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Editorial on the Research Topic

Community series in unveiling the tumor microenvironment by machine
learning to develop new immunotherapeutic strategies, volume I

A total of 25 papers are included in this series. We selected seven as representative:

Yang et al. discussed the role of lipid metabolism in gastric cancer. Their study identified
78 genes related to fatty acid metabolism that are differentially expressed between normal and
gastric cancer tissues. The ConsensusClusterPlus R package was used to divide the genes into
two gastric cancer subtypes, cluster 1 and cluster 2. Patients in cluster 2 were found to have a
poorer prognosis than those in cluster 1. The study used machine learning to select 8
differentially expressed genes between the subtypes to construct a fatty acid prognostic risk
score (FARS) model, which displayed good prognostic efficacy. Certain anticancer drugs, such
as bortezomib, elesclomol, GW843682X, and nilotinib, showed significant sensitivity in the
high FARS score group. RGS2 was identified as the core gene in gastric cancer single-cell
analysis, and Western blotting and immunofluorescence staining results revealed high levels
of expression of this gene in gastric cancer cells. The results of immunohistochemical staining
showed that a large amount of RGS2 was deposited in the stroma in gastric cancer. The pan-
cancer analysis also revealed a significant association of RGS2 with TMB, TIDE, and CD8+ T-
cell infiltration in other cancer types as well. RGS2 may thus be further studied as a new target
for immunotherapy in future studies on gastric cancer. The FARS model developed here
enhances our understanding of lipid metabolism in the TME in gastric cancer, and provides a
theoretical basis for predicting tumor prognosis and clinical treatment.

Peng et al. investigated the development of a prognostic model based on oxidative stress
for lung adenocarcinoma (LUAD). The study extracted oxidative stress-related genes
(ORGs) from Genecards and performed machine learning algorithms to build the OS-score
and OS-signature. The study identified ten ORGs with prognostic value and the OS-
signature containing three prognostic ORGs. The efficiency and accuracy of the OS-
signature in predicting the prognosis for LUAD patients was confirmed by survival ROC
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curves and two external validation data sets. Patients with high OS-
scores were found to have lower levels of immunomodulators,
stromal score, immune score, ESTIMATE score, and infiltrating
immune cell populations. Conversely, patients with higher OS-
scores were more likely to have higher tumor purity. PCR assays
showed that MRPL44 and CYCS were significantly upregulated in
LUAD cell lines, while CAT was significantly downregulated.

Wang et al. discussed the role of MYBLI in clear cell renal cell
carcinoma (ccRCC). The study comprehensively investigated the
role of MYBLI in ¢ccRCC and found that MYBL1 was correlated
with progressive clinical characteristics and worse prognosis
performance. The study also found that MYBLI can activate
multiple oncogenic pathways in ccRCC and can remodel the
immune microenvironment of ¢ccRCC and affect the
immunotherapy response. In vitro and in vivo assays indicated
that MYBL1 is upregulated in ccRCC cells and can promote the
cellular malignant behavior of ccRCC. Finally, a machine learning
algorithm - LASSO logistic regression was utilized to identify a
prognostic signature based on the MYBLI1-derived molecules,
which showed satisfactory ability to predict patient prognosis in
both training and validation cohorts. The study concluded that
MYBLI is a novel biomarker of ccRCC that can remodel the tumor
microenvironment, influence immunotherapy responses, and guide
precision medicine in ¢ccRCC.

Ke et al. discussed the potential and significance of immune-
related diagnostic biomarkers in differentiating Uterine
leiomyosarcoma (ULMS) from Uterine leiomyoma (ULM). The
study downloaded two public gene expression profiles containing
ULMS and ULM samples and identified differentially expressed
genes (DEGs) among 37 ULMS and 25 ULM control samples. The
DEGs were used for Gene Ontology (GO), Kyoto Encyclopaedia of
Genes and Genomes (KEGG), and Disease Ontology (DO)
enrichment analysis in addition to gene set enrichment analysis
(GSEA). The study identified DPP6 and MFAP5 as diagnostic
biomarkers for ULMS, which were verified in the GSE9511 and
GSE68295 datasets. Low expression of DPP6 and MFAP5 was
associated with ULMS. The study concluded that DPP6 and
MFAPS5 are potential diagnostic biomarkers for ULMS.

Zhang et al. investigated the development of a mitochondria-
related signature in osteosarcoma patients. Transcriptomic data and
clinical information of osteosarcoma samples were collected from
the Therapeutically Applicable Research to Generate Effective
Treatments (TARGET) and Gene Expression Omnibus (GEO)
databases. Comprehensive bioinformatics analysis was performed
on the samples at the bulk RNA sequencing level and single-cell
RNA sequencing (scRNA-seq). The study constructed a
mitochondria-related signature in osteosarcoma patients and
explored its prognostic value, predictive value in the immune
microenvironment and chemotherapeutic agents. The study also
investigated the association between mitochondria and immunity in
the tumor microenvironment of osteosarcoma at the scRNA-seq
level. The tumorigenic role of the critical mitochondria-related
gene, PCCB, was verified by in vitro validation. The study
concluded that a mitochondria-related signature was developed in
osteosarcoma with solid predictive values for the immune
microenvironment, chemotherapeutic agents, and prognosis.

Frontiers in Immunology

10.3389/fimmu.2024.1351597

Xu et al. discussed the identification of a glycolysis and
cholesterol synthesis-related genes (GCSRGs) signature for
effective prognostic assessment of osteosarcoma patients. Gene
expression data and clinical information were obtained from the
GSE21257 and TARGET-OS datasets. Patients diagnosed with
osteosarcoma were classified into one of 4 subtypes (quiescent,
glycolysis, cholesterol, and mixed subtypes), which differed
significantly in terms of prognosis and tumor microenvironment.
Both univariate and LASSO Cox regression analyses were
conducted on the screened module genes to identify 5 GCSRGs
(RPS28, MCAM, EN1, TRAM2, and VEGFA) that constituted a
prognostic signature for osteosarcoma patients. The signature was
an effective prognostic predictor, independent of clinical
characteristics, as further verified via Kaplan-Meier analysis, ROC
curve analysis, and univariate and multivariate Cox regression
analysis. Additionally, the GCSRG signature had a strong
correlation with drug sensitivity, immune checkpoints and
immune cell infiltration.

Cholangiocarcinoma (CHOL) is a prevalent type of malignancy
and the second most common form of primary liver cancer, resulting
in high rates of morbidity and mortality. Necroptosis is a type of
regulated cell death that appears to be involved in the regulation of
several aspects of cancer biology, including tumorigenesis, metastasis,
and cancer immunity. Xu et al. aimed to construct a necroptosis-
related gene (NRG) signature to investigate the prognosis of CHOL
patients using an integrated bioinformatics analysis. CHOL patient
data were obtained from the GEO (GSE89748, GSE107943) and
TCGA databases, and NRG data from necroptosis were obtained
from the KEGG database. A total of 65 differentially expressed (DE)
NRGs were screened, of which five were selected to establish the
prognostic signature of NRGs based on multivariate Cox regression
analysis. Low-risk patients survived significantly longer than high-
risk patients. Patients with high-risk scores experienced higher
immune cell infiltration, drug resistance, and more somatic
mutations than patients with low-risk scores. Sensitivities to
GW843682X, mitomycin C, rapamycin, and S-trityl-L-cysteine
were significantly higher in the low-risk group than in the high-risk
group. Finally, the expression of five NRGs was validated.

All of the above studies select a specific geneset and identify
prognosis-related or stage-related genes using machine learning
methods, some of them further associate these genes with immune
status and finally validate them with in vitro or in vivo
experimental methods.
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DPP6 and MFAPS are
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Objective: Uterine leiomyosarcoma (ULMS) is the most common subtype of
uterine sarcoma and is difficult to discern from uterine leiomyoma (ULM)
preoperatively. The aim of the study was to determine the potential and
significance of immune-related diagnostic biomarkers in distinguishing ULMS
from ULM.

Methods: Two public gene expression profiles (GSE36610 and GSE64763) from
the GEO datasets containing ULMS and ULM samples were downloaded.
Differentially expressed genes (DEGs) were selected and determined among
37 ULMS and 25 ULM control samples. The DEGs were used for Gene Ontology
(GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Disease
Ontology (DO) enrichment analyses as well as gene set enrichment analysis
(GSEA). The candidate biomarkers were identified by least absolute shrinkage
and selection operator (LASSO) and support vector machine recursive feature
elimination (SVM-RFE) analyses. The receiver operating characteristic curve
(ROC) was applied to evaluate diagnostic ability. For further confirmation, the
biomarker expression levels and diagnostic value in ULMS were verified in the
GSE9511 and GSE68295 datasets (12 ULMS and 10 ULM), and validated by
immunohistochemistry (IHC). The CIBERSORT algorithm was used to calculate
the compositional patterns of 22 types of immune cells in ULMS.

Result: In total, 55 DEGs were recognized via GO analysis, and KEGG analyses
revealed that the DEGs were enriched in nuclear division, and cell cycle. The
recognized DEGs were primarily implicated in non-small cell lung carcinoma
and breast carcinoma. Gene sets related to the cell cycle and DNA replication
were activated in ULMS. DPP6 and MFAP5 were distinguished as diagnostic
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biomarkers of ULMS (AUC = 0.957, AUC = 0.899, respectively), and they were
verified in the GSE9511 and GSE68295 datasets (AUC = 0.983, AUC = 0.942,
respectively). The low expression of DPP6 and MFAP5 were associated with
ULMS. In addition, the analysis of the immune microenvironment indicated that
resting mast cells were positively correlated with DPP6 and MFAP5 expression
and that eosinophils and MO macrophages were negatively correlated with
DPP6 expression (P<0.05).

Conclusion: These findings indicated that DPP6 and MFAP5 are diagnostic
biomarkers of ULMS, thereby offering a novel perspective for future studies on

the occurrence, function and molecular mechanisms of ULMS.

KEYWORDS

diagnostic biomarkers, machine-learning, DPP6, MFAP5, immune infiltration,
uterine leiomyosarcoma

Introduction

Uterine leiomyosarcoma (ULMS) is a rare but aggressive
tumor subtype, accounting for approximately 1% of all uterine
malignancies (1). ULMS is the most common subtype of uterine
sarcoma and originates from the smooth muscles of the
myometrium. In the past several decades, the prognosis of
ULMS patients has not changed with an overall 5-year survival
rate of only 15%-25% (2). Currently, complete surgical resection
is the primary treatment for early-stage ULMS (3), and
chemotherapy is regarded as the standard therapy for
advanced or metastatic ULMS (4, 5), but with an estimated
recurrence rate of approximately 50 to 70% (6). ULMS
constitutes a sizable proportion of uterine cancer deaths (7).
Additionally, compared to other gynecological malignancies,
ULMS etiology, pathogenesis and earlier diagnosis are poorly
understood. Considering that ULM can currently be treated with
minimally invasive surgery, it is important to discern ULMS
from ULM preoperatively to avoid disseminated spread by
laparoscopic morcellation or delayed diagnosis with
conservative treatment (8, 9). Considering that ULMS has a
high trend towards local recurrence, metastasis and poor
prognosis, the misdiagnosis of a ULMS for a leiomyoma may
lead to therapy delays and higher morbidity (10, 11).

ULMS patients generally present with abnormal vaginal
bleeding, pelvic pain and palpable pelvic mass. Because these
symptoms resemble ULM, particularly degenerated ULM, it is
difficult to discern ULMS and ULM by pelvic ultrasound and
MRI preoperatively (12). Postoperative pathological diagnosis is
currently the only available method to distinguish the two tumor
conditions. A meta-analysis containing 133 studies has indicated
that undiagnosed ULMS estimated to be approximately 1 in
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2000 surgeries for presumed ULM (13). It is well
known that tumor-associated immunity plays a vital role in
the occurrence, development and metastasis of tumors (14). The
recent development of integrated microarray technology
with bioinformatics analysis may allow identification of novel
genes that might act as diagnostic and prognostic biomarkers in
cancers (15, 16). Definitive molecular diagnosis added to
histopathological diagnosis should be considered to decrease
the risk of misdiagnosis. Verification of highly novel diagnostic
biomarkers for ULMS related to immune cell infiltration will
further improve the diagnostic accuracy of ULMS.

Herein, the aim of this study was to identify novel diagnostic
immune-related genes for ULMS. Machine-learning algorithms
and logistic regression were used to verify diagnostic biomarkers
of ULMS. Furthermore, CIBERSORT was applied to compute
the quotas of infiltrating immune cells between ULMS and ULM
samples. Finally, the correlation among the recognized
diagnostic biomarkers and infiltrating immune cells was
explored to offer a foundation for further research.

Materials and methods

Microarray data processing and
identification of DEGs

First, we obtained datasets (GSE36610 and GSE64763 as the
training group; and GSE9511 and GSE68295 as the testing
group) from the GEO database (https://www.ncbinlm.nih.gov/
gds) (Table 1). The background correction and normalization of
raw data were processed by the limma package of R software
(http://www.bioconductor.org/). Two datasets were merged into
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TABLE 1 GEO database data of preeclampsia mRNA expression profile.

Dataset ID Platform
Train group
GSE36610 GPL7363-11635
GSE64763 GPL571-17391
Test group
GSE9511 GPL80-30376
GSE68295 GPL6480-9577

a metadata cohort, and the batch effect was removed with the
SVA package of R software (17). Genes with [log fold change
(FC)| > 2 and adjusted P < 0.05 were defined as DEGs.

Functional enrichment of DEGs

The DEGs were analyzed using the clusterProfiler, org.Hs.eg.db,
enrichplot and ggplot2 packages of R software for GO and KEGG
analyses. The clusterProfiler and DOSE packages of R software were
used to perform DO analyses on DEGs. GSEA was conducted to
recognize the most important feature between the ULMS and ULM
groups. “c2.cp.kegg.v7.4.symbols.gmt” was applied as the reference
gene set from the Molecular Signatures Database (MSigDB).
P <0.05 was considered a significant enrichment.

Screening candidate biomarker for
diagnosis of ULMS

We applied two machine-learning algorithms to increase
the prediction accuracy. LASSO is a regression-based analysis that
scrutinizes variable selection and regularization in ULMS models.
The glmnet package of R software was applied to perform LASSO
regression analysis on the identification of DEGs correlated with the
discernment between ULMS and ULM. The support vector machine
(SVM) is an efficient and widely applied supervised machine-
learning algorithm for disease classification and regression tasks
(18). Consequently, we screened the overlapping genes by
conjugating LASSO and SVM-REFE followed by verification using
the GSE9511 and GSE68295 datasets.

Significance of diagnostic biomarkers in
ULMS

We obtained mRNA expression data from 37 ULMS and 25
ULM samples, which were applied to create ROC curves to
verify the biomarker predictive ability. The area under the ROC
curve (AUC) was utilized to determine the ability of diagnosis in
distinguishing ULMS from ULM samples followed by
verification using the GSE9511 and GSE68295 datasets.
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Evaluating the level of immune
infiltration

We downloaded a gene signature matrix with interpretation,
known as the 22 immune cell (LM22) matrix with 1,000
permutations from CIBERSORT (http://cibersort.stanford.edu/)
(19). The CIBERSORT algorithm was applied to quantify the
proportion of 22 infiltrating immune cells in the tissue using the
expression of 547 immune-related genes. The corrplot package in
R software was applied to conduct the correlation and
visualization of 22 types of infiltrating immune cells. The
vioplot package in R software was used to study the infiltration
of immune cells between the ULMS and ULM groups. Pearson
correlation analysis was applied to explore the selected diagnostic
biomarkers correlated with the levels of infiltrating immune cells.

Patient and tissue samples

Twenty-six paraffin-embedded ULMS and twenty-three ULM
specimens were diagnosed at The Second Affiliated Hospital of
Fujian Medical University (Fujian, China) from September 2010
to February 2022. The main treatment of all patients underwent
hysterectomy with bilateral adnexal resection. The research was
approved by the Research Ethics Committee of The Second
Affiliated Hospital of Fujian Medical University prior to the study.

Immunohistochemistry

IHC staining was operated as previously described (20). The
primary antibodies included anti-DPP6 (Bioss, Beijing), anti-
MFAP5 (Proteintech, USA). The proportion of DPP6 and MFAP5
staining intensity was scored as follows: negative = 0; light yellow = 1;
brownish yellow = 2; or tan=3. The staining was scored as follows: less
than 1/3 = 1; between 1/3 and 2/3 = 2; or more than 2/3 = 3. The final
score for DPP6 and MFAP5 expression was calculated by multiplying
the 2 scores. The slides were classified to low and high expression
group, corresponding to scores of <3 or =3, respectively. The
histopathological diagnosis of the patients included in our study
was established by two pathologists specialized in
Gynecologic Oncology.
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Statistical analysis

We utilized R software to conduct (v.4.1.1) all statistical
analyses. We used the Mann-Whitney U test to compare the
different groups. LASSO regression, SVM algorithm, ROC curve,
Pearson’s correlation and unpaired t test were used as described
above. Differences with P < 0.05 were considered statistically
significant for all statistical analyses.

Result
Study procedure

The analysis procedure of the present is shown in Figure 1.
The transcriptome RNA-seq data were downloaded from the
GEO database. We identified the DEGs between the ULMS and
ULM group. DEGs were anlayzed using the GO, KEGG and DO
analyses as well as GSEA. LASSO and SVM-RFE were used to
select the candidate overlapping genes, and ROC curves were
applied to check the predictive ability of biomarkers, which was

10.3389/fonc.2022.1084192

further verified in the GSE9511 and GSE68295 datasets. The
compositional patterns of 22 immune cells were calculated using
CIBERSORT in ULMS. Finally, correlation analysis among the
diagnostic markers and infiltrating immune cells was performed.

Identification of DEGs in ULMS

The present study utilized two datasets (GSE36610, GSE64763)
and included 37 ULMS and 25 ULM samples. We identified 55 DEGs
by comparing ULMS and ULM (Figure 2A). Among these DEGs, 21
genes were significantly downregulated, and 34 genes
were significantly upregulated. The volcano plot in Figure 2B
shows the distribution of the top 50 DEGs in ULMS and ULM.

Correlation and functional enrichment
analysis

The GO analysis indicated that the DEGs mainly
participated in chromosome segregation and the cell cycle

Uterine Leiomyoma VS Leiomyosarcoma in GEO

v v

GSE36610 GSE9511
GSE64763 GSE68295 i
(Train group) (Test group)

GSEA

FIGURE 1
Analysis flow diagram of this study.

Frontiers in Oncology

12

TIC profile

—

/ ) .
(B . Vi
LY v Correlation ~  Difference
venn = of TIC test
GO = -
LASSO = Test Venn
—_—
]
|
.—’ - = L -
KEGG Ly —l ROC
3 Correlation test
L, EI SVM Test ROC
Diagnostic gene of
— leiomyosarcoma
>

o | 7 ,“.,,‘,‘f»,*e,l/i‘,‘/ "

frontiersin.org


https://doi.org/10.3389/fonc.2022.1084192
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Ke et al.

10.3389/fonc.2022.1084192

FIGURE 2
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Identifcation of DEGs. (A) Heatmap plots of 55 DEGs between ULMS and ULM samples from GEO database. Row name of heatmap is the gene
name, and column name is the ID of samples which not shown in plot.The colors from red toblue represent expression level from high to low
in the heatmaps. (B) Volcano plots of top 50 DEGs between ULMS and ULM samples. The red dots in the volcano plots represent up-regulation,
the green dots represent down-regulation and black dots represent genes without differential expression.

(Figure 3A). In addition, KEGG analysis showed enrichment of
the cell cycle and immune-related pathways, such as HTLV-1
infection way (Figure 3B). The DO enrichment showed that
DEGs were mostly related to solid malignant tumors and
haematological malignancies (Figure 3C). The GSEA results
revealed negative enrichment in cell adhesion and the Wnt
signalling pathway in ULM (Figure 3D, Table S1) as well as
positive enrichment in the cell cycle, DNA replication and
mismatch repair in ULMS (Figure 3E, Table S2). These results
indicated that mismatch repair, related immunity and the cell
cycle play vital roles in ULMS.

Verification and validation of diagnostic
biomarkers

We employed the LASSO and SVM-RFE algorithm methods
to select potential biomarkers. We identified 7 DEGs as
diagnostic biomarkers using LASSO regression for ULMS
(Figure 4A), and we verified 34 DEGs using the SVM-RFE
(Figure 4B). When integrating both algorithms, six
overlapping candidate genes (PRCI, SELP, PID1, DPPé6,
MFAPS5 and HSD17B6) were selected (Figure 4C). In addition,
with the purpose of producing more dependable and exact
DEGs, we verified the expression levels of six DEGs using the
GSE9511 and GSE68295 datasets. The DPP6 and MFAP5
expression levels in ULMS samples were significantly lower
than those in the ULM group (Figures 5A, B; P < 0.05).
However, SLEP gene expression was not significantly different
between the two groups (Figure 5C). Subsequently, we
investigated the latent ability of the two identified DEGs as
diagnostic biomarkers utilizing a logistic regression algorithm.
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Effectiveness of diagnostic biomarkers in
ULMS

The ability of the two diagnostic biomarkers indicated good
diagnostic value in early discernment of ULMS as the AUC
values of the DPP6 and MFAP5 genes were 0.957 and 0.899,
respectively (Figure 6A). Subsequently, a persuasive screening
capacity was verified in the GSE9511 and GSE68295 datasets
with AUC values of 0.983 in DPP6 and 0.942 in MFAP5
(Figure 6B). We assessed the expression of DPP6 and MFAP5
across ULMS and ULM tissues via immunohistochemistry and
found that low expression of DPP6 and MFAP5 were associated
with ULMS. DPP6 was expressed in the cytoplasm, MFAP5 was
expressed in the stroma. (Figures 6C, D; P < 0.05). The above
results indicating that the DPP6 gene and MFAPS5 had a higher
diagnostic capacity.

DPP6 and MFAP5 genes correlate
with the percentage of immune
cell infiltration

Next, we verified the correlation of the DPP6 and MFAP5
genes with immune cell infiltration. We determined the
proportions of 22 immune cells in the ULMS and ULM
samples using the CIBERSORT algorithm (Figures 7A, B). The
components of immune cells in the ULMA vs. ULM group were
explored. The ratios of resting CD4+ memory T cells (P =0.023),
activated NK cells (P = 0.031) and resting mast cells (P <0.001)
in the ULMS group were markedly lower than those in the ULM
group. However, the ratio of MO macrophages (P = 0.011) was
significantly higher in ULMS compared to ULM (Figure 7C).
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enrichment analysis.

Furthermore, we studied the relationship between the DPP6 and
MFAPS5 genes and infiltrating immune cells. DPP6 was positively
related to resting mast cells (r = 0.570, p < 0.001), monocytes
(r = 0.328, P = 0.032) and activated dendritic cells (r = 0.301,
p =0.0495) but negatively related to eosinophils (r = —0.321,
P = 0.036) and MO macrophages (r = -0.450, P =0.003)
(Figure 7D). Moreover, MFAP5 was positively related to
resting mast cells (r = 0.413, p = 0.006) (Figure 7E). These
findings supported that DPP6 and MFAP5 are related to
immune activity.

Discussion

ULMS is one of the most common subtypes in mesenchymal
neoplasms, but research on ULMS is limited. Because the
incidence rate is low, different clinical features and
histopathological appearances result in a lack of molecular
biomarkers, offering no superior treatment regimen (21). The
biological behaviour of ULMS is difficult to predict. Although
the tumor is often restricted to the uterus, recurrence and
metastasis are highly common (22). An increasing number of
studies have employed immune cells as a new bioinformatic
approach to investigate the diagnosis and prognosis of various
diseases, including gastric cancer (23), breast cancer (24) and
osteosarcoma (25). However, there are few studies on the
immune cell infiltration association with DEGs in ULMS.
Thus, we focused on the identification of significant diagnostic
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DEGs for ULMS and determined the correlation of these DEGs
with infiltrating immune cells in ULMS.

To our knowledge, our study is the first to apply multiple
GEO datasets for knowledge mining using a
machine learning approach in ULMS to identify significant
diagnostic biomarkers related to immune cells. In the present
study, which utilized the GSE36610, GSE64763, GSE9511 and
GSE68295 datasets from the GEO database, 55 DEGs were
identified by comparing ULMS and ULM samples. DO
enrichment showed that the 55 DEGs were mainly related to
solid malignant tumors and haematological malignancies.
KEGG analysis and GSEA indicated that the DEGs were
involved in regulating immune-related pathways and the cell
cycle. Risinger et al. reported that defective postreplication
mismatch repair resulting in microsatellite instability is
present in considerable portions of sarcomas in gynecology
(26). Similarly, mismatch repair (MMR) protein has been
screened in uterine carcinosarcomas and leiomyosarcomas by
immunohistochemical assays but has not been identified in
other types of uterine mixed epithelial/mesenchymal or
mesenchymal malignancies (27). Anderson et al. found that
P53 expression may act as a prognostic biomarker for ULMS
(28). Abnormal p53 staining (null or strong/diffuse) has been
observed in ULMS with 70% sensitivity and 100% specificity
against inflammatory myofibroblastic tumors (IMTs) and is
related to genomic alterations (29). Relevant study has
demonstrated that HTLV-1 infection correlates with the
occurrence of ULMS. However, HTLV-1 has been thoroughly
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Screening process of diagnostic biomarker candidates for ULMS diagnosis. (A) Tuning feature selection in the LASSO model. (B) A plot of
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studied in adult T-cell leukaemia/lymphoma (ATL) (30-32), an
aggressive CD4+ T-cell malignancy. HTLV-1 increases genomic
instability by directly altering the expression of host genes;
conversely, abnormal gene expression may influence the
longevity of infected CD+4 T cell clones and profileration rate,
allowing further mutations to accumulate and the host genome
structure to vary, ultimately leading to malignant transformation

(33). Because HTLV-1 mediates immune-related pathways,
it possible that regulation of the immune response is strongly
associated with the occurrence of ULMS.

We identified two diagnostic biomarkers based on
integrating two machine-learning algorithms and
diagnostic ability analysis, and we verified these markers using
the GSE9511 and GSE68295 datasets. The dipeptidyl peptidase 6
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Validation of the expression of diagnostic biomarkers in the GSE9511 and GSE68295. (A) DPP6; (B) MFAP5; (C) SLEP.
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The receiver operating characteristic (ROC) curve of the diagnostic effectiveness of the six diagnostic markers. (A) ROC curve of DPP6 and
MFAP5 after fitting to one variable in the metadata cohort; (B) ROC curve of DPP6 and MFAPS5 after fitting to one variable in the GSE9511 and
GSE68295 dataset. (C) Significantly low DPP6 expression was observed in ULMS tissues compared with ULM specimens (ULMS=26, ULM=23).
Representative images (x50 and x400) of IHC staining for DPP6 in 26 ULMS and 23 ULM patients (high expression vs. low expression). (D)
Significantly low MFAP5 expression was observed in ULMS tissues compared with ULM specimens (ULMS=26, ULM=23). Representative images
(x50 and x400) of IHC staining for MFAP5 in 26 ULMS and 23 ULM patients (high expression vs. low expression). Scale bars are shown. *P <
0.05. P values were calculated by chi-square tests.

(DPP6) gene encodes a single transmembrane peptidase without
activity. Most likely, DPP6 enhances its expression and regulates
its gating feature by combining at the permeation and gating
modules of the potassium channel (34). In breast cancer tissues,
DPP6 has low expression at the transcription and protein levels,
and in breast cancer patients, low expression of DPP6 indicates
poor prognoses, suggesting that DPP6 may serve as a tumour
suppressor in tumour development (35), which agreed with our
study. However, in surgically treated clear cell renal cell
carcinoma (ccRCC) patients, the promoter methylation of
DPP6 genes is related to an aggressive phenotype and early
progression of distant metastasis (36). Similarly, in pancreatic
ductal adenocarcinoma tissues, the promoter methylation of
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DPP6 genes is significantly higher than that in normal tissues
(37). Microfibril-associated protein 5 (MFAP5) is a 25 kDa
glycoprotein present in the extracellular matrix and stroma in
all tissues (38), and it is crucial for elastic microfibril assembly.
Using a microarray to investigate prostate tumors, researchers
have detected 3800 significant expression alterations between the
tumor stroma and benign stroma, and they reported that the
downregulation of MFAP5 expression is the most significant
alteration in the prostate cancer stroma among all genes
examined (39). Significant loss of MFAP5 expression in colon
cancer stroma may facilitate the difference between
pseudoinvasive and true invasive tumors with a specificity of
75% and a sensitivity of 80% in colonic adenomatous polyps
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Distribution and visualization of immune cell infiltration and correlation analysis. (A) Barplot showing the proportion of 22 immune cell subtypes
between ULMS and ULM samples. (B) Heatmap showing the correlation matrix of all 22 immune cell subtype compositions. Both horizontal and
vertical axes demonstrate immune cell subtypes. Immune cell subtype compositions (higher, lower, and same correlation levels are displayed in
red, blue, and white, respectively), and Pearson coefficient was used for significance test. (C) Violin plot showed the the total distribution of
immune cells in ULMS and ULM samples. Correlation between DPP6 (D), MFAP5 (E) and infiltrating immune cells in ULMS.

(40). However, high expression levels of MFAPS5 are associated
with a worse prognosis in ovarian cancer (both in epithelium
and stroma). In the present study, we observed significantly low
expression of MFAP5 in the stromal component of ULMS
specimens, similar to the above study.

We applied CIBERSORT to assess the types of immune cell
infiltration in ULMS and ULM. We discovered that decreased
infiltration of resting CD4+ memory T cells, activated NK cells
and resting mast cells in addition to increased infiltration of M0
macrophages were potentially correlated with the occurrence
and development of ULMS. Xiaoging et al. found that the
infiltration of two types of immune cells (resting mast cells
resting and activated NK cells) is lower in ULMS tissues, while
the infiltration of five types of immune cells (memory B cells, MO
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macrophages, activated mast cells, M1 macrophages and
follicular helper T cells) is higher in ULMS tissues than in
normal myometrium (NL) tissues (41). Similarly, our study
demonstrated that the infiltration of immune cell types was
lower due to the selection of the control group. Additionally, we
found that the DPP6 gene was positively correlated with resting
mast cells, monocytes and activated dendritic cells. However, MO
macrophages and eosinophils had a negative correlation with the
DPP6 gene. Together, these findings indicated that the DPP6
gene is associated with several types of immune cell infiltration
and plays an important role in ULMS, suggesting that
should be a focus in future experimental work.

The present study had limitations. First, due to the low
incidence rate of ULMS, the number of cases was not enough in
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the GSE36610 and GSE64763 datasets. Second, the function and
reproducibility of the DPP6 and MFAP5 genes as well as the
related immune cell infiltration should be further validated by
prospective studies with larger sample sizes in ULMS.

Conclusion

Based on the GEO database, the two hub genes and the
infiltration of five types of immune cells were related to ULMS
occurrence. DPP6 and MFAP5 genes may affect the occurrence
of ULMS through immune-related pathways. Thus, these
findings provided molecular evidence for the treatment of
ULMS in the future.
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Background: Osteosarcoma remains to be the most devastating malignant
tumor in children and teenagers. Mitochondria have also been proven to play
critical roles in osteosarcoma. However, a mitochondria-related signature has
been established in osteosarcoma to comprehensively evaluate the pathogenic
roles and regulatory roles of mitochondria in osteosarcoma.

Methods: In this study, osteosarcoma samples’ transcriptome data and clinical
information were collected from Therapeutically Applicable Research to
Generate Effective Treatments (TARGET) and Gene Expression Omnibus
(GEO) databases. A comprehensive bioinformatics analysis was performed on
the samples at the bulk RNA sequencing level and single-cell RNA sequencing
(scRNA-seq) level. EdU, Transwell, and immunohistochemistry (IHC) were
performed on PCCB.

Results: A mitochondria-related signature was constructed in osteosarcoma
patients. The prognostic value of the mitochondria-related signature was
explored. The predictive value of the mitochondria-related signature in
the immune microenvironment and chemotherapy agents was explored.
The association between mitochondria and immunity in the tumor
microenvironment of osteosarcoma at the scRNA-seq level was investigated.
The tumorigenic role of the critical mitochondria-related gene, PCCB, was
verified by in vitro validation.

Conclusion: In conclusion, a mitochondria-related signature was developed in
osteosarcoma with solid predictive values in the immune microenvironment,
chemotherapy agents, and prognosis.
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osteosarcoma, immune, mitochondria-related signature, therapeutic response,
single-cell analysis
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Introduction

Osteosarcoma remains the most devastating malignant
tumor in children and teenagers (1). Osteosarcoma develops
from the mesenchymal cell line, and the rapid growth of the
cancer is due to the direct or indirect formation of tumor osteoid
tissue and bone tissue during the chondral stage (1). The closer
the tumor site is to the trunk, the higher the mortality. The key
factors affecting the prognosis are early diagnosis, complete
tumor resection, chemotherapy, and radiotherapy before and
after surgery. In addition, it is also related to the tissue type and
size of tumor cells, the increase of serum alkaline phosphatase
before and after surgery, and whether local lymph nodes are
involved (2). The primary treatment for osteosarcoma is radical
surgical resection. Consolidation of chemical or radiation
therapy after tumor resection is significant for controlling
tumor metastasis and improving survival rate (3).
Immunotherapy involves the intravenous infusion of
lymphocytes or interferon and transfer factors, but the efficacy
is uncertain (4).

Mitochondria have been well recognized as a critical
mediator for oncogenesis. Based on their function as major
bioenergy promoters, mitochondria are actively involved in
regulating tumor anabolism, controlling REDOX and calcium
homeostasis, participating in transcriptional regulation, and
controlling cell death. Mitochondrial dysfunction leads to the
release of cytochrome C, the production of mitochondrial
reactive oxygen species (mtROS), and the generation of
metabolites, further initiating signaling cascades that affect
gene expression, cell activation, cell proliferation, and cell
differentiation (5, 6). Mitochondria may promote malignant
transformation through three main mechanisms: (1) Reactive
oxygen species (ROS), mainly derived from the mitochondrial
respiratory chain, contribute to the accumulation of potential
oncogenic DNA defects, and the activation of potential
oncogenic signaling pathways (7); (2) Abnormal
accumulation of some mitochondrial metabolites, including
fumaric acid, succinic acid, and 2-hydroxyglutaric acid (2-Hg)
(8); (3) Defective mitochondrial permeability transition

Abbreviations: TARGET, Therapeutically Applicable Research to Generate
Effective Treatments; GEO, Gene Expression Omnibus; scRNA-seq, single-
cell RNA sequencing; mtROS, mitochondrial reactive oxygen species; LASSO,
least absolute shrinkage and selection operator; ROC, receiver operating
characteristic; AUC, area under the curve; ssGSEA, single-sample gene-set
enrichment analysis; ESTIMATE, Estimated Stromal and Immune cells in
Malignant Tumor tissues using Expression data; DEGs, differentially
expressed genes; GSVA, gene set variation analysis; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; IHC,
Immunohistochemistry; RT-qPCR, Real-time quantitative polymerase

chain reaction.
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(MPT) function promotes the formation of malignant
precursors (9).

Mitochondria have also been proven to play critical roles in
osteosarcoma. AICAR was reported to induce mitochondrial
apoptosis in osteosarcoma through an AMPK-dependent
pathway (10). The mitochondrial BIG3-PHB2 complex
formation was reported to promote the survival and
proliferation of osteosarcoma (11). Besides, targeting
autophagy was reported to enhance atezolizumab-induced
mitochondria-related apoptosis in osteosarcoma (12).
Mitochondria-regulated cell death and energetic metabolism
are intimately connected in osteosarcoma (13). However, a
mitochondria-related signature has never been established in
osteosarcoma to comprehensively evaluate the pathogenic roles
and regulatory roles of mitochondria in osteosarcoma. More
importantly, the interconnection between mitochondria and the
tumor microenvironment of osteosarcoma remains to
be deciphered.

In this study, osteosarcoma samples’ transcriptome data
and clinical information were collected from Therapeutically
Applicable Research to Generate Effective Treatments
(TARGET) and Gene Expression Omnibus (GEO) databases.
A mitochondria-related signature was constructed in
osteosarcoma patients. The prognostic value of the
mitochondria-related signature was explored. The predictive
value of the mitochondria-related signature in the immune
microenvironment was explored. The predictive value of the
mitochondria-related signature in chemotherapy agents was
explored. The association between mitochondria and
immunity in the tumor microenvironment of osteosarcoma
at the single-cell RNA sequencing (scRNA-seq) level was
investigated. The tumorigenic role of the critical
mitochondria-related gene, PCCB, was verified by in vitro
validation. To the best of our knowledge, this is the first
study assessing the effect of mitochondria on the prognosis,
immune microenvironment, and therapeutic efficacy
in osteosarcoma.

Materials and methods

This study was ethically approved by the institutional review
board (IRB) of the Third Xiangya Hospital, Central South
University (No: 2020-S221). All experiments involving human
tissues were performed based on guidelines approved by the IRB.
A signed informed consent form was obtained from
each patient.

Data collection and procession

84 osteosarcoma samples with transcriptome data and
clinical information were accessed from the TARGET database
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((https://xenabrowser.net/) and were designed as the training
cohort. 53 osteosarcoma samples with transcriptome data and
clinical information were accessed from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) and were designed as the
validating cohort (GSE21257). Samples with less than one
month follow-up time and a lack of overall survival
information were excluded. The count data were normalized
using the R package ‘DEseq2’. The scRNA-seq data of
osteosarcoma samples (primary osteosarcoma lesions, ‘BC2’
and ‘BC3’) were accessed from GSE152048 in the GEO
database. The mitochondria-related genes were accessed from
the MitoCarta3.0 database (http://www.broadinstitute.
org/mitocarta).

Construction of the mitochondria-
related signature

The univariate Cox regression analysis was performed on the
mitochondria-related genes to determine their prognostic
values. The least absolute shrinkage and selection operator
(LASSO) regression analysis was performed on the prognostic
mitochondria-related genes for dimension reduction.
The stepwise multivariate Cox regression analysis was
further performed on the prognostic mitochondria-related
genes for dimension reduction. A mitochondria-related
signature was developed based on the following formula:
Risk Score=YExpression(Gene)xCoefficient.

Prognostic value of the mitochondria-
related signature

The survival curves were generated using the R package
‘survival’. The survival curves regarding different clinical factors
were developed independently. The receiver operating
characteristic (ROC) curve was generated using the R package
‘timeROC’, and the area under the curve (AUC) value
was calculated.

Predictive value of the mitochondria-
related signature in the immune
microenvironment

The single-sample gene-set enrichment analysis (ssGSEA)
algorithm was used to quantify the abundance of 28 specific
immune cell types using the R package ‘GSVA’ (14). The
Estimated Stromal and Immune cells in Malignant Tumor
tissues using Expression data (ESTIMATE) algorithm was
used to determine the microenvironment scores using the R
package ‘estimate’ (15).
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Functional annotation of the
mitochondria-related signature

The differentially expressed genes (DEGs) between two
mitochondria-related signature score groups were determined.
The DEGs were visualized by volcano plot using the R package
‘EnhancedVolcano’. The DEGs were visualized by heatmap
using the R package ‘pheatmap’. The gene sets of
‘c2.cp.kegg.v7.4.symbols’ and ‘c5.go.bp.v7.4.symbols’ were
obtained from MSigDB database for performing the gene set
variation analysis (GSVA). Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis was conducted with the R package ‘clusterProfiler’
and ‘org.Hs.eg.db’.

Prediction value of the mitochondria-
related signature in chemotherapy
agents

The transcriptome data and drug response information of
over 1,000 cancer cell lines were collected from the Genomics of
Drug Sensitivity in Cancer (GDSC, http://www.cancerrxgene.
org/) database. The mitochondria-related signature was
developed in each cancer cell line. The Spearman method was
used to evaluate the correlation between risk score and half-
maximal inhibitory concentration (IC50) of each cancer
cell line.

scRNA-seq analysis of the mitochondria-
related signature

The scRNA-seq matrix of primary osteosarcoma samples
from GSE152048 was processed using the R package ‘Seurat’.
The function ‘NormalizedData’ was used to normalize the
scRNA-seq data. The function ‘FindVariableFeatures’ was used
to identify the 1,000 most variable genes. The function ‘RunPCA’
was used for dimension reduction. A K-nearest neighbor was
analyzed using the function ‘FindNeighbors’, and the cells were
combined with the function ‘FindClusters’. The function
Uniform Manifold Approximation and Projection for
Dimension Reduction (UMAP) was used for visualization. All
cells were annotated using the R package ‘Single R’. The function
‘FindMarkers’ was used to find DEGs between two
mitochondria-related signature score groups of osteosarcoma
cells. The pseudotime trajectory analysis was performed using
the R package ‘monocle’ (16). GO and KEGG enrichment
analysis was conducted with the R package ‘clusterProfiler’
and ‘org.Hs.eg.db’. The cell communication pattern was
explored using the R package ‘iTalk’.
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Immunohistochemistry

Three pairs of formalin-fixed paraffin-embedded
osteosarcoma tissue and para-carcinoma tissue blocks from
three osteosarcoma patients (post-chemotherapy) were
collected and used for 5 um paraffin sections. IHC was
performed following the manufacturer’s protocol of the
Rabbit-enhanced polymer method detection system (ZSGB-
BIO, PV-9000, China). The slides were deparaffinized and
rehydrated using xylene and gradient-concentration ethyl
alcohol. The antigen retrieval was performed with sodium
citrate at 95°C. The slides were blocked using an endogenous
peroxidase blocker for 10 min at room temperature. Samples
were incubated with primary antibody against PCCB (127549,
Zenbio, China) overnight at 4°C, reaction enhancer for 20 min at
37°C, and enhanced enzyme-conjugated sheep anti-rabbit
IgG polymer for 20 min at 37°C. The slides were stained with
3, 30-diaminobenzidine tetrahydrochloride (DAB) and
counterstained with hematoxylin.

Cell culture

Two osteosarcoma cell lines (U20S and MNNG/HOS)
were obtained from the Procell Life Science & Technology
Co., Ltd. U20S and MNNG/HOS were correspondingly
cultured in McCoy’s 5A (Procell, China) and MEM (Procell,
China) supplemented with 10% fetal bovine serum (FBS,
Gibco, USA) and 1% penicillin-streptomycin solution
(Biosharp, China) at 37°C with saturated humidity and 5%
CO2. The average time of culture medium exchange was
24-48h. The cells were digested with trypsin-EDTA
(Gibco, USA) and passaged when cell adhesion exceeded
80% confluency.

Small interfering RNA transfection

The PCCB siRNA (si-PCCB) and the nonspecific control
siRNA (si-NC) were synthesized by JTSBio (Wuhan, China).
The siRNAs sequences are as follows: PCCB-1 (F:
CCCUAACAGACUUCACGUUTT R: AACGUGA
AGUCUGUUAGGGTT), PCCB-2 (F: CCAAGC
UUCUCUACGCAUUTT R: AAUGCGUAGAGAAG
CUUGGTT), PCCB-3 (F: CCGCAGAGAUUGCAGUCAUTT
R: AUGACUGCAAUCUCUGCGGTT). The siRNAs were
transfected into U20S and MNNG/HOS cells using a
jetPRIME transfection reagent (Polyplus, France). RNA
extraction was performed 48h after transfection.
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Real-time quantitative polymerase chain
reaction

The primer sequences are as follows: PCCB (F:
TGTCTTCAGTCAGGATTTTACAGTT R: GGCCT
GGTCCATGATTTTGC), GAPDH (F: AATGGGCA
GCCGTTAGGAAA R: GCCCAATACGACCAAATCAGAG).
Total RNA from cultured cells was extracted using Rnafast200
(Fastagen, Japan), and cDNA was synthesized using HiScript I
Q RT SuperMix for qPCR (Vazyme, China). ChamQ Universal
SYBR qPCR Master Mix (Vazyme, China) was used to conduct
RT-qPCR based on the manufacturer’s protocol. All steps for the
RT-qPCR reaction were conducted as follows: initial
denaturation at 95°C for 30s, one cycle; denaturation at 95°C
for 10s, 40 cycles; dissolution curve at 95°C for 15s, 60°C for 60s,
95°C for 15s, one cycle. Gene expression levels were normalized
to those of GAPDH and calculated using 1g2-/\ /A Ct method.

