indeed widespread in

human and mouse cells and is regulated by glycolysis. In addition,

the lysine lactylation of histones is highly sensitive to lactate

produced by glycolysis, which can change with the intensity of

glycolysis or the level of lactate. Protein lactylation modification is
Frontiers in Immunology 13135
the farthest known downstream molecular mechanism of glycolysis,

and lactate in the adjustment of cellular functions.

To investigate the function of GC lactylation modification, we

downloaded four lactylation pathways with significantly elevated

expression in GC tissues from the GSEA database. Six lactylation-

related genes correlatived with GC development were screened by
A

B

D

C

FIGURE 8

Vitro assay results of PLOD2 in gastric cancer cell.*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. Scale bar, 200 µm. (A) Plate cloning assay results of
PLOD2-NC and PLOD2-KD in HGC-27 and MKN-45 cells. (B) EdU assay results of PLOD2-NC and PLOD2-KD in HGC-27 and MKN-45 cells. (C)
Wound-healing assay results of PLOD2-NC and PLOD2-KD in HGC-27 cells. (D) Transwell assay results of PLOD2-WT and PLOD2-KD in HGC-27
and MKN-45 cells.
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cluster analysis, and PCA analysis. A lactylation score model was

constructed, which was closely associated with increased tumor

infiltrating immunocytes, genetic instability and ICI treatment. The

six lactylation-related genes in the constructed model wee also

closely correlated with the prognosis of GC.

Tumor growth relies heavily on glycolysis. Tumor cells can

produce lactate through aerobic glycolysis and maintain a high-

lactate environment, thereby inhibiting T cells that attack tumor

cells. Moreover, lactate enhances the expression of regulatory T cells

to contribute to the defense of malignant cells, thereby evading the

attack of the immune system (29). In this study, the TIDE score of

high-lactylation-score group was considerably higher than low-

lactylation-score group, which means that the higher lactylation

score, tumor cell more likely achieve immune evasion and immune

dysfunction. Experiments have shown that the key factor in tumor

drug resistance is lactate, and the lactate concentration and

glycolysis rate can reflect the sensitivity of tumor drugs to a

certain extent (30). Meanwhile, higher glycolysis rate of cancer

cells is closely related to lower response rate to ICI treatment (31).

We also performed drug sensitivity analysis on the lactylation score

model. The findings revealed that high-lactylation-score group’s

sensitivity to ctla4 immunotherapy was lower than low-lactylation-

score group’s. It proves that patients with high lactylation scores are

more likely to develop resistance to immunotherapy, which agrees

with the findings of the majority of recent investigations. The above

results showed that lactate and lactylation are closely related to

immune evasion and sensitivity to ICI treatment. Moreover, lactate

and lactylation have received extensive attention as novel target for

tumor immunotherapy (32).

LDHA is one of the key enzymes in the reprogramming of

glucose metabolism in the TME. It is also the hub protein that

connects various cellular metabolic pathways. It directly or

indirectly activates signal transduction pathways and regulates

immune responses to participate in development and progression

of tumors (33). The increase in LDHA level is mainly caused by the

increase in tumor glycolytic activity and tumor hypoxic necrosis,

which are important drivers of the immunosuppressive

microenvironment. LDHA can promote the conversion of

pyruvate to lactate, and its activity is positively correlated with

the Warburg effect (34). The enzymatic activity of LDHA is

regulated by posttranslational modifications, including lactylation,

acetylation, and phosphorylation (35). Some studies have shown

that when LDH is knocked out, the lactylation level is also inhibited

(12). Wang et al. reported that by directly binding to LDHA and

PKM2, HULC increases their phosphorylation levels to regulate

their activity and ultimately accelerate glycolysis and promote cell

proliferation (36). Chen et al. found that CENP-N affects tumor

progression by participating in the aerobic glycolysis process of

nasopharyngeal carcinoma cells (37). These studies fully

demonstrate that aerobic glycolysis and lactylation modification

are involved in the regulation of posttranslational modification and

that LDHA inhibitors can inhibit the lactylation process by

inhibiting the activity of the LDHA enzyme. Current clinical

studies are testing antitumor drugs targeting LDHA (38). In our

study, after the use of LDHA inhibitors to block lactylation in GC

cells, the expression of the lactylation-related gene PLOD2 and the
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lactylation target gene GLUT3 were inhibited to varying degrees,

and the degree of inhibition was positively correlated with the

concentration of LDHA inhibitor. This also indicates that the

expression levels of the PLOD2 and GLUT3 proteins are

regulated by lactylation modification.

PLOD2 is a functional enzyme located in the rough

endoplasmic reticulum of the cytoplasm. It participates in the

posttranslational modification of collagen and promotes the

synthesis of collagen fibers. Fibrotic collagen plays a key role in

promoting tumor invasiveness (39). PLOD2 can participate in

extracellular matrix remodeling by promoting the deposition of

collagen fibers, thereby improving the invasiveness of tumor cells

(40–44). In a variety of tumors, clinical data indicate that increased

PLOD2 expression can be used as an independent poor-prognostic

factor and is associated with poor patient survival (45). This is

consistent with the results of our study, in which the overall survival

rate of GC patients in the high-PLOD2-expression group was

significantly lower than that in the low-PLOD2-expression group,

and PLOD2 was the highest-ranked hub gene of the lactylation

score model, which was also validated by immunohistochemistry.

We found that the expression of PLOD2 in GC tissues, especially in

GC foci, was significantly higher than that in normal gastric tissues.

At the same time, after PLOD2 knockdown, the proliferation and

invasiveness of GC HGC-27 and MKN-45 cells were significantly

reduced. TGF-b1 seems to be an important factor in the regulation

of PLOD2 (46–48). Through clustering analysis of lactylation-

related genes, including PLOD2, we found that cluster 2 GC was

enriched in the TGF_BETA_SIGNALING_PATHWAY and

ECM_RECEPTOR_INTERACTION pathways, which is

consistent with our other results.

The glucose transporter is one of the most important

transmembrane proteins in the human body, with a total of 14

subtypes (GLUT1-GLUT14). Among them, GLUT3 encoded by the

SLC2A family is a tissue-specific glucose transporter with high

affinity for glucose in the GLUT family. GLUT3 is highly expressed

in tumor cells and promotes the transport and uptake of glucose by

tumor cells (49–52). The affinity of GLUT3 for glucose is five times

that of the well-known GLUT1 transporter (53). Taekyu Ha et al.

reported that Caveolin-1 factor upregulated glucose transport and

uptake and aerobic glycolysis by promoting direct binding of

HMGA1 to the GLUT3 promoter region (54). Liu reported that

the transcriptional repressor family member ZBTB7A could inhibit

the transcription and expression of GLUT3, and the knockdown of

ZBTB7A could increase glucose transport and uptake as well as the

synthesis of lactate (55). Wang et al. demonstrated that the

enhancement of the insulin-stimulated PI3K/Akt phosphorylation

pathway can promote the expression of GLUT3, LDHA and

monocarboxylic acid transporter 1 (MCT1) (56). Through the

above studies, we found that GLUT3 is closely related to

glycolysis and lactylation. Therefore, we selected GLUT3 as the

lactylation target gene. We found that the expression level of

GLUT3 was increased in GC cell lines and GC tissues. The results

show that lactate dehydrogenase inhibitors could affect the

expression of GLUT3 by inhibiting the lactylation level.

In this study, by analyzing the lactylation pathways with

elevated component expression in GC tissues, we found
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lactylation-related genes that play a role in the occurrence and

development of GC and constructed a lactylation score model.

Lactylation score in GC was closely associated with tumor

mutational load, genomic instability, response to ICI treatment,

immune cell infiltration, and immune evasion. These findings

provide novel ideas for the diagnosis and treatment of GC, and

lactylation-related genes may become novel tumor markers or

therapeutic targets. Although our paper has many strengths, it

also has limitations. For example, further studies are needed to

reveal the pathways through which lactylation-related genes affect

immune cell infiltration and genomic instability in GC. The

accuracy of the lactylation score in predicting the response to ICI

treatment by GC still needs to be verified by large-scale

clinical trials.

In summary, the lactylation score might be useful in the

molecular classification of GC, as it could help to identify

different patterns of immune infiltration and genomic instability.

The lactylation score can also be used as a method to assess the

response of patients to ICI treatment.
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Osteosarcoma (OS) is a cancer that is frequently found in children and

adolescents and has made little improvement in terms of prognosis in recent

years. A recently discovered type of programmed cell death called cuproptosis is

mediated by copper ions and the tricarboxylic acid (TCA) cycle. The expression

patterns, roles, and prognostic and predictive capabilities of the cuproptosis

regulating genes were investigated in this work. TARGET and GEO provided

transcriptional profiling of OS. To find different cuproptosis gene expression

patterns, consensus clustering was used. To identify hub genes linked to

cuproptosis, differential expression (DE) and weighted gene co-expression

network analysis (WGCNA) were used. Cox regression and Random Survival

Forest were used to build an evaluationmodel for prognosis. For various clusters/

subgroups, GSVA, mRNAsi, and other immune infiltration experiments were

carried out. The drug-responsive study was carried out by the Oncopredict

algorithm. Cuproptosis genes displayed two unique patterns of expression, and

high expression of FDX1 was associated with a poor outcome in OS patients. The

TCA cycle and other tumor-promoting pathways were validated by the

functional study, and activation of the cuproptosis genes may also be

connected with immunosuppressive state. The robust survival prediction ability

of a five-gene prognostic model was verified. This rating method also took

stemness and immunosuppressive characteristics into account. Additionally, it

can be associated with a higher sensitivity to medications that block PI3K/AKT/

mTOR signaling as well as numerous chemoresistances. U2OS cell migration and

proliferation may be encouraged by PLCD3. The relevance of PLCD3 in

immunotherapy prediction was verified. The prognostic significance,

expressing patterns, and functions of cuproptosis in OS were revealed in this

work on a preliminary basis. The cuproptosis-related scoring model worked well

for predicting prognosis and chemoresistance.

KEYWORDS

osteosarcoma, cuproptosis, immune infiltration, tumor microenvironment, drug
response, machine learning
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1 Introduction

Osteosarcoma (OS) continues to be the most prevalent primary

bone cancer in children and adolescents, although being

uncommon globally (1). With 4.4 instances per million people in

the US, this tumor reaches its peak incidence in adolescence, which

is consistent with a pubertal growth surge (2). Patients with OS have

a >60% five-year survival rate thanks to the present conventional

therapeutic approach of surgery and chemotherapy, but since 1980,

little has been learned about the pathophysiology and targeted

therapy of OS. Patients with metastatic disease and relapse cannot

benefit from additional surgery or chemoradiotherapy (3). In-depth

research on novel etiology and treatment targets for OS is urgently

needed given the non-negligible severe socioeconomic burden on

young people.

The tailored treatment of OS may greatly benefit from further

study into programmed cell death (PCD), which is still a hot topic

in oncology. For instance, cisplatin, a traditional first-line

chemotherapeutic treatment for OS, induces apoptosis (4). By

inducing oxidative stress dependent on GSH depletion and ROS

overproduction, ferroptosis promoters such as phenethyl

isothiocyanate (PEITC), baldachin, and ursolic acid have been

identified as potential adjuvant chemotherapy treatments (5–7).

Similar to this, inhibiting RIP1- and RIP3-dependent necroptosis

effectively reduced lung metastasis and tumor growth in an OS

mouse model (8).

A new PCD variant called cuproptosis was published in March

2022 by Peter T et al. (9). The buildup of monovalent copper ions

may interact directly with proteins that have been lipoylated, which

are mostly found in the mitochondria that power the TCA cycle.

The loss of proteins containing the Fe-S cluster and the production

of acute proteotoxic stress as a result of copper chelating lipoylated

protein aggregation led to an independent type of cell death. For

oncology researchers interested in copper toxicity in the treatment

of cancer, this result is encouraging. A significant anti-tumor effect

in patients with low plasma lactate dehydrogenase (LDH) was

revealed in the phase 3 clinical trial to apply copper ionophores

for melanoma, suggesting malignancies with a high dependence on

mitochondrial metabolism were likely to benefit from cuproptosis-

related molecular therapies (10).

The metabolic reprogramming in OS (11) is characterized by

abnormally suppressed TCA cycle and high levels of oxidized

glutathione (GSH), and GSH regulates copper ion cytotoxicity by

inhibiting the oxidation of divalent copper ions to monovalent

copper ions (9). It is important to talk about the activities of the

lipoylation and cuproptosis pathways. In this investigation, we seek

to identify functional pathways and genetic targets closely

associated with cuproptosis, investigate the expression patterns of

cuproptosis regulatory genes, and assess the influence of these

targets on the prognosis of OS patients. Additionally, immune

infiltrates landscapes, chemotherapeutic responsiveness, and

cancer stem-like cellular features are also implicated in identifying

their distinctions in patients with various cuproptosis patterns. This

study might offer initial recommendations and a feasibility analysis

for treatment plans that aim to treat copper toxicity in OS patients.
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2 Materials and methods

2.1 Dataset obtaining and processing

In this investigation, public transcriptional profiling datasets from

OS patients were used, including the TARGET OS dataset and the

GSE21257 dataset from GEO. For the TARGET OS dataset, the GDC

portal (https://portal.gdc.cancer.gov/), along with complete clinical

information and RNA expression data in raw count and TPM

format, were downloaded by GDC client. Expression data in TPM

format was then converted into a log2(TPM+1) matrix for further

analysis, and 85 samples with full RNA expression and clinical data

were finally included. The URL for GSE21257 was https://

www.ncbi.nlm.nih.gov/geo/. 53 samples with complete information

were eventually included after starting with raw data and moving on to

obtain a normalized expression matrix and clinical data using the R

package beadarray and illuminaHumanv2.db. R (version 4.1.3) and

Bioconductor programs for data cleaning and gene analysis were used

to analyze all the aforementioned data signature annotation.
2.2 Cuproptosis regulatory gene set and
unsupervised consensus clustering

The cuproptosis regulatory gene set was obtained from the latest

literature by Peter T et al. (9), including FDX1, LIAS, LIPT1, DLD,

DLAT, PDHA1, PDHB, MTF1, GLS and CDKN2A. The sweep()

function in R was used to normalize the expression matrix for these

genes in log2(TPM+1) format before package ConsensusClusterPlus

was used for unsupervised clustering. The study’s parameters were

maxK = 4, reps = 500, pItem = 0,8, pFeature = 1, title = title, clusterAlg

= hc, and distance = canberra. Each clustering was evaluated using the

consensus CDF value and CDF curve delta area.
2.3 Differential expressing analysis

The TARGET OS dataset’s expression data in raw count format

and the R package DEseq2 were used for the DE analysis. Briefly,

grouping information was first established using results from previous

clustering; next, the entire expression matrix in TARGET OS was pre-

screened to remove genes with zero expression in more than 20% of

samples; finally, a DEseqDataSet object was built; the DESeq() function

was used to calculate DE fold change and perform a significance test.

FDR 0.05 was the cutoff for identifying genes as significantly

differentially expressed (DE), and these genes were referred to as

cuproptosis-related DE genes (CRDEGs).
2.4 Weight gene correlation network
analysis and identification of cuproptosis-
related hub genes

To find additional genes connected to cuproptosis clustering,

WGCNA was carried out using DE genes. Hierarchical clustering
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analysis was first performed using the hclust tool. Then, the

pickSoftThreshold duty during module construction screened the

soft thresholding power setting (6 in this study). Various modules’

average connectivity degrees and independence were tested using

candidate power (1 to 30). A suitable power value was chosen if the

autonomy level was greater than 0.8. Co-expression networks

(modules) were built using the WGCNA R package (The R

package WGCNA is a collection of functions for calculating

various weighted association analyses, which can be used for

network construction, gene screening, gene cluster identification,

topological feature calculation, data simulation, and visualization).

The minimum module size was set to 30, giving each module a

distinct color label. On the basis of its correlation with clusters, the

core module was chosen. Genes in the core module with GS values

greater than 0.8 and Module Membership (MM)>0.5 was defined as

hub genes, termed cuproptosis-related hub genes (CRHGs).
2.5 Construction and validation of the
cuproptosis-related prognostic 0
0predicting model

Based on the aforementioned CRHGs, a Random Survival

Forest (RSF) plus Cox regression algorithmic technique was used

for the selection of predictive features, model development, and

internal and external validation. Details are as follows:

2.5.1 Univariate Cox regression for preliminary
feature screening

TARGET_OS dataset was first randomly divided into the train

(70%) and internal test (30%) datasets by createDataPartition()

function in the R package caret. Univariate Cox regression analysis

was then applied for all CRHGs by R package survival and

survminer. Given the low sample volume for the TARGET_OS

dataset, a bootstrap (12) sampling strategy was adopted: in 1,000

replicates of sampling with replacement, a gene was proved as

prognosis-related only when the univariate cox regression results

showed FDR< 0.05 for more than 900 times; this step was

accomplished by sample() function in R.

2.5.2 RSF model for prognostic genes selection
The randomforestSRC (13) R package’s rfsrc() function was

used to access the remaining genes in order to build an RSF model.

The optimal values were ntree=1000, block.size=1, mtry=2,

nodesize=13, splitrule=“logrank” after adjustments. The var.select

() function was used to choose features based on minimal depth in

order to build the final prognostic model. As cuproptosis-related

prognostic genes, these genes (CRPGs).

2.5.3 Prognostic model construction by
multivariate Cox regression

Amultivariate Cox regression model was built based on CRPGs.

Coefficients in this regression were applied for a final cuproptosis-

related prognostic scoring (CRP score) model calculated as follows:
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CRP score =o
n

i=1
Coef i ∗ xi

Where Coefi was the coefficient of multivariate Cox regression

and xi was the log2(TPM+1) expression value corresponding to the

No.i CRPG.

2.5.4 Model validation
Then, for patients in TARGET OS for train and internal tests

and GSE21257 for external validation, the CRP score was

determined. The timeROC package represented the Time-

dependent ROC curve, and the area under the curve (AUC) was

used as the foundation for evaluating the CRP score model’s ability

to predict outcomes.
2.6 Gene set variation analysis

GSVA was used by the R package GSVA and GSEAbase to

investigate various enrichment statuses in gene function for distinct

clusters and subgroups. Two gene sets, c2.cp.kegg.v7.4.symbols and

h.all.v7.4.symbols, were used for functional annotation from

MsigDB (http://www.gsea-msigdb.org/gsea/msigdb/). After that,

the LIMMA package was used to identify the enrichment

variations between various subgroups (13–15).
2.7 Calculation of the stemness
index (mRNAsi)

Based on the mean-centered gene expression profiles of PSCs in

the PCBC database (syn2701943), the stemness signature was

derived via the one-class logistic regression (OCLR) machine

learning algorithm (16), which was also verified by leave-one-out

cross-validation. Then, we calculated the Spearman correlations

between the normalized expression matrix of OS samples and the

stemness signature. Eventually, the stemness index was identified by

scaling the Spearman correlation coefficients to be between 0 and 1.

The higher the mRNAsi, the greater the tumor dedifferentiation and

higher stemness (17).
2.8 Compound resistance and
sensitivity analysis

Genomics of Drug Sensitivity in Cancer (GDSC, http://

www.cancerrxgene.org/downloads) database (18), which contained

drug sensitivity data (IC50) of 1,000 cell lines, was accessed to get

drug sensitivity and resistance information for osteosarcoma cell lines.

Then R package Oncopredict (19) based on the Ridge Regression

algorithm was applied to predict the drug response of samples in the

TARGET_OS cohort. Spearman correlation analysis was performed to

calculate the correlation between drug sensitivity and CRP_Score. The

absolute value of correlation coefficient > 0.4 and FDR< 0.05 were

regarded as significant.
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2.9 Analysis for immune cell infiltration and
immune signatures

Following the usual analysis procedure, we first used the

ESTIMATE program in R to evaluate the stromal purity and

general immune infiltration of tumor samples. For the

investigation of tumor immune cell infiltration, we used the

algorithms CIBERSORT and ssGSEA (13, 20, 21). The original

publications’ archives with the defining gene signatures for each

type of immune cell were obtained.
2.10 q-PCR experiment

The primers used for q-PCR are as follows: b-actin (https://

www.ncbi.nlm.nih.gov/gene/60; F ACCCTGAAGTACCCCATCGAG; R

AGCACAGCCTGGATAGCAAC) . P LCD3 ( h t t p s : / /

www.ncbi.nlm.nih.gov/gene/113026; F CTCATTCGGGAGGCAGGGAA;

R CTGGGGACTGTAGTTGGCTG). The cell groups are as follows:

NC, si-PLCD3-1, si-PLCD3-2, and si-PLCD3-3.
2.11 Transwell experiment

In DMEM with 10% FBS and 1% double antibody, U2OS cells

were grown. Pancreatic enzymes were used to digest the U2OS

cells at the logarithmic growth stage before being counted and

distributed uniformly in six-well plates with roughly 1x105 cells

per well. The cells were transfected with NC and si-PLCD3 on the

second day. The cells were switched to a full medium for 48 hours

after 6 hours, and they were then cultured in an EDU37°C

incubator overnight. Paraformaldehyde was used to fix the

samples after collection. To defrost on ice, remove the

necessary si-PLCD3 and NC. They took four sterile tubes. A

total of 95 uL of serum-free MEM/DMEM media was added to

two tubes. The tubes were then filled with 5 uL of NC and 5 uL of

Lip2000, respectively. The equivalent centrifuge tubes received

the addition of si-PLCD3 in the same manner. Mix gently, then

set aside for five minutes at room temperature. Following a 20-

minute rest period at room temperature, combine the two tubes.

Finally, the mixture was blended and added uniformly to the

transfection hole. Replace with fresh and full culture medium six

hours after starting the culture in incubators at 37°C. The

following are the cell groups: Si-PLCD3-1 and Si-PLCD3-2,

NC. Corning sold the Transwell chamber (3428), which

was acquired.
2.12 EdU experiment

In DMEM with 10% FBS and 1% double antibody, U2OS cells

were grown. Pancreatic enzymes were used to digest the U2OS cells

at the logarithmic growth stage before being counted and

distributed uniformly in six-well plates with roughly 1x105 cells
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per well. The cells were transfected with NC and si-PLCD3 on the

second day. The cells were switched to a full medium for 48 hours

after 6 hours, and they were then cultured in an EDU37°C incubator

overnight. Paraformaldehyde was used to fix the samples after

collection. To defrost on ice, remove the necessary si-PLCD3 and

NC. They took four sterile tubes. A total of 95 uL of serum-free

MEM/DMEM media was added to two tubes. The tubes were then

filled with 5 uL of NC and 5 uL of Lip2000, respectively. The

equivalent centrifuge tubes received the addition of si-PLCD3 in the

same manner. Mix gently, then set aside for five minutes at room

temperature. Following a 20-minute rest period at room

temperature, combine the two tubes. Finally, the mixture was

blended and added uniformly to the transfection hole. Replace

with fresh and full culture medium six hours after starting the

culture in incubators at 37°C. The following are the cell groups: Si-

PLCD3-1 and Si-PLCD3-2, NC. Ribo supplied the EdU kit

(RN: R11078.2).
2.13 Statistical analysis

All statistical calculations were done in R. (version 4.1.3). The

comparison of count data was assessed using Fisher’s test and the

Chi-square test. The Student-t test was used for measurement data

with a normal distribution, whereas the Wilcox test was used for

data with an abnormal distribution. All correlation investigations

must be completed using Spearman analysis. The Kaplan-Meier

survival curve was represented using the R package survival

and survminer.
3 Results

The workflow chart of the study is shown in Supplement

Figure 1.
3.1 Distinct expression patterns for
cuproptosis regulatory genes were
identified in osteosarcoma patients

We initially examined the expression pattern of the genes that

regulate cuprotosis based on the log2(TMP+1) expression matrix.

All 10 genes were expressed in the TARGET OS and GSE21257

datasets, as seen in Figures 1A, B, and their expression followed a

normal distribution, which gave us the foundation for further

investigation. By combining the Kaplan-Meier survival curve and

univariate Cox regression with survival data, we found that elevated

FDX1 expression is linked to both lower overall survival (OvS) and

disease-free survival (DFS) in OS patients (Figures 1C–E). These

findings suggested that cuproptosis might contribute to the

malignant biological activity of OS since FDX1 was shown to be a

key regulator in cuproptosis by linking the cytotoxicity of cooper

ions and protein lipoylation in the TCA cycle.
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Following that, unsupervised consensus clustering was carried

out using the expression matrix of 10 genes involved in

cuproptosis. Eighty-five samples in TARGET OS were best

grouped into two clusters, referred to as Cu ClusterA (42

samples) and Cu ClusterB (43 samples), as shown in
Frontiers in Oncology 05143
Figures 1F, G. The samples in Cu ClusterB tended to

overexpress all cuproptosis genes, as seen in Figure 1H, whereas

CDKN2A appeared to be indistinguishable. These results showed

that the cuproptosis pathway genes’ activity in OS patients showed

two different patterns.
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FIGURE 1

Cuproptosis regulatory genes were expressed in distinct patterns in OS samples. (A, B) Expression distributions of cuproptosis regulatory genes in
TARGET_OS (A) and GSE21257 (B) datasets. (C–E) K-M survival curve for FDX1 high- and low- expression subgroups in TARGET_OS (C, D) and
GSE21257 datasets (E), Ovs, overall survival; DFS, disease-free survival. (F, G) Results of consensus clustering based on the expression of cuproptosis
regulatory genes, (F) Consensus heatmap, (G) Item-Consensus plot. (H) Heatmap shows the expression of cuproptosis genes in distinct patterns.
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3.2 Cuproptosis clusters in OS patients
represented differences in immune
infiltration and stemness properties

Then, we pondered how the two clusters’ malignant biological

characteristics varied from one another. So, we carried out a

number of functional investigations. The expression of

cuproptosis genes was typically active in Cu ClusterB samples,

according to GSVA analysis, which first revealed a number of

pathways that were sparked. TCA cycle-related pathways (such as

citrate metabolism, oxoglutarate metabolism, and pantothenic acid

biosynthesis) and traditional cancer-promoting pathways (such as

TGF-, WNT/-catenin, p53, and IL./STAT5 signalings) are two

categories of important findings (Figure 2A). We developed the
Frontiers in Oncology 06144
mRNAsi index to show the difference in cellular stemness between

the two clusters because the majority of these enriched pathways

were involved in the destiny control of cancer stem-like cells

(CSLCs). Cu ClusterB displayed a substantially higher mRNAsi

than Cu ClusterA, as illustrated in Figure 2B, indicating that

enhanced cuproptosis gene expression may function as an

initiating factor in immortal proliferation, quick metastasis, and

chemo-resistance linked to CSLC activities.

In addition, we carried out a number of researches on

immunological infiltration between two clusters. Figures 2C–E

illustrates how the ESTIMATE approach revealed that samples in

Cu ClusterB had lower stromal scores than Cu ClusterA, indicating

that Cu ClusterB had fewer stromal components. Samples in Cu

ClusterA tended to enhance activated immune cells, according to
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C

FIGURE 2

OS samples in different Cu_Clusters exhibited distinct tumor biological characteristics. (A) GSVA analysis showed diverse enriched pathways in
different Cu_Clusters. (B) Divergence in the mRNAsi index showed differences in stemness properties between Cu_ClusterA and Cu_ClusteB. (C–E)
ESTIMATE analysis for the overall status of immune cell infiltration and stromal component samples in the TARGET_OS dataset. (F) ssGSEA for the
infiltration analysis of 29 types of immune cells in different Cu_Clusters *P < 0.05; **P < 0.01.
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CIBERSORT and ssGSEA for a study of just one type of immune

cell (e.g., Activated CD4 T cell, dendritic cell, and Macrophages

M2). In contrast, models in Cu ClusterB (such as Regulatory T cell,

MDSC, and Macrophages M0) may show signs of a dormant

immunological state (Figure 2F and Supplement Figure 2A).
3.3 Screening of cuproptosis-related genes
revealed a functional connection between
cuproptosis and other biological processes
in OS

We first performed a differential expression (DE) study to find

CRGs associated with cuproptosis clusters. A total of 6537 genes,

including 3565 up-regulated genes in Cu ClusterA and 2972 up-

regulated genes in Cu ClusterB, matched the criteria for DE, as

shown in Figures 3A, B. WGCNA analysis was used, using DEGs as

input objects, to further narrow down the potential genes highly

connected with cuproptosis clusters, and 16 modules were

ultimately discovered (Figures 3C, D). Notably, the cuproptosis

clusters had the strongest correlation with Module turquoise

(MEturquoise), which had 1762 genes and had a R = 0.73 with

Cu ClusterB, p = 1e-15, in Figure 3E. Further verification showed

that genes in MEturquoise had strong consistency in principal

component representation (shown by Module Membership, MM)

and external connection with cuproptosis clusters (indicated by

Module Membership, MM) (Figure 3F).

We eventually discovered 331 hub genes in MEturquoise based

on the selection criteria of GS>0.8 and MM>0.5 described above.

For further examination, these signatures were classified as CRGs.

For CRGs, enrichment analysis was used to investigate the co-

regulated pathways and biological processes. Notably, as shown in

Figures 3G, H, the KEGG analysis revealed a high enrichment of the

TCA cycle and NAD(P)+ activity pathways, further demonstrating

the close relationship between cuproptosis and the TCA cycle. The

terms RNA synthesis, metabolism & splicing, and ubiquitin-

proteasome pathway also commonly appeared in search results.

Traditional methods of controlling cuproptosis are suggested by

AMPK and Hedgehog signaling. The emergence of the PD-1

checkpoint pathway suggested that cuproptosis might contribute

to the responsiveness of tumor treatment.
3.4 Selection of cuproptosis-related
prognostic genes and construction
of cuproptosis-related prognostic
score model

Patients in the TARGET OS cohort were 7:3 randomly split

between the training and testing groups. 16 prognostic CRGs were

left after performing univariate Cox regression with bootstrap

sampling to reduce redundancy based on CRGs. Then, using a

1,000-tree random survival forest model, the minimum depth

values selected the five gene signatures that would ultimately be

used as CRPGs: BTBD10, DLX1, MRTFA, PLCD3, and RFX3

(Figures 4A, B). The scatter plot revealed no obvious association
Frontiers in Oncology 07145
between the expression of these five genes, ruling out model

redundancy in the process (Figure 4C). The CRP score model was

then created by performing multivariate Cox regression using

CRPGs:

CRP score = ( − 1:8626130)*ExpBTBD10 + 0:2978399*ExpDLX1

− 0:9252084*ExpMRTFA

+0:1514946*ExpPLCD3 + 1:0547832*ExpRFX3

For each patient in a train, test, and external validation dataset,

we computed a CRP score. In these datasets, we used a time-

dependent ROC curve to find the prediction power for overall

survival. The area under the curve (AUC) was convincingly

confirmed in the TARGET testing set GSE21257 validation set

and reached 0.809 at three years, 0.816 at five years, and 0.769 at

eight years (Figures 4D–F). Based on the median score, OS patients

were divided into CRP score high and CRP score low subgroups.

The K-M curve further demonstrated that OS patients with higher

CRP scores had considerably worse OvS times (Figures 4G, H).
3.5 Correlation analysis between CRP
score and malignant biological behaviors

We also carried out a number of functional studies. First, GSVA

analysis indicated that the CRP high subgroup was enriched for

various cancer-promoting pathways, including Wnt/-catenin, TGF-

, and JAK/STAT signaling, which overlapped with Cu ClusterB.

Improvements were made to the TCA cycle-related pathways,

demonstrating the coherence between Cu Clusters and CRP

subgroups. Notably, the CRP high fraction also had activation of

the epithelial-mesenchymal transition (EMT) pathway, suggesting

that samples with poorer prognoses were more likely to develop

distant metastases (Figure 5A).

Additionally, the mRNAsi index was used in connection studies

with CRP results. In contrast to the CRP low subgroup, samples in

the CRP high subgroup showed a considerably higher mRNAsi

index (Figure 5B). Additionally, the TARGET OS dataset revealed a

strong association between CRP score and mRNAsi in every person

(R=0.32, p=0.031, Figure 5C), suggesting that OS samples with

higher CRP values may have more pronounced stemness features.

According to the immune infiltration analysis, a higher CRP score

was linked to immunosuppression (R = - 0.25, p = 0.023; Figure 5D);

while a lower CRP score was linked to a greater stromal score (R = -

0.31, p = 0.017; Figure 5E). The CRP high subgroup was related with

higher infiltration of Macrophages M0, Type 17 T helper cells, and

T cells, according to an examination of infiltration for various immune

cells. The CRP low subgroup, on the other hand, was connected to

enhanced infiltration of Macrophages M2, Regulatory T cell, Central

memory CD8 T cell, and Activated B cell, showing different immune

infiltration patterns in OS patients (Figure 5F and Supplement

Figure 2B). It should be highlighted that the CRP low subgroup

showed increased expression of PDL1, TIM3, and TIGIT

(Supplement Figure 2C). Because immunosuppression and CRP

score are correlated, anti-PD-1/PD-L1 immunotherapeutic medicines

may be more effective for OS patients with lower CRP values.
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3.6 Correlation analysis between CRP
score and malignant biological behaviors

From CCLE, 10 OS cell lines and their expression matrix were

taken. In order to determine the link between the CRP score and the

IC50 for each molecule contained in the GDSC v2 database, we first

calculated the CRP score for these cell lines. The elevated CRP score

was linked to greater resistance to a number of medications,
Frontiers in Oncology 08146
particularly those that target the ERK/MAPK pathway and cell

cycle, as shown in Supplement Figure 3A. Unexpectedly, cell lines

with higher CRP ratings appeared to be more responsive to

AT13148, a medication that blocks PI3K/Akt/mTOR signaling.

To further forecast the pharmacological reactions of samples in

the TARGET OS dataset, we utilized a machine learning system.

Two medications that target the PI3K/mTOR pathway, AZD6482

and AZD8055, were probably more sensitive in OS samples with
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FIGURE 3

Screening of cuproptosis-related genes by DE analysis and WGCNA. (A, B) Results of DE analysis in different Cu_Cluseters; (A) Volcano plot of DEGs;
(B) Heatmap of DEGs. (C–F) WGCNA analysis for DEGs to identify gene module that was most correlated with Cu_Clusters; (G, H) Pathway
enrichment analysis for hub genes obtained from WGCNA; (G) Molecular function analysis of WGCNA hub genes in GO (H) Pathway enrichment
analysis of WGCNA hub genes in KEGG.
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higher CRP scores, as demonstrated in Supplement Figure 3B and

Supplement Figure 2D. Additionally, samples with high CRP values

responded more favorably to linsitinib targeting IGF1R.

In light of the aforementioned findings, treating patients with

high CRP scores who were thought to have bad prognoses may

involve targeting PI3K/Akt/mTOR signaling. Contrarily, drugs that

target the cell cycle and Wnt signaling pathways are frequently

ineffective against patients with high CRP values. Given that most

first-line chemotherapeutics for OS used cell cycle inhibition as
Frontiers in Oncology 09147
their primary mechanism of action, the CRP score model may also

be able to predict clinical chemoresistance in OS patients.
3.7 Pan-cancer analysis on model genes

The expression pattern of model genes in pan-cancer is shown

in Figure 6A. BTBD10, DLX1, MRTFA, PLCD3, and RFX3 were

highly expressed in PRAD, COAD, LUSC, HNSC, and KIRC. The
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FIGURE 4

Construction and validation of CRP score model. (A, B) RSF model training and variable selection; (A) error rate trends as the number of trees
increased when training RSF model; (B) Variable importance of selected features. (C) Correlation of expression in 5 genes that RSF selected to
train CRP score model. (D–F) Time-dependent ROC curve to test the predictive ability of CRP score for OS patients in TARGET_OS train set (D),
test set (E), as well as GSE21573 external validation set (F). (G, H) K-M curve of CRP scores high and low subgroups for patients’ overall survival in
TARGET_OS (G) and GSE21573 (H) datasets.
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somatic mutation frequency of model genes is shown in Figure 6B.

BTBD10, DLX1, MRTFA, PLCD3, and RFX3 had relatively high

mutation rates in UCEC and SKCM. The somatic mutation

landscape of model genes is shown in Figure 6C. BTBD10 (43%),

PLCD3 (27%), and RFX3 (24%) were frequently mutated in

pan-cancer.

The heterozygous CNV profiles (amplification and depletion)

of model genes are shown in Figure 7A. The homozygous CNV

profiles (amplification and depletion) of model genes are shown in

Figure 7B. Pathway analysis revealed that PLCD3 was related to

activated apoptosis, EMT, hormone AR, hormone ER, PI3K/Akt,

RAS/MAPK, RTK, and TSC/mTOR (Figure 7C). The miRNA

regulation network of model genes is shown in Figure 7D.
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3.8 In vitro validation on PLCD3

The tumor-promoting activity of PLCD3 was investigated by in

vitro tests since it is a crucial gene in the CRP score. Three si-RNA

significantly reduced the relative RNA expression of PLCD3 in the

NC and three si-RNA groups, according to a q-PCR experiment

(Figure 8A). Figure 8B displays the statistical analysis of the cell

counts in the NC and two si-RNA groups using the Transwell test.

Figure 8C illustrates the statistical analysis of the proliferation rate

(EdU/DAPI) in the NC and two si-RNA groups. Transwell assay

representative photos of the cell counts in the NC and two si-RNA

groups (Figure 8D), showing that the number of migrated cells was

dramatically decreased in the two si-RNA groups. Typical pictures
A B

D E

F

C

FIGURE 5

Correlation analysis between CRP score and malignant biological behaviors. (A) GSVA analysis showed diverse enriched pathways between
CRP_high and CRP_low subgroups. (B, C) mRNAsi index analysis revealed differences in stemness properties between CRP_high and CRP_low
subgroups and a significant correlation between CRP_score and mRNAsi. (D, E) ESTIMATE analysis for the correlation between CRP_score and
immune cell infiltration as well as a stromal component in samples of the TARGET_OS dataset. (F) ssGSEA for the infiltration analysis of 29 types of
immune cells in CRP_high and CRP_low subgroups *P < 0.05; **P < 0.01; ***P < 0.001.
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of the proliferation rate in NC (EdU/DAPI). Examples of the

proliferation rate (EdU/DAPI) in the NC and two si-RNA groups

by EdU test are shown in Figure 8E, where the positively stained

cells in the two si-RNA groups were dramatically decreased.
3.9 Immunotherapy prediction of PLCD3

Figure 9A depicts the expression of PLCD3 in immunotherapy

cohorts of responders and non-responders, with responders

exhibiting higher expression of PLCD3 in the Lauss cohort of

2017 and Kim cohort of 2019. Regarding the two groups’ PLCD3

expression in immunotherapy cohorts, a survival analysis was

carried out (Figure 9B). In the VanAllen cohort of 2015 and the
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Cho cohort of 2020, PLCD3 was linked to improved survival; in the

Kim cohort of 2019, the Nathanson cohort of 2017, and the Lauss

cohort of 2019, PLCD3 was linked to worse survival. In eight

immunotherapy cohorts, PLCD3 demonstrated strong predictive

power for immunotherapy response (Figure 9C).

Figure 10A illustrates the relationship between PLCD3 and T

dysfunction value (core dataset), normalized Z score calling from

Cox-PH regression (immunotherapy datasets), normalized Z score

calling from selection log2FC (CRISPR screening datasets), and

normalized expression value from immune-suppressive cell types.

PLCD3 had an AUC greater than 0.5 in ten immunotherapy cohorts

with regard to its predictive value (Figure 10B). In seven mouse

cohorts, the cytokine treatment prediction revealed that PLCD3

could strongly predict the treatment with cytokines (Figure 10C). In
A
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FIGURE 6

(A) Pan-cancer expression pattern of model genes. (B) Pan-cancer SNP analysis on model genes. (C) Pan-cancer SNP landscape on model genes.
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two mouse cohorts, the immunotherapy prediction demonstrated

that PLCD3 could accurately predict immunotherapy (Figure 10D).
3.10 Protein interaction network, illness
network, and pan-cancer immune
infiltration pattern of PLCD3

PLCD3 was found to interact with ITRP3, ITPR1, PRKCA, and

PIP4K families by STRING (Figure 11A). PLCD3 was involved in

hypertension, cutaneous melanoma, and breast adenocarcinoma by

Open Targets Platform (Figure 11B). PLCD3 positively correlated

with macrophages and negatively correlated with T cells in most

cancers by TIMER (Figure 11C).
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4 Discussion

Cuproptosis is a recently identified type of programmed cell

death. Little is currently known about this unique, mitochondrial-

dependent mechanism, however Peter T. et al. This work provides a

preliminary description of the regulatory environment of

cuproptosis-related pathways in osteosarcoma based on the

available information. Some key findings may serve as an

inspiration for work on OS and many other pathological

conditions. First, it is found that OS patients have a poor

prognosis and high FDX1 expression. FDX1 was first discovered

as a mitochondrial electron transporter for cytochrome P450

metabolism (22, 23). Some sporadic studies identified FDX1 as a
A
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FIGURE 7

(A) The heterozygous CNV profiles (amplification and depletion) of model genes. (B) The homozygous CNV profiles (amplification and depletion) of
model genes. (C) Pathway analysis related to PLCD3. (D) The miRNA regulation network of model genes.
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tumorigenesis regulator. In xenograft models of multi-tumors,

Tsvepkov P et al. (24) proved that FDX1 worked as an oncogene

rescuing elesclomol-induced cell death. Zhang Y et al. (25) found

that FDX1 could regulate iron metabolism and mitochondrial

homeostasis in tumor cells through the p53 pathway. Our work

may inspire more research on FDX1 as a key element in cuproptosis

and an oncogene to control the pathogenesis of OS because no

studies on the association between FDX1 and OS have been located.

Our study has also thoroughly examined the regulatory

pathways connected to cuproptosis and its potential roles in OS.
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Cuproptosis gene up-regulation resulted in the enrichment of a few

well-known cancer-promoting pathways, including TGF-, Wnt/-

catenin, and p53 signaling. These results might offer suggestions for

further experiments on cuproptosis regulation pathways.

Additionally, we discovered that cuproptosis may also generate an

immunosuppressive state and CSLC characteristics. Ferroptosis and

cuproptosis have certain molecular commonalities in several types

of programmed cell death. Both were correlated with the reduction

of metal ions and redox metabolic pathway mediated by GSH/

NADPH in mitochondria (26, 27). Some recent studies have
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FIGURE 8

The tumor-promoting role of PLCD3. (A) The relative RNA expression of PLCD3 in NC and three si-RNA groups by q-PCR assay. (B) Statistical
analysis of the cell counts in NC and two si-RNA groups by Transwell assay. (C) Statistical analysis of the proliferation rate (EdU/DAPI) in NC and two
si-RNA groups by EdU assay. (D) The cell counts in NC and two si-RNA groups by Transwell assay. (E) The proliferation rate (EdU/DAPI) in NC and
two si-RNA groups by EdU assay. **, P<0.01; ***, P<0.001; ****, P<0.0001.
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suggested that CSLCs might be sensitive to ferroptosis due to their

relatively strong dependency on nutrition intake and higher

intracellular levels of metal trace elements to maintain their self-

renewal (28, 29). For tumor immunology, ferroptosis might also

play a crucial role in regulating T cells. Ferroptosis induction in

CD8+ and CD4+ T cells could lead to phospholipid hydroperoxide

and impair its antitumor function (30, 31). These results are in line

with our research, which show that cuproptosis-regulated gene

activation is positively correlated with a higher mRNAsi
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index and an increase in the infiltration of immunosuppressive

cells. Therefore, it is encouraging that future studies will

concentrate on controlling cuproptosis in CSLCs and

tumor microenvironments.

Our study identified five cuproptosis-related prognostic genes

and built a reliable prognostic predicting model (CRP score model)

based on them using a number of bioinformatic and machine

learning methods. Our search revealed that studies on the role of

these five genes, except MRTFA and RFX, in the etiology of OS had
A B

C

FIGURE 9

Immunotherapy prediction of PLCD3. (A) The expression of PLCD3 in responders and non-responders in immunotherapy cohorts. (B) Survival
analysis was performed on the two groups regarding PLCD3 expression in immunotherapy cohorts. (C) The ROC curve of PLCD3 in predicting
immunotherapy response in immunotherapy cohorts.
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yet to be published. Matrix stiffness regulates EMT via cytoskeletal

remodeling and MRTFA translocation in osteosarcoma (32).

MRTFA is strongly associated with cell viability of its correlation

with cytoskeleton and actin (33). It has been identified as an EMT

and metastasis regulator in NPC (34) and NSCLC (35). BTBD10

functions as an activator of AKT family members by inhibiting

PPP2CA-mediated dephosphorylation, and a few studies have
Frontiers in Oncology 15153
identified it as a prognostic risk factor in hepatocellular

carcinoma (36) and glioma (37). DLX1 serves as a two-sided

transcriptional regulator of the TGF-b superfamily that may be

either an oncogene or a suppressor in different types of tumors (38,

39). PLCD3 is a member of the phospholipase C family, which

catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate to

generate the second messenger diacylglycerol and inositol 1,4,5-
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FIGURE 10

Immunotherapy prediction of PLCD3. (A) Regulator prioritization performed by TIDE. (B) Biomarker evaluation by TIDE. (C) Cytokine treatment
prediction by TISMO. (D) Immunotherapy prediction by TISMO.
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trisphosphate (IP3) (40). PLCD3 is involved in the proliferation,

migration, and invasion of nasopharyngeal carcinoma (41). PLCD3

inhibits apoptosis and promotes thyroid cancer’s proliferation,

migration, and invasion via the Hippo pathway (42). As PLCD3

was not studied in osteosarcoma, the in vitro validation was

performed on PLCD3. PLCD3 could facilitate the proliferation

and migration of osteosarcoma. p53 could directly regulate target

genes, including MDM2, TP53I3, and RRM2B, or indirectly

regulate numerous further genes through several hub genes,

including EHF and RFX, through various drug treatments in

osteosarcoma (43). RFX3 is a transcription factor that is essential

for the differentiation of nodal monocilia (44). It has been reported

that these two genes may also be involved in malignant biological

behaviors of cancers (42, 45), but the mechanisms are poorly

understood. Given that drug responses were predicted for OS
Frontiers in Oncology 16154
patients with varying CRP scores, this 5-gene prognostic model is

not only deserving of exploration of their mechanism in cuproptosis

regulation and OS tumorigenesis/progression but also potential for

translational medical outcomes, particularly for the future targeted

therapy targeting PI3K/AKT/mTOR signaling, as compounds

targeting this pathway could remain highly sensitive in patients

with high CRP scores (poor prognosis).

We had to acknowledge that this study has limitations as

researchers in the fields of bioinformatics and machine learning.

Since OS is a relatively uncommon tumor, it is challenging to gather

WGS data, and the sample size is modest when compared to other

cancer types. The TARGET database provided by GDC has to have

certain types of data, including SNP, copy number variation, and

protein expression profiling, completed or accessible. These flaws

likely decreased the power of statistical tests throughout the study,
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FIGURE 11

(A) The PLCD3 protein interaction network. (B) The PLCD3 illness network. (C) PLCD3’s pan-cancer immune infiltration pattern.
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particularly for machine learning-related studies like ridge

regression and random survival forests. In a summary, our study

demonstrated the distinctive cuproptosis regulatory gene

expression profiles in osteosarcoma patients. It revealed some

fresh information on the connections between this recently

discovered kind of PCD and cancer-related pathways, stemness

features, and immune infiltration traits. A scoring model based on

cuproptosis-related clustering may have a significant impact on OS

patient prognosis prediction and may influence clinical

chemotherapy regimen selection and the creation of novel

targeted medications.
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FIGURE S1

Workflow diagram of this study.

FIGURE S2

Figure S2 (A) The expression of immune cells in two Cu Clusters. (B) The
expression of immune cells in two CRP score groups. (C) The expression of

checkpoints in two CRP score groups. (D) The correlation of drug response

and CRP score.

FIGURE S3

Figure S3 Pharmacogenomics Analysis of CRP score. (A) Signaling pathways

targeted by drugs resistant or sensitive to CRP_score in OS cell lines; (B)
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Background: Since its discovery, clear cell renal cell carcinoma (ccRCC) has

been the most prevalent and lethal kidney malignancy. Our research aims to

identify possible prognostic genes of ccRCC and to develop efficient prognostic

models for ccRCC patients based on multi-omics investigations to shed light on

the treatment and prognosis of ccRCC.

Methods: To determine a risk score for each patient, we screened out

differentially expressed genes using data from tumor samples, and control

samples mined from The Cancer Genome Atlas (TCGA) and GTEx datasets.

Somatic mutation and copy number variation profiles were analyzed to look for

specific genomic changes connected to risk scores. To investigate potential

functional relationships of prognostic genes, gene set variation analysis (GSVA)

and gene set enrichment analysis (GSEA) were carried out. We created a

prognostic model by fusing risk ratings with other clinical variables. For

validation, the 786-O cell line was used to carry out the dual-gRNA approach

to knock down CAPN12 and MSC. This was followed by qRT-PCR to verify the

knockdown of CAPN12 and MSC.

Results: For ccRCC, seven predictive genes were discovered: PVT1, MSC,

ALDH6A1, TRIB3, QRFPR, CYS1, and CAPN12. The most enriched pathways in

the GSVA study and GSEA analysis promote tumorigenesis and immune system

modulation. The risk score derived from prognostic genes corresponds with

immune infiltration cells and helps predict how well a medicine will work. The

mutation of numerous oncogenes was also linked to a high-risk score. A

prognostic model with a high ROC value was created for the risk score. An in

vitro study demonstrates that the suppression of CAPN12 and MSC dramatically

reduced the ability of 786-O cells to proliferate in the CCK-8 proliferation assay

and plate clonality assays.
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Conclusions: A thorough prognostic model with good performance has been

developed for ccRCC patients using seven prognostic genes that were

discovered to be related to ccRCC prognosis. In ccRCC, CAPN12 and MSC

were significant indicators and would make good therapeutic targets.
KEYWORDS

ccRCC, prognostic model, immune infiltration, somatic mutation, cell proliferation
Background

Kidney cancer has long been a common malignant tumor in the

urinary system, with an increasing incidence rate worldwide. In the

USA, 65,000 individuals are newly diagnosed with kidney cancers

per year (1). Among all kinds, clear cell renal cell carcinoma

(ccRCC) accounts for approximately 80% of kidney cancers,

which also correlates with worse survival outcomes (2). Although

the 5-year overall survival (OS) of patients with early diagnosis of

ccRCC is about 90%, the 5-year OS for patients diagnosed at an

advanced stage is down to 12% (3). Unfortunately, almost 20% of

cases are in advanced malignant stages when diagnosed (4).

Regarding treatment, nephrectomy continues to be the optimal

approach for localized ccRCC. A phase 3 clinical trial has proved

that nephrectomy with adjuvant chemotherapy increased the

progressive free survival (PFS) of ccRCC patients to 6.8 years

compared with nephrectomy alone (5.8 years) (5). Although

chemotherapy is a good option for multiple cancer types, ccRCC

shows resistance to chemotherapy via secreting vascular endothelial

cell growth factor (VEGF) (6). Other molecules, such as the

mammalian target of rapamycin (mTOR) and the mitogen-

activated protein kinase (MAPK), have also been demonstrated to

be involved in the carcinogenesis of ccRCC and dampen the

effectiveness of chemotherapy (7, 8).

Recently, immunotherapies combined with conventional

surgical resection and radiotherapy have gradually improved the

clinical management of ccRCC (9). However, the mortality rate of

ccRCC remains high due to diagnostic difficulty at the early stage of

the disease. Thus 30% of patients inevitably would suffer from

tumor recurrence and progression (9). Combining ccRCC

prognostic genes, researchers have built some predictive models

for ccRCC patients based on online databases, such as The Cancer

Genome Atlas (TCGA), with many genetic ccRCC samples.

However, no prognostic model of ccRCC has been widely
a; DEGs, Differentially

A, Geneset enrichment

an target of rapamycin;

itogen-activated protein

dney Renal Clear Cell
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accepted. Thus, a risk stratification model identifying ccRCC-

related biomarkers and assessing the prognosis of ccRCC patients

is urgently needed. In this study, we present a ccRCC prognostic

model after mining and screening multiple predictive genes from

the TCGA dataset, aiming to shed light on optimizing the clinical

management of ccRCC patients.
Materials and methods

Datasets and preprocessing
We gathered two cohorts of patients with ccRCC for this study:

GSE29609 (microarray) from the platform (GPL1708) and TCGA

Kidney Renal Clear Cell Carcinoma (KIRC) (RNA-seq) cohort. Raw

data from the microarray dataset generated by Agilent was

downloaded from the Gene Expression Omnibus (GEO) (https://

www.ncbi.nlm.nih.gov/geo/). Gene expression profile induced by

Illumina and corresponding clinical information were downloaded

from The Cancer Genome Atlas (TCGA) data source (https://

xena.ucsc.edu). Raw data for the dataset from Agilent were

processed using the RMA algorithm for background adjustment in

the limma software package. The raw data from Illumina was

processed using the lumi software package (10). For the TCGA

cohort, RNA-sequencing data (FPKM values) were transformed

into transcripts per kilobase million (TPM) values that are more

similar to the values from the microarray. Samples without survival

information were eliminated, 528 KIRC samples in TCGA were

screened out for the risk score construction, and 39 KIRC samples in

GEO were screened out for external validation of the risk score. One

hundred standard pieces were downloaded from https://

xenabrowser.net/datapages/?cohort=TCGA%20TARGET%

20GTEx&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu

%3A443, among which 28 regular renal models were from the GTEx

database (https://xena.ucsc.edu), and 72 normal renal samples were

from the TCGA database (https://xena.ucsc.edu). These 100 normal

samples were already combined, so removing the batch effect was

unnecessary. The TCGA KIRC cohort was randomly divided into

two equal parts: the train set (set 1) and the validation set (set 2). The

total TCGA KIRC data were used as another verification set (set 3),

while the GEO cohort was used as the external validation set in the

following studies (set 4).
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Identification of differentially expressed
genes in KIRC

Probes without corresponding gene symbols were filtered out,

and the average value of gene symbols with multiple searches was

calculated. Between the two groups, the Linear Models for

Microarray Data Analysis (limma) package (10) was used to

screen the differentially expressed genes (DEGs). Threshold values

were set as adjusted P<0.05 and the absolute value of logFC> 2. A

principal component analysis was also applied to categorize the data

further to assess the DEGs’ accuracy.
Screening and confirmation of the
prognostic value of the genes

By intersecting the obtained differential expressed gene with the

genes of TCGA, genes for further analysis were obtained. In the

training set (set 1), univariate Cox proportional hazard regression

analysis was performed using the survival package in R to

investigate the relationship between patients’ overall survival (OS)

and gene expression level. Genes were considered significant with

prognostic potential at a P-value<0.05. Next, we applied an L1-

penalized (Lasso) regression to identify the differentially expressed

genes with independent predictive values. Lasso regression is a

valuable method to determine interpretable prediction rules in high

dimension data (11). We obtained a set of prognostic genes and

their corresponding LASSO coefficients based on the highest

lambda value selected through 1,000 cross-validations in the

Lasso method (lambda.1se). To evaluate whether the selected

genes were related to the prognosis of KIRC patients, patients of

set 1 were assigned into two groups based on the median expression

value of each gene. Kaplan-Meier plots were used to determine their

prognostic value, and P<0.05 was considered statistically significant.

A genes-based survival risk assessment model was established using

the LASSO coefficients. Then, patients were divided into low-risk

and high-risk groups using the median risk scores in the other three

sets. Kaplan-Meier plots and Log-rank tests were used to estimate

and compare the OS of patients between the two risk groups; P<0.05

was set as the cutoff. The time-dependent receiver operating

characteristic (ROC) curve and the area under the curve (AUC)

were applied to evaluate the prediction accuracy of the risk model

and the selected genes. Furthermore, stratified survival analyses

were also conducted to explore whether the gene-based risk

assessment model has predictive value among different age groups

(older or younger than 60), primary tumor lesions (T1, T2, T3, T4),

and stage (stage I, stage ii, stage iii, stage iv).
Consensus clustering of prognostic genes

To investigate the function of seven prognostic genes in KIRC, we

clustered the KIRCs into different groups with “ConsensusClusterPlus”

(50 iterations, resample rate of 80%, and Pearson correlation). PCA
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with the R package for R v3.4.1 was adopted to study the gene

expression patterns in different KIRC groups.
Genomic alterations of samples clustered
by risk scores

To determine whether risk score levels are associated with

specific genomic characteristics in ccRCC, we performed copy

number variation (CNV) and somatic mutation analysis using the

TCGA dataset. GSITIC analysis was adopted to determine the

genomic event enrichment.
Prognostic model based on clinical
features and risk score

Univariate Cox proportional hazard regression analysis was

performed using the survival package for the risk score and clinical

features (Age, Tumor primary lesion, Stage) with a P value <0.05 as the

cutoff. Then we built a Multivariate Cox model based on the selected

features, and the Nomogram chart was drawn using the replot package.

The Calibration curve and the AUC assessed the risk model.
Gene set variation analysis and geneset
enrichment analysis

The gene set variation analysis (GSVA) and geneset enrichment

analysis (GSEA) packages were used to calculate the enrichment

status in Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) terms of TCGA samples. Correlation

analysis was performed by expression values of risk score, GO

terms, and KEGG terms. The items with p<0.05 and a high

correlation coefficient were selected (12).
Immunological function analyses

A single sample gene set enrichment analysis (ssGSEA) was

performed using R software to quantify 28 tumor-infiltrating

immune cells (Foroutan et al., 2018). Correlation analysis between

risk score and tumor-infiltrating immune cell expressions was

performed using gene expression profiles from the TCGA datasets.
Prediction of chemotherapeutic and
immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE)

algorithm was performed to infer individual responses to

immunotherapy, such as immune checkpoint blockade (e.g., anti-

PD-1 therapy). The submap analysis was applied to show the

difference in response to anti-PD-1 and CTAL-4 therapy (13). The

chemotherapeutic response for each ccRCC patient was predicted

according to the public pharmacogenomic database, Genomics of
frontiersin.org

https://doi.org/10.3389/fonc.2023.1161666
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xia et al. 10.3389/fonc.2023.1161666
Drug Sensitivity in Cancer (GDSC, www.cancerrxgene.org). The

prediction of drug sensitivity (IC50) values was conducted using

the R package “prophetic” (14).
CAPN12 and MSC knockdown

Knockdown plasmids were constructed by the dual-gRNA

method (15), targeting CAPN12 and MSC. Vectors without

specific gRNAs were used as control. All PCR products were

verified by DNA sequencing. Transfection of plasmids was carried

out using Lipofectamine 2000 (Invitrogen, USA) according to the

manufacturer’s instructions. After the transfection, cells were

seeded and grown in the RPMI-1640 supplemented with 5% FBS.

Then 786-O cell clones were picked, and the expression of CAPN12

and MSC were validated by qRT-PCR. Plate clonality assays were

also used to measure the impact of knockdown on cell clonality and

cell cycle in the 786-O cell line after silencing CAPN12 and MSC.
Quantitative real-time polymerase
chain reaction

Three biological replicates were analyzed, with technical

replicates for each triplicate biological sample. Total RNAs were

extracted, reversed, and transcribed into cDNA by HiScript Q RT

SuperMix for qRT-PCR. ChamQ SYBR qRT-PCR Master Mix was

used for qRT-PCR experiments, and its protocol was as follows: 95°

C 30 s, 95°C 10 s, 60°C 30 s, for a total of 40 cycles reactions. The

expression level of target genes was quantified using the 2-DDCT
method. GADPH was used as the internal standard. The primers

are as follows: CAPN12, 5’-CTCCATTTCGACACCGTGCAG-3’,

5’-GAGTTGAAGCCACGCACCCA-3’; MSC, 5’-CAACTCG

TAGTCCACGCTCC-’3, 5’-TAAAAACCCAGGCCGGGAAG-3’.
Cell proliferation assay

Cell Counting Kit-8 (CCK-8) proliferation assay was conducted

to assess the proliferation ability of cells according to the

manufacturer’s instructions. After cell counting, 1×104 cells were

seeded into 96-well plates and incubated at 37°C for 24 h, 48 h, and

72 h. ten mL CCK-8 reagent was added into each well, and the

absorbance at 450 nm was tested one h later.
Colony forming assay

Cells were digested and plated in 6-well plates (300 cells per

well) and cultured with 5% CO2 at 37C for two weeks. The colonies

were then fixed with 4% methanol (1 ml per well) for 15 minutes

and stained with crystal violet for 30 minutes at room temperature.
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After the photograph, discoloration was performed with 10% acetic

acid, and cells were measured absorbance at 550 nm.
Statistical analysis

All statistical analyses were performed using R software. A two‐

tailed t-test and one‐way ANOVA determined significant quantitative

differences between and among groups. The chi-square test was used to

analyze the correlation of the classified data. The Kaplan–Meier

method calculated the overall survival difference. Cox regression

analysis was performed using the survival package in R. Spearman

correlation to measure the strength of the association between two

ranked variables. The gene sets enrichment analysis (GSVA) box was

used to calculate the enrichment status in GO (Biological Process) (12).

The R package survival ROC was used to plot and visualize receiver

operating characteristic (ROC) curves to calculate the area under the

curve (AUC) (16). All figures and statistical analyses were performed

based on R language for Windows, version 3.5.1(http://www.r-

project.org). Somatic mutations and somatic copy number

alternations (CNAs) data were downloaded from the TCGA

database. Copy number alternations associated with risk scores were

analyzed using GISTIC 2.0 (https://gatkforums.broadinstitute.org).

Adjusted P values were obtained by False Discovery Rate (FDR)

correction. P values and adjusted P values of less than 0.05 were

considered statistically significant.
Results

Data preprocessing and DEGs screening

The flow chart of this study is shown in Supplementary Figure

S1A. After mining the data in the GTEx and TCGA databases, 528

KIRC and 100 normal samples were gathered and clustered to

screen for differentially expressed genes between cancer and normal

tissue. With a threshold of logFC>2 and adjust P ≦0.05, 594 genes

(Table S1) were found to be differentially expressed, among which

227 genes were up-regulated, and 367 genes were down-regulated

(Figure 1A). Those DEGs in KIRC and normal tissue can be

separated by PCA (Figure 1B). The heatmap shows that the

DEGs effectively separate KIRC and normal tissue (Figure 1C).
Development of the risk score with TCGA
train set

To calculate the risk score, five hundred twenty-eight samples from

TCGA were randomly separated into 264 and 264. In the train set

containing 264 patients, lasso regression was adopted to analyze the

data. After multiplying gene expression with LASSO coefficients, we

came to seven prognostic genes: PVT1, MSC, ALDH6A1, TRIB3,

QRFPR, CYS1, and CAPN12 (Table S2). The risk score was then
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calculated for patients using seven prognostic genes between high and

low-risk groups set at the median value (Figure 1D).

Risk score=0.0009* PVT1 (gene expression level) + 0.0015*MSC + -

0.0029*ALDH6A1 + 0.0022*TRIB3 + -0.0003*QRFPR +-

0.0038*CYS1 + 0.0011* CAPN12. The calculated risk score ranged

from -0.875 to 0.733 and had a median value of -0.007, in which the

patients were grouped into a high-risk group and a low-risk group

based on the median value of the risk score. In the train set, the high-

risk and low-risk groups presented significantly different survival

probabilities (Figure 1E) with an AUC of 0.758 in the time-

dependent ROC curve at five years (Figure 1F).
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Validation of the risk score with TCGA and
GEO data

The Risk Score was calculated in the test set (Figure 2A). With

the cutoff of risk score, survival probability between the high and

low-risk score groups is statistically significant (P<0.001) with an

AUC value of 0.716 (Figures 2B, C). When summed up, the risk

score was further calculated with a P value of less than 0.001

between high and low-risk score groups and an AUC of 0.833

(Figures 2D–F). The model was then tested using GEO data in

microarray GSE29609 from platform GPL1708. The difference
A B
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FIGURE 1

Differentially expressed genes (DEGs) screening and localization. (A) Volcano plot for DEGs with adjusted P values (FDR correction) less than 0.05.
(B) Principal component analysis (PCA) to validate screening results. (C) Heat map result for DEGs screening. (D) Risk scores in the Cancer Genome
Atlas (TCGA) train set, patient survival, and expression of 7 DEGs in the train set. (E) Risk score and patients’ survival probabilities in the TCGA train
set. (F) Receiver operating characteristic curve (ROC) of the risk score in the TCGA train set.
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between high and low-risk score groups in GEO data analysis was

also statistically significant (P=0.037) with an AUC of 0.833

(Figures 2G–I). All model evaluation was based on time-

dependent ROC at five years.
Genomic alterations and gene set
enrichment analyses

To determine whether risk score levels were associated with

specific genomic characteristics, we performed CNV and somatic

mutation analysis using the TCGA dataset (Table S13). In high-

score samples, frequently amplified genomic regions included

oncogenic driver genes such as RSRC1 (3q25.32, p<0.001),

SLC2A9 (4p16.1, p<0.001), EXOC2 (6p25.3, p<0.001), EGFR

(7p11.2, p<0.001), and ERC1 (12p13.33, p<0.001) (Figure 3A). In

contrast, deleted regions contained tumor suppressor genes
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including PTENP1 (9p13.3, p<0.001), FAM138C (9p24.3,

p<0.001), and OR4K15 (14q11.2, p<0.001) (Figure 3A). In low-

score samples, most amplified and deleted genomic regions were

similar to those in high-score models. Analysis of somatic mutation

profiles based on risk score levels revealed a high frequency of

mutations in SETD2 (19%, p < 0.001), BAP1 (17%, p < 0.001), and

KDM5C (10%, p < 0.01) in the high-score group (n = 166)

(Figure 3B; Table S14). Genomic event enrichments were

identified in either the low-score or high-score groups,

respectively (Figure 3B).
Consensus clustering of seven
prognostic genes

Consensus clustering of the seven prognostic genes identified

three clusters of KIRCs in the TCGA dataset with distinct clinical
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FIGURE 2

Risk score validation. (A) Risk scores in the TCGA test set, patient survival, and expression of 7 DEGs in the test set. (B) Risk score and patients’
survival probabilities in the TCGA test set. (C) The ROC of risk scores in the TCGA test set. (D) Risk scores in the TCGA sum set, patient survival, and
expression of 7 DEGs in the sum set. (E) Risk score and patients’ survival probabilities in the TCGA sum set. (F) The ROC of the risk scores in the
TCGA sum set. (G) Risk scores in the Gene Expression Omnibus (GEO) validation set, patient survival, and expression of 7 DEGs in the validation set.
(H) Risk scores and patients’ survival probabilities in the GEO validation set. (I) The ROC of risk scores in the GEO set.
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outcomes, clinical features, and pathological features (Figures 4A,

B). In the TCGA dataset, according to the expression similarity, k=3

was selected with clustering stability rising from k=2 to 10 in the

TCGA dataset since the consensus cumulative distribution function

(CDF) curve was flattest at k=3. Thus, consensus and cluster
Frontiers in Oncology 07163
confidence are also maximal at this k (Figure 4C). The Venn

diagram further showed the DEGs among three clusters

(Figure 4D). Among the three groups, survival probability is

distinctively separated (Figure 4E), which was also confirmed by

PCA (Figure 4F).
A

B

C

FIGURE 3

Genomic alterations in score low vs. high clusters and DEGs expression in cell lines. (A) Copy number variation (CNV) profile in the low score group
and CNV profile in the high score group. (B) Genomic event enrichment in the low score cluster and genomic event enrichment in the high score
cluster. (C) Kaplan-Meier overall survival (OS) of patients and expression level of seven prognostic genes.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1161666
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xia et al. 10.3389/fonc.2023.1161666
Gene set variation analysis and geneset
enrichment analysis

To further explore the function of seven prognostic genes,

GSVA was conducted using TCGA data (Tables S3, S4). The

most enriched GO functions are the regulation of the Wnt

signaling pathway, regulation of MAPK cascade, regulation of

apoptotic signaling pathway, base excision repair gap filling,

positive regulation of T cell apoptotic process, etc. (Figure 5A).

Analyses in KEGG pathways revealed that systemic lupus
Frontiers in Oncology 08164
erythematosus, linoleic acid metabolism, regulation of autophagy,

Notch signaling pathway, MAPK signaling pathway, Wnt signaling

pathway, apoptosis, ERBB signaling pathway, and mTOR signaling

pathway were correlated with the seven prognostic genes

(Figure 5B). GSEA (Tables S5, S6) further confirmed that the

seven predictive genes were enriched in GO pathways such as

cytokine activity, humoral immune response, regulation of

apoptotic signaling pathway, regulation of Wnt signaling

pathway, regulation of signal transduction by p53 class mediator,

ERBB signaling pathway, and regulation of Notch signaling
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FIGURE 4

Consensus clustering and overall survival in three subgroups. (A) Consensus clustering cumulative distribution function (CDF) for k=2 to 10 in TCGA
data. (B) Relative change in area under CDF curve for k=2 to 10. (C) Consensus matrixes of TCGA for each k=3. (D) Venn plots the two DEGs groups
(E) Kaplan-Meier overall survival (OS) curves using TCGA data. (F) PCA results for two groups of patients.
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pathway (Figure 5C). As for KEGG pathways, seven prognostic

genes were enriched in the ribosome, MAPK signaling pathway,

Wnt signaling pathway, apoptosis, ERBB signaling pathway, and

Notch signaling pathway (Figure 5D). The dot plot of GO and

KEGG enrichment analysis (Tables S7, S8) further revealed that

high risk scores were associated with regulation of extrinsic

apoptotic signaling pathway, epithelial cell apoptotic process,

BMP signaling pathway, and Wnt signaling pathway in GO

pathways (Figure 5E), while the risk score was enriched in PRAR

signaling pathway, ECM-receptor interaction, arachidonic acid

metabolism, biosynthesis of amino acids and the renin-

angiotensin system in KEGG pathways (Figure 5F). The

correlation between seven prognostic genes and GO pathways

was shown in Supplementary Figure S2B, while the correlation

between seven predictive genes and KEGG pathways was shown in

Supplementary Figure S2C.
Immunological function analyses

The risk scores calculated from prognostic genes are correlated

with immune infiltrating cells in the tumor microenvironment
Frontiers in Oncology 09165
(TME). High-risk scores were significantly associated with the

relative expression levels of macrophage, MDSC, activated CD4 T

cell, activated CD8 T cell, and type 1 T helper cell. In contrast, low-

risk scores were correlated with the relative expression levels of

immature dendritic cells and neutrophils (Figures 6A, B, correlation

> 0.2, P<0.001). Three clusters identified by the seven prognostic

genes were also significantly correlated with regulating immune

cells in TME (Figure S4A). The correlation between seven predictive

genes and immune infiltrating cells was shown in Supplementary

Figure S2A, in which seven genes are highly correlated with

multiple immune infiltrating cells.
Survival impact of prognostic genes

When comparing survival probabilities between patients with

different expression levels of the seven prognostic genes, we found

that high ALDH6A1, CYS1, and QRFPR were associated with worse

overall survival (OS). In contrast, increased expression of CAPN12,

PVT1, MSC, and TRIB3 indicated a better prognosis (Figure 3C).

The time-dependent ROC curve at five years of these seven

prognostic genes was shown in Figure S1B. We next conducted
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FIGURE 5

Gene set variation analysis (GSVA) and Geneset enrichment analysis (GSEA) in the TCGA dataset. (A) Gene Ontology (GO) results based on GSVA in
TCGA dataset. (B) Kyoto Encyclopedia of Genes and Genomes (KEGG) results based on GSVA in TCGA dataset. (C) GO results based on GSEA in
TCGA dataset. (D) KEGG results based on GSEA in TCGA dataset. (E) GO enrichment analyses in TCGA dataset. (F) KEGG enrichment analyses in
TCGA dataset.
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the survival analysis of the risk score. High-risk scores were

associated with worse OS in different age groups, sex, grade, and

stage (Figure S3A). The expression pattern of risk scores in various

prognostic factors was shown in Figure 6B, in which high-risk

scores were significantly correlated with older patients, male
Frontiers in Oncology 10166
patients, KIRC at grade 4, and KIRC at stage iv. We also revealed

that the high-risk scores connected with T4N1M1 KIRC based on

the TNM location (Figure S3B). High-risk scores were also related

to worse disease-specific survival (DSS) and progressive-free

survival (PFS) in the KIRC cohort (Figure S4B). We next verified
A
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FIGURE 6

(A) The heatmap illustrates the association between risk scores and immune infiltrating cells. (B) Correlation between risk score and immune
infiltrating cells. (C) Submap analysis showed that a high-risk score could be more sensitive to the CTLA-4 inhibitor (Nominal p-value = .05 *P<0.05;
**P<0.01; ***P<0.001; ****P<0.0001, ns, not statistically significant). (D) The box plots show the estimated IC50 for PF.02341066, PAC.1, Metformin,
and AS601245 for high-risk scores and low-risk scores.
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the seven prognostic genes in kidney renal papillary cell carcinoma

(KIRP), in which high-risk scores indicated worse OS, DSS, and PFS

in the KIRP cohort (Figure S4C).
Prediction of risk scores for
immunotherapy and chemotherapy

The potential response to immunotherapy in TCGA based on

the TIDE algorithm was evaluated, in which our results showed that

patients with high-risk scores had a better answer to anti-Cytotoxic

T-Lymphocyte Associated Protein (CTLA4) immunotherapy than

those with low-risk scores (Nominal p-value = .05) (Figure 6C).

Considering that chemotherapy is the standard way to treat ccRCC,

we tried to assess the response of patients with different risk scores

to various chemo drugs. We could observe a significant difference in

the estimated IC50 between high-risk scores and low-risk scores for

PF.02341066, PAC.1, Metformin, and AS601245, which low-risk

scores could be more sensitive to commonly administered

chemotherapies (P <.001 for PF.02341066, PAC.1, Metformin,

and AS601245, respectively) (Figure 6D).
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Development of the prognostic model with
TCGA data

The risk score was subsequently validated as an independent

prognostic marker after adjusting for several risk factors, including

age group, primary tumor lesion, and stage in univariate and

multivariate Cox regression analysis concerning OS, DSS, and

PFS (Tables S8, S10, S11. respectively) in the TCGA dataset. The

predictive model we built includes risk score, age group, primary

tumor lesion, and stage (Figure 7A). At both the three-year and five-

year survival, the model had satisfying results in the evaluation

nomogram (Figure 7B). Survival difference between high and low-

risk patients was statistically significant (Figure 7C). In TCGA data,

the AUC at three years is 0.800 and the AUC at five years is 0.788 in

the sensitivity test (Figure 7D).
CAPN12 and MSC suppress cell
proliferation in ccRCC cells

According to the endogenous CAPN12 and MSC expression

level, two independent siRNAs targeting CAPN12 and MSC were
A
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FIGURE 7

(A) Nomogram of the prognostic model. (B) Model evaluation results. (C) OS of patients with high or low overall risks. (D) ROC of the model in
TCGA datasets.
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transfected into the 786-O cell line with relatively high expression of

CAPN12 and MSC. The efficiency of the knockdown of CAPN12

and MSC expression was validated by qRT-PCR (Figure 8A,

p<0.001). It was demonstrated that the proliferative capacity of

786-O cells was significantly repressed by CAPN12 and MSC

knockdown (Figure 8B). Plate clonality assays revealed the

remarkable suppression of cell clonality and cell cycle in the 786-

O cell line after silencing CAPN12 and MSC (Figures 8C, D).
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Pan-cancer analysis on CAPN12 and MSC

To further explore the prognostic value and immune infiltration

pattern of CAPN12 and MSC, pan-cancer samples from TCGA

were used for analysis. CAPN12 (Figure 9A) and MSC (Figure 9B)

were hazardous markers in most cancer types. Besides, CAPN12

(Figure 10A) and MSC (Figure 10B) correlated with the infiltration

of multiple immune cells in most cancer types. These results
frontiersin
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FIGURE 8

(A) qRT-PCR assays for the CAPN12 and MSC levels in 786-O cells transfected with two different siRNAs targeting CAPN12 and MSC (si#1 and is #2),
respectively. Tukey HSD test. *P <.05, **P <.01, ***P <.001, ****P <.0001, ns, not statistically significant. (B) CAPN12 and MSC knockdown cell
proliferation were measured using CCK-8 assay. (C) Plate clonality assays measuring the impact on cell clonality and cell cycle in 786-O cell line
after silencing CAPN12 and MSC. (D) Statistical analysis in plate clonality assay.
.org
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suggested that CAPN12 and MSC could be predictive markers of

prognosis and immune infiltration in cancer.
Discussion

High mortality and recurrence rates have made ccRCC the most

devastating tumor in the urinary system. Previous tic stratification

and treatment strategies studies have focused on investigating single

potential prognostic biomarkers for ccRCC (17–19). However, none

has been immensely satisfying. As high-throughput sequencing and

bioinformatics quickly develop, mining the large volume of genetic

data has been increasingly appealing to researchers. After data

mining, a prognostic model built on genetic profiles of ccRCCs

poses significance in developing a prong.

In this study, specifically, after comparing global gene

expression in ccRCC samples and controls, 594 DEGs were

identified. After univariate and lasso regression analyses, 7 out of

594 DEGs were considered prognostic value: PVT1, MSC,

ALDH6A1, TRIB3, QRFPR, CYS1, and CAPN12. Notably, high

ALDH6A1, CYS1, and QRFPR were associated with worse OS,

while high expressions of CAPN12, PVT1, MSC, and TRIB3

showed statistically significant survival benefits.

Calpains (CAPNs), a family of cysteine proteases, have been

demonstrated to play a critical role in cancer development and

progression and the insufficient response to cancer therapiesStarsky

(20). CAPN12, a gene involved in apoptosis and suppressed by p53,

is the critical determinant of anti-tumor response in

medulloblastoma (21). Long non-coding RNA plasmacytoma

variant translocation 1 (PVT1), up-regulated in various human

cancers, inhibits renal cancer cell apoptosis via up-regulating Mcl-1
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(22) and downregulating miR-16-5p (23). The knockdown of PVT1

induces apoptosis and cell cycle arrest through the epidermal

growth factor receptor pathway (24). Multiple studies have also

proved that PVT1 predicts unfavorable prognosis in patients with

ccRCC (25, 26). MSC, also belonging to the lncRNA family,

activates the Wnt/b-catenin signaling pathway to modulate cell

proliferation and migration in ccRCC via miR-3924/WNT5A (27).

ALDH6A1, regulated by transcription factor HNF4A, has

already been verified in other bioinformatics analyses to suppress

tumorigenic capability in ccRCC and to be a prognostic biomarker

(28, 29).

Tribbles pseudokinase 3 (TRIB3), a member of the mammalian

pseudokinase tribbles family, is involved in multiple biological

processes, including tumor progression. The previous study has

revealed that TRIB3 promoted the proliferation and invasion of

ccRCC via activating MAPK signaling pathway (30).

QRFPR, also named GPR103, activates glutamine RF−amide

peptide (QRFP), is over-expressed in human prostate cancer, and

stimulates the neuroendocrine differentiation and the migration of

androgen-independent prostate cancer cells (31, 32).

CYS1 mutation on chromosome 2p25 has been proven to be a

candidate for recessive cystic kidney disease (33). CAPN12 and

MSC were selected for in vitro gene silencing among the seven

prognostic genes. The cell proliferation assay demonstrated that the

proliferative capacity of 786-O cells was significantly repressed by

CAPN12 and MSC knockdown, revealing the tumorigenic role of

CAPN12 and MSC.

