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Editorial on the Research Topic

Systemic regulation of organ homeostasis and implications of hormones
and immunity, Volume II
The multicellularity of an organism enables cells in the body to make complex tissues

and organ systems that orchestrate their complex functions. The coordination of

specialized functions of some of these cells is to assure the maintenance of basic

metabolic functions and requirements of all other surrounding cells for the survival of

organs and organ systems of the body. The endocrine system plays a critical role in

regulation of homeostasis by executing a vastly complex network of molecular signaling

mechanisms that communicate information in the form of hormones released by the cells.

The hormone signals, in turn, stimulate organ systems to restore homeostasis. Although

endocrine and immune systems regulate distinct functions, the coordinated response of

these systems is needed for the maintenance of homeostasis. The altered endocrine system

in the body affects the balance between pro-and anti-inflammatory immune responses. If

homeostasis is not restored, the imbalance may lead to various diseases.

During the evolution process, multiple positive and negative feedback loops have

developed between endocrine and immune systems to coordinate the normal body

function of an organism. It is important to study these immune-endocrine interactions

to understand the underlying molecular mechanisms that regulate systemic metabolism

and disease progression. This could allow us to explore optimal disease management and

treatment strategies for patients. In this context, the present Research Topic was intended

to study the critical biological interactions of endocrine and immune systems to understand

the pathophysiology of diseases and possible treatment options. Individually and
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collectively, the research and review articles collected on this

Research Topic make a significant addition to our understanding

of immune-endocrine interactions in the context of endocrine

related diseases.

The ISL LIM homeobox 2a protein (ISL2A), a novel transcription

factor has been shown as a regulator of early angiogenesis, exocrine

pancreas development, and neuron differentiation. However, the

functional role of ISL2A in the hypothalamus-pituitary thyroid axis

is elusive. Yan et al. have established homozygous isl2a knockout

zebrafish using CRISPR/Cas9 system. Molecular characterization of

isl2amutant zebrafish revealed a novel transcriptional regulatory role

of isl2a in pituitary cell differentiation. This study should facilitate

future studies to unravel the molecular mechanism of

hypothyroidism and possible drug development in this zebrafish

model. Stojiljković et al. developed an extended, stoichiometric model

of the hypothalamic-pituitary-adrenal (HPA) axis for better

understanding individual or combined effect of corticotrophin-

releasing hormone (CRH) and arginine vasopressin (AVP) on the

secretion of adrenocorticotropic hormone (ACTH) by corticotropic

cells in the human pituitary gland. The extended HPA model is

associated with previous experimental findings and highlights

possible implication for future studies related to homeostasis

dynamic crisis, autoimmune inflammation, and exogenous

administered AVP treatment. Gentil et al. conducted a randomized

clinical trial on type 2 diabetes mellitus (T2DM) patients to evaluate

the beneficial effect of three different aerobic exercise protocols such

as moderate-intensity continuous training (MICT), short-interval

high-intensity training (S-HIIT), and long interval high-intensity

training (L-HIIT). Parallel comparison of cardiometabolic variables

showed fundamental differences among T2DM patients undergoing

different training protocols. Although all training protocols improved

at least one cardiometabolic parameter, the L-HIIT training protocol

showed a significant impact on maximum oxygen consumption

(VO2 max). This study suggests that the L-HIIT training protocol

may potentially be a cost-effective means for T2DM patients to

improve their quality of life. Likewise, Oberg et al. designed a

randomized trial to evaluate the correlation between sleep patterns

and endocrine parameters in over-weigh/obese women with

polycystic ovary syndrome (PCOS). This study found that women

with PCOS had poor sleep quality compared to the control group,

suggesting the implementation of standard care with better sleep

cycles to improve the endocrine and psychological well-being of

women with PCOS. In addition, Gao et al. investigated homeostasis

model assessment of insulin resistance (HOMA-IR) as a determining

factor for metformin pre-treatment before in vitro fertilization/

intracellular sperm injection (IVF/ICSI) and embryo transfer for

patients with PCOS. This retrospective study found that metformin

pre-treatment could improve pregnancy rates in women with PCOS

with HOMA-IR during frozen IVF/ICSI-ET cycles. Dıáz et al.

delineated the influence of oral contraceptives (OCs) on endocrine-

metabolic markers after 6 months of use of OCs in females with

PCOS. This study showed that higher levels of circulating follistatin

concentration correlated with insulin resistance and increased liver

fat accumulation in females with PCOS compared to the control

group. This indicates OCs treatment in females with PCOS may

potentially cause adverse metabolic effects. Plessow et al. assessed the
Frontiers in Endocrinology 026
relationship between oxytocin levels and eating disorder in women

with anorexia nervosa or atypical anorexia nervosa with primary food

restriction (AN/AtypAN-R) and AN/AtypAN with restriction plus

binge purge behaviors (AN/AtypAN-BP). This trial implies that both

AN/AtypAN-R and AN/AtypAN-BP may be composed of

fundamentally different neurobiology as they show distinct

associations with eating, depressive, and anxiety parameters. Liu

et al. analyze the association between serum total testosterone (TT)

levels and metabolic syndrome (MetS) in women by logistic

regression models. This study concludes that total TT levels in

women are inversely correlated with MetS. However, future studies

are needed to determine cut-off values for abnormal TT levels in

women and their association with MetS at different scales.Wang et al.

compared the difference in biochemical markers and degree of lesion

visualization between primary hyperparathyroidism (PHPT) and

secondary hyperparathyroidism (SHPT) by technetium 99m

methoxyisobutylisonitrile (99mTc-MIBI) imaging. This study

revealed that the percentage of patients with positive dual-phase

planar imaging on 99mTc-MIBI was higher in the PHPT group

compared to the SHPT group. The range of parathyroid lesions in

SHPT was smaller than in PHPT. This study also suggests that a

combination of other imaging technologies is needed if 99mTc-MIBI

imaging shows negative results in patents with SHPT for accurate

lesion detection.

The inactivating follicle-stimulating hormone receptor (FSHR)

genetic variants causes a wide spectrum of inconsistent clinical

manifestations. Therefore, identification and molecular

characterization of pathogenetic variants that disrupt FSHR

protein function are important for the better diagnosis of primary

ovarian insufficiency (POI) and resistant ovary syndrome (ROS).

Using next-generation sequencing and traditional Sanger

sequencing, Chen et al. identified rare compound heterozygous

variants c.1384G>C/p.A462P and c.1862C>T/p.A621V in FSHR.

Furthermore, in vitro characterization of these variants revealed a

loss of intracellular signaling and receptor activation, respectively.

This study expands our knowledge of understanding pathogenic

variants of FSHR in connection to POI. Besides that, Tedjawirja

et al. tested both monoclonal and polyclonal anti-FSHR antibodies

on human premenopausal ovary, testis and skin samples and

demonstrated that polyclonal anti-FSHR antibody non-specifically

stained skin tissue, which is not known to express FSHR. This study

points out the need for validated methods for better detection of

FSH/FSHR in postmenopausal disease to avoid future challenges in

the research field. Yu et al. characterized apolipoprotein C1

(APOC1) in diabetic nephropathy (DN) patients using functional

gene enrichment analysis combined with mouse models and clinical

samples. This study demonstrates that elevated serum and

glomerular expression levels of APOC1 might be a novel

biomarker for the diagnosis of DN. However, further research

studies are needed to evaluate its diagnostic value. Refaat et al.

investigated the prognostic value of simultaneous expression levels

of estrogen receptor, progesterone receptor, and androgen receptors

within the same cohort of colorectal cancer (CRC) patients in terms

of gender, menopausal status, clinical stage, and tumor sidedness.

The accurate determination of expression levels of sex steroid

hormone receptors could significantly benefit the precise use of
frontiersin.org
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steroid blockers and hormonal therapy in CRC patients. Song et al.

investigated the role of dihydrotestosterone (DHT) induced zinc

transporter ZIP9 and its impact on learning, memory, and

hippocampal synaptic plasticity of Tfm, APP/PS1 mice. This

study revealed that ZIP9 facilitates the effects of DHT on

hippocampal synaptic plasticity and dendritic spine density in

Tfm mice via the ERK1/2-eIF4E pathway. Moreover, the same

mechanism mediated by DHT can also affect learning and memory

in APP/PS1 mice. Ziqubu et al. reviewed the influence of different

parameters including diet, age, genetics, chemical exposure, and

thermoneutrality on Brown adipose tissue/beige adipose tissue

whitening and its relation to multiple metabolic complications

including mitochondrial degeneration, mitochondrial dysfunction,

autophagy, inflammation, devascularization and collapsed

thermogenic capacity. Similarly, Fukunaga and Fujita reviewed

the low glomerular number at birth and its relationship with the

development of chronic kidney disease (CKD). This review expands

our understanding of the significance of low glomerular number at

birth increasing the risk of CKD and preventive prenatal

nutritional management.
Conclusion

Regulation of organ homeostasis is a complex process that

involves the coordination of various biological mechanisms to

maintain a stable internal environment within the body. The

challenges lie in maintaining the delicate balance required for

optimal organ function and preventing dysregulation that can

lead to diseases. The knowledge gained from the Research Topic

could be a steppingstone for future research to shed light on

unresolved scientific problems and develop innovative treatment

strategies for the life-threatening diseases.
Future perspectives

The future perspectives in the regulation of organ homeostasis

and the implications of hormones and immunity are exciting and

hold tremendous potential for advancements in medicine. Precision
Frontiers in Endocrinology 037
medicine, immunomodulatory therapies, hormonal interventions

for organ regeneration, modulation of signaling pathways, research

on hormones and aging, innovative therapeutic delivery systems,

and the integration of artificial intelligence based complex data

analytics are among the areas that may shape the future of this field.

Continued research and technological innovations will pave the way

for more targeted and effective approaches to maintaining organ

homeostasis and treating a wide range of life-threatening diseases.
Author contributions

VKP wrote the original draft. All authors contributed to the

editing equally and approved the submitted version.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

constructed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Author disclaimer

The content is solely the responsibility of the authors and does

not necessarily represent the official views or policies of the National

Institutes of Health and the Department of Health and Human

Services. The mention of trade names, commercial products or

organizations does not imply endorsement from the US Government.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1139874
https://doi.org/10.3389/fendo.2023.1114767
https://doi.org/10.3389/fendo.2023.1120801
https://doi.org/10.3389/fendo.2023.1235274
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Giuseppe Reimondo,
University of Turin, Italy

REVIEWED BY

Nicola Romano,
University of Edinburgh,
United Kingdom
Mara Carsote,
Carol Davila University of Medicine
and Pharmacy, Romania

*CORRESPONDENCE

Aleksandra S. Stojiljković
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dynamics of Hypothalamic-
Pituitary-Adrenal axis

Aleksandra S. Stojiljković 1*, Željko Čupić2*, Stevan Maćešić3,
Ana Ivanović-Šašić2 and Ljiljana Kolar-Anić2,3

1Institute of General and Physical Chemistry, University of Belgrade, Belgrade, Serbia, 2Institute of
Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, University of
Belgrade, Belgrade, Serbia, 3Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
Numerous studies on humans and animals have indicated that the

corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP)

s t imu la te both ind i v idua l l y and syne rg i s t i ca l l y sec re t ion o f

adrenocorticotropic hormone (ACTH) by corticotropic cells in anterior

pituitary. With aim to characterize and better comprehend the mechanisms

underlying the effects of AVP on Hypothalamic-Pituitary-Adrenal (HPA) axis

ultradian dynamics, AVP is here incorporated into our previously proposed

stoichiometric model of HPA axis in humans. This extended nonlinear network

reaction model took into account AVP by: reaction steps associated with two

separate inflows of AVP into pituitary portal system, that is synthesized and

released from hypothalamic parvocellular and magnocellular neuronal

populations, as well as summarized reaction steps related to its individual

and synergistic action with CRH on corticotropic cells. To explore the

properties of extended model and its capacity to emulate the effects of AVP,

nonlinear dynamical systems theory and bifurcation analyses based on

numerical simulations were utilized to determine the dependence of

ultradian oscillations on rate constants of the inflows of CRH and AVP from

parvocellular neuronal populations, the conditions under which dynamical

transitions occur due to their synergistic action and, moreover, the types of

these transitions. The results show that under certain conditions, HPA system

could enter into oscillatory dynamic states from stable steady state and vice

versa under the influence of synergy reaction rate constant. Transitions

between these dynamical states were always through supercritical

Andronov-Hopf bifurcation point. Also, results revealed the conditions under

which amplitudes of ultradian oscillations could increase several-fold due to

CRH and AVP synergistic stimulation of ACTH secretion in accordance with

results reported in the literature. Moreover, results showed experimentally

observed superiority of CRH as a stimulator of ACTH secretion compared to

AVP in humans. The proposedmodel can be very useful in studies related to the
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role of AVP and its synergistic action with CRH in life-threatening

circumstances such as acute homeostasis dynamic crisis, autoimmune

inflammations or severe hypovolemia requiring instant or several-days

sustained corticosteroid excess levels. Moreover, the model can be helpful

for investigations of indirect AVP-induced HPA activity by exogenously

administered AVP used in therapeutic treatment.
KEYWORDS

Hypothalamic-Pituitary-Adrenal (HPA) axis, arginine vasopressin, AVP and CRH
synergy, HPA ultradian dynamics, stoichiometric modeling, numerical simulations
Introduction

The interplay between the functions of hypothalamus,

pituitary and adrenal glands creates a complex nonlinear

neuroendocrine system known as the hypothalamic-pituitary-

adrenal (HPA) axis. The HPA axis activity is necessary for

maintaining homeostasis under physiologically normal and

various stressful conditions through the action of its main

hormones. Their actions are expressed through complex

biochemical transformations that are intertwined via positive

and negative feedback loops. Complex interplay between these

feedback mechanisms and coupling of the HPA axis with

circadian clock system give rise to daily rhythm of the main

HPA axis hormones characterized by ultradian oscillations

(caused by internal feedbacks) superimposed on circadian

oscillations (greatly influenced by external cycles) (1–3). In

humans, periods of ultradian oscillations of the HPA axis

hormones altogether range between 20 minutes to 2 hours,

while periods of their circadian oscillations are around 24

hours (1, 2, 4–9). Disruption in regulation of HPA axis

oscillatory dynamics can lead to the development of many

psychiatric and metabolic diseases (2, 10). Thus, additional

experimental and theoretical investigations have been

conducted to examine all constituents and detailed dynamic

regulatory mechanisms underlying the HPA axis function under

basal physiological and pathophysiological conditions. Effects of

acute and chronic exposure to various endogenous/exogenous

stressors on the HPA axis dynamics and its impairment in

disease states have been also largely studied.

Beside corticotropin-releasing hormone (CRH), as one of

main HPA hormones, many other neuroactive substances have

been found to enter the pituitary portal circulation. This includes

somatostatin, neurotensin, angiotensin II, enkephalin, arginine

vasopressin (AVP), dopamine and others (11–27). However,

AVP has received the most attention among them so far, due to

its relevant role and effects on corticotrope cells’ function and

HPA axis activity. Namely, it has been indicated that both CRH

and AVP act on their own receptors (28–32) on corticotrope
02
9

cells in anterior pituitary to stimulate adrenocorticotropic

hormone (ACTH) production and release with different (26,

33–41) or even similar potencies (42). Moreover, CRH and AVP

are also capable of potentiating each other’s activity (37, 38).

Their synergistic stimulation of ACTH production and secretion

by corticotrope cells could yield a several-fold higher output

than due to the action of either one individually (26, 34–41, 43–

47). However, the exact mechanism underlying their individual

and synergistic action is yet to be clarified. In essence, CRH and

AVP are both required as stimulatory inputs to corticotrope cells

for a complete ACTH response in physiologically normal as well

as in various stressful conditions (32, 38, 48–51). The ACTH

stimulates the steroidogenesis from cholesterol in adrenal gland

and secretion of steroid hormones. Principal representative of

steroid hormones in humans is cortisol (CORT), which exerts its

effect on most tissues in the body and largely regulates the

activity of the HPA system through its feedback mechanisms

(2, 3).

Theoretical studies of effects of AVP alone and in synergy

with CRH on HPA axis activity and dynamics are very scarce. To

our best knowledge, in only two theoretical studies (52, 53),

impacts of AVP and/or CRH on corticotrope cells’ activity are

encompassed in mathematical models. These models are non-

stoichiometric and describe: synthesis, accumulations, secretions

and concentrations time series of CRH and AVP, ACTH and

CORT as well as nonlinear feedback mechanisms with time

delays considerations and effects of CRH and AVP on

corticotrope cells, each by suitable mathematical function.

These functions known as the ones that formally can produce

oscillatory dynamics cannot be obtained as results of any real

reaction mechanism comprised of a set of chemical reactions.

On the other hand, if stoichiometric network approach is

applied, complex biochemical transformations can be concisely

described by a simplified network of interactions between the

considered biochemical species. The rates of these

transformations strictly follow the law of mass action. Using

this approach, HPA axis oscillatory dynamics in model would

emerge due to the nonlinearity of underlying biochemical
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interactions of considered species through positive and negative

feedback mechanisms. Moreover, its global behavior would be

tractable to mathematical analysis.

In this study, our previously proposed stoichiometric model

of HPA axis in humans (54) has been extended to emulate the

influence of AVP on ACTH production and secretion. Using

such extended HPA axis model, we investigated the AVP and

CRH effects and synergistic influence on ultradian dynamics. For

that purpose, numerical simulations and bifurcation analysis

have been employed.
Model description

Stoichiometric model of HPA axis activity in humans

developed in our earlier work (54) has been used as the basis

to incorporate influence of arginine vasopressin (AVP) into the

HPA mechanism described by the initial model. The AVP was

introduced into this initial model of HPA axis activity by five

new reaction steps ((R2.2), (R4), (R5.2), (R5.3) and (R12)),

which are highlighted in bold in the Table 1. Reaction steps

presented in Table 1 describe net reactions of a series of complex

biochemical processes. Accordingly, reaction steps (R2.2) and

(R4) describe appropriate inflows of AVP into the pituitary

portal circulation as net reactions of a series of processes of AVP

biosynthesis and release from the parvocellular part of the
Frontiers in Endocrinology 03
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paraventricular nucleus (PVN), and from the magnocellular

neurosecretory system of the hypothalamus, respectively (32,

48–51, 55). In essence, reaction steps (R2.1) and (R2.2) depict

inflows of CRH and AVP, respectively, from neuronal

populations of the same part of PVN. On the other hand,

inflow of AVP from the magnocellular neurons (R4) can be

much more abundant (up to 10-fold) than from parvocellular

neurons under normal condition (51). Furthermore, these

neurons are not under prominent negative feedback control by

adrenal corticosteroids (51). The AVP originating from both of

these parvocellular and magnocellular neuronal populations

enter the pituitary portal circulation and regulate the pituitary

production and secretion of ACTH, as it is summarized by

reaction step (R5.2) (32, 48–51, 55). Reaction step (R5.3)

describes net reaction of a series of complex biochemical

processes of ACTH production and secretion by corticotrope

cells that is also stimulated by CRH and AVP acting

synergistically (32, 48–51, 55). End-result of complex

biochemical processes leading to the elimination of AVP is

described by reaction step (R12). The remaining reaction steps

in Table 1 are related to the initial model of HPA axis in humans

and are described in ref. (54).

The extended model given in Table 1 is now comprised of 18

reaction steps and six independent dynamic variables

representing concentrations of cholesterol ([CHOL]), CRH

([CRH]), AVP ([AVP]), ACTH ([ACTH]), CORT ([CORT])
TABLE 1 The extended model of the HPA axis activity in humans with incorporated arginine vasopressin (AVP) as an additional dynamic variable;
reaction steps associated with AVP are given in bold.

!k1 CHOL k1 = 1.38 × 10−4 mol dm−3 min−1 (R1)

!k2:1CRH k2.1 = 1.83 × 10−8 mol dm−3 min−1 (R2.1)

!k2:2AVP k2.2 = 1.83 × 10−8 mol dm−3 min−1 (R2.2)

!k3 ALDO k3 = 6.09 × 10−11 mol dm−3 min−1 (R3)

!k4 AVP k4 = 1.537 × 10−9 mol dm−3 min−1 (R4)

CRH!k5:1ACTH k5.1 = 1.83 × 104 min−1 (R5.1)

AVP!k5:2ACTH k5.2 = 7.79 × 10−3 min−1 (R5.2)

CRH+AVP!k5:3ACTH k5.3 = 3.66 × 102 mol−1 dm3 min−1 (R5.3)

CHOL + ACTH!k6 CORT k6 = 11.94 mol−1 dm3 min−1 (R6)

CHOL + ACTH!k7 ALDO k7 = 9.552 × 10−2 mol−1 dm3 min−1 (R7)

ACTH + 2CORT!k8 3CORT k8 = 1.26 × 1014 mol−2 dm6 min−1 (R8)

ALDO + 2CORT!k9 CORT k9 = 7.05 × 1012 mol−2 dm6 min−1 (R9)

CHOL!k10 P1 k10 = 4.5 × 10−2 min−1 (R10)

CRH!k11 P2 k11 = 1.1 × 10−1 min−1 (R11)

AVP!k12P3
k12 = 1.386 × 10−1 min−1 (R12)

ACTH!k13 P4 k13 = 5.35 × 10−2 min−1 (R13)

CORT!k14 P5 k14 = 4.1 × 10−1 min−1 (R14)

ALDO!k15 P6 k15 = 1.35 × 10−1 min−1 (R15)
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and ALDO ([ALDO])). Corresponding kinetic rate constants are

labeled by ka, a = 1 - 15.

Temporal concentration evolutions of all species are

described by a system of ordinary differential equations (ODE)

obtained by applying the law of mass action on reaction steps

shown in Table 1:

d½CHOL�
dt

= k1 − (k6 + k7)½CHOL�½ACTH� − k10½CHOL� (1)

d½CRH�
dt

= k2:1 − (k5:1 + k11)½CRH� − k5:3½CRH�½AVP� (2)

d½AVP�
dt

= k2:2 + k4 − k5:2½AVP� − k5:3½CRH�½AVP�
− k12½AVP�

(3)

d½ACTH�
dt = k5:1½CRH� + k5:2½AVP� + k5:3½CRH�½AVP�

− (k6 + k7)½CHOL�½ACTH�     

− k8½ACTH�½CORT�2 − k13½ACTH�

(4)

d½CORT �
dt = k6½CHOL�½ACTH� + k8½ACTH�½CORT�2

− k9½ALDO�½CORT�2t − k14½CORT�
(5)

d½ALDO�
dt

= k3 + k7½CHOL�½ACTH� − k9½ALDO�½CORT�2

− k15½ALDO� (6)
Methods

Numerical method

In order to solve ODE describing the temporal evolution of

extended model (Table 1), numerical simulations were

conducted in the Matlab software package. Ode15s solver

routine based on the Gear algorithm (56) for integration of

stiff differential equations was used. In all simulations, the

absolute and relative tolerance errors were 1 × 10−20 and 3 ×

10−12, respectively. Integrations of the model with 1 × 10−14, 5 ×

10−14 and 1 × 10−15 absolute tolerance levels were also tested. It

was noticed that only with absolute tolerance error of 1 × 10−15,

numerical simulations were stable. Yet, in some investigated

cases, 1 × 10−20 absolute tolerance level was necessary and

therefore chosen as the final value. The initial concentrations

in numerical simulations were: [CHOL]0 = 3.4 × 10−4 mol dm−3,

[CRH]0 = 1 × 10−12 mol dm−3, [AVP]0 = 1 × 10−12 mol dm−3,

[ACTH]0 = 8 × 10−8 mol dm−3, [CORT]0 = 4 × 10−8 mol dm−3

and [ALDO]0 = 1.5 × 10−9 mol dm−3. If not otherwise stated, rate

constants (ka, a = 1 - 15) used in the numerical simulations were
Frontiers in Endocrinology 04
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the same as in Table 1. Whenever possible, values of rate

constant of reaction steps related to the initial model (not in

bold in Table 1) were the same as in our previous papers (57, 58).

Values of the rate constants of reaction steps (R2.2), (R4), (R5.2),

(R5.3) and (R12), associated with AVP effects were derived from

(39, 54, 59, 60) unless otherwise specified.
Bifurcation analysis

To determine boundaries of oscillatory domain as a function

of reaction rate constants of the reactions associated with CRH

(R2.1) and AVP inflows (R2.2) (Table 1), the bifurcation analysis

based on numerical continuation method was applied. Namely,

during each numerical continuation, selected value of k2.1 in the

range between 1 × 10−9 and 2 × 10−8 mol dm−3 min−1 was kept

constant while the value of k2.2 was varied to find the region where

ultradian oscillatory dynamics can be obtained. For each value of

k2.2 steady-state concentrations were evaluated together with

stability of considered steady state. All other rate constants had

values as indicated in Table 1. By this method of bifurcation

analysis (Method 1a, Supplementary material), the boundaries of

the oscillatory domain were obtained as a function of k2.1 and k2.2
for one fixed k5.3 value given in Table 1. Afterwards, the impact of

CRH and AVP acting synergistically on HPA oscillatory dynamics

(R5.3) (Table 1) was investigated by another method of

bifurcation analysis (Method 1b, Supplementary material). This

was achieved by applying numerical continuation with reaction

rate constant k5.3 as continuation parameter, for couple of k2.1 and

k2.2 values that are selected to be very close to boundaries of

oscillatory domain identified by Method 1a. By this method, for

each k5.3 value the steady-state concentrations were evaluated

together with stability of the considered steady-state. Once more,

all other rate constants had values as indicated in Table 1 unless

otherwise specified.

The ultradian dynamics of HPA system for various

combinations of k2.1 and k2.2 values, including the ones

around oscillatory domain boundaries, was also examined by

bifurcation analysis based on numerical simulations of dynamic

states obtained by the above defined differential equations (1) -

(6) (Method 2, Supplementary material). Namely, for a given

couple of k2.1 and k2.2 values, set of numerical simulations were

performed as a function of various values of rate constant k5.3. By

this method, bifurcation diagrams with k5.3 as the control

parameter were formed. The stable steady state of the system

was denoted by one point in the [CORT] - k5.3 bifurcation

diagram whereas the oscillatory state was denoted by two points

corresponding to [CORT] values in oscillation minimum and

maximum. In the latter case, the steady state is unstable, and

hence, unattainable to numerical simulations. These bifurcation

diagrams were obtained by varying k5.3 values in the range

between 1.098 × 103 and 1.098 × 1020 mol−1 dm3 min−1. If values

of k5.3 < 1.098 × 103 mol−1 dm3 min−1 or values of k5.3 > 1.098 ×
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1020 mol−1 dm3 min−1 were applied, no significant dynamic

changes were observed. Furthermore, by the same method, the

diagrams of amplitudes of [CORT] oscillations as a function of

k5.3 were also analyzed. All other rate constants had values as

indicated in Table 1 unless otherwise specified.
Results

Using the above explained methods, the oscillatory

dynamics as an essential characteristic of the HPA axis is

particularly examined. Therefore, selection of the conditions

that lead to its emergence is of great importance for model

optimization. Since the goal of our investigations was to examine

how AVP alone and in synergy with CRH can modify ultradian

dynamics of HPA axis, the starting point in our analysis was to

determine the dependence of boundaries of the oscillatory

domain on the inflows of CRH and AVP from the

parvocellular neuronal populations of PVN. These inflows

represented by reactions (R2.1) and (R2.2) in Table 1, are

initial steps of two parallel reaction pathways guided by

signaling through CRH and AVP, respectively. They are

interconnected through a complex feedback loops and capable

to compensate each other. Therefore, the bifurcation analysis

could provide new insights into how various levels of these two
Frontiers in Endocrinology 05
12
hormones’ concentrations originating from the same inflow

source affect ultradian dynamics of HPA model. This was

achieved, here, by utilizing Method 1a of bifurcation analysis

for k5.3 = 3.66 × 102 mol−1 dm3 min−1 (Table 1). Results in

Figure 1 show that oscillatory domain is confined between two

straight lines which represent dependence of supercritical

Andronov-Hopf (AH) bifurcation on k2.1 and k2.2. It could

also be noticed that a small decrease in the value of k2.1
requires a much larger (circa by an order of magnitude)

increase in the values of k2.2 in order to keep HPA model in

the oscillatory regime. This suggests the inferiority of AVP

compared to CRH as stimulator of ACTH secretion. However,

if with increasing k2.2 at the same time k2.1 decreases so that the

system approaches the left end of the oscillatory domain

intersecting the y-axis in Figure 1, the values of k2.2 might

become large enough to retain the system in oscillatory

dynamic states, even though the value of k2.1 ! 0 and so does

its impact. Also, in this part of Figure 1, the value of k4, which

was kept constant in this analysis (Table 1), has weak to no-

significant influence compared to k2.2. In other words, in the

vicinity of y-axis, the AVP reaction pathway governed by

reaction (R2.2) (Table 1) tends to predominate over the CRH

reaction pathway. On the other hand, with decrease of k2.2 and

increase of k2.1 towards the right end of the oscillatory domain

intersecting the x-axis, the impact of k2.2 may become
FIGURE 1

Position of supercritical AH bifurcation as a function of rate constants k2.1 and k2.2, obtained by Method 1a of bifurcation analysis for k5.3 = 3.66
× 102 mol−1 dm3 min−1 (the value given in Table 1). The calculated AH bifurcations, depicted by open rhombuses (◊) are interconnected by solid
lines for better visualization of the oscillatory domain. OS - oscillatory domain; SS - stable steady states. Five fixed k2.1 values denoted as cases:
A (k2.1 = 0.1 × 10−8 mol dm−3 min−1), B (k2.1 = 0.5 × 10−8 mol dm−3 min−1), C (k2.1 = 1.0 × 10−8 mol dm−3 min−1), D (k2.1 = 1.5 × 10−8 mol dm−3

min−1) and E (k2.1 = 1.9 × 10−8 mol dm−3 min−1) for which Method 1b was applied near bifurcation points. In the case C, Method 1b was applied
in points where values of rate constant k2.2 are: C1 (k2.2 = 11.2 × 10−8 mol dm−3 min−1), C2 (k2.2 = 11.4 × 10−8 mol dm−3 min−1), C3 (k2.2 = 17.6 ×
10−8 mol dm−3 min−1) and C4 (k2.2 = 18.6 × 10−8 mol dm−3 min−1) (More details will be shown in Figure 3). All other rate constants used in both
Method 1a and 1b analysis had values as presented in Table 1, except in Method 1b where k5.3 was varied.
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comparable with k4 (1.537 × 10−9 mol dm−3 min−1, Table 1) and

with its further decreases, more and more inferior and finally

non-significant. In this part of Figure 1, also given at the bottom

of Figure 2, the influence of k4 is generally the highest possible,

but lower than the influence of k2.1 though. In essence, in the

vicinity of x-axis as k2.2! 0, CRH reaction pathway governed by

reaction (R2.1) tends to prevail over the AVP reaction pathway,

in contrast to the left end of oscillatory domain.

With aim to compare the behavior of the here extended

model with the initial model behavior (54, 61), the additional

bifurcation analysis was done in some specific parts of

bifurcation diagram depicted in Figure 1. First, detailed

analysis of dynamic states was performed within the rectangle

area shown in the bottom right part of Figure 1. The obtained

results are given in Figure 2; Tables 2, 3. Second, more general

behavior of the extended model was analyzed for selected values

of k2.1, marked by vertical lines A, B, C, D and E in Figure 1.

More precisely, for each given k2.1 value two k2.2 values very

close to each AH point were examined. Corresponding results

are summarized in Figure 3 for the case of C line (points C1 –

C4), although similar behavior was detected for other values of

k2.1 (A, B, D and E in Figure 1). Moreover, for three selected
Frontiers in Endocrinology 06
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points in Figure 2 (P, Q and R) yielding the particularly

convenient forms of bifurcation diagrams, the two models of

HPA axis activity (the initial and here extended ones) were

compared to each other in order to further correlate the results

of simulations obtained by Method 2 with experimental findings

(39, 44–47). Results are given in Figure 4. Finally, the extended

model predictive potential was additionally validated by in silico

perturbation experiments with repetitive single-pulse changes in

CRH and AVP concentrations both separately and conjointly.

Appropriate results are presented in Figure 5.

Moreover, let us know that the initial model described in

(54) can be considered as the limiting case of the here considered

model when the values of k2.2, k4 and initial concentration of

AVP are all zero. In addition, in that case the value of the CRH

inflow rate constant k2.1 in extended model ought to be the same

as k2 value in the initial model, i.e. 1.83 × 10−8 mol dm−3 min−1.

However, in order to get better insight in local behavior of the

extended model, the value of k2.1 was varied in the range (1.3725

- 2.1960) × 10−8 mol dm−3 min−1 and k2.2 in the range (0.0183 -

6.4050) × 10−8 mol dm−3 min−1. Besides, for selected values of

k2.1 and k2.2, the bifurcation diagrams with synergy constant

(k5.3) as control parameter were analyzed using Method 2.
A B1

B2

B3

B4

FIGURE 2

Enlarged part of the bifurcation diagram framed by rectangle in Figure 1. (A) Black symbols represent dynamic states identified by Method 2 with
increasing k5.3 as control parameter. Circles (●) depict points where only stable steady states were found; right triangles (►) depict points where
transition from oscillatory states into stable steady states was observed; squares (◼) depict points where only oscillatory states were observed;
left triangles (◄) depict points where transition from stable steady states into oscillatory states was observed. (B1–B4) the outlooks of
bifurcation diagrams depicted by corresponding black symbols in the square-bordered examples. The selected points P, Q and R will be
discussed in Figure 4.
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Overall, positions of points with all types of dynamics identified

by Method 2 are given in Figure 2A. Their actual nature

qualitatively corresponds to one of the four forms of

bifurcation diagrams presented in Figure 2 B1 – B4. Results in

Figure 2 show that in points which lay far enough outside of the
Frontiers in Endocrinology 07
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oscillatory domain (Figure 1), only stable steady states were

obtained for all applied k5.3 values (Figure 2, B1 and all such

cases are designated by ●). In the case of points lying deep

enough within the oscillatory domain in Figure 1, only

oscillatory states exist for all applied k5.3 (Figure 2, B3 and all
TABLE 2 Oscillation amplitudes of cortisol (Ampl.) in 10−8 mol dm−3 for two fixed values of k2.2 and varied values of k2.1.

k2.1(10
−8 mol dm−3 min−1) k2.2 (10

−8 mol dm−3 min−1)

0* 2.745

Ampl. for all k5.3 Ampl. for low k5.3 Ampl. for high k5.3

1.3725 0 0 0

1.4640 0 0.2400 0

1.5189 0 0.7340 0

1.5555 0 0.8845 0.3765

1.6470 0.5695 1.0100 0.8965

1.7385 0.9590 0.7645 1.0100

1.7751 1.0070 0.4400 0.9725

1.8300 0.9810 0 0.7970

1.8849 0.8075 0 0.2665

1.9215 0.5370 0 0

2.1960 0 0 0
*If k4 = 0, and [AVP]0 = 0, it corresponds to the initial HPA axis activity model (54).
Values of k5.3< 108 mol−1 dm3 min−1 are considered as low k5.3, while k5.3 > 1013 mol−1 dm3 min−1 as high k5.3. A zero-amplitude value indicates the absence of oscillatory states, i.e. the
presence of stable steady states in a denoted case.
TABLE 3 Oscillation amplitudes of cortisol concentrations (Ampl.) in 10−8 mol dm−3 for two fixed values of k2.1 and varied k2.2.

k2.2 (10
−8 mol dm−3 min−1) k2.1 (10

−8 mol dm−3 min−1)

1.83 1.00

Ampl. for low k5.3 Ampl. for high k5.3 Ampl. for low k5.3 Ampl. for high k5.3

0* 0.9810 0.9810 0 0

0.0183 0.9645 0.9810 0 0

0.1830 0.9440 0.9810 0 0

1.6470 0.4865 0.9810 0 0

1.7385 0.4205 0.9755 0 0

1.8300 0.3385 0.9660 0 0

2.2875 0 0.9010 0 0

2.7450 0 0.7970 0 0

3.2025 0 0.6350 0 0

3.6600 0 0.3385 0 0

3.7515 0 0.2230 0 0

3.8430 0 0 0 0

11.2000 (C1) 0 0 0 0

11.4000 (C2) 0 0 0.1550 0

17.6000 (C3) 0 0 0 0.7715

18.6000 (C4) 0 0 0 0

Higher 0 0 0 0
*If k4 = 0 and [AVP]0 = 0, it corresponds to the initial HPA axis activity model (54).
Values of k5.3< 108 mol−1 dm3 min−1 are considered as low k5.3, while k5.3 > 1013 mol−1 dm3 min−1 as high k5.3. A zero-amplitude value indicates the absence of oscillatory states, i.e. the
presence of stable steady states in a denoted case.
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such cases are designated by◼). It was observed that in this area,

amplitude of oscillations depends on the value of k5.3 and this

dependence was subjected to additional analysis. On the other

hand, in points found in vicinity of both lower and upper

borders of oscillatory domain in Figure 1, transitions from

oscillatory dynamics into stable steady states and vice versa,

respectively, were induced by varying the value of k5.3 (Figure 2,

B2 and B4 and all such cases designated by ► and

◄, respectively).

A more detailed analysis of the influence of two inflow

reaction constants k2.1, k2.2 and the synergy reaction constant

k5.3 on the global behavior of the extended HPAmodel was done

by comparing dynamic states between the bifurcation diagrams

obtained for several fixed values of each of the inflow rate

constant. In the cases where oscillatory dynamic states were

identified, amplitudes and their periods were of particular
Frontiers in Endocrinology 08
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interest for mutual diagrams comparison. In the whole range

of applied changes obtained by varying all three constants, the

oscillation periods varied in very narrow range between 20 min

and 30 min. This variation of periods is even lower within one

bifurcation diagram where oscillatory states occurred; in these

cases, periods were rather constant or nearly constant, although

k5.3 values were applied in extremely wide extent (from 1.098 ×

103 to 1.098 × 1020 mol−1 dm3 min−1) (data not shown).

On the other hand, the amplitude changes were much more

diverse and interesting. Selected results are presented in

Tables 2, 3. Results in Table 2 show variations of dynamic

states and amplitude values of cortisol oscillations if k2.1 is varied

for fixed k2.2 value. Two typical cases of k2.2 are given. In the first

case k2.2, k4 and initial concentration of AVP are all equal to
FIGURE 3

Bifurcation diagrams obtained with rate constant k5.3 as control
parameter by Methods 1b and 2 (see points C1-C4 in Figure 1). All
points in case C share the same value of k2.1 = 1 × 10−8 mol dm−3

min−1, while for each point: C1 (k2.2 = 11.2 × 10−8 mol dm−3 min−1),
C2 (k2.2 = 11.4 × 10−8 mol dm−3 min−1), C3 (k2.2 = 17.6 × 10−8 mol
dm−3 min−1) and C4 (k2.2 = 18.6 × 10−8 mol dm−3 min−1). Thin line
represents stable steady state (Method 1b and 2). Unstable steady
states are represented by thick line (Method 1b). Minimums and
maximums in oscillations of cortisol concentrations are represented
by circles (Method 2). All other rate constants used in analysis had
values as presented in Table 1.
FIGURE 4

Analysis of three cases of combination of k2.1 and k2.2 reaction rate
constants values corresponding to the points P, Q and R in
Figure 2. Point P, k2.1 = k2.2 = 1.830 × 10−8 mol dm−3 min−1; point
Q, (k2.1 and k2.2) = (1.738 and 2.745) × 10−8 mol dm−3 min−1,
respectively; point R, (k2.1 and k2.2) = (1.647 and 4.575) × 10−8 mol
dm−3 min−1, respectively; (P1) - (R1) bifurcation diagrams and (P2) -
(R2) diagrams of change of [CORT] oscillation amplitudes each
obtained with k5.3 as control parameter using Method 2; (P3) - (R3)
temporal evolutions of [CORT] for k5.3 = 1.098 × 1016 mol−1 dm3

min−1, for the arbitrarily chosen time interval between around 92
and 94 hours. All results referring to the extended HPA model are
depicted by ◈, ⦿ and thinner curves in diagrams (P1) - (R1), (P2) -
(R2) and (P3) - (R3), respectively. All results referring to the initial
HPA axis model (54) in diagrams (P1) - (R1), (P2) - (R2) and (P3) -
(R3) are depicted by ♦, ● and thicker curves, respectively. In (P1) -
(R1) bifurcation diagrams, [CORT] maximum and [CORT] minimum
are denoted as pair of ◈ and pair of ♦ related to corresponding
extended and initial HPA model, respectively. All other rate
constants had values as given in Table 1.
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zero. This corresponds to the initial model (54). Under these

conditions, amplitudes do not depend on k5.3 and hence only

one value of amplitude is given for each k2.1 value. In this case,

for lower values of k2.1 (such as for k2.1< 1.6470 × 10−8 mol dm−3

min−1) stable steady states were observed first. With k2.1
increase, HPA system passes to another stable steady state

transiting through oscillatory region confined between two

supercritical AH bifurcation points. It was also observed that

the amplitudes reach their maximum at a certain k2.1 value

within oscillatory region, which gradually decreases with

approach to the AH points. In the second case, where k2.2 is

non-zero, for 2.745 × 10−8 mol dm−3 min−1 (Figure 2), the
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dynamics is much more complex since dynamic state depends

strongly on values of both k5.3 and k2.1. Namely, for low values of

k2.1, only stable steady states were found as in the first case

(Figure 2, ●). With slightly increased k2.1 (such as for k2.1 =

1.4640 × 10−8 mol dm−3 min−1 in Table 2 and Figure 2, ►)

oscillatory dynamic states were found in region of low k5.3 values

but stable steady states in the region of high k5.3 values. With

further increase of k2.1, only oscillatory dynamic states are

present for all k5.3 values. This refers to four values of k2.1 in

Table 2, which correspond to four adjacent points denoted by ◼
in Figure 2. Moreover, the values of amplitude were found to be

influenced by k5.3. At modestly low values of k2.1, oscillations
A

B

D

C

FIGURE 5

Temporal evolution of cortisol concentration ([CORT]) for repeating single-pulse perturbations with each stimulator of ACTH release alone and
in combination, for the arbitrarily chosen time interval between around 23 and 40 hours. Graph (A) - the unperturbed extended model of HPA
axis; Graphs (B–D) responses of the HPA axis to repeating pulse perturbations with: (B) CRH (C) AVP and (D) conjoint CRH and AVP. The
perturbation intensities of each stimulator of ACTH secretion were the same in all corresponding cases, [CRH] = 2.5 × 10−9 M and AVP [AVP] =
50.0 × 10−9 M. In all Graphs (B–D), the first pulse perturbations were applied in the maximum-to-minimum inflection point of a selected
ultradian cortisol oscillation starting from the one at 1490th minute (circa 24.8 h) and repeated every 66 minutes, giving a total of 10 pulses
perturbations. In all cases presented in Graphs (A–D), rate constants (k2.1 and k2.2) = (1.647 and 4.575) × 10−8 mol dm−3 min−1 and k5.3 = 1.098 ×
1010 mol−1 dm3 min−1, while all other rate constants had values as given in Table 1.
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with higher amplitudes were observed in the region of low k5.3
values, while smaller amplitudes were observed in the region of

high k5.3 values (Table 2, for k2.1 = (1.5555 and 1.6470) × 10−8

mol dm−3 min−1). On the other hand, if values of k2.1 are

modestly high (Table 2, for k2.1 = (1.7385 and 1.7751) × 10−8

mol dm−3 min−1), the k5.3 influence is reversed so that

amplitudes are then positively correlated to k5.3. It could be

noticed that in this middle k2.1 range, for the values of k2.1 such

as (1.6470 or 1.7385) × 10−8 mol dm−3 min−1, the amplitudes are

higher than the ones corresponding to the same values of k2.1 in

the initial model (Table 2, k2.2 = 0), for all applied k5.3 values or

for high k5.3, respectively. Further increase in k2.1, leads to the

value of 1.83 × 10−8 mol dm−3 min−1 which corresponds exactly

to k2 value in initial model published in previous paper (54). In

this case, stable steady states and oscillatory states were found for

low and for high k5.3 values, respectively (Figure 2, ◄). Finally,

for the highest used values of k2.1, such as (1.9215 and 2.1960) ×

10−8 mol dm−3 min−1 in Table 2, only stable steady states were

observed in the whole k5.3 range. This corresponds to two

adjacent points in Figure 2, depicted by ●.
The observed changes in cortisol oscillation amplitudes

when k5.3 is used as control parameter are localized in range

of k5.3 values lying roughly between 108 and 1013 mol−1 dm3

min−1 (See, for example, cases B1 – B4 in Figure 2), although this

rate constant was varied in wide interval of values between 1.098

× 103 and 1.098 × 1020 mol−1 dm3 min−1.

Relationships between dynamic states and amplitude values

of cortisol oscillations when k2.2 is varied for fixed k2.1 value are

shown in Table 3. Two typical cases of k2.1 were considered in

the extended model. For the first case, k2.1 was chosen to be equal

to 1.83 × 10−8 mol dm−3 min−1 so that the extended model could

be appropriately compared with the initial model (54). The other

case corresponding to k2.1 = 1.00 × 10−8 mol dm−3 min−1 is more

general, providing conditions for a complete set of dynamic

states similar to the ones obtained in bifurcation diagrams B1 –

B4 (Figure 2). This case also corresponds to line C in Figure 1

and is used as a representative example to explain the HPA

system behavior near the bifurcation points (Figure 3).

Namely, the first case, where k2.1 is equal to 1.83 × 10−8 mol

dm−3 min−1, shares the same rate constant value of the CRH

inflow as the initial HPA model (54), for which the system is in

the oscillatory state with amplitude of 0.981 × 10−8 mol dm−3 (as

for k2.2 = 0, k4 = 0 and [AVP]0 = 0 in Table 3 and point depicted

by◼ laying on the x-axis itself in Figure 2). For very low value of

k2.2 such as 0.0183 × 10−8 mol dm−3 min−1, there is a weak to

non-existent influence of k5.3. Oscillations are observed

(Figure 2, ◼) and almost unchanged in the whole range of k5.3
values (Table 3). The contribution of AVP to system’s dynamics

(if any) would probably originate predominantly from the

magnocellular inflow source, since k4 has greater influence

than k2.2 in the vicinity of x-axis (where k2.2 ! 0). Yet, for the

value of k4 equal to 1.537 × 10−9 mol dm−3 min−1 (Table 1), k4 is

inferior to the impact of the rate constant of CRH inflow.
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Therefore, with k5.3 increase, system exhibit behavior similar

to the behavior of the initial model. However, by increasing k2.2,

the effect of k5.3 becomes noticeable. First, increasing the value of

k2.2 leads to faster oscillation amplitudes decrease for low k5.3
compared to the high k5.3 values. With further k2.2 increase,

system transits through AH bifurcation point and oscillatory

states are replaced by stable steady states for low k5.3, while

oscillations for high k5.3 continue to decrease (Table 3 and

Figure 2, five adjacent ◄). Finally, for sufficiently large k2.2,

oscillatory states completely disappear for high k5.3 values. With

any further k2.2 increase, k5.3 does not have any significant

influence on HPA dynamics and only stable steady states

could be observed for all k5.3 values. This corresponds to two

adjacent points denoted by ● in Figure 2.

In the other case, where k2.1 is equal to 1.00 × 10−8 mol dm−3

min−1, the HPA system is in stable steady states for the lowest

k2.2 values, unlike in the first case. By increasing the k2.2, the

system passes through the oscillatory domain via two AH

bifurcations and finally enters to other stable steady states for

higher k2.2 values (Figure 1). This value of k2.1 belongs to the

points C1 - C4 region in Figure 1. The global behavior of the

system in the vicinity of these two AH bifurcations was

examined in these four points on line C which are listed in

Table 3. Two of them (C1 and C2) are very close to the first

(lower) AH bifurcation and the other two (C3 and C4) are very

close to the second one (upper). Obviously, the points were

chosen to cover both sides of bifurcation points. Namely, for the

lowest k2.2 value (11.20 × 10−8 mol dm−3 min−1), corresponding

to the point found below the first (lower) AH bifurcation

(Figure 1, C1), only stable steady states were detected for all

k5.3 values. For the nearby value of the k2.2 which is on the

opposite side of this AH bifurcation (Figure 1, C2), oscillations

were detected for low k5.3 values, but only stable steady states for

high k5.3 values. On the other hand, by increasing the k2.2 to the

value slightly below the second (upper) AH bifurcation

(Figure 1, C3), dynamic states were inversed so that oscillatory

states were then observed only for high k5.3 values, while for low

k5.3 values, only stable steady states were present. For the nearby

value of k2.2 (18.60 × 10−8 mol dm−3 min−1) which is a bit above

this AH bifurcation (Figure 1, C4), stable steady states were

detected in the whole range of applied k5.3 values. Described four

bifurcation diagrams for points C1-C4 obtained by Method 1b

and Method 2 are shown in Figure 3.

Both Method 1b and Method 2, provide mutually consistent

results in a sense that oscillations are obtained when steady state

is unstable and oscillations are absent if steady state is stable.

From Figure 3, it may be noticed that change of cortisol

concentrations during the transition from one steady state to

another in points C1 and C4, is localized within relatively

narrow and middle interval of k5.3 values close to the positions

of the AH bifurcation points observed in points C2 and C3. At

the same time, in vicinity of AH bifurcation points, cortisol

steady-state concentrations are gradually changed. The above
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described behavior presented in Figure 3 can also be found in

bifurcation diagrams B1 – B4 presented in Figure 2 with the

similar k5.3 interval. Additionally, change of amplitude of

cortisol oscillations in bifurcation diagram B3 in Figure 2 is

confined within the same range of k5.3 values. Out of this range,

for k5.3< 108 mol−1 dm3 min−1 and k5.3 > 1013 mol−1 dm3 min−1,

that correspond to low and high k5.3 values, respectively,

dynamic states are almost independent on k5.3. Described

global behavior of the system is the result of investigations in

points on line C very close to the boundaries of the oscillatory

domain obtained by Method 1a for k5.3 = 3.66 × 102 mol−1 dm3

min−1 (Table 1). If oscillatory domain is obtained for different

k5.3 value, some of these points, if not all, (including the ones on

A, B, D and E lines) may be positioned differently relative to the

new borders of oscillatory domain. This could provide an

additional insight into the interpretation of corresponding

bifurcation diagrams in Figures 3, 2.

In order to further correlate obtained results with

experimental findings in the literature, the examinations of

mutual combinations of k2.1 and k2.2 values for which system

transits into oscillatory states of higher amplitudes with increase of

control parameter (k5.3) were of particular interest. Three types of

distinct changes were found by comparing how amplitude of

oscillations increases with control parameter in the initial and

extended model when their CRH inflow is the same. They will be

discussed in more details using the examples of points P, Q and R

in Figure 2: point P (k2.1 = k2.2 = 1.830 × 10−8 mol dm−3 min−1),

point Q (k2.1 = 1.738 × 10−8 mol dm−3 min−1, k2.2 = 2.745 × 10−8

mol dm−3 min−1) and point R (k2.1 = 1.647 × 10−8 mol dm−3

min−1, k2.2 = 4.575 × 10−8 mol dm−3 min−1). In Figure 4, the

bifurcation diagrams ((P1) - (R1), ◈), and diagrams of variation

of [CORT] oscillation amplitudes ((P2) - (R2), ⦿) in all three

points, together with the samples of temporal evolutions of

[CORT] for k5.3 = 1.098 × 1016 mol−1 dm3 min−1 ((P3) - (R3),

thinner curves) in an arbitrarily selected time interval are

presented. Results referring to the initial model (54) for the

same values of the rate constant of CRH inflow as in cases P, Q

and R, are incorporated into corresponding diagrams in Figure 4

and depicted by symbols ◆, ● and thicker curves. Namely, the

increase of [CORT] amplitudes with k5.3 increase can be clearly

seen in all three cases P, Q and R in diagrams (P1) - (R1) (◈) and

(P2) - (R2) (⦿). However, it could be noticed that in the case P,

oscillation amplitudes of [CORT] in extended model are lower

than the ones in the initial model in the whole range of applied k5.3
[Figure 4, (P2)]. Inversely, in the case R, oscillation amplitudes of

[CORT] are higher in the extended model than the one in initial

model for all applied k5.3 [Figure 4, (R2)] and could be about 1.3-

to 2-fold greater. On the other hand, for a certain combination of

k2.1 and k2.2 values, [CORT] amplitudes in extended model could

exceed the one corresponding to the initial model, but only for

high k5.3 values, as indicated in the case Q [Figure 4, (Q2)]. The

described [CORT] amplitude differences between two models in

all three cases could also be directly observed in Figure 4, (P3) –
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(R3) for k5.3 = 1.098 × 1016 mol−1 dm3 min−1. Due to the

indications of conditions in the extended model under which

amplitude of [CORT] ultradian oscillations may increase due to

synergistic effect of CRH and AVP on stimulating ACTH

secretion by corticotrope cells, the extended model for point R

was subjected to further analysis.

Hence, in silico perturbation experiments were performed to

additionally assess the predictive potential of the extended model

in the conditions corresponding to point R (Figure 2) and k5.3 =

1.098 × 1010 mol−1 dm3 min−1 (a value around the middle in

Figure 4, (R1) and (R2)). The perturbations were induced by

repeating single-pulse changes in CRH and AVP concentrations

applied both separately and conjointly, and which were

consistent in intensity and time of application. Results are

presented in Figure 5 and show the apparent influence of

acute changes in CRH or/and AVP levels on global ultradian

dynamics of the HPA axis model.

As expected, separate perturbations with CRH and AVP

elicited a quantitatively similar response of the HPA axis

extended model, only if applied concentration (perturbation

intensity) of AVP was order of magnitude higher compared to

CRH (Figures 5B, C). Also, a synergistic effect is observed in the

changes of the cortisol oscillation amplitudes in response to their

concurrent perturbations (Figure 5D). The pattern of the system

response to this perturbation is qualitatively similar to the one

induced by perturbations with CRH solely. Moreover, as

expected from our previous experience (54, 62), perturbations

caused a highly variable response depending on the phase angle

of the selected ultradian oscillation at which the first

perturbation was applied. Therefore, even uniform periodic

perturbations with small intensities induced strongly irregular

(stochastic) appearances of [ACTH] (not shown) and

[CORT] oscillations.
Discussions

According to presented results, various ultradian oscillatory

dynamics can be achieved, depending on the individual values of

CRH and AVP inflows, as well as the rate constant of their

synergistic reaction. For a particular combination of the values of

inflows rate constants used in this study, there are values of

synergy rate constant k5.3 that could influence the HPA system

to enter into the oscillatory dynamic states from stable steady

state and vice versa. It has been found that transitions between

these dynamic states were always through supercritical AH

bifurcation point.

Due to the features of the supercritical AH bifurcation, some

of the well-documented properties of the HPA axis activity could

be more plausibly reproduced. For instance, elasticity of HPA

axis in adjusting its dynamics in order to maintain homeostasis

under the action of stressful stimuli can be simulated by

reversible transitions between stable steady and oscillatory
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dynamic states in the vicinity of supercritical AH bifurcation.

These dynamic transitions are characterized by gradual decrease

in ultradian oscillation amplitudes as the system approaches

supercritical AH bifurcation, causing the system to exhibit

growing response to the same perturbation intensity.

It should be pointed out that above described qualitative

dynamic transitions in HPA axis activity under the influence of

synergy rate constant are related to the system’s global behavior

in points close to the boundaries of the oscillatory domain

obtained by Method 1a for the value of k5.3 in Table 1

(Figure 1). For oscillatory domain obtained for different k5.3
value, some of these points, if not all, may be positioned

differently relative to the new borders of oscillatory domain.

This could provide rather additional insight into the

interpretation of their bifurcation diagrams in Figure 3, but in

Figure 2 as well.

On the other hand, for examined points lying deep enough

within the oscillatory domain, much more diverse quantitative

changes in HPA activity were identified in corresponding

bifurcation diagrams. Comparison of the results of bifurcation

analyses for points in which amplitude of cortisol oscillations

increases with k5.3 in the initial and extended model for the same

CRH inflow constant, revealed that extended model is capable to

provide potential conditions under which ultradian amplitudes

of cortisol concentrations could increase several-fold due to

CRH and AVP synergistic action on corticotrope cells. This is

in agreement with experimental observations in studies

conducted on humans during stress (39, 44–47).

The potential of the extended model under selected

conditions to anticipate a synergistic effect in the HPA axis

ultradian dynamics response was verified in in silico experiments

with perturbations induced by repeating single-pulse changes in

CRH and AVP concentrations applied both separately and

simultaneously (Figure 5). The observed qualitative similarity

between response patterns of the HPA axis to perturbation with

CRH solely and conjointly with AVP (Figures 5B, D) can be also

found between the results of experiments in humans with 10-

hour infusions of CRH and of both peptides simultaneously (39).

Although cortisol oscillations obtained by the proposed model

are extremely regular (both in period and amplitude)

(Figure 5A), the ones obtained after series of single-pulse

perturbations that were regular in intensity and time of

application, are irregular (chaotic) (Figures 5B–D). They

actually more resemble experimentally measured cortisol level

fluctuations frequently encountered in literature (4, 8, 9, 18, 21–

23, 38, 55, 63–65), while cortisol oscillations obtained by the

extended model under conditions that may be regarded as ideal

for the HPA axis (i.e. without any perturbation over the time

whatsoever). Moreover, the sensitivity of an oscillatory dynamics

depends strongly on the phase angle of the selected ultradian

oscillation at which the first perturbation was applied and thus

cortisol oscillations amplitude may decrease, increase or remain

unaltered. Nevertheless, further in silico examinations of the
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proposed extended model under these and similar conditions are

required to fully address stress-related effects of AVP and CRH

on HPA ultradian dynamics reported in the literature.

Furthermore, the extended model simulated the

experimentally observed inferiority of AVP as an ACTH

secretion stimulator compared to CRH in humans. Namely,

both in human (39, 43–47, 55) and in rat (26, 36–38, 40, 41),

CRH reaction pathway is considered to be dominant in

pituitary-adrenal regulation. There are results in several

studies in vitro in rat anterior pituitary cells and in vivo in

rats, indicating the necessity for much higher concentrations of

exogenously administered AVP in order to induce similar effects

on ACTH secretion as certain injected CRH concentrations (37,

38, 40, 41). In line with above mentioned experimental findings,

results in Figure 1 show that a much larger (circa by an order of

magnitude) increase in the values of parvocellular AVP inflow

source (k2.2) is required to retain HPA model in the oscillatory

regime after a small decrease in the value of parvocellular CRH

inflow source (k2.1). Additionally, an order of magnitude higher

AVP perturbation intensity (AVP concentration) was needed to

induce quantitatively similar response of HPA axis model to the

one elicited by perturbation with CRH solely (Figures 5B, C).

Moreover, the extended model predicted the CRH reaction

pathway to almost completely prevail over the AVP reaction

pathway under certain condition (Figures 1, 2). However, for

some other conditions given in Figure 1, the extended model also

predicted the feasibility of AVP reaction pathway governed by

parvocellular AVP inflow source to take over the CRH

supremacy (Figure 1). In similar conditions, the possibility for

the HPA axis to exhibit oscillatory dynamics for negligible

amounts of CRH was shown as well.

Additionally, during stress, particularly chronic stress and

after adrenalectomy, the number of parvocellular CRH

neurosecretory cells that co-produce AVP was found to

increase considerably as do the amounts of synthesized AVP

compared to CRH per cell (66, 67). Very good agreement with

these experimental findings was obtained in simulations using

the extended model proposed here, where by increasing the k2.2
value much more than the value of k2.1, higher AVP to CRH

concentration ratios could be yielded (Figure 1).

At the same time, during all the analyses conducted in this

study, oscillating nature of dynamic state, and even frequency of

cortisol ultradian oscillations has been found relatively sustained

under all investigated conditions. This is in line with

experimental findings indicating preserved endogenous HPA

pulsing system in humans under various conditions (6, 9, 39).

Although, the HPA axis activity model proposed here is

capable to provide good results, it however also inherited several

limitations. The most notable limitation stems from the

conciseness of the model where many complex processes were

represented by summarized and simplified reaction steps (R1) -

(R15) in Table 1. Thereby, since the peptide precursors of ACTH

and other steroid hormones were not included in the initial
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model, nor in the current extended model, concentration of

ACTH was several orders beyond its reference range values. This

discrepancy may be corrected by further model augmentation

with introduction of lacking reaction species and their relations,

in a similar way as it was done with preceding models (54, 68, 69,

for instance) that were developed from our core model (58). The

same “strategy” would be applied if a certain process or the

influence of a certain bioactive substance ought to be examined

in more details in regard to its role in HPA axis activity, such as:

cAMP/PKA, PLC/IP(3), DAG/PKC signal transduction

pathways, gene transcription and translation, epinephrine

(adrenalin), angiotensin II, etc. On the other hand, the low-

dimensional models can be more easily manipulated

mathematically with aim to define desirable dynamic states,

before being extended for different applications. This is usually

not the case with more detailed non-stoichiometric models.

Based on the results presented in this study, stoichiometric

modeling approach, bifurcation analyses and numerical

simulations have proven to be very helpful in comprehending

the complex involvement of AVP in HPA axis ultradian

dynamics. The proposed model provides a good basis for

further investigation of conditions in which the particularly

amplified effect of CRH on corticotrope cells by magnocellular

AVP can be of vital importance. These conditions are associated

with life-threatening circumstances such as the risk of

hyponatremia due to severe hypovolemia that can occur

during arduous physical work or those requiring long-term

sustained rise of adrenal corticosteroids due to their known

immunosuppressant and anti- inflammatory effects .

Furthermore, since it is known that “AVP regulates ACTH

release under certain conditions, and exogenously

administered AVP is used clinically to stimulate ACTH

secretion” (70) as well as that considered process is very

complex for experimental investigations, the proposed model

with related numerical simulations can be obviously useful for

determining the appropriate drug dose for therapeutic purposes.
Conclusions

The proposed extended HPA model is positively correlated

with several experimental findings in the literature and offers the

potential to proceed in silico investigations of the influence of

AVP and its synergistic action with CRH on the HPA axis

dynamics. Expanding the pre-existing initial HPA model with

AVP contributes to the enhancement of the model ’s

comprehensiveness and biological plausibility, while still being

sufficiently tractable to mathematical analysis and numerical

simulation, despite the increased number of dynamic variables.

Moreover, the presented model provides a good basis for its
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further development and adjustments to align with experimental

finding under physiologically normal as well as various stressful

conditions. Further refinement of the present model seems to be

necessary if hormone levels should be quantitatively compared

with experimental measurements and if apparently stochastic

form of oscillations would be the aim of some future study.
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Identification and
characterization of novel
compound heterozygous
variants in FSHR causing primary
ovarian insufficiency with
resistant ovary syndrome

Xiaopan Chen1,2*†, Linjie Chen3†, Yang Wang2,4†, Chongyi Shu1,
Yier Zhou1, Ruifang Wu1, Bihui Jin1, Leixiang Yang2,
Junhui Sun5, Ming Qi6 and Jing Shu1,4*

1Reproductive Medicine Center, Department of Reproductive Endocrinology, Zhejiang Provincial
People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China,
2Department of Genetic and Genomic Medicine, Zhejiang Provincial People’s Hospital, Affiliated
People’s Hospital, Hangzhou Medical College, Hangzhou, China, 3School of Laboratory Medicine
and Bioengineering, Hangzhou Medical College, Hangzhou, China, 4The Second Clinical Medical
School of Wenzhou Medical University, Wenzhou, China, 5Reproductive Medicine Center, The First
Affiliated Hospital of Wenzhou Medical University, Wenzhou, China, 6Department of Cell Biology
and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
Primary ovarian insufficiency (POI) is among the foremost causes of women

infertility due to premature partial or total loss of ovarian function. Resistant

ovary syndrome (ROS) is a subtype of POI manifested as normal ovarian reserve

but insensitive to gonadotropin stimulation. Inactivating variants of follicle-

stimulating hormone receptor (FSHR), a class A G-protein coupled receptor,

have been associated with POI and are inherited via an autosomal recessive

pattern. In this study, we investigated the genetic causes of a primary infertility

patient manifested as POI with ROS, and elucidated the structural and

functional impact of variants of uncertain significance. Next-generation

sequencing (NGS) combined with Sanger sequencing revealed novel

compound heterozygous FSHR variants: c.1384G>C/p.Ala462Pro and

c.1862C>T/p.Ala621Val, inherited from her father and mother, respectively.

The two altered amino acid sequences, localized in the third and seventh

transmembrane helix of FSHR, were predicted as deleterious by in silico

prediction. In vitro experiments revealed that the p.Ala462Pro variant resulted

in barely detectable levels of intracellular signaling both in cAMP-dependent

CRE-reporter activity and ERK activation and displayed a severely reduced

plasma membrane receptor expression. In contrast, the p.Ala621Val variant
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resulted in partial loss of receptor activation without disruption of cell surface

expression. In conclusion, two unreported inactivating FSHR variants

potentially responsible for POI with ROS were first identified. This study

expands the current phenotypic and genotypic spectrum of POI.
KEYWORDS

primary ovarian insufficiency, resistant ovary syndrome, follicle-stimulating
hormone receptor, compound heterozygous variant, transmembrane helix
Introduction

Primary ovarian insufficiency (POI) is an etiologically and

clinically heterogeneous condition caused by the early loss or

complete absence of ovarian activity (1, 2). POI affects roughly

1%–2% of females <40 years old (3), making it among the

foremost causes of women infertility. Resistant ovary syndrome

(ROS) is a special form of POI characterized by the presence of

normal ovarian reserve and resistance to gonadotropin (GN)

stimulation (4–6). The etiopathogenesis of POI is multifactorial,

including genetic alterations, autoimmune and metabolic

disorders, viral infections, and environmental or iatrogenic

factors (7). Genetic factors represent the most commonly

identified causes; however, the current understanding of its

hereditary basis is incomplete (8, 9).