Western blot

A mixture of RIPA (Beyotime, China) and PMSF (Beyotime,
China) was used to lyse U20S and MNNG/HOS cells for protein
extraction. Loading Buffer (Biosharp, China) was added to the
protein supernatant, and then the sample was boiled to denature
the protein. Then proteins were separated using SDS-PAGE gel
(Biosharp, China), transferred to PVDF membranes (Millipore,
USA), and blocked in 5% skimmed milk for 1 h. Then
membranes were incubated overnight at 4°C with primary
antibodies, including PCCB (127549, Zenbio, China) and
GAPDH (10494-1-AP, Proteintech, China). The membranes
were incubated with HRP-conjugated secondary antibody
(SA00001-2, Proteintech, China) the following day. Protein
bands were captured with a UVP Chem studio PLUS 815
(Analytik Jena, Germany).

EdU assay

Proliferating U20S and MNNG/HOS cells were identified
using the EAU Imaging Kits (APEXBIO, USA), and cell nuclei
were stained using Hoechst (Invitrogen, USA). Image Pro-Plus

version 6.0 (Media Cybernetics, USA) was used for counting
EdU-positive cells.

Statistical analysis

All bioinformatics statistical analyses were performed using
the R project (version 4.0.3, https://www.r-project.org/). The
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Wilcoxon and One-way ANOVA tests were used to compare the
difference among groups. All statistical analyses in the cell
experiment are based on mean + SD using Graphpad Prism
(version 8.0.2.263). The Benjamini-Hochberg method was used
to obtain adjusted p values. The adjusted p value< 0.05 was
considered statistically significant.

Results

Construction of the mitochondria-
related signature

The univariate Cox regression analysis was performed on the
mitochondria-related genes to determine their prognostic values
(Figure 1A). The LASSO regression analysis was performed on the
prognostic mitochondria-related genes for dimension reduction
(Figure 1B). The stepwise multivariate Cox regression analysis
was further performed on the prognostic mitochondria-related
genes for dimension reduction (Figure 1C). Survival analysis was
performed on the prognostic mitochondria-related genes, among
which nine genes predicted worse survival and eight genes predicted
better survival (Figure S1). The mitochondria-related signature was
developed based on the sum of the expression values of the
prognostic mitochondria-related genes and their corresponding
coefficients. The formula is as follows: OGDH x (1.299)+GUF1 x
(-1.34)+FDX1 x (1.115)+ACADVL x (1.335)+PCCB x (1.635)
+PDKI x (0.658)+STOML2 x (0.727)+LACTB x (-0.852)
+UQCRB x (1.145)+MFN2 x (-2.086)+CKMT2 x (0.368)
+ALDH7A1 x (-0.688)+TRMTI1 x (1.189)+EPHX2 x (0.841)
+BAKI x (-1.113)+SPATA20 x (-0.958).

Prognostic value of the mitochondria-
related signature

Survival analysis was performed on the two mitochondria-
related signature score groups in TARGET, and the high score
group was associated with shortened survival time (Figure 1D).
Survival analysis was also performed on the two mitochondria-
related signature score groups in GSE21257, and the high score
group was associated with shortened survival time (Figure 1E).
The 1-year, 3-year, and 5-year ROC curves had values of 0.97,
0.942, and 0.951 in TARGET, while the 1-year, 3-year, and 5-
year ROC curves had values of 0.689, 0.71, and 0.656 in
GSE21257 (Figures 1F, G). The mitochondria-related signature
score was not significantly different between the two age groups
(Figure 2A). The mitochondria-related signature score was not
significantly different between the two gender groups
(Figure 2B). Notably, the mitochondria-related signature score
was significantly different between the metastatic group and the
non-metastatic group (Figure 2C). In osteosarcoma patients
with age< 18, the high score group was associated with
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shortened survival time (Figure 2D). Likewise, in osteosarcoma
patients with age > 18, the high score group was associated with
shortened survival time (Figure 2D). In male osteosarcoma
patients, the high score group was associated with shortened
survival time (Figure 2E). Likewise, in osteosarcoma patients, the
high score group was associated with shortened survival time
(Figure 2E). In metastatic osteosarcoma patients, the high score
group was associated with shortened survival time (Figure 2F).
Likewise, in non-metastatic osteosarcoma patients, the high
score group was associated with shortened survival
time (Figure 2F).

Predictive value of the mitochondria-
related signature in the immune
microenvironment

The mitochondria-related signature was negatively
associated with multiple immune cells, including T cell, B cell,
natural killer T cell, macrophage, mast cell, and neutrophil
(Figure 3A). Notably, central memory CD8 T cell, natural
killer cell, CD56bright natural killer cell, macrophage, and
activated B cell were the top five cells highly correlated with
the mitochondria-related signature (Figure 3B). The high score
group was associated with lower levels of microenvironment
scores, including stromal score, immune score, and ESTIMATE
score (Figure 3C). Besides, the mitochondria-related signature
was negatively associated with stromal score (Figure 3D),
immune score (Figure 3E), and ESTIMATE score (Figure 3F).

Functional annotation of the
mitochondria-related signature

The DEGs between the two mitochondria-related signature
score groups were identified (Figure 4A). The distribution of the
DEGs between the two mitochondria-related signature score
groups is shown in Figure 4B. GO enrichment analysis was
performed on the DEGs (Figure 4C). Ossification, embryonic
skeletal system development, and pattern specification process
were highly enriched in the high score group. T cell activation,
extracellular matrix organization, and leukocyte cell-cell
adhesion were highly enriched in the low score group. KEGG
enrichment analysis was performed on the DEGs (Figure 4D).
TGF-P signaling pathway, hippo signaling pathway, and wnt
signaling pathway were highly enriched in the high score group.
Cytokine-cytokine receptor interaction, ECM-receptor
interaction, and focal adhesion were highly enriched in the
low score group. Besides, GSVA of GO and KEGG pathways
confirmed that autophagosome-lysosome fusion, recognition of
apoptotic cell, T cell receptor signaling pathway, and B cell
receptor signaling pathway were negatively associated with the
mitochondria-related signature (Figure 4E).
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Construction of the mitochondria-related signature. (A) The univariate Cox regression analysis was performed on the mitochondria-related
genes. (B) The LASSO regression analysis was performed on the prognostic mitochondria-related genes. (C) The stepwise multivariate Cox

regression analysis was performed on the prognostic mitochondria-related genes. (D) Survival analysis was performed on the two

mitochondria-related signature score groups in TARGET. (E) Survival analysis was performed on the two mitochondria-related signature score
groups in GSE21257. (F) The 1-year, 3-year, and 5-year ROC curves of the mitochondria-related signature in TARGET. (G) The 1-year, 3-year,
and 5-year ROC curves of the mitochondria-related signature in GSE21257.
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FIGURE 2

Prognostic value of the mitochondria-related signature. (A) The different levels of the mitochondria-related signature score regarding age.

(B) The different levels of the mitochondria-related signature score regarding gender. (C) The different levels of the mitochondria-related
signature score regarding metastasis. (D) Survival analysis was performed on the two mitochondria-related signature score groups regarding age
in TARGET. (E) Survival analysis was performed on the two mitochondria-related signature score groups regarding gender in TARGET. (F)
Survival analysis was performed on the two mitochondria-related signature score groups regarding metastasis in TARGET. ns, no significance;

**p < 0.01.

Prediction value of the mitochondria-
related signature in
chemotherapy agents

The potential value of the mitochondria-related signature in
predicting chemotherapy agents was explored based on the GSDC
database. The correlation between IC50 of drugs and the
mitochondria-related signature in cancer cell lines was explored.
The drug sensitivity of 30 drugs was identified to be significantly
associated with the mitochondria-related signature (Figure S2A).
Besides, the targeted signaling pathways of these drugs were
exhibited (Figure S2B). 24 drugs were negatively associated with
the mitochondria-related signature, including apoptosis
regulation inhibitor AZD5991, protein stability and degradation
inhibitor ML323, and kinases inhibitor BMS-345541. In addition,
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six drugs were positively associated with the mitochondria-related
signature, including ERK MAPK signaling inhibitor Refametinib,
RTK signaling inhibitor NVP-TAE684, and kinases inhibitor A-
770041. The overall predicted drug sensitivity and drug resistance
in targeted signaling pathways are shown in Figure S2C.

scRNA-seq analysis for the
mitochondria-related signature

The identified cells in the tumor microenvironment of
osteosarcoma are shown in Figure 5A. The levels of the
mitochondria-related signature score in identified cells are shown
in Figure 5B. The DEGs between the two mitochondria-related
signature score groups of osteosarcoma cells were identified. GO
enrichment analysis was performed on the DEGs (Figure 5C). ATP
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metabolic process, ossification, and energy derivation by oxidation
of organic compounds were highly enriched in the high score
group. Immune response-regulating signaling pathway,
mononuclear cell proliferation, and positive regulation of T cell
activation were highly enriched in the low score group. KEGG
enrichment analysis was performed on the DEGs (Figure 5D).
Oxidative phosphorylation, chemical carcinogenesis-reactive
oxygen species, and glycolysis/gluconeogenesis were highly
enriched in the high score group. Ferroptosis, Thl and Th2 cell
differentiation, and natural killer cell mediated cytotoxicity were
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*p < 0.05; ***p < 0.001.

highly enriched in the low score group. The pseudotime trajectory
analysis was performed on the osteosarcoma cells, and five cell
states were determined (Figure 5E). As pseudotime increased
(Figure 5F), osteosarcoma cells tended to have increased
mitochondria-related signature scores (Figure 5G). The DEGs
between osteosarcoma cells around branch point 1 were
identified and clustered into four types (Figure S3A). GO
enrichment analysis was performed on the DEGs in four clusters
(Figure S3B-S3E). The expression pattern of the mitochondria-
related genes in different cell states is shown in Figure S4.
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FIGURE 4

Functional annotation of the mitochondria-related signature. (A) Volcano plot for the DEGs between the two mitochondria-related signature
score groups. (B) Heatmap for the DEGs between the two mitochondria-related signature score groups. (C) GO enrichment analysis for the
DEGs between the two mitochondria-related signature score groups. (D) KEGG enrichment analysis for the DEGs between the two
mitochondria-related signature score groups. (E) GSVA for the DEGs between the two mitochondria-related signature score groups.

Cell communication pattern of the
mitochondria-related signature

Different cellular signaling pathways regarding checkpoints
between two mitochondria-related signature score groups of
osteosarcoma cells and microenvironment cells are shown in
Figures 6A, B, in which ITGB2, HAVCR2, and LGALS9 were the
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most active signaling pathways in osteosarcoma cells with the high
mitochondria-related signature score. Different cellular signaling
pathways regarding cytokine between two mitochondria-
related signature score groups of osteosarcoma cells and
microenvironment cells are shown in Figures 6C, D, in which
ITGBI1 was the most active signaling pathway in osteosarcoma cells
with the high mitochondria-related signature score. Different
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scRNA-seq analysis for the mitochondria-related signature. (A) The identified cells in the tumor microenvironment of osteosarcoma. (B) The
levels of the mitochondria-related signature score in identified cells. (C) GO enrichment analysis for the DEGs between the two mitochondria-
related signature score groups of osteosarcoma cells. (D) KEGG enrichment analysis for the DEGs between the two mitochondria-related
signature score groups of osteosarcoma cells. (E) Different cell states of the pseudotime trajectory analysis on the osteosarcoma cells

(F) Pseudotime pattern of the pseudotime trajectory analysis on the osteosarcoma cells. (G) The mitochondria-related signature score of the

pseudotime trajectory analysis on the osteosarcoma cells.

cellular signaling pathways regarding growth factor between two
mitochondria-related signature score groups of osteosarcoma cells
and microenvironment cells are shown in Figures 6E, F, in which
ITGB2, SDC2, PGF, and TGFB1 were the most active signaling
pathways in osteosarcoma cells with the high mitochondria-related
signature score. Different cellular signaling pathways regarding
other between two mitochondria-related signature score groups of
osteosarcoma cells and microenvironment cells are shown in
Figures 6G, H, in which CD63, COL1Al, COL1A2, and TIMP1
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were the most active signaling pathways in osteosarcoma cells with
the high mitochondria-related signature score.

In vitro validation on PCCB

The expression pattern of PCCB in the identified cells in the
tumor microenvironment of osteosarcoma is shown in Figures
S5A-S5C, in which PCCB was highly expressed by osteosarcoma
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cells. GO enrichment analysis revealed that DNA replication,
sterol biosynthetic process, and cholesterol biosynthetic process
were highly enriched in osteosarcoma patients with high
expression of PCCB. In contrast, T cell activation, B cell
activation, and lymphocyte proliferation were highly enriched
in osteosarcoma patients with low expression of PCCB (Figure
S5D). KEGG enrichment analysis revealed that cell cycle, carbon
metabolism, and biosynthesis of amino acids were highly
enriched in osteosarcoma patients with high expression of
PCCB. In contrast, Thl and Th2 cell differentiation, T cell
receptor signaling pathway, and B cell receptor signaling
pathway were highly enriched in osteosarcoma patients with
low expression of PCCB (Figure S5E). As the most hazardous
gene based on the stepwise multivariate Cox regression analysis,
the biological function of PCCB in osteosarcoma was explored.
RT-qPCR (Figure 7A) and western blot (Figure 7B) results
showed that the expression of PCCB was significantly
inhibited in three si-PCCB groups compared to NC and si-NC
groups in U20S and MNNG/HOS cells. The si-PCCB, with the
most vital ability to suppress the expression of PCCB, was used
for the follow-up experiment. EAU assay revealed that the
proliferation ability of U20S (Figure 7D) and MNNG/HOS
(Figure 7C) cells was significantly inhibited after transfection
with si-PCCB. The IHC results further confirmed that the
expression of PCCB was considerably higher in osteosarcoma
tumor tissues than in normal tissues (Figure 8).

Immunotherapy prediction of PCCB

The expression of PCCB in responders and non-responders in
immunotherapy cohorts is shown in Figure 9A, in which non-
responders had higher expression of PCCB in the Dizier cohort
2013 and Riaz cohort 2018 while responders had higher expression
of PCCB in the Hugo cohort 2016 and IMvigor210 cohort 2018.
Survival analysis was performed on the two groups regarding PCCB
expression in immunotherapy cohorts (Figure 9B). PCCB was
associated with better survival in the Hugo cohort 2016 and
IMvigor210 cohort 2018, while PCCB was associated with worse
survival in the Cho cohort 2020 and Kim cohort 2019. PCCB
showed potent efficacy in predicting immunotherapy response in
ten immunotherapy cohorts (Figure 9C).

Discussion

In the big data era, mining potential diagnostic, prognostic, and
predictive markers in cancer based on large-scale bioinformatics
analysis has been increasingly important. Many established markers
showed great potential in clinical application (17, 18).
Mitochondrial dysfunction is known as a hallmark of cancer.
Briefly, mitochondrial dysfunction can be caused by mtDNA
mutation, oxidative stress, defective mitochondrial electron
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transport chain, defective mitochondrial TCA cycle enzyme,
tumor-promoting signals, etc (19). The result is the change of cell
metabolic pathway, the destruction of intracellular REDOX
homeostasis, and the generation of apoptosis and drug resistance.
Finally, mitochondrial dysfunction would lead to genomic
instability, the aging process, and the occurrence and
development of cancer (19). Mitochondria dysfunction in CD8+
T cells has also been demonstrated to be an essential contributing
factor for cancer development and a potential target for cancer
treatment (20). Therefore, an in-depth understanding of
mitochondrial dysfunction in cancer is essential for developing
novel effective therapeutic strategies. Most studies have focused on
the pathogenic molecular mechanisms of individual mitochondria-
related genes. Although several studies have comprehensively
explored the potential values of mitochondria-related genes in
hepatocellular carcinoma, clear cell renal cell carcinoma, etc., a
comprehensive evaluation of the mitochondria-related genes in
osteosarcoma has never been conducted.

The current study developed a mitochondria-related signature
in osteosarcoma patients based on 16 mitochondria-related genes.
ACADVL was reported to be associated with the loss of
heterozygosity of 17pl3 in the pathogenesis of adrenocortical
tumors (21). OGDH was a critical tumor promoter in cancer
(22). TRMT1 was found to serve as a promising biomarker in
clear cell renal cell carcinoma (23). Downregulation of
mitochondrial UQCRB was reported to inhibit cancer stem cell-
like properties in glioblastoma (24). FDX1 was revealed to impact
the prognosis and mediate the metabolism of lung adenocarcinoma
(25). EPHX2 could inhibit colon cancer progression by promoting
fatty acid degradation (26). STOML2 was reported to potentiate
metastasis of hepatocellular carcinoma by promoting PINKI-
mediated mitophagy and regulating sensitivity to Lenvatinib (27).
Glycolysis gatekeeper PDK1 could reprogram breast cancer stem
cells under hypoxia (28). ALDH7A1 knockdown significantly
reduces tumor formation in pancreatic ductal adenocarcinoma
(29). LACTB could suppress melanoma progression by
attenuating PP1A and YAP interaction (30). miR-125b/BAK1
pathway was essential in promoting tumorigenesis and inhibiting
apoptosis of cervical cancer (31). MFN2 could suppress cancer
progression by inhibiting mTORC2/Akt signaling (32).

As the most hazardous gene in the mitochondria-related
signature, PCCB was found to mediate the proliferation of
proliferation and migration of osteosarcoma cells. Besides,
PCCB was found with significantly higher expression in
osteosarcoma tumor tissues than in normal tissues. Therefore,
PCCB was a potential oncogene in osteosarcoma.

Despite different clinical factors (age, gender, metastasis),
Osteosarcoma patients with high mitochondria-related
signature scores presented decreased survival time. Besides,
the mitochondria-related signature was associated with tumor
metastasis. Therefore, the mitochondria-related signature was
a potential prognostic marker in osteosarcoma patients.
Besides, osteosarcoma patients with high mitochondria-
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In vitro validation on PCCB. (A) RT-gPCR results of the expression of PCCB in five groups (NC, si-NC, si-PCCB-1, si-PCCB-2, si-PCCB-3) in two
cell lines. (B) Western blot results of the expression of PCCB in five groups (NC, si-NC, si-PCCB-1, si-PCCB-2, si-PCCB-3) in two cell lines. (C)
EdU assay in three groups (NC, si-NC, si-PCCB) in the MNNG/HOS cell line. Statistical analysis was based on mean + SD. (D) EdU assay in three
groups (NC, si-NC, si-PCCB) in the U20S cell line. Statistical analysis was based on mean + SD. The si-PCCB refers to siRNA transfection of
PCCB. The si-NC refers to siRNA transfection of nonspecific control. ns, no significance; **p < 0.01; ***p < 0.001;****p < 0.0001
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related signature scores were found with a relatively immune
cold microenvironment, indicating the un-suppressed
malignancy of the tumor. The functional annotation of the
mitochondria-related signature further confirmed that the
tumorigenic pathways were more active in osteosarcoma
patients with high mitochondria-related signature scores.

In contrast, the immunogenic pathways were more involved
in osteosarcoma patients with low mitochondria-related
signature scores. The potential value of the mitochondria-
related signature in predicting chemotherapy agents was also
confirmed. 24 drugs were negatively associated with the
mitochondria-related signature, including apoptosis regulation
inhibitor AZD5991, protein stability and degradation inhibitor
ML323, and kinases inhibitor BMS-345541. In addition, six
drugs were positively associated with the mitochondria-related
signature, including ERK MAPK signaling inhibitor
Refametinib, RTK signaling inhibitor NVP-TAE684, and
kinases inhibitor A-770041.

At the scRNA-seq level, osteosarcoma cells gradually evolved
into tumors with high mitochondria-related signature scores.
The functional annotation of the mitochondria-related
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signature also confirmed the active tumorigenic pathways and
inactive immunogenic pathways in osteosarcoma cells with
high mitochondria-related signature scores. The tumor
microenvironment has already been proven to essentially
influence the proliferation, migration, and invasion of cancer
(33, 34). Checkpoints (ITGB2, HAVCR2, and LGALSY9),
cytokine (ITGB1), growth factor (ITGB2, SDC2, PGF, and
TGFB1), and other (CD63, COL1A1, COL1A2, and TIMP1)
were the most active signaling pathways involved in the cell
communication between osteosarcoma cells with a high
mitochondria-related signature score and microenvironment
cells, indicating the potential immune evasion and tumor
progression in osteosarcoma cells with a high mitochondria-
related signature score.

Conclusion
Taken together, a mitochondria-related signature was

developed in osteosarcoma with robust predictive values in the
immune microenvironment, chemotherapy agents, and prognosis.
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Immunotherapy prediction of PCCB. (A) The expression of PCCB in responders and non-responders in immunotherapy cohorts. (B) Survival
analysis was performed on the two groups regarding PCCB expression in immunotherapy cohorts. (C) The ROC curve of PCCB in predicting

immunotherapy response in immunotherapy cohorts.

The potential clinical application of the

mitochondria-related

signature is expected to be further validated by real-world

cohorts. PCCB was a potential oncogene

in osteosarcoma, and

the related complex regulatory mechanisms remain to be

further explored.
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cell renal cell carcinoma:
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Background: Previous studies have identified MYBL1 as a cancer-promoting
molecule in numerous types of cancer. Nevertheless, the role of MYBL in renal
cancer remains unclear.

Methods: Genomic and clinical data of clear cell renal cell carcinoma (ccRCC)
was get from the Cancer Genome Atlas (TCGA) database. CCK8, colony
formation, and 5-ethynyl-2'-deoxyuridine assay were utilized to evaluate the
performance of cell proliferation. Cell apoptosis was detected using the flow
cytometric analysis. The protein level of MYBLL in different tissues was
evaluated using immunohistochemistry. A machine learning algorithm was
utilized to identify the prognosis signature based on MYBL1-derived molecules.

Results: Here, we comprehensively investigated the role of MYBL1 in ccRCC.
Here, we noticed a higher level of MYBL1 in ccRCC patients in both RNA and
protein levels. Further analysis showed that MYBL1 was correlated with
progressive clinical characteristics and worse prognosis performance.
Biological enrichment analysis showed that MYBL1 can activate multiple
oncogenic pathways in ccRCC. Moreover, we found that MYBL1 can remodel
the immune microenvironment of ccRCC and affect the immunotherapy
response. In vitro and in vivo assays indicated that MYBL1 was upregulated in
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ccRCC cells and can promote cellular malignant behaviors of ccRCC.
Ultimately, an machine learning algorithm — LASSO logistics regression was
utilized to identify a prognosis signature based on the MYBL1-derived
molecules, which showed satisfactory prediction ability on patient prognosis
in both training and validation cohorts.

Conclusions: Our result indicated that MYBL1 is a novel biomarker of ccRCC,
which can remodel the tumor microenvironment, affect immunotherapy
response and guide precision medicine in ccRCC.

KEYWORDS

MYBL1, immunotherapy, machine learning, prognosis, ccRCC

Introduction

Renal cancer represents a frequent malignancy globally with
approximately 4 and 1.9 million new cases and death each year,
respectively (1). Among all cases of renal cancer, clear cell renal
cell carcinoma (ccRCC) is the leading pathological subtype (2).
As a multifactorial multi-factorial disorder, ccRCC is associated
with obesity, smoking, dietary habits, environmental exposure,
genetic susceptibility, and so on (3). For ccRCC patients at the
local stage, surgical resection combined with adjuvant agents is
still the mainstay therapy choice (4). Nonetheless, the prognosis
is still unsatisfactory for patients in the advanced stage or with
distant metastasis (4). Consequently, identifying a novel target
for ccRCC diagnosis and treatment is meaningful for
clinical application.

The rapid development of bioinformatics analysis has
brought researchers great convenience in deeply understanding
specific molecules in diseases (5). For instance, Wei et al.
revealed that MX2 might be a biomarker indicating sunitinib
resistance (6). The MYBLI has been implicated in multiple
diseases. Zhu et al. indicated that MYBL1 was tightly
associated with higher endothelial vessel density by inducing
the transcriptional activation of ANGPT2, further affecting
sorafenib resistance in liver cancer (7). Guo et al. indicated
that the O-GIcNAc can regulate MYBLI expression in an
epigenetic modification manner, leading to an aberrant cancer
stem cell compartment and cancer progression (8). Brayer et al.
demonstrated that the fusion of MYB and MYBLI1 contributes to
the oncogenic pathway in salivary gland adenoid cystic
carcinoma (9). Ramkissoon et al. indicated that MYBLI also
acted as an oncogene factor in glioma (10). Nikolaus et al.
revealed that the MYBLI might be a trigger for autoimmune
encephalitis, indicating its role in the disease immune (11).
However, there is no previous study focused on MYBLI
in ccRCC.
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In this study, we comprehensively the effects MYBL1
produces in ccRCC through bioinformatics analysis and
experiments. We noticed a higher level of MYBLI in c¢cRCC
patients in both RNA and protein levels. Further analysis
showed that MYBL1 was correlated with progressive clinical
characteristics and worse prognosis performance. Biological
enrichment analysis was conducted to identify the biological
role of MYBL1 in ccRCC. Moreover, we noticed that MYBL1 can
remodel the immune microenvironment of ccRCC and affect the
immunotherapy response. In vitro and in vivo assays indicated
that MYBLI was upregulated in ccRCC cells and can promote
cellular malignant behaviors of ccRCC. Meanwhile, the
prognosis signature based on the MYBLI1-derived molecules
showed great prediction ability on patient prognosis.

Methods
Public data collection

The open-accessed data on transcriptional profiles and
clinical features were all download from The Cancer Genome
Atlas (TCGA) database, the KIRC project and the Arrayexpress
database, E-MTAB-1980 project. Initial expression profile of
ccRCC patients (STAR-Counts form) was collated to a
combined matrix (TPM” form) for subsequent analysis. We
extracted the survival and clinical information based on the bcr-
xml file in TCGA-KIRC. Pan-cancer expression data was
obtained from the UCSC Xena website (https://xenabrowser.
net/). The limma and affay packages in the R environment were
utilized for data preprocessing, consisting of background
correction, probe ID annotation, missing value completion and
normalization. Extra gene expression information of normal
tissue was get from the GETx database. The open-accessed
immunohistochemical images of renal cancer were get from
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The Human Protein Atlas (HPA) database. Baseline features of
ccRCC patients enrolled in the analysis were presented in
Tables 1, 2. The limma package in the R environment was
utilized for DEGs analysis under specific parameters.

Biological enrichment

The clueGO app built in Cytoscape software provides the
biological terms for the input molecules identified, as well as an
intuitive representation (12). Clusterprofiler in R was used to
enrich Gene Ontology (GO) terms (13). Gene Set Enrichment
Analysis (GSEA) was utilized to investigate the potential
biological differences between two selected groups based on
set reference gene sets, including Hallmark gene set (14). The
single sample GSEA (ssGSEA) was utilized to quantify the
enrichment score based on a specific reference file (15).

Immune-related analysis

The XCELL, MCPCOUNTER, CIBERSORT, TIMER,
EPIC and QUANTISEQ algorithms were utilized for

TABLE 1 Baseline information of patients in TCGA-KIRC.

Clinical features Numbers Percentage (%)
Age <=65 352 65.5
>65 185 34.5
Gender Female 191 35.6
Male 346 64.4
Grade Gl 14 2.6
G2 230 42.8
G3 207 38.5
G4 78 14.5
Unknown 8 1.5
Stage Stage I 269 50.1
Stage II 57 10.6
Stage III 125 233
Stage IV 83 15.5
Unknown 3 0.6
T-stage T1 275 51.2
T2 69 12.8
T3 182 339
T4 11 2.0
M-stage MO 426 79.3
M1 79 14.7
Unknown 32 6.0
N-stage No 240 44.7
N1 17 32
Unknown 280 52.1
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immune microenvironment quantification (16-19). The
Immunophenoscore (IPS), an machine learning algorithm
from The Cancer Immunome Database (TCIA), was utilized
to quantify the IPS score of ccRCC patients based on
their transcriptional profile, indicating the response to
immunotherapy (20). Meanwhile, the Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm was also
utilized to assess patients immunotherapy response (21).

Genomic characterization

Two important immunotherapy markers, tumor mutation
burden (TMB) and microsatellite instability (MSI) score were
get from the TCGA database. The gene mutation characteristic
of MYBLI1 in the TCGA database was obtained and visualized
based on an online website, https://www.home-for-researchers.
com/. The score of the tumor stemness index (mRNAsi) in the
TCGA-KIRC project was obtained from the previous study,
which was completed using the OCLR machine-learning
algorithm (22).

Nomogram

With the survival and rms packages, a nomogram plot was
created based on multiple factors. The calibration and Decision
Curve Analysis (DCA) plot were utilized to evaluate nomogram
performance.

TABLE 2 Baseline information of patients in E-MTAB-1980.

Clinical features Numbers  Percentage (%)
Age <=65 145 60.4
>65 95 39.6
Gender Female 56 23.3
Male 184 76.7
Grade Gl 42 17.5
G2 141 58.8
G3 49 20.4
G4 6 2.5
Unknown 2 0.8
T-stage T1 187 77.9
T2 18 7.5
T3 33 13.8
T4 2 0.8
M-stage Mo 215 89.6
M1 25 10.4
N-stage NO 238 99.2
N1 2 0.8
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Identification of prognosis signature
based on machine learning

For TCGA database, all patients were randomly divided into
training and internal validation cohorts according to the ratio of
1 to 1. A univariate Cox regression analysis was conducted on
the DEGs identified between high and low MYBLI expression to
identify the molecules significantly correlated with patient
survival. Then, an machine learning algorithm, LASSO logistic
regression, was utilized for variable optimization (23). The
optimized variables were then set as the input file for
multivariate Cox regression analysis. Ultimately, a prognosis
signature was identified with the formula of “Risk score =
Expression of A * Coef A + Expression of B * Coef B + ... +
Expression of X * Coef X”. The E-MTAB-1980 project was used
as the external validation cohort.

Cell culture

Four renal cancer cell lines (A498, ACHN, 786-O and OS-
RC-2) and normal cell line HK-2 were laboratory stocks. All cells
were routinely cultured using the 10% heat-inactivated fetal
bovine serum (37°C with 5% CO,) and passaged for three
days a time (24).

RNA isolation and quantitative RT-PCR

Total RNA extraction and steps for qRT-PCR were
conducted following our previous study (24). The sequence of
primers was as follows: MYBLI, forward primer, 5-TAG
CACTCCACCAGCCATCCTC-3’, reverse primer, 5-ACCAC
CATCGTTCAATGAGCCATC-3’.

Retroviral infection, and transfection

We purchased HBLV-h-MYBL1 shRNA#1-PURO, HBLV-
h-MYBL1 shRNA#2-PRUO and HBLV-h-MYBLI-Ctl-PURO
from Hanbio. Cell transfection was performed by jetPRIME
(Polyplus, NY, USA) referring to the manufacturer’s protocol.
We constructed the stably lentivirus-transinfected cells with
puromycin (MCE.NJ) to collect the MYBLI stable-knockdown
cells. The sequence used for shRNA were as follow: MYBLI
sh#1, top strand, 5-GATCCGGACGAGGATGATAAA
TTACTCGAGTAATTTATCATCCTCGTCCTTTTTTG-3’, b
ottom strand, 5-AATTCAAAAAAGGACGAGGATGAT
AAATTACTCGAGTAATTTATCATCCTCGTCCG-3’; sh#2,
top strand, 5-GATCCGCCATGGAATGCCAATT
TACTCGAGTAAATTGGCATTCCATGGCTTTTTTG-3,
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bottom strand, 5-AATTCAAAAAAGCCATGGAATGCCAA
TTTACTCGAGTAAATTGGCATTCCATGGCG-3’.

CCK-8 assay

Steps for CCK-8 were completed following our previous
study based on the sh-MYBLI and control cells (24).

Colony formation assay

Steps for colony formation assay were completed following
our previous study based on the sh-MYBLI and control
cells (24).

5-ethynyl-2'-deoxyuridine assay

Steps for EAU assay were completed following our previous
study based on the sh-MYBLI and control cells (24).

Cell apoptosis assays

Steps for cell apoptosis detection were completed following
our previous study based on the sh-MYBL1 and control cells
(24). The results were analyzed through FlowJo 6.2 software.

Xenograft models

Steps for xenograft model assay were completed following
our previous study based on the sh-MYBLI1 and control cells
(Approximately 6 x 10° 786-O cells, MYBLI sh#Ctrl and sh#1)
(24). Animal procedures were performed in line with the
Association for Assessment and Accreditation of Laboratory
Animal Care and approved by the Animal Care and Use
Committee of the First Affiliated Hospital of Harbin
Medical University.

Patient and clinical samples

The study was admitted by the First Affiliated Hospital of
Harbin Medical University. ccRCC and adjacent tissue samples
were obtained from patients who were aware of the purpose of
the study and signed informed consent at the Medical Ethics
Committee of First Affiliated Hospital of Harbin Medical
University. After the operations of radical nephrectomy,
Half of the samples were frozen in liquid nitrogen, and half
were embedded in paraffin after being fixed with 4%
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paraformaldehyde overnight at room temperature until
further use.

Immunohistochemistry

The clinical samples and tumor tissues embedded in paraffin
were cut into 5-pm-thick sections. The sections were blocked by
5% goat serum and incubated overnight at 4°C with antibodies
against MYBL1 (1:400, Boster, Wuhan, China). We used the
DAB (Beyotime, Shanghai, China) system for detection. We
chose the three fields in each section and took photos and
analyzed the images by Image] software.

Statistical analysis

R and GraphPad Prism 8 software were utilized for all
statistical analysis. The statistical threshold of the P value in
comparison was 0.05. All the experiments were repeated at least
three times.

Results

Pan-cancer analysis of MYBL1 and its
clinical role in ccRCC

The flow chart of the whole study was shown in Figure S1. The
expression landscape of MYBL1 was illustrated in Figure 1A, in
which MYBLI1 showed an abnormal expression pattern in most of
the cancers, indicating its important role in cancer development.
According to the GTEx and TCGA data, MYBLI all showed a
higher expression level in ccRCC tumor tissue compared with the
control normal tissue (Figures 1B, C). Moreover, based on the
immunohistochemical result from the HPA database, a higher
protein level of MYBLI in renal cancer tissue was observed
(Figure 1D). Furthermore, we tried to investigate the prognosis
role of MYBLI in ccRCC. Results indicated that MYBL1 might be
correlated with worse prognosis performance of ccRCC patients,
including overall survival (OS), disease-free survival (DSS) and
progression-free survival (PFI) in both TCGA and E-MTAB-1980
cohorts (Figures 1E, F). Then, we explored the clinical correlation
of MYBL1 in ccRCC patients. No remarkable difference in
MYBLI expression was found in patients with different T-stage
and grades (Figures 1G, H). However, a significantly higher level
of MYBLI was noticed in patients with worse M- and N-stage,
indicating its promoting effect in cancer metastasis (Figures 11, J).
Based on univariate and multivariate analyses, MYBL1 was an
independent risk factor for ccRCC (Figures 1K, L).
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MYBL1 exerts a wide biological
regulatory effect in ccRCC

A total of 154 downregulated and 136 upregulated DEGs were
identified in patients with high and low MYBLI1 expression
(Figure 2A). These DEGs were involved in L-alpha-amino acid
transmembrane transport, inorganic anion transport, monovalent
inorganic cation homeostasis, retinoid metabolic process, active
ion transmembrane transporter activity, metanephros
development, embryonic pattern specification, excretion,
negative regulation of chemotaxis, vasodilation, negative
regulation of coagulation based on clueGO analysis (Figure 2B).
Moreover, the results of the ssGSEA algorithm indicated that
MYBL1 was positively correlated with most immune terms,
especially base excision repair, fanconi anemia pathway, and
homologous recombination; MYBL1 was negatively correlated
with most metabolism terms (Figure 2C). GO analysis indicated
that for the Biological Process (BP), the top enriched terms were
excretion, metanephros development, chloride transmembrane
transport (Figure 2D). For the Cellular Component (CC) and
Molecular Function (MF), the terms were mainly enriched in the
transport complex (Figures 2E, F). The GSEA analysis of
Hallmark gene set was mainly enriched in the terms of the
inflammatory response, G2ZM checkpoint and E2F targets
(Figures 2G-I).

MYBL1 can remodel the ccRCC immune
microenvironment

Based on the XCELL, MCPCOUNTER, CIBERSORT,
TIMER, EPIC and QUANTISEQ algorithms, we quantified the
immune microenvironment of ¢ccRCC samples. A different
immune infiltration pattern was observed in patients with high
and low MYBLI expression (Figure 3A). Immune correlation
indicated that MYBLI can increase Tregs, M2 macrophages,
neutrophils, B cells, monocytes, CD8+ T cells, yet decrease
endothelial cells level in the ¢cRCC microenvironment
(Figures 3B-I). Moreover, we found that MYBL1 was
positively correlated with immune score, stromal score and
estimate score (Figures 3J-L). Interestingly, we found that the
key immune checkpoints PD-1, CTLA4, PD-L1 and PD-L2 all
present a high level in patients with higher MYBL1 expression,
indicating that MYBL1 might affect the immunotherapy
response of ccRCC patients (Figures 3M-P).

Role of MYBL in ccRCC genomic
characteristics

TMB and MSI are important markers for cancer
immunotherapy and can also indicate genomic instability. A
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positive correlation was observed in MYBL1 with TMB and MSI
(Figures 4A, B; TMB: R = 0.13; MSI: R = 0.22). Nevertheless,
MYBLI might has no significant effect on mRNAsi (Figure 4C).
The genomic mutation characteristics of MYBL1 was shown in
Figure 4D (0.6% somatic mutation rate). The top five most
differentially mutated genes in patients with high and low
MYBLI1 expression were VHL, PBRM1, TTN, SETD2, and
BAP1 (Figures 4E, F).
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Immunotherapy response, drug
sensitivity and nomogram plot of MYBL1
in ccRCC

We next calculate the TIDE score of each ccRCC patient
based on the TIDE analysis. It seems that MYBL1 had no
significant influence on the TIDE score, immune exclusion,
immune dysfunction quantified by the TIDE analysis
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(Figures 5A-D). Another aspect, a negative correlation was Also, the DCA curves showed that the clinical features can
found in MYBLI1 with ips_CTLA4_pos_PDI_neg and improve the performance of MYBLI on prognosis
ips_CTLA4_neg PDI1_pos, indicating that MYBL1 could affect prediction (Figure 50).

the immunotherapy response of ccRCC patients (Figures 5E-H).

For the common target drugs for ccRCC, we found that MYBL1

can increase the sensitivity of vinblastine and pazopanib MYBL1 enhances the malignant

(Figures 5I-L). Then, a nomogram plot was constructed by biological behaviors of ccRCC

combining the clinical features and MYBL1 expression

(Figure 5M). The calibration curve indicated that a good fit The qRT-PCR result of cell lines indicated that the MYBL1
between actual and nomogram predicted survival (Figure 5N). was overexpressed in ccRCC cells compared to the control cells
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(Figure 6A). Knockdown efficacy of MYBL1 was shown in
Figure 6B. CCK8 assay indicated that the inhibition of MYBL1
might remarkably increase the proliferation ability of ccRCC
cells (Figures 6C, D). The same trend was validated by colony
formation assay (Figure 6E). Meanwhile, we observed a lower
percentage of EdU-positive cells in MYBL1 knockdown cells
(Figure 6F). Flow cytometry results indicated that the
knockdown of MYBLI1 could remarkably increase the
apoptosis rate of ccRCC cells (Figure 6G). In vivo assay
showed that the inhibition of MYBLI could also hamper
tumor growth in mice (Figures 6H-J). IHC showed that
MYBLI was overexpressed in ccRCC cancer tissue compared
with the normal tissue obtained from four patients (Figure 7).

10.3389/fimmu.2022.1080403

Machine learning identified the prognosis
signature based on MYBL1-derived
molecules

Based on the MYBL1-derived DEGs identified above,
univariate Cox regression analysis was conducted to identify
the prognosis-related molecules with P < 0.05. The top 50
significant prognosis-related genes were shown in Figure 8A.
The machine learning algorithm - LASSO logistics regression
was utilized to identify the best variable (Figures 8B, C).
Multivariate Cox regression analysis was utilized to identify a
prognosis signature with the formula of “Risk score = CASR *
-0.492 + F11 * -0.167 + IGF2BP3 * 0.262 + TAGLN3 * 0.327 +

Exclusion: p=0.78 =001
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PLPPR1 * -0.245 + SIM2 * 0.334 + RALYL * 0.601 + RUFY4 *
0.381” (Figure 8D). In the training cohort, the patients in the
high risk group might have a worse OS (Figure 9A). Also, our
signature showed a good prediction ability in patients survival
(Figure 9A; 1-year AUC = 0.77; 3-year AUC = 0.74, 5-year AUC
= 0.71). Meanwhile, the satisfactory performance of our
signature was also observed in the internal validation and
external validation cohort (Figures 9B, C). Next, we noticed a
positive correlation between the risk score and TIDE score
(Figure 9D, R = 0.17, P < 0.001). We found that the
immunotherapy responders defined by TIDE analysis tend to
have a higher risk score level (Figure 9E). Also, the percentage of
immunotherapy responders in high risk patients was 26.7%,
greatly lower than 38.9% in low risk patients (Figure 9F). GSEA
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analysis indicated that the in high risk patients, the pathway of
pancreas beta cells, allograft rejection, KRAS signaling, IL6/JAK/
STATS3 signaling, spermatogenesis, E2F targets, G2M
checkpoints, angiogenesis were significantly activated
(Figure S2).

Discussion

Renal cancer is still a threatening disease globally and
responsible for almost 2 million deaths per year, resulting in a
great public burden (25). Although surgical treatment can
provide reliable prognosis benefits for early patients, the
survival performance of advanced patients is still limited.
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FIGURE 7
IHC result of MYBL1 between ccRCC tumor and control tissue.
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Identification of the prognosis signature based on the machine learning algorithm from MYBL1-derived molecules. (A) The top 50 molecules
significantly correlated with patients prognosis from MYBL1-derived molecules; (B, C) LASSO logistics regression was utilized for data dimension
reduction; (D) Multivariate cox regression analysis.
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Consequently, it is extremely meaningful to identify novel
biomarkers for ccRCC diagnosis and therapy options.

Our study examined the role of MYBL1 in ¢ccRCC in depth.
According to our knowledge, this is the first study investigating
MYBLI in ccRCC. Here, through a series of bioinformatics
analysis, we found that MYBL1 was highly expressed in
ccRCC patients in both RNA and protein levels. Prognosis
analysis revealed that MYBL1 was correlated with poor
prognosis performance, including OS, DSS and PFI. Clinical

10.3389/fimmu.2022.1080403

correlation analysis showed that MYBL1 was higher in the worse

N- and M-stage. Furthermore, biological enrichment analysis

was conducted to explore the biological role of MYBLI in
ccRCC. Moreover, we found that MYBL1 can remodel the
immune microenvironment of ccRCC and affect the

immunotherapy response. In vitro and in vivo assays indicated

that MYBL1 was upregulated in ccRCC cells and can promote

cellular malignant behaviors of ccRCC. Meanwhile, the

prognosis signature based on the MYBLI1-derived molecules
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showed great prediction ability on patient prognosis in both
training and validation cohorts.