Further geneset variation analysis was conducted in these seven

prognostic genes to explore involved signaling pathways. GO

analysis revealed that predictive genes are primarily enriched in

the Wnt signaling pathway, MAPK cascade, regulation of apoptotic
A B

FIGURE 9

The prognostic value of (A) CAPN12 and (B) MSC in pan-cancer.
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signaling pathway, base excision repair gap filling, positive

regulation of T cell apoptotic process, etc. KEGG pathway

revealed systemic lupus erythematosus, linoleic acid metabolism,

regulation of autophagy, Notch signaling pathway, MAPK signaling

pathway, Wnt signaling pathway, apoptosis, ERBB signaling

pathway, and mTOR signaling pathway were correlated with the

seven prognostic genes. GSEA further confirmed that these seven

predictive genes were involved in the tumor-genic process. All these

results support the significance of predictive genes in ccRCC.
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Hence, risk scores were calculated for each patient based on the

seven prognostic genes. When The high-risk group showed a

significant survival disadvantage when we separated patients

according to the median risk scores contrast, patients with low-

risk scores had better responses to chemotherapy. The risk score

was further validated in the TCGA test set, TCGA sum set, and

GEO data set. High-risk patients showed significantly worse

survival in all data sets than low-risk patients. Before we

developed a prognostic model, consensus clustering was adopted
A

B

FIGURE 10

The immune infiltration pattern of (A) CAPN12 and (B) MSC in pan-cancer.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1161666
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xia et al. 10.3389/fonc.2023.1161666
to evaluate the predictive genes, and the clustering findings

suggested that predictive genes are closely related to survival

probability. Patients with high-risk scores also had infiltrating

immune cell levels similar to those in cluster 2. Given that the

increased risk score group and cluster 2 predicted worse survival,

the validity of these genes was supported from another aspect.

Moreover, the risk score was correlated with immune cell

expression. High-risk scores were significantly associated with the

macrophage, MDSC, activated CD4 T cell, activated CD8 T cell, and

type 1 T helper cell expression.

In contrast, low-risk scores were associated with immature

dendritic cells and neutrophils, which implicates a suppression in

both the innate and acquired immune response system. This finding

would open a gate to targeting the immune system to fight ccRCC.

Though the activated CD4 T cell and activated CD8 T cell

expression increased under such a situation, it could represent

positive feedback from a tumor attack.

Interestingly, when examining the genomic alteration profiles of

low- and high-risk groups, we found that VHL expression was

much higher in the low-risk group. Since VHL plays a tumor-

suppressing role, this connection validates the value of the

calculated risk score from another perspective. However, further

studies are in need to explore the causality in between.

Next, a prognostic model containing risk score, age group,

primary tumor lesion, and stage was developed satisfyingly. The

remarkable ROC value indicates that the predictive model could be

an essential predicting tool. Although ccRCC patient overall

survival is influenced by age group, primary tumor lesion, and

stage, our risk score adds value to disease prognosis independently

by categorizing patients into groups with distinct survival

probability. Notably, the high-risk score was significantly

correlated with male patients, KIRC at grade 4, KIRC at stage iv,

and T4N1M1 based on the TNM location.
Conclusion

Some prognostic models(Wang et al., 2019; Zhang et al., 2019)

focus on various ccRCC prognostic factors, such as DNA

methylation-driven genes and metastasis-associated predictive

genes. However, only some models are acknowledged as a golden

standard due to the complex nature of ccRCC, which leaves much

space for further research. Seven prognostic genes were eliminated

from this study’s analysis of data from two databases (TCGA and

GEO), all of which were most likely to be highly linked with the

onset and progression of ccRCC. We subsequently conducted

extensive investigations to create a full prognostic model for

ccRCC patients, offering a reliable signature for prognosis

prediction and supporting data for drug discovery against these

predictive genes. Although knockdown cell RNA-seq was not

performed to examine expression profiles and the knockout

specificity, qRT-PCR was used to confirm the knockout of

CAPN12 and MSC. Additionally, further investigation based on a

large cohort is required to fully understand the exciting findings
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that T2, T3, and T4 were linked to better outcomes (HR 1). Due to

this limitation, there is still space for additional validation.
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Background: Although lipid metabolism has been proven to play a key role in the

development of cancer, its significance in uveal melanoma (UM) has not yet been

elucidated in the available literature.

Methods: To identify the expression patterns of lipid metabolism in 80 UM

patients from the TCGA database, 47 genes involved in lipid metabolism were

analyzed. Consensus clustering revealed two distinct molecular groups.

ESTIMATE, TIMER, and ssGSEA analyses were done to identify the differences

between the two subgroups in tumor microenvironment (TME) and immune

state. Using Cox regression and Lasso regression analysis, a risk model based on

differentially expressed genes (DEGs) was developed. To validate the expression

of monoacylglycerol lipase (MGLL) and immune infiltration in diverse

malignancies, a pan-cancer cohort from the UCSC database was utilized. Next,

a single-cell sequencing analysis on UM patients from the GEO data was used to

characterize the lipid metabolism in TME and the role of MGLL in UM. Finally, in

vitro investigations were utilized to study the involvement of MGLL in UM.

Results: Two molecular subgroups of UM patients have considerably varied

survival rates. The majority of DEGs between the two subgroups were associated

with immune-related pathways. Low immune scores, high tumor purity, a low

number of immune infiltrating cells, and a comparatively low immunological

state were associated with a more favorable prognosis. An examination of GO

and KEGG data demonstrated that the risk model based on genes involved with

lipid metabolism can accurately predict survival in patients with UM. It has been

demonstrated that MGLL, a crucial gene in this paradigm, promotes the
frontiersin.org01173
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proliferation, invasion, and migration of UM cells. In addition, we discovered

that MGLL is strongly expressed in macrophages, specifically M2

macrophages, which may play a function in the M2 polarization of

macrophages and M2 macrophage activation in cancer cells.

Conclusion: This study demonstrates that the risk model based on lipid

metabolism may be useful for predicting the prognosis of patients with UM.

By promoting macrophage M2 polarization, MGLL contributes to the

evolution of malignancy in UM, suggesting that it may be a therapeutic

target for UM.
KEYWORDS

uveal melanoma (UM), lipid metabolism, cancer prognosis, tumormicroenvironment
(TME), macrophage polarization, monoacylglycerol lipase (MGLL)
1 Introduction

Uveal melanoma (UM) is the most prevalent primary

intraocular malignant tumor and the second most prevalent kind

of malignant melanoma (1), originating in the iris, choroid, and

ciliary body (2, 3). Although UM and cutaneous melanoma are

melanocyte-derived malignant tumors, UM has distinct clinical and

biological characteristics (4). UM, a rare malignancy is most

common in non-Hispanic whites with lighter skin and blue eyes

(5). A recent meta-analysis revealed that the incidence rates in

North America, Europe, and Asia were 5.74 (95% CI: 4.37-7.11), 7.3

(95% CI: 6.36-8.24), and 0.53 (95% CI: 0.31-0.74) respectively (6).

The onset of UM is associated with some risk factors including fair

skin color, light eye color, ability to tan, oculodermal melanocytosis,

nevi, and BRCA1-associated protein 1 (BAP1) mutation (7).

Nowadays, enucleation and radiotherapy—plaque and proton

beam—are the most widely used treatments for UM (8, 9). A

gene expression profile study divided UM patients into two kinds

(low metastatic risk and high metastatic risk) (10). Only 15% of

advanced (metastatic) UM patients have a one-year survival rate,

and median survival varies from 4 to 15 months (11). A

psychological test found that nearly all UM patients desire to

know their survival prognosis at the time the tumor was

diagnosed (12). An increasing number of research have been

focused to elucidate the genetic and pathological mechanisms

involved in UM prognosis, however precise prognostication for

patients is far from unattainable (13, 14). Currently, there is a huge

need to investigate important indicators that can provide

reassurance to patients with a high chance of better survival or

provide counseling, screening, and systemic adjuvant therapy to

patients at high risk (15–17). Consequently, it is imperative to

identify a risk classification strategy and prognostic genes for the

development of personalized therapy for UM patients.

Due to the rapid proliferation of tumor cells and inadequate

blood vessels formation, the tumor microenvironment (TME) is

characterized by hypoxia, high oxidation, acidity, and malnutrition,
02174
therefore tumor cells reshape their microenvironment via multiple

processes including lipid metabolic reprogramming (18, 19) to

sustain unrestricted cell proliferation and survival. Metabolic

reprogramming has been considered a hallmark of cancer for its

ability to adapt TME, and dysregulation of lipid metabolism has been

a focal point of recent research (20), contributing to the progression

of various cancers including glioblastomas, prostate cancer, breast

cancer, hepatocellular carcinoma, pancreatic cancer (21–25).

Numerous studies have demonstrated that alterations in tumor

lipid metabolism led to tumor formation and immunosuppression

in the TME (26). Increasing evidence suggests a significant role of

lipid metabolism in melanoma pathogenesis (27). However, the

function of lipid metabolism-related genes (LMRGs) in

determining the outcome of UM is not well understood.

In this study, we sought to identify key LMRGs associated with

TME in UM and to construct a predictive model for UM. This

project seeks to find novel prognostic indicators and therapeutic

targets as well as clarify the condition of the tumor immune

microenvironment in UM in order to build a molecularly-based

technique for predicting survival and treatment advantages for

UM patients.
2 Methods

2.1 Data collection

The Cancer Genome Atlas (TCGA) provided UM patients’

clinicopathological characteristics and gene expression matrices.

The training cohort included 80 UM patients (28). The validation

cohort (containing 28 cases from GSE84976) was derived from the

Omnibus (GEO) datasets (29). Clinical information included

survival time, survival status, gender, age, tumor grade, and stage.

Missing clinical information samples were eliminated.

LMRGs were chosen from Gene Set Enrichment Analysis

(GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
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databases. GSEA has 17 lipid metabolism-related gene sets, while

KEGG has 16. Table S1 lists GSEA and KEGG gene sets. 1168

LMRGs remained for research after eliminating duplication genes.
2.2 Consensus clustering

The R package “ConsensusClusterPlus” (version 1.54.0) was

used to classify UM patients into two subgroups based on the 47

LMAG expression matrix (30, 31). LMRGs consensus clustering

analysis found the optimal number of clusters, the lowest fraction of

ambiguous clusterings, and the best CDF value for k = 2.
2.3 Calculation of microenvironment
cell abundance

The “ESTIMATE” R package (version 1.0.13) calculated

ESTIMATE scores, immune scores, stromal scores, and tumor purity

(32). microenvironment cell populations (MCPs) and immune cells

were quantified using transcriptomic data from the “MCPcounter”

package in R (version 1.1) (33). Single sample gene set enrichment

analysis (ssGSEA) was performed using the R package “GSVA”

(version 1.24.0) to evaluate 28 immune infiltrating cell types (34, 35).
2.4 Differential gene expression and
functional enrichment analysis

“limma” R package (version 3.40.6) performed differential gene

expression analysis. We selected differentially expressed genes

(DEGs) using |log2(fold change)| >1 and a false discovery rate

(FDR) adjusted p < 0.05. The DEGs list was then analyzed using

Gene Ontology (GO) and KEGG via “clusterProfiler” R package

(version 4.4.4). Enrichment analysis and protein-protein interaction

(PPI) analyses were done with “Metascape” (36). Using the molecular

signature database’s “GO biological process” gene set, the “GSVA” R

program (version 1.24.0) investigated the two clusters’ signaling

pathways. GSEA analyzed the significant pathways.
2.5 Construction of the immune-related
risk model

The R package “glmnet” (version 4.1-2) and absolute shrinkage

and selection operator algorithm (LASSO) analysis generated a risk

model based on univariable regression analysis of prognostic genes.

The smallest lambda value was ideal. Multivariate Cox regression

analysis determined the gene risk model. The following formula

calculated the risk score: risk score = - 0.154969330859525 *

expression value of ectonucleotide pyrophosphatase 2 (ENPP2) +

0 .168756185717411 * expre s s ion va lue o f MGLL -

0.491974590575217 * expression value of phospholipase C delta 1

(PLCD1) - 0.329592494818697 * expression value of solute carrier

family 44 member 3 (SLC44A3). The lipid‐related gene signature risk

score evenly divided patients into low‐risk and high‐risk groups.
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Kaplan-Meier analysis in R package “survival” (version 3.2-7)

assessed the survival difference between two subgroups. Time-

dependent receiver operating characteristic (ROC) curve analysis

using the “survivalROC” R package (version 1.0.3) was also used to

verify the risk model’s prediction accuracy. Figure 1 illustrates the

data analysis procedure.
2.6 Pan-cancer analysis of
MGLL expression

The pan-cancer data set was obtained from the UCSC database

and retrieved monoacylglycerol lipase (MGLL) gene expression

data from each sample. Using the TIMER2 database (http://

timer.cistrome.org/), pan-cancer macrophage infiltration and

MGLL mRNA expression were correlated (37). Reassessed pan-

cancer patient immune cell infiltration score via the R package

“IOBR” (version 0.99.9) QUANTISEQ (38). Survival data were

integrated by sample barcode to examine MGLL mRNA

expression in pan-cancers. The median value of MGLL expression

was utilized to distinguish high- and low-expressing tumor samples.

Using the R package “survival” (version 3.2-7), survival time and

status were fitted within the two groups. Cox proportional hazards

models and log-rank tests examined the correlation between MGLL

mRNA expression and overall survival (OS), disease-specific

survival (DSS), disease-free survival (DFS), and progression-free

survival (PFS). All cancer types are abbreviated in Table S2.
2.7 Single-cell RNA-seq online analysis

The scTIME Portal (http://sctime.sklehabc.com/unicellular/

home) is a database with single-cell time-specific analytic tools for
FIGURE 1

Flow chart of the data analysis procedure.
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exploring and analyzing TIMEs (39). The “NormalizeData”

function, the LogNormalize procedure, and a scale factor of

10,000 were used to normalize the GSE139829 dataset before

nonlinear dimension reduction with the “RunUMAP” function

and a dims parameter of “1:30”. UM patients’ cell type

proportions and connections were then determined.
2.8 Cell lines and cultures

The human UM cell line MuM-2B (iCELL-h148; Shanghai,

China) (40) and the human monocytic leukemia THP-1 cells

(#TIB202; ATCC, USA) were grown in RPMI-1640 media

containing 10% FBS and 1% penicillin-streptomycin (Gibco,

USA) at 37°C and 5% CO2. The adult retinal pigment epithelial

cell line (ARPE-19) cells from American Type Culture Collection

(ATCC, Manassas, VA, USA) were cultured in DMEM/F12 (Gibco,

USA). Shanghai Baoyi Applied Biotechnology Co., Ltd. did a short

tandem repeat (STR) analysis. Experiments were done during

logarithmic cell growth.
2.9 Monoacylglycerol lipase small
interfering RNA construction
and transfection

MGLL-knockdown small interfering RNA (siRNA) and negative

control siRNA were purchased from Guangzhou RiboBio Co., Ltd.

MGLL siRNA was transfected into MuM-2B cells by Lipofectamine

RNAi Max (Invitrogen, CA, USA) to transient knockdown MGLL.

Western blotting confirmed siRNA inhibition after 48 h of transfection.

The siRNA sequence is CCAGGACAAGACTCTCAAGAT (41).
2.10 Cell proliferation assay

Cell proliferation experiment was performed using Cell

Counting Kit-8 (CCK-8) (MedChem Express, Monmouth

Junction, NJ, USA). 2000 MuM-2B cells per well were seeded into

96-well plates transfected with MGLL or negative control siRNA.

After seeding for 24 h, 48 h, 72 h, 96 h, and 120 h, each well received

10 mL CCK-8 solution and was incubated at 37 °C for 1.5 h in the

dark. A microtiter plate reader (BIO-TEK Instruments, Winooski,

VT, USA) measured live cells at 450 nm.
2.11 Migration and invasion assays

The cell invasion assay used Matrigel (BD Biosciences,

Mississauga, Canada), while the cell migration assay did not.

4 × 10^4 cells per well suspended in 200 mL serum-free medium

were added to the cell culture insert (24-well insert, 8-mm pore size),

and 500 mL 10% FBS-supplemented RPMI-1640 were added to the

well to stimulate cell migration or invasion. After 24 hours, the cells in

the inserts were removed and the cells that penetrated and attached to

the bottom membrane were fixed with 4% paraformaldehyde (PFA)

and stained with crystal violet (0.05% [w/v]). A photomicroscope

took images in three randomly selected fields in each well.
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2.12 Scratch wound healing assay

MuM-2B cells were seeded at 5 × 10^5 cells per well in a 6-well

microplate. Scratches were made in the middle of the well with a sterile

200 mL pipette tip when cells reached 95% confluence. Serum-free

medium replaced 10% FBS-supplemented RPMI-1640. Photographs

were taken at 0 h, 24 h, and 48 h to estimate gap closing. 2.13 RNA

extraction and real-time quantitative PCR (RT-qPCR) assays

TRIzol Reagent (Invitrogen, USA) extracted total RNA from

cells, and cDNA was generated from 1 mg of RNA using the M-

MLV Reverse Transcriptase Kit (Promega, USA) according to the

manufacturer’s instructions. A Bio-Rad iQ5 RT-qPCR System

performed RT-qPCR. GAPDH normalized transcript expression.

Table S3 lists the primer sequences used in this study.
2.14 Western blot

The to ta l ce l l p rote in was i so l a t ed us ing rad io

immunoprecipitation assay buffer (RIPA; Beyotime, China) and

quantified using BCA Protein Assay Kits (Pierce, Rockford, IL,

USA). SDS-PAGE separated the identical protein samples, which

were electro-transferred into PVDF membranes (Millipore Corp,

Atlanta, GA, USA). After 1 hour of blocking in 5% non-fat milk,

anti-MGLL (1:1000 dilution, #A6654, ABclonal, China) and anti-b-
actin (#4970, Cell Signaling Technology, USA) primary antibodies

were incubated overnight at 4°C. HRP-conjugated secondary

antibodies (Cell Signaling Technology, USA) were incubated for 1

h at room temperature. Thermo Fisher ECL reagents detected band

signals. It is recommended that strips be washed with stripping buffer

(P0025, Beyotime, China) to ensure that the previous antibody has

been removed and imaging can be repeated if necessary.
2.15 THP-1 polarization

THP-1 cells were seeded at 1 x 10^6 per well in 6-well plates and

treated with PMA (100 nmol; Sigma-Aldrich, St. Louis, MO, USA)

for 48 h. M1 macrophages were polarized by incubation with IFN-

gamma (20 ng/mL; R&D System, USA) and LPS (100 ng/mL;

Sigma, USA) for 48 h. IL-4 (100 ng/ml; PeproTech) was added

for 48 h to elicit M2-phenotype polarization.
2.16 Statistical analysis

The data were analyzed using R (version 4.0.3) and GraphPad

Prism (version 8.0.1). Univariate and multivariate Cox proportional

hazards regression identified independent prognostic factors. After

multivariate Cox regression analysis, a nomogram was created to

predict 3-year RFS and validated with C‐index. Following the

regrouping of patients by age, sex, and metastasis, a subgroup

analysis was conducted. Student’s t-test was used for statistical

analysis between two groups, however one-way ANOVA was

applied when there were three or more groups. P < 0.05 was

statistically significant.
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3 Results

3.1 Two LMRGs-based molecular subtypes
and their prognostic significance

Gene expression profiles and clinical data for 80 UM patients

were gathered from the TCGA data portal. First, univariate Cox

analysis screened gene sets linked with UM patient survival, then 47

LMRG-associated genes were selected (Table S4). Unsupervised

consensus clustering established the optimal number of groups (k =

2) based on the expression patterns of 47 survival-related LMRGs

genes (Figures 2A–C). We found two kinds of UM patients: cluster

1 (45, 56.25%) and cluster 2 (35, 43.75%). These survival-related

LMRGs genes in the two clusters differed, as shown by the heatmap

(Figure 2D). Cluster 2 had a substantially lower OS rate than cluster

1 (Figure 2E, P < 0.001). These data showed that LMRGs are greatly

linked to UM patients’ overall survival.
3.2 Identification of differentially expressed
lipid metabolism-related genes and
functional annotation

We used the “limma” R tool to compare gene expression

between groups. The two clusters had 647 DEGs, 170 upregulated

and 477 downregulated (Figure 3A). To elucidate these DEGs’

immunity-related functions, GO (Figures 3B, C) and KEGG

(Figure 3D) analyses were conducted. Most of these DEGs were

involved in antigen processing and presentation, Th1 and Th2 cell
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differentiation, and other immune-related functions, according to

signaling pathway analyses. The PPI analysis identified 14 sub-

models, most of which (MCODE1, 2, 5, 7, 8, 10, and 12) were

closely related to tumor formation and immunity, suggesting that

immunity may contribute to UM through lipid metabolism

(Figure 3E; Table S5). GSEA was performed in the two clusters to

determine the relationship between enriched pathways and immune

cell infiltration in UM patients, which found that T cell receptor

signaling pathway, natural killer cell-mediated cytotoxicity, antigen

processing and presentation, cytokine-cytokine receptor

interaction, and chemokine signaling pathways expressed highly

in cluster 1 patients (Figure 3F). These findings suggest that LMRG

expression is crucial in the UM TME.
3.3 UM patients in two molecular subtypes
exhibited significant differences in TME and
immune status

The scoring signature of tumor-infiltrated immune cells can

predict immunological treatment response and UM prognosis (42).

Thus, we identify the relationship between lipid metabolism and

TME in UM. We calculated each subgroup’s immune score,

ESTIMATE score, and stromal score using the ESTIMATE

technique to see if there was an immunological difference. Cluster

2 showed much higher immune scores than cluster 1 (Figure 4A).

Furthermore, we estimated immune infiltration in the UM

microenvironment using the TIMER database. Cluster 1 had

more fibroblasts, but cluster 2 had more T cells, CD8 T cells,
D
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C

FIGURE 2

The analysis of consensus clustering. (A–C) Consensus clustering is best performed with K = 2. (D) A heatmap illustrating the differential expression
of lipid metabolism genes between the two groups. (E) Two subgroups of patients displayed different survival curves.
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cytotoxic lymphocytes, NK cells, monocytic lineage, and myeloid

dendritic cells (Figure 4B). B lineage, neutrophils, and endothelial

cells were not statistically different between these two clusters

(Figure 4B). Cluster 1 had a relatively low immune status, while

cluster 2 was high (Figures 4C, D). These findings suggest that two

molecular subtypes have distinct TME.
3.4 Construction of a risk model

A prognosis prediction model was used to test LMRGs’ ability

to predict UM prognosis. We extracted four LMRGs in UM] at the

minimum likelihood of a deviative pattern (lmin = 0.09) using Lasso

regression on these DEGs (Figures 5A, B). Four genes (ENPP2,

MGLL, PLCD1, and SLC44A3) were discovered through

multivariate Cox regression. These four genes were utilized to

create a risk regression model that categorized UM patients into

low- and high-risk groups (Figure 5C). Patients with high risk

exhibited significantly shorter survival periods than those with low

risk (P = 4.7e-13; Figure 5D). The model’s robustness was assessed
Frontiers in Immunology 06178
by plotting ROC curves for 1-year, 3-year, and 5-year OS, with areas

under curves (AUCs) of 0.86, 0.95, and 0.93, respectively

(Figure 5D), indicating a positive accuracy rate. We used the

ESTIMATE algorithm to evaluate the two groups’ TME to better

understand TME involvement in the UM risk model. The high-risk

group had significantly higher stromal, immune, and ESTIMATE

scores than the low-risk group (Figure 5E). Generally, high immune

cell infiltration in the TME is associated with a positive prognosis,

but in the UM it is associated with poor outcomes (42), which is

consistent with our findings.

Additionally, the verification cohort was used to validate the

created predictive risk score model. The heatmap showed the four

candidate genes expression in the verification cohort stratified by

risk level (Figure 5F). Survival analysis showed that the high-risk

group had a worse prognosis than the low-risk group (P = 1.9e-7;

Figure 5G). ROC analysis showed that the risk model predicted 5-

year survival best (Figure 5H). Our findings show that the risk score

model we created can correctly forecast the prognosis of

UM patients.
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FIGURE 3

The analysis of differentially expressed genes and the evaluation of their functions. (A) Volcano plot illustrates the expression of DEGs between the
two subgroups. (B, C) Visualization of biological processes that have been enhanced by GO analysis using bubble diagrams and networks. (D) A
circle plot displaying the signaling pathways that KEGG analysis has enriched. (E) An analysis of DEGs based on PPI. (F) A GSEA plot depicts the
signaling pathway analysis.
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3.5 Testing for independence in the
constructed risk model

Subgroup analysis and regression analysis were used to evaluate

the risk model’s independence and the risk score’s relevance to

clinical features. Risk scores did not differ between patients of

different sexes (Figure S1A), ages (Figure S1B), or distant

metastases (Figure S1C), indicating no correlation between risk

scores and clinical characteristics. The risk model was highly

predictive when patients were classified by sex (Figures S1D, E),

age (Figures S1F, G), or distant metastasis (Figures S1H, I). The risk

model was also an independent predictor of patient prognosis in the

univariate Cox regression study (Table 1). These findings

demonstrate that the risk model is extremely independent in

predicting UM patients’ prognoses.
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3.6 Construction and calibration
of an integrated nomogram combining
clinicopathological features and
risk signature

Clinical parameters should be considered while predicting UM

patients’ prognoses, therefore risk score, age, gender, and distant

metastases were used to create a prognosis nomogram for UM

patients (Figure S2A). The nomogram was validated in the training

and verification cohorts using the concordance index (C-index) and

calibration curve. The nomogram’s C‐index in the training group

was 0.919 (95% CI, 0.887–0.951, Figure S2B), which matched the

verification cohort (Figure S2C), indicating its predictive power.

Overall, the nomogram was more accurate in predicting UM

patients’ prognosis.
D
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FIGURE 4

A comparison of immune infiltration between the two clustered subgroups. (A) The Violin diagram presented the calculation of stromal score,
immune score, and estimate score in two subgroups. (B) MCP evaluated the abundance of ten immune filtrating cells. (C) A heatmap displays the
level of enrichment for 28 immune-related cells based on a ssGSEA algorithm. (D) Statistical analysis of ssGSEA. *p < 0.05; **p < 0.01; ***p < 0.001
****p < 0.0001.
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3.7 MGLL affects the proliferation,
migration, and invasion of UM cells in vitro

When ENPP2, MGLL, PLCD1, and SLC44A3 mRNA expression

levels in ARPE-19 cells and MuM-2B cells were compared, we found

that MGLL had significantly higher expression while PLCD1 and

SLC44A3 had significantly lower expression (Figure 6A). ENPP2

mRNA expression was not detectable in this study. MuM-2B cells

were found to have much higher expression levels of MGLL than
Frontiers in Immunology 08180
ARPE-19 cells (Figure 6B, Figure S3). siRNA-targeted MGLL and

siRNA control were transfected into MuM-2B cells to explore the

functional role of MGLL in UM. Transfection effectiveness was

assessed using Western blotting (Figures 6C, S4). The impact of

MGLL on cell proliferation was then assessed using the CCK-8 test,

which revealed that MGLL knockdown reduced the proliferation of

MuM-2B cells (Figure 6D). Additionally, after reducing the

expression of MGLL, MuM-2B cells’ capacity for migration and

invasion was suppressed (Figures 6E–G, S5–S7). According to these
D
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FIGURE 5

Construction and verification of a risk model. (A) Analysis using LASSO with a minimal lambda. (B) A heatmap displays the survival status and risk
score of UM patients based on the expression of four potential genes in two groups. (C) Survival curves of UM patients in two different groups.
(D) A risk model with ROC curves that are time-dependent. (E) Stomal score, immune score, and ESTIMATE score are calculated using the ESTIMATE
algorithm. (F) Four candidate genes were expressed in the verification cohort with survival status and risk score indicated. (G) An analysis of the
survival curves for high-risk and low-risk patients in the verification cohort. (H) The ROC curve for the risk model’s verification cohort. **p < 0.01;
***p < 0.001
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findings, MGLL inhibition reduced cell proliferation and migration

in UM.
3.8 Pan-cancer MGLL expression
and prognosis

Differential expression analysis of pan-cancer samples revealed

that MGLL was generally underexpressed in cancers, including

bladder urothelial carcinoma (BLCA, p < 0.001), breast invasive

carcinoma (BRCA, p < 0.001), colon adenocarcinoma (COAD, p <

0.001), glioblastoma multiforme (GBM, p < 0.01), head and neck

squamous cell carcinoma (HNSC, p < 0.001), kidney renal papillary

cell carcinoma (KIRP, p < 0.01), liver hepatocellular carcinoma

(LIHC, p < 0.05), lung adenocarcinoma (LUAD, p < 0.001), lung

squamous cell carcinoma (LUSC, p < 0.05), prostate

adenocarcinoma (PRAD, p < 0.001), rectum adenocarcinoma

(READ, p < 0.05), stomach adenocarcinoma (STAD, p < 0.05),

and uterine corpus endometrial carcinoma (UCEC, p < 0.001), with
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the exception of kidney renal clear cell carcinoma (KIRC, p <

0.001) (Figure 7A).

MGLL expression was then evaluated in relation to OS, DSS,

and PFS. An analysis of 44 tumors using cox regression revealed

that MGLL expression was significantly positively related to the OS

of UM patients (p = 1.5e-6), acute myeloid leukemia patients

(LAML, p = 9.8e-4 in TCGA, p = 5.9e-3 in TARGET), and

pancreatic adenocarcinoma patients (PAAD, p = 1.2e-3), but

negatively related to the OS of KIRC patients (p = 1.9e-3) and

sarcoma patients (SARC, p = 0.03) patients (Figure 7B). Further cox

regression analysis of 38 tumors indicated that MGLL expression

significantly correlated with PFS in 5 cancers and was a risk factor

for UM (p = 6.0e-7), PAAD (p = 1.7e-3), STAD (p = 4.0e-3), and

ACC (p = 0.03), but a protective factor for ovarian serous

cystadenocarcinoma (OV, p=0.03; Figure 7C). MGLL expression

was significantly correlated with DSS in four tumors. For UM (p =

3.2e-7) and PAAD patients (p = 1.1e-3), MGLL was a protective

factor, whereas for KIRC (p = 2.5e-4) and SARC patients (p = 0.01),

it was a risk factor (Figure 7D).
TABLE 1 Univariate analysis of risk score and characteristics in training cohort.

Characteristics Total (N)
HR (95% CI) Univariate

analysis
P value Univariate

analysis
HR (95% CI) Multivari-

ate analysis
P value Multivariate

analysis

Age 80 1.046 (1.008 - 1.085) < 0.05 1.092 (1.019 - 1.171) < 0.05

Gender 80 0.316

Male 45 Reference

Female 35 0.649 (0.274 - 1.536) 0.325

Clinical T stage 80 0.169

T2 5 Reference

T3 36 0.956 (0.116 - 7.864) 0.966

T4 39 2.163 (0.278 - 16.817) 0.461

Clinical N stage 80 0.058

N0 76 Reference Reference

NX 4 6.177 (1.302 - 29.304) < 0.05 8.059 (0.560 - 115.918) 0.125

Clinical M stage 80 < 0.01

M0 73 Reference Reference

M1 3 35.072 (4.689 - 262.335) < 0.001 0.241 (0.006 - 9.795) 0.452

MX 4 2.226 (0.507 - 9.778) 0.289 0.694 (0.051 - 9.367) 0.783

Clinical stage 80 < 0.001

Stage II 39 Reference Reference

Stage III 37 1.235 (0.504 - 3.028) 0.644 1.074 (0.318 - 3.623) 0.909

Stage IV 4 72.950 (7.056 - 754.174) < 0.001 20.228 (0.383 - 1066.974) 0.137

Metastasis 80 < 0.001

Yes 26 Reference Reference

No 54 0.044 (0.010 - 0.189) < 0.001 0.118 (0.015 - 0.956) < 0.05

RiskScore 80 36.695 (8.799 - 153.035) < 0.001 12.017 (1.637 - 88.233) < 0.05
HR, hazard ratio; CI, confidence interval.
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Tumor tissues contain many non-tumor cells, including

immune cells, stromal cells, and interstitial cells, which help

tumor formation and growth (32). Tumor purity correlated with

clinical characteristics, genome expression, and characteristics (43).
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Thus, MGLL expression and tumor purity should be assessed in

tumor samples (Figure 7E). 22 tumors had significant Pearson

correlations, 1 of which was positive and 21 of which were

negative (Table S6).
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FIGURE 6

MGLL knockdown reduces UM cell migration, invasion, and activity in vitro. (A) Using qRT-PCR, the expression levels of ENPP2, MGLL, PLCD1, and
SLC44A3 in ARPE-19 and MuM-2B cells were determined. ENPP2 mRNA expression was undetectable. Normalization of Ct values to GAPDH was
performed. (Student’s t-test) (B) Using WB, MGLL levels in ARPE-19 and MuM-2B cells were examined, and relative protein expression was adjusted
using -actin levels. (left: images indicative of three independent experiments; right: quantitative analysis, n = 3, paired Student’s t-test) (C) Western
blotting revealed MGLL protein level in response to MGLL-siRNA treatment; relative protein expression levels were normalized based on -actin
levels. (left: photos indicative of three independent experiments; right: quantitative analysis, n = 3, paired Student’s t-test) (D) Using the CCK-8 test,
growth curves for MuM-2B cells treated with MGLL knockdown were determined. (Student’s t-test) (E) To determine the migration of MuM-2B cells,
a Transwell test was carried out. (left: typical images from three independent experiments; right: quantitative analysis, n = 3, unpaired Student’s t-
test, scale bar represents 100 mm) (F) A Transwell experiment was conducted to identify the invasion of MuM-2B cells following MGLL knockdown
treatment. (left: typical images from three independent experiments; right: quantitative analysis, n = 3, unpaired Student’s t-test, scale bar represents
100 mm) (G) MuM-2B cells were used in a wound healing experiment to identify MGLL knockdown-induced migration. (typical images of three
independent experiments, scale bar represents 200 mm) *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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3.9 Immune infiltration analysis

Since this work indicated a relationship between MGLL

expression and immune cell infiltration in various malignancies

(Figure 7E), we explored immune cell infiltration in pan-cancers.

QUANTISEQ analyzed the immune cell infiltration of a uniformly

normalized dataset from the UCSC database. MGLL and immune

cell infiltration scores were strongly associated with 10,180 tumor

samples from 44 tumor types. Besides, MGLL expression and
Frontiers in Immunology 11183
immune infiltration were correlated in 43 cancer types

(Figure 8A). Interestingly, MGLL gene expression was highly

positively related to M1-type macrophages in acute lymphoblastic

leukemia (ALL, R = 0.58) and lymphoid neoplasm diffuse large B-

cell lymphoma (DLBC, R =0.60; Figure 8A) and considerably

positively associated with M2-type macrophages in UM (R =

0.60; Figure 8A).

Using TIMER2, we examined the connection between pan-

cancer macrophage infiltration and MGLL expression and found a
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FIGURE 7

A correlation between MGLL and prognosis in pan-cancer samples. (A) Expression levels of MGLL across pan-cancer samples in the TCGA dataset.
(http://timer.cistrome.org/) (B) Cox regression model study of MGLL expression and OS in the UCSC dataset. (C) Cox regression model-based
analysis of PFS and MGLL expression. (D) Cox regression analysis of MGLL expression with DSS in different types of tumor. (E) MGLL expression
and tumor purity were correlated using the ESTIMATE algorithm in the UCSC dataset. DSS, disease-specific survival; PFS, progression-free survival.
*p < 0.05; **p < 0.01; ***p < 0.001.
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positive correlation between them in DLBC, testicular germ cell

tumor (TGCT), thymoma (THYM), and UM (Figure 8B).

CIBERSORT algorithm also revealed a favorable association

between UM MGLL expression and M2 macrophages (R = 0.59;

Figure 8B). Therefore, MGLL affects immune cell infiltration

especially macrophage polarization in various cancers.
3.10 Effect of MGLL on macrophage
infiltration in TME

We used Uniform Manifold Approximation and Projection

(UMAP) to cluster and designate 59,916 cells into 40 categories

utilizing UM single-cell sequencing data (GSE139829) to study

MGLL expression and function in TME at single-cell resolution

(Figure 9A). Each sample’s cell type fraction, with cancer cells,

makes up practically the entire part (Figure 9B). Cancer cells and

macrophages predominately expressed MGLL (Figure 9C). We then

examined MGLL expression in cancer cells and macrophage

makeup invading them (Figures 9D, S8A–F) and found that

MGLL expression on cancer cells was positively correlated with
Frontiers in Immunology 12184
SPP1-ACP5 macrophage infiltration (Figure 9D). SPP1-ACP5

macrophages were confirmed using the gene markers TLR2 of

macrophage M1 and CD36 of M2. SPP1-ACP5 and IL1B

macrophages express high levels of CD36 (Figure S8G), while

ARG and IL1B macrophages express high levels of TLR2 (Figure

S8H). Interestingly, MGLL may polarize M2 macrophages (SPP1-

ACP5) by eliminating IL1B macrophages (Figure 9D).

To test if tumor cell-expressed MGLL can polarize macrophages

to the M2 type, ARPE-19 or MuM-2B cells were co-cultured with

THP-1 cells. Co-culturing MuM-2B and THP-1 cells elevated M2

macrophage markers including CD36 (Figure 9F), but not M1

markers like TLR2 (Figure 9E). In contrast, ARPE-19 cells co-

cultured with THP-1 cells showed opposing macrophage

polarization. These data suggest that UM-produced MGLL

regulates macrophage polarization.
4 Discussion

Numerous lines of evidence imply that lipid metabolism is

reprogrammed in cancers (44), which contributes to tumor
A

B

FIGURE 8

Assessment of immune infiltration. (A) Using the QUANTISEQ method, MGLL expression and immune cell infiltration were associated in the UCSC
dataset. (B) Various algorithms identifies a relationship between MGLL expression and macrophages in different types of cancer from the TCGA
database. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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progression and local immunosuppression in the TME (26). Lipids,

cell membrane components and second messengers that transduce

signals within cells serve as vital energy storage sources under

nutrient scarcity (45). The function of lipid metabolic abnormalities

in cancer cells has been a major topic of study in recent years. The

key processes of lipid metabolism are synthesis, storage, and

breakdown. There is evidence that aberrant lipid metabolism

plays a significant role in the development, progression, invasion,

and treatment response of numerous cancers (46).

UM, the most common primary malignant eye tumor has been a

major public health issue. Although UM will be diagnosed earlier as

diagnostic technology advances, a fraction of early-stage patients are

still diagnosed at an advanced stage, and the 5-year survival rate is still

dismal, with the median survival of metastatic UM patients being less

than 1 year due to highmetastasis rates and restricted therapy options

(3, 47, 48). Thus, better risk stratification strategies are needed to

identify high-risk cancer patients to improve their prognosis.

Using consensus clustering, we classified samples into two

categories based on the mRNA expression patterns of 47

prognostic genes derived from univariable Cox analysis. We

found that lipid metabolism abnormalities may affect patient

outcomes, as the two molecular categories had significant

differences in overall survival, which we speculated may be linked

to immune activity. Therefore, the ESTIMATE algorithm was then

used to give additional insight into the immunological landscapes of

UM, revealing that UM patients with bad prognoses had higher

immune scores and ESTIMATE scores than those with better
Frontiers in Immunology 13185
prognoses. Based on the aforementioned data, it can be assumed

that immune variants may have a significant role in UM survival.

Furthermore, functional investigations were conducted to

investigate the underlying mechanisms. In this study, we

demonstrated that the prognosis of UM is significantly influenced

by LMAGs through immune-associated signaling pathways, per the

GO analysis and KEGG analysis. Subsequently, GSEA was used to

explore the association between lipid metabolism and aberrant

immunity. The findings showed that cluster 2 had lower immune

cell differentiation expression. These findings provided a

preliminary explanation for the prognostic differences between

the two groupings, showing that immunological activity and the

associated-LMRGs were responsible.

Additionally, we constructed a predictive risk model based on

LMRGs and verified it in a validation cohort to establish that lipid

metabolic disorders affect TME in UM patients.We also constructed a

prognostic risk model using the four LMRGs signatures, including

ENPP2, MGLL, PLCD1, and SLC44A3, and we found that most of

them were correlated with tumor progression. For example, ENPP2,

which encodes autotaxin, is overexpressed in chronic inflammatory

diseases and cancer and synthesizes lysophosphatidic acid (49, 50).

PLCD1 is known to convert phosphatidylinositol bisphosphate into

diacylglycerol and inositol triphosphate, which serve as scaffolds and

signaling molecules (51). PLCD1 is also identified as a new tumor

suppressor gene, which is suppressed by promoter methylation in

various cancer types (51–53). However, SLC44A3’s role in cancer is

unknown. Notably, only MGLL was highly expressed in the risk
D
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FIGURE 9

MGLL affects macrophage polarization in the TME. (A) Distribution of different cell clusters in the UMAP plot. (B) The fraction of each sample
depends on the type of cell. (C) MGLL expression in distinct clusters of cells. (D) Correlation analysis between expression of MGLL in cancer cells
and composition of infiltrating macrophages (SPP1-ACP5). (E) THP-1 macrophages were polarized towards an M1-like phenotype by the conditioned
media of ARPE-19 cells with reduced MGLL expression. (F) THP-1 macrophages were polarized to an M2-like phenotype by the conditioned medium of
MuM-2B cells with highly expressed MGLL. (n = 3, paired Student’s t-test) **p < 0.01; ***p < 0.001; ****p < 0.0001 ns, no significance.
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model. MGLL is a metabolic enzyme that transforms triglycerides into

free fatty acids and is involved in tumor signaling (54). MGLL has

been implicated to play a pathophysiological role in various cancers

(54, 55). MALL is found to be involved in multiple cellular processes

in cancer cells and is highly elevated in multiple aggressive cancer

types (56). For instance, in endometrial adenocarcinoma, MGLL

promoted tumor proliferation, metastasis, and the occurrence of

progestogen resistance (57). In lung cancer, MGLL inhibition led to

a decrease in cell proliferation, invasion, and metastasis (58, 59). In

addition to inhibiting cell proliferation, migration, invasion, and

tumor growth, MAGL inhibition also induced apoptosis in cervical

cancer (60). According to a study on TNBC suggested that inhibiting

MGLL can suppress inflammation, tumor growth, and brain

colonization (61). Interestingly, MGLL in cancer cells promoted

tumor progression by releasing special fatty acids whereas MGLL in

TAMs suppressed cancer development by attenuating endogenous

cannabinoid receptor 2 signaling (62). Additionally, MGLL has been

reported to play a role in melanoma. Baba et al. observed that

melanoma samples with lymphovascular invasion tended to be

expressed more MGLL than samples without invasion, suggesting

that the expression of MGLL in tumor cells may serve as a marker of

tumor invasion and progression in malignant melanoma (63). In this

study, we found that MGLL is upregulated in UM, and inhibition of

MGLL suppressed the cell proliferation, migration, and invasion of

UM cells, suggesting an oncogenic role of MGLL in UM.

Lipid metabolism has a substantial impact on macrophage

regulatory functions. For example, lipids not only supply energy

but also provide precursors to bioactive lipids and cell membrane

components to macrophage (64). Besides, lipids regulate gene

expression and signal transduction during macrophage activation

(65). Several studies revealed that MGLL can induce the

accumulation of 2-arachidonoylglycerol in the TME, which

promotes the shift of tumor-associated macrophages into a

tumor-promoting M2-like state by activating CB-2 (56, 62).

Similarly, we discovered that MGLL was abundantly expressed in

UM cells, which prompted a phenotypic shift in macrophages to a

pro-tumor M2 state. Therefore, inhibiting MGLL in tumor cells

may be a curative treatment for UM.

The 4-LMRGs risk model assigned a risk score to each UM

patient, and the examination of survival in both the training and

validation cohorts demonstrated powerful prediction ability. Using

univariate/multivariate Cox regression analysis, the built risk model

was an independent predictor of prognosis for UM patients

irrespective of age, sex, or metastatic status. Additionally, we

created and validated a nomogram that combines risk ratings and

clinical characteristics to predict survival. The results indicated that

aberrant lipid metabolism and TME may have an effect on therapy

and survival, particularly in patients with metastatic UM.

Although our established LMRGs-based risk score for the

prognosis of UM patients showed potential, there were

disadvantages to being notified in our study. An initial

disadvantage of the study is that differences in demographic

variables, such as race, lifestyle, and living conditions were not

taken into account. Second, our result was derived from open

databases and not our cohorts’ data. Thirdly, in vivo experiments

are needed to further validate our results.
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In conclusion, we discovered two genetic subgroups based on

LMRGs in UM and assessed the significance of LMAGs in patients’

prognosis and immune microenvironment. In addition, the

molecular mechanisms may include the deregulation of lipid

metabolism, which impedes the immune system and contributes

to a bad prognosis. Additionally, we found that the actions of

LMAGs in UM may be mediated by immune-related signaling

pathways. We also discovered that cancer cells had elevated levels of

MGLL expression, which switched macrophages to the pro-tumor

M2 phenotype. Our work may shed light on the creation of new

targeted medications and gives a potential direction for future UM

research and personalized therapy.
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The m6A methylation landscape,
molecular characterization
and clinical relevance in
prostate adenocarcinoma

Chao Li1†, Dongyi Peng1†, Yu Gan2, Lei Zhou1, Weibin Hou1,
Bingzhi Wang1, Peng Yuan1, Wei Xiong1 and Long Wang1*

1Department of Urology, Third Xiangya Hospital, Central South University, Changsha, China,
2Department of Urology, Xiangya Hospital, Central South University, Changsha, China
Background: Despite the recent progress of therapeutic strategies in treating

prostate cancer (PCa), the majority of patients still eventually relapse,

experiencing dismal outcomes. Therefore, it is of utmost importance to

identify novel viable targets to increase the effectiveness of treatment. The

present study aimed to investigate the potential relationship between N6-

methyladenosine (m6A) RNA modification and PCa development and

determine its clinical relevance.

Methods: Through systematic analysis of the TCGA database and other datasets,

we analyzed the gene expression correlation and mutation profiles of m6A-

related genes between PCa and normal tissues. Patient samples were divided

into high- and low-risk groups based on the results of Least Absolute Shrinkage

and Selection Operator (LASSO) Cox analysis. Subsequently, differences in

biological processes and genomic characteristics of the two risk groups were

determined, followed by functional enrichment analysis and gene set

enrichment (GSEA) analysis. Next, we constructed the protein-protein

interaction (PPI) network of differentially expressed genes between patients in

high- and low-risk groups, along with the mRNA-miRNA-lncRNA network. The

correlation analysis of tumor-infiltrating immune cells was further conducted to

reveal the differences in immune characteristics between the two groups.

Results: A variety of m6A-related genes were identified to be differentially

expressed in PCa tissues as compared with normal tissues. In addition, the PPI

network contained 278 interaction relationships and 34 m6A-related genes, and

the mRNA-miRNA-lncRNA network contained 17 relationships, including 91

miRNAs. Finally, the immune characteristics analysis showed that compared

with the low-risk group, the levels of M1 and M2 macrophages in the high-risk
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group significantly increased, while the levels of mast cells resting and T cells

CD4 memory resting significantly decreased.

Conclusions: This study provides novel findings that can further the

understanding of the role of m6A methylation during the progression of PCa,

which may facilitate the invention of targeted therapeutic drugs.
KEYWORDS

prostate adenocarcinoma, RNAN6-methyladenosine, prognosis, molecular characterization,
immune infiltration
Introduction

According to the statistics of the American Cancer Society,

prostate cancer (PCa) is the second leading cause of cancer-related

death in men in the United States, with an estimated 288,300 new

cases and 34,700 deaths per year, accounting for 28.5% and 10.8% of

all cancers, respectively (1). With the substantial increase in the

aging population in China, the incidence of PCa has also increased

year by year, and PCa has become the most common urogenital

tumor in elderly men (2). Despite recent advances in surgical and

drug treatments, the mortality rates of patients with recurrent or

metastatic PCa remain close to 100% (1). Therefore, in-depth study

of molecular markers related to treatment and prognosis of PCa and

searching for more effective therapeutic targets are of significant

importance for the clinical benefit of PCa patients.

To date, more than 150 RNA post-transcriptional modifications

have been identified in eukaryotes (3). N6-methyladenosine (m6A) is

the most common RNA modification in mammalian cells that has

important roles in different biological processes (4, 5). Abnormalities

in regulatory mechanisms of m6A have been identified as involved in

a variety of human diseases including cancer (6). m6A, as the

methylation at the sixth N position of adenylate in RNA, is the

most common modification of RNA in eukaryotes, accounting for

about 80% of RNA methylation modifications, and each mRNA

contains 3 to 5 m6A residues on average (3). This process is

dynamically and reversibly regulated by methyl transfer-related

proteins (METTL3, METTL14, and WTAP, etc.) and demethylases

(FTO, ALKBH3, and ALKBH5, etc.), and affects various steps of

mRNA metabolism reader, including mRNA processing, nuclear

export, translation and degradation, by binding to the m6A (7).

Several studies have established the model for m6A risk-related

prognosis to evaluate the treatment effect and prognosis of

metastatic PCa, finding that in patients with metastatic PCa, a

higher m6A risk score indicates a worse prognosis, which is

significantly associated with biological functions such as DNA

mismatch repair. Therefore, patients with high m6A risk scores

may be a more suitable population for DNA repair-targeted drug

therapy (8, 9). In addition, several studies have reported the potential

tumor-promoting or tumor-suppressing effects of m6A methylation-

related factors such asMETTL3, METTL14 and FTO in PCa (10–14).

However, there is still a lack of integrative analysis of the expression
02190
of m6A RNA methylation regulator, clinicopathological features,

malignant progression, and prognosis in PCa.

In this study, we used published sequencing data to investigate

the possible role of m6A methylation in the progression of PCa, and

to establish relevant clinical prediction model to analyze the

predictive power of prognosis in PCa.
Materials and methods

Data acquirement and processing

The gene expression data of gene sequencing of patients with

prostate adenocarcinoma (PRAD) was downloaded from the TCGA

GDC (https://portal.gdc.cancer.gov/). The clinical characteristics of

the corresponding patients, including age, gender, and survival

prognosis, were also downloaded. After deleting the PRAD

patients with missing clinical information, 481 tumor tissues and

51 normal tissues were ultimately included in the analysis. The

somatic mutation data of PRAD patients were downloaded and

maftools package of R software was used to visualize the somatic

mutation (15). The tumor mutation burden (TMB) of each patient

was collected. Besides, datasets including GSE46602 and GSE69223

were downloaded from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/) (16, 17). Moreover,

GSE46602 contains 36 tumor tissues and 14 normal tissues, and

GSE69223 contains 15 tumor tissues and 15 normal tissues. Both

datasets came from the GPL570 sequencing platform, where the

species origin was Homo sapiens.
Construction of a risk model for PCa

To analyze the expression of m6A-related genes in PRAD, we

first analyzed the differential expression and gene expression

correlation of m6A-related genes in PRAD and normal tissues.

The risk genes associated with PCa prognosis were obtained

through univariate cox regression analysis of the expression and

survival of PRAD patients from TCGA. The risk genes associated

with PCa prognosis were subsequently incorporated into the model,

and the Least Absolute Shrinkage and Selection Operator (LASSO)
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was used to reduce the data dimensionality and obtain prognostic-

related signature genes. The normalized values of expression of each

gene were weighted by the penalty coefficient by LASSO Cox

analysis, a risk score formula was established, and the patients

were divided into high-risk group and low-risk group according to

median value of the risk score, as follows:

riskScore  =  o
i
Coefficient (risk genei)*mRNA Expression (risk gene
Differentially expressed genes analysis

To analyze the effect of risk score on DEGs analysis of PRAD,

the R package “DESeq2” was used to perform DEGs analysis on

samples in high-risk and low-risk groups of the dataset from

TCGA-PRAD to screen for significant differential genes (18). The

absolute value of log2 fold change (logFC) > 1.5 and Padj< 0.05 were

set as the thresholds of differential genes. Genes with logFC > 1.5

and Padj< 0.05 were up-regulated DEGs, and genes with logFC<

-1.5 and Padj< 0.05 were down-regulated DEGs (19).
Genomic characteristics and biological
characteristics of patients in high-risk
group and low-risk group

Following the development of tumor genomics, the Mutation

Annotation Format (MAF) has become widely accepted and used to

store detected somatic variants. In order to evaluate the variation of

gene copy number variation in risk-grouping, the GISTIC2.0 in the

Genepattern (https://cloud.genepattern.org/) analysis platform was

used to analyze the copy number variation in the risk groups of

TCGA database (20).

In this study, the MSIpred method was used to analyze the

relationship between risk-grouping and TMB or microsatellite

instability (MSI), respectively (21). In addition, in order to

investigate the variation of biological process of samples in high-

risk group compared with that in low-risk group, we performed gene

set variation analysis using the R package “GSVA” based on the gene

expression profiling dataset of PRAD patients from TCGA (22).

The reference gene set “h.all.v7.4.symbols.gmt” was downloaded

from the MSigDB database to calculate the enrichment score of each

sample in each pathway in the dataset (23), and evaluate the

relationship between the enrichment score and the risk score. P<

0.05 was considered statistically significant.
Functional enrichment analysis and gene
set enrichment analysis

GO analysis is a method commonly used for large-scale

functional enrichment studies, including biological process (BP),

molecular function (MF) and cellular component (CC) (24). KEGG

is a widely used database for storing data about genomes, biological

pathways, diseases, and drugs (25). GO annotation analysis and
Frontiers in Immunology 03191
KEGG pathway enrichment analysis of differentially expressed

genes were performed using the clusterProfiler package of R and

a cutoff value of FDR< 0.05 was considered statistically

significant (26).

To investigate differences in biological processes between two

groups, based on the gene expression profiling dataset of PRAD

patients, gene set enrichment analysis was performed using GSEA,

which is a computational method to analyze the potential existence

of significant differences in a specific gene set between two

biological states (27). Also, GSEA is often used to estimate

changes in pathway and biological process activity in samples of

expression dataset. The “c2.cp.kegg.v7.4.symbols.gmt” gene set and

the “c5.go.v7.2.symbols.gmt” gene set were downloaded from the

MSigDB database for GSEA analysis. P< 0.05 was considered

statistically significant.
Identification and correlation analysis of
tumor infiltrating immune cells

CIBERSORT is an algorithm that deconvolves the expression

matrix of immune cell subtypes based on the principle of linear

support vector regression, which utilizes RNA-Seq data to estimate

the abundance of immune cells in tissues (28). The CIBERSORT in R

software was used to estimate the abundance of 22 kinds of immune

cells in high-risk and low-risk groups in the dataset, and boxplots were

performed to visualize the immune cell composition of disease samples

and normal samples. The Wilcoxon test calculated differences in the

proportion of immune cells between disease samples and normal

samples, and P< 0.05 was considered statistically significant. The

dataset on the interaction of PRAD cell lines with drugs was

obtained from the GDSC database (29), and the R package

oncoPredict was used for drug sensitivity analysis of the expression

data of patients in the high-risk group and the low-risk group from

TCGA-PRAD so as to compare the sensitivity differences in anti-tumor

drugs between patients in high-risk group and low-risk group (30).
Construction of protein-protein interaction
network and key gene-miRNA network

The PPI network includes interactions of individual protein

with each other that participate in all aspects of life processes such

as biological signal transmission, gene expression regulation, energy

and material metabolism, and cell cycle regulation. Therefore,

systematic analysis of the interaction of a large number of

proteins in biological systems is useful for elucidating the working

principle of proteins in biological systems, understanding the

mechanism of biological signals and energy metabolism under

special physiological conditions such as diseases, as well as the

functional connections between proteins.

The STRING database is used for searching for interactions

between known protein and predicted protein (31). In this study, we

used the STRING database and selected genes with a combined

score > 400 to construct a protein-protein interaction network

related to DEGs. Besides, Cytoscape (v3.7.2) was used to visualize
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the PPI network model. Genes in the PPI network were functionally

annotated using clueGO (32, 33).

In order to analyze the relationship between key genes and

miRNAs in the post-transcriptional stage, miRNAs related to

differentially expressed genes from the miRNet database were

obtained to construct an mRNA-miRNA regulatory network (34).

The mRNA-miRNA regulatory network was visualized using

Cytoscape software. lncRNA is a class of RNA molecules with

transcripts longer than 200 nt, which are generally considered to not

encode proteins, but participate in the regulation of protein-coding

genes in the form of RNA in epigenetic regulation, transcriptional

regulation and post-transcriptional regulation (35).

To analyze the relationship among DEGs and miRNAs and

lncRNAs in the post-transcriptional stage, we obtained miRNAs

and lncRNAs related to DEGs from the miRNet database to

construct an mRNA-miRNA-lncRNA regulatory network (34),

which was visualized by the Cytoscape software.
Construction of clinical prediction model
based on risk model

To demonstrate the individualized assessment of prognosis of

patients by risk scores combined with clinicopathologic

characteristics, univariate and multivariate Cox analyses were

subsequently performed to analyze the predictive power of risk

scores combined with clinicopathologic characteristics of patients

for overall survival (OS). Subsequently, the risk score model with

clinicopathologic characteristics was selected to construct a clinical

predictive nomogram. To quantify discriminative performance, a

calibration curve was generated to assess the performance of the

nomogram by comparing the predicted value of the nomogram

with the observed actual survival.
Cell culture

Human prostate normal cell line RWPE-1, PCa cell line 22Rv1

and PC3 were purchased from American type culture collection

(ATCC). All cells were cultured in RPMI-1640 cell culture medium

containing 10% FBS in a 5% CO2 humidified atmosphere at 37°C.

When used in experiments, these cell lines were cultured within 20

passages, and regular routine testing was employed to confirm them

as negative for mycoplasma.
Real-time-qPCR analysis

In order to detect the mRNA levels of each m6A-related factor,

total RNA was extracted from cells using the RNAsimple Total

RNA Kit (TIANGEN), after which the obtained RNA was reverse

transcribed into cDNA using the RevertAid First Strand cDNA

Synthesis Kit (ThermoFisher). Each cDNA sample was amplified

using SuperReal PreMix Plus SYBR Green Supermix (TIANGEN)

in the LightCycler 480 Real-Time PCR System (Roche) following

the manufacturer’s instructions. Primers used for RT-qPCR analysis
Frontiers in Immunology 04192
are shown in Supplementary Table 1. Relative RNA levels were

calculated using the 2-DDCt method, and normalized to b-actin as an

internal control.
Western blot

To denature proteins, cell lysates were added to 5× loading

buffer (Beijing TDY Biotech) and heated to 95°C for 5 min. Protein

samples were separated by SDS-PAGE electrophoresis, transferred

semi-dry onto NC membranes (Millipore), and blocked in Tris-

buffered saline-Tween 20 (TBST) containing 5% nonfat milk for

30 min, after which the immunoblotting was performed by

incubating with the primary antibody for 10 min at room

temperature, and then overnight at 4°C. After being subjected to

5 washes, the membranes were incubated with goat anti-mouse/

rabbit IgG (H+L)-HRP secondary antibody (Beijing TDY Biotech,

1:10000 dilution) for 40 min and were subsequently exposed to light

using western ECL Substrate (Millipore). The relative expression

levels of each protein were assessed using ImageJ software. Primary

antibodies used in this study are listed in Supplementary Table 2.
Statistical analysis

All data processing and analysis were performed by R software

(version 4.1.1). The student’s t-test was used to estimate the

statistical significance of normally distributed variables for

the comparison of measurement data between two groups. The

Wilcoxon rank-sum test was used to calculate the statistical

significance of non-normally distributed variables between

two groups. The Chi-square test or Fisher’s exact test was used to

compare and analyze the statistical significance of categorical

data between two groups. Correlation coefficients between

different genes were calculated by Pearson correlation

analysis. The Kaplan-Meier survival curve was used to show the

difference in survival, and the log-rank test was used to evaluate the

significant difference in survival between the two groups. All

statistical P values were two-sided, and P< 0.05 was considered

statistically significant.
Results

Expression and mutation of m6A-related
genes in PRAD patients

The baseline data of patients with PRAD are shown in

Supplementary Table 3. To analyze the expression levels of m6A-

related genes in PRAD patients, we analyzed genomic mutations

and mRNA expression, respectively. First, a comprehensive analysis

of expression profiles in PCa tissues and normal tissues from TCGA

data and GEO data was performed with de-batch effects (Figure 1).

Principal Component Analysis (PCA) showed significant

differences in m6A-related gene signatures between PRAD tissues

and normal tissues.
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Subsequently, the differential analysis showed that a variety of

m6A-related genes were significantly differentially expressed between

PCa tissues and normal tissues, including FTO, METTL14,

METTL16, ZC3H13, YTHDC1, YTHDF3, RBM15B, etc. (Figure 2).

Mutation analysis showed that most of the mutations were

missense mutations, and most of the mutation types were SNPs

(Figure 3A). There were 22 patients with PRAD and single

nucleotide mutations in m6A-related genes, among which the

ZC3HI3 had the highest mutation rate (Figure 3B). The

correlation analysis of the heat map showed a positive correlation

of m6A-related genes in PRAD tissues (Figure 3C).

The total number of mutations was obtained to calculate the

TMB of the high-risk group of PRAD patients and low-risk PRAD

patients. TMB was higher in PRAD patients in the high-risk group

(Figure 3D), suggesting that PRAD patients in the high-risk group

may be more likely to respond to immunotherapy. MSI is also an

important treatment for predicting the effect of immunotherapy.

Thus, we predicted the status distribution of MSI-H and MSI of

PRAD patients in the high-risk group and low-risk group based on

mutation data (Figure 3E). Our results showed that patients with
Frontiers in Immunology 05193
MSI-H were all PRAD patients in the high-risk group and that MSI-

H samples may be more sensitive to immunotherapy and more

benefit from immunotherapeutic drugs.
Construction of risk model and
prognostic analysis

In order to analyze the impact of genes on the prognosis of PRAD

patient, 278 risk genes associated with PCa prognosis were identified

by univariate cox regression analysis, and enrolled in LASSO-Cox

analysis to select and obtain 18 genes with the best prognostic value

(Figures 4A, B). Subsequently, the correlation among the expression

levels of these genes was analyzed, which showed that the signature

genes were broadly represented (Figure 4C). At the same time, based

on penalty coefficients of important signature genes calculated by

LASSO-Cox analysis, the gene expression was multiplied by the

corresponding coefficients and added to establish a risk score.

Besides, the final risk score of each sample was calculated. Next,

patients were divided into high-risk group and low-risk group based
A B

D

E F

C

FIGURE 1

Dataset on PRAD after correction. Purple nodes indicate tumor samples, and green nodes indicate normal samples. (A, C, E) are the data before
correction, and (B, D, F) are the data after correction.
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on the mean value of PRAD patients’ risk scores. Kaplan-Meier

analysis showed that patients in high-risk group had relatively poor

OS (Log-rank P< 0.0001, Figure 4D). Moreover, a significant

correlation was found between the expression levels of m6A-related

genes and the risk score of patients (Figure 4E).

Next, we analyzed the differences in m6A-related gene

expression levels of patients between the high-risk group and

low-risk group, finding 27 m6A-related genes with significantly

differential expression between patients in high-risk group and low-

risk group (all P<0.05, Figure 5).
Differences in biological processes and
genomic characteristics of risk-groups

The mutation types of mutated genes in PRAD patients in the

high-risk group and low-risk group were analyzed, and more gene

mutations were found in PRAD patients in the high-risk group

(Figures 6A, B). Subsequently, we analyzed the high-frequency

mutation genes of patients in the two groups, finding that the gene

with the highest mutation frequency of patients in the high-risk

group was TP53 (Figure 6C), while the gene with the highest

mutation frequency among patients in the low-risk group was

SPOP (Figure 6D). The relationship between mutated genes of

patients in the two groups was compared, showing significant co-
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mutation between MACF1 and PCLO in PRAD patients in the high-

risk group (Figure 6E), and significant co-mutation between SPOP

and ASH1L in PRAD patients in the low-risk group (Figure 6F).

Finally, GISTIC 2.0 was used to identify genes with significant

amplification or deletion in the copy number variation data of

patients in two groups, respectively. The results showed more gene

copy number amplifications on chromosomes 2, 12, 13, 20, and 21

in PRAD patients in the high-risk group (Figures 6G, H).

To identify the underlying biological features of the different

risk models, we calculated the correlation between the enrichment

score and the risk score at the hallmark for each sample, and the

results showed that the risk score had a significant negative

association with DNA repair, MYC targets V1, G2M checkpoint,

unfolded protein response, MYC targets v2, E2F targets and

oxidative phosphorylation, and significant positive association

with an apical surface and myogenesis (all P<0.05, Figure 7).
Difference analysis between high-risk
group and low-risk group

As the level of risk has a significant impact on the survival rate of

patients, we conducted a differential analysis on the gene expression

of patients in the high-risk group and the low-risk group, taking the

genes with Padj< 0.01 and |logFC|> 1.5 as the differentially expressed
A

B

C

FIGURE 2

Overall expression of m6A-related genes in PRAD patients. Purple indicates the tumor sample, and green indicates the normal sample. Three images
indicate TCGA (A), GSE46602 (B), GSE69223 (C). *P < 0.05, **P < 0.01, ***P < 0.001, ns, not significant.
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genes. We identified 284 differentially expressed genes, including 207

up-regulated genes and 77 down-regulated genes (Figure 8A). At the

same time, the differentially expressed genes were divided into

differentially expressed mRNAs and differentially expressed

lncRNAs. There were 164 up-regulated miRNAs and 71 down-

regulated miRNAs (Figure 8B) identified, and 43 up-regulated

lncRNAs and 6 down-regulated lncRNAs (Figure 8C).

Subsequently, we analyzed the impact of differentially expressed

mRNAs between the high-risk group and low-risk group on

biologically relevant functions of patients. First, GO functional

annotation was performed on the differentially expressed genes

(Figure 9A; Supplementary Table 4), revealing that these

differentially expressed genes were mainly enriched in biological

processes including muscle filament sliding, actin-myosin filament

sliding, striated muscle cell development, myofibril assembly, thyroid

hormone metabolic process, cellular component assembly involved in
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morphogenesis and thyroid hormone generation (Figure 9B); in

cellular components including sarcomere, myofibril, contractile fiber,

muscle myosin complex, and myosin II complex (Figure 9C), and in

molecular functions including lipase inhibitor activity, endopeptidase

Inhibitor activity, peptidase inhibitor activity, microfilament motor

activity, endopeptidase regulator activity, enzyme inhibitor activity

(Figure 9D). At the same time, these differentially expressed genes

were enriched in KEGG pathways such as Thyroid hormone synthesis,

Chemical carcinogenesis-DNA adducts, Pancreatic secretion, Drug

metabolism-cytochrome P450 (Figure 9E; Supplementary Table 5).

The enrichment of the expression levels of differentially expressed

genes in pathways hsa00982, hsa04918, and hsa04972 is shown in

detail in Figures 9F–H.

Next, GSEA was performed on all gene expressions between the

high-risk group and the low-risk group, showing significant differences

in the following biological processes between groups (Supplementary
A B

D
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C

FIGURE 3

Mutation status of m6A-related genes in PRAD patients. (A) Summary of PRAD patients mutation data from TCGA. (B) Mutation map of m6A-related
genes in PRAD patients from TCGA. Samples are ordered according to somatic nonsynonymous mutational burden and genes are ordered by
mutation frequency, with various colors indicating different mutation types. Subsection above legend shows mutational burden. (C) The expression
level correlation of m6A-related genes in the gene expression profile of PRAD patients from TCGA. The numbers in the figure and the annotation bar
on the right indicate the magnitude of the correlation. (D) Differences in TMB between PRAD patients in high-risk group and low-risk group.
(E) Differences in MSI status between PRAD patients in high-risk group and low-risk group.
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Table 6). Among them, biological processes such as centromere

complex assembly, mitotic sister chromatid segregation, DNA

replication independent nucleosome organization, kinetochore, and

axoneme assembly were inhibited, while biological processes such as

myofibril assembly, contractile fiber, muscle filament sliding,

sarcomere organization, and structural constituent of muscle were

activated (Figures 10A, B). Meanwhile, it was found that pathways

involved in hypertrophic cardiomyopathy, dilated cardiomyopathy,

arrhythmogenic right ventricular cardiomyopathy, glutathione

metabolism, cytokine-cytokine receptor interaction were activated,

while pathways involved in cell cycle, maturity onset diabetes of the
Frontiers in Immunology 08196
young, aminoacyl tRNA biosynthesis, mismatch repair, ribosome were

inhibited (Figures 10C, D).
PPI network of differentially expressed
genes between patients in high-risk group
and low-risk group

In order to explore the mechanism affecting the difference between

high-risk and low-risk groups, the PPI network of differentially expressed

genes in a high-risk group and low-risk group was obtained from the
A B

D E

C

FIGURE 4

Construction of the risk scoring model. (A, B) LASSO Cox analysis identified 18 signature genes most associated with OS in the dataset of PRAD
patients from TCGA. (C) Expression correlation analysis of signature genes in PRAD. (D) Kaplan-Meier curve assessed the effect of risk score on
overall survival in PRAD patients, with patients with low risk in purple and patients with high risk in green. (E) The correlation analysis of m6A-related
genes and risk scores. The horizontal axis shows m6A-related genes, the vertical axis shows the size of correlation, and the node color indicates the
significance level. *P < 0.05, **P < 0.01, *** P < 0.001.
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String database, which was visualized by cytoscape (Figure 11A). The

network contained 170 genes, where INS was also closely linked with 32

differentially expressed genes, while both MYH6 andMYH7 were linked

with 18 differentially expressed genes. The functional interaction subnet

was extracted by MCODE (Figure 11B). The ACTA1, ACTC1, and

MYH4 in the subnet were all linked to multiple DEGs in PPI. To verify
Frontiers in Immunology 09197
the functions of genes in the PPI, ClueGO functional enrichment analysis

was performed, which showed that genes in PPI were significantly

enriched in biological functions including ion transmembrane

transporter activity, phosphorylative, regulation of serine-type

endopeptidase activity mechanism, endopeptidase inhibitor activity,

and glucuronosyltransferase activity (Figure 11C).
FIGURE 5

Expression levels of m6A gene between patients in a high-risk group and low-risk group. Purple indicates patients with low-risk, and green indicates
patients with high-risk.
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The differentially expressed mRNA and differentially expressed

lncRNA were used to construct the mRNA-miRNA network and

lncRNA-miRNA network, respectively. The intersection of the

miRNAs in the two networks was taken to obtain the mRNA-

miRNA-lncRNA network associated with patients in the high-risk

group and the low-risk group (Figure 11D). The network contained

17 mRNA-miRNA-lncRNA relationships, including 91 miRNAs.

At the same time, the PPI network between m6A-related genes

was constructed (Figure 11E). The network contained 278 interaction

relationships and 34 m6A-related genes, among which METTL3,

YTHDF1, and YTHDF3 were the three nodes with the highest degree.
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Similarly, the mRNA-miRNA network of m6A-related genes was

constructed (Figure 11F), and the network contained 34 m6A-related

genes and 1121miRNAs. The top 5m6A-related genes were IGF2BP1

regulated by 241 miRNAs, HNRNPA2B1 regulated by 207 miRNAs,

YTHDF1 regulated by 155 miRNAs, PRRC2A regulated by 144

miRNAs, and YTHDF3 regulated by 143 miRNAs. The top 4 of

miRNAs that controlled multiple m6A-related genes simultaneously

were hsa-mir-1-3p controlling 24 m6A-related genes, hsa-let-7b-5p

controlling 20 m6A-related genes, hsa-mir-124-3p controlling 19

m6A-related genes, and hsa-mir-16-5p controlling 17 m6A-related

genes. Moreover, the heatmap of m6A-related genes, risk scores
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C

FIGURE 6

Correlation analysis of risk scores and genomic characteristics. (A, B) Summary data on mutation for patients with low-risk and patients with high-
risk. (C, D) Statistics of top 20 mutant genes in patients with high-risk and patients with low-risk. Samples are ordered according to somatic
nonsynonymous mutational burden and genes are ordered by mutation frequency, with various colors indicating different mutation types. The
subsection above the legend shows mutational burden. (E, F) Demonstration of synergy and mutational relationships between mutated genes in
patients with high-risk and patients with low-risk. (G, H) Identified genes with significant amplifications and deletions in patients with high-risk and
patients with low-risk. Q-value and change score of GISTIC2.0 (x-axis) versus genomic location (y-axis). Dashed lines indicated centromeres. The
green line represents the 0.25 Q-value cut-off point for determining significance. *P < 0.05.
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combined with clinicopathological characteristics was shown to

further explore the relationship among risk scores, m6A-related

genes and clinicopathological characteristics (Figure 11G).
Differences in immune characteristics and
drug sensitivity prediction of patients in
high-risk group and low-risk group

Next, the effect of risk score on the overall immune profile and

different infiltration levels of immune cell in PRAD patients was
Frontiers in Immunology 11199
assessed, revealing that compared with the low-risk group, the levels

of M1 macrophages and M2 macrophages in the high-risk group

significantly increased, while the levels of mast cells resting and T

cells CD4 memory resting significantly decreased (P< 0.05,

Figure 12A). We further calculated the correlation between the

level of immune cell and the expression level of m6A-related gene

(Figure 12B), finding that resting memory CD4+ T cells and

regulatory T cells (Tregs) were strongly correlated with multiple

m6A-related genes (P< 0.05).

We also predicted the drug sensitivity of PRAD patients in the

high-risk group and low-risk group, finding that patients in the low-
A B
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C

FIGURE 7

Correlation analysis of risk score and Hallmark_DNA_repair (A), Hallmark_APICAL_surface (B), Hallmark_myc_targets_v1 (C), Hallmark_G2M_checkpoint (D),
Hallmark_unfolded_protein_response (E), Hallmark_myc_targets_v2 (F), Hallmark_myogenesis (G), Hallmark_E2F_targets (H), Hallmark_oxidative_phosphorylation
(I). The horizontal axis represents the risk score, and the vertical axis represents the enrichment score of the hallmark.
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A B C

FIGURE 8

Differentially expressed mRNAs (A), miRNAs (B), lncRNAs (C) between patients in a high-risk group and a low-risk group. The horizontal axis was
logFC; the vertical axis was -log10 (Adjust P-value). Red nodes represent up-regulated differentially expressed genes, blue nodes represent down-
regulated differentially expressed genes, and gray nodes represent genes that were not significantly differentially expressed.
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FIGURE 9

Enrichment analysis of differentially expressed genes between patients in a high-risk group and low-risk group. (A) GO functional enrichment
analysis, the vertical axis is gene ratio, the horizontal axis is GO terms, the node color indicates -log10 (p value), and the node size indicates the
number of genes contained in the current GO Term. (B) The first 5 items of BP are listed, the node’s size indicates the number of genes contained in
the current GO Term, and the different colors indicate different GO Term. (C) The first 5 items of CC are listed, the node size indicates the number
of genes contained in the current GO Term, and the different colors indicate different GO Term. (D) The first 5 items of MF are listed, the node size
indicates the number of genes contained in the current GO Term, and the different colors indicate different GO Term. (E) KEGG pathway enrichment
analysis, the horizontal axis was -log10 (p value), the vertical axis is the Pathway name, the node size indicates the number of genes enriched in the
pathway, and the node color indicated -log10 (p value). (F) KEGG pathway with significant enrichment. hsa00982: Drug metabolism - cytochrome
P450. (G) KEGG pathway with significant enrichment, hsa04972: Pancreatic secretion. (H) KEGG pathway with significant enrichment, hsa04918:
Thyroid hormone synthesis.
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risk group were more sensitive to PD0325901, trametinib,

GSK1059615, dasatinib, PARP_0108 and Z-LLNle-CHO, while

patients in the high-risk group were more sensitive to WZ3105,

WYE-125132, CD532, pevonedistat, and other drugs (Figure 12C).
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Subsequently, risk scores were combined with different

clinicopathological characteristics to construct a predictive

nomogram to predict OS in PRAD patients (Figure 13A).

Moreover, the calibration curves showed good agreement between
A B

DC

FIGURE 10

GSEA analysis of high-risk group and low-risk group. (A) GSEA-GO analysis of a dataset of PRAD patients from TCGA, the horizontal axis is the gene
ratio, the vertical axis is the GO terms, and the color represents -log10 (p value). (B) The first 5 items of the GSEA-GO analysis of the entire dataset
of PRAD patients from TCGA are shown. (C) GSEA-KEGG analysis of dataset of PRAD patients from TCGA, the horizontal axis is the gene ratio, the
vertical axis is the GO terms, the node size represents the number of genes enriched in GO terms, and the node color represents log10 (p value).
(D) The first 5 items of the GSEA-KEGG analysis of dataset of PRAD patients from TCGA.
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the 2-, 3-, and 5-year OS estimates by comparing the nomogram

and actual value of OS (Figures 13B–D). We also assessed the effect

of risk scores on the prognosis of PRAD patients. Dot plot of risk

score showed that all death samples belonged to the high-risk

group, and as the risk score increased, while the survival time of

the patients was shorter (Figure 13E). Univariate and multivariate

Cox analysis revealed that risk score was an independent risk factor

for predicting the prognosis of PRAD patients (Figures 13F, G;
Frontiers in Immunology 14202
Supplementary Table 6). By analyzing the correlation between

m6A-related genes and risk scores or clinicopathological

characteristics, it was found that the patients in the high-risk

group were more in the middle and late stages. Patients in the

high-risk group were older, and the cancerous sites were mostly in

the central area with multiple points. m6A-related genes were

significantly differentially expressed between patients in high-risk

group and the low-risk group (Figure 13G). Besides, the time-ROC
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FIGURE 11

PPI network and mRNA-miRNA-lncRNA network of differentially expressed genes. (A) PPI network of differentially expressed genes. The node size
represents the degree of the node. (B) The first subnet in the PPI network of differentially expressed gene. The node size represents the score of
mcode. (C) Graph of enrichment analysis of PPI network of differentially expressed gene. (D) mRNA-miRNA-lncRNA network of differentially
expressed genes. Blue nodes represent miRNAs, red nodes represent differentially expressed lncRNAs, and yellow nodes represent differentially
expressed mRNAs. (E) PPI network of m6A-related gene. The node size indicates the degree of the node. (F) mRNA-miRNA network of m6A-related
gene. Blue nodes represent miRNAs, and red nodes represent m6A-related genes. (G) The heat map of m6A-related genes, risk scores combined
with clinicopathological characteristics.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1086907
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2023.1086907
also showed that the predictive performance of the prognostic

model was 100% for one-year survival, 96.9% for three-year

survival, and 97.9% for five-year survival (Figure 13H).
Expression validation of m6A-related gene
in PCa cells

Based on the comprehensive analysis of TCGA data and GEO data

above, significant differences were found in expression of multiple
Frontiers in Immunology 15203
m6A-related genes between PCa tissues and normal tissues, which were

further verified at the cellular level. By comparing the expression of

m6A-related genes in prostate normal cell line (RWPE-1) and 2 PCa

cell lines (22Rv1 and PC3), 8 significantly DEGs were screened out by

RT-qPCR, among which METTL3, ALKBH5 and hnRNPA2B1 were

highly expressed in PCa cells, while METTL5, YTHDF1, IGF2BP2,

IGF2BP3 and hnRNPCwere lowly expressed in PCa cells (Figure 14A).