The follicle-stimulating hormone receptor (FSHR) is

expressed in granulosa cells from the primary follicle stage

onwards (10, 11) and rigidly controls follicle development in

response to cyclic pituitary FSH discharge (11, 12). FSHR

belongs to a highly conserved subfamily of G protein-coupled

receptors with a remarkably long amino-terminal extracellular

domain (ECD), an intracellular carboxyl-terminal tail (C-tail),

and a typical structural architecture comprising seven

transmembrane helixes (TMH) interconnected by three

extracellular loops (ECL) and three intracellular loops (ICL)

(13, 14). Upon FSH binding, the receptor adopts a

conformational change and subsequently couples to Gas
protein, which in turn activates the adenylyl cyclase, resulting

in increased cAMP signaling (15, 16). Variations in any of these

domains by alterations in primary DNA sequences may

potentially lead to receptor dysfunction and eventually to

disease (17).

Genetic variants that inactivate protein-coding genes,

collectively known as loss-of-function variants, are often

single-nucleotide variants that disrupt the structure and

function of the protein. FSHR inactivating variants, one of the

rare causes of POI, are inherited recessively and require

homozygous or compound heterozygous status to develop the

clinical phenotype (18). After the first POI-causative FSHR
02
25
variant-p.Ala189Val in the ECD was reported (19), diverse

inactivating variants have been identified in different FSHR

domains, including the ECD (20–29); the second, fourth, and

sixth TMH (26, 29–34); the first, second, and third ECL (22, 28,

35, 36); second and third ICL (21, 37); and the C-tail (27).

However, pathogenic inactivating variants in the third and

seventh TMH of FSHR have not been reported so far in

patients with POI.

Numerous ev idence indicates that the c l in ica l

manifestations of FSHR variants are not uniform, ranging

from primary amenorrhea with puberty disorders to

secondary amenorrhea, oligomenorrhea, and premature

menopause, depending on the specific domain and type of

variant and the degree of inactivation. Thus, expanding the

POI-causing variant spectrum of FSHR is crucial to understand

the etiopathogenesis of POI and for better clinical diagnosis that

involves patients and their offspring. Herein, we reported two

novel FSHR variants (c.1862C>T/p.Ala621Val and c.1384G>C/

p.Ala462Pro) in a compound heterozygous state in a Chinese

infert i le woman who manifests hypergonadotropic

hypogonadism (HH) with oligomenorrhea, presence of

normal ovarian reserve, and resistance to exogenous GNs:

three clinical characteristics of POI with ROS. Using in vitro

functional experiments, we characterized the molecular features

underlying this disease phenotype, thereby providing new

insights into POI with ROS. To our knowledge, this is the

first study identifying pathogenic variants in the TMH3 and

TMH7 of FSHR as causative variants for POI.
Materials and methods

Ethical compliance and
informed consent

The study procedures were reviewed and approved by the

Institutional Ethics Committee of Zhejiang provincial People’s

Hospital (Approval number: 2019KY205). Written informed

consent was obtained from all participants. All genetic
frontiersin.org
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materials were handled in accordance with the National

Regulation on Human Genetic Resources.
Case presentation and medical history

A 29-year-old Chinese female was referred to our outpatient

center for 5 years of primary infertility. The female patient

reached menarche at age 15 and had experienced irregular

menstrual cycles (15 - 180 days) in a progressively prolonged

manner. At the age of 21 years, she consulted a local hospital for

irregular periods, and after sex hormonal evaluation, she was

diagnosed with ovarian dysfunction and began to intermittently

take exogenous hormone replacement therapy to induce

artificial menstrual cycles. After the age of 21 years, her

menstrual cycle never appeared again without hormone

therapy. A dominant follicle was detected during an occasional

ultrasound examination when she was 26-year-old. She was

otherwise healthy and had an unexceptional past clinical

history. No family history of consanguinity, reproductive

anomaly or infertility was documented.
Fertility investigations and ROS diagnosis

Upon examination, the patient’s height and weight were

found to be 160 cm and 62.5 kg, respectively. Physical

examination of secondary sex characteristics revealed normal

breast development, normal appearance of female external

genitalia, and normal armpit and pubic hair. Hormonal assays

were carried out in the presence of low doses of estrogen

(Estradiol Valerate Tablets 1-2mg/d, Delpharm Lille S.A.S.,

Lys-lez-Lannoy, France). The repeated basal hormonal

evaluations in our department revealed elevated serum FSH

(35.98 and 37.73 IU/L) and luteinizing hormone (LH) (21.23

and 21 IU/L) (Table 1). The patient’s thyroid stimulating

hormone (TSH) level was normal (2.34 mIU/L), as was her

prolactin (PRL) (10.03 ng/mL) (Table 1). Despite the increase in

GNs, the patient’s anti-Müllerian hormone (AMH) level was

2.89 ng/mL (Table 1), suggesting a normal ovarian reserve.

Transvaginal ultrasonography examination displayed a

normal-sized uterus and normal-sized bilateral ovaries,

consisting of 3–5 small antral follicles 3–5 mm in diameter

(Supplemental Figure). The patient had no autoimmune
Frontiers in Endocrinology 03
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condition, including absence of anti-nuclear and anti-

cardiolipin antibodies. Immunoglobulin and natural killer cell

levels were within normal ranges. Chromosome analysis and

Fragile X DNA test were normal. No other relevant clinical

features were observed.

After failing to observe follicle development in the natural

cycle, an initial attempt of controlled ovarian stimulation (COS)

was performed by a daily combination of 50 mg clomiphene and

150 IU human menopausal gonadotropins (hMG). However, the

stimulation was cancelled after 8 days of treatment with a total

dose of 1,200 IU FSH, as no ovarian follicle development was

observed (peak serum estradiol level, 39 pg/mL). To exclude the

possibility that the ovarian unresponsiveness to exogenous GNs

was due to stimulation insufficiency, another COS cycle with

increased daily hMG dose and prolonged stimulation was

conducted. Despite increasing the daily dose of exogenous

GNs up to 375 IU per day, growth of immature follicles

remained unresponsive even after 15 days of stimulation with

total FSH dose of 4,350 IU. Thus, the patient was clinically

diagnosed with ROS according to previously described criteria

(6, 38).
Endocrine assays and
follicular monitoring

The FSH, LH, estrogen (E2), PRL, and TSH concentrations

were tested by a set of commercial enzyme immunoassay kits

(7K72-78 & 2P13-40, Abbott, Chicago, USA). The ovarian

reserve was measured by an AMH detection kit (C86002,

YHLO, Shenzhen, China). Monitoring of follicle growth and

development was conducted by transvaginal ultrasonography

(Hitachi, Tokyo, Japan).
Massively parallel sequencing

Whole-exome sequencing was conducted on DNA samples

isolated from the patient’s peripheral blood leukocytes,

according to the manufacturer ’ s manual (Agi lent

Technologies, Santa Clara, USA; Illumina, San Diego, USA).

In brief, genomic DNA was fragmented, barcoded, purified,

and hybridized with capture probes during library preparation

for massively parallel sequencing. The captured sequences were
TABLE 1 Clinical characteristics of the proband.

Age at
presentation
(years)

Age at menar-
che (years)

Second sex
characteristics

Ovary
size

Follicle
count a

Follicle size
(mm) a

FSH
(IU/L) a

LH (IU/L)
a

E2
(pg/ml)

a

PRL
(ng/ml)

a

TSH
(mIU/L)

a

AMH
(ng/m 1)

Autoimmune
screening

Karyotype and
Fragile X screening

29 15 Normal Normal 3-5 each Up to 5 35.98 and

37.73b

21.23

and

21.0b

45.0 and

41.9b

10.03 2.34 2.89 Normal Normal

a, Measurements were conducted at follicle stage; b, Repeated test with 4 weeks apart; Reference values for follicle phase: FSH: 3.03-8.08 IU/L; LH: 1.80-11.78 IU/L; E: 21.00-251.00 pg/
ml; PRL: 5.18-26.53 ng/ml; TSH: 0.4-4 mIU/L.
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then enriched with streptavidin-conjugated paramagnetic

beads and further amplified before being subjected to NGS.

Clusters were generated and sequenced on the Illumina

NextSeq 550 system using the Illumina Nextseq High Output

Kit (20024908) to obtain approximately 90 million reads per

sample (2 × 151 cycles). After quality assessment, the resulting

paired-end reads were mapped to the GRCh37 assembly (hg19)

of the human genome. All called variants were annotated based

on public databases, including the 1KGB (39), ExAC (39),

gnomAD (40), dbSNP (41), OMIM (42), ClinVar (43), and

LOVD (44). Major focus of the analysis was on the 4 relevant

disease-causing genes (FSHB, FSHR, LHB and LHCGR).

Variant interpretation was based on the gene clinical and

pathogenic relevance according to ACMG guidelines (45).
Sanger sequencing

Validation of NGS results was conducted by Sanger

sequencing. The primers used to amplify target region of the

human FSHR gene were des igned as fo l lows : 5 ′-
C AAACTGGGGCAGGCTGTGATG - 3 ′ a n d 5 ′ -
CTTGCATTTCATAGCAGCCACAC-3′. All the PCRs were

carried out at 50 ml reaction volume using 100 ng genomic

DNA on an ABI GeneAmp 9700 PCR system (Applied

Biosystems, Bedford, USA), and the amplified fragments were

subsequently extracted from the agarose gel, purified, and

directly sequenced by Big Dye Direct Cycle Sequencing

(4458688, ThermoFisher Scientific, Waltham, USA) on an ABI

3730 Genetic Analyzer (Applied Biosystems, Bedford, USA).

The nucleotide sequences were blasted with the published

sequence of human FSHR gene (http://www.ncbi.nlm.nih.gov).
Protein topology and function prediction

Protein topology prediction of FSHR variants was conducted

using the TMHMM architecture (46). Variant pathogenicity

prediction was performed using three online tools: PolyPhen-2

(47), SIFT (48), and MutationTaster (49). Evolutionary

conservation analysis was performed based on multiple-

alignment of the amino acids across multispecies from the

HomoloGene database.
Construction of plasmid vectors

The wild-type (WT) FSHR plasmid was constructed by

subcloning human FSHR cDNA from pCR-BluntII-TOPO-

FSHR (P19532, Miaolingbio, Wuhan, China). The obtained

polymerase chain reaction products were then cloned into

pcDNA3.1 and pEGFP-N1 with the Seamless Cloning Kit

(D7010, Beyotime, Shanghai, China). Point mutations were
Frontiers in Endocrinology 04
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performed by using the QuickMutation Kit (Beyotime,

Shanghai, China). The sequences of primers used for plasmid

construction were provided in Supplemental Table. The pCRE-

luciferase vector was kindly provided by Dr. Naiming Zhou

(50). All vectors were thoroughly sequenced to confirm

sequence integrity.
Cell maintenance and transfection

The HEK293 cell line was routinely cultured in Dulbecco’s

modified Eagle’s medium (Gibco, Waltham, USA) containing

10% heat-inactivated fetal bovine serum (SV30087, Hyclone,

Logan, China) as described previously (51). Transfection of

plasmid constructs into cells was conducted using lipofectamine

3000 reagent (L3000-015, Invitrogen, Carlsbad, USA). Variants

were transfected alone (3 mg) to mimic the homozygous state, or

together in equimolar concentration (1.5 mg each) to mimic the

compound heterozygous state.
cAMP-dependent CRE-reporter assay

Cells pre-seeded in a 96-well plate were co-transfected with

either an expression vector (pWT-cDNA or variants) and

reporter vector (pCRE-Luc). At 48 h after transfection, cells

were incubated with the DMEM containing various

concentrations of recombinant FSH (S20150007, Jinsai,

Changchun, China) for 4 h at 37°C. cAMP-dependent CRE-

luciferase activity was measured using the firefly luciferase assay

system (RG042S, Beyotime, Shanghai, China) with a multiple

function microplate reader (Tecan, Männedorf, Switzerland).

Briefly, the culture medium in the plate was removed, and 50 mL
per well reporter lysis buffer was added immediately. The plate

was then placed on a horizontal shaker for complete lysis. The

cell lysate was collected and centrifuged in 10,000 × g for 5 min.

Then, 20 ml supernatant was mixed with 100 ml luciferase

substrate and incubated for 5 min. Finally, the mixture was

transferred into a 96-well plate, and luminance was read on

Tecan luminometer 1 s/per well at the 470 nM. Efficacy and

potency were determined by a three-parameter nonlinear

logistic regression using GraphPad Prism 7.0 (Graph Pad

Software, San Diego, USA).
Western blot analysis of ERK activation

Cells transiently expressing wild-type receptor or variants

were stimulated with the FSHR agonist (S20150007, Jinsai,

Changchun, China) for the indicated durations. Drug

incubation was terminated by washing the cells with ice-cold

phosphate buffered saline followed by the addition of lysis buffer

containing complete protease inhibitor (P1010, Beyotime,
frontiersin.org
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Shanghai, China) and phosphatase inhibitors cocktail (P1082,

Beyotime, Shanghai, China). Equal protein amounts from cell

lysates were electrophoresed on a 10% SDS-polyacrylamide gel,

and then transferred to a PVDF membrane and incubated with

rabbit monoclonal anti-phospho-ERK1/2 antibody (4370, Cell

Signaling, Danvers, USA) followed by stripping and reprobing

with anti-total ERK antibody (4695, Cell Signaling, Danvers, USA)

according to manufacturers’ protocols. Chemiluminescence was

detected using an ECL substrate (FD8000, Fdbio science,

Hangzhou, China) with ChemiDoc Touch Imaging System

(Bio-Rad, Hercules). All immunoblots were semi-quantified

using the Adobe Photoshop CC software, and ERK1/2

activation was calculated as the level of phosphor-ERK1/2

normalized by the total-ERK.
Cell-surface receptor expression

Cells pre-seeded in a coverslip-covered 12-well plate were

transiently transfected with pWT-EGFP, pA462P-EGFP, or

pA621V-EGFP. At 48 h after transfection, the coverslip seeded

with transfected cells was invertedly placed on a microscope

slide and observed immediately under a confocal laser-scanning

microscope (Leica, Wetzlar, Germany). The transfection

efficiency was determined by counting number of cells that

express fluorescence divided by the total number of observed

cells. Quantification of the FSHR level on cell membrane by their

mean fluorescent signal intensity was measured using ImageJ

(NIH, Bethesda, USA); moreover, the plugin of MorphoLibJ in

ImageJ was used to create segmentation borders. Furthermore, a

region of interest area was created for a final measure.
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Statistical analyses

Statistical analysis of in vitro experimentation was performed

with GraphPad Prism software using data derived from ≥3

different biological replicates. Collected data were examined for

normality of distribution using Shapiro–Wilk normality test.

Comparisons between groups were carried out using one-way

analysis of variance followed by Tukey’s multiple comparisons

tests for post-hoc analysis. Differences between groups were

considered statistically significant at P < 0.05.
Results

Genetic analysis and functional
prediction of FSHR variants

Bioinformatics analysis following NGS revealed two missense

variants. The first variant was a transition of guanine to cytosine at

nucleotide position 1384 in Exon 10 producing an Alanine to

Proline replacement at position 462 (FSHR_ex10 c.1384G>C/

p.Ala462Pro). The second variant was a transition of cytosine to

thymine at nucleotide position 1862 in Exon 10 of FSHR gene

resulting in an amino acid substitution of Alanine to Valine at

position 621 (FSHR_ex10 c.1862C>T/p.Ala621Val). Sanger

sequencing confirmed the suspected variants and showed that the

patient’s parents were heterozygous carriers; the father and mother

being a heterozygous carrier of c.1384G>C/p.Ala462Pro and

c.1862C>T/p.Ala621Val variants, respectively (Figures 1A-C).

Both variants were neither found in public population databases

(1KGB, ExAC, gnomAD, and dbSNP) nor in disease databases
B

C

D E

A

FIGURE 1

Identification of novel compound heterozygous variants in FSHR. (A) Schematic representation of the hFSHR gene and localization of newly
identified variants. Size of exons is drawn to scale. (B) Validation of NGS by Sanger sequencing. (C) Pedigree of the family examined in the
present study. (D) Multiple amino acid sequences alignment of FSHR target sites and their two flanks across different species. (E) Schematic
representation of hFSHR and localization of newly identified variants.
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(OMIM, ClinVar, and LOVD) (Table 2). Multiple sequence

alignments were performed for FSHR proteins form different

species; both A462 and A621 were highly evolutionarily

conserved over multiple species (Figure 1D and Table 2). Protein

topology prediction of the variants revealed that p.Ala462Pro and

p.Ala621Val were localized in the third and seventh TMH of FSHR,

respectively (Figure 1E). Furthermore, the two variants were

predicted to be “Probably damaging” by PolyPhen-2, “Disease

causing” by MutationTaster, and “Intolerated” by SIFT, indicating

potential pathogenic effects of these two variants (Table 2). Thus,

both p.Ala621Val and p.Ala462Pro were ranked as variants of

uncertain significance according to ACMG pathogenicity assessing

criteria (Table 2).
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A462P and A621V variants were
significantly impaired in cAMP-
dependent CRE-luciferase activity

Examination of FSHR-mediated cAMP-dependent CRE-

promoter transcription activity was conducted by co-

transfection of HEK293 cells with the variants and CRE-

luciferase reporter. In the presence of FSH, a dose-dependent

increase in luciferase activity (EC50 = 11.98 IU) was recorded in

cells harboring WT FSHR (Figure 2A). However, both FSH

efficacy and potency to elicit cAMP-dependent CRE-reporter

activity were significantly impaired in cells transfected with

p.A621V variant as demonstrated by decreased maximal
B

C

D E

A

FIGURE 2

Functional evaluation of variants. (A) Dose-dependent curve of cAMP-dependent CRE-luciferase activity for FSHR variants upon FSH treatment.
Variant transfected HEK293 cells were incubated with various FSH concentrations for 4 h. Data are expressed as percentage of WT maximal
stimulation and represent the mean ± SEM of six independent experiments. (B) Time course of FSH-stimulated phosphorylation of ERK1/2 in
cells expressing variants. Data are expressed as percentage of WT maximal stimulation and represent the mean ± SEM of three independent
experiments. * P < 0.05, ** P < 0.01, *** P < 0.001 vs. WT FSHR. (C) Representative images of immunoblots using antibody against
phosphorylated ERK1/2. Transfected cells were incubated with 500 IU FSH for the indicated time. (D) Bar plots showing quantitative
fluorescence microscopy analysis of cell surface expression for all variants. Data are expressed as percentage of WT FSHR and represent the
mean ± SEM of six independent experiments. *** P < 0.001 vs. WT FSHR, n.s. not significant. (E) Representative fluorescence microscopy images
of the receptor cellular localization. Bar = 20 µm.
TABLE 2 Bioinformatic prediction of the FSHR variants.

Variant 1KGB ExAC gnomAD dbSNP ClinVar OMIM LOVD PolyPhen-2 SIFT Mutation
Taster

Conservation ACMG
classification

c.1384G>C
(p.Ala462Pro)

N/F N/F N/F N/F N/F N/F N/F D/C D/C D/C H/C VUS

c.1862C>T
(p.Ala621Val)

N/F N/F N/F N/F N/F N/F N/F D/C D/C D/C H/C VUS

N/F, Not found; D/C, Disease causing; H/C, Highly conserved; VUS, Variants of uncertain significance.
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stimulation (59.72% of WT) and increased EC50 (81 IU)

(Figure 2A). The most deteriorating impact in cAMP-

dependent CRE-promoter activity was observed in cells

expressing the p.A462P variant, whose luciferase activity was

barely detectable (maximal stimulation = 4.24% of WT FSHR;

EC50 = 32.3 IU) even in the presence 10,000 IU FSH, the highest

concentration in our study (Figure 2A). When a blend of A462P

and A621V was transfected together in equimolar concentration

to mimic the compound heterozygous state found in the

proband, there was a significant reduction either in the

potency (EC50 = 62.16 IU) or in the efficacy (maximal

stimulation = 44.95% of WT) as compared to those observed

with the wild-type receptor.
A462P and A621V variants were
significantly impaired in ERK activation

To further explore whether ERK activation is altered by the

variants, we performed Western immunoblot using a

monoclonal antibody against phosphorylated ERK1/2. As

shown in Figures 2B, C, FSHR-related ERK activation was

time-dependent with a maximal activation at 5 min and a

subsequent reduction to 42.14% of maximal levels at 10 min in

WT receptor transfected HEK293 cells after stimulation with

500 IU FSH. We found that receptors homozygous for either

variant exhibited significantly reduced ERK activation

compared to the WT receptor (Figures 2B, C). The

homozygous A462P variant receptor almost completely

abolished ERK activation at both treatment periods, whereas

homozygous A621V variant receptors carried 45.79% and

33.21% of maximal ERK activation at 5 and 10 min,

respectively. When both A462P and A621V variants were

expressed together to mimic the compound heterozygous

state of the patient, the magnitude of ERK activation in

response to 5 and 10 min of FSH stimulation was severely

impaired compared with the WT FSHR (Figures 2B, C).
Cell surface expression of the A462P
variant was significantly impaired

Examination of the cell surface expression of p.A462P and

p.A621V was conducted by transfection of HEK293 cells with

these variants fused with EGFP. As shown in Figures 2D, E, the

p.A621V variant and WT receptor exhibited comparable cell

surface expression levels, but the p.A462P variant lost 50% of cell

surface expression and was trapped intracellularly, suggesting
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that the nearly total loss of function in this variant might be due

to reduced membrane receptor expression.
Discussion

In this study, we investigated a case of primary infertility in a

woman previously diagnosed with ovarian dysfunction who in fact

had POI with ROS; we identified two novel missense variants in the

FSHR gene, c.1384G>C/p.Ala462Pro and c.1862C>T/p.Ala621Val,

inherited from her father and mother, respectively. These two

variants were predicted to be disease causing by bioinformatics

analysis. In vitro functional studies confirmed that these two

variants are both pathogenic inactivating variants

FSHR variants are functionally distinct with respect to their

ligand binding, membrane expression, cAMP production, and

other intracellular signaling characteristics (17, 52). The

complexity of these variants is further amplified by the fact that

causative variant of POI can be either homozygous or compound

heterozygous (19, 21, 30, 53, 54). As a consequence, in a single

FSHR gene, genetic alteration can result in various clinical

manifestations, leading to the broad phenotypic spectrum of

conditions arising from these variants. Thus, correlation of novel

FSHR variants with a new case of POI characterized by

endogenous HH, normal ovarian reserve, and hypo-

responsiveness to hyper-physiological exogenous GN stimulation

testifies to the phenotypic and etiological complexity of POI.

Patients with partially inactivating FSHR variants have

displayed a range of clinical manifestations such as primary

amenorrhea, secondary amenorrhea, and oligomenorrhea,

which is in contrast to completely inactivating FSHR variants

that cause fully absence of sexual development (55). The patient

in our study displayed normal puberty and secondary sex

characteristics, and presented with secondary amenorrhea and

normal-sized bilateral ovaries, in which developing follicles were

detected by ultrasonography. This phenotype is notably differed

from patients with severe variants (19, 36, 56). The term ROS

has been used to describe this special form of POI, which is

caused by FSH resistance rather than follicular depletion (21, 22,

26, 27, 33, 54). Although most ROS patients presented with

developing antral follicles (2-8 mm) on ultrasonography and

follicular arrest at the early antral stage on ovarian biopsies,

further maturation of follicle is usually blocked in these patients

(21, 22, 24–27). The patient’s follicles seemed incapable of

proceeding through the later stages of follicular maturation,

but likely produced adequate sex hormones at puberty to drive

development of comparable secondary sex characteristics which

accords with other studies with less severe variants (21, 22, 26,

27). The above surmise was supported by the normal AMH level

detected in our case, which is consistent with previous studies
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that ROS patients have age-matched AMH values while patients

with common POI have low or undetectable levels of AMH (25–

27, 31, 54). These observations suggest that POI caused by

inactivating FSHR variants could have wide-range effects on

clinical manifestations, with disturbance severity likely varying

with the severity of inactivation and the resultant stage of

follicular block.

The FSHR protein is encoded by the FSHR gene positioned

at chromosome 2p21 (57). The two variants herein are both

positioned at exon 10, which is the largest exon, mainly

responsible for encoding the non-ECD domains. The p.A462P

and p.A621V variants are positioned at the TMH3 and TMH7 of

the receptor, respectively, where no mutation had formerly been

observed in patients. Our in vitro functional study demonstrated

that the p.A462P variant causes the intracellular retention of the

receptor, leading to impaired FSHR cell membrane expression.

Several previous studies have reported the association of lower

membrane expression of FSHR variants with impaired

intracellular signaling of the receptor (19, 21, 22, 25, 29, 31,

54, 56). In our study, the lower membrane expression of the

p.A462P variant was linked with an approximately 96%

reduction in the maximal response elicited by the FSH.

However, FSHR cell surface localization was not affected by

the p.A621V variant, but its intracellular signaling was

significantly impaired. Consistent with these results, three

previously identified inactivating variants of FSHR showing

intact cell surface expression displayed a dramatic reduction in

cAMP signaling (21, 22, 27). Partially functional impaired FSHR

caused by variants affects the further development of follicular

growth (21, 28, 31, 55), indicating that the partial functional

impairment of FSHR mediated by these two novel variants

might explain the follicles advanced to the small antral phase

and normal AMH levels found in this patient.

Even after receiving a maximal daily FSH dose (375 IU), the

patient’s ovaries still remained unresponsive, which was

consistent with several previous studies where partial or

complete inactivating FSHR variants could not respond to

intense and continual FSH stimulation (21, 22, 27, 28, 34, 36,

54, 58). It is worth noting that only one study has reported

successful FSH treatment for ovarian stimulation in patient with

ROS (24). The patient with successful treatment carried one

heterozygous variant and two heterozygous SNPs. These clinical

findings demonstrate that the differences in the ovarian

responses to FSH stimulation noted between the successful

and failed cases likely depend on the FSHR genotype. Patients

who failed to react to follicular stimulation following an in vitro

fertilization cycle could consider in vitro maturation (IVM) of

the oocytes isolated from the blocked follicles. Successful IVM of

oocytes was found in a primary infertility patient who carried

compound heterozygous FSHR variants and had no response to

FSH stimulation (54). Recently, Benammar et al. also reported a

successful case of IVM live birth in a woman with primary
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infertility and ovarian resistance to FSH cause by compound

heterozygous FSHR variants (58).

The lack of ovarian response to excessive FSH stimulation

seems contradictory with the residual intracellular signaling

observed in vitro. However, although in vitro functional data

can be used as reference for in vivo scenarios, the selection of

functional assay model may affect in vitro FSHR functionality

(28). Moreover, receptor expression levels resulting from in vitro

overexpression are far higher than in in vivo physiological

environments, indicating that the real intracellular signaling of

these variants in response to FSH stimulation would be probably

poor in vivo. This observation suggests that in the presence of

adequate FSH stimulation, partially functional but impaired

FSHR might be critical for follicular growth.

In conclusion, we uncovered two novel FSHR variants,

c.1384G>C/p.A462P and c.1862C>T/p.A621V, in a primary

infertility patient affected by POI with ROS. To the best of our

knowledge, these variants represent the first pathogenic

inactivating variants found in the third and seventh TMH of

FSHR. This study offers novel insights into the molecular basis of

POI, expands the current knowledge of genotype–phenotype

correlations and genetic variant spectrum of POI, and promotes

the clinical diagnosis of patients with POI.
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The effects of three different low-
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Daniela Espı́ndola Antunes5, Luciana Barbosa Carneiro6,
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Objective: To compare the effects of different aerobic training protocols on

cardiometabolic variables in patients with type 2 diabetes mellitus (T2DM).

Methods: This study was a parallel clinical trial. Fifty-two men and women with

T2DM (>40 years) were randomly allocated into three groups, and 44 (22 males/22

females) were included in the final analysis. Exercise intensity was based on the

speed corresponding to themaximum oxygen consumption (v _VO2max). Moderate

intensity continuous training (MICT) involved 14 minutes at 70% of v _VO2max; short

interval high-intensity interval training (S-HIIT) consisted of 20 bouts of 30 seconds

at 100% of V̇O2max with 30 seconds passive recovery; long interval high-intensity

training (L-HIIT) consisted of 5 bouts of 2 minutes at 100% of v _VO2max with 2

minutes passive recovery. Training protocols were performed on a motorized

treadmill two times per week for eight weeks. Glycated hemoglobin (Hb1Ac), total

cholesterol, triglycerides, resting systolic blood pressure (SBP), resting diastolic

blood pressure (DBP), resting heart rate (resting HR) and maximum oxygen

consumption (V Ȯ2max) were measured before and after the exercise

intervention. The study was registered on the Brazilian clinical trial records (ID:

RBR45 4RJGC3).

Results: There was a significant difference between groups for changes on _V

O2max. Greater increases on _VO2max were achieved for L-HIIT (p = 0.04) and S-

HIIT (p = 0.01) in comparison to MICT group, with no significant difference

between L-HIIT and S-HIIT (p = 0.9). Regarding comparison within groups, there

were significant reductions on HbA1c and triglycerides levels only for L-HIIT (p<

0.05). _VO2max significantly increased for both L-HIIT (MD = 3.2 ± 1.7 ml/kg/min,

p< 0.001) and S-HIIT (MD = 3.4 ± 1.7, p< 0.001). There was a significant reduction

on resting SBP for L-HIIT group (MD = -12.07 ± 15.3 mmHg, p< 0.01), but not for S-
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HIIT and MICT. There were no significant changes from pre- to post-training on

fasting glycemia, total cholesterol, HDL, LDL, resting HR and resting DBP for any

group (p > 0.05).

Conclusion: Low-volume HIIT promoted greater improvements in

cardiorespiratory capacity in comparison with low-volume MICT, independent

of the protocols used. There were no other differences between groups. All

protocols improved at least one of the variables analyzed; however, the most

evident benefits were after the high-intensity protocols, especially L-HIIT.
KEYWORDS

diabetes mellitus, high-intensity interval training (HIIT), aerobic exercise (AE), glucose
control, exercise is medicine
1 Introduction

Type 2 diabetes mellitus (T2DM) is one of the leading causes of

disability worldwide (1). T2DM is associated with increased mortality

and reduced quality of life and might have serious complications, such as

retinopathy, cardiovascular diseases and limb amputations (2).

Therapeutic recommendations for T2DM aim to control glycemia,

lipidemia, blood pressure (BP), body mass and promote lifestyle

changes, such as increase physical activity levels (3). In this sense,

aerobic training is considered an effective strategy for T2DM

prevention and treatment (4, 5). Traditionally, performing at least 150

min/week of moderate (MICT) to vigorous intensity continuous training

distributed at a minimum of three non-consecutive day during the week

has been recommended to manage T2DM (6). However, there is

evidence that high-intensity interval training (HIIT) might provide

superior benefits on a variety of cardiometabolic risk factors in

comparison to MICT (7, 8), leading physical activity guidelines to

suggested the use of HIIT for managing T2DM (9).

HIIT is a type of aerobic training that consists of performing high

intensity exercise bouts alternated with passive or active recovery

periods (10). There are many different types HIIT, which might result

in different physiological and perceptual responses (10–12). Among

them, we can highlight the protocols involving shorter intervals (S-

HIIT) and longer intervals (L-HIIT) (13).

Kilpatrick et al., (14) compared three work-matched HIIT protocols

performed at the same intensity, but with different interval durations (120

s vs. 60 s vs. 30 s) in healthy young people. According to the results,

longer intervals were associated with greater cardiovascular stress and

higher discomfort (14). Similarly, Naves et al., (11) and Silva et al., (15)

found that L-HIIT promoted greater cardiovascular stress in comparison

with S-HIIT in healthy young men, and women with metabolic

syndrome, respectively. Interestingly, most studies involving HIIT in

T2DM used long intervals (≥2 minutes), which could be potentially

dangerous due to the greater cardiovascular stress, especially if we

consider that most T2DM patients have increased cardiovascular risks

(16). However, while L-HIIT protocols may lead to increased

cardiovascular stress, it also results in higher work performed, higher

oxygen consumption and higher heart rate (HR), which can make them

more efficient for promoting cardiometabolic adaptations (7, 17, 18).
0235
In this context, it is important to determine whether the use of

different HIIT protocols could affect cardiometabolic adaptations in

T2DM in order to allow an adequate cost benefit analysis. Therefore,

the aim of the present study was to investigate the effects of three

different types of aerobic training protocols on cardiometabolic

parameters in people with T2DM.
2 Material and methods

2.1 Study design

This study is a parallel randomized clinical trial that involved

individuals with T2DM of both sex that performed different aerobic

training protocols, two times per week for eight weeks. The study was

performed at the Hospital of the Federal University of Goias (Goiania,

Brazil), approved by the relevant Human Research Ethics Committee

(Protocol No. 2,667,732, CAAE No. 54522016.6.0000.5083) and

registered on the Brazilian clinical trial records (ID: RBR-4RJGC3).

All participants gave written informed consent in accordance with the

Declaration of Helsinki. Participants were assigned by randomization

to one of three groups using a specialized website (www.random.org):

L-HIIT, S-HIIT, or MICT.

Before and after the training period, participants were evaluated for

anthropometric measures, resting BP, cardiopulmonary exercise test and

bloodmarkers. Anthropometric measures included weight and height for

calculating body mass index (BMI), as well as waist and hip

circumference. Weight was measured using a digital scale (BC 553,

Tanita®, USA), and height was measured using a portable stadiometer

(Personal Caprice Portatil, Sanny®, Brazil). BMI was calculated using the

following formula [BMI = weight (kg)/height (m)²]. BP and HR were

measured at sitting position after 10 minutes of rest according with

Seventh Brazilian Arterial Hypertension Guideline using oscilometric

method (Omron HEM-705) (19). Complementary results of the current

experiment have been published previously (20).

All experimental procedures were carried out in the morning, with

relative humidity between 40 and 60%, and temperature between 22 and

24°C, according to American College of Sports Medicine guidelines

(ACSM) (21). Participants received orientation to not drink or eat
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products containing alcohol or caffeine 24 hours before and on the day of

the tests, to not perform physical exercises or strenuous activities on the

day before exercise, to have a light meal at least 2 hours before the tests, to

wear clothes suitable for physical activity practice and to keep their usual

diets habits during the intervention period.
2.2 Participants

Sixty participants with T2DM were recruited from 3rd Diabetes

Task Force promoted by the Eye Bank Foundation of Goiás. To be

included in the study, participants had to be 40 years old or more,

diagnosed with T2DM, have a fasting glycemia above 126 mg/dL and/

or glycated hemoglobin greater than 6.4%, and to not participate in

other physical training program. Patients were excluded if they were

active smokers or had myocardial revascularization, arrhythmias and

frequent extrasystoles at rest or during physical exertion, unstable

angina, obstructive pulmonary disease, neoplasm, renal or liver

failure, orthopedic limitations, and uncontrolled hypothyroidism

and cardiovascular diseases at moderate and high risk (classes C

and D), according to the criteria American Heart Association (22). To

be included in the final analyses, participants had to perform more

than 85% of all training sessions.

After cardiopulmonary exercise tests, eight patients were

excluded, including three with an exercise capacity<6 METS, two
Frontiers in Endocrinology 0336
with uncontrolled arrhythmias during physical exertion, one with

unstable angina, and two with a reduction in SBP during exercise to

lower levels than resting SBP. Two patients were excluded from the

final analyses because they presented irregular data for determined

variables. The enrolment process until participant’s inclusion in final

analyses is describe in Figure 1.

The was no a priori definition of sample size. However, the total

number of 60 participants was considered adequate because it provided a

power > 0.9 to detect an effect size of 0.5 (G*Power 3.1, Germany).
2.3 Medication record

Medication use was self-reported according to Table 1 and there

was no change in the medications of the patients during the

intervention period.
2.4 Biochemical analyses

At the first visit to the laboratory, 4 mL of whole blood was

collected by the vacuum method into EDTA tubes (Plastilab, Brazil)

from the antecubital vein after approximately 12 h overnight fasting.

Homogenized whole blood was used for preparation and processing

of samples.
FIGURE 1

Study flow according to CONSORT recommendations. MICT, moderate intensity continuous training; HIIT, high-intensity interval training; SBP, systolic
blood pressure.
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The following analyzes were performed for glucose metabolism:

fasting glucose by enzymatic method using commercial kits (Labtest,

Brazil), fasting insulin by chemiluminescence and HbA1c by

immunoassay. This method is certified by the National

Glycohemoglobin Standardization Program (23).

Lipid profile analysis involved total cholesterol by enzymatic

system (reaction of the endpoint), HDL by System for direct

homogeneous determination of HDL cholesterol in serum, and

triglycerides by enzymatic system, by end point reaction, all using

commercial kits (Labtest, Brazil).
2.5 Cardiopulmonary exercise test (CPET)

CPET involved an incremental ramp type protocol performed on

a treadmill (Micromed®, Centurion 200, Brası́ lia, Brazil) coupled to a

computer. The test started with a two-minute warm-up with no

inclination and speed correspondent to 50% of the initial values

predicted for age and sex. Every 15 seconds of warm-up, speed

increased by 0.5 km/h.

After warm-up, treadmill speed was set according to age and

gender, following the recommendations of the Brazilian Society of

Cardiology. The speed was then increased by 0.1 km/h every 10, 20 or

30 seconds until voluntary exhaustion, and participants were verbally

encouraged to give their maximum effort. The test lasted between 8 to

12 minutes and ended when participants met the criteria for test

interruption according to ACSM guideline (21).

Volunteers were instructed to wear comfortable clothes and avoid

vigorous physical exercise (24 hours before the test), alcohol

consumption (12 hours before the test) and caffeine (3 hours before

the test). CPET was performed in the morning, to avoid the influence

of the circadian rhythm. Ambient temperature (22°C - 24°C), relative

humidity (40% - 60%) and lighting were controlled according to the

preliminary conditions (23). Gas analysis was performed using a

Cortex® analyzer (Metalyser II, Rome, Italy). Equipment calibration

was performed for barometric pressure, ambient gas, gas mixture,

flow and volume, as per the manufacturer’s recommendations.
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HR, BP, rating of perceived exertion (RPE) and ventilatory

parameters (peak, carbon dioxide production, respiratory oxygen

equivalent, respiratory equivalent of the ventilatory threshold) were

monitored and registered during the test. RPE was evaluated

according to the Borg 0-10 (27). The instrument presents numerical

classification from “0” to “10”, indicating low and maximum intensity

effort, respectively. The values indicated by the volunteers were

recorded at the end of each minute of the test (5th to 16th minute).

Heart rate (HR) was measured by a cardiac monitor (Polar v800,

Finland) during the test and up to 10 minutes of rest after its end, with

the volunteer in the sitting position. Cardiac monitor was fixed in the

chest and with simultaneous transmission to a watch. Data were later

transferred and recorded in a specific software (Polar Flow, Finland)

for proper analysis.
2.6 Exercise protocols

The protocols were customized with individualized monitored of

HR, BP and v _VO2max achieved in the (CPET). Their respective

exercise intensities were adapted from previous studies (11, 15), and

were matched by the product (time * % v _VO2max).

Exercise session started with a 2 min warm-up and ended with a 2

min cooldown at 50% of v _VO2max. MICT consisted of continuous

walking/running at 70% of v _VO2max for 14 minutes. L-HIIT

consisted of 5 bouts of 2 minutes walking/running at 100% of v _V

O2max interspersed by a passive recovery of 2 minutes. S-HIIT

consisted of 20 bouts of 30 seconds walking/running at 100% of v
_VO2max interspersed by a passive recovery for 30 seconds. All

protocols were performed on a motorized treadmill (Micromed®,

Centurion 200, Brası́ lia, Brazil).
Exercise intensity was adjusted using perceived of exertion as

previously suggested (24, 25).
2.7 Statistical analyses

Data normality and homogeneity were tested using the Shapiro-

Wilk and Levene test, respectively. Post-training values were

compared between groups using analysis of covariance (ANCOVA)

with pre-training values as covariates. When a significant effect was

identified, Bonferroni’s post hoc was used to identify were differences

occurred. Paired T-test was used to compare within groups

differences for HbA1c, fasting glycemia, total cholesterol,

triglycerides, HDL, LDL, resting SBP, resting DBP, resting HR and
_VO2max using pre- and post-training values.

All analyses were performed using SPSS statistical package

(Statistical Package for Social Sciences Chicago, IL, USA) version

20.0 for Windows. Results are expressed as mean and standard

deviation, and the accepted level of significance was (p< 0.05).
3 Results

The characteristics of participants are described in Table 2.

There were significant difference between groups for changes on
_VO2max, with greater increases on _VO2max for L-HIIT (p = 0.04)
TABLE 1 Class of medicines used by patients.

Medication Long HIIT
(n =15)

Short HIIT
(n =15)

MICT
(n =14)

Biguanides 11 12 10

Sulfonylureas 1 – 3

SGLT2 inhibitors 2 – 1

DPP-4 inhibitors 1 1 1

GLP-1 analogue – 1 2

Pioglitazones – 1 1

Insulin 8 7 5

Anti-Hypertensive 15 15 14

Anticholesterolemic 13 12 11
HIIT, high-intensity interval training; MICT, moderate intensity continuous training; SGLT2,
Sodium glucose cotransporter 2; DPP-4, Dipeptidyl peptidase-4; GLP-1, Glucagon-like peptide-1.
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and S-HIIT (p = 0.01) in comparison with MICT group. There was no

significant difference between L-HIIT and S-HIIT (p = 0.9). Pre- and

post-training values and comparisons between and within groups are

presented in Table 3.

In comparison with pre-training values, there was a significant

reduction on HbA1c levels for L-HIIT (mean difference [MD] = -1.8

± 1.8%, p< 0.01), while no significant change was achieved for S-HIIT

(MD = -0.92 ± 2.0%, p = 0.09) and MICT (MD = -0.59 ± 1.7%, p =

0.2). Triglycerides levels significantly reduced after L-HIIT (MD =

-23.80 ± 39.6 mg/dL, p = 0.04), with no changes for S-HIIT (MD =

-23.19 ± 49.0 mg/dL, p = 0.09) and MICT (MD = 5.36 ± 31.9 mg/dL, p

= 0.5). There were no significant changes from pre- to post-training

on fasting glycemia, total cholesterol, HDL, and LDL (p > 0.05).

There was a significant reduction on resting SBP for L-HIIT

group (MD = -12.07 ± 15.3 mmHg, p< 0.01), but not for S-HIIT (MD

= -7.33 ± 17.1 mmHg, p = 0.1) and MICT (MD = 4.43 ± 13.1 mmHg,

p = 0.2). _VO2max significantly increased for both L-HIIT (MD = 3.2

± 1.7 ml/kg/min, p< 0.001) and S-HIIT (MD = 3.4 ± 1.7, p< 0.001),

but not for MICT (MD = 0.86 ± 3.8, p = 0.4). There were no

significant changes from pre- to post-training for resting HR and

resting DBP for any group (p > 0.05).
4 Discussion

The present study investigated the effects of three aerobic training

protocols (L- HIIT, S-HIIT, and MICT) on cardiometabolic

parameters of patients with T2DM. The recommendation of a

minimum of 150 min per week of moderate intensity physical

activities for blood glucose control and cardiovascular health is still

predominant (26). However, our study demonstrated that the

performance of 20 min high intensity exercise per week was

sufficient to improve cardiorespiratory and metabolic fitness in

patients with T2DM. These findings are particularly important

since time-efficient exercise strategies emerge as promising

alternatives to improve exercise adherence. Moreover, this is one of

the first studies to compare HIIT protocols involving different interval

lengths on metabolic parameters in T2DM patients. The present

study found a significant reduction in HbA1c with large effect after L-

HIIT, corroborating the idea that exercise intensity can play an

important role in managing T2DM (27). Moreover, the use of HIIT

protocols involving longer intervals might be preferred for blood

glucose control in this population. These improvements in Hb1Ac

can be explained by the increase in GLUT4 protein due to a higher
Frontiers in Endocrinology 0538
concentration of calcium led by increased exercise intensity, resulting

in protein translocation to the cell membrane and increasing glucose

uptake by muscle cells (28–30). L-HIIT might also have led to a higher

glycogen depletion, which is associated with improved glucose uptake

(31, 32). A previous study demonstrated that PGC-1a increase

(important protein for metabolic gene activation necessary for the

use of substrate and mitochondrial biogenesis) occurs after HIIT, but

not after MICT (33).

Previous studies have shown 15 to 20% reductions in

cardiovascular events when HbA1c is reduced by 1% (34, 35). In

addition, this reduction on HbA1c for L-HIIT group observed after 8

weeks of training is apparently higher than the observed after long-

term (> 12 weeks) hypoglycemic drug treatment and insulin use

(ranging from 0.6-0.8%) (45). In agreement with the current study,

Winding et al., (36) found greater reductions on Hb1Ac after 11

weeks of HIIT (i.e., 10 bouts of 1 minute at 95% of peak workload

interspersed by 1 minute of active rest) when compared to endurance

training in individuals with T2DM. Moreover, HIIT has been shown

to promote a rapid increase in skeletal muscle oxidative capacity,

insulin sensitivity and glycemic control in adults with T2DM (7, 37,

38). When compared to MICT, HIIT programs have promoted

greater improvements in HbA1c, fasting glycemia and other risk

factors for T2DM (34, 35).

Although no significant difference was found for lipid profile

between groups, there was a trend to decrease triglycerides and a large

effect was found between pre and post intervention for both HIIT

protocols [L-HIIT [-0.57 (wide)]; S-HIIT [-0.53 (wide)]. It is

important to acknowledge that improvements in triglyceride and

HDL levels are important due to the associations between

dyslipidemia and cardiovascular diseases (39). The effects of HIIT

on lipid profile in patients with T2DM have been inconsistent in the

literature. There are studies showing improvements only in LDL

cholesterol (40), only in HDL (41), or absence of alteration (42). The

same studies also showed no effect of HIIT on triglycerides in patients

with T2DM (40–42).

L-HIIT showed a greater reduction in resting SBP when

compared to MICT (p = 0.018; d = 1.56 [large effect]). Although

several studies have shown BP reductions through exercises (43), the

reduction only in L-HIIT can be explained by the difference in

baseline values (MICT 125 [25]mm/Hg; L-HIIT 147 [45]mm/Hg; S-

HIIT 135 [20]mm/Hg), since greater reductions are seen in people

with higher BP levels (44). Although there seems to be an agreement

on the effectiveness of exercise to reduce BP (45), the effectiveness of

aerobic exercise to reduce systolic and diastolic arterial pressure in

patients with T2DM is still debated, with previous studies showing

contradictory results (6, 46). Previous studies showed reductions in

SBP after HIIT (~ 13 mmHg) (41) compatible with our results,

revealing a potential for HIIT for controlling cardiovascular risks

(47). _VO2max increases after HIIT is in accordance with the results of

previous studies (48–50). Between group comparisons showed that

the increases in _VO2max were larger in the L-HIIT and S-HIIT than

MICT. This is in accordance with the suggestion that HIIT are more

beneficial for the cardiorespiratory system. The absence of an increase
_VO2max in the MICT was unexpected but could be associated with

the changes in HbA1c since there are studies showing an association

between _VO2max increase and in HbA1c reduction (R = −0.52,

p<0.01). According to these findings, approximately 25% of the
TABLE 2 Characteristics of participants.

MICT
(n = 9M;5F)

L-HIIT
(n = 6M;9F)

S-HIIT
(n = 7M;8F)

p-value

Age (years) 54.6 ± 8.9 57.3 ± 8.9 55.7 ± 7.4 0.69

Weight (kg) 80.7 ± 14.5 76.3 ± 16.9 79.5 ± 11.0 0.69

Height (cm) 165.4 ± 11.0 163.1 ± 8.3 165.5 ± 6.7 0.68

BMI 29.4 ± 4.9 28.5 ± 4.9 28.9 ± 3.6 0.85
BMI, body mass index; training; S-HIIT, short high-intensity interval training; L-HIIT, long
high-intensity interval training; MICT, moderate intensity continuous; M, Male; F, Female. Data
presented as mean ± standard deviation.
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TABLE 3 Comparison between and within groups for dependent variables.

Variables Pre Post Mean difference p-value within groups p-value between groups

mean ± SD mean ± SD

HbA1c (%)

MICT (n=14) 8.5 ± 2.4 7.9 ± 1.2 -0.59 ± 1.7 0.21 0.28

L-HIIT (n=15) 9.9 ± 2.8 8.1 ± 2.1 -1.80 ± 1.8 <0.01

S-HIIT (n=15) 9.6 ± 1.9 8.7 ± 1.6 -0.92 ± 2.0 0.09

Fasting glycemia (mg/dL)

MICT 129.8 ± 57.1 126.7 ± 54.6 -3.07 ± 28.0 0.69 0.10

L-HIIT 145.5 ± 66.0 140.1 ± 69.0 -5.33 ± 36.3 0.58

S-HIIT 142.7 ± 63.0 136.9 ± 57.9 -5.83 ± 29.6 0.46

Triglycerides (mg/dL)

MICT 159.6 ± 33.2 164.9 ± 40.3 5.36 ± 31.9 0.54 0.06

L-HIIT 164.9 ± 84.1 141.1 ± 48.1 -23.80 ± 39.6 0.04

S-HIIT 185.5 ± 75.9 162.3 ± 58.3 -23.19 ± 49.0 0.09

Total cholesterol (mg/dL)

MICT 172.9 ± 44.7 75.1 ± 36.2 2.21 ± 43.7 0.85 0.94

L-HIIT 199.5 ± 65.2 190.9 ± 53.6 -8.60 ± 46.7 0.49

S-HIIT 188.3 ± 38.6 180.2 ± 42.5 -8.05 ± 32.1 0.35

HDL (mg/dL)

MICT 44.4 ± 8.9 43.5 ± 9.2 -4.45 ± 1.2 0.49 0.16

L-HIIT 43.1 ± 10.1 47.1 ± 13.3 3.93 ± 8.9 0.11

S-HIIT 46.4 ± 8.0 45.9 ± 7.5 -0.62 ± 6.8 0.72

LDL (mg/dL)

MICT 98.3 ± 40.7 98.6 ± 32.1 0.29 ± 38.9 0.98 0.27

L-HIIT 107.7 ± 43.4 113.9 ± 34.2 6.21 ± 23.2 0.32

S-HIIT 116.7 ± 38.1 104.3 ± 35.1 -12.39 ± 27.0 0.10

Resting SBP (mmHg)

MICT 126.1 ± 19.8 130.5 ± 13.4 4.43 ± 13.1 0.23 0.27

L-HIIT 145.5 ± 25.5 133.5 ± 17.6 -12.07 ± 15.3 <0.01

S-HIIT 138.6 ± 15.8 131.3 ± 17.6 -7.33 ± 17.1 0.12

Resting PAD (mmHg)

MICT 82.6 ± 7.0 86.3 ± 6.2 3.64 ± 7.6 0.10 0.21

L-HIIT 86.6 ± 10.1 84.3 ± 6.0 -2.33 ± 9.7 0.37

S-HIIT 84.3 ± 9.7 87.7 ± 10.2 3.33 ± 8.6 0.16

Resting HR (bpm)

MICT 75.9 ± 11.3 68.2 ± 9.5 -7.71 ± 10.9 0.02 0.07

L-HIIT 77.5 ± 10.3 75.1 ± 8.5 -2.40 ± 6.7 0.19

S-HIIT 71.7 ± 12.0 72.3 ± 15.0 0.6 ± 0.1 0.80

_VO2max (ml/kg/min)

MICT 22.6 ± 8.9 23.4 ± 10.7 0.86 ± 3.8 0.41 0.01*,#

(Continued)
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reductions in HbA1c may be related to the increase in _VO2max (51).
_VO2max is an objective and independent indicator of cardiovascular

risk and considered the most important physical conditioning

variable (52, 53). Cardiorespiratory fitness is inversely associated

with all-cause mortality and an increase of 1-2 METs (MET =

3.5ml O2/Kg/min) reduces 10% to 30% the risk of cardiovascular

events (54). Although evidence for an optimal exercise intensity is still

uncertain, it has been suggested that only exercise with intensity close

to _VO2max allows the recruitment of large motor units (i.e., type II

muscle fibers) (55, 56) and induces high cardiac output, which might

be important for long term VO2max improvements (57).

One important limitation of the present study is the absence of

dietary control. However, participants were oriented to not change

their diet. We believe that these limitations do not prevent the

conclusions of the study from being elaborated. In addition, due the

lack of control group, it was not possible to know whether changes

observed for exercising groups were different when compared to non-

exercise conditions.
5 Conclusion

Low-volume HIIT promoted greater improvements in

cardiorespiratory capacity in comparison with low-volume MICT,

independent of the protocols used. There were no other difference

between groups. All protocols improved at least one of the variables

analyzed; however, the most evident benefits were after the

high-intensity protocols, especially L-HIIT. Therefore, it will be up

to the professional to analyze their patients individually to propose

the best intervention for each case, within an appropriate cost-

benefit perspective.
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Low glomerular number at birth
can lead to the development of
chronic kidney disease

Shohei Fukunaga1* and Yuki Fujita2*

1Division of Nephrology, Shimane University Hospital, Izumo, Shimane, Japan, 2Department of
Developmental Biology, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
Chronic kidney disease (CKD) prevalence is increasing worldwide, and reducing

the number of patients with CKD is of utmost importance. The environment during

the fetal, perinatal, and early childhood stages may influence CKD development

(developmental origins of health and disease). Under conditions of maternal

malnutrition, the glomerular number of infants reduces, and the risk of

developing CKD may increase. Nephron progenitor cells and ureteric buds

interact with each other to form glomeruli at the tip of the ureteric bud. Thus,

the number of glomeruli is determined by the number of ureteric bud branches,

which are reportedly decreased due to maternal malnutrition, in turn reducing the

glomerular number. Four possible mechanisms can explain the low glomerular

number resulting from maternal malnutrition: 1) suppression of c-Ret expression,

2) suppression of nephron formation by renin-angiotensin-aldosterone system

inhibition, 3) exposure to excess glucocorticoids, and 4) promotion of apoptosis.

Additionally, nephron formation does not continue after birth in humans.

Therefore, a low glomerular number at birth is a lifelong burden on the

glomeruli and increases the risk of developing CKD. Therefore, it is important to

maintain the glomerular number at birth. Accurate glomerular counts are essential

for conducting studies on the glomerular number. The dissector/fractionator

method is the gold standard; however, it can only be performed at some

institutions. Recently, methods have been developed to measure the glomerular

number by combining computed tomography and pathological examination and

measure the glomerular count using magnetic resonance imaging. Models of

decreased and increased glomerular numbers have been developed. Moreover,

research regarding the causes of decreased glomerular number and its relationship

with development of lifestyle-related diseases and renal dysfunction has

significantly progressed, furthering our understanding of the importance of

glomerular number.

KEYWORDS

glomerular number, chronic kidney disease, maternal malnutrition, low birth weight,
nephron development
Abbreviations: AngII, Angiotensin II; AT2R, AngII type 2 receptor; BOR, Branchio-oto-renal; CAKUT,

causative genes for congenital anomalies of the kidney and urinary tract; CHD7, Chromodomain Helicase DNA

Binding Protein 7; CKD, chronic kidney disease; CT, computed tomography; Eya1, Eyes absent homolog 1;

GDNF, Glial-cell-line-derived neurotrophic factor; Gfra1, GDNF family receptor a1; Hox11, Hombox gene 11;

Pax2, Paired box gene; RAAS, renin angiotensin aldosterone system; Ret, ret proto-oncogene; Sall, sal-like;

SEMA3E, Semaphorin-3E; Six, Sine oculis-related homeobox; MRI, magnetic resonance imaging.
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1 Introduction

Chronic kidney disease (CKD) is becoming more prevalent

worldwide; a prevalence rate of 9.1% was reported in 2017, with an

increase of 29.3% since 1990 (1). In addition, approximately 2.6

million patients received renal replacement therapy in 2010, with 5.4

million expected to require it by 2030 (2). To prevent this, CKD onset

and progression must be controlled. Furthermore, low-birth-weight

infants have low glomerular numbers (3, 4) and are at a higher risk of

developing CKD (5), indicating a link between the glomerular

number and CKD development risk. This review focuses on the

relationship between the glomerular number and renal function,

causes of glomerular number decline, and interventions currently

under investigation for glomerular number maintenance.
2 Development of glomerulus

The nephrons of the kidney originate from the branching of the

ureteric bud, which interacts with the nephron progenitor cells that

epithelialize to form the proximal tubules. Then, capillaries are

induced to form glomeruli at the ends of branched tubular buds;

therefore, the glomerular number is determined by the number of

ureteric bud branches. In rats, the formation of nephrons begins on

embryonic day (E) 12 and continues for 8–11 postnatal days (6). In

mice, it begins on E 11 and continues for 7 postnatal days (7).

Nephrogenesis is ongoing at birth in rodents. In humans, nephrons

form between 9 and 34–36 weeks of gestation, and glomerulogenesis

ceases at birth. However, in preterm infants, nephrons continue to

form until 40 postnatal days (8), after which the number of glomeruli

does not increase. Therefore, if the number is low at birth, the

glomeruli will be overtaxed throughout life.
3 Relationship between glomerular
number and renal function

Brenner et al., in their study in 1989, proposed that “essential

hypertension is caused by a decrease in the number of glomeruli and

nephrons, which results from an undesirable prenatal intrauterine

environment (maternal malnutrition, stress, and chemical exposure),

genetic factors, and premature birth. Low glomerular number leads to

renal glomerular hypertrophy, and eventually to hypertension, CKD,

nephrosclerosis, and renal failure” (Brenner’s hypothesis) (Figure 1)

(9). Histological comparison of the glomerular number in autopsied

men who died in a traffic accident in Germany showed a decrease in

glomerular number in the hypertension group, thus supporting

Brenner’s theory (10). Birth weight is a determinant of glomerular

number, and a reduction in glomerular number because of low birth

weight may be a risk factor for hypertension and end-stage renal

failure in adulthood (11). A study of 2.18 million people born in

Norway, who were observed for an average of 21 years, conducted

between 1967 and 2004, reported that 526 developed end-stage renal

failure with low birth weight and intrauterine fetal growth retardation

as risk factors (12). Furthermore, a birth weight <2.5 kg is associated

with a higher risk of end-stage renal failure than a weight of 3–3.5 kg

(13), and patients with CKD show a higher incidence of low birth
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weight than those without CKD (14). Thus, a low glomerular number

due to low birth weight is a risk factor for end-stage renal failure, and

how high the glomerular number is maintained at birth may influence

the future renal reserve.
4 Causes of decreased glomerular
number at birth

While nephron formation does not occur after birth in term

infants, it continues until 40 days after birth in preterm infants (8),

after which the glomeruli do not increase. Thus, the total glomerular

number is expected to be lower after a preterm birth. In addition,

juxtamedullary nephrons may predominate over cortical nephrons,

are more vulnerable to ischemia, and get easily injured due to obesity,

hypertension, and diabetes (15). Thus, preterm infants may have a

low glomerular number, high proportion of juxtamedullary nephrons,

and may be more prone to lifestyle-related diseases.

The glomerular number reportedly demonstrates racial variation:

Caucasian Americans, African Americans, Aboriginals, and Japanese

have a total glomerular number of approximately 900,000 (16),

950,000 (16), 680,000 (17), and 670,000 (18), respectively (Table 1).

The glomerular number varies by sex, with a 12% lower

glomerular number in women than in men (17, 19, 20).

Furthermore, glomerular number is positively correlated with

birth weight (3, 11). For every 1.0 kg increase in birth weight, the

number of glomeruli increases by 250,000. Low-birth-weight infants

have an increased glomerular size compared with normal-birth-

weight infants. This may indicate glomerular over-filtration due to

the low glomerular number.

The glomerular number at birth is also strongly related to the

maternal nutritional status; during World War II, from 1944 to 1945,

some areas of the Netherlands suffered from extreme food shortages,

and daily caloric intake dropped to 400–800 kcal per person, which

was known as the Dutch famine. Children born to pregnant women

who experienced the Dutch famine had a 3.2-fold higher incidence of

microalbuminuria and 10% reduction in creatinine clearance during

adulthood (21). Additionally, in mice and rats, the glomerular

number has been reported to decrease with restricted protein (22,

23), caloric (24), and vitamin A (25) intake during gestation. Both

high and low salt intake decrease glomerular number (26), whereas
FIGURE 1

Brenner’s hypothesis.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1120801
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Fukunaga and Fujita 10.3389/fendo.2023.1120801
vitamin D deficiency prolongs the time taken for nephrogenesis and

delays glomerular maturation (27). Animal studies have shown that

nephron number decreases with deficiency of various nutrients.

Among these nutrients, retinoic acid (RA), in particular, majorly

influences the nephron number. In in vitro studies, the addition of RA

to the culture medium increases the glomerular number (28). In rats,

protein restriction decreases nephron number, but protein restriction

and administration of RA have been reported to improve nephron

number to levels comparable to those of controls (29). In contrast,

postnatal administration of RA to preterm baboons does not affect

nephron number (30). This may be because nephrogenesis ceases

after birth in mammals. Therefore, it is important to ensure that RA is

not deficient during gestation.

Four mechanisms have been postulated for the reduction of

glomerular number due to low nutritional exposure:

1. Suppression of c-Ret expression

Glial-cell-line-derived neurotrophic factor (GDNF), which is

secreted from the mesenchyme, acts on the Wolffian ducts to

germinate and elongate ureteric buds (31) (Figure 2). The GDNF

receptor molecule ret proto-oncogene (Ret) and its co-receptor

GDNF family receptor a1 (Gfra1) are expressed in the ureteric bud,

and GDNF secreted in the mesenchyme transmits signals to the

ureteric bud via Ret. GDNF-Ret/Gfra1 signaling is required for

ureteric bud germination and elongation. Vitamin A-dependent c-

Ret expression and nephron formation (32): Vitamin A deficiency

suppresses nephron formation, and nephrons form in a vitamin A

concentration-dependent manner in culture mediums, which is

related to the c-Ret expression (33). RA increases c-Ret gene

expression independent of the GDNF gene expression, suggesting

that RA may have a direct effect on c-Ret expression.

2. Suppression of nephron formation by renin-angiotensin-

aldosterone system inhibition

The renin angiotensin aldosterone system (RAAS) seems to be

critically important in renal organogenesis. Hombox gene 11

(Hox11)/Eyes absent homolog 1 (Eya1)/Paired box gene 2 (Pax2)
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form a complex that directly regulates GDNF expression and

promotes ureteric bud branching (34). Angiotensin II (AngII)

upregulates Pax2 gene expression via the AngII type 2 receptor

(AT2R). Additionally, AT1R and AT2R expressions are strongly

suppressed in a hypotrophic in utero environment (35). Therefore,

suppression of the renin-angiotensin-aldosterone system in a low-

nutritional environment suppresses renal glomerulogenesis.

Furthermore, it has been reported that after glomerulogenesis, if the

mother is diabetic (36) or obese (37), RAAS activation causes NF-kB
activation, which enhances podocyte apoptosis, leading to a decrease

in nephron number.
FIGURE 2

Molecular mechanisms of ureteric bud branching. AngII, Angiotensin
II; AT2R, AngII type 2 receptor; Eya1, Eyes absent homolog 1; GDNF,
Glial-cell-line-derived neurotrophic factor; Gfra1, GDNF family
receptor a1; Hox11, Hombox gene 11; Itga, Integrin subunit aplpha; Kif,
kinesin superfamily proteins; Pax2, Paired box gene; Ret, ret proto-
oncogene; Sall, sal-like; Six, Sine oculis-related homeobox.
TABLE 1 Factors affecting the number of nephrons.

Glomerular number

High Low

Race
(glomerular
number)

Caucasian Americans (900,000),
African Americans (950,000)

Aboriginals (680,000), Japanese (670,000)

Sex Men Women

Birth weight >2.5 kg (normal-birth-weight) <2.5 kg (Low-birth-weight)

Diabetes
mellitus

No Yes

Alcohol
consumption

No Yes

Smoking No Yes

Maternal
nutritional
status

No maternal malnutrition Calories, protein, salt, vitamin A or D deficiency

Hereditary
disease

No Renal coloboma syndrome, Duane-radial ray syndrome, Axenfeld-Rieger syndrome, CHARGE syndrome, Branchio-
oto-renal syndrome, Townes-Brocks syndrome, Rokitansky-Küster-Hauser syndrome
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3. Exposure to excessive glucocorticoids

When pregnant women are administered high doses of

glucocorticoids, infants show decreased birth weight, decreased renal

weight, hypertension, proteinuria, decreased sodium excretion capacity,

and increased tissue sodium content. When pregnant rats are fed a

protein-restricted diet, the placenta suppresses the release of the

enzyme 11b-hydroxysteroid dehydrogenase type 2, which deactivates

glucocorticoids. Therefore, glucocorticoid deactivation is suppressed,

and more active glucocorticoids are transferred to the fetal side. In

addition, suppression of 11b-hydroxysteroid dehydrogenase type 2

expression and increased glucocorticoid receptor expression occur in

the kidney (38). When the kidney is exposed to excess glucocorticoids,

the expression of genes associated with the renin-angiotensin-

aldosterone lineage is suppressed. In particular, AT2R-mediated Pax2

expression is suppressed, and glomerulogenesis is inhibited (39).