We found that MYBLI is a risk factor for ccRCC based on
bioinformatic analysis and experiments. Also, biological
enrichment analysis indicated that MYBL1 was mainly
enriched in the terms of the inflammatory response, G2M
checkpoint and E2F targets. Batova et al. indicated that the
acute inflammatory response could be regulated by Englerin A,
therefore changing the cell metabolism level and affecting renal
cancer progression (26). During the cell cycle, the G2/M
checkpoint is an important step. Ding et al. indicated that the
dioscin could hamper cell proliferation of osteosarcoma cells
based on a G2/M checkpoint-dependent manner (27).
Meanwhile, Kent et al. revealed that the dysfunction of E2F in
cancers tends to induce the carcinogenic cascade reaction (28).
Our result indicated that the MYBL1 might enhance ccRCC
progression by affecting the activity of the above pathways.

The immune microenvironment can influence cancer
development through complex biological interactions. In our
study, we found that the MYBL1 MYBLI can increase Tregs, M2
macrophages, neutrophils, B cells, monocytes, CD8+ T cells, yet
decrease endothelial cells level in the ccRCC microenvironment.
Tregs can result in an inhibitory immune microenvironment. In
ccRCC, Ji et al. found that the hamper of Tregs in the colon
cancer microenvironment can improve the anti-tumor effect and
inhibit cancer metastasis (29). Li et al. indicated that aiduqing
formula can inhibit Treg infiltration induced by TAM/CXCLI,
further hampering breast cancer metastasis (30). In solid tumors,
M2 macrophages are generally cancer promoters (31). Chen
et al. revealed that gastric and breast cancer metastasis can be
facilitated by M2 macrophages recruited by the local tumor
microenvironment based on secreted CHI3L1 (32). Xie et al.
revealed that the CXCL13 secreted by M2 macrophages
facilitated the metastatic potential of ccRCC (33). Based on a
comprehensive review conducted by Xiong et al., carcinogenesis
and metastasis of cancer can be facilitated by neutrophils (34).
These results indicate that MYBL1 might be immune-related
molecules that can remodel the immune microenvironment of
ccRCC patients.

Moreover, we established a prognosis signature based on the
MYBL1-derived molecules. Our signature presents a good
prediction ability on patient survival performance. Moreover,
the ccRCC patients in different groups might have different
responses to immunotherapy. These results indicated the clinical
application value of MYBLLI in the clinical.

Although our research is based on high-quality analysis and
rigorous experiments, some limitations still need to be noted.
Firstly, the population used for analysis was mainly Western.
The biological difference between different races can decrease the
reliability of our conclusions. Secondly, the in-deep mechanism
of MYBLI to enhance the cellular malignant behaviors of ccRCC
is still unclear. In the future, more basic studies focused on
MYBLI in cancers, especially in ccRCC, are needed.
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related to the immune
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IS @ new tumor biomarker
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Harbin, China, ?The Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China,
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Background: Alterations in lipid metabolism promote tumor progression.
However, the role of lipid metabolism in the occurrence and development of
gastric cancer have not been fully clarified

Method: Here, genes that are related to fatty acid metabolism and
differentially-expressed between normal and gastric cancer tissues were
identified in the TCGA-STAD cohort. The intersection of identified
differentially-expressed genes with Geneset was determined to obtain 78
fatty acid metabolism-related genes. The ConsensusClusterPlus R package
was used to perform differentially-expressed genes, which yielded divided two
gastric cancer subtypes termed cluster 1 and cluster 2.

Results: Patients in cluster 2 was found to display poorer prognosis than
patients in cluster 1. Using machine learning method to select 8 differentially
expressed genes among subtypes to construct fatty acid prognostic risk score
model (FARS), which was found to display good prognostic efficacy. We also
identified that certain anticancer drugs, such as bortezomib, elesclomol,
GW843682X, and nilotinib, showed significant sensitivity in the high FARS
score group. RGS2 was selected as the core gene upon an analysis of the
gastric cancer single-cell, and Western blotting and immunofluorescence
staining results revealed high level of expression of this gene in gastric
cancer cells. The results of immunohistochemical staining showed that a
large amount of RGS2 was deposited in the stroma in gastric cancer. A pan-
cancer analysis also revealed a significant association of RGS2 with TMB, TIDE,
and CD8+ T-cell infiltration in other cancer types as well. RGS2 may thus be
studied further as a new target for immunotherapy in future studies on
gastric cancer.
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Conclusion: In summary, the FARS model developed here enhances our
understanding of lipid metabolism in the TME in gastric cancer, and provides
a theoretical basis for predicting tumor prognosis and clinical treatment.

KEYWORDS

gastric cancer, fatty acid, immunotherapy, tumor microenvironment,

machine learning

1 Introduction

Gastric cancer (GC) is one of the most prevalent malignant
digestive system tumors, characterized by a high degree of
heterogeneity, difficulty of treatment, and a poor prognosis (1,
2). The liver is the most frequently affected organ by
hematogenous metastases of gastric cancer tumors, after liver
metastasis, the survival rate was only 20% (3) The development
of neoadjuvant chemotherapy and immunotherapy for gastric
cancer treatment in recent years has led to improvements in the
diagnosis and prognosis of gastric cancer to a certain extent, yet
further improvement is still necessary (4). To this end, new
tumor markers, therapeutic targets, and treatment strategies
need to be developed (5). Previous studies have shown that the
occurrence, proliferation, and metastasis of tumors are closely
related to their microenvironment. Various tumor cell
metabolites can affect the activation of surrounding immune
cells in various ways, and suppress their antitumor activity.
Alterations in the tumor microenvironment promotes
proliferation and development of tumor cells (6). Growing
evidence suggests that reprogramming of energy metabolism
towards e.g. lactic acid production and acetylation enzymes
contributes to the progression of gastric cancer (7). An in-
depth investigation of metabolic changes in the tumor
microenvironment of gastric cancer may thus provide with a
new marker or therapeutic target to improve gastric cancer
prognosis and treatment.

In lipid metabolism and especially fatty acid (FA) synthesis,
nutrients are converted into metabolic intermediates for membrane
biosynthesis, energy storage, and signal molecule production (8).
Alterations in lipid metabolism is a hallmark and metabolic
phenotype of cancer cells. Blocking the supply of lipids to cancer
cells has a significant impact on cancer cell bioenergetics,
membrane biosynthesis, and intracellular signal transduction (9).
Most tumors were previously shown to display an abnormal lipid
metabolism (10). Polymorphonuclear myelogenous suppressor cells
(PMN-MDSCs) are pathologically-activated neutrophils that play
an important role in the regulation of cancer immune response.The
selective pharmacological inhibition of FATP2 was also found to
eliminate the activity of PMN-MDSCs, and significantly delay
tumor progression in mice. Inhibition of PMN-MDSCs thus
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improves the efficiency of cancer treatment (11, 12). Therefore,
targeted fatty acid-induced oxidative stress can prevent cancer-
induced cachexia.

In recent years, inhibition of FA synthesis has attracted
attention as a potential strategy for cancer treatment, yet it is not
yet implemented in clinical practice (13). The role of lipid
metabolism in gastric cancer has also not been widely studied
previously. Therefore, we conducted an in-depth study here on
the expression and significance of fatty acid disorder-related
genes in gastric cancer. We identified differentially-expressed
fatty acid metabolism-related genes in gastric cancer, and
determined two subtypes based on consistency clustering
analysis. A prognostic signature (FRAS) model was
constructed by performing a univariate Cox regression analysis
of differentially-expressed genes in different subtypes, and used
as a potential molecular marker of gastric cancer to identify
immune infiltration and genomic instability patterns.
FeaturePlot visualization was performed to display the
expression and distribution of model genes in the cell
population and to verify the accuracy of the model. A “core
gene”, RGS2 was selected for subsequent experiments, and the
relationship between the expression level of RGS2 protein and
the prognosis of patients with gastric cancer was evaluated.
Finally, we also discussed the biological significance of the
RGS2 gene in multiple cancer types to fully understand the
role of fatty acid metabolism in gastric cancer, and to provide a
theoretical basis for effective treatment.

2 Materials and methods
2.1 Patients and tissues samples

All patients were admitted to the Second Affiliated Hospital
of Harbin Medical University between May 2020 and June 2022,
and diagnosed by pathological examination.Pathological
diagnosis was based on the 8th edition of the American Joint
Commission on Cancer (14). All participants have informed
consent. The study design was approved by the Internal Audit
and Ethics Committee of the Second Affiliated Hospital of
Harbin Medical University (No : KY2021-075).
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2.2 Western blotting

The protein content of the cells was extracted, and the
expression of RGS2 protein was analyzed by Western blotting
after the cell density of cultures of AGS, HGC27, MKN-45,
MKN-1, and the GES-1 cell lines reached 90%.

2.3 Data preparation and processing

STAD clinical information and expression data were
obtained from the American Cancer Genome Map Database
(TCGA, https://cancergenome.nih.gov/) using the TCGA R
package biollinks. Tumor samples with both expression and
survival information were retained for follow-up analysis, which
included 373 cancer and 32 paracancerous samples. Fatty acid-
related genes (Geneset) are derived from fatty acid-related
factors (fattyacid) in the MsigDB database (HALLMARK,
KEGG, REACTOME). A total of 14 pathways and 342 related
genes were identified.

2.4 Clustering analysis

An intersection between the identified differentially-
expressed genes with Geneset yielded 78 differentially-expressed
fatty acid-related genes. Using the ConsensusClusterPlus R
package, differentially-expressed genes related to fatty acid
disorder were clustered based on Euclidean distance. The
maximum number of clusters was set to five, and the clustering
method to K-means, in order to find a stable and reliable subgroup
classification. The results yielded two subtypes, and the
differential gene expression between two subtypes was analyzed
(screening condition of the difference was: absolute value of
10g2FC > 1, P< 0.05).

2.5 Construction of prognostic
risk model

The genes differentially-expressed between the subtypes
were analyzed using univariate Cox regression analysis to
identify genes related to the prognosis of subtypes. For this
purpose, LASSO penalty Cox regression analysis was used via
the Rglmnet package to construct a prognostic model to
minimize the risk of overfitting. Patient scores were calculated
according to the expression levels of the pathway genes and their
corresponding regression coefficients.

n
Score = > i xi
=0
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Bi: weight coefficient of each gene; yi: expression of each
gene (FPKM). Patients were divided into high and low score
groups based on the median score, and the survminer R package
was used for survival analysis of OS based on high and
low scores.

2.6 Evaluation of immune cell filtration

The CIBERSORT algorithm provided by the IOBR R
package was used to calculate the scores of immune cells in 22
types of tumor microenvironments using the default parameters.
Based on the gene expression profile in the TCGA-STAD data,
the proportion of immune cell infiltration was calculated.

2.7 Single-cell dataset analysis

The Seurat R package, which is single-cell transcriptome
analysis tool, was used to analyze the single-cell dataset. The
analysis workflow mainly included the steps of constructing
objects, data standardization, data dimensionality reduction,
clustering, and searching for marker genes. Then, the SingleR
R packagewas used to annotate the clustering results obtained
from Seurat.

2.8 Drug sensitivity

Using the pRRophetic R package and the expression data of
model genes, the sensitivity (IC50 value) of 138 drugs in the GDSC
database was predicted, and the sensitivity of STAD patients to drug
therapy was evaluated based on the predicted IC50 values.

2.9 Statistical analysis

The R program (version 4.1.2) was used for statistical analysis.
The survival curve was generated using the Kaplan-Meier method,
and the differences between groups were compared using the log-
rank test. A Cox regression model was used for univariate and
multivariate analyses combined with other clinical features to
determine the independent prognostic value of the risk score. The
R package timeROC was used for time-dependent ROC curve
analysis to evaluate the predictive value of prognostic
characteristics. ROC analysis was used to evaluate the sensitivity
and specificity of the score in predicting prognosis, and the area
under the ROC curve (AUC) was considered to judge prognosis.
Statistical significance was set at p< 0.05. The same formula is used
to calculate verification scores.
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3 Results

3.1 Differential expression of fatty acid
related genes in tumor tissues and their
biological functions

The study population included 373 STAD and 32 paracancerous
tissue samples obtained from the TCGA-STAD cohort.|Using
log2FC | > 0.585, BH-corrected, and P< 0.05 as differential
expression criteria, 3857 genes were found to be differentially-
expressed in gastric cancer and paracancerous tissues, with 2801
and 1056 up- and down-regulated genes, respectively. A total of 78
fatty acid-related differentially-expressed genes were identified by
determining the intersection of these genes with the Geneset, A
volcano map and a differentially-expressed fatty acid metabolism-
related gene thermogram is shown in Figures 1A, B. The PPI network
showed that HSP90AAI, EPHX2, ACOX2, ACADM, ACLY, and
other genes had high connectivity in the network (Figure 1C). The
correlation between the expression levels of differentially-expressed
fatty acid metabolism-related genes was also calculated. Fatty acid
metabolism-related genes were found to be classified into three
groups (Figure 1D). A functional GO enrichment t was found for
oxidoreductase activity, acting on the CH-OH group of donors, NAD
or NADP as acceptor, acting on paired donors and binding or
reducing oxygen molecules, CH-CH group acting on donor, and easy
to bind iron ions. These enzymes participate in long-chain fatty acid
metabolism, fatty acid biosynthesis, eicosane-like metabolism, olefin
metabolism, and unsaturated fatty acid metabolism (Figures 1E-H).
The clinical feature analysis revealed that there were significant
differences in the expression of some fatty acid metabolism-related
genes between different age, sex, stage, and grade groups (Figures
S1A-D).

3.2 Determination of molecular
subtypes based on fatty acid
metabolism related genes

Subtyping can be used to reveal distinct states of the tumor, and
thus help implement personalized treatment strategies. Cancer
samples from the TCGA gastric cancer data were subjected to
consistency clustering based on expression patterns of 78 different
fatty acid metabolism-related genes to identify groups of samples
with similar expression patterns. According to the cumulative
distribution function and incremental region map of consistent
clustering, the change in the CDF curve for the case of two clusters
(k =2, clusters 1 and 2) was found to be close to smooth. Hence, the
samples were divided into two subtypes (Figures 2A-C). We found
that there were significant differences in survival time between
patients with different fatty acid metabolism subtypes, and the
prognosis of patients in cluster 2 was worse than that of cluster 1
patients (Figure 2D). In addition, the scores of angiogenesis-related
pathways in the HALLMARK and GOBP gene sets in the MSigDB
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database were calculated using SSGSEA. The results showed
significant differences between the scores of all pathways related
to angiogenesis between the fatty acid metabolism related
molecular subtypes (Figure 2E). A large number of blood vessels
(Figure 2F) were found in gastric cancer tissues by HE staining.
Immune cell infiltration was calculated using CIBERSORT, and the
immune score, matrix score, and tumor purity (Figure 2G) were
calculated using ESTIMATE algorithms. The heat map of immune
cell infiltration in subtypes showed that there were significant
differences in Mast_cells_activated, Dendritic_cells_resting,
Macrophages_MO, etc. Inter-subtype immune scores and matrix
scores (Figure 2H).

3.3 Construction of a fatty acid
metabolism-related prognostic signature

We have identified 515 genes differentially-expressed between
the two subtypes under the screening condition of | log2FC | > 1 dBH
correction p< 0.05. A total of 454 and 61 genes were up- and down-
regulated, respectively. Univariate Cox regression analysis showed
that 146 genes were associated with OS. KM analysis revealed eight
genes (eight genes screened after LASSO-Cox regression analysis)
(Figure S2). The signature (Figures 3A-C) composed of eight genes,
and was determined based on the optimal value of A. The regression
coeficient of each gene is shown in Table S1.

3.4 Verification of prognostic efficacy
of FARS based on an analysis of
training and external independent
verification sets

The score of each patient was calculated according to the formula
and the patients were divided into high score group and low score
group by the median score. KM curve showed that the survival
probability of patients with high score was significantly lower than
that of patients with low score (Figures 3D, E). To evaluate the
predictive efficiency of prognostic models in 1 -, 2 -, and 3-year
survival rates, we performed a time-related ROC analysis. The area
under the ROC curve (AUC) is 0.627 at 1 year, 0.643 at 2 years and
0.631 at 3 years, indicating that the prediction effect of the model is
good (Figure 3F). Univariate and multivariate Cox analysis were used
to determine whether Score was an independent prognostic factor for
OS. In univariate Cox analysis, Score obtained from TCGA data
queue was significantly correlated with OS. After correcting other
confounding factors, multivariate Cox analysis showed that Score
was still an independent predictor of OS (Figure 3G).

In order to verify the stability of the model, the Score of each
sample is also calculated in GSE13861 dataset and GSE26899 dataset
based on the same algorithm. According to the median of Score,
gastric cancer samples were divided into high score group and low
score group. Consistent with the results obtained by the TCGA
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cohort, patients with high scores had a lower probability of survival
than patients with low scores (Figures 3H, I, L, M). In addition ,the
prognostic model revealed that the 1- year AUC was 0.695, 2-year
AUC was 0.667, 3-year AUC was 0.685 in the GSE13861 dataset
(Figure 3]),and 1-year AUC was 0.705, 2-year AUC was 0.676, and3-
year AUC was 0.658 in the GSE26899 dataset (Figure 3N). In the
validation set, univariate and multivariate Cox analyses were also
used to determine whether Score was an independent prognostic
factor for OS. The results show that in univariate Cox analysis, there is
asignificant correlation between Score and OS. After correcting other
confounding factors, multivariate Cox analysis shows that Score is
still an independent predictor of OS (Figures 3K, O).

3.5 FARS is related to the clinical
characteristics of tumor

We found that the score of patients with Helicobacter pylori
infection was significantly higher than that of patients without
infection and significant differences were also detected between
patients with first-, second-, and third-grade cancer: higher grades
corresponded to higher scores and poorer prognosis (Figure 4A).
Immune cell infiltration as calculated by the CIBERSORT algorithm
revealed that many immune cell types, such as Mast_cells_activated,
Dendritic_cells_resting, and Macrophages_MO0, are significantly
correlated with the FARS score (Figure 4B). Figure 4C shows the
difference in gene expression of immune checkpoints in the high- and
low-risk groups of scores, in which the expression leves of CD276,
CTLA4, PDCDI, and PDCDILG2 were significantly higher in the
high score group. This high expression level helps gastric cancer cells
escape immune surveillance and promote immune escape. Based on
the calculation of the Pearson correlation between the fatty acid risk
score (Score) and the identified gene signature score, we detected
several gene sets related to immunity and EMT from the literature,
and then performed mapping between the SSGSEA score and the
fatty acid risk score (Score) of these samples. We found a significant
correlation between the FRAS score and EMT2, EMT3, and
PanFTBRS, which promote the EMT process in gastric cancer cells
(Figure 4D). We further evaluated the relationship between fatty acid
risk score and chemotherapeutic drug resistance, and also calculated
the difference in chemotherapeutic drug resistance between
highFARS and lowFARS using the pRRophetic package. The IC50
values of bortezomib, elesclomol, and nilotinib were found to be
significantly different between highFARS and lowFARS, and with
stronger chemotherapeutic effects (Figure 4E) in the low-score group.

3.6 Single-cell dataset analysis
Using the STAD samples in the single-cell data set

downloaded from the GEO database (GSE142750), the cells
were grouped and annotated based on an t-SNE analysis. A
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total of 107597 cells (33694 features) were grouped into 13
clusters, and finally annotated as two large cell groups
(Figure 5A). Then, the union of the top 5 marker genes of in
each cluster was used to draw a heat map to show the differential
expression of each marker gene in each subtype. No genes
included in the constructed model (model genes) was detected
(Figure 5B) among these top 5 marker genes.

Feature plot visualization was used to show the expression
and distribution of model genes in the cell population. The
results showed that RGS2 and DUSPI were significantly
expressed in the cell population, and three model genes,
CXCR4, SLCO2A1, and FNDCI, were not in the cluster,
indicating that the two model genes that were significantly
expressed could be used as marker genes (Figure 5C) of cancer.

3.7 Biological significance of RGS2 in
gastric cancer

We found that the high expression of RGS2 in gastric cancer
was significantly correlated with a shorter survival time
(Figure 6A). The TME score showed that the high expression
of RGS2 was positively correlated with the stomalscore,
Immunescore, and Estimatescore, which indicated a worse
immune response (Figure 6B). Correlation analysis of immune
cell infiltration showed that the expression of 10 types of
immune cells in 22 types of immune cells was correlated with
RGS2 expression (Figure 6C). We also analyzed the
clinicopathological features of patients with high and low
RGS2 expression, including age, sex, survival, grade grade, T
stage, and N stage. The figure shows that there is no statistical
difference in age and sex between the high and low RGS2
expression groups. High RGS2 expression was found to be
closely related to poor prognosis. This finding shows that high
expression of RGS2 represents a higher degree of malignancy
based on clinicopathological features (Figures 6D, E). We also
analyzed the relationship between expression levels of RGS2 and
immune checkpoints (Figure 6F). We found that the lower
tumor mutation load in the group with high expression of
RGS2 increased the difficulty of receiving the benefit of
immune checkpoint inhibitors for patients (Figure 6G). We
found that the TIDE score of the RGS2 high expression group
was significantly higher than that of low expression group
(Figure 6H). This also indicates that high RGS2 expression is
more likely to lead to immune dysfunction and immune
rejection. We have determined the mRNA and protein
expression levels of RGS2 in GES-1 gastric mucosal cells and
AGS, HGC-27, MKN-1, and MKN-45 gastric cancer cell lines.
Accordingly, the expression of RGS2 in gastric cancer cell line
was found to be higher than that of GES-1 (Figure 6I) at both
mRNA level and protein level. Immunofluorescence staining
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means p > 0.05.

showed that RGS2 was highly expressed in gastric cancer cell
lines AGS and MKN45, and most of them were located in the
cytoplasm (Figure 6]). In order to verify the expression of RGS2
in gastric cancer, we found that RGS2 was expressed to varying
degrees in different clinical stages of gastric cancer by
immunohistochemical staining, and with the increase of
staging, the more RGS2 deposition (Figure 6K).
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3.8 Biological significance of RGS2 in
other cancer types

A pan-cancer analysis has shown that RGS2 is expressed in
many tumor types (Figures 7A, B). We found that the expression of
RGS2 in the overall survival time (OS) was significantly correlated
with the survival rates of BLAC, KIRC, LIHC, SKCM, STAD,
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THCA, and THYM (Figure 7C). There was also no significant
difference in the expression of RGS2 between cancer and disease-
free survival (DFS) groups (Figure 7D). There was a correlation
between disease-specific survival and ACC, BLCA, KIRC, PRAD,
SKCM, STAD, and THYM (Figure 7E), and also a significant
correlation between progression-free survival and ACC, KIRC, and
THYM (Figure 7F). We analyzed the correlation between RGS2,
TMB, and MSI, and found that it was significantly correlated with
TGCT, STAD, PAAD, COAD, and CESC, suggesting that it can be
used as a basis of detection for immunotherapy of the above tumors

10.3389/fimmu.2022.1065927

(Figures 7G, H). Finally, we found that RGS2 was closely related to
the level of immune cell infiltration in most tumors, suggesting that

RGS2 participates in the regulation of the tumor immune response

in the tumor microenvironment (Figure 71).

4 Discussion

Rapid proliferation and insufficient angiogenesis of tumor

cells lead to hypoxia, low pH levels, and depletion of nutrients in
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the tumor microenvironment (15, 16). Therefore, tumor cells
show unique metabolic characteristics that are distinct from
those of normal cells. Tumor cells deal with a variety of adverse
microenvironments by reprogramming their metabolism, and
blocking carcinogenic signals to maintain their proliferating
state and survival. Abnormal energy metabolism is thus a
hallmark of cancer, which indicates that the metabolism of
carbohydrates, lipids, and amino acids in tumor cells is
significantly different from that in normal cells. Fatty acid
metabolism was previous shown to maintain tumorigenesis,
disease progression, and therapeutic resistance by enhancing
lipid synthesis, storage, and decomposition (17, 18). Recently,
increasing attention has been paid to the role of membrane fatty
acids (with respect to e.g. the ratio of saturated fatty acids,
monounsaturated fatty acids, and polyunsaturated fatty acids) in
promoting cell survival, limiting lipotoxicity, and iron-
dependent cell death (19-21). Here, eight fatty acid
metabolism-related genes related to gastric cancer prognosis
were identified based on an analysis of genomic information
of 373 STAD samples and 32 paracancerous tissue samples using
univariate COX regression, clustering, and principal component
analyses. A model called “FRAS” was constructed, and the score
calculated using this model (FRAS score) was found to be closely
related to increased immune cell infiltration, genomic instability,
immune escape and sensitivity of immune checkpoint inhibitor
(ICIs). This fatty acid metabolism-related model was
comprehensively evaluated as well. The fatty acid prognostic
risk score model was found to be able to independently predict
the prognosis of patients with gastric cancer, and effectively
distinguish the sensitivity of patients to chemotherapeutic drugs.
In addition, the relationship between the prognostic risk score
model and characteristics of TME cell infiltration was studied.
The prognostic risk score model was found to identify patients
with gastric cancer who are suitable for anti-CTLA4 antibody
immunotherapy sucessfully, and thereby also indicated that fatty
acid metabolism is crucial for shaping individual TME
characteristics. These findings may provide a new perspective
for exploring the mechanisms of fatty acid metabolism and
treatment of gastric cancer.

Rapidly proliferating tumor cells show a high affinity for
lipids and cholesterol by increasing exogenous lipid uptake, or
by overactivating their biosynthetic pathways (22). Therefore,
fatty acid synthesis (FAS) inhibitors, especially fatty acid
synthase (FASN), have been the focus of cancer treatment
studies (23-25). RGS2, DUSP1, CXCR4, FNDCI, SNCG,
SLCO2A1, APOD, and GPX38 were selected to construct this
risk model. This model can predict the prognosis of patients with
gastric cancer more accurately that a single clinical variable,
which may be helpful for clinicians in making clinical decisions.
The model was used to classify patients with stage G2/G3,
patients aged > 65 years and< 65 years, and patients with
Helicobacter pylori infection into two groups. This was found
to have a significant impact on prognosis, as it confers the
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advantage of using genetic characteristics in predicting clinical
grouping and prognosis.

Gastric cancer patients also develop drug resistance
eventually, even though 60% of them are sensitive to
chemotherapy. This leads to a 5-year survival rate of less than
10% (26-28). Therefore, understanding the mechanism of
chemotherapy resistance in gastric cancer cells is important for
improving the prognosis and survival rate. Previous studies have
revealed that some cancer cells require fatty acid oxidation to
provide energy that is required to maintain the stem cell state.
Studies on resistance of breast tumor stem cells (BCSCs) to
chemotherapy have found that JAK/STAT3 signaling systems
help breast cancer cells maintain their stem cell status, and
resistance to chemotherapy by promoting fatty acid oxidation
(29, 30). Animal experiments have further confirmed that drugs
that inhibit the JAK/STAT3 signaling system can greatly reduce
the population of stem cells in breast cancer, and improve the
efficiency of chemotherapy (31, 32). Here, we further analyzed
the relationship between the develop fatty acid metabolism-
related risk score and chemotherapy resistance in gastric cancer
cells, and identified significant differences in sensitivity to
chemotherapeutic drugs between the high- and low-score
groups. Specifically, bortezomib, elesclomol, and nilotinib
showed better therapeutic effects in the low-score groups.
Targeting of the fatty acid metabolism may thus be a new
strategy for reversing drug resistance in gastric cancer cells.

The G protein signal transduction regulatory factor (RGS)
gene family, which includes negative regulators of G protein-
coupled receptors, are potential drug targets for the treatment of
malignant tumors (33, 34). RGS is a large family of genes with
multiple functions (35-37). These proteins share an RGS
domain with a conserved core that includes 130 amino acid
residues, which can directly bind to the activated G-ot subunit to
inactivate GTP, and thus help negatively regulate GPCR-related
signaling pathways (38-40). RGS gene has been proved to be
closely related to the occurrence and development of many
systemic diseases and cancers (41-43). Here, we analyzed the
role of RGS2, in the tumor microenvironment in gastric cancer,
and also in other cancer types for the first time. The results
showed that the expression of RGS2 was correlated with
interstitial and immune scores. Therefore, we speculate that
RGS?2 participates in the occurrence and development of gastric
cancer by affecting the migration of immune cells. Moreover, we
also found that the TMB score of the RGS2 high-expression
group was lower than that of the low-expression group, and the
TIDE score was higher than that of the low-expression group.
This indicates that it is more difficult for gastric cancer patients
to benefit from immunotherapy, and have a worse prognosis.
High expression levels of RGS2 were detected by Western blot
analysis, which indicates a role of RGS2 in the progression of
gastric cancer.In gastric cancer, the deposition of RGS2
increased with the increase of clinical stage. Therefore, in the
microenvironment of gastric cancer, RGS2 may predict a poor
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prognosis. RGS2 expression in various tumor types was also
found to be significantly correlated with survival, clinical stage,
immune score, TMB score, and MSI. Therefore, RGS2 could be
used as a new tumor marker as well.

However, our study has suffered from some limitations as
well. For example, further research is still needed to reveal how
fatty acid-related genes affect immune cell infiltration and
genomic instability in gastric cancer. In addition, as this study
mainly used online datasets for analysis, more clinical data
supplement is necessary.

5 Conclusion

In conclusion, we analyzed here the expression of fatty acid
metabolism-related genes in gastric cancer, and constructed a
model based on fatty acidification to calculate a disease risk score
for gastric cancer. Our analysis revealed that FARS score in
gastric cancer is closely related to tumor mutation load, genomic
instability, ICIs treatment response, immune cell infiltration,
and immune escape. This score provides with a new tool for the
diagnosis and treatment of gastric cancer, and the genes related
to FARS may become new tumor markers or therapeutic targets.
In general, the FARS score developed in this study can be used as
a potential molecular classification tool for gastric cancer, and
thus help identify immune infiltration and genomic instability
patterns in gastric cancer. FARS can also be used to evaluate
response of patients to ICIs treatment.
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Background: Glycolysis and cholesterol synthesis are crucial in cancer
metabolic reprogramming. The aim of this study was to identify a glycolysis
and cholesterol synthesis-related genes (GCSRGs) signature for effective
prognostic assessments of osteosarcoma patients.

Methods: Gene expression data and clinical information were obtained from
GSE21257 and TARGET-OS datasets. Consistent clustering method was used to
identify the GCSRGs-related subtypes. Univariate Cox regression and LASSO
Cox regression analyses were used to construct the GCSRGs signature. The
ssGSEA method was used to analyze the differences in immune cells infiltration.
The pRRophetic R package was utilized to assess the drug sensitivity of different
groups. Western blotting, cell viability assay, scratch assay and Transwell assay
were used to perform cytological validation.

Results: Through bioinformatics analysis, patients diagnosed with
osteosarcoma were classified into one of 4 subtypes (quiescent, glycolysis,
cholesterol, and mixed subtypes), which differed significantly in terms of
prognosis and tumor microenvironment. Weighted gene co-expression
network analysis revealed that the modules strongly correlated with
glycolysis and cholesterol synthesis were the midnight blue and the yellow
modules, respectively. Both univariate and LASSO Cox regression analyses
were conducted on screened module genes to identify 5 GCSRGs (RPS28,
MCAM, EN1, TRAM2, and VEGFA) constituting a prognostic signature for
osteosarcoma patients. The signature was an effective prognostic predictor,
independent of clinical characteristics, as verified further via Kaplan-Meier
analysis, ROC curve analysis, univariate and multivariate Cox regression
analysis. Additionally, GCSRGs signature had strong correlation with drug
sensitivity, immune checkpoints and immune cells infiltration. In cytological
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experiments, we selected TRAM2 as a representative gene to validate the
validity of GCSRGs signature, which found that TRAM2 promoted the
progression of osteosarcoma cells. Finally, at the pan-cancer level, TRAM2
had been correlated with overall survival, progression free survival, disease
specific survival, tumor mutational burden, microsatellite instability, immune
checkpoints and immune cells infiltration.

Conclusion: Therefore, we constructed a GCSRGs signature that efficiently
predicted osteosarcoma patient prognosis and guided therapy.

KEYWORDS

glycolysis, cholesterol, osteosarcoma, prognosis, signature, immune, TRAM2

1 Introduction

Osteosarcoma mostly occurs in the metaphysis of long bone
and is the second leading factor of cancer deaths in children and
adolescents (1, 2). Currently, surgical resection, chemotherapy,
radiation therapy, hormone therapy, and small molecule
targeted therapy are the mainstays in osteosarcoma treatment
(3). Although the survival rate of osteosarcoma patients has been
drastically increased with the combined chemotherapy, the 5-
year survival rate is still not ideal for patients with distant
metastasis, even with the use of large doses of adjuvant
chemotherapy combined with radical resection (4). In
addition, the psychological trauma caused by radical resection
and the side effects of chemotherapy drugs are also problems
that need to be addressed in the current treatment of
osteosarcoma. To aid in improving osteosarcoma treatment,
identifying novel therapeutic targets and biomarkers is crucial.

Unlike normal cells, cancerous cells often experience
metabolic reprogramming. Metabolic reprogramming refers to
the modifications to the tumor cells metabolic mode in the
starvation state that allow adaption to the nutritional
microenvironment; that is, to accommodate the requirements
of their own quick growth through sufficient nutrients intake,
metabolic reprogramming is a vital hallmark of malignant
tumors (5). Glycolysis produces a small amount of energy
during the entire glucose metabolism process. Normal cells
mainly obtain energy through aerobic respiration. However,
cancerous cells deviate from normal cells in various aspects.
Even in an aerobic condition, cancerous cells favor the
consumption of extra glucose for aerobic glycolysis in order
for lactate production, a phenomenon referred to as Warburg
effect (6). Calcium-binding protein A10 can accelerate glycolysis
by mediating the AKT/mTOR signaling pathway in
osteosarcoma, thereby enhancing malignancy of osteosarcoma
cells (7). In addition, the novel IncRNA HCGI8 enhances
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aerobic glycolysis in osteosarcoma cells via miR-365a-3p/
PGK1 signaling pathway regulation, which accelerating the
development of osteosarcoma cells (8). HIF-1o. oncogene is
present in numerous malignancies, including ovarian, breast,
and bladder cancers, and can induce the glycolytic pathway in
malignant tumors (9-11).

In recent years, the reprogramming of lipid synthesis has
been considered to be another significant metabolic abnormality
required for tumor growth, in which changes within the
cholesterol biosynthetic pathway are vital (12). Cholesterol
accumulation within cancerous cells can influence cell
proliferation and metastasis, and enhance tumor
microenvironmental adaptability, hence reinforcing tumor
incidence and progression (13). Studies have demonstrated
that several genes involved in cholesterol production are
overactive in malignant tissue, such as squalene
monooxygenase and the cholesterol biosynthesis rate-limiting
enzyme 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase
(HMGCR), which is upregulated within several types of
malignancies, comprising glioma and prostate cancer (14, 15).
HMGCR overexpression enhances cancer progression and
metastasis, while its inhibition can suppress tumors; therefore,
HMGCR has been used to treat solid cancers, hematological
cancers, and tumors with drug resistance (16-18). In addition,
the copy number of the SQLE locus encoding squalene
monooxygenase is also increased in a variety of tumors. This
copy number increase has been related to pancreatic cancer
radiation tolerance and the development of several cancers
within breast, prostate and colorectal cancer, or a poor patient
prognosis (19, 20). However, similar to gene heterogeneity,
tumor cell metabolism is also highly heterogeneous. In other
words, no single universal change occurs within cancer
metabolism. Tumorous metabolic changes are mainly
characterized by changes in lipid and glucose metabolism.
Recently, relevant research has discovered that changes in the
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combined effects on lipid and glucose metabolism have become
vital in pancreatic cancer, breast cancer, and skin malignant
melanoma (21-23). High-throughput sequencing technologies
are developing rapidly, and researchers possess the better
understanding of pathogenic genes for various diseases, which
is helpful for the discovery of novel biomarkers and pathogenic
mechanisms (24). In recent years, differentially expressed genes
have been screened through bioinformatics analysis to construct
a prognostic signature for predicting osteosarcoma patient
prognosis. For example, Zheng et al. constructed a prognostic
signature and a nomogram relied on characteristics and clinical
variables, which are used to screen out the tumor suppressor
gene FHIT in osteosarcoma (25). However, to our knowledge, no
gene signature related to glycolysis and cholesterol synthesis has
been established to predict osteosarcoma patient prognosis.

During this research, relying on glycolysis and cholesterol
synthesis-related genes (GCSRGs), osteosarcoma patients were
categorized into one of 4 subtypes, and the differences in
patient prognosis and tumor microenvironment between
subtypes were also studied. A GCSRGs signature and an
efficient nomogram were constructed by screening gene
modules and their core genes for associations with glycolysis
and cholesterol synthesis. In addition, the relationship of
GCSRGs signature with drug sensitivity, immune infiltration
and immune checkpoints was investigated, thereby expanding
the genes signature’s prognostic values for patients with
osteosarcoma. Finally, we performed in vitro functional
experiments and pan-cancer analysis to validate the genes of
interest among the GCSRGs.

2 Materials and methods
2.1 Data download

GSE21257 dataset (n=53) was downloaded from the Gene
Expression Omnibus (GEO) database (https://www.ncbinlm.
nih.gov/geo/) and the Therapeutically Applicable Research to
Generate Effective Treatment-Osteosarcoma (TARGET-OS)
dataset (n=95) was obtained from the TARGET database
(https://ocg.cancer.gov/programs/target). Both osteosarcoma
datasets contain RNA sequences and clinical information. To
obtain the total cohort dataset for subsequent mining, we
combined TARGET-OS normalized by log2 of the transcript
count per million (TPM) and GSE21257 with the batch effect
removed by the ComBat function. Supplementary Table 1
illustrates all patients’ clinical information in the total cohort.
GCSRGs were obtained from the “REACTOME_GLYCOLYSIS”
(n=72) and “REACTOME_CHOLESTEROL_BIOSYNTHESIS”
(n=25) datasets in the Molecular Signatures Database (MSigDB)
(https://www.gsea-msigdb.org/gsea/msigdb/). In addition,
we downloaded the original pan-cancer mRNA matrix data,
clinical data and copy number data from the University
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of California, Santa Cruz (UCSC) database (https://
xenabrowser.net/).

2.2 ldentification of the GCSRGs-related
subtypes

Based on the expression of GCSRGs, the total cohort
excluded metabolic genes with a standard deviation < 0.5 and
then used the genes as the main objects to perform consistent
clustering using ConsensusClusterPlus R package to remove co-
expressed metabolic genes and obtain co-expressed GCSRGs. The
median expression level classified the metabolic subtypes, which
were the quiescent type (glycolysis < 0, cholesterol synthesis < 0),
glycolysis type (glycolysis > 0, cholesterol synthesis < 0),
cholesterol type (glycolysis > 0, cholesterol synthesis > 0), and
mixed type (glycolysis > 0, cholesterol synthesis > 0). The prcomp
function was used for principal component analysis (PCA)
between subtypes, and survival R package and survminer R
package analyzed survival differences between subtypes. The
ESTIMATE algorithm calculated tumor purity, immune,
stromal, and ESTIMATE scores in different subtypes.

2.3 Construction of weighted gene co-
expression network and enrichment
analysis

Weighted gene co-expression network analysis (WGCNA)
employs gene expression data for scale-free network construction.
For the top 25% of expression profiles in terms of variation
coefficients, we built a network using the WGCNA R package.
The modules strongly correlated with glycolysis and cholesterol
subtype were screened, and the genes in the modules were pooled
as key metabolic genes. Enrichment analysis of GO and KEGG
pathway was conducted using clusterProfiler package.

2.4 Establishment and validation of a
GCSRGs prognostic signature

To screen prognosis-related genes, in a random manner we
categorized the total cohort into training and verification cohort,
and utilized survival R package to do univariate Cox regression
analysis upon the key modules’ genes in training cohort. In order
to further minimize the dimensionality and build the risk
signature, least absolute shrinkage and selection operator
(LASSO) Cox regression analysis has been conducted via
glmnet R package and survminer R package, and patients’ risk
scores were then determined. The training, verification, and total
cohorts were categorized into high- and low-risk groups based
on risk score’s median value. Survminer R package and
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survivalROC R package generated survival and receiver
operating characteristic (ROC) curves for the high- and low-
risk groups. Area under curve (AUC) determined the signature’s
predictive ability. Once AUC > 0.6, signature became reliably
predictive. We then performed univariate and multivariate Cox
regression analyses to see if the risk score was an independent
prognostic factor for osteosarcoma patients.

2.5 Nomogram construction and
validation

The rms R package plotted the clinical nomogram.
Performance of nomogram in predicting overall survival (OS)
of osteosarcoma patients was evaluated using independent risk
factors such as sex, age, metastatic status, and risk score. The
calibration curve then proved the nomogram’s efficacy.

2.6 Analysis of immune landscape and
drug sensitivity

The single-sample gene set enrichment analysis (ssGSEA)
method analyzed immune cells infiltration differences across the
high- and low-risk groups. Differential expression analysis of
immune checkpoints was used to assess the difference in the
efficacy of immunotherapy. The pRRophetic R package was
utilized to assess the drug sensitivity of different groups.

2.7 Pan-cancer analysis of TRAM2

To perform additional research into the role of TRAM2 in
tumors, TRAM?2 differential expression was assessed in pan-
cancer, and we performed a correlation analysis of TRAM2 with
patient prognosis, tumor mutational burden (TMB), and
microsatellite instability (MSI). Furthermore, we performed a
co-expression analysis of TRMA2 with immune cells and
immune checkpoints.

2.8 Cell culture and transfection

All cell lines had been obtained from Procell (Wuhan,
China). These cell lines were cultivated into DMEM/F12
medium containing 10% fetal bovine serum. TRAM2 siRNA
and the corresponding si-control had been bought from
GenePharma (Shanghai, China). Lipofectamine 3000 reagent
(Invitrogen, California, USA) transfected cells as per the
guidelines. After 48h of transfection, cells were utilized for
protein quantification. The following sequences were utilized for
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the targeting of TRAM2: 5-GCGUCCUCAUCGGGCUUAUTT-
3’ (si-TRAM2-1); 5-CCUCGGUGAUUUGGUGCUUTT-3’ (si-
TRAM2-2); 5-GCACGCACUUCCUGAGCUATT-3" (si-
TRAM?2-3).

2.9 Western blotting

In a nutshell, the protein samples were first isolated using
SDS-PAGE. Later, proteins on the gel were moved to PVDF
membrane and blocked. Primary antibodies were incubated
overnight at a temperature of 4 °C, including anti-TRAM2
(Proteintech, 13311-1-AP, Wuhan, China), anti-E-cadherin
(Proteintech, 20874-1-AP), anti-N-cadherin (Proteintech,
22018-1-AP), anti-Vimentin (Proteintech, 10366-1-AP), and
anti-GAPDH (Zhongshanjingiao, TA-08, Beijing, China). On
day 2, the membrane underwent secondary antibody incubation.
Next, enhanced chemiluminescence (ECL) color developing
solution was utilized to develop the membrane after it had
been rinsed with TBST three times.