Moreover, three m6A-related genes with the same expression trend as

RT-qPCR results were screened out by Western blot, including

METTL3, METTL5 and YTHDF1 (Figure 14B).
A B

C

FIGURE 12

Association of risk score-m6A-related gene-immune cell infiltration and drug sensitivity. (A) Histogram of the level of immune cells infiltration
between patients in a high-risk group and low-risk group. Light green represents the high-risk group, dark green represents the low-risk group, the
horizontal axis represents immune cell subtypes, and the vertical axis represents the infiltration level of cells. (B) Correlation diagram between m6A-
related genes and immune cells. The horizontal axis represents immune cell subtypes, the vertical axis represents m6A-related genes, the node size
represents the absolute value of the correlation size, and the node color represents the significance level. (C) Differences in drug sensitivity between
patients in the high-risk group and low-risk group. The horizontal axis indicates grouping, and the vertical axis indicates -log0 (IC50). *P < 0.05,
**P < 0.01, ns, not significant.
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Discussion

Cumulative evidence over the two decades suggested that

various types of RNA modifications, such as 5-methylcytosine

(m5C), m6A, inosine (I), and 2′-O-methylation (2′-O-Me) are
Frontiers in Immunology 16204
implicated in PCa (6, 36–38). Among them, m6A has attracted

the most attention due to the wide distribution of this modification

across the human transcriptome. Yet, the interplay between m6A

and PCa development is still not clearly understood. In this study,

we systematically examined the relationship between expression of
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FIGURE 13

Analysis of the predictive power of risk scores for prognosis in PRAD patients. (A–D) Calibration curves of the nomogram. The horizontal axis is the
survival predicted by the nomogram, and the vertical axis is the actual survival with repeated 1000 times each time. The curve shows the model had
good predictive value of prognosis of patients for 2 years, 3 years and 5 years. (E) The risk group of the risk model. The horizontal axis shows the
order of patient risk gradually increasing; the purple nodes represent patients with high-risk, the green nodes represent patients with low-risk, the
vertical axis of the upper graph indicates the patient’s transformed risk score, and the vertical axis of the lower graph indicate survival time of
patients. (F) HR and P values for risk scores by Univariate Cox regression analysis combined with clinicopathological features. (G) Multivariate Cox
regression analysis of risk score combined with HR and P values of clinicopathological characteristics. The analysis showed that score of m6A group
was an independent risk factor for the prognosis of PRAD patients. (H) Time-ROC curve of nomogram model for predicting 1-year survival, 3-year
survival and 5-year survival of PRAD patients.
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m6A regulators and progression/prognosis of PCa with the help of

multiple bioinformatic tools. In addition, expression patterns of

three candidates, i.e., METTL3, METTL5 and YTHDF1, have been

successfully validated by experimental approaches.

As an important enzyme catalyzing the formation of m6A,

METTL3 forms an m6A methyltransferase complex with

METTL14, WTAP, and VIRMA to confer m6A marks to its

binding RNA transcripts (39). One study revealed that METTL3

inhibits apoptosis of PCa cells via Sonic Hedgehog (SHH)-GLI

pathway, indicating an oncogenic role of METTL3 during PCa

progression (40). Another study demonstrated that METTL3

regulates the expression of Integrin b1 (ITGB1) through m6A-

HuR-dependent mechanism, which subsequently promotes the

bone metastasis of PCa (41). Notably, MYC, a well-known

oncogene in PCa, was recently identified as a functional target of

METTL3-mediated m6A modification. As a result, over-expression

of MYC was sufficient to rescue the inhibitory effect of METTL3

knockdown on the tumorigenic activities of PCa cells (42).

Consistent with these previous studies, we re-confirmed the

elevated expression of METTL3 in PCa cells, identifying it as the

key node of the PPI network and further unveiling its potential in

the prognosis of advanced PCa.

Other than METTL3, which is responsible for more than

100,000 methylation events in humans, methyltransferase of

METTL5 can only catalyze m6A in human 18S rRNA at position

A1832 site, thus participating in translational control (43).

Dysregulation of METTL5 has been revealed in breast cancer,

pancreatic cancer and gastric cancer (44–46). To the best of our

knowledge, this is the first study that reported METTL5 being

downregulated in PCa samples compared to normal control.

Considering the fact that METTL5 is mostly found to be

upregulated in other cancer types and gas oncogenic functions, it

will be interesting to investigate the reason for the downregulation

of METTL5 in PCa and uncover its clinical relevance.

As an m6A reader, YTHDF1 interacts with several translation

initiation factors to mediate the translation of m6A-modified
Frontiers in Immunology 17205
transcripts (47). A recent study suggested that YTHDF1 is highly

expressed in both PCa tissues and promotes the proliferation of PCa

cells by regulating TRIM44 (48). Surprisingly, although we

also identified YTHDF1 as a key node of both PPI and

mRNA-miRNA networks, both RT-qPCR and western blot results

showed a significant decrease of YTHDF1 in PCa cells compared to

normal RWPE-1 cell line. This discrepancy may reflect the

complexity of m6A-related regulation in PCa, which should be

further investigated.

Increasing studies have revealed the m6A regulatory patterns of

PCa and correlated these modification patterns with the tumor

immune cell infiltration microenvironment characteristics (49–51).

In addition, a recent paper found that m6A reader HNRNPC can

regulate Treg cell abundance as a possible mechanism for m6A

methylation-mediated response against CTLA-4, indicating that

activation of the immune microenvironment by targeting m6A

regulators may serve as a potential therapeutic approach for

advanced PCa(52).Our study synthetically analyzed the

relationship between the expression of m6A regulators and

immune characteristics and drug sensitivity of PCa patients. In

accordance with the previous reports, we confirmed that resting

memory CD4+ T cells and Tregs are highly correlated with m6A-

related genes (53, 54), while both high- and low-risk groups are

sensitive to a number of therapeutic drugs. Some of these drugs are

known to be effective in the treatment of PCa and have even been

approved for clinical use (55–57). Thus, it will be informative to

determine whether combinational treatment of m6A inhibitors and

conventional PCa drugs could achieve a synergistic effect.

In the current study, four miRNAs, including hsa-mir-1-3p,

hsa-let-7b-5p, hsa-mir-124-3p, and hsa-mir-16-5p were ranked as

the top miRNAs, which dedicate the expression of m6A regulators.

As expected, most of them have been validated to be closely

associated with PCa progression and metastasis (58–61), which

further confirmed our observations.

It still remains some limitations in this study. For instance,

although the dysregulation m6A-related genes have been validated
A B

FIGURE 14

Expression validation of m6A-related gene in PCa cells. (A) Differences in mRNA expression of 8 m6A-related genes in 22Rv1, PC3 and RWPE-1 by
RT-qPCR. (B) Differences in protein expression of METTL3, METTL5 and YTHDF1 in 22Rv1, PC3 and RWPE-1 by western blot. *P<0.05, **P<0.01.
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in a number of PCa cell lines, additional studies are needed to

investigate the change of global m6A level in PCa specimen as

compared with normal control. More importantly, the underlying

mechanism by which the m6A modification is modulated in

response to oncogenic signals during PCa development is yet to

be discovered. Future efforts should be made to systematically

deconstruct how the m6A-targeting axis promotes PCa

tumorigenesis and unveil its clinical relevance.
Conclusions

The present study systematically evaluated the expression

pattern, functional network, and potential prognostic value of

m6A regulators in PCa, which may provide novel insights into the

understanding of PCa molecular pathology and facilitate the risk

surveillance and clinical decision-making for patients diagnosed

with PCa.
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as a novel tumorigenic and
immunogenic gene and predicts
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Introduction: The most prevalent bone tumor with a relatively high level of

aggressiveness and malignancy is osteosarcoma. The characteristics of the

serpin family in osteosarcoma have not been defined.

Methods: In this study, the predictive significance of the serpin superfamily was

investigated in the osteosarcoma and Gene Expression Omnibus (GEO)

databases from The Cancer Genome Atlas (TCGA).

Results: It was discovered that SERPINH1 is a significant biological marker in

osteosarcoma. According to the CCK-8, EdU, and Transwell assays as well as the

IHC assay, SERPINH1may promote osteosarcoma proliferation andmigration. It is

also more expressed in tumor samples than in healthy samples. SERPINH1 might

forecast the effects of immunotherapy. Additionally, immune cells are interacted

with through checkpoint, cytokine, and growth factor pathways in osteosarcomas

with high SERPINH1 levels. The biological function, immunological characteristics,

and treatment response (immunotherapy and chemotherapy responses) of

patients with osteosarcoma were successfully predicted using a model related

to SERPINH1. SERPINH1 and the SERPINH1-related score predict ferroptosis/

pyroptosis/apoptosis/necroptosis in osteosarcoma.

Discussion: The SERPINH1-related score was an effective method for identifying

osteosarcoma patients who would respond to immunotherapy and

chemotherapy, as well as for predicting the survival outcomes of such patients.
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Introduction

The most prevalent bone tumor with a relatively high level of

aggressiveness and malignancy is osteosarcoma. Children and

teenagers are frequently affected by osteosarcoma, which has an

annual incidence of 1 to 3 incidences per million persons globally

(1). Osteosarcoma typically involves lung metastasis and mostly

develops from primitive mesenchymal cells found in bone. Surgery

to remove pathogenic lesions and adjuvant chemotherapy are still

the go-to treatments for people with osteosarcoma (2). Sometimes,

the cure rates are underwhelming. The scientific community has

faced a formidable challenge in enhancing the chances of survival

for people with osteosarcoma (3). A thorough understanding of

osteosarcoma biology has been made possible by the rapid

advancement of high-throughput sequencing, growing viability of

molecular profiling, and reliable model systems based on extensive

bioinformatics research.

A popular family of protease inhibitors called serpin uses

conformational changes to block the activity of the target enzyme.

The coagulation route, inflammation, immunology, and cancer are

just a few of the crucial proteolytic cascades that the serpin

superfamily regulates (4). It has been demonstrated that the brain

metastasis Serpin superfamily promotes tumor growth and vascular

co-option (5). A biomarker for colorectal cancer that interacts with

CEA was identified as SERPINB5 (6). The motility and invasiveness

of oral carcinoma cells may be aided by overexpressed SERPINB1

(7). Notably, SERPINE2 could encourage osteosarcoma tumor cell

proliferation and medication resistance (8). The serpin superfamily

in osteosarcoma has not yet been thoroughly examined, yet. It is still

unknown if the serpin superfamily has a significant predictive

significance in osteosarcoma. As SERPINH1 has been widely

studied in pan-cancer except for osteosarcoma (9, 10), the

prognostic value of SERPINH1 in osteosarcoma was reasonably

expected. We, therefore, paid special attention to SERPINH1 and

performed a comprehensive analysis on its role in osteosarcoma.

The prognostic utility of the serpin superfamily was investigated

in this study. It was discovered that SERPINH1 is a significant

biological marker in osteosarcoma. The physical function,

immunological characteristics, and medication response of

patients with osteosarcoma were successfully predicted using a

SERPINH1-related model.
Abbreviations: TARGET, Therapeutically Applicable Research to Generate

Effective Treatments; GEO, Gene Expression Omnibus; LASSO, least absolute

shrinkage and selection operator; ROC, receiver operating characteristic; AUC,

area under the curve; ssGSEA, single-sample gene-set enrichment analysis;

ESTIMATE, Estimated Stromal and Immune cells in Malignant Tumor tissues

using Expression data; DEGs, differentially expressed genes; GSVA, gene set

variation analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and

Genomes; IHC, Immunohistochemistry; RT-qPCR, Real-time quantitative

polymerase chain reaction.
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Method

Data gathering

The TCGA osteosarcoma and GSE21257 databases were used to

gather the osteosarcoma samples. The data were transformed to

TPM value. The R package SVA was used for data standardization

and batch-to-batch difference removal.
Value for prognosis of SERPINH1

Based on the cutpoint value of SERPINH1 determined using the

R package survminer, the osteosarcoma patients were split into two

groups. The R package pROC was used to create the time-

dependent receiver operating characteristic (ROC) curve for

SERPINH1. On SERPINH1, the gene set variation analysis

(GSVA) of the Kyoto Encyclopedia of Genes and Genomes

(KEGG) and gene ontology (GO) pathways was carried out. The

TISCH2 database was used to investigate the SERPINH1 expression

pattern in the osteosarcoma tumor microenvironment (TME).
Immunotherapy prediction of SERPINH1

The TIDE was used for the immunotherapy prediction of

SERPINH1 (11). The TISMO was used for immunotherapy and

cytokine treatment prediction of SERPINH1 (12).
Immunohistochemistry (IHC)

Detailed methods were provided in the Supplementary File

following the previous study (13).
Cell culture

Detailed methods were provided in the Supplementary File

following the previous study (13).
Small interfering RNA (siRNA) transfection

The siRNAs sequences are as follows: SERPINH1-1 (F:

GCAGCAAGCAGCACUACAATT R : UUGUAGUGC

UGCUUGCUGCTT), SERPINH1-2 (F: CCAGCCUCAUCAU

CCUCAUTT R: AUGAGGAUGAUGAGGCUGGTT), SER

PINH1-3 (F: GGCCUAAGGGUGACAAGAUTT R: AUCUUG

UCACCCUUAGGCCTT). The exact method is provided in the

Supplementary Material.
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Real-time quantitative polymerase chain
reaction (RT-qPCR)

The primer sequences are SERPINH1 (F: ATATTTAT

AGCCAGGTACCTTCTCACC R: TTTTATAGTTGGGAGAGGT

TGGGATAG), GAPDH (F: AATGGGCAGCCGTTAGGAAA R:

GCCCAATACGACCAAATCAGAG). The exact method is

provided in the Supplementary Material.
Cell counting Kit-8 (CCK-8) assay

The U2OS and MNNG/HOS cells were seeded into 96-well

plates at 5,000 cells/well density. After 24h, 1/10 volume of CCK-8

reagent (Proteintech, USA) was added to the wells, and the

absorbance value was detected at 450nm after one h incubation at

37°C. The exact method is provided in the Supplementary Material.
EdU assay

Detailed methods were provided in the Supplementary File

following the previous study (13).
Transwell assay

The migration of U2OS and MNNG/HOS cells was assessed

using a Transwell chamber (Corning, USA) with polycarbonic

membranes (6.5 mm in diameter and eight mm pore size). Cells

in serum-free medium were added into the upper chamber at the

density of 5 × 105 cells/ml (200 ml/well), and the culture medium

with 10% FBS was added to the lower chamber. After incubating for

48h at 37°C, U2OS and MNNG/HOS cells that penetrated the lower

surface were stained with 0.1% crystal violet and counted. The exact

method is provided in the Supplementary Material.

SERPINH1 was the subject of a weighted correlation network

analysis (WGCNA) in the TCGA dataset. The input was the matrix

from the TCGA dataset. For further investigation, the genes from

the turquoise module were taken out.
Building the SERPINH1-related score

Between two SERPINH1-related groups, the differentially

expressed genes (DEGs) were identified. The prognostic DEGs were

discovered using a single-variable Cox regression analysis. Dimension

reduction and the creation of the SERPINH1-related score employed

the Random Survival Forest method and the least absolute shrinkage

and selection operator (LASSO) technique. The expression value of the

gene’s * coefficient was used to construct the SERPINH1-related score.

The R package survival was used to create the Kaplan-Meier survival

curve for the SERPINH1-related score. The R package pROCwas used
Frontiers in Oncology 03210
to create the time-dependent ROC curve for the SERPINH1-related

score. The predicted clinical variables were identified using univariate

and multivariate Cox regression analysis.
Immune characteristics of the SERPINH1-
related score

The correlation between the SERPINH1-related score and immune

infiltrating cells (10 cells from MCPcounter algorithm (14), 28 cells

from the ssGSEA algorithm (15), six cells from TIMER algorithm (16))

were analyzed. The association between the SERPINH1-related and

microenvironment scores (17) (ESTIMATE, Immune, and Stromal)

was investigated.
Single-cell RNA sequencing (scRNA-seq)
analysis on SERPINH1

For the scRNA-seq investigation, GSE152048 was employed.

The R package “Seurat” was used to annotate the cell type. The R

package “iTalk” was used to evaluate the cell communication

pattern. The R package “monocle” was used to diagnose the

pseudotime trajectory analysis.
Immunotherapy prediction of the
SERPINH1-related score

The correlation between the SERPINH1-related score and

classical immune checkpoints was analyzed. The association

between the SERPINH1-related score and APM (antigen

processing and presenting machinery) score, Cytotoxic activity

(CYT), T cell-inflamed gene expression profile (GEP), and

interferon g (IFN-g) were analyzed (18–20). The TIDE was used

for immunotherapy prediction of the SERPINH1-related score (11).
Drug prediction using the SERPINH1-
related score

The chemotherapy medications associated with the SERPINH1-

related score were predicted using the R package OncoPredict (21).
Results

Prognostic value of serpin superfamily
and SERPINH1

Figure 1A depicts the location of the serpin superfamily on

human chromosomes. In patients with osteosarcoma, SERPINH1

and SERPINA7 were found to be two independent prognostic

indicators by univariate Cox regression analysis on the serpin
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superfamily (Figure 1B). We focused specifically on SERPINH1,

which has drawn more attention from the scientific community

since it is more likely to contribute to the development of

osteosarcoma as a malignancy. Patients with osteosarcoma were

divided into two groups according to the expression level of

SERPINH1, and it was shown that the two groups had

dramatically different survival rates (Figure 1C). The prognostic
Frontiers in Oncology 04211
value of SERPINH1 was validated by the 1-year, 2-year, 3-year, 4-

year, and 5-year ROCs, which have the respective values of 0.487,

0.701, 0.714, 0.704, and 0.637. (Figure 1D). SERPINH1 was

favorably related with biological processes, including cellular

amino acid biosynthetic process, glycosylation, phospholipid

carbolic process control, and protein export, according to GSVA

of GO and KEGG keywords (Figure 1E). In the low SERPINH1
B
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FIGURE 1

Prognostic value of serpin superfamily and SERPINH1. (A) Circplot of the serpin superfamily in human chromosomes. (B) Univariate Cox regression
analysis on the serpin superfamily. (C) Survival curves of the two SERPINH1-stratified groups. (D) The 1-year, 2-year, 3-year, 4-year, and 5-year ROC
regarding SERPINH1. (E) The correlation between SERPINH1 and GO, KEGG terms quantified by GSVA. (F) The levels of microenvironment scores in
two SERPINH1 groups. *P<0.05; **P<0.01; ***P<0.001.
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group, microenvironment scores such as ESTIMATE, Immune, and

Stromal scores were significantly higher (Figure 1F).
Immunotherapy prediction of SERPINH1

SERPINH1was given the highest priority possible formechanistic

follow-up research using TIDE’s regulator prioritization module

(Figure 2A). Based on the Normalized Z score calling using Cox-PH

regression in the Immunotherapy dataset, high expression of

SERPINH1 was discovered in the ICB Mariathasan2018 PDL1 and
Frontiers in Oncology 05212
ICBVanAllen2015 CTLA4 datasets. Based on the Normalized Z score

calling from selection log2FC in the CRISPR Screen dataset, it was

discovered that SERPINH1 had a high expression level in the Pech

2019 NK E/T=2.5 dataset. Based on normalized expression values

from immunosuppressive cell types, increased expression of

SERPINH1 was discovered in CAF FAP and MDSC. Eight human

immunotherapy datasets that included SERPINH1 achieved AUC

values greater than 0.5. (Figure 2B). SERPINH1 exhibited a higher

predictive value than TMB and B. Clonality, which respectively gave

AUC values of > 0.5 in seven and seven immunotherapy cohorts. The

predictive value of SERPINH1was, however, lower than theMSI score
B C

D

A

FIGURE 2

Immunotherapy prediction of SERPINH1. (A) The regulator prioritization module in TIDE. (B) Comparison of SERPINH1 and immunotherapy
determinants in human immunotherapy datasets. (C) The prediction of SERPINH1 in cytokine treatment (IFN-b, IFN-g, TGF-b, and TNF-a) in murine
datasets. (D) The prediction of SERPINH1 in immunotherapy in murine datasets. *P<0.05; **P<0.01; ***P<0.001.
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(AUC> 0.5 in 13 immunotherapy cohorts), T.Clonality (AUC> 0.5 in

9 immunotherapy cohorts), CD274 (AUC> 0.5 in 21 immunotherapy

cohorts), TIDE (AUC > 0.5 in 18 immunotherapy cohorts), IFNG

(AUC > 0.5 in 17 immunotherapy cohorts), and CD8 (AUC > 0.5 in

18 immunotherapy cohorts). In 11 mouse datasets, SERPINH1 could

accurately predict the effects of cytokine treatment (IFN, IFN, TGF,

and TNF) (Figure 2C). SERPINH1 might accurately forecast

immunotherapy in 5 murine datasets (Figure 2D).

Additionally, in six immunotherapy cohorts, including Dizier

(AUC = 0.651), Ascierto (AUC = 0.786), Riaz (AUC = 0.608),

Homet (AUC = 0.733), Amato (AUC = 0.729), and Kim (AUC =

0.678), SERPINH1 shown excellent sensitivity in predicting

immunotherapy response (Figure 3A). Patients in Hugo and

Nathanson cohorts had more remarkable survival outcomes with

high SERPINH1 expression, while patients in Lauss, Kim,
Frontiers in Oncology 06213
IMvigor210, and Van Allen cohorts had more remarkable

survival outcomes with low SERPINH1 expression (Figure 3B).
Pan-cancer analysis on the
serpin superfamily

Pan-cancer mutation analysis on the serpin superfamily was

performed. The expression pattern of the serpin superfamily

between tumor and normal samples is shown in Figure S1A. The

methylation difference of the serpin superfamily between tumor and

normal samples is shown in Figure S1B. The heterozygous CNV of the

serpin superfamily is shown in Figure S1C. The homozygous CNV of

the serpin superfamily is shown in Figure S1D. Pan-cancer function

analysis on the serpin superfamilywas performed. Pathway annotation
B

A

FIGURE 3

Immunotherapy prediction of SERPINH1. (A) ROC regarding the sensitivity of SERPINH1 in immunotherapy prediction in six immunotherapy cohorts.
(B) Survival curves of the two SERPINH1-stratified groups in six immunotherapy cohorts.
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on the serpin superfamily is shown in Figure S2A, in which EMT

activation showed a strong positive correlation with the serpin

superfamily. miRNA network annotation on the serpin superfamily

is shown in Figure S2B. Pan-cancer drug prediction analysis on the

serpin superfamilywas performed based on theCTRPdatabase (Figure

S3A) and the GDSC database (Figure S3B), in which SERPINB6,

SERPINE1, and SERPINH1 could predict most of the commonly used

chemotherapy drugs. We further explored the disease network of

SERPINH1, in which SERPINH1 was highly enriched in osteogenesis

processes such as osteogenesis imperfecta (Figure S4A). Besides, the

protein interaction network of SERPINH1 showed thatHSPA8,MIA3,

COL1A1, COL1A2, COL1A4, COL26A1, FKBP10, PPIB, LEPRE1,

and CRTAP highly connected with SERPINH1 (Figure S4B).
In vitro validation on SERPINH1

It was investigated how SERPINH1 functions biologically in

osteosarcoma. The expression of SERPINH1 was considerably

reduced in three si-SERPINH1 groups compared to the si-NC

group in U2OS and MNNG/HOS cells, according to the results of
Frontiers in Oncology 07214
RT-qPCR (Figure 4A). For the follow-up experiment, si-

SERPINH1, which has the most critical ability to suppress the

expression of SERPINH1, was utilized. CCK-8 (Figure 4B) and EdU

tests (Figure 4C) demonstrated that infection with si-SERPINH1

greatly reduced the ability of U2OS and MNNG/HOS cells to

proliferate. Transwell experiment revealed that after exposure to

si-SERPINH1, U2OS and MNNG/HOS cells’ ability to migrate was

drastically reduced (Figure 5A). The IHC results further

demonstrated that osteosarcoma tumor tissues had much greater

levels of SERPINH1 expression than did normal tissues (Figure 5B).
Construction of the SERPINH1-
related score

It was determined that 17DEGswere predictive genes, of which 15

were risky indicators and two were beneficial markers (Figure 6A).

Using machine learning Random Survival Forest, the most effective

prognostic genes were chosen (Figure 6B). Additionally, the most

potent predictor genes were identified usingmachine learning LASSO,

and the SERPINH1-related score was created (Figure 6C). The
B

C

A

FIGURE 4

In vitro validation on SERPINH1. (A) RT-qPCR results of the expression of SERPINH1 in four groups (si-NC, si-SERPINH1-1, si-SERPINH1-2, si-SERPINH1-
3) in two cell lines. (B) CCK-8 assay in two groups (si-NC, si-SERPINH1). In two cell lines, (C) EdU assay in two groups (si-NC, si-SERPINH1). **P<0.01;
***P<0.001.
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following formula was used to determine the SERPINH1 score:

1.1077*CGREF1, 1.7743*TAC4, 1.4629*PROSER2, and

-1.2053*PCDHB7. SERPINH1-related score was used to classify

osteosarcoma patients. Figure 7A displays the expression profiles of

PCDHB7, TAC4, PROSER2, and CGREF1 in two score-stratified

groups associated to SERPINH1. Osteosarcoma patients with higher

PCDHB7 expression exhibited better survival rates (Figure 7B), while

those with lower CGREF1, PROSER2, and TAC4 expression had

worse survival rates (Figures 7C, D, E). The two SERPINH1-related

score-stratified groups in the TCGA and GSE21257 datasets had

significantly different survival outcomes (Figures 6D, E). In the

TCGA dataset, the 1-year, 3-year, and 5-year ROC values for the

SERPINH1-related score are 0.822, 0.876, and 0.851, respectively

(Figure 6F). In contrast, the GSE21257 dataset’s 1-year, 3-year, and

5-year ROCs for the SERPINH1-related score had the respective values

of 0.679, 0.674, and 0.683 (Figure 6G), confirming the predictive

usefulness of the SERPINH1-related score. The SERPINH1-related

score was shown to be an independent predictive factor by univariate

and multivariate Cox regression analysis on the clinical

variables (Figure 6H).
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Immune characteristics of the SERPINH1-
related score

Multiple immune infiltrating cells, including T cells, B cells, NK

cells, macrophages, mast cells, Type 1 T helper cells, and Type 2 T

helper cells, were observed to strongly negatively correlate with the

SERPINH1-related score (Figure 8A). According to the

aforementioned research, immune-cold microenvironment was

present in osteosarcoma patients with high SERPINH1-related

scores. In addition, the group with a high SERPINH1-related

score exhibited considerably lower levels of the crucial

immunotherapy determinants APM, CYT, GEP, and IFN-

(Figure 8B). ESTIMATE, Immune, and Stromal scores were

considerably lower in the group with high SERPINH1-related

scores (Figure 8C). Positive correlations between the SERPINH1-

related score and the traditional immunological checkpoints

CD274, PD-1, PDCD1LG2, and CTLA-4 were observed

(Figure 8D). Most importantly, patients with osteosarcoma who

had low SERPINH1-related scores had a higher likelihood of

responding to anti-PD-1 immunotherapy (Figure 8E).
B

A

FIGURE 5

In vitro validation on SERPINH1. (A) Transwell assay in two groups (si-NC, si-SERPINH1) in two cell lines. (B) IHC results of the expression of
SERPINH1 in osteosarcoma tumor tissues and normal tissues. **P<0.01; ***P<0.001.
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Biological functions of the SERPINH1-
related score

SERPINH1 was a hazardous marker in most of the cancer types

(Figure 9A). Besides, SERPINH1 positively correlated with the
Frontiers in Oncology 09216
SERPINH1-related score (Figure 9B). SERPINH1 positively

correlated with ferroptosis, pyroptosis, apoptosis, and necroptosis

(Figure 9C). Besides, the SERPINH1-related score positively

correlated with ferroptosis, pyroptosis, apoptosis, and

necroptosis (Figure 9C).
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FIGURE 6

Construction of the SERPINH1-related score. (A) Univariate Cox regression analysis on the prognostic DEGs. (B) Machine learning Random Survival
Forest for dimension reduction. (C) Machine learning LASSO for dimension reduction and constructing the SERPINH1-related score. (D) Survival
curves of the two SERPINH1-related score-stratified groups in the TCGA dataset. (E) Survival curves of the two SERPINH1-related score-stratified
groups in the GSE21257 dataset. (F) The 1-year, 3-year, and 5-year ROC regarding the SERPINH1-related score in the TCGA dataset. (G) The 1-year,
3-year, and 5-year ROC regarding the SERPINH1-related score in the GSE21257 dataset. (H) Univariate and multivariate Cox regression analysis on
the clinical factors.
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Drug prediction of the SERPINH1-
related score

Patients with osteosarcoma who had high SERPINH1-related

scores had significantly lower drug sensitivity to AMG-319 2045,

AZD3759 1915, AZD8186 1918, Cisplatin 1005, CZC24832 1615,

Dactinomycin 1811, Dactolisib 1057, Entospletinib 1630, Foretinib

2040, GSK343 (Figure 10).
Discussion

The most prevalent malignant bone tumor with a significant

capacity for invasion and metastasis is osteosarcoma. Patients with

osteosarcoma are currently treated mostly with surgery, radiation,

chemotherapy, and neoadjuvant chemotherapy. But overall survival

rates for osteosarcoma patients are still woefully inadequate.

Additionally, some osteosarcoma patients are resistant to

conventional chemotherapy medicines. Clinically speaking,

treating people with osteosarcoma is quite difficult. Some modern

treatments, including as antiangiogenic drugs, immunotherapies,

and tumor apoptotic promoters, have been used to treat

osteosarcoma, however it is still unknown how well they work. In

order to screen the essential molecules or biomarkers for early

diagnosis, targeted therapy, and prognosis analysis of osteosarcoma,

it is crucial to have a complete understanding of the molecular

pathological pathways relating to the occurrence and development

of osteosarcoma.

Serpins are homologous proteins with different functions,

including tumor development, blood coagulation, fibrinolysis,

programmed cell death, and inflammation (22). The relationship
Frontiers in Oncology 10217
between the serpin superfamily and the etiology of various

malignancies has been the subject of a plethora of research. The

specific roles of the serpin superfamily in osteosarcoma haven’t

been explored in any studies, nevertheless. SERPINA7, SERPINA3,

SERPINB7, SERPINH1, SERPINC1, SERPIND1, SERPINF1,

SERPINB8, AGT, SERPING1, SERPINI1, SERPINB6, SERPINE1,

SERPINA1, and SERPINF2 are the primary family members of the

serpin superfamily. In this study, SERPINH1 outperformed other

members of the serpin superfamily in terms of prognostic value.

Specifically, SERPINH1 could regulate EMT and metastasis of

gastric cancer via the Wnt/b-catenin signaling pathway (23).

Splicing factor-derived circular RNA circCAMSAP1 was reported

to accelerate the tumorigenic process of nasopharyngeal carcinoma

via a SERPINH1/c-Myc positive feedback loop (24). SERPINH1

was found to be a potential prognostic biomarker based on a pan-

cancer analysis (25). Circular RNA circ-TNPO3 could inhibit

metastasis of clear cell renal cell carcinoma by binding to

IGF2BP2 and destabilizing SERPINH1 (26). CyPA could interact

with SERPINH1 to promote extracellular matrix production and

inhibit the EMT of trophoblast (27). It has been established that

SERPINH1 is crucial in controlling how biological processes in

osteosarcoma are carried out. A potential target in the study of

immunosuppressive TME and immunotherapy may also be

SERPINH1. In human and mouse immunotherapy datasets,

SERPINH1 displayed impressive performance in predicting

cytokine treatment and immunotherapy.

Given the potent prognostic and predictive value of SERPINH1,

we constructed the SERPINH1-related score based on the

SERPINH1-related prognostic genes using two machine learning

algorithms. PCDHB7, TAC4, PROSER2, and CGREF1 were finally

included in the score. PCDHB7 was a potential marker in colorectal
B C
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FIGURE 7

Prognostic value of the SERPINH1-related score. (A) The expression patterns of PCDHB7, TAC4, PROSER2, and CGREF1 in two SERPINH1-related
score-stratified groups. (B) Survival curves of the two PCDHB7-stratified, (C) TAC4-stratified, (D) PROSER2-stratified, and (E) CGREF1-stratified groups.
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cancer (28). TAC4 was a potential marker in osteosarcoma (29).

PROSER2 was a potential marker in melanoma (30). CGREF1 was a

potential marker in prostate cancer (31). As expected, the

SERPINH1-related score efficiently stratified the survival

outcomes of osteosarcoma patients and served as an independent

prognostic factor. Notably, SERPINH1 and the SERPINH1-related

score predict ferroptosis/pyroptosis/apoptosis/necroptosis in

osteosarcoma. In combating medication resistance, numerous

preclinical and clinical trials have been conducted. Interesting
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correlations have been found between ferroptosis and cancer

therapeutic resistance, and it has been shown that activating

ferroptosis can overcome medication resistance (32). Recently,

some studies found that pyroptosis can influence tumors’

proliferation, invasion, and metastasis, which is regulated by some

non-coding RNAs and other molecules (33). Apoptosis is a

coordinated and organized cellular process that takes place under

both healthy and unhealthy circumstances. Moreover, it is one of

the subjects that cell biologists study the most. One condition where
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FIGURE 8

Immune characteristics of the SERPINH1-related score. (A) The correlation between the SERPINH1-related score and immune infiltrating cells.
(B) APM, CYT, GEP, and IFN-g in the two SERPINH1-related score-stratified groups. (C) ESTIMATE, Immune, and Stromal scores in the two
SERPINH1-related score-stratified groups. (D) The correlation between the SERPINH1-related score and immune checkpoints. (E) TIDE-based
immunotherapy prediction of the SERPINH1-related score. *P<0.05; **P<0.01; ***P<0.001.
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insufficient apoptosis occurs is cancer, which results in malignant

cells that resist death. Apoptosis has a complicated mechanism that

encompasses numerous routes. Anywhere along these pathways,

flaws might develop, resulting in the malignant transformation of

the afflicted cells, tumor spread, and medication resistance. Despite

being the root of the issue, apoptosis is a crucial component of many

therapeutic regimens for cancer and plays a significant part in its

management. The wealth of literature implies that it is possible to

target apoptosis in cancer (34). Receptor-Interacting Protein 1

(RIP1), RIP3, and Mixed Lineage Kinase Domain-Like are the

major mediators of necroptosis, a controlled necrotic cell death

mode that is caspase-independent (MLKL). Necroptosis is a type of

programmed cell death that can be used to treat cancer patients

resistant to apoptosis. It can also activate and intensify antitumor

immunity (35).
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In recent years, researchers have learned more and more

about the tumor microenvironment (36, 37). The tumor

microenvironment consists of cellular components, including

immune cells, endothelial cells, and fibroblasts, and non-cellular

components, including extracellular matrix, cytokines, and

hormones. Immune infiltrating cells play an essential role in

influencing tumor progression and therapeutic response (38). In

this study, osteosarcoma patients with high SERPINH1-related

scores had lower immune infiltrating cells, including as T cells, B

cells, NK cells, macrophages, mast cells, Type 1 T helper cells, and

Type 2 T helper cells. In osteosarcoma patients with high

SERPINH1-related scores, an immune-cold microenvironment

that promotes tumor development may exist.

Immunotherapy has emerged as a promising treatment option

for several cancers. Cancer immunotherapy tries to provide people
B C

A

FIGURE 9

(A) Pan-cancer analysis on SERPINH1. (B) The correlation between SERPINH1 and SERPINH1-related score. (C) The correlation between SERPINH1,
SERPINH1-related score, ferroptosis, pyroptosis, apoptosis, and necroptosis.
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immunity to fight cancer. In recent years, a large number of novel

cancer-specific immunotherapeutic medicines have been approved,

highlighting the effectiveness and promise of immunotherapy as an

anticancer strategy (39). Among the multiple immunotherapy

approaches, immune checkpoint inhibitor based on T cells has

received the most attention due to their outstanding performance

(40). APM, CYT, GEP, and IFN- levels were all statistically lower in

the group with a high SERPINH1-related score, which were all

important factors in immunotherapy. Additionally, the SERPINH1-

related score was strongly adversely correlated with the CD274, PD-

1, PDCD1LG2, and CTLA-4 immunological checkpoints. The
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likelihood of patients with osteosarcoma responding to anti-PD-1

immunotherapy was significantly higher in those with low

SERPINH1-related scores. The SERPINH1-related score was

accurate at identifying osteosarcoma patients who could respond

to immunotherapy. Additionally, 23 chemotherapeutic agents had

significantly decreased drug sensitivity in osteosarcoma patients

with high SERPINH1-related scores. AZD3759 could inhibit the

proliferation and progression of osteosarcoma through the blockade

of the EGFR and JAK pathways (41). Inhibiting PI3Kb with

AZD8186 could regulate key metabolic pathways in PTEN-null

tumors (42). Cisplatin is a well-known chemotherapeutic drug used
FIGURE 10

Drug prediction of the SERPINH1-related score. The drug sensitivity of 23 chemotherapy drugs in the two SERPINH1-related score-stratified groups.
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to treat numerous human cancers, including bladder, head and

neck, lung, ovarian, and testicular cancers (43). Therefore, the

SERPINH1-related score was accurate in identifying osteosarcoma

patients who could respond to chemotherapy.
Conclusion

In conclusion, the biological role of SERPINH1 in osteosarcoma

was investigated using in vitro confirmation. SERPINH1 and the

SERPINH1-related score predict ferroptosis/pyroptosis/apoptosis/

necroptosis in osteosarcoma. Further research is still needed to

determine the precise processes underlying the osteosarcoma

pathogenesis mediated by SERPINH1. The SERPINH1-related

score was an effective method for identifying osteosarcoma patients

who would respond to immunotherapy and chemotherapy, as well as

for predicting the survival outcomes of such patients. A real-world

cohort must be used to further validate the SERPINH1-related

score’s universality.
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Background: Identifying Kidney Renal Papillary Cell Carcinoma (KIRP) patients

with high-risk, guiding individualized diagnosis and treatment of patients, and

identifying effective prognostic targets are urgent problems to be solved in

current research on KIRP.

Methods: In this study, data of multi omics for patients with KIRP were collected

from TCGA database, including mRNAs, lncRNAs, miRNAs, data of methylation,

and data of gene mutations. Data of multi-omics related to prognosis of patients

with KIRP were selected for each omics level. Further, multi omics data related to

prognosis were integrated into cluster analysis based on ten clustering algorithms

using MOVICS package. The multi omics-based cancer subtype (MOCS) were

compared on biological characteristics, immune microenvironmental cell

abundance, immune checkpoint, genomic mutation, drug sensitivity using R

packages, including GSVA, clusterProfiler, TIMER, CIBERSORT, CIBERSORT-ABS,

quanTIseq, MCPcounter, xCell, EPIC, GISTIC, and pRRophetic algorithms.

Results: The top ten OS-related factors for KIRP patients were annotated.

Patients with KIRP were divided into MOCS1, MOCS2, and MOCS3. Patients in

the MOCS3 subtype were observed with shorter overall survival time than

patients in the MOCS1 and MOCS2 subtypes. MOCS1 was negatively correlated

with immune-related pathways, and we found global dysfunction of cancer-

related pathways among the three MOCS subtypes. We evaluated the activity

profiles of regulons among the three MOCSs. Most of the metabolism-related

pathways were activated in MOCS2. Several immune microenvironmental cells

were highly infiltrated in specific MOCS subtype. MOCS3 showed a significantly

lower tumor mutation burden. The CNV occurrence frequency was higher in

MOCS1. As for treatment, we found that these MOCSs were sensitive to different

drugs and treatments. We also analyzed single-cell data for KIRP.
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Conclusion: Based on a variety of algorithms, this study determined the risk

classifier based on multi-omics data, which could guide the risk stratification and

medication selection of patients with KIRP.
KEYWORDS

kidney renal papillary cell carcinoma, prognosis, immune microenvironment, drug
response, multi-omics
1 Introduction

Renal cell carcinoma (RCC) is a common malignancy of urinary

system (1). Clear cell carcinoma (ccRCC) is the most common

pathological type of RCC, accounting for about 70% of RCC,

followed by Kidney Renal Papillary Cell Carcinoma (KIRP) and

chromophobe renal cell carcinoma (1). Although surgical resection is

a good treatment for renal cell carcinoma at early stage, 30% of

patients are diagnosed in advanced stage due to delayed diagnosis,

and 10% to 20% of patients develop metastatic kidney cancer due to

postoperative recurrence, which eventually leads to death (2–4). At

present, due to the lack of understanding of the pathogenesis of renal

cancer, there is a lack of effective treatment for metastatic renal

cancer. Therefore, to explore the pathogenesis of kidney cancer is of

great significance for the treatment of kidney cancer. The search for

biomarkers related to kidney cancer can help clinicians personalize

patient treatment strategies and increase patient benefits.

Kidney cancer is a heterogeneous disease with multiple

subtypes, multiple genes, different biochemical characteristics and

multiple forms (5). KIRP, the second most common type of RCC, is

a heterogeneous disease originating in the tubular epithelium of the

kidney (6). The histological features of KIRP are the papillary

arrangement of tumor cells, and the axis of the papilla is fibrous

vascular tissue (7). In 1997, Delahunt and Eble divided KIRP into

type 1 and type 2 according to histopathological characteristics and

prognostic differences (8). In many studies, histological subtypes

have been shown to be important prognostic predictors, with type 1

KIRP having a better prognosis than type 2 KIRP (9). Previous

studies have reported that type 2 KIRP have higher nuclear grading,

later staging, and poorer prognosis than type 1 KIRP (10). In

contrast, Bigot et al. showed in a study of 486 patients with KIRP

who underwent nephron-sparing surgery that the histological

subtype of KIRP had no effect on postoperative tumor outcome

(11). In conclusion, whether the histological subtype involved in

type 1 or type 2 can be used as an independent prognostic factor is

controversial, and correct histological phenotype and prognostic

prediction are essential for the formulation of medical protocols.

Advances in sequencing technology and machine learning of all

kinds have led to significant advances in the acquisition and analysis

of omics data, which have deepened the understanding of tumors at

the molecular level (12). Compared with a single type of data, omics

data reflect the characteristics of biological individuals at multiple

levels, which provides the possibility to delineate cellular molecular

mechanisms in detail. Different levels of omics data reflect different
02224
relationships between genomic distribution, cancer occurrence,

progression, and prognosis (13). At the same time, each omics

data has its own advantages. For example, methylation chip data

and lncRNA expression matrix have good tissue conservation,

which can be used as efficient markers for the early diagnosis of

specific tumor tissues (14). miRNA data are characterized by

dissociation and can be used for non-invasive diagnosis and

dynamic detection of disease (15). Common transcriptome, or

mRNA sequencing, is the cheapest and most readily available,

and is suitable for use in a wide range of cohort studies to explore

general patterns in patient populations (16–25).

RCCs with different pathological types have different

therapeutic methods and prognosis. In addition, existing targeted

drugs are mainly used for ccRCCs, with unclear clinical efficacy in

non- ccRCCs (26, 27). It is important to note that there is currently

a lack of multi-omics prognostic molecular typing based on KIRP to

guide the diagnosis and treatment of KIRP. In this study, the risk

stratification of KIRP was studied by integrating multiple omics,

and the differences of subgroups were analyzed in each single omics

data to characterize the key events in the development of KIRP. The

study provides a reference for precision medicine of KIRP.
2 Materials and methods

2.1 Extraction and preprocessing of
multi-omics data for KIRP

The dataset for KIRP was downloaded from The Cancer

Genome Atlas (TCGA) (28) and TCGA database had the multi-

omics data for our analysis in this study. We acquired gene

expression profile for transcriptomics (including mRNAs

encoding protein, long noncoding RNAs as known as lncRNAs,

microRNA known as miRNAs, data of methylation, and data of

gene mutations). We applied TCGAbiolinks package of R

application to acquire clinicopathologic information and multi

omics-based data. We downloaded the gene expression profiles of

34 cases with KIRP from GSE2748 as the external validation cohort

(29). The patients with KIRP in the GSE2748 dataset had the

prognostic information (29). In addition, we searched and

downloaded the single-cell RNA sequencing for KIRP from

GSE152938 (30). There was a total of four KIRP samples and one

normal kidney sample included in GSE152938 (30). The matrix for

single-cell RNA sequencing was generated by R package Seurat (31).
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2.2 Identification of multi omics-based
cancer subtypes by integrative analysis

The MOVICS package aimed to show the multi-omics

comprehensive clustering and visualization of cancer typing

studies (32). There were ten algorithms included in the MOVICS

package : CIMLR, iClus terBayes , MoClus ter , COCA,

ConsensusClustering, IntNMF, LRAcluster, NEMO, PINSPlus

and SNF (32). For the multi omics-based data, we focused on the

characteristic related to prognosis (OS). The OS-related features,

including mRNAs, lncRNAs, miRNAs, methylation, and gene

mutations were analyzed by Univariate Cox regression analysis,

and we screened out features with the threshold P-value<0.05. Due

to the small amount of mutation matrix and miRNA expression

data, only the top 30 mutations and 200 miRNA data were

extracted. We carried out analysis for Clustering Prediction Index

(CPI) (33) and Gaps-statistics (33) to filtrate out the optimal

number of cancer subtypes. We finally identified the multi omics-

based cancer subtype (MOCS) based on consensus ensembles and

high robustness, thus separating the patients with KIRP into

different MOCSs.
2.3 Nearest template prediction validation

Nearest template prediction (NTP) algorithm could also be

applied to cross-platform, cross-species and multi-class predictions

without any optimization of analysis parameters (34). In this study,

we also used NTP algorithm of CMScaller package to test the

dependability and stability of MOCS subtypes via the external

GSE2748 cohort.
2.4 Biological characteristics for
MOCS subtypes

The gene sets (including immune-related pathways) were

analyzed, and enrichment scores were calculated using gene set

variation analysis (GSVA) from R package GSVA (35). The

differentially expressed genes (DEGs) among the three MOCS

subtypes were assessed using limma package (36). Pathway

enrichment analysis was performed by clusterProfiler package

with the employment of Biological Processes in Gene Ontology

(GO) (37).
2.5 Calculation of immune
microenvironmental cell abundance
and immune checkpoint

Tumor Immune Estimation Resource (TIMER) is a website

from which researchers can use RNA-Seq expression profile data to

detect the infiltration of immune cells in tumor tissue (38). The

TIMER provides the infiltrations of six kinds of immune cells (B

cells, CD4+ T cells, CD8+ T cells, Neutrophil, Macrophages and
Frontiers in Oncology 03225
Myeloid dendritic cells) (38). CIBERSORT (39) and CIBERSORT-

ABS (40) algorithms were used to acquire the infiltrations of 22

kinds of immune cells. quanTIseq is a deconvolution tool developed

specifically for RNA-seq data, enabling accurate quantification of

unknown tumor content, as well as the immune cell component of

the overall tissue (41). quanTIseq implemented a complete

deconvolution process for analyzing RNA-seq data based on

constrained least squares regression and a new eigenmatrix from

51 purified or enriched RNA-seq data sets, avoiding inconsistencies

between mixtures and eigenmatrices (41). MCPcounter (42), xCell

(43), and EPIC (44) algorithms (Estimate the Proportion of

Immune and Cancer cells) were also used to assess the immune

microenvironmental cell abundance. We estimated the infiltrating

level of immune or stromal scores using ESTIMATE R package

(45). In addition, DNA methylation of tumor-infiltrating

lymphocyte (MeTIL) for TCGA- KIRP cohort was also

calculated (46).
2.6 Evaluation of genomic mutation for
MOCS subtypes

Mutation profiles of KIRP were acquired and we compared and

visualized the difference of mutation among the MOCS subtypes

utilizing Maftools package of R (47). We applied the Maftools

function to analyze the oncogenic pathway and mutually exclusive

or coexisting mutations (48). The loss and gain in genomic level was

evaluated by GISTIC 2.0 algorithm (49).
2.7 Drug sensitivity profiles for
MOCS subtypes

R package pRRophetic was employed to predict the drug

sensitivity profiles for MOCS subtypes (50, 51). Subclass mapping

was used to explore the immunotherapy of KIRP based on the

literature published (52, 53).
2.8 Statistical analyses

R was used to conduct statistical analyses (v4.0.2). We also

provide the codes of all methods used in this paper in

Supplementary Code. P values or adjusted P values less than 0.05

were considered significant for all statistical comparisons.
3 Results

3.1 Three MOCSs were categorized for
KIRP patients by MOVICS package

We discovered three MOCS subtypes for KIRP patients based

on CPI analysis and Gaps-statistics, due to the optimal average

statistic value with the number of MOCSs was found to be three
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(Figure 1A). Hence, patients with KIRP were divided into MOCS1,

MOCS2, and MOCS3, indicating the robustness of the classification

system (Figure 1B). The silhouette plot indicated that the silhouette

score of MOCS1 was 0.70, the silhouette score of MOCS2 was 0.42,

while the silhouette score of MOCS3 was 0.71, which substantiated

that the MOCS subtypes were distinguishable and separated well

from each other (Supplementary Figure S1A). From the Figure 1C,

the consistency of the classification system for MOCSs were

observed in consideration of four statistics (54) (Figure 1C),

including Rand Index (RI), Adjusted Mutual Information (AMI),

Jaccard Index (JI), and Fowlkes-Mallows (FM) (54). Furthermore,

we observed that all the patients in the MOCS1 and MOCS1 were at

AJCC Stage I and Pstage I (Figure 1C). Among the three MOCSs,

we displayed the distribution of the multi-omics data for mRNA,

lncRNA, miRNA, DNA methylation, and gene mutations as shown

in the heatmap (Figure 1D). In the distribution diagram

(Figure 1D), RBP4, MSLN, VSTM2L, FTCD, AC147651.5, RP11-

23P13.6, RP11-326C3.2, RP11-124N19.3, CHL1-AS2, and RP11-

807H17.1 were the top ten OS-related factors of transcriptome

(mRNAs and lncRNAs). As for miRNA, hsa-mir-127, hsa-mir-

1247, hsa-mir-1-1, hsa-mir-1-2, hsa-mir-1180, hsa-mir-1269a, hsa-

mir-10b, hsa-mir-126, hsa-mir-105-1, and hsa-mir-105-2 were the

top ten OS-related factors of miRNAs (Figure 1D). As for DNA

methylation, cg16434331, cg06775420, cg25244238, cg06282596,

cg02239902, cg22688012, cg23591302, cg03994717, cg06223834,

and cg06234051 were the top ten OS-related factors (Figure 1D).

SETD2, PBRM1, SYNE2, NF2, MET, LRP2, CUL3, PKHD1, TTN,

and PCF11 were the top ten OS-related factors (Figure 1D). Further,

we compared the outcome of clinical prognosis of patients with

KIRP among MOCS1, MOCS2, and MOCS3. Patients in the

MOCS3 subtype were observed with shorter overall survival time

than patients in the MOCS1 and MOCS2 subtypes (Figure 1E),

which was also observed for progression free survival time

(Figure 1E). Using NTP algorithm, three MOCSs were also

identified as predicted by the external GSE2748 cohort

(Supplementary Figure S1B). Patients in the MOCS3 subtype

were observed with shorter overall survival time (Supplementary

Figure S1C).
3.2 Biological characteristics for
MOCS subtypes

Further, we depicted the molecular features characterization for

MOCS subtypes. We computed the enrichment score of immune-

related pathways (including Cell Functions, B Cell Functions, T Cell

Functions, Leukocyte Functions, Pathogen Defense, Interleukins,

TNF Superfamily, Chemokines, Cytokines, Regulation NK Cell

Functions Complement, Antigen Processing, Cytotoxicity,

Microglial Functions, TLR, Adhesion, Transporter Functions, Cell

Cycle, Macrophage Functions and Senescence) based on GSVA

analysis. We could find that MOCS1was negatively correlated with

immune-related pathways (Figure 2A). As for other pathways, we

found global dysfunction of cancer-related pathways among the

three MOCS subtypes (Figure 2B). Generally, MOCS1 showed
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relatively lower enrichment level of Nature metabolism Hypoxia,

Hu hypoxia signature, Exosomal secretion, Ferroptosis, MT

exosome and exosome assembly (Figure 2B), suggesting the three

MOCS subtypes were association with exosomes strongly.

Biological processes of AXONEMAL DYNEIN COMPLEX

ASSEMBLY, CILIUM MOVEMENT, AXONEME ASSEMBLY,

INNER DYNEIN ARM ASSEMBLY, INTRACILIARY

TRANSPORT, MICROTUBULE BUNDLE FORMATION,

PROTEIN LOCALIZATION TO CILIUM, MRNA SPLICE SITE

SELECTION, INTRACILIARY TRANSPORT INVOLVED IN

CILIUM ASSEMBLY, and EXTRACELLULAR TRANSPORT

were overactivated in MOCS1 (Figure 2C). Biological processes of

RESP IRATORY ELECTRON TRANSPORT CHAIN ,

RESPIRATORY ELECTRON TRANSPORT CHAIN, ELECTRON

TRANSPORT CHAIN, ORGANIC ACID CATABOLIC PROCESS,

OXIDATIVE PHOSPHORYLATTON, GOTATP SYNTHESIS

COUPLED ELECTRON TRANSPORT , COFACTOR

METABOLIC PROCESS, COENZYME METABOLIC PROCESS,

AEROBIC RESPIRATION, SMALL MOLECULE CATABOLIC

PROCESS, and ALPHA AMINO ACID METABOLIC PROCESS

(Figure 2C). Biological processes of CORNIFICATION, NEURON

FATE SPECIFICATION, TONGUE DEVELOPMENT,

AUTONOMIC NERVOUS SYSTEM DEVELOPMENT,

INNERVAT ION , FOREL IMB MORPHOGENES I S ,

APPENDAGE DEVELOPMENT, ENDOCARDIAL CUSHION

MORPHOGENESIS, APPENDAGE MORPHOGENESIS, EYELID

DEVELOPMENT IN CAMERA TYPE EYE (Figure 2C). In

addition, we evaluated the activity profiles of regulons among the

three MOCSs, thus highlighting the additional potential regulatory

differences. The higher level of several regulon, such as ZNF683,

IRF4, CEBPB, EPAS1, and TFE3 was observed in MOCS2 and

MOCS3 (Figure 2D), indicating the important differentiators of

epigenetically driven transcriptional networks among the three

MOCS subtypes. GSVA analysis was carried out regarding

metabolism-related pathways, we found that most of the

metabolism-related pathways were activated in MOCS2

(Supplementary Figure S2A). Consistently, most of immune-

associated signatures were enriched in MOCS2 (Supplementary

Figure S2B).
3.3 Calculation of immune
microenvironmental cell abundance
and immune checkpoint

In consideration of the critical role of immunity in KIRP

progression, we investigated the immune microenvironmental cell

abundance and immune checkpoint among the three MOCS

subtypes. Several immune microenvironmental cells were highly

infiltrated in specific MOCS subtype. For instance, B cell in MOCS3,

Macrophage M2 in MOCS2, NK cell in MOCS1 and so on

(Figure 3A). As for the immune checkpoint genes, on the whole,

MOCS3 was associated with higher levels of immune checkpoint

genes (Figure 3B). MOCS3 was also associated with higher levels of

MeTIL (Figure 3B). MOCS1 was found to be associated with lower
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levels of immune, stromal and ESTIMATE scores (Figure 3C).

Additionally, we found that MOCS3 showed a significantly lower

tumor mutation burden (TMB, Figure 3D). MOCS1 was found to

be associated with lower signature score of CD8+ T effector,

Immune checkpoint, APM, TME score A, Pan F TBRs, EMT2,

EMT3, and TME score B (Supplementary Figure S3A). The level of

RNAss, DMPss, ENHss, EREG.EXPss and HRD was found to be

lower in MOCS1 (Supplementary Figure S3B).
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3.4 Evaluation of genomic mutation
for MOCS subtypes

The differences in copy number variations (CNV) among the

three MOCS subtypes were compared, and the result revealed that the

CNV occurrence frequency was higher in MOCS1 (Figures 4A–C). In

detail, amplification in chr 2p, 2q, 3p, 3q, 4p, 7p, 7q, 12p, 12q, 16p,

16q, 17p, 17q, 18p, 18q, 20p, 20q, and 21q were higher in MOCS1
B

C

D
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A

FIGURE 1

Three MOCSs were categorized for KIRP patients by MOVICS package. (A) Determination of optimal cluster number through calculating CPI (blue
line) and Gaps-statistics (red line) in TCGA- KIRP cohort. (B) Consensus heatmap based on outcomes from 10 multi-omics integrative clustering
approaches with subtype number of three showing perfect diagonal rectangle. (C) Quantification of sample similarity using silhouette score based
on the consensus ensembles result and alluvial diagram presenting the flow distribution among different multi omics-based cancer subtypes
(MOCSs). (D) Comprehensive heatmap showing the detailed molecular landscape multi-omics data for mRNA, lncRNA, miRNA, DNA methylation,
and gene mutations among the three MOCSs. (E) log-rank test for overall survival time and progression free survival time for patients with KIRP.
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(Figure 4B). The above results were also proved by the total copy

number alteration rate as shown in Figure 4C. MOCS1 displayed a

higher rate in focal and arm-level mutation level gain (Figure 4D).

Mutation patterns of the top 20most frequently mutated genes among

the three MOCSs were displayed in the waterfall plot (Supplementary

Figure S4A), from which we could see that, TTN, MET, CUBN,

SYNE1, HERC2, KIAA1109, MUC16, PKHD1, WDFY3, DNAH8,

KMT2C, LRP2, MACF1, NEB, PCLO, SMARCA4, ANK3, COL18A1,

DDX5, DYNC2H1 were the top 20 mutated genes for MOCS1; TTN,

SETD2, MUC16, CUL3, KIAA1109, KMT2C, PBRM1, PCF11, BAP1,

FAT1, KMT2D, PKHD1, KDM6A, LRBA, SRRM2, ARID1A, ASAP2,

BIRC6, CENPE and CNOT1 were the top 20 mutated genes for

MOCS2; NF2, TTN, TXNIP, BAP1, CAMK1D, CDH8, CMYA5,

CREBBP, EBF2, HECTD4, ITGAL, KRAS, MAP1B, TAS1R2, TG,

EIF4G3, FAT1, HELZ2, KDM6A, and SYNE1 were the top 20

mutated genes for MOCS3 (Supplementary Figure S4A). The

synthetic lethal mutations in MOCS1, MOCS2, and MOCS3 were

displayed in Supplementary Figure S4B. The potential druggable gene

categories from the mutation dataset for MOCS1, MOCS2, and

MOCS3 were shown in Supplementary Figure S4C, we found that

ANK3, CUBN, LRP2, MET, PKHD1 and so on were the potential

therapeutic targets for MOCS1; ARID1A, BAP1, CUL3, FAT1,

KDM6A and so on were the potential therapeutic targets for

MOCS2; BAP1, CAMK1D, CMYA5, CREBBP, FAT1 and so on

were the potential therapeutic targets for MOCS3. The fraction of

pathways and samples affected were the minimum among the three

MOCSs (Supplementary Figure S4C).
3.5 Drug sensitivity profiles for
MOCS subtypes

We collected drug response data reflected by the IC50 value via

GDSC database. We observed that patients in MOCS3 were more
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sensitive to Crizotinib, Erlotinib, Pazopanib, Saracatinib, Sunitinib,

and Temsirolimus (Figure 5A). We found that patients in MOCS1

were more sensitive to AS601245, Bosutinib, PAC.1, ABT.888, and

Bleomycin (Figure 5B). Whereafter, we carried out subclass

mapping and the results revealed that patients in MOCS2 were

more likely to respond to anti-PD1 blockades (Figure 5C).
3.6 Single-cell analysis

A total of 16 cell clusters were identified after gene filtering,

normalization and principal component analysis, as shown in

Figure 6A. There were nine specific cell types, including B cell, CD8+

T cell, Endothelial cell, Plasma cell, TAM cell, CAF cell, Dendritic cell,

Fibroblast cell, pRCC cell (Figure 6B). In addition, a total of three cell

clusters (C0, C1, and C2) were predicted by Scissor tool, as shown in

Figure 6C. The bar graph displayed the fraction of specific cell types in

each cell cluster predicted by Scissor tool (Figure 6D). C0 cluster was

rich in TAM cell, CAF cell, Fibroblast cell, CD8+ T cell, Endothelial

cell, and pRCC cell (Figure 6D). C1 cluster was rich in Dendirtic cell,

Plasma cell, and B cell (Figure 6D). The correlation networks were

generated to show the interactions among different cells (Figure 6E).

The ligand–receptor pairs among cells were displayed in Figure 6F.
4 Discussion

Global cancer data show that RCC accounts for about 3%~5% of

adult malignant tumors, and its incidence is higher in males than in

females (4, 55). RCC is the 9th most common male cancer and the

14th most common female cancer worldwide (56). As for etiology,

tobacco exposure of any kind is thought to be associated with the

development of kidney cancer (57). In addition, diets high in fat, high

in protein, low in fruits and vegetables, and increased intake of dairy
B

C D

A

FIGURE 2

Biological characteristics for MOCS subtypes. (A) Heatmap showing GSVA enrichment score of immune-related pathways among the three MOCS
subtypes. (B) Heatmap showing GSVA enrichment score of cancer-related pathways among the three MOCS subtypes. (C) GO enrichment analysis
showing the upregulated pathways and the downregulated pathways. (D) Heatmap showing the regulon distribution among the three MOCS subtypes.
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products are associated with kidney cancer, but the relative risk is not

very high, and many scholars have different views (57, 58). The

current diagnosis and treatment problem of renal cancer is the

heterogeneity of the tumor, which often leads to different prognosis

of patients with the same stage and grade (59). In addition, the

incidence of tumor resistance and metastasis is high in renal cancer,

and the treatment options for these patients are extremely limited,

resulting in a low 5-year survival rate (60). In view of the above

problems, it is necessary to determine new diagnosis and treatment

strategies to improve the survival rate of patients with kidney cancer.
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TCGA is an oncology research initiative of The Cancer Genome

Atlas and the National Human Genome Research Institute (28). The

plan includes multifactorial data on common tumor tissues and

prognostic information for patients. The data included pathological

sections, cancer and para-cancer transcriptome, methylation chip

data and genome data (28). The development of multi-omics has

made it easy for researchers to deepen their understanding of cancer

at the molecular level. At the same time, a large number of omics data

also brings new challenges to analysts (61). It is particularly critical to

reduce data noise and obtain key characteristics of tumor occurrence
B
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FIGURE 3

Calculation of immune microenvironmental cell abundance and immune checkpoint. (A) Heatmap showing the immune microenvironmental cell
profile for TCGA- KIRP cohort based on TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER, XCELL, EPIC algorithms. (B) Heatmap
showing the profile for immune checkpoint genes, and DNA methylation of tumor-infiltrating lymphocytes (MeTILs). (C) Boxplot showing the
distribution of immune, stromal and ESTIMATE scores. (D) Distribution of TMB and TiTv (transition to transversion) among the three MOCS subtypes.
*** means P < 0.001 and **** means P < 0.0001.
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and development while preserving tumor characteristics (61). Few

studies have attempted to establish a comprehensive model based on

multiple omics data to predict prognosis and personalized drug

selection in patients with KIRP. Therefore, it is particularly

important to develop a comprehensive and robust prognostic and

drug selection model for patients with KIRP to assist in prognostic

prediction and guide personalized treatment. In this study, we

conducted a comprehensive integrated analysis of multiple omics

data, including mRNA, lncRNA, miRNA, DNA methylation profile

and somatic mutation data, and constructed a classifier to evaluate

the prognosis of patients with KIRP and assist drug selection. Omics

data are complex, multi-layered, and high weaves, so a key goal of

analyzing multi-omics data is to screen for valid predictors to predict

phenotypic characteristics and thus elucidate the biological

significance behind them. Another major difficulty in omics data

processing is dimensionality reduction, omics noise elimination and

overfitting avoidance. In this study, R package Survival was first used

to screen the molecular features associated with patient prognosis in

each omics for subsequent analysis. The classification of cancer

patients into different molecular subgroups based on multi-omics

data is an important problem in the context of precision medicine.

MOVICS provides a unified interface to 10 state-of-the-art

multiomics ensemble clustering algorithms and integrates the

downstream analyses most commonly used in cancer typing

studies, including characterization and comparison of identified
Frontiers in Oncology 08230
subtypes from multiple perspectives and validation of subtypes in

external corporations of multi-class predictions using two model-free

methods. Patients with KIRP were divided into three multi omics-

based cancer subtypes (MOCS1, MOCS2, and MOCS3). Patients in

the MOCS3 subtype were observed with shorter overall survival time

than patients in the MOCS1 and MOCS2 subtypes, therefore, the

classification system can be used as an important prognostic tool.

Similar prognostic outcomes were observed in independent external

datasets. Therefore, the classification system established by us is

reliable in prognostic assessment.

In recent years, molecular typing of kidney cancer has been

emerging. Molecular typing of renal cancer from genomic changes,

DNA methylation profiles, RNA and protein levels has revealed

repeated mutations in the PI3K/AKT pathway, suggesting that this

pathway is a potential therapeutic target (62). A large number of

molecular typing studies of renal cancer have emerged based on

single omics or specific gene sets, recently. Chen et al. integrated

multi-omics data of all kidney cancer patients based on a single

algorithm but did not include data of lncRNA data in the analysis

(63). Ricketts et al. integrated the multi-omics data of kidney cancer

for reclassification, while this study only conducted classification

from the level of each omics, without realizing the real sense of

integrated multi-omics data for classification (64). Although these

studies provide new directions for the diagnosis and treatment of

kidney cancer to some extent, they also have certain shortcomings.
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FIGURE 4

Landscapes of copy number variations. (A) Comparison of overall copy number among all patients with KIRP, MOCS1, MOCS2, and MOCS3. (B) The
amplification or deletion frequency in chromosome among the three MOCSs. (C) Bar-plot indicating the total alteration frequency among the three
MOCSs. (D) Different burden of copy number gain at focal and arm-level among the three MOCSs. * means P < 0.05, ** means P < 0.01, *** means
P < 0.001, and **** means P < 0.0001, ns, no significance.
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The classification methods used in most typing studies are relatively

simple. These shortcomings make it difficult to apply these

classification studies to clinical practice. In this study, ten robust

clustering algorithms based on MOVICS package were used,

combined with multiple omics information, to conduct multi-

omics cross-validation for patients with KIRP. Further, intra-

omics heterogeneity analysis was conducted at each omics level to

crack the omics differences among patients with different

prognostic characteristics. Specifically, patients in the MOCS3

subtype were observed with shorter overall survival time than

patients in the MOCS1 and MOCS2 subtypes. Compared to the

other two subtypes, MOCS1was negatively correlated with

immune-related pathways. Global dysfunction of cancer-related

pathways among the three MOCS subtypes were also observed.

We also evaluated the immune microenvironmental cell abundance

and immune checkpoint and compared the discrepancy among

the MOCSs.
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Our study unexpectedly found that these three MOCSs also have

significant differences in sensitivity to molecularly targeted drugs. We

observed that patients in MOCS3 were more sensitive to Crizotinib,

Erlotinib, Pazopanib, Saracatinib, Sunitinib, and Temsirolimus; while

patients in MOCS1 were more sensitive to AS601245, Bosutinib,

PAC.1, ABT.888, and Bleomycin. Whereafter, the results of subclass

mapping revealed that patients in MOCS2 were more likely to

respond to anti-PD1 blockades. In recent years, the treatment of

kidney cancer has evolved from non-specific immune approaches to

targeted therapy of vascular endothelial growth factor (VEGF), and

now to novel immunotherapies. Our study assessed therapeutic

differences among different subtypes and therefore can be a

potential therapeutic direction for patients with KIRP.

In summary, our study provides a new reference for molecular

subtypes of KIRP risk. In this study, a robust prognostic and drug

selection subtype system was constructed by integrating multiple

omics data using multiple algorithms. However, there are still some
A

B C

FIGURE 5

Drug Sensitivity Profiles for MOCS subtypes. (A) Estimated IC50 of Crizotinib, Erlotinib, Pazopanib, Saracatinib, Sunitinib, and Temsirolimus among
the three MOCSs. (B) Estimated IC50 of CCT018159, AS601245, Bosutinib, PAC.1, DMOG, BMS.708163, A.443654, Sunitinib, ABT.888, and Bleomycin.
(C) Subclass analysis manifested that MOCS2 were more likely to respond to anti-PD1 blockades. * means P < 0.05 and ** means P < 0.01.
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limitations in our study. Firstly, multi-omics data used for

molecular subtypes is difficult to be applied in clinical practice.

Second, although we compared the enrichment pathway and drug

sensitivity between subgroups, further experiments and external

data sets are still needed for verification.
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FIGURE 6

Cell–cell interactions for KIRP. (A) tSNE plot of the distribution of 16 samples; (B) tSNE plot of the distribution of nine cell clusters after clustering.
(C) UMAP plot showing three subclusters (C0, C1, C2) of the KIRP. (D) The fraction of specific cell types in each cell cluster predicted by Scissor tool.
(E) Circle plot showing the intercellular communication among major cell types in KIRP. (F) The ligand–receptor pairs among cells.
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SUPPLEMENTARY FIGURE 1

Identifying and verifying of the multi omics-based cancer subtype. (A)
Quantification of sample similarity using silhouette score based on the

consensus ensembles result. (B) Three MOCSs were also identified as

predicted by the external GSE2748 cohort. (C) Comparison of the overall
survival time for the three MOCSs.
SUPPLEMENTARY FIGURE 2

Functional enrichment analysis of MOCS1, MOCS2 and MOCS3 subgroups.

(A) Heatmap of metabolism-related enrichment scores among the three
MOCSs. (B) Heatmap of immune-related enrichment scores among the

three MOCSs.
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SUPPLEMENTARY FIGURE 3

The landscapes of specific immune scores among the three MOCSs. (A)
Comparison of the signature score among the three MOCSs. (B) Comparison

of the RNAss, DNAss, DMPss, ENHss, EREG.EXPss, and HRD among the

three MOCSs.

SUPPLEMENTARY FIGURE 4

Landscapes of somatic mutations and potential targets in the two subtypes. (A)
Waterfall plot showing the mutation patterns of the top 20 most frequently

mutated genes among the three MOCSs. (B) The synthetic lethal mutations in
MOCS1, MOCS2, andMOCS3. (C) Potential druggable gene categories from the

mutation dataset for MOCS1, MOCS2, andMOCS3. (D) The fraction of pathways
or samples of oncogenic signaling pathways for MOCS1, MOCS2, and MOCS3.
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Introduction: The incidence of colon adenocarcinoma (COAD) has recently

increased, and patients with advanced COAD have a poor prognosis due to

treatment resistance. Combining conventional treatment with targeted therapy

and immunotherapy has shown unexpectedly positive results in improving the

prognosis of patients with COAD. More study is needed to determine the

prognosis for patients with COAD and establish the appropriate course of

treatment.

Methods: This study aimed to explore the trajectory of T-cell exhaustion in

COAD to predict the overall survival and treatment outcome of COAD patients.

Clinical data were derived from the TCGA-COAD cohort through "UCSC", as well

as the whole genome data. Prognostic genes driving T-cell trajectory

differentiation were identified on the basis of single-cell trajectories and

univariate Cox regression. Subsequently, T-cell exhaustion score (TES) was

created by iterative LASSO regression. The potential biological logic associated

with TES was explored through functional analysis, immune microenvironment

assessment, immunotherapy response prediction, and in vitro experiments.

Results: Data showed that patients with significant TES had fewer favorable

outcomes. Expression, proliferation, and invasion of COAD cells treated with TXK

siRNA were also examined by cellular experiments. Both univariate and

multivariate Cox regression indicated that TES was an independent prognostic

factor in patients with COAD; in addition, subgroup analysis supported this

finding. Functional assay revealed that immune response and cytotoxicity

pathways are associated with TES, as the subgroup with low TES has an active

immune microenvironment. Furthermore, patients with low TES responded

better to chemotherapy and immunotherapy.
frontiersin.org01235

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1162843/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1162843/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1162843/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1162843/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1162843/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1162843&domain=pdf&date_stamp=2023-05-03
mailto:vibrio@163.com
mailto:wanglinron@126.com
https://doi.org/10.3389/fimmu.2023.1162843
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1162843
https://www.frontiersin.org/journals/immunology


Shen et al. 10.3389/fimmu.2023.1162843

Frontiers in Immunology
Conclusion: In this study, we systematically explored the T-cell exhaustion

trajectory in COAD and developed a TES model to assess prognosis and

provide guidelines for the treatment decision. This discovery gave rise to a

fresh concept for novel therapeutic procedures for the clinical treatment of

COAD.
KEYWORDS

colon adenocarcinoma (COAD), t-cell exhaustion, tumor microenvironment,
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Introduction

Colon adenocarcinoma (COAD) is a malignant gastrointestinal

tumor that originates in the colon and is the third most prevalent

tumor and the second leading cause of cancer-related death

worldwide (1). Early-stage COAD is often difficult to detect, and

despite rapid advances in early cancer screening technology, most

COAD patients are diagnosed with advanced COAD only when

they have obvious symptoms such as hematochezia and colonic

obstruction, etc (2). Patients with advanced COAD are often not

eligible for surgical resection and can only be treated with

traditional chemotherapy and targeted therapy (Monoclonal

antibody drugs such as bevacizumab and cetuximab) (3, 4).

However, treatment resistance often occurs in advanced COAD,

leading to a worse prognosis for patients (5). As cancer treatment

has entered the field of immunotherapy, most cancer patients have

achieved clinical success (6). However, only a small percentage of

patients respond positively to immunotherapy.

Most patients with advanced cancer have T cells in a state of

exhaustion, and T-cell exhaustion is an important factor in the

efficacy of immunotherapy (7). T-cell exhaustion is a common

feature of the cancer process and immune dysfunction, resulting

from sustained antigenic stimulation and immune response (8).

Exhausted T cells have a progressive loss of immune effector

function, persistent high expression of suppressor receptors (such

as ENTPD1, LAYN, LAG3, and HAVCR2) (9), and loss of self-

renewal capacity, along with a unique transcriptional signature (8,

10). Recent studies suggest that interventions to alleviate T-cell

exhaustion may lead to superior clinical outcomes and dramatic

advances in cancer immunotherapy (11). Encouragingly, related

studies have made some progress in lung cancer (12, 13). Thus,

finding pre-depleted T cells in COAD could lead to a larger clinical

window. Single-cell sequencing technology provides a new

perspective for analyzing T-cell exhaustion trajectories (14), and

by integrating scRNA-Seq data and bulk RNA-seq data, we may be

able to gain a preliminary understanding of the T-cell trajectories

and core regulatory targets that are pre-exhausted in COAD. This

will facilitate initial protocol development and the development of

novel targeted therapies.

Tumor processes are complex dynamic systems, and although it

is commonly assumed that exhausted T cells result from sustained

antigenic stimulation, the phenotype and transcriptional
02236
characteristics of exhausted T cells are also shaped by multiple

factors in the immune microenvironment (15). Including the

expression of suppressive receptors and ligands, the regulation of

suppressor cells such as Tregs, suppressor cytokines such as IL-10

and TGFb, and some metabolic products also suppress T-cell

function (15). Identification of the transcriptional pathways

mediating T cell dysfunction is complex because the genetic

profile of exhausted T cells overlaps to a considerable extent with

that of activated T cells (16, 17). It has been suggested that failing T

cells cannot be accurately defined by suppressor molecules alone

(8), however, the driver genes that regulate T cell failure in COAD

are currently unknown. These genes may be a breakthrough in

targeting T-cell exhaustion and may also serve as important clinical

prognostic treatment targets.

In this study, we aimed to characterize the dynamic trajectory of

T-cell exhaustion in COAD and identify prognostic markers

associated with exhausted CD8+ T cells. We first depicted the

evolutionary trajectory of CD8+ T cells in a single-cell dataset and

identified core regulatory genes of the exhausted CD8+ T trajectory

based on the pseudo-time trajectory. Based on these genes we

constructed a T-cell exhaustion score (TES) to assist in prognosis

and quantify the degree of exhaustion. We then assessed the

heterogeneity of different TES subgroups in terms of function,

immune infiltration, and genomic alterations, and evaluated the

predictive efficacy of the TES for immunotherapy. Finally, we

preliminarily validated the core genes of TES by qRT-PCR, CCK8

assay, and transwell invasion experiment. In conclusion, this study

not only identified the trajectory of exhausted CD8+ T cells in

COAD and provided a tool to quantify T-cell exhaustion. Moreover,

it confirmed the reliable efficacy of T-cell exhaustion in predicting

COAD prognosis and immunotherapy. We hope that this study will

provide novel prognostic markers and immunotherapeutic targets

for COAD patients.
Methods

Data collection

For the TCGA-COAD cohort, we obtained copy number

variant (CNV) data from the UCSC Xena (https://xena.ucsc.edu)

database, somatic variant data from maf files on the Muctect 2
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platform, and transcriptome RNA-seq data. Additionally, relevant

clinical follow-up data was gathered. A TCGA-COAD cohort of 432

COAD patients was collected and utilized as a training cohort after

patients with pathological typing as COAD were included and

patients with missing follow-up information were excluded.

Additionally, data from three large COAD cohorts: GSE14333

(18), GSE17536 (19), and GSE41258 (20) from the GEO database

was gathered. After data combination and removing those with

insufficient follow-up data, 654 patients with COAD were included

after collecting the patient follow-up data from the original

Supplementary Material. The external validation was done using

the meta-GEO COAD cohort. Finally, a single-cell transcriptome

dataset GSE146771 of 10 primary tumor sections, was obtained and

processing use “Seurat” R packages. We explore T-cell exhaustion

trajectories in colon cancer through the single-cell data. The specific

data processing and standardization pipeline can be obtained from

the original article (21).
Exploring T-cell depletion trajectories in
colon cancer

First, we evaluated the cytotoxicity score and cell exhaustion

score of each cell in the scRNA-seq dataset by the “AUCell” package

based on previously reported genetic markers (9, 14). Subsequently,

the R package “monocle”was used to calculate and map the pseudo-

time trajectories of T cells. The differentialGeneTest() function was

used to calculate the characteristic genes in different trajectories.

Finally, we identified the signature genes in the T cell depletion

trajectories as T cell depletion markers in COAD.
Construction of the T-cell exhaustion
scoring model

In order to find independent predictive markers for COAD, we

first conducted a univariate cox regression analysis for T-cell

exhaustion markers. The T-cell exhaustion score (TES) was then

created using LASSO regularization through 300 random iterations.

After selecting a penalty factor l, the regularization model will

remove insignificant markers and generate coefficients for each TES

model gene. To prevent overfitting, we set up a 5-fold cross-

validation and determine the final stable TES model based on the

number of builds in 300 random iterations. The final TES model

was generated GAS according to the following equation:

TES =oiCoefficient(mRNAi)� Expression(mRNAi)

In order to evaluate prognostic effectiveness, the “survcomp”

program computed the C-index of the TES (22). A prediction made

by the model that is more optimum and stable has a higher C-index.

The independent prognostic significance of TES was thoroughly

investigated using Kaplan-Meier survival analysis, univariate and

multifactorial Cox regression, and time-dependent ROC (tROC)

curves. High TES and low TES groups were separated by the median

value of TES. Finally, to measure the chance of survival more
Frontiers in Immunology 03237
accurately for specific patients, we created a nomogram based on

TES and other clinical characteristics.
Cell culture

The normal human colonic epithelial cell line NCM460 and the

human colon cancer cell lines SW460 and SW48 were bought from

Bioss, China. All cells were grown in DMEM media with 10% FBS

in a 37°C cell incubator with 5% CO2.
qRT-PCR

We then used qRT-PCR to assay patient tissues and COAD cell

lines to assess TXK level. ChamQ Universal SYBR qPCR Master

Mix was used to run each real-time PCR experiment (Vazyme,

China). Using GAPDH as a control, the amplified PCR products

were measured and standardized.
Cell proliferation detection

For the transfection of siRNA in this work, LipofectamineTM

2000 Transfection Reagent (Invitrogen, USA) was used. Cell

Counting Kit-8 kit was used to measure the proliferation rate of

COAD cells (Bioss, China). At a density of around 1500 cells per

well, the digested single-cell solution was injected in 96-well plates.