4. Increased apoptosis

In lownutritional states, theglomeruliundergoapoptosis anddecrease

in number. Moreover, under hypotrophic conditions, the expression of

DNA methyltransferases is suppressed. Hypomethylation results in p53

overexpression, which increases the expression of apoptotic Bax and

Caspase-3 and suppresses that of cell growth factors, including Bcl-2 and

IGF-1.Both thesephenomenaare assumed to enhance apoptosis, resulting

in glomerular apoptosis, thereby decreasing the glomerular number.

Recently, maternal and paternal effects on epigenetic mechanisms

have been reported. A chronic high-fat diet administered to father

rats caused diabetes mellitus in the next generation of female rat pups

due to pancreatic beta cell dysfunction (40). Therefore, paternal

lifestyle may affect the glomerular number of the offspring, and

further studies are warranted.

In addition to maternal malnutrition, other complications, such as

diabetes mellitus (36), alcohol consumption (41, 42), and smoking (43,

44), have also been reported to decrease the glomerular number at birth.

Hereditary disease can also cause abnormal kidney development,

resulting in low nephron number. However, the identification of the

causative gene is difficult, because kidney development is intricately

related to a large number of genes (Figure 2). The identification rate of

causative genes for congenital anomalies of the kidney and urinary tract

(CAKUT) is reported to be low, with only 6.3% of CAKUT causes

identified (45). Among the most frequently reported causative genes for

CAKUT is an abnormality in the Pax2 gene, which causes renal

coloboma syndrome. This disease is associated with renal hypoplasia

and ocular manifestation (loss of some normal ocular tissue) (46).

Diseases similar to renal coloboma syndrome include Duane-radial ray

syndrome (abnormal gene: sal-like (Sall) 4), Alagille syndrome

(abnormal genes: Jagged 1, NOTCH1), Axenfeld-Rieger syndrome
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(abnormal gene: Forkhead Box C1), and CHARGE syndrome

(abnormal genes: Chromodomain Helicase DNA Binding Protein 7

[CHD7], Semaphorin-3E [SEMA3E]). Branchio-oto-renal (BOR)

syndrome is caused by mutation in the EYA1, Sine oculis-related

homeobox (Six) 1, Sall1, and Six 5 genes (47). This disease has three

main features: gill-derived malformation, such as cervical fistula,

eustachian fistula, and external ear malformation; various types of

hearing loss; and renal and urinary tract malformations (48). In

addition, abnormalities in the Sall 1 gene cause Townes-Brocks

syndrome. The Mayer-Rokitansky-Küster-Hauser syndrome also

causes renal hypoplasia. The disease is associated with vaginal and

uterine defects. The causative gene has not been identified, but it is

thought to be caused by an abnormality in a gene essential for the

development of Müllerian and Wolffian ducts (49).

In addition, although the although the pathogenic mechanism is

unclear, the frequency of CAKUT is approximately 4.5 times higher

in children with Down syndrome than in those without it (50).

Furthermore, children with Down syndrome potentially have

mildly impaired renal function with an estimated glomerular

filtration rate of approximately 80% of that of normal children (51).

In Alport syndrome, which is caused by other type 4 collagen

abnormalities, the glomerular basement membrane is abnormal and

glomerular structure cannot be maintained, leading to end-stage renal

failure at a young age.
5 Methods to determine the
glomerular count

Accurate measurement of the glomerular count is important to

ascertain the glomerular number. Currently, five methods are used for

glomerular counting, each with their own advantages and

disadvantages (Table 2).
5.1 Acid maceration

Decapsulated kidneys are coarsely chopped and incubated in 6N

hydrochloric acid at 37°C. The kidneys are disrupted via pipetting.

Distilled water is added to the samples, which are then incubated

overnight at 4°C. The sample is placed in a culture dish with a 2-mm

grid, and the glomeruli are counted (52). This method is rapid, simple,

and inexpensive. However, structural abnormalities of the glomeruli

may make them susceptible to acid digestion, and counting errors

may make assessment inaccurate.
TABLE 2 Methods of determining the glomerular count.

Accuracy Difficulty

Acid maceration Somewhat low Easy

Number of glomeruli per unit area Low Easy

Dissector/fractionator method High Difficult

Renal biopsy + CT Somewhat high Somewhat difficult

MRI Somewhat high Somewhat difficult
CT, computed tomography; MRI, magnetic resonance imaging.
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5.2 Number of glomeruli per unit area

The number of glomeruli found in a tissue section is measured and

presented as the number of glomeruli per unit area of the section.

Although this method has been used in many studies, the number of

glomeruli per unit area does not represent the total number of glomeruli

in the kidney. The number of glomeruli observed in a tissue section is

influenced not only by the number of glomeruli in the kidney but also by

the size and shape of the glomeruli and thickness of the section. Larger

glomeruli are more likely to appear in sections than smaller glomeruli.

Therefore, the number of glomeruli per unit area alone cannot be used to

evaluate the total number of glomeruli in the kidneys.
5.3 Dissector/fractionator method

This measurement method (53, 54) uses the Cavalieri and

fractionator principles (55) and is considered the gold standard for

determining the total glomerular number. The accuracy of other

glomerular counting methods was validated via comparison with this

method. However, the equipment and technology required for

measurement, as well as the cost and time involved, limit the

number of facilities that are equipped to use this method.
5.4 Renal biopsy + computed tomography

Glomerular count estimation using a renal biopsy specimen from

a renal transplant donor and performing a contrast-enhanced CT

before donation has been attempted (56). The glomerular density of

the renal biopsy specimen was measured, and the kidney was

reconstructed three-dimensionally from contrast-enhanced CT

images to estimate the glomerular density and total renal cortical

volume. The results of this method are similar to those obtained using

the dissector/fractionator method. However, contrast-enhanced CT

and renal biopsy need to be performed.
5.5 Magnetic resonance imaging

A method was developed to measure the glomerular count by

MRI using cationic ferritin as a contrast agent. Cationized ferritin is

injected intravenously to label the glomerular basement membrane of

the kidney, and MRI imaging highlights the glomeruli in black. This

has been reported in vitro in mice and rats (57) and in vivo in rats

(58), but not in humans. An advantage of this method is that it does

not require kidney specimen preparation. In addition, in vivo

measurement may be possible; however, this method has only been

reported in rats, and its safety in humans remains unclear.

Furthermore, an MRI machine is required to perform this test.

6 Interventions to preserve nephron
number at birth

6.1 Low-nephron number model

A low-nephron numbermodel is necessary to examine the changes

that occur in an organism when the nephron number is reduced. As
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aforementioned, animal models have been created with low nephron

count due to maternal malnutrition. Another low-nephron number

model is the hypogonadism rat model with testicular and renal

hypoplasia (59). The glomerular number in this model was

approximately 80% lower than the normal number. Additionally,

poor ureteric bud growth, the presence of undifferentiated

mesenchymal cells, and cortical non-thinning was observed,

suggesting that abnormal cell proliferation results in renal hypoplasia.

Caspase-3 knockout mice also show decreased nephron numbers

(60). Caspase-3 is involved in migration, proliferation, differentiation,

and apoptosis. Caspase-3 knockout mice demonstrate suppressed

ureteric bud branching, resulting in a low glomerular number.

The two models described above are low-nephron number

models resulting from genetic abnormalities, making it difficult to

control the degree of glomerular number decline.

To address that, a low-nephron number model using the Six2/

iDTR model has been proposed by the author (61). This model

expresses the diphtheria toxin receptor in nephron progenitor cells,

which can be removed by administering diphtheria toxin to the

amniotic fluid during the embryonic period. The observed kidney

size and glomerular count reduction is inversely proportional to the

diphtheria toxin dose, which can be employed to achieve any degree

of glomerular number reduction.
6.2 High-nephron number models

High-nephron number models have also been developed. If a low

nephron number increases the CKD risk, a high number may reduce

it. One model of increased glomerular count involved transgenic mice

expressing the truncated type II activin receptor (62). In this model,

signaling through the activin receptor was attenuated, and the total

glomerular number increased to approximately 180% of that in

normal mice. However, the serum urea nitrogen, creatinine, and

creatinine clearance rates were comparable to those of normal mice.

Another method reported by the authors was to boost the

glomerular number by intraperitoneally administering RA during

the embryonic period (63), which increased the total number of

glomeruli in mouse pups by approximately 1.5-fold than that in the

control group. No genetic modification was required, and the number

of glomeruli could easily be increased. However, its effects on renal

function remain unclear.
7 Clinical interventions for low
nephron number

To reduce the risk of developing CKD due to low nephron

number, it is important to first prevent low nephron numbers.

Interventions for hereditary disease are difficult, but those for low

nephron number caused by the maternal environment are possible.

Pregnant women should be taught regarding proper nutrition, weight

control, smoking cessation, and alcohol abstinence. In addition,

management of diabetes and obesity, if present, is also important.

Once CKD progresses, it is difficult to improve renal function.

Therefore, early detection of patients with low nephron numbers is

crucial. Serum creatinine and cystatin C levels increase with renal
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dysfunction. In addition, urinary b2-microglobulin and N-acetyl-b-D-
glucosaminidase are markers of tubular damage. However, all of these

biomarkers are elevated after damage has occurred, and there is currently

no biomarker that can detect low nephron numbers before damage

has occurred.

Therefore, children at risk for low nephron numbers, such as

preterm and low-birth-weight infants, should be evaluated for kidney

involvement. In addition, renal evaluation is advisable, because many

inherited diseases are often associated with abnormalities in renal

development. Kidney size correlates with the nephron number (64),

and in children, renal volume and the sum of the left and right kidney

length diameters are strongly and sexually correlated with glomerular

filtration rate (65). Therefore, evaluation of the kidneys should

include an assessment of renal function, such as serum creatinine

levels, as well as morphology using abdominal echocardiography and

other techniques.

Patients with a low nephron number need to have their

intraglomerular pressure lowered, as increased intraglomerular

pressure causes progressive glomerulosclerosis. Renin angiotensin

system inhibitors, sodium glucose cotransporter 2 inhibitors, and

mineralocorticoid receptor antagonists may be effective in this regard.

Dietary therapy, such as salt reduction, is also important. In addition,

the first 1,000 days of life, from the fetal period to 2 years of age, are

the most critical in the developmental program, and avoiding

nutritional deficiencies during this period can reduce lifestyle-

related diseases (CKD, hypertension, or diabetes) that may develop

later in adulthood (66).
8 Conclusion

An undesirable prenatal intrauterine environment, including

maternal malnutrition, decreases the fetal glomerular number and
Frontiers in Endocrinology 48
increases the risk of CKD; therefore, an appropriate environment

should be maintained to prevent the decrease in fetal glomerular

number. Altogether, proper perinatal nutritional management and

preventing the decrease of and increasing the glomerular number at

birth may greatly reduce the incidence of CKD in the future (Figure 3).
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FIGURE 3

Interventions for glomerular number. CKD, chronic kidney disease; ESRD, end-stage renal disease.
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Low oxytocin levels are broadly
associated with more
pronounced psychopathology in
anorexia nervosa with primarily
restricting but not binge/purge
eating behavior

Franziska Plessow1†, Francesca Galbiati1†, Kamryn T. Eddy2,
Madhusmita Misra1,3, Karen K. Miller1, Anne Klibanski1,
Anna Aulinas1 and Elizabeth A. Lawson1*

1Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical
School, Boston, MA, United States, 2Eating Disorders Clinical and Research Program, Department of
Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States,
3Division of Pediatric Endocrinology, Massachusetts General Hospital for Children and Harvard Medical
School, Boston, MA, United States
Objective: Anorexia nervosa (AN) is commonly associated with depression,

anxiety, and deficits in socioemotional functioning. Basal levels of oxytocin, a

neurohormone with antidepressant, anxiolytic, and prosocial properties, are low in

women with AN. However, the relationship between oxytocin and

psychopathology of AN/atypical AN has not been examined in individuals with

primarily food restriction (AN/AtypAN-R) or those with restriction plus binge/purge

behaviors (AN/AtypAN-BP) alone, which is important to further elucidate the

neurobiology of different AN presentations. We investigated whether oxytocin

levels are related to eating, affective, and socioemotional psychopathology in

women with AN/AtypAN-R and separately AN/AtypAN-BP.

Methods: In a cross-sectional study of 53 women with low-weight AN or atypical

AN based on DSM-5 (AN/AtypAN-R: n=21, AN/AtypAN-BP: n=32), we obtained

fasting serum oxytocin levels and self-report measures of psychopathology,

including the Eating Disorder Examination–Questionnaire (EDE-Q), Beck

Depression Inventory-IA (BDI), State-Trait Anxiety Inventory (STAI), and Toronto

Alexithymia Scale (TAS-20).

Results: In individuals with AN/AtypAN-R, oxytocin levels were negatively

associated with eating psychopathology (EDE-Q Global Score: r=-0.49,

p=0.024), depressive and anxiety symptoms (BDI Total Score: r=-0.55, p=0.009;

STAI Trait Score: r=-0.63, p=0.002), and socioemotional symptoms (TAS-20

Difficulty Identifying Feelings Score: r=-0.49, p=0.023). In contrast, in those with

AN/AtypAN-BP oxytocin levels were negatively associated with depressive

symptoms only (BDI Total Score: r=-0.52, p=0.049).

Conclusions: These findings support the notion that AN/AtypAN-R and AN/

AtypAN-BP might have divergent underlying neurobiology. Understanding these
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differences is crucial to develop targeted treatments for a population with

high levels of chronicity, for which no specific pharmacological treatments are

currently available.

Clinical trial registration: https://clinicaltrials.gov, identifier: NCT01121211
KEYWORDS

anorexia nervosa, binge/purge behavior, dietary restriction, oxytocin, psychopathology
1 Introduction

Anorexia nervosa (AN), a psychiatric disorder with a prime onset

period in adolescence and early adulthood, manifests with different

clinical presentations, calling for treatments based on carefully

developed pathophysiological models. Its core clinical features

include a distorted body image, intense fear of gaining weight, and

food restriction despite a low body mass index (BMI) (1). It is also

characterized by the common occurrence of comorbid symptoms,

including depressive and anxiety symptoms and deficits in

socioemotional functioning (2–4). AN has two major clinical

presentations; (i) predominantly food restriction, or (ii) food

restriction combined with cycles of binge eating and/or purging

behaviors. AN is often treatment-refractory, and novel treatments

are needed to improve outcomes. Investigating the neurobiological

mechanisms underlying restricting and binge/purge presentations

could inform urgently needed individualized treatment strategies.

The neurohormone oxytocin affects food intake as well as

cognitive, emotional, and social functioning and might play a role

in the pathophysiology of AN spanning ED pathology and associated

depressive and anxiety symptoms and impairments in socioemotional

functioning (5). Prior studies of females with AN demonstrate

oxytocin deficiency in the setting of chronic starvation (6–9). These

findings are complemented by studies showing that weight-restored

individuals with a history of AN have lower basal oxytocin levels than

healthy controls, suggesting chronic alteration of oxytocin signaling

(2, 10). Furthermore, our group has previously shown that in women

with restored weight but persistent symptoms of disordered eating,

fasting oxytocin levels were associated with greater ED pathology and

more pronounced anxiety (2). Similarly, in a mixed sample of women

with low-weight AN, partially recovered AN (90-120% expected body
with dietary restriction
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AC, Brigham Research

f variance; DAPP-BQ,

c Questionnaire; EBW,

ation – Questionnaire;
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weight [EBW]), and healthy controls, we previously found an

association between low fasting oxytocin levels and increased

symptoms of alexithymia independent of BMI and estrogen status

(11). Finally, in individuals with AN, oxytocin receptor

polymorphisms were found to be associated with severity of ED

pathology, and oxytocin and oxytocin receptor polymorphisms

showed associations with disorder-specific decrements in emotion

perception ability (12, 13), further pointing towards a potential

involvement of the oxytocin system in AN psychopathology. While

establishing a clinically relevant oxytocin-deficient state in AN, most

investigations to date have examined oxytocin levels in AN without

distinguishing between restricting and binge/purge subtypes, and the

few studies that compared oxytocin levels across AN subtypes did not

investigate their associations with type and severity of

psychopathology within each AN presentation (2, 5, 7, 10, 11, 14,

15). One small study showed low levels of oxytocin in cerebrospinal

fluid (CSF) in individuals with AN restricting type (n=5) but not

those with AN binge/purge type (n=12) compared to healthy controls

(n=11) (7). Other studies detected no differences in oxytocin levels

between subtypes when assessed peripherally (14, 15). Of note,

peripheral oxytocin levels have been shown to correlate with CSF

levels, however current evidence indicates that this relationship may

be context-dependent (16–19). To our knowledge, no studies have

analyzed the corre la t ion between oxytocin levels and

psychopathology in different AN presentations, which could have

clinical implications.

We aimed to extend our understanding of the role of oxytocin in

the pathophysiology of AN and its different presentations by

investigating the relationship between fasting peripheral oxytocin

levels and severity of psychopathology, including eating disorder

(ED) psychopathology, depressive and anxiety symptoms, and

deficits in socioemotional functioning. Using a transdiagnostic

approach, we recruited women with AN (BMI<18.5) and atypical

AN (BMI≥18.5) who presented with active primarily restricting

behaviors (AN/AtypAN-R) and those who were restricting

combined with bingeing and/or purging behaviors (AN/AtypAN-

BP). Based on the preliminary finding that, compared to healthy

controls, CSF oxytocin levels were low in individuals with AN of the

restricting type but not those with the binge/purge subtype (7), we

hypothesized that lower fasting serum oxytocin levels would be

associated with more pronounced ED psychopathology, depressive

and anxiety symptoms, and deficits in socioemotional functioning in

women with AN/AtypAN-R but not those with AN/AtypAN-BP.
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2 Material and methods

2.1 Participants

Fifty-three females, 18-49 years, who met DSM-5 criteria for AN

(n=31) or atypical AN (n=22) and participated in a randomized,

placebo-controlled clinical trial of low-dose testosterone therapy for

AN (clinicaltrials.gov identifier: NCT01121211) or an observational

study of neurobiological underpinnings of illness trajectories in a

sample of adolescent and young adult females with low-weight eating

disorders (R01MH103402), all of them with active AN or atypical AN

at the time of data collection, were included in this study. Clinical

characteristics, including endocrine parameters from partially

overlapping datasets have been previously published (14, 20–23).

However, the relationship between oxytocin levels and

psychopathology, the focus of this paper, has not been reported.

Binge/purge behaviors were defined by the occurrence of at least three

behaviors over the past three months (frequency: ≥1/month). Of the

31 women with AN, 12 met criteria for AN/AtypAN-R, and 19 met

criteria for AN/AtypAN-BP. Of the 22 participants with atypical AN,

nine were categorized as AN/AtypAN-R and 13 as AN/AtypAN-BP.

Participants were recruited from the community through

advertisements and referrals from healthcare providers.

Exclusion criteria included a history of psychotic disorder, active

suicidal ideation, diabetes mellitus, untreated hypothyroidism, unstable

medical illness, pregnancy, breastfeeding, and low serum potassium

levels. For participants of the clinical trial, further exclusion criteria

(relevant to the trial) included free testosterone levels above the median

for healthy women of reproductive age, use of androgens/androgen

precursors over the past three months, not willing to use

contraception, substance use disorder in the past six months, bipolar I

disorder, severe current depressive symptoms (Hamilton Depression

Rating Scale [HAM-D] (24) score >20, excluding two eating/weight

loss items related to AN symptoms), investigational psychotropic drug

within the past three months, dose or drug change in psychotropic

treatment within the last six weeks, dose change in oral contraceptive pill

or transdermal estrogen therapy within the last month, creatinine

level >1.5x upper limit, or ALT >2x upper limit of normal. For

participants of the observational study, the following additional

exclusion criteria applied: other medical explanation for low weight,

use of systemic hormones within eight weeks, use of Depo-Provera

within three months, substance use disorder within the past month,

hematocrit <30%, and gastrointestinal tract surgery.
2.2 Procedures

Study visits took place at the Massachusetts General Hospital

Translational Clinical Research Center and the Athinoula A. Martinos

Center for Biomedical Imaging. A screening visit to determine eligibility

included the medical history, physical examination [with height, weight,

frame size, calculation of BMI and %EBWusing theMetropolitan Height

andWeight Tables 1983 (25)], psychiatric interviews, questionnaires, and

blood and urine collection. DSM-5 criteria for AN/Atypical AN were

confirmed by the Structural Clinical Interview for DSM-IV (SCID-IV

(26); clinical trial) or Eating Disorder Examination (EDE (27);

observational study).
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At the main study visit after an overnight fast, a urine pregnancy

test and a morning blood draw for oxytocin and estradiol levels were

obtained, and participants completed questionnaires to assess

psychopathology. For participants of the observational study, the

Toronto Alexithymia Scale (TAS-20) was completed within a week of

that day. For participants enrolled in the clinical trial, all assessments

were completed prior to randomization to the treatment arms and

receipt of any study medication.
2.3 Self-report measures of
psychopathology

2.3.1 ED psychopathology
The Eating Disorder Examination – Questionnaire (EDE-Q) is a

well-validated 28-item self-report measure that assesses attitudes and

behaviors related to eating patterns and body image over the past 28

days and yields a global score and four subscale scores (Dietary

Restraint, Eating Concern, Shape Concern, and Weight Concern).

Scale scores range from 0 to 6 with higher scores representing more

severe symptoms. Internal consistency for the Global Score is

(a=0.90) (28). We considered an EDE-Q Global Score >2.5 (1 SD

above the healthy population mean) to indicate active ED

psychopathology (29–33).

2.3.2 Depressive and anxiety symptoms
The 21-item Beck Depression Inventory-IA (BDI), a revised

version of the original BDI (34), assesses severity of depressive

symptoms over the previous two weeks with scores of 0-9

indicating minimal depressive symptoms, 10-16 mild depression,

17-29 moderate depression, and 30-63 severe depression (34).

Internal consistency ranges from 0.73 to 0.92 (35).

The 20-item State-Trait Anxiety Inventory (STAI) Trait scale

assesses trait anxiety with high internal consistency (a≥0.89) (36). In
a female population (19-39 years), the mean STAI Trait Score was

36.2 with a standard deviation of 9.5 (36). STAI Trait Scores 1 SD

above the mean are considered to be consistent with clinically

significant anxiety symptoms (37).

2.3.3 Socioemotional functioning
The 20-item TAS-20 is a well-validated measure of alexithymia

with good internal consistency (a=0.81) (38, 39). Sum scores are

determined for three subscales (Difficulty Identifying Feelings,

Difficulty Describing Feelings, and Externally Oriented Thinking)

together with a global score (≤51: nonalexithymia, 52–60: possible

alexithymia, ≥61: alexithymia) (38). To capture the multifacetedness

of socioemotional functioning, participants additionally completed

the Liebowitz Social Anxiety Scale (LSAS-SR), the Dimensional

Assessment of Personality Pathology – Basic Questionnaire (DAPP-

BQ), and the Interpersonal Support Evaluation List (ISEL). The

LSAS-SR assesses fear and avoidance of eleven social situations and

13 situations of public performance over the past week, which are

summarized on four scales with higher scores indicating more severe

psychopathology: Public Fear, Social Fear, Public Avoidance, and

Social Avoidance (40). From the DAPP-BQ, participants rated 14

Suspiciousness and 16 Insecure Attachment items. Summated scores

for Suspiciousness and Insecure Attachment scales were calculated
frontiersin.org
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with higher scores indicating more severe psychopathology (41). The

40-item ISEL assesses the perceived availability of potential social

resources yielding a summary score lower scores indicating less

perceived support (42).
2.4 Biochemical analysis

Serum samples were stored at -80°C and run in a single batch.

Oxytocin concentration was measured in unextracted serum by ELISA in

the Brigham Research Assay Core (BRAC) Laboratory using reagents

purchased from Enzo Life Sciences, Farmingdale, NY, USA. We have

previously demonstrated a robust correlation between extracted and

unextracted serum oxytocin levels (43). The assay had a detection limit of

15 pg/mL. In-house quality-control samples had a mean of 81 and 120

pg/mL, and a low and high quality-control pools between-assay

coefficient of variation (CV) of 18 and 20%, respectively. The cross-

reactivity of Lys8-vasopressin, Arg8-vasopressin, met-enkephalin, VIP,

somatostatin, Ser4, Ile8-oxytocin, and alpha-ANP in the oxytocin assay is

<0.02%. Serum estradiol was measured by the BRAC using liquid

chromatography-tandem mass spectrometry. The assay had a lower

limit of detection of 1 pg/mL and intra-assay CV <5%.
2.5 Data analysis

STATA® software (version 14.2; StataCorp LLC, College Station, TX,

USA) was used for statistical analyses. Data were tested for normality

using the Shapiro-Wilk test. Age, duration of illness, estradiol levels, and

oxytocin levels were not normally distributed. Log-transformation prior

to analysis resulted in a normal distribution for estradiol and oxytocin

levels. For the other two measures, non-parametric tests were performed.

Primary outcomes were EDE-QGlobal, BDI Total, and STAI Trait scores

for ED-specific, depressive, and anxiety symptoms, respectively. For

socioemotional functioning, the TAS-20 served as the primary

assessment tool. We have previously shown that among the TAS-20

scores, the Difficulty Identifying Feelings Score showed the strongest link

with oxytocin levels (11). Accordingly, we chose the TAS-20 Difficulty

Identifying Feelings Score as the primary outcome measure for
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socioemotional functioning in this study. Further TAS-20 scores and

other measures of key subcomponents of socioemotional functioning

(i.e., LSAS-SR, DAPP-BQ, and ISEL) were analyzed as additional

exploratory outcomes.

We compared AN/AtypAN-R and AN/AtypAN-BP groups using

t-tests for independent samples for continuous variables (except for

age and duration of illness, for which Mann-Whitney U-tests were

performed) and Fisher’s exact tests for nominal data. Pearson

correlations investigated the relationship between (log-transformed)

oxytocin levels and measures of psychopathology. In addition, we

performed multivariate linear regression analyses to determine the

relationship between baseline oxytocin levels and psychopathology

controlling for time since diagnosis, which differed between study

groups. Individuals with AN and atypical AN were combined for all

analysis due to comparable characteristics (see Table 1 for a

comparison of hormone levels and key psychopathology

endpoints). Statistical significance was defined as a two-tailed p-

value <0.05. Data are reported as mean ± SD, median (IQR), or n (%).
3 Results

3.1 Participant characteristics

Participant characteristics are presented in Table 2. Time since

diagnosis was shorter in the AN/AtypAN-R group compared to the

AN/AtypAN-BP group, while age, BMI, and estrogen status did not

differ between groups. Furthermore, AN/AtypAN-R and AN/

AtypAN-BP groups showed no difference in frequency of key

comorbidities and medication intake.
3.2 Self-report measures of
psychopathology

Groupmeans and between-group comparisons of psychopathology

are summarized in Table 2. Twelve participants with AN/AtypAN-R

(57.1%) and 11 participants with AN/AtypAN-BP (73.3%) had an

EDE-Q Global Score in the clinical range. Eleven participants with AN/
TABLE 1 Participant characteristics of hormone levels and key psychopathology endpoints for women with anorexia nervosa (AN) versus atypical AN (AtypAN).

Characteristic
AN

(n=31)
AtypAN
(n=22) p Hedges’ g

Estradiol (pg/mL)a 55.9 ± 61.1 65.8 ± 48.8 n/a n/a

Ln-estradiola 3.3 ± 1.4 3.7 ± 1.2 0.364 -0.30

Fasting oxytocin (pg/mL) 1,018 ± 582 872 ± 308 n/a n/a

Ln-fasting oxytocin 6.8 ± 0.5 6.7 ± 0.4 0.554 0.17

EDE-Q Global Scoreb 3.0 ± 1.6 3.5 ± 1.3 0.358 -0.33

BDI Total Scorec 22.1 ± 10.8 23.4 ± 3.0 0.717 -0.15

STAI Trait Score 53.7 ± 10.4 54.1 ± 13.1 0.906 -0.03

TAS-20 Difficulty Identifying Feelings Scored 20.0 ± 6.5 20.8 ± 6.6 0.699 -0.12
Mean ± SD. aData available for 36 participants (21 with AN and 15 with AtypAN), all of whom were off oral contraceptive pill medication. bData available for 35 participants (19 with AN and 16 with
AtypAN). cData available for 36 participants (20 with AN and 16 with AtypAN). dData available for 50 participants (29 with AN and 21 with AtypAN). BDI, Beck Depression Inventory-IA; EDE-Q,
Eating Disorder Examination Questionnaire; STAI, State-Trait Anxiety Inventory; TAS-20, Toronto Alexithymia Scale.
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TABLE 2 Participant characteristics for women with anorexia nervosa (AN)/Atypical AN who are solely restricting (AN/AtypAN-R) versus those who restrict
in combination with binge/purge behaviors (AN/AtypAN-BP).

Characteristic
AN/AtypAN-R

(n=21)
AN/AtypAN-BP

(n=32) p Effect sizea

Age (years) 25.0 (21.0-28.0) 21.5 (19.5-33.0) 0.636 r=0.06

Duration of illness (months)b 8.0 (5.0-13.0) 16.5 (11.0-27.5) 0.004 r=-0.41

Lowest adult weight (kg) 43.8 ± 5.8 42.8 ± 5.8 0.533 g=0.17

Weight (kg) 49.9 ± 4.9 48.7 ± 5.4 0.417 g=0.23

BMI (kg/m2) 18.5 ± 1.9 18.2 ± 1.4 0.548 g=0.18

%EBW 83.9 ± 6.9 84.7 ± 7.5 0.730 g=-0.11

Amenorrheac 6 (30.0) 9 (28.1) 1.000 OR=1.10

Current MDD 10 (47.6) 17 (53.1) 0.782 OR=0.80

Current GAD 15 (71.4) 19 (59.4) 0.400 OR=1.71

Current OCD 1 (4.8) 1 (3.1) 1.000 OR=1.55

Current PTSD 6 (28.6) 7 (21.9) 0.746 OR=1.43

Antidepressant medication 14 (66.7) 20 (62.5) 1.000 OR=1.20

Anxiolytic medication 10 (47.6) 11 (34.4) 0.397 OR=1.74

Mood stabilizers 1 (4.8) 3 (9.4) 1.000 OR=0.48

Antipsychotic medication 4 (19.1) 3 (9.4) 0.415 OR=2.27

Hypnotic medication 1 (4.8) 3 (9.4) 1.000 OR=0.48

Melatonin 2 (9.5) 0 (0.0) 0.152 N/A

OCPsc 8 (40.0) 7 (21.9) 0.213 OR=2.38

Estradiol (pg/mL)d 76.6 ± 58.1 51.7 ± 53.8 n/a n/a

Ln-estradiold 3.9 ± 1.3 3.3 ± 1.3 0.229 g=0.42

Fasting oxytocin (pg/mL) 873 ± 534 1,013 ± 456 n/a n/a

Ln-oxytocin 6.6 ± 0.5 6.8 ± 0.4 0.158 g=-0.41

EDE-Q Global Scoree 2.8 ± 1.6 3.9 ± 1.1 0.025 g=-0.75

BDI Total Scoref 19.3 ± 11.3 27.3 ± 9.5 0.032 g=-0.74

STAI Trait Score 51.5 ± 11.7 55.4 ± 11.2 0.231 g=-0.34

TAS-20 Difficulty Identifying Feelings Scoreg 19.0 ± 6.9 21.3 ± 6.1 0.216 g=-0.35

TAS-20 Difficulty Describing Feelings Scoreg 15.1 ± 4.9 16.9 ± 4.5 0.185 g=-0.38

TAS-20 Externally Oriented Thinking Scoreg 17.9 ± 4.9 18.6 ± 4.7 0.606 g=-0.14

TAS-20 Total Scoreg 52.0 ± 13.1 56.9 ± 11.2 0.168 g=-0.40

LSAS-SR Social Fear Scoref 14.7 ± 6.3 16.9 ± 5.2 0.261 g=-0.37

LSAS-SR Public Fear Scoref 15.6 ± 6.4 19.4 ± 4.9 0.064 g=-0.64

LSAS-SR Social Avoidance Scoref 13.4 ± 7.2 16.3 ± 6.4 0.218 g=-0.41

LSAS-SR Public Avoidance Scoref 13.0 ± 7.1 16.7 ± 6.6 0.132 g=-0.52

DAPP-BQ Suspiciousness Scoref 27.8 ± 8.9 34.4 ± 11.7 0.061 g=-0.64

DAPP-BQ Insecure Attachment Scoref 36.3 ± 14.1 42.9 ± 16.2 0.207 g=-0.43

ISEL Total Scoref 82.8 ± 17.8 68.9 ± 22.1 0.045 g=0.69
F
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Mean ± SD, median (IQR), or n (%). Significant values (p<0.05) are highlighted in bold. aEffect sizes are reported as Hedges’ g for group comparisons of normally distributed continuous variables
analyzed with independent-sample t-tests, r for non-normally distributed variables analyzed with Mann-Whitney U-test, and OR (exact) for nominal variables analyzed with Fisher’s exact test. bFour
participants with AN/AtypAN-BP did not provide information for duration of illness. cData available for 52 participants (20 participants with AN/AtypAN-R and 32 with AN/AtypAN-BP). dData
available for 36 participants, all of whom were off OCP medication (12 participants with AN/AtypAN-R and 24 with AN/AtypAN-BP). eData available for 35 participants (21 participants with AN/
AtypAN-R and 14 with AN/AtypAN-BP). fData available for 36 participants (21 participants with AN/AtypAN-R and 15 with AN/AtypAN-BP). gData available for 50 participants (21 participants
with AN/AtypAN-R and 29 with AN/AtypAN-BP). BDI, Beck Depression Inventory-IA; BMI, body mass index; DAPP-BQ, Dimensional Assessment of Personality Pathology – Basic Questionnaire;
%EBW, percent expected body weight; EDE-Q, Eating Disorder Examination Questionnaire; GAD, generalized anxiety disorder; ISEL, Interpersonal Support Evaluation List; LSAS-SR, Liebowitz
Social Anxiety Scale; MDD, major depressive disorder; OCD, obsessive-compulsive disorder; OCPs, oral contraceptive pills; PTSD, posttraumatic stress disorder; STAI, State-Trait Anxiety Inventory;
TAS-20, Toronto Alexithymia Scale.
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AtypAN-R (52.4%) and 13 individuals with AN/AtypAN-BP (86.7%)

had a BDI Total Score consistent with moderate or severe depressive

symptoms. Fifteen participants with AN/AtypAN-R (71.4%) and 26

individuals with AN/AtypAN-BP (81.3%) had a STAI Trait Score

consistent with clinically significant anxiety. Nine individuals with

AN/AtypAN-R (42.9%) and 19 participants with AN/AtypAN-BP

(65.5%) had a TAS-20 Total Score in the range of possible or definite

symptoms of alexithymia. ED psychopathology and depressive

symptoms were more pronounced in individuals with AN/AtypAN-

BP than in those with AN/AtypAN-R, as indicated by higher EDE-Q

Global and BDI Total scores, respectively. In addition, the AN/

AtypAN-BP group had a lower perception of social support than the

AN/AtypAN-R group, as indicated by a lower ISEL Total Score. When

controlling for illness duration, no significant group differences

remained (ps≥0.094).
3.3 Oxytocin levels and relationship with
psychopathology

Fasting oxytocin levels did not differ between groups (Table 2). In

individuals with AN/AtypAN-R, oxytocin levels were broadly

associated with symptom severity, namely, lower oxytocin levels

were associated with higher EDE-Q Global, BDI Total, and STAI

Trait scores, reflecting more pronounced ED, depressive, and anxiety

symptoms, respectively (Table 3; Figure 1). Furthermore, in

individuals with AN/AtypAN-R, oxytocin levels were related to
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socioemotional functioning with lower oxytocin levels being

associated with higher TAS-20 Difficulty Identifying Feelings,

LSAS-SR Social Fear, LSAS-SR Public Fear, LSAS-SR Social

Avoidance, and DAPP-BQ Suspiciousness scores (indicating more

pronounced deficits in socioemotional functioning) and decreased

ISEL Total Scores (indicating a reduced perception of social support).

Conversely, in individuals with AN/AtypAN-BP, the only observed

association was between low oxytocin levels and higher BDI Total

Scores; no other relationships reached significance in the AN/

AtypAN-BP group (Table 3; Figure 1).
4 Discussion

To the best of our knowledge, this is the first study to examine

relationships between fasting serum oxytocin levels and

psychopathology in a broad sample of individuals with active AN

and atypical AN who engage in primary restriction (AN/AtypAN-R)

and, separately, in those who restrict combined with binge and/or

purge behaviors (AN/AtypAN-BP). In females with AN/AtypAN-R,

we observed robust negative correlations between basal oxytocin

levels and severity of ED psychopathology, depressive and anxiety

symptoms, and impairment of socioemotional functioning. In

contrast, in women with AN/AtypAN-BP, there was only an

association between lower oxytocin levels and more pronounced

depressive symptoms, while no other significant relationships

between oxytocin levels and psychopathology were identified in this
TABLE 3 Associations between (log-transformed) fasting oxytocin levels and psychopathology in women with anorexia nervosa (AN)/Atypical AN who are
solely restricting (AN/AtypAN-R) versus those who restrict in combination with binge/purge behaviors (AN/AtypAN-BP).

Self-report measures of psychopathology AN/AtypAN-R
(n=21)

AN/AtypAN-BP
(n=32)

r p r p

Primary endpoints

EDE-Q Global Score (eating disorder psychopathology) -0.49 0.024 -0.25a 0.396

BDI Total Score (depressive symptoms) -0.55 0.009 -0.52b 0.049

STAI Trait Score (anxiety symptoms) -0.63 0.002 -0.24 0.190

TAS-20 Difficulty Identifying Feelings Score (socioemotional functioning) -0.49 0.023 -0.10c 0.614

Exploratory endpoints (socioemotional functioning)

TAS-20 Difficulty Describing Feelings Score -0.29 0.205 0.04c 0.834

TAS-20 Externally Oriented Thinking Score -0.09 0.684 0.34c 0.075

TAS-20 Total Score -0.40 0.071 0.11c 0.586

LSAS-SR Social Fear Score -0.56 0.008 -0.15b 0.582

LSAS-SR Public Fear Score -0.44 0.046 -0.21b 0.457

LSAS-SR Social Avoidance Score -0.57 0.006 -0.07b 0.814

LSAS-SR Public Avoidance Score -0.41 0.063 -0.02b 0.932

DAPP-BQ Suspiciousness Score -0.49 0.024 -0.16b 0.562

DAPP-BQ Insecure Attachment Score -0.25 0.285 0.14b 0.618

ISEL Total Score 0.47 0.031 0.51b 0.051
Significant values (p<0.05) are highlighted in bold. aBased on 14 participants. bBased on 15 participants. cBased on 29 participants. BDI, Beck Depression Inventory-IA; DAPP-BQ, Dimensional
Assessment of Personality Pathology – Basic Questionnaire; EDE-Q, Eating Disorder Examination – Questionnaire; ISEL, Interpersonal Support Evaluation List; LSAS-SR, Liebowitz Social Anxiety
Scale; STAI, State-Trait Anxiety Inventory; TAS-20, Toronto Alexithymia Scale.
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study. These data indicate possible differences in underlying

pathophysiology across AN presentations.

Our findings suggest a role of oxytocin pathways in the ED

pathology of AN/AtypAN-R. The result pattern observed in the AN/

AtypAN-R group resembles findings we previously reported in

individuals with AN in partial recovery, where fasting oxytocin

levels were associated with greater ED pathology, and individuals

with clinically significant ED pathology displayed lower oxytocin

levels than those without clinically significant symptoms (2). While

the previous study did not distinguish between individuals with

primarily restricting and those with additional binge/purge

presentation, in the present investigation in women with AN and

atypical AN, despite similar levels of serum oxytocin in females with

AN/AtypAN-R and AN/AtypAN-BP, we found a robust relationship

between oxytocin and ED psychopathology in individuals with AN/

AtypAN-R but not AN/AtypAN-BP. The lack of an observed

relationship between oxytocin and psychopathology in women with

AN/AtypAN-BP could be the result of binge/purge behaviors altering

peripheral oxytocin, and it is still possible that central oxytocin and

psychopathology are related in this AN presentation. Alternatively, it

is conceivable that oxytocin plays a more substantial role in the

modulation of psychopathology in AN/AtypAN-R than AN/

AtypAN-BP. While future research studies are needed to
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understand the cause of the different observation of oxytocin levels

in CSF, serum oxytocin appears to be a biomarker for severity of

psychopathology specifically in AN/AtypAN-R.

The potential relevance of oxytocin in the psychopathology of

AN/AtypAN-R seems to go beyond ED pathology and also spans

depressive and anxiety symptoms and socioemotional functioning.

Comorbid depression and anxiety are common in AN (44, 45). On

average, our sample showed moderate levels of depressive symptoms

and clinically significant anxiety. Preclinical and clinical studies have

demonstrated that oxytocin has antidepressant and anxiolytic

propert ies , inc luding improving psychopathology and

pathophysiology in clinical populations (46–49). For example,

single-dose intranasal administration of oxytocin reduced amygdala

reactivity and functional connectivity to fear-inducing stimuli in

individuals with generalized social anxiety disorders (50, 51), and

repeated doses of intranasal oxytocin over four weeks added to

pharmacological treatment with escitalopram improved depressive

symptoms in individuals with treatment-resistant major depressive

disorders (52). In women with partially recovered AN, we previously

reported a correlation between lower fasting serum oxytocin levels

and more pronounced anxiety symptoms (2). For the first time, the

present study reports a relationship between low levels of oxytocin

and more pronounced depressive and anxiety symptoms in
A B

DC

FIGURE 1

Relationship between (log-transformed) fasting oxytocin levels and psychopathology in women with anorexia nervosa (AN)/Atypical AN who are solely restricting
(AN/AtypAN-R) and those who restrict in combination with binge/purge behaviors (AN/AtypAN-BP). (A) Eating Disorder Examination – Questionnaire (EDE-Q)
Global Score (eating disorder psychopathology); (B) Beck Depression Inventory-IA (BDI) Total Score (depressive symptoms); (C) State-Trait Anxiety Inventory
(STAI) Trait Score (anxiety symptoms); and (D) Toronto Alexithymia Scale (TAS-20) Difficulty Identifying Feelings Score (socioemotional functioning).
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individuals with active AN/AtypAN-R, suggesting that low oxytocin

may mediate mood and anxiety symptoms in this subgroup. In

individuals with active AN/AtypAN-BP, we also found a negative

association between oxytocin levels and depressive symptoms,

mirroring the pattern in AN/AtypAN-R, whereas there was no

evidence for a linear relationship between oxytocin levels and

anxiety in AN/AtypAN-BP.

In addition to a negative relationship between oxytocin levels and

difficulty identifying feelings in females with AN/AtypAN-R but not

AN/AtypAN-BP, our study provides a multifaceted exploratory

assessment of socioemotional functioning that shows a consistent

pattern of lower oxytocin levels associated with worse socioemotional

functioning in women with AN/AtypAN-R but not AN/AtypAN-BP.

Individuals with AN often show impaired socioemotional functioning

by means of increased social anxiety (53), suspiciousness and insecure

attachment (54), difficulty recognizing others’ emotions (55), and

alexithymia (56), which often does not resolve with weight gain (54,

57, 58). Animal research has demonstrated a prosocial role of oxytocin,

including the promotion of maternal and pair bonding (59, 60),

approach behavior under stress (61), and increased duration of eye

contact and higher number of prosocial choices in rhesus macaques

(62). In humans, oxytocin administration has been shown to improve

socioemotional functioning in healthy individuals (63) and across a

variety of psychiatric conditions associated with socioemotional

challenges, including autism spectrum disorder, schizophrenia, and

social anxiety (50, 63, 64). In the context of AN, a previous study from

our group of women with low-weight AN (without distinction between

presentations), partially recovered AN (90-120% EBW), and healthy

controls found an association between low fasting oxytocin levels and

increased symptoms of alexithymia independent of BMI and estrogen

status, raising the question of whether low oxytocin levels could

contribute to social emotional functioning difficulties in AN (11).

However, relationships between oxytocin levels and other measures

of socioemotional functioning were not identified, groups were

analyzed conjointly rather than separately, and the role of AN

presentations was not addressed. Some studies have suggested closer

resemblance of the binge/purge presentation of AN to bulimia nervosa

than primarily restricting AN (7, 15). Our study extends our prior

findings by showing broad and consistent relationships between

oxytocin levels and socioemotional functioning with lower oxytocin

levels being associated with more pronounced socioemotional

dysfunction in women with AN/AtypAN-R but not AN/AtypAN-BP.

The broader sample comprising individuals with AN and atypical AN

increases generalizability of the observed findings.

Limitations of this study include the relatively small sample size,

which could have introduced bias. Furthermore, as a cross-sectional

investigation we report associations and cannot determine causality.

Longitudinal studies in larger samples of women with AN/AtypAN-R

and AN/AtypAN-BP that build on the presented findings and further

explore the role of additional key characteristics will be essential to

further investigate the role of oxytocin in mediating psychopathology.

For example, a longer duration of illness in individuals with AN/

Atypical AN-BP compared to AN/Atypical AN-R represents a

commonly observed difference. This difference is rooted in the fact

that diagnostic crossover during prolonged illness from AN/Atypical

presentations with primarily dietary restriction to eating disorders

featuring binge-eating and/or purging is common (~50%), while the
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reverse crossover rarely occurs (65). A lack of an observed

relationship between oxytocin and psychopathology in our sample

of individuals with AN/AtypAN-BP could be related to a longer

duration of illness, and/or it could highlight a neurobiological shift

that occurs simultaneously with and/or is driving the observed

behavioral changes taking place with diagnostic crossover. Future

studies should examine groups of individuals with AN/Atypical AN-R

and AN/Atypical AN-BP who are comparable in duration of illness to

shed light on the separate and joint impact of symptom presentation

and illness duration on the studied endocrine-psychopathological

link. Furthermore, follow-up prospective studies in individuals

undergoing diagnostic crossover from AN/AtypAN-R to AN/

AtypAN-BP are needed to build on the reported findings and

examine the relat ionship between oxytocin levels and

psychopathology longitudinally to better understand its potential

role in diagnostic crossover. Lastly, future studies investigating the

relationship between oxytocin levels and psychopathology across AN

subtypes should consider including CSF oxytocin levels to better

understand the relationship between central and peripheral oxytocin

levels in the context of these research questions.

In summary, the present study is the first to show consistent

relationships between fasting serum oxytocin levels and

psychopathology (spanning ED psychopathology, depressive and

anxiety symptoms, and impairments in socioemotional functioning)

in women with active AN/AtypAN-R. Our sample of individuals with

active AN/AtypAN-BP only showed an association between low

oxytocin levels and depressive symptoms, while no other

relationships between oxytocin and psychopathology were observed.

These findings are crucial to better elucidate oxytocin physiology and

its role in psychopathology in AN presentations, highlighting a

potentially different underlying psychopathology in AN-R and AN-

BP. Additional studies are needed to further investigate the role of

oxytocin in the psychopathology of AN and explore the potential of

oxytocin pathways as neurohormonal treatment targets for selected

AN presentations, and future randomized controlled trials could

consider using the outcomes that we found to be associated with

peripheral oxytocin levels as primary endpoints.
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The isl2a transcription factor
regulates pituitary development
in zebrafish

Chen-Yan Yan1,2†, Feng-Yao Wu1†, Feng Sun1, Ya Fang1,
Rui-Jia Zhang1, Chang-Run Zhang1, Cao-Xu Zhang1,
Zheng Wang1, Rui-Meng Yang1, Liu Yang1, Mei Dong1,
Qian-Yue Zhang1, Xiao-Ping Ye1, Huai-Dong Song1*

and Shuang-Xia Zhao1*

1Department of Molecular Diagnostics and Endocrinology, The Core Laboratory in Medical Center of
Clinical Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University (SJTU) School of
Medicine, Shanghai, China, 2Geriatric Medicine Center, Department of Endocrinology, Zhejiang
Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou,
Zhejiang, China
Background: ISL LIM homeobox 2, also known as insulin gene enhancer protein

ISL-2 (ISL2), is a transcription factor gene that participates in a wide range of

developmental events. However, the role of ISL2 in the hypothalamus-pituitary-

thyroid axis is largely unknown. In the present study, we characterized the

expression patterns of ISL2 and revealed its regulative role during embryogenesis

using zebrafish.

Methods:We used the CRISPR/Cas9 system to successfully establish homozygous

ISL2-orthologue (isl2a and isl2b) knockout zebrafish. Moreover, we utilized these

knockout zebrafish to analyze the pituitary and thyroid phenotypes in vivo. For

further molecular characterization, in situ hybridization and immunofluorescence

were performed.

Results: The isl2a mutant zebrafish presented with thyroid hypoplasia, reduced

whole-body levels of thyroid hormones, increased early mortality, gender

imbalance, and morphological retardation during maturity. Additionally,

thyrotropes, a pituitary cell type, was notably decreased during development.

Importantly, the transcriptional levels of pituitary-thyroid axis hormones-encoding

genes, such as tshba, cga, and tg, were significantly decreased in isl2a mutants.

Finally, the thyroid dysplasia in isl2amutant larvae may be attributed to a reduction

in proliferation rather than changes in apoptosis.

Conclusions: In summary, isl2a regulates the transcriptional levels of marker genes

in hypothalamus-pituitary-thyroid axis, and isl2a knockout causing low thyroid

hormone levels in zebrafish. Thus, isl2a identified by the present study, is a novel

regulator for pituitary cell differentiation in zebrafish, resulting in thyroid gland

hypoplasia and phenotypes of hypothyroidism.

KEYWORDS
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Introduction

The pituitary gland regulates growth, reproduction, and

metabolism, and links the nervous and endocrine systems. The

pituitary is largely conserved across vertebrates; it is divided into two

major parts: the adenohypophysis, which includes the anterior and

intermediate lobes, and the neurohypophysis/posterior lobe, which

originates from neural ectoderm (1, 2). The adenohypophysis

contains multiple glandular cells that are distinguished by the

hormones they produce: thyrotropes (thyroid stimulating hormone,

TSH), somatotropes (growth hormone, GH), lactotropes (prolactin,

PRL), gonadotropes (luteinizing hormone, LH; and follicle-stimulating

hormone, FSH), and corticotropes (adrenocorticotrophic hormone,

ACTH) (2). The neurohypophysis facilitates the passage of

vasopressin and oxytocin into the peripheral blood circulation, which

are synthesized in the hypothalamus (2). The intermediate lobe

contains melanotropes, which synthesize proopiomelanocortin

(POMC), the major precursor of endorphins and melanocyte-

stimulating hormone (2).

Multiple transcription factors and genes are involved in pituitary

induction, cellular commitment, and cell type specification, including

shha, pitx3, pit1, six1b, and eya1 (3–7). ISL1, ISL2, LHX3, and LHX4

belong to the LIM homeodomain transcription factors that have two

tandem cysteine/histidine-rich, zinc-binding LIM domains (8). In

particular, several studies have confirmed that ISL1, LHX3, and LHX4

play a role in pituitary development (2). Interestingly, Lhx3 and Lhx4

participate in the early steps of pituitary ontogenesis in mice and have

partially overlapped functions in the development of the anterior

pituitary primordium called Rathke’s pouch (9–11). In parallel, ISL1

is involved in the development and function of thyrotropes as well as

gonadotropes (12, 13). Moreover, ISL1 participates in thyroid and

hypothalamus development in addition to pituitary development

(14–16).

The hypothalamus-pituitary-thyroid (HPT) axis regulates multiple

body functions in all vertebrates via endocrine hormones including

TSH, thyroxine (T4) and 3,5,3′-triiodothyronine (T3). Despite the fact
that thyroid follicles do not form a compact gland but remain loosely

dispersed along the pharyngeal midline, T4 has negative feedback

effects on the release of TSH in the pituitary of zebrafish, an ideal

model system in endocrine research due to its high conservation of

molecular mechanisms involved in organogenesis, hormone transport

and metabolism, as well as hormone action in target tissues (17, 18).

Nevertheless, unlike in mammals, the role of the thyrotropin releasing

hormone in the regulation of TSH release in fish is less well established

(19). Due to the absence of a portal system between the hypothalamus

and the pituitary, the zebrafish hypothalamus directly innervates the

pituitary (20). Notably, ISL2 and ISL1 are both members of the Islet-1

family, and share 72% protein sequence identity in mice (21). These

two genes may have similar functions given their close structural

similarities. However, the role of ISL2 in pituitary development has
Abbreviations: HPT, hypothalamus-pituitary-thyroid; hpf, hours post-fertilization;

dpf, days post-fertilization; mpf, months post-fertilization; WISH, whole-mount in

situ hybridization; TSH, thyroid stimulating hormone; T4, thyroxine; T3, 3,5,3′-
triiodothyronine; TH, thyroid hormone; FSH, follicle-stimulating hormone; LH,

luteinizing hormone.
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not been clarified yet. Thus, we investigate the role of ISL2 in the

development and function of the HPT axis.

In the current study, we utilized the zebrafish model to

characterize the role of ISL2 in the development of HPT axis. We

found that ISL2, as a transcription factor, is a critical factor for the

correct differentiation of pituitary sub-types and that it affects thyroid

development through reducing proliferation rather than

affecting apoptosis.
Materials and methods

Zebrafish husbandry

The Tübingen strain of zebrafish (Danio rerio) used in this study

was maintained at 28.5°C with a light-dark cycle of 14 hours/10 hours

and at a stocking density of 6-8 fishes/L. The zebrafish were fed twice

a day with Paramecium, Brine Shrimp, and flake food. Food

concentration depends on zebrafish body weight and the purpose

for which the animals are kept. The embryo stages are expressed in

hours post-fertilization (hpf) at a standard temperature. Fertilized

eggs were collected via natural spawning and raised in egg water (0.06

g/L Instant Ocean Sea Salt and 22.2 ug/L methyl blue). The Tg (tg:

egfp) transgenic line that specifically expresses green fluorescent

protein (EGFP) in thyroid cells was used for this study. The

Shanghai Jiao Tong University School of Medicine’s Institutional

Animal Care and Use Committee examined and approved all

animal protocols.
Generation of the isl2a and isl2b CRISPR
knockout zebrafish lines

Knockout fish lines were generated via the CRISPR/Cas9

technique (22, 23). CRISPOR (http://crispor.tefor.net/) was used to

design an isl2a sgRNA targeting exon 3 near the LIM2 domain (5’-

GGCGGACCACGGACTGCTAA-3’). Similarly, the isl2b sgRNA,

targeting exon 2 in the LIM2 domain (5 ’-GGGAGACG

CGCAGGATGTAC-3’), was synthesized in the same way as isl2a.

Then, using the MEGA script™ T7 Transcription Kit (Ambion),

sgRNAs were transcribed and purified using the mirVana™ miRNA

Isolation Kit (Ambion). Cas9 mRNA was transcribed with the SP6

mMESSAGE mMACHINE™ Kit (Ambion) and purified with the

AxyPrep DNA Gel Extraction Kit (Axygen). A total of 50 pg of

sgRNA and 300 pg of Cas9 mRNA (2 nL volume) were injected into

single-cell stage fertilized wild-type embryos.

Sanger sequencing was used to confirm the mutation at the target

location. The surviving sgRNA/Cas9-injected embryos (F0 founders)

were nurtured to adulthood and outcrossed with wild-type adults to

produce the F1 generation. The knockout line was established using

an F0 founder with germline transmission and a high rate of indels. F1

generation embryos were brought to adulthood, fin clipped, and

sequenced. Individuals carrying the same variant were identified

and pooled together. All experiments were carried out on embryos

derived from F2 or F3 offspring.

A whole larva or fin clip was placed in a separate tube with 50 mL
of lysis buffer (1M Tris-HCl, 0.5mM EDTA, 10% Tween and 10%
frontiersin.org
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NP40) to extract genomic DNA in order to determine the genotype of

the larvae. Lysis was initiated at 95 °C for 10 min, then the samples

were incubated at 55°C overnight before being heated to 98°C for

10 min. Lysed samples were genotyped by PCR amplification of a

region of interest (containing the isl2a 13bp insertion or isl2b 5bp

deletion) using Taq DNA Polymerase (Lifefeng) and specific primers

(Table S1). The samples were subjected to Sanger sequencing using

the same primers used for amplification. All larvae were genotyped to

generate lines and for all phenotypic characterizations.
Whole-mount in situ hybridization

WISH was undertaken as previously described (24) using

digoxigenin-labeled probes (Roche). The probes were made as

previously described (25, 26). The target gene’s coding sequence

fragment was amplified and cloned into the pGEM®-T vector

(Promega) using wild-type strain cDNA. For anti-sense DIG-labeled

RNA probes, cloned DNA was linearized with various endonuclease

enzymes before being produced with SP6 RNA polymerase or T7 RNA

polymerase using the DIG RNA labeling kit (all Roche). In zebrafish,

shha (3), pitx3 (4), lhx4 and lhx3 (27) are involved in the determination

of the fate of pituitary precursor cells. Pit1 and six1b are required for

lineage-specific differentiation of the pituitary; the pit1 lineage depends

on pit1 (5), while the non-pit1 lineage depends on the eya1/six1b

protein complex (6). Pituitary precursors differentiate into specific cell

types with markers, including gh (for somatotropes), tshba (for

thyrotropes), cga (for thyrotropes and gonadotropes), prl (for

lactotropes) and pomca (for corticotropes and melanotropes) (28).

Thus, isl2a, isl2b, pituitary cell markers (including shha, pitx3, lhx4,

lhx3, pit1, six1b, gh, prl, tshba, cga, and pomca), and thyroid cell

markers (including tg) were synthesized. All primer sequences are

described in Table S2. All DNA constructs were verified by sequencing.

Embryos were fixed in 4% paraformaldehyde, rinsed in 1×

phosphate-buffered saline with 0.1% Tween® 20 detergent (PBST),

destained in 5% hydrogen peroxide, washed in 25-100% methanol

successively and stored in 100% methanol at -20 °C until needed.

Embryos were rinsed with 75-25% methanol followed by 1× PBST on

the first day of theWISH procedure. Embryos were fixed again with 4%

paraformaldehyde and washed with 1× PBST after being treated with

proteinase K (Sigma) according to the developing stages for

permeabilization. Embryos were hybridized with the RNA probes in

the hybridization mix solution overnight at 68°C. On the second day,

embryos were blocked with 10% fetal bovine serum (Thermo) and

incubated with anti-digoxigenin-alkaline phosphatase Fab fragments

(Roche) overnight at 4°C after being washed with 2× saline sodium

citrate, 0.1% Tween 20 (SSCT)/50% deionized formamide, 2× SSCT

and 0.2× SSCT at 68°C. Embryos were produced on the third day using

5-bromo-4-chloro-3’-indolyphosphate p-toluidine salt (BCIP)/nitro-

blue tetrazolium chloride (NBP) substrate (Roche). Staining was

developed and stopped before the background signals started to appear.
mRNA extraction and qRT-PCR analysis

Total RNA from 3 days post-fertilization (dpf) and 5dpf isl2a+/+,

isl2a+/- and isl2a-/- larvae, was extracted utilizing TRIzol (Ambion,
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Life Technologies). Reverse transcription of total RNA (1ug) to

single-stranded cDNA was carried out using the PrimeScript™ RT

reagent Kit with gDNA Eraser (Perfect Real Time, Takara) and

further diluted 1:10. Next, we use the Quant Studio 12K Flex Real-

Time PCR System (ABI, USA) to perform qRT-PCR. The primer

sequences for real-time detection of target gene mRNA are shown in

Table S3. The reaction mixture, containing diluted cDNA template,

primers, and 2× TB Green Premix (Takara), was amplified under

cycling conditions based on the manufacturer’s protocol. Finally, we

analyzed the generated data using the corresponding software. The

transcripts of all genes were normalized against the housekeeping

genes, such as elongation factor 1-alpha (ef1a) and beta-actin (actb).

To determine the relative levels of mRNA expression between

experimental samples and controls, we used the DDCq method. At

the same time, the data comprising the results were from at least two

separate experiments run in triplicate.
Morphological studies in knockout zebrafish

Daily counts of isl2a+/+, isl2a+/- and isl2a-/- larvae were made, and

notable dysmorphologies such as edema, head, and eye

malformations were checked for. For head, ear, eye and female vent

size measurements, isl2a+/+, isl2a+/-, and isl2a-/- larvae were

anesthetized in 160 mg/L tricaine methane sulfonate (MS222,

Sigma) and positioned in 3% methylcellulose. Lateral images of the

head and the whole body of 3dpf and 5dpf larvae were acquired using

a Research Stereo Microscope SMZ25 equipped with a Microscope

Camera DS-Ri2 (Nikon) and NIS-Elements BR 4.50.00 software.

Measurements were manually performed in a blinded manner using

ImageJ software. Body length from the anterior tip of the snout to the

base of the posterior caudal fin was measured. Heart rate was

measured using 30 second video recordings. The body lengths of 14

dpf, 41 dpf, 77 dpf and 7.5 months post-fertilization (mpf) zebrafish

were measured by a vernier caliper.
Histological analysis of gonadal tissues

To prepare tissue sections, 42 dpf fishes were anesthetized with

160 mg/L tricaine methane sulfonate (MS222, Sigma), and their

gonads were carefully dissected. In this study, gonads from three

fish per group were used for the histological analysis. Samples fixed in

paraformaldehyde were dehydrated in ethanol, cleared in xylene,

embedded in paraffin, cut into 5mm sections, stained with

hematoxylin-eosin and observed under a microscope. The staging

of ovary and testes development was based on the cellular structure

(29, 30).
TUNEL and EdU assays

For immunofluorescence staining, the embryos were fixed with

4% paraformaldehyde, permeabilized with 0.5% Triton X-100, and

blocked with 5% bovine serum albumin. The embryos were then

incubated with primary antibodies against EGFP (1:200; Abcam) at

4°C overnight, followed by incubation with an anti-rabbit IgG
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secondary antibody/Alexa-Fluor 488 (1:500; Life Technologies). After

completion of the immunofluorescence staining, proliferation and

apoptosis were analyzed by EdU and TUNEL assays using a Click-iT

EdU Imaging Kit (Invitrogen) and a One Step TUNEL Apoptosis

Assay Kit (Beyotime) according to the manufacturer’s protocol,

respectively. Finally, the fluorescent signals were detected by

confocal microscopy. The number of EdU- or TUNEL- positive

thyroid cells was calculated by delineating the region of tg

expression using ImageJ software. Stacks were recorded using a 20×

objective plus 2× zoom (Nikon C2+ confocal system; Nikon), and the

images were processed utilizing Adobe Photoshop CS2.
Measurement of hormone levels

Whole-body thyroid hormone levels (T4 and T3), gonadotropic

hormone concentrations (FSH and LH) in gonads were measured using

commercial ELISA kits (Cloud-Clone Corp., Wuhan, China, and ELK

Biotechnology Corp., Wuhan, China, respectively) following the

manufacturer’s instructions (31, 32). The numbers of individuals

used in thyroid hormone levels measurement for the time point of

44dpf was one fish as a sample. The whole gonadal tissues of two fish as

a sample to extract gonadotropic hormone at 42dpf. Briefly, each

sample was completely homogenized by continuous vortex for 1-

2 min at 65 Hz on ice, and centrifuged at 5000 × g for 10 min at 4°

C. Next, supernatants were collected and stored at -80 °C for the

measurement. As for the levels of testosterone and estradiol in the

gonads, a high-performance liquid chromatography System (LC-30A,

SHIMADZU, JAPAN) coupled with a triple quadrupole mass

spectrometer (QTRAP6500, SCIEX, USA) method (HPLC-MS) was

used for multiple reaction monitoring (MRM) analysis (33). The

detection of testosterone (289.2/97.3) was operated in positive mode

and estradiol (271.2/145) in negative mode. The instrument parameters

were as follows: capillary voltage: 5500 V (+)/-4500 (-). MRM

declustering potential, entrance potential, collision energy, collision

cell exit potential were optimized for each metabolite by flow-injection

analysis mode. The sample preparation was performed as follows: the

whole gonadal tissues of around 4 mpf zebrafish were completely

homogenized with 0.4 ml 0.1× phosphate-buffered saline solution, then

centrifugation at 15,000 rpm for 20min at 4°C. The supernatant was

removed, added to a threefold precooled methanol solution, and stored

at -20°C for 30 minutes. Then centrifugation again at 15,000 rpm for

10min at 4°C, the supernatant was removed and blow-dried under

nitrogen, and resuspended in 100ul isopropanol/acetonitrile/water

solution (30:65:5). After centrifugation, the supernatant was

immediately used for hormone analysis.
Statistical analysis

The data of testosterone and estradiol is presented as the mean ±

SEM, other data is presented as the mean ± SD or percentages. For

data failing the normality test, the pairwise statistical significance was

established using Student’s unpaired t-test or Mann-Whitney test,

and multiple comparisons were determined using one-way ANOVA

with Tukey’s test. All statistical analyses were performed using

GraphPad Prism6 software (GraphPad, San Diego, CA, USA). The
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significant differences were shown at * P < 0.05, ** P < 0.01, *** P <

0.001 and **** P < 0.0001.
Results

Zebrafish ISL2 orthologue gene knockout
using CRISPR/Cas9

The zebrafish genome encodes two single ISL2 orthologues (isl2a

has 90.2% identity and isl2b has 89.5% identity at the amino acid level

compared to the human ISL2 protein) with a highly conserved

domain (Figure 1A). To examine potential functional effects of ISL2

loss-of-function in vivo, we generated isl2a and isl2b knockout models

using CRISPR/Cas9 technology in zebrafish. The isl2a-CRISPR-target

site was designed in exon 3 of isl2a, and CRISPR/Cas9-induced

insertions of 13 nucleotides were chosen for further isl2a mutant

line generation and maintenance (Figure 1B). The target site for isl2b

was designed in exon 2 of the gene, and CRISPR/Cas9-induced

deletions of five nucleotides were selected for further generation

and maintenance in the isl2b mutant line (Figure 1C). At 3 dpf,

qRT-PCR analysis validated an almost complete lack of isl2a mRNA

in isl2a-/- larvae and approximately half of the transcript was present

in isl2a+/- larvae, which demonstrates the efficacy of the isl2a

knockout. Both mutants were verified via Sanger sequencing and

were predicted to produce truncated proteins.
Isl2a loss-of-function variant reduces
subtypes of pituitary cells

As we all know, isl2a is expressed in a diffuse anterior area, as well

as in the pineal gland and ventral hindbrain at 24 hpf (Figure 2A).