2.10 Cell viability assay

The transfected cells have been cultured within 96-well
plates at 5000 cells/well. Prior to Detection, Cell Counting Kit
8 (CCK8) reagent (Dojindo, Kumamoto, Japan) was added and
incubated at 37 °C. A microplate reader took 450 nm absorbance
readings once every 24 h up until 72 h.

In order to evaluate the osteosarcoma cells’ capabilities for
colony formation, a plate cloning assay was carried out. The
transfected cells were evenly seeded in 6-well plate, and
then cultured for 12 days with periodic replacements of the
medium. Fixation and staining were accomplished with
paraformaldehyde and crystal violet staining solution. A digital
camera was used to snap photographs of the cells and
recorded data.

2.11 Migration and invasion assays

To determine if osteosarcoma cells underwent migratory
changes, a scratch assay was performed. 6-well plate was seeded
with the transfected cells. After reaching 80% - 90% cell density,
the cells were scratched using a pipettor tip oriented
perpendicular to the plate’s base. Results were photographed
and recorded at 0 h and 48 h.

The invasive potential of osteosarcoma cells was measured
using the Transwell assay. After pre-plating the Transwell
chamber with Matrigel, the transfected cells were resuspended
in fresh basal medium and added to the upper chamber. In the
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lower chamber, we put in full medium. The upper chamber’s
cells were completely removed following 48 h. The remaining
cells were stained after fixation, and photographed under
a microscope.

2.12 Statistical analysis

GraphPad Prism 7 and R (version 3.6.3) were utilized
throughout this investigation for all statistical testing and
analysis. We used ClusterProfiler R package for consistent

10.3389/fimmu.2022.1096009

clustering. The Kaplan-Meier (KM) method was utilized for
the survival analysis, and survival R package performed the
log-rank test. In order to conduct LASSO analysis with
cross-validation, the glmnet R package was used. The
survminer R package and survival R package were used to
create the ROC curve. Features selection was performed via
univariate and multivariate Cox regression analyses.
Wilcoxon test compared the continuous variables.
Spearman correlation test was used for correlation
analysis. P < 0.05 was considered statistically significant
unless otherwise stated.
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Classification of osteosarcoma patients based on expression of GCSRGs. (A) Heatmap showing consensus clustering solution for GCSRGs in
osteosarcoma sample (B) Scatter plot depicting classification of samples based on GCSRGs expression. (C) Heatmap showing expression levels
of co-expressed GCSRGs across each subgroup. (D) PCA showing significant differentiation between different subgroups of patients. (E) Kaplan-
Meier survival curves of patients in the different subgroups. Log-rank test P values are displayed. (F—1) Violin plots showing the immune score,
stromal score, ESTIMATE score and tumor purity across different metabolic subgroups. ***P < 0.001.
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3 Results

3.1 Identification of the 4 subtypes of
osteosarcoma patients by analysis of the
expression of GCSRGs

The RNA-seq data and clinical information in the
GSE21257 dataset and the TARGET-OS dataset were
integrated after the batch effect was removed. The total
cohort was obtained for subsequent analysis. Based on the
gene sets of GCSRGs, metabolic-related genes with a standard

deviation <0.5 were excluded from the total cohort. Then,

>

Scale independence Mean connectivity

7y 1
3 6

06 08
400
L

300
L

| Sro1112ratsts
8

04
200
|

1718
1920

Mean Connectivity

100
L

Scale Free Topology Model Fit signed R"2

-02 00 02

5 10 15 20 5 10 15

Soft Threshold (power) Soft Threshold (power)

3
4 5 6 7.8 91011121314151617181820
T T T T

20

Module-trait relationships
MEyellow s oy
1
MEbrown l @Z‘-’?‘. (oon’ﬁ
MEpink ooy o
MEmagenta on k3
MEblack o o 05

MEpurple e b
ooss o5

MEred ©5) @5

o oo

MEblue o1 ©7

-0
MElightcyan oo o
MEmidnightblue et e
MEsalmon ki @5
MEtan o o --0.5
N
MEgreenyellow o o
MEcyan o5 o
-1
MEturquoise e @5
S R
S X
¢ 5
NG %
® @

FIGURE 2

10.3389/fimmu.2022.1096009

consistent clustering was performed using the genes as the
main body, thereby removing the co-expressed mixed
metabolic genes C2 and C3, and the respective co-expressed
metabolic genes were obtained including co-expressed
glycolysis genes Cl and co-expressed cholesterol genes C4
(Figure 1A). We classified the total cohort into 4 metabolic
subtypes based on the median expression levels of GCSRGs.
Glycolysis < 0 and cholesterol synthesis < 0 was the quiescent
subtype, glycolysis > 0 and cholesterol synthesis < 0 was the
glycolysis subtype, glycolysis < 0 and cholesterol synthesis > 0
was the cholesterol subtype, and glycolysis > 0 and cholesterol
synthesis > 0 was the mixed subtype (Figure 1B). Figure 1C

Gene dendrogram and module colors.
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illustrates the expression levels of GCSRGs in the 4 subtypes.
According to the PCA of the 4 subtypes, the principal
components of the 4 subtypes had a good degree of
discrimination (Figure 1D). Further analysis of the
differences in the prognosis between subtypes revealed the
significant differences in the prognosis of different subtypes.
Among them, prognosis for the glycolysis subtype was
significantly better than the cholesterol subtype, and the
quiescent subtype’s prognosis was significantly better than
the mixed subtype, and the mixed subtype’s prognosis was
similar to the cholesterol subtype (Figure 1E). In addition, to
further analyze the differences in tumor microenvironment
between different subtypes, ESTIMATE algorithm ranked the
immune, stromal, and ESTIMATE scores as quiescent subtype
> glycolysis subtype > cholesterol subtype > mixed subtype,
but the reverse trend was noted for the tumor purity
(Figures 1F-I).

3.2 GCSRGs co-expression network and
biological activity

WGCNA was used to discover additional GCSRGs for
further studies. The gene network achieved both high
internal connectivity and gene similarity when the soft
threshold was 4 (Figure 2A). Using hybrid dynamic shear
tree, with a minimum of 25 genes per gene network module,
16 networks were found to be different from one another and
were assigned distinct colors to represent them (Figure 2B).
Then, the modules with strong correlations with glycolysis and
cholesterol synthesis were screened, namely, the midnight blue
and the yellow modules (Figure 2C). Among them, the
0.0044)
contained 35 genes, and the cholesterol synthesis-related

glycolysis-related midnight blue module (P =

yellow module (P < 0.001) contained 367 genes. Figures 2D,
E illustrates gene significance and module membership of the 2
modules. A robust positive relationship was identified between
these variables’ values.

A total of 402 genes within the midnight blue and yellow
modules were pooled and used as key metabolic genes. The
ClusterProfiler R package was conducted for GO and KEGG
pathway enrichment analysis. The bubble plots showed the top
10 in GO-BP, GO-CC, and GO-MF and the top 7 in KEGG. GO
functional annotation indicated that GCSRGs were mainly
associated with hypoxia response, decreased oxygen response,
focal adhesion, cell-substrate junction, ribosome, ribosome
structural constituent, and monosaccharide binding
(Figure 3A). KEGG functional annotation showed that
GCSRGs were mainly associated with pathways including
ribosome, HIF-1 signaling pathway, glycolysis/
gluconeogenesis, and central carbon metabolism in
cancer (Figure 3B).
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3.3 Identification and construction of the
GCSRGs signature to predict OS in
osteosarcoma patients

The total cohort was categorized in a random manner into
training and verification cohorts. Univariate Cox analysis was
carried out on key metabolic genes (genes in the midnight blue
and yellow modules) in the training cohort to screen prognosis-
related genes via the survival R package, and 12 genes were
related to patient prognosis (P < 0.05) (Figure 4A). As
Figures 4B-G indicates, the Kaplan-Meier (KM) survival
curves of the top 6 genes from low to high in terms of the P
value were listed. Then, LASSO Cox regression analysis further
reduced dimensionality and constructed genes signature. In the
Cox regression based on the LASSO penalty, as log A changed,
the corresponding coefficient of the determined gene also
decreased to 0, and in the cross-validation, 12 genes reached
the partial likelihood estimation bias minimum value
(Figures 4H, I). 5 genes were identified as independent
predictors by LASSO Cox regression analysis in training
cohort, namely, RPS28, MCAM, EN1, TRAM2, and VEGFA.
We determined the risk scores via following formula: Risk
score = RPS28 x 0.513 + MCAM x 0.701 - EN1 x 0.718 +
TRAM2 x 0.575 + VEGFA x 0.467. The training, verification,
and total cohorts were all categorized into high- and low-risk
groups based on their median risk score. In each of the three
cohorts, it was discovered that the low-risk group’s survival
probability was significantly greater than the other group (P <
0.005) (Figures 5A-C). Then, ROC curve analysis evaluated
whether the GCSRGs signature is an efficient prognosis predictor
of osteosarcoma patients. The 1-, 3-, and 5-year AUC predicted by
the genes signature in training cohort were, 0.873, 0.889, and 0.856,
respectively; in verification cohort, were 0.673, 0.810, and 0.823,
respectively; in total cohort, were 0.747, 0.835, and 0.820,
respectively (Figures 5D-F). In the low-risk group, the expression
of 4 high-risk genes (RPS28, MCAM, TRAM2, and VEGFA) was
low, while the low-risk gene EN1 expression was high (Figures 5G-
I). Finally, we compared the survival status between the two groups
in the three cohorts (Figures 5]-L) and plotted an expression
heatmap of the risk genes (Figures 5M-0).

3.4 Independent prognostic analysis of
the GCSRGs signature

To determine if the risk score and the other clinical
characteristics are independent prognostic factors for
osteosarcoma patients, univariate and multivariate Cox
regression analyses were conducted. Univariate Cox regression
analysis revealed the risk score (P = 0.019) and the clinical
0.001) were
independent prognostic factors for osteosarcoma patients

pathological parameters of metastasis (P =
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(Figure 6A), and multivariate Cox regression analysis showed

the same results (Figure 6B). Furthermore, we developed a

prognostic nomogram for estimating the osteosarcoma

patients’ survival likelihood (Figure 6C). This prognostic

nomogram could systematically anticipate the 1-, 3-, and 5-

year OS of osteosarcoma patients. The calibration curve showed

that actual results were consistent with predicted

results (Figure 6D).
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3.5 Immune landscape and drug
sensitivity analysis of the GCSRGs
signature

For confirming if the GCSRGs signature was associated
with tumor immunity, we used the ssGSEA method for
evaluating differences in immune cells infiltration between
the two groups. As Figure 7A indicates, the expression of
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FIGURE 4

Construction of a GCSRGs prognostic signature in training cohort. (A) Forest plot of univariate cox regression analysis of the survival-related 12
differentially expressed genes. (B—G) Kaplan-Meier survival curves of patients with differential expression of prognosis-related genes. (H)
Obtainment of the optimal A value. (I) The LASSO Cox analysis identified 5 genes associated with prognosis.

eosinophils, macrophages, and natural killer cells had
significant difference between the two groups. Among
them, within the high-risk group, eosinophils proportion
was significantly increased, while the opposite results
occurred in macrophages and natural killer cell
proportions. Additionally, as Figure 7B indicates,
significant differences were found in immune checkpoints
expression, including LGALS9, HAVCR2, LAIRI, TNFSF4,
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PDCD1LG2, TNEFSF15, ICOS, CD200R1, TNFSF14, and
BTLA between the two groups, with higher expression
within the low-risk group than the other, pointing to the
fact that there may be limited differences in the efficacy of
immunotherapy. Drug sensitivity analysis indicated that 11
drugs were sensitive to patients in the high-risk group
(Figure 7C), and 13 drugs were sensitive to patients in the
low-risk group (Figure S1).
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3.6 Functional verification of TRAMZ2 in
vitro

We searched the relevant literature of the aforementioned
GCSRGs and found that TRAM2 was crucial in some
malignancies. However, studies on the mechanism of TRAM2
action in osteosarcoma are scarce. Therefore, TRAM?2 is
expected to emerge as a promising new biological target in
osteosarcoma treatment. Our study first revealed that TRAM2
expression in osteosarcoma cell lines was higher than the human
osteoblast cell line according to Western blot results (Figure 8A).
Then, si-TRAM2 was transferred to HOS and U20S cell lines to
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discover the effect of TRAM2 on the osteosarcoma cell
progression. Western blot results confirmed transfection
efficiency (Figure 8B), and si-TRAM2-2 was chosen for further
experiments. Based on CCKS8 experiment results, TRAM2
downregulation inhibited HOS and U20S cell lines viability
(Figure 8C). According to the results of the plate cloning assay,
downregulation of TRAM2 expression inhibited the colony-
forming ability of the HOS and U20S cell lines (Figure 8D).
Furthermore, we conducted cell scratch and Transwell cell
invasion assays. Experimental results indicated TRAM?2
downregulation inhibited HOS and U20S cell migration
ability (Figure 8E) and invasion (Figure 8F). Prior studies have
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revealed that epithelial-mesenchymal transition (EMT) was vital
in tumor progression and metastasis (26). So, we examined
TRAM2 downregulation effect on EMT-related proteins
expression. TRAM2 downregulation promoted E-cadherin
expression while suppressing N-cadherin and vimentin
expression in the HOS and U20S cell lines, according to
Western blot results (Figure 8G).

3.7 Pan-cancer analysis of TRAM2

To further analyze the important role of TRAM2 in other
malignant tumors, we performed pan-cancer analysis of
TRAM2. Figure 9A shows the expression of TRAM2 in 33
types of cancers, where TRAM2 had the highest expression in
SARC. In addition, TRAM2 expression differed significantly
between tumor tissues and normal paracancerous tissues in
several types of cancer (Figure 9B). As shown in Figures 9C-E,
TRAM2 was relevant to OS, progression free survival (PFS) and
disease specific survival (DSS) in a range of cancers. Further
analysis of the above data obtained KM survival curves (Figure
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S2). Moreover, TRAM?2 was relevant to TMB and MSI in a range
of cancers (Figures 9F, G). To elucidate the relationship of
TRAM?2 with immune-related genes and immune checkpoints,
we conducted gene co-expression analysis. As Figures 9H, I
illustrates, TRAM2 can affect immune cell infiltration and
immune checkpoint expression in pan-cancer.

4 Discussion

Osteosarcoma is a highly invasive cancer. Its poor prognosis
is related to problems with current treatments (27). Therefore,
there is a need to develop and study prognostic models of
osteosarcoma to guide targeted therapy. With the development
of bioinformatics and sequencing technology, many scholars
have constructed different prognostic models of osteosarcoma to
analyze the characteristics of the disease (28-30). However, most
of the parameters used to construct prognostic models consider
only the genome or transcriptome and do not consider biological
processes. As a result, osteosarcoma features cannot be
represented accurately within these models. Recently, tumor
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FIGURE 7

Immune status and drug sensitivity differences between high- and low-risk groups. (A) Comparison of immune cell infiltration between the
high-risk group and low-risk group. (B) Comparison of the expression of immune checkpoints between the high-risk group and low-risk group.
(C) Drug sensitivity in the high-risk group and low-risk group. *P < 0.05, **P < 0.01.

energy metabolism has attracted increasing interest. Glycolysis
and cholesterol synthesis pathways are involved in the metabolic
reprogramming of tumors and are crucial in tumor progression
(31, 32). In our work, for the first time, we constructed a
prognostic signature with glycolysis and cholesterol synthesis
as the main characteristics, which can effectively predict
osteosarcoma patient prognosis.

We first utilized consensus clustering to confirm the 2
groups of stable independent metabolic genes of glycolysis and
cholesterol synthesis and then divided osteosarcoma patients
into 4 subtypes (glycolysis subtype, cholesterol subtype,
quiescent subtype, and mixed subtype) on basis of median
gene expression. Survival across the subtypes showed
significant differences based on the prognostic analysis, with
the cholesterol subtype and the mixed subtype having the worst
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prognosis. Additionally, significant differences were observed in
tumor purity, scores of immune, stroma, and ESTIMATE, which
also confirmed prognosis differences in the 4 subtypes. We used
WGCNA to screen out the modules related to glycolysis and
cholesterol synthesis and conducted GO and KEGG enrichment
analysis. Hypoxia is strongly correlated with poor prognosis,
with its pathway activated throughout cancer advancement (33).
The HIF-1 protein is heterodimeric with two different subunits,
HIF-1o. and HIF-1fB. This protein activates several genes
transcription that encode proteins engaged with angiogenesis,
extracellular mesenchymal remodeling, migration, invasion, and
metastasis (34). Consistent with the above conclusions, the
results of enrichment analysis, such as response to hypoxia
and decreased oxygen, and HIF-1 signaling pathway, indicated
that this module’s key metabolic genes had tight association with
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hypoxia process. Previous studies have demonstrated that focal
adhesions, as mediators of tumor cells and the extracellular
matrix, are vital in various ways within tumor migration,
invasion, and drug resistance (35). The results of GO
enrichment analysis, such as focal adhesion and cell-substrate
junction, indicated that the key metabolic genes in the module
may be closely associated with metastasis. Subsequently,
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univariate Cox and LASSO Cox regression analysis had been
conducted on key metabolic genes in the selected modules, and 5
genes (RPS28, MCAM, ENI, TRAM2, and VEGFA) were
screened as relevant genes for the GCSRGs signature
construction. The GCSRGs signature had good predictive
ability in all cohorts and can be utilized as an independent
prognostic factor for osteosarcoma patients. Several researchers
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have investigated the relationship among glycolysis, cholesterol
synthesis and immune responses. Regulating cholesterol
metabolism can improve CD8 (+) T cells’ anticancer effect
(36). Additionally, Li et al. indicated that the glycolysis process
of tumor tissues within breast cancer had association with low
natural killer T (NKT) cells infiltration (37). In our study,
macrophages and NKT cells expression levels within the low-
risk group were significantly higher than the other group.
According to our knowledge, NKT cells are crucial for
controlling tumor cell progression and affecting cancer patient
prognosis (38). For macrophages, high infiltration of tumor-
associated macrophages in some malignant tumors has a strong
correlation with better prognosis (39, 40). That’s consistent with
our study findings and helps explain, to a certain extent, why
patients who were classified as low-risk group had superior
survival outcomes. In addition, our study found that the total 10
immune checkpoint genes expression showed different levels
between the two groups, with low-risk group showing higher
expression than the other group, indicating that there may be
limited differences in the efficacy of immunotherapy.

In our analysis, we selected 5 GCSRGs (RPS28, MCAM,
EN1, TRAM2, and VEGFA) as the relevant genes for
constructing the risk genes signature. RPS28 is a 40S
ribosome component and is critical for 18S rRNA
biosynthesis (41). There are few studies on the effect of RPS28
on cancer, and most research results are only predictions
generated by bioinformatics and have not been confirmed by
corresponding biological experiments (42, 43). However, some
researchers have found that reducing the expression of RPS28
protein can reduce the cell viability of HeLa cells and induce
tumor cell apoptosis (44), indicating that RPS28 has a major
regulatory function in cancer. Additionally, RPS28 can
influence tumor immunosurveillance and regulate T cell
killing (45). MCAM is highly expressed in various
malignancies and has tight association with their growth and
metastasis, such as melanoma (46), prostate cancer (47), gastric
cancer (48), and lung cancer (49). Prior investigations revealed
that MCAM was associated with poor prognosis of
osteosarcoma patients and can improve the migration ability
of osteosarcoma cells (50). For immunotherapy, MCAM
deficiency significantly impairs T cell-mediated antitumor
effect (51). Solid tumor progression and metastasis are
accompanied by angiogenesis stimulation, with VEGFA as the
main factor driving tumor vascular bed expansion (52). VEGFA
is involved in angiogenesis, progression, and metastasis in
various malignancies, including osteosarcoma, and has a
strong association with a poor prognosis (53-55). Moreover,
the expression of co-inhibitory receptor and regulatory T cell
expansion are both influence by VEGFA signaling (56). Hence,
targeted VEGFA therapy is a key area for improving the
osteosarcoma prognosis (57). TRAM2 is a translocon
component and can transport proteins synthesized by
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ribosomes to the endoplasmic reticulum (ER), acting as ER
channels for calcium concentration regulation within it (58). In
glioma, through its PI3K/AKT/mTOR signaling pathway
regulation, TRAM?2 is able to enhance tumor cells migration,
invasion, proliferation, and EMT (59). In addition, TRAM2 and
YAP activity in various cancers shows a very strong expression
correlation, demonstrating that TRAM2 acts a significant role
in malignant proliferation and invasion caused by YAP (60).
However, no relevant studies have shown the relationship
between TRAM?2 and osteosarcoma. Therefore, to ensure the
validity of the GCSRGs signature, we chose to use TRAM2 for
cell function validation and pan-cancer analysis.

TRAM?2 protein expression was demonstrated to be
significantly different across the osteosarcoma and the human
osteoblast cell lines during experimental validation. In addition,
inhibiting of EMT-related protein expression, cell viability,
colony formation, migration, and invasion were achieved by
downregulating TRAM2 protein expression in osteosarcoma
cells. These findings provide further support for validity of
genes signature based on glycolysis and cholesterol synthesis
and suggest that TRAM2 is involved in osteosarcoma cells
progression. In addition, TRAM2 was not only involved in
osteosarcoma progression but also closely related to OS, PES,
DSS, TMD, MSI, immune cell infiltration and immune
checkpoints in pan-cancer, suggesting that the GCSRGs
signature and the target genes in the signature have the
potential to serve as the prognostic indicators for a wide range
of cancers.

Although we confirmed the eftective role of the GCSRGs
signature in predicting the prognosis of osteosarcoma patients
and confirmed the tumor-promoting effect of TRAM2 in
osteosarcoma cells in cytological experiments in vitro, this
study still has certain drawbacks that require further research.
First, the patient sample size was small within the datasets used,
and their clinical characteristics were not sufficiently detailed.
Therefore, a larger sample size with more detailed clinical
characteristics is needed. In addition, besides TRAM2, other
signature-related genes should also be verified at the
cytological level.

During this research, osteosarcoma patients were
categorized into 4 subtypes according to GCSRGs expression
matrix, and these subtypes differed significantly from one
another in terms of prognosis and tumor microenvironment.
Through WGCNA, the gene modules most closely associated
with glycolysis and cholesterol synthesis were screened, and a
risk signature of osteosarcoma consisting of 5 GCSRGs was
constructed for the first time. In addition, we found that this
signature was closely related to immune cells infiltration and
immune checkpoint expression in osteosarcoma patients. These
findings not only provide a new method to predict the prognosis
of osteosarcoma patients but also provide novel
therapeutic targets.
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Background: As a common primary intracranial tumor, the diagnosis and therapy
of low-grade glioma (LGG) remains a pivotal barrier. Cuproptosis, a new way
induces cell death, has attracted worldwide attention. However, the relationship
between cuproptosis and LGG remains unknown. Our study is all about finding out
if there are any genes related to coproptosis that can be used to predict the
outcome of LGG.

Methods: RNA data and clinical information were selected from Cancer Genome
Atlas (TCGA) datasets and the Genotype-Tissue Expression (GTEx), 5 IncRNAs
(GAS5.AS1, MYLK.ASL, AC142472.1, AC011346.1, AL359643.3) were identified by
Cox univariate and multivariate regression, as well as LASSO Cox regression. In the
training and test sets, a dual validation of the predictive signature comprised of
these 5 IncRNAs was undertaken. The findings demonstrate that the risk model is
able to predict the survival regression of LGG patients and has a good performance
in either the KM curve approach or the ROC curve. GO, GSEA and KEGG were
carried out to explore the possible molecular processes that affecting the
prognosis of LGG. The characteristics of immune microenvironment were
investigated by using CIBERSORT, ESTIMATE and ssGSEA.

Results: We identified five IncRNAs related with cuproptosis that were closely
associated with the prognosis of LGG and used these five IncRNAs to develop a risk
model. Using this risk model, LGG patients were then divided into high-risk and
low-risk groups. The two patient groups had significantly distinct survival
characteristics. Analyses of Gene Ontology (GO) and the Kyoto Encyclopedia of
Genes and Genomes (KEGQG) revealed that the differential genes of the two patient
groups were primarily concentrated in neural active ligand-receptor interaction
and cytokine-cytokine receptor interaction. The ssGSEA score determined the
information related to immune infiltration, and the two groups were differentially
expressed in immune subpopulations such as T cells and B cells as well.

Conclusion: Our study discovered 5 cuproptosis-related IncRNAs which
contribute to predicting patients’ survival of LGG and provide ideas for the
exploration of new targets for LGG in the future.
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1 Introduction

According to the classification of the World Health Organization,
gliomas can be divided into I-IV grades based on the malignant
degree of tumor cells, of which grades II-III belong to LGG and grade
IV to glioblastoma (1). Glioblastoma is the most frequent malignant
intracerebral tumor, accounting for about 57% of all gliomas and 48%
of all primary malignant central nervous system tumors (2). Its
prognosis is poor, and the median survival time is less than two
years (3, 4). With better prognosis, the life expectancy of patients with
LGG is often more than 10 years. However, The natural history of
these tumors is marked by frequent recurrences, despite the fact that
the clinical course of the majority of tumors is initially benign (5).
Some patients will ultimately worsen, posing grave risks to human life
and health (4).

Since 2016, the World Health Organization (WHO) has added
molecular characteristics, such as 1p19q co-deletion, ATRX, TP53,
and IDH mutations, in the diagnostic categorization of LGG, offering
a more thorough and accurate diagnosis (6, 7). High frequencies of
epidermal growth factor receptor (EGFR) amplification (8), TERT
promoter mutation (9), and PTEN loss are characteristic in idh wild-
type glioblastomas (10). Because the presence of these distinctions
impacts the prognosis of LGG, the current therapeutic strategy is
deeply influenced by these molecular markers.

Cuproptosis is a unique type of cell death recently discovered (11,
12). Specifically, copper binds directly to the fatty components of the
tricarboxylic acid (TCA) cycle, resulting in the accumulation of
lipoproteins and the subsequent loss of Fe-S cluster proteins,
resulting in protein toxic stress and eventually cell death (13).
Recent studies have showed higher levels of copper in lots of
malignant tumors compared with normal tissues, such as breast
(14), lung (15), colorectal (16), oral (17) and bladder cancers (18).
Change of the copper protein levels may contributes to the growth or
invasion of tumor (19). Its specific mechanism includes stabilizing the
nuclear hypoxia-inducible factor-1 (HIF-1) (19, 20), which provides
help to subsequent angiogenesis, and ultimately leads to tumor
progression and metastasis.

Long non-coding RNA (LncRNA) have a significant role in the
control of gene expression and are also implicated in the regulation of
programmed cell death (PCD), including autophagy, apoptosis,
necrotizing apoptosis, and iron death, which impact the growth of
cancer cells in cancer patients (21). In recent years, the IncRNA-
constructed LGG prognostic model has demonstrated a degree of
success. Shengchao Xu and coworkers developed a model consisting
of 19 hypoxia-related IncRNAs that accurately predicts the prognosis
and treatment response of LGG patients (22). We developed a model
of cuproptosis-related IncRNAs with the purpose of better predicting
patient prognosis. Figure 1 depicts the workflow for this research.
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2 Materials and methods
2.1 Data and resources

The transcriptome profiles and clinical characteristics of LGG
patients were retrieved from The Cancer Genome Atlas (TCGA,
https://www.tcga.org/) (23), and the transcriptional profiles of normal
brain tissues were collected from the Genotype-Tissue Expression
Project Database (GTEx, https://commonfund.nih.gov/GTEx). The
Counts type data are downloaded from the UCSC xena database
(http://xena.ucsc.edu/) (24). Data from patients without complete
clinical information were excluded from the study.

2.2 Identification of cuproptosis-
related IncRNAs

Firstly, the LIMMA’ package (25) in R language (Version 4.1.0) is
utilized to pre-process. Then, using the limma software, adjust adj.P
values <0.05 and |logFC| > 1 condition, identify IncRNAs with
differential expression. Using “cuproptosis” as the key word, 13
related genes were selected from PubMed (https://pubmed.ncbi.
nlm.nih.gov/). Finally, by the Pearson correlation analysis (26)
(with a Correlation coefficient >0.7 and adjust P values <0.001), the
cuproptosis-related IncRNA is obtained. Protein-Protein Interaction
Networks (PPI, https://cn.string-db.org/) (27) was used to investigate
the interaction between these genes and IncRNAs.

2.3 Construction of a prognostic
cuproptosis-related IncRNA signature

523 LGG patients were randomly selected and divided into
training set and test set, in which the training set accounted for
70% and the test set accounted for 30%. According to their median
IncRNA expression, patients in the training set were separated into
two groups: high and low expressing individuals. When comparing
the median survival times of the two groups of patients, we drew KM
curves to see whether high or low IncRNA expression had an impact
on outcome (28). Univariate COX regression and LASSO regression
were used to the KM-curve-selected IncRNAs. The R packages
‘survminer’ and ‘glmnet’ (29) performed the aforementioned tasks.
We indicated that univariate and lasso Cox regression analyses were
useful in identifying candidate IncRNAs with prognostic significance
and reducing the impact of overfitting. Risk signatures were built after
a preliminary round of multivariate Cox regression analysis. Risk
score=>coef; * x; (Coefi indicates the correlation coefficient of each
ferroptosisrelated signature, and X indicates the level of gene
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FIGURE 1
The flow chart of data analysis.

expression) was the formula used to determine the level of danger.
The median risk score was used to classify the training and testing sets
into high-risk and low-risk groups.

2.5 Independent prognostic value
of the signature

Then, we analyzed the signature’s predictive power by running
univariate and multivariate Cox regressions. The patients’ chances of
survival were also estimated using the risk score’s predictive
nomogram. The R package “survival” was used to calculate risk
scores and determine OS. The model’s accuracy was then assessed
with the use of the ROC (constructed using the ‘survminer’ package)
and Kaplan-Meier curves (generated by the ‘survivalROC’ package).
Dual validation was performed on the training set and the test set to
further assess the model’s prediction ability.

2.6 Enrichment analysis

Differentially expressed genes (DEGs) were identified between
low risk and high risk groups using the limma program in R (with
criteria of FDR< 0.05 and | log2 fold change (FC) | 21 or greater).
Among the many analytical tools available for functional annotation,
gene set enrichment analysis (GSEA) stands out as particularly
potent. It may be used to decode the expression profile of the whole
genome and investigate the connections between various cancer-
related, metabolic, transcriptional, and stress-related pathways and
activities. Get the HALLMARK genes set from the MSigDB database
(https://www.gsea-msigdb.org/ GSEA/msigdb) (30), and then run a
GSEA analysis using the ‘GSVA’ program (P<0.05 and FDR<0.25) to
compare the high-risk and low-risk groups.

Frontiers in Oncology

To compare the DEGs of high-risk and low-risk groups, we used
the R tool ‘ClusterProfiler’ in conjunction with the KEGG and GO
databases (31). And infer its purpose from studies of gene sets. Several
biological activities and pathways are overrepresented in differentially
expressed genes between these two groups; we explore here whether
these could contribute to disparities in survival.

2.7 Landscape of immune cells infiltration

The “gsva” R package was used for single-sample gene set
enrichment analysis (ssGSEA) to assess the immune infiltration
status of LGG patients in various risk categories. Using the
CIBERSORT software (http://cibersort.stanford.edu/), estimate the
cell subgroup abundance by analyzing whole gene expression profiles
(32). Scores are produced using the ESTIMATE algorithm (https://
bioinformatics.mdanderson.org/public-software/estimate/) to
forecast the amount of infiltrating immune and stromal cells, which
serve as the foundation for inferring tumor immunity.

2.8 RNA extraction and rt-PCR

The U251 glioma cell line and human astrocyte cell line NHA
were purchased from Beyotime (Shanghai, China) and cultured in
Dulbecco’s Modified Eagle Medium (DMEM; Gibco, NY, USA)
containing 10% fetal bovine serum (FBS; Gibco, NY, USA),
penicillin (100 units/ml), and streptomycin (100 pg/ml) in a
humidified incubator maintained at 5% CO2 and 37° C. Extracted
total RNA from cell lines by using Universal RNA Extraction Kit
(Takara; Dalian, China). PrimeScript RT-PCR Kit and TB Green were
used for reverse transcription and relative IncRNA expression
assessment, respectively. Primer information is shown in Table 1.
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TABLE 1 Primer sequences.

IncRNA Primer

Forward: 5-TGTGCCCTTTATACCCACTTT-3’

GASS-AS1 Reverse: 5-GCCCAACTAGTGATAGGCATTA-3
MYLK-ASL Forward: 5-TTGCAGTGTTCAGCACTGGCAC-3’
Reverse: 5-ATTCGACGACCAGTGTTTCAGT-3’
Forward: 5-GGTGTGAACCATGAGAAGTATGA-3
GAPDH

Reverse: 5-GAGTCCTTCCACGATACCAAAG-3’

2.9 Statistical analysis

R software version 4.0.4 was used for data analysis. Unpaired
Student’s t test and Wilcoxon test were used to compare data
conforming to normal distribution and non-normal distribution,
respectively. p<0.05 was considered as the threshold for
statistical significance.

3 Results

3.1 Construction of a cuproptosis-related
IncRNAs prognostic model signature

Brain tissues from LGG patients and controls showed differential
expression for 2143 IncRNAs in TCGA (Figures 2A, B). From a search
of PubMed, we know that there are 13 genes involved in cuproptosis-
related genes: DLST, FDX1, LIAS, SLC31A1, LIPT1, ATP7A, DLD,
ATP7B, PDHB, and DBT (33, 34). The chosen genes were used to
create a correlation network map with differential expression
IncRNAs (Figure S1), from which 317 IncRNAs with cuproptosis-
related differential expression were extracted. Further confirming the
usefulness of these IncRNAs, KM curves were generated for 70% of
patients chosen from the TCGA database, and IncRNAs with minor
survival significance were omitted. Finally, 71 IncRNAs were
successfully extracted.

The IncRNAs identified in the preceding phase were subjected to
univariate and lasso regression analysis. In the univariate regression
analysis, 27 IncRNAs were discovered to be substantially related to OS

“log10 P-valve

3
log2 fod change

FIGURE 2

The screening of differentially expressed IncRNAs IncRNAs. The volcano graph (A) and heatmap (B) showed that 1180 IncRNAs were down-regulated and
that 963 IncRNAs were up-regulated in tissues of LGG compared to normal tissues.
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(Figure 3A). In addition, LASSO regression analysis of these 27
IncRNAs removed 15 IncRNAs and yielded 12 IncRNAs associated
with cuproptosis (Figures 3B, C). These 12 IncRNAs underwent
multifactorial regression analysis, and a risk model for 5-cuproptosis-
related IncRNAs signature was developed (Figures 3D, E).

3.2 Validation of the prognostic model

Based on the risk scores, we plotted KM curves and time-
dependent ROC curves (Figures 4A-D) for the high-risk and low-
risk groups of patients in the training set and the test set (Figures 4A—
D). As seen in the graph, our model had a high predictive value at 1, 3,
and 5 years for both the training and validation sets (AUC were
greater than 0.75).

Subsequently, a predictive Nomogram was created, by this 5-
cuproptosis-related IncRNA signature (Figures 4E). This line graph
includes clinical characteristics such as age, gender, and grade. The
calibration curve showed that the Nomogram could accurately predict
the overall survival at 1, 3, and 5 years (Figure S2).

3.3 Functional enrichment analysis

GO enrichment and KEGG pathway were carried out to analysis
the possible molecular processes. Results showed that the differential
genes were mainly involved in signal pathways such as neuroreceptor-
ligand interaction, cytokine-cytokine interaction, and tumor
proteoglycan (Figures 5A, B). Subsequently GSEA analysis also
showed that the differential gene pathway was mainly concentrated
in MTORCI signal pathway and apoptosis, KRAS signal pathway
(Figure 5C; Table S1).

3.4 Immune-related analysis of LGG patients

We employed the CIBERSORT and Estimate method to identify
immune cell infiltration in LGG patients, since the enrichment
analysis revealed that the association between cuproptosis and LGG

Heatmap
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FIGURE 3
Construction of the prognostic cuproptosis-related IncRNAs signature for in the training set. (A) Based on univariate Cox regression analysis, 21 of the 71
cuproptosis-related INncRNAs were screened, as shown by the forest map. (B, C) Lasso regression analysis was used to further screen out 12 IncRNAs
based on 10-fold cross-validation. (D) Forest plot of 12 cuproptosis-related IncRNAs based on Multivariate Cox regression. (E) The riskscore distribution,
OS, and the Heat map of five IncRNAs of patients in the training set.

is mostly reliant on the tumor inflammatory pathway. We used
CIBERSOR and Estimate algorithms to calculate the relative
proportion of 22 immune cells in each LGG patient. The
correlation analysis between risk score and the level of immune cell
infiltration showed that the infiltration degree of many immune cells
was different among subgroups (P< 0.05). The results showed that the
scores of monocytes and M1 macrophages and mast cells decreased in
the high-risk group (Figure 6).
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3.5 rt-PCR was used to verify the expression
of IncRNAs in glioma cell line

Among the 5 IncRNAs, AC142472.1, AC011346.1, and AL359643.3
lacked relevant studies, therefore MYLK.AS1 and GAS5.AS1, which have
been shown to be strongly associated with tumors in prior research, were
chosen. In the U251 cell line, the expressions of GAS5.AS1 and MYLK.AS1
were up-regulated and down-regulated, respectively (Figure 7).
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FIGURE 4
Verification the prognostic value of risk score. Kaplan-Meier curves of LGGs patients in the TCGA training cohort (A) and testing cohort (B). AUC values
at 1, 3, and 5 years in the TCGA training cohort (C) and testing cohort (D). (E) Nomogram integrating risk score and clinical variables predicts 1-, 3-, and
5-year OS probabilities.

4 Discussion

Low-grade gliomas are primary brain tumors that tend to occur in
young people. Common treatments include surgery and
chemotherapy, accompany with good prognosis and long survival
(35). But with our timely treatment, it will seriously affect the quality
of life. Therefore, new approaches to LGG diagnosis and treatment
are urgently needed.

Has a fundamental effect on biological processes (36), copper can
regulates several biological pathways based on external stimulation

Frontiers in Oncology

(37). The copper accumulation is closely related to tumor
proliferation and growth, angiogenesis, and metastasis (19, 37).

In this research, by analyzing the clinical data of LGG patients in
TCGA and combining it with coproptosis, we constructed 5
(GAS5.AS1, MYLK.AS1, AC142472.1, AC011346.1, AL359643.3)
cuproptosis-related IncRNAs prognostic models, analyzed and
predicted their clinical prognosis, and found the relationship
between them and tumor immunity.The discriminability and
precision of the developed IncRNA signatures were validated using
Kaplan-Meier survival analysis and area under the curve (AUC). The

frontiersin.org


https://doi.org/10.3389/fonc.2022.1087762
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wen et al.

skeletal system development {
pattern specification process
regionalization { [ ]
embryonic organ development { @
anterior/posterior pattern specification { [ ) -
embryonic organ morphogenesis { @ &
skeletal system morphogenesis { [ )
embryonic skeletal system development1{ [ ]
cartilage development | [
‘embryonic skeletal system [ )
collagen-containing extracellular matrix ®
external side of plasma membrane ®
collagen trimer °
platelet alpha granule: °
complex of collagen trimers{ @ @
platelet alpha granule lumen{ @ )
MHC class l protein complex{ ~ ®
MHC protein complex{  ®
fibrillar collagen trimer{ @
banded collagen fibril{_®
'DNA-binding transcription activator activity, RNA
DNA-binding transchSHSR S5l RN
ceptor ligand activity-
signaling receptor activator activity
immune receptor activity ° .
G protein-coupled peptide receptor activity ° W
peptide receptor activity (]
ligand-gated ion channel activity )
chemokine binding °
MHC class l receptor activty
0.025 0.050 0.075 0.100 0125
GeneRatio

Enrichment plot: EETROEH G Gl

HALLMARK_MTORC1_SIGNALING _

Enrichment plot:
EalaR e TR MESEMCHVMAL TRANSIT _

FIGURE 5
Functional analysis of DEGs. (A, B) GO and KEGG pathway enrichment analyses of DEGs in low-risk and high-risk groups. (C) In GSEA, the top 8

pathways or biological processes were sorted by P value.

test set was then used to validate the risk model’s predictive value. The
prognostic model performed well in ROC curve analysis, with auc
values between 0.88 and 0.77. In addition, the risk score was
determined to be an independent risk factor. Thus, the model
demonstrated high clinical predictive value. In addition, the
signature consists of just five IncRNAs, making it more applicable
to clinical applications than previous signatures.

GAS5-AS1 is a down-regulated gene found in glioma tissues and
cells. Its high expression can inhibit the proliferation, migration, and
invasion of glioma cells. The expression of GAS5-AS1 is related to the
tumor grade of glioma and can be used as a new target for the
treatment and prognosis prediction of glioma (38). In glioma tissues
and cells, IncRNA GAS5-AS1 was repressed, whereas miR-106b-5p
was increased. Through the sponge effect, InNcRNA GAS5-AS1 may
bind miR-106b-5p, therefore promoting the expression of its target
gene TUSC2 and inhibiting the growth and spread of glioma (38). In

addition, MYLK-AS1 has been found to promote the growth and
invasion of hepatocellular carcinoma cells through EGFR/HER2-
ERK1/2 signal pathway (39), At the same time, it can also target
miR-424-5p/E2F7 axis, activate VEGFR-2 signal pathway, and
promote tumor progression and angiogenesis (39), And promote
the invasion of nephroblastoma (40). Combined with our research, it
may help us to better understand the molecular mechanism of glioma
progression. Our research expands the field and provides a reference

and direction for their application in cuproptosis and LGG.
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Furthermore, based on the 5 IncRNA risk models developed, we
estimated the risk scores of LGG patients in the TCGA database and
categorized them into high-risk and low-risk groups. Then,
Enrichment Analysis was performed. GSEA analysis revealed that
the differences between the high-risk and low-risk groups were
primarily enriched in the mTORCI signal, the KARS signal, and the
apoptosis. The mTOR pathway is an important regulator of cell
survival or proliferation and plays a central role in regulating many
basic cellular processes from protein synthesis to autophagy (41). It
has been reported that the expression of mTOR pathway is up-

regulated in GBM (42). At the same time, mTOR can promote the
differentiation and expansion of CD4+ FoxP3+ regulatory T cells
and CD8+ memory T cells, and inhibit CD8+ and CD4+ effector T
cells (43, 44). This is consistent with our findings in GSEA, but its
specific mechanism remains to be further studied, which provides a
reference research direction for cuproptosis-related genes to predict
the prognosis of LGG gliomas. Complex signaling cascades
stimulate RAS, which then activates downstream signaling
pathways to regulate a wide variety of cellular functions (45). The
KRAS gene, which is part of the RAS gene family, is tied with glioma
development and progression (46, 47). KRAS influences the
inflammatory milieu of cancer by activating the MAPK and PI3K
signaling pathways, which results in the release of additional IL-6/
IL-8 cytokines and cancer cell proliferation (48, 49). As for
apoptosis, it is inseparable with tumor and almost participates in

the whole process of tumor.
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Together, these studies support our findings, while there are still
many important questions remain unanswered. The specific
mechanism of coproptosis-related IncRNAs in LGG, and how they
affect tumor development by affecting immunity need more details.

Our data provides a direction and a certain possibility for the
treatment of LGG. But there are still certain limitations. Our sample
was based entirely on public databases with limited clinical evidence.
The prognostic model established in this study needs further
experimental verification.
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A novel prognostic model

related to oxidative stress

for treatment prediction in
lung adenocarcinoma

Haijun Peng, Xiaoging Li, Yanchao Luan, Changjing Wang
and Wei Wang*

Department of Thoracic Surgery, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung
Disease, Shijiazhuang, Hebei, China

Background: The prognostic model based on oxidative stress for lung
adenocarcinoma (LUAD) remains unclear.