Three wells from each group were chosen at random at 0, 12, 24, 48,

and 72 hours. Then, 10 mL of the Cell Counting Kit-8 reagent was

added, and the wells were incubated at 37°C for two hours.

identification of 450 nm absorbance values.
Transwell cell invasion analysis

We used a Transwell kit (Merck Millipore, USA) with a pore

size of 8um to detect the degree of invasion of different SW460 cells.

Briefly, SW460 cells were inoculated in the upper chamber of a 24-

well plate, and DMEM medium containing 20% FBS was added

dropwise in the lower chamber. Cells in the upper layer of transwell

chambers were wiped off with a cotton swab after incubation for

32 h at 37°C in an incubator. The invading cells were stained with

0.1% crystal violet staining solution (Solarbio, China) and counted

using ImageJ software after microscopic visualization.
Assessment of immune heterogeneity
between TES subgroups

In each COAD sample, we calculated the relative abundance of 22

different immune cell types using the “CIBERSORT” program (23).

The “ESTIMATE” system evaluated the samples’ immunological score

and tumor purity (24). The ssGSEA algorithm of the “GSVA” software

was then used to evaluate the activity of the relevant immunological
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pathways. The changes in the expression of 6 classical immunological

checkpoints between subgroups were then examined.
Dissecting genomic alterations
between subgroups

The “maftools” package was used to handle the maf files, and it

computed the amount of nonsynonymous mutations for each

patient (25). The variations in top 20 mutated genes across

subgroups were next examined using OncodriveCLUST

algorithm. We also used the “Sigminer” package to extract

significant mutation signatures from the maf files for different

subgroups and compared the mutation signatures with the

COSMIC database (26). Finally, Gistic2.0 was used to process

CNV data and count amplicons and deletions according to a

threshold of 0.2. The “ggplot2” package was used for visualization.
Assessment of chemotherapy applications
for TES

Three medications routinely used in COAD (5-FU, Cisplatin,

and Camptothecin) were initially predicted using “pRRophetic,”

which was built on the GDSC database (27). IC50 values were

estimated by ridge regression, with lower IC50 values indicating
Frontiers in Immunology 04238
higher sensitivity. Since the differentially expressed genes between

the high and low TES subgroups were thought to represent potential

therapeutic targets, we uploaded the Top150 up- and down-

regulated genes to the CMap database (https://clue.io/) to

investigate prospective small molecule compounds. Additionally,

to revealing the biomolecular pathways that medications target, it

may infer pharmaceuticals based on gene expression patterns.
Predicting immunotherapy response

We calculated the Immunophenoscore (IPS) of patients based

on the genetic profile of different immune cell phenotypes (28). A

higher IPS indicates an active immune response and a higher

response to immunotherapy. We used the TIDE method to

mimic the tumor immune escape mechanism in order to forecast

how each patient would respond therapeutically to immune

checkpoint inhibitors (29). In addition, we collected two well-

established immunotherapy cohort, Imvigor210, which contained

298 patients with complete follow-up information who received

anti-PD-L1 immunotherapy for uroepithelial cancer (30). And Liu

David. cohort, which contained 121 patients who received anti-PD-

1 immunotherapy for melanoma (31). In order to evaluate the TES’s

immunotherapy prediction capability, the transcriptome data from

the Imvigor210 cohort and Liu David. cohort were utilized to build

the TES based on the same methodology.
B

C

D

E

F

G

H

I

J

K

L

A

FIGURE 1

Exploring the trajectory of T-cell exhaustion in COAD. (A) The landscape of 7 CD8+ T cell subtypes in GSE146771. (B) Overall pseudo-time
differentiation trajectory of seven T cell subtypes. (C, D) The pseudo-time differentiation trajectory of cytolytic T cell subtypes. (E) Density of cytolytic
scores of different T cell subtypes. (F) Comparison of cytolytic scores of different T cell subtypes. (G) Cytolytic scores for different differentiation
trajectories. (H-J) The pseudo-time differentiation trajectory of exhaustion T cell subtypes. (J) Density of exhaustion scores of different T cell
subtypes. (K) Comparison of exhaustion scores of different T cell subtypes. (L) Exhaustion scores for different differentiation trajectories.
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Bioinformatics and statistical analysis

Fisher’s exact test was used to find proportional differences, the

Wilcoxon test or T-test to determine group differences, the Kaplan-

Meier plotter to produce survival curves, and the log-rank test to

detect differences in survival. The R package “survivalROC” was

used to plot time-dependent ROC curves (tROC). Using the R

package “survival,” univariate and multivariate Cox regressions

were carried out. The nomogram and calibration curves were

plotted using the R package “rms”. The prediction power of

several variables on the outcome of immunotherapy was

evaluated using the R package “pROC”. If not mentioned

differently, two-tailed p-values 0.05 were regarded as significant.

Every analysis was done using the R software (Version 4.1.0).
Results

Exploring T-cell exhaustion trajectories in
colon cancer

We first identified seven CD8+ T cell subtypes based on the cell

annotation in the original article (Figure 1A). The overall

differentiation trajectory of CD8+ T cells was then identified by

monocle algorithm (Figure 1B). The results showed that CD8-

CX3CR1 was at the beginning of the trajectory, while CD8+ T cells

with high expression of the exhaustion marker LAYN were

distributed at the end of the trajectory. Subsequently, we

differentiated two different developmental trajectories based on

the cell exhaustion fraction and cytolytic fraction. Among them,

the cytolytic trajectory was mainly composed of CD8-CX3CR1 cells

with CD8-LEF1 and CD8-GPR183 at the beginning (Figures 1C,

D). We found the strongest cytolytic activity of the CD8-CX3CR1

(Figures 1E, F). Over time, the exhaustion score showed an

increasing trend while the cytolytic score showed a decreasing

and then increasing trend (Figure 1G). The cell exhaustion

trajectory was mainly composed of CD8-LAYN and CD8-GZMK,

with CD8-LAYN distributed at the beginning and the end of the

trajectory and CD8-GZMK mainly distributed at the end of the

trajectory (Figures 1H, I). Subsequently, we found the highest

exhaustion score of CD8-LAYN, which confirmed the reliability

of the exhaustion trajectory (Figures 1J, K). Over time, the cell

exhaustion score increased while the cytolytic activity decreased

(Figure 1L). Finally, we identified 477 ordered genes in the cell

exhaustion trajectory as the T-cell exhaustion markers in COAD.
Dissecting key T-cell exhaustion genes
in COAD

Based on a P<0.05 criterion, 27 T-cell exhaustion genes were

discovered (Figure 2A). A correlation network for these 27 genes was

constructed and the results indicated that most of them were positively

correlated (20/27) (Figure 2B). In the TCGA-COAD cohort, the

mutation landscape of these 27 genes was shown in Figure 2C. The

gene with the greatest frequency of mutations is RASGRP2, and
Frontiers in Immunology 05239
missense mutations are the most common form of mutation

(Figure 2D). Finally, we summarized the CNV events of the 27 key

genes (Figure 2E). The results showed that prevalent CNV events

occurred in most genes, the highest amplification frequency was

LIME1, and the highest deletion frequency was RUNX3.
Construction of T-cell exhaustion score

To construct a more robust TES model, we enrolled 27 T-cell

genes with independent prognostic efficacy and performed 300

iterations of LASSO regression to retrieve the most robust model.

The results showed that the model containing 13 genes was the

most robust TES model (215/300) (Figure 3A). Good predictive

efficacy was demonstrated in both TCGA and meta-GEO cohorts

(C index: 0.666 for TCGA; 0.635 for GEO) (Figure 3A). Compared

to the commonly used clinical indicators, TES was slightly weaker

than stage but better than age and gender (Figure 3B). In many

COAD cohorts, survival analysis revealed that patients in the high

TES group had worse results than its rival (Figures 3C, D). Roc

analysis showed that TES had acceptable performance in the TCGA

cohort (ROC>0.65, Figure 3E), while a favorable effect was also

observed in the GEO cohort (ROC>0.65, Figure 3F). The tROC

results showed that TES had an effective performance in predicting

survival within five years in both cohort (Figures 3G, H).
Analysis of the predictive efficacy and
independence of TES

First, we used univariate and multifactorial Cox regression to

investigate the relationship between TES and patients’ clinical

variables (e.g., age, gender, and stage). In the training and validation

cohorts, univariate Cox regression indicated that TES was an

independent predictor (p 0.05) (Figure 4A). In both the training and

validation cohorts, multifactorial Cox regression showed that TES

remained an unfavorable predictor of OS (P<0.05) (Figure 4B). In

addition, subgroup analysis showed that TES performed best in

predicting prognosis in all subgroups of patients, especially those

with advanced tumors in all age groups (Figure 4C). Therefore, TES

could be a trustworthy prognostic indicator of OS in COAD patients.

We then created a Nomogram to more accurately measure the risk

assessment of COAD patients (Figure 4D). The calibration curve of

Nomogram showed high stability and accuracy after 1, 3 and 5 years

(Figure 4E). tROC study showed that Nomogram model performed

better than TES alone (Figure 4F). Finally, DCA analysis showed that

the nomogrammodel had the best decision effectiveness after 1, 3 and 5

years (Figure 4G).
Cellular experimental validation of key TES
model indicator

We extracted risk coefficients for each indicator in the final TES

model, and the results showed that TXKwas themost potent risk factor

(Figure 5A). We sought to explore whether TXK affects the malignant
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FIGURE 2

Identification of ordered T-cell exhaustion indicators in TCGA-COAD. (A) Univariate Cox regression identified 27 key T-cell exhaustion indicators
with prognostic efficacy. (B) The correlation network of 27 key T-cell exhaustion indicators. (C) The landscape of somatic mutation of 27 key T-cell
exhaustion indicators. (D) The summary of somatic mutation of 27 key T-cell exhaustion indicators. (E) The summary of CNV status of 27 key T-cell
exhaustion indicators.
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activity of tumor cells to influence prognosis through cellular

experiments. We first found that the mRNA expression level of TXK

was increased in COAD cell lines compared to normal colonic

epithelial cell lines (Figure 5B). We then found the reduced

proliferative activity of cells after knockdown of TXK in SW480 cell

line by CCK8 kit (Figure 5C). After knockdown of TXK in SW460,

invasive cells in transwell cells were reduced (Figure 5D). By counting

the invading cells, we found that the degree of invasion of SW460 cells

was significantly reduced after knockdown of TXK (Figure 5E).
Low TES is associated with abundant
immune infiltration

We then dissected the tumor immune microenvironment of

TES. Estimate results revealed more tumor purity in the high TES
Frontiers in Immunology 07241
group, while the low TES group had better estimate and

immunological scores (Figure 6A). Further we found elevated

expression of six typical immune checkpoints (PD-1, CTLA-4,

LAG-3, TIM-3, PD-L2, and PD-L1) in low TES (Figure 6A). We

also found increased enrichment of CD8+ and CD4+ T cells in the

low TES group and increased infiltration of Tregs and M0

macrophages in the high TES group (Figure 6A). Subsequently,

we examined the differences in immune recycling cycles between

the two subgroups, and the results showed an increased recruiting

of CD4+ T, DC, and macrophages in the low TES group,

accompanied by an increased promotion of antitumor immunity

in step V (Figure 6B). We then assessed immune-related pathway

activity using ssGSEA. The findings indicated that the low TES

group had a considerable enrichment of most immune-related

pathways (Figure 6C). Finally, GSEA results showed significant

enrichment of cell adhesion, MAPK, NOTCH and VEGF signaling
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FIGURE 3

Construction of the T-cell exhaustion scoring model. (A) Iterative LASSO regression to select the most stable prognostic model. left: frequency of
different gene pairs in LASSO models; right: C-index of the best combination in TCGA and GEO datasets. (B) Comparison of C-index differences
between TES model and clinical characteristics. ***: P<0.001. (C) Kaplan-Meier survival curve of patients with high and low TES in TCGA dataset. (D)
Kaplan-Meier survival curve of patients with high and low TES in the meta-GEO dataset. (E) ROC curves of TES at 1, 3, and 5 years in the TCGA
dataset. (F) ROC curves of TES in the meta-GEO dataset at 1, 3, and 5 years. (G) tROC curves of TES in 5 years in the TCGA dataset. (H) tROC curves
of TES in 5 years in the GEO dataset.
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pathways in the high TES group (Figure 6D). In contrast, the TCA

cycle, fatty acid metabolism, protein export, and oxidative

phosphorylation pathways were significantly enriched in the low

TES group (Figure 6E). Therefore, our hypothesis was that CD8+

and CD4+ T cells enhanced anti-tumor immunity in the low TES

group, but Tregs reduced anti-tumor immune responses in the high

TES group.
Frontiers in Immunology 08242
Correlation of TES with
genomic alterations

We then analyzed genome-wide data of the TCGA-COAD to

decipher the genomic alteration status of different TES groups. The

overall mutation profiles among the TES subgroups (including

TMB, mutation signatures, SNP, and CNV) are shown in
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FIGURE 4

Verifying the independence and robustness of TES. (A) Univariate COX regression analysis of OS in TCGA and GEO datasets. (B) Multivariate COX
regression analysis of OS in TCGA and GEO datasets. (C) The subgroup analysis of TES in the whole cohort. (D) Nomogram based on TES and
clinical characteristics. (E) Calibration curve of Nomogram. (F) tROC curve of Nomogram and clinical characteristics. (G) The DCA curves of
Nomogram and clinical characteristics at 1, 3, and 5 years.
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Figure 7A. Between the two groups, we didn’t detect any discernible

differences in TMB (Figure 7B). In addition, we discovered no

discernible variations in high frequency mutations across groupings

except for TP53 (Figure 7A). We then detected no change in the

total chromosomal amplification and deletion number between the

two categories (Figures 7C, D). However, we discovered that the

high TES group had greater gain and loss events in both arm and

gene level (Figure 7A), while the low TES group had more deletions

on 2p and 2q arms (Figure 7E).
Patients with low TES are more sensitive
to chemotherapy

We proposed the hypothesis that TES might predict the response

to chemotherapy in COAD patients given the disparities in biological

function and CNV across different TES patients. On the basis of the

GDSC database, we first assessed the IC50 of frequently used

chemotherapeutic agents for COAD in various TES groups. The

findings revealed that patients with low TES were more responsive to

5-Fluorouracil (Figures 8A, B). Contrarily, patients in the validation

group with low TES were more responsive to Cisplatin and

Camptothecin (Figure 8B). We examined the response of patients

with different TES to chemotherapy in the TCGA dataset. The results

showed that patients in the low TES group had a greater chance of

complete and partial remission. In contrast, the proportion of

patients with disease progression was higher in the high TES group

(Figure 8C). Survival analysis showed better survival in the low-TES

group of COAD patients receiving 5-FU and oxaliplatin, especially in

those receiving Oxaliplatin (Figures 8D, F). In contrast, the survival

difference between the different groups of COAD patients receiving
Frontiers in Immunology 09243
Irinotecan was not significant, which may be due to the small sample

size (Figure 8E). In conclusion, we speculate that patients with low

TES are more suitable for treatment with 5-FU and platinum-based

chemotherapeutic agents. Finally, we retrieved 20 small molecule

compounds that may target TES through the Cmap

database (Figure 8G)
Inferring immunotherapy response

We hypothesized that the low TES group would respond more

strongly to immunotherapy because they have a more powerful

antitumor immune response. First, we determined the unique IPS

of each patient and found that individuals in the low TES group had

greater IPS in both cohorts (Figures 9A, B). The TIDE algorithm

was then used to predict the response of patients in the TCGA and

GEO cohorts to immune checkpoint inhibitors, and the results

showed that patients with low TES in both cohorts had a higher

response rate to immunotherapy (Figures 9C, D). The efficacy of

TES in the TCGA and GEO cohorts was only lower than MSI with

reliable predictive efficacy compared to other indicators of immune

efficacy (Figures 9E, F). Subsequently, we worked in two real-world

immunotherapy cohorts (Imvigor210 and Liu David). The results

showed significantly better survival in the low-TES group in both

cohorts (Figures 9G, H). Moreover, patients in the low-TES group

had higher remission rates in both cohorts (Figures 9I, J).

Subsequently, we found no significant association between TES

and neoantigens in both cohorts (Figures 9K, L). Although there

was also no significant association between TES and TMB in both

cohorts (Figures 9M, N), TMB was significantly higher in the low-

TES group in the Liu David cohort (Figure 9N).
B C

D E

A

FIGURE 5

Cellular experiments to verify the malignancy of TXK. (A) Gene coefficients in the TES model showed that TXK was the most potent risk factor. (B)
Differential mRNA expression levels of TXK in NCM460, SW480, and SW460 cell lines by qPCR. (C) Cell proliferation of SW480 cells transfected with
TXK siRNA or siNC. (D) Transwell assay of invasive ability of SW460 cells transfected with TXK siRNA or siNC. (E) Cell counting of SW460 transfected
with TXK siRNA or siNC in transwell cells. *** P<0.001.
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Discussion

Advanced COAD is extremely malignant and often has a poor

prognosis due to treatment resistance (32). The immune system is

involved in resisting the proliferation and invasion of malignant cells in

COAD process, and T-cell depletion is one of the main causes of

diminished antitumor immunity (33). In addition, targeted T-cell

depletion is emerging in the field of cancer immunotherapy (11). To

provide a new approach to the treatment and prognosis of advanced

COAD, we aimed in this study to analyze the trajectory of T-cell

depletion in COAD patients.
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In this work, by analyzing scRNA-Seq data of TCGA-COAD,

we differentiated cytolytic trajectories and exhaustion trajectories of

CD8 T cells to comprehensively identify the major T-cell

exhaustion indicators. We identified a total of 477 ordered genes

for exhaustion trajectories and subsequently identified 27 effective

T-cell exhaustion markers by one-way Cox regression. We observed

a significant positive correlation between them, suggesting a

potential mutual regulation between them. The primary

transcriptome regulator for all core genes was CNV. we built a

13-gene T-cell depletion score (TES) model based on these 27 core

genes using iterative LASSO regression. We first report the
B

C

D E

A

FIGURE 6

Dissecting the immune microenvironment of different TES groups. (A) The heat map shows the distribution of Estimate score, immune checkpoint
expression and immune cell abundance among different TES groups in TCGA-COAD cohort. (B) Differences in tumor immune cycle among different
TES groups in the TCGA-COAD cohort. (C) Box plots showing the immune-related pathway activity between different TES groups. *: P<0.05; **:
P<0.01; ***: P<0.001; ****: P<0.0001. (D) GSEA analysis revealed 5 enriched pathways in the high TES group. (E) GSEA analysis revealed 5 enriched
pathways in the low TES group. ns, not significant.
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prognostic efficacy of a systematic TES model for COAD patients

compared to previously presented T-cell exhaustion markers

(HAVCR2, ENTPD1, LAYN, and LAG3). We confirmed that TES

is a strong prognostic indicator of OS in COAD patients and that

TES works well in different COAD cohorts.

We next attempted to comprehend the molecular rationale

behind TES, which is the key path of the dynamic processes of T

cell differentiation in malignancies and is involved in the

proliferation and spread of tumor cells. By comparing the two

groups from multiple perspectives, including immune cell

infiltration, immunological pathways, and immune checkpoints,

we were able to explore in more detail the differences in the immune

environment between the different TES groups. the results of

ESTIMATE showed that the immune rating and Estimate

composite score were higher in the low TES group while the

tumor purity was higher in the high TES group. In addition, in

the low TES group, we later found enhanced expression of six

typical immune checkpoints, suggesting that patients with low TES

may benefit more from treatment with immune checkpoint

inhibitors (34). The tumor immune cycle system is characterized

by most of the processes of antitumor immunity (35), and we found

increased activity of the recruiting process of active immune cells

(including T cells, DCs, and macrophages) as well as the positive

regulatory processes of antitumor immunity in the low-TES group.

Most immune-related pathways were also considerably elevated in

the low TES group, supporting lower T-cell exhaustion in the low

TES group, and pointing to a more potent and aggressive antitumor

immune response in this group (35). Notably, there was a

statistically significant increase in the number of Treg cells

infiltrating the high TES group. This finding may have stifled the
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immune environment and antitumor immune response in patients

with high TES, leading to a poorer prognosis (36).

Considering the significant relevance of genomic mutations for

the course of tumor progression and treatment response, especially

immunotherapy response, we then analyzed genome-wide data to

explore the differentiation of genomic variation patterns of TES for

individual patients. We were not able to detect significant TMB

differences between TES subgroups. However, we found that the

TP53 gene was significantly more frequently mutated in the high

TES group. Previous studies have demonstrated that TP53 is the

most frequently mutated tumor suppressor gene during tumor

progression (37). Loss of function or dominant inactivation of

wild type p53 is also frequently detected in patients with colon

cancer (38, 39), which is consistent with our results. Our study

indicates that increased mutations in TP53 may lead to a higher

malignancy of tumor cells in the high TES group, resulting in a

worse prognosis. Finally, we discovered more CNV occurrences in

the group with high TES. Additionally, it has been shown that CNV

has a significant role in the regulation of genes that affect drug

response and metabolism, which in turn speeds up the development

of anticancer drug resistance and results in treatment failure and

disease recurrence (40, 41). As a result, we deduce that patients with

low TES are suited for chemotherapy, whereas those with high TES

are resistant to it. We confirmed the resistance to chemotherapy in

patients with high TES through drug sensitivity data provided by

the GDSC database. We found that low TES patients were more

susceptible to 5-FU. In addition, survival analysis in the TCGA

cohort also demonstrated an elevated remission rate for

chemotherapy in patients with low TES, especially for oxaliplatin

and 5-FU treatment. For high-risk COAD patients based on TES,
B C D

E

A

FIGURE 7

TES distinguishing genomic alteration patterns in COAD patients. (A) Genomic alterations landscape between different TES groups in the TCGA-
COAD cohort, from top to bottom: TMB, mutational signatures, single-nucleotide mutations of top 20 driver mutated genes, CNVs of chromosomal
segments, and CNVs in top 20 driver mutated genes. (B) Correlation of TES with Non-synonymous mutation counts. (C) Correlation between TES
and total amplification number. (D) Correlation between TES and total deletion number. (E) CNV differences between different TES subgroups on the
chromosome arms. *: P<0.05. ns, not significant.
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we also screened for potential therapeutic targets and found

comparable small-molecule drugs. Finally, we identified the 20

most probable small molecule compounds.

Finnaly, we made a prediction that, from a variety of angles,

people with low TES are more susceptible to immunotherapy.

Moreover, IPS was greater among COAD patients with low TES,

indicating that these patients would respond to immunotherapy

better (28). The TIDE algorithm also demonstrated that individuals

with low TES had greater rates of immune checkpoint inhibitor

response (e.g., anti-PD-1, anti-PD-L1, and anti-CTLA-4) (29).

Additionally, TES was more reliable than traditional predictors in

predicting immunotherapy response. It is worth noting that the

predictive efficacy of TES is not higher than that of MSI, which has

been shown in numerous studies to be a reliable predictor of

immunotherapy in colon cancer and is now being tested in
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clinical practice to assist in the prognosis of patients with COAD.

Therefore, although TES does not show a leading advantage, it can

be used as a complement to MSI in clinical practice (42–44).

In addition, two real-world cohorts used for validation

confirmed our predicted results for immunotherapy sensitivity. In

both the Imvigor210 and Liu David cohorts we found that the low

TES group exhibited better survival rates. However, we did not find

a significant association between TES and the number of detected

neoantigens and TMB in these two cohorts. Previous studies have

shown that TMB and neoantigens are indicators of a strong

relationship with immunotherapy efficacy and can be used to

predict benefits for patients. However, TES in our results

exhibited independent predictive accuracy for immunotherapy.

More insight into the specific regulatory mechanisms is needed in

future studies (45, 46).
B
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G
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FIGURE 8

TES can predict chemotherapy. The IC50 values of the three commonly used drugs (5-Fluorouracil, Cisplatin, and Camptothecin) in the (A) TCGA
cohort and (B) meta-GEO cohort were predicted based on the GDSC database. (C) Remission rates of different TES patients after receiving
chemotherapy. (D) Kaplan-Meier survival curves for patients treated with 5-Fluorouracil in different TES groups. (E) Kaplan-Meier survival curves for
patients treated with Irinotecan in different TES groups. (F) Kaplan-Meier survival curves for patients treated with Oxaliplatin in different TES groups.
(G) Prediction of TES-related small molecule compounds as well as target pathway from the CMap database.
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This study still contains some limitations. The study only

contains two non-COAD immunotherapy RNA-seq data, which

is due to the scarcity of data in this field. We hope to collect more

immunotherapy sequences or platform data for COAD in the future

to further validate the predictive accuracy of TES for

immunotherapy. In addition, genomic regulation is a large field,

and we have only focused on a portion of mRNAs and may have

neglected data from some other regulatory genomes. Finally, the

mechanism of how TES affects biological function as well as the

phenotype is unclear. However, we synthesized the results of

functional enrichment analysis to make reasonable speculations,

which is an inspiration for future mechanistic studies.
Conclusions

In this study, we identified possible depleted CD8+ T cell

differentiation trajectories in COAD patients and developed a

TES model to quantify the level of T cell depletion in the tumor
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microenvironment. Patients with lower TES responded more

strongly to chemotherapy and immunotherapy and had a better

prognosis. This finding not only advances the development of

cancer genetics and immunotherapy but also provides new

perspectives on the clinical treatment of colon cancer and

innovative immunotherapy strategies.
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TES can predict immunotherapy. The IPS of individual COAD patients in the (A) TCGA cohort and (B) meta-GEO cohort. TIDE algorithm predicts
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David cohort. Remission rates of different TES patients after immunotherapy in the (I) IMvigor210 cohort and (J) Liu David cohort. Scatter plot and
box plot show the correlation of TES with (K) neoantigens; (M) TMB in IMvigor210 cohort. Scatter plot and box plot show the correlation of TES with
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TANK shapes an
immunosuppressive
microenvironment and predicts
prognosis and therapeutic
response in glioma
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Background: Glioma, the most prevalent malignant intracranial tumor, poses a

significant threat to patients due to its high morbidity and mortality rates, but its

prognostic indicators remain inaccurate. Although TRAF-associated NF-kB

activator (TANK) interacts and cross-regulates with cytokines and

microenvironmental immune cells, it is unclear whether TANK plays a role in

the immunologically heterogeneous gliomas.

Methods: TANK mRNA expression patterns in public databases were analyzed,

and qPCR and IHC were performed in an in-house cohort to confirm the clinical

significance of TANK. Then, we systematically evaluated the relationship

between TANK expression and immune characteristics in the glioma

microenvironment. Additionally, we evaluated the ability of TANK to predict

treatment response in glioma. TANK-associated risk scores were developed by

LASSO-Cox regression and machine learning, and their prognostic ability was

tested.

Results: TANK was specifically overexpressed in glioma and enriched in the

malignant phenotype, and its overexpression was related to poor prognosis. The

presence of a tumor microenvironment that is immunosuppressive was evident

by the negative correlations between TANK expression and immunomodulators,

steps in the cancer immunity cycle, and immune checkpoints. Notably,

treatment for cancer may be more effective when immunotherapy is

combined with anti-TANK therapy. Prognosis could be accurately predicted by

the TANK-related risk score.
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Conclusions: High expression of TANK is associated with the malignant

phenotype of gl ioma, as it shapes an immunosuppressive tumor

microenvironment. Additionally, TANK can be used as a predictive biomarker

for responses to various treatments and prognosis.
KEYWORDS

glioma, immunosuppressive microenvironment, immune infiltration, TANK, prognosis
Introduction

Glioma is the most common malignant intracranial tumor, and

more than 60% of primary central nervous system (CNS) tumors (1)

with a diffusely invasive nature (2). The median overall survival time

for patients with gliomas ranges from ~14 months (3) to less than 10

years (4), giving rise to severe morbidity and mortality of patients.

Over the past decade, remarkable advances in molecular profiling

studies (5, 6) have deepened the understanding of the classification,

diagnosis, treatment, and prognosis of glioma. As such, the 2016

WHO classification of glioma incorporated morphological and

molecular features for division of gliomas into distinct subgroups

(7) for precision diagnosis and treatment. In 2021, the latest version

of the WHO classification subdivided diffuse glioma into adult-type

and pediatric-type (8), with adult-type comprising three subtypes

characterized by histological features and genetic mutation status.

The current standard therapeutic strategies are surgical resection,

radiotherapy, and chemotherapy, whereas combined therapy

demonstrates modest efficacy. Physiological barriers, chemo- and

radioresistance, and the paucity of clear targeted pathways contribute

to the limitations of these treatments (9, 10). Consequently, novel

treatment modalities focused on improving the life expectancy of

glioma patients are urgently needed.

Accompanied by a deeper understanding of glioma biology,

numerous preclinical and clinical trials have explored

immunotherapies, such as immune checkpoint inhibitors (ICIs)

(11), oncolytic viral therapies (12), adoptive cellular therapies (13),

cytokine therapies (14) and vaccinations (15). The immune

checkpoint pathway, integral to modulating self-tolerance and

immune responses, serves as a major mechanism by which

glioma escapes immunosurveillance and maintains immune

resistance (16). ICIs restore tumoricidal activities by targeting

coinhibitory molecules such as CTLA-4 and PD-1and have

demonstrated encouraging efficacy in clinical trials of metastatic

melanoma (17), Hodgkin’s lymphoma (18), HCC (19), and NSCLC

(20). Various preclinical trials of ICIs or ICIs combined with other

strategies in patients with glioma have been explored and found to

have potential clinical value (21–24). Considering the paucity of

strong clinical evidence and the exact mechanisms of action, the

current state of knowledge emphasizes the urgency of exploring

primary therapeutic approaches in combination with novel

therapeutic targets to prolong the survival of glioma patients.

TRAF-associated NF-kB activator (TANK) is a protein with

dual functions in activating NF-kB (25–27) that is indispensable for
02251
immune responses and inflammatory processes, as well as for

activating survival and proinflammatory genes within the tumor

microenvironment (28–30). Subsequent studies identified TANK as

an adaptor protein that interacts with canonical IKKs (NEMO and

IKKg) (31) and IKK-related kinases (TBK1 and IKKϵ) (32) to

modulate NF-kB and TLR-induced antiviral pathways and

prevent autoimmunity (32, 33). Consequently, the immunological

functions that TANK perform in the pathophysiological process of

these diseases, especially cancers, deserve in-depth discussion.

Downregulated genes, including TANK/I-TRAF, were analyzed

in HPV-16 E6-transfected carcinoma cells (34), whereas treatment

with the antiproliferative agent cisplatin reversed the condition and

downregulated the TRAF2-mediated NF-kB activity (35),

indicating the tumorigenic properties of TANK and novel

therapeutic targets for cervical cancer. Deregulated expression of

TANK not only orchestrates the signaling network of the ERK1/2,

AKT and IRF3 pathways in controlling the survival, proliferation,

migration and invasion of glioblastoma (GBM) cells but also

mediates the relative expression of genes in inflammatory

s ignal ing cascades (36) . Moreover , TANK indirect ly

phosphorylates the transcription factor STAT3 to increase the

release of interleukin-6 (IL-6) and ultimately accelerate the

progression of glioma in terms of enhanced angiogenesis and

proliferation. TANK interacts with and cross-regulates cytokines

and microenvironmental immune cells, but its exact biological

function remains uncertain and needs to be further investigated.
Materials and methods

Obtaining and processing data

The methods used for obtaining and processing data are the

same as those described in previous literature (37). All data were

downloaded from Chinese Glioma Genome Atlas (CGGA) datasets

(CGGA-693, CGGA-325, CGGA-301), TCGA, GSE16011 and

Rembrandt datasets.
Human specimens

We retrospectively defined two cohorts from Xiangya Hospital,

Central South University. Cohort 1 included 29 normal tissues and

200 glioma tissues for examining the mRNA expression of TANK
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by qPCR. Cohort 2 included 23 normal tissues and 203 glioma

tissues for examining the protein expression of TANK by IHC. The

relevant information can be seen in Table 1. Informed consent was

obtained from all patients. Ethical approval was obtained for

this study.
RNA extraction and quantitative
real-time PCR

We carried out these processes by referring to the previous

study (37). The relative expression of TANK was calculated to

ACTB by 2–DDCt method. Primer sequences are given below:

TANK (F) 5′- CCACTTCTGGACCCATCTGATG-3′,
TANK (R) 5′- GCAGTTCTGAGTCTGTGCCACT-3′,
ACTB (F) 5′-ACAGAGCCTCGCCTTTGCCGAT-3′,
ACTB (R) 5′- CTTGCACATGCCGGAGCCGTT-3′.
Immunohistochemistry (IHC)

A TMA was constructed from 23 normal tissues and 203 glioma

tissues. With reference to the previous literature (37), we conducted

experiments. IHC assay was performed with primary antibodies

against PD-1 (Proteintech, China), HIF1A (CST, United States),

CD11b (AiFang, China), CD40 (Proteintech, China), PD-L1 (CST,

United States), CD163 (Proteintech, China), STAT3 (Proteintech,

China), and TANK (Bioss, China).
Immunological characteristics of the
glioma microenvironment

The immunologica l character is t ics of the g l ioma

microenvironment were evaluated by considering the expression

levels of immunomodulators and infiltration levels of TIICs, the

activity of the tumor immunity cycle, and inhibitory immune

checkpoints. Date for a total of 122 immunomodulators, such as

MHC, chemokines and immune stimulators, were obtained from

previous studies (38). By single sample gene set enrichment analysis

(ssGSEA), the seven steps of the tumor immunity cycle were

assessed based on the gene expression profiles (39). Seven

algorithms, including MCP-counter, CIBERSORT, quanTIseq,

ssGSEA, xCELL, TIMER and TIP, were used to calculate the

abundances of TIICs in the tumor microenvironment. Based on

Auslander’s study, we identified 22 immunosuppressive

checkpoints with potential for therapeutic intervention (40). The

T-cell inflammation score was calculated based on the mRNA

expression of 18 genes. Immune and stromal scores were

evaluated with the ESTIMATE R package (41).
Identification and functional enrichment
analysis of differentially expressed
genes (DEGs)

The median expression level of TANK was used as the cutoff for

dividing all patients into the high and low TANK expression
Frontiers in Immunology 03252
groups. With the limma R package, TANK-related DEGs between

the two groups (42) in the TCGA and CGGA-693 cohorts were

identified. Adjusted P < 0.05 and |log (fold change) |>1 were

considered the criteria for identifying DEGs. Gene set enrichment

analysis (GSEA) was performed with GSEA software (vision 3.0)

(http://www.broadinstitute.org/gsea) to explore the potential

mechanism of TANK.
Development and validation of a
TANK-associated risk score by LASSO
and machine learning

In the TCGA and CGGA-693 cohorts, univariate Cox

regression analysis of the DEGs was performed using the survival

R package. The TANK-associated prognostic model was established

by using the LASSO procedure to identify 13 prognostic markers

from among the 347 TANK-related DEGs significantly associated

with prognosis by the R package “glmnet” in the TCGA cohort.

The root mean squared error (RMSE) was a measure of how

well the machine learns the model, and was calculated by taking the

square root of the average of the residuals (errors not explained by

the regression equation) over the total sample size. The support

vector machine (SVM) model selection of hyper-parameters was

made based on lowest RMSE values (43). Using SVM regression, 10

genes were selected from 13 prognostic markers.

Individual risk scores were calculated based on the Cox

regression coefficient (b) and mRNA expression levels. The

training and validation sets were divided in the TCGA cohort at a

ratio of 7:3. An R package was used to assess the statistical

performance of the prognostic model. Additionally, the TANK-

associated risk score was validated as a prognostic indicator and

performer in the TCGA internal validation set, TCGA-all set,

CGGA-693 set, CGGA-301 set, CGGA-325 set, GSE16011

dataset, and Rembrandt dataset.
Statistical analysis

Pearson or Spearman correlation analysis was performed to

investigate correlations between variables. The t test was used to

compare continuous variables fitting a normal distribution between

binary groups. Kaplan-Meier curves were generated for prognostic

analyses based on categorical variables, and the log-rank test was

used to estimate statistical significance. P < 0.05 was used as the

criterion for significance, and all tests were two-sided.
Results

The expression pattern of TANK

By integrating GTEx data with TCGA data, we were able to

increase the number of normal tissue samples. TANK levels in

various tumor tissues, including LGG and GBM tissues, were

markedly higher than those in nontumor tissues (P < 0.05,
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TABLE 1 Clinical characteristics of Cohort 1 and Cohort 2.

Cohort 1
(n=200)

Cohort 2
(n=203)

Age (Mean ± SD) 43.98 ± 15.78 45.02 ± 15.90

Gender, n (%) Female 83 (41.5%) 87 (42.9%)

Male 112 (56%) 116 (57.1%)

Unknown 5 (2.5%) 0 (0%)

WHO grade, n (%) 2 57 (28.5%) 52 (25.6%)

3 36 (18%) 42 (20.7%)

4 84 (42%) 95 (46.8%)

Unknown 23 (11.5%) 14 (6.9%)

IDH1 status, n (%) Mutant 67 (33.5%) 71 (35%)

Unknown 22 (11%) 23 (11.3%)

Wild-type 111 (55.5%) 109 (53.7%)

Histology, n (%) Astrocytoma 74 (37%) 85 (41.9%)

Gangliocytoma 5 (2.5%) 5 (2.5%)

GBM 82 (41%) 96 (47.3%)

Oligodendroglioma 24 (12%) 17 (8.4%)

Unknown 15 (7.5%) 0 (0%)

Radiotherapy, n (%) No 50 (25%) 55 (27.1%)

Unknown 54 (27%) 30 (14.8%)

Yes 96 (48%) 118 (58.1%)

Chemotherapy, n (%) No 44 (22%) 55 (27.1%)

Unknown 54 (27%) 30 (14.8%)

Yes 102 (51%) 118 (58.1%)

Laterality, n (%) Both 5 (2.5%) 6 (3%)

Left 86 (43%) 89 (43.8%)

Middle 10 (5%) 7 (3.4%)

Right 96 (48%) 101 (49.8%)

Unknown 3 (1.5%) 0 (0%)

Tumor location, n (%) Brainstem 3 (1.5%) 3 (1.5%)

Cerebellar 10 (5%) 7 (3.4%)

Frontal 87 (43.5%) 93 (45.8%)

Insular 6 (3%) 5 (2.5%)

Occipital 11 (5.5%) 14 (6.9%)

Parietal 18 (9%) 22 (10.8%)

Sellar 3 (1.5%) 2 (1%)

Temporal 55 (27.5%) 54 (26.6%)

Thalamus 4 (2%) 3 (1.5%)

Unknown 3 (1.5%) 0 (0%)
F
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Figure 1A). Analysis of the TCGA cohort showed higher TANK

expression in tumor tissues than in normal brain tissues, and analyses

of the GSE16011 and Rembrandt cohorts validated this observation

(P < 0.001, Figures 1B–D). Additionally, we examined the expression

pattern of TANK in four cohorts of patients with glioma. In the

TCGA cohort, higher grade glioma tissues expressed significantly

higher levels of TANK than lower grade glioma tissues (P < 0.001,

Figure S1A). Results similar to those observed in the CGGA-693,

Rembrandt and GSE16011 datasets were also observed (P < 0.05,

Figures S1B–D). TANK expression was higher in gliomas with wild-

type IDH than in those with mutant IDH in the three cohorts (P <
Frontiers in Immunology 05254
0.05, Figures S1E–G). TANK was generally highly expressed in GBM

(P < 0.05, Figures S1H–K). We examined TANK expression in 29

normal tissues and 200 fresh tumor tissues, as well as in 27 paired

tumor samples and peritumor tissues by qPCR. In the in-house

cohort, TANK expression was high in glioma tissues (P < 0.001,

Figure 1E). Furthermore, the tumor tissues exhibited significantly

higher levels of TANK expression than the matched peritumor tissues

(P < 0.001, Figure 1F). High expression of TANK was found at a

significantly higher rate in WHO grade IV gliomas, wild-type IDH1

gliomas, and GBM (P < 0.001, Table 2), consistent with the above

results. Immunohistochemical analysis of the tissue microarrays
B C D E F

G H

I

J

K

L

A

FIGURE 1

Elevated expression of TANK in glioma. (A) Differential expression of TANK between tumor and normal tissues from the TCGA dataset; (B-E) The
expression level of TANK in the normal tissues and glioma tissues in the TCGA cohort (B), GSE16011 (C), Rembrandt cohort (D) and Xiangya cohort
(E); (F) The expression of TANK in glioma and peritumor tissues was analyzed by RT-qPCR; (G-J) The expression level of TANK in gliomas with
different WHO grades (G, H), and wild-type and mutant IDH1 (I, J) was analyzed by immunohistochemical staining; (K, L) The expression of TANK in
glioma and peritumor tissues was analyzed by IHC (-no significance, *P < 0.05, **P < 0.01, and ***P < 0.001).
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revealed that TANK was upregulated in gliomas (P < 0.05,

Figures 1G, H). TANK was significantly enriched in glioma with

WHO grade IV, wild-type IDH1, and GBM (P < 0.05, Figures 1G–J)

(P < 0.05, Table 2). Furthermore, TANK was significantly

overexpressed in tumor tissues in 35 tumor-peritumor tissue pairs

(P < 0.001, Figures 1K, L). Thus, higher TANK expression is

associated with more malignant glioma phenotypes.
Frontiers in Immunology 06255
TANK is an indicator of poor prognosis
in glioma

Survival curves were used to explore the prognostic implications

of TANK expression in glioma in the six cohorts, and the results

consistently revealed that TANK is an indicator of poor prognosis

in glioma (TCGA, HR=2.85 (2.16-3.75); CGGA-693, HR=1.57
TABLE 2 Association of TANK expression with clinical parameters in two cohorts.

Characteristic
Cohort1 (n=200)

P
Cohort2 (n=203)

P
Low (n=100) High (n=100) Low (n=128) High (n=75)

Age, Mean ± SD 42.95 ± 15.20 45.02 ± 16.34 0.212 43.91 ± 15.19 46.91 ± 16.98 0.107

Gender, n (%) 0.789 0.062

Female 43 (21.5%) 40 (20%) 48 (23.6%) 39 (19.2%)

Male 54 (27%) 58 (29%) 80 (39.4%) 36 (17.7%)

Unknown 3 (1.5%) 2 (1%) 0 (0%) 0 (0%)

WHO grade, n (%) 0.010 < 0.001

2 37 (18.5%) 20 (10%) 48 (23.6%) 4 (2%)

3 20 (10%) 16 (8%) 28 (13.8%) 14 (6.9%)

4 31 (15.5%) 53 (26.5%) 42 (20.7%) 53 (26.1%)

Unknown 12 (6%) 11 (5.5%) 10 (4.9%) 4 (2%)

IDH1 status, n (%) 0.005 < 0.001

Mutant 42 (21%) 25 (12.5%) 57 (28.1%) 14 (6.9%)

Unknown 14 (7%) 8 (4%) 20 (9.9%) 3 (1.5%)

Wild-type 44 (22%) 67 (33.5%) 51 (25.1%) 58 (28.6%)

Histology, n (%) 0.018 < 0.001

Astrocytoma 45 (22.5%) 29 (14.5%) 66 (32.5%) 19 (9.4%)

Gangliocytoma 3 (1.5%) 2 (1%) 4 (2%) 1 (0.5%)

GBM 29 (14.5%) 53 (26.5%) 43 (21.2%) 53 (26.1%)

Oligodendroglioma 14 (7%) 10 (5%) 15 (7.4%) 2 (1%)

Unknown 9 (4.5%) 6 (3%)

Radiotherapy, n (%) 0.205 0.093

No 21 (10.5%) 29 (14.5%) 41 (20.2%) 14 (6.9%)

Unknown 32 (16%) 22 (11%) 16 (7.9%) 14 (6.9%)

Yes 47 (23.5%) 49 (24.5%) 71 (35%) 47 (23.2%)

Chemotherapy, n (%) 0.243 0.438

No 19 (9.5%) 25 (12.5%) 37 (18.2%) 18 (8.9%)

Unknown 32 (16%) 22 (11%) 16 (7.9%) 14 (6.9%)

Yes 49 (24.5%) 53 (26.5%) 75 (36.9%) 43 (21.2%)

Laterality, n (%) 0.295 0.238

Both 3 (1.5%) 2 (1%) 2 (1%) 4 (2%)

Center 38 (19%) 48 (24%) 60 (29.6%) 29 (14.3%)

(Continued)
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(1.28-1.91); GSE16011, HR=1.78 (1.37-2.32); Rembrandt, HR=1.45

(1.16-1.8); CGGA-301, HR=1.54 (1.15-2.07); CGGA-325, HR=2.11

(1.60-2.78), log-rank test P < 0.05, Figures 2A–F). When further

exploring the relationship of TANK expression with DSS and PFS,

patients with high expression of TANK were found to have shorter

survival times (DSS, HR=3.02 (2.32-3.92); PFS, HR=2.35 (1.89-

2.92), log-rank test P < 0.05, Figures 2G, H). In our in-house cohort

of 158 glioma patients, we found that glioma patients with high

TANK expression generally had shorter OS and PFS times than

patients with low TANK expression by qPCR (PFS, HR=2.37 (143-

3.92); OS, HR=2.34 (1.27-4.29); log-rank test P < 0.05, Figures 2I, J).

Similarly, significant prognostic differences were observed in other

in-house cohorts using IHC, and the survival time for patients with

glioma with high TANK expression was shorter than that of

patients with low TANK expression (PFS, HR=2.96 (1.48-5.94);

OS, HR=2.45 (1.37-4.39); log-rank test P < 0.05, Figures 2K, L).

Thus, TANK is a marker of unfavorable prognosis in glioma.
The correlations of TANK with
immunological parameters

Considering that TANK expression is correlated with glioma

malignancy, we inferred that abnormal expression of TANK might

promote the progression of glioma. Among the DEGs, 2902 were

significantly upregulated and 1370 were significantly downregulated

in the TCGA cohort (Figure 3A). TANK’s underlying pathways were

further clarified using GSEA. Gliomas with high TANK levels

exhibited enrichment in immunomodulatory pathways, including

“hypoxia”, “angiogenesis”, “inflammatory response”, “NF-kappaB

signaling”, and “IL6/STAT3 signaling” in the TCGA cohort

(Figure 3B). Next, the complex microenvironment of glioma was
Frontiers in Immunology 07256
assessed by using the ESTIMATE algorithm (41). Furthermore, we

found that gliomas with high levels of TANK consistently exhibited

higher immune and stromal scores than those with low levels of

TANK in four cohorts (P < 0.05, Figure 3C), indicating that TANK

may regulate immune and stromal cells.We assessed cell infiltration in

33 cancers using seven algorithms. TANK expression was negatively

correlated with infiltration of antitumor immune cells such as CD8+ T

cells, follicular helper T cells and NK cells (P < 0.05, Figures 3D–J). In

summary, TANK plays a vital role in the tumor microenvironment.
TANK shapes an immunosuppressive
microenvironment in glioma

An increasing number of studies have shown that glioma is a brain

tumor characterized by an immunosuppressive microenvironment

formed by immunosuppressive cells, which limits the prognosis of

tumor therapy (44, 45). Given that TANK may remodel the tumor

microenvironment through immunobiological processes, the

distribution of 35 immune cell types in gliomas with high and low

expression of TANK was examined in the TCGA cohort (Figure 4A).

Correlation analysis between TANK expression and infiltration of

protumor immune cells in the TCGA cohort revealed that gliomas

with high TANK expression contained more immunosuppressive

cells, except for CD56dim NK cells (P < 0.05, Figure 4B). Other

cohorts showed similar results (Figures 4C-E, P < 0.05). However,

there was no difference in the abundance of Th2 cells in gliomas in

other cohorts (Figures 4C-E, P > 0.05). Additionally, though the

difference in neutrophil infiltration was not observed in the

Rembrandt cohort (Figure 4E, P > 0.05), gliomas with high-

expression TANK had higher neutrophilic infiltration than those

with low-expression TANK in other cohorts (Figures 4B-D, P < 0.05).
TABLE 2 Continued

Characteristic
Cohort1 (n=200)

P
Cohort2 (n=203)

P
Low (n=100) High (n=100) Low (n=128) High (n=75)

Middle 6 (3%) 4 (2%) 3 (1.5%) 4 (2%)

Right 50 (25%) 46 (23%) 63 (31%) 38 (18.7%)

Unknown 3 (1.5%) 0 (0%) 0 (0%) 0 (0%)

Tumor location, n (%) 0.440 0.903

Brainstem 2 (1%) 1 (0.5%) 2 (1%) 1 (0.5%)

Cerebellar 6 (3%) 4 (2%) 6 (3%) 1 (0.5%)

Frontal 46 (23%) 41 (20.5%) 56 (27.6%) 37 (18.2%)

Insular 2 (1%) 4 (2%) 3 (1.5%) 2 (1%)

Occipital 3 (1.5%) 8 (4%) 9 (4.4%) 5 (2.5%)

Parietal 8 (4%) 10 (5%) 12 (5.9%) 10 (4.9%)

Sellar 2 (1%) 1 (0.5%) 1 (0.5%) 1 (0.5%)

Temporal 25 (12.5%) 30 (15%) 37 (18.2%) 17 (8.4%)

Thalamus 3 (1.5%) 1 (0.5%) 2 (1%) 1 (0.5%)

Unknown 3 (1.5%) 0 (0%) 0 (0%) 0 (0%)
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In the high-TANK group, most MHC molecules were

overexpressed, indicating an enhanced ability to present and

process antigens. In addition, the levels of CXCL9, CXCL10, and

CCR3, which increase the recruitment of CD8+ T cells into the

microenvironment of glioma, were increased in gliomas with high

TANK expression (46, 47). Chemokines and paired receptors,

including CCL2 and CCR2, were upregulated in TANK-

expressing gliomas (Figure 4F). The recruitment of effector TIICs

is promoted by these chemokines and receptors. Due to the

complex and diverse functions of the chemokine system, studies

on the relationship between TANK and individual chemokines are

insufficient to elucidate the overall immune effect of TANK in

the microenvironment.

The cancer immunity cycle includes seven steps: release of

cancer cell antigens (Step 1), cancer antigen presentation (Step 2),

priming and activation (Step 3), trafficking of immune cells to

tumors (Step 4), infiltration of immune cells into tumors (Step 5),

recognition of cancer cells by T cells (Step 6), and killing of cancer

cells (Step 7). The activity of the tumor immune cycle is a direct

result of the function of the chemokine system and

immunomodulators (48). In the high-TANK group, the activities
Frontiers in Immunology 08257
of most steps were downregulated, including Step 1, Step 3, and Step

4 (macrophage recruitment, Th1 cell recruitment, NK cell

recruitment, and Th17 recruitment), was downregulated

(Figure 4G). Consequently, these reduced activities may reduce

the level of effector TIIC infiltration into the microenvironment.

Interestingly, the activity of cancer cell recognition by T cells was

downregulated in the low-TANK group. The activity of Step 7

(killing of cancer cells) was downregulated in the high-TANK

group. Immune cell markers were upregulated in the high-TANK

group compared with the low-TANK group (Figure 4H).
TANK predicts clinical response and
therapeutic opportunities

Pan-cancer analyses showed that the immunological role of

TANK is critical for determining the types of cancers that may

benefit from anti-TANK immunotherapy. We found that expression

of TANK was mutually exclusive with that of several immune

checkpoints, including PD-L1, PD-1, CD44, CTLA-4, and PD-L2

(Figure 5A; Table S1). TANK expression was positively correlated with
B C D

E F G H

I J K L

A

FIGURE 2

TANK is an unfavorable prognostic marker in glioma. (A-F) Kaplan-Meier curves displaying the correlations between TANK expression and OS in glioma
patients in TCGA (A), CGGA-693 (B), GSE16011 (C), Rembrandt (D), CGGA-301 (E) and CGGA-325 (F) datasets; (G, H) Kaplan-Meier curves showing the
correlations between TANK expression and DSS (G) and PFI (H) in the TCGA cohort; (I, J) Kaplan-Meier curves showing the correlations between TANK
expression and PFS (I) and OS (J) in in-house cohort 1 based on qPCR data; (K, L) Kaplan-Meier curves showing the correlations between TANK
expression and PFS (K) and OS (L) in in-house cohort 2 based on immunohistochemical data; P values were calculated by the log-rank test, and
P < 0.05 was considered significant.
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the ssGSEA scores of most immunotherapy-associated signatures

(Figure 5B). In addition, genetic abnormalities are classical

biomarkers of the anti-PD-1/PD-L1 therapeutic response (49).

Mutations in the high-TANK group were shown using a waterfall

plot (Figure 5C). IDH1 and ATRX were not frequently mutated in

gliomas with high TANK expression (IDH1, 43% and ATRX, 26%)
Frontiers in Immunology 09258
compared with those with low TANK expression (IDH1, 78% and

ATRX, 35%), while PTEN, TTN and EGFR were more frequently

mutated in gliomas with high TANK expression (PTEN, 17%, TTN,

16% and EGFR, 15%) than in those with low-level TANK (PTEN, 4%,

TTN, 10% and EGFR, 5%). Several oncogenic pathways cooperatively

form the immunosuppressive microenvironment of glioma.
A B

D

E F

G

I

H

J

C

FIGURE 3

Immune relevance of TANK. (A) The volcano plot shows differentially expressed genes between the low- and high- TANK groups in the TCGA cohort;
(B) GSEA of gliomas with low and high expression of TANK in the TCGA cohort; thresholds of a nominal P < 0.05 and an FDR < 25% were used to
determine the significance of the enrichment score (ES); (C) The associations between the stromal and immune scores and TANK expression in the
TCGA cohort, CGGA-693 cohort, GSE16011, and Rembrandt cohort; differences between the two groups were compared by Student’s t test, and the
P values are labeled above each boxplot with asterisks (**P < 0.01, ***P < 0.001, and ****P < 0.0001); (D-J) Correlation of TANK expression with
immune cell infiltration, as evaluated using seven algorithms (TIMER, EPIC, xCELL, CIBERSORT, QUANTISEQ, MCP-counter, and ssGSEA).
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Therefore, blocking these pathways suppresses the formation of an

immunosuppressive microenvironment. We found that

immunosuppressive oncogenic pathways were significantly enriched

in gliomas with high expression of TANK (P < 0.05, Figures 5D, E).
TANK expression is positively correlated
with CD163, CD11b, PD-1, PD-L1, CD40,
STAT3 and HIF1A expression in glioma

As mentioned above, the expression of TANK was correlated

with the abundances of immune cells, including neutrophils and

macrophages, and the expression of immune checkpoints. TANKwas

also found to be involved in a variety of signaling pathways, including

“hypoxia” and “IL6/STAT3 signaling” (Figure 3B). Therefore, we

further analyzed the correlation between TANK expression and the

expression of CD163 and CD11b, surface markers of M2

macrophages and neutrophils, respectively by IHC. M2

macrophages and neutrophils are important components of the

glioma microenvironment and have been reported to be closely

related to the prognosis of patients (50). TANK expression was

positively correlated with the expression of CD163 and CD11b
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(CD163, Spearman r = 0.342, P < 0.05; CD11b, Spearman r =

0.360, P < 0.05, Figure 6). Considering that PD-1/PD-L1 and CD40

are important immunosuppressive molecules, we investigated the

relationship between TANK expression and the expression of these

molecules at the protein level. IHC showed that PD-1, PD-L1 and

CD40 expression increased with increasing TANK expression (PD-1,

Spearman r = 0.293, P < 0.05; PD-L1, Spearman r = 0.316, P < 0.05;

CD40, Spearman r = 0.338, P < 0.05, Figure 6). Finally, TANK

expression was found to be positively related to the expression of

HIF1A, a core molecule of the hypoxia-induced signaling pathway,

and STAT3, a key molecule of the IL6/STAT3 signaling pathway

(HIF1A, Spearman r = 0.450, P < 0.05; Spearman r = 0.503, P < 0.05,

Figure 6). These observations confirm that TANKmay be involved in

regulating the complex tumor microenvironment.
Development, validation, and evaluation of
the TANK-associated risk score

In this study, we identified 892 overlapping TANK-associated

DEGs in the CGGA-693 and TCGA cohorts (Table S2). Among these

DEGs, we also identified 299 TANK-associated DEGs significantly
A

B

D E

F

G H

C

FIGURE 4

TANK shapes an immunosuppressive TME in glioma. (A) The landscape of immune cells and stromal cells in the low- and high- TANK groups in the
TCGA cohort; (B–E) The association between TANK expression and the abundances of seven types of protumor immune cells in the TCGA cohort
(B), CGGA-693 cohort (C), GSE16011 (D), and Rembrandt cohort (E); (F) Differences in the expression of 122 immunomodulators (chemokines,
receptors, MHC, and immunostimulators) between the high- and low-TANK groups in glioma; (G) Differences in the various steps of the cancer
immunity cycle between the high- and low-TANK groups; (H) Differences in the markers of immune cells between the high- and low-TANK groups
in the TCGA cohort (- no significance, *P < 0.05, **P < 0.01, and ***P < 0.001).
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associated with prognosis (Table S3). Then, LASSO Cox regression

model and SVM were applied to select the 10 most useful factors for

developing a prognostic model in the TCGA training set (Figures 7A–

C) and obtain a TANK-associated risk score for each patient based on

the mRNA expression of thirteen genes and the corresponding

LASSO Cox coefficients (Figure 7D). Patients with low-risk scores

had significantly longer overall survival times than those with high-

risk scores in the TCGA training set, TCGA internal validation set

and TCGA set (TCGA training set, HR = 7.80 (5.55-10.97), P < 0.001;

TCGA validation set, HR = 5.66 (3.50-9.14), P < 0.001; TCGA set, HR

= 7.28 (5.51-9.61), P < 0.001, Figures 7E–G). The CGGA-693 cohort,

CGGA-301, CGGA-325, GSE16011, and Rembrandt cohorts were

used as external validation sets. The results revealed that the risk score

could effectively divide patients into two distinct groups in these

external validation cohorts. Patients in the high-risk group had a

significantly poorer prognosis than those in the low-risk group

(CGGA-693, HR = 3.18 (2.59-3.90), P < 0.001; CGGA-301, HR =
Frontiers in Immunology 11260
3.22 (2.37-4.37), P < 0.001; CGGA-325, HR = 4.10 (3.07-5.49), P <

0.001; GSE16011, HR = 3.12 (2.34-4.17), P < 0.001; Rembrandt, HR =

2.97 (2.34-3.76), P < 0.001, Figures 7H–L). The predictive accuracy of

the risk score was well validated in the TCGA training set, TCGA

internal validation set and TCGA set. The AUC of the risk score was

more than 0.80 for survival at 12, 36, and 60 months in the TCGA

training set, TCGA internal validation set and TCGA set

(Figures 7M–O). Similarly, the AUC of the risk score was more

than 0.80 for survival at 12, 36, and 60 months in the CGGA-693

cohort, CGGA-301, CGGA-325, GSE16011 and Rembrandt cohort

(Figures 7P–T).
Discussion

In this study, TANK was highly expressed in glioma (P < 0.05,

Figure 1), as confirmed by qPCR and IHC (P < 0.05, Figure 1). In
B C

D E

A

FIGURE 5

TANK predicts clinical response and therapeutic opportunities. (A) The associations between TANK expression and the mRNA expression of several
immune checkpoints across pan-cancer; (B) The association between TANK expression and the mRNA expression of several immune checkpoints in
glioma; (C) Mutation profiles in the low- and high-TANK groups in the TCGA cohort; (D) Correlations between TANK expression and the enrichment
scores of several oncogenic pathways; (E) Differences in the enrichment scores of immunotherapy-related pathways between the high- and low-
TANK groups in the TCGA cohort. *p<0.05, **p<0.01, and ***p<0.001.
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addition, the qPCR and IHC results indicated that higher TANK

expression was associated with more malignant phenotypes in

glioma (P < 0.05, Figure 1, Table 2). Furthermore, TANK was

identified as a marker of poor prognosis in glioma. In two in-house

cohorts, glioma patients with high expression of TANK generally

had shorter OS and PFS times than those with low expression of

TANK, as determined by qPCR and IHC (log-rank test P < 0.05,

Figures 2I–L). Previous studies have shown that downregulation of

TANK can arrest cells in S-phase and prevent tumor cell migration

(36). Our results are consistent with previous results, indicating that
Frontiers in Immunology 12261
TANK could play a protumorigenic role in glioma, and consistent

with previous results. However, the clinical significance and

expression pattern of TANK in glioma have not been reported.

The possibility that TANK is a potential immunotherapeutic target

for glioma needs further exploration.

TANK has been identified as a TRAF-interacting protein and

can activate the NF-kB signaling pathway (26). The NF-kB pathway

is indispensable for immune responses and inflammatory processes,

as well as in activating survival and proinflammatory genes within

the tumor microenvironment (51). Therefore, we hypothesized that
FIGURE 6

TANK expression is positively correlated with CD163, CD11b, PD-1, PD-L1, CD40, STAT3 and HIF1A expression in glioma. As surface markers of M2
macrophages and neutrophils, IHC shows that CD163 and CD11b are positively correlated with the expression of TANK (CD163, Spearman r = 0.342,
P < 0.05; CD11b, Spearman r = 0.360, P < 0.05). As important immunosuppressive molecules, PD-1, PD-L1 and CD40 expression increased with the
increase of TANK expression (PD-1, Spearman r = 0.293, P < 0.05; PD-L1, Spearman r = 0.316, P < 0.05; CD40, Spearman r = 0.338, P < 0.05). TANK
was found to be positively related to HIF1A expression (Spearman r = 0.450, P < 0.05), a core molecule of the hypoxia-induced signaling pathway,
and STAT3 (Spearman r = 0.503, P < 0.05), a key molecule of IL6/STAT3 signaling pathway.
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TANK might be involved in the remodeling of the tumor

microenvironment. GSEA showed that TANK was involved in

immunoregulatory pathways in the TCGA cohort (Figure 3B).

TANK was found to be closely and positively associated with the

expression of HIF1A and STAT3 (HIF1A, Spearman r = 0.450, P <

0.05; Spearman r = 0.503, P < 0.05, Figure 6), a result that validated
Frontiers in Immunology 13262
the above findings. In four cohorts, the immune and stromal scores

were higher in gliomas with high TANK expression than in gliomas

with low TANK expression (P < 0.05, Figure 3C). Pan-cancer

immune infiltration analysis based on seven algorithms showed

that TANK expression was closely correlated with infiltration of

immunosuppressive cells (P < 0.05, Figures 3D–J). Importantly, the
B C D

E F G H

I J K L

M N O P

Q R S T

A

FIGURE 7

Development, validation and evaluation of the TANK-associated risk score. (A) The partial likelihood deviance distribution of the LASSO coefficient;
(B) Partial likelihood deviance determined by the LASSO regression model; (C) Identification of hub genes by SVM; (D) An ensemble of 10 TANK-
associated signatures with the Cox regression coefficients; (E-L) Kaplan-Meier curves show the correlation between the risk scores and overall
survival of patients in the TCGA training set (E), TCGA internal validation set (F), whole TCGA set (G), CGGA-693 cohort (H), CGGA-301 (I), CGGA-
325 (J), GSE16011 (K), and Rembrandt cohorts (L); P values were calculated by the log-rank test, and P < 0.05 was defined as the cutoff criterion;
(M-T) Time-dependent ROC analysis of survival at 12 months, 36 months, and 60 months showed the predictive accuracy of the TANK-associated
prognostic model in the TCGA training set (M), TCGA internal validation set (N), whole TCGA set (O), CGGA-693 cohort (P), CGGA-301 (Q), CGGA-
325 (R), GSE16011 (S), and Rembrandt cohorts (T). AUC, area under the curve; ROC, receiver operating characteristic.
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abundances of most immunosuppressive cells were higher in

gliomas with high TANK expression in the four cohorts (P <

0.05, Figures 4B–E). TANK was negatively related to various

immunomodulators (Figure 4F). In the high-TANK group, the

activities of most of the steps were downregulated (Figure 4G).

Subsequently, inactivity of these steps may weaken the infiltration

of immune cells into the microenvironment. Therefore, we inferred

that TANK shapes an inflamed TME in glioma. Although the role of

TANK in regulating the tumor microenvironment of glioma has not

been reported in previous studies, its important role in other tumors

has been reported. Moreover, TANK expression was positively

correlated with PD-L1, PD-1, and CD44 expression in various

cancers (Figure 5A). The immunohistochemical results showed

that PD-1, PD-L1 and CD40 expression increased with the

increasing TANK expression in glioma (Figure 6).

Inhibiting oncogenic pathways blocks the formation of an

immunosuppressive microenvironment, thereby reactivating

cancer immunity. Most pathways were observably upregulated in

the high-TANK group (P < 0.05, Figures 5D, E). Our observations

provide insight for subsequent research on the mechanism by which

TANK expression regulates immunity and lay a foundation for

developing new treatment options. Similarly, for gliomas with high

expression of TANK, one of the previous treatment methods was to

transform the immunosuppressive microenvironment into an

immune-activated state, thus triggering the anticancer immune

response. The expression of inhibitory immune checkpoints may

be upregulated by negative feedback regulation. Therefore,

subsequent ICB therapy may reactivate suppressed anticancer

immunity. This approach may enhance the efficacy of anti-TANK

therapy and help trigger anticancer immunity. The combination of

different ICB drugs with anti-TANK therapy is more effective than

single therapy. Current therapeutic targets of ICB therapy, such as

PD-L1and PD-1, are associated with each other in other tumors.

Therefore, the combination of these drugs seems to have a

synergistic effect. In contrast, TANK expression was significantly

positively correlated with that of some ICB targets, suggesting

complementary effects of anti-TANK and ICB therapy.

Finally, we established a TANK-related risk model to predict

prognosis based on the expression of TANK-related genes. The

TANK-associated risk score could effectively divide patients into

two distinct groups, and patients in the high-risk group had a

significantly worse prognosis than those in the low-risk group (log-

rank test P < 0.001, Figures 7E–L). The risk score showed good

predictive accuracy (Figures 7M–T).

However, there are limitations to our study. First, some

contradictory findings need to be confirmed by carrying out

reliable experiments. Second, the role of TANK in the tumor

microenvironment and its underlying regulatory mechanisms

need to be further explored. Third, more functional experiments

are needed to validate the role of TANK in the glioma

microenvironment, especially the immune microenvironment.

In conclusion, high expression of TANK indicates a malignant

phenotype of glioma, predicts a poor prognosis and shapes an

immunosuppressive tumor microenvironment. Combined anti-

tank cancer immunotherapy may be a more effective strategy

than monotherapy.
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SUPPLEMENTARY FIGURE 1

Expression pattern of TANK in glioma. (A–D) The expression level of TANK in

glioma with different WHO grades in the TCGA cohort (A), CGGA-693 cohort

(B), GSE16011 (C), and Rembrandt cohort (D); (E–G) The expression level of
TANK in glioma with wild-type and mutant IDH or IDH1 in the TCGA cohort

(E), CGGA-693 cohort (F), and GSE16011 (G); (H–K) The expression level of
Frontiers in Immunology 15264
TANK in glioma with different histologies in the TCGA cohort (H), CGGA-693
cohort (I), GSE16011 (J), and Rembrandt cohort (K). P < 0.05 was considered

significant. (- no significance, *P < 0.05, **P < 0.01, and ***P < 0.001).

SUPPLEMENTARY TABLE 1

The relationship between the expression of TANK and several immune

checkpoints, including PD-L1, PD-1, CD44, CTLA-4, and PD-L2.

SUPPLEMENTARY TABLE 2

TANK-associated DEGs in the CGGA-693 and TCGA cohorts.

SUPPLEMENTARY TABLE 3

299 TANK-associated DEGs significantly associated with prognosis.
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Background: Ovarian cancer (OC) is the fifth leading cause of cancer-related

deaths among women. Late diagnosis and heterogeneous treatment result in a

poor prognosis for patients with OC. Therefore, we aimed to develop new

biomarkers to predict accurate prognoses and provide references for

individualized treatment strategies.

Methods: We constructed a co-expression network applying the “WGCNA”

package and identified the extracellular matrix-associated gene modules. We

figured out the best model and generated the extracellular matrix score (ECMS).

The ECMS’ ability to predict accurate OC patients’ prognoses and responses to

immunotherapy was evaluated.

Results: The ECMS was an independent prognostic factor in the training [hazard

ratio (HR) = 3.132 (2.068–4.744), p< 0.001] and testing sets [HR = 5.514 (2.084–

14.586), p< 0.001]. The receiver operating characteristic curve (ROC) analysis

showed that the AUC values for 1, 3, and 5 years were 0.528, 0.594, and 0.67 for

the training set, respectively, and 0.571, 0.635, and 0.684 for the testing set,

respectively. It was found that the high ECMS group had shorter overall survival

than the low ECMS group [HR = 2 (1.53–2.61), p< 0.001 in the training set; HR =

1.62 (1.06–2.47), p = 0.021 in the testing set; HR = 1.39 (1.05–1.86), p = 0.022 in

the training set]. The ROC values of the ECMS model for predicting immune

response were 0.566 (training set) and 0.572 (testing set). The response rate to

immunotherapy was higher in patients with low ECMS.

Conclusion: We created an ECMS model to predict the prognosis and

immunotherapeutic benefits in OC patients and provided references for

individualized treatment of OC patients.
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Introduction

In 2022, approximately 19,880 patients in the United States

were diagnosed with ovarian cancer (OC) and 12,810 patients died

from OC. It is the 11th most prevalent cancer and the fifth leading

cause of cancer-related deaths among women (1). Indeed, OC

includes a variety of pathological types, and epithelial OC is the

most frequent pathological type, accounting for approximately 80%

(2). The 5-year overall survival (OS) rate after OC diagnosis is only

47% due to failure to diagnose early, metastasis, relapse, and drug

resistance (3). The first-line treatment for OC includes surgery and

the administration of platinum drugs combined with paclitaxel, and

maintenance therapies include bevacizumab and poly(ADP-ribose)

polymerase inhibitors. In addition, the idea that immunotherapy

has potential effects on various cancers, including OC, has been

demonstrated. Therapeutic targeting of the programmed cell death

protein 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4)

is effective in many cancers, which can improve the survival rate (4).

Previous studies have constructed several models that could predict

chemotherapy’s prognosis and efficacy in OC patients (5–8).

However, these models do not consider the role of the

extracellular matrix (ECM).

The ECM comprises different macromolecules, including

glycoprotein, collagens, and proteoglycans, assembled into a

three-dimensional supramolecular network to regulate cell

growth, survival, motility, and differentiation (9). In addition,

ECM is related to the formation of a tumor microenvironment

(TME) and its dysregulation can promote tumor progression (10).

Deposition of ECM is related to poor outcomes in multiple tumors.

For example, in patients with uroepithelial carcinoma of the

bladder, inflammatory cancer-associated fibroblasts were

significantly associated with poor outcomes (11). In addition, in a

study about pancreatic ductal adenocarcinoma, stromal-derived

fibroblast growth factor 10 could activate fibroblast growth factor

receptor 2 expressed on cancer cells to induce migration and

invasion, which was correlated with poor prognosis (12).

Similarly, the matrix remodeling gene expression correlated with

poor prognosis in breast cancer (BC) patients (13). Abnormal ECM

deposition may reduce the effects of chemotherapy and

immunotherapy. In preclinical mouse tumor models, inhibition of

collagen crosslinking decreased ECM content and tumor stiffness,

thereby increasing the efficacy of PD-1 blockade treatment (14). In

addition, inhibition of ECM deposition could inhibit colorectal

cancer metastasis and enhance the effects of bevacizumab (15). On

the contrary, an analysis of pancreatic cancer confirmed that the

TGF-b signaling pathway could induce ECM deposition, resulting

in the inability to block PD-1 (16). Since ECM is linked to the

efficacy and prognosis of many tumor patients, exploring ECM-

based prognostic and efficacy prediction models for OC may help

the prognostic assessment and individualized treatment strategies

to benefit more OC patients.

In this study, we constructed a co-expression network applying

the “WGCNA” package and identified the extracellular matrix-

associated gene modules. Independent prognostic factors in

candidate ECM genes were then screened. We determined the

best model utilizing the Cox proportional hazard model with the
Frontiers in Oncology 02267
LASSO penalty. Therefore, a new ECM score (ECMS) model was

developed, and its ability to predict accurate OC patients’ prognoses

and responses to immunotherapy was evaluated.
Methods

Data extraction and data processing

The transcriptome RNA-seq data and the corresponding

information of OC patients were downloaded from the Cancer

Genome Atlas (TCGA) database (https://cancergenome.nih.gov/)

by the Genomic Data Commons platform. We obtained 349 OV

samples after excluding participants with lost visits and missing

information. We standardized the original fragments per kilobase

per million (FPKM) expression data to transcripts per kilobase per

million (TPM) and which served as a training set. In addition, from

the University of California Santa Cruz (UCSC) Xena platform

(https://xena.ucsc.edu/), we downloaded transcriptome RNA-seq

data and the corresponding information of 111 OC patients in

ICGC database and used them as a testing set. We collected publicly

available immunotherapy cohorts to predict immunotherapy

response and used them as a validation set. Finally, the

IMvigor210 dataset was collected from http://research-

pub.gene.com/IMvigor210CoreBiologie. The IMvigor210 cohort

contained 298 urothelial carcinoma patients receiving anti-PD-L1

therapies. A total of 1,028 ECM genes were collected from the

hallmark dataset on the MSIDGB website (https://www.gsea-

msigdb.org/gsea/msigdb/). We included eligible OC samples

based on the following criteria: (a) primary diagnosis of ovarian

cancer; (b) having a complete gene expression matrix; (c) having

well-established clinical follow-up information (including

prognosis, stage, and age).
Screening of candidate ECM genes

The tumor purity and immune activity were assessed by the

ESTIMATE algorithm. Then, we built a co-expression network

based on transcriptomic data and ESTIMATE results by the

“WGCNA” package and identified ECM-associated gene modules.

Parameter settings: unsigned network architecture was adopted

with a minimum module gene of 30, deepSplit = 2, cutNet = 0.02,

and a correlation threshold of 0.9 used to identify genes of the same

module. The intersection of the most relevant ECM-associated gene

modules with ECM genes was considered candidate ECM genes.
Construction of the ECMS model

We determined the independent prognostic factors in candidate

ECM genes by univariate COX regression. We selected the best

predictive model applying the Cox proportional hazard model with

the LASSO penalty and set fivefold cross-validation to prevent

overfitting. To achieve cross-validated random sampling, we

carried out 500 iterations to figure out the most robust model.
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After 500 iterations, the model with the highest frequency was

regarded as the final model and generated the ECMS:

ECMS =oiCoefficient(mRNAi)� Expression(mRNAi)

We calculated the concordance index (C-index) utilizing the R

package “survcomp.”

Then, we calculated the ECMS of all patients and divided them

into the high and low ECMS groups (also called high- and low-risk

groups) according to the median ECMS. To assess the model’s

prognostic utility, Kaplan–Meier (KM) curves, time-dependent

receiver operating characteristic curves (tROC), and univariate

and multivariate Cox regression analyses were applied.
Functional enrichment and immune
infiltration analyses

We carried out a single-sample gene set enrichment analysis

(ssGSEA) by applying the R package “gsva” based on the molecular

markers mentioned in previous studies (17–20). The detailed

molecular markers are provided in Table S1. In addition, we

applied the GSEA to compare two ECMS groups and used the p<

0.05 criterion to discover the significant KEGG pathway. The R

package “limma” had been proposed to identify differentially

expressed genes (DEGs) between two ECMS groups at a

significance threshold of fdr<0.05, FC >2. In addition, we applied

the Metascape (http://www.metascape.org) database to carry out

functional enrichment analysis. The evaluation of the immune cell

infiltration was performed through the R package “CIBERSORT”

(21). Applying the ESTIMATE algorithm, we evaluated the tumor

purity and immune activity (22). Finally, we collected SNV

neoantigens and indel neoantigens samples from Thorsson et al. (23).
Prediction of immunotherapy response

We calculated the patients’ immunophenoscore (IPS) based on the

genetic characteristics of different immune cell phenotypes. A higher

IPS indicates a more active immune response and a higher response to

immunotherapy. We applied the TIDE algorithm to simulate the

mechanism of tumor immune escape to predict the therapeutic effect

of patients for immune checkpoint blockers. Finally, we tested the

predictive effectiveness of ECMS through the Imvigor210 cohort.
Cell lines

The OC cell lines A2780 and SKOV3 and the normal ovarian

epithelial cell line IOSE-80 were purchased from iCell Bioscience Inc.

All the cells were cultured in DMEMwith 10% FBS (Biological, Israel).
RT-qPCR

RNA was extracted using the RNeasy Mini Kit (QIAGEN). The

HiScript II Q RT SuperMix for qPCR Kit (Vazyme, China) was used
Frontiers in Oncology 03268
for reverse transcription. ChamQ Universal SYBR qPCR Master

Mix (Vazyme, China) was used for RT-qPCR. GAPDH was the

housekeeper gene. The results were calculated using the 2-

DDCT method.
Statistical analysis

We utilized R software (version 4.04) to conduct all statistical

analyses and graphs. The Wilcoxon test was utilized to measure the

differences between the two ECMS groups. Moreover, the chi-

square test was applied to compare the differences in proportions.

We used a KM plotter to generate survival curves and assessed the

differences by log-rank test. We applied the R package

“survivalROC” to plot tROC and evaluated the predictive power

utilizing the area under the curve (AUC). We applied the R package

“survival” to conduct the univariate and multivariate Cox regression

analyses and “rms” to plot the nomogram and calibration curves.