However, the expression of isl2a was limited to the pineal gland and

subsets of the retinal and otic cells at 48 hpf, with modest expression

in the diencephalon at 48 hpf (Figure 2A). To investigate the potential

effects of ISL2 on HPT axis development, we performed WISH to

analyze the mRNA expression levels of several cell marker genes,

including tshba (encoding the beta subunit of TSH) and tg (encoding

thyroglobulin). Interestingly, the thyrotropes were reduced in isl2a-/-

embryos compared to isl2a+/+ and isl2a+/- embryos with reduced

expression of tshba and cga (encoding alpha subunit of TSH, LH, and

FSH) at 3 dpf (Figure 2B). Somatotropes and lactotropes, on the other

hand, showed no alternations in isl2a-/- embryos, as indicated by the

expression of their corresponding markers, gh and prl, respectively

(Figure 2B). In addition, no significant difference in corticotropes and

melanotropes among the isl2a+/+, isl2a+/- and isl2a-/- embryos was

observed, as indicated by pomca expression (Figure 2B). Similarly,

tshba, cga, and tg transcript levels in isl2a-/- embryos were reduced to

8.62%, 10.50%, and 71.00% of the levels in isl2a+/+ embryos,

respectively, according to qRT-PCR analyses (Figure 2C).

For isl2b, it is expressed in zebrafish several structures, including

midbrain, hindbrain and pharyngeal arch at 24 hpf, and retinal, one

endoderm primordium, and branchial arches at 48 hpf (Figure S1A).

No significant differences in tshba or tg transcription levels were

found among the isl2b+/+, isl2b+/- and isl2b-/- embryos (Figure S1B).

Interestingly, we found genetic compensation in the isl2b mutants.
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Compared to isl2b+/+ embryos, the expression of isl2a in isl2b+/- and

isl2b-/- embryos were significantly increased by 26.81% and 51.56%,

respectively (Figure S1C). Genetic compensation may contribute to

the lack of differential expression of the tshba and tg transcripts.

Furthermore, in the offspring of isl2a+/-isl2b+/- mating, we found

reduced tshba and cga transcripts in isl2a-/- zebrafish, but no

phenotype in isl2b-/- zebrafish (Figure S1D).

We next investigated early pituitary development. As shown in

Figure 2D, the overall size of the pituitary, as analyzed by shha, pitx3,

lhx3, and lhx4 expression, was not affected in isl2a mutants at 24 hpf.

These results suggest that overall cell numbers in isl2a mutants were

normal, indicating that isl2a is not necessary for early development of

the pituitary. To investigate early cell fate specification in the pituitary

of isl2amutants, the expression levels of pit1 and six1b were analyzed.

There were no noticeable variations in pit1 or six1b expression in isl2a

mutants at 48 hpf compared to controls (Figure 2D). Thus, these

findings suggest that isl2a wasn’t essential for the early formation of

the pituitary or for the specification of pit1 and non-pit1 lineages.
Effects of low TSH level on thyroid
morphology and function

As shown in Figure 3A, the expression levels of tg were reduced in

isl2a-/- eymbryos compared to control embryos both at 3 dpf and 5

dpf, and the trendline of change was similar to that of tshba. Notably,

isl2a-/- larvae at 5dpf presented reduced mRNA expression of tshba,

cga, tg and two other thyroid markers (tpo and slc5a5) as shown in

Figure 3B. As detected by WISH, isl2a-/- larvae present with thyroid

hypoplasia. To determine whether the thyroaplasia was due to low

TSH level through the pituitary-thyroid axis, we further investigated

the mRNA level of thyroid primordium markers (nkx2.1 and pax2a)
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at 48 hpf when the activating effect of TSH has not yet been fully

established. Mutants presented no significant reduction of both early

development marker transcripts compared to controls (data not

shown), indicating that isl2a knockout does not directly affect the

development of thyroid primordium.

To further elucidate the involved mechanisms, we analyzed cell

proliferation and apoptotic markers in thyroid cells expressing tg.

Consistent with previously published data reporting that thyrotropin

stimulates the proliferation of thyroid cells in vivo (34), there were

significantly fewer EdU-positive cell fragments within the tg domain

in 120 hpf isl2a-/- zebrafish’s thyroids (P < 0.05, Student’s t-test)

compared to isl2a +/+zebrafish, and no statistically relevant difference

was observed in TUNEL-positive cell fragments in 127 hpf larvae

(Figures 3C, D). Overall, these findings suggest that loss of isl2a

expression impairs zebrafish pituitary development and that

thyroaplasia may be induced by low TSH levels through

reducing proliferation.

Because thyrotropes defects in isl2a mutants during early

pituitary development should influence HPT axis function in

adults, we used ELISA to compare the whole-body contents of

thyroid hormones (THs) in isl2a-/- and isl2a+/+ adults. Whole body

contents of T4 and T3 in isl2a-/- zebrafish at 44 dpf were significantly

lower than those in isl2a+/+ zebrafish (Figure 3D), indicating that isl2a

knockout affects thyroid function.
Developmental phenotype of isl2a mutants

The surviving F3 isl2a-/- embryos were brought to adulthood. In

addition to development and growth, we observed a low survival ratio

in isl2a-/- individuals. Compared to wild-type fish (86.8% at 7.5 hpf

and 84.9% at 24 hpf, n = 159), the survival ratio of isl2a-/- embryos was
A

B C

FIGURE 1

Generation of isl2a and isl2b knockout zebrafish utilizing CRISPR-Cas9 technology. (A) Amino acid identity between zebrafish and human ISL2 proteins
was performed using UCSC Blat software. (B) The isl2a-CRISPR-target site (black bold words) was designed in exon3 of isl2a and the CRISPR/Cas9-
induced insertion of 13 nucleotides (red words) was selected for further investigation. (C) In the case of isl2b, the CRISPR-target site (bold words) was
designed in exon2, and the induced deletion of five nucleotides (red words) was selected for further investigation. Genotypes, including wild-type and
homozygotes, were analyzed and shown in the bottom panel. Both genotypes were predicted to produce truncated proteins.
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86.9% at 7.5 hpf and 55.0% at 24 hpf (n = 253) (Figure 4A). Absence

of isl2a led to premature death between 0 and 36 hpf, suggesting an

essential role for isl2a in survival. The female to male ratios were

28.6%, 23.8%, and 16.7% in isl2a+/+, isl2a+/-, and isl2a-/-

adults (Figure 4B).

Several development indicators, including body length, heart rate,

eye size, and ear size, showed no significant difference between isl2a-/-

zebrafish and their isl2a+/+ and isl2a+/- siblings at 5 dpf (Figure 4D),

whereas three diameter lines of the skull showed statistically

differences between different groups at 5 dpf (Figure 4E). A severe

short body length was observed in isl2a-/- larvae from 14 dpf onwards,

which progressed during the time course. Measurements taken from

different body lengths of isl2a-/- individuals identified significant

reductions at 14 dpf, and the reductions were more apparent at 41
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dpf when the body size was smaller compared to isl2a+/+ and isl2a+/-

siblings, with differences visible to the naked eye (Figures 4C, F). At 77

dpf, the differences in body length between groups were further

enhanced, but the differences disappeared at 7.5 mpf (Figure 4F).

In order to determine the effect of low expression levels of cga or

low thyroid hormones on gonad development between wild-type and

isl2a mutants, gonads were dissected to extract gonadotropin and

steroid hormones, and to conduct histological analyses. Surprisingly,

the FSH levels in isl2a-/- zebrafish gonads were significantly higher

than their isl2a+/+ and isl2a+/- siblings at 42 dpf (Figure S2A).

However, no significant difference in the LH levels between the

three groups (Figure S2B). Histological sections of 42dpf isl2a-/- and

isl2a+/+ zebrafish both showed ovary or testis (Figure S2C). Moreover,

the histological structures of the gonadal tissues were more immature
A
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FIGURE 2

Effect of isl2a knockout on the expression of genes involved in pituitary development via whole-mount in situ hybridization. (A) Spatiotemporal expression
patterns of isl2a by whole-mount RNA in situ hybridization at 24 and 48 hpf. Scale bars = 100 µm/50 µm. Asterisks (*) indicate the position of midbrain-
hindbrain boundary. p, pineal gland; r, retinal; ov, otic vesicle; d, diencephalon. (B) Knockout of isl2a resulted in reduced tshba and cga expression, while the
expression of pomca, prl, and gh was not changed in larvae at 3 dpf. Pituitary precursors differentiate into specific cell types with markers, including gh (for
somatotropes), tshba (for thyrotropes), cga (for thyrotropes and gonadotropes), prl (for lactotropes), and pomca (for corticotropes and melanotropes). All
images are dorsal views with the head pointing towards the left. Scale bar = 50 µm. Numbers indicate the ratio of embryos with the shown phenotype.
(C) qRT-PCR analysis demonstrates the expression of total tg, tshba and cga in isl2a+/+, isl2a+/− and isl2a−/− larvae at 3 dpf. Data is represented as mean ± SD
(n = 5, 15 fish per tube). *P<0.05, **P<0.01, ****P<0.001. (D) Ventral views of embryos at 24 hpf show no differences in shha, pitx3, lhx3 and lhx4 expression
in isl2a mutants. Dorsal views of embryos at 48 hpf show no difference in gene expression, indicating specification of pit-1 lineage (pit1, for somatotropes,
thyrotropes, and lactotropes) or non-pit-1 lineage (six1b for corticotropes, gonadotropes, and melanotropes). Thus, pituitary induction and lineage
specification were unaffected in isl2a mutants. Scale bar = 100 µm. The black triangle indicates gene expression in the adenohypophyseal placode.
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in the isl2a-/- zebrafish, when compared to that in wild-type zebrafish.

Surprisingly, no significant difference was obtained from the levels of

testosterone and estradiol between isl2a-/- and isl2a+/+ zebrafish at

around 4mpf (Figures S3A, S3B). As for secondary sex characteristics

of the isl2a-/- zebrafish, we observed a decrease in vent size in isl2a-/-

female zebrafish at 77dpf compared to that in wild-type female

zebrafish (Figures S3C, S3D).
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Discussion

In the present study, the expression patterns and functional roles of

ISL2 orthologues (isl2a and isl2b) in zebrafish were characterized. Using

the CRISPR-Cas9 knockout strategy, we discovered that the

homozygous variant of isl2a caused pituitary and thyroid

developmental defects during embryogenesis with reduced expression
A B

DC

FIGURE 3

Isl2a mutants show reduced thyroid function. (A) The assessment of tg expression in isl2a mutants at 3 dpf and 5 dpf via whole-mount in situ
hybridization. At 5 dpf, isl2a-/- zebrafish had lower expression of tg and tshba as denoted by black arrows and arrowhead, respectively. Scale bar = 50
µm. (B) qRT-PCR analysis of the total expression of tg, slc5a5, tpo, tshba, and cga in isl2a+/+ and isl2a-/- larvae at 5 dpf. Error bars represent ± SD (n = 5,
15 fish per tube). (C) Both EGFP (green) and EdU immunoreactivity (red) were present in the thyroid of 120 hpf Tg (tg:egfp) wild-type (n = 7) larvae,
whereas nearly no EdU-positive cells were detected within the tg domain in isl2a-/- larvae (n = 6). There were also no TUNEL-positive cells (red) in the tg
domain at 127 hpf. Scale bar = 500 µm. (D) Thyroxine (T4) and 3,5,3′-triiodothyronine (T3) levels in the zebrafish body at 44 dpf. Error bars represent ±
SD (n = 4). Asterisks indicate significant differences between isl2a+/+ and isl2a-/- groups (*P < 0.05, **P < 0.01).
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FIGURE 4

Growth retardation in isl2a knockout zebrafish. (A) The Kaplan-Meier survival curve of isl2a+/+ (n = 159), isl2a+/− (n = 173), and isl2a−/− (n = 253) larvae shows
differences. (B) Male/female ratios in isl2a+/+ (male/female = 20/6), isl2a+/− (male/female = 42/10), and isl2a−/− (male/female = 18/3). (C) The isl2a variant
caused significant growth defects in 41 dpf zebrafish adults. Scale bar = 1 mm. (D) Comparison of developmental indicators, including body length, heart
rate, eye size, and ear size, among isl2a-/-, isl2a+/+ and isl2a+/- siblings at 5 dpf. (E) Comparison of three diameter lines of skull among different groups at 5
dpf. (F) Dynamic tracking of the body length of isl2a-/- individuals and their isl2a+/+ and isl2a+/- siblings at 14 dpf, 41 dpf, 77 dpf, and 7.5 mpf. *P<0.05,
**P<0.01, ***P<0.001, ****P<0.0001.
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levels of tshba, cga, and tg. Interestingly, no significant differences in

isl2b mutants suggested that the low rate of overt phenotypes observed

in the zebrafish may be explained by genetic compensation for the

effects of loss-of-function variants (35, 36). Moreover, the significantly

fewer thyrotrope cells in the pituitary compared to controls as well as

the low T3 and T4 levels in isl2a homozygous zebrafish were also

consistent with central hypothyroidism.

The phenotype of isl2a null zebrafish indicates that ISL2 is

involved in thyrotrope development similar to ISL1, which is

enrichment in thyrotrope lineages in human fetal pituitaries (7) as

well as involved in thyrotrope development (12). We hypothesized

that ISL2 and ISL1 may exert some redundancy in differentiating the

pituitary. As we all know, Lhx3 and Lhx4 as well as Isl1 and Isl2 are

two such paralogous pairs (37). Lhx3 and Isl1 interact inside a well-

characterized transcriptional complex that regulates motor neuron

development. Indeed, the lack of thyrotropes in Lhx3 null mice may

be due to a delay in Isl1 expression (12). Interestingly, there is also a

Lhx3-binding domain in Isl2 (38). Taken together, we suppose that

ISL2 may form a transcriptional complex with LHX3 to participate in

pituitary development. Besides ISL1, several transcription factors,

including POU1F1, GATA2, and PITX2, are also required for

thyrotrope differentiation (2). Whether ISL2 acts as a novel

regulatory factor or depends on these transcription factors to

function in the specification of thyrotropes deserves further study.

Our results agreed with the previous studies on the role of TSH-

TSH receptor (TSHR) signaling during thyroid morphogenesis in

zebrafish. Knockdown of tshr function by morpholino microinjection

into embryos causes defects in thyroid later functional differentiation

rather than affects early morphogenesis (18). TSH plays an important

role in thyroid development by activating the G-protein-coupled

TSHR on the surface of the thyroid, but it occurs later than the

thyroid primordium development process (39, 40). Taking advantage

of this time lag in development, we confirmed that thyroid

morphology and function in isl2a-/- zebrafish are impacted by low

TSH levels rather than abnormal thyroid primordium development.

Moreover, we found that thyroid hypoplasia is caused by

defective thyrotropes through the proliferation pathway. In

zebrafish, the pomca-expressing cells in the ventral diencephalon

are hypothalamic and belong to the arcuate nucleus (41). Due to

the distribution of pomca-expressing cells in the pituitary and

hypothalamus without a significant difference among isl2a groups,

we presume that hypothalamic development is unaffected. Moreover,

the role of the thyrotropin releasing hormone in the regulation of

TSH release in zebrafish is less well established. Thus, the possibility

of hypothalamic defects or releasing factors secretion contributing to

the phenotypes is little.

We discovered that isl2a-/- zebrafish showed growth retardation

during the juvenile stage but reached normal size during adult stage

(7.5 mpf) like their control siblings. Significantly, this phenotype is

commonly observed in mutant zebrafish with defects in TH

signaling, including thyroglobulin (tg), dual oxidase (duox), and

thyroid-stimulating hormone subunit beta a (tshba) mutants (44,

42). Compared with the infertility observed in the homozygous

tshba mutants (44), there were much less severe reproduction

defects in our isl2a-/- fish, just with increased early mortality in

embryos. This is due to residual TSH signaling left in the isl2a
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mutants being functional. Nevertheless, decreased TH or TSH

signaling cannot fully account for the gender imbalance in

our isl2a mutants. In previous studies, it was demonstrated that

the levels of testosterone were critical to the secondary sex

characteristics development (43). Notably, the expression of cga,

which encodes the a- protein subunits shared by TSH and

gonadotrophins, significantly decreased in isl2a mutants. The

increased proportion of males in isl2a mutants is probably

attributed to abnormal gonadotrope development and function. In

this study, we analyzed gonadal histology and gonadotropin and

steroid hormones concentrations. We observed that FSH

concentrations were higher in 42 dpf isl2a-/- zebrafish than their

isl2a+/+ and isl2a+/- siblings, although the gonadal development is

delayed. However, the levels of testosterone and estradiol in isl2a-/-

were not decreased compared to that in isl2a+/+ zebrafish at around

4 mpf. Thus, the maturation of gonads in the tshbamutants was not

totally affected in isl2a-/- zebrafish, but the morphologic

development of gonad was delayed due to growth retardation

during the juvenile stage. Moreover, the defective development of

secondary sex characteristics was observed in isl2a-/- zebrafish at

77dpf, caused by impaired TSH signaling in zebrafish as previously

reported (32).

The present study has several limitations. First, although

downregulation of isl2a in zebrafish embryos resulted in HPT axis

developmental abnormalities, the mechanisms were not fully

elucidated in this study. Further experiments are needed to better

understand the molecular events linking this specific regulation of

ISL2 in the HPT axis. Second, the present study did not further

explore the impact of isl2a on gonadotropes due to the limitation of

few homozygotes. Further validations in older adult zebrafish are

necessary. Due to the limited data in this study, it is crucial to evaluate

the results carefully, especially because the phenotype was subtle.

Third, there are inevitable species differences between knockout

zebrafish models and humans. Homozygous or compound

heterozygous ISL2 mutations in central hypothyroidism patients

have not been detected thus far. Finally, the possibility of the off-

target effect in CRISPR-Cas9 applications has not been completely

eliminated in our study, albeit we chose a high-scoring guide RNA for

our intended target with the silico tool. Despite these limitations, we

established the utility of this technique as a tool for human cell

biology in pituitary development and disease.

In conclusion, we propose that ISL2 is important for embryonic

pituitary development. In particular, our findings provide insight into

the specific regulation of ISL2 during the terminal differentiation of

the pituitary from the lineage cells to thyrotropes. Moreover, isl2a-/-

zebrafish could be used as an alternative in vivo model for studying

the underlying mechanisms of hypothyroidism diseases and

high-throughput screening of potential drugs for treating

central hypothyroidism.
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SUPPLEMENTARY FIGURE 1

Expression patterns of isl2b in zebrafish and no hypothalamus-pituitary-thyroid
axis phenotype in mutants. (A) Spatiotemporal expression patterns of isl2b by

WISH at 24 and 48 hpf. At 24 hpf, small black arrows indicate the position of in

situ hybridization high signals in the midbrain, hindbrain and pharyngeal arch. At
48 hpf, small black arrows indicate the position of high signals in the hindbrain,

one endoderm primordium, and branchial arches. Besides, cells in retinal (r) also
showed high signals. Scale bars = 200 µm/100 µm. (B) Compared to their wild-

type and heterozygous siblings, the expression levels of tshba and cga were
unchanged in the isl2b mutants. Scale bar = 50 µm. (C) Relative levels of isl2a

transcripts in each isl2b genotype group according to qRT-PCR analysis. Error

bars represent ± SD (n = 5). (D) Expression levels of tshba and cga in isl2a and
isl2b knockout larvae. Scale bar = 50 µm.

SUPPLEMENTARY FIGURE 2

Gonadotropic hormone concentrations and histological analysis of gonads in
isl2a knockout zebrafish. (A, B) Follicle-stimulating hormone (FSH) and

Luteinizing hormone (LH) concentrations in the zebrafish gonads at 42 dpf.

Error bars represent ± SD (n = 5, n= 6, n= 4 in isl2a+/+, isl2a+/-, and isl2a-/-,
respectively). Asterisks indicate significant differences between groups (** P <

0.01). (C) Representative histological sections of gonads from isl2a-/- and isl2a+/
+ zebrafish at 42 dpf by hematoxylin-eosin staining. The gonad can be identified

as an ovary by the presence of cortical alveolar oocytes (indicating black arrows)
and perinucleolar oocytes (indicating black asterisks). The testis was identified

by the presence of lumina filled with sperm, by the clustered organisation

(spermatocysts), and by the clusters of spermatogonia. Scale bar = 25 µm.

SUPPLEMENTARY FIGURE 3

The levels of gonadal hormones (testosterone and estradiol) and changes in

secondary sex characteristics in isl2a-/- zebrafish. (A) Quantitative analysis of
whole-gonad testosterone contents in isl2a-/- zebrafish (6 males and 5 females)

their wild-type siblings (6 males and 6 females) at 4 mpf by HPLC-MS in positive

ion mode. Error bars represent ± SEM. (B) Semiquantitative analysis of whole-
gonad estradiol contents in isl2a-/- zebrafish (6 males and 5 females) and their

wild-type siblings (6 males and 6 females) at 4 mpf by HPLC-MS in negative ion
mode. Error bars represent ± SEM. (C, D) Representative female vent in isl2a-/-

and isl2a+/zebrafish at 77 dpf. Red asterisks indicate the vent anterior to the anal
fin. Scale bar = 100 µm. * P < 0.05.
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Circulating follistatin
concentrations in adolescent
PCOS: Divergent effects of
randomized treatments

Marta Dı́az1,2, Francis de Zegher3 and Lourdes Ibáñez1,2*

1Endocrinology Department, Institut de Recerca Sant Joan de Déu, University of Barcelona,
Barcelona, Spain, 2Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas
Asociadas, Instituto de Salud Carlos III, Madrid, Spain, 3University of Leuven, Leuven, Belgium
Purpose: Follistatin is a glycoprotein that represses members of the transforming

growth factor-b superfamily including activin. Higher follistatin levels have been

associated with an increased risk for type 2 diabetes and with polycystic ovary

syndrome (PCOS). In non-obese adolescent girls with PCOS, insulin sensitization

results in a healthier endocrine-metabolic outcome than oral contraception (OC);

we assessed whether those differences are underscored by changes in serum

follistatin concentrations.

Methods: Circulating follistatin, endocrine-metabolic markers and hepato-visceral

fat were measured longitudinally in 72 girls with PCOS [age, 16 years; body mass

index (BMI), 23 Kg/m2] randomized to receive PioFluMet [pioglitazone (7.5 mg/d),

metformin (850 mg/d) and flutamide (62.5 mg/d), n=17]; EE-CA [an OC containing

35 µg ethinylestradiol (EE) and 2 mg cyproterone acetate (CA), n=17]; SPIOMET

[Spironolactone (50 mg/d), pioglitazone (7.5 mg/d) and metformin (850 mg/d),

n=18], or EE-LNG [an OC containing 20 µg EE and 100 mg levonorgestrel (LNG),

n=20]. Twenty-eight age- and BMI-matched healthy girls served as controls.

Results: Pre-treatment follistatin levels were similar in PCOS and controls. OCs

raised serum follistatin after 6 months (6.8-fold vs 2.5-fold for EE-CA and EE-LNG,

respectively). Neither SPIOMET nor PioFluMet changed follistatin levels. Follistatin

correlated negatively with high-molecular weight adiponectin and positively with

mean serum insulin concentrations during an oral glucose tolerance test at

baseline, and with liver fat after 6 months.

Conclusion: In girls with PCOS, follistatin levels rise significantly after 6 months on

OCs and this increase associates to a worsening of markers of insulin resistance

and to changes in liver fat.
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1 Introduction

Adolescent polycystic ovary syndrome (PCOS) is a common

endocrine disorder hallmarked by clinical and biochemical

androgen excess and irregular menses. PCOS appears to be driven

by ectopic lipid accumulation specially in the liver that essentially

originates from a mismatch between (reduced) prenatal adipogenesis

and (augmented) postnatal lipogenesis, resulting in central obesity,

insulin resistance, non-alcoholic fatty liver disease (NAFLD), and

low-grade inflammation (1). There is no approved therapy for PCOS,

but girls are commonly treated with oral contraceptives (OCs), even if

not at pregnancy risk. OCs revert the signs and symptoms of

androgen excess but fail to address the core problem, and upon

treatment discontinuation, there is a rebound of hyperandrogenism

and oligo‐anovulation. An alternative approach under investigation

are the low-dose combinations of insulin sensitizers and anti-

androgens with additive effects that switch ectopic fat to eutopic

depots, thereby normalizing ovarian function and potentially

reducing the risk of long-term co-morbidities. We performed three

pilot studies in non-obese girls with PCOS comparing the effects of

such combinations with those of OCs. In the first clinical trial

(ISRCTN45546616), girls were randomized to receive for one year a

low-dose combination of two insulin sensitizers [pioglitazone (7.5

mg/d), and metformin (850 mg/d)] and one anti-androgen [flutamide

(62.5 mg/d)] (PioFluMet), or an OC containing ethinylestradiol-

cyproterone acetate [EE-CA; 35 µg of EE plus 2 mg of CA for 21/

28 d, placebo for 7/28 d; Diane 35 Diario®, Bayer-Schering, Madrid,

Spain]. Both treatments decreased similarly androgen excess, but

PioFluMet had more benefits on cardiometabolic parameters and

adipose tissue expression of genes related to inflammation, fat

accretion and lipoprotein metabolism (2, 3). In the other two

studies (ISRCTN29234515 and ISRCTN11062950), girls were

randomized to receive for one year a low-dose combination of

spironolactone (50 mg/d), pioglitazone (7.5 mg/d), and metformin

(850 mg/d) (SPIOMET) or an OC containing EE-levonorgestrel [EE-

LNG; 20 µg of EE plus 100 mg of LNG for 21/28 d, placebo for 7/28 d;

Loette Diario®, Pfizer, Madrid, Spain] (4, 5). The pooled results of

these two studies disclosed that SPIOMET intervention is followed by

a healthier metabolic status [less insulin resistance and C-reactive

protein (CRP) concentrations, less hepato-visceral fat, and higher

high-molecular-weight (HMW) adiponectin], and by more

ovulations than treatment with OCs (5).

Follistatin was initially identified in and isolated from follicular

fluid based on its inhibition of pituitary FSH secretion (6). Later on,

follistatin was characterized as a reproductive hormone inhibiting the

secretion of members of the transforming growth factor (TGF)-b
family of proteins, including activin and inhibin, and as an

enhancer of muscle mass through the inhibition of myostatin (7).

In humans, follistatin derives mainly from the liver and augmented

follistatin levels have been associated with an increased risk for type 2

diabetes, independently of established risk markers (8). Recently,

follistatin has been considered to play a role in the etiology of

PCOS, as women diagnosed with this disorder depict increased

follistatin concentrations versus controls, independently of body

mass index (BMI) (9, 10). However, those studies were conducted

in adult women with a wide age-range diagnosed with PCOS using
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heterogeneous criteria. Here, we assessed whether the divergent

metabolic effects of OCs and low-dose PioFluMet or SPIOMET in

adolescent girls with PCOS over the first 6 months of treatment

associate to changes in circulating follistatin levels.
2 Materials and methods

2.1 Study design

The study population consisted of 72 non-obese adolescent girls

with PCOS belonging to the above described clinical trials [n=17 and

n=17 receiving PioFluMet and EE-CA respectively; n=18 and n=20

receving SPIOMET and EE-LNG respectively); mean age, 16 years;

mean BMI, 23 kg/m2; all of them were at last 2 years beyond

menarche. The gir ls were recruited in the Adolescent

Endocrinology Unit of Sant Joan de Déu University Hospital,

Barcelona, Spain. Randomization was performed with the

SealedEnvelop program (Sealed Envelop Ltd., London, UK) (http://

www.SealedEnvelop.com), using random permuted blocks with strata

for age and BMI (10).The inclusion criteria were (2–5): 1) hirsutism

(score > 8 on Ferriman-Gallwey scale); 2) amenorrhea (no menses for

more than 3 months) or oligomenorrhea (menstrual intervals >45

days); 3) absence of sexual activity throughout the study duration

(and thus, no need for contraception). Exclusion criteria were: 21‐

hydroxylase deficiency; glucose intolerance or diabetes; evidence of

thyroid, liver, or kidney dysfunction; hyperprolactinemia; and prior

use of medications affecting gonadal/adrenal function, or

carbohydrate/lipid metabolism.

Twenty-eight age- and BMI-matched healthy girls recruited from

nearby schools served as controls. All had regular cycles, were non-

hirsute, and had normal serum glucose, lipids and androgens.

The PioFluMet study (ISRCTN45546616) and both SPIOMET

studies (ISRCTN29234515 and ISRCTN11062950) were conducted

after approval by the Institutional Review Board of Sant Joan de Déu

University Hospital, after written consent by parents, and assent by

each of the study girls, including the healthy controls who allowed to

derive indicative values.
2.2 Assessments

Height and weight were measured and BMI calculated. Blood

samples were obtained-in the follicular phase or after 2 months of

amenorrhea- in the morning after an overnight fast. Serum glucose

was measured by the glucose oxidase method. Insulin, testosterone

and sex hormone binding globulin (SHBG) were assayed by

immunochemiluminiscence (DPC IMMULITE 2500, Siemens,

Erlangen, Germany); intra- and inter-assay coefficients of variation

(CVs) were <10%; HDL-cholesterol, LDL-cholesterol and

triglycerides were assessed by an enzymatic method and C-reactive

protein (CRP) was measured with a hightly sensitive method

(Architect c8000 autoanalyzer, Abbott laboratories, North Chicago,

IL). Homeostasis model assessment for insulin resistance (HOMA-

IR) was calculated as fasting insulin (mU/L) x fasting glucose (mmol/

L)/22.5.
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Circulating follistatin and HMW-adiponectin were measured by

specific ELISAs (R&D Systems, Minneapolis, USA) with intra- and

inter-assay CVs <9% for both assays.

Abdominal fat partitioning (subcutaneous and visceral fat areas) as

well as liver fat were assessed by magnetic resonance imaging (MRI)

using a multiple-slice MRI 1.5 Tesla scan (Signa LX Echo Speed Plus

Excite, General Electric, Milwaukee, WI), as reported (2–4).
2.3 Statistics

Statistical analysis were performed with GraphPad Prism 6.01.

Results are expressed as mean ± SEM. Variables were checked for

normality using the Kolmogorov–Smirnov test prior to analyses.

Comparisons within groups were performed using paired t-test. For

between groups differences, unpaired t-test or Man-Whitney U

test were used for normally distributed or nonparametric

variables, respectively.

Correlation analysis was used to study the associations between

follistatin concentrations and auxological, endocrine-metabolic, and

body composition parameters. Three outliers were identified by the

interquartile range method; correlations are presented for n=69 out of

72 girls. The level of significance was set at p< 0.05.
3 Results

Both PioFluMet and SPIOMET reduced androgen excess within

6 months towards normal, similarly to EE-CA or EE-LNG.

However, only treatment with PioFluMet or SPIOMET -but not

with OCs- reduced both the hepatic fat excess and insulin

resistance (Table 1).

Pre-treatment follistatin levels were similar in girls with PCOS

and in controls (0.7 ± 0.1 ng/mL in both subgroups). OCs

significantly raised serum follistatin after 6 months; this increase

was higher with EE-CA than with EE-LNG (6.8-fold vs 2.5-fold versus

baseline; p<0.0006 and p<0.003, respectively). Neither SPIOMET nor

PioFluMet had effects on follistatin levels (Table 1).

At baseline, circulating follistatin correlated negatively with

HMW-adiponectin (r=-0.316, p=0.009) and positively with mean

insulin levels during an oral glucose tolerance test (OGTT; r=

0.303, p= 0.012) [Figures 1A, B]. Pre-treatment liver fat was not

related to follistatin levels; however, after 6 months on treatment, liver

fat directly and significantly associated with serum follistatin

[Figures 1C, D)].
4 Discussion

To our knowledge this is the first longitudinal study

comparing the effects of OCs vs insulin sensitization on

circulating follistatin levels in non-obese adolescent girls with

PCOS. Our results disclose that follistatin concentrations

increase with OC therapy but remain unchanged with PioFluMet

or SPIOMET combinations.

Girls with PCOS and without obesity showed similar serum

follistatin concentrations as compared to age- and BMI-matched
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TABLE 1 Continued

tradiol-
eacetate
N=17)]

Pioglitazone-Flutamide-
Metformin

[PioFluMet (N=17)]

Ethinylestradiol-
Levonorgestrel
[EE-LNG (N=20)]

Spironolactone-Pioglitazone-
Metformin

[SPIOMET (N=18)]

o D 0-6 mo Baseline 6 mo D 0-6 mo Baseline 6 mo D 0-6 mo Baseline 6 mo D 0-6 mo

5c 21 ± 5 80 ± 5 82 ± 3 2 ± 3e 90 ± 3 105 ± 5c 15 ± 4 84 ± 6 84 ± 5 0 ± 3e

3c 11 ± 2 56 ± 3 57 ± 2 1 ± 2f 51 ± 2 52 ± 3 1 ± 2 51 ± 2 54 ± 2a 3 ± 1

20b 41 ± 21 65 ± 11 67 ± 6 1 ± 7 58 ± 5 65 ± 6 7 ± 5 59 ± 5 58 ± 4 -1 ± 5

0.3a 0.8 ± 0.3 1.0 ± 0.2 0.4 ± 0.1b -0.6 ± 0.2f 1.4 ± 0.3 2.4 ± 0.5a 1.0 ± 0.4 1.4 ± 0.4 0.5 ± 0.1a -0.9 ± 0.4e

1a -5 ± 2 11 ± 2 18 ± 1c 7 ± 2f 6 ± 1 9 ± 2 3 ± 2 6 ± 1 15 ± 2a 9 ± 2

0.8c 3.3 ± 0.8 0.4 ± 0.1 0.5 ± 0.1 0.1 ± 0.1f 0.8 ± 0.1 2.0 ± 0.4b 1.2 ± 0.4 1.1 ± 0.3 1.0 ± 0.1 -0.1 ± 0.3e

18a 15 ± 7 127 ± 13 123 ± 14 -4 ± 6d 193 ± 26 195 ± 25 2 ± 8 152 ± 17 147 ± 17 -5 ± 6

2 3 ± 2 36 ± 3 31 ± 2b -5 ± 2e 40 ± 4 41 ± 4 1 ± 2 39 ± 3 35 ± 2 -4 ± 3

1.5 1.9 ± 1.5 15.1 ± 1.5
10.1 ±
1.2b

-5.0 ± 1.7e 16.3 ± 1.5
20.1 ±
1.6a

3.8 ± 1.5 17.2 ± 1.3
11.0 ±
1.1c

-6.2 ± 1.0f

ormone-binding globulin; FAI, free androgen index; HOMA-IR, homeostasis model assessment insulin resistance; HMW, high-molecular weight.

bgroup for 0-6 mo changes (D).
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[EE-CA

Controls
(N=28)

PCOS
(N=73) Baseline 6 m

LDL-cholesterol (mg/dL) 83 ± 4 84 ± 2 81 ± 3 102 ±

HDL-cholesterol (mg/dL) 53 ± 2 52 ± 1 50 ± 2 61 ±

Triglycerides (mg/dL) 53 ± 3 67 ± 6 89 ± 20 130 ±

C-Reactive Protein (mg/L) 0.7 ± 0.2 1.2 ± 0.1* 0.9 ± 0.2 1.7 ±

HMW adiponectin (mg/L) 10 ± 1 9 ± 1 16 ± 3 11 ±

Follistatin (ng/mL) 0.7 ± 0.1 0.7 ± 0.1 0.6 ± 0.2 3.9 ±

MRI subcutaneous Fat
(cm2)

98 ± 22 152 ± 10 130 ± 16 145 ±

Visceral Fat (cm2) 29 ± 3 37 ± 2 32 ± 2 35 ±

Liver fat (%) 11.5 ± 2.8 16.4 ± 0.7 17.0 ± 1.6 18.9 ±

Values are mean ± SEM. MRI, magnetic resonance imaging; BMI, bone mineral density; SHBG, sex h
*p <0.05, **p<0.01 and ***p≤0.0001 between PCOS at start and healthy control girls.
ap <0.05, b p≤0.01 and cp ≤0.001 within subgroups for 0-6 mo change (D).
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healthy girls, in contrast to previously reported data (9, 10). However,

those dissimilar data should be interpreted with caution, because in

the meta-analysis performed pooling the results of eight studies

comparing follistatin levels in women with PCOS and in healthy

controls with a wide range of age and BMI, the association between

follistatin and PCOS could vary when the average age difference

between PCOS patients and controls was very wide (10). Also, in

patients with nonalcoholic simple steatosis – which is common in

PCOS- follistatin levels were found to be comparable to those of

healthy controls regardless of BMI (11).

Overall, our data agree with previous studies showing a raise in

follistatin concentrations after treatment with OCs containing

different combinations of estroprogestagens (12, 13). Here, we

report for the first time that the increase in follistatin levels is

less pronounced when the OC contains LNG as progestagen instead

of CA, and that low-dose combinations of insulin sensitizers

and anti-androgens such as PioFluMet and SPIOMET that

improve metabolic health in adolescent PCOS, have no effects on

circulating follistatin. To our knowledge, there are no other studies

directly comparing the effects of different OC combinations or the

effects of new progestagens like dienogest on follistatin

concentrations. Although the increase in follistatin levels may be

attributted to increased hepatocyte secretion, those studies might

unveil the existence of additional pathways through which estro-

progestagens can induce elevations of follistatin.

In our population of girls with PCOS, follistatin associated

positively with mean serum insulin concentrations during an

OGTT and with liver fat. These findings agree with a previous

report showing that the rise in follistatin levels is capable of

inducing adipose tissue insulin resistance and thus could increase

the risk for type 2 diabetes (8). On the other hand, the inverse
Frontiers in Endocrinology 75
association found between circulating follistatin and HMW-

adiponectin - an adipokine with insulin-sensitizing and cardio-

protective properties (5), is in alignment with the inhibitory effect

of HMW-adiponectin on hepatic follistatin secretion (14).

Limitations of the present study include the relative small number

of patients allocated to each intervention and the lack of follistatin

results during the period off intervention. The strengths include the

longitudinal design, the homogenity of the study population and the

assessment of two different interventions with insulin sensitizing

therapies (PioFluMet and SPIOMET), and with OCs as well (EE-

CA and EE-LNG); i.e., with two approaches with divergent effects on

metabolic health.

In conclusion, in girls with PCOS, follistatin levels rise

significantly after 6 months on OCs and this increase associates to a

worsening of markers of insulin resistance and to the changes in

ectopic fat depots, specifically in liver fat.
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FIGURE 1

Bivariate correlations between circulating follistatin and, respectively, HMW-adiponectin and mean insulin concentration during an oral glucose tolerance
test at baseline [panels (A) and (B)], and liver fat at baseline and after 6 months on treatment [panels (C) and (D)], in adolescent girls with PCOS (N=69),
randomized to receive PioFluMet, SPIOMET, EE-CA or EE-LNG.
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Objective: To investigate the association between serum total testosterone (TT)

levels and metabolic syndrome (MetS) or its components among adult women.

Methods: 2,678 women from NHANES 2011-2016 were included in this cross-

sectional study. MetS was determined according to the National Cholesterol

Education Program Adult Treatment Panel III guidelines. The association

between serum TT levels and MetS was evaluated by two logistics regression

models and the adjusted restricted cubic spline (RCS). Stratified analysis and

sensitive analysis were also conducted.

Results: Continuous TT levels were negatively associated with the occurrence of

MetS, and theORs associated with per SD increase in ln TT were 0.70 (95%CI: 0.58-

0.85) in 2011-2014 and 0.56 (95%CI: 0.39-0.79) in 2015-2016 in Model A. High TT

group were less likely to have MetS (OR=0.60, 95%CI: 0.45-0.80 in 2011-2014 and

OR=0.50, 95%CI: 0.32-0.78 in 2015-2016) when compared to the low TT group.

When TT levels were divided into quartiles, TT levels were negatively correlated

with the incidence of MetS (p for trend < 0.001). Similar trend was observed in

Model B. Multivariate-adjusted logistic regression with RCS exhibited that TT had a

L-shaped dose–response association with MetS or its components. Interaction

analyses revealed that women who were less than 50 years old (OR=0.37, 95%CI:

0.22, 0.63), with depression (OR=0.50, 95%CI: 0.29, 0.87) or being smokers

(OR=0.37, 95%CI: 0.23, 0.54) showed lower ORs than those who were over 50

years old (OR=0.66, 95%CI: 0.40, 1.09), without depression (OR=0.59, 95%CI:

0.41, 0.85) or non-smokers (OR=0.59, 95%CI: 0.39, 0.89) when measure the

association between ln TT and the occurrence of MetS.
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Conclusions: Our study indicated that TT levels are negatively correlated with the

occurrence of MetS, with interaction effects of age, smoke behaviors, and

depressive status.
KEYWORDS

serum total testosterone levels, metabolic syndrome, women, adults, NHANES (National
Health and Nutrition Examination Survey)
1 Introduction

Metabolic syndrome (MetS) represents a cluster of metabolic

abnormalities. These abnormalities would increase the risk of

cardiovascular disease and all-cause mortality (1–3). The prevalence of

MetS among American adults has increased substantially, rising from

25.3% in 1988-1994 to 36.9% in 2015-2016 according to the National

Health and Nutrition Examination Survey (NHANES) data (4, 5).

Although previous studies have reported that sex hormones are

related to an increased cardiometabolic risk and mortality, including

MetS, type 2 diabetes mellitus (T2DM), and hypertension (6–8), the

roles of these hormones among women are poorly understood.

Existing literature has indicated that testosterone deficiency or low

serum total testosterone (TT) levels are correlated with an increased

risk of MetS or its components in the male population (9–11), and an

association between metabolic abnormalities and hyperandrogenism

in young women with polycystic ovarian syndrome (PCOS) (12–14).

However, the relationships between TT and MetS are inconsistent in

the previous studies of women due to different research subjects

under certain conditions (such as different ethnic, age group, patient-

based samples, post-menopausal women, and small sample sizes) or

different research types (7, 15–20).

Thus, this cross-sectional study aims to investigate the association

between TT levels and MetS or its components among adult women

by using the large and nationally representative survey of the US

population from NHANES 2011-2016. This work may provide

insightful suggestions on the impact of TT levels on women, which

may further be derived to clinical evidence on the controversy of

hormonal therapies for women in preventing and managing MetS.
2 Methods

2.1 Data source

NHANES (21) is a major program carried out by the National

Center for Health Statistics (NCHS), which is part of the Centers for

Disease Control and Prevention (CDC). It is a series of cross-sectional

surveys with every two-year cycle since 1999. This survey used a

complex, multistage, stratified probability sampling method to collect

nationally representative health statistics on the US population. To

produce more reliable and precise statistics, NHANES over-sampled

certain population subgroups. Therefore, sample weights were taken

into consideration during our data analyses in order to correct for

differential selection probabilities, compensate for possible
78
inadequacies in the eligible population, and adjust for non-coverage

and non-response.

All NHANES data collection protocols were approved by the

National Center for Health Statistics Institutional Review Board and

all participants signed an informed consent. NHANES survey data,

detailed survey operation manuals, consent documents, and

brochures of each period are publicly available on the NHANES

website (https://www.cdc.gov/nchs/nhanes).
2.2 Study participants

29,902 participants had completed the interviews and received

medical and laboratory testing from the NHANES 2011-2016. We

excluded men (n=14,751), women who were less than 20 years

(n=6,348), pregnant (n=155) and lactating women (n=108) from

our analysis. Those with missing information on TT, MetS or

covariates were further excluded. Therefore, the final sample size of

our analysis was 2,678 women (Figure 1). In order to observe the

consistency of research results over different time periods, we divided

these datasets into two parts: the data from NHANES 2011-2014

(1,828 women) and the data from NHANES 2015-2016 (850 women).
2.3 Diagnosis of MetS

The diagnosis of MetS was determined according to the National

Cholesterol Education Program Adult Treatment Panel III guidelines

(22). The study participants who met at least 3 of the following criteria

were categorized in the MetS group: (1) Elevated waist circumference

(>88 cm in women), (2) Elevated serum triglycerides (≥150 mg/dL),

(3) Reduced HDL-C (<50 mg/dL in women), (4) High Blood pressure

(≥130/85 mm Hg), (5) Elevated serum glucose (≥110 mg/dL).
2.4 Serum TT measurement

The serum samples were processed, stored, and transported to the

Division of Environmental Health Laboratory Sciences, National

Center for Environmental Health for analysis. The concentration of

TT was performed by isotope dilution liquid chromatography tandem

mass spectrometry (ID-LC-MS/MS) method, which was developed by

the CDC. Detailed quality control and quality assurance instructions

were discussed in the NHANES Laboratory/Medical Technologists

Procedures Manual (LPM).
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2.5 Covariates assessment

Based on previous studies and clinical plausibility, the following

covariates were included in our analysis to reduce potential

confounding bias. Information on age, race (Mexican American,

other Hispanic, non-Hispanic white, non-Hispanic black, other

race-including multi-racial), education (less than high school, high

school or equivalent, college or above), marital status (married,

widowed, divorced, separated, never married, living with partner),

and ratio of family income to poverty (≤1.00, 1.01-3.00, >3.00) were

obtained through self-reports of demographic questionnaires. The

body mass index (BMI; calculated as weight in kilograms divided by

the square of height in meters) was categorized into 4 groups:

underweight (<18.5 kg/m2), normal weight (18.5-24.9 kg/m2),

overweight (25.0-29.9 kg/m2), obesity (≥30 kg/m2). Alcohol use

referred to participants who had at least 12 drinks of any type of

alcoholic beverage in any one year. Alcoholic beverages included

liquor, beer, wine, wine coolers, and any other type of alcoholic

beverage. Information about smokers was that participants who had

smoked ≥100 cigarettes in their lifetimes. NHANES has incorporated

the Patient Health Questionnaire (PHQ-9) since 2005, which is a self-

reported assessment based on nine signs and symptoms of depression

over the past two weeks. The score for each item ranged from 0 to 3,

and the total score for each participant ranged from 0 to 27. A total

score of ≥5 was used as the cut-off for depression. Participants were

asked “Ever told doctor had trouble sleeping?”, and those who

answered “yes” were considered to have sleep disorders. The total

caloric intake per day was estimated based on the types and amounts
Frontiers in Endocrinology 79
of foods and beverages (including all types of water) consumed during

the 24-hour period prior to the interview (midnight to midnight).

Lymphocyte and neutrophil counts were assessed using automated

hematology analysis devices and expressed as ×1,000 cells/mm3. The

neutrophil-to-lymphocyte ratio (NLR) was measured as the ratio of

neutrophil count-to-lymphocyte count.
2.6 Statistical analysis

Categorical variables were expressed as percentage (%) and

compared using the chi-square test or Fisher’s exact test when

appropriate. Continuous data with normally distributions were

expressed as mean (± standard deviation [SD]) and compared by

independent samples t-test. Variables with skewed distributions were

expressed as median (interquartile range [IQR]) and compared using

the nonparametric Wilcoxon rank sum test. In the data analysis of

NHANES 2011-2014, we used two logistics regression models to

investigate the association between serum TT levels and MetS among

women. Model A only adjusted for age, race, and BMI. Model B

further adjusted for other demographic characteristics, lifestyle

variables, and some related health indicators: education level,

marital status, ratio of family income to poverty, alcohol use,

smoking-cigarette use, depression, sleep disorders, total caloric

intake per day, and NLR. We also evaluated the presence of

nonlinear dose-response relationships between ln-transformed TT

(ln TT) and MetS or its components by the adjusted restricted cubic

spline (RCS) with three knots (percentile 25, 50, and 75). We
FIGURE 1

Flowchart of the study design. TT, total serum testosterone level; MetS, metabolic syndrome; BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio.
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measured the interaction of TT with various clinical parameters with

product interaction terms. To investigate the modified effect of age,

depression, smoking status and TT on the incidence of MetS, we

stratified the study population by age (less than 50 years or above),

depression status (No or Yes) and smoke (No or Yes). We also

performed sensitive analysis after excluding participants who were

taking antidiabetic drugs, hypertension medication or lipid-lowering

medication or women with ovary removed, and comparing results

across samples over different time periods. For the female population

from NHANES 2015-2016, we also used two logistics regression

models with increasing degrees of adjustment to evaluate the

association between TT levels and the odds ratio of MetS.

Meanwhile, we also stratified women by age (less than 50 years or

above) to determine the relationship between TT levels and MetS at

different age stages. All reported p values were 2-sided, and the

significance level was set at 0.05. R software (Version 4.1.2) was

used for statistical analysis.
3 Results

3.1 Characteristics of the participants

The baseline characteristics of the study population with weighted

estimates were presented in Table 1. Women were ranged from 20 to

80 years, with an average age of 49.52 ± 16.86 years. The weighted

distribution of races was as follows: 6.9% of the participants were

Mexican American, 5.4% were other Hispanic, 70.0% were non-

Hispanic White, 10.5% were non-Hispanic Black, and 7.1% were

others. The distribution of age, education level, marital status, ratio of

family income to poverty, BMI, alcohol use, smoking-cigarette use,

depression, sleep disorders, NLR, and TT levels were significantly

different between the MetS group and the non-MetS group (all

p<0.05). The median (IQR) of TT levels in MetS group were 17.80

[12.20, 24.01] ng/dL, which were lower than that in non-MetS group

(22.20 [15.50, 30.30] ng/dL). In general, TT levels were negative

correlated with age (Figure S1).
3.2 Correlation between TT and the
incidence of MetS or its components

Table 2 showed the results from the multivariate regression

models between TT levels and MetS in women. In Model A,

continuous TT levels were negatively associated with the occurrence

of MetS, and the ORs associated with per SD increase in ln TT were

0.70 (95%CI: 0.58-0.85) in 2011-2014 and 0.56 (95%CI: 0.39-0.79) in

2015-2016 after adjusting for age, race, and BMI. Similarly, women in

high TT group were less likely to have MetS (OR=0.60, 95%CI: 0.45-

0.80 in 2011-2014 and OR=0.50, 95%CI: 0.32-0.78 in 2015-2016)

when compared to the low TT group. When TT levels were divided

into quartiles, the results in 2011-2014 and 2015-2016 both suggested

that TT levels were negatively correlated with the incidence of MetS (p

for trend < 0.001). Women in Quartile 4 (30.10-575.00 ng/dL) in

2011-2014, Quartile 3 (20.40-28.10 ng/dL) and Quartile 4 (28.30-

444.00 ng/dL) in 2015-2016 showed statistically significant lower
Frontiers in Endocrinology 80
odds of MetS. Similar trend that a statistically lower occurrence of

MetS was observed among women with high TT levels were obtained

in Model B: OR=0.70 (95%CI: 0.56-0.87) in 2011-2014 and OR=0.57

(95%CI: 0.33-0.99) in 2015-2016 per SD increase in ln TT; OR=0.61

(95%CI: 0.45-0.81) in 2011-2014 and OR=0.47 (95%CI: 0.24, 0.92) in

2015-2016 in high TT group. Multivariate-adjusted logistic regression

with RCS exhibited that TT levels had a L-shaped dose–response

association with MetS or its components, when analyzed the

association between TT levels and the incidence of MetS or its

components (Figure 2).
3.3 Stratified analyses by potential
effect modifiers

To investigate the potential modified effect of TT levels and the

other factors on the occurrence of MetS, we stratified the study

population with the mentioned modifiers. Interaction analyses

revealed that TT levels were significantly associated with MetS for

the following factors: age, depression, and smoking behaviors (all p

for interaction < 0.05). As shown in Figure 3, women who were less

than 50 years old (OR=0.37, 95%CI: 0.22, 0.63), with depression

(OR=0.50, 95%CI: 0.29, 0.87) or being smokers (OR=0.37, 95%CI:

0.23, 0.54) showed lower ORs than those who were over 50 years old

(OR=0.66, 95%CI: 0.40, 1.09), without depression (OR=0.59, 95%CI:

0.41, 0.85) or non-smokers (OR=0.59, 95%CI: 0.39, 0.89) when we

measured the association between ln TT and the occurrence of MetS.

Table 3 showed different trends between the concentration of TT and

the occurrence of MetS from the multivariate regression analysis

when women were divided into two groups according to the average

menopausal age (50 years). It suggested that TT levels were negatively

associated with the occurrence of MetS among women who were less

than 50 years during different time periods. Continuous TT levels

were negatively associated with the occurrence of MetS, and the ORs

associated with per SD increase in ln TT were both 0.54 (95%CI: 0.32-

0.92) in 2011-2014 and 2015-2016. Meanwhile, women in high TT

group were less likely to have MetS (OR=0.37, 95%CI: 0.22-0.63 in

2011-2014 and OR=0.28, 95%CI: 0.12-0.67 in 2015-2016). However,

for women ≥50 years, there was no statistically significant difference

between high TT group and low TT group (p > 0.05). In addition,

when the TT levels were divided into quartiles, there was no statistical

difference in the occurrence of MetS between the groups, except for

women in Quartile 4 who had a decreased risk of MetS than that in

Quartile 1.
3.4 Sensitive analysis

Given the observation that the concentration of TT was

prognostic for women with MetS, a sensitivity analysis was

investigated. We conducted sensitivity analyses after excluding the

participants who were taking antidiabetic drugs, hypertension

medication or lipid-lowering medication or those women with

ovary removed, and comparing results across samples over different

time periods, and similar results were obtained (Tables 2, 3, Figure S2,

and Figure S3).
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4 Discussion

We used the datasets from NHANES 2011-2016 for multi-

dimensional analysis in order to obtain reliable results of the

relationship between TT and Mets in the adult female population. In

this large cross-sectional study of nationally representative US adult

women, we found that TT levels negatively correlated with the

occurrence of MetS, which was in accordance with previous

observational studies in the male population (8, 9, 23, 24). In analyzing

the data of NHANES 2011-2014, we used 2 models with increasing

degrees of adjustment for confounding factors, and a similar trend that a

statistically lower occurrence of MetS was observed among women with

high TT levels was obtained.Meanwhile, these trendswere in agreement

with the sensitive analysis results of the participants after excluding those

who were taking antidiabetic drugs, hypertension medication or lipid-

lowering medication or those women with ovary removed. And similar

results were obtained from the datasets of NHANES 2015-2016.

However, there was no statistically significant difference between high

TT group and low TT group among women ≥50 years.

In our study,median testosterone inwomenwas 20.50 [14.50, 28.90]

ng/dL, and TT levels were negative correlated with age. Our study

suggested that TT had a L-shaped dose–response association with

MetS and its components, and the relationships between TT levels and

theoutcomewerenot exactly the samewhen the concentrationofTTwas

in different quartile range. Although these results are consistent with

some previous studies, the discrepancies in different studies may be

associated with different genders and ages. TT levels vary greatly in

different genders, ages, or conditions. The normal physiologic range of

TT inmale population is 450-600ng/dL (25, 26), and the cut-off value for

the diagnosis of testosterone deficiency is 300 ng/dL, which may need

testosterone replacement therapy (26). In addition, a reduction of serum

TT levels is associated with aging in both men and women (27–29).

Androgen excess is one of the main characteristics of PCOS and is

present in 70% of diagnosed women (30, 31). PCOS, which affects 5-

20% of women of reproductive age worldwide, is associated with an

increased risk of metabolic abnormalities, especially among those

women who also show hyperandrogenism (32–34). Therefore,

women with PCOS may interfere with the research results. These

biases are found in previous studies focusing on the associations

between TT and MetS. Cross-sectional relationships between

endogenous androgens, sex hormone-binding globulin (SHBG), and
TABLE 1 Characteristics of study participants in the NHANES 2011-2016*.

Variables Overall
(n=2,678)

MetS
(n=813)

Non-MetS
(n=1,865)

p-
value

Weighted sample size 78,487,974 22,829,762 55,658,212

Age, years
49.52 ±
16.86

55.60 ±
14.52

47.02 ± 17.12 <0.001

Race, n (%) 0.150

Mexican American 344 (6.9) 123 (7.9) 221 (6.5)

Other Hispanic 303 (5.4) 101 (4.9) 202 (5.7)

Non-Hispanic White 1125 (70.0) 358 (71.9) 767 (69.2)

Non-Hispanic Black 572 (10.5) 167 (9.3) 405 (11.0)

Other Race 334 (7.1) 64 (5.9) 270 (7.6)

Education level,
n (%)

0.003

Less than high school 522 (12.4) 220 (17.1) 302 (10.5)

High school or
equivalent

533 (20.1) 178 (22.1) 355 (19.3)

College or above 1623 (67.5) 415 (60.8) 1208 (70.2)

Marital status, n (%) <0.001

Married 1225 (53.3) 381 (53.4) 844 (53.3)

Widowed 282 (8.3) 124 (13.3) 158 (6.3)

Divorced 334 (11.7) 118 (13.7) 216 (10.9)

Separated 106 (2.2) 39 (2.2) 67 (2.2)

Never married 530 (16.5) 100 (9.8) 430 (19.2)

Living with partner 201 (8.0) 51 (7.6) 150 (8.2)

Ratio of family
income to poverty,
n (%)

0.003

≤1.00 662 (15.9) 227 (17.4) 435 (15.3)

1.01-3.00 1065 (35.5) 362 (41.1) 703 (33.2)

>3.00 951 (48.6) 224 (41.4) 727 (51.5)

BMI (kg/m2), n (%) <0.001

<18.5 54 (2.1) 1 (0.1) 53 (2.9)

18.5-24.9 731 (27.8) 49 (5.7) 682 (36.9)

25.0-29.9 743 (28.6) 201 (24.6) 542 (30.2)

≥30.0 1150 (41.5) 562 (69.6) 588 (30.0)

Alcohol use, n (%) 1683 (70.6) 451 (64.2) 1232 (73.2) <0.001

Smoking-cigarette use,
n (%)

950 (39.7) 349 (48.5) 601 (36.1) 0.001

Depression, n (%) 777 (27.1) 322 (37.9) 455 (22.7) <0.001

Sleep disorders, n (%) 839 (33.5) 328 (44.0) 511 (29.2) <0.001

Total caloric intake
per day (kcal, day),
n (%)

0.729

<1550 1086 (37.0) 349 (37.4) 737 (36.8)

(Continued)
TABLE 1 Continued

Variables Overall
(n=2,678)

MetS
(n=813)

Non-MetS
(n=1,865)

p-
value

1550-1972 623(25.5) 170 (23.3) 453 (26.4)

1973-2554 580 (22.9) 184 (23.9) 396 (22.5)

≥2555 389 (14.7) 110 (15.4) 279 (14.4)

NLR 2.14 ± 1.11
2.34 ±
1.35

2.05 ± 0.99 <0.001

Total testosterone (ng/dL)
20.50
[14.50,
28.90]

17.80
[12.20,
24.01]

22.20 [15.50,
30.30]

<0.001
front
*All estimates accounted for sample weights and complex survey designs, and means and
percentages were adjusted for survey weights of NHANES. MetS, metabolic syndrome; BMI,
body mass index; NLR, neutrophil-to-lymphocyte ratio.
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MetS were summarized in a meta-analysis, which aimed to compare

the relationships in terms of sex differences (15). This study

comprised 13,974 men and 4,063 women on the relationship

between TT and MetS, and the results showed a reduced MetS risk

with higher TT levels in male population. In contrast, women who

were in the highest tertile of TT had an increased risk of incident MetS

compared with women in the lowest tertile (RR 1.68, 95% CI 1.15,

2.45). However, of the 15 studies which were included in this meta-
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analysis, 13 studies did not adjust for age and 9 studies focused on

elderly women (55 years old and above). In addition, 6 studies are

focused on women with PCOS, who have an increased risk of

metabolic syndrome. All these biases may affect the results.

In terms of the MetS components, the relationships showed a L-

shaped dose–response between TT levels and all components in our

study, which was consistent with most previous results in male

population (11, 35). An analysis from NHANES 2011-2012
TABLE 2 The association between TT and MetS in womena.

TT
Model A Model B

2011-2014 2015-2016 2011-2014 2015-2016

As continuous (ln, per SD) 0.70 (0.58, 0.85)*** 0.56 (0.39, 0.79)** 0.70 (0.56, 0.87)** 0.57 (0.33, 0.99)*

By cut-off

Low Ref. Ref.

High 0.60 (0.45, 0.80)*** 0.50 (0.32,0.78)** 0.61 (0.45, 0.81)** 0.47 (0.24, 0.92)*

Interquartile (ng/dL) b

Quartile 1 Ref. Ref.

Quartile 2 0.88 (0.56, 1.37) 0.62 (0.37, 1.06) 0.88 (0.54, 1.44) 0.68 (0.23, 1.99)

Quartile 3 0.68 (0.41, 1.11) 0.41 (0.20, 0.85)* 0.66 (0.38, 1.15) 0.48 (0.11, 2.10)

Quartile 4 0.55 (0.36, 0.82)** 0.36 (0.22, 0.61)** 0.55 (0.35, 0.88)** 0.39 (0.12, 1.23)
aThe association between TT andMetS in women was presented by the ORs (95%CI). bInterquartile (ng/dL) for 2011-2014: Quartile 1, 1.02-13.80; Quartile 2, 13.84-20.70; Quartile 3, 20.71-30.06, Quartile 4, 30.10-
575.00; Interquartile (ng/dL) for 2015-2016: Quartile 1, 1.52-14.10; Quartile 2, 14.20-20.30; Quartile 3, 20.40-28.10; Quartile 4, 28.30-444.00; Model A: Adjusted for age, race, and BMI. Model B: Adjusted for age,
race, education level, marital status, ratio of family income to poverty, BMI, alcohol use, smoking-cigarette use, depression, sleep disorders, total caloric intake per day, and NLR. TT, total serum testosterone level;
MetS, metabolic syndrome; BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; OR, odds ratio; CI, confidence interval. *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001.
A B

D E F

C

FIGURE 2

The association between TT and the ORs for MetS or its components in women by logistic regression. (A) The association between TT and the ORs for
MetS; (B) The association between TT and the ORs for elevated waist circumference; (C) The association between TT and the ORs for elevated serum
triglycerides; (D) The association between TT and the ORs for reduced HDL-Cholesterol; (E) The association between TT and the ORs for elevated blood
pressure; (F) The association between TT and the ORs for elevated serum glucose level. The curves represent the adjusted ORs of MetS or its
components by ln-transformed TT levels. The dose response association was estimated by using nonlinear dose-response relationships between ln TT
and MetS or its components by the adjusted restricted cubic spline with three knots (percentile 25, 50, and 75). Model adjusted for age, race, education
level, marital status, ratio of family income to poverty, BMI, alcohol use, smoking-cigarette use, depression, sleep disorders, total caloric intake per day,
and NLR. TT, total serum testosterone level; MetS, metabolic syndrome; BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; OR, odds ratio.
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reported the inverse relationship between TT levels and MetS

components, and indicated that only serum triglycerides, HDL-C,

and serum glucose were correlated with TT levels (17). The

differential results between TT levels and MetS components may be

due to the difference of the sample size.

Given that previous studies on the relationship between TT and

MetS in certain conditions or different age groups had obtained

different results, we expanded our study by stratified analyses to

demonstrate that TT had different impacts on MetS at different ages.

Globally, the mean age of natural menopause is around 50 years, with

remarkably little geographic variation (36, 37). Therefore, we

stratified women according to the average menopausal age, and

different trends were observed. This research showed that there was

no statistically significant difference between the two groups divided

by serum TT levels among women aged 50 or above, which was

consistent with that of some studies on postmenopausal women (38,

39). A multicenter prospective cohort study from the Netherlands

Study of Depression in Older Persons suggested that there was no

association between TT and MetS or its components in women aged

between 60 and 93 years, regardless of whether major depressive

disorder was adjusted for (40). These results may mean that the
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increased prevalence of the MetS after menopause may be related to

estrogen deficiency caused by ovarian failure or the change of other

androgens, rather than the effect of TT.

However, the research has several limitations too. In this research,

we did not include evaluation of albumin and sex hormone binding

globulin levels to calculate free androgen index or bioavailable TT, and

did not consider other androgens, such as dehydroepiandrosterone and

androstenedione. Besides, the cross-sectional nature of the survey could

not determine causal inference. In addition, although we controlled for

wide ranges of major potential confounders including demographics,

self-reported diseases, medications, lifestyles, and dietary risk factors in

the multivariable logistic models, there might be residual confounding

from unmeasured factors which could have impacted the effect size

estimates. Unfortunately, women with PCOS cannot be excluded from

the datasets in this study, which may cause bias.

To our knowledge, this is the first large scale epidemiological study

that used nationally representative US population data and examined the

association between TT levels and the incidence ofMets or its components

among adult women of all ages by multi-dimensional analysis which

includes stratified analysis and sensitive analysis. In addition, our results

are robust after adjustment for a wide spectrum of potential confounders.
FIGURE 3

The association between ln TT and MetS stratified by age, depression status and smoke by logistic regression. All models adjusted for race, education
level, marital status, ratio of family income to poverty, BMI, alcohol use, sleep disorders, total caloric intake per day, and NLR. The green spot and lines
represent the odds ratios (OR) and 95% confidence interval of OR. Ln TT, ln-transformed total serum testosterone level; MetS, metabolic syndrome; BMI,
body mass index; NLR, neutrophil-to-lymphocyte ratio.
TABLE 3 The association between TT and MetS in female population from different age stages (<50 years and ≥50 years) a.