Methods: The information of LUAD patients were acquired from TCGA dataset. We
also collected two external datasets from GEO for verification. Oxidative stress-
related genes (ORGs) were extracted from Genecards. We performed machine
learning algorithms, including Univariate Cox regression, Random Survival Forest,
and Least Absolute Shrinkage and Selection Operator (Lasso) analyses on the ORGs
to build the OS-score and OS-signature. We drew the Kaplan-Meier and time-
dependent receiver operating characteristic curve (ROC) to evaluate the efficacy of
the OS-signature in predicting the prognosis of LUAD. We used GISTIC 2.0 and
maftool algorithms to explore Genomic mutation of OS-signature. To analyze
characteristic of tumor infiltrating immune cells, ESTIMATE, TIMER2.0,
MCPcounter and ssGSEA algorithms were applied, thus evaluating the
immunotherapeutic strategies. Chemotherapeutics sensitivity analysis was based
on pRRophetic package. Finally, PCR assays was also used to detect the expression
values of related genes in the OS-signature in cell lines.

Results: Ten ORGs with prognostic value and the OS-signature containing three
prognostic ORGs were identified. The significantly better prognosis of LUAD
patients was observed in LUAD patients. The efficiency and accuracy of OS-
signature in predicting prognosis for LUAD patients was confirmed by survival
ROC curves and two external validation data sets. It was clearly observed that
patients with high OS-scores had lower immunomodulators levels (with a few
exceptions), stromal score, immune score, ESTIMATE score and infiltrating
immune cell populations. On the contrary, patients with higher OS-scores were
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more likely to have higher tumor purity. PCR assays showed that, MRPL44 and
CYCS were significantly higher expressed in LUAD cell lines, while CAT was
significantly lower expressed.

Conclusion: The novel oxidative stress-related model we identified could be used
for prognosis and treatment prediction in lung adenocarcinoma.

KEYWORDS

lung adenocarcinoma, oxidative stress, prognostic model, machine learning,
tumor microenvironment

Introduction

According to the global cancer statistics analysis in 2020, the
incidence of lung cancer ranks second only to breast cancer in the
world, accounting for about 18% of all cancer deaths, and being the
leading cause of cancer death in the world (1). The causes of lung
cancer are very complex, including history of exposure to smoking
and secondhand smoke, air pollution, history of pulmonary diseases,
family history of cancer, occupational exposure to silica and asbestos,
poor diet, mental and psychological factors (2-4). The early
symptoms of lung cancer are not obvious. Generally, there are
corresponding clinical symptoms in the middle and late stage, such
as chest pain, hemoptysis, etc. According to relevant studies, 75% of
lung cancer patients have been diagnosed at stage III or IV, at which
time they have lost the opportunity for surgery, and the treatment
means are relatively limited. Conventional radiotherapy and
chemotherapy have no obvious effect, and the survival and
prognosis are very poor (5). The overall 5-year survival rate for
patients with lung cancer is 19%, which drops to 5% if distant
metastasis is present at the time of diagnosis, and approximately
57% for patients in the localized stage (6). The diagnosis and
treatment of lung cancer are still the focus of current research.

According to pathological types, lung cancer can be divided into
non-small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC). NSCLC accounts for about 85% of all cases diagnosed with
lung cancer, which mainly includes lung adenocarcinoma (LUAD),
lung squamous cell carcinoma (LSCC), and large cell lung cancer
(LCLC) (7). LUAD is the most common pathological type of lung
cancer, accounting for approximately 50-70% of surgically resected
lung cancers (8) and almost 50% of all lung cancers (9). Precision

Abbreviations: NSCLC, non-small cell lung cancer; SCLC, small cell lung cancer;
LUAD, lung adenocarcinoma; LSCC, lung squamous cell carcinoma; LCLC, large
cell lung cancer; TCGA, The Cancer Genome Atlas; ORG, oxidative stress-related
gene; ROC, receiver operating characteristic; NCI, National Cancer Institute;
FPKM, fragments per kilobase of transcript per million fragments mapped; TPM,
transcripts per kilobase million; LASSO, least absolute shrinkage and selection
operator; CNV, copy number variation; GISTIC, Genomic Identification of
Significant Targets in Cancer; ssGSEA, single sample gene set enrichment
analysis; GSVA, Gene Set Variation Analysis; ESTIMATE, Estimation of Stromal
and Immune cells in Malignant Tumor tissues using Expression; GDSC, Genomics

of Drug Sensitivity in Cancer.
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medicine for disease requires accurate prognostic prediction, such as
the risk of future recurrence after the initial treatment and
responsiveness to different treatments (10, 11). At present, TNM
staging is still the main basis for the treatment of LUAD and has been
used clinically for many years as a prognostic predictor of LUAD (12).
However, the reproducibility and discrimination ability of TNM
staging for prognosis prediction are still not satisfied, and the
prognosis is also different among LUAD patients with the same
pathological type and stage. At the same time, although the
emerging diagnosis and treatment technologies such as gene testing,
targeted therapy and immunotherapy have been applied in the
clinical diagnosis and treatment of lung cancer, the overall survival
rate of lung cancer has only slightly improved compared with other
malignant tumors (6, 13). Therefore, there are individual differences
in LUAD, and prognosis prediction needs individual predictors.

Tumors often have oxidative stress (OXS), which is an imbalance
between oxidation and anti-oxidation in the body that causes aberrant
oxidative signal regulation and macromolecular oxidative damage
(14). Cellular OXS is caused by ROS accumulation (15). OXS is the
principal cause of cell damage, targeting intracellular macromolecules
and promoting and suppressing tumor growth (14, 16-18). Tumor
cell redox homeostasis control may improve tumor therapy. OXS
regulates tumor cell fate in various ways that depend on tumor type
and etiology. Future study will focus on controlling OXS’s anti-tumor
and tumor-promoting effects. We can evaluate OXS heterogeneity in
cancers and find new therapeutic targets using bioinformatics and
other big data analysis methods.

With the emergence of public biomedical databases such as
TCGA (The Cancer Genome Atlas) database, the use of
bioinformatics to mine disease gene data has become an important
direction of disease research (19). TCGA aims to focus on acquired
changes of cancer genes. Up to now, a total of 33 types of cancers have
been included in TCGA database (19). Clinical sample information
and sequencing data (including transcriptome data, epigenetic data,
genomic mutation data, etc.) of more than 20,000 patients can be
accessed openly, which has become an important database for cancer
research (19, 20). The gene expression data and clinical information
of LUAD patients needed in this study were obtained from public
databases. In this study, we obtained transcriptome and
corresponding clinical data from TCGA, Genecards, and GEO
databases. Firstly, Univariate Cox regression analysis was performed
and oxidative stress-related genes (ORGs) affecting overall survival of
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LUAD were selected. Random Survival Forest and Least absolute
shrinkage and selection operator (LASSO) analyses were used to
screen and construct the OS-signature. We carried out efficacy
evaluation for the OS-signature of LUAD using Kaplan-Meier and
receiver operating characteristic (ROC) curves and the LUAD-cohort
from GEO was used to validate the OS-signature. In addition, we
evaluated the somatic mutation, genomic mutation, immunological
characteristics, and sensitivity to chemotherapy for OS-signature.
Finally, Quantitative Real-time PCR assays were used to detect the
expression of the three genes establishing the OS-signature in LUAD
cell lines.

Materials and methods

Collection and preprocessing the data of
lung adenocarcinoma

The Cancer Genome Atlas (TCGA) is a major government-
funded research initiative funded by the National Cancer Institute
(NCI) and the National Human Genome Research Institute (NHGRI)
(21). Transcripts and clinical information of lung adenocarcinoma
(LUAD) were extracted from TCGA (https://xenabrowser.0S/) (19,
22). We excluded LUAD patients without information of OS (Overall
Survival), thus obtaining the clinical information and expression
profiles of 502 LUAD patients. The data form of fragments per
kilobase of transcript per million fragments mapped (FPKM) was
transformed into transcripts per kilobase million (TPM) (22). We also
used GEO data, including GSE37745 and GSE31210, generated from
Affymetrix Human Genome U133 Plus 2.0 chip based on GPL570
platform as external validation groups (23). Genecards (https://www.
genecards.org) is a comprehensive searchable gene database, where
we can obtain information about almost all known human genes (24,
25). In order to obtain genes related to oxidative stress (oxidative
stress related genes, ORGs), we set the screening threshold as
relevance score>20 (26).

Establishment of the OS-signature for LUAD

After collection and preprocessing the data of LUAD, the
Univariate Cox regression analysis was performed on the ORGs
collected to identify ORGs with prognostic value (prognostic
ORGs, P<0.05) (27). We used randomForestSRC package in R
to execute Random Survival Forest (RSF) analysis, thus
filtrating prognostic ORGs with greater value (variable
importance>0.25) (28). Least absolute shrinkage and selection
operator (LASSO) analysis is a compression estimation method
for linear model (29). The regression coefficients can be
compressed by minimizing the sum of residual squares under
the constraint that the sum of absolute values of various
coefficients is less than a constant, thus getting a sparse model
(29).
dimensional and collinearity data (30). The Cox regression

This model can effectively select variables for high
model for LASSO analysis provided by glmnet package in R

software (31) was used to calculate the OS-scores and construct
the prognostic OS-signature for LUAD.
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Efficacy evaluation for the OS-signature
of LUAD

The survminer package in R software was used to select the best
separated value (cutoff value) of gene expression or OS-scores. The
survival curves (Kaplan-Meier curves) of the high- or low-risk groups
were drawn, and the survival differences between the two groups were
compared (32). The receiver operating characteristic curve (ROC) is
also known as the sensitivity curve (33). The research method is to
analyze the Area Under the ROC Curve (AUC) of the research objects
to judge the recognition ability of different diagnostic test objects for
diseases. The timeROC package of R software was used to draw time-
dependent (1-, 3-, and 5-year) ROC curves to evaluate the diagnostic
efficacy and predictive effect of OS-signature for LUAD.

Genomic mutation analysis for OS-signature
in LUAD

Somatic mutation and copy number variation (CNV) data of
LUAD patients were downloaded from cBioPortal (http://www.
cbioportal.org/datasets) (34) and FireBrowse (http://firebrowse.org/)
(35) respectively. To determine the mutational burden in LUAD
patients, the total number of non-synonymous mutations in LUAD
was calculated. Somatic alterations of driver genes in LUAD were
evaluated by OS-signature grouping. The R software package maftool
was used to identify the driver genes of LUAD and analyze the top 20
driver genes with the highest frequency of change. We assessed
genomic characteristics by Genomic Identification of Significant
Targets in Cancer 2.0 (GISTIC 2.0, https://gatk.broadinstitute.org)
analysis (36).

Characteristic analysis of tumor infiltrating
immune cells

According to the transcriptome expression data from TCGA-
LUAD cohort, the single sample gene set enrichment analysis
(ssGSEA) algorithm in R package GSVA (Gene Set Variation
Analysis) was used to rank the genes contained in the sample
according to their expression level from high to low, and the rank
of all genes was obtained (37). Each type of immune cell is
characterized by a separate subset of genes. In this study, 783 genes
were used to characterize 28 common immune infiltrating cell types.
According to the background gene sets generated by each sample and
arranged according to the expression situation, the enrichment scores
of all samples for 28 types of immune infiltrating cells in each subset
could be obtained by systematic calculation (38, 39). The advantages
of this method are that it uses gene sets instead of single genes to
annotate immune cell subsets and combined with multiple validation
methods to improve the annotation accuracy of enrichment scores.
The ESTIMATE ((The Estimation of Stromal and Immune cells in
Malignant Tumor tissues using Expression) method was used to
evaluate the ESTIMATE score, immune score, and stromal score of
each LUAD patient (40). Besides, we assessed the levels of six kinds
immune infiltrating cells (B cell, T cell CD4, T cell CD8, Neutrophil,
Macrophage, and DC) via Tumor Immune Estimation Resource 2.0
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(TIMER 2.0; http://timer.cistrome.org/) (41). We also used the
MCPcounter algorithm to estimate the relative proportions of ten
immune cells (T cells, CD8 T cells, Cytotoxic lymphocytes, B lineage,
NK cells, Monocytic lineage, Myeloid dendritic cells, Neutrophils,
Endothelial cells, and Fibroblasts) in LUAD (42). We extracted seven
kinds of immunomodulators (Antigen presentation, Cell adhesion,
Co-inhibitor, Co-stimulator, Ligand, Other, and Receptor) from
previous study to explore the association between OS-scores and
immune processes (43).

Chemotherapeutics sensitivity analysis for
OS-signature in LUAD

The Genomics of Drug Sensitivity in Cancer (GDSC) database
was used to screen the wide range of chemotherapeutics for LUAD
(44). The prediction model was constructed based on Ridge’s
regression between drug sensitivity and expression profile of cell
lines using pRRophetic algorithm (45, 46). Subsequently, we
calculated the IC50 value of corresponding chemotherapeutics for
each LUAD patients.

Quantitative real-time PCR assays detecting
gene expression in cell lines

The human normal lung epithelial cells named BEAS-2B was
supplied by Beyotime Biotechnology (Hangzhou, China). The LUAD
cell lines, including A-549 and NCI-H1299, were purchased from
National Collection of Authenticated Cell Cultures (Shanghai,
China). BEAS-2B and NCI-H1299 were cultured in 90% RPMI
(Roswell Park Memorial Institute)-1640 with 10% FBS (fetal bovine
serum). A-549 was cultured in 89% F-12K + 10% FBS + 1% Glutamax.
We extracted the total RNA of the cell lines by RNAsimple Total RNA
Kit (Tiangen, China). Whereafter, to acquire cDNA, we reverse
transcribed the cell RNA that we have obtained applying PrimeScript
RT reagent Kit (Takara, Otsu, Japan). Finally, based on the premixed
system of 2 UL cDNA with SYBR Premix Ex Taq (Takara, Otsu, Japan)
and primers, we detected the expression values of related genes in cell
lines by Applied Biosystems StepOne Plus Real-Time PCR system (Life
Technologies, Grand Island, NY, USA). The primers of the target gene
were supplied by Sangon Biotech (Shanghai, China). The sequences of
the primers used were listed in Table 1.

Results

Establishment of OS-signature for patients
with LUAD

For LUAD, we carried out the Univariate Cox regression analysis
on a total of 80 OXRGs matched (relevance score>20). We identified a
total of ten OXRGs with prognostic value (Figure 1A), including eight
prognostic genes with HR>1 (MRPL44, CYCS, G3BP1, GFM1, SOD1,
TXN, OSGIN2, and CRP) and two prognostic genes with HR<1 (CAT
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TABLE 1 The primer sequences in PCR analysis.

SYlele] Sequences (5’-3')
MRPL44-F TTGAAGACGAGTACCCAGACA
MRPL44-R GGGCTCCAATAACTGCAAAGAA
CYCS-F CTTTGGGCGGAAGACAGGTC
CYCS-R TTATTGGCGGCTGTGTAAGAG
CAT-F TGGGATCTCGTTGGAAATAACAC
CAT-R TCAGGACGTAGGCTCCAGAAG
GAPDH-F GGAGCGAGATCCCTCCAAAAT
GAPDH-R GGCTGTTGTCATACTTCTCATGG

and XBP1). Hence, we observed eight malignant factors and two
protective factors for patients with LUAD (Figure 1A). Whereafter,
we conducted Lasso (Figures 1-C) and RSF (Figures 1D-E) analyses
on the ten prognostic ORGs gained. The OS-signature ended up
containing three genes: CAT, CYCS, and MRPL44 (Figures 1B-E).
The three prognostic ORGs selected above were weighted by the
regression coefficients of Lasso regression model, and finally the
calculation formula of OS-signature for prognosis assessment of
LUAD was obtained: OS-score =1.0002*CYCS - 0.9272*CAT +
1.7096*MRPL44. Figures 1B, C displayed the lambda selection
diagram of the three genes in the OS-signature. The distribution of
error rates generated by RSF analysis was shown in Figures 1D, E.

Evaluating the efficacy of OS-signature
for LUAD

After establishing the OS-signature based on three prognostic
ORGs (CAT, CYCS, and MRPL44) for LUAD, we computed the OS-
score for each LUAD patient based on the LASSO coefficients and
expression value for each ORG. We compared the OS-score of LUAD
patients in TCGA database among clinical features (Stage, Gender,
Age and Survival Status) and the expression values of the three ORGs
included in the OS-signature, which was shown in the heatmap
(Figure 2A). Overall, patients with high OS-scores were more likely
to have high expression of MRPL44 and CYCS, whereas patients with
high OS-scores were strongly associated with low expression of CAT
(Figure 2A). Kaplan-Meier analysis was used to analyze the survival
and prognosis of LUAD patients in TCGA. As shown in the
Figure 2B, patients with low OS-score had a better prognosis, while
patients with high OS-score had a worse prognosis (Figure 2B). The
AUCs of 1-year (AUC=0.688), 3-year (AUC=0.668), and 5-year
(AUC=0.660) survival ROC curves predicted by the OS-signature
were all larger than 0.66, suggesting the efficiency of OS-signature in
predicting prognosis for LUAD to a certain extent (Figure 2C). To
further verify the conclusion, two independent external datasets
(GSE37745 and GSE31210) were included in our study, and the
significantly better clinical outcomes of LUAD patients with lower
OS-scores were observed (Figures 3A, B). Therefore, OS-signature
may serve as a malignancy factor for LUAD.
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FIGURE 1
Establishment of OS-signature for patients with LUAD. (A) Forest plot for Univariate Cox regression analysis identifying ten oxidative stress related genes
(MRPL44, CYCS, G3BP1, GEM1, SOD1, TXN, OSGIN2, CRP, CAT, and XBP1). (B, C) Lambda selection diagram for Least Absolute Shrinkage and Selection
Operator (Lasso) analysis identifying three oxidative stress related genes (CAT, CYCS, and MRPL44) in the OS-signature. (D) The distribution of error rates
in Random Survival Forest model. (E) The distribution of the variable relative importance of 12 TRP-related genes (variable importance>0.25).

Genomic mutation analysis for OS-signature
in LUAD

We carried out genomic mutation analysis for OS-signature in
LUAD. From the waterfall diagram (Figures 4A, B), we could find that
TP53, TTN, CSMD3, MUC16, RYR2, ZFHX4, LRP1B, USH2A,
SPTA1, XIRP2, KEAP1, KRAS, FLG, CSMD1, MUC17,
ADAMTS12, APOB, PAPPA2, COL11A1, and FAT3 were the top
20 genes with the highest mutation rate in LUAD patients with high
OS-scores (Figure 4A). TP53, TTN, MUCI16, RYR2, CSMD3, LRP1B,
USH2A, KRAS, FLG, ZFHX4, ANK2, SPTA1, XIRP2, ZNF536,
NAV3, COL11A1, FAT3, PCDH15, PCLO, and TNR were the top
20 genes with the highest mutation rate in LUAD patients with low
OS-scores (Figure 4B). Thus, the mutation rates of TP53, TTN,
MUC16, RYR2, ZFHX4, LRP1B, USH2A, SPTA1, XIRP2, KRAS,
FLG, COL11Al, and FATS3 in the two subgroups were both relatively
high. We performed Pair-wise Fisher’s Exact test to detect mutually
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exclusive or co-occurrence events (Figures 4C, D). We also Draw
forest plot for mutation differences between cohorts.

Genomic characterization landscapes of LUAD patients with high OS-
scores or patients with low OS-scores were analyzed by GISTIC algorithm
and shown in Figure 5A. Figure 5B showed the plots significantly altered
cytobands as a function of number samples in which it is altered and
number genes it contains. Figure 5C showed a genomic plot with segments
highlighting significant Amplifications and Deletion regions. Further, we
drew the detailed amplificated or deleted CNV onco-plots of high OS-
score and low OS-score subgroups (Figure 5D).

Characteristic analysis of tumor infiltrating
immune cells

Since immunomodulators (IMs) play a critical role in tumor
immunotherapy, we assessed the correlation between the IMs
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FIGURE 2

Evaluating the efficacy of OS-signature in TCGA for LUAD. (A) The heatmap displaying the distribution of the three oxidative stress related genes (CAT,
CYCS, and MRPL44) in the OS-signature, clinicopathological characteristics (Stage, Gender, Age, Survival Status), and OS-score. Red represents high
gene expression and blue represents low gene expression. (B) Kaplan-Meier curves displaying the correlation between the OS-score and LUAD patients.
The blue curve represents the patients with lower OS-score, and the red curve represents patients with higher OS-score. (C) The 1-year (0.688), 3-year
(0.668), 5-year (0.660) survival ROC curves predicted by the OS-signature. Different colored curves represent different years. ****p<0.0001.
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levels (Antigen presentation, Cell adhesion, Co-inhibitor, Co-

stimulator, Ligand, Other, and Receptor). It was clearly
observed that patients with high OS-scores had lower IMs
levels, with a few exceptions, such as CD276, TNFSF9, and
HMGBI (Figure 6A). From a general view, the level of stromal

FIGURE 3

Evaluating the efficacy of OS-signature in GEO for LUAD. (A, B) Kaplan-Meier curves displaying the correlation between the OS-score and LUAD patients in
GSE37745 (A) and GSE31210 (B). The blue curve represents the patients with lower OS-score, and the red curve represents patients with higher OS-score.
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(Figure 6B). It was worth mentioning that patients with

higher OS-scores were more likely to have higher tumor

purity (Figure 6B).
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FIGURE 4
The somatic mutation features of the established OS-signature for LUAD. (A, B) The waterfall plot of somatic mutation features established with high (A)
and low (B) OS-score. (C) We performed Pair-wise Fisher's Exact test to detect mutually exclusive or co-occurrence events. (D) Forest plot for mutation
differences between cohorts.

Chemotherapeutics sensitivity analysis for
OS-signature in LUAD

In order to find more effective chemotherapeutics drugs for
LUAD patients with high OS-scores, we evaluated the differences in
chemotherapeutics sensitivity between subgroups with high OS-score
or low OS-score as described in the MATERIALS AND METHODS.
The IC50 levels of nine chemotherapy drugs (Osimertinib_1919,
Sapitinib_1549, Acetalax_1804, Ibrutinib_1799, Erlotinib_1168,
Gefitinib_1010, AZD3759_1915, Afatinib_1032, and
Lapatinib_1558) were compared between subgroups with high OS-
score or low OS-score. We found that the IC50 values of the nine
chemotherapy drugs were lower in LUAD patients with high OS-
scores than that of LUAD patients with low OS-scores, suggesting
LUAD patients with high OS-scores may be more sensitive to these

nine chemotherapeutics drugs (Figure 7).

Quantitative real-time PCR

We selected the three genes in the OS-signature to detect their

expression in cell lines.
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As could be seen from the survival curves, the higher the
expression of MRPL44 (Figure 8A) and CYCS (Figure 8B), the
worse the prognosis, while the opposite was true for CAT
(Figure 8C). Compared with control cell lines (BEAS-2B), MRPL44
(Figure 8D) and CYCS (Figure 8E) were significantly higher expressed
in cancer cell lines (A549 and H1299), while CAT (Figure 8F) was

significantly lower expressed.

Discussion

Lung cancer is a malignant tumor originating from the bronchial
epithelium. According to histopathological classification, lung cancer
is divided into non-small cell lung cancer (NSCLC) and small cell
lung cancer (SCLC). NSCLC is the main pathological type of lung
cancer, and lung adenocarcinoma (LUAD) accounts for the vast
majority of NSCLC. Lung cancer ranks second only to breast
cancer in incidence and is the most important cause of cancer-
related deaths. Late diagnosis, poor sensitivity to
chemoradiotherapy, acquired resistance to targeted therapy and
other related factors can lead to poor prognosis of patients with
lung cancer (47, 48). At present, histopathological diagnosis and
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tumor staging system are still the main basis for predicting the
prognosis and survival of lung cancer patients. However, traditional
methods cannot accurately assess the prognosis of patients with
LUAD. In addition, Computed Tomography (CT) and serum
tumor markers such as carcinoembryonic antigen (CEA) are often
used to determine the prognosis of lung cancer. However, traditional
methods are limited by cumulative radiation damage, low sensitivity
and specificity (49, 50). Therefore, clinicians need an accurate
prognostic prediction model to help optimize the treatment strategy
of LUAD patients. Bioinformatics is one of the emerging fields of
biological research. It uses mathematics, statistics and computer
technology to process and analyze biological data. In our study,
extracting data from public database, we identified eight prognostic
genes with HR>1 (MRPL44, CYCS, G3BP1, GFM1, SODI, TXN,
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OSGIN2, and CRP) and two prognostic genes with HR<1 (CAT and
XBP1). And the OS-signature could be used for prognosis and
treatment prediction in LUAD.

Because of the functional correlation between genes in a cell,
diseases are rarely the result of abnormalities in a single gene, but
rather result from abnormalities in a complex intracellular gene
network (51-53). Like most diseases, the occurrence and
development of LUAD is a complex process involving multiple
genes and multiple pathogenic mechanisms, involving the
activation of proto-oncogenes and the inactivation or mutation of
tumor suppressor genes (54, 55). Therefore, the application of
network for gene interaction in LAC research can simplify and
visualize complex and high-throughput data. Compared with the
focus on local gene function in single gene and single molecule
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FIGURE 6
Evaluation of immunological characteristics for OS-signature. (A) Correlation of OS-scores with seven immunomodulators in LUAD. Red represents high
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different OS-scores. *p<0.05, ***p<0.001, ****p<0.0001.

biological research methods, network analysis focuses more on the
integrity and systematization of biological processes (51). In the OS-
signature, there were three ORGs (CAT, CYCS, and MRPL44),
forming a network to predict the prognosis of LUAD. It is more
reliable to explore the occurrence and development of LUAD from
the perspective of multiple genes.

For early and mid-stage NSCLC that cannot be completely
resected by surgery, and for some locally evolved or metastatic
NSCLC that is advanced or advanced (stage IITA-IV),
comprehensive systemic and local combination therapy can be
used, including surgical resection, chemotherapy, radiotherapy,
targeted therapy and immunotherapy. At present, the 3rd
generation chemotherapy drugs, including Docetaxel, Vinorelbine,
Gemcitabine and Paclitaxel, have been widely used in clinical practice,
combining platinum drugs to develop personalized treatment plans
for patients. Radiotherapy is an effective means of local treatment of
lung cancer, which plays a positive role in slowing down the clinical
symptoms, prolonging the survival time and improving the quality of
life of patients with advanced lung cancer. These treatment methods
have been widely studied and applied at home and abroad. Genomic
studies have shown that adenocarcinoma and squamous cell
carcinoma have significantly different gene mutation types, and
tyrosine kinase inhibitor (TKI) can be used to inhibit the catalytic
phosphorylation of the corresponding kinases in the treatment of
NSCLC patients with significant clinical benefits. Genomic studies
have shown that adenocarcinoma and squamous cell carcinoma have
significantly different gene mutation types, and tyrosine kinase
inhibitor (TKI) can be used to inhibit the catalytic phosphorylation
of the corresponding kinases in the treatment of NSCLC patients with
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significant clinical benefits (56, 57). A variety of eftective and well-
tolerated TKIs targets, including EGFR, ALK, ROSI, HER2, etc., have
emerged continuously, and promoted significant progress in cancer
treatment. For example, EGFR driver gene mutations have a high
incidence in various subtypes of NSCLC. The most common EGFR
mutations include exonl9 deletion (delE746-750, etc.) or exon 21
arginine substitution leucine (L858R) mutation. EGFR inhibitors such
as Gefitinib, Erlotinib, Afatinib, or Osimertinib play an important role
in the treatment of NSCLC patients (58). However, some studies have
shown that the proportion of NSCLC patients carrying EGFR
mutations is about 30-40%, and there are still a large number of
patients who cannot benefit directly from targeted therapy (59). With
the development of Crizotinib and next-generation ALK-TKIs,
considerable progress has been made in the treatment of patients
with ALK recombinant NSCLC (60). Crizotinib, a first-generation
ALK inhibitor originally approved for patients with ALK-positive
NSCLC, was found to have a median progression-free survival of 8-10
months in treated patients (61). Subsequent randomized controlled
trials compared Crizotinib with chemotherapy in patients undergoing
treatment with a significant improvement in progression-free
survival. Subsequently, second-generation ALK inhibitors Ceritinib,
Alectinib and Brigatinib were developed to overcome Crizotinib
resistance in patients (62). So far, other treatments, including third-
generation ALK inhibitors Lorlatinib, Entrectinib and Ensartinib,
have shown better results (60). For the above mentioned
chemotherapeutic drugs and small molecule targeted therapy drugs,
the Genomics of Drug Sensitivity in Cancer (GDSC) database was
created. The immediate goal is to identify potential therapeutic
biomarkers that may predict drug response (chemotherapeutic
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Evaluation of sensitivity to chemotherapy for OS-signature

drugs, small molecule targeted drugs, and other drugs), while the
ultimate goal is to improve the current status of cancer treatment
based on biomarkers (44, 63). It has been shown that changes in the
tumor genome directly affect the therapeutic effect of the tumor (64).
With the emergence of novel compounds, the screening of predictive
biomarkers in their early development process will have a profound
impact on the entire process of new cancer drug development,
including its design, development cost and final outcome (64).
Based on the clinical and basic research background, researchers
present the results of large-scale drug screening in human cancer cell
lines in GDSC, a database that combines detailed genomic profiles
and gene expression analysis to systematically provide biomarker
identification patterns for drug sensitivity science for a variety of
cancer drugs. In our study, we compared the IC50 levels of
Osimertinib_1919, Sapitinib_1549, Acetalax_1804, Ibrutinib_1799,
Erlotinib_1168, Gefitinib_1010, AZD3759_1915, Afatinib_1032, and
Lapatinib_1558 between subgroups with high OS-score or low OS-
score based on GDSC database. We found that LUAD patients with
high OS-scores may be more sensitive to these nine
chemotherapeutics drugs. Our study will provide reference for the
treatment of LUAD.

Recent studies have shown that tumor microenvironment (TME)
plays an important role in the development and treatment of tumors
(65). TME refers to the microenvironment surrounding the occurrence,
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growth and metastasis of tumor cells, including not only the tumor cells
themselves, but also the immune cells, inflammatory cells, fibroblasts,
various signaling molecules, extracellular matrix and blood vessels (66).
To fully understand and overcome the complexity of TME is helpful for
clinicians to provide more feasible and precise individualized treatment
plan for tumor treatment. The rapid development of single-cell
sequencing, second-generation sequencing and other technologies has
gradually deepened researchers’ understanding of the relationship
between T cells and other immune cell populations and
immunotherapy. Tumor-associated immune cells play an important
role in tumor spread, recurrence, metastasis and influencing
immunotherapy treatment (67). They can be used as biomarkers to
predict the efficacy of immunotherapy drugs or predict the prognosis of
patients (67). Increased levels of tumor-infiltrating lymphocytes (TILs),
such as CD4+T cells and CD8+T cells, are associated with
immunotherapy response and longer survival (68). Immune
checkpoint inhibition activates existing TILs, which recognize and
eliminate abnormal and tumor cells, and TILs play a key role in
immunotherapy response. Studies have shown that increased T-cell
infiltration and increased IFN-y-related mRNA expression can increase
ICIs (immune checkpoint inhibitors) benefit and significantly improve
patient prognosis in a variety of tumor types (69, 70). In advanced
NSCLC patients, increased expression of CD8+ TILs detected by IHC or
CD8A mRNA transcripts was associated with prolonged PES treatment
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Quantitative Real-time PCR. (A-C) Kaplan-Meier curves displaying the correlation between the expression of the signature genes, including MRPL44 (A),
CYCS (B), and CAT (C), and the survival status of LUAD patients. The blue curve represents the patients with lower gene expression, and the red curve
represents patients with higher gene expression. (D—F) Quantitative Real-time PCR assays using cell lines for MRPL44 (D), CYCS (E), and CAT (F).

**p<0.01, ***p<0.001, ****p<0.0001

with PD-L1 inhibitors, especially in combination with PD-L1 mRNA
and protein expression, suggesting that integrated biomarkers may
provide higher predictive value (71). Another study using multiple
quantitative immunofluorescences to detect TIL in paraffin tumor
specimens found that ICI treatment resulted in lasting clinical benefits
and longer OS in NSCLC patients with increased CD3+ T-cell
infiltration (72). In addition, studies have found that tumor-associated
macrophages (TAMs) secrete interleukin-10 (interleukin-10), II-10,
Transforming growth factor-B (TGFb) and other immunosuppressive
cytokines play a variety of tumor-promoting effects, which increase the
density of TAM and inhibit other related immune cells (73).

The limitations this study remain. The OS-signature we
constructed and validated by retrospectively using the public
database hence, more prospective studies are needed for clinical
practicability. We selected the three genes in the OS-signature to
detect their expression in cell lines. Biological experiments in this
study are lacking, and more wet experiments are needed to explore
the function of related genes.

In conclusion, immunotherapy by regulating the immune
microenvironment may become a promising new strategy for cancer
treatment. The precise regulation of immune gene expression is the key
to generate strong immunity and intervene the development of cancer.
In our study, we found that patients with high OS-scores had lower
immunomodulators levels except CD276, TNFSF9, and HMGBI1. From
a general view, the level of infiltrating immune cell populations
decreased as the OS-scores increased. It is necessary to further study
the tumor microenvironment (TME) of lung cancer.
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Background: Cholangiocarcinoma (CHOL) is the most prevalent type of
malignancy and the second most common form of primary liver cancer,
resulting in high rates of morbidity and mortality. Necroptosis is a type of
regulated cell death that appears to be involved in the regulation of several
aspects of cancer biology, including tumorigenesis, metastasis, and cancer
immunity. This study aimed to construct a necroptosis-related gene (NRG)
signature to investigate the prognosis of CHOL patients using an integrated
bioinformatics analysis.

Methods: CHOL patient data were acquired from the Gene Expression Omnibus
(GEO) (GSE89748, GSE107943) and The Cancer Genome Atlas (TCGA) databases,
with NRGs data from the necroptosis pathway in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database. Univariate and multivariate regression
analyses were performed to establish the NRG signatures. Kaplan—Meier (KM)
curves were used to evaluate the prognosis of patients with CHOL. Functional
enrichment analysis was performed to identify key NRG-associated biological
signaling pathways. We also applied integrative multi-omics analysis to the high-
and low-risk score groups. Spearman'’s rank correlation was used to clarify the
relationship between the NRG signature and immune infiltration.

Results: 65 differentially expressed (DE) NRGs were screened, five of which were
selected to establish the prognostic signature of NRGs based on multivariate Cox
regression analysis. We observed that low-risk patients survived significantly
longer than high-risk patients. We found that patients with high-risk scores
experienced higher immune cell infiltration, drug resistance, and more somatic
mutations than patients with low-risk scores. We further found that sensitivities
to GW843682X, mitomycin C, rapamycin, and S-trityl-L-cysteine were
significantly higher in the low-risk group than in the high-risk group. Finally,
we validated the expression of five NRGs in CHOL tissues using the TCGA
database, HPA database and our clinical data.
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Conclusion: These findings demonstrate that the five-NRG prognostic signature
for CHOL patients is reasonably accurate and valid, and it may prove to be of
considerable value for the treatment and prognosis of CHOL patients in the

future.
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1 Introduction

Cholangiocarcinoma (CHOL) is a highly heterogeneous
malignancy stemming from biliary epithelia. CHOL is the most
prevalent type of malignancy and the second most common form
of primary liver cancer, accounting for approximately 20% of all
primary liver cancers (1, 2). Surgical treatment, immunotherapy,
chemotherapy, and other comprehensive tumor treatment methods
have changed the prognosis of many patients with CHOL. Patients
with CHOL nonetheless still tend to have unfavorable prognoses,
with only 10% of patients surviving for five years (3). The main
factors contributing to poor prognosis are the heterogeneity,
infiltrative nature, and rapid drug resistance of CHOL, making it
difficult to completely remove the tumor by surgical procedures and
identify the therapeutic target of CHOL (1, 4, 5). There is, therefore, a
pressing need to further explore the occurrence and progression of
CHOL to improve the treatment and survival rates of CHOL patients.

Necroptosis is a self-destruction cellular process that is regulated
via a complex signaling cascade (6), and it is closely related to key
aspects of cancer biology regulation, including tumorigenesis,
metastasis, and cancer immunity (7, 8). There is increasing evidence
that overcoming apoptosis resistance by induction of cancer cell
necroptosis may be an attractive therapeutic approach for patients
with CHOL (9-11). For instance, the application of both TNFo. and
gemcitabine has been shown to induce RIPKI1/RIPK3/MLKL-
dependent necrosis when apoptosis-inhibitory proteins and caspases
are blocked, as evidenced by increased expression of RIPK3 and
MLKL in CHOL cell lines (9, 12). In addition, Xu et al. found that the
alkaloid matrine can induce necroptosis in CHOL by enhancing the
expression of RIP3 and the RIP3/MLKL/ROS signaling pathway, thus
providing a new individualized strategy for overcoming
chemoresistance in CHOL therapy based on the expression of RIP3
(12). Hence, exploring the role of necroptosis in tumorigenesis and the
progression of CHOL has great potential for the diagnosis and
treatment of CHOL patients. The rapid development of high-
throughput sequencing and multi-omics studies has allowed a

Abbreviations: CHOL, Cholangiocarcinoma; TCGA, The Cancer Genome Atlas;
OS, Overall survival; ROC, Receiver operating characteristic; AUC, Area under
the receiver operating characteristic; PCA, Principal component analysis; DEGs,
Differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia
of Genes and Genomes; GSEA, Gene set enrichment analysis; HPA, Human

Protein Atlas.
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substantial body of reliable information to be obtained regarding the
treatment and prognosis of patients with CHOL (13-15).

In this study, we first profiled the necroptosis-related genes in
CHOL and developed a risk prediction model based on five genes to
explore their functional enrichment and ability to predict outcomes.
The performance of the prediction models was validated in three
independent cohorts (TCGA, GSE89748, and GSE107943).
Additionally, we examined the differences in drug resistance,
somatic mutations, and immune infiltration between the low- and
high-risk groups. In brief, our prognostic signature provides a
reliable method for predicting the prognosis of patients with
CHOL, and it offers clinicians a reference for early diagnosis and
treatment of CHOL.

2 Materials and methods
2.1 Data collection and preprocessing

TCGA biolinks was used to extract RNA-Seq data from 36
CHOL and 9 normal samples, as well as relevant clinical
information from TCGA database (http://portal.gdc.cancer.gov)
(16). Additionally, the University of California Santa Cruz
(UCSC) provided FPKM, somatic mutation, and clinical data on
CHOL. In the present study, CHOL datasets GSE89748 and
GSE107943 (17, 18) from the GEO database (https://
www.ncbi.nlm.nih.gov/geo) were downloaded using the GEO
query R package, which was used as the external validation set,
including available expression profile data and clinical information
of bile duct cancer samples. In total, 72 CHOL samples from the
GSE89748 dataset and 30 CHOL samples from the GSE107943
dataset were acquired. A total of 159 necroptosis-associated genes
(NRGs) were obtained from the necroptosis pathway (hsa04217) in
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database.

2.2 Identification of the expression
patterns and biological functions of
DENRGs in CHOL

First, we extracted the NRGg expression matrix from TCGA
and then screened for differentially expressed necroptosis-related
genes (DENRGs) between the CHOL and normal groups using the
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limma package (19). Significant DENRGs were visualized using
volcano plots constructed using the ggplot2 package. The criteria
for differentially expressed genes (DEGs) were FDR < 0.05 and |
log,FC| > 1. Furthermore, differences in DENRGs between the
CHOL and normal groups were visualized using boxplots. DENRGs
were also analyzed based on a protein-protein interaction (PPI)
network using the STRING database (20), and correlations between
them were visualized using heatmaps. To investigate the biological
role of DENRGs, we examined biological processes (BP), cellular
components (CC), and molecular functions (MF) according to the
Gene Ontology (GO) database and KEGG signaling pathways using
the R tool cluster Profile (21). The enrichment significance
thresholds were set at an adjusted p-value of < 0.05.

2.3 Development and validation of
DENRGs-based prognostic models

DENRGs were first identified for their prognostic values in the
TCGA cohort by univariate Cox proportional hazards regression
analysis, and the genes with p-values < 0.05 were then entered into
the multivariate Cox regression analysis. A risk score model was
built based on the expression levels of the prognosis-associated
genes and the contribution coefficient (and beta) of the multivariate
Cox proportional hazard regression model. Based on the above risk
score model, we calculated the prognostic risk value for each patient
sample in TCGA (training cohort), GSE89748 (validation cohort 1),
and GSE107943 (validation cohort 2). All CHOL samples were
divided into high- and low-risk groups, with the median risk score
as the cutoff value. Kaplan-Meier survival analyses were performed
using the ‘survival’ and ‘survminer’ (22) packages between the high-
and low-risk groups. To further assess the clinical diagnostic value
of the risk score, time-dependent receiver operating characteristic
(ROC) curves for overall survival (OS) and area under the ROC
curves (AUCs) at 1, 3, and 5 years in TCGA (training cohort),
GSE89748 (validation cohort 1), and GSE107943 (validation cohort
2) were generated using the R package “survivalROC” (23). OS is
defined as the time from randomization to death. Furthermore, we
constructed a risk plot to explore the relationship between the risk
score and the prognosis status.

2.4 Process of the screening signature for
the Cox regression model and building of
the nomogram models

Univariate Cox regression was performed to examine the
relationship between patient clinical characteristics (age, sex,
stage, pathology, weight, height, and BMI), risk score, and OS.
Significant prognostic factors (p < 0.05) in the univariate analyses
were selected for multivariate Cox regression analysis. Forest plots
were used to present the results of the univariate and multivariate
Cox analyses, including all of the above variables. A nomogram was
built based on the identified variables in the multivariate Cox
regression analysis to facilitate clinical application.
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2.5 Exploration of differences in biological
functions between CHOL subgroups

To determine the differences in biological functions between the
high- and low-risk groups, DEGs between the two groups were
screened using the limma R package with FDR thresholds of < 0.05,
and absolute log,FC > 1. A volcano plot was then used to illustrate
the DEGs using ggplot2. To visualize the expression patterns of
DEGs between the low- and high-risk groups, we used R package
(pheatmap) to generate a heatmap. All DEGs were subjected to GO
and KEGG pathway enrichment analyses using Metascape (http://
metascape.org) (24). A p-value < 0.01 and a minimum of three
counts were set as the cutoff criteria for selecting significant
enrichment results. GO and KEGG analyses were also performed
using the R package “cluster Profiler” to explore the underlying
biological roles of the DEGs (21). The enrichment results were
visualized using bar and dot plots. Gene set enrichment analysis
(GSEA) (25) was performed using cluster Profiler, with a p-value of
< 0.05 as the threshold for significantly enriched KEGG pathways.
The top 20 significantly enriched pathways ranked by normalized
enrichment scores were visualized using a ridgeline plot.