All tests were two-tailed, and p< 0.05 was considered statistically

significant if not otherwise stated.
Results

Identification of the candidate ECM genes

A total of three OC cohorts (TCGA-OV, ICGC-OV, and

Imvigor210) were considered suitable for this study. We collected

1,028 ECM genes from the hallmark dataset on the MSIDGB

website. The WGCNA algorithm was applied to determine ECM-

associated genes. The scale-free network was constructed with the

scale-free topology fitting index set to 0.9, and the corresponding

optimal soft threshold value was 8 (Figure 1A). We used a clustering

dendrogram to identify 46 modules (Figure 1B). The correlation

coefficient between the Darkorange2 module and ImmuneScore was

0.79, and the correlation coefficient between the Darkorange2

module and ESTIMATEScore was 0.8, suggesting that the

Darkorange2 module was selectively expressed in samples with

high immune cell infiltration (Figure 1C). The 1,028 ECM genes

and 669 genes from the most relevant gene modules were

intersected to obtain 61 candidate ECM genes (Figure 1D). These

61 candidate ECM genes were screened for independent prognostic

factors by doing univariate Cox regression analysis, and we

identified 10 genes (Figure 1E). To comprehensively analyze these

genes, we used Metascape for functional enrichment analysis. We

listed the top 20 enrichment terms in which candidate ECM genes

were mostly enriched in NABA MATRISOME-ASSOCIATED

signaling pathways (Figure 1F).
Construction and validation of the
ECMS model

It was found that the riskmodel containing eight genes was the best

one (Figure 2A). Detailed information on the eight genes is shown in

Table S2. As we know, C-index is used to assess prediction capacity and
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reliability. The C-indexes were 0.603 (training set) and 0.597 (testing

set). The details are shown in Figure 2A.We constructed the risk model

containing eight genes based on the optimal l value of 0.01339134

(Figure 2B). The survival analysis demonstrated that the high-risk

group had shorter OS than the low-risk group in the training set

[hazard ratio (HR) = 2 (1.53–2.61), p< 0.001, Figure 2C]. Moreover, the

testing set showed similar results [HR = 1.62 (1.06–2.47), p = 0.021,
Frontiers in Oncology 04269
Figure 2D]. To further test the validity of the ECMS, we performed

ROC analysis on the training and testing sets. We used the AUC

analysis to assess the reliability of our signature. The AUC values of

0.528, 0.594, and 0.67 for the training set (Figure 2E) at 1, 3, and 5

years, respectively, and 0.571, 0.635, and 0.684 for the testing set

(Figure 2F), respectively. The tROC analysis indicated that ECMSwas a

reliable predictor for OC patients (Figures 2G, H).
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FIGURE 1

Identification of the highly valuable ECM-related genes. (A) The relation between the scale-free topology fit index and soft threshold. (B) Gene
modules identified by cluster dendrogram. (C) Correlation analysis of modules with StromalScore, ImmuneScore, ESTIMATEScore, and TumorPurity.
(D) Venn diagram of the 1,028 ECM genes and 661 ECM-associated genes from WGCNA. (E) Forest plots presenting univariate Cox regression
analyses of candidate ECM genes as independent prognostic factors. (F) Enrichment analysis of the candidate ECM genes.
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We analyzed the association between age, stage, ECMS, and

prognosis. The ECMS was an independent risk factor according to

the univariate Cox regression analysis [HR = 3.243 (2.141–4.913),

p< 0.001 in the training set; HR = 5.410 (2.031–14.413), p< 0.001 in

the testing set, Figure 3A]. In multivariate Cox regression analysis,

ECMS also exhibited an excellent prognostic performance [HR =

3.132 (2.068–4.744), p< 0.001 in the training set; HR = 5.514

(2.084–14.586), p< 0.001 in the testing set, Figure 3B]. We

constructed a nomogram to assess the survival probability for OC

patients (Figure 3C). The calibration curve analysis indicated this

nomogram was accurate (Figure 3D). In addition, the tROC
Frontiers in Oncology 05270
analysis revealed that the nomogram outperformed other

variables (Figure 3E).
Enrichment analysis

We obtained DEGs and input these genes into Metascape. It

was observed that the genes elevated in the high ECMS group were

significantly related to trans-synaptic signaling, heart development,

regulation of synaptic plasticity, presynapse assembly, and

intermediate filament organization (Figure 4A). Moreover, the
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genes elevated in the low ECMS group were notably connected with

allograft rejection, regulation of lymphocyte activation, positive

regulation of immune response, extrafollicular B-cell activation by

SARS-CoV-2, and adaptive immune response (Figure 4B). In

addition, functional enrichment analyses in the high ECMS group

showed that adherens junction, ECM receptor interactions,

mitogen-activated protein kinase (MAPK) signaling pathway,

pathways in cancer, and vascular endothelial growth factor

(VEGF) signaling pathway were enriched (Figure 4C). In contrast,

in the low ECMS group, antigen processing and presentation,

asthma, natural killer cell-mediated cytotoxicity, oxidative

phosphorylation, and primary immunodeficiency were mainly

enriched (Figure 4D). We also performed an enrichment analysis

on the validation set. The results revealed that elevated genes were

mainly associated with spliceosome in the high ECMS group

(Figure S1A) and were mainly related to inflammatory response,

neutrophil degranulation, positive regulation of cytokine
Frontiers in Oncology 06271
production, phagosome, and osteoclast differentiation in the low

ECMS group (Figure S1B). The GSEA revealed that in the high

ECMS group, adherens junction, gap junction, MAPK signaling

pathway, o-glycan biosynthesis, and pathways in cancer were

mostly enriched (Figure S1C), whereas oxidative phosphorylation,

primary immunodeficiency, protein export, and ribosome were

enriched in the low ECMS group (Figure S1D).
Immune landscape

ssGSEA showed a significant difference in ImmuneScore between

the two ECMS groups, with the low ECMS group exhibiting higher

immune activity (Figure 5A). In addition, we selected CTLA-4, T-cell

immunoglobulin and mucin domain 3 (TIM-3), PD-1, PD-L1, PD-L2,

and lymphocyte-activation gene 3 (LAG3) as biomarkers of immune

checkpoint activity. We analyzed the differences of their expression
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FIGURE 3
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between two ECMS groups. We found that the expression was notably

more active in the low ECMS group (Figure 5B). Then, we analyzed the

correlation between ECMS and enrichment scores and the relationship

between ECMS and differences in immune checkpoint expression, as

shown in Figure 5C. Subsequently, we assessed immune cell infiltration

fraction and pathway activity in two groups. The activity of most

immune pathways was notably lower in the high ECMS group

(Figure 5D). A significant difference was seen between the two

ECMS groups in the infiltration degree of most immune cells (e.g., T

cells, macrophages, mast cells), as shown in Figure 5E. We also

performed ssGSEA on the validation set to assess the immune-

related pathways’ activity. The enrichment score between both

groups was not significantly different (Figure S2A), but there were

differences in the expression of LAG3 and TIM-3 (Figure S2B). The

heat map revealed the correlation between ECMS and enrichment

score and the expression difference of immune checkpoint

(Figure S2C).
Prediction of immunotherapy response

Neoantigen is one of the biomarkers of immunotherapy, which

can guide the application of immunotherapy. We analyzed the

correlation between indel neoantigens, SNV neoantigens,

neoantigens, and ECMS, and the results are presented in

Figures 6A, B. There were significant negative correlations

between SNV neoantigens and ECMS (R = -0.46, p< 0.0001,

Figure 6B), whereas no correlation was observed between indel
Frontiers in Oncology 07272
neoantigens and ECMS (p = 0.23, Figure 6A). IPS can be used to

assess the response to immunotherapy. The IPS of patients in

TCGA and ICGC cohorts are shown in Figure 6C and Figure

S3A. In addition, the response rate to anti-PD-L1 immunotherapy

in the training set was higher in the low ECMS group (p = 0.03)

(Figure 6D). The testing set presented similar results (p = 0.01)

(Figure S3B). Then, we performed a ROC analysis on TCGA set,

and the AUC value was 0.566 (Figure 6E). In contrast, the AUC

value in the IGCA set was 0.572 (Figure S3C), indicating that ECMS

was a more reliable predictor than other commonly used indicators.

We also found that the high ECMS group had shorter OS than the

low ECMS group in the Imvigor210 cohort (hazard ratio = 1.39, p =

0.022, Figure 6F). Moreover, we also found a significant negative

correlation between neoantigens and ECMS (Figure 6G).
Verify the expression of ECMS genes in
ovarian cancer cell lines

We evaluated the risk coefficients of genes in the ECMS model.

Among them, CLEC5A is the strongest risk factor whereas LTA is

the strongest protective factor (Figure 7A). Then, we performed RT-

qPCR to verify our result (Figure 7B). CLEC5A, ADAM9, and

TGFB1 were highly expressed in OC cell lines compared with the

normal ovarian epithelial cell line, whereas LTA, CCL19, CXCL11,

and CXCL9 were downregulated in OC cell lines. However, the

expression level of SPP1 showed no difference between normal and

malignant ovarian epithelial cell lines (Figure 7B).
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Discussion

In the present research, we explored the role of ECM in OC

patients and linked them for the first time with the prognosis and

effectiveness of immunotherapy. Our results suggested that the

ECMS model performed well. The AUC values for the training

set at 1, 3, and 5 years were 0.528, 0.594, and 0.67, respectively.

We also found that the high ECMS group had shorter OS than

the low ECMS group. In addition, the immune landscape
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demonstrated that the immune checkpoints’ expression was

more active in the low ECMS group, and the response rate to

anti-PD-L1 treatment was lower in the high ECMS group. The

ROC values of the ECMS model for predicting immune response

were 0.566 (validation set) and 0.572 (testing set), indicating that

the model could predict, to some extent, the response rate

to immunotherapy.

The ECM plays a role in regulating cell growth, motility, and

differentiation (6). The most widely known ECM alteration in
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tumor tissue is increased collagen deposition. The increased

collagen deposition affects the properties of the TME, thereby

modulating cancer cell polarity, migration, and signaling

transduction (24–27). Previous studies have shown that increased

expression of proteins mediating ECM remodeling can increase

mortality in patients with BC, lung cancer, or gastric cancer (GC)

(28, 29). In addition, histological studies have observed excessive
Frontiers in Oncology 09274
ECM deposition and remodeling in OC. The fibrosis rich in COL6/

collagen VI and fibronectin is already present around the micro

metastases, which develops into an extensive connective tissue

proliferative TME as the disease progress. COL6 is involved in

tumor growth and apoptosis escape in early metastases of OC (30).

These findings confirm that ECM is closely associated with the

clinical manifestations and prognosis of OC.
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It was observed that candidate ECM genes were mostly enriched

in the NABA MATRISOME-ASSOCIATED signaling pathway,

which had been mentioned to be associated with tumor

development (31). The GSEA was performed, and the results

indicated that the high ECMS was enriched in adherens junction,

ECM receptor interactions, MAPK signaling pathway, pathway in

cancer, and VEGF signaling pathway. Adherens junction is cell–cell

adhesion complexes that take part in embryogenesis and tissue

homeostasis (32). ECM receptor interactions regulate cell behavior

and are vital in cell proliferation, adhesion, and migration (33). The

MAPK signaling pathway regulates various cellular processes, such

as cell proliferation and differentiation (34). The VEGF signaling

pathway is a major regulator of angiogenesis and vascular

permeability (35). These pathways are involved in tumorigenesis,

progression, invasion, and metastasis (36–39). The results indicated

that the tumors were developing and metastasizing. In the low

ECMS group, enrichment of immune-related pathways such as

antigen processing and presentation, asthma, oxidative

phosphorylation, natural killer cell-mediated cytotoxicity, and

primary immunodeficiency were observed. This suggested that

low ECMS patients presented powerful immune function.

We also found that the high ECMS group had shorter OS than the

low ECMS group. It could be explained by the enrichment of tumor-

related signaling pathways and active tumor growth in the high ECMS

group. On the other hand, the low ECMS group was enriched in

antigen processing and signal presentation pathways, which showed

stronger immune function, thus helping the body to clear tumor cells.

Furthermore, the ECMS model was based on candidate ECM genes

mainly enriched in NABA MATRISOME-ASSOCIATED signaling

pathways associated with tumor development. Thus, this could also

explain why the high ECMS group had shorter OS time. Similar results

were also seen in the study by Liu et al., who classified BC patients into

two groups based on the ECM index (ECMI), which was based on

ECM-associated immunogens, and assessed their clinical, biological,
Frontiers in Oncology 10275
and genomic characteristics. The researchers believed the low ECMI

group had significantly improved OS (40). In addition, Yang et al. used

a gene set variation analysis algorithm to establish ECM scores, and

higher ECM scores predicted poor prognosis in GC (41). Similarly,

Ding et al. established a new immune-related signature to stratify the

risk of OC patients and then predict the prognosis (7). Considering the

role of ECM in OC, our study constructed a risk model on the basis of

ECM, and the results suggested that ECMS can well predict the

prognosis of OC patients.

Tumor-associated ECM may have immunomodulatory effects,

influencing antitumor immunity by controlling the localization and

migration of immune cells (42). Thus, ECMmay influence the effect of

immunotherapy. Indeed, previous studies have proved that

combination therapy targeting the immune and stromal

microenvironment had better therapeutic effects (43, 44). Therefore,

we developed an ECMS model to predict the patients’ responses to

immunotherapy. The high ECMS group was observed to have lower

immune pathway activity. This indicated that ECM might affect the

immune regulation of OC. Then, we selected CTLA-4, LAG3, PD-1,

PD-L1, PD-L2, and TIM-3 as markers of the immune checkpoint. A

significant difference was seen between the two ECMS groups, with

more active expression in the low ECMS group.We also found that the

response rate to anti-PD-L1 immunotherapy was lower in the high

ECMS group in both the validation and testing sets. This could be due

to the higher immune pathway activity and more active expression of

immune checkpoints in the low ECMS group, so it has a higher

response rate to the immune checkpoint inhibitors. Similarly, Mao

et al. established a stromal score and investigated the relationship

between immunotherapy-relatedmarkers or immune cell types and the

stromal score in GC. The results of this study also confirmed that

the stroma was related to immunotherapy-related markers (45). This is

the first study that proposes the role of ECM in predicting

immunotherapeutic response in OC. Our study confirmed the

association between ECM and the immune-related pathway of OC
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and the immunotherapeutic response. Improving the OS of OC

patients is a common problem in advanced OC. Precision therapy is

a good entry point. Our study revealed that the low ECMS group had

higher immune pathway activity, the more active expression of the

immune checkpoint, and a higher response rate to immune checkpoint

inhibitors. Therefore, we can identify OC patients who may benefit

from immunotherapy based on the established ECMS model and help

clinicians and patients to make individualized treatment decisions.

Nevertheless, this research has several limitations. First, our data

are fromTCGA, ICGC, and publicly available immunotherapy cohorts,

which need to be verified with large samples in reality. Second, the

immunotherapy cohort is an advanced uroepithelial cancer cohort with

PD-L1 immunotherapy (Imvigor210), and further validation in an OC

immunotherapy cohort is needed in the future. Third, the ECMS

model needs to be authenticated in reality before application.

In conclusion, we created an ECMS model to predict the

prognosis and immunotherapeutic benefits in OC patients and

provided references for individualized treatment of OC patients.
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Department of Neurosurgery, Affiliated Haikou Hospital of Xiangya School of South University,
Haikou, Hainan, China
Background: Recent studies have suggested that long non-coding RNAs

(lncRNAs) may play crucial role in low-grade glioma; however, the underlying

mechanisms linking them to epigenetic methylation remain unclear.

Methods: We downloaded expression level data for regulators associated with

N1 methyladenosine (m1A), 5-methyladenine (m5C), and N6 methyladenosine

(m6A) (M1A/M5C/M6A) methylation from the Cancer Genome Atlas-low-grade

glioma (TCGA-LGG) database. We identified the expression patterns of lncRNAs,

and selected methylation-related lncRNAs using Pearson correlation

coefficient>0.4. Non-negative matrix dimensionality reduction was then used

to determine the expression patterns of themethylation-associated lncRNAs. We

constructed a weighted gene co-expression network analysis (WGCNA) network

to explore the co-expression networks between the two expression patterns.

Functional enrichment of the co-expression network was performed to identify

biological differences between the expression patterns of different lncRNAs. We

also constructed prognostic networks based on the methylation presence in

lncRNAs in low-grade gliomas.

Results: We identified 44 regulators by literature review. Using a correlation

coefficient greater than 0.4, we identified 2330 lncRNAs, among which 108

lncRNAs with independent prognostic values were further screened using

univariate Cox regression at P< 0.05. Functional enrichment of the co-

expression networks revealed that regulation of trans-synaptic signaling,

modulation of chemical synaptic transmission, calmodulin binding, and SNARE

binding were mostly enriched in the blue module. The calcium and CA2 signaling

pathways were associated with different methylation-related long non-coding

chains. Using the Least Absolute Shrinkage Selector Operator (LASSO) regression

analysis, we analyzed a prognostic model containing four lncRNAs. The model’s

risk score was 1.12 *AC012063 + 0.74 * AC022382 + 0.32 * AL049712 + 0.16 *

GSEC. Gene set variation analysis (GSVA) revealed significant differences in

mismatch repair, cell cycle, WNT signaling pathway, NOTCH signaling

pathway, Complement and Cascades, and cancer pathways at different GSEC
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expression levels. Thus, these results suggest that GSEC may be involved in the

proliferation and invasion of low-grade glioma, making it a prognostic risk factor

for low-grade glioma.

Conclusion: Our analysis identified methylation-related lncRNAs in low-grade

gliomas, providing a foundation for further research on lncRNA methylation. We

found that GSEC could serve as a candidate methylation marker and a prognostic

risk factor for overall survival in low-grade glioma patients. These findings shed

light on the underlying mechanisms of low-grade glioma development and may

facilitate the development of new treatment strategies.
KEYWORDS

low-grade glioma, prognostic model, LncRNA, M1A/M5C/M6A, immune infiltration
Introduction

Gliomas are the most common primary tumors in the human

brain and spinal cord. The World Health Organization (WHO)

classified the primary central nervous system (CNS) tumors in 2007

using histopathological diagnostic analysis. Gliomas can be

classified by cell type into astrocytomas, oligodendrogliomas,

neuronal and mixed neuron gliomas, ependymomas, or

oligodendrogliomas. Gliomas can also be graded from the least to

most aggressive (Grades I to IV), with grades I and II indicating

low-grade gliomas and grades III and IV showing high-grade

gliomas (1–3). The median survival time is 11.6 years for low-

grade gliomas, about three years for patients with grade III gliomas,

and 15 months for patients with grade IV gliomas (4). Therefore, it

is essential to study the mechanisms mediating the progression and

prognosis of glioma.

RNA post-transcriptional modifications, including N6

methyladenosine (m6A), 5-methyladenine (m5C), N1

methyladenosine (m1A), and 7-methyladenosine m7G methylation

(5), have recently gained attention in epigenetic research. The m6A,

m1A, and 5-m5C modifications are the most common in eukaryotic

messenger RNA (mRNA) regulation. Current studies have proved that

m6A, m1A, and m5C regulators play essential roles in methylation,

which is related to tumor progression (6–9). M6A regulatory genes

methyltransferase 3 (METTL3), METTL14, and WTAP reportedly

initiated m6A modification (7). MRTTL3 is usually overexpressed in

endometrial epithelial ovarian cancer (EEOC) and can be used as a risk

factor for the overall survival of EEOC patients. Similarly, M5C

methyltransferase NSUN2 is overexpressed in gastric cancer and can

be used as a risk factor for the overall survival of gastric cancer patients.

Cell experiments demonstrated that NSUN2 promoted gastric cancer

cell proliferation, migration, and invasion (9). Several studies have

recently developed genetic risk models to evaluate the prognostic status

of cancer patients and demonstrated the independent roles of the

predictive variables (10–13).

Researchers have found that although long non-coding RNA

(lncRNA) cannot be converted to protein, it impacts many
02279
biological processes, such as tumorigenesis and progression (14,

15). Methylation-related lncRNAs are involved in various biological

processes associated with cancer progression (15) and have recently

been found to influence cell proliferation, migration, and metastasis

of many tumors (16–18). Meanwhile, the relationship between

methylation and lncRNAs is being extensively studied, but their

interaction mechanism is still unclear.

The role of m6A, m1A, and m5C regulatory genes in the

progression of low-grade gliomas needs to be better understood.

Therefore, this study aimed to evaluate the biological roles of m6A/

m1A/m5C regulatory genes in the progression of low-grade gliomas

using data from the Cancer Genome Atlas (TCGA) database and

identify the lncRNAs associated with their regulatory networks.

Currently, computational biology and high-throughput

sequencing data have been widely used in the research of the

biomedicine field by Yutao (10, 19, 20). Wang et al. used

computational biology methods such as WGCNA to identify

biomarkers in different tumors, which provided us with a reliable

methodological basis for studying the mechanism of tumorigenesis

(21, 22). Weighted gene co-expression network analysis (WGCNA)

and a prognostic risk model were used to calculate the prognosis

signature score for the low-grade gliomas with methylation-

associated lncRNAs.
Method

Data collection

We accessed the TCGA database (https://portal.gdc.Cancer.gov/)

to obtain the gene matrix profiles and the relevant clinical

information of the low-grade glioma patients, including age, sex,

survival time, survival rate, and tissue or organ sample availability.

We obtained 514 low-grade glioma tumor samples from patients with

primary tumors and metastatic gliomas (23), and 44 m6A/m5C/m1A

regulators were determined based on the existing research on

methylation (Supplementary Table 1). To ensure the accuracy and
frontiersin.org
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feasibility of analysis, we merged all data and converted them into

TPM data format after downloading.
Determination of methylation-related
lncRNAs

We determined the lncRNA expression levels of the TCGA-low

grade glioma (LGG) cohort and used Pearson’s correlation to identify

44 m6A/m5C/m1A methylation regulators associated with lncRNAs.
LncRNA univariate COX regression analysis

We downloaded the clinical follow-up data, including disease

status, of the TCGA-LGG cohort from the TCGA database and

individually matched the gene expression data to the clinical

information. We eliminated the samples with no match (20, 21,

24) and used univariate Cox proportional-hazards regression

analysis to determine the lncRNAs highly associated with overall

survival. The P < 0.05 indicated a significant prognostic statistical

significance. These prognostic lncRNAs were used for non-negative

matrix factorization and predictive model construction.
Determination of the different lncRNA
expression patterns related to
methylation regulators

The prognostically significant lncRNAs were first clustered

using non-negative matrix dimensionality reduction with 50

iterations. We obtained 9 clusters with the k-mer of 2-10, and the

minimum sample size of each group was set to 10 by the ‘non-

negative matrix factorization (NMF)’ R package. The number of our

most desirable cluster groups was selected based on the Cophenetic,

Dispersion, and Silhouette parameters. After that, survival analysis

was used to determine the survival differences between the

expression patterns, and P <0.05 was considered significant.
WGCNA analysis

To investigate the biological differences among the different

expression patterns of methylation-associated lncRNAs, we

constructed protein-coding gene co-expression networks using

the WGCNA method. We performed the functional enrichment

of the co-expression networks. The TCGA-LGG co-expression

network was created using the WGCNA R package, and optimum

weighting parameters of the adjacent functions were obtained using

the pickSoftThreshold function, which served as a soft threshold for

subsequent network construction., Furthermore, the weighted

adjacency matrix and the related gene modules were constructed

based on the hierarchical clustering of the topological overlap

matrix (25). To determine the biological significance of the co-

expression modules, we calculated the correlation between the

characteristic genes of each module and the NMF cluster analysis
Frontiers in Oncology 03280
groups. Consequently, we identified the most relevant co-

expression networks of methylation-associated lncRNAs.
Intersection function analysis

The Database for The Annotation, Visualization, and Integrated

Discovery (DAVID, v6.8) was used to annotate the protein-coding

genes enriched in co-expression biology, biological processes, and

cellular composition (26). Moreover, the Kyoto Encyclopedia of

Genes and Genomes (KEGG) (https://www.genome.jp/kegg/) (27)

and Gene Ontology (28) (http://geneontology.org/) analyses were

applied to identify the biological function of the genes.
Least absolute shrinkage and selection
operator regression

The LASSO (29) regression algorithm was used to identify the

prognostic survival of low-grade glioma patients and construct a

predictive gene model. We used the single factor data of

methylation-related lncRNAs to build the model, with the

random number seed set as 27. After that, the time-dependent

receiver operating characteristic curve (ROC) was used to evaluate

the model’s predictive performance. The different survival

outcomes between the two groups were compared using the

Kaplan-Meier survival curve and the log-rank test.
Immune microenvironment analysis

We assessed the proportion of immune cells in the immune

microenvironment of TCGA-LGG using several methods. These

methods included CIBERSORT (30, 31), EPIC (32), quanTIseq (33),

MCPcounter (34), XCELL (35), and TIMER (36). After that, tumor

purity of the tumor immune microenvironment was assessed using

ESTIMATE, which estimated the proportion of stroma and immune

cells in malignant tumor tissues using expression data to generate the

purity score. The gene sets associated with multiple confirmatory

responses were evaluated to explore the relationship between the

model and the confirmatory responses in the immune

microenvironment . These gene se ts inc luded major

histocompatibility complex class II(MHC-II), lymphocyte-specific

kinase (LCK), hematopoietic cell kinase (HCK), immunoglobulin G

(IgG), signal transducer and activator of transcription 1(STAT1),

costimulatory molecule (B7-CD28), interferon, and tumor necrosis

factor (TNF) (37). Genes in these gene sets are presented in

Supplementary Table 2.
Results

The research routine

Multiple methylation regulatory genes were obtained through a

literature review using the analysis process shown in Figure 1. The
frontiersin.org
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Pearson correlation analysis identified the methylation-associated

lncRNAs, and we subjected the lncRNAs with independent

aftereffects to a prognostic analysis. Thus, two cohorts of low-

grade gliomas with different expression patterns of lncRNA were

obtained. The survival analysis revealed a significant difference in

the overall survival between the two groups of patients with varying

expression patterns. After functional enrichment, WGCNA was

used to analyze the co-expression networks between the two groups

and determine the differences in their biological functions. We also

constructed a prognostic survival model for low-grade glioma using

the lncRNAs to demonstrate the involvement of lncRNAs in cell

proliferation and invasion through cell experiments.

We screened 2330 lncRNAs to identify those with correlation

coefficients greater than 0.4 based on the 42 methylation-related
Frontiers in Oncology 04281
protein-coding genes (Figure 2A). Using univariate COX

regression, we analyzed the association between these lncRNAs

and overall survival. The risk ratios of lncRNAs and the

corresponding statistical parameters are shown in Figure 2B.

AP005482 was a prognostic protective factor with a risk ratio of

0.710, and AC020910 was a prognostic protective factor for low-

grade gliomas.
Survival differences associated with the
long non-coding RNA expression patterns

Cluster analysis of methylated lncRNAs was performed after the

univariate COX regression analysis at P < 0.05. We used 108
FIGURE 1

Flow chart showing the methodology of the study. Long non-coding RNAs (lncRNAs) associated with DNA methylation were screened from the
literature. Cluster analysis, forest map, and survival analysis were used to determine the risk score. Functional analysis was performed via weighted
gene co-expression network analysis (WGCNA), co-expression enrichment, and gene set variation analysis (GSVA) analyses. The model was verified
by cell experiment.
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lncRNAs for the non-negative matrix dimensionality reduction,

whose results are shown in Figures 2C, D. There was a strong

correlation between the two groups, as indicated by the red

coloration; however, blue coloration indicated a weak correlation

between the two groups. The clustering between the two groups was

excellent, and there were no significant differences between the two

groups. We also evaluated the overall and disease-free survival and

found that the overall survival and relapse-free rates were lower in

group C1 than in group red (Figure 2E).
Frontiers in Oncology 05282
Identification of biological function
differences between two different
methylation patterns

We identified two different methylation-related expression patterns

of the lncRNAs. WGCNA was used to analyze the protein-coding gene

network of low-grade gliomas using the optimal soft threshold of 5

(Figures 3A, B). We obtained 17 co-expression modules which were

then used to calculate the correlation of the different methylation
A

B

D E

C

FIGURE 2

(A) Correlation between 5-methyladenine (m5C)-related genes and long non-coding RNAs (lncRNAs) in lower-grade gliomas. (B) Univariate Cox
regression analysis of prognostic lncRNAs associated with m5C. (C) Negative matrix factorization clustering of m5C-relatedlncRNAs gene sets.
(D) The parameters of negative matrix factorization clustering. (E) Overall and disease-free survival prognosis curve of the different subtypes.
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expression patterns (Figure 3C). The correlation between the blue

module and the C2 group was 0.77, while the correlation within the

module was 0.96 (Figure 3D).We functionally enriched the bluemodule

to determine the biological function differences between the different

lncRNAs. We found that the co-expressed genes in the blue module

were mostly related to trans-synaptic signaling in biological processes,

modulation of chemical synaptic transmission, calmodulin binding,

SNARE binding, calcium signaling pathway, and oxytocin signaling

pathway (Figure 4).
Screening and construction of long non-
coding RNA prognostic models using
machine learning methods

Using the random forest method, we first screened prognostic

lncRNAs and identified 102 typical lncRNAs based on their

importance ranking. LASSO regression analysis was then performed

on these lncRNAs to construct a methylation-related prognostic model

using four prognostically significant genes. The risk score of the model

was 1.12 *AC012063 + 0.74 * AC022382 + 0.32 * AL049712 + 0.16 *

GSEC. Furthermore, we analyzed the independent prognostic value of

four lncRNAs in the prognostic model and found that the four

lncRNAs encoded AC012063, AC022382, AL04971, and GSEC. All

four lncRNAs were independent prognostic factors for low-grade

gliomas (Figure 5).
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Result evaluation of the model

We summarized the risk factor (gene) expression of each

sample and the clinical follow-up information for generating a

heatmap (Figures 6A, B). The samples were presented in ascending

order in the heatmap based on their risk scores. Since patients with

higher risk scores had a poor prognosis, we marked the actual

survival status of the patients with red and blue plot points and

determined the corresponding points on the ordinate survival time.

The number of patients with red plot points increased, but their

survival time reduced as the risk score increased. These plots were

concentrated in the lower right corner of the heat map,

demonstrating that patients with low-grade gliomas exhibit poor

prognoses with increasing risk scores. This also indicated the

possible prognostic roles of lncRNAs such as AC012063,

AC022382, AL04971, and GSEC. Significant impact, suggesting

important research value. The expression levels of the prognostic

risk factors of each patient were annotated on the x-axis of the

heatmap. The results showed that the expression levels of

AC012063, AC022382, AL04971, and GSEC gradually increased

with the risk score progression, but survival time reduced

(Figures 6A, B). The survival curve and the ROC analysis results

of the different risk groups were shown in Figures 6C-F, which

indicated the patients with high risk score might lead the worse

clinical outcome.
B

C D

A

FIGURE 3

(A, B) Soft threshold and scale-free topology of weighted correlation network analysis. (C) Module-trait relationships of different modules and
different molecular typing. The relationship between the blue module and C2 is mostly connective. (D) The Pearson correlation coefficient between
the significance of the immune score and module membership in the blue module is 0.96.
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LNCRNAs prognostic model and immune
microenvironment and response

The enrichment analysis showed that antigen binding, B cell-

mediated immunity, complement activation, and immunoglobulin

receptor binding were highly enriched in the high-risk score group.

However, the low-risk group had significantly enriched exocytic

vesicle membrane, neurotransmitter transport, and positive

synaptic transmission regulation (Figures 7A, B). Based on these

results, we further investigated how the risk scores related to the

immune microenvironment and immune validation response. We

assessed tumor purity and the immune and stromal scores in low-

grade gliomas using the ESTIMATE method, and the analysis

included 8 immune-validated response gene sets. The gene sets

included virulent T lymphocyte-related biomarkers representing

the strength of the cellular immune response. The immune-

validation response gene sets, such as the tumor necrosis family,

were also included. The results showed that IgG, HCK, MHC-II,

LCK, STAT1 interferon, B7-CD28, and TNF-related tumor

immune responses were significantly enhanced with the

increas ing r i sk scores , ind ica t ing that the immune

microenvironment in high-risk glioma patients regulates response

changes (Figure 7C).
Effects of risk score-independent
prognostic variables on
biological pathways

We divided patients into two groups based on the median

expression of the risk score variables. We then assessed the gene set

variation analysis (GSVA) score of the C2 KEGG pathway using the
Frontiers in Oncology 07284
GSVA method and conducted t-tests with completely randomized

data. The results showed that mismatch repair, cell cycle, wnt

signaling pathway, NOTCH signaling pathway, complement,

coagulation cascades, cancer pathways, and other pathways

significantly differed in GSEC expression levels of the two groups.

Groups with high GSEC expression were associated with poorer

prognoses, and cell proliferation-related pathways, such as

mismatch repair and cell cycle, were highly expressed in the

group with high GSEC expression. Two classic biological

pathways, WNT and NOTCH signaling, were also significantly

upregulated. This suggests that GSEC may affect the prognosis of

low-grade glioma cells by enhancing their proliferation, thus

providing a reference for future research (Figure 8). In addition,

we found higher levels of PDCD1 expression in groups with high

risk scores (Figure 9).
Discussion

Researchers are committed to developing prognostic assessment

risk scores to evaluate cancer patients’ prognoses. However, the role

of lncRNAs associated with methylation-related regulators in the

prognosis of patients with low-grade gliomas and the immune

microenvironment of malignant tumors is unclear. Given the

heterogeneity of m6A/M1A/M5C methylation modifications in

low-grade gliomas, it is essential to quantify the long-chain non-

coding modification group in low-grade glioma patients. In low-

grade gliomas, we identified many methylation-related regulators

for screening and identifying methylation-associated lncRNAs. We

identified methylation-related regulators that could be modified by

lncRNAs from the literature and screened 2330 lncRNAs.

Furthermore, four lncRNAs in LGG were used to establish a
A B

DC

FIGURE 4

The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes biological pathways showing the mainly enriched co-expression modules.
(A) BP: biological process. (B) CC: Cellular component. (C) MF: Molecular function (D) KEGG.
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lncRNAs-based prognostic model to determine the overall survival

and prognosis. Patients were divided into low-risk and high-risk

groups according to their risk scores. The data showed that

AC012063, AC022382, AL04971, and GSEC were prognostic

lncRNAs associated with methylation regulators in LGG.

Moreover, the AUC of the ROC curve showed that the

methylation-associated lncRNAs prognostic model was more

accurate than the ones reported in other studies due to its 5-year

specific survival and specificity.

Methylation, a common epigenetic modification, plays a crucial

role in gene expression regulation. Recent studies have revealed a

complex interplay between DNA methylation and long noncoding

RNA (lncRNA) in various biological processes. Specifically,

lncRNAs have been shown to recruit DNA methyltransferases to

specific genomic regions, leading to site-specific DNA methylation.

Moreover, some lncRNAs have been found to function as “decoys”

that prevent DNA methylation by sequestering DNA

methyltransferases away from their target genes. In addition,

lncRNAs themselves can also be subject to methylation, which

affects their stability and expression levels. Thus, the relationship

between methylation and lncRNA is intricate and multifaceted, and

further research is needed to fully elucidate its mechanisms and

biological implications.

Long non-coding RNA (lncRNA) has a variety of biological

functions in glioma, including promoting or inhibiting tumor

growth, metastasis, angiogenesis and drug resistance. Among
Frontiers in Oncology 08285
them, lncRNA H19 has been extensively studied. H19, a

hepatocyte growth factor (HGF) -induced lncRNA, has been

shown to be highly expressed in a variety of tumors, including

gliomas. H19 can promote the proliferation and self-renewal of

glioma stem cells, and promote the migration and metastasis of

tumor cells through different mechanisms, including the regulatory

relationship with miRNA, EZH2-mediated epigenetic regulation,

etc. Therefore, H19 may serve as a therapeutic target for glioma

stem cells and tumor migration. Therefore, the use of

computational biology in this study to analyze methylation-

related long non-coding RNA is very important for the study of

the genesis and development mechanism of glioma

In addition, lncRNAMALAT1 was also up-regulated in glioma.

MALAT1 can regulate the proliferation, migration and invasion of

tumor cells and participate in the malignant transformation of

tumors. In addition, lncrnas such as CCAT1 and TUG1 also play a

role in promoting tumor growth and metastasis in glioma. In

general, lncrnas play an important role in the occurrence and

development of glioma. Understanding their mechanism of action

will help to discover new therapeutic targets and develop more

effective therapeutic strategies. Overall survival in LGG could also

be predicted by the methylation-associated lncRNAs prognostic

model, suggesting its potential application in future clinical cohort

studies on glioma. The role of DNA and epigenetic histone

modifications in cancer progression has led to the development of

various drugs, including histone deacetylase inhibitors and
FIGURE 5

Survival curves of the four selected genes.
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hypoxia-targeting drugs. However, studying the different

methylation mechanisms in cells has recently gained attention.

m6A is one of the crucial post-transcriptional modifications of

the protein-coding genes in cancer pathogenesis. However, the

biological function of lncRNA methylation remains unclear.

Several studies showed that m6A might be crucial in cancer

pathogenesis, but the mechanisms by which lncRNAs influence

cancer progression and metastasis are unclear. M6A modulators

extensively modify lncRNAs to control gene expression and cell

biology at the transcriptional and post-transcriptional levels. Zhang

Jun et al. predicted the interaction between lncRNAs and alkylation
Frontiers in Oncology 09286
repair homolog protein 5 (ALKBH5), a demethylase that reverses

methylation. Furthermore, nuclear paraspeckle assembly transcript

1 (NEAT1) was evaluated by gene silencing, RT-PCR, nuclear and

cytoplasmic separation, scraping test, and transwell migration test

(38). Yewen Shi evaluated the biological function of hepatic nuclear

factor 1a antisense RNA 1 (HNF1A−AS1) and its regulatory

mechanism in laryngeal squamous cell carcinoma. The study

found that HNF1A-AS1 may act as a tumor suppressor lncRNA

in LSCC by regulating the epithelial-mesenchymal transition

(EMT) process. As a result, new therapeutic targets and strategies

were discovered for treating patients with nasopharyngeal
B

C D

E F

A

FIGURE 6

(A, B) Risk scores and survival status of gene signatures in the training and validation data set. (C, D) Survival curves of the two risk groups with
different subtypes. (E, F) The receiver operating characteristic (ROC) curve of the two risk groups based on the gene signature classification.
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carcinoma (NPC) (39). Overexpressing APCDD1L-AS1, a novel

lncRNA, inhibited the growth and metastasis of ccRCC cells in vitro

and in vivo. Dysregulation of histone expression caused by

APCDD1L-AS1 overexpression may also inhibit ccRCC

progression (40). However, APCDD1L-AS1 expression was

decreased by DNA hypermethylation and inactivation of von

Hippel Lindau (VHL) protein expression. METTL3-mediated

modification upregulated LINC00958 by stabilizing its RNA

transcript, and the LINC00958 activated miR-3619-5p to

upregulate hepatoma-derived growth factor (HDGF) expression.

This facilitated tumor lipogenesis and progression (41), indicating

the importance of studying the methylation of lncRNAs.

We identified several lncRNAs that may be involved in

methylation modification by analyzing the methylation-related

regulator RNAs. G-quadruplex forming sequence containing

(GSEC)-lncRNA is mostly associated with methylation in low-

grade glioma but has also been extensively studied in various
Frontiers in Oncology 10287
cancers. Jianhua Zhang et al. found that GSEC was significantly

upregulated in TNBC tissues and cancer cell lines. Moreover, high

GSEC levels were associated with tumor staging, positive lymph

node metastasis, and poor prognosis in TNBC patients. The study

also found that downregulating Mir-202-5p attenuated the

inhibitory effect of GSEC knockdown on TNBC cell proliferation,

invasion, and migration in vitro. Meanwhile, AXL overexpression

reversed the in vitro mimicry inhibitory effect of Mir-202-5p on

TNBC progression (42).

Shangshang Hu et al. constructed a GSEC/Mir-101-3p/SNX16/

PAPOLG network to predict the prognosis of hepatocellular carcinoma

(43). Xiulin Jiang et al. also found that ferroptosis-related GSEC-

lncRNAs, mirNA-101-3p, and CISD1 axis play a functional role in

lung adenocarcinoma (LUAD) and may serve as useful diagnostic and

therapeutic biomarkers for the disease. The study reported that the

ferroptosis-related GSEC- lncRNA/mirNA-101-3P/CISD1 axis could

be an independent prognostic marker for lung adenocarcinoma (44).
B

C

A

FIGURE 7

(A, B) The gene set enrichment analysis of high-risk and low-risk groups. (C) Heat maps of immune responses in the high-risk and low-risk groups
based on TIMER, CIBERSORT, Cibersort-ABS, QUANTISEQ, MCPCOUNTER, XCELL, and EPIC algorithms.
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The present study constructed a methylation-associated

lncRNAs prognostic model using computational biology and

public databases. The model proved accurate and reliable in

training and validating data sets. This suggested the importance

of the four long non-coding RNAs, and GSEC has been identified as

a potential methylation-related lncRNA. Despite these findings,

there were several limitations to this study. This study utilized

information from public databases for the in silico analysis.

Although we have proved the significance of GSEC in cancer
Frontiers in Oncology 11288
progression through literature review, there is a need to verify

these findings through more external cohorts and in

vivo experiments.
Conclusion

This study identified methylation-related lncRNAs in glioma

and determined their expression patterns. We found two expression
FIGURE 8

Gene set variation analysis (GSVA) in high and low-risk groups among four key genes. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1177120
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1177120
patterns of the methylation-related lncRNAs, and there was a

significant difference between the two expression patterns. A

prognostic model was also constructed based on these lncRNAs.

GSEC was considered a lncRNA with a significant value in cancer

progression, thus providing a basis for studying epigenetic

methylation. Therefore, this study provides new strategies and

research directions in the prognosis and treatment of glioma.
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DNA repair is a critical factor in tumor progression as it impacts tumor mutational

burden, genome stability, PD-L1 expression, immunotherapy response, and

tumor-infiltrating lymphocytes (TILs). In this study, we present a prognostic

model for hepatocellular carcinoma (HCC) that utilizes genes related to the DNA

damage response (DDR). Patients were stratified based on their risk score, and

groups with lower risk scores demonstrated better survival rates compared to

those with higher risk scores. The prognostic model’s accuracy in predicting 1-, 3-,

and 5-year survival rates for HCC patients was analyzed using receiver operator

curve analysis (ROC). Results showed good accuracy in predicting survival rates.

Additionally, we evaluated the prognostic model’s potential as an independent

factor for HCC prognosis, along with tumor stage. Furthermore, nomogram was

employed to determine the overall survival year of patients with HCC based on this

independent factor. Gene set enrichment analysis (GSEA) revealed that in the high-

risk group, apoptosis, cell cycle, MAPK, mTOR, and WNT cascades were highly

enriched. We used training and validation datasets to identify potential molecular

subtypes of HCC based on the expression of DDR genes. The two subtypes

differed in terms of checkpoint receptors for immunity and immune cell filtration

capacity.Collectively, our study identified potential biomarkers of HCC prognosis,

providing novel insights into the molecular mechanisms underlying HCC.

KEYWORDS

hepatocellular carcinoma, DNA repair gene, prognosis, molecular subtypes of HCC,
immune infiltrition
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1 Introduction

According to the 2018 Global Cancer Statistics report,

Hepatocellular Carcinoma (HCC) ranks 6th among malignancies

and is the 4th leading cause of cancer-related mortality (1, 2).

Despitesignificant advancements in HCC treatment, the outcomes

are still unsatisfactory (3, 4). Therefore,identifying novel therapeutic

targets and diagnostic biomarkers for HCC is crucial to improve

patientprognosis. The DNA damage response (DDR) pathway is

considered a potential source of therapeutictargets as damaged DNA

is a hallmark of cancerous cells (5).

Research studies have reported that genes involved in DDR

pathways, such as nucleotide and base excision and mismatch repair,

are aberrantly expressed during cancer development and progression

(6–10). Dysregulated DDR is associated with increased genome

instability in HCC cells and has asignificant impact on patient

prognosis (11).

The use of high-throughput sequencing technology has become

increasingly prevalent in recentyears, and sequencing data and

clinical follow-up information can be downloaded from many

cancerdatabases. In this study, we downloaded the hepatocellular

carcinoma dataset from TCGA and GEOdatabases to explore the

prognostic potential of DNA damage response (DDR)-linked genes

inhepatocellular carcinoma (HCC) and develop a risk model.

We identified 150DDR-related genes from theMSigDBdatabase

and constructed an 11-gene HCC prognostic signature using

univariate Cox regression and random forest analyses. The

robustness ofthe model was validated through internal and

external validation. Additionally, we used Gene SetEnrichment

Analysis (GSEA) to identify potential pathways associated with the

risk model in HCCand analyzed the correlation between clinical

traits and the risk score. Finally, we identified andvalidated two

molecular subtypes of HCC using DDR gene expression. Our

findings provide novelinsights into the molecular mechanisms of

HCC and establish an independent DDR gene-basedprognostic

signature. The use of this signature could aid in personalized

therapy and improve clinicaldecision-making for HCC patients.

With the increasing availability of sequencing data, this

studyprovides a useful example of how these data can be utilized to

better understand the underlyingbiology of cancer and improve

patient outcomes.
2 Methods

2.1 Data collection

We obtained clinical data and gene expression information for

HCC samples from the ICGC-LIRI (https://dcc.icgc.org/) and

TCGA-LIHC (https://portal.gdc.cancer.gov/) datasets. Genes

linked toDNA damage response (DDR) were collected from

MSigDB, V7.1 (https://www.gseamsigdb.org/gsea/msigdb), and

only those genes present in both datasets were retained

for furtheranalysis.
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2.2 Risk signature construction

We utilized univariate and multivariate Cox regression analyses

to identify DDR-linked genes in the

LIRI-JP and LIHC datasets. To calculate the risk score for each

patient, we used the equation: (Exp i * b i), where Expi represents

the expression level of prognostic genes and b i represents the

coefficient of cox regression for each prognostic gene. The median

score was used to classify patients into high and low-risk groups,

and survival differences were calculated using the “survival” and

“survminer” packages. To determine the accuracy of the risk model

for 1-, 3-, and 5-year survival, we utilized the “SurvivalROC”

package (https://cran.rproject.org/web/packages/survivalROC/

index.html). We also employed univariate and multivariate cox

regression analyses to determine the prognostic independence of

clinical features and the risk score. Potential pathways linked to low

and high-risk groups were identified by GSEA, using

c2.cgp.v7.1.symbols.gmt as the reference gene set.
2.3 Nomogram and DCA
curve construction

We constructed a nomogram utilizing independent prognostic

factors, and analyzed the benefit of the prognostic factor using

decision curve analysis. The discriminative ability of the nomogram

was assessed using a calibration plot with the bootstrap approach

and 1,000 replications (12). Furthermore, we evaluated the benefit

of the prognostic factor using decision curve analysis (13).
2.4 Consensus clustering

We utilized the “ConsensusClusterPlus” R package (with 50

iterations and 80% resampling samples) to group patients into

distinct clusters based on DDR-related genes, with the aim of

determining molecular subtypes of HCC (14). Principal

components analysis (PCA) was employed to distinguish between

various LIHC subgroups, and all analyses were validated using the

LIRI-JP dataset.
2.5 Immune infiltration analysis

We evaluated the enrich score of immune cells and infiltration

levels of 28 immune cells for each sample in both high- and low-risk

groups using the ssGSEA algorithm, which was implemented using

the “GSVA” R package (15–17). Furthermore, we analyzed the

expression of immune checkpoint genes in both groups.
2.6 Cell culture and transfection

Human HCC cell lines Hep G2 and MHCC-97H were

purchased from (National collection of authenticated cell culture,
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Shanghai, CN), and incubated at 37 °C C with 5% CO2 in a

humidity saturated environment. Cells were cultured in DMED

(Hyclone, LA, USA) and supplied with 10% fetal bovine serum (BI,

Israel), anti biotics (0.1 U/l penicillin and 100 g/l streptomycin).

DGUOK siRNA were obtained from RiboBio Co., Ltd. (Guangzhou,

China). The siRNA was dissolved in DEPC-treated water.

Lipofectamine 2000 reagent (Invitrogen, CA, USA) were used for

transfection according to the manufacturer’s protocol. The

solutions were mixed together and incubated at room

temperature for 30 minutes. 30 nM siRNA was added into each

well andincubated at 37 °C
2.7 Hoechst staining

Cell apoptosis was observed by the morphological changes of

the cell nucleus (chromatin agglutination or DNA fragmentation).

Cells were treated with si-NC or si-DGUOK, and washed with

PBS twice, Hoechst 33258 (1 mg/ml) was added for 20 min at

room temperature avoiding light.Images were gathered by

fluorescence microscope (Nikon, Japan)
2.8 Cell viability assays

Cells were seeded in 96-well plates at 10,000 cells per well, and

cultured for 24h. They were treated with si-NC or si-DGUOK. Then

CCK-8 were added to each plate, absorbance was measured at 450

nm using a FLUOstar Omega microplate reader (BMG Labtech).

Cell viability of samples wascalculated according to the

manufacturer’s instructions
2.9 Statistical analyses

The statistical analysis was performed using R (https://www.r-

project.org/). Kaplan-Meier (KM)method was employed to analyze

the surviva l data and a p-value less than 0.05 was

consideredstatistically significant.
3 Results

3.1 Identification of survival-related DDR
risk model

150 DDR-related genes data were obtained from the TCGA

dataset, which consisted of 343 HCCsamples. Using univariate Cox

regression analysis, 37 prognostic genes that affect the survival

ofpatients with HCC were identified. For developing a risk model,

stepwise multivariate Coxregression analysis was conducted and 11

genes (AAAS, CANT1, CLP1, DGUOK, GTF2B,GTF2H1, NCBP2,

POLA1, POLE4, POLR2D, and POLR2E) were selected. The risk

score for eachpatient was calculated using the following method and

computation: AAAS * -0.022 + CANT1 *0.016 + CLP1 * -0.098 +

DGUOK * -0.016 + GTF2B*0.018 + GTF2H1 * 0.034 + NCBP2 *
Frontiers in Oncology 03294
0.042 +POLA1 * 0.089 + POLE4 * 0.015 + POLR2D * 0.047 +

POLR2E * 0.007.

The patients were then divided into low and high-risk groups

based on the median risk score. Asshown in Figure 1A, patients in

the low-risk group had a longer expected survival rate compared

tothose in the high-risk group. Furthermore, KM analysis

confirmed better prognosis in the low-riskgroup than in the high-

risk group (p<0.001) (Figure 1B). The predictive performance of the

riskmodel was assessed using ROC analysis, and the area under

curve (AUC) values for 1- and 3-yearsurvival were 0.76 and 0.66,

respectively (Figure 1C), indicating good accuracy.
3.2 External validation of the DDR-gene
prognostic signature

To evaluate the reliability and robustness of the 11-gene

signature, we obtained a dataset of 231 HCC samples from ICGC

(https://dcc.icgc.org/). Risk scores were computed for each patient,

and thecohort was divided into high- and low-risk groups.

Consistent with the previous findings, themajority of surviving

cases were classified into the low-risk group, while a smaller

proportion ofsurviving patients were classified into the high-risk

group with higher mortality rate (Figure 2A).KM analysis

confirmed better survival outcomes for individuals in the low-risk

group compared totheir high-risk counterparts (Figure 2B). The

AUC values for 1- and 3-year survival were 0.77 and0.73,

respectively, indicating a good prognostic performance of the risk

model in HCC (Figure 2C).
3.3 The risk model is an independent
prognostic predictor of HCC

Univariate and multivariate Cox regression analyses showed

that the risk model and tumor stagewere independent risk factors

for HCC, as reported in Figures 3A, B. Furthermore, ROC

analysisdemonstrated that the risk model performed better than

tumor stage in predicting 1-year prognosis,with AUC values of

0.746 and 0.700, respectively (Figure 4A). Subsequently, we

constructed anomogram that integrated the risk model and tumor

stage to predict overall survival (OS) at 1-, 3-,and 5-year timepoints

(Figure 5A). The nomogram exhibited good prognostic

performance, asindicated by AUC values at 1-, 3-, and 5-year

timepoints (Figures 4B, C). The stability of thenomogram was

further validated by calibration curve plots (Figures 5B–D).

Overall, the DDR genebased risk score and tumor stage-based

nomogram can robustly predict the prognosis of HCCpatients

and thus, can be useful in clinical decision-making.
3.4 Gene set enrichment analysis

To identify enriched pathways in HCC, GSEA was conducted

for both high- and low-risk groups.
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A B

C

FIGURE 2

Survival analysis of DDR genes in ICGC dataset. (A) Risk score plot for the DDR signature. Upper panel is demonstrating the risk score distribution.
Lower panel shows the level of expression of the 11 DDR genes and middle is for case distribution (B) KM survival curves for both groups. (C) ROC
curve for risk gene signature.
A B

C

FIGURE 1

Survival analysis of DDR genes in TCGA dataset. (A) Risk score plot for the DDR signature. Upper panel is demonstrating the risk score distribution,
middle panel is for case distribution, and the lower panel indicates the level of expression of 11 DDR genes. (B) KM survival curves of bothgroups.
(C) ROC curve analysis of the risk gene signature.
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Results showed that pathways associated with apoptosis, cell

cycle, and MAPK, mTOR, NOCTH, UBIQUITIN, and WNT

signaling were enriched in the high-risk group, while the low-risk

groupexhibited enrichment of pathways related to metabolism of

fatty acid and retinol (Figures 6A, B).These findings suggest that

favorable prognosis and low-risk scores are correlated with

metabolismlinked pathways, whereas cancer-related pathways

coincide with high-risk scores and poor prognosis.
3.5 Identification of molecular subtypes
of HCC

Consensus clustering algorithm based on the DDR genes was

employed to identify the molecularsubtypes of HCC. The optimal

cluster was determined to be K=2 using the cumulative
Frontiers in Oncology 05296
distributionfunction curve and the consensus heatmap

(Figures 7A–C). PCA further differentiated patients intotwo

distinct subgroups (Figure 7D), with subgroup 1 exhibiting better

overall survival compared tosubgroup 2 (Figure 7E). To validate the

robustness of the classification, we also evaluated thesubgroups in

the ICGC dataset (Figure 8). Further analysis of the correlation and

clinicalcharacteristics in both TCGA and ICGC datasets for the two

subgroups showed that the group withbetter survival outcomes

included more early-stage cases (Figures 9A, B).
3.6 Correlation of the immune infiltration
with HCC subclasses

The ssGSEA algorithm was used to analyze the infiltration of 24

immune cells in both the high- and low-risk groups. The high-risk
A

B

FIGURE 3

(A) Univariate and (B) multivariate cox regression analyses used to get prognostic value of the gene biosignature and clinical traits.
A B C

FIGURE 4

The gene signature, ROC curve analysis of the nomogram, and disease stage for 1- (A), 3- (B), and 5-year (C) survival.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1180722
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Bai et al. 10.3389/fonc.2023.1180722
group showed high levels of infiltration of activated CD4+ T cells,

CD4+ T (central memory) CD8+ T cells (central memory), CD4+ T

cells (effector memory), B cells(memory), regulatory T cells, T

follicular helper cells, Th17 cells, Th2 cells, activated CD8+ T

cells,immature dendritic cells (DCs), and plasmacytoid DCs,
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whereas the low-risk group had greaterinfiltration of activated

CD8+ T cells and eosinophils (Figure 10A). Additionally, the

high-risk group exhibited comparatively higher expression of all

inhibitory immune receptors compared to the low-risk group

(Figure 10B). These findings suggest that the anti-tumor
A

B DC

FIGURE 5

Construction and validation of a nomogram(prognostic). (A) A nomogram based on the risk model and tumor stage to estimate overall survival of
HCC patients. The estimating of 1- (B), 3- (C)and 5-year (D) survival of HCC patients using calibration curve plot of the nomogram.
A B

FIGURE 6

Gene set enrichment analysis results showing enriched pathways in (A) high-risk and (B) low-risk groups.
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properties of high T cell infiltration were offset by a strong

immunosuppressive tumor microenvironment due to the

overexpression of immune checkpoint proteins (18).
3.7 Cell assays

In vitro validation on DGUOK. HepG2 and MHCC-97H cells

were treated with CCK8 and were performed to detect the cell

viability. Hoechst 33258 fluorescent dye staining was used to show

nuclear morphological changes and to assess apoptosis. Data in A

are presented as means ± SD. **, p< 0.01. magnification: 200×. The

results showed the proliferation ability is higher in the si-NC group

compared by the si-DGUOK group (Figure 11).
3.8 MiRNA-mRNA Network

Based on the targetscan database data, we performed a relevant

microRNA analysis of DNA repair genes in Siganture using the
Frontiers in Oncology 07298
Cytoscape software. and conducted DNA repair related miRNA-

mRNA Network (Figure 12).
4 Discussion

HCC is a highly heterogeneous cancer with multiple risk

factors, including alcohol consumption, hepatitis B/C infection,

and obesity (19). The initiation of HCC is associated with DNA

damage and chromosomal abnormalities, which triggers a DNA

damage response (DDR) in affected cells. DNA lesions can be

repaired through various mechanisms, including homologous

recombination, mismatch repair, and double-strand break repair.

Dysfunctional DDR pathways can result in genomic instability,

mutations, and eventually lead to HCC development and

progression (20). Many DNA repair proteins, such as

sphingolipid signaling, TP53, hOGG1, XRCC1, PARP-1, MRE11-

Rad50NBS1 (MRN) complex, and ataxia-telangiectasia mutant

(ATM) kinase, are frequently mutated in HCC (21). Furthermore,

ionizing radiation (IR)-induced DDR pathways can create an
A B

D E

C

FIGURE 7

Consensus clustering for DDR genes in HCC patients from TCGA dataset. (A) Thecumulative distribution function (CDF) curve plot for k = 2 to k = 9
(B). The change in the areaunder the CDF curve when k = 2 to k = 9. (C) Consensus heatmap at k =2. (D) Principal componentsanalysis for the DDR
gene expression. (E) For the 2 subgroups, KM survival curve analysis.
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immunosuppressive tumor microenvironment, thereby weakening

the anti-tumor effect of radioimmunotherapy. DDR inhibitors can

reverse the immunosuppressive state of HCC and inhibit tumor

progression, providing a potential therapeutic strategy (22).

There is a substantial body of evidence suggesting that DNA

damage response (DDR) genes play a crucial role in the

development of cancer (23). DDR genes are often expressed

abnormally in mucosal or tumor tissues and are closely associated

with patient prognosis (24, 25). However, the ability of individual

genes to serve as prognostic markers is limited (26, 27), and multi-

gene signatures may be better suited for predicting the prognosis of

hepatocellular carcinoma (HCC). Despite this, no study has yet

investigated the prognostic value of DDR genes in HCC. To address

this gap, we developed an 11-gene signature based on DDR gene

expression data and clinical data obtained from the ICGC and

TCGA databases. The risk score generated by the 11-gene signature

enabled the classification of patients into low- and high-risk groups,

with the latter group exhibiting poorer survival outcomes. The risk

model demonstrated good predictive performance in both TCGA

and ICGC datasets. Additionally, the risk model was found to be an

independent prognostic factor for HCC. A nomogram constructed

using the risk score and tumor stage allowed the clear differentiation

of two prognostic groups, which may be helpful in guiding

preoperative management of HCC patients. The DDR gene
Frontiers in Oncology 08299
signature identified in this study was found to be linked with

several cancer related pathways including cell cycle, WNT

signaling, mTOR signaling and apoptosis in the high risk group,

which may be indicative of the potential mechanisms underlying

HCC progression. On the other hand, the low-risk group was

enriched in metabolism-related pathways. Most of the genes in

the DDR-based risk signature have been implicated in

tumorigenesis. For instance, CANT1 is known to regulate

pyrimidine metabolism in melanoma cells and is associated with

tumor progression (28). High expression of CANT1 in prostate

cancer cells has been associated with better prognosis, while its

silencing significantly suppressed cell proliferation and DNA

synthesis (29). CLP1, on the other hand, plays an important role

in motor neuron function (30). Mitochondrial deoxyguanosine

kinase (DGUOK) is an enzyme that controls the rate of deoxy

nucleoside salvage pathway in the mitochondria. Overexpression of

DGUOK has been associated with worse prognosis in lung cancer,

and its depletion suppressed lung adenocarcinoma growth, CSC

self-renewal and metastasis (31). GTF2B has been identified as a

prognostic marker for colorectal cancer and neuroblastoma, while

GTF2H1 is a p62 subunit of complex transcription factor IIH

(TFIIH) that regulates nucleotide excision repair and

transcription (32, 33). Certain polymorphisms/haplotypes of

GTF2H1 have been associated with increased susceptibility to
A B

D E

C

FIGURE 8

Consensus clustering for DDR genes in HCC patients from the ICGC cohort. (A) At k = 2 to k = 9, the cumulative distribution function (CDF) curve
plot. (B). The change in area under CDFcurve at two different values of k viz: k = 2 to k = 9. (C) At k =2, the consensus heatmap (D) Principal
components analysis for the expression of DDR gene (E) KM survival curve analysis forthe 2 subgroups.
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A B

FIGURE 9

Heatmap analysis of the relationship between subgroup and clinical traits in (A) TCGA and (B) ICGC cohorts.
A

B

FIGURE 10

Immune infiltration. (A) The increased number of tumor infiltrating immune cells in high-and low-risk groups. (B) Boxplot showing the immune-
checkpoint genes expression in low- andhigh-risk groups. * p<0.05, ** p <0.01, *** p<0.001.
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lung cancer (34). Additionally, the budding yeast orthologs of

POLE4 have been shown to enhance Polϵ processivity in vitro,

but have the opposite effect in vivo, leading to accelerated

tumorigenesis (35).
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Moreover, the POLR2E rs3787016 polymorphism may enhance

the risk of developing the prostatecancer, liver cancer esophageal

cancer, papillary thyroid carcinoma, and breast cancer (36–38).

However, the role of AAAS, NCBP2, POLA1 and POLR2D in HCC
A

B

FIGURE 11

In vitro validation on DGUOK. HepG2 and MHCC-97H cells were treated with siDGUOK for indicated time. (A): CCK8 was performed to detect the
cell viability. (B): Hoechst 33258 fluorescent dye staining was used to show nuclear morphological changes and to assess apoptosis. Data in (A) are
presented as means ± SD. **p< 0.01. magnification: 200×.
FIGURE 12

DNA Repair Gene miRNA-mRNA Network.
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is unknown, and will have to beexperimentally verified.

Immunotherapy has achieved encouraging results in various

malignancies (39), including HCC. For instance, the “T+A”

scheme is increasingly becoming the first-line optionfor advanced

HCC (40). Despite achieving good outcomes in multiple cancers, a

significantpercentage of the patients do not benefit from

immunotherapy. Hence it is necessary to recognize thebiomarkers

that can reveal the outcomes of immunotherapy, and screen for

patients that can respondto immunotherapeutic regimens. Galon

et al. (41) had proposed the concept of “cold” and “hot” tumors to

evaluate their sensitivity to immunotherapies. In this study, we

detected increased infiltration of immunosuppressive cells and

overexpression of receptors responsible for immune checkpoint in

the high-risk group, which indicates that the high-risk group

patients are likely unresponsive to immunotherapy.

In summary, we identified biomarkers of HCC based on

computational biology in oncologymethods (42, 43), and

constructed prognostic models using machine learning methods

(44–46). Wehave established an 11-DDR gene signature that can

accurately forecast the prognosis ofhepatocellular carcinoma

(HCC). The utilization of this prognostic signature not only

advances our comprehension of the underlying molecular

mechanisms that contribute to HCC progression but also

provides a practical guide for clinical decision-making.
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Combining WGCNA and
machine learning to construct
basement membrane-related
gene index helps to predict the
prognosis and tumor
microenvironment of HCC
patients and verifies the
carcinogenesis of key gene CTSA

Weijie Sun1,2†, Jue Wang1†, Zhiqiang Wang1, Ming Xu1,
Quanjun Lin1, Peng Sun1* and Yihang Yuan1*

1Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China, 2Department of Infectious Diseases, The First Affiliated Hospital of Anhui
Medical University, Hefei, China
Hepatocellular carcinoma (HCC) is a malignant tumor with high recurrence and

metastasis rates and poor prognosis. Basement membrane is a ubiquitous

extracellular matrix and is a key physical factor in cancer metastasis. Therefore,

basement membrane-related genes may be new targets for the diagnosis and

treatment of HCC. We systematically analyzed the expression pattern and

prognostic value of basement membrane-related genes in HCC using the

TCGA-HCC dataset, and constructed a new BMRGI based on WGCNA and

machine learning. We used the HCC single-cell RNA-sequencing data in

GSE146115 to describe the single-cell map of HCC, analyzed the interaction

between different cell types, and explored the expression of model genes in

different cell types. BMRGI can accurately predict the prognosis of HCC patients

and was validated in the ICGC cohort. In addition, we also explored the

underlying molecular mechanisms and tumor immune infiltration in different

BMRGI subgroups, and confirmed the differences in response to immunotherapy

in different BMRGI subgroups based on the TIDE algorithm. Then, we assessed

the sensitivity of HCC patients to common drugs. In conclusion, our study

provides a theoretical basis for the selection of immunotherapy and sensitive

drugs in HCC patients. Finally, we also considered CTSA as the most critical

basement membrane-related gene affecting HCC progression. In vitro

experiments showed that the proliferation, migration and invasion abilities of

HCC cells were significantly impaired when CTSA was knocked down.

KEYWORDS

hepatocellular carcinoma, basement membranes, prognosis, immunotherapy, machine

learning, ScRNA-seq, CTSA, vitro experiment
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1 Introduction

Hepatocellular carcinoma (HCC) is responsible for about 90%

of primary liver cancers (1). It is also one of the most fatal malignant

tumors worldwide, with high morbidity and mortality rates (2, 3).

The frequent occurrence of metastasis and recurrence is a major

contributing factor to the poor prognosis of HCC patients (4).

Despite the development of numerous drug combination strategies

for the treatment of HCC, the current level of patient survival time

has not yet met satisfactory standards. Consequently, there is an

urgent need to identify new biomarkers that can more accurately

predict the prognosis of HCC.

Basement membranes (BM) are a ubiquitous and unique type of

extracellular matrix that plays a key role in cancer cell metastasis

(5). In the case of HCC and the surrounding uninvolved liver tissue,

the BM is primarily made up of three components: fibronectin

(FN), laminin (LAM), and collagen IV (Coll IV) (6). BM is known

to affect numerous physiological and pathological activities of cells

including cell proliferation, adhesion, migration, and vascular

remodeling (7, 8). As a result, in most cancers, BM plays a crucial

role in driving cell metastasis (5, 9, 10). Due to the significant role of

BM in cancer metastasis, it is an ideal target for anticancer drugs.

Previous studies have found that stable markers can be created

using different gene sets such as cuproptosis and necroptosis to

predict the prognosis of HCC patients (11, 12). Recently, Jayadev

et al. have redefined 222 BM-related genes (BMRG) and proteins

(13), but a robust prognostic model based on BMRG in HCC is yet

to be developed.

In this study, we screened 222 BMRG and identified 4 that were

used to construct the basement membrane-related gene prognostic

index (BMRGI). This index helps to more accurately predict the

prognosis of patients with hepatocellular carcinoma (HCC).

Furthermore, we evaluated the clinical relevance and impact of

BMRGI on the tumor microenvironment. More importantly, we

identified CTSA as a key BMRG in HCC, and comprehensively

analyzed the expression differences of CTSA in HCC, and have

confirmed that the expression of CTSA has a significant impact on

the proliferation, migration, and metastasis of HCC cells.
2 Methods and materials

2.1 Data download and processing

The mRNA expression data of HCC patients with

corresponding clinical information and somatic mutation data

were downloaded from The Cancer Genome Atlas (TCGA,

https://portal.gdc.cancer.gov/) database, and the mRNA

expression data and clinical information from the Japan-HCC

cohort were downloaded at International Cancer Genome

Consortium (ICGC, https://dcc.icgc.org/). When performing

correlation data analysis, we excluded cases with missing data.

Finally, when performing prognostic analysis, we chose to exclude

cases with a survival time ≤30. The single-cell RNA seq (scRNA-

seq) data of 4 HCC patients were obtained from GSE146115 in the
Frontiers in Immunology 02305
GEO database (https://www.ncbi.nlm.nih.gov/geo/), with a total of

27227 genes and 3200 cells obtained.
2.2 Screening of WGCNA and
differential BMRG

The “WGCNA” package was used to construct the gene co-

expression network of BMRG in the TCGA-HCC dataset (14). The

core module was considered the one with the highest Pearson

coefficient and also the one most associated with clinical traits.

Furthermore, we analyzed differentially expressed genes (|log2FC| >

0.585, False Discovery Rate (FDR)< 0.05) in the TCGA-HCC

dataset using the “Limma” package. Finally, we further

investigated the 47 common genes.
2.3 Construction and verification of BMRGI

47 common genes were analyzed by univariate Cox analysis

based on the “survival” package, and potential BMRG affecting the

overall survival of HCC patients were screened out (p<0.05). Then,

these candidate genes were analyzed by using the least absolute

shrinkage and selection operator (LASSO). Based on the analysis

results, we established a four-gene optimal prognostic model. The

calculation formula of BMRGI for each HCC patient is as follows:

BMRGI =o
n

i=1
Expression(i)*Coefficient(i)

Where X refers to the expression level of the selected gene, and

Coef is the coefficient of the selected gene. In addition, the same

calculation method is applied to the verification queue ICGC.

According to the median BMRGI, HCC patients were divided

into high BMRGI group and low BMRGI group. Kaplan–Meier

curves were used to assess differences in OS between different

BMRGI groups.
2.4 scRNA-seq data processing
and analysis

The Seurat package is used for preprocessing and filtering of

scRNA-seq (15). The PercentageFeatureSet function is used to

calculate the mitochondrial gene content in cells. We further

analyzed the cells in which the number of genes was >200 and

the proportion of mitochondrial genes was<10%. We set the

number of principal components (PC) to 20, the resolution to

0.4, and the 1500 genes with the largest variation between cells to

cluster the cells.
2.5 CellChat analysis

We use CellChat to quantify and infer the communication links

between different cell types from scRNA-seq data, and identify the
frontiersin.org
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signal input and output among them. In this study, we filtered for

cell communication of less than 10 cells.
2.6 Gene ontology analysis, kyoto
encyclopedia of genes and genomes
analysis and gene set enrichment analysis

The “Limma” package was used to analyze differentially

expressed genes (DEGs) between high and low BMRGI groups (|

log2FC| > 1, FDR< 0.05). GO analysis was performed based on the “

clusterProfiler” package. KEGG analysis was performed based on

the “clusterProfiler”, “org.Hs.eg.db”, “enrichplot” package. In

addition, we also performed GSEA using the “clusterProfiler”

package to explore biological differences among different

BMRGI groups.
2.7 Analysis of immunological properties

The enrichment scores of 16 immune-related cells and 13

immune-related terms in HCC samples were calculated using the

ssGSEA algorithm based on the R packages “GSVA”

and “GSEABase”.

We also summarized common immune checkpoint molecules

and HLA family genes, and analyzed the correlation between

BMRGI and the expression of each gene, and displayed it with a

radar map. Furthermore, we explored the somatic mutation profile

of TCGA-HCC samples and listed the top10 mutation-prone genes

in different BMRGI subgroups. In addition, we also compared the

difference of TMB in the high BMRGI group and the low BMRGI

group. Finally, the TIDE (http://tide.dfci.harvard.edu/) algorithm

was used to predict and evaluate the response of HCC patients

to immunotherapy.
2.8 Sensitivity analysis of common drugs

We use the R package “oncoPredict” (16) for the evaluation of

common drug sensitivities.
2.9 Identification of core BMRG

SVM-REF (17), LASSO (18)and RandomForest (19) are

commonly used machine learning methods with excellent

classification performance. In biology-related research, it is often

used for the screening of characteristic genes (20). In this study, we

use these three types of machine learning to filter out characteristic

BMRG, and use intersection to filter out the most critical BMRG.
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2.10 Multilevel expression verification
of CTSA

We analyzed the differential expression of CTSA at the mRNA

level of HCC tissues online from the GEPIA2 database (http://

gepia2.cancer-pku.cn/#index) (combined samples from TCGA and

GTEx databases) (21). In addition, we analyzed the expression

differences of CTSA at the protein level in the CPTAC database

online using the UCLCAN database (http://ualcan.path.uab.edu/

index.html) (22). Finally, the HPA database obtained the

immunohistochemical images of CTSA in normal liver tissues

and HCC tissues (23), and obtained the basic information of the

corresponding tissue samples.
2.11 RNA extraction, and real-time
quantitative PCR

Cell total RNA was extracted using Trizol reagent (Invitrogen,

USA)). RNA extraction and RT-qPCR as previously described (24).

Briefly, RNA was reversed to cDNA using PrimeScript™ RTMaster

Mix (Takara Bio, JAPAN). Fluorescence quantification was

performed by TB-Green qPCR (Takara Bio, JAPAN) and

normalized to b-actin. The information of all designed primers is

listed in Supplementary Table 1.
2.12 Cell culture, transient transfection

All cell lines used in this study (including normal liver cell line

LO2 and HCC cell lines HEPG2, BEL7402 and HCCLM3) were

donated by Dr. Dai (25). All cell lines were cultured in complete

DMEM medium (DMEM medium with 10% fetal bovine serum

and 1% penicillin-streptomycin). Transient transfections were

performed using jetPRIME Transfection Reagent (Polyplus,

China) and followed the manufacturer’s instructions. siRNA

sequences were designed by Tsingke Biotechnology Co., Ltd. The

SiCTSA sequence is as follows, SiCTSA-1: sense-GCCUCUUUC

CGGAGUACAA; antisense-UUGUACUCCGGAAAGAGGC.

SiCTSA-2: sense-CUGCUUAGCUCACAGAAAU; antisense-

AUUUCUGUGAGCUAAGCAG.
2.13 Cell counting kit-8 (CCK8) experiment

We planted 2×103 cells in a 96-well plate, and set 5 replicate wells

in each group, cultured them for 0 hour, 24 hours and 48 hours,

respectively, and then added 10ul CCK8 reagent (Targetmol, USA)

and incubated at 37°C for 2 hours. Absorbance was then measured at

450 nm using a microplate reader (TECAN, Switzerland).
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2.14 Transwell experiment

We planted 5×104 cells in the upper chamber (Corning, USA)

containing 250ul serum-free medium. The upper chamber was

without Matrigel (Corning, USA) for migration experiments, with

Matrigel for invasion experiments, and the lower chamber add

800ul complete medium. After 24 hours of incubation, the cells

were fixed with 4% paraformaldehyde and stained with 0.1% crystal

violet. The cells on the upper surface of the upper chamber were

wiped with a cotton swab, photographed under a microscope (Leica,

Germany) at 100 times, and then counted.
2.15 Statistical analysis

All bioinformatics analyzes were performed on R software

(version 4.1.2). Continuous variables that were not normally

distributed were tested using the Wilcoxon test. Correlation

analysis between BMRGI and drug IC50 was performed using the

spearman method. The Kaplan-Meier method was used to draw the

survival curves of different subgroups. All experimental data were

analyzed for variance using Student’s T-test. p or FDR< 0.05

represents a statistical difference.
3 Result

3.1 WGCNA identified BM key
module genes

According to the Materials and methods section, we identified

222 BMRG. First, we conductedWGCNA on 222 BMRG. By setting
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a minimum of 25 genes within a module, module connectivity

(Figure 1A), 4 modules were finally identified (Figure 1B).

According to the correlation thermograms of the modules, we

found that the blue modules had the highest correlations with

clinical traits (Figure 1C). Therefore, we choose the blue module for

further analysis. Second, we performed differential analysis on 222

genes, and the results showed a total of 131 DEGs, of which 122

BMRG were up-regulated and 9 BMRG were down-regulated

(Figure 1D). Furthermore, we showed the correlation of blue

module genes with DEGs by Venn diagram, and finally obtained

47 common genes (Figure 1E).
3.2 Construction of BMRGI for
HCC patients

We first performed univariate Cox analysis on 47 common

genes, and the results showed that 18 BMRG were risk factors

affecting OS in HCC patients (Figure 2A). LASSO analysis was

further performed on 18 prognostic genes, and finally we identified

4 BMRG (Figure 2B). In addition, we also analyzed the expression

differences and prognostic value of the 4 BMRG. Differential

analysis showed that CTSA, ADAM9, LAMB3, and SPON2 were

highly expressed in HCC (Figure 2C), and kaplan-meier analysis

showed that high expression usually means poor prognosis

(Figure 2D). Finally, we constructed the basement membrane-

related gene prognostic index BMRGI based on the results of

LASSO analysis.

According to the median BMRGI, HCC patients were divided

into high BMRGI group and low BMRGI group. We use TCGA-

HCC as the training cohort and ICGC as the validation cohort.

First, we showed the risk scores of the training cohort and validation
B

C D E

A

FIGURE 1

DEG screening of key module genes. (A) Scale independence and mean connectivity. (B) Gene clustering dendrogram, a total of 4 modules were
identified. (C) Correlation heatmap of modules and clinical traits. (D) Volcano plot for BMRG differential analysis. (E) Venn diagram showing common
genes of key module genes and differential genes.
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cohort more intuitively (Figure 2E). Furthermore, in both the

TCGA-HCC cohort and the ICGC cohort, the higher the BMRGI,

the shorter the survival time of HCC patients (Figure 2F). Finally,

we performed a kaplan-meier analysis, and the results showed that

the OS of the high BMRGI group was significantly lower than that

of the low BMRGI group in both the TCGA cohort and the ICGC

cohort (Figure 2G).
3.3 Single-cell transcriptional profiling and
cell-cell interactions in HCC tissue

We used tSNE to perform dimensionality reduction and

clustering on the preprocessed scRNA-seq data, and finally
Frontiers in Immunology 05308
obtained 12 clusters (Figure 3A). In addition, we also displayed

the most significantly expressed genes in the 12 clusters using a

heatmap (Figure 3B). Cell types were automatically annotated by

the SingleR package, and these 12 clusters were clustered into 5 cell

types, including Hepatocytes, T cells, Macrophage, B cell and NK

cell (Figure 3C).

In addition, we further evaluated the interactions between

different cells using the “CellChat” package. Figure 3D shows

the number and weight of interactions among the five cell

types. Furthermore, we present these results separately for a

clearer picture of the strength of cell-cell interactions (Figure 3E).

Overall, Hepatocytes rarely act as receptors for signals from

the other four types of immune cells, but they can communicate

with immune cells by emitting signals. Immune cells interact and
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FIGURE 2

Construction of BMRGI and verification of its prognostic value. (A) Univariate Cox regression analysis of common genes. (B) LASSO analysis. (C)
Expression difference analysis of CTSA, ADAM9, LAMB3 and SPON2. (D) Kaplan-Meier survival curves of CTSA, ADAM9, LAMB3 and SPON2. (E) Visual
distribution of risk scores for TCGA cohort and ICGC cohort. (F) Survival status and time of TCGA and ICGC cohort. (G) Kaplan-Meier survival curves
of BMRGI in TCGA and ICGC cohort.
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receive signals frequently. In addition, receptor ligand

molecules when mediating cell-cell interactions are shown

in Figure 3F.