TT
<50 years ≥50 years

2011-2014 2015-2016 2011-2014 2015-2016

As continuous (ln, per SD) 0.54 (0.32, 0.92)* 0.54 (0.32, 0.92)* 0.74 (0.58, 0.96)* 0.71 (0.43, 1.16)

By cut-off

Low Ref. Ref.

High 0.37 (0.22, 0.63)*** 0.28 (0.12, 0.67)* 0.66 (0.40, 1.09) 0.70 (0.30, 1.65)

Interquartile

Quartile 1 Ref. Ref.

Quartile 2 0.84 (0.43, 1.63) 0.77 (0.12, 5.05) 0.93 (0.60, 1.44) 0.35 (0.07, 1.84)

Quartile 3 0.26 (0.12, 0.54)*** 0.23 (0.22, 2.35) 0.75 (0.35, 1.58) 0.64 (0.13, 3.24)

Quartile 4 0.48 (0.23, 1.00)* 0.29 (0.03, 2.62) 0.53 (0.31, 0.93)* 0.42 (0.10, 1.71)
aThe association between TT and MetS in women was presented by the ORs (95%CI). All models adjusted for race, education level, marital status, ratio of family income to poverty, BMI, alcohol use,
smoking-cigarette use, depression, sleep disorders, total caloric intake per day, and NLR. TT, total serum testosterone level; MetS, metabolic syndrome; BMI, body mass index; NLR, neutrophil-to-
lymphocyte ratio; OR, odds ratio; CI, confidence interval. *p ≤ 0.05, ***p ≤ 0.001.
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5 Conclusions

The present cross-sectional study indicated that TT levels were

negatively correlated with the occurrence of MetS or its components,

and TT had a L-shaped dose-response association with MetS or its

components. In addition, the trend of negative correlation between

TT levels and the occurrence of MetS was more obvious among

women who were less than 50 years old, with depression or being

smokers than those who were over 50 years old, without depression or

non-smokers. However, different trends were observed when we

stratified women according to the average menopausal age. There

was no statistically significant association between serum TT levels

and the occurrence of MetS among women aged 50 or above. Future

studies are necessary to determine the cut-off value for abnormal TT

levels in women and the impacts of TT on Mets in different ranges.
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SUPPLEMENTARY FIGURE 1

Distribution of TT by age. The spot represents each observation, and the red line
is estimated by spearman correlation.TT, total serum testosterone level.

SUPPLEMENTARY FIGURE 2

The association between TT and MetS among participants who were not taking

antidiabetic drugs, hypertension medication or lipid-lowering medication with
logistic regression. The green spot and lines represent the odds ratios (OR) and

95% confidence interval of OR. Model adjusted for race, education level, marital
status, ratio of family income to poverty, BMI, alcohol use, smoking-cigarette

use, depression, sleep disorders, total caloric intake per day, and NLR. TT, total

serum testosterone level; MetS, metabolic syndrome; BMI, body mass index;
NLR, neutrophil-to-lymphocyte ratio.

SUPPLEMENTARY FIGURE 3

The association between TT and MetS among participants without ovary
removed by logistic regression. The green spot and lines represent the odds

ratios (OR) and 95% confidence interval of OR. Model adjusted for race,

education level, marital status, ratio of family income to poverty, BMI, alcohol
use, smoking-cigarette use, depression, sleep disorders, total caloric intake per

day, and NLR. TT, total serum testosterone level; MetS, metabolic syndrome;
BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio.
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The homeostasis model
assessment of insulin resistance is
a judgment criterion for
metformin pre-treatment before
IVF/ICSI and embryo transfer
cycles in patients with polycystic
ovarian syndrome

Rui Gao 1,2, Lang Qin1,2, Zhengyu Li2,3* and Wenjiao Min4*

1The Reproductive Medical Center, Department of Gynecology and Obstetrics, West China Second
University Hospital, Sichuan University, Chengdu, China, 2Key Laboratory of Birth Defects and Related
Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China,
3Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University,
Chengdu, China, 4Psychosomatic Department, Sichuan Provincial People’s Hospital, University of
Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational
Medicine Research Hospital, Chengdu, China
Purpose: The aim of this study was to explore the value of the homeostasis model

assessment of IR (HOMA-IR) as a judgment criterion for metformin pre-treatment

before in vitro fertilization/intracellular sperm injection (IVF/ICSI) and embryo

transfer (ET) for polycystic ovarian syndrome (PCOS) patients.

Materials and methods: The clinical and laboratory information of PCOS patients

who received IVF/ICSI-ET from January 2017 to September 2021 was

retrospectively analyzed. We compared the clinical pregnancy rate (primary

outcome) and controlled ovarian stimulation (COS)-related parameters

(secondary outcomes) between patients with and without metformin pre-

treatment for all PCOS patients not grouped by HOMA-IR, PCOS patients with

HOMA-IR < 2.71, and PCOS patients with HOMA-IR ≥ 2.71.

Results: A total of 969 PCOS patients who received the GnRH-antagonist protocol

were included in this study. For all PCOS patients, the metformin group showed

comparable clinical pregnancy rates in fresh ET cycles and frozen ET cycles

compared with the control group (55.9% vs. 57.1%, p = 0.821 and 63.8% vs.

60.9%, p = 0.497). For PCOS patients with HOMA-IR < 2.71, the clinical

pregnancy rates in both fresh ET cycles and frozen ET cycles were statistically

similar between the two groups (61.5% vs. 57.6%, p = 0.658 and 70.6% vs. 66.7%, p

= 0.535). For PCOS patients with HOMA-IR ≥ 2.71, the clinical pregnancy rate in

fresh ET cycles was comparable between the two groups (51.5% vs. 56.3, p =

0.590), but it was statistically higher in the metformin group than in the control

group in frozen ET cycles (57.1% vs. 40.0%, p = 0.023). The metformin group had
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less oocytes retrieved, a lower cleaved oocyte rate, a lower available D3 embryo

rate, a lower blastocyst formation rate, and a lower available blastocyst rate than

the control group.

Conclusion:HOMA-IR is a judgment criterion for metformin pre-treatment before

IVF/ICSI-ET in patients with PCOS. Metformin pre-treatment could be added for

PCOS patients with HOMA-IR ≥ 2.71 during frozen IVF/ICSI-ET cycles to improve

the clinical pregnancy rate.
KEYWORDS

polycystic ovary syndrome, in vitro fertilization, intracellular sperm injection, embryo
transfer, metformin, insulin resistance, HOMA-IR, clinical pregnancy rate
1 Introduction

Polycystic ovary syndrome (PCOS) is an endocrinological

problem that affects about 5%–10% of women of childbearing age

all over the world (1). Oligo-anovulation, clinical and/or biochemical

hyperandrogenism, and polycystic ovary morphology (PCOM) on

ultrasonography are the most important clinical manifestations of

PCOS (2). It was reported that approximately 80% of anovulation

infertility was caused by PCOS (3). In vitro fertilization/intracellular

sperm injection (IVF/ICSI)–embryo transfer (ET) is a third-line

method that helps PCOS patients who are unable to conceive after

adjusting lifestyle and medication treatment (3). However,

performing IVF/ICSI-ET for PCOS patients is full of challenge

because of the poorer-quality embryos, the higher risk of ovarian

hyper-stimulation syndrome (OHSS), and the lower clinical

pregnancy rate compared with healthy women (4).

IR is defined as reduced insulin sensitivity, and an increased

amount of insulin is needed to realize its normal function; the

hyperinsulinemic–euglycemic clamp (HEC) technique was

considered to be the gold standard for measuring insulin sensitivity

(5). As previously reported, the incidence of IR among PCOS patients

varies from 50% to 70% in different regions (6). IR was reported as an

important risk factor of failure of IVF/ICSI-ET for PCOS patients,

because it may impair the oocyte development/maturation and reduce

endometrial receptivity (7). The homeostasis model assessment of IR

(HOMA-IR) is widely used to assess the degree of IR (8). Metformin

is a common insulin-sensitizing agent, but the application of

metformin on PCOS patients undergoing IVF/ICSI-ET is full of

controversy. A systematic review and meta-analysis showed that

metformin may reduce live birth rate during the GnRH-antagonist

protocol, but its effect on the clinical pregnancy rate was uncertain

(9). At present, the studies focusing on the association between

metformin pre-treatment and IVF/ICSI-ET outcomes were

heterogeneous. In particular, there are a few studies that are

focused on the influence of HOMA-IR on outcomes of metformin

pre-treatment in PCOS patients undergoing IVF/ICSI-ET.

We speculated that a different HOMA-IR reflects the different

efficacies of metformin pre-treatment on IVF/ICSI-ET among PCOS

patients. To confirm this conjecture, we performed this retrospective

study to explore the value of HOMA-IR as a judgment criterion for
87
metformin pre-treatment before IVF/ICSI-ET cycles in patients

with PCOS.
2 Materials and methods

2.1 Participants and study design

A single-center retrospective cohort study was performed at West

China Second University Hospital, Sichuan University from January

2017 to September 2021. The study was approved by the Ethics

Committee of West China Second University Hospital. PCOS

patients who received IVF/ICSI-ET because of anovulation infertility

or male infertility were included in this study. Sociodemographic

information, clinical manifestations, laboratory indicators, and

treatment information of these PCOS patients were collected from

the electronic medical record management system. The diagnosis of

PCOS was based on the Rotterdam criteria, which required that at least

two of the following three criteria were satisfied: oligomenorrhea or

anovulation, clinical or biochemical hyperandrogenism, and polycystic

ovaries on ultrasonography (defined as either an ovary with antral

follicle count ≥ 12 or an ovarian volume ≥ 10 cm3); other causes of

hyperandrogenism and ovulation dysfunction were excluded (2).

The exclusion criteria were as follows: (1) incomplete

sociodemographic information, clinical manifestations, laboratory

indicators, or treatment information; (2) patients with other factors

of infertility such as Asherman’s syndrome, submucosal fibroids of

the uterus, and other uterine malformations; (3) patients with other

endocrine diseases such as thyroid diseases, diabetes mellitus, and

hyperprolactinemia; and (4) patients with a history of recurrent

spontaneous abortion. All included patients were checked again for

their metformin pre-treatment protocols. Patients who received a

metformin pre-treatment form at least 3 months before their IVF/

ICSI-ET cycles constituted the metformin group; patients without

metformin pre-treatment made up the control group, and other

patients were excluded. The subgroup analyses were based on

HOMA-IR < 2.71 and HOMA-IR ≥ 2.71 according to a previous

study, which reported that HOMA-IR ≥ 2.71 is a significant risk factor

of adverse pregnancy outcomes for women who received fresh IVF/

ICSI-ET (10).
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2.2 Controlled ovarian stimulation and
embryo transfer

All included PCOS patients underwent a GnRH-antagonist

protocol for controlled ovarian stimulation (COS); they were

started on intramuscular injections of recombinant FSH (Injection

Gonal-F, Merck Serono Specialties, Italy) or human menopausal

gonadotropin (hMG, Lizhu Pharmaceutical Trading, China) from

the second day of their menstrual cycle. The starting dose was

between 150 IU/day and 225 IU/day. A GnRH antagonist (Injection

Cetrotide acetate, Aeterna Zentaris, Canada) was administered at a

dose of 0.25 mg/day from the sixth day of the menstrual cycle until the

ovulation trigger day. The cycles were cancelled in patients with no

follicle greater than 10 mm after 10 days of recombinant FSH/hMG

stimulation. For all PCOS patients, when at least two follicles are ≥18

mm or three follicles ≥17 mm, the final stage of triggering ovulation

was performed using human chorionic gonadotropin (hCG; Lizhu

Pharmaceutical Trading, China) at doses from 8,000 IU to 10,000 IU.

For patients at a high risk for ovarian hyper-stimulation syndrome

(OHSS), 4,000 IU to 5,000 IU of hCG was used to trigger ovulation.

Oocyte retrieval was performed 36–38 h after triggering

ovulation. Oocyte assessment was performed by the standard

morphology criteria, and nuclear maturity assessment was

performed. Conventional IVF or ICSI was performed depending on

semen parameters. For patients who received fresh ET cycles, ET was

performed 3 or 5 days after oocyte retrieval according to the type of

embryo; other embryos were all frozen. For patients who received

their first frozen ET cycles, artificial menstrual cycle was established

by the exogenous addition of estradiol and ET was performed 3 or 5

days after the addition of progesterone. All patients were given luteal

phase support via the intramuscular injection of progesterone (100

mg/day) or vaginal progesterone gel (90 mg/day) plus oral

dydrogesterone (20 mg/day). Two weeks after ET, pregnancy was

assessed by serum b-hCG levels and confirmed by transvaginal

ultrasound 4 weeks after ET. Serum b-hCG levels > 50 IU/L were

regarded as biochemical pregnancy and the presence of the

gestational sac was regarded as clinical pregnancy.
2.3 Information collection and outcomes

Fasting plasma glucose (FPG) and fasting insulin (FINS)

measured before metformin treatment were collected, and HOMA-

IR was calculated with the following formula: HOMA-IR = FGP

(mmol/L) FINS (mIU/L)/22.5. We summed up the basic information

of patients, including their fertility history, clinical manifestations of

PCOS, age, body mass index (BMI), and history of oral contraceptives

(OC) treatment. BMI was calculated by the body weight in kilograms

divided by the square of the height in meters (kg/m2). Venous blood

samples were taken 2–4 days during a spontaneous menstrual cycle or

an independent cycle phase in the presence of amenorrhea before

metformin pre-treatment to detect anti-Müllerian hormone (AMH),

dehydroepiandrosterone (DHEAS), androstenedione (ASD), follicle-

stimulating hormone (FSH), luteinizing hormone (LH), estradiol

(E2), progesterone (P), testosterone (T), and sex hormone binding

globulin (SHBG) levels. At the same time, homocysteine (HCY), high-
Frontiers in Endocrinology 88
density lipoprotein cholesterol (HDL-C), and triglycerides (TG) were

also assessed after an overnight fast of at least 10 h.

COS-related parameters were also collected, including OHSS rate,

the type of gonadotropin (Gn), the starting dosage of Gn, the total

number of Gn days, and the total Gn dosage. Serum LH, E2, and P

levels were detected and single endometrial thickness (ET) was

measured by ultrasonography on the trigger day. The number of

follicles ≥14 mm on the trigger day and the number of oocytes

retrieved were also collected. Embryo grading was done by a standard

morphology assessment according to modified Veeck’s scoring. The

IVF/ICSI fertilization rate, cleavage rate, available D3 embryo rate,

high-quality D3 embryo rate, blastocyst formation rate, available

blastocyst rate, and high-quality blastocyst rate were calculated and

were selected as secondary outcomes of this study. Clinical pregnancy

rate was defined as the presence of a gestational sac per ET cycle and

was selected as the primary outcome of this study.
2.4 Statistical analysis

We used a Kolmogorov–Smirnov test to estimate whether data

were normally distributed. Normally distributed continuous variables

were presented as means ± standard deviations (SDs) and were

analyzed by t-test. Non-normally distributed continuous variables

were presented as median (25th–75th percentiles) and were analyzed

by the Kruskal–Wallis test. Categorical measurements were presented

as a percentage and were compared by chi-squared test; if numbers

were less than 5 in at least 20% of the cells, Fisher’s exact test was

performed. The adjusted difference in the clinical pregnancy rate

between the two groups was expressed as odds ratio (OR), 95%

confidence intervals (CIs), and adjusted p-value. p-value < 0.05 was

regarded as statistically different. All the statistical analyses were

performed by SPSS, version 26.0 (SPSS Inc., Chicago, IL, UPL).
3 Results

3.1 Basic information of PCOS patients

PCOS patients who entered IVF/ICSI-ET cycles because of

anovulation infertility or male infertility were searched in the

electronic medical record management system. After exclusion, 969

PCOS patients were included in this study. Among them, 366 patients

were in the metformin group and 603 patients were in the control

group. There was a statistical difference in BMI and history of OC

treatment between the two groups (p < 0.05). For patients who

received metformin pre-treatment, the HOMA-IR of 171 patients

(46.7%) was <2.71 and that of 195 patients (53.3%) was ≥2.71. For

patients in the control group, the HOMA-IR of 435 patients (72.1%)

was <2.71 and that of 168 patients (27.9%) was ≥2.71.

Compared with the control group, the metformin group had

lower levels of AMH, basal P, basal FSH, basal LH, and SHBG, and

higher levels of HCY and TG. In addition, the metformin group had a

higher total dosage of Gn, a shorter duration of Gn, and lower E2

levels on the trigger day than the control group. A detailed

information of PCOS patients in the metformin group and control
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group is shown in Table 1. For PCOS patients with HOMA-IR < 2.71,

the metformin group had a higher age, BMI, duration of infertility,

FAI, HCY, and TG, and lower basal FSH levels than the control

group. The proportion of history of OC treatment and type of Gn

were significantly different between the two groups (as shown in
Frontiers in Endocrinology 89
Supplementary Table 1). For PCOS patients with HOMA-IR ≥ 2.71,

the metformin group had lower basal FSH and basal LH levels, and

higher basal T, FAI, and HDL-C levels than the control group. The

proportion of PCOM and type of Gn were significantly different

between the two groups (as shown in Supplementary Table 2).
TABLE 1 Baseline information and laboratory data between the metformin group and the control group.

Metformin group (n = 366) Control group (n = 603) p-value

Age (year) 30 ± 4 29 ± 4 0.036

BMI (kg/m2) 23.60 ± 3.34 22.64 ± 3.41 <0.001

Duration of infertility (years) 4 ± 3 3 ± 2 0.001

HOMA-IR [n (%)] <0.001

<2.71 171 (46.7) 435 (72.1)

≥2.71 195 (53.3) 168 (27.9)

Type of infertility [n (%)] 0.285

Primary 249 (68.0) 390 (64.7)

Secondary 117 (32.0) 213 (35.3)

PCOM [n (%)] 303/366 (82.8) 519/603 (86.1) 0.167

history of OC treatment [n (%)] 279/366 (76.2) 171/603 (28.4) <0.001

AMH (ng/ml) 9.81 ± 4.77 10.46 ± 5.05 0.046

Basal E2 (pg/ml) 41.4 ± 15.5 42.8 ± 17.0 0.191

Basal P (ng/ml) 0.48 ± 0.19 0.52 ± 0.24 0.009

Basal FSH (IU/L) 6.2 ± 1.8 6.8 ± 1.8 <0.001

Basal LH (IU/L) 8.6 ± 5.8 9.5 ± 5.9 0.026

Basal T (mg/dl) 0.53 ± 0.26 0.46 ± 0.66 0.070

Basal DHEAS (mg/dl) 243.8 ± 117.1 236.5 ± 117.0 0.447

Basal ASD (ng/ml) 3.72 ± 1.36 3.78 ± 1.39 0.590

Basal SHBG (nmol/L) 33.9 ± 24.0 53.0 ± 36.8 <0.001

FAI 4.7 ± 3.9 4.7 ± 3.9 <0.001

HCY (mmol/L) 9.58 ± 2.35 9.18 ± 2.40 0.014

HDL-C (mmol/L) 1.34 ± 0.36 1.32 ± 0.33 0.450

TG (mmol/L) 2.06 ± 1.94 1.67 ± 1.77 0.002

Type of Gn [n (%)] <0.001

rFSH 168 (45.9) 372 (61.7)

hMG 198 (54.1) 231 (38.3)

Starting dosage of Gn (IU) 178.0 ± 52.8 178.7 ± 55.6 0.848

Total dosage of Gn (IU) 1,933.2 ± 803.9 1,807.1 ± 711.2 0.011

Duration of Gn (days) 11 ± 2 10 ± 2 <0.001

On the trigger day

E2 (pg/ml) 4,468.8 ± 2,688.7 5,166.2 ± 2,977.1 <0.001

P (ng/ml) 1.08 ± 0.92 1.15 ± 0.55 0.123

LH (IU/L) 2.7 ± 2.1 2.7 ± 2.1 0.949

(Continued)
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3.2 Metformin pre-treatment for all
PCOS patients

We compared the COS-related parameters and clinical pregnancy

rates between the metformin group and the control group for all

PCOS patients. The results showed that the metformin group had

fewer oocytes retrieved (15 ± 7 vs. 16 ± 8, p = 0.004), a lower cleaved

oocyte rate (97.9% vs. 98.5, p = 0.013), a lower available D3 embryo

rate (68.9% vs. 73.4%, p < 0.001), a lower blastocyst formation rate

(69.3% vs. 71.7%, p = 0.043), and a lower available blastocyst rate

(85.9% vs. 90.8%, p < 0.001) than the control group. However, there

was no statistical difference in IVF fertilization rate (p = 0.726), ICSI

fertilization rate (p = 0.294), high-quality D3 embryo rate (p = 0.092),

and high-quality blastocyst rate (p = 0.749) between the two groups.

We did not find a statistical difference in severe OHSS rate between

the two groups (p = 0.372).

For 345 PCOS patients who received fresh ET cycles (177 patients

in the metformin group and 168 patients in the control group), the

clinical pregnancy rate between the metformin group and the control

group was comparable (55.9% vs. 57.1%, p = 0.821). For 552 PCOS

patients who received their first frozen ET cycles (207 patients in the
Frontiers in Endocrinology 90
metformin group and 345 patients in the control group), there was no

statistical difference in the clinical pregnancy rate between the two

groups (63.8% vs. 60.9%, p = 0.497). The above results are shown in

Table 2. After adjusting for age, BMI, duration of infertility, history of

OC treatment, AMH, basal FSH, basal LH, FAI, HCY, and TG, as

these factors were statistically different between the two groups and

were reported to be associated with the clinical pregnancy rate in IVF/

ICSI-ET before, there was no statistical difference in the clinical

pregnancy rate between the two groups either (as shown in

Supplementary Table 3).
3.3 Metformin pre-treatment for PCOS
patients with HOMA-IR < 2.71

We did not find any statistical difference in IVF fertilization rate,

ICSI fertilization rate, cleaved oocyte rate, high-quality D3 embryo

rate, blastocyst formation rate, and high-quality blastocyst rate

between the metformin group and the control group for PCOS

patients with HOMA-IR < 2.71. However, there was a significantly

lower available D3 embryo rate (66.1% vs. 72.3%, p < 0.001) and
TABLE 1 Continued

Metformin group (n = 366) Control group (n = 603) p-value

Single endometrium thickness (mm) 5.1 ± 1.0 5.3 ± 1.1 0.059

No. of follicles ≥ 14 mm 10 ± 4 10 ± 3 0.137

Fertility methods [n (%)] 0.002

IVF 327 (89.3) 486 (80.6)

ICSI 9 (2.5) 30 (5.0)

IVF+ICSI 30 (8.2) 87 (14.4)
fro
BMI, body mass index; HOMA-IR, the homeostasis model assessment of insulin resistance; PCOM, polycystic ovarian morphology; OC, oral contraceptives; AMH, anti-Mullerian hormone; E2,
estradiol; P, progesterone; FSH, follicle-stimulating hormone; LH, luteinizing hormone; T, testosterone; DHEAS, dehydroepiandrosterone sulfate; ASD, androstenedione; SHBG, sex hormone binding
globulin; FAI, free androgen index; HCY, homocysteine; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides; Gn, gonadotropin; rFSH, recombinant FSH; hMG, human menopausal
gonadotropin; IVF, in vitro fertilization; ICSI, intracellular sperm injection. p < 0.05 was regarded as statistical different.
TABLE 2 COS outcomes and clinical pregnancy outcomes between the metformin group and the control group in all PCOS patients.

Metformin group (n = 366) Control group (n = 603) p-value

No. of oocytes retrieved 15 ± 7 16 ± 8 0.004

IVF fertilization rate [n (%)] 4,137/4,395 (94.1) 6,639/7,065 (94.0) 0.726

ICSI fertilization rate [n (%)] 228/255 (89.4) 984/1131 (87.0) 0.294

Cleaved oocyte rate [n (%)] 4,275/4,365 (97.9) 7,512/7,623 (98.5) 0.013

Available D3 embryo rate [n (%)] 2,946/4,275 (68.9) 5,514/7,512 (73.4) <0.001

High-quality D3 embryo rate [n (%)] 1,530/3,219 (47.5) 2,790/5,649 (49.4) 0.092

Blastocyst formation rate [n (%)] 1,386/2,001 (69.3) 3,093/4,311 (71.7) 0.043

Available blastocyst rate [n (%)] 1,191/1,386 (85.9) 2,808/3,092 (90.8) <0.001

High-quality blastocyst rate [n (%)] 414/1,386 (29.9) 909/3,092 (29.4) 0.749

Severe OHSS rate [n (%)] 9/366 (2.5) 21/603 (3.5) 0.372

CPR in fresh cycle [n (%)] 99/177 (55.9) 96/168 (57.1) 0.821

CPR in frozen cycle [n (%)] 132/207 (63.8) 210/345 (60.9) 0.497
n

IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection; OHSS, ovarian hyper-stimulation syndrome; CPR, clinical pregnancy rate. p < 0.05 was regarded as statistical different.
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available blastocyst rate (84.8% vs. 91.3%, p < 0.001) in the metformin

group compared with the control group. We found no statistical

difference in severe OHSS rate between the two groups (p = 0.836).

The clinical pregnancy rate between the metformin group and the

control group was comparable for 198 PCOS patients who received

fresh ET cycles (61.5% vs. 57.6%, p = 0.658). There was no statistical

difference in the clinical pregnancy rate between the metformin group

and the control group (70.6% vs. 66.7%, p = 0.535) for 372 PCOS

patients who received their first frozen ET cycles (102 patients in the

metformin group and 270 patients in the control group). The above

results are shown in Table 3. After adjusting for age, BMI, duration of

infertility, history of OC treatment, basal FSH, FAI, HCY, and TG,

there was no statistical difference in the clinical pregnancy rate

between the two groups either (as shown in Supplementary Table 4).
3.4 Metformin pre-treatment for PCOS
patients with HOMA-IR ≥ 2.71

For PCOS patients with HOMA-IR ≥ 2.71, we found no difference

in IVF fertilization rate, ICSI fertilization rate, high-quality D3

embryo rate, available blastocyst rate, or high-quality blastocyst rate

between the metformin group and the control group. The cleaved

oocyte rate (97.5% vs. 98.7%, p = 0.009), available D3 embryo rate

(71.6% vs. 76.1%, p = 0.001), and blastocyst rate (43.2% vs. 50.4%, p <

0.001) were statistically lower in the metformin group than in the

control group (as shown in Table 3).

Among 147 fresh ET cycles (99 in the metformin group and 48 in

the control group), the clinical pregnancy rate was comparable in the

metformin group and the control group (51.5% vs. 56.3, p = 0.590).

However, among 180 frozen ET cycles (105 in the metformin group

and 75 in the control group), the clinical pregnancy rate in the
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metformin group was significantly higher than in the control group

(57.1% vs. 40.0%, p = 0.023). After adjusting for PCOM, T, basal FSH,

basal LH, and FAI, there was no statistical difference in the clinical

pregnancy rate in fresh ET cycles either. The clinical pregnancy rate in

frozen ET cycles was still higher in the metformin group than in the

control group (p = 0.007) (as shown in Supplementary Table 5).
4 Discussion

PCOS is the most common endocrinopathy with complex

reproductive, metabolic, and psychological manifestations (11). It is

challenging for PCOS patients to receive IVF/ICSI-ET because of

unsatisfactory COS-related parameters, a lower clinical pregnancy

rate, and a higher risk of OHSS, miscarriage, and other pregnancy

complications compared with healthy women (4). IR reflects

metabolic and mitogenic disorders (12), playing crucial roles in the

pathological mechanisms of PCOS, and is closely associated with

obesity and hyperandrogenism (13, 14). HOMA-IR is a simple and

convenient indicator to evaluate the degree of IR (15). Patients with a

higher HOMA-IR were reported to have a lower implantation rate

(15), a lower clinical pregnancy rate (15, 16), and a higher risk of early

miscarriage (17) and late miscarriage (10) than patients with a lower

HOMA-IR in IVF/ICSI-ET cycles. Metformin is a synthetically

derived biguanide that is widely used in PCOS patients because it

improves insulin sensitivity (18, 19), but the application of metformin

is full of controversy. A cohort study indicated no positive role of

metformin on the success rate of IVF/ICSI-ET for PCOS patients

(20). In addition, a randomized double-blind controlled trial (RCT)

exploring the efficacy of pre-treatment of metformin for all PCOS

patients who received IVF/ICSI-ET treatment showed no difference in

implantation rate, multiple pregnancy rate, miscarriage rate, or live
TABLE 3 COS outcomes and clinical pregnancy outcomes between the metformin group and the control group in PCOS patients of different
HOMA-IR subgroups.

HOMA-IR < 2.71 HOMA-IR ≥ 2.71

Metformin group
(n = 171)

Control group
(n = 435) p-value Metformin group

(n = 195)
Control group

(n = 168) p-value

No. of oocytes retrieved 15 ± 8 16 ± 8 0.300 14 ± 6 16 ± 8 0.004

IVF fertilization rate [n (%)] 1,995/2,135 (93.4) 4,581/4,866 (94.1) 0.259 2,142/2,256 (94.9) 2,058/2,199 (93.6) 0.051

ICSI fertilization rate [n (%)] 111/132 (84.1) 804/930 (86.5) 0.462 117/123 (92.7) 180/201 (89.6) 0.078

Cleaved oocyte rate [n (%)] 2,070/2,106 (98.3) 5,304/5,385 (98.5) 0.520 2,205/2,259 (97.5) 2,208/2,238 (98.7) 0.009

Available D3 embryo rate [n (%)] 1,368/2,070 (66.1) 3,834/5,304 (72.3) <0.001 1,578/2,205 (71.6) 1,680/2,208 (76.1) 0.001

High-quality D3 embryo rate [n (%)] 729/1,539 (47.4) 1,971/4,044 (48.7) 0.360 801/1,680 (47.7) 819/1,605 (51.0) 0.055

Blastocyst formation rate [n (%)] 651/930 (70.0) 2,133/2,943 (72.5) 0.143 735/1,701 (43.2) 690/1,368 (50.4) <0.001

Available blastocyst rate [n (%)] 552/651 (84.8) 1,947/2,133 (91.3) <0.001 639/735 (86.9) 861/960 (89.7) 0.079

High-quality blastocyst rate [n (%)] 189/651 (29.0) 615/2,133 (28.8) 0.922 225/735 (30.6) 294/960 (30.6) 0.995

Severe OHSS rate [n (%)] 9/171 (5.3) 21/435 (4.8) 0.836 – – –

CPR in fresh cycle [n (%)] 48/78 (61.5) 69/120 (57.6) 0.658 51/99 (51.5) 27/48 (56.3) 0.590

CPR in frozen cycle [n (%)] 72/102 (70.6) 180/270 (66.7) 0.535 60/105 (57.1) 30/75 (40.0) 0.023
fron
HOMA-IR, the homeostasis model assessment of insulin resistance; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection; OHSS, ovarian hyper-stimulation syndrome; CPR, clinical
pregnancy rate. p < 0.05 was regarded as statistical different.
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birth rate (21). Similarly, another systematic review and meta-analysis

showed a similar clinical pregnancy rate for all PCOS patients with

and without metformin pre-treatment during IVF/ICSI-ET

cycles (22).

In this study, we retrospectively collected information on IVF/

ICSI-ET cycles for 969 PCOS patients and investigated the value of

HOMA-IR as a judgment criterion for metformin pre-treatment

before IVF/ICSI-ET cycles in patients with PCOS. Clinical

pregnancy rate was selected as the primary outcome of this study.

For all PCOS patients not grouped according to HOMA-IR, we

observed a comparable clinical pregnancy rate in both fresh ET and

frozen ET cycles between the metformin group and the control group,

which were in correlation with previous studies (22). For PCOS

patients with HOMA-IR < 2.71, there was no statistical difference

in the clinical pregnancy rate between the metformin group and the

control group in both fresh and frozen ET cycles. For PCOS patients

with HOMA-IR ≥ 2.71, we observed a higher clinical pregnancy rate

in the metformin group than in the control group in frozen ET cycles,

which was similar to a previous systematic review and meta-analysis

that observed the same outcome in PCOS patients with BMI > 26 kg/

m2 (22). We can initially conclude that metformin pre-treatment

increases the clinical pregnancy rate for PCOS patients with HOMA-

IR ≥ 2.71 in frozen IVF/ICSI-ET cycles, which was in agreement with

our knowledge that metformin can ameliorate IR and decrease the

adverse effects of IR on IVF/ICSI-ET outcomes. However, the

difference in the clinical pregnancy rate between the two groups

was not significant in fresh ET cycles even for PCOS patients with

HOMA-IR ≥ 2.71. We try to explain the results and speculate that

metformin pre-treatment may affect the endometrial receptivity of

PCOS patients during fresh ET cycles; therefore, the effect of

metformin pre-treatment on the clinical pregnancy rate was

weakened. During frozen ET cycles, artificial menstrual cycle was

established; therefore, the effect of metformin pre-treatment on

endometrial receptivity was not shown.

COS-related parameters were selected as secondary outcomes of

this study. We have to be concerned that metformin pre-treatment

seems to have an important influence on the COS-related parameters.

All of the included PCOS patients received the GnRH-antagonist

protocol treatment. We found that metformin not only decreased the

number of oocytes retrieved, the available D3 embryo rate, the cleaved

oocyte rate, and the blastocyst formation rate for all PCOS patients

not grouped according to HOMA-IR and PCOS patients with

HOMA-IR ≥ 2.71, but also decreased the available D3 embryo rate

and the available blastocyst rate for all PCOS patients not grouped

according to HOMA-IR and PCOS patients with HOMA-IR < 2.71.

The above results were in agreement with a previous RCT, which

found that metformin pre-treatment decreased the mean number of

the retrieved oocytes and the number of fertilized oocytes (21).

Interestingly, although the influence of metformin on COS-related

parameters was observed in our study and a previous RCT, no adverse

effect of metformin on the clinical pregnancy rate was found. The

above results indicated that the influence of metformin pre-treatment

on COS-related parameters should not be considered as an adverse

effect in IVF/ICSI-ET because COS-related parameters are not

correlated with IVF/ICSI-ET outcomes entirely.

There were some limitations preventing the generalization of the

results. Firstly, this study was a single-center retrospective cohort
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study, the grade of clinical evidence was limited, and we did not

perform a follow-up investigation on the changes in HOMA-IR,

BMI, blood lipid, and other indicators in the metformin group after

metformin pre-treatment, which could have been helpful for

analyzing the correlation between indicator changes and

pregnancy outcome. Secondly, because this is a retrospective

study, we could not be involved with the patients; thus, the

duration and dosage of metformin pre-treatment for included

PCOS patients were different, which may affect the outcomes of

this study. Thirdly, we selected 2.71 as the cutoff value of HOMA-IR

according to previous reports; whether the cutoff value may affect

the outcomes of this study was not clear and needs to be explored in

the future, but this study indicated that HOMA-IR was a useful

indicator for the guidance of metformin pre-treatment before IVF/

ICSI-ET for PCOS patients. The above limitations indicated that we

must interpret the results of this study with caution, and a well-

designed RCT with a large sample size should be performed to

obtain a more valuable conclusion.

In conclusion, metformin pre-treatment could be added for

PCOS patients with HOMA-IR ≥ 2.71 during frozen IVF/ICSI-ET

cycles to improve the clinical pregnancy rate, but for PCOS patients

with HOMA-IR < 2.71 or PCOS patients receiving fresh IVF/ICSI-

ET treatment, metformin pre-treatment was not proven to be of

benefit by the present study. The influence of metformin on COS-

related parameters of PCOS patients should be considered in the

GnRH-antagonist protocol. The results of this study need to be

proven by a well-designed RCT with and large sample size in

the future.
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Context: Sleep duration and sleep quality have important health implications

although our knowledge of objectively measured sleep variables in women with

Polycystic Ovary Syndrome (PCOS) is limited.

Objective: To compare sleep variables assessed by actigraphy in over-weight/

obese women with PCOS and controls, and to assess sleep variables after

behavioral modification intervention in comparison with minimal intervention in

a randomized trial.

Design: Randomized controlled trial, and a control group.

Setting: Outpatient gynecological clinic at a university hospital in Sweden.

Participants: 39 women fulfilling all Rotterdam PCOS criteria, randomized to

behavioral modification intervention or minimal intervention and 21 controls

with no other metabolic disease, all aged 18‐40 years with a BMI ≥ 27 kg/m2.

Intervention: A four-month behavioral modification intervention including weekly

group meetings focusing on behavioral and healthy lifestyle aspects. Minimal

intervention reflecting standard care.

Main outcome measure: Sleep durations and sleep efficiency assessed

by actigraphy.

Results: Compared to the control group, women with PCOS had significantly

shorter time in bed (501 vs 548 min, p= 0.049), sleep time over 24 hours (448 vs

567 min, p=0.005) and sleep time at night (434 vs 511 min, p=0.002), poorer sleep

efficiency (87 vs 93%, p<0.001), and longer wakefulness after sleep onset (64 vs

38 min, p<0.001). However, total sleep time at night for women with PCOS (7.2hrs)

was within the normal range. Following behavioral modification intervention, the

reduction from baseline in sleep over 24 hours and in the daytime sleep were

significant compared to the minimal intervention group (78 min, p=0.009 and

43 min, p=0.003 respectively).

Conclusions: We found over-weight/obese women with PCOS to have normal

sleep duration, but worse sleep efficiency than controls. Behavioral modification
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intervention seems to reduce the amount of daytime sleep, suggesting improved

sleep behavior.

Clinical trials registration: https://doi.org/10.1186/ISRCTN48947168, identifier

ISRCTN48947168.
KEYWORDS

polycystic ovary syndrome (PCOS), sleep, behavior modification, lifestyle, actigraphy
Introduction

Polycystic ovary syndrome (PCOS) is the most common

endocrine disorder in fertile women with a prevalence of 8-13% (1).

It is characterized by oligo- or anovulation, clinical or biochemical

hyperandrogenism and polycystic ovaries on ultrasound (2, 3). PCOS

is a heterogenous condition and has previously been considered a

disorder of infertility and clinical hyperandrogenism mainly

manifested by hirsutism. Today, other aspects of PCOS are

increasingly recognized including metabolic disturbances such as

insulin resistance and abdominal obesity, as well as psychiatric

morbidity e.g. depression and anxiety (4–8). We have recently

demonstrated that psychological well-being is severely impacted in

overweight women with PCOS (9).

In addition, sleep disturbances have been reported as common

among women with PCOS, and the occurrence of obstructive sleep

apnea (OSA) is higher than for controls (10–15). OSA is characterized

by daytime sleepiness, somnolence and fatigue, restless sleep, and

morning headaches (16). The most recent international PCOS clinical

guidelines, recommend screening for OSA to identify and alleviate

symptoms and to explore if fatigue potentially contributes to mood

disorders as well as to attempt optimizing the sleep (2). Other aspects

of sleep behavior than OSA in women with PCOS, such as sleep time,

timings of sleep and sleep efficiency, have mainly been characterized

by studies looking at self-reported parameters (10, 15, 17).

Furthermore, evidence from objective measurements of sleep

behav ior in women wi th PCOS us ing ac t i g raphy or

polysomnography other than for diagnosing OSA is scarce (18, 19).

Studies on non-PCOS, including female only populations, have

shown that short sleep duration is linked to obesity, decreased insulin

sensitivity as well as increased hunger and appetite (20–22). In

addition, daytime napping is positively correlated with body mass

index (BMI) and waist circumference in women (23). Furthermore,

sleep duration shorter than 6 hours (360 minutes) is associated with

menstrual cycle disturbances (both long and short cycles) (24). There

is also evidence showing that altering the timings of wakefulness and

sleep, being awake at night and asleep during the day, is associated

with impaired glucose tolerance and increased insulin resistance (21).

Finally, both short and long sleep times are associated with increased

mortality (25).

The observations in women with PCOS indicate a need for

investigating if overweight/obese women with PCOS differ from

body mass index (BMI)-matched controls with respect to objective

indicators of sleep efficiency and awakenings, the timing of sleep, its
95
variability, as well as sleep duration. Moreover, since lifestyle

management including exercise, diet, behavioral intervention, or a

combination of those, is the first line treatment for over-weight

women with PCOS, it is important to assess its impact on sleep

health variables in this population (2).

The primary objective of this study was therefore to assess

objective sleep variables by actigraphy in over-weight/obese women

with PCOS in comparison with BMI- and age-matched controls. In

addition, to investigate the effect of behavioral modification

intervention in comparison with minimal intervention on sleep

variables in a randomized trial of women with PCOS, as well as to

look for any correlations between sleep variables and anthropometric,

endocrine and psychological well-being parameters.
Materials and methods

Study design

This is a secondary analysis of data from a Randomized

Controlled Trial (RCT) (ISRCTN48947168), previously described in

Oberg et al. (26) where 68 over-weight/obese women with PCOS

where randomized to receive behavioral modification intervention or

minimal intervention in a 1:1 ratio for four months with a further

follow up at 12 months (26). Weight change and reproductive

outcomes in relation to weight loss were the primary outcomes

(26). Other previously published data include psychological well-

being parameters as well as endocrine and metabolic variables (9).

In this study, we have focused on objectively measured sleep

variables in the same population of over-weight/obese women with

PCOS and measured the treatment effects of the four-month

intervention within and between groups. Sleep-registration with

actigraphy was initiated part of the way through the inclusion

period resulting in 39 out of the 68 women with PCOS completing

the sleep registration at baseline (22 in the behavioral modification

intervention group and 17 in the minimal intervention group), and 28

women at four months (13 in the behavioral modification

intervention group and 15 in the minimal intervention group). In

addition, we have introduced a control group of 21 women with

comparable BMI and age to the women with PCOS without any

metabolic-, endocrine or other illness, and compared the baseline

sleep variables from our whole population of over-weight/obese

women with PCOS (n=39) with the controls. Written consent has

been obtained from all study participants. The local ethics committee
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in Stockholm has approved the study (2012/146-31/3, 2012/1762-32,

2014/1406-32, 2020/00653).
Women with PCOS

Study participants were recruited through adverts in a local

newspaper as well as on a website for clinical studies. Inclusion

criteria were BMI ≥ 27 kg/m2, age between 18-40 years and using the

PCOS Rotterdam consensus, fulfilling all three PCOS diagnostic

criteria : ol igo- or anovulation, cl inical or biochemical

hyperandrogenism and polycystic ovaries on ultrasound (3). A

serum testosterone > 310 pg/mL measured by tandem mass

spectrometry indicated biochemical hyperandrogenism, and a

Ferriman-Gallwey score ≥ 8 was used to define hirsutism and a

measure of clinical hyperandrogenism (27). Ovaries were considered

polycystic if at least one had a volume ≥ 10 mL or ≥ 12 antral follicles

when using transvaginal ultrasound (Sonoline SI-250, Siemens

Healthcare Diagnostics) (2, 3). Criteria of exclusion were other

chronic illnesses including eating disorders or ongoing medication,

pregnancy or breast-feeding, smoking, or a substantial change in

weight during the past year as well as working night-shifts. A washout

period of three months was used for participants using a

hormonal contraceptive.
Controls

The women used as controls were recruited via a web-site advert

based on the same inclusion criteria of age (18 to 40 years old) and

BMI (≥ 27 kg/m2) as the women with PCOS. The controls also needed

to have a regular menstrual cycle length of 23 to 32 days. Exclusion

criteria, in addition to the ones described above for the patient group,

were having oligo- or amenorrhea, clinical or biochemical

hyperandrogenism or a previous diagnosis of PCOS.
Study intervention

Behavioral modification intervention
We used a behavioral modification intervention, developed as a

training course with focus on achieving long-term weight control

(26). The study participants were divided into small groups in which

they attended weekly meetings throughout the four-month

intervention period together with the course leader working

through topics such as personal leadership, mindfulness, problem

solving, stress management, stimulus control, techniques for avoiding

instant gratification as well as more practical aspects concerning

weight control, diet and physical activity. Preparation for each

meeting by reading and personal reflection was encouraged (28). In

addition, individual coaching sessions with the course leader were

held once a month.

Minimal intervention
The minimal intervention group received standard care

comprising oral and written information on healthy living

including advice on diet and exercise delivered by a research midwife.
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Procedures

Women with PCOS
Before and after the 4-month intervention, the women with PCOS

underwent a physical examination on menstrual cycle day 6-8. In

women with oligo- or amenorrhea, a bleeding was induced by taking

10 mg medroxyprogesterone for seven days. A thorough medical

history was taken, anthropometric measurements were obtained, a

gynecological examination including transvaginal ultrasound was

completed and fasting blood sampling was carried out allowing for

analysis of hormones, binding proteins and metabolic variables. The

participants also filled in a questionnaire assessing the psychological

general wellbeing index (PGWBI) at baseline and 4 months.

Controls
A medical history was taken from the controls to ensure they

fulfilled the entry criteria and no exclusion criteria. Fasting blood

sampling was carried out on cycle day 6-8 to allow for analysis of

hormones and binding proteins and anthropometric measurements

were obtained. The controls did not receive any intervention and were

only assessed at baseline.
Actigraph assessment of sleep

Both the women with PCOS and the controls wore an actigraph,

ActiSleep+ (ActiGraph) device on their non-dominant wrist or in

some cases where this was not possible, around their ankle. They were

encouraged to wear the device for 7 consecutive days, the whole time

apart from when showering/taking a bath or undertaking other water-

based activities. Patients and controls with recordings for less than

three consecutive periods of 24 hours were excluded from the study.

The PCOS study population carried the actigraph at baseline and at 4

months, and the control group only at baseline.

Actigraphy uses an accelerometer that measures movements and

uses three-dimension acceleration data which are converted to

estimated sleep parameters using the commonly used and validated

Sadeh sleep algorithm (29). A recent study validating actigraphy as a

method of assessing sleep variables compared to the gold standard

method for sleep assessment of polysomnography, found actigraphy

to give valid estimates of total sleep time, wake after sleep onset as well

as sleep efficiency (30). The manufacturer’s data analysis software

ActiLife 6 (ActilGraph) was used to extract data from the devices and

each patient’s report was reviewed manually by the first author (EO).

Recordings of sleep durations were: total sleep time over 24h (TST

24h, min), time in bed at night (TIB, min), total sleep time at night

(TST night, min) and total sleep time during the day (TST day, min)

(defined as a new episode of sleep initiated 30 minutes or later after

time of rising, when occurring after 08:00). In addition, the time of

rising (ToR) and the bed time were recorded. The number of wakeups

(n) and wakefulness after sleep onset (WASO, min), as well as energy

expenditure (kcal/day) and steps taken (n) were extracted. The sleep

parameters for all recorded consecutive 24-hour periods obtained

from the actigraph were averaged for each participant. Averages for

weekdays (Monday to Thursday) and weekends (Friday and

Saturday) were also obtained for all sleep parameters. Sleep

efficiency (TST night/TIB x100) was calculated.
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Biochemical measurements

The sex steroids were analyzed by liquid chromatography

tandem-mass spectrometry (31, 32). The analyses of binding

prote ins and other hormones were carr ied out us ing

electrochemiluminescence immunoassay (ECLIA) from Roche

Diagnostics AG (CH 6343 Rotkreuz, Switzerland) (Cobas8000®)

the Department of Clinical Chemistry, Karolinska University

Hospital, Stockholm, Sweden. Free androgen index (FAI) was

calculated (testosterone nmol/L divided by SHBG nmol/L x 100).
Assessment of psychological general
well-being

The non-disease specific questionnaire PGWBI was used to assess

the psychological well-being. The PGWBI contains 22 questions with

6 answers to choose from and it assesses the well-being during the

previous month (33, 34). The questions are divided into the six

dimensions of anxiety, depressed mood, positive well-being, self-

control, general health and vitality. All dimensions can be added to

achieve a global score (34). Greater well-being is always indicated by a

higher score (e.g. a high score for depressed mood indicates a greater

well-being) (34). We have previously shown that the well-being in this

group was very low at baseline and that some aspects of well-being

(anxiety, general health and depressed mood) improved following

behavioral modification (9).
Statistics

Statistical analysis was carried out using SPSS software version

26 (IBM; Stockholm, Sweden). In Tables 1, 2, proportions or

percentages are used to present categorical data, continuous data

is presented as means ± standard error (SE). For continuous data,

normal distribution was tested for using histograms, as well as

calculation of skewness. Student’s t-test was used to assess the

difference in baseline characteristics between the groups for

continuous variables, and Fisher’s Exact test for categorical data.

Analysis of covariance was used to compare the group of women

with PCOS with the controls with respect to the sleep variables in

Figure 1, adjusted for the potential confounders: being in a stable

relationship, having children, BMI and waist circumference. A

linear mixed model analysis was used to assess the effects of the

intervention within and between the treatment groups at four

months (Table 2 and Figure 2) where the factors used were

treatment (behavioral modification intervention and minimal

intervention), time (baseline and four months) and the

interaction treatment x time. The results from the mixed model

analysis are presented as means as well as SE for within group

analysis and as the mean difference of the change from baseline

along with the 95% confidence intervals (CI) for between group

analysis. The analysis was carried out on an intention-to treat

(ITT) basis. All analyses were carried out both on the mean of all

24-hour sleep periods recorded for each participant, as well as the

mean of the weekday (Monday to Thursday) and weekend (Friday

and Saturday) sleep. The bivariate correlation analysis of baseline
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demographic, anthropometric, accelerometer data and endocrine

variables with sleep parameters, as well as the correlation analysis

between the change of these variables following the 4-month

intervention period were performed using Spearman rank

correlation. Statistical significance was assumed at P-values <

0.05. This is a secondary analysis, where the power calculation

based on weight change following intervention has previously been

published (26).
Results

Baseline characteristics

Table 1 outlines the baseline demographic, anthropometric, and

endocrine variables for the whole group of women with PCOS

(behavioral modification intervention and minimal intervention), as

well as for the control group. The whole group of women with PCOS

and the controls were comparable in regard to age and BMI on a

group level. The women with PCOS had a larger waist circumference

and a higher WHR. Furthermore, there were expected between group

differences for the endocrine variables, with the women with PCOS

having higher androgen levels than the controls. The percentage of

women with PCOS with biochemical hyperandrogenism was 76%. In

addition, the women with PCOS were more likely to be in a stable

relationship and to have children than the controls. There was no

difference in education level or in the number of current students

between the groups. None of the study participants was unemployed.

There was no difference in baseline characteristics between the

women with PCOS randomized to behavioral modification

intervention and minimal intervention as previously published

(9, 26).
Sleep in women with PCOS compared
to controls

When looking at all days of the week, the women with PCOS had

significantly shorter mean total sleep time over 24 hours (TST 24h,

min), time in bed at night (TIB, min), total sleep time at night (TST

night, min), total sleep time during the day (TST day, min), poorer

sleep efficiency (%), and longer periods of wakefulness after sleep

onset (WASO, min) than the control group as shown in Figures 1A,

B. However, we found no differences between the groups in the

number of awakenings per night, or in the bed-time. The mean time

of rising (ToR) occurred earlier for the PCOS patients than for the

controls. When adjusting for being in a relationship, having

children, BMI and waist circumference, the differences between

groups for TST day and ToR disappeared, but all other differences

between groups remained. When looking at the sleep parameters for

weekdays only (Monday to Thursday) all differences between

groups remained, apart from the TIB, where the difference no

longer was significant (data not shown). Regarding sleep data for

weekends only (Fridays and Saturdays), the women with PCOS still

had a significantly shorter TST 24h (p=0.041), TST night (p=0.015),

poorer sleep efficiency (p<.001) and a longer WASO (p<0.001)

compared to controls.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1068045
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Oberg et al. 10.3389/fendo.2023.1068045
Sleep following behavioral modification
intervention in women with PCOS

For the women with PCOS, the TST 24h and the TST daytime

decreased in the behavioral modification intervention group albeit not

significantly, following the 4-months behavioral intervention

program, and increased in the PCOS minimal intervention group

during the same period, as shown in Figure 2. This resulted in a

significant difference following intervention in the TST 24h and the

TST daytime between the PCOS women having received behavioral

modification intervention and the minimal intervention group
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(Figure 2). As outlined in Table 2, we found no other within or

between group differences to the actigraphy recorded sleep

parameters following the 4 months behavioral modification

intervention. No significant within or between group differences

following intervention was seen when analyzing the data separately

for weekdays (Monday to Thursday) and weekend (Friday and

Saturday) (data not shown).
Correlations between sleep variables and
baseline characteristics

For the women with PCOS at baseline, there were no correlations

between the objective sleep variables and the hormonal and

anthropometric measurements respectively, nor were there any

correlations between the changes in these variables following

intervention. In the same study, we have previously shown that

psychological well-being was severely reduced at baseline however

behavioral modification intervention had a positive impact on some

of the dimensions of well-being (9). In terms of correlations between

sleep variables and the psychological well-being measurements at

baseline, there was a positive correlation between sleep efficiency and

the variables self-control (r = 0.41, p = 0.023) and a negative

correlation between WASO and self-control (r = -0.38. p = 0.035).
Discussion

To our knowledge, this is the first study investigating objectively

measured sleep health variables in overweight women with PCOS

both compared to controls, as well as after lifestyle intervention. We

found that women with PCOS had poorer sleep efficiency and longer

wakefulness after sleep onset than controls. Furthermore, there was a

non-significant reduction in total sleep time over 24 hours, as well as

in total daytime sleep following behavioral modification intervention,

although this was significant when compared to the minimal

intervention group. There was no reduction in the total sleep time

at night, suggesting less daytime napping after behavioral

modification intervention.

In adults, the recommended sleep duration is between 6h to 8h

per night, where sleep over 9h could be used to detect co-morbidity

(35). The women with PCOS had a mean total sleep time at night of

7.2h, whereas the control group had a somewhat longer night sleep of

8.5h. When looking at the sleep time over the 24-hour window, we

found that the control group slept two hours longer than the PCOS

women. This was partly due to 47 minutes longer time in bed, largely

caused by later rising, as well as 57 minutes of daytime sleep

(napping). Despite the longer time in bed, which normally results

in less effective sleep, the sleep efficiency was significantly higher in

the control group and wakefulness after sleep onset significantly

shorter. Both are key indicators of sleep quality (36). This implies

that sleep quality was better in the control group, despite their total

sleep time being longer.

An increased sleep duration could have been an artefact of a wider

sleep window. The data for the control group was partly recorded

during the beginning of the COVID-19 pandemic, when working

from home was recommended, which could have permitted a larger
TABLE 1 Baseline characteristics of the PCOS population as well as the
control group.

PCOS population
(n=39) #

Controls
(n=21)

p-
value

Demographics

Age (year) 30.1 ± 5.3 29.9 ± 5.2 0.849

Education 0.197

Primary 1/39 (2.6%) 0/21 (0%)

Secondary 13/39 (33.3%) 3/21 (14.3%)

University 14/39 (35.9%) 10/21
(47.6%)

Current student 8/39 (20.5%) 8/21 (38.1%) 0.220

Unemployed 0/39 0/21

In a stable relationship 26/39 (66.7%) 8/21 (38.1%) 0.028

Have children 16/39 (41.0%) 3/21 (14.3%) 0.044

Anthropometric

Body weight (kg) 93.2 ± 16.2 86.6 ± 10.7 0.083

BMI (kg/m2) 34.1 ± 33.9 31.6 ± 31.6 0.064

Waist circumference (cm) 103.7 ± 11.3 94.4 ± 8.4 0.001

Hip circumference (cm) 116.6 ± 10.5 117.4 ± 7.9 0.813

WHR 0.89 ± 0.06 0.81 ± 0.05 < 0.001

Endocrine Variables

FSH (IU/L) 6.6 ± 3.5 7.1 ± 2.1 0.584

LH (IU/L) 6.7 ± 3.2 6.5 ± 2.9 0.887

Testosterone (pg/mL) 392.5 ± 137.9 270.0 ± 95.2 0.001

SHBG (nmol/L) 27.3 ± 15.1 54.8 ± 40.1 < 0.001

Free Androgen Index 6.5 ± 3.9 2.3 ± 1.0 < 0.001

Androstenedione (pg/mL) 1628 ± 525 1055 ± 251 < 0.001

Estradiol (pg/mL) 49.9 ± 26.7 48.9 ± 32.3 0.906
• Baseline categorical data is presented as a proportion/percentage, and continuous data as
means ± standard deviation.
• To determine the difference between groups, the independent sample t-test was used for
continuous data and the Fisher’s exact test for categorical data.
• BMI, body mass index; FSH, follicle stimulating hormone; LH, luteinizing hormone; min
minutes; SHBG, sex hormone-binding globulin; WHR, waist/hip ratio.
• Free androgen index calculated as testosterone nmol/L divided by SHBG nmol/L x 100.
• # subset of a larger population where data previously has been published.
• P-values in bold indicate statistical significance.
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night time sleep window for this group as well as opportunities for

daytime napping. In addition, the proportion of women with children

was lower among the controls, and fewer were in a stable relationship.

However, there was no difference in the proportion of students

between the groups and no-one was unemployed, factors that could

otherwise have permitted a wider sleep window and provided an

explanation for the longer sleep times in the control group. When

controlling for the potential covariates of being in a relationship,

having children, BMI and waist circumference, the difference between

groups in daytime sleep and time of rising disappeared, leading us to

believe that being in a relationship and having children affected these

variables. However, this does not alter the fact that sleep quality, in

terms of sleep efficiency, was considerably higher in the control group

even after adjusting for covariates.

Our findings are in agreement with two other studies that have

found lower actigraphy recorded sleep efficiency in women with

PCOS compared to controls; Shreeve et al. (19) looking at adults
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and Simon et al. (18) studying adolescents (18, 19). Another study

using polysomnography (one night only in a sleep laboratory) by

Sousa et al. (37), found lower sleep efficiency in a PCOS adolescent

population compared to controls (37). Three other relatively small

polysomnography studies based on adult PCOS populations vs

healthy controls, Hachul et al. (38), Suri et al. (39) and Fogel et al.

(11), also found poorer sleep efficiency in the PCOS groups but the

results did not reach significance, potentially because of the small

sample size (11, 38, 39). In terms of wakefulness after sleep onset,

results from polysomnography studies by Sousa et al. (37), and Suri

et al. (39) agree with our results of women with PCOS having a longer

wakefulness after sleep onset than controls, however Simon et al. (18)

and Hachul et al. (38) found no difference between the groups.

In terms of psychiatric well-being, we found a positive correlation

between self-control and sleep efficiency and a negative correlation

between self-control and wakefulness after sleep onset which is

reasonable since the latter contributes largely to the sleep efficiency
TABLE 2 Sleep, anthropometric, endocrine and metabolic parameters at baseline and after 4 months of intervention for the women with PCOS.

Behavioral Modification
Intervention (n=22)

Minimal Intervention
(n=17)

Difference in
change between

groups

Sleep
parameters

Baseline 4 months P-
value

Baseline 4 months P-value Behavioral Modi-
fication - Minimal

Intervention

P-
value

TIB (min) 497.2 (459-535) 464.0 (416-512) .208 502.4 (460-545) 509.7 (465-555) .783 -40.5 (-115.7 to 34.7) .280

Sleep
efficiency (%)

86.8 (85.1-88.5) 87.0 (85.0-89.1) .803 86.8 (84.9-88.7) 87.4 85.4-89.5) .534 -0.40 (-3.4 to 2.5) .786

Nb wakeups/
night

18.4 (15.6-21.1) 19.1 (6.1-32.1) .902 17.5 (14.4-20.5) 24.6 (12.5-36.8) .221 -6.4 (-24.0 to 11.2) .445

WASO (min) 63.1 (54.0-72.1) 58.8 (47.4-70.2) .483 62.9 (52.7-73.1) 62.7 (51.9-73.4) .964 -4.0 (-21.3 to 13.4) .646

Anthropometric #

Body weight
(kg)

91.9 (84.6-99.2) 89.4 (81.9-96.8) .042 97.7 (90.1-105) 95.5 (87.8-103) .087 -0.3 (-3.9 to 3.2) .842

BMI (kg/m2) 33.4 (31.2-35.5) 32.4 (30.2-34.6) .037 35.6 (33.3-37.9) 34.8 (32.5-37.1) .077 -0.1 (-1.4 to 1.1) .841

Waist (cm) 103.5 (98.4-109) 99.9 (94.6-105) .023 106.0 (101-111) 102.4 (96.9-108) .036 0.003 (-4.5 to 4.5) .999

Endocrine variables #

Testosterone
(pg/mL)

360.1 (302-418) 370.7 (301-441) .759 434.9 (369-501) 361.8 (290-434) .065 83.7 (-21.5 to 189.0) .114

Free Androgen
Index

5.5 (4.1-7.0) 4.8 (2.9-6.7) .489 7.7 (6.0-9.4) 5.5 (3.5-7.3) .060 1.5 (-1.7 to 4.8) .349

Metabolic variables #

Fasting Insulin
(mIE/L)

13.5 (9.2-17.9) 11.3 (6.3-16.4) .324 17.0 (12.1-21.8) 17.5 (12.3-22.7) .819 -2.8 (-9.4 to 3.9) .401

Fasting
Glucose
(mmol/L)

4.7 (4.4-5.0) 4.7 (4.3-5.0) .751 4.9 (4.5-5.2) 5.0 (4.7-5.4) .238 -0.2 (-0.7 to 0.2) .280

HOMA 2.9 (1.8-4.1) 2.4 (1.0-3.7) .291 3.8 (2.6-5.1) 4.3 (3.0-5.7) .401 -1.0 (-2.6 to 0.6) .185
frontie
• Data given mean and mean differences with its 95% Confidence Interval.
• BMI, body mass index; HOMA, Homeostatic Model of Assessment; min, minutes; Nb, number; TIB, time in bed; WASO, wakefulness after sleep onset.
• Free androgen index calculated as testosterone nmol/L divided by SHBG nmol/L x 100.
• # subset of a larger population where data previously has been published.
• Homeostatic Model of Assessment (HOMA) index calculated using the formula (insulin mIE/L) x (glucose mg/dL)/405.
• P-values in bold indicate statistical significance.
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measure. A recent study by Yang et al. (40) found an association

between self-reported sleep parameters and anxiety/depression status

in Chinese women with PCOS, hypothesizing that sleep disturbances

might be part of the etiology of the psychiatric co-morbidity in this

patient group. However, the causality of these associations has to be

investigated further (40).

In addition to comparing the objectively measured sleep variables

in women with POCS with controls, we have also for the first time

investigated the effects of lifestyle intervention on sleep variables in

women with PCOS. We found that following behavioral modification

intervention the overweight/obese women with PCOS displayed a

non-significant reduction in the total sleep time over 24 hours and in

daytime sleep, compared to the minimal intervention group where the

total sleep time over 24 hours and daytime sleep increased, and the

difference in these changes following intervention between groups

was significant. As no such significant difference between groups was

seen for the total sleep time at night, the reduction of total sleep time

over 24hours is explained by less daytime napping following

behavioral modification intervention. A meta-analysis based on a

non-PCOS population by Zhong et al. (41) showed that daytime

napping is associated with increased risk of death of all causes (41).
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Another meta-analysis found that daytime napping is associated with

an increased risk of type 2 diabetes mellitus (42). This is in line with

our previously published findings for the same population of women

with PCOS showing improved metabolic parameters following

behavioral modification intervention (26).

A strength of the study is the use of actigraphy for objectively

measured sleep variables compared to the majority of studies on

similar populations using subjective reporting of sleep quality.

Actigraphy also allows for a non-invasive method of assessing sleep

for a long period of time in a patient’s normal environment. However,

actigraphy cannot be used for the assessment of obstructive sleep

apnea. One limitation of his study is that the collection of sleep data

for the control group partly was completed during the COVID-19

pandemic, when working from home was recommended by the

authorities, enabling a wider window of sleep. In addition, there

were differences in the proportion of women with children, as well as

those in a stable relationship between the groups, however these

differences were adjusted for in the statistical analyses.

In conclusion, we found that women with PCOS had shorter sleep

duration, although within the normal range, but poorer sleep-

efficiency and longer periods of wakefulness after sleep onset
A

B

FIGURE 1

Actigraphy measured sleep variables (A, sleep times, B, sleep efficiency) for overweight/obese women with PCOS (n=39) and healthy controls (n=21) of a
similar age and weight presented as means including the 95% CI. P-values are adjusted: controlling for being in a relationship, having children, BMI and
waist circumference as covariates. H, hours; min, minutes; TIB, time in bed; TST, total sleep time; WASO, wakefulness after sleep onset. Sleep efficiency:
total sleep time/time in bed x 100.
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compared to controls. In terms of sleep quality after lifestyle

intervention in the women with PCOS, there was a non-significant

reduction in the total sleep time over 24 hours, as well as total daytime

sleep following behavioral modification intervention, which was

significant when compared to the minimal intervention group.

Behavioral modification intervention seems to reduce the amount

of daytime sleep, suggesting improved sleep behavior.
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FIGURE 2
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An insight into brown/beige
adipose tissue whitening,
a metabolic complication
of obesity with the
multifactorial origin
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Sinenhlanhla X. H. Mthembu1,2, Bongani B. Nkambule4,
Sihle E. Mabhida2, Babalwa U. Jack2, Tawanda M. Nyambuya5

and Sithandiwe E. Mazibuko-Mbeje1*

1Department of Biochemistry, North-West University, Mmabatho, South Africa, 2Biomedical Research
and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa,
3Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of
Zululand, KwaDlangezwa, South Africa, 4School of Laboratory Medicine and Medical Sciences,
University of KwaZulu-Natal, Durban, South Africa, 5Department of Health Sciences, Faculty of Health
and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
Brown adipose tissue (BAT), a thermoregulatory organ known to promote energy

expenditure, has been extensively studied as a potential avenue to combat

obesity. Although BAT is the opposite of white adipose tissue (WAT) which is

responsible for energy storage, BAT shares thermogenic capacity with beige

adipose tissue that emerges from WAT depots. This is unsurprising as both BAT

and beige adipose tissue display a huge difference from WAT in terms of their

secretory profile and physiological role. In obesity, the content of BAT and beige

adipose tissue declines as these tissues acquire the WAT characteristics via the

process called “whitening”. This process has been rarely explored for its

implication in obesity, whether it contributes to or exacerbates obesity.