2.6 Applying integrative multi-omics
analysis between the high- and low-risk
score groups

The R package “Rcircos” (26) was used to map the
chromosomal locations of clinically significant NRGs. The
Friends tool was then used to functionally annotate these genes,
which were subsequently estimated by semantic analysis using the R
package GOSemSim (27). By building a ridgeline regression model
based on the Genomics of Drug Sensitivity in Cancer (GDSC)
database (www.cancerrxgene.org/), we predicted the half-maximal
inhibitory concentration (ICsy) for chemotherapy drugs in the
high- and low-risk groups and we inferred the sensitivity of
the patients (28). To detect somatic mutations in CHOL
patients between the high-risk and low-risk subgroups, we used
the mutation annotation format (MAF) in TCGA database. The
results were visualized using a waterfall plot (oncoplot). Using the
online tool Network Analyst (29), we explored the transcriptional
regulators and chemical targets of hub necroptosis genes based on
the JASPAR Tarbase and mir-Tarbase databases.

2.7 Correlation analysis between the
prognostic DENRGs and immune
cell infiltration

Immune infiltration is a significant factor in tumor progression,
treatment, and prognosis. We used the “ESTIMATE” R package to
estimate the stromal score, immune score, and tumor purity in the
high- and low-risk subgroups (30). The R package “ggplot2” was
then applied to generate boxplots to visualize differences between
the two groups for the above-mentioned immune scores and tumor
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purity. CIBERSORT is a deconvolution algorithm that can calculate
the infiltration abundance of 22 immune cell types in all tumor
samples (31). Heatmaps were drawn using the R package pheatmap
to illustrate the fractions of immune cell types for each sample, and
a correlation analysis between 22 immune cell types and prognostic
necroptosis genes was performed using the corrplot package. The
results were visualized using the ‘pheatmap’ package. Immune
infiltration differences between the high- and low-risk groups of
CHOL patients were determined using the ggplot2 package.
Additionally, the most positively and negatively correlated gene-
immune cell pairs were displayed using a scatter plot.

2.8 Immunohistochemical analysis of five
NRGs in HPA

The protein expression of the five NRGs between CHOL and
normal tissues was measured by immunohistochemistry from the
Human Protein Atlas (HPA) (https://www.proteinatlas.org/), which
is a valuable database providing the data of immunohistochemistry
expression for specific human tissues and cells (32).

2.9 Tumor samples collection and
gRT-PCR

A total of 12 CHOL tissue samples and 10 corresponding
normal hepatobiliary duct tissues were obtained from patients
who underwent surgical resection between March 2021 and
October 2022 at the First Affiliated Hospital of Zhengzhou
University, Henan, China. The samples were immediately frozen
in liquid nitrogen after tissue resection. The total RNA of the tissue
samples was extracted using TRIzol reagent (Invitrogen) according
to the manufacturer’s protocol. The RNA samples were reverse-
transcribed into cDNA by using iScriptTM c¢cDNA Synthesis Kit.
RT-qPCR was performed using a thermal cycler (Roche LightCycler
480) using IQTM SYBR® Green Supermixes for Real-Time PCR.
The mRNA expression was normalized to the expression of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA
and counted by the 2-AACt method. The PCR primer sequences
are shown in Table 1. This study conforms to the guidelines issued
in the Declaration of Helsinki and was approved by the Ethics
Committee of the First Affiliated Hospital of Zhengzhou University
(Approval Number: SS-2019-018).

TABLE 1 Primer list of PCR.

10.3389/fimmu.2023.1118816

2.10 Statistical analysis

All data processing and statistical analyses were performed
using R software (version 4.2.1). A detailed description of the
bioinformatics analyses is provided in the corresponding
subsections. * p < 0.05; ** p < 0.01; *** p < 0.001. A p-value <
0.05 was taken as representing statistical significance.

3 Results
3.1 Identification of DENRGs

According to the filter criteria, a total of 67 DENRGs were
screened, including 64 upregulated genes and 3 downregulated
genes. The expression distribution of the DENRGs was visualized
using volcano plots (Figure 1A). Based on the boxplot and
heatmap, it was clear that H2AW, PYGB, PYCARD, CAPN2,
BIRC3, H2AX, CHMP4C, STAT1, CHMP3, CHMP4B, CAPNI,
H2AZI1, and BAX were highly expressed in the CHOL group,
whereas FTL, GLUDI, and PYGL were expressed at very low
levels compared with the normal group (Figure S1; Figure 1B).
Principal component analysis (PCA) of these DENRGs clearly
distinguished the CHOL group from the control group
(Figure 1C). Mutation analysis indicated that missense
mutations were the most common, and TYK2 had the highest
mutation rate, which was a missense mutation with a frameshift
deletion (Figure 1D). The heat map showed that FTL, GLUDI,
and PYGL were positively correlated with each other and
negatively correlated with the other DENRGs (Figure 1E).
Furthermore, the PPI network diagram suggested that CASPS,
MLKL, and RIPK3 exhibited the strongest interactions with the
other DENRGs (Figure 1F).

3.2 GO and KEGG functional analysis of
the DENRGs

The results show that the DENGs were mainly related to cell
death processes, such as programmed necrotic cell death, midbody
abscission, necrotic cell death, mitotic cytokinetic process,
necrotic process and virtual budding, and ESCRT complex,

Gene Name Forward primer Reverse primer
GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG
PYGB AGGTGCGGAAGAGCTTCAAC TCGCGCTCGTAGTAGTGCT
IFNGR2 CTCCTCAGCACCCGAAGATTC GCCGTGAACCATTTACTGTCG
TICAM1 GCCAGCAACTTGGAAATCAGC GGGGTCGTCACAGAGCTTG
STAT6 GTTCCGCCACTTGCCAATG TGGATCTCCCCTACTCGGTG
VPS$4B ATGTCATCCACTTCGCCCAAC TTGCTTGGCTTTATCACCCTG
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FIGURE 1

Identification of DENRGs in the CHOL group. (A) Volcano plot of the DENRGs. Genes indicated in red, blue, and gray colors were significantly
upregulated (Up), downregulated (Down), or not significantly different (Not), respectively. (B) Heatmap showing the expression of 65 DENRGs in the
normal and CHOL samples. Red, CHOL group; Blue, normal group (C) Principal components analysis (PCA) indicating the expression patterns of
DENRGs. (D) Oncoplot of the DENRG mutations. (E) Heat map of the correlation between the DENRGs. Red colors indicate positive correlations and
blue colors represent negative correlations. The darker the color, the stronger the correlation. (F) PPI network of the DENRGs. The larger the node,
the higher the number of interactions with other genes, and the thicker the line, the higher the correlation coefficient.

nucleosome, DNA packaging complex, protein DNA complex,
nuclear chromatin, tumor necrotic factor receiver superfamily
binding, tumor necrotic factor receiver binding, cytokine
receiver binding, ubiquitin-like protein ligase binding, and
protein binding (Figure 2A; Table S1). The KEGG results
suggest that the DENRGs were mainly involved in multiple
functional pathways (e.g., Necroptosis, NOD-like receptor
signaling pathway, Apoptosis, Influenza A, TNF signaling
pathway, Th17 cell differentiation, IL-17 signaling pathway, and
Neutrophil extracellular trap formation pathway) (Figure 2B;
Table S1). A panoramic view of the necroptosis pathway in
KEGG was generated (Figure 2C).
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3.3 Construction of a prognostic model
within necroptosis-associated genes

The 67 DENRGs were subjected to univariate Cox proportional
hazard regression analysis. Five prognostic genes (PYGB, IFNGR2,
TICAMI1, STAT6, and VPS4B) were selected and further analyzed
using multivariate Cox proportional hazards regression analysis.
The coefficients from the multivariate Cox proportional hazards
regression model were used to evaluate the potential prognostic
factors. Risk scores were also calculated in TCGA (training cohort),
GSE89748 (validation cohort 1), and GSE107943 (validation cohort
2) according to the prognostic gene expression values and their
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GO and KEGG enrichment analysis of DENRGs. (A) Dot plot showing the top 10 biological functions enriched in Gene Ontology (GO) terms. (B) Bar
plot showing the top 10 signaling pathways enriched in KEGG terms. (C) Diagrammatic outline of the necroptosis pathway.

regression coefficients. Taking the median risk score of the samples
as the cutoff value, CHOL patients were divided into high- and low-
risk groups. Survival analysis showed that the low-risk group
exhibited a better outcome in TCGA (log-rank test p-value <
0.05) (Figure 3A), GSE89748 (log-rank test p-value < 0.001)
(Figure 3B), and GSE107943 (log-rank test p-value < 0.001)
(Figure 3C). Next, we performed 1-, 3-, and five-year time-
dependent ROC analyses in three independent datasets (TCGA,
GSE89748, and GSE107943). The results show that the AUC of
time-dependent ROC curves was greater than 0.6 in all datasets
(Figures 3D-F). Notably, the AUC of the 1-year time-dependent
ROC exceeded 0.7, indicating that the prognostic risk score had
good prediction abilities. A risk plot also illustrated the distributions
of the risk scores and the OS status in the three dependent datasets
(Figures 3G-I). It is worth mentioning that the increase in the
prognostic risk score and the number of death events in
patients increased.

3.4 Construction and evaluation of the
nomogram model

Univariate and multivariate Cox regression analyses were
performed on the clinical characteristics and risk scores in TCGA

Frontiers in Immunology

to explore the prognostic factors of patients. The results show that
two factors, the risk score and pathologic N, were significantly
associated with patient prognosis (p < 0.05) (Figures 4A, B).
Subsequently, a nomogram model for predicting 1-, 3-, and 5-
year OS was constructed, which integrated the two factors that were
significantly correlated with prognosis: pathologic N and the
prognostic risk score (Figure 4C). Besides, we established
calibration curves to verify the effectiveness of nomogram model
for predicting the rates of OS for CHOL patients at 1, 3, and 5 years.
The results showed that the calibration curves displayed a suitable
agreement between the prediction by nomogram and actual survival
(Figure S2).

A risk classification system was then constructed based on the
risk scores calculated from the nomogram model for each CHOL
patient. Using this system, the enrolled patients were divided into
low- and high-risk groups. The outcomes show that the low-risk
group had the best prognosis, and the high-risk group had the worst
prognosis (Figures 4D, E). Time-dependent ROC analysis showed
that the 1-, 3-, and 5-year nomogram models exhibited AUC > 0.7,
and even the 1- and 3-year time-dependent ROC exhibited AUC >
0.8 (Figures 4F, G). We further used decision curve analysis (DCA)
to evaluate the clinical predictive models. The results showed that
the DCA curves at 1, 3, and 5 years remained above the gray and
black lines between 0 and 1.0, in TCGA CHOL and GSE89748
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Construction and validation of the prognostic model. (A—C). KM survival curves for overall survival in TCGA training cohort (A), GSE89748 validation
cohort (B), and GSE107943 validation cohort (C). (D—F) Time-dependent ROC curve of TCGA cohort (D), GSE89748 cohort (E), and GSE107943
cohort (F). Sensitivity (TRP) = TP/(TP+FN) and false positive prediction rate (FPR) (1-specificity = FP/(FP+TN)) were used as the y-axis and x-axis
variables, where TPs (true positives) are positive predictions which belong to gold standard positives (GSPs), FNs (false negatives) are negative
predictions which belong to GSPs.TP, true positive; FP, false positive; TN, true negative. (G-1) Distributions of risk scores and OS status are shown

for TCGA cohort (G), GSE89748 cohort (H), and GSE107943 cohort (1).

datasets, suggesting that CHOL patients may benefit from decisions
based on the prognostic model (Figures 4H, I).

3.5 ldentification of DEGs and functional
enrichment analysis

Next, we performed differential expression analysis on TCGA
CHOL datasets of the high- and low-risk groups to obtain DEGs.
According to the screening thresholds (|log2FC| > 0.5 and p < 0.05),
179 DEGs were identified in the high- and low-risk groups,
including 96 upregulated genes and 83 downregulated genes
(Figure 5A). In addition, the heatmaps revealed that the
expression patterns of genes were also classified into two
categories, along with the high- and low-risk groups (Figure 5B).

GO and KEGG functional enrichment analyses of the DEGs
were performed using Metascape. The top 20 enriched biological
function terms were displayed in the network diagrams according to
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their enrichment scores (Figures 5C, D). The GO analysis results
show that the DEGs were mainly associated with mitotic cell cycle,
mitotic spindle organization, mitotic spindle assembly, intercellular
bridge, polymeric cytoskeletal fiber, hexosyltransferase activity,
DNA, Binding transcription activator activity, and protein kinase
binding (Figure 5E). According to the KEGG analysis results,
pathways in cancer, viral carcinogenesis, TNF signaling pathway,
Salmonella infection, pathogenic Escherichia coli infection, IL-17
signaling pathway, hepatitis B, chemical carcinogenesis-receptor
activation, and apoptosis were significantly enriched (Figure 5F).
The detailed results are summarized in Table S2.

To further analyze the functional implications of the five
necroptosis gene signatures in CHOL, we performed GSEA of
TCGA CHOL expression profiles according to low- and high-risk
groups. As shown in Figure 6A, the ridgeline plot reveals the top 20
enriched KEGG terms in the low- and high-risk groups. These
results show that cytokine-cytokine receptor interaction,
alcoholism, neutrophilic extracellular trap formation, influenza A,
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Construction and evaluation of the nomogram model. (A) Univariate Cox proportional hazard regression analysis of the clinical characteristics.

(B) Multivariate Cox proportional hazard regression analysis of selected clinical characteristics. (C) Prediction of 1-, 3-, and 5-year survival
probabilities for CHOL patients using the nomogram model. (D, E). Survival curve for the low-risk and high-risk subgroups in the training dataset and
the validation dataset. (F, G). Time-dependent ROC curves of the training cohort and the validation cohort. Sensitivity (TRP) = TP/(TP+FN) and false
positive prediction rate (FPR) (1-specificity = FP/(FP+TN)) were used as the y-axis and x-axis variables, where TPs (true positives) are positive
predictions which belong to gold standard positives (GSPs), FNs (false negatives) are negative predictions which belong to GSPs.TP, true positive; FP,
false positive; TN, true negative (H, 1). DCA curves of the training cohort and the validation cohort.

JAK-STAT signaling pathway, and cell adhesion molecules were
significantly enriched in the low-risk group (Figures 6B-G).
Detailed GSEA results are presented in Table S3.

3.6 Multi-omics analysis based on
prognostic risk scores

We then used the R package “Reircos” to map the chromosomal
locations of the above five NRGs. The gene chromosome location
diagram revealed that PYGB, IFNGR2, TICAMI1, STAT6, and
VPS4B are located on chr20, chr21, chrl9, chrl2, and chrl$,
respectively (Figure 7A). Friends analyses of the necroptosis-
associated prognostic genes revealed that TICAMI was the most
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important term (Figure 7B). In the low-risk group, the ESTIMATE,
immune, and stromal scores were all higher than those in the high-
risk group, according to violin plots (Figure 7C). The therapeutic
effects of the four drugs on CHOL are shown as boxplots. The
results show that the sensitivity to GW843682X, mitomycin C
(MMC), rapamycin, and S-trityl-L-cysteine (STLC) was
significantly higher in the low-risk group than in the high-risk
group (Figure 7D). The oncoplot demonstrated different mutation
patterns between the high- and low-risk groups (Figures 7E, F).
We further used Network-Analyst to obtain network diagrams
of the interaction between the five NRGs and miRNAs,
transcription factors (TFs), and potential chemicals. The results
show that 124 miRNAs targeting the five necroptosis prognosis
genes fit a network diagram (Figure 8A). In the TF-necroptosis
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high-risk group and the low-risk group. Red indicates the high-risk group (High) and blue indicates the low-risk group (Low). (C) A network diagram of
the top 20 enriched biological functions. Cluster IDs are represented using different colors, while enriched terms are indicated by nodes. (D) Twenty
enriched biological functions are shown in this network diagram, and the p-values are displayed as different colors, while the enriched terms are
indicated as nodes. (E) Bar-plot of GO terms, with the height of the column indicating the enrichment score. (F) Dot plot of the KEGG enrichment
analyses results. The dot scale represents the number of genes in each KEGG term; the depth of the dot color represents the p-value.

prognosis gene network diagram, 114 TFs were observed
(Figure 8B). A total of 117 potential chemical targets were
identified using Network Analyst (Figure 8C).

3.7 Analysis of immune cell infiltration and
its correlation with the five NRGs

Immune cell infiltration is a critical factor in the progression of
CHOL, and it significantly affects the survival rate of patients with
CHOL (9, 33). We analyzed the relationship between the expression
of the five NRGs and infiltration of 22 immune cell types in CHOL.
The results show that IFNGR2 and STAT6 were negatively
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correlated with resting natural killer (NK) cells, whereas PYGB
was significantly positively correlated with CD8" T cells, MO
macrophages, Tregs, and eosinophils. TICAMI1 was positively
correlated with resting central memory CD4" T cells and
activated NK cells, and VPS4B was positively correlated with
plasma cells and T follicular helper cells. STAT6 expression
positively correlated with monocytes and Tregs (Figure 9A). A
heatmap of the correlation between the 22 different immune cell
types indicates that M2 macrophages had a clear positive
correlation with monocytes; naive B cells had a clear positive
correlation with activated mast cells and naive CD4" T cells;
memory B cells had a clear positive correlation with naive CD4"
T cells, while activated mast cells exhibited obvious inverse
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GSEA analysis results between the low- and high-risk groups. (A) Ridgeline plots showing the top 20 enriched KEGG terms in the low- and high-risk
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(B), alcoholism (C), neutrophilic extracellular trap formation (D), influenza A (E), JAK-STAT signaling pathway (F), and cell adhesion molecules

(G) were significantly enriched in the low-risk group

correlations with resting mast cells and M2 macrophages; activated
NK cells had an obvious inverse correlation with monocytes, M2
macrophages, and neutrophils (Figure 9B). The strongest positive
correlation was observed between IFNGR2 and eosinophils
(Figure 9C). In contrast, STAT6 exhibited the strongest negative
correlation with resting NK cells (Figure 9D). The high-risk and
low-risk groups exhibited significantly different levels of immune
cell infiltration in the heatmap (Figure 9E). The boxplot indicates
that there was a significant difference in the proportion of immune
cells between the high- and low-risk groups. B cells accounted for a
higher proportion in the low-risk group, whereas T cells accounted
for a higher proportion in the high-risk group (Figure 9F).
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3.8 Validation of the five NRGs expressions
in CHOL tissue samples

We further validated the expression of five NRGs using the
TCGA database, HPA database and our clinical data. TCGA
database results showed that PYGB (Figure 10A), IFNGR2
(Figure 10D), TICAMI (Figure 10G), STAT6 (Figure 10]) and
VPS4B (Figure 10M) were expressed at high levels in CHOL
tissues. Based on the protein expression data from the HPA, the
immunohistochemistry results confirmed that the protein
expression levels of PYGB (Figure 10B), IFNGR2 (Figure 10E),
TICAM1 (Figure 10H), STAT6 (Figure 10K) and VPS4B
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(Figure 10N) were higher in CHOL tissues than normal
hepatobiliary duct tissues. Finally, we detected their expression
levels in 10 non-tumor hepatobiliary duct tissues and 12 CHOL
tissues by using RT-qPCR assay. The results showed that the
expression levels of PYGB (Figure 10C), IFNGR2 (Figure 10F),
TICAM1 (Figure 10I), STAT6 (Figure 10L) and VPS4B (Figure 100)
in CHOL tissues showed an overall upward trend compared with

non-tumor hepatobiliary duct tissues.

4 Discussion

CHOL is the second most common primary malignancy of the
liver after hepatocellular carcinoma, with a steady increase in its
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incidence and mortality rate (1). When hepatocytes die due to
necroptosis, the necroptosis-dominated microenvironment leads to
the development of CHOL. Recent studies have also found that
necroptosis plays a pivotal role in regulating carcinogenesis, cancer
subtypes, immunity, metastasis, and anticancer treatments (2, 3).
The molecular mechanism by which necroptosis is involved in the
genesis and development of CHOL remains unclear, however.

In this study, we focused on developing and validating a
prognostic signature for CHOL using necroptosis-related genes.
First, 65 DENRGs were identified between the CHOL and control
groups. Secondly, five genes (PYGB, IFNGR2, TICAM1, STAT6, and
VPS4B) were identified as prognostic signatures based on
multivariate Cox regression analysis. The Kaplan-Meier survival
curves in TCGA also indicate that the low-risk group had
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FIGURE 8

An integrated network of TFs, miRNAs, and chemicals target the necroptosis prognosis genes. (A) The integrated network diagrams between the five
NRGs and miRNAs. (B) The integrated network diagrams between the five NRGs and TFs. (C) The integrated network diagrams between the five

NRGs and potential chemical modulators.

significantly longer patient survival than the high-risk group. The
survival results were also validated independently using the
GSE89748 and GSE107943 datasets. In addition, the nomogram
model was highly discriminatory for OS based on the pathologic N
and risk score. Moreover, patients with high-risk scores experienced
higher immune cell infiltration, drug resistance, and more somatic
mutations. In summary, these results suggest that the five genes
related to necroptosis play prominent roles in modulating drug
resistance, somatic mutations, and the tumor microenvironment,
indicating that these risk signatures were highly robust and accurate
in predicting the prognosis of patients with CHOL.

Our prognostic signature consists of five genes, PYGB, IFNGR2,
TICAMI, STAT6, and VPS4B, each of which plays a critical role in
necroptosis and tumor progression. PYGB codes for the protein
glycogen phosphorylase B, which is found predominantly in the
brain (34). PYGB has been reported to be involved in the
progression of gastric and liver cancers (35, 36). IFNGR2 codes

Frontiers in Immunology

for the IFN-y receptor, which has been found to mediate a non-
immunogenic tumor phenotype associated with checkpoint
inhibitor resistance in renal carcinoma (37, 38). TICAMI codes
for an essential necrosome adaptor protein that functions as an
essential signal transducer in Toll-like receptor (TLR) 3 and TLR4
signaling pathways (39). It has been reported that TLR3/TICAMI
signaling is involved in tumor cell RIP3-dependent necroptosis,
which contributes to immune effector-mediated tumor elimination
(38). In our study, TICAMI was highly expressed in the CHOL
group and was positively correlated with resting central memory
CD4" T cells and NK cell activation, suggesting that the TICAM1
gene product is involved in the tumor microenvironment. STAT6 is
highly expressed in a variety of human cancers and has been
suggested to induce apoptosis and growth inhibition of
hepatocellular carcinoma-derived cells by lowering RANKL
expression (40). VPS4B codes for a protein that is involved in
autophagy that can reduce the sensitivity of T cell-mediated tumor
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FIGURE 9
Correlation between the five NRGs and immune cell infiltration of CHOL. (A) Correlation analyses between 22 different immune cell types and the
five NRGs in the CHOL group. Red color represents positive correlation whereas blue color indicates negative correlation. (B) Heatmap of the
correlation between 22 different immune cell types. Positive correlations are in red and negative correlations are in blue. The darker the color, the
stronger the correlation. (C) Correlation analysis between IFNGR2 and Eosinophils. (D) Correlation analysis between STAT6 and resting NK cells. (E) A
heatmap showing the difference in immune cell infiltration between the high-risk and low-risk groups. (F) Box plot of the proportion of immune cell
infiltration between the high-risk and low-risk groups.

cell lysis by lowering granzyme B content, and it is an essential
factor required for escaping CD8" T cell-mediated killing in tumors
(41, 42). In keeping with this, VPS4B was negatively correlated with
follicular helper T cells and was found to be highly expressed in
CHOL in our study. Overall, our study investigated the prognostic
value of five necroptosis-related markers in CHOL. Further in-
depth experimental research is needed to explore the potential
regulatory effects of this gene set on necroptosis.

In recent years, regulation of the tumor immune
microenvironment through immunotherapy has revolutionized
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cancer treatment (43, 44). Numerous studies have confirmed that
immunotherapy based on alteration of the tumor immune
microenvironment can affect tumor metastasis, immune escape,
and immunotherapy resistance by modifying the immune response
(45-47). For instance, a study has suggested that increasing the
number or function of NK cells may be a promising approach for
the treatment of CHOL (48). Our study found a negative correlation
of STAT6 with resting NK cells, thus suggesting that STAT6 is a
potential immunotherapy target. Higher infiltration of M1 and M2
macrophages is related to a poor prognosis by accelerating tumor
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FIGURE 10

Validation of the five NRGs expressions in CHOL tissue samples (A, D, G, J, M). The expression levels of PYGB (A), IFNGR2 (D), TICAM1 (G), STAT6
(J) and VPS4B (M) between CHOL and normal samples using the TCGA database. (B, E, H, K, N). Immunohistochemistry of PYGB (B), IFNGRZ2 (E),
TICAM1 (H), STAT6 (K) and VPS4B (N) in CHOL and normal samples from the HPA database. (C, F, I, L, O). Relative expression of PYGB (C), IFNGR2
(F), TICAM1 (1), STAT6 (L) and VPS4B (O) was detected by gRT-PCR in CHOL and normal samples. *p < 0.05, **p < 0.01, ***p < 0.001.

progression through the secretion of pro-angiogenic factors,
activation of the Wnt/B-catenin pathway, and suppression of the
antitumor functions of T cells (49). In our study, the high-risk
group, which had a poor prognosis, had a higher level of MO0
macrophage infiltration, indicating that a greater number of non-
activated macrophages were present.

The DEGs between the high- and low-risk groups were enriched
in immune-related biological processes and pathways. The five
genes involved in our prognostic signature correlated with
different levels of immune cell infiltration, such as NK cells, T
cells, monocytes, MO macrophages, and plasma cells. Our results
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show that, based on the gene signature, there were clear differences
in the degree of immune cell infiltration between the high-risk and
low-risk groups. The high-risk group tended to exhibit a higher
proportion of multiple types of T cells, whereas the low-risk group
exhibited a higher proportion of multiple types of B cells. In
addition, the low-risk group had higher stromal, immune, and
ESTIMATE scores than the high-risk group. In summary, our
prognostic signature for CHOL based on necroptosis-related
genes could reflect the tumor immune microenvironment of
CHOL, which could potentially contribute to personalized
immunotherapy and targeted therapy for patients with CHOL.
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According to previous studies examining genomic alterations,
gene mutations in CHOL usually result in poor outcomes (50). Our
study also demonstrated that necroptosis-related genes were
positively correlated with genomic alterations, and the high-risk
group (mutation rate: 31.37%) exhibited more somatic mutations
than the low-risk group (mutation rate: 23.53%). In particular,
missense mutations were by far the most predominant mutation
type found in CHOL. Moreover, PBRMI and BAPI exhibited
significantly increased mutation rates and multiple mutation types
in the high-risk group. In addition, the high-risk group exhibited
higher levels of resistance to treatment with GW843682X,
mitomycin C, rapamycin, and S-trityl-L-cysteine. These results
show that our prognostic signature could be used as a potential
predictor of the efficacy of medical treatment for CHOL. Moreover,
the occurrence of drug resistance may be reduced by regulation of
this signature, which could potentially lead to new breakthroughs in
the choice of individual therapeutic strategies.

However, the current study has some limitations. First, the data
gathered were from public databases, which were limited in sample
size. Future research with a larger sample size is needed to overcome
these limitations. Secondly, the identified genes have complex
functions and molecular mechanisms that need to be further
verified in cellular and animal models. Finally, more detailed
clinical follow-up data are required to confirm the value of our
prognostic model.

5 Conclusion

In this study, we shed further light on the role of necroptosis in
the prognosis of CHOL. Our results indicate that the prognostic
model derived from the five NRGs can accurately predict the
prognosis of patients with CHOL. Furthermore, the risk score
derived from the necroptosis model is associated with important
biological functions and is clinically significant. Therefore, the
predictive signature of the five NRGs may help devise
individualized treatments for patients in the future.
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Background: The epigenetic regulatory chemical lactate is a product of
glycolysis. It can regulate gene expression through histone lactylation, thereby
promoting tumor proliferation, metastasis, and immunosuppression.

Methods: In this study, a lactylation-related model for gastric cancer (GC) was
constructed, and its relationships to prognosis, immune cell infiltration, and
immunotherapy were investigated. By contrasting normal tissues and tumor
tissues, four lactylation-related pathways that were substantially expressed in GC
tissues were found in the GSEA database. Six lactylation-related genes were
screened for bioinformatic analysis. The GC data sets from the TCGA and GEO
databases were downloaded and integrated to perform cluster analysis, and the
lactylation related model was constructed by secondary clustering.

Results: The fingding demonstrated that the lactylation score has a strong
correlation with the overall survival rate from GC and the progression of GC.
Mechanistic experiments showed that abundant immune cell infiltration
(macrophages showed the highest degree of infiltration) and increased genetic
instability are traits of high lactylation scores. Immune checkpoint inhibitors (ICls)
demonstrated a reduced response rate in GC with high lactylation scores. At the
same time, tumors with high lactylation scores had high Tumor Immune
Dysfunction and Exclusion scores, which means that they had a higher risk of
immune evasion and dysfunction.

Discussion: These findings indicate that the lactylation score can be used to
predict the malignant progression and immune evasion of GC. This model also
can guide the treatment response to ICls of GC. The constructed model of the
lactate gene is also expected to become a potential therapeutic target for GC
and diagnostic marker.
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Introduction

One of the most prevalent malignant tumors in the world is
gastric cancer (GC), which poses a severe threat to human health
(1). The evolution of GC is a complicated pathological process
involving a number of variables and phases, which is the result of
the interaction between dietary factors, host genes, Helicobacter
pylori infection, and environmental factors. Due to the atypical
symptoms of early-stage GC, majority of cases are already advanced
when they are diagnosed. GC patients typically have a poor
prognosis, a high risk of local recurrence, and distant metastasis
(2-4). As GC research has advanced, it has been found that GC is
not caused only by specific gene mutations, but cellular metabolic
dysfunction is also a key marker of GC progression (5-8). There is
mounting evidence that tumor metabolism is crucial to the
initiation and development of malignancies as well as affecting
immune cells through the release of metabolites (such as lactate and
arginine). There is metabolic competition in the tumor
environment as a outcome of this energetic transition between
tumors and immunocytes, which limits effective supply of nutrients
and leads to microenvironmental acidosis, thereby hindering the
function of immune cells (9).

Lactate was once considered only a metabolite of glycolysis and
the final product of the Warburg effect. A rising number of research
have revealed that lactate is not just an essential energy source.,
signaling molecule, and immunomodulatory molecule but can also
control body’s metabolism, immunological response, and
intercellular communication (10). When tumor cells undergo
abnormal glycolysis, they continue to intake a lot of glucose and
make a lot of lactate even when there is plenty of oxygen available to
them (11). Lactate accumulates in the cells and is exported to the
extracellular environment by activating the transport proteins on
the cell membrane, eventually forming the acidic tumor
microenvironment. In addition to providing the energy required
by cells as a fuel substrate, lactate can be utilized as a precursor
material to modify histone lysines through lactylation (12). Histone
lactylation is a crucial mechanism through which lactate performs
its duties and takes part in crucial biological processes, such as
glycolysis-related cellular functions (13), macrophage polarization
(14), neurodevelopment (15), and regulation of tumor
proliferation (16).

Although the lactylation modification has received extensive
attention, the relevant articles are still limited. In particular, there
are few articles on lactylation modification in GC. This detailed
investigation of lactylation-related gene expression and relevance in
GC was carried out by us. First, by comparing normal gastric tissues
and GC tissues, four lactylation-related pathways with significantly
elevated gene expression in GC tissues were identified by GSEA. We
hypothesize that these pathways directly or indirectly contribute to
the development of GC, leading to a poorer prognosis. After
differential analysis and univariate Cox analysis of the above
pathways, we obtained six prognostic lactylation genes. By
secondary clustering based on these six lactation-related genes, we
constructed a model (“lactylation score”) that classified as potential
screening molecules for GC, which helped to discover various
immunocellular infiltration and genetic instability patterns.
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Through further analysis, the results revealed that GC patients
with high lactylation scores possessed greater potential for immune
evasion and lower rates of immunotherapy response, which also
means that the lactylation score could become a method for
forecasting patients’ reactions to immune checkpoint inhibitor
(ICI) therapy. The scoring model’s PPI network was built, and
the hub gene PLOD2 and its downstream lactylation target gene
GLUT3 were chosen for experimental validation. Both GC cell lines
and GC tissues have significantly higher levels of PLOD2 and
GLUTS3 expression. After treating GC cell lines with lactate
dehydrogenase inhibitors, their expression was decreased,
demonstrating the strong relationship between lactylation and the
expression of these two genes. Flowchart of this study shows in
Figure 1.

Materials and methods
Data retrieval and processing

Through the GSEA database (https://www.gsea-msigdb.org,
December 2021), lactylation-related pathways and their genes were
downloaded. Through the TCGA database (https://
portal.gdc.cancer.gov/, December 2021), we obtained the raw
mRNA matrix data in fragments per kilobase million (FPKM)
format and copy number data of GC tissues. From the TCGA
database, we also obtained relevant clinical data of the GC patients.
Baseline characteristics of patients was summarized in Table 1. We
downloaded the GSE84437 dataset from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/,
December 2021) to obtain the mRNA matrix and the clinical data
of GC patients. The batch effect was removed using ComBat function
of the SVA package in R for subsequent analysis. The STRING
website (https://string-db.org/cgi/input.pl, December 2021) was used
to construct the PPI network of lactylation-related genes.

Screening of prognostic lactylation-related
genes in GC

By performing differential analysis and univariate Cox analysis
of lactylation-related pathways in all GC samples, we obtained six
prognostic lactylation-related genes. The copy number variation
frequency of lactylation-related genes was calculated from the
increase and decrease in gene copy numbers in GC samples from
the TCGA database. The number of gene mutations in GC samples
from the TCGA database was calculated to draw a waterfall plot.
The “RCircos” package of the R language was used to plot the gene
copy number circle diagram. Through Cox analysis and
coexpression analysis, the prognostic network of lactylation-
related genes was plotted. We used the Kaplan-Meier method to
calculate the survival curves of GC patients and plotted them using
the “survminer” package (17). The clinical data and lactylation
scores of all GC patients were analyzed to calculate survival time,
survival status, and risk division and to construct nomograms and
receiver operating characteristic (ROC) curves.
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TABLE 1 Baseline characteristics of patients from TCGA and GEO database.

Total patients (803) TCGA (377) GSE84437 (426)
ggjciucraels Percentage Percentage Percentage
Number Number
(%) (%) (%)

Age

<=65 456 56.79 176 46.68 280 65.73

>65 347 43.21 201 53.32 146 34.27

Gender

Female 265 33 130 34.48 135 31.69

Male 538 67 247 65.52 291 68.31
Fustat

Alive 451 56.16 227 60.21 224 55.58

Dead 352 43.84 150 39.79 202 47.42
Grade

1-2 135 16.81 135 35.81 0 0

3 242 30.14 242 64.19 0 0
Unkown 426 53.05 0 0 426 100
Stage T

1-2 147 18.31 98 25.99 49 115

34 656 81.69 279 74.01 377 88.5
Stage N

NO 196 24.41 116 30.77 80 18.78

N1-3 607 75.59 261 69.23 346 81.22

Cluster analysis

We categorized the GC cohort by “ConsensusClusterPlus”
package to determine whether the expression of genes related to
lactylation was connected with GC. The intragroup correlation is
strong and the intergroup correlation is modest for k=2. Using
heatmaps, we connected the amounts of lactylation-related gene
expression in several types of GC with patient clinical information.
We measured the immune cell expression in various GC types using
the ssGSEA technique, and then plotted the data using box plots.
Through the GSEA website (https://www.gsea-msigdb.org,
December 2021), the files of the Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways were
downloaded, and the functional pathways enriched in GC types
were plotted as a heatmap using the “GSEABase” and “GSVA”
packages of R.

Construction of the lactylation
score model

We developed an lactylation score scheme to quatify the
lactylation modification level of individual patients by using PCA.
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Specifically,the overlapping genes(3112) identified from two
clusters of GC were selected and employed to perform prognostic
analysis for each gene using a univariate COX regression model.
The genes with a significant prognostic were extracted for further
feature selection by using recursive feature elimination(RFE) with
random forest and the 10-fold cross-validation method in the caret
package. We then curated the expression profile of the final
determined genes to perform PCA analysis, and principal
components 1 and 2 were extracted and served as the signature
score. We then adopted a formula similar to previous studies to
define the lactylation score: lactylation score =Y (PC1i+PC2i).

We performed correlation analysis between lactylation score
and immune cells present in the tissue using the ssGSEA algorithm.
With the “ggpubr” and “reshape2” packages of R, we analyzed the
relationship between clustering classification, lactylation score, and
tumor mutation burden. With the “survival” package and the
“survminer” package, we conducted joint survival analysis of the
high-tumor-mutation-load group, low-tumor-mutation-load
group, high-lactylation-score group, and low-lactylation-score
group. With the “plyr” package and the “ggpubr” package, we
plotted the different clinicopathological features in the lactylation
score group as bar graphs and box plots. From the Cancer
Immunome Database (TCIA) (https://tcia.at/, December 2021),
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the scoring data of ICI treatment and MSI status for GC were
downloaded. According to lactylation score, we analyzed the ICI
treatments CTLA-4 and PD-1 for pancreatic cancer (18). All gastric
cancer patients were divided into MSS, MSI-L and MSI-H groups,
and lactylation scores among all groups were calculated. The Tumor
Immune Dysfunction and Exclusion (TIDE) score, exclusion score,
and dysfunction data of GC were downloaded from the TIDE
database (http://tide.dfciharvard.edu/, December 2021), and the
immune evasion and immune dysfunction in high- and low-
lactylation-score groups were analyzed. We used “pRRophetic”
package of R to predict drug sensitivity of high- and low-
lactylation score groups (p<0.001).

Collection of tissue samples from
GC patients

Tissue samples were collected from GC patients who underwent
surgical resection at the Second Affiliated Hospital of Harbin
Medical University. These GC patients had not received any other
treatments, such as radiotherapy, chemotherapy, or biological
treatment, before surgery. All specimens were histopathologically
diagnosed by two pathologists according to the diagnostic criteria
for GC. All patients provided informed consent.

Cell culture and transfection

Normal gastric mucosal epithelial cells (GES-1) and GCcells
(AGS, HGC-27, KATO3, MKN-45) were purchased from Procell
Life Science & Technology (Wuhan, China), and the cells were
cultured according to the manual instructions. A lactate
dehydrogenase A (LDHA) inhibitor (GSK2837808A, MCE) was
used to treat HGC cell lines. The HGC cell lines were cultured in
six-well plates, and plasmids were transfected using Lipofectamine
3000 according to the instructions. The target sequences of the short
hairpin RNA (shRNA) were as follows: PLOD2-RNAi (8407-1),
caGCAAGTGTCCTTAAGTCAA; PLOD2-RNAi (8408-1), ggA
AATGGACCCACCAAGATT; PLOD2-RNAi (8409-1), ¢
tTTGCCGAAATGCTAGAGAA.

Western blotting

WB assay was done in accordance with prior literature
descriptions (19). We used RIPA buffer to extract the proteins
needed for western blotting. The subsequent antibodies were
utilized: PLOD2 (Proteintech, China), GLUT3 (Abcam, UK) and
GAPDH (ImmunoWay, USA).

Immunohistochemistry
The tissue samples were sectioned at 5 pum after being

submerged in 4% paraformaldehyde for an entire night.
Following an overnight incubation at 4°C with anti-PLOD2 and
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anti-SLC2A3 antibodies, tissue slices were treated with secondary
antibodies conjugated to horseradish peroxidase (20).

RNA extraction and RT-PCR

TRIzol was applied to extract cellular RNA, and a ¢cDNA
synthesis kit was applied to create single-stranded cDNA from
the recovered cellular RNA (21). The FastStart Universal SYBR
Green Master Mix’s instructions were followed to perform the
qPCR analysis. A 10-pl reaction system was prepared.

Colony formation assays

After 10 days of incubation, the GC cell lines were seeded in a
six-well plate, and colony formation was apparent to the naked eye.

Ethylenediurea experiment

EdU experiment was performed according to the previous
literature (22, 23).

Wound-healing assay

Cells were cultured in six-well plates until full confluence, then
starved with serum-free medium. We scratched a 10-ul pipette tip
across the plate, removing a line of cells. Under a microscope,
pictures were obtained at 0, 12, and 24 hours to record the extent of
wound healing (24).

Transwell assays

The GC cell lines were inoculated into a Transwell chamber
containing 200 yl of serum-free medium. Matrigel mix was coated on
the upper chamber surface of the Transwell chamber to detect the
invasion ability of the cells. When testing the cell migration ability,
the bottom of the chamber does not need to be coated with Matrigel.
Medium containing 10% FBS was added to the lower culture plate.
After 24 h of incubation, the chamber was removed and stained with
crystal violet for 30 min. Five randomly selected fields of view were
photographed, and their cells were counted under a microscope.

Data analysis

The GraphPad Prism 8.0 software was used to illustrate the
results of the data analysis, which was carried out using the SPSS
18.0 program. In particular, the means of the two groups were
compared using Student’s t tests, and one-way ANOVA analysis
was used to determine the statistical significance of the means from
multiple groups (>2). The one-way ANOVA analysis for the
corrective test was followed by the post hoc testing (Tukey test).
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Results

Expression of lactylation-related
genes in GC

Through the GSEA database, we identified four lactylation-
related pathways that were significantly upregulated in GC tissues
(Figure 2A). We speculate that these four lactylation-related
pathways are directly linked to the incidence and evolvemetn
of GC.

After differential and Cox analysis of the above lactylation
pathways, we obtained six prognostic lactylation genes and
plotted a forest diagram (Figure 2B). Box plot showed the
expression of lactylation-related genes in normal gastric
samples and GC samples (Figure 2C). Additionally, we
examined the prevalence of copy number variation in target
genes across all GC samples (Figure 2D). Except for EFNA3 and
PLOD?2, which showed increased copy number, the other four
genes all showed copy number reductions. We also plotted
single-gene mutation frequency waterfall plots (Figure 2E) and
gene copy number circle plots (Figure 2F) of the six lactylation-
related genes.

Next, we combined the TCGA and GEO data to analyze the
data of a total of 804 GC patients and performed Kaplan-Meier
survival analysis based on lactylation-related gene groups
(Figure 2G). The results showed that the survival curves of the six
lactylation-related genes all had statistically significant differences.
A prognostic network map was constructed through coexpression
analysis (Figure 2H). It can be seen from the network map that
NUP50 and EFNA3 were favorable factors, and the other four
lactylation genes were risk factors. They regulate each other
within a network, which can form a functional whole and
together affect the progression of GC.

10.3389/fimmu.2023.1149989

Cluster analysis

We separated all GC samples into two clusters using cluster analysis
of lactylation-related genes (Figures 3A-C). Significant variations
between the two clusters of GC were shown by the survival analysis
(Figure 3D). Compared to cluster 1, cluster 2 had a much lower survival
rate. We determined the ratios of 23 different immune cell types in the
two clusters of GC using the ssGSEA method. 18 types of immunocytes
were significantly different between the two clusters of GC (Figure 3E).
We also plotted the clinicopathological characteristics and lactylation
genes of GC samples into a heatmap (Figure 3F). Using the GSVA
algorithm, we plotted the GO and KEGG pathways enriched in the two
clusters of GC into a heatmap. The GO-enriched pathway in cluster 2
was mostly focused on angiogenesis and epithelial cell proliferation
(Figure 3G), such as ENDOTHELIAL_CELL_PROLIFERATION and
REGULATION_OF_VASCULATURE_DEVELOPMENT. The
KEGG-enriched pathways in cluster 2 was mostly focused on
metastasis-related pathways (Figure 3H), such as
FOCAL_ADHENSION, and TGF_BETA_SIGNALING_PATHWAY.