Finally, we explored the distribution of model genes in different

cell types and showed the expression levels of the model in different

cell types in bubble plots (Figures 3G, H). In brief, CTSA was highly

expressed in hepatocytes, NK cells, and macrophages, SPON2 was

highly expressed only in hepatocytes, whereas ADAM9 and LAMB1

were expressed at low levels in all cell types.
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3.4 Comprehensive analysis of clinical
parameters in HCC patients

As shown in Figure 4A, the heat map of BMRGI and common

clinicopathological parameters, the results showed that the tumor

stages of HCC patients with different BMRGI groups had statistical

differences. In addition, we further determined the prognostic value

of BMRGI in patients with different pathological features. The

results showed that the high BMRGI group had significantly
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FIGURE 3

scRNA-seq analysis and CellChat Analysis (A) tSNE analysis to classify cell clusters. (B) Heatmap showing highly expressed genes in cell clusters. (C)
The “SingleR” package annotates cell clusters into 5 cell types. (D) Network diagram of the number and weight of connections between different cell
types. (E) Diagram of the communication network between cells and other cells. (F) Bubble diagram of receptor ligand molecules involved in cell
communication. (G, H) Distribution and expression levels of model genes in 5 cell types.
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worse OS than the low BMRGI group in HCC patients with

different clinicopathological parameters (age, gender, tumor grade

and stage) (p< 0.1, Figures 4B–I). These results suggest that our

BMRGI can effectively predict the prognosis of HCC patients with

different clinicopathological features.
3.5 Construction and evaluation of clinical
nomogram based on BMRGI

In order to construct a more practical and stable nomogram, we

incorporated several common clinicopathological parameters (age,

gender, tumor grade and stage). Univariate Cox analysis showed

that tumor stage and BMRGI were risk factors affecting the

prognosis of HCC patients (Figure 5A). Multivariate Cox analysis

confirmed that tumor stage and BMRGI were independent risk

factors affecting the prognosis of HCC patients after adjusting

for other clinicopathological parameters (Figure 5B). Given

the high correlation between BMRGI and prognosis of HCC

patients. We constructed a new nomogram combining common

clinicopathological parameters and BMRGI (Figure 5C). We first

evaluated the AUC value of various indicators to predict the

prognosis of HCC patients using the ROC curve, and the results

showed that the ability of BMRGI to predict the prognosis of HCC
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patients was significantly better than other clinicopathological

features (including the classic indicator tumor stage), and the

nomogram constructed based on this further improved the

accuracy of predicting the prognosis of HCC patients

(Figure 5D). In addition, the excellent accuracy and robustness of

the nomogram in assessing the 1-year, 3-year, and 5-year survival of

patients was further illustrated by ROC curves and calibration

curves (Figures 5E, F).
3.6 GO, KEGG and GSEA analysis
related to BMRGI

First, we analyzed the genetic differences between the high

BMRGI group and the low BMRGI group (|log2FC| > 1, FDR<

0.05). Based on these differential genes, we further performed GO

analysis and KEGG analysis to explore their biological

characteristics. GO analysis results showed that, in terms of

biological process, DEGs were mainly enriched in “ membrane

invagination, phagocytosis, engulfment, phagocytosis, recognition,

plasma membrane invagination, phagocytosis, humoral immune

response mediated by circulating immunoglobulin, humoral

immune response, B cell receptor signaling pathway, cell

chemotaxis, leukocyte migration” . In terms of cellular
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FIGURE 4

Correlation analysis between BMRGI and clinicopathological features. (A) Heatmap of the distribution of clinical case characteristics of patients in the
high BMRGI group and low BMRGI group. (B, C) Kaplan-meier survival curves of high BMRGI group and low BMRGI group in different age groups. (D,
E) Kaplan-meier survival curves of high BMRGI group and low BMRGI group in different gender groups. (F, G) Kaplan-meier survival curves of high
BMRGI group and low BMRGI group under different grading groups. (H, I) Kaplan-meier survival curves of high BMRGI group and low BMRGI group
in different stages.
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composition, DEGs were mainly enriched in “immunoglobulin

complex , co l l agen−conta in ing ex t race l lu l a r mat r i x ,

immunoglobulin complex, circulating, external side of plasma

membrane, basal plasma membrane, Golgi lumen, basal part of

cell, apical plasma membrane, basolateral plasma membrane, apical

part of cell”. and in terms of molecular functions, DEGs were

mainly enriched in “antigen binding, immunoglobulin receptor

binding, extracellular matrix structural constituent, collagen

binding, glycosaminoglycan binding, fibronectin binding, sulfur

compound binding, heparin binding, growth factor binding,

insulin−like growth factor binding” (Figure 6A). The results of
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KEGG analysis showed that DEGs were only enriched in the Focal

adhesion signaling pathway (Figure 6B).

In addition, GSEA analysis was further carried out in this study.

The results showed that the signal pathways affected by the high

BMRGI group were mainly enriched in “ KEGG CELL ADHESION

MOLECULES CAMS, KEGG CYTOKINE CYTOKINE

RECEPTOR INTERACTION, KEGG ECM RECEPTOR

INTERACTION, KEGG FOCAL ADHESION, KEGG

NEUROACTIVE LIGAND RECEPTOR INTERACTION”. The

signal pathways affected by the low BMRGI group were mainly

enriched in “KEGG DRUGMETABOLISM CYTOCHROME P450,
B
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FIGURE 5

Construction of clinical nomogram. (A, B) Forest plots for univariate and multivariate Cox regression analysis. (C) Nomogram combining common
clinical parameters and BMRGI. (D) ROC curves for clinical parameters, BMRGI and nomogram. (E) ROC curves of nomograms predicting 1-year,
3-year and 5-year survival rates. (F) Calibration curves for nomograms.
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KEGG FATTY ACID METABOLISM, KEGG GLYCINE SERINE

AND THREONINE METABOLISM, KEGG METABOLISM OF

XENOB IOT IC S BY CYTOCHROME P45 0 , KEGG

RETINOL METABOLISM”(Figure 6C).
3.7 Comprehensive analysis of the
correlation between BMRGI and tumor
microenvironment

In view of the important guiding significance of immune

checkpoint molecules and HLA family molecules in

immunotherapy. We analyzed the correlation between BMRGI

and 48 common immune checkpoint molecules and 24 HLA

family molecules. The results showed that BMRGI was

significantly positively correlated with 41 immune checkpoint

molecules as well as 23 HLA family molecules (Figures 7A, B). In

addition, we assessed the levels of 16 immune-related cells and 13

immune-related terms in tissue samples from HCC patients using

ssGSEA. In terms of immune-related cells: Compared with the low

BMRGI group, aDCs, DCs, iDCs, Macrophages, pDCs, Th1_cells,

Th2_cells, and Treg were significantly increased in the high BMRGI

group, while NK_cells were significantly decreased (Figure 7C). In

terms of immune-related terms, compared with the low BMRGI

group, the levels of APC_co_Stimulation, CCR, Check-point, HLA,

MHC_class_I, and Parainflammation were significantly increased,

while Type_II_IFN_Reponse was significantly decreased

(Figure 7D). Then, we analyzed the somatic mutation profile of

HCC patients and identified the top 10 mutated genes in the

high and low BMRGI groups. The results showed that TP53

mutations were significantly lower in the high BMRGI group than

in the BMRGI group (Figures 7E, F). However, there was no

statistical difference in TMB between the high and low BMRGI

groups (Figure 7G). Finally, we assessed the sensitivity to

immunotherapy in the high and low BMRGI groups. The results
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showed that TIDE was lower in the high BMRGI group, indicating

that the lower the possibility of immune escape, the better the effect

of immunotherapy (Figure 7H).
3.8 Screening for sensitive drugs in
HCC patients

We evaluated and observed the differences in sensitivity to

6 common drugs in HCC patients between the two groups.

The lower the IC50 value, the higher the sensitivity to the drug.

The results showed that patients in the low BMRGI group

were more sensitive to sorafenib, oxaliplatin, cytarabine

and fludarabine, whereas patients in the high BMRGI group

were more sensitive to 5-fluorouracil and gefitinib higher

(Figures 7I, J). All in all, these results provide a good

reference for clinical medication.
3.9 Identification of key BMRG

We conducted a more refined analysis based on the 47

common genes screened above. First, we identified marker

molecules of HCC by 3 machine learning methods (LASSO,

SVM-REF, and RandomForest) (Figures 8A–C). Among them,

CSTA, ITGA6, ITGB8 and LAMC1 are common marker

molecules (Figure 8D). Then we evaluated the diagnostic value

of the four marker molecules through the ROC curve, and the

results showed that CSTA (AUC = 0.952), ITGA6(AUC = 0.942),

ITGB8(AUC = 0.756) and LAMC1(AUC = 0.936) all had high

diagnostic value (Figures 8E–H). At the same time, we found that

CTSA not only has the highest diagnostic value, but also

constitutes one of the members of BMRPI. Therefore, we

considered CTSA as the most critical BMRG in HCC for

further study.
FIGURE 6

GO analysis, KEGG analysis and GSEA analysis. (A) Circle and bubble charts for GO analysis. (B) Barplot and bubble charts for KEGG analysis.
(C) GSEA analysis of high BMRGI group and low BMRGI group.
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3.10 Multilevel expression verification and
in vitro functional exploration of CTSA

We further investigated the differential expression of CTSA in

HCC. First, we searched through GEPIA2.0, and the results showed

that CTSA was highly expressed in HCC (Figure 9A). Second, we

explored the differential expression of CTSA at the protein level.

The UALCAN database (https://ualcan.path.uab.edu/index.html)

showed that the protein level of CTSA in HCC was significantly

higher than that in the normal group (Figure 9B). Likewise, the

HPA database showed that CTSA was highly expressed in HCC

tissues compared with normal liver tissues (Figure 9C). Finally, we

detected the expression of CTSA in normal liver cell lines (LO2) and

liver cancer cell lines (BEL7402, HEPG2, HCCLM3), and the results

showed that the expression level of CTSA in liver cancer cell lines

was significantly higher than that in normal liver cell

lines (Figure 9D).

To gain insight into the in vitro function of CTSA in HCC, we

characterized the oncogenic phenotype of HCCLM3 and BEL-7402

cells (SiCTSA-1 and SiCTSA-2) with CTSA knockdown. The RT-

qPCR results showed that siCTSA-1 and siCTSA-2 could

significantly inhibit the CTSA expression of HCC cells (BEL-7402
Frontiers in Immunology 10313
and HCCLM3 cells) (Figure 9E). We studied the role of CTSA in

HCC cell proliferation by CCK8 assay, and the role of CTSA in

HCC cell migration and invasion using Transwell assay. CCK8

assay and Transwell assay analysis showed that the reduction of

CTSA impaired the proliferation (Figures 9F, G), migration

(Figure 9H) and invasion (Figure 9I) abilities of HCC cells

(BEL7402 and HCCLM3).
4 Discussion

HCC is the most prevalent histological type of primary liver

cancer, known for its high metastatic and recurrence characteristics

(4). Unfortunately, most HCC patients are diagnosed at an

advanced stage, which significantly reduces the chance of curative

treatment and leads to a poor prognosis (26). BM, as an important

component of the extracellular matrix, is an important barrier that

cancer cells must overcome to form metastasis (5, 27). Numerous

studies have demonstrated the association between the main

components of BM and HCC tumor metastasis, as well as poor

prognosis (28–30). Current study shows that systematic analysis of

specific gene sets achieves promising results in predicting cancer
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FIGURE 7

Correlation analysis between BMRGI and tumor microenvironment and common drug sensitivity. (A) Correlation between BMRGI and immune
checkpoint molecules. (B) Correlation between BMRGI and HLA family molecules. (C) Differences in immune cell infiltration between high and low
BMRGI groups. (D) Differences in immune-related terms between high and low BMRGI groups. (E) TOP10 mutated genes in high BMRGI group.
(F) TOP10 mutated genes in low BMRGI group. (G) Difference analysis of TMB between high BMRGI group and low BMRGI group. (H) Difference
analysis of TIDE scores between high BMRGI group and low BMRGI group. (I) Difference analysis of IC50 values of 6 commonly used drugs in high
BMRGI group and low BMRGI group. (J) Correlation analysis between IC50 values of 6 commonly used drugs and BMRGI. * represents p < 0.05, **
represents p < 0.01, and *** represents p < 0.001.
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prognosis (31, 32). Despite advancements in research, there is still a

lack of reliable prognostic models for HCC based on basement

membrane genes. To address this gap, our study utilized WGCNA

and machine learning to develop a strong prognostic index based on

BMRG. Our model has demonstrated high accuracy in predicting

the prognosis of HCC patients. This study utilized the TCGA-HCC

dataset to identify 4 BMRG (CTSA, ADAM9, LAMB1, and SPON2)

through WGCNA and machine learning techniques. These BMRG

were used to construct BMRGI. Previous research has shown that

all four BMRG are closely associated with HCC. Wang et al.

discovered that CTSA has potential as a diagnostic and

prognostic marker for HCC patients (33). In HCC, ADAM9 is

known to be overexpressed and is responsible for inducing ROS

generation, which in turn promotes HCC cell invasion (34).

Additionally, LAMB1 has been shown to be regulated by the

RNA helicase DDX24, which contributes to the malignant

progression of HCC (35). However, the role of SPON2 in HCC is

still a matter of debate. While high expression of SPON2 has been

linked to poor prognosis in HCC patients (36), it has also been

found to inhibit tumor metastasis by promoting the infiltration of

M1-like macrophages (37). Taken together, these studies showed

that the four BMRG were closely related to HCC and its prognosis,

which indicated the correctness of our BMRGI based on them.

By analyzing the single-cell atlas of HCC tissue, we identified five

types of cells present. Our findings suggest that hepatocytes are capable

of acting as ligands to send signals to immune cells, while immune cells

exhibit a weaker ability to send signals to liver cells. We conducted an

analysis of the expression of model genes across various cell types and

found that CTSA expression was particularly high in hepatocytes, NK

cells, and macrophages. This suggests that any abnormal expression of

CTSA could potentially impact the progression of HCC by influencing

the immune microenvironment of HCC.

We conducted related validation on BMRGI. Survival analysis

revealed that the prognosis of the high BMRGI group was
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significantly worse than that of the lower BMRGI group in the

TCGA-HCC cohort. Furthermore, we validated the ability of

BMRGI to predict the prognosis of HCC patients in the ICGC

cohort. The study found that BMRGI is an independent risk factor

for the prognosis of HCC patients, as determined by the results of

multivariate Cox analysis. Additionally, ROC curve analysis revealed

that BMRGI is a better predictor of HCC patient prognosis compared

to other clinicopathological parameters. Subgroup analysis based on

clinical characteristics demonstrated that BMRGI has a strong ability

to predict prognosis for HCC patients with varying clinical

characteristics. In order to facilitate clinical application and

improve the accuracy of predicting the prognosis of HCC patients,

we combined common clinicopathological parameters with BMRGI

to construct a nomogram.

We conducted further analysis of the differentially expressed

genes (DEGs) between the high and low BMRGI groups to

investigate the biological properties of these subgroups. Our

analysis, which included Gene Ontology (GO), Kyoto

Encyclopedia of Genes and Genomes (KEGG), and Gene Set

Enrichment Analysis (GSEA), revealed significant differences in

biological processes related to immunity and cell adhesion (BM is

closely related) between the different BMRGI subgroups.

This study demonstrates the accuracy of BMGPI construction

(closely related to BM-related biological characteristics). Additionally,

BMGPI effectively recognizes differences in the tumor immune

microenvironment. Further analysis was conducted to determine the

correlat ion between BMRGI and the tumor immune

microenvironment. Previous research has shown that immune

checkpoint molecules and HLA family molecules are strong

predictors of response to immunotherapy (38–41). Therefore, we

analyzed the correlation between BMRPI and immune checkpoint

molecules and HLA family molecules. The results showed that BMRGI

was positively correlated with most immune checkpoint molecules and

HLAmolecules, suggesting that BMRGI may also be a good biomarker
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FIGURE 8

Screening for Feature BMRG. Characteristic genes in DEGs selected by LASSO (A), SVM-SEF (B) and RandomForst (C). (D) The Venn diagram shows
the common genes of the three algorithms. (E–H) ROC curve of common genes.
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for predicting immunotherapy response. Second, our results showed

significant differences in terms of immune-related cells between high

and low BMRGI groups, implying that different BMRGI subgroups

may differ in response to immunotherapy. Interestingly, the mutation

rate of TP53 in the high BMRGI group was significantly higher than

that in the low BMRGI group, which may be one of the reasons for the

poor prognosis in the high BMRGI group (42). However, overall TMB

levels were not statistically different between the two groups. In this

study, we used the TIDE algorithm to analyze the response to

immunotherapy in various BMRGI subgroups of HCC patients. Our

findings indicate that patients in the high BMRGI group had a lower

TIDE score, suggesting that they may be less prone to immune escape

and therefore have a better response to immunotherapy. Additionally,

we evaluated the sensitivity of different BMRGI subgroups to six

commonly used therapeutic drugs, providing valuable insights for

clinical decision-making.
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Finally, we screened 47 common gene by multiple machine

learning methods and finally identified 4 BMRG: CTSA, ITGA6,

ITGA8, and LAMC1. ROC analysis showed that these genes have

high diagnostic value for distinguishing HCC. We found that CTSA

not only had the highest diagnostic value (AUC:0.952), but also

constituted one of the core members of BMRGI. Therefore, we

regard CTSA as the most critical member of BMRG and conduct in-

depth research. We verified that the expression of CTSA in HCC

was significantly higher than that in normal tissues at the mRNA

level and protein level by GEPIA2.0 database, UALCAN database

and HPA database. In addition, we also verified by RT-qPCR that

the expression of CTSA in HCC cell lines was significantly higher

than that in normal liver cell lines. Since the oncogenic role of CTSA

in HCC is still unclear, this prompted us to further explore the role

of CTSA in HCC progression. More importantly, our in vitro cell

experiments showed that the proliferation, migration and invasion
FIGURE 9

Multidimensional expression validation of CTSA and modulation of HCC oncogenic capacity in vitro. (A) Differential analysis of mRNA expression of
CTSA in HCC in GEPIA2.0 database. (B) Differential analysis of protein expression levels of CTSA in HCC from UALCAN database. (C) IHC images of
CTSA in HCC tissues and normal liver tissues from HPA database. (D) Expression levels of CTSA in normal liver cell lines and HCC cell lines. (E)
Knockdown efficiency of siCTSA in BEL7402 and HCCLM3 cells. (F, G) CCK8 assay detects the effect of knocking down CTSA on the proliferation
ability of BEL-7402 (Left) and HCCLM3 (Right). (H) Transwell assay was used to detect the effect of knocking down CTSA on the migration and
invasion of BEL7402 cells. (I) Transwell assay was used to detect the effect of knocking down CTSA on the migration and invasion of HCCLM3 cells.
*** represents p < 0.001.
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abilities of HCC cell lines (BEL7402 and HCCLM3) were

significantly reduced after CTSA knockdown.

Like other studies, even this study has some limitations and

shortcomings. First, when we validated the prognostic value of

BMRGI, we did not validate it in real cohorts. Second, the

carcinogenesis of CTSA has not been explored by in vivo

experiments. Finally, the specific molecular mechanism by which

CTSA affects the progression of HCCwas not elucidated in this study.

In conclusion, our study trained and validated a BMRGI that could

effectively predict the prognosis of HCC patients based on 222 BMRG.

Based on this, we also developed a nomogram for clinical application.

The biological and immunological characteristics of BMRGI in HCC

were explored through a series of bioinformatics methods, and some

insights were provided for clinical immunotherapy and targeted

therapy. Finally, we also verified the role of the key BMRG CTSA in

HCC progression through in vivo functional experiments.
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The vulnerability of the oral cavity to SARS-CoV-2 infection is well-known, and

cancer patients are at a higher risk of COVID-19, emphasizing the need to

prioritize this patient population. Head and neck squamous cell carcinoma

(HNSCC) is one of the most common malignant cancers associated with early

metastasis and poor prognosis. It has been established that cancerous tissues

express Cathepsin L (CTSL), a proteinase that regulates cancer progression and

SARS-CoV-2 entry. Therefore, it is essential to evaluate the correlation between

disease outcomes and CTSL expression in cancer tissues and predict the

susceptibility of cancer patients to SARS-CoV-2. In this study, we used

transcriptomic and genomic data to profile CTSL expression in HNSCC and

developed a CTSL signature that could reflect the response of HNSCC patients to

chemotherapy and immunotherapy. Additionally, we investigated the

relationship between CTSL expression and immune cell infiltration and

established CTSL as a potential carcinogenic factor for HNSCC patients. These

findings could aid in understanding the mechanisms underlying the increased

susceptibility of HNSCC patients to SARS-CoV-2 and contribute to the

development of therapy for both HNSCC and COVID-19.

KEYWORDS

cathepsin L, head and neck squamous cell carcinoma (HNSCC), immunotherapy, CTSL,
SARS-CoV-2
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1 Introduction

The emergence of the novel coronavirus (2019-Nov) in

December 2019 has resulted in a global spread, leading to large-

scale pandemics and posing a significant threat to public health and

the economy (1). COVID-19 has become a widespread and deadly

disease, with a rapid increase in infections and fatalities reported

worldwide (1). Although most people recover, there is concern that

some may experience devastating consequences, as the long-term

effects of the virus are still uncertain. To effectively control SARS-

CoV-2, it is necessary to prevent infection and conduct further

research to determine the factors that influence susceptibility to

COVID-19 and the mechanisms behind these factors. SARS-spike

CoV-2’s glycoprotein has been shown to bind the angiotensin-

converting enzyme 2(ACE2), speeding up the virus’s entrance into

host cells (2, 3). After binding to the target cells, TMPRSS2 and host

cell proteases such as cathepsin L (CTSL) split the S protein into two

subunits: S1 and S2, facilitating viral entry into the host cells by

promoting membrane fusion and endocytosis of coronaviruses. S

protein cleavage by host proteases is required for viral activation and

subsequent infection (3, 4). As a result, differences in susceptibility to

SARS-CoV-2 infection may be explained by CTSL expression and

distribution to a certain extent.

Current evidence suggests that SARS-CoV-2 infection causes

considerable morbidity and mortality. Some studies revealed that

the oral cavity is one of the areas most vulnerable to SARS-CoV-2

(1), with oral manifestations possibly presenting before other

COVID-19 manifestations. According to recent studies, cancer

patients reportedly experience a higher incidence of COVID-19,

more severe symptoms, and a poor prognosis (5). Accordingly,

more emphasis should be placed on preventing COVID-19

infection in cancer patients.

Tumor pathogenesis is a complex process involving multiple

pathophysiological processes and is impacted by numerous factors,

including the body’s immune status. The role of cellular and humoral

immunity in viral infection protection is well established. The

pathogenesis of COVID-19 is widely believed to be linked to

immune response dysregulation, especially in T cells (6). Merad et al.

reported that COVID-19 pathogenesis was mediated by aberrant and

numerous immune cells, such as monocytes and macrophages (7).

Besides, anticancer therapy, such as chemotherapeutics or radiation,

can cause systemic immunosuppression (5). It is widely thought that

cancer patients are more susceptible to SARS-CoV-2 infection due to

immune dysregulation (8, 9). The expression of SARS-CoV2 receptors

(ACE2, TMPRSS2, and CTSL) has been reported to be upregulated in

many types of malignancies, making viral entry into cells easier and

cancer patients more susceptible to SARS-CoV-2 (10).

Herein, we aimed to better understand the relationship between

SARS-CoV-2 and head and neck squamous cell carcinoma (HNSCC).

We utilized transcriptomic and genomic data to conduct a systematic

analysis of the role of CTSL in HNSCC, focusing on immunological

characteristics, functional annotation, and prediction of chemotherapy

response. Furthermore, we developed a novel CTSL-related signature

that could effectively predict HNSCC patients’ outcomes. The current

study substantiated that CTSL is a potentially carcinogenic factor for

patients with HNSCC, which helps researchers better understand the
Frontiers in Immunology 02319
increased susceptibility of HNSCC to SARS-CoV-2 infection and lays

the groundwork for SARS-CoV-2 therapy.
2 Materials and methods

2.1 HNSC dataset and preprocessing

We acquired genomic data and annotated clinicopathological

features of HNSC from The Cancer Genome Atlas (TCGA, 564

HNSC patients, including 520 tumors and 44 paracancers, and 519

tumor patients with complete survival information) and Gene

Expression Omnibus (GEO) (datasets GSE41613, N=97 and

GSE65858, N=270). The study included only cases with adequate

OS information, while cases with insufficient information

were excluded.

Raw data from the GEO database were generated using

Affymetrix and Illumina platforms. The data were background

corrected and normalized using a robust multichip averaging

algorithm (RMA). RNA sequencing data were obtained from the

TCGA database and converted from fragments to transcripts with

signal intensities, similar to the data obtained from RMA.
2.2 Establishment of the
CTSL-based Signature

High and low-expression groups were classified according to

CTSL expression in TCGA-HNSC and underwent genome-wide

difference analysis using the package R “limma” (abs(logFC) > 1 &

P.Value< 0.01). Subsequently, Cox regression analysis was

performed to further identify prognosis-related CTSL-associated

genes (R language “survival” package, P<0.05). We then applied a

survival machine learning algorithm via the R package

“randomSurvivalForest” to screen significant valuable CTSL-

associated genes with prognostic potential. Based on the Lasso

regression analysis, the CTSL-based signature was constructed

using the list of prognosis-related CTSL genes (11).
2.3 Validation of the efficacy of
CTSL-based signature

We applied the CTSL-based signature to the data of 516 patients

from the TCGA-HNSC dataset and then divided the patients into

high and low CTSL. The clustering of signatures was based on the P

value of the optimal cutoff, and the relationship between the CTSL-

based signature and OS was analyzed using Kaplan-Meier curves.

The performance of the CTSL-based signature for predicting

prognosis at 1, 3, and 5 years were evaluated using TimeROC.
2.4 Genomic alteration

The TCGA datasets were used to collect somatic mutations.

Somatic mutation analysis was achieved with the R package “maftools”.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1156038
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2023.1156038
2.5 TME immunological profile assessment

The study utilized the Estimation of STromal and Immune cells

in MAlignant Tumor tissues using Expression data (ESTIMATE)

technique to evaluate the abundance of immune cells and the level

of stromal cell infiltration. This technique generates immune scores,

stromal scores, and estimated scores to represent these factors. To

analyze immune infiltrating cells in HNSC, we used the Tumor

Immune Estimation Resource 2.0 (TIMER2.0; http://

timer.cistrome.org) web server. The R genomic variance analysis

package (GSVA) was used in conjunction with single sample

genomic enrichment analysis to construct an enrichment score

that represented the degree of infiltration of 28 immune cells based

on the associated characteristics (ssGSEA).
2.6 Functional annotation

All gene sets were obtained from the MSigDB database, the

Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene

Ontology (GO). Gene set enrichment analysis (GSEA) and genomic

variation analysis (GSVA) were implemented using the R packages

clusterProfiler and GSVA.
2.7 Drug response prediction

To predict drug susceptibility in the cases included, the

researchers used pharmacogenomic data from the Genomics of

Drug Sensitivity in Cancer (GDSC) database (https://

www.cancerrxgene.org/). They calculated drug response as drug

susceptibility using the oncoPredict R package. The responses to

anti-PD1 and anti-CTLA4 therapies in HNSC were evaluated by the

submap algorithm.
2.8 CCK8 assay

To evaluate cell proliferation, the transfected cells were seeded

into 96-well plates. After being cultured at 37°C with 5% CO2 for

24, 48, and 72 hours, 20 L of CCK8 solution (Sigma, USA) was

added to each well, and the plates were incubated for an additional

hour. Using a microplate reader, the optical density (OD) value

obtained at 560nm wavelength was determined (Molecular Devices,

Sunnyvale, CA).
2.9 Plate clone formation assay

To validate the ability of the transfected cells to form colonies,

1000 cells per plate were seeded in 60mm culture dishes. After being

cultured for 10 days, the cells were fixed with 10% neutral buffer

formalin fixative and stained with crystal violet (Beyotime, China).

We photographed and counted the colonies.
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2.10 Transwell assay

Transfected cells were seeded onto transwell membranes coated

with Matrigel (BD Bioscience, Franklin Lakes, NJ) with a solution

containing 10% bovine serum albumin (BSA, VWR, Radnor, PA) in

the upper chamber (8mm pore size; Corning, Corning, NJ). The

lower chamber contained medium with 10% FBS. After incubation

at 37°C for 48 hours under 5% CO2, the remaining cells on the top

membrane were removed using a cotton swab and fixed in 10%

neutral buffer formalin. Crystal violet solution was added before

capturing the membranes on camera with an inverted microscope

and counting the cells.
2.11 Scratch migration assay

6 well plates were inoculated with transfected cells to determine

cell migration. After 24 h of cell culture, a straight line wound was

created in each well using a pipette tip. The cells were cultured in 2%

FBS medium under 5% CO2 at 37°C. Wound closure was assessed

under 4× magnification with microscopy (OLYMPUS, Tokyo,

Japan) at 24 and 48 h.
2.12 Construction of lentiviral vectors and
infection of lentivirus infection

Using green fluorescent protein (GFP) containing lentiviral,

high transfection efficiency and stable CTSL expression were

achieved in SCC15 cells. A recombined EX-A4513-Lv201 vector

with the CTSL gene and EX-NEG-Lv201 with a negative control

sequence was constructed by GeneCopoeia Company (Guangzhou,

China). The aforementioned lentiviral vectors were then used to

infect SCC15 cells. A total of 1× 106 SCC15 cells were seeded in a

six-well cell plate, cultured for an additional 12 hours until 70%

confluence was reached, and then lentiviral vectors at a multiplicity

of infection (MOI) of 20 units per cell were added to the infection

medium. Three groups were established as follows: SCC15 CTSL

(CTSL overexpression group), SCC15 NEG (negative group), and

SCC15 (non-treatment control group). After incubation for 24

hours, fresh, virus-free media was applied to the plates. After

three days, the lentivirus density containing GFP was detected to

evaluate the infection efficiency.
2.13 Statistical analysis

The Wilcoxon test was utilized for group comparisons when the

data were not normally distributed, while the T-test was used when

the variables were normally distributed. The difference in OS between

the two groups was calculated using Kaplan-Meier survival plots with

the R package “survminer”. Cox regression for survival analysis was

performed using the R package “survival”. Time-dependent ROC

curves were plotted using the R package “timeROC”. Heat maps were
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generated using the R package “pheatmap”. Data visualization was

done using the R package ggplot2 (v). Statistical significance was set at

a p-value of 0.05.
3 Results

3.1 Features associated with CTSL
expression in HNSCC

Analysis of the TCGA database revealed that the levels of CTSL

mRNA in HNSC were significantly increased compared with

adjacent tissues (Figure 1A).

The Kaplan-Meier method was used to assess the impact of CTSL

expression on the survival of HNSC patients in three datasets

(GSE41613, GSE65858, and TCGA). Patients with HNSC who

exhibited high levels of CTSL expression were associated with low

overall survival (OS) (Figures 1B-D). High levels of CTSL

transcription have been identified as a significant risk factor for

mortality in various cancer types, including HNSC, indicating a poor

prognosis. Therefore, CTSL has huge potential as a robust prognostic

marker for OS, even after accounting for other relevant variables.

Next, GO and KEGG analyses were used to predict CTSL function

and associated signaling pathways. GSEA was used to identify the

signaling pathways linked with CTSL activated in HNSC.

CTSL was significantly enriched in signaling pathways,

including immune response-associated activities such as acute

inflammatory response, cytokine-mediated signaling pathway,

dendritic cell differentiation, innate immune response,

interferon-gamma production, leukocyte mediated cytotoxicity,

regulation of B cell differentiation (Figure 1E). The GSEA results

also showed that several immune functioning gene sets, including

apoptosis, B cell receptor signaling, cytokine receptor interaction,

and JAK-STAT signaling pathway, were enriched in HNSC. These

findings suggest that CTSL plays an essential role in the

tumor microenvironment.
3.2 CTSL is associated with immune
infiltration in HNSCC patients in the
TCGA cohort

Using the ESTIMATE algorithm, we examined how the

immune status of HNSCC patients in the TCGA cohort is

associated with the expression levels of CTSL. We discovered that

patients with high CTSL expression levels were significantly more

likely to have high immune scores, ESTIMATE scores, and stromal

cells than patients with low CTSL expression levels (Figure 2A),

suggesting that CTSL expression levels in HNSCC patients are

correlated with immune status.

We independently applied the ssGSEA and TIMER algorithms

(Figures 2B, C) to uncover the number of immune infiltrating cell

groups to validate this characteristic. The generated heat map showed

significant infiltration of NK cells, neutrophils, CD8+ T cells, and

cytotoxic lymphocytes in HNSCC patients with elevated CTSL

expression (Figure 2B). We discovered that groups with high CTSL
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expression had a larger abundance of infiltrating B cells and CD4+ T

cells in HNSC (Figure 2C). Our findings suggest a significant

correlation between the immune response to tumors and the

expression levels of CTSL in HNSCC patients. We utilized a

heatmap of clinical stages, grade, gender, and age to illustrate the

relationship between CTSL expression and various clinical traits of

HNSCC samples (Figures 2B, C). The findings revealed a significant

association between CTSL expression and the clinical traits of

HNSCC patients.
3.3 Potential immunotherapy and
chemotherapy responses associated with
CTSL expression in patients with HNSCC

Recent immunotherapy advancements, particularly PD-1

inhibitors, have improved treatment outcomes for HNSCC in the

recurrent and metastatic stages. This improvement is caused by the

interaction of immune cell processes (12). We first examined the

relationship between CTSL expression and immune checkpoint

levels in patients with HNSCC to investigate the therapy

responsiveness depending on CTSL expression. Association

analysis revealed that CD274 and CTLA4 levels were generally

higher in HNSCC patients with elevated CTSL expression

(Figure 3A). In addition, there was a significant association

between CTSL expression and targeted therapies (including 5-

fluorouracil, dasatinib, ERK_2440, JAK1_8709, luminespib, and

staurosporine), indicating that patients with low CTSL expression

responded better to targeted therapies (Figure 3B).

The results of the submap showed that the high- and low-CTSL

groups had different responses to immunotherapy in that the high-

CTSL group had a significant response to anti-PD-1 immunotherapy

in HNSC based on the TCGA (Supplementary Figure).
3.4 The CTSL gene serves as an oncogene
in HNSC cells

We sought to investigate the oncogenic potential of CTSL in

HNSC by introducing it into SCC15 cells via lentiviral vectors

containing GFP. This approach was chosen to achieve high

transfection efficiency and ensure stable expression of CTSL. After

three days of infection, we used fluorescence microscopy to confirm

GFP expression (Figure 4A). Our functional assays revealed that

CTSL overexpression promoted cell proliferation (CCK8,

Figure 4B), invasion (Transwell, Figure 4C), colony formation

(Plate cloning, Figure 4D), and migration (scratch migration,

Figure 4E) in SCC15 cells. These findings collectively support the

involvement of CTSL in the progression of HNSC.
3.5 The process of constructing
CTSL.signature in HNSCC

After examining the differences between the high and low CTSL

groups (Figure 5A), we performed a univariate Cox regression
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analysis to further screen out more valuable CTSL-associated

prognostic genes (P value< 0.05). 21 additional CTSL-associated

genes with potential prognostic value for HNSCC patients were

identified. A forest plot was generated to visualize the HR of each

gene on prognosis (Figure 5B). In addition, we further selected 9

CTSL-associated genes by applying the machine learning algorithm

of (Figure 5C). The random survival forest model was used to

screen out six genes prognostically associated with CTSL

(Figure 5C). Finally, Lasso regression analysis was used to

calculate new scores based on the estimated regression coefficients

of these five prognostic and CTSL-associated genes (Figure 5D).
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The prognostic CTSL-based signature was as follows: � 0:6402

∗ IGLC1 + 0:142 ∗MT1E� 0:6298 ∗ FDCSP� 0:6116 ∗ EPHX3 +
0:4029 ∗ SERPINE1.
3.6 Validating the predictive value of CTSL-
based signature for HNSCC survival

Kaplan-Meier analysis was carried out to determine whether the

CTSL-based signature accurately predicted the clinical traits of

HNSCC patients. Higher CTSL-based signature scores for HNSCC
B

C D

E

A

FIGURE 1

The CTSL expression patterns in HNSC. (A) The expression levels of CTSL in HNSC tumor tissues are higher than in normal tissues analyzed in the TCGA
dataset (P< 0.01). (B, C, D) The association of CTSL expression with overall survival (OS) in HNSC patients (P< 0.01) in 3 databases (GSE41613, GSE65858
and TCGA). (E) Functional annotation associated with CTSL in TCGA-HNSC by GSVA analysis. ***, p<0.005, **, p<0.01.
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patients were associated with worse survival curves (Figure 6A). The

AUC values for the time-dependent ROC curves of the 1-year, 3-year,

and 5-year OS were 0.685, 0.712, and 0.746, respectively (Figure 6B).

This finding suggests that our CTSL signature has prognostic

significance. In addition, we further validated the prognostic and

survival disadvantage of HNSCC patients with higher CTSL-based

signature scores using three independent cohorts (GSE41613,

GSE65858, and TCGA) (Figure 6C).
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3.7 CTSL signature expression was
associated with genomic alterations

Cellular tumor antigen p53 (TP53) mutation was found to be

significantly enriched in both the high-CTSL group and low-CTSL

group (73% and 49%, respectively) according to the mutational

distribution study (Figure 7B), followed by titin (TTN) (37%),

(FAT1) (25%), and (CDKN2A) (23%) in the high-CTSL group,
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FIGURE 2

CTSL expression in relation to immunity in the TCGA cohort. (A) Changes in ESTIMATE among HNSCC patients with high and low CTSL expression.
(B) Heatmap showing the abundance of infiltrating immune cell populations for different CTSL expression according tossGSEA algorithms. (C)
Heatmap showing the abundance of infiltrating immune cell populations for different CTSL expression according to TIMER algorithms. **, p<0.005;
***, p<0.001.
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and TTN (49%), MUC16 (43%), SYNE1 (26%) in the low-CTSL

group (Figure 7C).

Furthermore, we used Fisher’s exact test to determine the ratio of

mutation frequencies between the high and low CTSL groups and

ranked the results based on increasing p-values. The high CTSL

group showed higher TP53 and NOTCH1 mutation load while

exhibiting lower mutation loadings of CYLD, MRC1, MKRN3, and

RELN compared to the low CTSL group (Figure 7A). In addition, the

concurrent or mutually exclusive mutations in the 25 most frequently

mutated genes are shown in Figure 7D. The high CTSL group had

significantly more concurrent gene alterations than the low CTSL

group. notch1 mutations frequently occurred concurrently with

FAT1 mutations in the high CTSL group. Other intimate mutant

loci included RYR2 and TTN, RYR2 and LRP1B, CSMD3, and RYR2.

Common co-mutations in the low CTSL group included NSD1 and

USH2A, LAMA2, and TP53. Meanwhile, dense mutually exclusive

gene alteration pairs were identified, such as TP53-CASP8 in the high

CTSL group (Figure 7D).
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3.8 CTSL-based signature is correlated
with immune status in TCGA cohorts
with HNSCC

To examine the relationship between CTSL-based signature and

immune status in TCGA patients with HNSCC, immune

checkpoint expression levels were observed to be considerably

higher in HNSCC patients with low-CTSL-based signature scores

than in those with high-CTSL-based signature scores (Figure 8A),

demonstrating that in HNSCC patients, the levels of CTSL signature

scores were inversely linked with immunological state.

Furthermore, GSEA analysis found that HNSCC patients with

high CTSL-related signature scores displayed increased activity in

many important immune-related pathways, including adaptive

immune response, immunological response, T-cell receptor

signaling pathways, and T-cell activation (Figure 8B). Our

research suggested that tumor immunity may be closely related to

the CTSL signature for HNSCC patients.
B

A

FIGURE 3

Immunotherapy and chemotherapy of CTSL expression involved in TCGA-HNSCC. (A) Correlation of CTSL expression and immune checkpoint levels in
HNSCC. (B) Boxplots of estimated drug sensitivities for several GDSC chemotherapeutics in the high and low CTSL expression groups. **, p<0.005; ***,
p<0.001.
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Overall, our data show that CTSL is a good indicator of a

patient’s prognosis for HNSCC.
4 Discussion

A global outbreak of coronavirus infections was brought on by

the new human-infecting beta coronavirus known as the severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1).

Therefore, to effectively manage SARS-CoV-2, it is crucial to
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comprehensively examine the factors contributing to COVID-19

susceptibility, the underlying mechanisms of these factors, and

implementing measures to prevent infection. It has been

established that CTSL is important in coronavirus infection of

host cells. Bollavaram et al. revealed that the SARS-CoV-2 spike

protein has numerous regions vulnerable to CTSL proteolysis

(13). A recent study found that downregulating CTSL

expression could reduce the virus’s ability to penetrate host cells

(14). An increasing body of evidence suggests that cancer patients

are more likely to become severely ill or die from SARS-CoV-2
B
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FIGURE 4

CTSL promotes tumor cell proliferation and metastasis in HNSC. (A)Stable transfection of lentivirus with negative control (NEG) or CTSL in SCC15
cells is indicated by green fluorescence (200×). (B)CCK8 assay in SCC15 cells, SCC15 NEG cells and SCC15 CTSL cells. (C) Transwell assay and its
quantitative analysis in SCC15 cells, SCC15 NEG cells and SCC15 CTSL cells (200×). (D) Plate cloning assay and its quantitative analysis in SCC15 cells,
SCC15 NEG cells and SCC15 CTSL cells. (E) scratch migration assay and its quantitative analysis in SCC15 cells, SCC15 NEG cells and SCC15 CTSL
cells(40×). *, p<0.05; ***, p<0.01.
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infection than those without cancer (15–17). In the present study,

we assessed the expression levels of viral entry receptors such as

CTSL in HNSC cancer tissues since malignant pathology may

influence COVID-19 susceptibility and sickness (1, 17).

Our findings provided evidence that HNSC exhibited elevated

expression of CTSL. It has been suggested that organs with high

CTSL expression may eventually become infected with SARS-CoV-

2 (18). Although CTSL expression in HNSC is not as high as in lung

cancer, HNSC patients are at significant risk of contracting SARS-

CoV-2 infection. The higher susceptibility to infection is probably

attributed to the exposure of organs to the external environment,

which offers favorable transmission routes for SARS-CoV-2

(19, 20).

In this study, the predictive significance of CTSL for patients

with HNSC was assessed using a Cox regression analysis and a
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prognostic nomogram based on CTSL expression and OS

(Figure 1). These findings suggest that CTSL may be a potential

biomarker for determining the course of HNSC.

A potent tool that can handle the large and complex datasets

produced by high-throughput technologies is machine learning

used in bioinformatics. It can accurately and quickly analyze

biological data, spot trends, and relationships, support drug

discovery, enable personalized medicine, and speed up biological

research. In the end, machine learning in bioinformatics improves

disease understanding, detection, and treatment. This study also

applied various machine learning methods, such as random survival

forest and Lasso regression, which makes the current study

convincing (18, 21).

Moreover, our genomic analysis revealed a correlation between

CTSL and mutations in P53, ATRX, and PTEN, and TP53
B

C D

A

FIGURE 5

Establishment of the CTSL signature. (A) Volcano plot showing the results of the analysis of differences between high and low CTSL groups.
(B) Univariate Cox analysis forest plot of 21 prognosis-related to CTSL. (C) Machine learning method for survival random forest to further screen
CTSL signature). (D) Lasso regression method to calculate CTSL signature.
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mutations were associated with poor survival in HNSCC patients

and tumor resistance to radiation and chemotherapy clinically (22).

Importantly, we found that patients with high expression of CTSL

had low IC50 values for 5-fluorouracil, dasatinib, ERK_2440,

JAK1_8709, luminespib, and staurosporine, suggesting that CTSL

expression was a reliable indicator of therapeutic sensitivity for

these potential molecular drugs. Clinical trials have validated the

safety and compatibility of these drugs, thereby providing general

treatment recommendations for HNSC.

A preliminary overview of CTSL and immune cell infiltration

was provided in this study. High CTSL expression in HNSC

patient tissues may lead to a deterioration in immune function

in patients infected with SARS-CoV-2 because of the relationship

between CTSL and the immune response. Furthermore, the

infiltration of CD8+ T cells, B cells, CD4+ T cells, neutrophils,

macrophages, and dendritic cells in HNSC was associated with the

expression of CTSL. Moreover, CTSL was associated with various

gene set indicators of different immune cell types. As reported,

COVID-19’s poor prognosis is attributed to cytokine storms and

inflammatory immune responses (23). The potential role of CTSL

in regulating antitumor immunity and its therapeutic significance

in HNSC remains unclear. Adaptive immunity is essential for

effective viral clearance after SARS-CoV-2 infection. Viral

infections and associated chronic inflammatory responses are
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often associated with cancer manifestation and progression.

SARS-CoV-2 may not directly cause cancer, but it may alter the

immune landscape and cause adverse outcomes in patients with

cancer (24), The immune response of cancer patients may also

contribute to the adverse effects of SARS-CoV-2 infection (23). It

is possible that CTSL plays a key role in cancer progression and

SARS-CoV-2 infection.

There are several limitations and shortcomings to this study.

Firstly, the findings heavily rely on bioinformatics analysis, and

there is no validation cohort to confirm the results. Additionally,

due to the lack of experimental evidence and mechanistic

investigations, it is challenging to understand the relationship

between SARS-CoV-2 and cancer data and the potential

contribution of CTSL. Therefore, more experimental evidence

is required.

Moreover, we developed a CTSL-based signature in this study.

Patients with low CTSL-based signature scores had higher immune

scores, stromal cells, and immune-related pathways, and they

responded well to immunotherapy and targeted therapy

compared to those with high CTSL-based signature scores. Our

results suggest that the CTSL-based signature is a reliable

prognostic predictor for HNSCC.

To summarize, we have discussed the clinical and molecular

significance of CTSL in HNSC. Our analysis revealed high
B

C

A

FIGURE 6

Predictive potential of the CTSL signature for prognosis in HNSCC patients. (A) Kaplan–Meier curves of high and low CTSL signature in TCGA-
HNSCC. (B) Time-dependent ROC of CTSL signature in TCGA. (C) Kaplan–Meier curves of overall survival in HNSCC patients based on external
validation datasets (GSE41613, GSE65858, and TCGA).
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FIGURE 7

Genomic alterations associated with CTSL signature in HNSCC samples. (A) Forest plot showing the results of somatic mutation difference analysis
between high and low groups of CTSL signature. (B, C) oncoplot of somatic mutations in HNSCCs between high and low CTSL signature groups.
(D) The heatmap presents the somatic interaction of HNSCCs between CTSL signature high and low groups.
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expression of CTSL in HNSC and its association with poor

prognosis and immune cell infiltration. This finding suggests that

CTSL may have a biological role in HNSC. Other gene signatures

may also have prognostic value for HNSCC, similar to the CTSL-

based signature developed in this study. Future studies should

investigate these signatures to identify the optimal therapeutic

targets for HNSCC.
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FIGURE 8

CTSL signature in relation to immunity in the TCGA cohort. (A) Changes in ESTIMATEclassical immune checkpoints among HNSCC patients with
high and low CTSL signature. (B) GSEA showing immune related pathways potentially related by CTSL signature.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1156038
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2023.1156038
Funding

This study was financially supported by the Key Fundamental

Research Fund of Science and Technology Foundation of

Shenzhen City (Grant No. JCYJ20210324094005015 and

JCYJ20220818095811026), Start-up Research Fund of Shenzhen

University for Youth Scholars (Grant No. 860-000002112112) and

Shenzhen Science and Technology Innovation Commission stable

support project (Grant No. 20220810174028001).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Frontiers in Immunology 13330
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1156038/

full#supplementary-material
References
1. Lan J, Ge Y, Yu J, Shan S, Zhou H, Fan S, et al. Structure of the SARS-CoV-2 spike
receptor-binding domain bound to the ACE2 receptor. Nature (2020) 581:215–20.
doi: 10.1038/s41586-020-2180-5

2. Gemmati D, Bramanti B, Serino ML, Secchiero P, Zauli G, Tisato V. COVID-19
and individual genetic Susceptibility/Receptivity: role of ACE1/ACE2 genes, immunity,
inflammation and coagulation. might the double X-chromosome in females be
protective against SARS-CoV-2 compared to the single X-chromosome in males?
IJMS (2020) 21:3474. doi: 10.3390/ijms21103474

3. Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L, et al. New insights
into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism
analysis. BMC Med (2020) 18:216. doi: 10.1186/s12916-020-01673-z

4. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al.
SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically
proven protease inhibitor. Cell (2020) 181:271–280.e8. doi: 10.1016/j.cell.2020.02.052

5. Sica A, Massarotti M. Myeloid suppressor cells in cancer and autoimmunity. J
Autoimmun (2017) 85:117–25. doi: 10.1016/j.jaut.2017.07.010

6. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response
in patients with COVID-19 in wuhan, China. SSRN J (2020) 762–8. doi: 10.2139/ssrn.3541136

7. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for
monocytes andmacrophages.NatRev Immunol (2020) 20:355–62. doi: 10.1038/s41577-020-0331-4

8. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. Cancer patients in SARS-
CoV-2 infection: a nationwide analysis in China. Lancet Oncol (2020) 21:335–7.
doi: 10.1016/S1470-2045(20)30096-6

9. Curigliano G. Cancer patients and risk of mortality for COVID-19. Cancer Cell
(2020) 38:161–3. doi: 10.1016/j.ccell.2020.07.006

10. Bao R, Hernandez K, Huang L, Luke JJ. ACE2 and TMPRSS2 expression by
clinical, HLA, immune, and microbial correlates across 34 human cancers and matched
normal tissues: implications for SARS-CoV-2 COVID-19. J Immunother Cancer (2020)
8:e001020. doi: 10.1136/jitc-2020-001020

11. Cheng X, Wang X, Nie K, Cheng L, Zhang Z, Hu Y, et al. Systematic pan-cancer
analysis identifies TREM2 as an immunological and prognostic biomarker. Front
Immunol (2021) 12:646523. doi: 10.3389/fimmu.2021.646523

12. Wölfl M, Schwinn S, Yoo Y-E, Reß ML, Braun M, Chopra M, et al. Src-kinase
inhibitors sensitize human cells of myeloid origin to toll-like-receptor-induced interleukin
12 synthesis. Blood (2013) 122:1203–13. doi: 10.1182/blood-2013-03-488072

13. Bollavaram K, Leeman TH, Lee MW, Kulkarni A, Upshaw SG, Yang J, et al.
Multiple sites on SARS-COV -2 spike protein are susceptible to proteolysis by
cathepsins b, K, l, s and V. Protein Sci (2021) 30:1131–43. doi: 10.1002/pro.4073
14. Kwan JYY, Lin L-T, Bell R, Bruce JP, Richardson C, Pugh TJ, et al. Elevation in
viral entry genes and innate immunity compromise underlying increased infectivity
and severity of COVID-19 in cancer patients. Sci Rep (2021) 11:4533. doi: 10.1038/
s41598-021-83366-y

15. Sawyers A, Chou M, Johannet P, Gulati N, Qian Y, Zhong J, et al. Clinical
outcomes in cancer patients with COVID -19. Cancer Rep (2021) 4(6):e1413.
doi: 10.1002/cnr2.1413

16. Zhang H, Han H, He T, Labbe KE, Hernandez AV, Chen H, et al. Clinical
characteristics and outcomes of COVID-19–infected cancer patients: a systematic
review and meta-analysis. JNCI: J Natl Cancer Institute (2021) 113:371–80.
doi: 10.1093/jnci/djaa168

17. Cheng J, Zhou J, Fu S, Fu J, Zhou B, Chen H, et al. Prostate adenocarcinoma and
COVID-19: the possible impacts of TMPRSS2 expressions in susceptibility to SARS-
CoV-2. J Cell Mol Med (2021) 25:4157–65. doi: 10.1111/jcmm.16385

18. Wu X-N, Su D, Mei Y-D, Xu M-Q, Zhang H, Wang Z-Y, et al. Identified lung
adenocarcinoma metabolic phenotypes and their association with tumor immune
microenvironment. Cancer Immunol Immunother (2021) 70:2835–50. doi: 10.1007/
s00262-021-02896-6

19. Patel KP, Vunnam SR, Patel PA, Krill KL, Korbitz PM, Gallagher JP, et al.
Transmission of SARS-CoV-2: an update of current literature. Eur J Clin Microbiol
Infect Dis (2020) 39:2005–11. doi: 10.1007/s10096-020-03961-1

20. He C, Hua X, Sun S, Li S, Wang J, Huang X. Integrated bioinformatic analysis of
SARS-CoV-2 infection related genes ACE2, BSG and TMPRSS2 in aerodigestive
cancers. JIR (2021) 14:791–802. doi: 10.2147/JIR.S300127

21. Zhang N, Zhang H, WuW, Zhou R, Li S, Wang Z, et al. Machine learning-based
identification of tumor-infiltrating immune cell-associated lncRNAs for improving
outcomes and immunotherapy responses in patients with low-grade glioma.
Theranostics (2022) 12:5931–48. doi: 10.7150/thno.74281

22. Lindemann A, Takahashi H, Patel AA, Osman AA, Myers JN. Targeting the
DNA damage response in OSCC with TP 53 mutations. J Dent Res (2018) 97:635–44.
doi: 10.1177/0022034518759068

23. Latif MB, Shukla S, Del Rio Estrada PM, Ribeiro SP, Sekaly RP, Sharma AA.
Immune mechanisms in cancer patients that lead to poor outcomes of SARS-CoV-2
infection. Trans Res (2022) 241:83–95. doi: 10.1016/j.trsl.2021.12.001

24. Han HJ, Nwagwu C, Anyim O, Ekweremadu C, Kim S. COVID-19 and cancer:
from basic mechanisms to vaccine development using nanotechnology. Int
Immunopharmacol (2021) 90:107247. doi: 10.1016/j.intimp.2020.107247
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1156038/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1156038/full#supplementary-material
https://doi.org/10.1038/s41586-020-2180-5
https://doi.org/10.3390/ijms21103474
https://doi.org/10.1186/s12916-020-01673-z
https://doi.org/10.1016/j.cell.2020.02.052
https://doi.org/10.1016/j.jaut.2017.07.010
https://doi.org/10.2139/ssrn.3541136
https://doi.org/10.1038/s41577-020-0331-4
https://doi.org/10.1016/S1470-2045(20)30096-6
https://doi.org/10.1016/j.ccell.2020.07.006
https://doi.org/10.1136/jitc-2020-001020
https://doi.org/10.3389/fimmu.2021.646523
https://doi.org/10.1182/blood-2013-03-488072
https://doi.org/10.1002/pro.4073
https://doi.org/10.1038/s41598-021-83366-y
https://doi.org/10.1038/s41598-021-83366-y
https://doi.org/10.1002/cnr2.1413
https://doi.org/10.1093/jnci/djaa168
https://doi.org/10.1111/jcmm.16385
https://doi.org/10.1007/s00262-021-02896-6
https://doi.org/10.1007/s00262-021-02896-6
https://doi.org/10.1007/s10096-020-03961-1
https://doi.org/10.2147/JIR.S300127
https://doi.org/10.7150/thno.74281
https://doi.org/10.1177/0022034518759068
https://doi.org/10.1016/j.trsl.2021.12.001
https://doi.org/10.1016/j.intimp.2020.107247
https://doi.org/10.3389/fimmu.2023.1156038
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Ping Zheng,
The University of Melbourne, Australia

REVIEWED BY

Qiaoqiao Li,
Guangdong Academy of Medical Sciences,
China
Yirui Chen,
Hangzhou Medical College, China

*CORRESPONDENCE

Zhiwei Liu

3191038@zju.edu.cn

Fangjian Chen

cfj68@163.com

RECEIVED 28 March 2023

ACCEPTED 12 June 2023
PUBLISHED 17 July 2023

CITATION

Pan Y, Wang Y, Hu M, Xu S, Jiang F, Han Y,
Chen F and Liu Z (2023) Aggrephagy-
related patterns in tumor
microenvironment, prognosis, and
immunotherapy for acute myeloid
leukemia: a comprehensive single-cell
RNA sequencing analysis.
Front. Oncol. 13:1195392.
doi: 10.3389/fonc.2023.1195392

COPYRIGHT

© 2023 Pan, Wang, Hu, Xu, Jiang, Han, Chen
and Liu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 17 July 2023

DOI 10.3389/fonc.2023.1195392
Aggrephagy-related patterns in
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comprehensive single-cell RNA
sequencing analysis
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Acute myeloid leukemia (AML) is a complex mixed entity composed of malignant

tumor cells, immune cells and stromal cells, with intra-tumor and inter-tumor

heterogeneity. Single-cell RNA sequencing enables a comprehensive study of

the highly complex tumor microenvironment, which is conducive to exploring

the evolutionary trajectory of tumor cells. Herein, we carried out comprehensive

analyses of aggrephagy-related cell clusters based on single-cell sequencing for

patients with acute myeloid leukemia. A total of 11 specific cell types (T, NK, CMP,

Myeloid, GMP, MEP, Promono, Plasma, HSC, B, and Erythroid cells) using t-SNE

dimension reduction analysis. Several aggrephagy-related genes were highly

expressed in the 11 specific cell types. Using Monocle analysis and NMF

clustering analysis, six aggrephagy-related CD8+ T clusters, six aggrephagy-

related NK clusters, and six aggrephagy-related Mac clusters were identified. We

also evaluated the ligand-receptor links and Cell–cell communication using

CellChat package and CellChatDB database. Furthermore, the transcription

factors (TFs) of aggrephagy-mediated cell clusters for AML were assessed

through pySCENIC package. Prognostic analysis of the aggrephagy-related cell

clusters based on R package revealed the differences in prognosis of

aggrephagy-mediated cell clusters. Immunotherapy of the aggrephagy-related

cell clusters was investigated using TIDE algorithm and public immunotherapy

cohorts. Our study revealed the significance of aggrephagy-related patterns in

tumor microenvironment, prognosis, and immunotherapy for AML.

KEYWORDS

acute myeloid leukemia, aggrephagy, immune cell, prognosis, immunotherapy,
microenvironment
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Introduction

Leukemia is a malignant clonal disease originating from

hematopoietic stem cells (1). The affected cells have uncontrolled

proliferation, impaired differentiation, and blocked apoptosis, so the

affected cells are stuck in different stages of cell development (2).

The incidence and mortality rate of leukemia are both high. The

report showed that in 2018 alone, there were 437000 new cases of

leukemia and 309000 new deaths from leukemia worldwide (3).

Leukemia can be classified as acute (4) or chronic (5) according to

its course. Leukemias can be divided into myeloid leukemia and

lymphocytic leukemia according to the cells involved (6). Acute

myeloid leukemia (AML), the most common leukemia in adults, is

a highly heterogeneous disease (7). French-American-British (FAB)

defined eight subtypes (M0 to M7) based on the morphological and

cytological characteristics of leukemia cells (8). According to genetics,

morphology, immunophenotype and clinical manifestations, World

Health Organization (WHO) classified leukemia into six main types

and more than 20 subtypes (9). In addition, the prognosis of AML

can be divided into good, moderate and poor groups based on

cytogenetic characteristics (1, 6), but the prognosis of different

patients in each group is still very different, indicating that the gene

expression pattern of leukemia is very complex.

Tumor microenvironment (TME) is the internal environment

that tumor cells depend on for survival and development. Besides

tumor cells, it also contains many non-malignant cells and some

soluble factors, which play an important role in promoting tumor

occurrence, progression and immune escape (10). Tumor

microenvironment mainly includes immune microenvironment,

including myeloid-derived suppressor cells (MDSCs), tumor-

associated macrophages (TAMs), tumor-associated neutrophils

(TANs), dendritic cell (DC), T cell, B cell, and Natural Killer (NK)

cell, and non-immune microenvironment, including cancer-

associated fibroblasts (CAFs), extracellular matrix, mesenchymal

stem cells, and various secreted factors (11–14). Therefore, tumor is

a complex mixed entity composed of malignant tumor cells, immune

cells and stromal cells, with intra-tumor and inter-tumor

heterogeneity. Since bulk tissue is composed of various cells, its

sequencing cannot reveal the function or cell state of a specific cell

population (15). Therefore, the detection of genome, transcriptome,

epigenome and proteome at the cellular level can overcome the

limitations of the traditional bulk level and conduct more detailed

analysis at the cellular and molecular level (15). Single-cell RNA

sequencing (scRNA-Seq) enables non-targeted quantification of

transcripts in a single cell. Single-cell RNA sequencing enables a

comprehens ive s tudy of the h igh ly complex tumor

microenvironment, which is conducive to exploring the

evolutionary trajectory of tumor cells, the complex interactions

between tumor cells and tumor microenvironment, and the spatio-

temporal functional relationships between different cell population

types (16, 17). Bioinformation analysis can identify new cell types,

identify rare cell populations, and construct cell status and

phylogenetic maps through computational methods such as high-

dimensional data reduction, unsupervised clustering, phylogenetic

modeling, locus inference, RNA rate analysis, lineage tracing, and

ligand-receptor interaction mapping (16, 17).
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Autophagy is an important feedback process of cells under

pressure. Autophagy realizes self-digestion and catabolism by

phagocytic organelles and degradation of cell contents, so as to

maintain the homeostasis balance of cells (18, 19). Autophagy plays

an important role in maintaining vital activities and immune

function and is closely related to tumors and other diseases. The

common types of autophagy include macroautophagy,

microautophagy and chaperonemediated autophagy (20).

Aggrephagy is a kind of selective autophagy, which is the only

way to clear protein aggregates. Once the function of molecular

chaperone and ubiquitin proteasome is limited or the clearance

efficiency of misfolded proteins is lower than the production rate,

protein aggregates will be formed, and the aggrephagy needs to be

activated to degrade them (21).

In this study, the relationship between aggrephagy-related genes

and cell subsets of TME (such as T cells, Natural Killer cell, and

Myeloid cells) for AML was investigated using data of single-cell RNA-

sequencing (scRNA-seq) from GSE116256. After Nonnegative Matrix

Factorization analysis, the characteristics of the aggrephagy-mediated

cell clusters in Pseudotime trajectory, cell–cell communication, ligand-

receptor links, and immunotherapy were investigated.
Materials and methods

Downloading and preprocessing for data
of acute myeloid leukemia

The samples source with single-cell RNA-sequencing (scRNA-

seq, GSE116256) and expression profiles (GSE63270 and

GSE12417) were downloaded from Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) of The

National Center for Biotechnology Information (NCBI) (22). We

enrolled three normal samples and ten patients with acute myeloid

leukemia from GSE116256 for analysis of scRNA-seq (23–25).

There were 104 normal and acute myeloid leukemia (42

populations and 62 leukemic populations) included in GSE63270

dataset (26). GSE12417 dataset contained the analysis of 79 samples

of bone marrow or peripheral blood mononuclear cells from adult

patients with untreated acute myeloid leukemia (27, 28). In

addition, the expression profiles and clinical information were

acquired from TCGA-LAML cohort, including 151 patients with

acute myeloid leukemia (29, 30).
Dimensionality reduction and annotation
of single cell for acute myeloid leukemia

First, the data of single cell was filtered by setting each gene to

be expressed in at least three cells, and each cell to express at least

500 genes, resulting in 9891 cells. We calculated the percentage of

mitochondria and Ribosomal RNA (rRNA) through the

PercentageFeatureSet function of Seurat package (31). The

number of genes expressed in each single cell was greater than

100 and less than 5000, and we ensured the percentage of

mitochondria was less than 20%. Furthermore, the Unique
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Molecular Identifier (UMI) of the single cell was at least greater

than 100, resulting in 9886 cells. Subsequently, we used the method

of log-normalization to standardize the single-cell data from each of

the 13 samples. The highly variable features were identified by

FindVariableFeatures function (32) based on variance stabilization

transformation (VST). The genes were then scaled by using the

ScaleData function for all genes. We utilized RunPCA function for

PCA dimension reduction to find anchors. The FindNeighbors

function with dim=15 and FindClusters function with

Resolution=0.1 was used to luster cells. Ulteriorly, the RunTSNE

function was used to conduct t-SNE (T-Distribution Stochastic

Neighbour Embedding) dimension reduction analysis and the

RunUMAP function was used to conduct UMAP (Uniform

Manifold Approximation and Projection) reduction analysis. The

marker genes for single cell were supplied by SingleR package (33)

and the classical marker from the published literature (25).
Pseudotime trajectory analysis for the
aggrephagy-mediated cell clusters

Monocle R package was applied for the data of single cell to explore

the correlation of aggrephagy-related genes and pseudotime trajectories

(34). The graphs for the pseudotime trajectories of specific cell with

aggrephagy-related genes were plotted using the function from

Monocle R package, such as plot_pseudotime_heatmap and so on.
Nonnegative matrix factorization of
aggrephagy-related genes in single cell for
acute myeloid leukemia

Based on the expression matrix of the scRNA-seq, dimension

reduction analysis of aggrephagy-related genes in each cell clusters

were conducted employing NMF (Nonnegative Matrix

Factorization) R package (35, 36), thus displaying the effect of

aggrephagy-related genes in single cell for acute myeloid leukemia.
Identifying the marker genes of single cell
for acute myeloid leukemia

FindAllMarkers function was applied to identify he marker

genes of single cell for acute myeloid leukemia (31). The

aggrephagy-mediated cell clusters were identified based on

differentially expressed genes (DEGs) with log Fold Change

(logFC) and aggrephagy-related genes. The NK cell subtypes were

summarized from the published literature of Huan Liu et al (37).
Analysis of transcription factors for
aggrephagy-mediated cell clusters

SCENIC was a tool for simultaneously reconstructing gene

regulatory networks and identifying stable cell states from single-

cell RNA-seq data (38). The gene regulatory network was inferred
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based on co-expression and DNA motif analysis, and then network

activity was analyzed in each cell to identify cell status (38). We

carried out analysis of transcription factors (TFs) for aggrephagy-

mediated cell clusters for acute myeloid leukemia through

pySCENIC package (39–41). RcisTarget R package and two gene-

motif rankings (hg19-tss-centered-10 kb and hg19-500 bp-

upstream) was used to identify binding motifs of TFs in the gene

list for acute myeloid leukemia (42, 43). The threshold value for the

TFs was set as Benjamini–Hochberg false discovery rate (BH-

FDR) <0.05.
Cell–cell communication analysis among
cell subsets for acute myeloid leukemia

The signaling inputs and outputs among the cell types and

aggrephagy-mediated cell clusters were assessed by applying

CellChat package (44) and CellChatDB database (45). The

netVisual_circle function was utilized for evaluating the strength

of cell–cell communication networks among cell subsets (44, 45). In

addition, the ligand-receptor interactions among the specific cell

subsets were estimated via the netVisual_bubble function (44, 45).
Prognostic analysis of the aggrephagy-
related cell clusters for acute
myeloid leukemia

Based on the data of scRNA, Gene Set Variation Analysis

(GSVA) was applied to compute the signature scores involved in

aggrephagy for public database (46). We carried out Cox

proportional hazard regression to evaluate the prognosis for the

aggrephagy-related cell clusters (47). The Kaplan–Meier curves was

plotted through the survminer R package.
Immunotherapy analysis of the
aggrephagy-related cell clusters for acute
myeloid leukemia

We used TIDE (Tumor Immune Dysfunction and Exclusion)

algorithm to analyze the immune checkpoint blockade

immunotherapeutic for the aggrephagy-related cell clusters (48).

We also reviewed the published literature to validate the prognostic

and therapeutic effects of each cell subtype using real-world

immunotherapy cohorts (49–60).
Statistical analysis

The continuous or category variables were compared using

Student’s t-test, Wilcoxon rank sum test, Kruskal–Wallis’s test, or

Chi-square test. The log-rank test was used for survival analyses.
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Results

Dimensionality reduction and annotation
of single cell for acute myeloid leukemia

We carried out dimensionality reduction and annotation of single

cell for acute myeloid leukemia as described in the materials and

methods section. We ensured that the number of genes expressed in

each single cell was greater than 100 and less than 5000, the

percentage of mitochondria was less than 20%, and the Unique

Molecular Identifier (UMI) of the single cell was at least greater than

100, resulting in 9886 cells. Supplementary Figures S1A–B was the

statistical diagram of cell filtration, which could be seen to meet all

thresholds set above (Supplementary Figures S1A, B). The highly

variable features were identified via FindVariableFeatures function

based on VST, and the top ten highly variable genes among the single

cell were marked out in the volcano plot, including IGLL5, HBB,

JCHAIN, HBG1, HBG2, HBD, HBA2, CLC, CA1, and HBA1

(Supplementary Figure S1C). Ulteriorly, PCA analysis was carried

out on the highly variable genes, we used the Elbow algorithm to

carry out the Standard Deviation based on the highly variable genes

(Supplementary Figure S1D). The RunTSNE function was used to

conduct t-SNE dimension reduction analysis and the RunUMAP

function was used to conduct UMAP reduction analysis, thus

identifying a total of 18 cell subsets (Supplementary Figure S1E).

Afterwards, the marker genes were used to annotate the specific cell

types, thus identifying 11 specific cell types, including T cell, Natural

Killer (NK) cell, Common Myeloid Progenitor (CMP) cell, Myeloid

cell, Granulocyte Monocyte Progenitor (GMP) cell, Megakaryocyte

Erythroid Progenitor (MEP) MEP, Promonocyte (Promono) cell,

Plasma cell, Hematopoietic Stem Cell (HSC) cell, B cell, and

Erythroid cell (Figure 1A). We plotted the correlation network for

the number of interactions among the 11 specific cell types

(Figure 1B). Figure 1C visually showed the proportion of different

cell types in each sample. Finally, we created the heat map to show the

expression of the aggrephagy-related genes in different cell types

(Figure 1D). We could see that there were several aggrephagy-related

genes that were highly expressed in the 11 specific cell types,

including HSP90AA1, RPS27A, UBA52, UBB, UBC, and VIM

(Figure 1D). We displayed the global view of the expression pattern

for marker genes gained as described in the methods section,

reflecting the dynamic features of each cell subsets (Supplementary

Figure S2).
Pseudotime analysis for aggrephagy-
mediated T cells

There was a total of 2397 cells in the T cell type. Using UMAP

reduction analysis, the 2397 cells in the T cell type could be

clustered into eight cell clusters (Supplementary Figure S3), and

the global view of the expression pattern for marker genes of the

eight cell clusters was displayed in Supplementary Figure S3.

Further, the eight cell clusters could be re-clustered into nine cell

subsets (Supplementary Figure S3). Based on the aggrephagy-

related genes, six clusters were identified using Monocle analysis
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(Figure 2A), including Cluster 1 (DYNC1LI2 and TUBB1), Cluster

2 (PRKN, TUBB2A, DYNLL2, RPS27A and UBA52), Cluster 3

(TUBA1A, UBE2V1, IFT88 and VCP), Cluster 4 (TUBA1C,

TUBA3C, TUBA3D, HSP90AA1, VIM, DYNC1I2, PARK7,

UBE2N, DYNLL1 and HSF1), Cluster 5 (TUBA4A, TUBB4B,

TUBA1B, ARL13B and PCNT), and Cluster 6 (DYNC1LI1, UBB,

HDAC6, DYNC1H1 and UBC). From the heatmap generated by

Pseudotime analysis, the critical role of the aggrephagy-related

genes in the trajectory process of T cells was observed

(Figure 2A). Four subgroups of T cells were obtained by re-

clustering annotation using t-SNE dimension reduction analysis,

including CD8+ T cell, CD4+ T cell, natural killer (NK) cells, and

Regulatory T (Treg) cells (Figure 2B). Among the four cell

subgroups, we found that CD8+ T cell and CD4+ T cell had a

higher percentage both in tumor samples and normal samples than

the other two cell subgroups (Figure 2C), and CD8+ T cell occupied

the highest proportion among the four cell subgroups (Figure 2C).

The result of CD8+ T cell revealed that the whole trajectory could be

divided into three segments (State 1, State 2, and State 3) on the

basis of the developmental order (Figure 2D). Ulteriorly, NMF

clustering analysis of the aggrephagy-related gene set for the

trajectories showed that these cells aggregated into nine clusters

(Figure 2E). In addition, the results of UMAP reduction analysis

indicated that the NMF cell types were clustered into six

aggrephagy-related CD8+ T clusters, including TUBA1B+CD8+ T

−C1, DYNC1H1+CD8+ T−C2, UBE2V1+CD8+ T−C3, UBE2N

+CD8+ T−C4, Unc−CD8+ T−C5, and Non−Aggre−CD8+ T−C6

(Figure 2F). The number of ligand-receptor links among the six

aggrephagy-related CD8+ T clusters was computed by Cell-Chat

analysis (Figure 2G). The weights and strength of ligand-receptor

links among the six aggrephagy-related CD8+ T clusters was

computed by Cell-Chat analysis (Supplementary Figure S3).

Lastly, the discrepancies in the exhausted CD8+ T (CD8+_exhau),

cytotoxic CD8+ T (CD8+_cyoto), and TFs (BTN3A1, BTN3A2,

BTN2A2, LGALS9, TIGIT, CD274, BTLA, CTLA4, IL10, LAIR1,

CD247, TGFB1, SLAMF7, CD160, CD244, HAVCR2, LAG3, CD96,

ADORA2A, PDCD1, and CD48) among the six aggrephagy-related

CD8+ T clusters were visually displayed in the pathway heatmap

(Figure 2H). TUBA1B+CD8+ T−C1 tended to be exhausted CD8+ T

(CD8+_exhau), while UBE2N+CD8+ T−C4 tended to be cytotoxic

CD8+ T (CD8+_cyoto) as shown in Figure 2H. It is noteworthy that

TFs of LGALS9, TIGIT, BTLA, and CTLA4 were upregulated in the

TUBA1B+CD8+ T−C1, TFs of IL10 and CD160 were upregulated in

the DYNC1H1+CD8+ T−C2, ADORA2A was upregulated in the

UBE2V1+CD8+ T−C3, BTN3A1, BTN3A2, CD274, CD247,

SLAMF7, LAG3, and PDCD1 were upregulated in the UBE2N

+CD8+ T−C4, BTN2A2 and LAIR1 were upregulated in the Non

− Aggre−CD8+ T−C6 (Figure 2H).
Pseudotime analysis for aggrephagy-
mediated NK cells

There was a total of 1067 cells in the NK cell type. Using UMAP

reduction analysis, the 1067 cells in the NK cell type could be

clustered into eleven cell clusters (Supplementary Figure S4). Based
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on the aggrephagy-related genes, six clusters were identified using

Monocle analysis (Figure 3A), including Cluster 1 (TUBA1B,

TUBA4A, UBA52, UBB, TUBB4B, and UBE2V1), Cluster 2

(TUBA1C, HDAC6, VCP, DYNC1LI1, UBC, PRKN, TUBB1,

HSP90AA1, RPS27A, PCNT, DYNC1H1, and DYNLL2), Cluster 3

(TUBA1A, VIM, HSF1, and UBE2N), Cluster 4 (TUBB6, ARL13B,

DYNC1I2, DYNC1LI2, and TUBB2A), Cluster 5 (IFT88 and

TUBA8), Cluster 6 (TUBA3C, DYNLL1, and PARK7). The results

of UMAP reduction analysis indicated that the NMF cell types were

clustered into six aggrephagy-related NK clusters, including UBE2N

+NK−C1, UBE2V1+NK−C2, DYNC1H1+NK−C3, PARK7+NK−C4,

Unc+NK−C5, and Non−Aggre−NK−C6 (Figure 3B). The number of

ligand-receptor links among the six aggrephagy-related NK clusters

was computed by Cell-Chat analysis (Figure 3C). The number,

weights and strength of ligand-receptor links among the

aggrephagy-related NK clusters was computed by Cell-Chat analysis
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(Supplementary Figure S4). Lastly, the discrepancies in the NK

−CD56bright, NK−CD56dim, NK−HIA, LrNK−FCGR3A, LrNK

−XCL1, KIR2DS1, NCR1, NCR2, NCR3, TLR3, TLR9, KIR3DL1,

KIR2DL3, KLRB1, LILRB1, LILRB2, KLRG1, CEACAM1, CD244,

LAIR1, CD96, TIGIT, and LAG3 among the six aggrephagy-related

NK clusters were visually displayed in the pathway heatmap

(Figures 3D, E). It is noteworthy that NK−CD56bright was

upregulated in PARK7+NK−C4 (Figure 3D), NK−HIA was

upregulated in UBE2N+NK−C1 (Figure 3D), LrNK−FCGR3A

was upregulated in UBE2N+NK−C1 (Figure 3D), LrNK−XCL1 was

upregulated in PARK7+NK−C4 (Figure 3D), NCR1 was upregulated

in UBE2N+NK−C1 (Figure 3E), NCR3 was upregulated in PARK7

+NK−C4 (Figure 3E), TLR9 was upregulated in PARK7+NK

−C4 (Figure 3E), KIR3DL1 was upregulated in UBE2V1+NK−C2

(Figure 3E), LILRB1 was upregulated in UBE2V1+NK−C2

(Figure 3E), LILRB2 was upregulated in DYNC1H1+NK−C3
A B

D

C

FIGURE 1

Dimensionality reduction and annotation of single cell for acute myeloid leukemia. (A) Cells were clustered into 11 specific cell types using t-SNE
algorithm. (B) The number of interactions for communication among the 11 specific cell types. (C) The proportion of the 11 specific cell types in
each sample. (D) Heat map showing the expression of the aggrephagy-related genes in 11 specific cell types.
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FIGURE 2

Pseudotime analysis for aggrephagy-mediated T cells. (A) Pseudotime analysis reveals the role of aggrephagy-related genes for T cells (2397 cells).
(B) Four subgroups of T cells were obtained by re-clustering annotation based on tSNE analysis. (C) Bar plot showing the percentage of the four cell
subgroups (CD8+ T cell, CD4+ T cell, NK cell and Treg cell). (D) Trajectory color-coded by cell state. (E) Trajectory color-coded by NMF cluster. (F)
The UMAP view and clustering analysis identifying six aggrephagy-related CD8+ T clusters. (G) Cell–Cell communications from aggrephagy-related
CD8+ T cells to HSC cell. (H) Heatmap showing the different average expression of exhausted CD8+ T (CD8+_exhau), cytotoxic CD8+ T
(CD8+_cyoto), and TFs among the six aggrephagy-related CD8+ T clusters.
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(Figure 3E), KLRG1 was upregulated in Non−Aggre−NK−C6

(Figure 3E), CEACAM1 was upregulated in PARK7+NK

−C4 (Figure 3E), CD96 was upregulated in DYNC1H1+NK

−C3 (Figure 3E), TIGIT was upregulated in PARK7+NK−C4

(Figure 3E), LAG3 was upregulated in PARK7+NK−C4 (Figure 3E).
Pseudotime analysis for aggrephagy-
mediated myeloid cells

There was a total of 3167 cells in the Myeloid cell type. Based on

Myeloid cell type, the PCA analysis was carried out on the highly

variable genes, the Elbow algorithm to carry out the Standard

Deviation based on the highly variable genes (Supplementary Figure

S5). Using UMAP reduction analysis, the 3167 cells in the Myeloid cell

type could be clustered into eleven and twelve cell clusters

(Supplementary Figure S5). Based on the aggrephagy-related genes,
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six clusters were identified using Monocle analysis (Figure 4A),

including Cluster 1 (VCP, HDAC6, TUBA1A, DYNC1H1, and

TUBB1), Cluster 2 (UBC, TUBA4A, DYNC1LI1, VIM, TUBB2A,

UBB, HSP90AA1, and TUBB6), Cluster 3 (TUBA3C and TUBA3E),

Cluster 4 (PCNT, TUBA1B, UBE2V1, PARK7, TUBB4B, TUBAL3,

RPS27A, UBA52, and UBE2N), Cluster 5 (TUBA1C, ARL13B,

TUBA8, DYNLL2, DYNC1LI2, and HSF1), Cluster 6 (TUBA4B,

IFT88, DYNC1I2, and DYNLL1). Three subgroups of Myeloid cells

were obtained by re-clustering annotation using UMAP reduction

analysis, including Mono (monocytes) cell, Macrophages (MAC) cell,

and Dendritic cell (DC) cell (Figure 4B). Further, we displayed the

global view of the expression pattern for marker genes of Mono

(monocytes) cell and Macrophages (MAC) cell in Supplementary

Figure S5. In addition, the results of UMAP reduction analysis

indicated that the NMF cell types were clustered into six

aggrephagy-related Mac clusters, including DYNLL1+Mac-C1,

UBE2V1+Mac-C2, TUBA1A+Mac-C3, PAPK7+Mac-C4, Unc-
A B

D E

C

FIGURE 3

Pseudotime analysis for aggrephagy-mediated NK cells. (A) Pseudotime analysis reveals the role of aggrephagy-related genes for NK cells (1067
cells). (B) The UMAP view and clustering analysis identifying six aggrephagy-related NK clusters. (C) Cell–Cell communications from aggrephagy-
related NK cells to HSC cell. (D) Heatmap showing the different average expression of NK−CD56bright, NK−CD56dim, NK−HIA, LrNK−FCGR3A, and
LrNK−XCL1 among the six aggrephagy-related NK clusters. (E) Heatmap showing the different average expression of KIR2DS1, NCR1, NCR2, NCR3,
TLR3, TLR9, KIR3DL1, KIR2DL3, KLRB1, LILRB1, LILRB2, KLRG1, CEACAM1, CD244, LAIR1, CD96, TIGIT, and LAG3 among the six aggrephagy-related
NK clusters.
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Aggre-Mac-C5, and Non-Aggre-Mac-C6 (Figure 4C). The number of

ligand-receptor links among the aggrephagy-related Mac clusters was

computed by Cell-Chat analysis (Supplementary Figure S5). Ulteriorly,

we used scMetabolism package to assess the correlation between the

aggrephagy-related Mac clusters and metabolic pathways, and we

could intuitively see the differences in metabolic pathways of each

aggrephagy-related Mac cluster from the bubble map (Figure 4D). To

identify M1/M2 type cells, we scored related genes, suggesting that M1

type macrophages were more active in AML (Figures 4E–H).
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Prognostic analysis of the aggrephagy-
related cell clusters for acute
myeloid leukemia

There were 104 normal and acute myeloid leukemia (42

populations and 62 leukemic populations) samples included in

GSE63270 dataset, we compared the abundance of UBE2N+NK-

C1, UBE2V1+NK-C2, DYNC1H1+NK-C3, PARK7+NK-C4,

TUBA1B+CD8+ T−C1, DYNC1H1+CD8+ T−C2, UBE2V1+CD8+
A B
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FIGURE 4

Pseudotime analysis for aggrephagy-mediated Myeloid cells. (A) Pseudotime analysis reveals the role of aggrephagy-related genes for Myeloid cells
(3167 cells). (B) Three subgroups of Myeloid cells were obtained by re-clustering annotation based on UMAP analysis. (C) The UMAP view and
clustering analysis identifying six aggrephagy-related Mac clusters. (D) Bubble map showing significantly different activity of metabolic signaling
pathway among the six aggrephagy-related Mac clusters. (E) The score of the six aggrephagy-related Mac clusters in M1 type macrophages. (F) The
score of the six aggrephagy-related Mac clusters in M2 type macrophages. (G) UMAP plots of the six aggrephagy-related Mac clusters in M1 type
macrophages. (H) UMAP plots of the six aggrephagy-related Mac clusters in M2 type macrophages.
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T−C3, UBE2N+CD8+ T−C4, DYNLL1+Mac-C1, UBE2V1+Mac-

C2, TUBA1A+Mac-C3, and PAPK7+Mac-C4 between normal and

AML samples (Figure 5A). The results indicated that the higher

abundance of PARK7+NK-C4, DYNC1H1+CD8+ T−C2, DYNLL1

+Mac-C1, and TUBA1A+Mac-C3 were observed in the AML

samples, while the higher abundance of TUBA1B+CD8+ T−C1,

UBE2V1+CD8+ T−C3, and UBE2V1+Mac-C2 were observed in the

normal samples (Figure 5A). Based on the differentially expressed

genes (DEGs) generated by the DYNC1H1+CD8+ T−C2, TUBA1A

+Mac-C3, and UBE2V1+CD8+ T−C3, the prognostic models were

established using TCGA-LAML cohort, the poor prognosis was

observed in patients with higher level of DYNC1H1+CD8+ T−C2,

lower level of TUBA1A+Mac-C3, and higher level of UBE2V1

+CD8+ T−C3 (Figure 5B). GSVA was used for calculating the

aggrephagy-related score, the prognosis of the AML patients in

the GSE12417 and TCGA-LAML cohorts were further evaluated as

displayed in Figure 5C. We found that the survival rates of AML
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patients in GSE12417 and TCGA-LAML cohorts were significantly

different among DYNC1H1+CD8+ T−C2, DYNC1H1+NK-C3,

DYNLL1+Mac-C1, PAPK7+Mac-C4, PARK7+NK-C4, TUBA1A

+Mac-C3, TUBA1B+CD8+ T−C1, UBE2N+CD8+ T−C4,

UBE2N+NK-C1, UBE2V1+CD8+ T−C3, UBE2V1+Mac-C2, and

UBE2V1+NK-C2 (Figure 5C).
Immunotherapy analysis of the
aggrephagy-related cell clusters for acute
myeloid leukemia

We compared the response status (False or True) of immune

checkpoint blockade therapy for patients with AML among the

aggrephagy-related cell clusters (UBE2N+NK-C1, UBE2V1+NK-

C2, DYNC1H1+NK-C3, PARK7+NK-C4, TUBA1B+CD8+ T−C1,

DYNC1H1+CD8+ T−C2, UBE2V1+CD8+ T−C3, UBE2N+CD8+
A
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FIGURE 5

Prognostic analysis of the aggrephagy-related cell clusters for acute myeloid leukemia. (A) Comparison for the abundance of the aggrephagy-related
cell clusters between normal and AML samples from GSE63270 dataset. (B) Kaplan-Meier curves for DYNC1H1+CD8+ T−C2, TUBA1A+Mac-C3, and
UBE2V1+CD8+ T−C3. (C) Comparison for the survival rates of AML patients in GSE12417 and TCGA-LAML cohorts among the aggrephagy-related
cell clusters. *P < 0.05; **P < 0.01; ****P < 0.0001.
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T−C4, DYNLL1+Mac-C1, UBE2V1+Mac-C2, TUBA1A+Mac-C3,

and PAPK7+Mac-C4) using TIDE algorithm (Figure 6A and

Supplementary Figure S6). For the AML patients with True

response status, the abundance of UBE2N+NK-C1, PARK7+NK-

C4, and TUBA1A+Mac-C3 was higher, while the abundance of

DYNC1H1+CD8+ T−C2 was lower (Figure 6A). We found that the

OR rates of AML patients in GSE12417 and TCGA-LAML cohorts

were significantly different among DYNC1H1+CD8+ T−C2,

DYNC1H1+NK-C3, DYNLL1+Mac-C1, PAPK7+Mac-C4,

PARK7+NK-C4, TUBA1A+Mac-C3, TUBA1B+CD8+ T−C1,

UBE2N+CD8+ T−C4, UBE2N+NK-C1, UBE2V1+CD8+ T−C3,

UBE2V1+Mac-C2, and UBE2V1+NK-C2 (Figure 6B).