Emerging research has demonstrated that BAT/beige adipose tissue whitening

is a sophisticated metabolic complication of obesity that is linked to multiple

factors. The current review provides clarification on the influence of various

factors such as diet, age, genetics, thermoneutrality, and chemical exposure on

BAT/beige adipose tissue whitening. Moreover, the defects andmechanisms that

underpin the whitening are described. Notably, the BAT/beige adipose tissue

whitening can be marked by the accumulation of large unilocular lipid droplets,

mitochondrial degeneration, and collapsed thermogenic capacity, by the virtue

of mitochondrial dysfunction, devascularization, autophagy, and inflammation.

KEYWORDS

brown adipose tissue, beige adipose tissue, whitening, obesity, metabolic complications
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1 Introduction

Adipose tissue is an endocrine organ that has become the central

focus in research toward a better understanding of the pathological

mechanisms associated with obesity (1, 2). The latter is characterized by

adipose tissue hypertrophy “adipocytes expansion” and hyperplasia

“increase adipocytes number” caused by a chronic imbalance between

energy intake and expenditure (1, 3). There are three distinct types of

adipocytes that have been well studied in mammals (4): (i.) white

adipocytes comprised of large single lipid droplet and few

mitochondria, and this form of adipose is predominately useful to

facilitate the storage of excess energy in a form of fats (5), and (ii.)

brown adipocytes, and (iii.) beige or brite adipocytes rich in

mitochondria, which are important organelles for regulating

thermogenesis, mainly via the action of uncoupling protein 1 (UCP1)

(5). Although brown and beige adipocytes share thermogenic capacity,

several characteristics established that both are distinct cell types, which

are different in terms of origin, anatomical location, and plasticity (6, 7).

Of note, beige adipocytes emerge from white adipose tissue (WAT)

depots via the process called “browning” (8, 9).

The (re)discovery of brown (BAT) and beige adipose tissue has

garnered interest as therapeutic targets to promote energy

expenditure and counteract complications linked with obesity (7).

Notably, previous conversations have emphasized the importance of

sufficient vasculature to improve mitochondrial function in BAT and

alleviate obesity-associated complications (10). The vascular

rarefaction in BAT was associated with the dysfunction and loss of

BAT commonly referred to as “whitening” (11). It is well accepted

that both BAT and beige adipose tissue are subjected to a whitening

effect which is common in obesity, whereby they acquire unilocular

cells that gradually lose all the brown characteristics and assume

WAT characteristics (12). Moreover, the whitening of adipose tissue

is accompanied by lipid accumulation due to reduced substrate

oxidation and the loss of mitochondria through the impairment of

molecular mechanisms regulating thermogenesis, as well as those

involving autophagy and mitophagy (12). Others have demonstrated

that brown-to-white adipose tissue conversion may activate

undesirable metabolic complications such as inflammatory

response and, the much-explored pyrin domain-containing protein

3 (NLRP3) inflammasome (13). Recently, BAT whitening was

defined as a long-term obesity complication that displayed a

progressive severity upon chronic intake of a high-fat diet (HFD)

during the pathogenesis of obesity (14). Thus, with the rapidly rising

prevalence of obesity (15), there is an urgent need to understand the

causative and underlying factors implicated in BAT/beige adipose

tissue whitening, including elucidating the molecular drivers of their

plasticity. This encompasses deciphering pathophysiological

mechanisms that implicate the development and aggravation of

obesity, as shown by the fact that dysfunctional adipose tissue in

obesity leads to a variety of secondary metabolic complications.

The current review elaborates on the prominent mechanisms

involved in BAT/Beige adipose tissue whitening, while a sharp focus

is placed on the impact of critical factors that contribute to obesity,

such as diet, age, temperature, and various chemical substances.

Importantly, an overview of BAT and beige adipose tissue, and their
Frontiers in Endocrinology 02105
physiological relevance is given to highlight vital mechanisms

implicated in the process of thermogenesis.
2 An overview of BAT and
beige adipose tissue, and their
physiological importance

As aforementioned, adipocytes are broadly classified into three

distinct types: (i) brown adipocytes, (ii) white adipocytes, and (iii)

beige or brite adipocytes (Figure 1) (4). These cells differ in terms of

function andmorphology, and their localization on various fat depots

in mice and humans (16, 17). Importantly, brown adipocytes are

enriched in the BAT depot, whereas both white and beige adipocytes

are found within WAT depots (18). Predominantly, beige adipocytes

emerge in subcutaneous WAT depots, including the anterior and

inguinal subcutaneous WAT in mice (18, 19). In contrast to WAT,

BAT was mainly viewed as the key site for upholding thermal

homeostasis during cold adaptation in human infants (20). Despite

a century of studies on neonatal BAT, the knowledge about BAT

physiological features and the mechanisms by which this tissue

regulates body temperature homeostasis in human neonates is

scanty, mainly due to the lack of appropriate methods for such

investigations. Recently, studies have utilized infrared thermography

as a suitable non-invasive technique to investigate neonatal BAT

activity (21, 22). It was reported that a single short-term cold

exposure during the first day of life improves body temperature

adaptation (21). The later rediscovered BAT and recruitable beige

adipose tissue in adult humans which was initially thought to exist in

newborn babies and hibernating animals only have highlighted the

potential influence of this tissue in improving human health (23).

This is attributable to the thermogenic and endocrine functions of

these tissues to promote energy expenditure and secrete metabolic

regulating molecules, called batokines, such as vascular endothelial

growth factors (VEGF)-A, bone morphogenic protein 8b (BMP8b),

neuregulin 4 (NRG4) and fibroblast growth factor 21 (FGF21) (24).

Recent research has indicated that disease progression is consistent

with impairment of gene expression levels of batokines regulating

sympathetic neurite outgrowth, vascularization and glucose

metabolism in animal model of T2D (25). Thus, the physiological

functions of BAT and beige adipose tissue have spurred a newwave of

interest in their effects on modulating metabolism. This is supported

by mounting research on the health benefits of BAT, especially in

combating obesity (26–28). Owing to this, several selective markers of

adipose tissues have been identified and characterized as potential

biomarkers in obesity, as reviewed by Pilkington et al. (29).
2.1 The development of BAT/beige adipose
tissue: Implications in the pathogenesis
of obesity

Although brown, white, and beige adipocytes are derived from

similar mesenchymal stem cells, they originate from different
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precursor cells with unique marker genes, as shown in Figure 2 (30–

33). Genetic-lineage tracing indicates that white adipocytes descend

from Myf5- (PDGFRa+, CD29, CD44+) progenitors of

mesenchymal stem cells (34, 35), while brown adipocytes originate

from Myf5+ (CD34+/CD29, MYF5-, PAX3+) progenitors which

differentiate into mature brown adipocytes (36–38). Interestingly,

the existence of beige adipocytes which resemble white adipocytes in

having a low basal expression of UCP1, but like classical brown

adipocytes respond to thermogenic stimuli with high UCP1

expression (39). These cells are distinct types of thermogenic fat

cells that originate from two distinct processes, de novo differentiation

from Myf5- progenitor cells and transdifferentiation from white

adipocytes via a process called “browning” (4). A study by Oguri

et al. (40) showed that CD81+, Sca1+, PDGFRa+ adipocyte

progenitors give rise to beige adipocytes and CD81 loss causes

obesity, insulin resistance, and inflammation in mice. In addition

to canonical beige adipocytes, a study of adipocyte heterogeneity has

demonstrated that there is a subpopulation of thermal stress-induced

glycolytic beige adipocytes that emerge from inguinal WAT (41, 42).

Although cells in theMyoD1+ lineage do not typically give rise to any

adipocytes, it was reported that glycolytic beige adipocytes descend
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from MyoD1+ progenitors that emerge within a stromal vascular

fraction of inguinal WAT when beta-3 adrenergic receptor (b-AR)
signaling is inhibited (41, 42). Thus, this has reignited the interest in

studying and understanding the role of WAT browning in obesity

(26, 28, 43). While white adipocytes transdifferentiate into beige

adipocytes, both brown and beige adipocytes can transdifferentiate

into white adipocytes through a process called “whitening”, which is

quite common in obesity (44, 45). By now, it is evident that the

differentiation process constitutes an essential component for

understanding the developmental fate and function of BAT, which

explains the increased exploration of these transcriptional factors in

preclinical models of obesity (46–48).

Of note, bone morphogenetic protein (BMP)-7, a secretory

protein that acts as an autocrine/paracrine mediator, promotes the

differentiation of both brown and beige adipocytes in mice (49, 50).

Recently, Townsend et al. (51) demonstrated that BMP7-loaded silk

hydrogels into the subcutaneous WAT of mice induced brown

adipogenesis in committed and uncommitted progenitor cells,

which in turn increased energy expenditure and reduced weight

gain in mice. In human-neck adipose-derived stromal cells, BMP7

enhanced mitochondrial DNA content, concomitant with increased
FIGURE 1

Schematic overview showing the characteristics of brown, white, and beige/brite adipocytes, including their localization, morphology, physiological
function, and marker genes. In brief, the anatomical location of these adipocytes differs, except for white and beige adipocytes which are found
within WAT depots. In terms of morphology and function, brown adipocytes are comprised of small multilocular lipid droplets, high mitochondrial
content, and increased UCP1 expression, which can be also induced in beige adipocytes to promote thermogenesis and enhance energy
expenditure, features that are important for the treatment of obesity. In sharp contrast, white adipocytes have fewer mitochondria and large
unilocular lipid droplets to facilitate the storage of energy in a form of fats. Of note, these adipocytes have similar and distinct marker genes which
could play an important role in tracking metabolic complications linked with obesity. Cidea, cell death-inducing DNA fragmentation factor-like
effector A; CD137, tumour necrosis factor receptor superfamily, member 9; Dio2, Iodothyronine deiodinase 2; Lhx8, LIM homeobox protein 8;
Pgc1A, peroxisome proliferator-activated receptor coactivator 1 alpha; Prdm16, PR domain-containing 16; Tcf21, Transcription factor 21; TMEM26,
transmembrane protein 26; UCP1, uncoupling protein 1; WAT, white adipose tissue; Rb1, RB transcriptional corepressor 1; Zic1, zinc finger protein of
the cerebellum.
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gene expression of proliferator-activated receptor coactivator 1 alpha

(PGC1a), a transcriptional co-regulator, responsible for

mitochondrial biogenesis (52). Amongst other transcriptional

factors, PR domain containing 16 (PRDM16) plays a key role in

determining the fate of brown adipocyte differentiation (53). An

elegant study by Seale et al. (54) has demonstrated that the loss of

PRDM16 in brown adipose precursors results in the loss of brown

adipocyte characteristics, which in turn promotes skeletal muscle

differentiation instead of brown adipocyte differentiation.

Importantly, PRDM16 is not only required for determining brown

adipocyte fate but also for regulating thermogenic programming and

maintenance of brown adipocyte identity (55). Adipogenic

transcriptional factors, such as CCAAT enhancer-binding proteins

(C/EBPs), and peroxisome proliferator-activated receptor (PPAR)-g
have long been known to play a central role in regulating adipocyte
Frontiers in Endocrinology 04107
differentiation in almost all types of adipocytes (56–58). To further

highlight the significance of studying adipocyte differentiation in

obesity, a recently published protocol (59) compares white, beige, and

brown adipocyte differentiation, further characterizing the expression

of distinct transcriptional factors that are involved in thermogenesis.

In fact, findings from this study indicate that differentiated pre-

adipocytes from interscapular BAT has a higher thermogenic

potential and expression levels of UCP1 with compared to WAT-

derived cells. A comprehensive characterization of mature brown

adipocyte subpopulations using single-nucleus ribonucleic acid

(RNA) sequencing identified a rare subpopulation of adipocytes

that increases in abundance at higher temperatures, suggesting a

lower thermogenic activity (60). This subpopulation regulates the

activity of neighboring adipocytes via acetate-mediated modulation

of their thermogenic capacity (60).
FIGURE 2

Differentiation and transdifferentiation trajectories of major adipocyte populations, including brown and white adipocytes, as well as canonical and
glycolytic beige/brite adipocytes. Generally, brown adipocytes are derived from Myf5+ progenitors, whereas white and beige adipocytes originate
from Myf5- progenitors that descend from mesenchymal stem cells. New advances on adipocyte origin show that there is another subpopulation of
beige adipocytes known as glycolytic beige adipocytes, which are derived from MyoD+ progenitors within the stromal vascular fraction of inguinal
WAT in response to thermal stress. During differentiation secretory factors BMP-7 and transcriptional factor PRDM16 induce Myf5+ cell commitment
to brown preadipocytes whereas BMP-4, BMP-10, and FGF10 induce Myf5- cell commitment to white preadipocytes. On the other hand, BMP-7
induces a commitment of beige adipocyte precursors to canonical beige preadipocytes. Differentiation of all types of preadipocytes into mature
adipocytes is driven by PPARg, and C/EBPs, whereas brown and beige adipocytes require the expression of additional factors, including PRDM16 and
PGC1a. Moreover, GABPa regulates the differentiation of glycolytic beige adipocytes. During transdifferentiation, white adipocytes convert to beige
adipocytes following cold exposure or b3-AR stimulation. Likewise, brown and beige adipocytes can transdifferentiate into white-like adipocytes, a
process termed whitening. b3-AR, beta-3 adrenergic receptor; BMP, bone morphogenetic protein; C/EBPs, CCAAT/enhancer-binding proteins;
GABPa, GA-binding protein alpha; PGC1a, peroxisome proliferator-activated receptor coactivator 1 alpha; PPARg, peroxisome proliferator-activated
receptor-gamma; PRDM16, PR domain-containing 16; UCP1, Uncoupling protein 1.
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2.2 Physiological functions of BAT/beige
adipose tissue and their role in regulating
metabolic health

2.2.1 Activation of thermogenesis and the effect
of various stimuli

A consistently growing body of literature indicates that

elevating the thermogenic capacity of BAT through activation,

recruitment, or BAT transplant could be an ideal approach to

mitigate obesity (Figure 3) (61–63). The thermogenesis in BAT

and beige adipose tissue is facilitated by UCP1 or thermogenin, a

mitochondrial inner membrane protein that uncouples substrate

oxidation from ATP synthesis, thereby dissipating excess energy as

heat (64). In addition to a well-recognized UCP1-dependent

thermogenic mechanism, there is a newly identified UCP1-

independent thermogenic mechanism that could potentially offer
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a new target for the treatment of obesity and type 2 diabetes,

especially targeting UCP1-negative adipocytes in the elderly and

people with obesity (65–67). The UCP1-independent thermogenic

mechanism involves ATP-dependent Calcium (Ca2+) cycling by

Sarco/endoplasmic reticulum Ca2+-ATPase 2b, which enhances

energy expenditure and glucose oxidation in beige adipocytes

(68). A study by Okamatsu-Ogura et al. (68) has discovered that

cold exposure induces UCP1-independent active lipid metabolism

in BAT of UCP1-knockout mice. Recently, Oeckl et al. (69)

identified the futile ATP-consuming triglyceride/fatty acid cycle

as a central process that contributes to thermogenesis in BAT of

UCP1-knockout mice. To date, UCP1 is the most investigated

mitochondrial carrier protein, involved in the modulation of

oxidative phosphorylation, with its isoforms like UCP2 also found

in other tissues like the heart where they protect against oxidative

stress (70). By now, it is well-accepted that cold exposure is a
FIGURE 3

Thermogenic activation of brown and beige adipocytes by various exogeneous and endogenous stimuli. Traditionally, cold exposure and other
dietary compounds activate thermogenesis via NE, excreted by the SNS, or through direct activation of AMPK. Inactivation of hypothalamic AMPK by
thermogenic stimuli like estradiol, GLP-1, liraglutide or thyroid hormones, stimulate SNS resulting in the release of NE and stimulation of b3-AR
which subsequently increase cAMP and activate PKA. Moreover, elevated cAMP activates CREB causing the transcription of thermogenic genes such
as PPARg, DIO2, PRDM16, PGC1a, and CIDEA. On the other hand, the cAMP-PKA signaling pathway promotes lipolysis just like AMPK through the
phosphorylation of ATGL and HSL. Liberated FFA contributes to the upregulation of UCP1 and increases thermogenesis. In addition, enhanced TAG-
derived fatty acids uptake upregulates CPT1, resulting in increased FFA transport into mitochondria. Glucose act as a substrate to generate FFA via
FSAN, which ultimately contributes to heat production. Upon b3-AR stimulation, adenylate cyclase cAMP/PKA also activates mTORC1 and inhibits
Parkin to repress autophagy/mitophagy, as a means to maintain beige adipocytes. Inversely, AMPK promotes promote autophagy/mitophagy to
maintain mitochondrial health via the phosphorylating of ULK1 in brown adipocytes. AMPK, AMP-activated protein kinase; b3-AR, Beta-3 adrenergic
receptor; PPARg, peroxisome proliferator-activated receptor-gamma; CIDEA, cell death-inducing DNA fragmentation factor-like effector A; C/EBPs,
CCAAT/enhancer-binding proteins; cAMP, cyclic adenosine monophosphate-protein kinase A; DIO2, Iodothyronine deiodinase 2; FASN, fatty acid
synthase; FFA, free fatty acids; GLUTs, glucose transporters; HSL, hormone-sensitive lipase; NE, norepinephrine; PKA, protein kinase A; PRDM16, PR
domain-containing 16; PGC1a, peroxisome proliferator-activated receptor coactivator 1 alpha; UCP1, Uncoupling protein 1; SNS, sympathetic
nervous system; T4, thyroxine; T3, triiodothyronine; TAG, triacylglyceride.
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classical stimulus that utilizes glucose and fatty acids as substrates

for adaptive thermogenesis (71). In humans, cold exposure

increases glucose uptake and non-esterified fatty acid turnover,

suggesting that activation of thermogenesis can help to improve

plasma glucose clearance (71). Apart from the cold exposure,

thermogenic stimuli, such as dietary compounds, physical

exercise, and other various agents, including glucagon-like

peptide-1 (GLP-1), thyroid hormones (THs), liraglutide and

thiazolidinediones, are known to upregulate the genes involved in

thermogenesis and induce WAT browning (26).

In general, thermogenesis is modulated by stimulating the

sympathetic nervous system (SNS), which is in part regulated

through the release of norepinephrine (NE) to activate b3-AR
signaling in response to various stimuli (72). Amongst all other

well-known mechanisms that regulate thermogenesis, the cyclic

adenosine monophosphate-protein kinase A (cAMP-PKA)

signaling pathway, and AMP-activated protein kinase (AMPK)

are classical mechanisms that have been studied in depth (72).

Upon activation, PKA phosphorylates adipose triglyceride lipase

(ATGL) and hormone-sensitive lipase (HSL), enzymes that

promote lipolysis, leading to the breakdown of triacylglyceride

(TAG) to free fatty acids (FFA), again via AMPK (72–74).

Resultant FFA can be further broken down and oxidized in the

mitochondria by carnitine palmitoyltransferase 1 (CPT1) to

produce heat via UCP1 (75). Of note, glucose transporter

(GLUT)-1 and GLUT4 are expressed in human BAT to facilitate

glucose uptake by brown adipocytes (76, 77). In response to chronic

cold-exposure, glucose uptake by BAT is utilized for the fatty acid

synthesis and b-oxidation process (78). Alternatively, cAMP-PKA

signaling modulates the phosphorylation of cAMP-response

element binding protein (CREB), which in turn promotes the

transcription of mitochondrial biogenic and thermogenic genes,

such as PGC1a, PRDM16, PPARg, and UCP1 (79). Lipid-droplet-

associated protein also known as cell death-inducing DNA

fragmentation factor-like effector A (CIDEA) regulates UCP1

transcription for browning and thermogenesis in human

adipocytes (80). In specific, CIDEA inhibits liver X receptor

(LXR), a repression of UCP1 enhancer activity, and strengthens

the binding of PPARg to UCP1 enhancer, promoting UCP1

transcription in CIDEA knockout primary human adipocytes

(80). Another prominent mechanism that is modulated by the

kinase enzymes, PKA and AMPK is the regulation of autophagy

“degradation of cellular components” or mitophagy “selective

degradation of mitochondria” which plays an important role in

BAT/beige adipose tissue plasticity (12, 81, 82). In BAT, activation

of thermogenesis is paralleled by a reduction in the autophagic

degradative activity, which converges at PKA that activates the

rapamycin complex 1 (mTORC1) and inhibits Parkin transcription

(83, 84). Moreover, melanocyte-inducing transcription factor

(MITF) and forkhead box O3 (FOXO3) were identified as

downstream autophagy-related transcription factors that are

downregulated by cAMP-PKA during autophagy regression in

beige adipocytes (83).

Inversely, AMPK is required for the efficient removal of damaged

mitochondria or mitophagy through phosphorylation of unc-51-like
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kinase 1 (ULK1) as a means to maintain BAT and induce browning

(85). Thus, targeting AMPK might be a plausible approach for the

treatment of various metabolic diseases as recently reviewed by López

(86). Dietary components such as polyphenols have been reported to

activate the SNS and stimulate the release of THs, which in turn

increase thermogenesis and induce WAT browning via the AMPK-

PGC1a/Sirt1 and PPAR signaling pathways (87, 88). Apart from that,

dietary intake alone is known to induce thermogenesis by increasing

postprandial energy expenditure, contributing 5–15% of total daily

energy expenditure (89). Other data has uncovered that WAT

browning is a highly dynamic physiological process, in which O-

linked b-N-acetylglucosamine (O-GlcNAc) signaling in agouti-

related protein (AgRP) neurons is essential for suppressing

thermogenesis to conserve energy upon fasting (90). In terms of

hormonal control, both insulin and leptin act on hypothalamic or

proopiomelanocortin neurons to promote WAT browning (91).

Interestingly, overexpression of glucose-regulated protein 78 kDa/

binding immunoglobulin protein (GRP78) in the ventromedial

nucleus of the hypothalamus (VMH) alleviated ER stress and

obesity; however, this was not dependent on leptin but it was

related to the increased thermogenic activation of BAT and WAT

browning (92). GLP-1, a hormone that controls satiation and glucose

metabolism via vagal afferent neurons was reported to stimulate BAT

thermogenesis by regulating sirtuin 1 (SIRT1) (93), and hypothalamic

AMPK (94). Metabolism-activating hormones thyroxine (T4) and

triiodothyronine (T3) which are mainly secreted by the thyroid gland

convert from T4 to T3 by type II iodothyronine deiodinase (DIO2)

promoting UCP1 expression in BAT (95). Importantly, THs target

the hypothalamus in the brain tomodulate energy balance viaAMPK

(96, 97). Specifically, THs act on the VMH to regulate the

thermogenic program in BAT (98, 99). For instance, it was

reported that the central T3 promotes hepatic lipogenesis and

thermogenic program in BAT through the parasympathetic

nervous system and SNS, respectively (98). These effects were

coordinated by distinct signaling pathways in the VMH, JNK1, and

ceramides/endoplasmic reticulum stress under the control of AMPK

(98). Other fundamental hormones include estradiol, a female

reproductive hormone, which inhibits AMPK leading to the

activation of BAT thermogenesis via estrogen receptor alpha

selectively in the VMH (100).

2.2.2 The role of autophagy and inflammation on
BAT/beige adipose tissue plasticity

Autophagy is a fundamental lysosomal catabolic process that

degrades and recycles damaged cellular components such as lipids,

proteins, and organelles for cellular survival in stress conditions

(101–103). Although selective autophagic degradation of

mitochondria termed “mitophagy” seems to be beneficial to

eliminate damaged mitochondria from accumulated reactive

oxygen species (ROS) in active BAT, there are some conflicting

results in the literature regarding the importance of this process

during the activation of BAT by cold exposure (84, 104–107). For

example, Cairó et al. (107) reported that cold-induced thermogenic

activation of BAT in mice was linked with autophagy repression, in

part by upregulating cAMP-PKA pathway in NE-exposed brown
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adipocytes. Surprisingly, chronic cold exposure promoted

autophagy/mitophagy in primary brown adipocytes and BAT

from mice (105, 106). Yau et al. (106) showed similar effect on

the activation of autophagy in BAT from mice in response to cold

exposure, and this was marked by increased mRNA expression of

the autophagic genes, including, sequestosome 1 (Sqstm1),

autophagy-related (Atg)-5, Atg7, and Ulk1. This effect promoted

b-oxidation, mitochondrial turnover, and thermogenesis in BAT

(106). These results further indicate that autophagic processes in

BAT are tightly regulated in response to cold exposure, as

increasingly discussed (12, 83, 84).

Another hypothesis implementing the role of mitophagy on

BAT/beige adipose tissue plasticity also prevails, and it is linked to

the process of adipose tissue whitening (13, 83, 108, 109). For

example, thermoneutrality reacclimatization after chronic cold

exposure or withdrawal of thermogenic stimuli activate

autophagic response and promotes the transition of BAT/beige

adipose tissue to white-like adipose tissue in mice (83). Obviously,

there are some distinct differences between BAT and beige adipose

tissue whitening, such as that the brown adipocytes “disappear”

from WAT depots and acquire unilocular phenotype with loss of

UCP1 expression while brown adipocytes display an increased lipid

accumulation, followed by protein degradation, and loss of protein

synthesis without disappearance (12). Alternatively, reversal of

beige-to-white adipocytes is tightly coupled with autophagy-

mediated mitochondrial clearance after withdrawal of the external

cues in mice (83). Notably, beige adipocytes progressively lose their

morphological structure and molecular characteristics to acquire

white-like characteristics bypassing an intermediate precursor stage

(83). Inversely, inhibition of autophagy by UCP1+ adipocyte-

specific deletion of Atg5 or Atg12 maintained functional beige

adipocytes even after stimuli withdrawal (83). More evidence

showed that inhibition of Parkin-mediated mitophagy underlies

the maintenance of beige adipocyte in mice (108). Interestingly,

physiological conditions such as aging can promote autophagy,

which result to the loss of BAT activity. Indeed, upregulation of

autophagy in BAT of mice is consistent with age-dependent decline

of BAT activity and reduced metabolic rate (109). However,

inhibition of mitophagy by BAT-specific deletion of the Atg7 gene

could improve insulin sensitivity and energy metabolism, as well as

maintained higher mitochondrial content by suppressing

mitochondrial clearance (109).

Beyond dysregulation of autophagy, inflammation is another

instrumental process that may negatively influence BAT activity

and compromise the metabolic rate of this tissue. Although the

relationship between autophagy and inflammation is relatively

complex, they both constitute a natural response to stress

conditions. Apparently, elevated inflammatory status impairs

brown adipocyte metabolic activity and promotes whitening

(110). Kotzbeck et al. (13) showed that BAT whitening is coupled

with a decreased mitochondrial content as whitened adipocytes

become dysfunctional as they render low-grade inflammatory state

that eventually leads to cell death. To further highlight the link

between dysregulated autophagy and inflammation, it was

demonstrated that activation of the NLRP3 inflammasome and

increased expression of inflammatory markers, including F4/80,
Frontiers in Endocrinology 07110
tumor necrosis factor-alpha (TNF-a), interleukin (IL)-1b, IL-10,
IL-18, monocyte chemoattractant protein 1 (Mcp-1), and caspase-1

was linked with Atgl-deficiency in mice (13). Other studies showed

that deletion of transcription factor nuclear factor erythroid-2, like-

1 (Nfe2l1) induced ER stress, inflammation, mitochondrial

dysfunction, insulin resistance, and whitening in BAT (111, 112).

Altogether, mitophagic maintenance of the healthy network of

mitochondria in BAT and beige adipose tissue is crucial for cell

survival but requires a balanced remodeling system of

mitochondrial biogenesis and degradation.
3 Factors inducing BAT/beige
adipose tissue whitening or
inactivation in obesity

3.1 Natural factors inducing BAT/beige
adipose tissue whitening

While the browning of WAT has long been a growing area of

interest in obesity research, whitening of BAT as an obesity-related

complication with metabolic and health implications has been

receiving less attention. Latterly, there is cumulative emerging

evidence on BAT whitening, and it demonstrates that this

phenomenon is multifactorial in origin. Notably, it has long been

established that risk factors such as diet, age, genetics, as well as

some chemicals can negatively influence the health of the general

population (113). Risk factors such as excessive intake of an

unhealthy diet can directly contribute to adiposity or weight gain

(114), whereas aging is an undeniable major consequence that has

long been linked with deteriorated health (115). Although

acknowledged to significantly affect metabolic health, precise

pathological mechanisms involved in this process are not

completely understood. Interestingly, experimental evidence

indicates that factors such as diet, thermoneutrality, age, and

genetics can induce the whitening of BAT, and exacerbate

obesity (Table 1).
3.1.1 High fat diet induced BAT/beige adipose
tissue whitening by suppressing angiogenesis and
elevating inflammation

It is acknowledged that the consumption of a diet rich in fat and

cholesterol, and sugar, is the most common cause of obesity and

metabolic syndrome (130, 131). In fact, animal models are a good

example of the impact of such a diet, with evidence indicating that

feeding rats two individual components of a western-style diet 60%

HFD and 55% high fructose diet can cause fat accumulation, drive a

state of insulin resistance and other metabolic complications (132–

134). Based on growing experimental evidence, exposing rodents to

HFD-feeding can cause several pathological abnormalities that

include adipocyte hyperplasia and hypertrophy (132). The latter

is linked with the state of inflammation, whereby adipose tissue

expansion results in the release of proangiogenic cytokines, such as

leptin, adiponectin, VEGF, TNF-a, and transforming growth factor

beta (TGF-b) angiopoietin; such evidence has been extensively
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TABLE 1 Summary of evidence reporting on BAT/beige adipose tissue whitening-induced by diet, thermoneutrality, age, and genetics.

Factors Model Intervention
protocol

Main findings Author,
yearEffect Mechanism

Diet CD-1 mice Mice fed HFD for 10
weeks

Increased fat deposition in BAT without
altering triglyceride and free fatty acids
levels the in blood

Not investigated Gao et al.,
2015 (116)

C57BL/6
mice

Mice fed HFD for 10
weeks

Induced expansion of beige adipocytes
residing in the WAT depot

Downregulated UCP1 gene expression Dobner
et al., 2017
(117)

C57BL/6J
mice

Mice fed HFD for 1, 3, or
7 day(s)

Increased lipid accumulation and insulin
resistance in BAT

Upregulated Cd36, Hsl, Srebp1c, and
downregulated pPKB; LPL; Ppargc1a
mRNA expression

Kuipers
et al., 2019
(118)

C57BL/6
mice

Mice fed HFD and HFrD
for 12 weeks

Increased iBAT lipid droplet, and lipid
storage pattern resembling WAT

Downregulated VEGF-A, UCP1, B3-AR,
Plin1 and Cidea gene expression

Miranda
et al., 2020
(119)

Wistar rats Mice fed HCD, HFD,
HFHSD from 8 weeks to
16 weeks

Increased iBAT adipocyte area more
prominent in HFHSD

Downregulated FGF21, PPARg, SIRT1,
CPT1, MAPK3, Gsk3-b, IRS-2, and
GLUT4 gene expression

Serdan
et al., 2021
(120)

C57Bl6/J
mice

Mice dam fed HFD for 6
weeks prior to mating,
and during gestation and
lactation

Increased triglycerides, oxidative
phosphorylation, and lipid synthesis in BAT
of male offspring, while the opposite effect
was observed in female

Upregulated Cd36, Cpt1, Plin2, Cidea, and
Pparg mRNA expression and
downregulated Ucp1, Dio2, Pgc1a, and
Prdm16

Savva
et al., 2022
(121)

C57BL/6J
mice

Mice received HFD for
12-, 16- and 20- weeks

Increased large lipid droplets, impaired
thermogenesis, increased inflammation, and
ER stress, and decreased energy expenditure
in iBAT

Upregulated Tlr4, and Nlrp3 mRNA
expression, and downregulated UCP1,
Bmp8b, Nrg4, Vegfa, Ampk and Sirt-1

Rangel-
Azevedo
et al., 2022
(14)

Thermoneutral A/J mice Mice raised at 22°C or
30°C and fed HFD for 20
weeks

Increased paler brown/beige adipocytes at
30°C, while decreased thermogenic program
and sympathetic drive

Downregulated UCP1, PGC1a, Dio2,
Elovl3, and Cox1 gene expression, as well
as tymine hydroxylase, NETO, and
norepinephrine content

Cui et al.,
2016 (122)

C57BL/6J
mice

Mice kept at 28°C for 10
days

Increased white-like adipocyte, macrophage
infiltration, crown-like structure, and
mitochondrial degeneration in iBAT and
mBAT

Loss or deficiency of ATGL Kotzbeck
et al., 2018
(13)

Wild-type
mice

Mice housed at 30°C for
3 days, 7 days, or 4 weeks

Induced autophagy, increased white-like
unilocular adipocytes, and decreased
mitochondrial density in iBAT

Upregulated TFEB gene expression and
downregulated UCP1, PGC1a, Cox4i1,
Cox7a, and Cox8b

Sass et al.,
2021 (123)

Age C57BL/6
mice

Mice euthanized at 3-, 6-,
9-, or 12-months of age

Increased lipid droplets size and area in
classical brown adipocytes while decreased
clusters of beige cells and subcutaneous and
visceral WAT

Not investigated Gonçalves
et al., 2017
(124)

Wild-Type
and RAG1
KO mice

Mice were used for
experiments at 3- and 18-
months of age

Inhibited brown adipocyte differentiation,
and increased larger unilocular lipid droplets
via senescent T cells infiltration in iBAT of
aged mice

Upregulated IFN-g gene expression and
downregulated UCP1, PPARg, and PGC1a

Pan et al.,
2021 (125)

Stromal
vascular
fraction
(SVF) cells

SVF cells isolated from
BAT were cocultured
with senescent T cells

Decreased brown adipocytes differentiation Downregulated UCP1, PPARg, PGC1a,
PLIN1, and adiponectin gene expression

Tianfu
Black
rabbits

Rabbits were used for
experiments at infant
stage, 15 days, 85 days,
and 2 years

Inhibited brown adipocytes diffferentiation,
and increased unilocular adipocytes and
decreased multilocular adipocytes in BAT

Increased lncRNAs, and downregulated
CYTB, COX2, and ND1 gene expression

Du et al.,
2021 (126)

New
Zealand
White
rabbits

Rabbits were used for
experiments at the ages
of 1 day and 3, 6, and 12
weeks

Increased brown adipocyte hypertrophy, and
restriction of FSTL1+ progenitors
adipogenic capacity

Downregulated UCP1 and DIO2 gene
expression, linked with FSTL1 deficiency

Haung
et al., 2022
(127)

(Continued)
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reviewed elsewhere (135, 136). Amongst other cytokines, VEGF-A

is a major proangiogenic factor that is commonly downregulated in

obesity (137–140). In fact, adipose tissue vascularization regulates

chronic inflammation and systemic insulin sensitivity (141). In

obese subjects, adipose tissue displays capillary rarefaction and

hypoxia, which are paralleled with the infiltration of macrophages

and the release of inflammatory cytokines (137, 142, 143). Several

lines of evidence showed that HFD and high-fat high-sugar diet

induce BAT/beige adipocytes dysfunction and whitening through

vascular rarefaction linked with the state of inflammation

(116–121).

Although the whitening is less studied in beige adipose tissue

compared to BAT, the whitening of beige adipocytes was observed

in HFD-fed C57BL/6 mice, and it was marked by enlarged

adipocyte size and reduced expression of UCP1 (117). In classical

BAT, HFD-feeding progressively induced fat deposition in BAT,

which resulted in the expansion and whitening of BAT in female

CD-1 mice (64). Similarly, chronic HFD feeding in mice resulted in

progressive BAT whitening, which was associated with low energy

expenditure, and down-regulation gene expression of Bmp8b, Nrg4,

Vegfa involved in regulating vascularization, as well as upregulation

of inflammasome and endoplasmic reticulum stress (14).

Furthermore, BAT from HFD-fed C57BL/6J mice displayed lipid

accumulation and insulin resistance, which were accompanied by

reduced glucose and triglyceride-derived fatty acids uptake (118).

Of note, Ucp1 gene expression was unaltered, whereas the

expression of PGC1a and protein kinase B (PKB) were

suppressed, suggesting the impairment of mitochondrial
Frontiers in Endocrinology 09112
biogenesis and insulin sensitivity (118). More insights on the

mechanism showed that HFD-induced iBAT whitening in C57

BL/6 mice, which was accompanied by decreased expression of the

genes promoting vascularization, thermogenesis, fatty acids

oxidation including VEGF-A, Ucp1, b3-AR, Cidea, and carnitine

palmitoyltransferase (CPT) (119). In the same study, they

demonstrated that counteracting BAT whitening using PPARa
agonists can help to ameliorate the complications associated with

obesity (119). The combination of HFD and high-sugar diet

impaired BAT function in Wistar rats (120). The evidence of

whitening in these animals was marked by the increased

adipocytes area and decreased expression of BAT markers, such

as FGF21, PPARg, SIRT1, and CPT1, as well as the genes involved

in the insulin signaling including insulin receptor substrate 2 (IRS-

2), and glucose transporter (GLUT)-4 (120).

Amid finding the connection between the pathogenesis of

obesity and its risk factors, maternal nutrition has become a

target to understand the development of obesity and beyond

(144). Such nutrition has a significant contribution to the

developmental origins of metabolic complications upon growth to

adulthood (145). Although adipose tissue plays an utmost

important role in newborns as a regulator of energy homeostasis

and thermogenesis (146, 147), it is not clear how maternal nutrition

affects offspring adipose tissue function. Recently, Savva et al. (121)

investigated the impact of maternal HFD on adipose tissue

programming in male and female C57Bl6/J mice offspring.

Interestingly, only male offspring exhibited a whitening of BAT

and impaired metabolic profile whereas female counterparts
TABLE 1 Continued

Factors Model Intervention
protocol

Main findings Author,
yearEffect Mechanism

FVB mice Mi were used for
experiments at 1-, 3-, 6-,
and 12- months

Increased unilocular adipocytes in beige
adipose tissue while decreased multilocular
adipocytes

Not investigated Scambi
et al., 2022
(128)

Adipose-
derived
stromal
cells

Stromal cells from
inguinal WAT of 2-
months-old mice

Induced switch from a brown- to white-like
precursor transcriptional signature

Upregulated NFkB gene expression and
downregulated E2F1

Genetic
mutation

Zucker
diabetic fa/
fa rats

3 weeks of intervention Increased large unilocular lipid droplets in
iBAT while decreased glucose utilization

Downregulated UCP1 Lapa et al.,
2017 (129)

Leptin
receptor-
deficient
(db/db)
mice

Mice were used for
experiments at 13 weeks
of age

Increased white-like unilocular adipocyte,
macrophage infiltration, and crown-like
structure in iBAT

Not investigated Kotzbeck
et al., 2018
(13)

Goto-
Kakizaki
rats

Mice fed HC for 8 weeks Increased adipocyte area in iBAT while
decreased cell density and glucose uptake

Upregulated CPT1, CPT2, SIRT1, PGC1a,
and leptin gene expression and
downregulated UCP1 and Glut-1

Serdan
et al., 2021
(120)
fro
ATGL, adipose triglyceride lipase; AMPK, AMP-activated protein kinase; BAT, brown adipose tissue; BMP8b, bone morphogenetic protein 8 beta; Cd36, cluster of differentiation 36; Cidea, cell
death-inducing DNA fragmentation factor-like effector A; CYTB, cytochrome-B; Cpt 1, carnitine palmitoyltransferase 1; Cox, cyclooxygenase; DIO2, iodothyronine deiodinase 2; E2F1, E2F
transcription factor 1; ER stress, endoplasmic reticulum stress; FGF21, fibroblast growth factor-21; Fis1, mitochondrial fission 1 protein; FSTL1, follistatin-like 1; GLUT, glucose transporter;
Gsk3-b, glycogen synthase kinase 3 b; MAPK3, mitogen-activated protein kinase 3; HC, high cholesterol; HFD, high fat die;, HFHSD, high fat high sugar diet; Hsl, hormone-sensitive lipase;
iBAT, interscapular brown adipose tissue; IFN-g, interferon; LncRNAs, long non-coding RNAs; mBAT, mediastinal BAT; ND1, NADH dehydrogenase 1; NETO, norepinephrine turnover;
NRG4, neuregulin 4; IRS-2, insulin receptor substrates 2; Plin, perilipin; PKB, Protein kinase B; PRDM16, PR domain containing 16; PPARg, peroxisome proliferator-activated receptor-g;
PGC1a/Ppargc1, peroxisome proliferator- activated receptor g coactivator 1-alpha; Sirt1, Sirtuin 1; Srebp1c, sterol regulatory element-binding protein 1c; TFEB, transcription factor EB; TLR4,
Toll-like receptor 4; UCP1, uncoupling protein 1; VEGFs, vascular endothelial growth factors; WAT, white adipose tissue.
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presented with enhanced thermogenesis and cell differentiation in

BAT (121), which can be attributed to the presence of estrogen in

females (148). On the other hand, the whitening of BAT in male

offspring was accompanied by the upregulation of the genes

involved in lipid metabolisms such as Cd36, Cpt1, Cidea, and

Pparg, as well as the downregulation of BAT markers including

DIO2, UCP1, PGC1a and PRDM16 (121).

3.1.2 Thermoneutrality-induced BAT whitening
through mitophagy stimulation and SNS-derived
signals reduction

Ambient temperature has a strong impact on body metabolism

and energy expenditure, which in turn affects the morphology and

thermogenesis function of BAT. Although the thermoneutral

condition of approximately 22°C is the standard living

environmental condition for humans, it is known to cause BAT

involution and adiposity in rodents (149). However, the effect of

seasonal changes on BAT thermogenesis and plasticity is still not well

understood in humans. Apparently during winter season, human

subcutaneous WAT display increased mRNA expression of UCP1,

PGC1a, and transmembrane protein 26 (TMEM26), along with

other genes involved in energy utilization and lipolysis, such as

adiponectin, acetyl CoA carboxylase (ACC), and HSL (150).

However, this effect was suppressed by excessive lipid accumulation

and inflammation in obesity (150). In healthy men, whole-body

energy expenditure and cold-induced thermogenesis were assessed in

both summer and winter, using fluorodeoxyglucose (FDG)-positron

emission tomography (PET) combined with computed tomography

(CT) (151). Cold-induced thermogenesis was increased in winter

compared to summer in a BAT-dependent manner, suggesting that

the metabolic activity of human BAT is maximal in winter (151). In

terms of glucose metabolism, it was reported that winter swimmers

displayed no BAT glucose uptake at a thermal comfort zone while

winter swimmers have higher cold-induced thermogenesis than

control subjects in young healthy men (152).

In mice, a thermoneutral zone of 30°C is used for thermally

humanizing mice BAT, which shows a remarkable resemblance to

human BAT (153, 154). It has been reported that thermoneutral

housing of mice in conjunction with or without a high-calorie diet,

strongly reduces metabolic capacity and increases lipid

accumulation in BAT, leading to a “white-like” appearance (13,

122, 123). Indeed, A/J mice housed at 30°C with HFD displayed

paler and larger brown or beige adipocytes (122). This was

accompanied by reduced SNS and thermogenic program which

were evident by decreased tyrosine hydroxylase and norepinephrine

turnover, as well as the decreased mRNA expression of UCP1,

PGC1a, DIO2, elongation of very long chain fatty acids protein 3

(Elovl3) and cyclooxygenase (Cox)-1 (122). Other evidence showed

that BAT whitening can be linked to the recruitment of immune

cells involved in pro-inflammation and mitophagy.

An ambient temperature of 28 showed that interscapular and

mediastinal BAT from C57Bl/6j mice acquired a white-like

unilocular adipocyte phenotype, which involved increased

macrophage infiltration, formation of crown-like structures,

and degenerating mitochondria, marked by adipose triglyceride
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lipase (Atgl)-deficiency (13). A study by Sass et al. (123), showed

that thermoneutral adaptation at 30 induced BAT whitening

which was characterized by increased unilocular adipocytes and

mitochondrial degradation in Wild-type mice. This was also

accompanied by the decreased gene expression of thermogenic

markers, including UCP1, PGC1a, cytochrome c oxidase subunit

4 isoform 1 (Cox4i1), cytochrome c oxidase subunit 7A (Cox7a),

and cytochrome c oxidase subunit 8B (Cox8b), while the

expression levels of the autophagy-regulating transcription

factor EB (TFEB) was continuously increased (123). Moreover,

the inhibition of autophagy reversed the whitening in BAT (123).

This agrees with the previous evidence indicating that

suppression of brown adipocyte autophagy improves energy

metabolism in part by regulating mitochondrial turnover in

mice (109).

3.1.3 Aging-induced BAT/beige adipose tissue
whitening by elevating lncRNAs expression and
interferon-g secretion

Aging has long been implicated in adipose tissue dysfunction

and increased risk of obesity (155). A considerable decline in BAT

and beige adipose tissue with advancing years and increasing body

fat percentage has been determined (156). Generally, aging is closely

associated with low-grade systemic inflammation, and alterations in

endocrine signals (157); mechanisms that are linked with BAT

dysfunction upon aging (156, 158). Several mechanisms that might

contribute to the age-related decline in BAT activity have been

studied in animals and humans. For instance, Berry et al. (159) have

demonstrated that mouse and human beige progenitor cells

undergo an age-related senescence-like phenotype that accounts

for age-dependent beiging failure; however, genetically or

pharmacologically activation of p38/Ink4a-Arf pathway

rejuvenated beige progenitors and restored beiging potential.

Tajima et al. (160) identified mitochondria lipoylation as a

molecular process underlying the age-related decline in BAT

thermogenesis of mice, implying that a defect in mitochondrial

lipoylation and fuel oxidation in BAT, leads to glucose intolerance

and obesity upon aging. Conversely, a-lipoic acid supplementation

enhanced mitochondrial lipoylation which in turn restored BAT

function in aged mice (160).

A notable observation was made by the decline in BAT content

and activity linked with the whitening during adiposity in rodents

and rabbits (161). In female C57BL/6 mice aged (6-12 months old),

BAT displayed a morphological change toward the fat storage

phenotype with increased lipid droplet size and area (124). This

was accompanied by the loss of clusters of beige adipocytes from

subcutaneous and visceral WAT (124). To elucidate the underlying

mechanism, a recent study by Pan et al. (125) reported an increase

of unilocular lipid droplets and senescent T cells infiltration which

induces BAT whitening via interferon (IFN)-g secretion in 18-

month-old and 3-month-old mice. Moreover, IFN-g lead to the

inhibition of brown pre-adipocyte differentiation which contributed

to adipose tissue remodeling in aged mice (125). This was further

verified using stromal vascular fraction cells isolated from BAT and

T cells co-culture, which showed a reduction in UCP1, PPARg,
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PGC1a, Plin1, and adiponectin gene expression (125). Although

subcutaneous and visceral WAT supposedly comprised of beige

adipocytes were enlarged, UCP1 was poorly detected in young mice

and it was not detected in old mice, suggesting that there was a

complete loss of thermogenic capacity upon aging. A switch from

brown/beige- to white-like adipocytes was observed in FVB mice

after 12- months of age (128). Moreover, the transcriptional profile

of adipose-derived stromal cells mirrors these changes both at

mRNA and microRNA transcriptional levels through E2F

transcription factor 1 (E2F1) and nuclear factor kappa B

(NFkb) (128).
In 2 years old (aged) rabbits, BAT presented large unilocular

lipid droplets with a dramatic decrease in transcriptional copy

numbers of the mitochondrial genes, including cytochrome B,

COX2, and NADH dehydrogenase 1 (126). Importantly, long

non-coding RNAs (lncRNAs) were highly expressed in the BAT

of aged rabbits. When assessed using in vitromodel, these lncRNAs

appeared to cause impairment in brown adipocyte differentiation.

Presumably, lncRNAs suppressed the expression of brown

adipocyte transcriptional factors, however, this requires further

investigation (126). Recently, Huang et al. (127) have

demonstrated that rabbit BAT involutes in a manner similar to

humans with the analogous progenitor hierarchy. A progressively

whitening with adipocyte hypertrophy and loss of UCP1 expression

in the interscapular, subscapular, and suprascapular BAT depots of

the rabbits was readily seen from 3 weeks of age and full conversion

to WAT-like tissues at 12 weeks (127). This BAT whitening was

associated with the restricted adipogenic capacity of follistatin-like 1

(Fstl1+) progenitors (127). Moreover, deletion of the Fstl1 gene or

ablation of Fstl1+ progenitors in mice induced BAT paucity (127).

This suggested that lncRNAs can be one of the molecular drivers of

BAT whitening upon aging. However, this requires confirmation in

human studies.

3.1.4 Genetic models of type 2 diabetes
presented BAT whitening

The concept of the genetic alteration as the cause of obesity has

been progressively investigated over the past two decades (162).

Based upon the years of discoveries, the genetic causes of obesity

can be broadly classified into polygenic and monogenic (162).

Specifically, polygenic obesity (or common obesity) is caused by

multiple gene mutations or polymorphisms that promote weight

gain (163). On the other hand, monogenic obesity which is

inherited in a Mendelian pattern is typically rare and is

characterized by early-onset, high severity, and a single gene

mutation in the leptin-melanocortin pathway (162, 163). For

these reasons, most people with obesity have certain mutated

genes that predispose them to gain excess weight.

To gain a profound understanding of genetic obesity, animal

models of obesity and type 2 diabetes such as leptin receptor-

deficient db/db mice, and Zucker fatty fa/fa rats have been widely

utilized (161). Over the past few years, these models have been also

used to study the impact of genetic obesity on the morphology and

function of BAT. However, the special focus herein is on BAT

whitening. A study by Lapa et al. (129) showed that BAT from
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Zucker diabetic fatty fa/fa rats, displayed a ubiquitous white

adipose-like tissue phenotype, with large unilocular lipid droplets

and impaired glucose utilization at 14 weeks of age. This BAT

involution was accompanied by the increased synthesis and

accumulation of intracellular fatty acids, as well as the decreased

expression of UCP1 (129). Although the underlying molecular

mechanisms have not been elucidated so far, iBAT from db/db

mice displays whitening and crown-like structure formation at 13

weeks of age (13).

In a non-obese model of T2D, which shares a susceptibility

locus on chromosome 10 like in humans, lower cell density and

higher adipocyte area were recorded in Goto-Kakizaki rats (120).

Interestingly, glucose uptake in BAT was impaired in both baseline

and even after 30 min of stimulation with 1 mg/kg CL316,243, a b3-
adrenergic agonist (120). Subsequently, there was an increased

expression of genes involved in fatty acid oxidation (CPT1 and

CPT2), BAT metabolism (Sirt1 and PGC1a), but decreased gene

expression of GLUT-1 compared to other experimental groups

(120). Possibly, impairment of the b3-adrenergic response could

suggest an increased expression of the above-mentioned genes,

acting as a compensatory mechanism.
3.2 Chemically induced BAT/beige adipose
tissue whitening

In parallel with other risk factors, chemicals such as endocrine-

disrupting chemicals (EDCs) are known to significantly contribute

to the high prevalence of obesity (164). These chemicals are found

in a wide spectrum of consumer products, like tobacco, flame

retardants, and pesticides which people are most likely to be

exposed to in their daily life through ingestion, inhalation, or

direct dermal contact (164). The potential targets for EDCs are

the glucocorticoid and mineralocortcoid receptors, which are

members of the steroid receptor subfamily that mediate the

actions of glucocorticoids and mineralocorticoids, the main

classes of corticosteroids (165). These chemicals can act directly

on adipose tissue to induce hypertrophy and dysfunction of this

tissue (166). Several lines of evidence have demonstrated that

exposure to certain chemicals can negatively impact the

phenotype and physiological functions of BAT and beige adipose

tissue by inducing whitening (Table 2).

3.2.1 Bevacizumab impaired vascular network
and induced whitening in BAT

Bevacizumab, a recombinant humanized anti-vascular

endothelial growth factor (VEGF) antibody, is trailed in

retinopathy of premature infants (175). Although anti-VEGF

agents are the first-line treatment for various angiogenesis-related

retinal diseases, it is not clear how the anti-VEGF antibody can

accelerate the risks of systemic complications after intravitreal

injection in premature infants (176). A study by Jo et al. (167)

showed that intravitreally injection with anti-VEGF antibody (1 mg/
eye) increases lipid droplet accumulation and induces the loss of

vascular network in neonatal C57BL/6 mice. In addition to reduced
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VEGF levels, this was accompanied by the downregulation of

mitochondria-related genes PGC1a and UCP1 (167). Since BAT

is a highly vascularized tissue, it is evident that anti-VEGF agents

interfere with BAT vascularization, which in turn induces BAT

whitening and dysfunction.

3.2.2 Nicotine exposure during the prenatal and
lactation period induces BAT/beige adipose
tissue whitening in offspring

Nicotine is a chemical that is widely found in tobacco, and it has

been associated with many health problems (177). Accordingly,

epidemiological studies have reported that maternal smoking

during pregnancy might be a serious risk factor for childhood
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obesity (178). Of major concern, maternal nicotine exposure has

become a growing risk factor for the health of the offspring and the

origin of chronic diseases beyond infancy. For example, prenatal or

lactation exposure to nicotine is associated with increased gonadal

and inguinal subcutaneous WAT depots and dysfunction in

offspring (179). However, the impact of nicotine on BAT

structure and function is not well understood. Previously, it was

reported that nicotine exposure in adult mice increases BAT

thermogenesis and promotes weight loss via the inactivation of

hypothalamic AMPK (180), and induces WAT browning through

the hypothalamic k opioid receptor (181). Paradoxically, maternal

nicotine exposure induces BAT dysfunction and weight gain in both

male offspring (168, 169).
TABLE 2 Summary of evidence reporting on BAT/beige adipose tissue whitening induced by chemicals like bevacizumab, nicotine, dechlorane plus,
serotonin and glucocorticoid.

Chemical Model Intervention protocol
Main findings Author,

yearEffect Mechanism

Bevacizumab C57BL/6
mice

Neonatal mice injected with 1 mg/eye
bevacizumab (anti-VEGF antibody)
on a postnatal day 14, 17 and 21

Increased lipid droplet expansion in
the iBAT while decreased vascular
density

Downregulated VEGF levels, and
PGC1a and Ucp1 gene expression

Jo et al.,
2015 (167)

Nicotine Wistar
rat’s
offspring

Male offspring from Wistar rats were
exposed to 1 mg/kg nicotine twice a
day for 26 weeks during pregnancy
or lactation

Increased lipid droplet expansion
and impaired mitochondria in the
iBAT

Downregulated Prdm16, PGC1a, Ucp1
and Cpt2 mRNA expression

Fan et al.,
2016 (168)

Wistar
rat’s
offspring

Female offspring from Wistar rats
were exposed to 1 mg/kg nicotine
twice a day for 4- and 26 weeks
during pregnancy and lactation

Increased unilocular lipid droplets,
impaired angiogenesis, abnormal
mitochondria in the iBAT

Downregulated PGC1a, UCP1, Prdm16,
Cidea; Vegfr2, Vegf, Hgf, Npy, and
Resistin gene expression

Chen
et al.,
2020 (169)

C3H10T/
12 cells

Differentiated C3H10T/12 cells
exposed to 0.5, 5, 50 mM nicotine for
24, 36, and 48 h

Suppressed beige “Brown-like”
phenotype and angiogenesis

Downregulated PGC1a, UCP1, Prdm16,
Vegf, Hgf, and Ang2 gene expression

Dechlorane
plus

C57BL/6
mice

Mice fed HFD and 1000 mg/kg
dechlorane plus for 28 days

Increased lipid accumulation and
WAT-like phenotype in BAT

Downregulated Ucp1 mRNA expression Peshdary
et al.,
2020 (170)

Serotonin HIB1B
brown
adipocytes

Non-differentiated and differentiated
HIB1B brown adipocytes were
exposed to 10 mM serotonin with or
without palmitic acid for 30 h

Increased transdifferentiation of
beige adipocytes into white
adipocytes while decreased brown
adipocytes differentiation

Upregulated UCP2, FASN, leptin and
adiponectin gene expression and
downregulated BMP-7, UCP1, FGF21,
pAMPK, Prdm16 and Pparg, and Cpt1

Rozenblit-
Susan
et al.,
2018 (171)

Glucocorticoid CD1 mice Mice were orchidectomized or
ovariectomized prior to exposure to
250 mg/day of corticosterone for 4
weeks, with or without androgen

Increased androgens sensitized
glucocorticoid-induced intracellular
lipid accumulation and lipid
droplet size expansion in the BAT

Downregulated UCP1 gene expression
while Ppargc1a, Pparg, and Acaca
remain unaltered

Gasparini
et al.,
2019 (172)

C57BL/6J
wild-type
mice

Mice injected with 5 mg/kg
dexamethasone every second day for
1 week

Increased autophagy, enlarged lipid
droplets, and triglycerides in the
iBAT

Upregulated ATG7, BTG1, Rb1, Nrip1,
Rbl1/p107 gene expression, and
downregulated UCP1

Deng
et al.,
2020 (173)

Brown
adipocytes
precursor
cells

Precursor cells were isolated from
scapular fat of newborn Wild-Type
mice, differentiated, and exposed to 1
µM dexamethasone for 24 h

Increased fat mass and autophagy,
and decreased oxygen consumption
rate

Upregulated ATG7 and BTG1 gene
expression, and downregulated Ucp1,
Nrip1 and Agt mRNA expression

C57BL/6
(C57BL/
6NCrl)
mice

Male mice were exposed to oral
treatments of 50 µg/ml corticosterone
for 4 weeks

Increased adipocyte area, insulin
resistance, and weight of the iBAT,
while mitochondrial content remain
unchanged

Downregulated UCP1 gene expression Bel et al.,
2022 (174)
fro
Acaca, acetyl-coa carboxylase alpha; Agt, angiotensinogen; Ang2, angiopoietin-2; AMPK, AMP-activated protein kinase; ATG7, autophagy-related 7; iBAT, interscapular brown adipose tissue;
BTG1, B cell translocation gene 1; Bmp7, bone morphogenetic protein 7; Cidea, cell death-inducing DNA fragmentation factor-like effector A; Cpt 1, carnitine palmitoyltransferase 1; FGF21,
fibroblast growth factor-21; Fis1, mitochondrial fission 1 protein; Hgf, hepatocyte growth factor; HFD, high fat diet; Npy, neuropeptide; Nrip1, nuclear receptor interacting protein 1; PRDM16,
PR domain containing 16; PPARg, peroxisome proliferator-activated receptor gamma; PGC1a, peroxisome proliferator-activated receptor g coactivator 1-alpha; Rb1, RB transcriptional
corepressor 1; Rbl1/p107, RB transcriptional corepressor like 1; UCP1, uncoupling protein 1; VEGFs, vascular endothelial growth factors; WAT, white adipose tissue.
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In male rat offspring exposed to 1 mg/kg nicotine during

pregnancy and lactation, BAT displayed a whitening phenotype

characterized by lipid droplet accumulation and impaired

mitochondrial structure (168). Moreover, the expression of BAT

structure and function-related genes such as PRDM16, PGC1a,
UCP1, and CPT2 was decreased. Similarly (169), female rat

offspring exposed to 1 mg/kg nicotine during pregnancy and

lactation presented white-like adipocytes, impaired angiogenesis,

and abnormal mitochondrial structure in iBAT. This was

accompanied by a down-regulation of brown-like genes PGC1a,
UCP1, Prdm16, and Cidea, as well as a decrease in BAT secretion of

pro-angiogenic factors including VEGF, VEGF receptor 2,

hepatocyte growth factor (Hgf), neuropeptide (Npy), and resistin

(169). This was further confirmed in vitro using C3H10T1/2 cells,

showing a reduction of beige “brown-like” phenotype and

angiogenesis, as well as brown-like gene expression of PGC1a
and UCP1. Altogether, this evidence suggests that nicotine

disrupts angiogenesis in the early development stage and impairs

blood vessel formation to induce BAT whitening through

downregulation of the PGC1a–UCP1 signals.

3.2.3 Dechlorane plus disrupted mitochondrial
UCP1 and induced BAT whitening

Dechlorane plus, an endocrine-disrupting chemical found in

flame retardants, is a potential obesogen (182). Apparently,

dechlorane plus can induce adiposity by promoting adipogenesis

in cultured adipocytes via PPARg independent mechanism (183).

Consistently, Peshdary et al. (170) reported that 1000 mg/kg
dechlorane plus induces a WAT-like phenotype and disrupts the

function of BAT in part by downregulation of UCP1 mRNA

expression in C57BL/6 mice. These outcomes are in line with

UCP1 gene knockout in mice suggesting that loss of UCP1 could

result in the whitening of BAT (184, 185). However, more research

on the impact of dechlorane plus on BAT and beige adipose tissue

function is warranted to better understand its influence on obesity

and other related diseases.

3.2.4 Serotonin-impaired brown
adipocytes differentiation and induced
beige adipocyte whitening

Endogenous chemicals such as neurotransmitters like serotonin

are known to regulate adipogenesis (186). A study by Rozenblit-

Susan et al. (171) demonstrated that serotonin (10 mM) induces

whitening in palmitic acid-exposed HIB1B adipocytes by shifting

their metabolism to lipogenesis rather than lipid oxidation in part

by, suppressing brown adipocytes differentiation and inducing beige

adipocytes transdifferentiation into white adipocytes. Moreover,

this was confirmed by the downregulation of brown adipocyte

differentiation markers, such as Prdm16, Bmp7, and Pparg (171).

Consistently, expression of BAT markers such as UCP1 and FGF21,

as well as pAMPK/AMPK ratio were downregulated while genes

regulating lipogenesis fatty acid synthase (FASN), leptin, and

adiponectin were upregulated (171). The observed effects of

serotonin require further investigations in human adipose tissue,

supposedly similar effects attained in humans could have major

implications on obesity reducing WAT and increasing BAT activity.
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3.2.5 Glucocorticoids induced BAT whitening by
stimulating autophagy

The class of steroid hormones glucocorticoids and corticosterone

are known to modulate glucose homeostasis in humans and rodents,

respectively (187). Hypercortisolism caused by either endogenous

overproduction of glucocorticoids or exogenous administration of

glucocorticoids as anti-inflammatory medication can induce the

development of obesity. A study by Gasparini et al. (172) reported

that corticosterone (250 mg/day) induces intracellular lipid

accumulation and reduces UCP1 expression in BAT of CD1 mice.

Interestingly, no significant changes were observed in PGC1a, FASN,
or acetyl-coa carboxylase alpha (Acaca) expression, implying that

changes in lipid accumulation did not directly involve mitochondrial

biogenesis, adipogenesis, or lipogenesis in BAT (172).

Several potent synthetic glucocorticoids including dexamethasone

have been developed for pharmacological use (187). For example,

dexamethasone has been implicated in the study of adipogenesis (188).

Here, Deng et al. (173) showed that exposing C57BL/6 mice to 5 mg/kg

dexamethasone for one week induced autophagy and lipid droplet

expansion in iBAT. Similar outcomes were observed in vitro using

brown adipocytes precursor cells. Notably, dexamethasone increased

ATG7 expression, in part by increasing the expression of B cell

translocation gene 1 (BTG1) that stimulates the activity of CREB1

(173). Consistently, UCP1 expression was downregulated, while the

expression of WAT marker genes RB transcriptional corepressor 1

(Rb1), nuclear-receptor-interacting protein 1 (Nrip1), and Rbl1/p107

(RB transcriptional corepressor like 1) were upregulated (173). Other

evidence showed that chronic exposure to corticosterone can induce

the whitening of BAT in C57BL/6 mice, this was evident by increased

adipocyte area and elevated expressions of UCP1 in BAT (174). Of

note, the whitened phenotype has not been previously associated with

increased uncoupling proteins under chronic stress, however, Bel et al.

(174) suggested that the increased UCP1 expression could be a

compensatory mechanism under certain stress.
4 Summary and outlook

Although the remodeling of BAT and beige adipose tissue through

whitening appears to be more common in obesity, it remains unclear

how this maladaptive process occurs. Several lines of evidence have

demonstrated that the BAT/beige adipose tissue whitening is

multifactorial in origin. Indeed, various factors such as diet, age,

genetics, thermoneutrality, and chemical exposure have been shown

to greatly influence the whitening of adipose tissue by targeting

different mechanisms (Figure 4). Apart from these factors, chronic

exposure to high levels of particulate matter, a complex mixture of

solid and liquid particles derived from human activities and natural

sources, also promotes the whitening of BAT, as reviewed by Guardia

and Shin (110). Although the activity of BAT has been strongly linked

with the protection against obesity, fatty liver, and T2D (189), the

dysfunction or whitening of BAT in obesity, may contribute to or

exacerbate other metabolic complications (190). For instance, recent

evidence has demonstrated that severe hyperprolactinemia can also

promote BAT whitening and aggravates HFD-induced metabolic

dysregulations (191). This suggests that the whitening could
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FIGURE 4

Summary of the proposed mechanisms by which multiple factors induce the whitening of brown (BAT) and beige adipose tissue. Factors such as
high fat diet (HFD), bevacizumab, and nicotine induce the whitening by suppressing pro-angiogenic cytokines such as VEGF and VEGF-A, which
inhibit angiogenesis and impair vascularization in BAT and beige adipose tissue, whereas thermoneutral zone and dexamethasone (Dex) exposure
increase ATG7 and TFEB, which stimulate autophagy or mitophagy. Other factors such as aging, and elevated serotonin induce BAT/beige adipose
tissue whitening by increasing INF-g, and LncRNAs, and decreasing BMP-7, which in turn inhibits brown adipocyte differentiation. Moreover,
dechlorane plus (DP) contributes to whitening in part by inhibiting UCP1 expression. ATG7, autophagy-related 7; LncRNAs, long non-coding RNAs;
BMP-7, bone morphogenetic protein 7; BTG1, B cell translocation gene 1; IFN-g, interferon-gamma; UCP1, uncoupling protein 1; TFEB, transcription
factor EB; VEGF, vascular endothelial growth factor.
TABLE 3 An overview of the potential biomarkers of BAT/beige adipose tissue whitening.