Constructing lactylation score model

The results of PCA on all GC samples (Figure 4A) revealed that
there was little overlap between the two GC clusters and that the
components within each GC cluster were well correlated. Figure 4B
demonstrates that cluster 2’s lactylation score was substantially
greater than cluster 1’s. The survival rate of high lactylation score
group was considerably lower than low lactylation score group
(Figure 4C), demonstrating that the prognosis is worse the higher
the lactylation score. The TMB analysis was also examined in both
groups, and the findings revealed a negative correlation between the
two (Figures 4D, E). We also constructed a Sankey plot of the cluster
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Flowchart of the study.
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FIGURE 2

Expression of lactylation-related genes in GC. (A) Highly expressed GSEA pathway in GC tissues. (B) Univariate Cox analysis of lactylation-related
genes. (C) Expression of lactylation-related genes in GC tissues and normal gastric tissues. ***p<0.001. (D) Diagram of the copy number frequencies
of lactylation-related genes. (E) Waterfall plot of the mutation frequencies of lactylation-related genes. (F) Circle plot of the copy numbers of
lactylation-related genes. (G) Overall survival rate of lactylation-related gene patient groups. (H) Prognostic network of lactylation-related genes.

of GC, lactylation score, and patient survival. Figure 4F shows that  survival condition, the majority of the patients who died belonged to
cluster 2 GC had a high correlation with a high lactylation score,  the high-lactylation-score group. We created a waterfall plot to
while cluster 1 was associated with a low lactylation score. While the ~ compare the prevalence of single-gene mutations in two groups
most part of samples in the low-lactylation-score group were in the  (Figures 4G, H). The low-lactylation-score group had a higher
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FIGURE 3

GC classification of lactylation-related genes. (A) Changes in the length and inclination of the cumulative distribution function (CDF) curve when
k=2-9. (B) Area under the CDF curve when k=2-9. (C) GC samples were divided into two tumor clusters. (D) Kaplan—Meier survival curves of the two
clusters. (E) Immune cell infiltration of the two clusters. *p<0.05; **p<0.01; ***p<0.001; ns, no signifificance. (F) Heatmap of GC classification,
lactylation-related genes, and clinicopathological characteristics. (G) GO enrichment analysis of the two GC clusters. (H) KEGG enrichment analysis
of the two clusters.

prevalence of single-gene mutations than the high-lactylation-score  mutation burdens groups and lactylation score groups (Figure 47).
group. Figure 41 demonstrates that the high-TMB group’s survival ~ The result revealed statistical differences, demonstrating that the
rate was significantly greater than the low-TMB group’s.  prognosis of GC patients was influenced by both TMB and
Additionally, we performed conjoint analysis between tumor lactylation scores.
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FIGURE 4

lactylation score model. (A) PCA of lactylation-related genes. (B) Lactylation scores of GC types. (C) Kaplan—Meier survival curve of the high- and
low-lactylation-score groups. (D) Spearman correlation analysis of the lactylation score and immune cells. (E) UBQLN4 expression in the high-

and low-lactylation-score groups. (F) Sankey plot of GC clusters, lactylation score, and patient survival. (G) Waterfall plot of mutation frequencies in
the low-lactylation-score group. (H) Waterfall plot of mutation frequencies in the high-lactylation-score group. (I) Kaplan—Meier survival curve of the
high-tumor-mutation-burden group and the low-tumor-mutation-burden group. (J) Joint survival analysis was performed in the high and low-
tumor-mutation-burden groups and the high- and low-lactylation-score groups. (K) The age, sex, survival, grade, T stage, and N stage of patients in
the high- and low-lactylation-score groups. (L) Nomogram of the lactylation score and clinical information. ***p<0.001 (M) AUC of the lactylation

score model.
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Prognosis and clinicopathological
characteristics in different lactylation
score groups

Additionally, we examined the patients’ clinicopathological traits,
as well as their lactylation score. Age, sex, and T stage showed no
significantly different between two lactylation scores groups, as shown
in Figure 4K. Additionally, a poor prognosis, a high tumor grade, and
lymph node metastases were all closely related to a high lactylation
score. This shows that a high lactylation score frequently suggests a
higher degree of malignancy from the perspective of
clinicopathological features. We also constructed the nomogram
(Figure 4L), in which we can classify risks of the patients and
predict patient survival by statistically scoring the
clinicopathological characteristics and lactylation scores. The results
show that if the total score of the patients reached 448 points, the 1-,
2-, and 3-year mortality rates of the patients were 28%, 53.6%, and
66%, respectively. We also draweed the ROC curve of the nomogram
(Figure 4M). The area of AUCs at 1, 2, and 3 years were all greater
than 0.65.

Immune cells infiltration statement and
functional enrichment analysis

According to the ESTIMATE algorithm, the stromal and immune
scores were statistically higher in high lactylation score group than low
lactylation score group. This demonstrated that the group with a high
lactylation score had a larger proportion of stromal cell and immune
cell infiltration (25). The ESTIMATE score was considerably greater in
the group with high lactylation scores than in the group with low
lactylation scores, demonstrating a negative correlation between
lactylation score level and tumor purity (Figure 5C). By combining
various immunocytes analysis methods, we analyzed the correlation
between lactylation score and immunocytes infiltration (Figure 5A).
The findings revealed that the degree of macrophage and M2-type
macrophage infiltration was positively connected with lactylation score
(Figure 5B). KEGG and Hallmark enrichment analysis showed that
lactylation model was closely relevanted to multiple oncogenic
pathways (including WNT, TGF_BETA, MTOR, P53_SIGNALING)
(Figures 5D, E). At the same time, Hallmark enrichment analysis
revealed that the lactylation model was closely relevanted with
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION and
HALLMARK_ANGIOGENESIS (Figure 5E). This indicated that the
higher lactylation score, the stronger proliferation, metastasis and
invasion ability of gastric cancer.

Immunotherapy response and
immune evasion

Our study also revealed that the lactylation score was relevanted
to the efficacy of immune checkpoint treatment. Figure 6A shows
that patients with lower lactylation scores possessed a higher
response rate to ICIs(ctla4_pos_pdl_neg, p<0.05). Additionally,
high lactylation score group are more liabled to acquire ctla4
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immunotherapy resistance. We also predicted the drug sensitivity
of the high- and low-lactylation score groups, and found that most
drugs expressed higher sensitivity in the low-lactylation score
group, while only two drugs (Gefitinib and Metformin) showed
higher sensitivity in the high-lactylation score group (Figure S1).
Immune evasion can result in resistance to immunotherapy. An
algorithm called the TIDE score is used to determine T-cell
malfunction and rejection in different tumor types. The scores
can be used to forecast the impact of immune checkpoint therapy
in patients with tumors in addition to being consistent with
immune evasion features (26). Figure 6B demonstrates that the
high-lactylation-score group’s TIDE, Exclusion, and Dysfunction
score were all considerably greater than those in the low-lactylation-
score group. Further resulting in immune evasion and
immunotherapy resistance was the high-lactylation-score group’s
increased susceptibility to immunological dysfunction and immune
rejection. We also looked at the lactylation score and the instability
of the microsatellites. The low-lactylation-score group showed
increased microsatellite instability, as shown in Figures 6C, D.

Expression of lactylation-related
genes in GC

Figure 6E shows the correlation between the lactylation score
and lactylation genes. We constructed a PPI network of lactylation-
related genes/proteins and lactylation target genes reported in the
literature (Figure 6F). At the center of the PPI network, PLOD2 and
SLC2A3 (GLUTS3) had a greater priority. Additional, there was an
interaction between PLOD2 and GLUT3. We speculate that PLOD2
may affect the lactylation level of GC through GLUTS3, thereby
leading to the development and progression of GC. Figure 6G
shows the correlation between GLUT3 and lactylation genes, where
it can be seen that GLUT3 and PLOD2 showed a strong connection.
Moreover, the high-lactylation-score group’s expression level of
GLUT3 was noticeably higher than the low-lactylation-score
group’s (Figure 6H).

The relation between PLOD?2, GLUT3 and
lactylation in GC

We performed immunohistochemistry in normal gastric tissues
and GC samples (Figure 7A). The figure shows that the expression
degrees of PLOD2 and GLUT3 in GC samples were all considerably
higher than those in normal gastric samples.Figures 7B, C shows
that PLOD2 and GLUT3 were expressed more highly in GC cell
lines than GES-1 cells. The PLOD2 expression was significantly
high in HGC-27 and MKN-45, while GLUT3 expression was the
highest in HGC-27.

To observe whether PLOD2 and GLUT3 were associated with
lactylation, we selected different concentrations of lactate
dehydrogenase inhibitors to treat HGC-27 cells for 48 h.
Figure 7D shows that PLOD2 and GLUT3 were both decreased
after HGC-27 were treated by the lactate dehydrogenase inhibitor.
When the lactate dehydrogenase concentration was set as 1 uM, the
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Immune cells infiltration and function enrichment analysis. *p<0.05; **p<0.01; ***p<0.001. (A, B) The correlation between lactylation score and
immune cell infiltration by various immunocytes analysis methods. (C) Correlation between lactylation score and the tumor microenvironment of
gastric cancer assessed using the ESTIMATE algorithm. (D, E) GSVA analysis of lactylation score and lactylation-related genes.

inhibitory effect on PLOD2 and GLUT3 was the most significant.
We also constructed three PLOD2-knockdown plasmids expressing
heterogeneous nuclear RNAs, namely, sh-8407, sh-8408, and sh-
8409. After transfection of each of these three plasmids individually
into HGC cells, the expression of PLOD2 was knocked down at the
protein level, and the knockdown effect of sh-8409 was the most
significant (Figure 7E). Therefore, we chose the sh-8409 plasmid to
create a PLOD2-KD group of cells. Knockdown of PLOD2 by sh-
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8409 also downregulated the expression of GLUT3 (Figure 7E),
further supporting a PPI relationship between PLOD2 and GLUTS3.
L-Lactyl is a pan-antibody of lactylation modification that reflects
the level of lactylation in tissue samples. Immunofluorescence assay
results showed that GLUT3 and L-Lactyl expression were
significantly declined after PLOD2 knockdown (Figure 7F). This
indicated that PLOD2 could regulate lactylation modification in GC
cell line.
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Functional phenotype of PLOD2 EdU experiment also show that the cell viability of the PLOD2-KD

in GC cells group was significantly reduced (Figure 8B). In the scratch assay, the

cells in the PLOD2-KD group showed considerably broader scratches

After knocking down PLOD2, we examined the functional  than PLOD2-NC group (Figure 8C). Similarly, the Transwell assay

phenotyoe change in GC cells. Figure 8A shows that there were  demonstrated that PLOD2 gene knockdown prevented HGC-27 and
considerably fewer cell clones in PLOD2-KD than in PLOD2-NC.  MKN45 cells from migrating and invading (Figure 8D).

Frontiers in Immunology 133 frontiersin.org


https://doi.org/10.3389/fimmu.2023.1149989
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yang et al. 10.3389/fimmu.2023.1149989

Normal Cancer
o -

PLOD2

B Cc
GES-1  AGS HGC-27 KATOIll MKN-45

8 ok 8

:
S 3
o o
k] s
T4 * T 4
3 H
< <
z

£ F4
£ €

sh-8407  sh-8408  sh-8409

NC 0.25 um 0.5 uM 1uMm NC-sh

@
>
o
o
X

Relative expression of GLUT3
°
@«

-4
°

Relative expression of PLOD2
= s o =
b b o n
Y
Y .
Relative expression of GLUT3
g ol = =
s b B P
Relative expression of PLOD2

& @
¥ Q{t,&’ J,o > & &‘,&x‘ &o* A ‘\o‘é‘ &"Q §9§
F
PLOD2-KD
GLUT3
L-Lactyl

FIGURE 7

Expression of PLOD2 and GLUT3 in GC cell lines and GC tissues. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001. (A) Immunohistochemistry for
PLOD2 and GLUT3 in normal gastric tissues and GC tissues. Scale bar, 100 pm. (B) Western blots for PLOD2 and GLUT3. (C) PCR results of PLOD2
and GLUT3. (D) Western blots of HGC cells treated with different concentrations of lactate dehydrogenase inhibitors (0.25 uM, 0.5 uM, and 1 uM).
(E) Western blots after transfection with the PLOD2-KD plasmid. (F) Expression levels of GLUT3 and L-Lactyl in PLOD-NC group and PLOD-KD
group were compared by immunofluorescence. Scale bar, 200 um.

Discussion and immunosuppression of tumors, such as by acidifying the
immune microenvironment and increasing the expression of

Recently, growing evidence has shown that lactate is not only  tumor resistance proteins (27, 28). More importantly, researchers
the most important direct source of nutrition for tumor cells, it can  at the University of Chicago demonstrated that lactate is an
also promote the growth, proliferation, metastasis, drug resistance,  important epigenetic modification molecule that can affect degree
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and MKN-45 cells.

of macrophage polarization through histone lactylation (12). The
lactylation modification of histone lysines is indeed widespread in
human and mouse cells and is regulated by glycolysis. In addition,
the lysine lactylation of histones is highly sensitive to lactate
produced by glycolysis, which can change with the intensity of
glycolysis or the level of lactate. Protein lactylation modification is
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the farthest known downstream molecular mechanism of glycolysis,
and lactate in the adjustment of cellular functions.

To investigate the function of GC lactylation modification, we
downloaded four lactylation pathways with significantly elevated
expression in GC tissues from the GSEA database. Six lactylation-
related genes correlatived with GC development were screened by
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cluster analysis, and PCA analysis. A lactylation score model was
constructed, which was closely associated with increased tumor
infiltrating immunocytes, genetic instability and ICI treatment. The
six lactylation-related genes in the constructed model wee also
closely correlated with the prognosis of GC.

Tumor growth relies heavily on glycolysis. Tumor cells can
produce lactate through aerobic glycolysis and maintain a high-
lactate environment, thereby inhibiting T cells that attack tumor
cells. Moreover, lactate enhances the expression of regulatory T cells
to contribute to the defense of malignant cells, thereby evading the
attack of the immune system (29). In this study, the TIDE score of
high-lactylation-score group was considerably higher than low-
lactylation-score group, which means that the higher lactylation
score, tumor cell more likely achieve immune evasion and immune
dysfunction. Experiments have shown that the key factor in tumor
drug resistance is lactate, and the lactate concentration and
glycolysis rate can reflect the sensitivity of tumor drugs to a
certain extent (30). Meanwhile, higher glycolysis rate of cancer
cells is closely related to lower response rate to ICI treatment (31).
We also performed drug sensitivity analysis on the lactylation score
model. The findings revealed that high-lactylation-score group’s
sensitivity to ctla4 immunotherapy was lower than low-lactylation-
score group’s. It proves that patients with high lactylation scores are
more likely to develop resistance to immunotherapy, which agrees
with the findings of the majority of recent investigations. The above
results showed that lactate and lactylation are closely related to
immune evasion and sensitivity to ICI treatment. Moreover, lactate
and lactylation have received extensive attention as novel target for
tumor immunotherapy (32).

LDHA is one of the key enzymes in the reprogramming of
glucose metabolism in the TME. It is also the hub protein that
connects various cellular metabolic pathways. It directly or
indirectly activates signal transduction pathways and regulates
immune responses to participate in development and progression
of tumors (33). The increase in LDHA level is mainly caused by the
increase in tumor glycolytic activity and tumor hypoxic necrosis,
which are important drivers of the immunosuppressive
microenvironment. LDHA can promote the conversion of
pyruvate to lactate, and its activity is positively correlated with
the Warburg effect (34). The enzymatic activity of LDHA is
regulated by posttranslational modifications, including lactylation,
acetylation, and phosphorylation (35). Some studies have shown
that when LDH is knocked out, the lactylation level is also inhibited
(12). Wang et al. reported that by directly binding to LDHA and
PKM2, HULC increases their phosphorylation levels to regulate
their activity and ultimately accelerate glycolysis and promote cell
proliferation (36). Chen et al. found that CENP-N affects tumor
progression by participating in the aerobic glycolysis process of
nasopharyngeal carcinoma cells (37). These studies fully
demonstrate that aerobic glycolysis and lactylation modification
are involved in the regulation of posttranslational modification and
that LDHA inhibitors can inhibit the lactylation process by
inhibiting the activity of the LDHA enzyme. Current clinical
studies are testing antitumor drugs targeting LDHA (38). In our
study, after the use of LDHA inhibitors to block lactylation in GC
cells, the expression of the lactylation-related gene PLOD2 and the
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lactylation target gene GLUT3 were inhibited to varying degrees,
and the degree of inhibition was positively correlated with the
concentration of LDHA inhibitor. This also indicates that the
expression levels of the PLOD2 and GLUT3 proteins are
regulated by lactylation modification.

PLOD2 is a functional enzyme located in the rough
endoplasmic reticulum of the cytoplasm. It participates in the
posttranslational modification of collagen and promotes the
synthesis of collagen fibers. Fibrotic collagen plays a key role in
promoting tumor invasiveness (39). PLOD2 can participate in
extracellular matrix remodeling by promoting the deposition of
collagen fibers, thereby improving the invasiveness of tumor cells
(40-44). In a variety of tumors, clinical data indicate that increased
PLOD2 expression can be used as an independent poor-prognostic
factor and is associated with poor patient survival (45). This is
consistent with the results of our study, in which the overall survival
rate of GC patients in the high-PLOD2-expression group was
significantly lower than that in the low-PLOD2-expression group,
and PLOD2 was the highest-ranked hub gene of the lactylation
score model, which was also validated by immunohistochemistry.
We found that the expression of PLOD2 in GC tissues, especially in
GC foci, was significantly higher than that in normal gastric tissues.
At the same time, after PLOD2 knockdown, the proliferation and
invasiveness of GC HGC-27 and MKN-45 cells were significantly
reduced. TGF-B1 seems to be an important factor in the regulation
of PLOD2 (46-48). Through clustering analysis of lactylation-
related genes, including PLOD2, we found that cluster 2 GC was
enriched in the TGF_BETA_SIGNALING_PATHWAY and
ECM_RECEPTOR_INTERACTION pathways, which is
consistent with our other results.

The glucose transporter is one of the most important
transmembrane proteins in the human body, with a total of 14
subtypes (GLUT1-GLUT14). Among them, GLUT3 encoded by the
SLC2A family is a tissue-specific glucose transporter with high
affinity for glucose in the GLUT family. GLUTS3 is highly expressed
in tumor cells and promotes the transport and uptake of glucose by
tumor cells (49-52). The affinity of GLUT3 for glucose is five times
that of the well-known GLUTI1 transporter (53). Taekyu Ha et al.
reported that Caveolin-1 factor upregulated glucose transport and
uptake and aerobic glycolysis by promoting direct binding of
HMGAL to the GLUT3 promoter region (54). Liu reported that
the transcriptional repressor family member ZBTB7A could inhibit
the transcription and expression of GLUT3, and the knockdown of
ZBTB7A could increase glucose transport and uptake as well as the
synthesis of lactate (55). Wang et al. demonstrated that the
enhancement of the insulin-stimulated PI3K/Akt phosphorylation
pathway can promote the expression of GLUT3, LDHA and
monocarboxylic acid transporter 1 (MCT1) (56). Through the
above studies, we found that GLUT3 is closely related to
glycolysis and lactylation. Therefore, we selected GLUT3 as the
lactylation target gene. We found that the expression level of
GLUT3 was increased in GC cell lines and GC tissues. The results
show that lactate dehydrogenase inhibitors could affect the
expression of GLUT3 by inhibiting the lactylation level.

In this study, by analyzing the lactylation pathways with
elevated component expression in GC tissues, we found
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lactylation-related genes that play a role in the occurrence and
development of GC and constructed a lactylation score model.
Lactylation score in GC was closely associated with tumor
mutational load, genomic instability, response to ICI treatment,
immune cell infiltration, and immune evasion. These findings
provide novel ideas for the diagnosis and treatment of GC, and
lactylation-related genes may become novel tumor markers or
therapeutic targets. Although our paper has many strengths, it
also has limitations. For example, further studies are needed to
reveal the pathways through which lactylation-related genes affect
immune cell infiltration and genomic instability in GC. The
accuracy of the lactylation score in predicting the response to ICI
treatment by GC still needs to be verified by large-scale
clinical trials.

In summary, the lactylation score might be useful in the
molecular classification of GC, as it could help to identify
different patterns of immune infiltration and genomic instability.
The lactylation score can also be used as a method to assess the
response of patients to ICI treatment.
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Osteosarcoma (OS) is a cancer that is frequently found in children and
adolescents and has made little improvement in terms of prognosis in recent
years. A recently discovered type of programmed cell death called cuproptosis is
mediated by copper ions and the tricarboxylic acid (TCA) cycle. The expression
patterns, roles, and prognostic and predictive capabilities of the cuproptosis
requlating genes were investigated in this work. TARGET and GEO provided
transcriptional profiling of OS. To find different cuproptosis gene expression
patterns, consensus clustering was used. To identify hub genes linked to
cuproptosis, differential expression (DE) and weighted gene co-expression
network analysis (WGCNA) were used. Cox regression and Random Survival
Forest were used to build an evaluation model for prognosis. For various clusters/
subgroups, GSVA, mRNAsi, and other immune infiltration experiments were
carried out. The drug-responsive study was carried out by the Oncopredict
algorithm. Cuproptosis genes displayed two unique patterns of expression, and
high expression of FDX1 was associated with a poor outcome in OS patients. The
TCA cycle and other tumor-promoting pathways were validated by the
functional study, and activation of the cuproptosis genes may also be
connected with immunosuppressive state. The robust survival prediction ability
of a five-gene prognostic model was verified. This rating method also took
stemness and immunosuppressive characteristics into account. Additionally, it
can be associated with a higher sensitivity to medications that block PI3K/AKT/
mTOR signaling as well as numerous chemoresistances. U20S cell migration and
proliferation may be encouraged by PLCD3. The relevance of PLCD3 in
immunotherapy prediction was verified. The prognostic significance,
expressing patterns, and functions of cuproptosis in OS were revealed in this
work on a preliminary basis. The cuproptosis-related scoring model worked well
for predicting prognosis and chemoresistance.

KEYWORDS

osteosarcoma, cuproptosis, immune infiltration, tumor microenvironment, drug
response, machine learning

139 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2023.1156455/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1156455/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1156455/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1156455/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1156455&domain=pdf&date_stamp=2023-03-16
mailto:ct0702@csu.edu.cn
mailto:xy3ws1969@hotmail.com
https://doi.org/10.3389/fonc.2023.1156455
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1156455
https://www.frontiersin.org/journals/oncology

Hu et al.

1 Introduction

Osteosarcoma (OS) continues to be the most prevalent primary
bone cancer in children and adolescents, although being
uncommon globally (1). With 4.4 instances per million people in
the US, this tumor reaches its peak incidence in adolescence, which
is consistent with a pubertal growth surge (2). Patients with OS have
a >60% five-year survival rate thanks to the present conventional
therapeutic approach of surgery and chemotherapy, but since 1980,
little has been learned about the pathophysiology and targeted
therapy of OS. Patients with metastatic disease and relapse cannot
benefit from additional surgery or chemoradiotherapy (3). In-depth
research on novel etiology and treatment targets for OS is urgently
needed given the non-negligible severe socioeconomic burden on
young people.

The tailored treatment of OS may greatly benefit from further
study into programmed cell death (PCD), which is still a hot topic
in oncology. For instance, cisplatin, a traditional first-line
chemotherapeutic treatment for OS, induces apoptosis (4). By
inducing oxidative stress dependent on GSH depletion and ROS
overproduction, ferroptosis promoters such as phenethyl
isothiocyanate (PEITC), baldachin, and ursolic acid have been
identified as potential adjuvant chemotherapy treatments (5-7).
Similar to this, inhibiting RIP1- and RIP3-dependent necroptosis
effectively reduced lung metastasis and tumor growth in an OS
mouse model (8).

A new PCD variant called cuproptosis was published in March
2022 by Peter T et al. (9). The buildup of monovalent copper ions
may interact directly with proteins that have been lipoylated, which
are mostly found in the mitochondria that power the TCA cycle.
The loss of proteins containing the Fe-S cluster and the production
of acute proteotoxic stress as a result of copper chelating lipoylated
protein aggregation led to an independent type of cell death. For
oncology researchers interested in copper toxicity in the treatment
of cancer, this result is encouraging. A significant anti-tumor effect
in patients with low plasma lactate dehydrogenase (LDH) was
revealed in the phase 3 clinical trial to apply copper ionophores
for melanoma, suggesting malignancies with a high dependence on
mitochondrial metabolism were likely to benefit from cuproptosis-
related molecular therapies (10).

The metabolic reprogramming in OS (11) is characterized by
abnormally suppressed TCA cycle and high levels of oxidized
glutathione (GSH), and GSH regulates copper ion cytotoxicity by
inhibiting the oxidation of divalent copper ions to monovalent
copper ions (9). It is important to talk about the activities of the
lipoylation and cuproptosis pathways. In this investigation, we seek
to identify functional pathways and genetic targets closely
associated with cuproptosis, investigate the expression patterns of
cuproptosis regulatory genes, and assess the influence of these
targets on the prognosis of OS patients. Additionally, immune
infiltrates landscapes, chemotherapeutic responsiveness, and
cancer stem-like cellular features are also implicated in identifying
their distinctions in patients with various cuproptosis patterns. This
study might offer initial recommendations and a feasibility analysis
for treatment plans that aim to treat copper toxicity in OS patients.
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2 Materials and methods
2.1 Dataset obtaining and processing

In this investigation, public transcriptional profiling datasets from
OS patients were used, including the TARGET OS dataset and the
GSE21257 dataset from GEO. For the TARGET OS dataset, the GDC
portal (https://portal.gdc.cancer.gov/), along with complete clinical
information and RNA expression data in raw count and TPM
format, were downloaded by GDC client. Expression data in TPM
format was then converted into a log2(TPM+1) matrix for further
analysis, and 85 samples with full RNA expression and clinical data
were finally included. The URL for GSE21257 was https://
www.ncbi.nlm.nih.gov/geo/. 53 samples with complete information
were eventually included after starting with raw data and moving on to
obtain a normalized expression matrix and clinical data using the R
package beadarray and illuminaHumanv2.db. R (version 4.1.3) and
Bioconductor programs for data cleaning and gene analysis were used
to analyze all the aforementioned data signature annotation.

2.2 Cuproptosis regulatory gene set and
unsupervised consensus clustering

The cuproptosis regulatory gene set was obtained from the latest
literature by Peter T et al. (9), including FDXI, LIAS, LIPT1, DLD,
DLAT, PDHAI, PDHB, MTFI, GLS and CDKN2A. The sweep()
function in R was used to normalize the expression matrix for these
genes in log2(TPM+1) format before package ConsensusClusterPlus
was used for unsupervised clustering. The study’s parameters were
maxK = 4, reps = 500, pItem = 0,8, pFeature = 1, title = title, clusterAlg
= hc, and distance = canberra. Each clustering was evaluated using the
consensus CDF value and CDF curve delta area.

2.3 Differential expressing analysis

The TARGET OS dataset’s expression data in raw count format
and the R package DEseq2 were used for the DE analysis. Briefly,
grouping information was first established using results from previous
clustering; next, the entire expression matrix in TARGET OS was pre-
screened to remove genes with zero expression in more than 20% of
samples; finally, a DEseqDataSet object was built; the DESeq() function
was used to calculate DE fold change and perform a significance test.
FDR 0.05 was the cutoff for identifying genes as significantly
differentially expressed (DE), and these genes were referred to as
cuproptosis-related DE genes (CRDEGs).

2.4 Weight gene correlation network
analysis and identification of cuproptosis-
related hub genes

To find additional genes connected to cuproptosis clustering,
WGCNA was carried out using DE genes. Hierarchical clustering
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analysis was first performed using the hclust tool. Then, the
pickSoftThreshold duty during module construction screened the
soft thresholding power setting (6 in this study). Various modules’
average connectivity degrees and independence were tested using
candidate power (1 to 30). A suitable power value was chosen if the
autonomy level was greater than 0.8. Co-expression networks
(modules) were built using the WGCNA R package (The R
package WGCNA is a collection of functions for calculating
various weighted association analyses, which can be used for
network construction, gene screening, gene cluster identification,
topological feature calculation, data simulation, and visualization).
The minimum module size was set to 30, giving each module a
distinct color label. On the basis of its correlation with clusters, the
core module was chosen. Genes in the core module with GS values
greater than 0.8 and Module Membership (MM)>0.5 was defined as
hub genes, termed cuproptosis-related hub genes (CRHGs).

2.5 Construction and validation of the
cuproptosis-related prognostic O
Opredicting model

Based on the aforementioned CRHGs, a Random Survival
Forest (RSF) plus Cox regression algorithmic technique was used
for the selection of predictive features, model development, and
internal and external validation. Details are as follows:

2.5.1 Univariate Cox regression for preliminary
feature screening

TARGET_OS dataset was first randomly divided into the train
(70%) and internal test (30%) datasets by createDataPartition()
function in the R package caret. Univariate Cox regression analysis
was then applied for all CRHGs by R package survival and
survminer. Given the low sample volume for the TARGET_OS
dataset, a bootstrap (12) sampling strategy was adopted: in 1,000
replicates of sampling with replacement, a gene was proved as
prognosis-related only when the univariate cox regression results
showed FDR< 0.05 for more than 900 times; this step was
accomplished by sample() function in R.

2.5.2 RSF model for prognostic genes selection

The randomforestSRC (13) R package’s rfsrc() function was
used to access the remaining genes in order to build an RSF model.
The optimal values were ntree=1000, block.size=1, mtry=2,
nodesize=13, splitrule=“logrank” after adjustments. The var.select
() function was used to choose features based on minimal depth in
order to build the final prognostic model. As cuproptosis-related
prognostic genes, these genes (CRPGs).

2.5.3 Prognostic model construction by
multivariate Cox regression

A multivariate Cox regression model was built based on CRPGs.
Coefficients in this regression were applied for a final cuproptosis-
related prognostic scoring (CRP score) model calculated as follows:
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n
CRP  score = > Coef; % x;
i=1
Where Coefi was the coefficient of multivariate Cox regression
and xi was the log2(TPM+1) expression value corresponding to the
No.i CRPG.

2.5.4 Model validation

Then, for patients in TARGET OS for train and internal tests
and GSE21257 for external validation, the CRP score was
determined. The timeROC package represented the Time-
dependent ROC curve, and the area under the curve (AUC) was
used as the foundation for evaluating the CRP score model’s ability
to predict outcomes.

2.6 Gene set variation analysis

GSVA was used by the R package GSVA and GSEAbase to
investigate various enrichment statuses in gene function for distinct
clusters and subgroups. Two gene sets, c2.cp.kegg.v7.4.symbols and
h.all.v7.4.symbols, were used for functional annotation from
MsigDB  (http://www.gsea-msigdb.org/gsea/msigdb/). After that,
the LIMMA package was used to identify the enrichment
variations between various subgroups (13-15).

2.7 Calculation of the stemness
index (MRNAsi)

Based on the mean-centered gene expression profiles of PSCs in
the PCBC database (syn2701943), the stemness signature was
derived via the one-class logistic regression (OCLR) machine
learning algorithm (16), which was also verified by leave-one-out
cross-validation. Then, we calculated the Spearman correlations
between the normalized expression matrix of OS samples and the
stemness signature. Eventually, the stemness index was identified by
scaling the Spearman correlation coefficients to be between 0 and 1.
The higher the mRNAsi, the greater the tumor dedifferentiation and
higher stemness (17).

2.8 Compound resistance and
sensitivity analysis

Genomics of Drug Sensitivity in Cancer (GDSC, http://
www.cancerrxgene.org/downloads) database (18), which contained
drug sensitivity data (IC50) of 1,000 cell lines, was accessed to get
drug sensitivity and resistance information for osteosarcoma cell lines.
Then R package Oncopredict (19) based on the Ridge Regression
algorithm was applied to predict the drug response of samples in the
TARGET_OS cohort. Spearman correlation analysis was performed to
calculate the correlation between drug sensitivity and CRP_Score. The
absolute value of correlation coefficient > 0.4 and FDR< 0.05 were
regarded as significant.
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2.9 Analysis for immune cell infiltration and
immune signatures

Following the usual analysis procedure, we first used the
ESTIMATE program in R to evaluate the stromal purity and
general immune infiltration of tumor samples. For the
investigation of tumor immune cell infiltration, we used the
algorithms CIBERSORT and ssGSEA (13, 20, 21). The original
publications’ archives with the defining gene signatures for each
type of immune cell were obtained.

2.10 q-PCR experiment

The primers used for q-PCR are as follows: B-actin (https://
www.necbinlmnih.gov/gene/60; F ACCCTGAAGTACCCCATCGAG; R
AGCACAGCCTGGATAGCAAC). PLCD3 (https://
www.nebinlm.nih.gov/gene/113026; F CTCATTCGGGAGGCAGGGAA;
R CTGGGGACTGTAGTTGGCTG). The cell groups are as follows:
NC, si-PLCD3-1, si-PLCD3-2, and si-PLCD3-3.

2.11 Transwell experiment

In DMEM with 10% FBS and 1% double antibody, U20S cells
were grown. Pancreatic enzymes were used to digest the U20S
cells at the logarithmic growth stage before being counted and
distributed uniformly in six-well plates with roughly 1x105 cells
per well. The cells were transfected with NC and si-PLCD3 on the
second day. The cells were switched to a full medium for 48 hours
after 6 hours, and they were then cultured in an EDU37°C
incubator overnight. Paraformaldehyde was used to fix the
samples after collection. To defrost on ice, remove the
necessary si-PLCD3 and NC. They took four sterile tubes. A
total of 95 uL of serum-free MEM/DMEM media was added to
two tubes. The tubes were then filled with 5 uL of NC and 5 uL of
Lip2000, respectively. The equivalent centrifuge tubes received
the addition of si-PLCD3 in the same manner. Mix gently, then
set aside for five minutes at room temperature. Following a 20-
minute rest period at room temperature, combine the two tubes.
Finally, the mixture was blended and added uniformly to the
transfection hole. Replace with fresh and full culture medium six
hours after starting the culture in incubators at 37°C. The
following are the cell groups: Si-PLCD3-1 and Si-PLCD3-2,
NC. Corning sold the Transwell chamber (3428), which
was acquired.

2.12 EdU experiment

In DMEM with 10% FBS and 1% double antibody, U20S cells
were grown. Pancreatic enzymes were used to digest the U20S cells
at the logarithmic growth stage before being counted and
distributed uniformly in six-well plates with roughly 1x105 cells
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per well. The cells were transfected with NC and si-PLCD3 on the
second day. The cells were switched to a full medium for 48 hours
after 6 hours, and they were then cultured in an EDU37°C incubator
overnight. Paraformaldehyde was used to fix the samples after
collection. To defrost on ice, remove the necessary si-PLCD3 and
NC. They took four sterile tubes. A total of 95 uL of serum-free
MEM/DMEM media was added to two tubes. The tubes were then
filled with 5 uL of NC and 5 uL of Lip2000, respectively. The
equivalent centrifuge tubes received the addition of si-PLCD3 in the
same manner. Mix gently, then set aside for five minutes at room
temperature. Following a 20-minute rest period at room
temperature, combine the two tubes. Finally, the mixture was
blended and added uniformly to the transfection hole. Replace
with fresh and full culture medium six hours after starting the
culture in incubators at 37°C. The following are the cell groups: Si-
PLCD3-1 and Si-PLCD3-2, NC. Ribo supplied the EdU Kkit
(RN: R11078.2).

2.13 Statistical analysis

All statistical calculations were done in R. (version 4.1.3). The
comparison of count data was assessed using Fisher’s test and the
Chi-square test. The Student-t test was used for measurement data
with a normal distribution, whereas the Wilcox test was used for
data with an abnormal distribution. All correlation investigations
must be completed using Spearman analysis. The Kaplan-Meier
survival curve was represented using the R package survival
and survminer.

3 Results

The workflow chart of the study is shown in Supplement
Figure 1.

3.1 Distinct expression patterns for
cuproptosis regulatory genes were
identified in osteosarcoma patients

We initially examined the expression pattern of the genes that
regulate cuprotosis based on the log2(TMP+1) expression matrix.
All 10 genes were expressed in the TARGET OS and GSE21257
datasets, as seen in Figures 1A, B, and their expression followed a
normal distribution, which gave us the foundation for further
investigation. By combining the Kaplan-Meier survival curve and
univariate Cox regression with survival data, we found that elevated
FDXI1 expression is linked to both lower overall survival (OvS) and
disease-free survival (DFS) in OS patients (Figures 1C-E). These
findings suggested that cuproptosis might contribute to the
malignant biological activity of OS since FDX1 was shown to be a
key regulator in cuproptosis by linking the cytotoxicity of cooper
ions and protein lipoylation in the TCA cycle.
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FIGURE 1

Following that, unsupervised consensus clustering was carried
out using the expression matrix of 10 genes involved in
cuproptosis. Eighty-five samples in TARGET OS were best
grouped into two clusters, referred to as Cu ClusterA (42
samples) and Cu ClusterB (43 samples), as shown in
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Cuproptosis regulatory genes were expressed in distinct patterns in OS samples. (A, B) Expression distributions of cuproptosis regulatory genes in
TARGET_OS (A) and GSE21257 (B) datasets. (C—E) K-M survival curve for FDX1 high- and low- expression subgroups in TARGET_OS (C, D) and
GSE21257 datasets (E), Ovs, overall survival; DFS, disease-free survival. (F, G) Results of consensus clustering based on the expression of cuproptosis
regulatory genes, (F) Consensus heatmap, (G) Item-Consensus plot. (H) Heatmap shows the expression of cuproptosis genes in distinct patterns.
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two different patterns.

Figures 1F, G. The samples in Cu ClusterB tended to
overexpress all cuproptosis genes, as seen in Figure 1H, whereas
CDKN2A appeared to be indistinguishable. These results showed
that the cuproptosis pathway genes’ activity in OS patients showed
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3.2 Cuproptosis clusters in OS patients
represented differences in immune
infiltration and stemness properties

Then, we pondered how the two clusters’ malignant biological
characteristics varied from one another. So, we carried out a
number of functional investigations. The expression of
cuproptosis genes was typically active in Cu ClusterB samples,
according to GSVA analysis, which first revealed a number of
pathways that were sparked. TCA cycle-related pathways (such as
citrate metabolism, oxoglutarate metabolism, and pantothenic acid
biosynthesis) and traditional cancer-promoting pathways (such as
TGF-, WNT/-catenin, p53, and IL./STAT5 signalings) are two
categories of important findings (Figure 2A). We developed the

10.3389/fonc.2023.1156455

mRNAsi index to show the difference in cellular stemness between
the two clusters because the majority of these enriched pathways
were involved in the destiny control of cancer stem-like cells
(CSLCs). Cu ClusterB displayed a substantially higher mRNAsi
than Cu ClusterA, as illustrated in Figure 2B, indicating that
enhanced cuproptosis gene expression may function as an
initiating factor in immortal proliferation, quick metastasis, and
chemo-resistance linked to CSLC activities.

In addition, we carried out a number of researches on
immunological infiltration between two clusters. Figures 2C-E
illustrates how the ESTIMATE approach revealed that samples in
Cu ClusterB had lower stromal scores than Cu ClusterA, indicating
that Cu ClusterB had fewer stromal components. Samples in Cu
ClusterA tended to enhance activated immune cells, according to
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FIGURE 2

OS samples in different Cu_Clusters exhibited distinct tumor biological characteristics. (A) GSVA analysis showed diverse enriched pathways in
different Cu_Clusters. (B) Divergence in the mRNAsi index showed differences in stemness properties between Cu_ClusterA and Cu_ClusteB. (C—E)
ESTIMATE analysis for the overall status of immune cell infiltration and stromal component samples in the TARGET_OS dataset. (F) ssGSEA for the
infiltration analysis of 29 types of immune cells in different Cu_Clusters *P < 0.05; **P < 0.01.
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CIBERSORT and ssGSEA for a study of just one type of immune
cell (e.g., Activated CD4 T cell, dendritic cell, and Macrophages
M2). In contrast, models in Cu ClusterB (such as Regulatory T cell,
MDSC, and Macrophages M0) may show signs of a dormant
immunological state (Figure 2F and Supplement Figure 2A).

3.3 Screening of cuproptosis-related genes
revealed a functional connection between

cuproptosis and other biological processes
in OS

We first performed a differential expression (DE) study to find
CRGs associated with cuproptosis clusters. A total of 6537 genes,
including 3565 up-regulated genes in Cu ClusterA and 2972 up-
regulated genes in Cu ClusterB, matched the criteria for DE, as
shown in Figures 3A, B. WGCNA analysis was used, using DEGs as
input objects, to further narrow down the potential genes highly
connected with cuproptosis clusters, and 16 modules were
ultimately discovered (Figures 3C, D). Notably, the cuproptosis
clusters had the strongest correlation with Module turquoise
(MEturquoise), which had 1762 genes and had a R = 0.73 with
Cu ClusterB, p = le-15, in Figure 3E. Further verification showed
that genes in MEturquoise had strong consistency in principal
component representation (shown by Module Membership, MM)
and external connection with cuproptosis clusters (indicated by
Module Membership, MM) (Figure 3F).

We eventually discovered 331 hub genes in MEturquoise based
on the selection criteria of GS>0.8 and MM>0.5 described above.
For further examination, these signatures were classified as CRGs.
For CRGs, enrichment analysis was used to investigate the co-
regulated pathways and biological processes. Notably, as shown in
Figures 3G, H, the KEGG analysis revealed a high enrichment of the
TCA cycle and NAD(P)+ activity pathways, further demonstrating
the close relationship between cuproptosis and the TCA cycle. The
terms RNA synthesis, metabolism & splicing, and ubiquitin-
proteasome pathway also commonly appeared in search results.
Traditional methods of controlling cuproptosis are suggested by
AMPK and Hedgehog signaling. The emergence of the PD-1
checkpoint pathway suggested that cuproptosis might contribute
to the responsiveness of tumor treatment.

3.4 Selection of cuproptosis-related
prognostic genes and construction
of cuproptosis-related prognostic
score model

Patients in the TARGET OS cohort were 7:3 randomly split
between the training and testing groups. 16 prognostic CRGs were
left after performing univariate Cox regression with bootstrap
sampling to reduce redundancy based on CRGs. Then, using a
1,000-tree random survival forest model, the minimum depth
values selected the five gene signatures that would ultimately be
used as CRPGs: BTBD10, DLX1, MRTFA, PLCD3, and RFX3
(Figures 4A, B). The scatter plot revealed no obvious association
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between the expression of these five genes, ruling out model
redundancy in the process (Figure 4C). The CRP score model was
then created by performing multivariate Cox regression using
CRPGs:

CRP  score = (— 1.8626130)+Expprpp1o + 0.2978399+Expp; x1

— 0.9252084+Expyrra
+0.1514946+Exppycps + 1.0547832+Exp iy

For each patient in a train, test, and external validation dataset,
we computed a CRP score. In these datasets, we used a time-
dependent ROC curve to find the prediction power for overall
survival. The area under the curve (AUC) was convincingly
confirmed in the TARGET testing set GSE21257 validation set
and reached 0.809 at three years, 0.816 at five years, and 0.769 at
eight years (Figures 4D-F). Based on the median score, OS patients
were divided into CRP score high and CRP score low subgroups.
The K-M curve further demonstrated that OS patients with higher
CRP scores had considerably worse OvS times (Figures 4G, H).