In addition, we compared the response status (SD/PD or CR/PR)

of immunotherapy for patients with AML among the aggrephagy-

related cell clusters (UBE2N+NK-C1, UBE2V1+NK-C2, DYNC1H1

+NK-C3, PARK7+NK-C4, TUBA1B+CD8+ T−C1, DYNC1H1+CD8+

T−C2, UBE2V1+CD8+ T−C3, UBE2N+CD8+ T−C4, DYNLL1+Mac-

C1, UBE2V1+Mac-C2, TUBA1A+Mac-C3, and PAPK7+Mac-C4)

based on public dataset (Figure 7A). For the AML patients with CR/

PR response status, the abundance of TUBA1B+CD8+ T−C1 and

DYNLL1+Mac-C1 was higher, while the abundance of TUBA1A

+Mac-C3 was lower (Figure 7A). We also found that AML patients

with low abundance of TUBA1A+Mac-C3 may have the better

prognosis (Figure 7B). In addition, we observed that the expression

of TUBA1A was upregulated in bone marrow cells of AML patient

both in mRNA (Figure 7C) and protein (Figure 7D) levels.
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Discussion

Leukemia is a kind of hematologic malignant disease with

hematopoietic stem cell clonal proliferation. Clonal leukemia cells

proliferate and accumulate in bone marrow and other normal

hematopoietic tissues, inhibit hematopoietic function, and

penetrate into other non-hematopoietic tissues and organs

through blood circulation, resulting in organ failure and poor

prognosis. The clinical manifestations of AML include anemia,

bleeding, infection fever and other symptoms. AML is a common

type of leukemia, accounting for 80% of acute leukemia, with a high

incidence in children (61). Patients with AML tend to die within

one year of diagnosis, with a high mortality rate (62). The

pathogenesis of AML is complex and diverse, including chemical

substances, radioactive substances, genetic factors, gene mutations,

abnormal signaling pathways, epigenetic regulation, leukemia

microenvironment or immune imbalance. Autophagy is a

catabolic process of intracellular substances mediated by

lysosome, which has a bidirectional effect in AML. Autophagy

can remove abnormal organelles, reduce the accumulation of

harmful substances, and effectively prevent cell cancer. However,

autophagy can also enable AML cells to obtain various substances

and energy, which can help malignant cells to fight against the lack

of nutrition and energy caused by their own high metabolism, and

promote the growth and proliferation of AML cells. The autophagy

levels in different stages of AML were different. How to regulate the
A

B

FIGURE 6

Immunotherapy analysis of the aggrephagy-related cell clusters for acute myeloid leukemia based on TIDE algorithm. (A) Comparison for the
response status of immune checkpoint blockade therapy for patients with AML among the aggrephagy-related cell clusters. (B) Comparison for the
OR rates of AML patients in GSE12417 and TCGA-LAML cohorts among the aggrephagy-related cell clusters. *P < 0.05; **P < 0.01; ****P < 0.0001.
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progression of AML, remove AML cells and improve the

therapeutic effect by regulating autophagy level is the focus of

AML prevention and treatment.

The survival and apoptosis of immune cells, the expression of

immunomodulators and the change of tumor microenvironment

(TME) all affect the occurrence and development of AML (25).

Immune cells monitor abnormal cells in the body and play an

immune effect to eliminate them (63). For example, nature killer

(NK) cells recognize and kill tumor cells by mediating cytotoxic

effects (64). Tumor cells can evade immune recognition and attack

by modifying their own surface antigens and changing the

microenvironment around tumor tissue, that is, immune escape

of tumor. The occurrence of AML is also closely related to immune

escape. By changing the activity of immune cells or regulating the

expression of immune molecules, the function of immune cells is

affected, thus achieving immune escape of AML cells (65). It can

effect ively treat AML by inhibit ing the cel l immune

microenvironment and enhancing the immune response (66). To

elucidate the relationship between the occurrence of AML and the

immune response is of great significance for the development of

immunotherapy in patients with AML. In this study, we identified

11 specific cell types, including T cell, Natural Killer (NK) cell,

Common Myeloid Progenitor (CMP) cell, Myeloid cell,

Granulocyte Monocyte Progenitor (GMP) cell, Megakaryocyte

Erythroid Progenitor (MEP) MEP, Promonocyte (Promono) cell,
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Plasma cell, Hematopoietic Stem Cell (HSC) cell, B cell, and

Erythroid cell for AML. Four subgroups of T cells were obtained

by re-clustering annotation using t-SNE dimension reduction

analysis, including CD8+ T cell, CD4+ T cell, natural killer (NK)

cells, and Regulatory T (Treg) cells. NK cell type could be clustered

into eleven cell clusters. As for Myeloid cells, three subgroups of

Myeloid cells were obtained by re-clustering annotation using

UMAP reduction analysis, including Mono (monocytes) cell,

Macrophages (MAC) cell, and Dendritic cell (DC) cell. Our study

identified some specific cell subtypes of AML, which will provide

some reference value for exploring the TME of AML.

Transcription factors (TFs) are involved in the formation of

transcription initiation complexes that affect transcription processes

and thus downstream gene expression (67). AML contains many

abnormal genes, some of which directly affect the expression of TFs,

and some indirectly affect the combination of transcription factors

and regulatory regions to play a role (68). In addition, some TFs

play a role in stem cell maintenance, differentiation and maturation

of hematopoietic stem progenitor cells, and abnormal expression of

these TFs can lead to hematopoietic malignant transformation.

Herein, we found that TFs of LGALS9, TIGIT, BTLA, and CTLA4

were upregulated in the TUBA1B+CD8+ T−C1, TFs of IL10 and

CD160 were upregulated in the DYNC1H1+CD8+ T−C2,

ADORA2A was upregulated in the UBE2V1+CD8+ T−C3,

BTN3A1, BTN3A2, CD274, CD247, SLAMF7, LAG3, and
A

C

D

B

FIGURE 7

Immunotherapy analysis of the aggrephagy-related cell clusters for AML based on public dataset. (A) Comparison for the response status of immune
checkpoint blockade therapy for patients with AML among the aggrephagy-related cell clusters. (B) Kaplan-Meier curve for TUBA1A+Mac-C3. (C)
The TUBA1A mRNA expression is upregulated in bone marrow cells of AML patient. The levels of TUBA1A mRNA and GAPDH mRNA as control in
bone marrow cells of five AML patients and four health people by real-time PCR. Data are expressed as mean ± SD. (**** P <0.0001). (D) The
TUBA1A protein expression is upregulated in bone marrow cells of AML patient. The levels of TUBA1A protein in bone marrow cells of five AML
patients and four health people as control by Western-blot. *P < 0.05; **P < 0.01; ****P < 0.0001.
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PDCD1 were upregulated in the UBE2N+CD8+ T−C4, BTN2A2

and LAIR1 were upregulated in the Non−Aggre−CD8+ T−C6. AML

is a highly heterogeneous and aggressive hematological malignancy

resulting from clonal expansion of malignant hematopoietic

progenitor cells in the bone marrow. Its incidence increases with

age and its prognosis is poor. A variety of cytogenetic and molecular

genetic abnormalities affect signaling pathways, transcription, and

epigenetic regulators that induce AML. Studies have shown that

various recurrent gene mutations can directly affect the expression

of TFs or indirectly change the binding of TFs to regulatory regions,

resulting in abnormalities of transcriptional regulatory networks

(TRNs), leading to a large number of cloning and proliferation of

myeloid precursor cells and stagnating in different stages of

hematopoietic differentiation. The fine regulation of TFs such as

TIGIT (69), BTLA (70), CTLA4 (71), IL10 (72), CD274 (73) is

crucial in hematopoietic regulation and cell fate determination.

Abnormal expression of these TFs can interfere with normal

hematopoietic differentiation and cause the occurrence of AML.

Our study provided new insights into the regulatory mechanisms of

related TFs in cell subtypes of AML.
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SUPPLEMENTARY FIGURE 1

Dimensionality reduction of single cell for acute myeloid leukemia. (A, B) The
sequencing depth and the number of genes for single cell from three normal

samples and ten patients with acute myeloid leukemia. (C) Detection of the
highly variable genes across the cells in volcano plot, the top 10 genes were

marked out. (D) PCA plot of scRNA-seq samples from 13 samples and the
Standard Deviation of 1-20 PCs using ElbowPlot algorithm. (E) t-SNE and

UMAP dimension reduction analysis identifying a total of 18 cell subsets.

SUPPLEMENTARY FIGURE 2

Dot plot showing the average and percentage expression of well-defined
marker genes in different cell subsets. The color represented the average

expression level of the marker genes. The diameter of the dots denoted the
fractional expression.

SUPPLEMENTARY FIGURE 3

UMAP reduction analysis and cell–cell communication analysis for

aggrephagy-mediated T cells.

SUPPLEMENTARY FIGURE 4

UMAP reduction analysis and cell–cell communication analysis for

aggrephagy-mediated NK cells.

SUPPLEMENTARY FIGURE 5

UMAP reduction analysis and cell–cell communication analysis for
aggrephagy-mediated Myeloid cells.

SUPPLEMENTARY FIGURE 6

Immunotherapy analysis of the aggrephagy-related cell clusters for acute

myeloid leukemia using TIDE algorithm.
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Background: lung adenocarcinoma (LUAD) remains one of the most common

and lethal malignancies with poor prognosis. Programmed cell death (PCD) is an

evolutionarily conserved cell suicide process that regulates tumorigenesis,

progression, and metastasis of cancer cells. However, a comprehensive

analysis of the role of PCD in LUAD is still unavailable.

Methods:We analyzedmulti-omic variations in PCD-related genes (PCDRGs) for

LUAD. We used cross-validation of 10 machine learning algorithms (101

combinations) to synthetically develop and validate an optimal prognostic cell

death score (CDS) model based on the PCDRGs expression profile. Patients were

classified based on their median CDS values into the high and low-CDS groups.

Next, we compared the differences in the genomics, biological functions, and

tumor microenvironment of patients between both groups. In addition, we

assessed the ability of CDS for predicting the response of patients from the

immunotherapy cohort to immunotherapy. Finally, functional validation of key

genes in CDS was performed.

Results: We constructed CDS based on four PCDRGs, which could effectively

and consistently stratify patients with LUAD (patients with high CDS had poor

prognoses). The performance of our CDS was superior compared to 77 LUAD

signatures that have been previously published. The results revealed significant

genetic alterations like mutation count, TMB, and CNV were observed in patients

with high CDS. Furthermore, we observed an association of CDS with immune

cell infiltration, microsatellite instability, SNV neoantigens. The immune status of

patients with low CDS was more active. In addition, CDS could be reliable to

predict therapeutic response in multiple immunotherapy cohorts. In vitro
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experiments revealed that high DNA damage inducible transcript 4 (DDIT4)

expression in LUAD cells mediated protumor effects.

Conclusion: CDS was constructed based on PCDRGs using machine learning.

This model could accurately predict patients’ prognoses and their responses to

therapy. These results provide new promising tools for clinical management and

aid in designing personalized treatment strategies for patients with LUAD.
KEYWORDS

programmed cell death, lung adenocarcinoma, machine learning, prognosis,
tumor microenvironment
Introduction

Globally, lung cancer (LC) accounts for approximately 18% of

all cancer-related mortalities and is also the leading cause of cancer-

related mortalities in both sexes (1). Non-small cell LC (NSCLC)

accounts for 90% of LC cases. NSCLC can be further categorized

based on histology into two subtypes: lung adenocarcinoma

(LUAD) and lung squamous cell carcinoma (LUSC). Of these,

LUAD cases are more common (2). The factors underlying the

poor prognosis of patients with mid to late-stage LUAD include the

lack of symptoms and tumor specificity at an early stage, local

infiltration, and distant metastases of cancer (3). Rapid

advancements in biotechnology and precision medicine have

helped develop targeted drugs and therapeutic approaches specific

to patients with LUAD. Further biomarkers for LUAD, like EGFR,

E17K, and PTEN, have been identified (4–6), which are currently

used in combination with surgical resection, radio, and

chemotherapies. However, only a small proportion of patients

with LUAD have benefitted from these advancements and

improvements in therapeutic efficacy. No significant improvement

in the overall survival (OS) and progression-free survival of patients

has been observed (7, 8). Therefore, an in-depth understanding of

the underlying mechanisms of LUAD and identifying new

biomarkers is crucial for predicting the prognoses and designing

personalized therapeutic strategies for patients with LUAD.

Programmed cell death (PCD) is a crucial process for the

growth and development of living organisms. Studies have shown

that apoptosis, pyroptosis, ferroptosis, autophagy, necroptosis,

cuproptosis, parthanatos, entotic and lysosome-dependent cell

death, Alkaliptosis, NETosis, and oxeiptosis-related PCDs are

classical cell death pathways (9). Apoptosis is a non-inflammatory

response to PCD characterized by the activation of caspases, leading

to the contraction of cells, coalescence, and the nucleus, as well as

nucleosomal DNA fragmentation (10). Apoptosis is required for the

maintenance of the cell death-cell survival balance. Furthermore,

abnormal apoptosis escape is a characteristic of cancer cells (11).

Pyroptosis is programmed necrosis of cells induced by

inflammatory vesicles, wherein activated Gasdermin protein (a

scorching substrate for inflammatory caspases-1/4/5/11) forms

pores in the plasma membrane, thereby leading to cell death (12,
02346
13). In 2012, ferroptosis was discovered as a novel iron-dependent

PCD characterized by its ability to disrupt the redox homeostasis of

cells and the absence of apoptosis (14). During ferroptosis, the

cytoplasm appears round and detached, the mitochondrial

membranes are condensed, the number of mitochondrial cristae

is reduced or absent, and the outer mitochondrial membranes are

ruptured (15). Autophagy is an apoptosis-independent cell death

form. It is characterized by no chromatin condensation, the

accumulation of autophagic vacuole, and autophagosome

formation, which fuses with lysosomes to form autolysosomes in

the cytoplasm (16, 17). Unlike apoptosis, necroptosis destabilizes

cell membranes, and cause swelling and lysis of cells, thereby

leading to the release of cellular components (18). The

inactivation or deletion of caspases-8 and RIPK1 and RIPK3

activation, as well as autophosphorylation, induces necroptosis of

cells (19). During necroptosis, the cell membranes rupture and

release cellular contents, thereby activating immune responses (20).

In March 2022, a study by Peter et al. introduced a new mode of cell

death called cuproptosis (21). Unlike other forms of cell death,

copper toxicity occurs primarily through the direct binding of

cuproptosis to the fatty acylated components of the Krebs cycle.

This leads to fatty acylated protein accumulation and iron-sulfur

cluster protein loss, increase in proteotoxicity, which culminates in

cell death (22). Parthantos is characterized by an increase in the

activation of PARP-1 (23), PAR aggregates, and the translocation of

apoptosis-inducing factors from the mitochondria to the nucleus

(24). Unlike pyroptosis, parthanatos is independent of caspase and

is triggered by an excessive reactive oxygen species (ROS) response

(25). A study has shown that parthanatos induces mitochondrial

membrane dissipation and the condensation of extensively

fragmented DNA chromatin (26). Entotic cell death is the

byproduct of endocytosis, forms typical intercellular structures,

and is caused by the disassociation of cells from the basement

membrane. It primarily occurs in epithelial cells and carcinomas

(27). The entry of epithelial cells into other cells can eliminate

endosomal cells by specific autophagy-related processes regulating

the lysosomal degradation of cells (28). NETosis is a type of

neutrophils, granulocytes, or macrophage-related necrosis. During

NETosis, the granular contents of neutrophils are transferred to the

nucleus, which causes the decondensation of chromatins, and
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induces the formation of a neutrophil extracellular trap (29).

Lysosomal membrane permeabilization (LMP) is the primary

cause of lysosome-dependent cell death, characterized by the loss

of the lysosomal membrane integrity, thereby releasing the contents

of lysosomes into the cytosol (30). LMP-mediated cell death is

either dependent or independent of caspases (31). Alkalinization in

cells induces a novel mode of PCD called alkaliptosis (32). The

oxygen radicals trigger a novel form of regulated cell death called

oxeiptosis, which is independent of caspases, and driven by the

KEAP1-PGAM5-AIFM1 pathway activation (33). In organisms,

PCD eliminates harmful or redundant cells and maintains tissue

homeostasis. During PCD, damage-associated molecular patterns

are released, which act as a powerful stimulus for activating local

inflammatory or systemic immune responses. Therefore, selective

activation of the PCD pathway could be a novel strategy for

preventing and treating patients with LUAD. A study has shown

that A549 cells treated with chemotherapeutic drugs such as

cisplatin and paclitaxel trigger pyroptosis via the caspase 3/

Gasdermin E pathway. The efficacy of these drugs to stimulate

pyroptosis depends on the expression of Gasdermin E (34). CD8+ T

cells secrete IFNs, which reduce SLC7A11 and SLC3A2 expression,

thereby preventing the uptake of cystine by LUAD cells and

promoting ferroptosis as well as lipid peroxidation. Together, this

enhances the efficacy of immunotherapy. Hydroxychloroquine

inhibits LUAD cell autophagy, thereby reversing chemoresistance

in advanced-stage LUAD (35). Thus, escaping multiple types of

PCD is a hallmark of LUAD. Therefore, a comprehensive

understanding of the underlying mechanism of pan-PCD in

LUAD could aid in mitigating tumorigenesis, cancer progression,

and drug resistance in LUAD.

Previous studies on PCD have determined the involvement of a

single mode of cell death in LUAD. However, several modes of

PCDs mediate tumorigenesis, progression, and metastasis of cancer

cells. Moreover, no studies have analyzed the involvement of PCD

in LUAD systematically. In this study, we investigated the

alterations of PCD-related genes (PCDRGs) in LUAD. We used a

computational framework to construct and validate a novel cell

death score (CDS) based on PCDRGs. CDS can accurately stratify

patients with LUAD based on their prognostic status. Next, we

investigated the differences in genetic mutations, tumor

microenvironment (TME), and biological characteristics of

patients between both CDS groups. Furthermore, we determined

the efficiency of CDS in predicting the patients’ responses to

immunotherapy and screened suitable drugs for patients with

LUAD in different CDS groups. Finally, we determined the roles

of DNA damage inducible transcript 4 (DDIT4) in LUAD.
Materials and methods

Cohort and preprocessing

The transcriptional and clinical data of patients with LUAD

were downloaded from the Cancer Genome Atlas (TCGA, https://

portal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo) databases. In addition, the data
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on gene mutation and copy number variation (CNV) were obtained

from TCGA database. Next, we merged four cohorts, and the batch

effect was eliminated using the “Combat” algorithm. The TCGA-

LUAD cohort was used as the training cohort for constructing the

CDS. The GSE31210, GSE68465, and GSE72094 cohorts from GEO

were used as independent validation cohorts. We excluded patients

whose OS information was unavailable. Finally, we included 1569

patients with LUAD for the subsequent analysis. Supplementary

Table 1 shows detailed information on the patients. The study

flowchart is depicted in Figure 1.
The expression and variations of
PCDRGs in LUAD

The key regulatory genes of these 12 types of PCD were

included as PCDRGs. These genes were collected and compiled

from the Gene Set Enrichment Analysis (GSEA), Kyoto

Encyclopedia of Genes and Genomes (KEGG), and previously

published gene sets (9) (Supplementary Table 2). The

differentially expressed PCDRGs (DEPCDRGs) in LUAD and

paracancerous tissues of patients in the TCGA-LUAD cohort

were screened using the “limma” R package. The threshold for

screening DEPCDRGs was “P < 0.05” and “|log2 Fold change (FC)|

> 1”. The functional enrichment analysis was performed to identify

functions and pathways enriched by DEPCDRGs using the

“clusterprofiler” R package. Next, the “maftools” package was

employed to explore the somatic mutations in DEPCDRGs (36).

The frequencies of “Gain” or “Loss” CNV in DEPCDRGs were

screened and calculated. Finally, the chromosomal location of CNV

in patients was visualized as the circus plot with the aid of the

“circlize” R package (37). The transcription factors (TFs) within the

DEPCDRGs were predicted using Transcriptional Regulatory

Relationships Unraveled by Sentence-based Text mining

(TRRUST, www.grnpedia.org/trrust/). Subsequently, TF-gene

interaction pairs exhibiting P-values <0.05 were carefully chosen

to construct the regulatory network through the utilization

of Cytoscape.
PCDRGs signature generated by machine
learning-based integrated approach

The prognosis-related DEPCDRGs were screened using the

univariate Cox regression analysis. The threshold set to avoid

omission was “P < 0.05”. A PCDRGs signature was constructed

with high accuracy and stability using 10 machine learning

algorithms, including “Least Absolute Shrinkage and Selection

Operator”, “Ridge”, “Elastic network”, “StepCox”, “Survival

support vector machine (survival-SVM)” , “CoxBoost” ,

“Supervised principal components”, “partial least squares

regression for COX”, “random survival forest (RSF)”, “generalized

boosted regression modeling” to construct. These 10 machine

learning algorithms were used to cross-validate 101 combinations

of the “leave-one-out-cross validation (LOOCV)” framework for

constructing the models based on the TCGA-LUAD cohort and
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were subsequently validated in the GEO cohorts. The models with <

3 genes were excluded. Additionally, we calculated the C-index of

each model in all cohorts. CDS was the optimal model with the

highest mean C-index. All patients were classified using the median

CDS value set as a threshold into the high and low-CDS groups.
Consensus clustering

Consensus clustering was performed using the “Consensus

ClusterPlus” package based on the expression of PCDRGs in the

CDS. The clustering was based on dividing centromeres

with “Euclidean” distances. Finally, patients with LUAD were

classified into two subtypes based on the best classification of

“K=2-9”.
Mutation and CNV characteristics

The mutation profiles and types of the top 20 genes with the

highest mutation frequencies in patients in both CDS groups were

mapped using the “maftools” package. Tumor mutational burden

(TMB) is the total number of non-synonymous mutations in all

exomes of patients and is calculated according to the number of
Frontiers in Immunology 04348
non-synonymous mutations/million bases. Simultaneous analysis

of significantly mutated genes and their interactions among

mutations between two CDS groups. “GISTIC 2.0” was employed

for screening significantly amplified and missing genomic regions

(38). The overall changes in the genome were quantified by

calculating fraction of genome alteration (FGA), fraction of

genome gained (FGG), and fraction of genome lost (FGL). FGA

is the percentage of fragmented bases of genomic variants. FGG/

FGL indicated the loss or gain of genomic variants.
TME annotations for CDS

Single Sample Gene Set Enrichment Analysis (ssGSEA), Tumor

IMmune Estimation Resource (TIMER), and “MCPcounter” were

used estimate the extent of immune cell infiltration in each patient.

Subsequently, the TME was characterized using the “Estimation of

STromal and Immune cells in MAlignant Tumor tissues using

Expression data (ESTIMATE)” algorithm. The ESTIMATE

algorithm was used for calculating the tumor purity and the

stromal, ESTIMATE, and immune scores. The data on the level

of activation of the seven-step tumor immune cycle were retrieved

f r om the tumor immunopheno t yp e (T IP ) (h t t p : / /

biocc.hrbmu.edu.cn/TIP/index.jsp) database (39). Additionally, we
FIGURE 1

Diagram of analytic workflow in this study. The Diagram was drawn from the FIGUREdraw. (https://www.FIGUREdraw.com/static/index.html).
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determined and compared the expression profile of 35 immune

checkpoint genes in patients between both CDS groups to elucidate

the to elucidate the ability of CDS to predict the response of patients

to immune checkpoint inhibitor therapy. The data on microsatellite

instability (MSI), single nucleotide variant (SNV) neoantigens, and

B-cell receptor (BCR) richness, as well as T-cell receptor (TCR)

richness of patients, were obtained from TCGA. The “GSEA”

package was used to compare the hallmark functions and

pathways enriched by patients in both CDS groups, and the

reliability of the enrichment analysis was validated using the

“Gene Set Variation Analysis (GSVA)” package. The gene sets

with “FDR < 0.05” were considered significantly enriched.
Predicting the patient’s response to
immunotherapy and chemotherapy

To predict the responses of patients to immunotherapy, we

calculated the CDS for all patients from IMvigor210 (40), GSE78220

(41), GSE79671 (42), and GSE103668 (43) cohorts. We used

“Tumor Immune Dysfunction and Exclusion (TIDE)” a web-

based tool for predicting the response of the patient’s to

immunotherapy (44). We performed the “submap” method to

determine the similarity in the expression in patients in both CDS

groups and different immunotherapeutic outcomes (45). The data

on drug sensitivity in cancer cell lines of human origin were

downloaded from the Cancer Therapeutics Response Portal

(CTRP, http://portals.broadinstitute.org/ctrp/) and Profiling

Relative Inhibition Simultaneously in Mixtures (PRISM), https://

depmap.org/portal/prism/) databases. We also plotted receiver

operating characteristic curve (ROC) and calculated the Area

Under the ROC (AUC) values for all patients using the

“pRRophtic” package (46). Generally, lower AUC values indicated

higher sensitivity to potential drugs (47).
Analysis of single-cell RNA
sequencing data

ScRNA-seq files of three patients with LUAD from GSE117570

were retrieved from GEO. The expression matrices were normalized

using the “Seurat” package, and the top 2000 highly variable genes

were identified. The batch effect was eliminated using the

“harmony” package (48). The “copyKAT” and “SingleR” packages

were used to annotate tumor and immune cells (49, 50). Cell

clustering analysis was performed using the “T-SNE” algorithm,

and the top 11 principal components were selected. Genes with “|

log2FC|>1” and “adjusted P < 0.01” were considered marker genes.
Tissue microarray and
immunohistochemistry staining

We procured the LUAD TM (HPan-Ade060CS-01) from

Shanghai Outdo Biotech Co., LTD (Shanghai, China).

HLugA060PG02 contains 30 LUAD and adjacent paraneoplastic
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tissues. All the raw data could be obtained at the Shanghai Outdo

Biotech Co. LTD’s official website. Due to the absence of two

paracancer samples in TM, we only performed IHC on 30 LUAD

samples and 28 paracancer samples according to the following

procedure. First, TM sections were dewaxed and rehydrated using

decreasing grade of ethanol solution. Next, antigen recovery was

performed in an autoclave using an acidic antigen repair solution

(pH 6.0), the endogenous peroxidase activity was attenuated, and

the antigenic sites were blocked using 5% bovine serum albumin.

TM sections were incubated with 1:200 diluted anti-DDIT4

monoclonal antibody (ProteinTech, Wuhan, China, Cat

No.10638-1-AP) for 16 hours at 4°C, followed by incubation with

horseradish peroxidase (Maixin, Fujian, China) conjugated

secondary antibody. 3,3’-diaminobenzidine (DAB, Maixin, Fujian,

China) was used for immunoreactivity, and the nuclei were

counterstained with hematoxylin. Finally, Interpret the results

and group the samples according to the following criteria: The

appearance of faint yellow to brownish granules in the cytoplasm is

considered positive, while their absence is considered negative.

Staining intensity in positive samples is scored as follows: no

positive staining, weakly positive: (+), yellow-brown: positive (++)

and dark brown: strongly positive (+++). Expression grouping of

sample: Negative and weakly positive expression is included in the

low expression group, while positive and strongly positive

expression is included in the high expression group.
Cell culture and transfection

H358 and H838 (LUAD cells) and BEAS-2B (normal bronchial

epithelial cells) were purchased from ATCC. All cell lines were of

human origin. We cultured H358 and H838 in RPMI 1640 medium

(Gibco, Shanghai, China) and BEAS-2B in DMEM (Gibco, Shanghai,

China). Both mediums were supplemented with 10% fetal bovine

serum (FBS, Gibco, Shanghai, China) and 1% penicillin/

streptomycin. All cells were maintained in an incubator at 5% CO2

and 37°C. Following the guidelines specified by the manufacturer, we

transfected small interfering RNA (siRNA) against DDIT4 (DDIT4-

siRNA) and the corresponding control siRNA (siRNA-NC) into

LUAD cells at the logarithmic growth stage using Lipofectamine

3000 transfection reagent (Invitrogen, MA, USA). The siRNA

sequences are shown in Supplementary Table 3.
RNA extraction and real-time quantitative
polymerase chain reaction

Following the manufacturer’s guidelines, we isolated total cellular

RNA using an RNA extraction kit (Analytik Jena AG, Jena,

Germany). Next, a Promega qRT-PCR kit (Promega, WI, USA)

was used to perform reverse transcription for synthesizing cDNA

using extracted RNA. RT-PCR was performed using SYBR Premix Ex

Taq II (Promega, WI, USA) on a real-time PCR detection system

480II (Roche, OR, USA). The PCR reaction conditions were 1 cycle of

95°C for 2 minutes, 40 cycles of 15 seconds, 60°C for 1 minute, 1 cycle

of 95°C for 15 seconds, 60°C for 15 seconds, 95°C for 15 seconds. We
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used b-Actin as the internal reference and the 2DDCt method for

quantifying relative gene expression. The primer sequences are

provided in Supplementary Table 4.
Cell counting kit-8 assay

We performed a CCK-8 assay (Cellcook, Guangzhou, China,

Cat No. CT01A) using the manufacturer’s guidelines to determine

the viability of cells transfected with DDIT4-siRNA and siRNA-NC.

We seeded these cells in the logarithmic growth phase into 96-well

plates. In order to evaluate the effect on cell proliferation capacity,

10 ml CCK-8 reagent was added in all wells and incubated for 2

hours at 37°C at 0, 24, 48, 72 h after culturing. For the sensitivity of

cells to the drug, cells were treated at 37˚C with Ispinesib (0, 20, 40,

80 or 100 nM, MedChem Express, Monmouth Junction, NJ, USA,

Cat No.HY-50759), Cabazitaxel (0, 10, 20, 40 or 80 nM, MedChem

Express, Monmouth Junction, NJ, USA, Cat No. HY-15459) and

Epothilone-b (0, 40, 80, 160 or 320 nM, MedChem Express,

Monmouth Junction, NJ, USA, Cat No. HY-17029) for 24 h,

respectively. 10 ml CCK-8 reagent was added in all wells and

incubated for 2 hours at 37°C. Finally, we measured the

absorbance of each well at 450 nm using a microplate reader.
Clone formation assays

The clone formation rate was determined using a plate clone

formation assay. 400 siRNA-NC and DDIT4-siRNA transfected

cells/well were seeded in 12-well plates and incubated at 37°C for 14

days. Next, we washed the cells with PBS and fixed them using 4%

paraformaldehyde. Finally, crystal violet was used for the purpose of

staining the fixed cells, and the viable clones with a minimum of 50

cells were counted.
Transwell assay

The invasive and migratory capacities of siRNA-NC and DDIT4-

siRNA transfected cells were tested by Transwell (pore size 8.0 µm;

Corning Inc, NY, USA) coated with Matrigel (BD Biosciences,

Bedford, USA). To determine the migratory capacity of cells, we

inoculated 2 × 104 cells in 100 ml serum-free medium in the upper

chamber. The lower chamber was supplemented with 800 ml 10%
FBS-containingmedium. The cells were incubated in an incubator for

24 hours, stained using crystal violet, and imaged under a light

microscope. The “ImageJ” software was used for counting cells. For

the invasion assay, the upper chamber was coated with 100 ml of 10%
Matrigel. The rest of the procedure was the same as described above.
TUNEL staining

We utilized TUNEL staining (Solarbio, Beijing, China, Cat No.

T2196) to examine apoptosis in tumor cells. An initial density of

1 × 105 cells per well was established in 12-well plates. These cells
Frontiers in Immunology 06350
were subsequently immobilized onto coverslips with 4%

paraformaldehyde for 30 minutes at room temperature, followed

by two PBS washes. A treatment with 0.1% Triton X-100 was

applied for 10 minutes at room temperature. After another PBS

rinse, the cells were incubated in a 50 µl TUNEL reaction mixture at

37°C for 1 hour. To counterstain the cell nuclei, we employed 4,6-

diamidino-2-phenylindole (DAPI, Solarbio, Beijing, China, Cat No.

C0065) for 10 minutes at room temperature and washed cells twice

with PBS. Finally, images of TUNEL-labeled cells were procured

from three arbitrary fields using a fluorescent microscope.
Western blotting

To obtain total protein, cells were subjected to protein

extraction using 1% PMSF and RIPA buffer (Solarbio, Beijing,

China, Cat No. R0020) on ice for 30 minutes. The resulting

mixture was centrifuged at 12,000 rpm for 30 minutes, and the

protein suspension was collected from the liquid supernatant.

Protein concentration was determined using the BCA method

(Epizyme, Shanghai, China, Cat No. ZJ101). Subsequently, SDS-

PAGE protein loading buffer (5X) (Beyotime, China) was added to

the protein suspension, followed by boiling for 10 minutes. The

protein was then separated using either a 10% or 12.5% SDS-PAGE

gel (Epizyme, Shanghai, China, Cat No. PG113 or PG112) and

transferred onto a 0.45 mm polyvinylidene fluoride (PVDF)

membrane. To block the PVDF membranes, 5% skim milk was

applied for 1.5 hours. Next, the membranes were incubated with

primary antibodies including DDIT4 (ProteinTech, Wuhan, China,

Cat No. 67059-1-Ig, 1:1000), BCL2 (ProteinTech, Wuhan, China,

Cat No. 68103-1-Ig, 1:1000), Caspase-3 (Huaan, Hangzhou, China,

Cat No. ET1602-39, 1:1000), and GAPDH (Huaan, Hangzhou,

China, Cat No. ET1601-4, 1:5000), followed by incubation with

corresponding secondary antibodies. Finally, the protein bands

were visualized using chemiluminescence kits.
Statistical analysis

We used software including “GraphPad Prism (version 9.00)”

and “R (version 4.0.5) package” for statistically analyzing the data.

We determined the correlation between two continuous variables

using the “Pearson correlation”. Next, the chi-squared test was

employed for comparing categorical variables, and the “Wilcoxon

rank-sum” or student’s t-tests for continuous variables. All

statistical tests were two-sided. If not otherwise stated, P < 0.05

was considered statistically significant.
Results

Transcriptional and genetic alterations of
PCDRGs in patients with LUAD

The expression profiles of DEPCDRGs between normal and

LUAD tissues from the TCGA-LUAD cohort were compared, and
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200 DEGs were identified (Supplementary Table 5). The heatmap and

volcano plot shows DEGs in these samples (Figures 2A, B). The GO

and KEGG pathway enrichment analyses showed the enrichment of

these DEPCDRGs in various biological pathways like tumor necrosis

factor receptor superfamily binding, the TNF, regulation of apoptotic,

and IL-17 signaling pathways (Figures 2C, D, Supplementary
Frontiers in Immunology 07351
Table 6). Next, we determined the status of DEPCDRGs mutation

in patients with LUAD. Approximately 73.88% (444/601) of patients

with LUAD harbored mutations in DEPCDRGs. Of the top 10

mutated DEPCDRGs, TP53 had the highest mutation frequency

(Figures 2E, F). The frequencies of CNV in DEPCDRGs analysis

showed that most DEPCDRGs harbored significant CNVs. The
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FIGURE 2

The landscape of Programmed cell death related genes (PCDRGs) in TCGA-LUAD cohort. (A) Heatmap of the differentially expressed PCDRGs
between tumor and paracancer tissues of LUAD. (B) Volcano plot of the DEPCDRGs. (C) GO categories [molecular function (MF), biological process
(BP) and cellular component (CC)] and (D) KEGG pathway analysis for DEPCDRGs. (E, F) The mutation summary and details of DEPCDRGs in the
LUAD patients (G) The location of CNV alterations of DEPCDRGs on chromosomes. (H) CNV mutation situation of the DEPCDRGs. (I) The Scatter
plot of gene expression for the top 10 DEPCDRGs with the highest CNV frequency. (J) Boxplot of gene expression for the top 10 DEPCDRGs with
the highest mutation frequency. (K) Network map of the DEPCDRGs transcription factors and DEPCDRGs. Blue triangular nodes represent
transcription factors, red oval nodes represent DEPCDRGs, and lines between nodes indicate regulatory relationships. ns, not significant, *P < 0.05,
**P < 0.01, ***P < 0.001.
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chromosomal locations of CNVs in DEPCDRGs are shown in

Figure 2G. Interestingly, the highest frequencies of CNV gain and

loss were observed in MLLT11 and CDKN2A, respectively

(Figure 2H). It is worth noting that DEPCDRGs undergoing CNV

often exhibit higher expression levels, but mutations and

corresponding gene expression show no significant correlation

(Figures 2I, J). 452 TF-target pairs were obtained by predicting the

TFs of the genes associated with DEPCDRGs, which included 106

predicted TFs and 84 target DEPCDRGs. Figure 2K illustrates the

regulatory relationships of these pairs.
CDS signature development

We performed univariate Cox regression analysis on 200

DEPCDRGs and identified 71 prognosis-related PCDRGs
Frontiers in Immunology 08352
(Supplementary Table 7). These 71 PCDRGs were subjected to a

machine learning-based integration procedure for developing cell

death core (CDS). In addition, 101 prediction models were fitted in

the training cohort using the LOOCV framework and validated on

the test cohorts. Next, we calculated the C-index for all models in

whole cohorts (Figure 3A and Supplementary Table 8). The mean

C-index value of 0.727 was the highest in the RSF (including

GAPDH, DDIT4, KRT18, and ENO1) and was considered the best

model (Figures 3B, C, Supplementary Table 9). Subsequently, we

calculated the CDS for all patients based on the RSF model

(Supplementary Table 10). All patients were categorized using the

median CDS value as a threshold into high and low-CDS groups.

The survival duration of patients with high CDS from whole

cohorts was short (Figures 3D-H). In addition, we evaluated the

performance of CDS based on the patient’s clinical characteristics.

The results demonstrated that the ability of CDS to predict patients’
B C

D E

F G

H

A

FIGURE 3

A cell death score (CDS) was established and validated via the machine learning-based integrative procedure. (A) A total of 101 kinds of machine
learning algorithms were used to obtain the optimal model and calculated the C-index of each model for all cohorts. (B, C) The number of trees for
determining the CDS with minimal error and the importance of the 4 PCDRGs based on the RSF algorithm. (D-H) Kaplan–Meier curves of OS
according to the CDS in TCGA, GSE31210, GSE68465, GSE72094 and meta-cohort.
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survival was not influenced by their clinical characteristics

(Supplementary Figure 1).
CDS assessment

We conducted the “time-ROC” analysis to calculate the AUC

values of CDS for predicting the prognosis of patients in different

cohorts [Figures 4A-E; TCGA [0.95–0.98], GSE31210 (0.67–0.8),

GSE68465 (0.63–0.68), GSE72094 (0.68–0.78), and meta-cohort

(0.71–0.81)]. The C-index values of all cohorts are shown in

Figure 4F. Next, we compared the abilities of CDS and other

clinical as well as molecular variables in predicting patients’

prognoses. The accuracy of CDS in predicting patients’ prognoses

was better compared to other variables, including age, gender,

smoking, TP53, EGFR, KRAS, STK11, M, and T (Figures 4G-J).

The advancement in sequencing technology and bioinformatics

have aided in developing models based on the combination of the

expression profile of genes for predicting the patient’s diagnosis and

prognosis. Subsequently, we systematically searched LUAD-related

signatures published in the last 3 years. Finally, we included 77

biomarkers for comparison of predictive performance with CDS
Frontiers in Immunology 09353
(Supplementary Table 11). The results revealed that the

performance of our CDS in almost all cohorts was better

compared to other signatures (Figure 5). Further, we analyzed the

correlation between CDS and other clinical variables. The chi-

squared test results showed a correlation between all variables

except for gender and both CDS groups (Supplementary

Figure 2). After incorporating clinical data of patients,

univariate and multivariate Cox regression analyses of the four

cohorts indiated that CDS could predict patients’ prognoses

independently (Tables 1-4).
Generation of CDS genetic subtypes

We performed consistent clustering on four genes included, and

the samples were grouped into distinct characteristic subtypes to

identify PCD-related subtypes of LUAD. Finally, we identified two

PCD-related phenotypes: clusters 1 and 2 (Figures 6A, B,

Supplementary Table 12). Kaplan-Meier (KM) curves showed

higher OS rate patients in cluster 1 compared to cluster 2 in all

cohorts (Figure 6C). In addition, the alluvial diagram showed that

most patients with high CDS were grouped in cluster 2 (Figure 6D).
B C D
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FIGURE 4

Evaluation of the CDS. (A–E) Time-dependent receiver operating characteristic curve of CDS for predicting the prognosis of LUAD patients from
TCGA, GSE31210, GSE68465, GSE72094 and meta-cohort. (F) The C-index of the CDS for the TCGA, GSE31210, GSE68465, GSE72094 cohorts. (G–

J) The C-index of the CDS and other clinical factors in the TCGA, GSE31210, GSE68465, GSE72094 cohorts. ns, not significant, *P < 0.05, **P < 0.01,
***P < 0.001, ****P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1183230
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1183230
Genetic variations in CDS groups

Figures 7A, B shows the top 20 genes with the highest mutation

frequencies in patients in both CDS groups. The results revealed

differences in mutated genes in patients between both CDS groups.

The frequency of sense, nonsense, or overall mutations in patients

in the high-CDS group was higher compared to the low-CDS group,

despite no correlation between CDS and mutation frequency

(Figures 7C-E). In addition, a significant difference in the

mutation frequency of 16 genes was observed in patients between

both CDS groups (Figure 7F), and there was extensive co-mutation
Frontiers in Immunology 10354
between these genes (Figure 7G). Patients in the high-CDS group

had high TMB compared to the low-CDS group (Figure 7H,

Supplementary Table 13). KM analysis showed that the OS rates

of patients in the high-TMB group were significantly higher

compared to the low-TMB group (Figure 7I). Next, the prognosis

of patients was predicted based on their TMB and CDS. The

survival rate of patients in the low-CDS group with high TMB

was the highest, whereas the survival rate of patients in the high-

CDS group with low TMB was the lowest (Figure 7J). CNV analysis

revealed differences in chromosomal alteration patterns in patients

in different CDS groups (Figure 7K). The high-CDS group had a
FIGURE 5

Comparison of CDS and other gene expression-based prognostic signatures in LUAD based on the TCGA, GSE31210, GSE68465, GSE72094 and
meta-cohort. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
TABLE 1 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for TCGA cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

Stage 1.977(1.586-2.463) < 0.001 1.302(0.919-1.845) 0.137

M 1.727(1.18-2.527) 0.005 0.799(0.507-1.259) 0.333

N 1.942(1.575-2.394) < 0.001 1.306(0.972-1.753) 0.076

T 1.816(1.386-2.38) < 0.001 1.492(1.075-2.07) 0.017

Age 1.038(0.822-1.31) 0.754

Sex 1.041(0.847-1.28) 0.7

CDS 0.028(0.016-0.047) < 0.001 0.035(0.019-0.062) < 0.001
fron
Significant value is given in bold.
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greater percentage of FGA, FGL, and FGG detected. (Figure 7L,

Supplementary Table 14).
Characteristics of TME in CDS groups

To evaluate if CDS could be used to determine the immune

status of patients, we analyzed the correlation between CDS and

infiltrating immune cells (Supplementary Table 15, 16). The

proportion of infiltrating immune cells in patients in the low-

CDS group was high (Figure 8A). Next, our analysis of cancer

progression revealed that the majority of key steps, including cancer

antigen presentation, priming and activation and B cell recruiting,

displayed higher activity levels in the low CDS group (Figure 8B,
Frontiers in Immunology 11355
Supplementary Table 17). Additionally, an increase in the

expression of most immune checkpoint genes was observed in

patients in the low-CDS group (Figure 8C, Supplementary

Table 18). Additionally, several factors associated with tumor

immunogenicity were analyzed, like the status of MSI, SNV

neoantigens, and BCR and TCR richness (Supplementary

Table 19). Patients in the high-CDS group had high MSI, SNV,

neoantigens, and low BCR and TCR richness (Figures 8D-G).

Together, these results suggest that patients with low CDS had

highly active immune status. GSEA analysis was performed to

compare the Hallmark pathways enriched in patients in both

CDS groups (Supplementary Table 20). We observed significant

enrichment of patients with high CDS in pathways and functions

related to cell cycle, hypoxia, glycolysis, and mTOR signaling, and
TABLE 2 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE68465 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

N 2.029(1.689-2.438) < 0.001 2.053(1.686-2.5) < 0.001

T 2.062(1.587-2.68) < 0.001 1.806(1.37-2.383) < 0.001

Sex 1.262(1.051-1.516) 0.013 1.239(1.021-1.503) 0.03

Chemotherapy 1.412(1.15-1.734) < 0.001 1.243(1.003-1.541) 0.047

CDS 0.655(0.544-0.788) < 0.001 0.658(0.544-0.797) < 0.001
fron
Significant value is given in bold.
TABLE 3 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE31210 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

Smoking 1.417(0.882-2.277) 0.15 NA NA

Sex 1.344(0.839-2.152) 0.219 NA NA

Age 1.263(0.777-2.052) 0.346 NA NA

Stage 2.774(1.732-4.441) < 0.001 2.313(1.413-3.787) < 0.001

CDS 0.434(0.254-0.743) 0.002 0.552(0.314-0.969) 0.038
Significant value is given in bold.
TABLE 4 Univariate and multivariate Cox analysis of the clinicopathological features and FA score with OS for GSE72094 cohort.

Univariate Cox Multivariate Cox

Characteristics HR(95%CI) P value HR(95%CI) P value

STK11 1.028(0.72-1.469) 0.879 NA NA

KRAS 0.767(0.588-0.999) 0.049 0.901(0.686-1.184) 0.454

Age 1.258(0.836-1.894) 0.27 NA NA

Gender 0.733(0.564-0.952) 0.02 0.714(0.546-0.934) 0.014

Stage 1.969(1.477-2.625) < 0.001 1.925(1.438-2.579) < 0.001

Smoking 1.248(0.694-2.245) 0.459 NA NA

CDS 0.536(0.407-0.707) < 0.001 0.605(0.456-0.801) < 0.001
Significant value is given in bold.
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these results were validated in GSVA analysis (Figures 8H-L,

Supplementary Table 21).
Predicting immunotherapy efficacy and
identification of potential drugs

We calculated the CDS of patients from the immunotherapy

cohorts to determine if CDS could predict the response to

immunotherapy. In the IMvigor210 cohort, the OS rate of

patients with high CDS still was lower (Figure 9A), but the

response of them to PD-L1 immunotherapy was better

(Figure 9B). The response of patients from GSE78220 to

immunotherapy was similar to the IMvigor210 cohort

(Figure 9C). In addition, the response of patients with high CDS

in the GSE79671 and GSE103668 cohorts to immunotherapy was

better (Figures 9D, E). Subsequently, we analyzed patient immune

evasion and immunotherapy using TIDE scores and found that

patients in the high-CDS group were less likely to experience

immune evasion and had better immunotherapy outcomes

(Figure 9F, Supplementary Table 22). The “SubMap” algorithm
Frontiers in Immunology 12356
results showed that patients in the high-CDS group were more

likely to respond to PD-1 immunotherapy (Figure 9G). Next, we

screened for potential drugs for treating patients with LUAD using

the CTRP and PRISM-derived drug response cohorts. Finally, we

obtained two compounds, paclitaxel and SB-743921 from the CTRP

cohort (Figure 9H) and six compounds including cabazitaxel,

daunorubicin, epothilone-b, ispinesib, litronesib, and volasertib

from the PRISM cohort (Figure 9I). Interestingly, patients in the

high-CDS group demonstrated sensitivity to these drugs.
Single-cell level analysis of CDS

We performed principle component analysis to reduce the

dimensionality of all cells using 2000 highly variable genes. Seven

cell types, like monocytes, T cells, B cells, macrophages, cancer cells,

tissue stem cells, and endothelial cells, were annotated (Figures 10A,

B). Additionally, marker genes for each cell type were identified

(Figures 10C, D), and the CDS of each cell type was calculated.

Cancer cells, T cells, and monocytic regions had high CDS

(Figure 10E). Pseudotime trajectory analysis shows the
B

C

D

A

FIGURE 6

Generation of clusters by Unsupervised clustering of CDS gene expression for TCGA, GSE31210, GSE68465, GSE72094 cohorts. (A) Consensus clustering
matrix of LUAD patients for k = 2. (B) Consensus clustering cumulative distribution function for k = 2 to 9. (C) Kaplan–Meier curves for patients in two
different molecular clusters (D) Alluvial diagram of clusters distributions in groups with different CDS groups, clusters and survival outcomes.
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chronological order of cell differentiation. The cells with low CDS

were mainly disturbed at the end of the differentiation pathway, and

the cells with high CDS were primarily distributed at the early stage

of the differentiation pathway (Figures 10F-H).
DDIT4 affects tumor cell proliferation,
invasion, migration and apoptosis

The expression of four genes of CDS in LUAD and normal cells

was verified by RT-qPCR. Compared to normal cell lines, all genes

were highly expressed in LUAD cells, withDDIT4 showing the most

significant difference (Figure 11A). Owing to the highest expression
Frontiers in Immunology 13357
of DDIT4 among the four genes within LUAD cells, coupled with

the absence of reports regarding its progression in LUAD, we

elected to conduct subsequent experiments involving DDIT4. IHC

confirmed high DDIT4 expression in LUAD tissues (Figures 11B,

C). Next, we performed several experiments to determine the roles

of DDIT4 in LUAD. RT-qPCR andWB results revealed a significant

decrease in DDIT4 expression in cells transfected with DDIT4-

siRNAs (Figures 12A, B). The CCK-8 and clone formation assays

showed a reduction in the viability and clone formation of cells in

the DDIT4-siRNAs transfected cells compared to the siRNA-NC

transfected cells (Figures 12C, D). Next, we performed transwell

assay to evaluate the mobility, migratory, and invasive abilities of

LUAD cells. Compared to the siRNA-NC transfected cells, a loss of
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FIGURE 7

Integrated comparisons of somatic mutation and CNVs between high and low CDS groups in the TCGA cohort. (A, B) Waterfall plots showing the
mutation information of the top 20 genes with the highest mutation frequency in the CDS groups. (C-E) Association between all mutation counts,
synonymous mutation counts, nonsynonymous mutation counts, and CDS and their distribution in the CDS groups. (F) Differentially mutated genes
between high and low CDS groups are displayed as a forest plot. (G) Interaction effect of genes mutating differentially in patients in the CDS groups.
(H) Distribution of TMB in the CDS groups. (I) Kaplan–Meier curves for the OS of the high‐TMB and low‐TMB groups. (J) Kaplan–Meier curves for
patients stratified by both TMB and CDS. (K) Gene fragments profiles with amplification (red) and deletion (green) among the CDS groups.
(L) Comparison of the fraction of the genome altered, lost, and gained between the CDS groups. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1183230
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2023.1183230
B

C D E F G

H I

J K

L

A

FIGURE 8

Immune-related characteristics of the CDS. (A) Heatmap displaying the correlation between the CDS and immune infiltrating cells in the meta-cohort.
(B) Boxplot showing the differences of anti-cancer immunity score between CDS groups. (C) Comparison of immune checkpoint-related genes levels
between CDS groups in the meta-cohort. (D–G) The distribution of MSI, neoantigens, BCR richness, TCR richness levels in different CDS groups from
TCGA cohort. (H–K) The GSEA results for the 12 overlapping upregulated hallmark pathways in terms of the high CDS groups. (L) The difference in the
hallmark gene sets between different CDS groups by GSVA. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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FIGURE 9

Differential putative immunotherapy and chemotherapy response for patients from high and low CDS groups. (A) Kaplan-Meier curve for patients in
high and low CDS groups in the IMvigor cohort. (B-E) Box plot showing different CDS from patients with immunotherapy responses in the IMvigor,
GSE103668, GSE79671 and GSE78220 cohorts. (F) Violin plot showing different TIDE scores from patients with different CDS. (G) Submap analysis of
the meta-cohort and melanoma patients with detailed immunotherapeutic information. (H)The results of correlation analysis and differential drug
response analysis of CTRP-derived drugs. (I) The results of correlation analysis and differential drug response analysis of PRISM-derived drugs. ns, not
significant, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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invasive and migratory abilities of cells in the DDIT4 siRNAs

transfected cells was observed (Figure 12E). Besides, knockdown

of DDTI4 promotes apoptosis and increases sensitivity to ispinesib

and cabazitaxel in LUAD cells (Figures 12F, G and Figure 13).

Together, these results suggest that the DDIT4 may play a pro-

oncogenic role and a therapeutic target in LUAD.
Discussion

Despite ongoing efforts, the treatment of LUAD remains

challenging, as the disease is often aggressive and associated with

poor prognosis (51, 52). Therefore, studies should focus on

identifying molecular markers and therapeutic targets for LUAD.

It is well established that cell death has vital anticancer effects and

serves as a therapeutic target. Studies have shown that several PCDs

could influence the TME and attenuate tumorigenesis, cancer

progression, and cancer treatment, thus improving the prognosis
Frontiers in Immunology 15359
and survival of patients with cancer (53, 54). Commonly used

chemotherapy agents and immune checkpoint inhibitors trigger cell

death, thereby attenuating cancer progression (55). However,

several cancers have an innate resistance to cell death (56).

Therefore, deciphering the underlying mechanisms and functions

of cell death, specifically PCD types and the steps involved in

regulated cell death, holds great promise for providing insights into

cancer development and anti-cancer therapeutics. In clinical

practice, the pathological stage of LUAD determines the patient’s

prognosis (57). However, the clinical outcomes of patients with

similar pathological stages of LUAD are often different, which

indicates the inadequacy of current staging systems in providing

reliable predictions and reflecting LUAD heterogeneity (58). As

next-generation sequencing technologies continue to advance,

RNA-seq has emerged as a potent approach for discovering novel

biomarkers and therapeutic targets (59, 60). In recent years,

numerous models based on gene assemblies of various PCD types

have demonstrated commendable prognostic and therapeutic
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FIGURE 10

Exploration of CDS in LUAD scRNA-seq data. (A) t-SNE plot colored by 11 cell subpopulations. (B) t-SNE plot of the distribution of 7 cell types. (C, D) Marker
gene expression of each cell type. (E) CDS distributions in the different single cells. (F-H) Pseudotime trajectory analysis in LUAD cells (Cells are colored
based on states, pseudotime and CDS groups, labels 1, 2, and 3 correspond to the node identifiers and their respective quantities in the figures.
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predictive value, underscoring the potent latent capabilities and

clinical implications of PCD-related genes (61, 62). Nevertheless, a

comprehensive analysis examining PCD-associated genes in LUAD

has not yet been reported. In this study, we comprehensively

analyzed PCDRGs from 12 PCD types. Using the gene expression

profiles of these genes, we developed and validated 101 models

through the “LOOCV” framework across multiple cohorts,

resulting in the identification of the optimal RFS model. This

approach not only utilizes various algorithms to fit models with

consistent prognostic value for LUAD patients but also enables the

models to become simpler and more interpretable. The “The “KM”,

“Time-ROC” and “C-index” analyses showed higher accuracy and

stability of CDS in stratifying the prognosis of patients with LUAD

in multiple cohorts. Furthermore, multivariate Cox regression

analysis showed that CDS could independently predict the

prognosis of patients with LUAD. Next, we compared our CDS

with 77 previously published genetic LUAD models, and the C-

index results revealed that the performance of our CDS was better

than these 77 published models. Therefore, CDS could be a novel

and reliable tool for stratifying patients with LUAD.

All four PCDRGs included in CDS were associated with tumor

initiation and progression. GAPDH is a key enzyme in step 6 of the

glycolytic pathway (63). Studies have demonstrated an increase in

GAPDH expression levels in various tumor tissues and cells (64–
Frontiers in Immunology 16360
66). Malignant cells prefer aerobic glycolysis for producing

adenosine triphosphate to oxidative phosphorylation (67). An

increase in the expression of glycolytic enzymes is considered a

hallmark of cancer metabolism (66). Studies have shown the

involvement of GAPDH in several processes, like the apoptosis of

cells, maintaining DNA integrity, and angiogenesis. Antisense

oligonucleotides or anticancer agents targeting GAPDH could

inhibit the proliferation of colon cancer cells and trigger the

apoptosis of cervical cancer cells (68, 69). DDIT4 is a novel HIF-

responsive gene (70). Studies have shown a close association

between increased DDIT4 expression in hypoxic or stressful

conditions and DNA damage, inflammation, ROS, and autophagy

during cancer occurrence and development. DDIT4 activates the

TSC1/2 and NF-kB pathways, thereby endogenously inhibiting the

mTORC1 pathway. High DDIT4 expression is observed in several

cancers and is linked to poor patient prognosis (71, 72). Conversely,

the prognosis of patients with lung or pancreatic cancers harboring

RAS mutations and DDIT4 deletion is poor. This could be due to

reprogramming the oxidation of fatty acids and the accumulation of

pyruvate and lactate (73). Our in vitro experiments showed high

DDIT4 expression in LUAD tissues and cells, which promoted

proliferation, invasion, migration of and inhibited apoptosis of

LUAD cells. KRT18 is a keratin protein and intermediate

filaments necessary for tissue integrity (74). KRT18 is one of the
B C
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FIGURE 11

Cellular and histological and validation candidate gene expression changes. (A) CDS genes expression in cancer and normal cell lines. beta-actin was
used as the internal reference gene and experiment was performed in triplicate and at least three times. (B, C) IHC analysis of DDIT4 in 30 LUAD and
28 adjacent tissues. ns, not significant, *P < 0.05, **P < 0.01, ***P < 0.001.
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most abundant keratin proteins of epithelial and endothelial cells. It

is expressed in many malignant tumors, including NSCLC, gastric

cancer (GC), hepatocellular carcinoma (HCC) and breast cancer

(BC), making it widely used as a diagnostic and prognostic marker

for cancers (75–78). In addition, KRT18 is an important regulator of

tumors. EGR1 enhances KRT18 expression and promotes the

apoptosis of NSCLC cells (76). Studies have shown that reduced

KRT18 expression enhances the susceptibility of cervical cancer

cells to cytokine-induced cell death, inhibits cell migration (79), and

enhances the sensitivity to paclitaxel in LC (75). ENO1 is an enzyme

involved in metabolism, the pyruvate synthesis and triggers the

activation of the fibrinolytic enzyme and the degradation of the

extracellular matrix (80). Several studies have demonstrated the

involvement of ENO1 in several physiological processes like
Frontiers in Immunology 17361
metabolism, the remodeling of the extracellular matrix,

controlling the growth of cells, and metastasis (81, 82). Studies

have demonstrated that ENO1 promotes the migration and

metastasis of cancer cells via the mechanism of regulating

intravascular and pericyte fibrinolytic activity (83, 84). Besides,

ENO1 could be a valuable prognostic marker. The relapse-free

survival and OS of patients with NSCLC expressing high ENO1

level is relatively shorter (85). Moreover, a study has indicated that

targeting ENO1 could be a novel and effective approach to

overcoming drug resistance (86).

PCD regulates TME by triggering the crosstalk between innate

and adaptive immunity to induce immunostimulatory responses

(87). TME is critical for cancer development and response to

treatment (88). Our results of single-cell RNA sequencing
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FIGURE 12

DDIT4 promoted proliferation, migration, invasion and inhibited apoptosis of LUAD cell lines. (A, B) Knockdown of DDIT4 was confirmed by RT-PCR
and WB. beta-actin and GAPDH was used as the internal reference gene. (C, D) CCK8 and clone formation assays were performed to assess cell
viability and proliferation of H358 and H838 cells. (E) Transwell assay was performed to assess cell migration and invasion of H358 and H838 cells.
(F) TUNEL staining of H358 and H838 cells. (G) WB analysis of BCL2 and caspase-3 proteins in H358 and H838 cells. *P < 0.05, ***P < 0.001.
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analyses and clustering showed that high CDS scoring cells are

mainly concentrated in the areas of T cells, endothelial cells, and

tumor cells. Monocytes have increasingly been recognized as critical

influencers in cancer evolution and progression, with various

subtypes displaying contradictory roles in facilitating tumor

expansion and impeding the metastasis of malignant cells (89).

Macrophages, notably prominent in the pulmonary cancer milieu,

are significant inflammatory entities that modulate both innate and

adaptive immune responses in cancer. The M1 subtype of

macrophages exudes tumor-suppressing molecules like ROS and

NO, eliciting cytotoxic reactions on cancer cells (90, 91). Contrarily,

M2 macrophages can synthesize a range of cytokines that foster the

proliferation and survival of tumor cells. Additional research

indicates that an established positive feedback mechanism

involving CCL5 and CCL18 between M2 macrophages and

myofibroblasts contributes to the malignant progression of
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phyllodes tumors (92). T cells represent the predominant tumor-

infiltrating immune cells in the TME (93), including various t-cell

subsets. These subsets, along with select other immune cell types,

perform dual roles within the lung TME, engaging in both tumor-

suppressing and tumor-promoting activities (94). CD8+ T cells are

pivotal in orchestrating anti-tumor immunity, effectively

eliminating tumor cells through the recognition of tumor-

associated antigens exhibited in major histocompatibility complex

class I (95). Conversely, regulatory T cells (Tregs) are capable of

suppressing anti-cancer immunity. This suppression undermines

protective immunosurveillance of neoplasia and obstructs potent

anti-tumor immune responses in hosts carrying tumors, thereby

fostering tumor evolution and advancement (96). These cells

exhibit high CDS, indicating that they may have some interaction

in TME. In this study, multiple immune cells including CD4 T, CD8

T and macrophages showed high infiltration in patients with low
FIGURE 13

Effect of DDIT4 on chemotherapy sensitivity of H358 and H838 cells.
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CDS, whereas Treg cells showed low infiltration. Moreover, studies

have shown that poor prognosis were closely associated with an

imbalance in the ratio of immune cells in patients with cancers (97,

98). The results showed that the patients in the low-CDS group had

better OS rate and higher immune scores, suggesting that patients

with highly active immune state have a better prognosis. Tumor

cells with lower levels of differentiation often exhibit faster growth

rates, higher invasiveness, and are typically associated with poorer

prognosis (99). The results of pseudotime analysis indicated that

tumor cells with high CDS levels were positioned at the front end of

the differentiation pathway, while tumor cells with low CDS levels

were located at the terminal end of the differentiation pathway.

Therefore, we found that the levels of CDS may be associated with

the degree of differentiation and invasiveness in tumor cells. CNV is

a prevalent type of variation in tumors and serves as a pivotal factor

propelling the initiation and progression of cancer. Studies suggest

that elevated levels of CNV can stimulate tumor cell proliferation

and immune evasion, often resulting in a poorer prognosis for

patients (100, 101). The levels of FGA, FGG, and FGL were

significantly high in patients in the high-CDS group in our study,

which corroborates previous research reports. Numerous studies

suggest that patients with higher levels of TMB, MSI, and SNV

neoantigens are more likely to respond to immune therapy, while

those with higher TIDE scores tend to exhibit the opposite trend

(102–105). Therefore, we compared TMB, MSI, SNV neoantigen,

and TIDE scores in patients in both CDS groups to predict patients’

response to immunotherapy. As expected, patients in the high-CDS

group had higher TMB, MSI, SNV neoantigens, and lower TIDE

scores. Furthermore, patients in the high-CDS group responded

better to immunotherapy and could gain more benefit from

immunotherapy in multiple cohorts. These results validate the

efficacy of our CDS in predicting patients’ responses to

immunotherapy. Several studies are focusing on the combined

use of chemo and immunotherapies for treating patients with

cancer. Immunotherapy can reduce damage caused to the

immune system by chemotherapy, and the combined use of

chemo and immunotherapies could exert synergistic antitumor

effects (106, 107). Finally, we performed an interaction analysis

between CDS and drug response to screen for drugs that can be

used in combination with immunotherapy in patients in the high-

CDS group and aid in guiding personalized therapy. As a result, 8

potential anti-tumor drugs that are more sensitive to patients with

high CDS were identified. Ispinesib is a highly selective small

molecule inhibitor of KSP that inhibits the formation of bipolar

mitotic spindles, leading to cell cycle arrest without centrosome

separation (108). It exhibits broad-spectrum antitumor activity in

various in vitro tumor cell lines and xenograft models. Cabazitaxel

is a chemotherapy drug approved for the treatment of prostate

cancer, primarily exerting its antiproliferative effect by inhibiting

spindle formation and function (109). Cabazitaxel exhibits broad-

spectrum antitumor activity against various tumors, including

Furthermore, colorectal cancer, pancreatic cancer, and lung

cancer (110). Cabazitaxel promotes autophagic cell death in

LUAD by targeting the PI3K/Akt/mTOR pathway (111).

Moreover, self-assembled micelles loaded with cabazitaxel exhibit

good hydrophilicity and enhanced anticancer effects, making them
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potential candidates for lung cancer treatment (112). Similar to

cabazitaxel, epothilone-b belongs to the class of microtubule

stabilizers. Epothilone-b exerts its anticancer effect mainly by

activating the extrinsic apoptosis pathway involving caspase-3 and

caspase-8 (113). Furthermore, epothilone-b has been confirmed as

one of the clinical drugs capable of inducing genuine immunogenic

cell death (114). For lung cancer, epothilone-b enhances the

radiosensitivity of LUAD cells by reducing DNA repair capacity

(115). However, possibly due to the limitations of cell line types, our

experimental results found that knockdown of DDIT4 can only

stably affect the sensitivity of LUAD cells to ispinesib. Moreover, the

results of GSEA and GSVA analyses indicate a significant

enrichment in cell proliferation and metabolism in patients with

high CDS, such as “OXIDATIVE_PHOSPHORYLATION”,

“DNA_REPAIR”, “G2M_CHECKPOINT”, and “GLYCOLYSIS”

(116–119). This could potentially elucidate the heightened

sensitivity of patients in the high-CDS group to these

chemotherapeutic drugs.

However, our study has several limitations. Firstly, due to the

fact that research on PCD is a rapidly evolving and emerging field, it

is possible that an increasing number of PCDRGs will be identified

beyond the 1215 genes included in this study. Second, the patients

included in our study were from retrospective studies conducted at

single centers. Therefore, prospective studies at multiple centers

should be conducted to validate the reliability and validity of CDS.

Finally, we have only explored the effect of DDIT4 on LUAD cells

using siRNA. Therefore, more genetic modification and

intervention strategies are required to determine the involvement

and mechanism of DDIT4 in LUAD.
Conclusions

In conclusion, we have developed and validated an accurate and

robust CDS based on four PCDRGs using extensive machine

learning algorithms. Our CDS could effectively predict the

survival and response of patients with LUAD to immunotherapy.

CDS is a powerful tool for predicting the patient’s prognosis and

designing personalized therapy. These results provide new

directions and shed light on the molecular mechanisms of LUAD.
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Enolase, a multifunctional protein: its role on pathophysiological situations.
J BioMed Biotechnol (2012) 2012:156795. doi: 10.1155/2012/156795

83. Fu QF, Liu Y, Fan Y, Hua SN, Qu HY, Dong SW, et al. Alpha-enolase promotes
cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through
FAK-mediated PI3K/AKT pathway. J Hematol Oncol (2015) 8(8):22. doi: 10.1186/
s13045-015-0117-5

84. Zhan P, Zhao S, Yan H, Yin C, Xiao Y, Wang Y, et al. a-enolase promotes
tumorigenesis and metastasis via regulating AMPK/mTOR pathway in colorectal
cancer. Mol Carcinog (2017) 56(5):1427–37. doi: 10.1002/mc.22603

85. Chang GC, Liu KJ, Hsieh CL, Hu TS, Charoenfuprasert S, Liu HK, et al.
Identification of alpha-enolase as an autoantigen in lung cancer: its overexpression is
associated with clinical outcomes. Clin Cancer Res (2006) 12(19):5746–54. doi: 10.1158/
1078-0432.Ccr-06-0324

86. Qian X, Xu W, Xu J, Shi Q, Li J, Weng Y, et al. Enolase 1 stimulates glycolysis to
promote chemoresistance in gastric cancer. Oncotarget (2017) 8(29):47691–708.
doi: 10.18632/oncotarget.17868

87. Hsu SK, Li CY, Lin IL, Syue WJ, Chen YF, Cheng KC, et al. Inflammation-
related pyroptosis, a novel programmed cell death pathway, and its crosstalk with
immune therapy in cancer treatment. Theranostics (2021) 11(18):8813–35.
doi: 10.7150/thno.62521

88. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The
immune landscape of cancer. Immunity (2018) 48(4):812–830.e14. doi: 10.1016/
j.immuni.2018.03.023

89. Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in
cancer. J Leukoc Biol (2019) 106(2):309–22. doi: 10.1002/JLB.4RI0818-311R
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107. Goł b J, Zagozdzon R, Kamiński R, Kozar K, Gryska K, Izycki D, et al.
Potentiatied antitumor effectiveness of combined chemo-immunotherapy with
interleukin-12 and 5-fluorouracil of L1210 leukemia in vivo. Leukemia (2001) 15
(4):613–20. doi: 10.1038/sj.leu.2402076

108. Johnson RK, McCabe FL, Caulder E, Innlow L, Whitacre M, Winkler JD, et al.
SB-715992, a potent and selective inhibitor of the mitotic kinesin KSP, demonstrates
broad-spectrum activity in advanced murine tumors and human tumor xenografts
(Abstract). Annu Meet Am Assoc Cancer Res Proc (2002) 43:A1355.

109. de Bono JS, Oudard S, Ozguroglu M, Hansen S, Machiels JP, Kocak I, et al.
Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant
prostate cancer progressing after docetaxel treatment: a randomised open-label trial.
Lancet (2010) . 376(9747):1147–54. doi: 10.1016/S0140-6736(10)61389-X

110. Vrignaud P, Sémiond D, Lejeune P, Bouchard H, Calvet L, Combeau C, et al.
Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant
tumors. Clin Cancer Res (2013) 19(11):2973–83. doi: 10.1158/1078-0432.CCR-12-3146

111. Huo R, Wang L, Liu P, Zhao Y, Zhang C, Bai B, et al. Cabazitaxel-induced
autophagy via the PI3K/Akt/mTOR pathway contributes to A549 cell death. Mol Med
Rep (2016) 14(4):3013–20. doi: 10.3892/mmr.2016.5648

112. Zhuang B, Du L, Xu H, Xu X, Wang C, Fan Y, et al. Self-assembled micelle
loading cabazitaxel for therapy of lung cancer. Int J Pharm (2016) 499(1-2):146–55. doi:
10.1016/j.ijpharm.2015.12.073

113. Rogalska A, Marczak A. Epothilone B induces human ovarian cancer OV-90
cell apoptosis via external pathway. Environ Toxicol Pharmacol (2015) 39(2):700–12.
doi: 10.1016/j.etap.2015.01.023

114. Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, et al.
Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology
(2013) 2(3):e23510. doi: 10.4161/onci.23510

115. Baumgart T, Klautke G, Kriesen S, Kuznetsov SA, Weiss DG, Fietkau R, et al.
Radiosensitizing effect of epothilone B on human epithelial cancer cells.
Strahlentherapie Und Onkol (2012) 188(2):177–84. doi: 10.1007/s00066-011-0029-4

116. Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS. Oxidative
phosphorylation as an emerging target in cancer therapy. Clin Cancer Res (2018) 24
(11):2482–90. doi: 10.1158/1078-0432.Ccr-17-3070

117. Hopkins JL, Lan L, Zou L. DNA repair defects in cancer and therapeutic
opportunities. Genes Dev (2022) 36(5-6):278–93. doi: 10.1101/gad.349431.122

118. Xu Y, Xu J, Qiao R, Zhong H, Xia J, Zhong R. Loss of BLK expression as a
potential predictor of poor prognosis and immune checkpoint blockade response in
NSCLC and contribute to tumor progression. Transl Oncol (2023) 33:101671.
doi: 10.1016/j.tranon.2023.101671

119. Lin S, Li Y, Wang D, Huang C, Marino D, Bollt O, et al. Fascin promotes lung
cancer growth and metastasis by enhancing glycolysis and PFKFB3 expression. Cancer
Lett (2021) 518:230–42. doi: 10.1016/j.canlet.2021.07.025
frontiersin.org

https://doi.org/10.1111/IGC.0b013e3181fc3a03
https://doi.org/10.1038/nrc1478
https://doi.org/10.1371/journal.pone.0069354
https://doi.org/10.1371/journal.pone.0069354
https://doi.org/10.1155/2012/156795
https://doi.org/10.1186/s13045-015-0117-5
https://doi.org/10.1186/s13045-015-0117-5
https://doi.org/10.1002/mc.22603
https://doi.org/10.1158/1078-0432.Ccr-06-0324
https://doi.org/10.1158/1078-0432.Ccr-06-0324
https://doi.org/10.18632/oncotarget.17868
https://doi.org/10.7150/thno.62521
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1002/JLB.4RI0818-311R
https://doi.org/10.1016/j.jhep.2020.03.027
https://doi.org/10.1172/JCI87252
https://doi.org/10.1158/1078-0432.CCR-18-3421
https://doi.org/10.1038/s41568-018-0081-9
https://doi.org/10.1038/s41568-018-0081-9
https://doi.org/10.3389/fimmu.2018.03059
https://doi.org/10.1038/s41571-019-0175-7
https://doi.org/10.1038/cr.2016.157
https://doi.org/10.1016/j.smim.2018.04.001
https://doi.org/10.5935/1676-2444.20190002
https://doi.org/10.1126/science.aaf8399
https://doi.org/10.1080/08941939.2019.1663377
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1016/j.jtho.2019.06.016
https://doi.org/10.1056/NEJMoa1500596
https://doi.org/10.1016/j.intimp.2019.105932
https://doi.org/10.1038/sj.leu.2402076
https://doi.org/10.1016/S0140-6736(10)61389-X
https://doi.org/10.1158/1078-0432.CCR-12-3146
https://doi.org/10.3892/mmr.2016.5648
https://doi.org/10.1016/j.ijpharm.2015.12.073
https://doi.org/10.1016/j.etap.2015.01.023
https://doi.org/10.4161/onci.23510
https://doi.org/10.1007/s00066-011-0029-4
https://doi.org/10.1158/1078-0432.Ccr-17-3070
https://doi.org/10.1101/gad.349431.122
https://doi.org/10.1016/j.tranon.2023.101671
https://doi.org/10.1016/j.canlet.2021.07.025
https://doi.org/10.3389/fimmu.2023.1183230
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jun Liu,
Yuebei People’s Hospital, China

REVIEWED BY

Ke Han,
Harbin University of Commerce, China
Ya-Qin Wang,
Sun Yat-sen University Cancer Center
(SYSUCC), China
Hao Chi,
Southwest Medical University, China

*CORRESPONDENCE

Hong Qiu

qiuhong@hust.edu.cn

†These authors have contributed equally to
this work

RECEIVED 15 March 2023

ACCEPTED 07 September 2023

PUBLISHED 25 September 2023

CITATION

Hu P, Xu L, Liu Y, Zhang X, Li Z, Li Y and
Qiu H (2023) Identification of molecular
pattern and prognostic risk model based
on ligand-receptor pairs in liver cancer.
Front. Immunol. 14:1187108.
doi: 10.3389/fimmu.2023.1187108

COPYRIGHT

© 2023 Hu, Xu, Liu, Zhang, Li, Li and Qiu.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 25 September 2023

DOI 10.3389/fimmu.2023.1187108
Identification of molecular
pattern and prognostic risk
model based on ligand-receptor
pairs in liver cancer

Pengbo Hu †, Liang Xu †, Yongqing Liu, Xiuyuan Zhang, Zhou Li,
Yiming Li and Hong Qiu*

Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, Hubei, China
Introduction: The tumor microenvironment of hepatocellular carcinoma is

composed of multiple cells, and the interactive communication between cells

drives tumor progression and characterizes the tumor. Communication between

cells is mainly achieved through signal transduction between receptor ligands,

and the rise of single-cell technology has made it possible to analyze the

communication network between cells.