Gene Upregulation/Downregu-
lation (knockout) Association with or implication in whitening Author, year

ATGL Downregulation Induce mitophagy, brown adipocyte death, and crown-like structure formation Kotzbeck et al., 2018 (13)

ATG7 Upregulation Induce autophagy and increase adiposity Deng et al., 2020 (173)

BTG1 Upregulation Induce autophagy and increase adiposity

BMP-7 Downregulation Inhibit brown adipocytes differentiation Rozenblit-Susan et al., 2018 (171)

PRDM16 Downregulation Inhibit brown adipocytes differentiation

IFN-g Upregulation Inhibit differentiation of preadipocyte brown adipocytes Pan et al., 2021 (125)

FSTL1 Downregulation Loss of brown adipogenic competence of progenitors Haung et al., 2022 (127)

LncRNAs Upregulation Impair brown adipocyte differentiation Du et al., 2021 (126)

TFEB Upregulation
Induce mitophagic mitochondrial degradation via the autophagosomal and

lysosomal machinery
Sass et al., 2021 (123)

UCP1 Downregulation
Increase glucose intolerance, large unilocular adipocytes, and inflammation

markers, and decrease mitochondrial subunit protein
Winn et al., 2017 (184); Peshdary

et al., 2020 (170)

VEGF Downregulation Suppress angiogenesis and decrease vascular density
Jo et al., 2015 (167); Chen et al.,

2020 (169)

VEGF-A Downregulation
Increase inflammation and endoplasmic reticulum stress, and decrease anti-

inflammatory cytokines
Miranda et al., 2020 (119); Rangel-

Azevedo et al., 2022 (14)
ATGL, adipose triglyceride lipase; ATG7, autophagy-related 7; BMP-7, bone morphogenetic protein 7; BTG1, B cell translocation gene 1; FSTL1, follistatin-like 1; IFN-g, interferon gamma;
LncRNAs, long non-coding RNAs; PRDM16, PR domain containing 16; UCP1, uncoupling protein 1; TFEB, transcription factor EB; VEGF, vascular endothelial growth factor.
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represent one of the complications implicated in the pathogenesis of

obesity, and it can lead to other secondary complications.

Of note, experimental evidence discussed in this review indicates

that autophagy, inflammation, and impairment of angiogenesis

“vascularization” are central processes implicated in BAT/beige

adipose tissue whitening (83, 108, 167, 169). For example, the most

prominent mechanisms implicated in adipose tissue whitening include

the inhibition of VEGFs, PGC1a, and BMP-7 which impair

vascularization, mitochondrial biogenesis, and brown adipocyte

differentiation, respectively. This may lead to more sophisticated

processes like infiltration of INF-g secreting T cells, increased

autophagy, and impaired substrate metabolism. Such evidence is in

line with the finding from gene knockout models, which suggested that

the whitening of BAT is under the control of b-AR (13), BMP (192),

and mitochondrial transcription factor A (193), and other genes

regulating BAT function (194–198), as well as miRNAs that regulate

multiple processes including the differentiation and function of brown

adipocytes (199, 200). Based on the current evidence, there are several

potential marker genes that are involved in regulating BAT/beige

adipose tissue whitening (Table 3). However, this requires further

investigations in both non-clinical and clinical settings. Particular

attention should be placed on identifying plausible therapeutic

avenues to prevent or reverse adipose tissue whitening in obesity.

This includes assessing and understanding the therapeutic effects of

prominent agents like metformin in targeting the adipose tissue to

manage obesity-associated complications (201).
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increases UCP1-dependent and independent thermogenesis with a unique gene
expression program in human neck area derived adipocytes. Pharm (Basel) (2021)
14(11):1078. doi: 10.3390/PH14111078

53. Jiang N, Yang M, Han Y, Zhao H, Sun L. PRDM16 regulating adipocyte
transformation and thermogenesis: A promising therapeutic target for obesity and
diabetes . Front Pharmacol (2022) 13:870250/BIBTEX. doi : 10 .3389/
FPHAR.2022.870250/BIBTEX

54. Seale P, Bjork B, YangW, Kajimura S, Chin S, Kuang S, et al. PRDM16 controls a
brown fat/skeletal muscle switch. Nature (2008) 454:961–7. doi: 10.1038/
NATURE07182

55. Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, et al. Prdm16 is
required for the maintenance of brown adipocyte identity and function in adult mice.
Cell Metab (2014) 19:593–604. doi: 10.1016/j.cmet.2014.03.007

56. Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of
adipocyte differentiation. Nat Rev Mol Cell Biol (2011) 12:722–34. doi: 10.1038/
NRM3198

57. Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A, et al.
PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on
a genome-wide scale. Genes Dev (2008) 22:2941–52. doi: 10.1101/GAD.1709008

58. Pu Y, Veiga-Lopez A. PPARg agonist through the terminal differentiation phase
is essential for adipogenic differentiation of fetal ovine preadipocytes. Cell Mol Biol Lett
(2017) 22:6. doi: 10.1186/S11658-017-0037-1

59. Rocha AL, Guerra BA, Boucher J, Mori MA. A method to induce Brown/Beige
adipocyte differentiation from murine preadipocytes. Bio Protoc (2021) 11(24):e4265.
doi: 10.21769/BIOPROTOC.4265

60. Sun W, Dong H, Balaz M, Slyper M, Drokhlyansky E, Colleluori G, et al.
snRNA-seq reveals a subpopulation of adipocytes that regulates thermogenesis. Nature
(2020) 587:98–102. doi: 10.1038/S41586-020-2856-X

61. Yoneshiro T, Saito M. Activation and recruitment of brown adipose tissue as
anti-obesity regimens in humans. Ann Med (2015) 47:133–41. doi: 10.3109/
07853890.2014.911595
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Glossary

Acaca acetyl-coa carboxylase alpha

AMPK AMP-activated protein kinase

ATG7 autophagy related 7

BAT brown adipose tissue

b3-AR Beta-3 adrenegic receptor

BTG1 B cell translocation gene 1

Bmp7 bone morphogenetic protein 7

BMP8b bone morphogenetic protein 8 beta

Cd36 cluster of differentiation 36

Cidea cell death-inducing DNA fragmentation factor-like effector A

CPTs carnitine palmitoyltransferases

Cox cyclooxygenase

Dex dexamethasone

Dio2 iodothyronine deiodinase 2

DP dechlorane plus

EPDR1 ependymin-related protein 1

EDCs endocrine-disrupting chemical

Elovl3 Elongation of very long chain fatty acids protein 3

FGF21 fibroblast growth factor-21

Fis1 mitochondrial fission 1 protein

GLUT Glucose transporter

Gsk3-b glycogen synthase kinase 3 b

Hgf hepatocyte growth factor

HFD high fat diet

HFHSD high fat high sugar diet

HSL hormone-sensitive lipase

IL-6 interleukin-6

IGF-1 insulin-like growth Factor-1

IGFBP-2 Insulin-like growth factor-binding protein 2

IFN-g interferon

lncRNAs long non-coding RNAs

IRS-2 insulin receptor substrates 2

MAPK3 mitogen-activated protein kinase 3

NGF nerve-growth factor

NRG4 neuregulin 4

Npy neuropeptide

Nrip1 nuclear receptor interacting protein 1

NETO norepinephrine turnover

Plin perilipin
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PKB Protein kinase B

PRDM16 PR domain containing 16

PPARg peroxisome proliferator-activated receptor-g

PGC1a peroxisome proliferator- activated receptor g coactivator 1-alpha

Rb1 RB transcriptional corepressor 1

Rbl1/
p107 RB transcriptional corepressor like 1

Sirt1 Sirtuin 1

Srebp1c sterol regulatory element-binding protein 1c
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Inadequate detection of the FSHR
complicates future research on
extragonadal FSHR localization

Victoria N. Tedjawirja1*, Gerrit K. J. Hooijer2, C. Dilara Savci-Heijink2,
Kristina Kovac3, Ron Balm1 and Vivian de Waard3

1Department of Surgery, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre
(UMC), University of Amsterdam, Amsterdam, Netherlands, 2Department of Pathology, Amsterdam
University Medical Centre (UMC), University of Amsterdam, Amsterdam, Netherlands, 3Department of
Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre
(UMC), University of Amsterdam, Amsterdam, Netherlands
Introduction: Recently, follicle stimulating hormone (FSH) through interaction

with its receptor (FSHR) has been proposed to play a role in postmenopausal

osteoporosis and cardiovascular disease, rather than the loss of estrogen. To

explore this hypothesis, unravelling which cells express extragonadal FSHR on

protein level is key.

Methods: We used two commercial anti-FSHR antibodies and validated them by

performing immunohistochemistry on positive (ovary, testis) and negative controls (skin).

Results: The monoclonal anti-FSHR antibody could not identify the FSHR in ovary

or testis. The polyclonal anti-FSHR antibody stained the granulosa cells (ovary) and

Sertoli cells (testis), yet there was equally intense staining of other cells/

extracellular matrix. Furthermore, the polyclonal anti-FSHR antibody also stained

skin tissue extensively, suggesting that the antibody stains more than just FSHR.

Discussion: The findings in this studymay add accuracy to literature on extragonadal

FSHR localization and warrants attention to the use of inadequate anti-FSHR

antibodies to value the potential role of FSH/FSHR in postmenopausal disease.

KEYWORDS

follicle stimulatinghormone receptor, extragonadal cells, antibodies, immunohistochemistry, control
Introduction

Extragonadal sites with a functional FSH receptor (FSHR) were identified in hepatocytes,

adipocytes, vascular endothelial cells (EC), monocytes/macrophages, and osteoclasts (1–4).

This provoked the hypothesis that the elevated follicle-stimulating hormone (FSH) levels

across the menopausal transition, rather than the decline in estrogen levels, could play a role

in the development of postmenopausal osteoporosis and cardiovascular disease (CVD) for

which encouraging data have been published (1–4). Similarly, the enhanced development of

abdominal aortic aneurysm (AAA), a dilatation of the aorta which can be life-threatening
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upon rupture (5), in postmenopausal women has been attributed to

the decrease of serum estrogen (6, 7). However, the effect of hormonal

replacement therapy on AAA in postmenopausal women was

inconclusive (8–10) and perhaps another hormonal alteration during

the menopause should be considered. We hypothesized that FSH may

play a direct role in the onset/progression of AAA in postmenopausal

women, potentially through the activation of EC and monocytes/

macrophages. In our attempt to unravel which cells within the aorta

express the FSHR on their cell surface, we used two different commercial

anti-FSHR antibodies. However, we faced an unexpected lack of staining

or unspecific staining, which we think is important to share.
Methods

Materials

Human premenopausal ovary, testis, and skin tissue without any

abnormalities were obtained from the Department of Pathology

[Amsterdam University Medical Centre (Amsterdam UMC)] for

the current study. Tissue specimens were retrospectively collected

from the Biobank Tissue Archive Pathology (2015_081), which was

reviewed and approved by the Committee Review Biobanks of the

Amsterdam UMC. All materials were coded and handled in

accordance with the national ethical guidelines (“Code of Conduct

for Health Research” developed by the Dutch Committee on

Regulation of Health Research).
Immunohistochemistry

Of the multiple immunohistochemical (IHC) stainings conducted

by the departments Medical Biochemistry and Pathology, the most

promising procedure is outlined.

IHC was conducted on ovary and testis tissues that indisputably

should express the FSHR (in granulosa and Sertoli cells, respectively)

to validate the purchased antibodies. The formalin-fixed paraffin-

embedded (FFPE) tissues were cut into 4-µm sections, mounted on

coated slides, and dried overnight (37°C). The slides were

deparaffinized with xylene (3 x 5min) and rehydrated with ethanol

(100%, 100%, 96%, and 70%, 20 dips each). Endogenous peroxidase

was quenched with 0.5% H2O2 in methanol (15min). Then, we

assessed the most optimal antigen retrieval step by rinsing the

slides in demineralized water and using three different solutions.

Antigen retrieval with citric acid buffer pH 6.0 and Tris-EDTA buffer

pH 9.0 were performed in a pressure cooker (20 min, 120°C). The

third method was performed in 0.25% pepsin in 0.01 M HCl (10 min,

37°C). Hereafter, the slides were washed in phosphate-buffered saline

with Tween (PBST) (1 x 3min). The sections were incubated with

either the primary mouse monoclonal antibody directed against the

human FSHR (clone FSHR/1400, NSJ Bioreagents; unclear which

part of the FSHR it recognizes) or the primary rabbit anti-FSHR

polyclonal antibody (MBS178821, MyBioSource; raised against the

C18-N187 peptide sequence) in Normal Antibody Diluent (ABD999,

Immunologic). After washing with PBST (3x3min), the sections were

incubated with the specific polymers Brightvision poly-HRP-anti
Frontiers in Endocrinology 125
mouse Ig or Brightvision poly-HRP-anti rabbit Ig (DPVR110HRP,

Immunologic), respectively, as a ‘secondary antibody’. Bright DAB

(BS04-110, Immunologic) was used for visualization (8 min). The

ovary tissue was incubated with inhibin-a (IC25-4065, Instruchemie)

(1:25, 32min) with the Ventana Benchmark Ultra Instrument and

visualized with the Ventana’s OptiView DAB IHC detection kit. Skin

tissue was pre-treated in Tris-EDTA buffer pH 9.0 and incubated with

Cytokeratin17 (Ks.17.E3, NBP2-29421, Novus) (1:100, 60min).

Hereafter, the sections were washed in running tap water, rinsed in

demineralized water, counterstained with hematoxylin 1:5 (5min),

and, for color development, washed in running tap water (5 min) to

visualize cellular nuclei. The slides were dried at 59°C, dipped in

xylene, and mounted in Pertex (00801, Histolab).

Skin tissue, not known to have FSHR expression, was used as

negative control for tissue specificity. As negative control for

unexpected staining by the Brightvision polymers as ‘secondary

antibody’, sections of ovary, testis, and skin were incubated as

described above, but omitting the primary anti-FSHR antibodies.
Results

Incubation of the ovary tissue with the monoclonal anti-FSHR

antibody (1:100, 60 min/overnight, 37°C) revealed no staining of the

granulosa cells with any of the three antigen retrieval methods.

Subsequently, to enhance the chance of FSHR staining, we used the

polyclonal anti-FSHR antibody as it may recognize multiple epitopes

(11). From all three antigen retrieval methods, boiling the sections in

citric acid buffer pH 6.0 gave the most optimal staining (1:500,

overnight, 4°C). Yet, in addition to granulosa cell staining, there

was intense non-specific background staining. To diminish this, the

antibody was further diluted (1:750, 1:1000, 1:1500), yet this reduced

the entire staining instead of enhancing the specific/non-specific ratio.

Granulosa cell staining disappeared at a dilution of 1:750 and beyond.

We thus performed the FSHR staining on ovary, testis, and skin tissue

with the polyclonal anti-FSHR antibody (1:500, citric acid buffer,

overnight, 4°C) (Figures 1A2-3, B2-4, C2-3). The granulosa cells

stained FSHR positive as expected (asterisk Figure 1A3). However, the

severe additional non-specific cellular and extracellular matrix

staining makes it difficult to trust the specificity of the antibody,

especially when studying the extragonadal tissue, where one does not

know which cells should be positive for the FSHR. Ovary tissue

staining with an anti-inhibin antibody shows how granulosa cell

staining could be when it is specific (Figure 1A4). Similar findings

were obtained in testis tissue, where Sertoli cells were probably FSHR

positive among additional positive cells in the seminiferous tubules

(asterisks Figure 1B3-4). However, since the polyclonal antibody also

stained the stroma and Leydig cells, the reliability of this antibody is

questioned. Application of solely the secondary antibodies revealed

no staining in ovary, testis, and skin tissue sections, revealing that all

staining is caused by the anti-FSHR polyclonal antibody (Figures 1A1,

B1, C1). In skin tissue, the monoclonal anti-FSHR antibody showed

no staining at all; however, the polyclonal anti-FSHR antibody gave

positive staining of the stroma, adipocytes, and hair follicles, which

indicates abundant non-specific staining (Figure 1C2-3). While

adipocytes have been reported to be able to express the FSHR (12),
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the stroma and hair follicles should not. Specific staining in skin tissue

is demonstrated with the anti-cytokeratin 17 antibody, which shows a

positive hair follicle and sebaceous gland, as expected (Figure 1C4). In

conclusion, the two anti-FSHR antibodies could either not detect the

FSHR or recognized more than just the FSHR.
Discussion

We aimed to identify FSHR-bearing cells within the aortic wall,

through which FSH may affect AAA onset/progression in

postmenopausal women. Exploring this hypothesis, we conducted

IHC staining with two anti-FSHR antibodies on positive/negative

control tissues for validation. The monoclonal anti-FSHR antibody

did not perform in its ability to identify the FSHR in ovary or testis.

The polyclonal anti-FSHR antibody stained the granulosa cells and

possibly Sertoli cells, yet the additional staining of the other cells/

extracellular matrix was equally intense. Since also in the skin tissue,

which is devoid of known FSHR expression, staining was observed,

we doubt the specificity of the polyclonal antibody. With both

antibodies we had observed occasional positive macrophages, EC

and smooth muscle cells in our aorta sections (obtained from

anonymous donors, data not shown), which is uncertain if this is

true FSHR localization and thus relevant. The reason to bring our

findings to light is to add accuracy to literature, as the use of non-

specific anti-FSHR staining jeopardizes the interpretation of FSHR

localization in extragonadal tissues.
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Various anti-FSHR antibodies have been used to study

extragonadal FSHR protein expression and localization (1–4, 12–

17). Chrusciel et al. summarized some commonly (and currently

unavailable) used antibodies in extragonadal FSHR research (18).

Hybridoma FSH323, validated by positive IHC staining of granulosa

and Sertoli cells, is commercially unavailable (13, 14, 17).

Interestingly, two groups that used FSH323-derived antibodies

showed positive controls in their manuscript but obtained different

results. Stilley et al. detected positive staining in human umbilical cord

venous EC (14), whereas Stelmaszewska et al. did not and also did not

find FSHR mRNA transcripts in EC (17). Another anti-FSHR

antibody from Abcam used in extragonadal FSHR research detected

the presence of FSHR in human hepatocytes (3) and adipose tissue

(12), which was validated using negative/positive IHC controls.

However, without stating the catalogue number, it is unclear which

antibody was used. Perhaps it was the unavailable rabbit polyclonal

antibody ab150557, shown to be specific to FSHR and raised against

an unspecified N-terminal peptide, that was expected to identify the

canonical FSHR and short variant of FSHR (19), or three other

currently available anti-FSHR antibodies by Abcam (1): ab113421

(generated against amino acid sequence 278-327 of the extracellular

domain just prior to the transmembrane domain), (2) ab137695

(recognizing the cytoplasmic C-terminal amino acid sequence 631-

695), and (3) ab75200 (unclear which part of the FSHR it should

recognize). Antibody ab113421 may not recognize the FSHR short

variant (lacking exon 9), which is reported in some extragonadal cells

(1, 14), because this FSHR isoform misses amino acids 224–285,
FIGURE 1

Immunohistochemical analysis of FFPE human premenopausal ovary, testis and skin tissue (A–C, respectively). Polyclonal anti-FSHR antibody was
ommitted (A1, B1 and C1) or the sections were incubated with the antibody (A2-3, B2-4, C2-3 in 1:500 dilution). Sections that were not incubated with
the anti-FSHR antibody only showed blue nuclear staining. The asterisks show FSHR positive (red/brown) granulosa cells (A3) and possibly FSHR positive
Sertoli cells among other positive cells in the seminiferous tubules of the testis (B3, B4). Staining inhibin in ovary tissue reveals how specific granulosa
staining can be (A4). Staining of skin tissue with anti-cytokeratin 17 antibody shows specific staining of a hair follicle with its sebaceous gland (C4), as
opposed to the aspecific staining throughout the skin tissue section by the anti-FSHR antibody. Magnification: Panels A1-2, B1-2, and C1-2 12.5x; Panels
A3-4, B3-4, and C3-4 200x; Panel C4 100x.
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which in part overlaps with the peptide that is used to generate these

antibodies. Although in a comparison paper between various anti-

FSHR antibodies, the sc-13935 anti-FSHR antibody from Santa Cruz

Biotechnology does not seem to be specific for the human FSHR (20),

the antibody has been shown to be specific in another study (19).

However, this antibody seems to be no longer available to repeat

the experiments.

A potential explanation for the polyclonal antibody non-

specificity may be that it was tested for Western blotting, while not

being optimized for IHC in FFPE tissues. Yet, antibodies validated for

Western blotting often perform well in IHC (21). The polyclonal anti-

FSHR antibody MBS178821 that we used was raised against the C18-

N187 amino acid sequence, and should in theory recognize both the

full length and short FSHR variant (Figure 2). However, this stretch of

amino acids contains multiple beta strands and leucine-rich repeat

domains (Figure 2) (22), forming a 3D structure, that is quite

common in many other proteins (23), including the receptors for

the other gonadotropins (22), and possibly explains the

additional staining.

Since the concept of extragonadal FSHR expression is interesting

to pursue in light of postmenopausal disease, future FSHR research

should include control IHC stainings, information on the part against

which the FSHR antibody is raised, and the antibodies’ catalogue

numbers, which are essential to establish the validity of extragonadal

FSHR expression.
Frontiers in Endocrinology 127
Data availability statement

The original contributions presented in the study are included in

the article/supplementary material. Further inquiries can be directed

to the corresponding author.
Ethics statement

The studies involving human participants were reviewed and

approved by Committee Review Biobanks of the Amsterdam

University Medical Centre. Written informed consent for participation

was not required for this study in accordance with the national legislation

and the institutional requirements.
Author contributions

VT and VW contributed to the concept of the work. VT and GH

performed the immunohistochemical stainings. GH, CS-H, and VW

contributed to the evaluation of the stainings. KK contributed to

designing the crystallographic image. VT wrote the first draft of the

manuscript and was supported by VW in the writing process. All

authors contributed to the article and approved the submitted version.
Funding

This work is financed by the Ministry of Economic Affairs by

means of the Private-Public-Partnership Allowance made available by

the Top Sector Life Sciences & Health to stimulate public-private

Partnerships and by funding of Amsterdam UMC (project NR4Ants).

The study was supported by the AMC Foundation.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Robinson LJ, Tourkova I, Wang Y, Sharrow AC, Landau MS, Yaroslavskiy BB, et al.
FSH-receptor isoforms and FSH-dependent gene transcription in human monocytes and
osteoclasts. Biochem Biophys Res Commun (2010) 394(1):12–7. doi: 10.1016/
j.bbrc.2010.02.112
FIGURE 2

Crystallographic image of the extracellular domain of the FSHR (blue,
beige, yellow) folding over its ligand FSH (orange), adapted from Jiang
et al. (22). In yellow the beta strands/leucine-rich repeat domains in
amino acid stretch C18-N187 are highlighted, against which the
polyclonal anti-FSHR antibody MBS178821 is raised. The blue ribbon
represent the amino acids that exon 9 codes for, which lacks in the
short FSHR variant.
frontiersin.org

https://doi.org/10.1016/j.bbrc.2010.02.112
https://doi.org/10.1016/j.bbrc.2010.02.112
https://doi.org/10.3389/fendo.2023.1095031
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Tedjawirja et al. 10.3389/fendo.2023.1095031
2. Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, et al. FSH directly
regulates bone mass. Cell (2006) 125(2):247–60. doi: 10.1016/j.cell.2006.01.051

3. Song Y,Wang ES, Xing LL, Shi S, Qu F, Zhang D, et al. Follicle-stimulating hormone
induces postmenopausal dyslipidemia through inhibiting hepatic cholesterol metabolism.
J Clin Endocrinol Metab (2016) 101(1):254–63. doi: 10.1210/jc.2015-2724

4. Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro VE, Dhawan S, et al. Blocking
FSH induces thermogenic adipose tissue and reduces body fat. Nature (2017) 546
(7656):107–12. doi: 10.1038/nature22342

5. Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G. Understanding the pathogenesis of
abdominal aortic aneurysms. Expert Rev Cardiovasc Ther (2015) 13(9):975–87. doi:
10.1586/14779072.2015.1074861

6. Villard C, Swedenborg J, Eriksson P, Hultgren R. Reproductive history in women
with abdominal aortic aneurysms. J Vasc Surg (2011) 54(2):341–5. doi: 10.1016/
j.jvs.2010.12.069

7. Makrygiannis G, Courtois A, Drion P, Defraigne JO, Kuivaniemi H, Sakalihasan N.
Sex differences in abdominal aortic aneurysm: The role of sex hormones. Ann Vasc Surg
(2014) 28(8):1946–58. doi: 10.1016/j.avsg.2014.07.008

8. Lederle FA, Larson JC, Margolis KL, Allison MA, Freiberg MS, Cochrane BB, et al.
Abdominal aortic aneurysm events in the women’s health initiative: Cohort study. BMJ
(2008) 337:a1724. doi: 10.1136/bmj.a1724

9. Hsia J, Criqui MH, Rodabough RJ, Langer RD, Resnick HE, Phillips LS, et al.
Estrogen plus progestin and the risk of peripheral arterial disease: The women's health
initiative. Circulation (2004) 109(5):620–6. doi: 10.1161/01.CIR.0000115309.63979.92

10. Hsia J, Criqui MH, Herrington DM, Manson JE, Wu L, Heckbert SR, et al.
Conjugated equine estrogens and peripheral arterial disease risk: The women's health
initiative. Am Heart J (2006) 152(1):170–6. doi: 10.1016/j.ahj.2005.09.005

11. Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. Monoclonal versus polyclonal
antibodies: distinguishing characteristics, applications, and information resources. ILAR J
(2005) 46(3):258–68. doi: 10.1093/ilar.46.3.258

12. Liu XM, Chan HC, Ding GL, Cai J, Song Y, Wang TT, et al. FSH regulates fat
accumulation and redistribution in aging through the Gai/Ca(2+)/CREB pathway. Aging
Cell (2015) 14(3):409–20. doi: 10.1111/acel.12331
Frontiers in Endocrinology 128
13. Radu A, Pichon C, Camparo P, Antoine M, Allory Y, Couvelard A, et al.
Expression of follicle-stimulating hormone receptor in tumor blood vessels. N Engl J
Med (2010) 363(17):1621–30. doi: 10.1056/NEJMoa1001283

14. Stilley JA, Guan R, Duffy DM, Segaloff DL. Signaling through FSH receptors on
human umbilical vein endothelial cells promotes angiogenesis. J Clin Endocrinol Metab
(2014) 99(5):E813–20. doi: 10.1210/jc.2013-3186

15. Cui H, Zhao G, Liu R, Zheng M, Chen J, Wen J. FSH stimulates lipid biosynthesis
in chicken adipose tissue by upregulating the expression of its receptor FSHR. J Lipid Res
(2012) 53(5):909–17. doi: 10.1194/jlr.M025403

16. Ji Y, Liu P, Yuen T, Haider S, He J, Romero R, et al. Epitope-specific monoclonal
antibodies to FSHb increase bone mass. Proc Natl Acad Sci U S A. (2018) 115(9):2192–7.
doi: 10.1073/pnas.1718144115

17. Stelmaszewska J, Chrusciel M, Doroszko M, Akerfelt M, Ponikwicka-Tyszko D, Nees
M, et al. Revisiting the expression and function of follicle-stimulation hormone receptor in
human umbilical vein endothelial cells. Sci Rep (2016) 6:37095. doi: 10.1038/srep37095

18. Chrusciel M, Ponikwicka-Tyszko D, Wolczynski S, Huhtaniemi I, Rahman NA.
Extragonadal FSHR expression and function–is it real? Front Endocrinol (Lausanne).
(2019) 10(32). doi: 10.3389/fendo.2019.00032

19. Patel H, Bhartiya D. Testicular stem cells express follicle-stimulating hormone
receptors and are directly modulated by FSH. Reprod Sci (2016) 23(11):1493–508. doi:
10.1177/1933719116643593

20. Moeker N, Peters S, Rauchenberger R, Ghinea N, Kunz C. Antibody selection for
cancer target validation of FSH-receptor in immunohistochemical settings. Antibodies
(2017) 6(4):15. doi: 10.3390/antib6040015

21. Lund-Johansen F, Browning MD. Should we ignore western blots when selecting
antibodies for other applications? Nat Methods (2017) 14(3):215. doi: 10.1038/
nmeth.4192

22. Jiang X, Fischer D, Chen X, McKenna SD, Liu H, Sriraman V, et al. Evidence for
follicle-stimulating hormone receptor as a functional trimer. J Biol Chem (2014) 289
(20):14273–82. doi: 10.1074/jbc.M114.549592

23. Matsushima N, Takatsuka S, Miyashita H, Kretsinger RH. Leucine rich repeat
proteins: Sequences, mutations, structures and diseases. Protein Pept Lett (2019) 26
(2):108–31. doi: 10.2174/0929866526666181208170027
frontiersin.org

https://doi.org/10.1016/j.cell.2006.01.051
https://doi.org/10.1210/jc.2015-2724
https://doi.org/10.1038/nature22342
https://doi.org/10.1586/14779072.2015.1074861
https://doi.org/10.1016/j.jvs.2010.12.069
https://doi.org/10.1016/j.jvs.2010.12.069
https://doi.org/10.1016/j.avsg.2014.07.008
https://doi.org/10.1136/bmj.a1724
https://doi.org/10.1161/01.CIR.0000115309.63979.92
https://doi.org/10.1016/j.ahj.2005.09.005
https://doi.org/10.1093/ilar.46.3.258
https://doi.org/10.1111/acel.12331
https://doi.org/10.1056/NEJMoa1001283
https://doi.org/10.1210/jc.2013-3186
https://doi.org/10.1194/jlr.M025403
https://doi.org/10.1073/pnas.1718144115
https://doi.org/10.1038/srep37095
https://doi.org/10.3389/fendo.2019.00032
https://doi.org/10.1177/1933719116643593
https://doi.org/10.3390/antib6040015
https://doi.org/10.1038/nmeth.4192
https://doi.org/10.1038/nmeth.4192
https://doi.org/10.1074/jbc.M114.549592
https://doi.org/10.2174/0929866526666181208170027
https://doi.org/10.3389/fendo.2023.1095031
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Francoise Koumanov,
University of Bath, United Kingdom

REVIEWED BY

Wei Huang,
Dongguan Tungwah Hospital, China
Xinyu Zhang,
Monash University, Australia

*CORRESPONDENCE

Xiangdong Yang

yxd@email.sdu.edu.cn

SPECIALTY SECTION

This article was submitted to
Diabetes: Molecular Mechanisms,
a section of the journal
Frontiers in Endocrinology

RECEIVED 19 November 2022

ACCEPTED 13 January 2023
PUBLISHED 20 February 2023

CITATION

Yu K, Li S, Wang C, Zhang Y, Li L, Fan X,
Fang L, Li H, Yang H, Sun J and Yang X
(2023) APOC1 as a novel diagnostic
biomarker for DN based on machine
learning algorithms and experiment.
Front. Endocrinol. 14:1102634.
doi: 10.3389/fendo.2023.1102634

COPYRIGHT

© 2023 Yu, Li, Wang, Zhang, Li, Fan, Fang, Li,
Yang, Sun and Yang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 20 February 2023

DOI 10.3389/fendo.2023.1102634
APOC1 as a novel diagnostic
biomarker for DN based on
machine learning algorithms
and experiment

Kuipeng Yu1,2,3, Shan Li1, Chunjie Wang1,3, Yimeng Zhang1,
Luyao Li1, Xin Fan1, Lin Fang1, Haiyun Li4, Huimin Yang5,
Jintang Sun3 and Xiangdong Yang1,2*

1Department of Nephrology, Qilu Hospital of Shandong University, Jinan, Shandong, China,
2Department of Blood Purification, Qilu Hospital of Shandong University, Jinan, Shandong, China,
3Laboratory of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong, China,
4Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China,
5Department of General Practice, Qilu Hospital of Shandong University, Jinan, Shandong, China
Introduction: Diabetic nephropathy is the leading cause of end-stage renal

disease, which imposes a huge economic burden on individuals and society, but

effective and reliable diagnostic markers are still not available.

Methods: Differentially expressed genes (DEGs) were characterized and functional

enrichment analysis was performed in DN patients. Meanwhile, a weighted gene

co-expression network (WGCNA) was also constructed. For further, algorithms

Lasso and SVM-RFE were applied to screening the DN core secreted genes. Lastly,

WB, IHC, IF, and Elias experiments were applied to demonstrate the hub gene

expression in DN, and the research results were confirmed in mouse models and

clinical specimens.

Results: 17 hub secretion genes were identified in this research by analyzing the

DEGs, the important module genes in WGCNA, and the secretion genes. 6 hub

secretory genes (APOC1, CCL21, INHBA, RNASE6, TGFBI, VEGFC) were obtained

by Lasso and SVM-RFE algorithms. APOC1 was discovered to exhibit elevated

expression in renal tissue of a DN mouse model, and APOC1 is probably a core

secretory gene in DN. Clinical data demonstrate that APOC1 expression is

associated significantly with proteinuria and GFR in DN patients. APOC1

expression in the serum of DN patients was 1.358±0.1292mg/ml, compared to

0.3683±0.08119mg/ml in the healthy population. APOC1 was significantly elevated

in the sera of DN patients and the difference was statistical significant (P > 0.001).

The ROC curve of APOC1 in DN gave an AUC = 92.5%, sensitivity = 95%, and

specificity = 97% (P < 0.001).

Conclusions: Our research indicates that APOC1 might be a novel diagnostic

biomarker for diabetic nephropathy for the first time and suggest that APOC1 may

be available as a candidate intervention target for DN.
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1 Introduction

Diabetic nephropathy (DN) is one of the most serious

complications of diabetes and 45% of DN patients will progress to

end-stage renal disease (ESRD) (1), which affects the quality of life

and causes a substantial economic burden to society (2). The gold

standard for diabetic kidney diagnosis remains renal pathology, but

renal puncture biopsy methods are invasive for DN patients. In recent

years, some biological signatures have been detected for the diagnosis

of DN, such as KIM-1, NGAL, suPAR, YKL-40, and so on (3–5).

However, there are no valid and reliable biological markers for the

diagnosis of DN.

GEO Database is a database established by the National Centre

or Biotechnology Information (NCBI) to determine the critical

genes and underlying molecular mechanisms for disease

pathogenesis and progression (6). Recently, bioinformatics and

machine learning methods extensively employed in biomarker

screening by using the GEO database (7–9). What’s more,

secreted proteins have significance in course of biological activity,

specifically in the diagnosis of diseases and future target therapies

(10, 11). This provides the opportunity to detect novel plasma

markers for the recognition of patients with DN.

The research aims to reveal potential predictor plasma

biomarkers of DN by data mining, which will generate novel

insights into the mechanisms of DN pathogenesis and provide

directions for future research into alternative therapies. If the

potential predictor plasma biomarkers accurately predict the

probability of DN occurring, the disease may be treated with

prevention and intervention at an early stage.
2 Materials and methods

2.1 DEGs data processing

Expression profiles of GSE96804 mRNA were obtained from the

GEO database (GPL17586 platform, Affymetrix Human

Transcriptome Array 2.0) (12). In total, 61 tissue biopsies, 41 tissue

samples from DN tissue samples and 20 from the normal, were

obtained from the National Clinical Research Center of Kidney

Diseases, Jinling Hospital, Nanjing University School of Medicine.
“Limma” packaged (13) in R software was used to process data and the

“ggplot2” (14), “Pheatmap” packages for drawing of figures. DEGs

were identified with |log Fold Change | ≥1 & adj P Val < 0.05.
2.2 GO and KEGG enrichment analysis

GO analysis was conducted using the ‘cluster Profiler’ (15), ‘GO

plot’, and ‘ggplot2’ packages for up- and down-regulated DEGs

with altered DN and normal kidney tissue. The KEGG pathway

enrichment analysis was completed by DEGs, and the figures were

generated with the packages “ggplot2” and “enrich plot”.
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2.3 WGCNA network construction and
data analysis

Gene co-expression networks of DN patients were constructed

based on the GSE96804 microarray dataset by the “WGCNA”

package (16). The soft-thresholding power was five when 0.9 was

used as the correlation coefficient threshold, and 50 was chosen as the

minimum number of genes in modules. To merge possible similar

modules, we defined 0.25 as the threshold for cutting height. A

heatmap between the correlation between modules and DN was

drawn, and the ME-brown gene module was the most related to DN.
2.4 Secreted genes download

729 secreted genes are available for the HPA database (https://

www.proteinatlas.org). Venn diagram (https://bioinfogp.cnb.csic.es/

tools/venny/index.html) demonstrates the genes which are

commonly associated with the 3 datasets (DEGs, WCANA, and

secreted to blood genes). In the common genes, we further filtered

the core secretory genes by using different machine algorithms (Lasso

and SVM-RFE algorithm).
2.5 Lasso algorithm and SVM-RFE algorithm
data analysis

Lasso logistic regression is a machine learning process that

determines covariates by seeking the l value that minimizes the

classification error (17). The “glmnet” package was utilized to

structure the LASSO model. Meanwhile, With SVM-RFE, an

approach for building machine training on support vector

machines, we detect the optimal variables by decimating the feature

vectors created by svm (18). Recursive features of differential genes

were acquired and erased by running the “e1071 package”, and the

research was conducted by applying the Lapply function to sort all the

features of the training set. Ultimately, the error rate is minimized and

the hub gene is eventually obtained.
2.6 Presentation of hub genes

The common genes derived from these two machine algorithms

are demonstrated by the Venn diagram, heat maps, line plots, and

deviation plots.
2.7 Biomarker expression validation and
clinical relevance

As illustrated in our previous research, the expression of

biomarkers was confirmed by using the Nephroseq database

(https://www.nephroseq.org/resource/main.html) (19). Meanwhile,

by using the database, biomarker expression and renal function

data were analyzed for correlation.
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2.8 Animal experiments

The STZ-induced DN mouse model was elucidated in detail in

our previous research (19), and among them, there were 5 mice in

the control group (Ctrl) and 5 mice in the diabetic nephropathy

group (DN). Following the successful construction of the DN

mouse model, we conduct the collection of experimental animals.

The research was approved by the Ethics Committee of Qilu

Hospital, Shandong University (Approval No: KYLL-2020

(KS)-030).
2.9 Western blot

The experimental operation of Western Blot was as described

(20). The main antibodies are described as follows: APOC1(1:2000,

Abcam, USA), GAPDH (1:4000; Proteintech Group, China).
2.10 IHC and IF

Immunohistochemistry and immunofluorescence of kidney tissue

sections as previously described (21) The main antibodies are

described as follows: APOC1(1:200, Abcam, USA), Goat anti-Rabbit

IgG Dy-Light 488 (1:500; Abbkine Scientific Company, USA).
2.11 ELISA experiment

We have collected serum specimens from DN patients and

healthy. Detection of biomarkers in serum with commercial Elisa

kits, ELISA method, in DN patients and healthy. Follow the

experimental steps in the Elisa kit instructions to detect the

expression level of the marker in the serum (Apolipoprotein CI

ELISA kit, Abcam, ab108808, USA).
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2.12 ROC

The “PROC” package was used to construct Receiver Operating

Characteristic (ROC) curves to characterise hub gene to evaluate the

diagnostic value of DN, as previously described (19).
2.13 Statistical analyses

Data are expressed as mean ± SEM. Software R4.1.2 was used to

draw the research Figures. GraphPad Prism 6.01 software was used in

statistical data analysis. Between the two groups, Student’s t-test was

used if the data matched the normal distribution, and the Kruskal-

Wallis test was used for non-normally distributed data. For statistical

analysis of the correlation between the two characters, the Spearman

test was applied. Statistical significance was set at P < 0.05, *P < 0.05,

**P < 0.01, ***P < 0.001.
3 Results

3.1 Characterisation of genes for DN using
GSE96804 microarray data

The experimental design was illustrated in Figure 1. Compared

to transcripts of controls, 504 DEGs were identified by patients,

respectively. Our analysis of the results is summarized in the

volcano plots, which reflect that 257 genes are up-regulated in DN

and 247 genes are down-regulated in DN (Figure 2A). In the

illustration, red represents up-regulated and green indicates

down-regulated genes. Results demonstrated two clusterings of

this data, namely the clusters Control and DN which represents

the control group and the DN patients in the heatmap (Figure 2B).

Analysis of GO in DEGs determined shared GO terms linked to

organic acid catabolic processes, and extracellular matrix

organization (Figure 2C). Enrichment pathways to KEGG are
FIGURE 1

Research flow chart.
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associated with the following: Arginine and proline metabolism,

Glycine, serine and threonine metabolism, and Protein digestion

and absorption (Figure 2D).
3.2 Hub gene screening for DN by WGCNA

The network topologies for the analysis of various soft threshold

powers were identified and the choice of 11 to structure the joint

expression network was considered reasonable (Figure 3A). The

similarity in gene expression is ascertained by pair-weighting

correlation metrics, and clustering is performed using topological

overlapping metrics. Gene modules are marked with color at the

bottom (Figure 3B). Pearson correlation coefficients for ME and

disease were calculated for all modules demonstrating the intimate

characteristics of the modules with DN. ME-brown (R = 0.53, P = 1e-

05) potentially represented particular features of DN patients

(Figure 3C). Furthermore, we observed that the correlation

coefficient between the GS of DN and the module members was

high in brown modules (R = 0.47, = 3.1e-21, Figure 3D). There was

potential biological relevance to heightened co-expression of the

genes in the ME-brown module.
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3.3 Screening of hub secretory genes for DN
by machine algorithms

Venn diagram illustrating common genes across algorithms,

filtering for 17 potential secretory genes that may be functionally

essential in DN (Figure 4A). By using 2 machine algorithms, Lasso

and SVM-RFE, to recognize the characteristic genes of DN. The 17

secreted genes are displayed in Figure 4B. By using 2 machine

algorithms, LASSO and SVM-RFE, characteristic genes of the DN

were identified again. The Lasso algorithm filtered out 9 potential hub

genes (Figures 4C, D), while the SVM algorithm filtered out 7

potential hub genes (Figures 4E, F).
3.4 Expression of 6 secretory genes in DN

The Venn diagram illustrates 2 machine algorithms obtained

common 6 hub secretory genes (APOC1, CCL21, INHBA, RNASE6,

TGFBI, VEGFC, Figure 5A). Furthermore, the expression of the six

genes in the GSE96804 cohort is illustrated by heatmap, line graphs,

and deviation plots (Figures 5B–D). The results revealed that 6

secretory gene generators screened for the research were significantly

more over-expressed in the diabetic nephropathy population.
B

C

D

A

FIGURE 2

Gene recognition and function enrichment of DEGs in GSE96804 database. (A) Volcano-map of DEGs (DEGs: |log2FC| > 1, adjusted P<0.05).
(B) Heatmap of the DEGs. (C) Circle map of GO enrichment analysis. (D) Circos map of the KEGG enrichment analysis. DEGs, differentially
expressed genes; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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3.5 Associated expression of APOC1 in DN

APOC1 expression is elevated in patients with diabetic

nephropathy through multiple cohorts of the experimental GEO

database (GSE96804, GSE47185, GSE30122, and the ERCB
Frontiers in Endocrinology 133
Nephrotic Syndrome Tublnt cohorts in Nephroseq database,

Figures 6A–D). ApoC1 expression was elevated in the kidney tissue

of mice with DN by Western blot (P < 0.05, Figure 6E). What’s more,

we revealed that APOC1 was expressed predominantly in the

glomerulus by immunohistochemistry of mouse kidney tissue
B

C D

A

FIGURE 3

Relationship of hub gene modules and DN phenotypes by WGCNA. (A) Network topology analysis at different soft threshold powers and network
connectivity validation at different weighting factors. (B) Cluster Dendrogram of modules colors were constructed with all the differentially expressed
genes. (C) MEs correlated with diagnosis for DN. (D) Scatterplots of gene significance for DN Module membership in brown module. ME, Module
eigengenes; WGCNA, weighted gene co-expression network analysis.
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(Figure 6F). These measurements were confirmed by tissue

immunofluorescence (Figure 6G).
3.6 Correlation of APOC1 expression with
clinical databases

Correlations between APOC1 and the clinical information were

validated by employing multiple cohorts from the Nephroseq database.

Outcomes demonstrated the APOC1 expression was positively correlated

with proteinuria in Schmid diabetes tubint cohorts (R2 = 0.515, P = 0.013,

Figure 7A). However, associations of APOC1 expression are negatively
Frontiers in Endocrinology 134
correlated with GFR inWoroniecka Diabetes Tublnt cohorts (R2 = 0.552,

P = 0.014, Figure 7B). Additionally, in ERCB Nephrotic Syndrome

Tublnt cohorts, APOC1 expression was positively correlated with

proteinuria (R2 = 0.632, P = 0.018, Figure 7C).
3.7 Plasma expression of APOC1 in DN
patients and ROC curve analysis

Altogether 20 healthy and 20 DN patients were enrolled in the

research, and the Baseline details were presented in Table 1.

Significantly, Elisa results demonstrated that APOC1 expression in
B

C D

E F

A

FIGURE 4

Hub secret genes selection in DN. (A) Venn diagram demonstrating the hub genes for the different algorithms. (DEGs, WCANA, and secreted to blood
genes). (B) 17 characteristically secret genes in DN patients. (C, D)Biomarker secret genes were selected by Lasso algorithm from the 17 potential hub
genes. (E, F) Biomarker secret genes were detected for DN by SVM-RFE algorithm from the 17 potential hub genes (the accuracy and the error rate of
the SVM model). Lasso, Least absolute shrinkage and selection operator; SVM-RFE, support vector machine recursive feature elimination.
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the serum of DN patients was 1.358±0.1292mg/ml, compared to

0.3683±0.08119mg/ml in the healthy population (Figure 8A).

APOC1 was significantly elevated in the sera of DN patients

and the difference was statistical significant (P > 0.001).

Furthermore, APOC1 diagnostic effectiveness for DN as

demonstrated by ROC curves (AUC = 92.5%, sensitivity = 95%,

and specificity = 97%, P < 0.001, Figure 8B).
Frontiers in Endocrinology 135
4 Discussion

DN is considered to the most serious complication of diabetes

and imposes a substantial financial burden on individuals and

society (22). It is vital to diagnose DN early to improve the

prognosis of patients with DN and reduce the financial burden

(23). However, the most dominant clinical indicators for the
B

C

D

A

FIGURE 5

6 potential secretory genes were obtained in GSE96804 by machine algorithms. (A) The intersection of genes obtained by the two machine algorithms
(SVM-RFE and Lasso algorithms). (B) Deviation plots showed the expression of six secreted genes in DN. (C) Folding line graph illustrates the different
expression of 6 hub genes. (D) Heat plots revealed elevated expression of six secreted genes in DN.
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B

C D

E F

A

G

FIGURE 6

Exhibition of the expression of APOC1 in DN. (A–D) APOC1 manifested significantly higher expression in different cohorts of DN patients. [(A): GSE96804,
Ctrl=20, DN=41, (B) GSE47185, Ctrl=21, DN=12, (C) ERCB Nephrotic Syndrome Tublnt cohorts in Nephroseq database, Ctrl=9, DN=10, GSE 30122, Ctrl=13,
DN=9]. (E) Representative Western Blot indicates APOC1 expression to be higher in different mice, Ctrl (n = 4) or DN (n = 4). (F) IHC reveals increased
expression of APOC1 on glomeruli of mice with DN (Bar = 20 mm). (G) Representative protein immunofluorescence of APOC1 in the glomeruli of DN (Bar =
20 mm.). (Data presented as mean ± SEM, *P < 0.05).
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diagnosis of DN are still UACR and eGFR, in clinical practice (24).

Previous studies have demonstrated that damage to the kidney, such

as endothelial damage, tubulointerstitial dilatation, and interstitial
Frontiers in Endocrinology 137
fibrosis, has already occurred before the appearance of albuminuria

in patients with DN (25). The abnormalities in molecular markers

usually precede the clinical symptoms of the disease (26, 27).

Therefore, the urgent challenge is to identify suitable, stable, and

easily detectable biomarkers for DN diagnosis.

Microarrays have been extensively implemented in medical

research, such as biomarkers for disease diagnosis, and prognosis

(28, 29). Consequently, we investigated the differential genes in the

kidney tissue of diabetic nephropathy and healthy people by

microarray transcriptome analysis (Figure 2). The research

demonstrated that 257 up-regulated and 247 down-regulated genes

were compared to normal kidney tissue. Furthermore, we also

screened for gene modules closely correlated with diabetic

nephropathy by the WGCNA method (Figure 3). 17 secretory

genes were obtained in the differential and Me-Brown modules

(Figure 3, 4), which may have an essential role in DN.

Our investigation further screened for core secretory genes in

diabetic nephropathy using the Lasso and SVM-RFE machine

learning algorithms, which identified a total of six potential core

genes (Figures 4, 5). Among the six secreted genes, APOC1 is newly

identified as a member of the lipoprotein family and is closely

associated with lipid metabolism and immune inflammation. Our

research demonstrated elevated expression of APOC1 in DN.

Additionally, APOC1 expression was also confirmed by other
B

C

A

FIGURE 7

Correlation between APOC1 expression and proteinuria and GFR in Nephroseq database. (A) Correlation between APOC1 expression and proteinuria in
Schmid diabetes tubint cohorts (R2 = 0.515, P = 0.013). (B) Correlation between APOC1 expression and GFE in Woroniecka Diabetes Tublnt cohorts (R2 =
0.552, P = 0.014). (C) Correlation between APOC1 expression and GFE in ERCB Nephrotic Syndrome Tublnt cohorts (R2 = 0.632, P = 0.018).
TABLE 1 Baseline characteristics.

Characteristic Ctrl (n = 20) DN (n = 20)

Age (year) 46.10 ± 2.625 49.30 ± 3.361

Sex (Female/male) 11/9 7/13

SBP (mmHg) 122.9 ± 1.832 131.8 ± 5.333

DBP (mmHg) 70.70 ± 1.223 75.95 ± 2.300

eGFR (ml/min1.73m2) 103.0 ± 5.345 106.4 ± 9.705

Cr (mmoI/L) 72.40 ± 3.438 82.80 ± 9.288

ACR 0.0035 ± 0.001313 0.2425 ± 0.1029*

CHO (mmol/l) 5.111 ± 0.2631 4.603 ± 0.3581

TG (mmol/l) 1.459 ± 0.2988 2.018 ± 0.3723

UA (mmol/l) 306.9 ± 13.10 329.9 ± 20.37

APOC1(mg/ml) 0.3683 ± 0.08119 1.358 ± 0.1292***
SBP, Systolic Blood Pressure; Diastolic Blood Pressure; eGFR, Estimated Glomerular Filtration
Rate; Cr, Creatinine; ACR, Albumin/Urine Creatinine Ratio; CHO, Cholesterol; TG,
Triglyceride; UA, Uric Acid; Ctrl, Healthy population (n = 20); DN, Diabetic nephropathy
patients (n = 20). Ctrl vs DN; *P < 0.05; ***P < 0.001.
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transcriptome microarray data (Figure 6). Lipid metabolism disorders

and immunoinflammatory responses are critical in the development

and progression of DN patients (30, 31), which means that APOC1

may be also involved in the development of DN.

APOC1 has been implicated in the progress of many diseases such

as malignancy (32), atherosclerosis (33), and Alzheimer’s disease (34).

More importantly, APOC1 is closely associated with cell proliferation,

apoptosis, and immune inflammation (35). Recent research also has

identified ApoC1 which promotes renal clear cell carcinoma

metastasis through activation of the STAT3 pathway (36) and is a

potential novel diagnostic and prognostic marker for clear cell renal

carcinoma (37). Animal experiments are employed to confirm the

results of research. In vivo, we also demonstrated that APOC1

expression was significantly increased in diabetic nephropathy

kidney tissues, mainly in the glomerulus, using a mouse model of

diabetic nephropathy (Figure 6). Currently, our team are also

conducting functional and mechanistic research on the role of

APOC1 in DN.

Interestingly, we also conducted a correlation analysis between

APOC1 and clinical data. we investigated the correlation of APOC1

expression with urinary protein and eGFR in DN patients through the

Nephroseq database (Figure 7). For further evidence, we collected

blood samples from 20 patients with DN and 20 healthy. We assayed

the expression level of APOC1 in serum by Elisa assay. The outcome

showed that APOC1 expression was significantly higher in DN

patients and had an excellent diagnostic efficacy for DN (Figure 8).

Therefore, we concluded that APOC1 may be a novel biomarker for

DN. Nevertheless, many deficiencies remain for our research. The

role and mechanism of APOC1 in the development of DN is still

unclear. The diagnostic efficacy of APOC1 for DN still needs to be

demonstrated in multicentre research. Additionally, APOC1

expression and the prognosis of DN patients still need more

prospective investigation.

In conclusion, elevated glomerular and serum expression of

APOC1 in DN was identified for the first time through

bioinformatics, machine learning, animal model experiments, and

clinical data. APOC1 was demonstrated to be a novel and potential

biological diagnostic marker for DN, but additional prospective

research remains needed to demonstrate its diagnostic value.
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1Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,
Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China, 2Tongji Hospital,
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Objective: To investigate the differences in biochemical marker levels and the

extent of lesion visualization on technetium 99m methoxyisobutylisonitrile

(99mTc-MIBI) imaging between primary hyperparathyroidism (PHPT) and

secondary hyperparathyroidism (SHPT).

Methods: Nineteen patients with PHPT and 14 patients with SHPT were enrolled

in the study, all of whom underwent routine 99mTc-MIBI dual-phase planar

imaging, single-photon emission computed tomography combined with

computed tomography (SPECT/CT fusion) imaging, and serum biochemical

and hormonal investigations prior to surgery. The target-to-non-target (T/NT)

ratios were calculated based on images from the early and delayed phases of
99mTc-MIBI planar imaging and also based on SPECT/CT fusion imaging. The

volume of the parathyroid glands was measured following their excision.

Results: A total of 62 parathyroid glands were removed: 14 parathyroid

adenomas and five parathyroid carcinomas in PHPT patients; and 18

parathyroid adenomas, 17 parathyroid hyperplasia lesions, and eight instances

of nodular hyperplasia with adenoma in SHPT patients. The median volume of

the lesions in PHPT and SHPT was 1.69 cm3 and 0.52 cm3 respectively, and the

difference between them was statistically significant (P = 0.001). The median T/

NT ratios calculated at the early phase of 99mTc-MIBI planar imaging, the delayed

phase of 99mTc-MIBI planar imaging, and the subsequent SPECT/CT fusion

imaging were 1.51, 1.34, and 2.75, respectively, in PHPT, and 1.46, 1.30, and

1.38, in SHPT, respectively. The T/NT ratio difference between PHPT and SHPT

on the SPECT/CT fusion imaging was statistically significant (P = 0.002). The

histopathology subtypes of the lesions were associated with significant

differences in two areas: the T/NT ratios on the SPECT/CT fusion imaging and

the volume of the lesions (P=0.002, P<0.001).
frontiersin.org01140

https://www.frontiersin.org/articles/10.3389/fendo.2023.1094689/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1094689/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1094689/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1094689/full
https://www.frontiersin.org/articles/10.3389/fendo.2023.1094689/full
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2023.1094689&domain=pdf&date_stamp=2023-03-27
mailto:zhang_wanchun@126.com
https://doi.org/10.3389/fendo.2023.1094689
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2023.1094689
https://www.frontiersin.org/journals/endocrinology


Wang et al. 10.3389/fendo.2023.1094689

Frontiers in Endocrinology
Conclusion: The proportion of positive findings on 99mTc-MIBI dual-phase

planar imaging and the T/NT ratios of 99mTc-MIBI SPECT/CT fusion imaging

were higher in PHPT than in SHPT. The volume of parathyroid lesions in SHPT

was smaller than in PHPT.
KEYWORDS

parathyroid adenoma, parathyroid hyperplasia, primary hyperparathyroidism, secondary
hyperparathyroidism, technetium Tc 99m sestamibi, SPECT/CT fusion imaging
Introduction

Hyperparathyroidism (HPT) is a generalized disturbance of

calcium (Ca) and phosphate metabolism that occurs as a result of

the oversecretion of parathyroid hormone (PTH), and it can involve

many of the organs and systems within the human body. The

underlying cause of the hypersecretion allows HPT to be

subdivided into primary hyperparathyroidism (PHPT), secondary

hyperparathyroidism (SHPT), and tertiary hyperthyroidism (THPT)

(1). The majority of PHPT cases (95%) occur sporadically,

approximately 85% of PHPT patients is caused by a solitary

adenoma, and about 15-20% are caused by multiple gland disease

(2, 3). Hyperfunctional parathyroid glands overproduce PTH and

leads to hypercalcemia. SHPT is one of the most common serious

complications in patients with chronic renal failure on long-term

hemodialysis. Parathyroid cell proliferation and PTH secretion

increased is due to persistent hyperphosphatemia, hypocalcemia

and a lack of VD. Most SHPT patients have multiple enlarged

parathyroid glands and frequent parathyroid anatomical variations

in location (4).The clinical manifestations of HPT are diverse and

include urinary calculi, osteopenia, pathological fractures, and

skeletal deformity.

The main treatment for PHPT is parathyroidectomy. In the

treatment of SHPT, vitamin D receptor (VDRA) and calcium

supplement are first used to regulate the treatment. If the drug

treatment is not effective, surgical resection of the parathyroid

gland can be chosen (5). Due to less operative time and fewer

complications than traditional bilateral exploration, minimally

invasive parathyroidectomy (MIP) is recommended in HPT (6). The

anatomical location of parathyroid glands has a higher probability of

variation (7). Therefore, accurate localization before surgery can

improve the success rate of surgery. There are three different options,

subtotal parathyroidectomy, total parathyroidectomy with or without

auto-transplantation in SHPT patients. If the surgeon does not remove

all hyperfunctioning parathyroid tissue, the recurrent SHPT would

happen. It has also been reported that relapsing hyperparathyroidism

by autografted parathyroid tissue may require extensive demolition of

surrounding muscle tissue in addition to excision of hyperactive

parathyroid tissue (8). Therefore, identification of hyperactive

parathyroid tissue preoperatively is important.
02141
Numerous examination medthods were used preoperatively or

intraoperatively in localizing the hyperfunctional parathyroid

lesions or predicting the presence of multiglandular disease (3, 9–

11) . There i s widespread used of Technet ium 99m

methoxyisobutylisonitrile (99mTc-MIBI) dual-phase planar

imaging and single-photon emission computed tomography

(SPECT) combined with computed tomography (CT)-SPECT/CT

fusion imaging in PHPT and SHPT (12–14). It is used for the

localization of hyeperfunction parathyroid glands in PHPT and

significantly improved the outcomes of patients undergoing

minimally invasive parathyroidectomy in PHPT and can also

assist surgeons in selecting the lowest degree of PTG hyperplasia

which is appropriate to autotransplantation in SHPT (15).

However, there are few articles discussed about the differences

between the 99mTc-MIBI uptake in PHPT and SHPT. This study

aims to evaluate the features of PHPT and SHPT, and the

differences between them, by examining several biomarkers (PTH,

alkaline phosphatase [ALP], phosphorus [P] and Ca), the volume of

the tumors, and 99mTc-MIBI uptake in dual-phase planar and

SPECT/CT fusion images.
Materials and methods

Patients

Inclusion criteria: 1.The patient visited our hospital from 2015 to

2019 and had elevated PTH on laboratory examination. 2.The patient

has underwent test 99mTc-MIBI imaging. 3.The patient has

underwent test SPECT/CT imaging. 4.The patient underwent

parathyroid surgery and was confirmed by postoperative pathology.

A total of 33 patients were included. (Figure 1). Chronic kidney

disease (CKD) patients with hyperparathyroidism caused by dialysis

and unable to be controlled by drug therapy were divided into SHPT

group (14 patients in total) and the remaining patients were divided

into the PHPT group (19 patients in total). Preoperative PTH, Ca, P

and ALP were collected from the two groups. All resected parathyroid

glands (PTGs) were measured, and the volume of each PTG was

estimated using the following formula: a × b × c × p/6 cm3 (where

a, b, and c are the dimensions of the gland in centimeters) (5, 6).
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Imaging examinations

Imaging was performed on a double-head gamma-camera

equipped with a low-energy, high-resolution collimator (Discovery

NM/CT 670, GE Healthcare). The camera was set at a 140 keV photo

peak with a 20% energy window. Anterior neck images were obtained

in 256 × 256 matrix size, gathering 500k counts per position. The

patients received an intravenous injection of 740 MBq of 99mTc-

MIBI. Early-phase planar images were obtained 20 mins after the

injection and delayed-phase planar images were obtained 2 h after the

injection. Immediately following this, the SPECT/CT fusion images

were obtained. The SPECT images included the neck and thorax. A

128 × 128 matrix was used, and images were obtained using 3° per

step and 20 s per step over 360°. A CT scan was performed

immediately after the SPECT imaging. The main CT parameters

were 120 keV, 200 mAs, and a 2.5-mm slice thickness. The SPECT/

CT fusion image data were analyzed on a workstation (GE

healthcare), which provided transaxial, coronal, and sagittal slices

using the SPECT, the CT, and the fused SPECT/CT data.
Imaging analysis

The imaging results were evaluated using visual and semi-

quantitative analyses by two experienced nuclear medicine

physicians who were blinded both to the surgical results and the

histopathology of the lesions. Positive 99mTc-MIBI scans indicated a

fixed concentration in neck or mediastinum on imaging with a
Frontiers in Endocrinology 03142
parenchymal space-occupying lesion (independent soft tissue mass)

in the corresponding position on CT imaging or a soft tissue mass in

parathyroid area without 99mTc-MIBI concentration in SPECT/CT.

For semi-quantitative analysis that compared the positive results

found on the dual-phase planar imaging and on the SPECT/CT

imaging, a region of interest (ROI) was defined manually on the

areas of increased 99mTc-MIBI uptake indicating the presence of

lesions in both types of imaging, and an identical ROI was identified

on the contralateral side. The target-to-non-target ratio (T/NT)

ratio was calculated using the following formula: average lesion

count in the ROI/average contralateral tissue counts of ROI.
Statistical analysis

Statistical analysis was performed using SSPS (version 24)

software. Continuous data were expressed as mean ± standard

deviation or median with interquartile range. The nonparametric

Mann–Whitney test was used to compare the T/NT ratios, the levels

of biochemical markers, and tumor volumes in the PHPT and

SHPT groups. Spearman’s rank correlation coefficient was used to

calculate the correlation between the T/NT ratio, the biochemical

marker levels and the volume of the PTG. The T/NT ratios and

tumor volumes were evaluated in relation to the tumors’

histopathology using the Kruskal–Wallis analysis of variation

(ANOVA). In the case of multiple lesions, the tumor volume was

calculated by summing the volumes of all the lesions. Statistical

significance was set at P < 0.05.
FIGURE 1

Inclusion and exclusion criteria roadmap.
frontiersin.org

https://doi.org/10.3389/fendo.2023.1094689
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Wang et al. 10.3389/fendo.2023.1094689
Results

Patient characteristics and preoperative
biochemical marker levels

Among the 19 patients with PHPT, there were nine men and 10

women, and the median age was 63 years. In this group, 18 patients

had a raised serum PTH level which declined postoperative, and

one patient had a normal serum PTH level; 10 patients had a raised

serum ALP level, and nine patients had a normal serum ALP level;

17 patients had a raised serum Ca level, and two patients had a

normal serum Ca level. All patients had a normal or low serum P

level. Among the 14 patients with SHPT, there were 10 men and

four women, and the median age was 34 years. The primary

diagnosis of the SHPT patients was 5 chronic kidney disease and

medicine had ever been used to control PTH level. In this group, all

patients had a raised serum PTH level; 10 patients had a raised

serum ALP level, and four patients had a normal serum ALP level;

four patients had a raised serum Ca level, and 10 patients had a

normal serum Ca level; 13 patients had a raised serum P level, and

one patient had a normal serum P level. The median or mean serum

levels of PTH, ALP, Ca, and P in PHPT and SHPT are shown in

Table 1. According to the Mann–Whitney test, the median age in

PHPT was higher than SHPT with significance [P=0.001]. The

serum levels of both PTH and P were found to be significantly

higher in the SHPT patients than in the PHPT patients (P<0.001,

both). The serum level of Ca was found to be significantly higher in

the PHPT patients than in the SHPT patients (P<0.001).
Surgical and histopathological results

In total, 62 glands were resected in the 33 patients. In the 19

patients who had PHPT, 16 underwent traditional surgery and 3

underwent minimally invasive approch (MIAVP), 19 PTGs were

resected and their histopathology was examined. This confirmed 14

cases of parathyroid adenoma and five cases of parathyroid
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carcinoma. Among the 14 patients with SHPT, two patients had

one excised gland that indicated by preoperative imaging

examination, one patient had two excised gland indicated by

imaging examination, one patient had three lesions removed

intraoperatively but pathological showed two parathyroid lesions,

one patient had all three lesions found removed intraoperatively,

two patients had four lesions resected intraoperatively but

pathological showed three parathyroid lesions, two patients

underwent subtotal parathyroidectomy, two patients had total

parathyroidectomy with auto-transplantation and the rest three

patients had total parathyroidectomy without auto-transplantation.