3.5 Correlation analysis between CRP
score and malignant biological behaviors

We also carried out a number of functional studies. First, GSVA
analysis indicated that the CRP high subgroup was enriched for
various cancer-promoting pathways, including Wnt/-catenin, TGF-
, and JAK/STAT signaling, which overlapped with Cu ClusterB.
Improvements were made to the TCA cycle-related pathways,
demonstrating the coherence between Cu Clusters and CRP
subgroups. Notably, the CRP high fraction also had activation of
the epithelial-mesenchymal transition (EMT) pathway, suggesting
that samples with poorer prognoses were more likely to develop
distant metastases (Figure 5A).

Additionally, the mRNAsi index was used in connection studies
with CRP results. In contrast to the CRP low subgroup, samples in
the CRP high subgroup showed a considerably higher mRNAsi
index (Figure 5B). Additionally, the TARGET OS dataset revealed a
strong association between CRP score and mRNAsi in every person
(R=0.32, p=0.031, Figure 5C), suggesting that OS samples with
higher CRP values may have more pronounced stemness features.

According to the immune infiltration analysis, a higher CRP score
was linked to immunosuppression (R = - 0.25, p = 0.023; Figure 5D);
while a lower CRP score was linked to a greater stromal score (R = -
0.31, p = 0.017; Figure 5E). The CRP high subgroup was related with
higher infiltration of Macrophages MO, Type 17 T helper cells, and
T cells, according to an examination of infiltration for various immune
cells. The CRP low subgroup, on the other hand, was connected to
enhanced infiltration of Macrophages M2, Regulatory T cell, Central
memory CD8 T cell, and Activated B cell, showing different immune
infiltration patterns in OS patients (Figure 5F and Supplement
Figure 2B). It should be highlighted that the CRP low subgroup
showed increased expression of PDL1, TIM3, and TIGIT
(Supplement Figure 2C). Because immunosuppression and CRP
score are correlated, anti-PD-1/PD-L1 immunotherapeutic medicines
may be more effective for OS patients with lower CRP values.
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3.6 Correlation analysis between CRP
score and malignant biological behaviors

From CCLE, 10 OS cell lines and their expression matrix were
taken. In order to determine the link between the CRP score and the
IC50 for each molecule contained in the GDSC v2 database, we first
calculated the CRP score for these cell lines. The elevated CRP score
was linked to greater resistance to a number of medications,
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particularly those that target the ERK/MAPK pathway and cell
cycle, as shown in Supplement Figure 3A. Unexpectedly, cell lines
with higher CRP ratings appeared to be more responsive to
AT13148, a medication that blocks PI3K/Akt/mTOR signaling.
To further forecast the pharmacological reactions of samples in
the TARGET OS dataset, we utilized a machine learning system.
Two medications that target the PI3K/mTOR pathway, AZD6482
and AZD8055, were probably more sensitive in OS samples with
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Construction and validation of CRP score model. (A, B) RSF model training

and variable selection; (A) error rate trends as the number of trees

increased when training RSF model; (B) Variable importance of selected features. (C) Correlation of expression in 5 genes that RSF selected to

train CRP score model. (D—F) Time-dependent ROC curve to test the pred

ictive ability of CRP score for OS patients in TARGET_OS train set (D),

test set (E), as well as GSE21573 external validation set (F). (G, H) K-M curve of CRP scores high and low subgroups for patients’ overall survival in

TARGET_OS (G) and GSE21573 (H) datasets

higher CRP scores, as demonstrated in Supplement Figure 3B and
Supplement Figure 2D. Additionally, samples with high CRP values
responded more favorably to linsitinib targeting IGF1R.

In light of the aforementioned findings, treating patients with
high CRP scores who were thought to have bad prognoses may
involve targeting PI3K/Akt/mTOR signaling. Contrarily, drugs that
target the cell cycle and Wnt signaling pathways are frequently
ineffective against patients with high CRP values. Given that most
first-line chemotherapeutics for OS used cell cycle inhibition as
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their primary mechanism of action, the CRP score model may also
be able to predict clinical chemoresistance in OS patients.

3.7 Pan-cancer analysis on model genes

The expression pattern of model genes in pan-cancer is shown
in Figure 6A. BTBD10, DLX1, MRTFA, PLCD3, and RFX3 were
highly expressed in PRAD, COAD, LUSC, HNSC, and KIRC. The
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Correlation analysis between CRP score and malignant biological behaviors. (A) GSVA analysis showed diverse enriched pathways between
CRP_high and CRP_low subgroups. (B, C) mRNAsi index analysis revealed differences in stemness properties between CRP_high and CRP_low
subgroups and a significant correlation between CRP_score and mRNAsi. (D, E) ESTIMATE analysis for the correlation between CRP_score and
immune cell infiltration as well as a stromal component in samples of the TARGET_OS dataset. (F) ssGSEA for the infiltration analysis of 29 types of
immune cells in CRP_high and CRP_low subgroups *P < 0.05; **P < 0.01; ***P < 0.001.

somatic mutation frequency of model genes is shown in Figure 6B.
BTBD10, DLX1, MRTFA, PLCD3, and RFX3 had relatively high
mutation rates in UCEC and SKCM. The somatic mutation
landscape of model genes is shown in Figure 6C. BTBD10 (43%),
PLCD3 (27%), and RFX3 (24%) were frequently mutated in
pan-cancer.

The heterozygous CNV profiles (amplification and depletion)
of model genes are shown in Figure 7A. The homozygous CNV
profiles (amplification and depletion) of model genes are shown in
Figure 7B. Pathway analysis revealed that PLCD3 was related to
activated apoptosis, EMT, hormone AR, hormone ER, PI3K/Akt,
RAS/MAPK, RTK, and TSC/mTOR (Figure 7C). The miRNA
regulation network of model genes is shown in Figure 7D.

Frontiers in Oncology

148

3.8 In vitro validation on PLCD3

The tumor-promoting activity of PLCD3 was investigated by in
vitro tests since it is a crucial gene in the CRP score. Three si-RNA
significantly reduced the relative RNA expression of PLCD3 in the
NC and three si-RNA groups, according to a q-PCR experiment
(Figure 8A). Figure 8B displays the statistical analysis of the cell
counts in the NC and two si-RNA groups using the Transwell test.
Figure 8C illustrates the statistical analysis of the proliferation rate
(EdU/DAPI) in the NC and two si-RNA groups. Transwell assay
representative photos of the cell counts in the NC and two si-RNA
groups (Figure 8D), showing that the number of migrated cells was
dramatically decreased in the two si-RNA groups. Typical pictures
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(A) Pan-cancer expression pattern of model genes. (B) Pan-cancer SNP analysis on model genes. (C) Pan-cancer SNP landscape on model genes.

of the proliferation rate in NC (EAdU/DAPI). Examples of the
proliferation rate (EdU/DAPI) in the NC and two si-RNA groups
by EdU test are shown in Figure 8E, where the positively stained
cells in the two si-RNA groups were dramatically decreased.

3.9 Immunotherapy prediction of PLCD3

Figure 9A depicts the expression of PLCD3 in immunotherapy
cohorts of responders and non-responders, with responders
exhibiting higher expression of PLCD3 in the Lauss cohort of
2017 and Kim cohort of 2019. Regarding the two groups’ PLCD3
expression in immunotherapy cohorts, a survival analysis was
carried out (Figure 9B). In the VanAllen cohort of 2015 and the
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Cho cohort of 2020, PLCD3 was linked to improved survival; in the
Kim cohort of 2019, the Nathanson cohort of 2017, and the Lauss
cohort of 2019, PLCD3 was linked to worse survival. In eight
immunotherapy cohorts, PLCD3 demonstrated strong predictive
power for immunotherapy response (Figure 9C).

Figure 10A illustrates the relationship between PLCD3 and T
dysfunction value (core dataset), normalized Z score calling from
Cox-PH regression (immunotherapy datasets), normalized Z score
calling from selection log2FC (CRISPR screening datasets), and
normalized expression value from immune-suppressive cell types.
PLCD3 had an AUC greater than 0.5 in ten immunotherapy cohorts
with regard to its predictive value (Figure 10B). In seven mouse
cohorts, the cytokine treatment prediction revealed that PLCD3
could strongly predict the treatment with cytokines (Figure 10C). In
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two mouse cohorts, the immunotherapy prediction demonstrated
that PLCD3 could accurately predict immunotherapy (Figure 10D).

3.10 Protein interaction network, illness
network, and pan-cancer immune
infiltration pattern of PLCD3

PLCD3 was found to interact with ITRP3, ITPR1, PRKCA, and
PIP4K families by STRING (Figure 11A). PLCD3 was involved in
hypertension, cutaneous melanoma, and breast adenocarcinoma by
Open Targets Platform (Figure 11B). PLCD3 positively correlated
with macrophages and negatively correlated with T cells in most
cancers by TIMER (Figure 11C).
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4 Discussion

Cuproptosis is a recently identified type of programmed cell
death. Little is currently known about this unique, mitochondrial-
dependent mechanism, however Peter T. et al. This work provides a
preliminary description of the regulatory environment of
cuproptosis-related pathways in osteosarcoma based on the
available information. Some key findings may serve as an
inspiration for work on OS and many other pathological
conditions. First, it is found that OS patients have a poor
prognosis and high FDX1 expression. FDX1 was first discovered
as a mitochondrial electron transporter for cytochrome P450
metabolism (22, 23). Some sporadic studies identified FDX1 as a
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tumorigenesis regulator. In xenograft models of multi-tumors,
Tsvepkov P et al. (24) proved that FDX1 worked as an oncogene
rescuing elesclomol-induced cell death. Zhang Y et al. (25) found
that FDX1 could regulate iron metabolism and mitochondrial
homeostasis in tumor cells through the p53 pathway. Our work
may inspire more research on FDX1 as a key element in cuproptosis
and an oncogene to control the pathogenesis of OS because no
studies on the association between FDX1 and OS have been located.

Our study has also thoroughly examined the regulatory
pathways connected to cuproptosis and its potential roles in OS.
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Cuproptosis gene up-regulation resulted in the enrichment of a few
well-known cancer-promoting pathways, including TGF-, Wnt/-
catenin, and p53 signaling. These results might offer suggestions for
further experiments on cuproptosis regulation pathways.
Additionally, we discovered that cuproptosis may also generate an
immunosuppressive state and CSLC characteristics. Ferroptosis and
cuproptosis have certain molecular commonalities in several types
of programmed cell death. Both were correlated with the reduction
of metal ions and redox metabolic pathway mediated by GSH/
NADPH in mitochondria (26, 27). Some recent studies have
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Immunotherapy prediction of PLCD3. (A) The expression of PLCD3 in responders and non-responders in immunotherapy cohorts. (B) Survival
analysis was performed on the two groups regarding PLCD3 expression in immunotherapy cohorts. (C) The ROC curve of PLCD3 in predicting

immunotherapy response in immunotherapy cohorts.

suggested that CSLCs might be sensitive to ferroptosis due to their
relatively strong dependency on nutrition intake and higher
intracellular levels of metal trace elements to maintain their self-
renewal (28, 29). For tumor immunology, ferroptosis might also
play a crucial role in regulating T cells. Ferroptosis induction in
CD8+ and CD4+ T cells could lead to phospholipid hydroperoxide
and impair its antitumor function (30, 31). These results are in line
with our research, which show that cuproptosis-regulated gene
activation is positively correlated with a higher mRNAsi

Frontiers in Oncology

152

index and an increase in the infiltration of immunosuppressive
cells. Therefore, it is encouraging that future studies will
concentrate on controlling cuproptosis in CSLCs and
tumor microenvironments.

Our study identified five cuproptosis-related prognostic genes
and built a reliable prognostic predicting model (CRP score model)
based on them using a number of bioinformatic and machine
learning methods. Our search revealed that studies on the role of
these five genes, except MRTFA and RFX, in the etiology of OS had
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Immunotherapy prediction of PLCD3. (A) Regulator prioritization performed by TIDE. (B) Biomarker evaluation by TIDE. (C) Cytokine treatment

prediction by TISMO. (D) Immunotherapy prediction by TISMO.

yet to be published. Matrix stiffness regulates EMT via cytoskeletal
remodeling and MRTFA translocation in osteosarcoma (32).
MRTFA is strongly associated with cell viability of its correlation
with cytoskeleton and actin (33). It has been identified as an EMT
and metastasis regulator in NPC (34) and NSCLC (35). BTBD10
functions as an activator of AKT family members by inhibiting
PPP2CA-mediated dephosphorylation, and a few studies have
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identified it as a prognostic risk factor in hepatocellular
carcinoma (36) and glioma (37). DLX1 serves as a two-sided
transcriptional regulator of the TGF-B superfamily that may be
either an oncogene or a suppressor in different types of tumors (38,
39). PLCD3 is a member of the phospholipase C family, which
catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate to
generate the second messenger diacylglycerol and inositol 1,4,5-
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trisphosphate (IP3) (40). PLCD3 is involved in the proliferation,
migration, and invasion of nasopharyngeal carcinoma (41). PLCD3
inhibits apoptosis and promotes thyroid cancer’s proliferation,
migration, and invasion via the Hippo pathway (42). As PLCD3
was not studied in osteosarcoma, the in vitro validation was
performed on PLCD3. PLCD3 could facilitate the proliferation
and migration of osteosarcoma. p53 could directly regulate target
genes, including MDM2, TP5313, and RRM2B, or indirectly
regulate numerous further genes through several hub genes,
including EHF and RFX, through various drug treatments in
osteosarcoma (43). RFX3 is a transcription factor that is essential
for the differentiation of nodal monocilia (44). It has been reported
that these two genes may also be involved in malignant biological
behaviors of cancers (42, 45), but the mechanisms are poorly
understood. Given that drug responses were predicted for OS
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patients with varying CRP scores, this 5-gene prognostic model is
not only deserving of exploration of their mechanism in cuproptosis
regulation and OS tumorigenesis/progression but also potential for
translational medical outcomes, particularly for the future targeted
therapy targeting PI3K/AKT/mTOR signaling, as compounds
targeting this pathway could remain highly sensitive in patients
with high CRP scores (poor prognosis).

We had to acknowledge that this study has limitations as
researchers in the fields of bioinformatics and machine learning.
Since OS is a relatively uncommon tumor, it is challenging to gather
WGS data, and the sample size is modest when compared to other
cancer types. The TARGET database provided by GDC has to have
certain types of data, including SNP, copy number variation, and
protein expression profiling, completed or accessible. These flaws
likely decreased the power of statistical tests throughout the study,
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particularly for machine learning-related studies like ridge
regression and random survival forests. In a summary, our study
demonstrated the distinctive cuproptosis regulatory gene
expression profiles in osteosarcoma patients. It revealed some
fresh information on the connections between this recently
discovered kind of PCD and cancer-related pathways, stemness
features, and immune infiltration traits. A scoring model based on
cuproptosis-related clustering may have a significant impact on OS
patient prognosis prediction and may influence clinical
chemotherapy regimen selection and the creation of novel
targeted medications.
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Background: Since its discovery, clear cell renal cell carcinoma (ccRCC) has
been the most prevalent and lethal kidney malignancy. Our research aims to
identify possible prognostic genes of ccRCC and to develop efficient prognostic
models for ccRCC patients based on multi-omics investigations to shed light on
the treatment and prognosis of ccRCC.

Methods: To determine a risk score for each patient, we screened out
differentially expressed genes using data from tumor samples, and control
samples mined from The Cancer Genome Atlas (TCGA) and GTEx datasets.
Somatic mutation and copy number variation profiles were analyzed to look for
specific genomic changes connected to risk scores. To investigate potential
functional relationships of prognostic genes, gene set variation analysis (GSVA)
and gene set enrichment analysis (GSEA) were carried out. We created a
prognostic model by fusing risk ratings with other clinical variables. For
validation, the 786-0O cell line was used to carry out the dual-gRNA approach
to knock down CAPN12 and MSC. This was followed by qRT-PCR to verify the
knockdown of CAPN12 and MSC.

Results: For ccRCC, seven predictive genes were discovered: PVT1, MSC,
ALDHG6A1L, TRIB3, QRFPR, CYS1, and CAPN12. The most enriched pathways in
the GSVA study and GSEA analysis promote tumorigenesis and immune system
modulation. The risk score derived from prognostic genes corresponds with
immune infiltration cells and helps predict how well a medicine will work. The
mutation of numerous oncogenes was also linked to a high-risk score. A
prognostic model with a high ROC value was created for the risk score. An in
vitro study demonstrates that the suppression of CAPN12 and MSC dramatically
reduced the ability of 786-0O cells to proliferate in the CCK-8 proliferation assay
and plate clonality assays.
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Conclusions: A thorough prognostic model with good performance has been
developed for ccRCC patients using seven prognostic genes that were
discovered to be related to ccRCC prognosis. In ccRCC, CAPN12 and MSC
were significant indicators and would make good therapeutic targets.

KEYWORDS

ccRCC, prognostic model, immune infiltration, somatic mutation, cell proliferation

Background

Kidney cancer has long been a common malignant tumor in the
urinary system, with an increasing incidence rate worldwide. In the
USA, 65,000 individuals are newly diagnosed with kidney cancers
per year (1). Among all kinds, clear cell renal cell carcinoma
(ccRCC) accounts for approximately 80% of kidney cancers,
which also correlates with worse survival outcomes (2). Although
the 5-year overall survival (OS) of patients with early diagnosis of
ccRCC is about 90%, the 5-year OS for patients diagnosed at an
advanced stage is down to 12% (3). Unfortunately, almost 20% of
cases are in advanced malignant stages when diagnosed (4).
Regarding treatment, nephrectomy continues to be the optimal
approach for localized ccRCC. A phase 3 clinical trial has proved
that nephrectomy with adjuvant chemotherapy increased the
progressive free survival (PFS) of ccRCC patients to 6.8 years
compared with nephrectomy alone (5.8 years) (5). Although
chemotherapy is a good option for multiple cancer types, ccRCC
shows resistance to chemotherapy via secreting vascular endothelial
cell growth factor (VEGF) (6). Other molecules, such as the
mammalian target of rapamycin (mTOR) and the mitogen-
activated protein kinase (MAPK), have also been demonstrated to
be involved in the carcinogenesis of ccRCC and dampen the
effectiveness of chemotherapy (7, 8).

Recently, immunotherapies combined with conventional
surgical resection and radiotherapy have gradually improved the
clinical management of ccRCC (9). However, the mortality rate of
ccRCC remains high due to diagnostic difficulty at the early stage of
the disease. Thus 30% of patients inevitably would suffer from
tumor recurrence and progression (9). Combining ccRCC
prognostic genes, researchers have built some predictive models
for ccRCC patients based on online databases, such as The Cancer
Genome Atlas (TCGA), with many genetic ccRCC samples.
However, no prognostic model of ccRCC has been widely

Abbreviations: ccRCC, Clear cell renal cell carcinoma; DEGs, Differentially
expressed genes; GSVA, Geneset variation analysis; GSEA, Geneset enrichment
analysis; CCK-8, Cell Counting Kit-8; mTOR, mammalian target of rapamycin;
VEGF, vascular endothelial cell growth factor; MAPK, mitogen-activated protein
kinase; TCGA, The Cancer Genome Atlas; KIRC, Kidney Renal Clear Cell
Carcinoma; ROC, Receiver operating characteristic; AUC, area under the
curve; CNV, Copy number variation; TIDE, Tumor Immune Dysfunction

and Exclusion.
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accepted. Thus, a risk stratification model identifying ccRCC-
related biomarkers and assessing the prognosis of ccRCC patients
is urgently needed. In this study, we present a ccRCC prognostic
model after mining and screening multiple predictive genes from
the TCGA dataset, aiming to shed light on optimizing the clinical
management of ccRCC patients.

Materials and methods

Datasets and preprocessing

We gathered two cohorts of patients with ccRCC for this study:
GSE29609 (microarray) from the platform (GPL1708) and TCGA
Kidney Renal Clear Cell Carcinoma (KIRC) (RNA-seq) cohort. Raw
data from the microarray dataset generated by Agilent was
downloaded from the Gene Expression Omnibus (GEO) (https://
www.ncbinlm.nih.gov/geo/). Gene expression profile induced by
MMumina and corresponding clinical information were downloaded
from The Cancer Genome Atlas (TCGA) data source (https://
xena.ucsc.edu). Raw data for the dataset from Agilent were
processed using the RMA algorithm for background adjustment in
the limma software package. The raw data from Illumina was
processed using the lumi software package (10). For the TCGA
cohort, RNA-sequencing data (FPKM values) were transformed
into transcripts per kilobase million (TPM) values that are more
similar to the values from the microarray. Samples without survival
information were eliminated, 528 KIRC samples in TCGA were
screened out for the risk score construction, and 39 KIRC samples in
GEO were screened out for external validation of the risk score. One
hundred standard pieces were downloaded from https://
xenabrowser.net/datapages/?cohort=TCGA%20TARGET %
20GTEx&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu
%3A443, among which 28 regular renal models were from the GTEx
database (https://xena.ucsc.edu), and 72 normal renal samples were
from the TCGA database (https://xena.ucsc.edu). These 100 normal
samples were already combined, so removing the batch effect was
unnecessary. The TCGA KIRC cohort was randomly divided into
two equal parts: the train set (set 1) and the validation set (set 2). The
total TCGA KIRC data were used as another verification set (set 3),
while the GEO cohort was used as the external validation set in the
following studies (set 4).
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Identification of differentially expressed
genes in KIRC

Probes without corresponding gene symbols were filtered out,
and the average value of gene symbols with multiple searches was
calculated. Between the two groups, the Linear Models for
Microarray Data Analysis (limma) package (10) was used to
screen the differentially expressed genes (DEGs). Threshold values
were set as adjusted P<0.05 and the absolute value of logFC> 2. A
principal component analysis was also applied to categorize the data
further to assess the DEGs’ accuracy.

Screening and confirmation of the
prognostic value of the genes

By intersecting the obtained differential expressed gene with the
genes of TCGA, genes for further analysis were obtained. In the
training set (set 1), univariate Cox proportional hazard regression
analysis was performed using the survival package in R to
investigate the relationship between patients’ overall survival (OS)
and gene expression level. Genes were considered significant with
prognostic potential at a P-value<0.05. Next, we applied an L1-
penalized (Lasso) regression to identify the differentially expressed
genes with independent predictive values. Lasso regression is a
valuable method to determine interpretable prediction rules in high
dimension data (11). We obtained a set of prognostic genes and
their corresponding LASSO coefficients based on the highest
lambda value selected through 1,000 cross-validations in the
Lasso method (lambda.lse). To evaluate whether the selected
genes were related to the prognosis of KIRC patients, patients of
set 1 were assigned into two groups based on the median expression
value of each gene. Kaplan-Meier plots were used to determine their
prognostic value, and P<0.05 was considered statistically significant.
A genes-based survival risk assessment model was established using
the LASSO coefficients. Then, patients were divided into low-risk
and high-risk groups using the median risk scores in the other three
sets. Kaplan-Meier plots and Log-rank tests were used to estimate
and compare the OS of patients between the two risk groups; P<0.05
was set as the cutoff. The time-dependent receiver operating
characteristic (ROC) curve and the area under the curve (AUC)
were applied to evaluate the prediction accuracy of the risk model
and the selected genes. Furthermore, stratified survival analyses
were also conducted to explore whether the gene-based risk
assessment model has predictive value among different age groups
(older or younger than 60), primary tumor lesions (T1, T2, T3, T4),
and stage (stage I, stage ii, stage iii, stage iv).

Consensus clustering of prognostic genes

To investigate the function of seven prognostic genes in KIRC, we
clustered the KIRCs into different groups with “ConsensusClusterPlus”
(50 iterations, resample rate of 80%, and Pearson correlation). PCA
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with the R package for R v3.4.1 was adopted to study the gene
expression patterns in different KIRC groups.

Genomic alterations of samples clustered
by risk scores

To determine whether risk score levels are associated with
specific genomic characteristics in ¢cRCC, we performed copy
number variation (CNV) and somatic mutation analysis using the
TCGA dataset. GSITIC analysis was adopted to determine the
genomic event enrichment.

Prognostic model based on clinical
features and risk score

Univariate Cox proportional hazard regression analysis was
performed using the survival package for the risk score and clinical
features (Age, Tumor primary lesion, Stage) with a P value <0.05 as the
cutoff. Then we built a Multivariate Cox model based on the selected
features, and the Nomogram chart was drawn using the replot package.
The Calibration curve and the AUC assessed the risk model.

Gene set variation analysis and geneset
enrichment analysis

The gene set variation analysis (GSVA) and geneset enrichment
analysis (GSEA) packages were used to calculate the enrichment
status in Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) terms of TCGA samples. Correlation
analysis was performed by expression values of risk score, GO
terms, and KEGG terms. The items with p<0.05 and a high
correlation coefficient were selected (12).

Immunological function analyses

A single sample gene set enrichment analysis (ssGSEA) was
performed using R software to quantify 28 tumor-infiltrating
immune cells (Foroutan et al, 2018). Correlation analysis between
risk score and tumor-infiltrating immune cell expressions was
performed using gene expression profiles from the TCGA datasets.

Prediction of chemotherapeutic and
immunotherapy response

The Tumor Immune Dysfunction and Exclusion (TIDE)
algorithm was performed to infer individual responses to
immunotherapy, such as immune checkpoint blockade (e.g., anti-
PD-1 therapy). The submap analysis was applied to show the
difference in response to anti-PD-1 and CTAL-4 therapy (13). The
chemotherapeutic response for each ccRCC patient was predicted
according to the public pharmacogenomic database, Genomics of
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Drug Sensitivity in Cancer (GDSC, www.cancerrxgene.org). The
prediction of drug sensitivity (IC50) values was conducted using
the R package “prophetic” (14).

CAPN12 and MSC knockdown

Knockdown plasmids were constructed by the dual-gRNA
method (15), targeting CAPN12 and MSC. Vectors without
specific gRNAs were used as control. All PCR products were
verified by DNA sequencing. Transfection of plasmids was carried
out using Lipofectamine 2000 (Invitrogen, USA) according to the
manufacturer’s instructions. After the transfection, cells were
seeded and grown in the RPMI-1640 supplemented with 5% FBS.
Then 786-O cell clones were picked, and the expression of CAPN12
and MSC were validated by qRT-PCR. Plate clonality assays were
also used to measure the impact of knockdown on cell clonality and
cell cycle in the 786-O cell line after silencing CAPN12 and MSC.

Quantitative real-time polymerase
chain reaction

Three biological replicates were analyzed, with technical
replicates for each triplicate biological sample. Total RNAs were
extracted, reversed, and transcribed into cDNA by HiScript Q RT
SuperMix for qRT-PCR. ChamQ SYBR qRT-PCR Master Mix was
used for qRT-PCR experiments, and its protocol was as follows: 95°
C 30, 95°C 10 s, 60°C 30 s, for a total of 40 cycles reactions. The
expression level of target genes was quantified using the 2-AACT
method. GADPH was used as the internal standard. The primers
are as follows: CAPN12, 5-CTCCATTTCGACACCGTGCAG-3,
5-GAGTTGAAGCCACGCACCCA-3’; MSC, 5-CAACTCG
TAGTCCACGCTCC-3, 5-TAAAAACCCAGGCCGGGAAG-3’.

Cell proliferation assay

Cell Counting Kit-8 (CCK-8) proliferation assay was conducted
to assess the proliferation ability of cells according to the
manufacturer’s instructions. After cell counting, 1x104 cells were
seeded into 96-well plates and incubated at 37°C for 24 h, 48 h, and
72 h. ten uL CCK-8 reagent was added into each well, and the
absorbance at 450 nm was tested one h later.

Colony forming assay

Cells were digested and plated in 6-well plates (300 cells per
well) and cultured with 5% CO2 at 37C for two weeks. The colonies
were then fixed with 4% methanol (1 ml per well) for 15 minutes
and stained with crystal violet for 30 minutes at room temperature.
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After the photograph, discoloration was performed with 10% acetic
acid, and cells were measured absorbance at 550 nm.

Statistical analysis

All statistical analyses were performed using R software. A two-
tailed t-test and one-way ANOVA determined significant quantitative
differences between and among groups. The chi-square test was used to
analyze the correlation of the classified data. The Kaplan-Meier
method calculated the overall survival difference. Cox regression
analysis was performed using the survival package in R. Spearman
correlation to measure the strength of the association between two
ranked variables. The gene sets enrichment analysis (GSVA) box was
used to calculate the enrichment status in GO (Biological Process) (12).
The R package survival ROC was used to plot and visualize receiver
operating characteristic (ROC) curves to calculate the area under the
curve (AUC) (16). All figures and statistical analyses were performed
based on R language for Windows, version 3.5.1(http://www.r-
project.org). Somatic mutations and somatic copy number
alternations (CNAs) data were downloaded from the TCGA
database. Copy number alternations associated with risk scores were
analyzed using GISTIC 2.0 (https://gatkforums.broadinstitute.org).
Adjusted P values were obtained by False Discovery Rate (FDR)
correction. P values and adjusted P values of less than 0.05 were
considered statistically significant.

Results
Data preprocessing and DEGs screening

The flow chart of this study is shown in Supplementary Figure
SI1A. After mining the data in the GTEx and TCGA databases, 528
KIRC and 100 normal samples were gathered and clustered to
screen for differentially expressed genes between cancer and normal
tissue. With a threshold of logFC>2 and adjust P £0.05, 594 genes
(Table S1) were found to be differentially expressed, among which
227 genes were up-regulated, and 367 genes were down-regulated
(Figure 1A). Those DEGs in KIRC and normal tissue can be
separated by PCA (Figure 1B). The heatmap shows that the
DEGs effectively separate KIRC and normal tissue (Figure 1C).

Development of the risk score with TCGA
train set

To calculate the risk score, five hundred twenty-eight samples from
TCGA were randomly separated into 264 and 264. In the train set
containing 264 patients, lasso regression was adopted to analyze the
data. After multiplying gene expression with LASSO coefficients, we
came to seven prognostic genes: PVT1, MSC, ALDH6A1, TRIB3,
QRFPR, CYS1, and CAPNI12 (Table S2). The risk score was then
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Differentially expressed genes (DEGs) screening and localization. (A) Volcano plot for DEGs with adjusted P values (FDR correction) less than 0.05.
(B) Principal component analysis (PCA) to validate screening results. (C) Heat map result for DEGs screening. (D) Risk scores in the Cancer Genome
Atlas (TCGA) train set, patient survival, and expression of 7 DEGs in the train set. (E) Risk score and patients’ survival probabilities in the TCGA train
set. (F) Receiver operating characteristic curve (ROC) of the risk score in the TCGA train set.

calculated for patients using seven prognostic genes between high and
low-risk groups set at the median value (Figure 1D).
Risk score=0.0009* PVT1 (gene expression level) + 0.0015*MSC + -
0.0029*ALDH6A1 + 0.0022*TRIB3 + -0.0003*QRFPR +-
0.0038*CYS1 + 0.0011* CAPN12. The calculated risk score ranged
from -0.875 to 0.733 and had a median value of -0.007, in which the
patients were grouped into a high-risk group and a low-risk group
based on the median value of the risk score. In the train set, the high-
risk and low-risk groups presented significantly different survival
probabilities (Figure 1E) with an AUC of 0.758 in the time-
dependent ROC curve at five years (Figure 1F).
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Validation of the risk score with TCGA and
GEO data

The Risk Score was calculated in the test set (Figure 2A). With
the cutoff of risk score, survival probability between the high and
low-risk score groups is statistically significant (P<0.001) with an
AUC value of 0.716 (Figures 2B, C). When summed up, the risk
score was further calculated with a P value of less than 0.001
between high and low-risk score groups and an AUC of 0.833
(Figures 2D-F). The model was then tested using GEO data in
microarray GSE29609 from platform GPL1708. The difference
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between high and low-risk score groups in GEO data analysis was
also statistically significant (P=0.037) with an AUC of 0.833
(Figures 2G-I). All model evaluation was based on time-
dependent ROC at five years.

Genomic alterations and gene set
enrichment analyses

To determine whether risk score levels were associated with
specific genomic characteristics, we performed CNV and somatic
mutation analysis using the TCGA dataset (Table S13). In high-
score samples, frequently amplified genomic regions included
oncogenic driver genes such as RSRCI (3q25.32, p<0.001),
SLC2A9 (4pl6.1, p<0.001), EXOC2 (6p25.3, p<0.001), EGFR
(7p11.2, p<0.001), and ERCI (12p13.33, p<0.001) (Figure 3A). In
contrast, deleted regions contained tumor suppressor genes

Frontiers in Oncology

including PTENP1 (9p13.3, p<0.001), FAM138C (9p24.3,
p<0.001), and OR4K15 (14q11.2, p<0.001) (Figure 3A). In low-
score samples, most amplified and deleted genomic regions were
similar to those in high-score models. Analysis of somatic mutation
profiles based on risk score levels revealed a high frequency of
mutations in SETD2 (19%, p < 0.001), BAPI (17%, p < 0.001), and
KDM5C (10%, p < 0.01) in the high-score group (n = 166)
(Figure 3B; Table S14). Genomic event enrichments were
identified in either the low-score or high-score groups,

respectively (Figure 3B).

Consensus clustering of seven
prognostic genes

Consensus clustering of the seven prognostic genes identified
three clusters of KIRCs in the TCGA dataset with distinct clinical
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outcomes, clinical features, and pathological features (Figures 4A,
B). In the TCGA dataset, according to the expression similarity, k=3
was selected with clustering stability rising from k=2 to 10 in the
TCGA dataset since the consensus cumulative distribution function
(CDF) curve was flattest at k=3. Thus, consensus and cluster
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confidence are also maximal at this k (Figure 4C). The Venn
diagram further showed the DEGs among three clusters
(Figure 4D). Among the three groups, survival probability is
distinctively separated (Figure 4E), which was also confirmed by
PCA (Figure 4F).
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Gene set variation analysis and geneset
enrichment analysis

To further explore the function of seven prognostic genes,
GSVA was conducted using TCGA data (Tables S3, S4). The
most enriched GO functions are the regulation of the Wnt
signaling pathway, regulation of MAPK cascade, regulation of
apoptotic signaling pathway, base excision repair gap filling,
positive regulation of T cell apoptotic process, etc. (Figure 5A).
Analyses in KEGG pathways revealed that systemic lupus
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erythematosus, linoleic acid metabolism, regulation of autophagy,
Notch signaling pathway, MAPK signaling pathway, Wnt signaling
pathway, apoptosis, ERBB signaling pathway, and mTOR signaling
pathway were correlated with the seven prognostic genes
(Figure 5B). GSEA (Tables S5, S6) further confirmed that the
seven predictive genes were enriched in GO pathways such as
cytokine activity, humoral immune response, regulation of
apoptotic signaling pathway, regulation of Wnt signaling
pathway, regulation of signal transduction by p53 class mediator,
ERBB signaling pathway, and regulation of Notch signaling
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pathway (Figure 5C). As for KEGG pathways, seven prognostic
genes were enriched in the ribosome, MAPK signaling pathway,
Wnat signaling pathway, apoptosis, ERBB signaling pathway, and
Notch signaling pathway (Figure 5D). The dot plot of GO and
KEGG enrichment analysis (Tables S7, S8) further revealed that
high risk scores were associated with regulation of extrinsic
apoptotic signaling pathway, epithelial cell apoptotic process,
BMP signaling pathway, and Wnt signaling pathway in GO
pathways (Figure 5E), while the risk score was enriched in PRAR
signaling pathway, ECM-receptor interaction, arachidonic acid
metabolism, biosynthesis of amino acids and the renin-
angiotensin system in KEGG pathways (Figure 5F). The
correlation between seven prognostic genes and GO pathways
was shown in Supplementary Figure S2B, while the correlation
between seven predictive genes and KEGG pathways was shown in
Supplementary Figure S2C.

Immunological function analyses

The risk scores calculated from prognostic genes are correlated
with immune infiltrating cells in the tumor microenvironment

Frontiers in Oncology

165

(TME). High-risk scores were significantly associated with the
relative expression levels of macrophage, MDSC, activated CD4 T
cell, activated CD8 T cell, and type 1 T helper cell. In contrast, low-
risk scores were correlated with the relative expression levels of
immature dendritic cells and neutrophils (Figures 6A, B, correlation
> 0.2, P<0.001). Three clusters identified by the seven prognostic
genes were also significantly correlated with regulating immune
cells in TME (Figure S4A). The correlation between seven predictive
genes and immune infiltrating cells was shown in Supplementary
Figure S2A, in which seven genes are highly correlated with
multiple immune infiltrating cells.

Survival impact of prognostic genes

When comparing survival probabilities between patients with
different expression levels of the seven prognostic genes, we found
that high ALDH6A1, CYS1, and QRFPR were associated with worse
overall survival (OS). In contrast, increased expression of CAPN12,
PVTI, MSC, and TRIB3 indicated a better prognosis (Figure 3C).
The time-dependent ROC curve at five years of these seven
prognostic genes was shown in Figure S1B. We next conducted
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(A) The heatmap illustrates the association between risk scores and immune infiltrating cells. (B) Correlation between risk score and immune
infiltrating cells. (C) Submap analysis showed that a high-risk score could be more sensitive to the CTLA-4 inhibitor (Nominal p-value = .05 *P<0.05;
**P<0.01; ***P<0.001; ****P<0.0001, ns, not statistically significant). (D) The box plots show the estimated IC50 for PF.02341066, PAC.1, Metformin,
and AS601245 for high-risk scores and low-risk scores.

the survival analysis of the risk score. High-risk scores were
associated with worse OS in different age groups, sex, grade, and
stage (Figure S3A). The expression pattern of risk scores in various
prognostic factors was shown in Figure 6B, in which high-risk
scores were significantly correlated with older patients, male
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patients, KIRC at grade 4, and KIRC at stage iv. We also revealed
that the high-risk scores connected with T4AN1M1 KIRC based on
the TNM location (Figure S3B). High-risk scores were also related
to worse disease-specific survival (DSS) and progressive-free
survival (PFS) in the KIRC cohort (Figure S4B). We next verified
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the seven prognostic genes in kidney renal papillary cell carcinoma
(KIRP), in which high-risk scores indicated worse OS, DSS, and PFS
in the KIRP cohort (Figure S4C).

Prediction of risk scores for
immunotherapy and chemotherapy

The potential response to immunotherapy in TCGA based on
the TIDE algorithm was evaluated, in which our results showed that
patients with high-risk scores had a better answer to anti-Cytotoxic
T-Lymphocyte Associated Protein (CTLA4) immunotherapy than
those with low-risk scores (Nominal p-value = .05) (Figure 6C).
Considering that chemotherapy is the standard way to treat ccRCC,
we tried to assess the response of patients with different risk scores
to various chemo drugs. We could observe a significant difference in
the estimated IC50 between high-risk scores and low-risk scores for
PF.02341066, PAC.1, Metformin, and AS601245, which low-risk
scores could be more sensitive to commonly administered
chemotherapies (P <.001 for PF.02341066, PAC.1, Metformin,
and AS601245, respectively) (Figure 6D).

10.3389/fonc.2023.1161666

Development of the prognostic model with
TCGA data

The risk score was subsequently validated as an independent
prognostic marker after adjusting for several risk factors, including
age group, primary tumor lesion, and stage in univariate and
multivariate Cox regression analysis concerning OS, DSS, and
PES (Tables S8, S10, S11. respectively) in the TCGA dataset. The
predictive model we built includes risk score, age group, primary
tumor lesion, and stage (Figure 7A). At both the three-year and five-
year survival, the model had satisfying results in the evaluation
nomogram (Figure 7B). Survival difference between high and low-
risk patients was statistically significant (Figure 7C). In TCGA data,
the AUC at three years is 0.800 and the AUC at five years is 0.788 in
the sensitivity test (Figure 7D).

CAPN12 and MSC suppress cell
proliferation in ccRCC cells

According to the endogenous CAPN12 and MSC expression
level, two independent siRNAs targeting CAPN12 and MSC were
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transfected into the 786-O cell line with relatively high expression of
CAPN12 and MSC. The efficiency of the knockdown of CAPN12
and MSC expression was validated by qRT-PCR (Figure 8A,
p<0.001). It was demonstrated that the proliferative capacity of
786-O cells was significantly repressed by CAPN12 and MSC
knockdown (Figure 8B). Plate clonality assays revealed the
remarkable suppression of cell clonality and cell cycle in the 786-
O cell line after silencing CAPN12 and MSC (Figures 8C, D).

10.3389/fonc.2023.1161666

Pan-cancer analysis on CAPN12 and MSC

To further explore the prognostic value and immune infiltration
pattern of CAPN12 and MSC, pan-cancer samples from TCGA
were used for analysis. CAPN12 (Figure 9A) and MSC (Figure 9B)
were hazardous markers in most cancer types. Besides, CAPN12
(Figure 10A) and MSC (Figure 10B) correlated with the infiltration
of multiple immune cells in most cancer types. These results
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FIGURE 9

The prognostic value of (A) CAPN12 and (B) MSC in pan-cancer.

suggested that CAPN12 and MSC could be predictive markers of
prognosis and immune infiltration in cancer.

Discussion

High mortality and recurrence rates have made ccRCC the most
devastating tumor in the urinary system. Previous tic stratification
and treatment strategies studies have focused on investigating single
potential prognostic biomarkers for ccRCC (17-19). However, none
has been immensely satisfying. As high-throughput sequencing and
bioinformatics quickly develop, mining the large volume of genetic
data has been increasingly appealing to researchers. After data
mining, a prognostic model built on genetic profiles of ccRCCs
poses significance in developing a prong.

In this study, specifically, after comparing global gene
expression in ccRCC samples and controls, 594 DEGs were
identified. After univariate and lasso regression analyses, 7 out of
594 DEGs were considered prognostic value: PVT1, MSC,
ALDH6A1, TRIB3, QRFPR, CYS1, and CAPNI12. Notably, high
ALDHG6A1, CYS1, and QRFPR were associated with worse OS,
while high expressions of CAPN12, PVT1, MSC, and TRIB3
showed statistically significant survival benefits.

Calpains (CAPNs), a family of cysteine proteases, have been
demonstrated to play a critical role in cancer development and
progression and the insufficient response to cancer therapiesStarsky
(20). CAPN12, a gene involved in apoptosis and suppressed by p53,
is the critical determinant of anti-tumor response in
medulloblastoma (21). Long non-coding RNA plasmacytoma
variant translocation 1 (PVT1), up-regulated in various human
cancers, inhibits renal cancer cell apoptosis via up-regulating Mcl-1
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(22) and downregulating miR-16-5p (23). The knockdown of PVT1
induces apoptosis and cell cycle arrest through the epidermal
growth factor receptor pathway (24). Multiple studies have also
proved that PVT1 predicts unfavorable prognosis in patients with
ccRCC (25, 26). MSC, also belonging to the IncRNA family,
activates the Wnt/B-catenin signaling pathway to modulate cell
proliferation and migration in ccRCC via miR-3924/WNT5A (27).

ALDHG6A1, regulated by transcription factor HNF4A, has
already been verified in other bioinformatics analyses to suppress
tumorigenic capability in ccRCC and to be a prognostic biomarker
(28, 29).

Tribbles pseudokinase 3 (TRIB3), a member of the mammalian
pseudokinase tribbles family, is involved in multiple biological
processes, including tumor progression. The previous study has
revealed that TRIB3 promoted the proliferation and invasion of
ccRCC via activating MAPK signaling pathway (30).

QREFPR, also named GPR103, activates glutamine RF—amide
peptide (QRFP), is over-expressed in human prostate cancer, and
stimulates the neuroendocrine differentiation and the migration of
androgen-independent prostate cancer cells (31, 32).

CYS1 mutation on chromosome 2p25 has been proven to be a
candidate for recessive cystic kidney disease (33). CAPN12 and
MSC were selected for in vitro gene silencing among the seven
prognostic genes. The cell proliferation ass<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>