Methods: We applied a train of bioinformatic techniques and in vitro

experiments. We analyzed the composition of the microenvironment of liver

cancer by combining single-cell sequencing data and transcriptome sequencing

data from liver cancer to construct molecular typing and risk models for LRs.

Then, we analyzed association of it with prognosis, mutation, KEGG, tumor

microenvironment (TME), immune infiltration, tumor mutational burden (TMB)

and drug sensitivity in liver cancer. qPCR and was used to identify SLC1A5

expression in LIHC cell lines and CCK8, transwell and cell colony formation

were performed to validate the function of SLC1A5. Meanwhile, we also

performed polarization of macrophages.

Results: In this experiment, we found that liver cancer tissues are rich in immune

and mesenchymal cells, and there is extensive signaling between individual cells, so

we constructed molecular typing and risk models for LRs. Combining clinical data

revealed significant differences in clinical characteristics, prognosis and mutated

genes between themolecular typing of receptor-ligand pairs, as well as in sensitivity

to drugs; similarly, there were significant prognostic differences between the risk

models. There were also notable differences in activated signaling pathways,

infiltrating immune cells and immune subtypes. Subsequently, we used siRNA to

knock down SLC1A5 in hepatocellular carcinoma cells and found that cell

proliferation, migration and invasion were diminished.

Conclusions: In conclusion, our LRs model may become a marker to guide

clinical treatment and prognosis.
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Introduction

HCC ranks as the sixth most prevalent new tumor in the world,

but the second most common new death (1). Due to the insidious

character of liver cancer, the detection rate of early-stage liver

cancer is quite poor, while the highly malignant characteristics of

liver cancer frequently result in the identification of liver cancer at

an advanced stage. The prognosis for advanced liver cancer is

terrible, with a lack of surgical opportunities and a high risk of

metastasis within and outside the liver, resulting in worse quality of

living and a shorter survival time for patients (2).

The tumor microenvironment, a hothouse of research in recent

years, is composed of tumor cells, immune cells and stromal cells

that together modulate tumor growth, metastasis, drug resistance

and other properties (3). In the last few years, the rapid

development of single-cell sequencing has made it possible for

scientists to peek into the details of the tumor microenvironment

(4). Through the use of gene expression profiles of individual cells,

we can identify the specific roles played by different cell types in

the tumor microenvironment, refining the function of cells to

investigate the microenvironment in a specific target (5).

Cell-to-cell signaling moderates the function and state of the

cell. With the continuous enhancement of precision in the research

of tumors, receptor-ligand interactions to deliver signals between

tumor tissues have attracted the attention of scientists (6). In

particular, in the tumor microenvironment, a majority of the

interactions between tumor cells, immune cells and stromal cells

are mediated by receptors and ligands, of which investigations on

PD1 and PD-L1 have made a significant contribution to clinical

diagnosis and treatment (7).

Currently, there is no effective method to forecast the prognosis

of patients with hepatocellular carcinoma, but receptor-ligand

interactions could, up to some extent, anticipate the malignancy

of the tumor and thus predict the prognosis of patients.

Consequently, we developed a receptor-ligand pairs (LRs) model

based on hepatocellular carcinoma to predict the risk of patients

and ultimately improve their survival.
Materials and methods

Datasets

The single cell sequencing data (GSE146115) was obtained from

the GEO database, the gene expression profiling data, clinical data

and mutation data from TCGA and ICGC. The ICGC-LIHC sample

(231) set was regarded as the external validation set, and the TCGA-

LIHC sample (365) set as the training set.
scRNA-seq data analysis and cell
type definition

“Seurat” R package was applied to analyze the expression matrix

of single cells, and we screened for cells with the optimal number of

genes expressed (50~20000) (8). The mitochondrial genes have
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been removed from the expression matrix. After controlling for

average expression and dispersion relationships, all highly variable

genes in single cells were identified. Subsequently, the highly

variable genes were used to perform principal component analysis

to identify significant principal components as a means of

eliminating batch effects based on the “jackstraw” function. Cells

were cohorted into 12 different cell types at a resolution of 0.5 using

the “FindClusters” function. The “FindAllMarkers” function was

applied to discern differentially expressed genes (DEGs).

Additionally, a few traditional markers for defining cell subsets

were gathered from earlier studies (Table 1) and manually

annotated in accordance with marker expression.
Cell to cell communication

The various cells of the tumor microenvironment interact with

each other to exert tumor promoting or inhibiting effects through

activation between various ligands and receptors. Cellular

communication was accomplished through “cellphonedb”,

a public database containing ligands, receptors, and their

interactions, and by annotating the membrane, secreted, and

peripheral proteins of each cell subgroup at various time points

(9). We conducted the “cellphonedb” to unpack the matrix of

cellular communication and we filtered the receptors and ligands

that appeared in the expression matrix in TCGA.
Selection of receptor-ligand pairs

Cellular interactions depend on the simultaneous expression of

receptors and ligands, and receptors can only be stimulated to

mediate intercellular communication when the number of receptors

and ligands is at a parallel elevation. We screened for LRs with

receptor-ligand co-expression correlations greater than 0.3 (p <

0.05) and used these LRs for clustering to determine molecular

types (10).
Molecular subtyping calculation

We took the sum of the gene expression of the receptor and

ligand as the expression of the LR. We combined the receptor-

ligand expression data with the prognostic data to filter out LRs
TABLE 1 The marker genes for the cells.

Cell subgroups Markers

B cells CD79A, CD79B

Fiberblast cells ACTA2

Hepatocytes CYP2C9, ARG1

Myeloid cells CD68, CD163

NK cells NCAM1, GNLY

T cells CD3D, CD3E
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with prognostic significance and then used the R package

“ConensusClusterPlus” to generate consensus matrix, “euclidean”

was selected as the distance metric for PAM algorithms. A random

subset of the TCGA data was selected from the TCGA data, the size

of the subset was 80% of the original data set and 500 replications

were performed (11). The amount of clusters was varied ranging

from 2 to 10 and the most appropriate number of clusters was

determined through the calculation of the consensus matrix and the

cumulative distribution function (CDF).
Presumption of drug sensitivity

The R package “pRRophetic” was applied to calculate the

sensitivity of different drugs based on expression matrix (12). We

determined the appropriate drugs for different classifications of

patients based on the sensitivity of the drug, as well as the

classification of the different patients.
Risk model

The R package “glmnet” was conducted to screen for LRs using

lasso regression, combined with prognostic data, to build a risk model

to predict the risk of patients by classifying them into different risk

groups using the median risk score. First, we chose “cv.glmnet”

fuction to filter the l that minimised the discrepancy. Then, based on

the value of l taken at this point, we got to filter the best LRs to build

the prognostic model. The risk score was calculated using the formula

LR. Score = ∑b(i) ×Exp(i), where i refers to the LR pair, Exp

represents the level of LR pair expression and beta is the coefficient

of the LR pair in the model. The median value of the training set

(TCGA) was selected as the truncation value (13). The R package

“survival” was employed to depict survival curves and to compare

survival differences between high and low risk groups. The R package

“timeROC” to portray the ROC curves of risk scores and traditional

prognostic indicators, and to calculate the AUC values to assess the

accuracy of the prognosis prediction (14).
Function enrichment and analysis of
mutations and immunity

The “maftools” package was used to visualize the mutation data.

We presented the twenty genes with the most significant mutations

and comparedmutations in patients of different subtypes.We applied

“clusterProfiler” to analysis KEGG pathway (15). The ‘hallmark’ gene

set collection from the molecular signature database was used for

pathway enrichment analysis. Immune cell infiltration assessment

was carried out with the “ssGSEA” package (16).
In vitro experimental validation

The cells used in this experiment were obtained from the

laboratory of the Department of Oncology, Tongji Hospital,
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Huazhong University of Science and Technology. LO2, SNU398,

Huh7 and HLF were cultured in DMEM medium with 10% fetal

bovine serum added. We extracted RNA from the cells, reverse

transcribed them into DNA and qPCR detected the expression of

SLC1A5 in the cells. Subsequently, SLC1A5 was knocked down in

Huh7 and SNU398 cells using siRNA, and CCK8, cell colony

formation and transwell were used to detect the proliferation,

migration and invasion ability of the cells (17). Meanwhile, we

also performed polarization of macrophages. Detailed experimental

steps are in the Supplementary Data Sheet 1, and all experiments

were repeated three times.
Statistical analysis

Dichotomous variables were tested using the chi-square test,

survival analysis was performed using the log-rank test, and

comparison between the two groups was performed using the

Wilcoxon test. p<0.05 was considered to be statistically different.
Results

The single-cell transcriptome landscape of
hepatocellular carcinoma

Figure 1 showed the overall design and flow chart of this study.

Since the gene expression data from single cells excluded

mitochondrial genes, we calculated the correlation between the

number of unique molecular identifiers and mRNA, which suggests

that a significant positive correlation was shown between the

number of unique molecular identifiers and mRNA (Figure 2A).

Gene numbers for the vast majority of cells are between 0 and 8000

(Figure 2B). After filtering the cells, a total of 3200 cells were

included in the subsequent analysis. The differential genes in the

various cell types were calculated for a total of 12 cell types after

normalizing the expression data and filtering the first 2000 highly

variable genes for the subsequent principal component analysis

(Supplementary Figure 1A, Figure 2C). Based on the marker genes

in the different cells, we identified the cell types that needed to be

labelled. The marker genes for the cells were derived from databases

and earlier studies. As a result, six cells were identified, such as B

cells, fibroblast cells, hepatocytes, myeloid cells, NK cells, T

cells (Figure 2D).
Intercellular communication networks in
hepatocellular carcinoma

The tumor microenvironment in solid tumors is composed

primarily of stromal cells and immune cells, in addition to the

tumor cells themselves. Within the microenvironment, various cells

communicate with each other to transmit information to

influence tumor progression. When speculating on intercellular

communication, we used “cellphonedb” and found that tumor cells

contact mainly with fibroblasts and fibroblasts with myeloid cells in
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liver cancer (Figure 2E). In Figure 2F, thicker lines indicate more

interactions, and the numbers on the lines represent the number of

interacting nodes.
Molecular typing based on
ligand-receptor pairs

In cellular communication, receptor-ligand interactions play an

essential role, and through “cellphonedb” simulations we obtained the

corresponding LRs. Based on the TCGA expression profile and taking

into account the need for synergistic expression of receptors and

ligands, we chose LRs with co-expression R-values above 0.3 and P-

values less than 0.05. 81 LRs were selected in total (Supplementary

Table 1). The sum of the expression values of the receptor and the

ligand took the place of the LRs’ expression values. Molecular typing

analysis was executed on the sample set of TCGA using the

“ConsensusClusterPlus”. Based on the CDF value (Figure 3A),
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splitting into two clusters was the preferred candidate when the k

value was taken as 2 (Figures 3B, C). The ICGC validation dataset was

subjected to the same data processing procedure as the TCGA training

dataset, and the outcomes were identical. Similar distinctions between

the two groups of patients were made based on the LR expression

pattern (Supplementary Figures 2A–C).
Comparison of clinical information in
different molecular subtypes

According to the results of the clustering, combined with the

prognosis analysis of the patients, we analyzed the survival of the

patients in both clusters and the survival curves depicted are shown

in the figure. The log-rank test showed that there is a significant

difference in survival between the two clusters, with patients in the

A subtype having a better prognosis than those in the B subtype in

TCGA (Figure 3D). The outcomes of the prognostic analyses in the
FIGURE 1

The flowchart of the study design.
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ICGC validation set were agreed with those in the TCGA training

set. However, the number of patients in B subtype was too small,

perhaps as a result of the limited sample size of patients in ICGC,

leading to a P value (0.052) of more than a little over 0.05

(Supplementary Figure 2D). Meanwhile, we went on to analyze

the gene expression and clinical characteristics of patients in

different clusters and found that the expression levels of risk

genes were significantly higher in B subtype patients than in A

subtype (Figure 4A). Regarding the clinical traits, we discovered

that patients in the B subtype had greater tumor grade and TNM
Frontiers in Immunology 05371
stage as well as more fatalities than those in the A subtype

(Figures 4B–D).
Mutational characteristics of different
molecular subtypes

Genetic alterations in tumor cells, mutational inactivation of

anti-oncogenes, amplified overexpression of oncogenes, etc., all of

which contribute to tumor development, are intimately associated
A B
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C

FIGURE 2

(A) Correlation between the number of unique molecular identifiers and mRNA (B) Violin plot of features (C) tSNE of cell profiles; different color
blocks represent related cell clusters. (D) tSNE of cell profiles; different color blocks represent related sample sources. (E) LR interactions between
different cell subsets. (F) Network overview for the interaction between different cell subsets.
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to tumor growth. When we analyzed the mutation data of patients

in A and B subtype patients, we found that there were more

mutations in the A subtype patients (Figures 4F, G). The

mutations in the B subtype patients were mainly in the

antioncogenes and the types of mutations were mainly missense

mutations, such as TP53 (Figure 4G).

We then analyzed the tumor mutational burden of patients to

predict the efficacy of immunotherapy in patients, and we found

that the tumor mutational burden (TMB) was higher in A subtype

patients than in B subtype patients (Figure 4E), which means that

the effectiveness of immunotherapy may be better in A subtype

patients than in B subtype patients.
Drug sensitivity of different
molecular subtypes

We also attempted to see whether there were changes in drug

sensitivity amongst the various patient clusters, in addition to

examining differences in clinical features and gene expression. Using

the R package “pRRophetic” to predict patient sensitivity to

chemotherapeutic drugs, we analyzed prominent liver cancer drugs

and found that sorafenib, a first-line drug for liver cancer, was more
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efficacious in B subtype patients. At the same time, we observed that

some drugs were more effective in A subtype patients, such as

“Bleomycin” (Figure 5A),” Doxorubicin” (Figure 5B), “Gemcitabine”

(Figure 5C), “Mitomycin” (Figure 5D), “Paclitaxel” (Figure 5F), and

conversely, some drugs were more targeted in B subtype, such as

“Methotrexate” (Figure 5E), “Rapamycin” (Figure 5G), “Sorafenib”

(Figure 5H), “Temsirolimus” (Figure 5I).
Establishment of the risk model based on
the ligand–receptor pair score

Molecular subtypes based on LRs had different clinicopathological

characteristics as well as drug sensitivity. We sought to construct a

prognostic model using LRs to assess patient risk. A total of 18 LRs

associated with prognosis were considered (Supplementary

Figure 1B), and we used LASSO cox regression to shrink the

number of LRs, with optimal results occurring when l was 0.0159

Figures 6A, B). We then used stepwise multivariate regression for

optimization, and a total of nine LRs were screened out for model

construction (Supplementary Table 2). In the training set (TCGA), the

median risk score was selected as the cut-off value to classify patients

into high and low risk groups, while patients in the validation set
A B

DC

FIGURE 3

(A) CDF curve of samples from TCGA cohort. (B) Delta area curve of samples from TCGA cohort. (C) TCGA clustering heatmap of samples from
TCGA cohort when consensus k = 2. (D) Overall survival curves of molecular subtypes based on LR pairs.
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(ICGC) were similarly classified into high and low risk groups using

the cut-off value in the training set as the boundary.
Correlation between the risk model and
clinical features

Based on the risk groupings, we plotted the survival curves for

the training and validation sets separately and used log-rank test to

analyze whether there was a difference in survival, and we found

that the high-risk group had a worse prognosis in both datasets

(Figures 6C, D). We also plotted ROC curves based on risk scores

and clinicopathological characteristics, and calculated AUC values
Frontiers in Immunology 07373
for different factors separately, and observed that risk scores

performed better in predicting patient risk in the training and

validation sets (Figures 6E, F). In the TCGA training set, the risk

model’s sensitivity was 0.784 and its specificity was 0.652; in the

ICGC validation set, these values were 0.823 and 0.744, respectively.

Both univariate and multivariate analyses showed that the risk score

was an independent risk factor to assess patients’ prognosis in

TCGA database (Figures 6G, H). In the validation set, we similarly

found that risk score was also an independent prognostic factor in

both univariate and multivariate analyses (Figures 6I, J).

The results of the principal components analysis showed

that the grouping of high and low risk was able to separate the

characteristics of the patients in TCGA (Supplementary Figure 3A),
A
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FIGURE 4

(A) Heatmap of expression of LRs in molecular subtypes (B) Grade in molecular subtypes (C) Fustat in molecular subtypes (D) Stage in molecular
subtypes (E) TMB in molecular subtypes (F) Somatic mutation variation analysis in A cluster in the TCGA-LIHC cohort. (G) Somatic mutation variation
analysis in B cluster in the TCGA-LIHC cohort.
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and the same phenomenon was observed in the validation set

(Supplementary Figure 3B). Similarly, we found that the risk

scores of surviving patients were significantly lower than those of

the deceased in the training set (Figure 6K), and the same was

witnessed in ICGC (Figure 6L). This suggested that the risk score in

the prognostic model was highly effective in predicting patient

survival, and that patients could be separated according to different

risk groupings. In the training set, the proportion of patients who

died increased as the risk score increased (Supplementary

Figures 3C, D). Similarly, we observed the same phenomenon in

the training set (Supplementary Figures 3E, F).
Pathway analysis and immune
characterization of risk model

Additionally, we conducted an enrichment analysis of patients

in the high-risk and low-risk groups and found that compared to
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low-risk patients, high-risk patients mainly activate a number of

immune-related, metabolism-related and hypoxia-related pathways

(Figures 7A, B).

We conducted the R package “ssGSEA” to analyze the immune

infiltration of patients and we found a decrease in the infiltration of

B cells, CD8+ T cells, mast cells, NK cells and, at the same time, an

increase in the infiltration of activated DC cells and macrophages in

high-risk patients (Figure 7C). The reduction of tumor-killing

immune cells and addition of tumor-promoting immune cells

may be one of the reasons for the worse prognosis in high-risk

patients. Combined with the immune phenotyping of the patients,

we found that the immune subtypes in the high-risk group were

focused on C1 & C2 and in the low-risk group were mostly in

C3 (Figure 7D).

We compared the levels of PD-L1 expression in the high and

low risk groups and discovered that patients in the high-risk group

had higher levels of PD-L1 expression (Figure 7F). This finding is

also consistent with what we found of the ssGSEA above, which
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FIGURE 5

(A) Bleomycin. (B) Doxorubicin. (C) Gemcitabine. (D) Mitomycin. (E) Methotrexate. (F) Paclitaxel. (G) Rapamycin. (H) Sorafenib. (I) Temsirolimus.
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revealed that the high-risk group was primarily in an

immunosuppressed state. As a result, the high-risk group may be

more responsive to immunotherapeutic treatment targeting PD-1/

PD-L1.
Frontiers in Immunology 09375
The TIDE scores are one of the basis for evaluating the current

immunotherapy, so we also looked at the TIDE scores of the high and

low risk groups. As a result, we discovered that there was a difference

in the TIDE scores of the high and low risk groups (Figure 7E). Lower
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FIGURE 6

(A) Plotting of multinomial deviance versus log(l). (B) LASSO coefficient profiles of the LRs. (C) Survival benefit of LR.score in the high and low LR.score
groups in the TCGA-LIHC cohort. (D) Survival benefit of LR.score in the high and low LR.score groups in the ICGC-LIHC cohort. (E) The predictive value of
LR.score in patients among the TCGA-LIHC cohort. (F) The predictive value of LR.score in patients among the ICGC-LIHC cohort. (G) Univariate cox
regression analysis of LR.score, age, TNM stage and grade for overall survival (OS) in the TCGA-LIHC cohort. (H) Multivariate cox regression analysis of
LR.score, and TNM stage for OS in the TCGA-LIHC cohort. (I) Univariate cox regression analysis of LR.score, age and TNM stage for overall survival (OS) in
the ICGC-LIHC cohort. (J) Multivariate cox regression analysis of LR.score, and TNM stage for OS in the ICGC-LIHC cohort. (K) Fustat in the high and low
LR.score groups in the TCGA-LIHC cohort. (L) Fustat in the high and low LR.score groups in the ICGC-LIHC cohort.
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TIDE scores in the high-risk group imply that patients in the high-risk

group will have a better immunotherapy outcome, which is consistent

with the results of the PD-L1 expression level. Patients in subtype A

were dominantly in the low-risk group and the state of survival, while

the opposite was observed in subtype B patients (Figure 7G).
Functional experiments in vitro

In the LR model, the coefficient of LGALS9_SLC1A5 was the

largest. Considering that SLC1A5 is a receptor, we took a series of

experiments to test whether SLC1A5 affects the function of tumor

cells. To clarify the expression of SLC1A5, we selected three

hepatocellular carcinoma cells and normal hepatic epithelial cells

to perform qPCR experiments. We found that the expression level

of SLC1A5 was higher in all hepatocellular carcinoma cells than in

normal hepatic epithelial cells, with the higher expression level in

Huh7 and SNU398 cells (Supplementary Figure 1C). We performed
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the cell proliferation assay (CCK8 and cell colony formation), cell

migration and invasion assay (transwell) using siRNA to knock

down the expression level of SLC1A5 in Huh7 and SNU398 cells,

and observed that the knockdown levels of si1 and si3 were the best

among the three siRNAs (Figures 8A, B). The results indicated that

the proliferation (Figures 8C–H), migration (Figures 9A–D) and

invasion (Figures 9E–H) of hepatocellular carcinoma cells were

significantly reduced after knockdown of SLC1A5.

After culturing macrophages using conditioned medium from

tumor cells, we examined the expression of marker molecules in

macrophages. Subsequently, we found that after culturing

macrophages using conditioned medium from hepatocellular

carcinoma cells with knockdown of SLC1A5, the expression of M2-

type macrophage marker molecules was decreased, and the expression

levels of CD206 and ARG1 were markedly down-regulated in

macrophages (Figure 9I). This experimental phenomenon suggests

that the expression of SLC1A5 by hepatocellular carcinoma cells may

have an effect on the immune microenvironment.
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FIGURE 7

(A) The results of the KEGG in TCGA-LIHC cohort. (B) The results of the KEGG in ICGC-LIHC cohort. (C) Analysis of immune cell scores in the TCGA-LIHC
cohort calculated using the ssGSEA algorithms. (D) Comparison of immune subtypes in different risk groups (E) Correlation of LR.score and TIDE score
(F) The expression level of CD274 (G) Alluvial diagram of the distribution of different gene cluster, risk score and survival outcome subtypes. *p< 0.05;
**p< 0.01; ***p< 0.001.
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FIGURE 8

(A) Validation of knockdown efficiency by qPCR in HuH7 cells. Results represent mean ± SD. n = 3. ****p < 0.0001; two-tailed t-test. (B) Validation of
knockdown efficiency by qPCR in SNU398 cells. Results represent mean ± SD. n = 3. ****p < 0.0001; two-tailed t-test. (C) SLC1A5 knockdown inhibited
colony formation of HuH7 cells. (D) SLC1A5 knockdown inhibited colony formation of SNU398 cells. (E) The colony number of HuH7 cells. Results
represent mean ± SD; n = 3; ***p < 0.001; two-tailed t-test. (F) The colony number of SNU398 cells. Results represent mean ± SD; n = 3; ***p < 0.001;
two-tailed t-test. (G) SLC1A5 siRNA displayed reduced proliferation of HuH7 cells. Results represent mean ± SD; n = 3; ***p < 0.001; two-tailed t-test.
(H) SLC1A5 siRNA displayed reduced proliferation of SNU398 cells. Results represent mean ± SD; n = 3; ****p < 0.0001; two-tailed t-test.
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Discussion

The tumor microenvironment is a burning research topic in the

field of oncology. Immune cells are drawn to tumor-associated

inflammatory changes, and these immune cells combine with stromal

cells in the tumor tissue to form the tumor microenvironment (18).
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The tumor microenvironment is a double-edged sword in the process

of tumor development. Tumor cells will be killed by immune cells to

suppress tumor progression. Simultaneously, tumor cells will evade

the surveillance of immune cells and gradually remodel the tumor

microenvironment so that it promotes tumor metastasis and drug

resistance (19).
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FIGURE 9

(A) SLC1A5 knockdown inhibited migration of HuH7 cells. (B) SLC1A5 knockdown inhibited migration of SNU398 cells. (C) The cell number of
migration of HuH7 cells. Results represent mean ± SD; n = 3; ****p < 0.0001; two-tailed t-test. (D) The cell number of migration of SNU398 cells.
Results represent mean ± SD; n = 3; ****p < 0.0001; two-tailed t-test. (E) SLC1A5 knockdown inhibited invasion of HuH7 cells. (F) SLC1A5
knockdown inhibited invasion of SNU398 cells. (G) The cell number of invasion of HuH7 cells. Results represent mean ± SD; n = 3; ***p < 0.001;
**p < 0.01; two-tailed t-test. (H) The cell number of invasion of SNU398 cells. Results represent mean ± SD; n = 3; ****p < 0.0001; two-tailed t-test.
(I) Relative expression of gene markers of M2 (CD206, ARG1) macrophages by stimulation of different CM in THP1 cell lines.
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According to the findings of single cell sequencing, fibroblasts,

myeloid cells, B cells, T cells, and NK cells have been found

infiltrating liver cancer tissue. The infiltration of T cell kills tumor

cells, but recent research has revealed that T cell killing depends on

non-depleted T cells and that tumor cells evade the immune

system by causing T cell depletion (20, 21). Myeloid cells are

predominantly macrophages and tumor cells can induce the

conversion of macrophages into tumor-associated macrophages,

which are able to interact with other cells either through direct

contact or by secreting various effector molecules (22, 23). Tumor-

associated fibroblasts contribute to tumor extracellular matrix

remodeling, stemness characteristics, angiogenesis and drug

resistance (24, 25).

Due to the sophisticated exploration of tumors, the treatment of

tumors has evolved from targeting the tumor cells themselves in the

early days, directly killing them through radiotherapy or chemotherapy

(26), to currently targeting the tumor microenvironment and reversing

the cancer-promoting microenvironment to eliminate the tumor cells.

Immunotherapy targeting PD-1 on T cells interacting with PD-L1 on

tumor cells has been widely used in clinical practice for a considerable

period of time (27). Not all patients benefit from them, despite the fact

that their efficacy is promising in some tumors (28). Immunotherapies

targeting other destinations have also been explored in advance, and we

were trying to identify other cellular interactions in the tumor

microenvironment that could improve the prognosis of tumor

patients. We therefore employed current single cell sequencing to

analyze and identify cell types in hepatocellular carcinoma, utilizing

software to predict cell-to-cell communication and sought out LRs that

were prognostically relevant in hepatocellular carcinoma. Constructing

molecular subtypes with different expression patterns of LRs,

we observed significant differences in prognosis as well as

clinicopathological features of patients in different subtypes,

suggesting that we targeted these LRs as possible targets for future

clinical therapy. At the same time, we observed that the sensitivity of

patients to chemotherapeutic drugs differed between subtypes, which

could be the basis for more targeted drug delivery to different patients

in the clinical field.

The function of the 18 pairs of LRs for which we constructed

molecular typing has been studied in a number of ways. For

example, the IL15_IL15RA interaction produces a two-sided

effect, with IL-15 promoting the proliferation and maintaining the

survival of certain T cells as well as consistently promoting anti-

tumor responses and being crucial for controlling tumor growth

and metastasis in vivo. However, chronic inflammatory stimulation

of IL-15 increases tumor growth and metastasis (29). The

connection between SELP and CD34 shows that patients gain

from the stimulation of the innate immune response to improve

anti-tumor immunity, eliminate tumor cells, and hinder the growth

of tumors (30). The interaction of the remaining 16 pairs of LRs, in

contrast, is what is causing the progression of the tumor, and this

interaction allows the tumor microenvironment to change in a way

that is pro-cancer, causing M2 type macrophages to transform and

inhibiting the activity of NK cells. The main mechanisms

of interaction between tumor cells and tumour-associated

macrophages are LGALS9-SLC1A5, CCR1_CCL23, CSF1R _CSF1,

GRN_SORT1, CSF1_SIRPA, and SIRPA_CD47, which primarily
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induce macrophage differentiation to M2 type while inhibiting

macrophage phagocytosis of tumor cells, cause immune escape,

and promote tumor cell proliferation, invasion, and metastasis

(31–35). Specifically, LAIR1_LILRB4, EPHB6_EFNB1, and

LGALS9_CD44 have immune-suppressive effects . The

interactions of LGALS9_CD44 promote the differentiation and

maintenance of Treg cells (36). The protein encoded by the

EFNB1 gene in EPHB6_EFNB1 is a ligand for type I membrane

proteins and Eph-associated receptor tyrosine kinase, and its

binding to the ligand primarily exerts suppressive immune effects

(37). Tyrosine phosphatases SHP-1 and SHP-2 and/or inositol

phosphatase SHIP, which are detrimental to immune activation

and promote tumor growth, are recruited by LAIR1_LILRB4

activation (38). WNT7B_FZD1, ICAM1_SPN and EPHA2_EFNA5

are mainly involved in facilitating tumorigenesis and invasive

metastasis. Among them, ICAM1_SPN plays an important role in

cell-cell interactions, and circulating tumor cells with stem cell

properties may be able to use the adhesion protein ICAM1 to

promote the formation of circulating tumor clusters that migrate

from the body’s primary tumor sites to other organs (39, 40); EPHA2

in EPHA2_EFNA5 induces inhibition of the focal adhesion kinase

(FAK), extracellular regulatory protein kinases (ERK) and Akt

phosphorylation, thereby regulating motility, viability and

proliferation of a variety of malignant cell lines (41).

SLC1A5 is a mitochondrial glutamine transporter and

glutamine regulates energy metabolism, signal transduction and

redox status in cells (42). Previous studies have indicated that

SLC1A5 might affect how immune cells behave and infiltrate

tumor microenvironment, which can promote cancer. In breast

cancer, SLC1A5 can promote tumor progression (43). Additionally,

SLC1A5 accelerates the growth of lung and colorectal malignancies

by forcing tumor cells to undergo metabolic reprogramming.

In hepatocellular carcinoma, we observed that the expression

level of SLC1A5 was dramatically up-regulated, while the ability of

hepatocellular carcinoma cells to proliferate was significantly down-

regulated after SLC1A5 expression was silenced using siRNA.

Additionally, hepatocellular carcinoma cells’ capacity for migration

was noticeably suppressed. The results suggested that the malignancy

of hepatocellular carcinoma cells increased when the ligand agonized

SLC1A5, and targeting SLC1A5 could alleviate tumor progression in

hepatocellular carcinoma patients in the future (44, 45).

In the prognostic model we constructed, there were disparities

in immune cell infiltration between the high and low risk groups,

with fewer anti-cancerous immune cells and more pro-cancerous

immune cells in the high-risk group, which contributed to the worse

prognosis in the high-risk group. Meanwhile, patients in the low-

risk group for hepatocellular carcinoma were primarily clustered in

the C3 immune subtype, and the C3 type was inflammatory, in line

with the results of the previous analysis (46). Most of the patients

with the molecular subtype A belonged to the low-risk category.

Patients in subtype A had a higher tumor mutational burden, and

in relation to the previous analysis, we hypothesized that

immunotherapy was more effective in subtype A patients.

Moreover, both in the validation and training sets, the high-risk

group focused on activating tumor metabolism (47), cell cycle,

hypoxia, and immune-related pathways compared to the low-risk
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group. Activation of these pathways tended to make tumor worse,

implying a poorer prognosis.

The functions of the 9 pairs of LRs used to construct the

prognostic models also vary, among which LGALS9_HAVCR

acting primarily as a promoter of lymphocyte activation. As a co-

stimulatory molecule during lymphocyte activation, HAVCR

enhances the anti-tumor effects of lymphocyte and induces

changes in the tumor microenvironment, leading to efficient anti-

tumor immunity (48). KLRB1 in KLRB1_CLEC2D is the gene

encoding human CD161. KLRB1 gene inactivation or antibody-

mediated KLRB1 blockade enhances T cell-mediated glioma cell

killing in vitro, and the CD161_CLEC2D pathway defines a

potential target for immunotherapy of glioma and other human

cancers (49). Therefore, increased expression of KLRB1_CLEC2D

and LGALS9_HAVCR suggests that patients may have better

efficacy of immunotherapy.

Considering the limitations piece, there were three flaws in this

paper. Firstly, the studies in the article were retrospective studies that

underwent analysis after data collection, the actual clinical value of

which had not yet been ascertained in genuine clinical practice.

Additionally, the article contained just a limited amount of data,

subsequently a larger sample size is supposed to be incorporated into

the study. Moreover, the data in the article were partially biased.
Conclusion

In conclusion, we have analyzed the interactions between cells

in hepatocellular carcinoma, thereby establishing molecular

subtypes of cellular communication as well as a prognostic model.

The expression pattern of LRs may be able to predict the effect of

chemotherapy and immunotherapy in patients with hepatocellular

carcinoma and to forecast the prognosis of patients. Our findings

highlight the clinical implications of LRs and provide a basis for

subsequent clinical translation.
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(A)Heatmap showingmarker genes for each cluster. (B) The HR values of LRs.

(C) Quantitative polymerase chain reaction (qPCR) displayed upregulation of

SLC1A5 in liver cancer cells compared to normal cell line (LO2). Results
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(A) CDF curve of samples from ICGC cohort. (B) Delta area curve of samples
from ICGC cohort. (C) ICGC clustering heatmap of samples from ICGC

cohort when consensus k = 2. (D) Overall survival curves of molecular

subtypes based on LR pairs.

SUPPLEMENTARY FIGURE 3

(A) The results of the PCA in TCGA-LIHC cohort. (B) The results of the PCA in

ICGC-LIHC cohort. (C) Distribution of risk score (high or low) in TCGA. (D)
Distribution of status (dead or alive) in TCGA. (E) Distribution of risk score

(high or low) in ICGC. (F) Distribution of status (dead or alive) in ICGC.

SUPPLEMENTARY TABLE 1

The selected LRs with R-values above 0.3 and P-values less than 0.05.

SUPPLEMENTARY TABLE 2

LRs associated with prognosis.

SUPPLEMENTARY DATA SHEET 1

Detailed procedures of cell transfection, qPCR, CCK8, transwell, colony

formation, western blotting, polarization of macrophages, collection of
conditioned media and LR.score.
frontiersin.org

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://dcc.icgc.org/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1187108/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1187108/full#supplementary-material
https://doi.org/10.3389/fimmu.2023.1187108
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2023.1187108
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/caac.21660

2. Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T, et al. Emerging nanobiotechnology for
precise theranostics of hepatocellular carcinoma. J Nanobiotechnol (2022) 20(1):427.
doi: 10.1186/s12951-022-01615-2

3. Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates cancer
progression. Cancer Res (2019) 79(18):4557–66. doi: 10.1158/0008-5472.Can-18-3962

4. Yan X, Xie Y, Yang F, Hua Y, Zeng T, Sun C, et al. Comprehensive description of
the current breast cancer microenvironment advancements via single-cell analysis.
J Exp Clin Cancer Res (2021) 40(1):142. doi: 10.1186/s13046-021-01949-z

5. CaoH, Huang T, DaiM, Kong X, Liu H, Zheng Z, et al. Tumormicroenvironment and
its implications for antitumor immunity in cholangiocarcinoma: future perspectives for novel
therapies. Int J Biol Sci (2022) 18(14):5369–90. doi: 10.7150/ijbs.73949

6. Ghoshdastider U, Rohatgi N, Mojtabavi Naeini M, Baruah P, Revkov E, Guo YA,
et al. Pan-cancer analysis of ligand-receptor cross-talk in the tumor microenvironment.
Cancer Res (2021) 81(7):1802–12. doi: 10.1158/0008-5472.Can-20-2352

7. Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor
immunotherapy: response versus non-response. Signal Transduct Target Ther (2022)
7(1):331. doi: 10.1038/s41392-022-01136-2

8. Maynard A, McCoach CE, Rotow JK, Harris L, Haderk F, Kerr DL, et al. Therapy-
induced evolution of human lung cancer revealed by single-cell RNA sequencing. Cell
(2020) 182(5):1232–1251.e1222. doi: 10.1016/j.cell.2020.07.017

9. Liu F, Wang P, Sun W, Jiang Y, Gong Q. Identification of ligand-receptor pairs
associated with tumour characteristics in clear cell renal cell carcinoma. Front Immunol
(2022) 13:874056. doi: 10.3389/fimmu.2022.874056

10. Cao ZX, Weng X, Huang JS, Long X. Receptor-ligand pair typing and prognostic
risk model for papillary thyroid carcinoma based on single-cell sequencing. Front
Immunol (2022) 13:902550. doi: 10.3389/fimmu.2022.902550

11. Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with
confidence assessments and item tracking. Bioinformatics (2010) 26(12):1572–3.
doi: 10.1093/bioinformatics/btq170

12. Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in
vivo or cancer patient drug response and biomarkers from cell line screening data. Brief
Bioinform (2021) 22(6). doi: 10.1093/bib/bbab260

13. Chu F, Liang T, Chen CLP,Wang X, Ma X. Compact broad learning system based on
fused lasso and smooth lasso. IEEE Trans Cybern (2023). doi: 10.1109/tcyb.2023.3267947

14. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a
nomogram for cancer prognosis. J Clin Oncol (2008) 26(8):1364–70. doi: 10.1200/
jco.2007.12.9791

15. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics (2012) 16(5):284–7. doi: 10.1089/
omi.2011.0118

16. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic
RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature
(2009) 462(7269):108–12. doi: 10.1038/nature08460

17. Li P, Huang T, Zou Q, Liu D, Wang Y, Tan X, et al. FGFR2 promotes expression
of PD-L1 in colorectal cancer via the JAK/STAT3 signaling pathway. J Immunol (2019)
202(10):3065–75. doi: 10.4049/jimmunol.1801199

18. Yao M, Ventura PB, Jiang Y, Rodriguez FJ, Wang L, Perry JSA, et al. Astrocytic
trans-differentiation completes a multicellular paracrine feedback loop required for
medulloblastoma tumor growth. Cell (2020) 180(3):502–520.e519. doi: 10.1016/
j.cell.2019.12.024

19. Sas Z, Cendrowicz E, Weinhäuser I, Rygiel TP. Tumor microenvironment of
hepatocellular carcinoma: challenges and opportunities for new treatment options. Int J
Mol Sci (2022) 23(7). doi: 10.3390/ijms23073778

20. Chow A, Perica K, Klebanoff CA, Wolchok JD. Clinical implications of T cell
exhaustion for cancer immunotherapy. Nat Rev Clin Oncol (2022). doi: 10.1038/
s41571-022-00689-z

21. Ramadori P, Kam S, Heikenwalder M. T cells: Friends and foes in NASH
pathogenesis and hepatocarcinogenesis. Hepatology (2022) 75(4):1038–49. doi: 10.1002/
hep.32336

22. Cheng K, Cai N, Zhu J, Yang X, Liang H, Zhang W. Tumor-associated
macrophages in liver cancer: From mechanisms to therapy. Cancer Commun (Lond)
(2022) 42(11):1112–40. doi: 10.1002/cac2.12345

23. Xu W, Cheng Y, Guo Y, Yao W, Qian H. Targeting tumor associated
macrophages in hepatocellular carcinoma. Biochem Pharmacol (2022) 199:114990.
doi: 10.1016/j.bcp.2022.114990

24. Zhang J, Gu C, Song Q, ZhuM, Xu Y, XiaoM, et al. Identifying cancer-associated
fibroblasts as emerging targets for hepatocellular carcinoma. Cell Biosci (2020) 10
(1):127. doi: 10.1186/s13578-020-00488-y
Frontiers in Immunology 15381
25. Peng H, Zhu E, Zhang Y. Advances of cancer-associated fibroblasts in liver
cancer. biomark Res (2022) 10(1):59. doi: 10.1186/s40364-022-00406-z

26. Wang H, Xu Y, Zuo F, Liu J, Yang J. Immune-based combination therapy for
esophageal cancer. Front Immunol (2022) 13:1020290. doi: 10.3389/fimmu.2022.1020290

27. Liu X, Yang L, Tan X. PD-1/PD-L1 pathway: A double-edged sword in periodontitis.
BioMed Pharmacother (2023) 159:114215. doi: 10.1016/j.biopha.2023.114215

28. Yuan Y, Adam A, Zhao C, Chen H. Recent advancements in the mechanisms
underlying resistance to PD-1/PD-L1 blockade immunotherapy. Cancers (Basel) (2021)
13(4). doi: 10.3390/cancers13040663

29. Ma S, Caligiuri MA, Yu J. Harnessing IL-15 signaling to potentiate NK cell-mediated
cancer immunotherapy. Trends Immunol (2022) 43(10):833–47. doi: 10.1016/j.it.2022.08.004

30. Liu X, Qin X, Qin H, Jia C, Yuan Y, Sun T, et al. Characterization of the
heterogeneity of endothelial cells in bleomycin-induced lung fibrosis using single-cell
RNA sequencing. Angiogenesis (2021) 24(4):809–21. doi: 10.1007/s10456-021-09795-5

31. Chao MP, Weissman IL, Majeti R. The CD47-SIRPa pathway in cancer immune
evasion and potential therapeutic implications. Curr Opin Immunol (2012) 24(2):225–
32. doi: 10.1016/j.coi.2012.01.010

32. Quaranta V, Rainer C, Nielsen SR, Raymant ML, Ahmed MS, Engle DD, et al.
Macrophage-derived granulin drives resistance to immune checkpoint inhibition in
metastatic pancreatic cancer. Cancer Res (2018) 78(15):4253–69. doi: 10.1158/0008-
5472.Can-17-3876

33. Czako B, Marszalek JR, Burke JP, Mandal P, Leonard PG, Cross JB, et al.
Discovery of IACS-9439, a potent, exquisitely selective, and orally bioavailable inhibitor
of CSF1R. J Med Chem (2020) 63(17):9888–911. doi: 10.1021/acs.jmedchem.0c00936

34. Krishnan V, Tallapragada S, Schaar B, Kamat K, Chanana AM, Zhang Y, et al.
Omental macrophages secrete chemokine ligands that promote ovarian cancer
colonization of the omentum via CCR1. Commun Biol (2020) 3(1):524. doi: 10.1038/
s42003-020-01246-z

35. Ma L, Heinrich S, Wang L, Keggenhoff FL, Khatib S, Forgues M, et al. Multiregional
single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver
cancer. Nat Commun (2022) 13(1):7533. doi: 10.1038/s41467-022-35291-5

36. Wu C, Thalhamer T, Franca RF, Xiao S, Wang C, Hotta C, et al. Galectin-9-
CD44 interaction enhances stability and function of adaptive regulatory T cells.
Immunity (2014) 41(2):270–82. doi: 10.1016/j.immuni.2014.06.011

37. Lu P, Shih C, Qi H. Ephrin B1-mediated repulsion and signaling control
germinal center T cell territoriality and function. Science (2017) 356(6339).
doi: 10.1126/science.aai9264

38. Li Z, Deng M, Huang F, Jin C, Sun S, Chen H, et al. LILRB4 ITIMs mediate the T
cell suppression and infiltration of acute myeloid leukemia cells. Cell Mol Immunol
(2020) 17(3):272–82. doi: 10.1038/s41423-019-0321-2

39. Ma P, Zhang P, Chen S, Shi W, Ye J, Chen S, et al. Immune cell landscape of
patients with diabetic macular edema by single-cell RNA analysis. Front Pharmacol
(2021) 12:754933. doi: 10.3389/fphar.2021.754933

40. Taftaf R, Liu X, Singh S, Jia Y, Dashzeveg NK, Hoffmann AD, et al. ICAM1
initiates CTC cluster formation and trans-endothelial migration in lung metastasis of
breast cancer. Nat Commun (2021) 12(1):4867. doi: 10.1038/s41467-021-25189-z

41. Wilson K, Shiuan E, Brantley-Sieders DM. Oncogenic functions and therapeutic
targeting of EphA2 in cancer. Oncogene (2021) 40(14):2483–95. doi: 10.1038/s41388-
021-01714-8

42. Yoo HC, Park SJ, Nam M, Kang J, Kim K, Yeo JH, et al. A variant of SLC1A5 is a
mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell
Metab (2020) 31(2):267–283.e212. doi: 10.1016/j.cmet.2019.11.020

43. Ma H, Qu S, Zhai Y, Yang X. circ_0025033 promotes ovarian cancer
development via regulating the hsa_miR-370-3p/SLC1A5 axis. Cell Mol Biol Lett
(2022) 27(1):94. doi: 10.1186/s11658-022-00364-2

44. Hou L, Hou Y, Liang Y, Chen B, Zhang X, Wang Y, et al. Anti-tumor effects of P-
LPK-CPT, a peptide-camptothecin conjugate, in colorectal cancer. Commun Biol
(2022) 5(1):1248. doi: 10.1038/s42003-022-04191-1

45. Liu X, Qin H, Li Z, Lv Y, Feng S, Zhuang W, et al. Inspiratory hyperoxia
suppresses lung cancer metastasis through a MYC/SLC1A5-dependent metabolic
pathway. Eur Respir J (2022) 60(6). doi: 10.1183/13993003.00062-2022

46. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The
immune landscape of cancer. Immunity (2018) 48(4):812–830.e814. doi: 10.1016/
j.immuni.2018.03.023

47. Zhang J, Zou S, Fang L. Metabolic reprogramming in colorectal cancer:
regulatory networks and therapy. Cell Biosci (2023) 13(1):25. doi: 10.1186/s13578-
023-00977-w

48. Evans JP, Liu SL. Multifaceted roles of TIM-family proteins in virus-host
interactions. Trends Microbiol (2020) 28(3):224–35. doi: 10.1016/j.tim.2019.10.004

49. Mathewson ND, Ashenberg O, Tirosh I, Gritsch S, Perez EM, Marx S, et al.
Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell
analysis. Cell (2021) 184(5):1281–1298.e1226. doi: 10.1016/j.cell.2021.01.022
frontiersin.org

https://doi.org/10.3322/caac.21660
https://doi.org/10.1186/s12951-022-01615-2
https://doi.org/10.1158/0008-5472.Can-18-3962
https://doi.org/10.1186/s13046-021-01949-z
https://doi.org/10.7150/ijbs.73949
https://doi.org/10.1158/0008-5472.Can-20-2352
https://doi.org/10.1038/s41392-022-01136-2
https://doi.org/10.1016/j.cell.2020.07.017
https://doi.org/10.3389/fimmu.2022.874056
https://doi.org/10.3389/fimmu.2022.902550
https://doi.org/10.1093/bioinformatics/btq170
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1109/tcyb.2023.3267947
https://doi.org/10.1200/jco.2007.12.9791
https://doi.org/10.1200/jco.2007.12.9791
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/nature08460
https://doi.org/10.4049/jimmunol.1801199
https://doi.org/10.1016/j.cell.2019.12.024
https://doi.org/10.1016/j.cell.2019.12.024
https://doi.org/10.3390/ijms23073778
https://doi.org/10.1038/s41571-022-00689-z
https://doi.org/10.1038/s41571-022-00689-z
https://doi.org/10.1002/hep.32336
https://doi.org/10.1002/hep.32336
https://doi.org/10.1002/cac2.12345
https://doi.org/10.1016/j.bcp.2022.114990
https://doi.org/10.1186/s13578-020-00488-y
https://doi.org/10.1186/s40364-022-00406-z
https://doi.org/10.3389/fimmu.2022.1020290
https://doi.org/10.1016/j.biopha.2023.114215
https://doi.org/10.3390/cancers13040663
https://doi.org/10.1016/j.it.2022.08.004
https://doi.org/10.1007/s10456-021-09795-5
https://doi.org/10.1016/j.coi.2012.01.010
https://doi.org/10.1158/0008-5472.Can-17-3876
https://doi.org/10.1158/0008-5472.Can-17-3876
https://doi.org/10.1021/acs.jmedchem.0c00936
https://doi.org/10.1038/s42003-020-01246-z
https://doi.org/10.1038/s42003-020-01246-z
https://doi.org/10.1038/s41467-022-35291-5
https://doi.org/10.1016/j.immuni.2014.06.011
https://doi.org/10.1126/science.aai9264
https://doi.org/10.1038/s41423-019-0321-2
https://doi.org/10.3389/fphar.2021.754933
https://doi.org/10.1038/s41467-021-25189-z
https://doi.org/10.1038/s41388-021-01714-8
https://doi.org/10.1038/s41388-021-01714-8
https://doi.org/10.1016/j.cmet.2019.11.020
https://doi.org/10.1186/s11658-022-00364-2
https://doi.org/10.1038/s42003-022-04191-1
https://doi.org/10.1183/13993003.00062-2022
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1016/j.immuni.2018.03.023
https://doi.org/10.1186/s13578-023-00977-w
https://doi.org/10.1186/s13578-023-00977-w
https://doi.org/10.1016/j.tim.2019.10.004
https://doi.org/10.1016/j.cell.2021.01.022
https://doi.org/10.3389/fimmu.2023.1187108
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores novel approaches and diagnoses to treat 

immune disorders.

The official journal of the International Union of 

Immunological Societies (IUIS) and the most cited 

in its field, leading the way for research across 

basic, translational and clinical immunology.

Discover the latest 
Research Topics

See more 

Frontiers in
Immunology

https://www.frontiersin.org/journals/immunology/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT
	Community series in unveiling the tumor microenvironment by machine learning to develop new immunotherapeutic strategies, volume II

	Table of contents

	Editorial: Community series in unveiling the tumor microenvironment by machine learning to develop new immunotherapeutic strategies, volume II
	Author contributions
	Conflict of interest
	Publisher’s note

	DPP6 and MFAP5 are associated with immune infiltration as diagnostic biomarkers in distinguishing uterine leiomyosarcoma from leiomyoma
	Introduction
	Materials and methods
	Microarray data processing and identification of&nbsp;DEGs
	Functional enrichment of DEGs
	Screening candidate biomarker for diagnosis of ULMS
	Significance of diagnostic biomarkers in ULMS
	Evaluating the level of immune infiltration
	Patient and tissue samples
	Immunohistochemistry
	Statistical analysis

	Result
	Study procedure
	Identification of DEGs in ULMS
	Correlation and functional enrichment analysis
	Verification and validation of diagnostic biomarkers
	Effectiveness of diagnostic biomarkers in ULMS
	DPP6 and MFAP5 genes correlate with the percentage of immune cell infiltration

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	A mitochondria-related signature for predicting immune microenvironment and therapeutic response in osteosarcoma
	Introduction
	Materials and methods
	Data collection and procession
	Construction of the mitochondria-related signature
	Prognostic value of the mitochondria-related signature
	Predictive value of the mitochondria-related signature in the immune microenvironment
	Functional annotation of the mitochondria-related signature
	Prediction value of the mitochondria-related signature in chemotherapy agents
	scRNA-seq analysis of the mitochondria-related signature
	Immunohistochemistry
	Cell culture
	Small interfering RNA transfection
	Real-time quantitative polymerase chain reaction
	Western blot
	EdU assay
	Statistical analysis

	Results
	Construction of the mitochondria-related signature
	Prognostic value of the mitochondria-related signature
	Predictive value of the mitochondria-related signature in the immune microenvironment
	Functional annotation of the mitochondria-related signature
	Prediction value of the mitochondria-related signature in chemotherapy&#146;agents
	scRNA-seq analysis for the mitochondria-related signature
	Cell communication pattern of the mitochondria-related signature
	In vitro validation on PCCB
	Immunotherapy prediction of PCCB

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Integration analysis identifies MYBL1 as a novel immunotherapy biomarker affecting the immune microenvironment in clear cell renal cell carcinoma: Evidence based on machine learning and experiments
	Introduction
	Methods
	Public data collection
	Biological enrichment
	Immune-related analysis
	Genomic characterization
	Nomogram
	Identification of prognosis signature based on machine learning
	Cell culture
	RNA isolation and quantitative RT-PCR
	Retroviral infection, and transfection
	CCK-8 assay
	Colony formation assay
	5-ethynyl-2’-deoxyuridine assay
	Cell apoptosis assays
	Xenograft models
	Patient and clinical samples
	Immunohistochemistry
	Statistical analysis

	Results
	Pan-cancer analysis of MYBL1 and its clinical role in ccRCC
	MYBL1 exerts a wide biological regulatory effect in ccRCC
	MYBL1 can remodel the ccRCC immune microenvironment
	Role of MYBL in ccRCC genomic characteristics
	Immunotherapy response, drug sensitivity and nomogram plot of MYBL1 in ccRCC
	MYBL1 enhances the malignant biological behaviors of ccRCC
	Machine learning identified the prognosis signature based on MYBL1-derived molecules

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Supplementary material
	References

	Fatty acid metabolism is related to the immune microenvironment changes of gastric cancer and RGS2 is a new tumor biomarker
	1 Introduction
	2 Materials and methods
	2.1 Patients and tissues samples
	2.2 Western blotting
	2.3 Data preparation and processing
	2.4 Clustering analysis
	2.5 Construction of prognostic risk model
	2.6 Evaluation of immune cell filtration
	2.7 Single-cell dataset analysis
	2.8 Drug sensitivity
	2.9 Statistical analysis

	3 Results
	3.1 Differential expression of fatty acid related genes in tumor tissues and their biological functions
	3.2 Determination of molecular subtypes based on fatty acid metabolism related genes
	3.3 Construction of a fatty acid metabolism-related prognostic signature
	3.4 Verification of prognostic efficacy of FARS based on an analysis of training and external independent verification sets
	3.5 FARS is related to the clinical characteristics of tumor
	3.6 Single-cell dataset analysis
	3.7 Biological significance of RGS2 in gastric cancer
	3.8 Biological significance of RGS2 in other cancer types

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Supplementary material
	References

	Comprehensive analysis of a glycolysis and cholesterol synthesis-related genes signature for predicting prognosis and immune landscape in osteosarcoma
	1 Introduction
	2 Materials and methods
	2.1 Data download
	2.2 Identification of the GCSRGs-related subtypes
	2.3 Construction of weighted gene co-expression network and enrichment analysis
	2.4 Establishment and validation of a GCSRGs prognostic signature
	2.5 Nomogram construction and validation
	2.6 Analysis of immune landscape and drug sensitivity
	2.7 Pan-cancer analysis of TRAM2
	2.8 Cell culture and transfection
	2.9 Western blotting
	2.10 Cell viability assay
	2.11 Migration and invasion assays
	2.12 Statistical analysis

	3 Results
	3.1 Identification of the 4 subtypes of osteosarcoma patients by analysis of the expression of GCSRGs
	3.2 GCSRGs co-expression network and biological activity
	3.3 Identification and construction of the GCSRGs signature to predict OS in osteosarcoma patients
	3.4 Independent prognostic analysis of the GCSRGs signature
	3.5 Immune landscape and drug sensitivity analysis of the GCSRGs signature
	3.6 Functional verification of TRAM2 in vitro
	3.7 Pan-cancer analysis of TRAM2

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	A novel cuproptosis-related LncRNA signature: Prognostic and therapeutic value for low grade glioma
	1 Introduction
	2 Materials and methods
	2.1 Data and resources
	2.2 Identification of cuproptosis-related lncRNAs
	2.3 Construction of a prognostic cuproptosis-related lncRNA signature
	2.5 Independent prognostic value of the signature
	2.6 Enrichment analysis
	2.7 Landscape of immune cells infiltration
	2.8 RNA extraction and rt-PCR
	2.9 Statistical analysis

	3 Results
	3.1 Construction of a cuproptosis-related lncRNAs prognostic model signature
	3.2 Validation of the prognostic model
	3.3 Functional enrichment analysis
	3.4 Immune-related analysis of LGG patients
	3.5 rt-PCR was used to verify the expression of lncRNAs in glioma cell line

	4 Discussion
	Data availability statement
	Author contributions
	Supplementary material
	References

	A novel prognostic model related to oxidative stress for treatment prediction in lung adenocarcinoma
	Introduction
	Materials and methods
	Collection and preprocessing the data of lung adenocarcinoma
	Establishment of the OS-signature for LUAD
	Efficacy evaluation for the OS-signature of LUAD
	Genomic mutation analysis for OS-signature in LUAD
	Characteristic analysis of tumor infiltrating immune cells
	Chemotherapeutics sensitivity analysis for OS-signature in LUAD
	Quantitative real-time PCR assays detecting gene expression in cell lines

	Results
	Establishment of OS-signature for patients with LUAD
	Evaluating the efficacy of OS-signature for LUAD
	Genomic mutation analysis for OS-signature in LUAD
	Characteristic analysis of tumor infiltrating immune cells
	Chemotherapeutics sensitivity analysis for OS-signature in LUAD
	Quantitative real-time PCR

	Discussion
	Data availability statement
	Author contributions
	Acknowledgments
	References

	Identification of a necroptosis-related gene signature as a novel prognostic biomarker of cholangiocarcinoma
	1 Introduction
	2 Materials and methods
	2.1 Data collection and preprocessing
	2.2 Identification of the expression patterns and biological functions of DENRGs in CHOL
	2.3 Development and validation of DENRGs-based prognostic models
	2.4 Process of the screening signature for the Cox regression model and building of the nomogram models
	2.5 Exploration of differences in biological functions between CHOL subgroups
	2.6 Applying integrative multi-omics analysis between the high- and low-risk score groups
	2.7 Correlation analysis between the prognostic DENRGs and immune cell infiltration
	2.8 Immunohistochemical analysis of five NRGs in HPA
	2.9 Tumor samples collection and qRT-PCR
	2.10 Statistical analysis

	3 Results
	3.1 Identification of DENRGs
	3.2 GO and KEGG functional analysis of the DENRGs
	3.3 Construction of a prognostic model within necroptosis-associated genes
	3.4 Construction and evaluation of the nomogram model
	3.5 Identification of DEGs and functional enrichment analysis
	3.6 Multi-omics analysis based on prognostic risk scores
	3.7 Analysis of immune cell infiltration and its correlation with the five NRGs
	3.8 Validation of the five NRGs expressions in CHOL tissue samples

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Identification of lactylation related model to predict prognostic, tumor infiltrating immunocytes and response of immunotherapy in gastric cancer
	Introduction
	Materials and methods
	Data retrieval and processing
	Screening of prognostic lactylation-related genes in GC
	Cluster analysis
	Construction of the lactylation score model
	Collection of tissue samples from GC patients
	Cell culture and transfection
	Western blotting
	Immunohistochemistry
	RNA extraction and RT-PCR
	Colony formation assays
	Ethylenediurea experiment
	Wound-healing assay
	Transwell assays
	Data analysis

	Results
	Expression of lactylation-related genes in GC
	Cluster analysis
	Constructing lactylation score model
	Prognosis and clinicopathological characteristics in different lactylation score groups
	Immune cells infiltration statement and functional enrichment analysis
	Immunotherapy response and immune evasion
	Expression of lactylation-related genes in GC
	The relation between PLOD2, GLUT3 and lactylation in GC
	Functional phenotype of PLOD2 in GC cells

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Supplementary material
	References

	Cuproptosis signature and PLCD3 predicts immune infiltration and drug responses in osteosarcoma
	1 Introduction
	2 Materials and methods
	2.1 Dataset obtaining and processing
	2.2 Cuproptosis regulatory gene set and unsupervised consensus clustering
	2.3 Differential expressing analysis
	2.4 Weight gene correlation network analysis and identification of cuproptosis-related hub genes
	2.5 Construction and validation of the cuproptosis-related prognostic 00predicting model
	2.5.1 Univariate Cox regression for preliminary feature screening
	2.5.2 RSF model for prognostic genes selection
	2.5.3 Prognostic model construction by multivariate Cox regression
	2.5.4 Model validation

	2.6 Gene set variation analysis
	2.7 Calculation of the stemness index (mRNAsi)
	2.8 Compound resistance and sensitivity analysis
	2.9 Analysis for immune cell infiltration and immune signatures
	2.10 q-PCR experiment
	2.11 Transwell experiment
	2.12 EdU experiment
	2.13 Statistical analysis

	3 Results
	3.1 Distinct expression patterns for cuproptosis regulatory genes were identified in osteosarcoma patients
	3.2 Cuproptosis clusters in OS patients represented differences in immune infiltration and stemness properties
	3.3 Screening of cuproptosis-related genes revealed a functional connection between cuproptosis and other biological processes in OS
	3.4 Selection of cuproptosis-related prognostic genes and construction of cuproptosis-related prognostic score model
	3.5 Correlation analysis between CRP score and malignant biological behaviors
	3.6 Correlation analysis between CRP score and malignant biological behaviors
	3.7 Pan-cancer analysis on model genes
	3.8 In vitro validation on PLCD3
	3.9 Immunotherapy prediction of PLCD3
	3.10 Protein interaction network, illness network, and pan-cancer immune infiltration pattern of PLCD3

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	An immune infiltration-related prognostic model of kidney renal clear cell carcinoma with two valuable markers: CAPN12 and MSC
	Background
	Materials and methods
	Datasets and preprocessing
	Identification of differentially expressed genes in KIRC
	Screening and confirmation of the prognostic value of the genes
	Consensus clustering of prognostic genes
	Genomic alterations of samples clustered by risk scores
	Prognostic model based on clinical features and risk score
	Gene set variation analysis and geneset enrichment analysis
	Immunological function analyses
	Prediction of chemotherapeutic and immunotherapy response
	CAPN12 and MSC knockdown
	Quantitative real-time polymerase chain reaction
	Cell proliferation assay
	Colony forming assay
	Statistical analysis

	Results
	Data preprocessing and DEGs screening
	Development of the risk score with TCGA train set
	Validation of the risk score with TCGA and GEO data
	Genomic alterations and gene set enrichment analyses
	Consensus clustering of seven prognostic genes
	Gene set variation analysis and geneset enrichment analysis
	Immunological function analyses
	Survival impact of prognostic genes
	Prediction of risk scores for immunotherapy and chemotherapy
	Development of the prognostic model with TCGA data
	CAPN12 and MSC suppress cell proliferation in ccRCC cells
	Pan-cancer analysis on CAPN12 and MSC

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	Monoacylglycerol lipase regulates macrophage polarization and cancer progression in uveal melanoma and pan-cancer
	1 Introduction
	2 Methods
	2.1 Data collection
	2.2 Consensus clustering
	2.3 Calculation of microenvironment cell abundance
	2.4 Differential gene expression and functional enrichment analysis
	2.5 Construction of the immune-related risk model
	2.6 Pan-cancer analysis of MGLL expression
	2.7 Single-cell RNA-seq online analysis
	2.8 Cell lines and cultures
	2.9 Monoacylglycerol lipase small interfering RNA construction and transfection
	2.10 Cell proliferation assay
	2.11 Migration and invasion assays
	2.12 Scratch wound healing assay
	2.14 Western blot
	2.15 THP-1 polarization
	2.16 Statistical analysis

	3 Results
	3.1 Two LMRGs-based molecular subtypes and their prognostic significance
	3.2 Identification of differentially expressed lipid metabolism-related genes and functional annotation
	3.3 UM patients in two molecular subtypes exhibited significant differences in TME and immune status
	3.4 Construction of a risk model
	3.5 Testing for independence in the constructed risk model
	3.6 Construction and calibration of an integrated nomogram combining clinicopathological features and risk signature
	3.7 MGLL affects the proliferation, migration, and invasion of UM cells in vitro
	3.8 Pan-cancer MGLL expression and prognosis
	3.9 Immune infiltration analysis
	3.10 Effect of MGLL on macrophage infiltration in TME

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	The m6A methylation landscape, molecular characterization and clinical relevance in prostate adenocarcinoma
	Introduction
	Materials and methods
	Data acquirement and processing
	Construction of a risk model for PCa
	Differentially expressed genes analysis
	Genomic characteristics and biological characteristics of patients in high-risk group and low-risk group
	Functional enrichment analysis and gene set enrichment analysis
	Identification and correlation analysis of tumor infiltrating immune cells
	Construction of protein-protein interaction network and key gene-miRNA network
	Construction of clinical prediction model based on risk model
	Cell culture
	Real-time-qPCR analysis
	Western blot
	Statistical analysis

	Results
	Expression and mutation of m6A-related genes in PRAD patients
	Construction of risk model and prognostic analysis
	Differences in biological processes and genomic characteristics of risk-groups
	Difference analysis between high-risk group and low-risk group
	PPI network of differentially expressed genes between patients in high-risk group and low-risk group
	Differences in immune characteristics and drug sensitivity prediction of patients in high-risk group and low-risk group
	Expression validation of m6A-related gene in PCa cells

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	By using machine learning and in vitro testing, SERPINH1 functions as a novel tumorigenic and immunogenic gene and predicts immunotherapy response in osteosarcoma
	Introduction
	Method
	Data gathering
	Value for prognosis of SERPINH1
	Immunotherapy prediction of SERPINH1
	Immunohistochemistry (IHC)
	Cell culture
	Small interfering RNA (siRNA) transfection
	Real-time quantitative polymerase chain reaction (RT-qPCR)
	Cell counting Kit-8 (CCK-8) assay
	EdU assay
	Transwell assay
	Building the SERPINH1-related score
	Immune characteristics of the SERPINH1-related score
	Single-cell RNA sequencing (scRNA-seq) analysis on SERPINH1
	Immunotherapy prediction of the SERPINH1-related score
	Drug prediction using the SERPINH1-related score

	Results
	Prognostic value of serpin superfamily and SERPINH1
	Immunotherapy prediction of SERPINH1
	Pan-cancer analysis on the serpin superfamily
	In vitro validation on SERPINH1
	Construction of the SERPINH1-related score
	Immune characteristics of the SERPINH1-related score
	Biological functions of the SERPINH1-related score
	Drug prediction of the SERPINH1-related score

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Identification and verification of prognostic cancer subtype based on multi-omics analysis for kidney renal papillary cell carcinoma
	1 Introduction
	2 Materials and methods
	2.1 Extraction and preprocessing of multi-omics data for KIRP
	2.2 Identification of multi omics-based cancer subtypes by integrative analysis
	2.3 Nearest template prediction validation
	2.4 Biological characteristics for MOCS subtypes
	2.5 Calculation of immune microenvironmental cell abundance and immune checkpoint
	2.6 Evaluation of genomic mutation for MOCS subtypes
	2.7 Drug sensitivity profiles for MOCS subtypes
	2.8 Statistical analyses

	3 Results
	3.1 Three MOCSs were categorized for KIRP patients by MOVICS package
	3.2 Biological characteristics for MOCS subtypes
	3.3 Calculation of immune microenvironmental cell abundance and immune checkpoint
	3.4 Evaluation of genomic mutation for MOCS subtypes
	3.5 Drug sensitivity profiles for MOCS subtypes
	3.6 Single-cell analysis

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	Integrating machine learning and single-cell trajectories to analyze T-cell exhaustion to predict prognosis and immunotherapy in colon cancer patients
	Introduction
	Methods
	Data collection
	Exploring T-cell depletion trajectories in colon cancer
	Construction of the T-cell exhaustion scoring model
	Cell culture
	qRT-PCR
	Cell proliferation detection
	Transwell cell invasion analysis
	Assessment of immune heterogeneity between TES subgroups
	Dissecting genomic alterations between subgroups
	Assessment of chemotherapy applications for TES
	Predicting immunotherapy response
	Bioinformatics and statistical analysis

	Results
	Exploring T-cell exhaustion trajectories in colon cancer
	Dissecting key T-cell exhaustion genes in COAD
	Construction of T-cell exhaustion score
	Analysis of the predictive efficacy and independence of TES
	Cellular experimental validation of key TES model indicator
	Low TES is associated with abundant immune infiltration
	Correlation of TES with genomic alterations
	Patients with low TES are more sensitive to chemotherapy
	Inferring immunotherapy response

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References

	TANK shapes an immunosuppressive microenvironment and predicts prognosis and therapeutic response in glioma
	Introduction
	Materials and methods
	Obtaining and processing data
	Human specimens
	RNA extraction and quantitative real-time PCR
	Immunohistochemistry (IHC)
	Immunological characteristics of the glioma microenvironment
	Identification and functional enrichment analysis of differentially expressed genes (DEGs)
	Development and validation of a TANK-associated risk score by LASSO and machine learning
	Statistical analysis

	Results
	The expression pattern of TANK
	TANK is an indicator of poor prognosis in glioma
	The correlations of TANK with immunological parameters
	TANK shapes an immunosuppressive microenvironment in glioma
	TANK predicts clinical response and therapeutic opportunities
	TANK expression is positively correlated with CD163, CD11b, PD-1, PD-L1, CD40, STAT3 and HIF1A expression in glioma
	Development, validation, and evaluation of the TANK-associated risk score

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Leveraging various extracellular matrix levels to assess prognosis and sensitivity to immunotherapy in patients with ovarian cancer
	Introduction
	Methods
	Data extraction and data processing
	Screening of candidate ECM genes
	Construction of the ECMS model
	Functional enrichment and immune infiltration analyses
	Prediction of immunotherapy response
	Cell lines
	RT-qPCR
	Statistical analysis

	Results
	Identification of the candidate ECM genes
	Construction and validation of the ECMS model
	Enrichment analysis
	Immune landscape
	Prediction of immunotherapy response
	Verify the expression of ECMS genes in ovarian cancer cell lines

	Discussion
	Data availability statement
	Author contributions
	Acknowledgments
	Supplementary material
	References

	Novel methylation-related long non-coding RNA clinical outcome prediction method: the clinical phenotype and immune infiltration research in low-grade gliomas
	Introduction
	Method
	Data collection
	Determination of methylation-related lncRNAs
	LncRNA univariate COX regression analysis
	Determination of the different lncRNA expression patterns related to methylation regulators
	WGCNA analysis
	Intersection function analysis
	Least absolute shrinkage and selection operator regression
	Immune microenvironment analysis

	Results
	The research routine
	Survival differences associated with the long non-coding RNA expression patterns
	Identification of biological function differences between two different methylation patterns
	Screening and construction of long non-coding RNA prognostic models using machine learning methods
	Result evaluation of the model
	LNCRNAs prognostic model and immune microenvironment and response
	Effects of risk score-independent prognostic variables on biological pathways

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Identification of DNA repair gene signature and potential molecular subtypes in hepatocellular carcinoma
	1 Introduction
	2 Methods
	2.1 Data collection
	2.2 Risk signature construction
	2.3 Nomogram and DCA curve construction
	2.4 Consensus clustering
	2.5 Immune infiltration analysis
	2.6 Cell culture and transfection
	2.7 Hoechst staining
	2.8 Cell viability assays
	2.9 Statistical analyses

	3 Results
	3.1 Identification of survival-related DDR risk model
	3.2 External validation of the DDR-gene prognostic signature
	3.3 The risk model is an independent prognostic predictor of HCC
	3.4 Gene set enrichment analysis
	3.5 Identification of molecular subtypes of HCC
	3.6 Correlation of the immune infiltration with HCC subclasses
	3.7 Cell assays
	3.8 MiRNA-mRNA Network

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	References

	Combining WGCNA and machine learning to construct basement membrane-related gene index helps to predict the prognosis and tumor microenvironment of HCC patients and verifies the carcinogenesis of key gene CTSA
	1 Introduction
	2 Methods and materials
	2.1 Data download and processing
	2.2 Screening of WGCNA and differential BMRG
	2.3 Construction and verification of BMRGI
	2.4 scRNA-seq data processing and analysis
	2.5 CellChat analysis
	2.6 Gene ontology analysis, kyoto encyclopedia of genes and genomes analysis and gene set enrichment analysis
	2.7 Analysis of immunological properties
	2.8 Sensitivity analysis of common drugs
	2.9 Identification of core BMRG
	2.10 Multilevel expression verification of CTSA
	2.11 RNA extraction, and real-time quantitative PCR
	2.12 Cell culture, transient transfection
	2.13 Cell counting kit-8 (CCK8) experiment
	2.14 Transwell experiment
	2.15 Statistical analysis

	3 Result
	3.1 WGCNA identified BM key module genes
	3.2 Construction of BMRGI for HCC patients
	3.3 Single-cell transcriptional profiling and cell-cell interactions in HCC tissue
	3.4 Comprehensive analysis of clinical parameters in HCC patients
	3.5 Construction and evaluation of clinical nomogram based on BMRGI
	3.6 GO, KEGG and GSEA analysis related to BMRGI
	3.7 Comprehensive analysis of the correlation between BMRGI and tumor microenvironment
	3.8 Screening for sensitive drugs in HCC patients
	3.9 Identification of key BMRG
	3.10 Multilevel expression verification and in vitro functional exploration of CTSA

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	The analysis of cathepsin L that mediates cellular SARS&dash;CoV&dash;2 infection leading to COVID&dash;19 in head and neck squamous cell carcinoma
	1 Introduction
	2 Materials and methods
	2.1 HNSC dataset and preprocessing
	2.2 Establishment of the CTSL-based Signature
	2.3 Validation of the efficacy of CTSL-based signature
	2.4 Genomic alteration
	2.5 TME immunological profile assessment
	2.6 Functional annotation
	2.7 Drug response prediction
	2.8 CCK8 assay
	2.9 Plate clone formation assay
	2.10 Transwell assay
	2.11 Scratch migration assay
	2.12 Construction of lentiviral vectors and infection of lentivirus infection
	2.13 Statistical analysis

	3 Results
	3.1 Features associated with CTSL expression in HNSCC
	3.2 CTSL is associated with immune infiltration in HNSCC patients in the TCGA cohort
	3.3 Potential immunotherapy and chemotherapy responses associated with CTSL expression in patients with HNSCC
	3.4 The CTSL gene serves as an oncogene in HNSC cells
	3.5 The process of constructing CTSL.signature in HNSCC
	3.6 Validating the predictive value of CTSL-based signature for HNSCC survival
	3.7 CTSL signature expression was associated with genomic alterations
	3.8 CTSL-based signature is correlated with immune status in TCGA cohorts with HNSCC

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	Aggrephagy-related patterns in tumor microenvironment, prognosis, and immunotherapy for acute myeloid leukemia: a comprehensive single-cell RNA sequencing analysis
	Introduction
	Materials and methods
	Downloading and preprocessing for data of acute myeloid leukemia
	Dimensionality reduction and annotation of single cell for acute myeloid leukemia
	Pseudotime trajectory analysis for the aggrephagy-mediated cell clusters
	Nonnegative matrix factorization of aggrephagy-related genes in single cell for acute myeloid leukemia
	Identifying the marker genes of single cell for acute myeloid leukemia
	Analysis of transcription factors for aggrephagy-mediated cell clusters
	Cell–cell communication analysis among cell subsets for acute myeloid leukemia
	Prognostic analysis of the aggrephagy-related cell clusters for acute myeloid leukemia
	Immunotherapy analysis of the aggrephagy-related cell clusters for acute myeloid leukemia
	Statistical analysis

	Results
	Dimensionality reduction and annotation of single cell for acute myeloid leukemia
	Pseudotime analysis for aggrephagy-mediated T cells
	Pseudotime analysis for aggrephagy-mediated NK cells
	Pseudotime analysis for aggrephagy-mediated myeloid cells
	Prognostic analysis of the aggrephagy-related cell clusters for acute myeloid leukemia
	Immunotherapy analysis of the aggrephagy-related cell clusters for acute myeloid leukemia

	Discussion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	A programmed cell death-related model based on machine learning for predicting prognosis and immunotherapy responses in patients with lung adenocarcinoma
	Introduction
	Materials and methods
	Cohort and preprocessing
	The expression and variations of PCDRGs in LUAD
	PCDRGs signature generated by machine learning-based integrated approach
	Consensus clustering
	Mutation and CNV characteristics
	TME annotations for CDS
	Predicting the patient’s response to immunotherapy and chemotherapy
	Analysis of single-cell RNA sequencing data
	Tissue microarray and immunohistochemistry staining
	Cell culture and transfection
	RNA extraction and real-time quantitative polymerase chain reaction
	Cell counting kit-8 assay
	Clone formation assays
	Transwell assay
	TUNEL staining
	Western blotting
	Statistical analysis

	Results
	Transcriptional and genetic alterations of PCDRGs in patients with LUAD
	CDS signature development
	CDS assessment
	Generation of CDS genetic subtypes
	Genetic variations in CDS groups
	Characteristics of TME in CDS groups
	Predicting immunotherapy efficacy and identification of potential drugs
	Single-cell level analysis of CDS
	DDIT4 affects tumor cell proliferation, invasion, migration and apoptosis

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Identification of molecular pattern and prognostic risk model based on ligand-receptor pairs in liver cancer
	Introduction
	Materials and methods
	Datasets
	scRNA-seq data analysis and cell type definition
	Cell to cell communication
	Selection of receptor-ligand pairs
	Molecular subtyping calculation
	Presumption of drug sensitivity
	Risk model
	Function enrichment and analysis of mutations and immunity
	In vitro experimental validation
	Statistical analysis

	Results
	The single-cell transcriptome landscape of hepatocellular carcinoma
	Intercellular communication networks in hepatocellular carcinoma
	Molecular typing based on ligand-receptor pairs
	Comparison of clinical information in different molecular subtypes
	Mutational characteristics of different molecular subtypes
	Drug sensitivity of different molecular subtypes
	Establishment of the risk model based on the ligand–receptor pair score
	Correlation between the risk model and clinical features
	Pathway analysis and immune characterization of risk model
	Functional experiments in vitro

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