43 of the glands excised confirmed pathologically origined of the

parathyroid gland. A subsequent histopathological examination

confirmed the following diagnoses: parathyroid adenoma was

found in 17 glands, parathyroid hyperplasia was found in 18

glands, and eight glands had features of both nodular hyperplasia

and adenoma. According to the histopathological examination, the

median volumes of the PTGs in the PHPT group and the SHPT

group were 1.69 cm3 and 0.52 cm3, respectively (Table 1). A

statistically significant difference was observed between the two

groups (P = 0.001).
Results from the parathyroid
imaging examinations

In all 19 PHPT patients, the 99mTc-MIBI dual-phase planar

imaging yielded positive scintigraphic findings, and 19 lesions were

detected in total, all of which were single focal lesions. All of these

19 lesions in planar imaging were also visible upon SPECT/CT

fusion imaging. The dual-phase planar imaging detected 23 lesions

in 13 out of the 14 patients with SHPT, with nine patients found to

have a single focal lesion, and four patients found to have multiple

lesions. However, the SPECT/CT fusion imaging in SHPT patients

found 26 lesions with an increased uptake of 99mTc-MIBI and eight

lesions with no increased uptake of 99mTc-MIBI. The results of the

SPECT/CT fusion imaging suggested that of the 14 SHPT patients,
TABLE 1 Baseline characteristics of patients included in the study.

Variables PHPT N1 SHPT N2 t/Z/c2 P-value

Age (years) 63 (52-73) 19 34 (29-47) 14 -3.190 0.001

Sex (male/female) 10/9 19 4/10 14 1.910 0.167

Preoperative PTH (pg/mL) 334.50 (131.40-564.80) 19 1668.65 (751.67-2763.05) 14 4.025 <0.001

Preoperative ALP (IU/L) 125.00 (103.70-218.20) 19 279.70 (78.27-752.37) 14 0.984 0.341

Preoperative P (mmol/L) 0.82 (0.61-1.02) 19 1.94 (1.74-2.58) 14 4.773 <0.001

Preoperative Ca (mmol/L) 2.82 (2.69-3.35) 19 2.40 (2.15-2.60) 14 -4.408 <0.001

Early T/NT Ratio 1.51 (1.22-1.93) 19 1.46 (1.15-1.58) 23 -1.150 0.25

Delayed T/NT Ratio 1.34 (1.21-1.62) 19 1.30 (1.15-1.54) 23 -1.049 0.294

SPECT/CT T/NT Ratio 2.75 (2.20-3.84) 19 1.38 (1.13-2.61) 26 -3.171 0.002

Volume of PTG (cm3) 1.69 (0.65-2.93) 19 0.52 (0.16-1.42) 43 -3.306 0.001
fron
PHPT, primary hyperparathyroidism; SHPT, secondary hyperparathyroidism; PTH, parathyroid hormone; P, phosphorus; Ca, calcium; ALP, alkaline phosphatase; BUN, blood urea nitrogen;
Scr, creatinine; T/NT, target-to-non-target; PTG, parathyroid gland. N1: the number of PHPT group; N2: the number of SHPT group. Data are represented as median (25–75th percentile).
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three had a single lesion, five had two lesions, four had three lesions,

and two had four lesions. One SHPT patient had a negative 99mTc-

MIBI dual-phase planar imaging result, but did have visible lesions

upon SPECT/CT fusion imaging with no 99mTc-MIBI uptake.
Semi-quantitative analysis of technetium
99m methoxyisobutylisonitrile imaging

The T/NT ratios calculated based on 99mTc-MIBI early-phase

planar imaging in PHPT and SHPT were 1.51(1.22-1.93) and 1.46

(1.15-1.58), respectively. The T/NT ratios calculated based on
99mTc-MIBI delayed phase planar imaging in PHPT and SHPT

were 1.34(1.21-1.62) and 1.30(1.15-1.54), respectively. The early-

phase T/NT ratios were higher than the delayed-phase T/NT ratios

for both the PHPT patients and the SHPT patients. When

considering both phases, the T/NT ratios were higher in the

PHPT patients than in the SHPT patients, but these differences

were not statistically significant.

The median T/NT ratio of lesions found upon SPECT/CT

fusion imaging in PHPT and SHPT was 2.75 and 1.38,

respectively, and the difference between these was statistically

significant (P=0.002). The 45 parathyroid lesions with positive

SPECT/CT fusion imaging results were classified into five

subgroups according to their histopathology: 14 parathyroid

adenomas found in 14 PHPT patients (PA in PHPT), five

parathyroid carcinomas found in four PHPT patients (PC), nine

parathyroid adenomas found in five SHPT patients (PA in SHPT),

nine instances of parathyroid hyperplasia found in five SHPT

patients (PH), and eight instances of nodular hyperplasia with

adenoma found in three SHPT patients (NHA). The Kruskal–

Wallis ANOVA test indicated significant differences in the serum

PTH, Ca, and P levels between the subgroups (P = 0.001, P<0.001,

P<0.001,respectively. There was also a significant difference in the

T/NT ratio of the SPECT/CT fusion images and the lesion volume

between the subgroups (P =0.002, P<0.001, respectively). The

lowest T/NT ratio was found in the NHA subgroup and the

highest in PC subgroup. The largest lesion volume was found in

the PC subgroup, and the smallest lesion volume was found in the

PH subgroup (Figures 2, 3).
Discussion

The radiopharmaceutical 99mTc-MIBI is liposoluble,

intracellular, and cationic, and it accumulates in the mitochondria

of viable cells by means of an electrochemical gradient due to the

activity of respiratory chain (16). It is a radiopharmaceutical

commonly used to perform parathyroid scintigraphy, and it can

accumulate in abnormal PTG tissues, especially those that are rich

in oxyphil cells (17). The sensitivity of 99mTc-MIBI scan was 100%

in oxyphil cell dominant PHPT patients and was 71.2% in chief cell

and mixed cell-dominant PHPT patients (18). The study conducted

by Cordes et al. (19) demonstrated that in 82% of 99mTc-MIBI

negative cases oxyphil cells were absent. The absence of oxyphil

cells, with their large numbers of mitochondria, in PTGs probably
Frontiers in Endocrinology 05144
lead to a decrease in the number of radiotracer binding sites

resulting in negative 99mTc-MIBI imaging (19). The PTG in true

positive 99mTc-MIBI imaging consisted predominantly of oxyphil

cells and opposite in false negative 99mTc-MIBI imaging (20).

SHPT, a common complication of CRF, is characterized by
FIGURE 2

The difference of T/NT ratio in SPECT/CT fusion imaging among the
subgroups. Boxplots indicate median value (black), first and third
quartile range (box). Pairwise comparison by independent sample
Kruskal-Wallis test, there was statistical significance between NHA
and PA in PHPT (P=0.004). There was statistical difference between
NHA and PTC (P=0.14). T/NT, target-to-non-target. PA in PHPT,
parathyroid adenomas in primary hyperparathyroidism; PC,
parathyroid carcinomas; PA in SHPT, parathyroid adenomas in
secondary hyperparathyroidism; PH, parathyroid hyperplasia; NHA,
nodular hyperplasia with adenoma. * indicates that the value is an
outlier, which is far away from the third quartile line.
FIGURE 3

The difference of volume of PTG in subgroups. Boxplots indicate
median value (black), first and third quartile range (box). Pairwise
comparison by independent sample Kruskal-Wallis test, PH and PA
in PHPT were statistically significant (P=0.023), PH and PC were
statistically significant (P< 0.001), PA in SHPT and PC were
statistically significant (P=0.025). PTG, parathyroid gland. PA in
PHPT, parathyroid adenomas in primary hyperparathyroidism. PC,
parathyroid carcinomas; PA in SHPT, parathyroid adenomas in
secondary hyperparathyroidism; PH, parathyroid hyperplasia; NHA,
nodular hyperplasia with adenoma. * indicates that the value is an
outlier, which is far away from the third quartile line.
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parathyroid hyperplasia consisting mainly of chief cells (21). A

meta-analysis showed the sensitivity of 99mTc-MIBI plannar

imaging in SHPT patients was 58% (16). In our study, the 99mTc-

MIBI dual-phase planar imaging in SHPT patients was positive in

13 out of 14 patients. The T/NT ratios of the 99mTc-MIBI dual-

phase planar images were lower in the SHPT patients than in the

PHPT patients, but not to a statistically significant degree. The T/

NT ratios in the SPECT/CT fusion images, eliminating overlapping

effects, were significantly lower of the SHPT patients compared to

PHPT. Adenomas were primarily present in the PHPT patients,

while hyperplasia was primarily present in the SHPT patients.

Parathyroid adenomas and parathyroid carcinomas are mainly

composed of a mixture of chief and transitional oxyphil cells (22).

Chief cells were found in all parathyroid hyperplasia lesions, and

oxyphil cells were found in 67.9% of parathyroid hyperplasia

lesions (23).

In our study, all the lesions in PHPT which were pathologically

confirmed as adenomas and carcinomas were positive both on the

dual-phase 99mTc-MIBI planar imaging and the SPECT/CT fusion

imaging. Among the 14 SHPT patients, 12 had multiple lesions, but

not all of the lesions in SHPT were positive on the 99mTc-MIBI

dual-phase planar imaging. The SPECT/CT fusion imaging T/NT

ratios were lowest in the NHA subgroups, and highest in the PC

subgroup. These findings suggest that 99mTc-MIBI may uptake less

in SHPT than PHPT lesions. There are some studies about the

oxyphil cells proportion of parathyroid lesions in the PHPT or

SHPT (24, 25), but there is little studies directly compared the

oxyphil cells proportion between PHPT and SHPT. The

predominant cell type found in PHPT and SHPT lesions may

account for the differences in the degree of visualization of

different lesions on 99mTc-MIBI dual-phase planar imaging.

Another factor that influences 99mTc-MIBI accumulation in the

parathyroid glands is the parathyroid lesion size (20).

Histopathological examination of the resected glands after surgery

revealed that the mean volume of the parathyroid lesions was

significantly larger in the PHPT group than in the SHPT group in

our study. Other studies have also reported the weight and volume

of parathyroid lesions. In PHPT, the median weight of an adenoma

was found to be 3.0 g-4.1g (26, 27). While the mean mass of lesions

in SHPT was found to be 0.91g (28) and the mean volume of a PTG

was 838 ± 939 mm3 in a study with CKD), which is consistent with

the present study (29). Elsewhere, in a study of 17 patients, the

median weight of parathyroid adenomas gland was larger than of

hyperplastic glands with difference (30). The smallest volume in our

study was evident in the PH subgroup. Oxyphil cells are larger than

chief cells histologically (12–20 and 6–8 mm, respectively) (31). It

had a trend towards larger size and weight when the percentage of

oxyphil cells >75% in PHPT lesions (25). The volume of lesions

decreased as the number of lesions increased (32). Multiple

parathyroid lesions are often involved in patients with SHPT. The

growth of PTG was stopped by the active form of vitamin D

(calcitriol) in chronic renal failure (CRF) patients with comorbid

SHPT (33). Most SHPT patients in CKD and SHPT receive vitamin

D treatment. Considering the above factors, the difference of

volume between PHPT and SHPT is related to oxyphil cells

components and disease characteristics.
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99mTc-MIBI SPECT/CT sensitivity is significantly lower in

multiple gland disease (MGD) than single-gland disease (SGD)

may due to the reason that MGD usually is due to hyperplasia and

SGD usually is due to adenoma (32). All the PHPT patients had a

single parathyroid lesion identified upon 99mTc-MIBI dual-phase

planar imaging were confirmed by surgery and pathology. Among

the 13 SHPT patients with positive 99mTc-MIBI dual-phase planar

imaging result, 11 patients had multiple lesions. In addition, the

SPECT/CT fusion imaging found a further eight lesions in these 13

SHPT patients that had no increased 99mTc-MIBI uptake. Parjeet

Kaur et al. (26) suggested that the misdiagnosis of MGD as a single

adenoma(SA) on 99mTc-MIBI scans may be the result of an

increased focus on a single enlarged gland, which leads to other

small lesions being missed in the context of MGD. The higher rate

of negative 99mTc-MIBI dual-phase planar imaging results in SHPT

compared with PHPT may be related to multi-gland hyperplasia.

The study by Min Zhang et al. (34) showed the retention rate of
99mTc-MIBI in PC lesions was significantly higher than that in

benign lesions, and the diameter of PC was larger than adenoma (3).

In consist with them, the highest T/NT ratio and the largest volume

is both in PC subgroup in our study. Among the pathologic lesions

responsible for primary hyperparathyroidism, include adenoma,

atypicaladenoma, double adenoma, multigland hyperplasia, and

rarely carcinoma, 0.5-2% is parathyroid carcinoma (21). In this

study, all 5 cases of parathyroid adenocarcinoma received treatment

due to PHPT-related symptoms and were pathologically confirmed

as cancer after surgery. We selected 99mTc-MIBI positive patients

with post-operative pathology from suspected HPT patients, so the

total number of patients selected was small, leading to selection bias.

There was a significant difference between the mean age of

PHPT and SHPT patients in our study. The median age of PHPT

patients was 63 year and the median age of SHPT patients was 34

years with significant difference in our study. This result is

consistent with the reported mean age of PHPT patients and the

group age of SHPT mentioned in the study (2, 35, 36). The age of

SHPT patients become younger with the degree of disease (37).

With the growth of age or pathological state, the number of

eosinophils from the degeneration of the master cells in

parathyroid tissues gradually increases (38, 39). In a study of

SHPT, the number of focal eosinophilic cells increased with age

and the mean age in higher oxyphil cell proportion group was older

than in lower group (24). We speculated the difference age between

PHPT and SHPT patients may be related to the oxyphil cells.

Our study is limited by its relatively small number of patients

and retrospective design which had not analyzed the chief cell and

oxphil cell components in the resected lesions. Therefore, future

prospective large cohort study needed for analyzing the difference

that the uptake of 99mTc-MIBI and the oxphil content in

parathyroid lesions between PHPT and SHPT patients.

In conclusion, the proportion of patients who had a positive

result on the 99mTc-MIBI dual-phase planar imaging was higher in

the PHPT group than in the SHPT group, the T/NT ratios on the
99mTc-MIBI dual-phase planar and SPECT/CT fusion imaging were

higher in the former group and the volume of parathyroid lesions

involved in SHPT was also smaller than in PHPT. Therefore, it is

recommended to combine other technology when 99mTc-MIBI
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imaging is negative in patients with SHPT and it should be aware

the possibility of cancer when abnormal concentration and large

lesions observed in PHPT patients.
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Serrano Pardo R, Tovar Pérez R, et al. Oxyphil cells in primary hyperparathyroidism: A
clinicopathological study.Hormones (Athens) (2021) 20(4):715–21. doi: 10.1007/s42000-021-
00305-2

26. Kaur P, Gattani R, Singhal AA, Sarin D, Arora SK, Mithal A, et al. Impact of
preoperative imaging on surgical approach for primary hyperparathyroidism: Data
from single institution in India. Indian J Endocrinol Metab (2016) 20(5):625–30. doi:
10.4103/2230-8210.190540

27. Arya AK, Bhadada SK, Singh P, Sachdeva N, Saikia UN, Dahiya D, et al. Promoter
hypermethylation inactivates CDKN2A, CDKN2B and RASSF1A genes in sporadic
parathyroid adenomas. Sci Rep (2017) 7(1):3123. doi: 10.1038/s41598-017-03143-8

28. Doruyter AG, Hartley T, Ameyo JW, Davids MR, Warwick JM. Hybrid imaging
using low-dose, localizing computed tomography enhances lesion localization in renal
hyperparathyroidism. Nucl Med Commun (2014) 35(8):884–9. doi: 10.1097/
MNM.0000000000000131

29. Jäger MD, Serttas M, Beneke J, Müller JA, Schrem H, Kaltenborn A, et al. Risk-
factors for nodular hyperplasia of parathyroid glands in sHPT patients. PloS One (2017)
12(10):e0186093.

30. Michaud L, Balogova S, Burgess A, Ohnona J, Huchet V, Kerrou K, et al. A pilot
comparison of 18F-fluorocholine PET/CT, ultrasonography and 123I/99mTc-
Frontiers in Endocrinology 08147
sestaMIBI dual-phase dual-isotope scintigraphy in the preoperative localization of
hyperfunctioning parathyroid glands in primary or secondary hyperparathyroidism:
Influence of thyroid anomalies. Med (Baltimore) (2015) 94(41):e1701. doi: 10.1097/
MD.0000000000001701

31. Ritter CS, Haughey BH, Miller B, Brown AJ. Differential gene expression by
oxyphil and chief cells of human parathyroid glands. J Clin Endocrinol Metab (2012) 97
(8):E1499–1505. doi: 10.1210/jc.2011-3366

32. Nichols KJ, Tronco GG, Palestro CJ. Influence of multigland parathyroid disease
on 99mTc-sestamibi SPECT/CT. Clin Nucl Med (2016) 41(4):282–8. doi: 10.1097/
RLU.0000000000001115

33. Paydas S, Acikalim A, Kaya B, Bicer BH, Ulker M, Demircan O, et al. Expression
of p53, Ki67, epidermal growth factor receptor, transforming growth-factora, and p21
in primary and secondary hyperparathyroidism. Indian J Endocrinol Metab (2014) 18
(6):826–30. doi: 10.4103/2230-8210.140265

34. Zhang M, Sun L, Rui W, Guo R, He H, Miao Y, et al. Semi-quantitative analysis
of (99m)Tc-sestamibi retention level for preoperative differential diagnosis of
parathyroid carcinoma [J]. Quant Imaging Med Surg (2019) 9(8):1394–401. doi:
10.21037/qims.2019.07.02

35. Bilezikian JP, Cusano NE, Khan AA, Liu JM, Marcocci C, Bandeira F, et al. Primary
hyperparathyroidism. Nat Rev Dis Primers (2016) 2:16033. doi: 10.1038/nrdp.2016.33

36. El-Sageer EM, Shehata AM, Khalaf M, EI-Heeny A. Neck exploration versus
imaging localization of parathyroid in secondary hyperparathyroidism. Indian J Surg
(2018) 81(5):457–61. doi: 10.1007/s12262-018-1842-0

37. Ritter C, Miller B, Coyne DW, Gupta D, Zheng S, Brown AJ, et al. Paricalcitol
and cinacalcet have disparate actions on parathyroid oxyphil cell content in patients
with chronic kidney disease [J]. Kidney Int (2017) 92(5):1217–22. doi: 10.1016/
j.kint.2017.05.003

38. Christie AC. The parathyroid oxyphil cells. J Clin Pathol (1967) 20(4):591–602.
doi: 10.1136/jcp.20.4.591

39. Lu CL, Yeih DF, Hou YC, Jow GM, Li ZY, Liu WC, et al. The emerging role of
nutritional vitamin d in secondary hyperparathyroidism in CKD. Nutrients (2018) 10
(12):1890. doi: 10.3390/nu10121890
frontiersin.org

https://doi.org/10.1053/j.semdp.2013.06.003
https://doi.org/10.1053/j.semdp.2013.06.003
https://doi.org/10.1007/s12022-015-9378-3
https://doi.org/10.1007/s11255-019-02330-y
https://doi.org/10.1007/s42000-021-00305-2
https://doi.org/10.1007/s42000-021-00305-2
https://doi.org/10.4103/2230-8210.190540
https://doi.org/10.1038/s41598-017-03143-8
https://doi.org/10.1097/MNM.0000000000000131
https://doi.org/10.1097/MNM.0000000000000131
https://doi.org/10.1097/MD.0000000000001701
https://doi.org/10.1097/MD.0000000000001701
https://doi.org/10.1210/jc.2011-3366
https://doi.org/10.1097/RLU.0000000000001115
https://doi.org/10.1097/RLU.0000000000001115
https://doi.org/10.4103/2230-8210.140265
https://doi.org/10.21037/qims.2019.07.02
https://doi.org/10.1038/nrdp.2016.33
https://doi.org/10.1007/s12262-018-1842-0
https://doi.org/10.1016/j.kint.2017.05.003
https://doi.org/10.1016/j.kint.2017.05.003
https://doi.org/10.1136/jcp.20.4.591
https://doi.org/10.3390/nu10121890
https://doi.org/10.3389/fendo.2023.1094689
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Frontiers in Endocrinology

OPEN ACCESS

EDITED BY

Vijaya Kumar Pidugu,
National Cancer Institute (NIH),
United States

REVIEWED BY

Swetha Ramadesikan,
Nationwide Children’s Hospital,
United States
Abhishek Kulkarni,
University of Florida, United States
Hima Makala,
National Cancer Institute at Frederick
(NIH), United States

*CORRESPONDENCE

Bassem Refaat

barefaat@uqu.edu.sa

bassem.refaat@yahoo.co.uk

†These authors have contributed
equally to this work and share
senior authorship

SPECIALTY SECTION

This article was submitted to
Cancer Endocrinology,
a section of the journal
Frontiers in Endocrinology

RECEIVED 15 March 2023

ACCEPTED 12 April 2023
PUBLISHED 03 May 2023

CITATION

Refaat B, Aslam A, Idris S, Almalki AH,
Alkhaldi MY, Asiri HA, Almaimani RA,
Mujalli A, Minshawi F, Alamri SA,
AlHussain MI, Baltow BA, Alqasmi MH,
Basfar GT, Alosaimi OM and Muhayya IA
(2023) Profiling estrogen, progesterone,
and androgen receptors in colorectal
cancer in relation to gender, menopausal
status, clinical stage, and
tumour sidedness.
Front. Endocrinol. 14:1187259.
doi: 10.3389/fendo.2023.1187259

COPYRIGHT

© 2023 Refaat, Aslam, Idris, Almalki, Alkhaldi,
Asiri, Almaimani, Mujalli, Minshawi, Alamri,
AlHussain, Baltow, Alqasmi, Basfar, Alosaimi
and Muhayya. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 03 May 2023

DOI 10.3389/fendo.2023.1187259
Profiling estrogen, progesterone,
and androgen receptors in
colorectal cancer in relation
to gender, menopausal
status, clinical stage,
and tumour sidedness

Bassem Refaat1*†, Akhmed Aslam1†, Shakir Idris1,
Ahmed H. Almalki1,2, Mofareh Y. Alkhaldi1,3, Hassan A. Asiri 1,4,
Riyad A. Almaimani5, Abdulrahman Mujalli 1, Faisal Minshawi1,
Sara A. Alamri6, Mona I. AlHussain6, Badee A. Baltow6,
Mansour H. Alqasmi7, Ghaiyda T. Basfar1,7, Ohoud M. Alosaimi1,8

and Ibrahim A. Muhayya3

1Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University,
Makkah, Saudi Arabia, 2Regional Laboratory and Central Blood Bank, Ministry of Health, Jizan, Saudi
Arabia, 3Laboratory And Blood Bank Department, Asir Central Hospital, Abha, Saudi Arabia, 4Forensic
Medicine Department, Health Affairs General Directorate in Assir, Abha, Saudi Arabia, 5Biochemistry
Department, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia, 6Histopathology
Department, King Abdullah Medical City, Makkah, Saudi Arabia, 7Clinical Laboratories, Al-Noor
Specialist Hospital, Makkah, Saudi Arabia, 8Clinical Laboratories, Eradah and Mental Health Complex,
Ministry of Health, Taif, Saudi Arabia
Background: Although estrogen (ERa/ERb), progesterone (PGR), and androgen

(AR) receptors are pathologically altered in colorectal cancer (CRC), their

simultaneous expression within the same cohort of patients was not previously

measured.

Methods: ERa/ERb/PGR/AR proteins were measured in archived paired normal

andmalignant colon specimens (n =120 patients) by immunohistochemistry, and

results were analyzed by gender, age (≤50 vs. ≥60 years), clinical stages (early-

stage I/II vs. late-stage III/IV), and anatomical location (right; RSCs vs. left; LSCs).

Effects of 17b-estradiol (E2), progesterone (P4), and testosterone alone or

combined with the specific blockers of ERa (MPP dihydrochloride), ERb
(PHTPP), PGR (mifepristone), and AR (bicalutamide) on cell cycle and apoptosis

were also measured in the SW480 male and HT29 female CRC cell lines.

Results: ERa and AR proteins increased, whilst ERb and PGR declinedmarkedly in

malignant specimens. Moreover, male neoplastic tissues showed highest AR

expression, whilst ERb and PGR weakest alongside ERa strongest expression was

seen in cancerous tissues from women aged ≥60 years. Late-stage neoplasms

also revealed maximal alterations in the expression of sex steroid receptors. By

tumor location, LSCs disclosed significant elevations in ERawithmarked declines

in PGR compared with RSCs, and ERa strongest alongside PGR weakest

expression was detected in advanced LSCs from women aged ≥60 years. Late-
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stage LSCs from females aged ≥60 years also showed weakest ERb and strongest

AR expression. In contrast, male RSC and LSC tissues exhibited equal ERb and AR

expression in all clinical stages. ERa and AR proteins also correlated positively,

whereas ERb and PGR inversely, with tumor characteristics. Concomitantly, E2

and P4monotherapies triggered cell cycle arrest and apoptosis in the SW480 and

HT29 cells, and while pre-treatment with ERa-blocker enhanced the effects of

E2, ERb-blocker and PGR-blocker suppressed the E2 and P4 anti-cancer actions,

respectively. In contrast, treatment with the AR-blocker induced apoptosis,

whilst co-treatment with testosterone hindered the effects.

Conclusions: This study advocates that protein expression of sex steroid

receptors in malignant tissues could represent prognostic markers, as well as

hormonal therapy could provide an alternative strategy against CRC, and their

efficacies could be dependent on gender, clinical stage, and tumor location.
KEYWORDS

testosterone, cell cycle, apoptosis, left-right dichotomy, mifepristone, bicalutamide,
estrogen receptor-b (ERb), estrogen receptor-a (ERa)
1 Introduction

Worldwide, colorectal cancer (CRC) is the most prevalent and

fatal gastrointestinal neoplastic disease (1, 2). Several factors increase

the risk of CRC, among which tumor location has recently been

shown to correlate with tumor characteristics and clinical outcomes.

In detail, right-sided cancers (RSCs) are linked with larger tumor size,

poor differentiation, mucinous histology, distant metastasis, and

worse prognosis compared to left-sided cancers (LSCs) (3–5).

Moreover, epidemiological observations have consistently shown

lower risk of developing CRC in pre-menopausal women, whilst

post-menopausal women using hormonal replacement therapy

(HRT) also had markedly lower incidence of CRC relative to

nonusers, as well as age-matched men (6–9). Moreover, better

prognosis has been noted in CRC female patients aged 18-44 years

relative to women > 50 years of age, as well as men of the same age

(10). Therefore, it has been suggested that sex steroid hormones could

contribute to colon oncogenesis (6–10).

Although the production of sex steroid hormones mainly occurs

in the gonads, other peripheral tissues, including colon, express the

enzymes required for the biogenesis of sex hormones, including

progesterone (P4), testosterone, and the most potent estrogen, 17b-
estradiol (E2) (11–13). Colonic mucosa could also respond to sex

hormones, since estrogen (ERa & ERb) (14–16), progesterone (PGR)
(17–19), and androgen (AR) (20–22) receptors were detected and

showed gender-dependent expression profiles. Moreover, ERb, PGR
and AR in normal colonic tissue are abundant, whilst ERa is weakly

expressed (14–22). However, the protein expression of ERa (23–25)

and AR (26) increases, whereas ERb (27–29) and PGR (23, 30–32)

decline, markedly in cancerous colonic tissues, and they correlated

with the tumor clinicopathological characteristics and/or prognosis.

Experimental studies have also shown that E2 induced ERb-mediated

anti-cancer actions, whilst promoting oncogenic effects through ERa
02149
in colonic cells, both in vivo and in vitro (33–36). Moreover,

treatment with P4 induced apoptosis and inhibited cancer

progression (30, 36), whereas testosterone therapy triggered cell

growth and colon carcinogenesis (37–40), in vitro and in animal

models. Hence, the authors suggested that E2, through ERb (33–36),

and P4 via PGR (30, 36) could act as tumor suppressors, whilst

activation of ERa by E2 (33–36) and AR by testosterone (37–40)

could promote the development and progression of colon neoplasia.

However, none of the earlier studies measured the expression of

all the sex steroid hormone receptors within the same cohort of

clinical samples or analyzed the results in relation to menopausal

status in women. Moreover, little is currently known about the

expression of sex steroid receptors with respect to tumor sidedness.

Hence, this study investigated the protein expression of ERa, ERb,
PGR, and AR in paired non-cancerous and cancerous tissues

collected from patients diagnosed with CRC, and the results were

analyzed according to gender, age, clinical stage, and tumor

anatomical sites. To support the clinical findings, the SW480

male and HT29 female CRC cell lines were also treated with E2,

P4, and testosterone alone or combined with their specific nuclear

receptor blockers to measure their effects on cell cycle and apoptosis

according to gender. Understanding the roles of sex steroid

hormones in colon oncogenesis could provide better prognostic

markers and/or alternative hormonal therapies for CRC.
2 Materials and methods

2.1 Clinical study and sample collection

Paired Formalin-Fixed Paraffin-Embedded (FFPE) malignant

and their corresponding non-malignant colonic specimens were

collected from the archives of Histopathology Department of King
frontiersin.org
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Abdullah Medical City in Makkah (KAMC) following ethical

approval (#19-498). The study included 120 Saudi male and

female patients between January 2019 and December 2021, aged

between ≥ 18 years and ≤ 50 years, or ≥ 60 years and who were

diagnosed with primary sporadic CRC. Moreover, all patients did

not receive neoadjuvant chemo/radiotherapy prior to their surgery.

Patients with a history of inherited or recurrent CRC and/or aged

between 51 and 59 years old were excluded to ensure

menopausal status.

The final diagnosis with the histopathological staging were

based on institutional clinical management guidelines that

followed the 8th edition of the American Joint Committee on

Cancer tumor-node-metastasis (TNM) staging system. By

retrieving the pathology and surgical reports, tumors located from

the cecum to the margin of hepatic flexure were categorized as

right-sided cancer (RSC), whilst neoplasms located from the splenic

flexure to the rectum were considered left-sided cancer (LSC) (4).

All the retrieved tissue blocks were examined by consultant

histopathologists in KAMC to ensure adequacy.

2.1.1 Immunohistochemistry
Primary mouse monoclonal IgG antibodies (Santa-Cruz

Biotechnology Inc.; CA, USA) were used to detect ERa (#sc-

8002), ERb (#sc-53494), PGR (#sc-810), and AR (#sc-7305) in 5-

mm sections from each non-malignant and cancerous tissues.

Endogenous peroxidases were blocked by using a BLOXALL®
Solution (#SP-6000-100; Vector Laboratories Inc., CA, USA) for

15 min. Subsequently, the sections were incubated overnight

with the primary antibodies (1:200 concentration for all) at 4°C.

After washing, the sections were treated with ImmPRESS® HRP

Horse Anti-mouse (#MP-7402) IgG Plus Polymer Peroxidase

Kits, as per the manufacturer’s protocol (Vector Laboratories

Inc.). The same protocol was also used with the negative control

sections, but primary isotype mouse (#sc-2025) IgG antibodies

(Santa-Cruz Biotechnology Inc.) were used to control for non-

specific staining. The sections were studied on a Leica DMi8

microscope (Leica Microsystems, Wetzlar, Germany) and

images were acquired from 10 random fields/section with a

20× objective.

The ImageJ software (https://imagej.nih.gov/ij/) was used to

measure the protein expression by the IHC Image Analysis

Toolbox, as reported elsewhere (4, 41). Briefly, the stained areas

(ROI) were identified, and the stain intensity with the percentage of

stained areas were measured. The IHC scores were calculated by the

following equation, as previously described equation (4, 41):

IHC stain intensity 

=  ½(255  −  ROI stain score) 

�   %  ROI (ROI pixels=total image pixels �  100)�

The IHC scores for each receptor were then compared between

the paired normal and cancerous tissues of each patient (normal vs.

malignant), as well as between the clinical stages (early [I/II] vs. late

[III/IV]), both genders (male vs. female), tumor sites (RSC vs. LSC),

and age groups (≤ 50 vs. ≥ 60 years).
Frontiers in Endocrinology 03150
2.2 In vitro experiments

2.2.1 Chemicals and reagents
Ultrapure (>99%) testosterone hormone (#86500) was from

Sigma-Aldrich Co. (MO, USA), whilst 17b-Estradiol (E2; #HY-

B0141) and progesterone (P4; #HY-N0437) hormones, alongside

the specific receptor blockers of ERa (MPP dihydrochloride; #HY-

103454), ERb (PHTPP; #HY-103456), PGR (mifepristone; #HY-

13683), and AR (bicalutamide; #HY-14249) were obtained from

MedChemExpress LLC (Princeton, NJ, USA). Cell culture media

(DMEM & RPMI-1640), fetal bovine serum (FBS), antibiotic-

antimycotic solution, and sterile 96-well and 6-well plates were

from Thermo Fisher Scientific (MT, USA). The female (HT29) and

male (SW480) human colon cancer cell lines were from the

American Type Culture Collection (VA, USA).

2.2.2 Cell culture and cell viability assay
The HT29 cells were cultured in RPMI-1640, whilst DMEMwas

used for the SW480, and all media included 10% FBS and 1%

antibiotic-antimycotic solution. All cells were sub-cultured, and

growth maintained at 37°C in a humified incubator with 5% CO2.

Following seeding in 96-well plates, both cell lines were treated with

each drug alone for 48h to determine the concentrations associated

with 50% inhibition (IC50) or 10% increase (EC10) of cell viability

using the MTT cytotoxicity assay, as described earlier (42, 43).

2.2.3 Cell cycle analysis
Following determination of IC50 or EC10 concentrations, the

cells were seeded in 6-well plates and divided into the following

groups: untreated control (CT), E2 (E2), P4 (P4), and testosterone

(T) single treatments, alongside the MPP + E2 (E/a), PHTPP + E2

(E/b), mifepristone + P4 (P/M), and bicalutamide + testosterone (T/

B) dual therapies. Each receptor blocker was added for a total

duration of 48h in the co-therapy protocols, whilst E2, P4, or

testosterone therapies were incubated for 24h and were initiated in

the single and dual treatment groups 24h after adding their

corresponding receptor blockers for 24h.

At the end of experiments, the SW480 and HT29 cells were

trypsinised and suspended, washed twice with PBS, and fixed in ice-

cold 70% ethanol for 24h at 4°C. Cells were then treated with RNase

A (20 mg/ml; Thermo Fisher) for 15 min after washing twice in PBS.

Propidium iodide (PI; 2 μg/ml; Thermo Fisher) was used to stain

cellular DNA immediately prior to cell cycle analysis with an Acea

Novocyte 3000 flow cytometer (Agilent Technologies, CA, USA).

The percentage of cells in each phase of cell cycle were determined

for 20,000 events (n = 3/group) by the NovoExpress software cell

cycle algorithm, as reported earlier (42, 43).

2.2.4 Apoptosis assay
The Annexin V-FITC/PI Apoptosis Assay Kit (Thermo Fisher

Scientific) was used tomeasure the effects of the different therapies on

cell death. Briefly, the SW480 and HT29 cells were washed twice with

ice cold PBS following the different treatments and re-suspended in

100 ml of 1× Annexin V (AV) binding buffer. Cell suspensions were

then incubated in the dark for 15 min at room temperature, after the
frontiersin.org
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addition of AV-FITC (5 ml) and PI (1 ml). Before analysing with the

Acea Novocyte 3000 flow cytometer, the samples were kept on ice

after adding 400 ml of AV binding buffer. The percentages of live

(non-stained), early (AV+/PI-) and late apoptotic (AV+/PI+), and

dead (AV-/PI+) cells are shown as mean ± SD (n = 3).
2.3 Statistical analysis

SPSS statistical analysis software version 25 was used for data

analysis. Normality and homogeneity of all continuous variables

were determined by the Kolmogorov and Smirnov’s test and the

Levene test, respectively. Ordinal and discontinuous variables are

shown as numbers with percentages, and Chi-square (c2) test

following cross-tabulation were used to measure frequencies.

While Student’s t or Mann-Whitney U tests were applied to

compare between two groups based on normality, one-way

analysis of variance (ANOVA) with Tukey’s HSD or Games-

Howell post-hoc tests were used for comparing between several

groups based on equality of variance. Continuous variables are

shown as mean ± standard deviation (SD) or median with

interquartile range (IQR; 25th – 75th percentiles), according to

data normality. Correlations were measured by Pearson’s or

Spearman’s tests based on data normality. Significance was

considered with P< 0.05.
3 Results

3.1 Clinicopathological characteristics
of colonic tumors

Overall, the patients included 64 males (53.3%) and 56 females

(46.7%), and the mean of age was comparable between both

genders (58.4 ± 13.2 and 58.7 ± 13.1 years, respectively). The T

stages were T1 in two (1.7%), T2 in 13 (10.8%), T3 in 72 (60%) and

T4 in 33 (27.5%) patients. Regional lymph nodes were positive for

malignant cells in 63 (52.5%) patients, whilst distant liver

metastasis (stage M1a) was detected in 16 patients (13.3%). The

most prevalent histology was Adenocarcinoma (n = 92; 76.7%)

whilst the remainder was mucinous carcinoma. Additionally, 20

(16.7%), 72 (60%) and 28 (23.3%) patients had poorly, moderately,

and well-differentiated cancers, respectively. Moreover, 42 (35%)

and 28 (23.3%) patients were positive for lymphovascular and

perineural invasions, respectively. AS per the TNM staging

criteria, 50 (41.7%) cases were clinically diagnosed as early

(stages I/II) and the remainder (58.3%) as advanced (stages III/

IV) malignancies.

According to tumor anatomical sites, RSCs were less frequent (n

= 41; 34.2%) and associated with markedly higher rates of mucinous

neoplasms, poor differentiation, and distant metastasis relative to

LSCs (Supplementary Table 1). However, both the RSC and LSC

groups showed comparable average age, as well as distributions of

genders, T and N stages, lymphovascular and perineural invasions,

and rates of early (I/II) and late (III/IV) cancer stages
Frontiers in Endocrinology 04151
(Supplementary Table 1). By classifying the patients according to

gender and age groups, there were 22 men (18.3%) and 20 women

(16.7%) aged ≤ 50 years, whilst patients aged ≥ 60 years included 42

males (35%) and 36 females (30%). All the clinicopathological

features were similar between the different groups, except for the

rate of T4 stage that was markedly higher in male patients (Table 1).

3.2 Protein expression of sex steroid receptors in clinical samples

by IHC.

3.2.1 Estrogen receptors
In non-malignant tissues, the antibodies against ERa

(Supplementary Figure 1) and ERb (Supplementary Figure 2)

labelled the cytoplasm and nuclei of colonic epithelia, and the

immunostaining of the latter was substantially stronger. Moreover,

the expression of ERa was markedly higher in the female right and

left non-cancerous tissues compared with male patients

(Supplementary Figure 1; P< 0.01 for both). While ERa was equal

between the male non-malignant specimens during the different

cancer stages, women ≥ 60 years showed significantly higher IHC

scores in the left-sided non-neoplastic tissues obtained from the

early and late stages relative to women aged ≤ 50 years

(Supplementary Figure 1; P< 0.001). On the other hand, female

patients aged ≤ 50 years disclosed the highest ERb expression in the

right and left non-malignant specimens compared with both age

groups in males, as well as females ≥ 60 years of age (Supplementary

Figure 2, P< 0.001 for all). Although ERb expression in the male

non-cancerous tissues was also equal between both age groups, the

non-cancerous tissues from the late stages of RSCs and LSCs had

markedly lower IHC scores compared with their counterpart early

stages (Supplementary Figure 2; P< 0.01 for both). Furthermore, the

non-malignant tissues from women aged ≥ 60 years revealed

the lowest ERb protein expression compared with all groups, and

the lowest scores were detected in samples obtained from late RSCs

(Supplementary Figure 2).

In general, the protein expression of ERa increased significantly

(213.4; IQR: 192.9 – 286.3) in cancerous compared with non-

cancerous tissues (36.9; IQR: 24.1 – 63.2; P< 0.0001). Moreover,

left-side cancers (257.9; IQR: 200.3 – 307.1) had higher ERa
expression relative to RSCs (222.5; IQR: 183.3 – 248.7; P< 0.0001).

According to clinical stage, late-stage right and left cancers showed

markedly higher IHC scores relative to their corresponding early-

stage cancerous tissues, and the highest scores were detected in late-

stage LSCs (Figure 1; P< 0.0001). However, the ERa IHC scores in

late-stage LSCs were comparable between both genders, whilst

women aged ≥ 60 years and diagnosed with advanced RSCs

displayed the strongest immunostaining relative to men, as well as

females aged ≤ 50 years, diagnosed with early-stage RSCs (Figure 1;

P< 0.001 for both).

In contrast, ERb protein declined in cancerous specimens (51.3;

IQR: 40.4 – 72.1) compared with their corresponding non-malignant

colonic tissues (114.1; IQR: 76.5 – 174.0; P< 0.001; Figure 2).

Furthermore, the protein expression of ERb was equal between right

(49.4; IQR: 39.8 – 66.2) and left-sided (50.9; IQR: 36.2 – 75.2) tumors.

However, ERb immunostaining decreased with cancer progression in

both genders, and the lowest IHC scores were observed in late-stage
frontiersin.org

https://doi.org/10.3389/fendo.2023.1187259
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Refaat et al. 10.3389/fendo.2023.1187259
RSCs and LSCs relative to the early-stage specimens (Figure 2, P< 0.01

for all). By further analysis, right and left-sided malignant tissues

obtained from women ≥ 60 years of age showed significantly lower

ERb expression than women aged ≤ 50 years, as well as men, and the

lowest IHC scores were detected in the late stages of LSCs (Figure 2).
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3.2.2 Progesterone receptor
The immunostaining of PGR was visualized in the cytoplasm

and nuclei of non-neoplastic colonic specimens from both genders

and demonstrated moderate to strong intensities (Supplementary

Figure 3). The expression of PGR was also significantly higher in the
TABLE 1 The clinicopathological characteristics of CRC according to patients’ gender and age groups (n = 120).

Male patients
(n = 64; 53.3%)

Female patients
(n = 56; 46.7%)

P-value
≤ 50 years

(n = 22; 18.3%)
≥ 60 Years

(n = 42; 35%)
≤ 50 years

(n = 20; 16.7%)
≥ 60 Years

(n = 36; 30%)

Tumor sidedness

Right-sided 8 (6.6%) 13 (10.8%) 7 (5.9%) 13 (10.8%)
0.9

Left-sided 14 (11.7%) 29 (24.2%) 13 (10.8%) 23 (19.2%)

Tumor infiltration (T stage)

T1 0 (0%) 0 (0%) 2 (1.7%) 0 (0%)

0.04
T2 2 (1.7%) 8 (6.6%) 2 (1.7%) 1 (0.8%)

T3 12 (10%) 23 (19.2%) 11 (9.1%) 26 (21.7%)

T4 8 (6.6%) 11 (9.2%) 5 (4.2%) 9 (7.5%)

Median (IQR) of tumor volume (cm3) 11.5 (4.8 – 27.5) 8.4 (4.4 – 15.3) 9.5 (4.5 – 18.8) 10.5 (5.5 – 29.5) 0.5

Lymph node (N stage)

N0 9 (7.5%) 22 (18.4%) 12 (10%) 14 (11.7%)

0.7N1 8 (6.6%) 11 (9.1%) 5 (4.2%) 14 (11.7%)

N2 5 (4.2%) 9 (7.5%) 3 (2.5%) 8 (6.6%)

Distant metastasis (M stage)

M0 19 (15.8%) 38 (31.7%) 17 (14.2%) 30 (25%)
0.8

M1 3 (2.5%) 4 (3.3%) 3 (2.5%) 6 (5%)

Histology

Adenocarcinoma 18 (15%) 33 (27.5%) 16 (13.4%) 25 (20.9%)
0.6

Mucinous 4 (3.3%) 9 (7.5%) 4 (3.3%) 11 (9.1%)

Differentiation

Poor 3 (2.5%) 4 (3.3%) 4 (3.3%) 9 (7.5%)

0.5Moderate 12 (10%) 28 (23.4%) 11 (9.1%) 21 (17.5%)

Well 7 (5.8%) 10 (8.3%) 5 (4.2%) 6 (5%)

Lymphovascular invasion

No 12 (10%) 28 (23.4%) 16 (13.4%) 22 (18.3%)
0.3

Yes 10 (8.3%) 14 (11.7%) 4 (3.3%) 14 (11.7%)

Perineural invasion

No 14 (11.7%) 32 (26.7%) 16 (13.4%) 30 (25%)
0.2

Yes 8 (6.6%) 10 (8.3%) 4 (3.3%) 6 (5%)

AJCC TNM stages

Stages I/II 8 (6.6%) 19 (15.8%) 12 (10%) 11 (9.1%)
0.1

Stages III/IV 14 (11.7%) 23 (19.2%) 8 (6.6%) 25 (20.9%)
fron
Bold values indicates statistical significance.
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left-sided compared with right-sided non-cancerous tissues

obtained from both genders (P< 0.01 for both). Moreover, the

strongest PGR expression was observed in right and left non-

malignant specimens obtained from females aged ≤ 50 years
Frontiers in Endocrinology 06153
compared with the different male age groups and women ≥ 60

years (Supplementary Figure 3). Although the expression of PGR in

the right-sided non-cancerous samples was equal in females ≥ 60

years and both male age groups, the IHC scores were significantly
A

B

FIGURE 1

(A) Immunohistochemical localization of ERa in malignant colonic tissues (n = 120 patients; 20× objective; Scale bar = 15 mm) alongside (B) its IHC
arbitrary scores are shown as boxplots according to gender, age, tumor sides and cancer stages. (a = P< 0.05 compared with normal specimens
from males ≥ 18 years; b = P< 0.05 compared with normal specimens from females ≤ 50 years; c = P< 0.05 compared with normal specimens from
females ≥ 60 years; d = P< 0.05 compared with early-stage right-sided malignant samples from males ≥ 18 years; e = P< 0.05 compared with early-
stage right-sided malignant samples from females ≤ 50 years; f = P< 0.05 compared with early-stage right-sided malignant samples from females ≥
60 years; g = P< 0.05 compared with late-stage right-sided malignant samples from males ≥ 18 years; h = P< 0.05 compared with late-stage right-
sided malignant samples from females ≤ 50 years; i = P< 0.05 compared with late-stage right-sided malignant samples from females ≥ 60; j = P<
0.05 compared with early-stage left-sided malignant samples from males ≥ 18 years; k = P< 0.05 compared with early-stage left-sided malignant
samples from females ≤ 50 years; l = P< 0.05 compared with early-stage left-sided malignant samples from females ≥ 60 years; m = P< 0.05
compared with late-stage left-sided malignant samples from males ≥ 18 years; n = P< 0.05 compared with late-stage left-sided malignant samples
from females ≤ 50 years).
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lower in the former group in the left-sided samples

(Supplementary Figure 3).

Generally, the expression of PGR protein declined markedly in

malignant tissues (53.0; IQR: 43.2 – 61.8) relative to their corresponding

non-malignant colonic samples (187.3; IQR: 169.7 – 216.0; P< 0.001).
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Left-sided tumors (45.9; IQR: 35.9 – 60.2) also showed markedly lower

PGR expression relative to right-sided lesions (62.3; IQR: 51.1 – 81.1; P<

0.001). Furthermore, PGR decreased with cancer progression in both

genders, and the lowest IHC scores were detected in women≥ 60 years of

age and diagnosed with early and late-stage LSCs compared with all
A

B

FIGURE 2

(A) Immunohistochemical localization of ERb in malignant colonic tissues (n = 120 patients; 20× objective; Scale bar = 15 mm) alongside (B) its IHC
arbitrary scores are shown as boxplots according to gender, age, tumor sides and cancer stages. (a = P< 0.05 compared with normal specimens
from males ≥ 18 years; b = P< 0.05 compared with normal specimens from females ≤ 50 years; c = P< 0.05 compared with normal specimens from
females ≥ 60 years; d = P< 0.05 compared with early-stage right-sided malignant samples from males ≥ 18 years; e = P< 0.05 compared with early-
stage right-sided malignant samples from females ≤ 50 years; f = P< 0.05 compared with early-stage right-sided malignant samples from females ≥
60 years; g = P< 0.05 compared with late-stage right-sided malignant samples from males ≥ 18 years; h = P< 0.05 compared with late-stage right-
sided malignant samples from females ≤ 50 years; i = P< 0.05 compared with late-stage right-sided malignant samples from females ≥ 60; j = P<
0.05 compared with early-stage left-sided malignant samples from males ≥ 18 years; k = P< 0.05 compared with early-stage left-sided malignant
samples from females ≤ 50 years; l = P< 0.05 compared with early-stage left-sided malignant samples from females ≥ 60 years; m = P< 0.05
compared with late-stage left-sided malignant samples from males ≥ 18 years; n = P< 0.05 compared with late-stage left-sided malignant samples
from females ≤ 50 years).
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groups (Figure 3, P< 0.01 for all). In contrast, early and late-stage

malignant tissues fromwomen aged ≤ 50 years with LSCs, but not RSCs,

had markedly stronger PGR immunostain relative to male cancerous

tissues (Figure 3).
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3.2.3 Androgen receptor
AR showed cytoplasmic and nuclear localization in the non-

neoplastic colonic epithelium, and the stain intensity was gender-

dependent (Supplementary Figure 4). In more detail, the expression of
A

B

FIGURE 3

(A) Immunohistochemical localization of PGR in malignant colonic tissues (n = 120 patients; 20× objective; Scale bar = 15 mm) alongside (B) its IHC
arbitrary scores are shown as boxplots according to gender, age, tumor sides and cancer stages. (a = P< 0.05 compared with normal specimens
from males ≥ 18 years; b = P< 0.05 compared with normal specimens from females ≤ 50 years; c = P< 0.05 compared with normal specimens from
females ≥ 60 years; d = P< 0.05 compared with early-stage right-sided malignant samples from males ≥ 18 years; e = P< 0.05 compared with early-
stage right-sided malignant samples from females ≤ 50 years; f = P< 0.05 compared with early-stage right-sided malignant samples from females ≥
60 years; g = P< 0.05 compared with late-stage right-sided malignant samples from males ≥ 18 years; h = P< 0.05 compared with late-stage right-
sided malignant samples from females ≤ 50 years; i = P< 0.05 compared with late-stage right-sided malignant samples from females ≥ 60; j = P<
0.05 compared with early-stage left-sided malignant samples from males ≥ 18 years; k = P< 0.05 compared with early-stage left-sided malignant
samples from females ≤ 50 years; l = P< 0.05 compared with early-stage left-sided malignant samples from females ≥ 60 years; m = P< 0.05
compared with late-stage left-sided malignant samples from males ≥ 18 years; n = P< 0.05 compared with late-stage left-sided malignant samples
from females ≤ 50 years).
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AR was significantly higher in the right-sided non-tumorous tissues

obtained from males diagnosed with early-stage cancer compared with

their corresponding female specimens (P< 0.01). Moreover, all non-

malignant specimens from women ≤ 50 years of age disclosed the lowest

expression of AR compared with all non-cancerous specimens obtained

frommales, as well as females aged ≥ 60 years (Supplementary Figure 4).

In contrast, non-malignant colonic tissues fromwomen ≥ 60 years of age

showed lower AR expression in early-stage, whilst increased significantly

in late-stage, RSCs compared with their corresponding male tissues.

Moreover, the AR IHC scores in left-sided non-cancerous tissues were

equal between both age groups in men, as well as in females ≥ 60 years

during the early and late-stage cancers (Supplementary Figure 4).

Overall, AR protein expression increased significantly in the

cancerous colonic tissues (364.9; IQR: 268.1 – 388.8) compared with

non-cancerous samples (171.6; IQR: 150.1 – 190.9; P< 0.0001).

However, the expression of AR was equal between proximal (358.3;

IQR: 256.4 – 388.3) and distal (357.5; IQR: 279.4 – 389.8) cancers.

There were also no significant differences between the male cancerous

specimens according to tumor sidedness and clinical stages (Figure 4),

whereas all female right and left-sided malignant samples showed

markedly lower AR expression during the different cancer stages

compared with their counterpart male malignant tissues (Figure 4).

Moreover, the expression of AR was significantly lower in RSC and

LSC malignant specimens obtained from women aged ≤ 50 years

relative to females aged ≥ 60 years (Figure 4).

3.2.4 Correlations between tumor
clinicopathological characteristics and protein
expression of sex steroid receptors

Overall, the IHC scores of ERa in cancerous specimens

correlated significantly and inversely with those of ERb (r = -0.533;

P< 0.0001) and PGR (r = -0.259; P< 0.0001), whilst directly with AR

(r = 0.117; P< 0.0001). On the other hand, ERb and PGR inmalignant

tissues correlated positively together (r = 0.648; P< 0.001), whereas

they associated negatively with AR (r = -0.159 and r = -0.367,

respectively; P< 0.0001 for both). Moreover, the protein expression

of ERa and AR in malignant tissues showed significant positive

correlations, whereas ERb and PGR correlated negatively, with older

age, tumour size, N stage, numbers of positive lymph nodes, and

advanced cancer stage (Table 2).

By further analysis according to gender, ERa protein expression in

neoplastic tissues linked indirectly and significantly with ERb (r = -0.497;

P< 0.0001), PGR (r = -0.158; P< 0.0001), and AR (r = -0.309; P< 0.0001).

While ERb in male malignant tissues correlated positively and

moderately with PGR (r = 0.588; P< 0.0001), it showed a weak direct

association with AR (r = 0.121; P = 0.002). However, there was no

associations between PGR and AR in male malignant tissues. In female

tissues, ERa IHC scores in cancerous sites associated inversely with ERb
(r = -0.587; P< 0.0001) and PGR (r = -0.351; P< 0.0001), whilst directly

with AR (r = 0.726; P< 0.0001). ERb protein in female cancer specimens

also revealed a direct association with PGR (r = 0.765; P< 0.0001),

whereas both inversely linked with AR (r = -0.607 and r = -0.537,

respectively; P< 0.0001 for both).

Moreover, ERa and AR in malignant colonic samples showed

significant direct associations with tumor size, N stage, numbers of
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positive regional lymph nodes, and late-stage neoplasms in males,

as well as female patients (Table 3). In contrast, ERb and PGR IHC

scores in male malignant samples correlated indirectly with N stage,

numbers of positive lymph nodes, M stage, lymphovascular

invasion and advanced cancer stage, whilst PGR only revealed

weak associat ions with right-s ided tumors and poor

differentiation (Table 3). In female cancerous specimens, both

ERb and PGR exhibited weak to moderate negative correlations

with tumor size, N stage, perineural invasion, and late-stage

malignancy. Moreover, PGR, but not ERb, in female malignant

specimens correlated indirectly with older age and T stage (Table 3).
3.3 In vitro effects of sex steroid hormones
and their specific receptor blockers

3.3.1 Cytotoxicity and dose-response curves
Results of the MTT assay revealed that E2, P4, ERa-blocker

(MPP), and AR-blocker (bicalutamide) inhibited proliferation in

the SW480 male and HT29 female CRC cell lines (Figure 5).

Furthermore, the IC50 concentrations were 10 nM for E2 in both

cell lines, 20 nM and 1 nM for P4, 8.6 μM and 17.8 μM for MPP,

and 4.5 μM and 9.1 μM for bicalutamide in the SW480 and HT29

cells, respectively (Figure 5). On the other hand, testosterone, ERb-
blocker (PHTPP), and PGR-blocker (mifepristone) monotherapies

promoted cell proliferation in the SW480 and HT29 cell lines.

While the EC10 concentrations of PHTPP were 30 μM in both cell

lines (Figure 5A), they were 26.9 μM and 31.8 μM for mifepristone

(Figure 5B), and 20 μM and 30 μM for testosterone (Figure 5C) in

the SW480 and HT29 cells, respectively. Hence, the calculated

IC50s of E2, P4, MPP, and bicalutamide, alongside the EC10 of

PHTPP, mifepristone, and testosterone, were used to measure their

effects on cell cycle and apoptosis in the SW480 and HT29 cells.

3.3.2 Cell cycle progression
Single treatments with E2 and P4 hormones significantly

increased the numbers of SW480 (3.2-fold & 1.7-fold,

respectively) and HT29 (2.2-fold & 10-fold, respectively) cells in

the Sub-G1 phase compared with untreated cells (Figure 6).

Moreover, ERa-blocker (MPP) markedly increased the percentage

of cells relative to non-treated (4.4-fold & 3.3-fold) and E2

monotherapy (1.4-fold & 1.5-fold) in the SW480 and HT29 cell

lines, respectively. In contrast, the addition of ERb-blocker
(PHTPP) and PGR-blocker (mifepristone) showed markedly

lower numbers of SW480 and HT29 cells in the sub-G1 phase

compared with cells treated with E2 and P4 monotherapies

(Figure 6). Whilst the percentage of SW480 cells in Sub-G1 phase

were equal between testosterone monotherapy and untreated cells,

the hormone markedly reduced the percentage of HT29 cells in

Sub-G1 phase (2.1-fold; Figure 6). Nonetheless, the use of AR-

blocker (bicalutamide) with testosterone significantly elevated the

proportions of SW480 and HT29 cells in Sub-G1 phase relative to

control (5.9-fold for both cell lines) and testosterone-only (1.8-fold

& 12.6-fold, respectively) groups (Figure 6). The scatter and

histogram plots, showing the gating strategy used for cell cycle
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analysis in the SW480 and HT29 cell lines, are represented in

Supplementary Figures 5, 6, respectively.

E2-alone or combined with ERa-blocker also induced arrest at
the S and G2/M phases of cell cycle in the SW480 cells, whilst only
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promoting G2/M-arrest in the HT29 cells (Figure 6). Moreover,

the combination of E2 with its ERb-blocker was associated with S-

phase arrest in the SW480, but not HT29, cells. In contrast, P4,

with and without mifepristone, displayed negligible effects on the
A

B

FIGURE 4

(A) Immunohistochemical localization of AR in malignant colonic tissues (n = 120 patients; 20× objective; Scale bar = 15 mm) alongside (B) its IHC
arbitrary scores are shown as boxplots according to gender, age, tumor sides and cancer stages. (a = P< 0.05 compared with normal specimens
from males ≥ 18 years; b = P< 0.05 compared with normal specimens from females ≤ 50 years; c = P< 0.05 compared with normal specimens from
females ≥ 60 years; d = P< 0.05 compared with early-stage right-sided malignant samples from males ≥ 18 years; e = P< 0.05 compared with early-
stage right-sided malignant samples from females ≤ 50 years; f = P< 0.05 compared with early-stage right-sided malignant samples from females ≥
60 years; g = P< 0.05 compared with late-stage right-sided malignant samples from males ≥ 18 years; h = P< 0.05 compared with late-stage right-
sided malignant samples from females ≤ 50 years; i = P< 0.05 compared with late-stage right-sided malignant samples from females ≥ 60; j = P<
0.05 compared with early-stage left-sided malignant samples from males ≥ 18 years; k = P< 0.05 compared with early-stage left-sided malignant
samples from females ≤ 50 years; l = P< 0.05 compared with early-stage left-sided malignant samples from females ≥ 60 years; m = P< 0.05
compared with late-stage left-sided malignant samples from males ≥ 18 years; n = P< 0.05 compared with late-stage left-sided malignant samples
from females ≤ 50 years).
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numbers of SW480 and HT29 cells in the different phases of cell

cycle (Figure 6). On the other hand, testosterone and bicalutamide

co-therapy induced marked increases in the numbers of SW480

and HT29 cells in the S-phase of cell cycle, with concomitant

declines in the percentage of cells in the G0/G1 and G2/M

phases (Figure 6).
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3.3.3 Cell apoptosis
E2 monotherapy significantly reduced the numbers of viable

SW480 and HT29 cells that was depicted by marked increases in the

percentage of early (2.7-fold & 1.6-fold, respectively) and late (1.9-

fold & 4.5-fold, respectively) apoptotic cells relative to untread cells

(Figure 7). The addition of ERa-blocker significantly boosted,
TABLE 2 Correlations of tumor clinicopathological characteristics with ERa, ERb, PGR, and AR protein expression in malignant colonic tissues from all
patients (n = 120) by Pearson’s correlation test.

ERa IHC scores ERb IHC scores PGR IHC scores AR IHC scores

Female gender 0.247** -0.239** -0.161 -0.663**

Age 0.351** -0.254** -0.291** 0.150

Right-sided cancer 0.143 0.030 -0.136 -0.038

T stage 0.114 -0.230* -0.084 0.189*

Tumor Size 0.291** -0.326** -0.297** 0.105

N Stage 0.617*** -0.579** -0.208* 0.320**

Numbers of positive lymph nodes 0.604*** -0.591** -0.259** 0.259**

M Stage 0.206* -0.295** -0.104 0.177

Mucinous Carcinoma 0.057 -0.096 -0.144 -0.013

Poor differentiation 0.094 -0.058 0.028 -0.029

Lymphovascular invasion 0.170 -0.263** -0.162 0.166

Perineural invasion -0.071 -0.125 -0.092 0.124

Late-stage cancer 0.728*** -0.720*** -0.320** 0.434**
*P< 0.05.
**P< 0.01.
***P< 0.001.
TABLE 3 Correlations of tumor clinicopathological characteristics with ERa, ERb, PGR, and AR protein expression in malignant colonic tissues from
male (n = 64) and female (n = 56) patients by Pearson’s correlation test.

Male patients (n = 64) Female patients (n = 56)

ERa ERb PGR AR ERa ERb PGR AR

Age 0.407** -0.031 0.087 0.001 -0.093 0.031 -0.559** -0.023

Right-sided cancer 0.143 0.080 -0.292* -0.149 0.109 -0.248 -0.152 0.025

T stage 0.031 -0.087 0.051 0.245* 0.058 -0.191 -0.349** 0.162

Tumor Size 0.275* -0.196 -0.218 0.242* 0.353* -0.539** -0.429** -0.098

N Stage 0.573*** -0.694** -0.205 0.360** 0.550** -0.201 -0.274* 0.654**

Numbers of positive lymph nodes 0.518*** -0.675** -0.195 0.323** 0.566*** -0.214 -0.180 0.433**

M Stage 0.186 -0.283* 0.024 0.266* .172 -0.273 -0.167 0.338*

Mucinous Carcinoma 0.039 -0.091 -0.084 0.024 0.096 -0.026 -0.199 0.014

Poor differentiation -0.015 -0.002 0.288* 0.015 0.099 0.158 -0.133 0.116

Lymphovascular invasion 0.117 -0.304* -0.101 0.043 0.208 -0.126 -0.214 0.376*

Perineural invasion -0.084 -0.092 0.044 -0.087 0.222 -0.373* -0.337* 0.219

Late-stage cancer 0.691*** -0.844*** -0.175 0.478** 0.798*** -0.421** -0.465** 0.959***
front
*P< 0.05.
**P< 0.01.
***P< 0.001.
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whilst ERb-blocker inhibited, the pro-apoptotic effects of E2

therapy in both cell lines (Figure 7). Similarly, P4 single treatment

markedly reduced cell viability by increasing the percentage of early

(2.3-fold & 1.2-fold) and late (2.4-fold & 9.6-fold) apoptotic SW480

and HT29 cells, respectively, and the effects were inhibited by the

PGR-blocker, mifepristone (Figure 7). In contrast, testosterone

monotherapy significantly increased the numbers of viable

SW480 and HT29 cells, whilst its combination with bicalutamide

showed marked elevations in the percentage of early and late

apoptotic SW480 (6.9-fold & 3.3-fold, respectively) and HT29

(2.5-fold & 2.3-fold) cells (Figure 7).
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4 Discussion

Herein, wemeasured ERa, ERb, PGR, and AR protein expression

in archived paired malignant and non-malignant colonic tissues, and

the results were analyzed based on gender, age, and tumor sidedness.

We also measured the effects of E2, P4, and testosterone, with and

without their corresponding specific nuclear receptor blockers, on cell

cycle and apoptosis in the SW480 male and HT29 female CRC cell

lines. Our results revealed gender-dependent protein expression of

the targeted sex steroid receptors in non-cancerous colonic tissues.

Moreover, ERa and AR proteins increased, whereas ERb and PGR
A

B C

FIGURE 5

Dose-response curves with the IC50 (mean ± SD) and EC10 (mean ± SD) values of (A) 17b-estradiol (E2), ERa-blocker (MPP), and ERb-blocker
(PHTPP), (B) progesterone (P4) and PGR-blocker (mifepristone), and (C) testosterone and AR-blocker (bicalutamide) at 48h in the SW480 male and
HT29 female colon cancer cell lines, as determined using the MTT cell viability assay (Data were analyzed by nonlinear regression to determine
dose-response; n = 5 replicates/treatment).
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diminished markedly in neoplastic relative to non-neoplastic colonic

tissues, and the dysregulations were maximal in late-stage cancers in

both genders. ERa and AR proteins also correlated directly, whilst

ERb and PGR negatively, with tumors’ histopathological features.

Concomitantly, E2 monotherapy induced cell cycle arrest and
Frontiers in Endocrinology 13160
promoted apoptosis in the SW480 male and HT29 female CRC cell

lines, and pre-treating with ERa-blocker enhanced, whereas ERb-
blocker inhibited the anticancer actions. Similarly, P4 induced

apoptosis in both cell lines, whilst adding the PGR-blocker

impeded the effects. In contrast, testosterone promoted survival in
A B

FIGURE 6

Percentage of cells (mean ± SD) in the different phases of cell cycle in non-treated control cells (CT) and following 17b-estradiol (E2), P4 (P4), and
testosterone (T) for 24h alongside dual treatments for 48h with MPP ERa-blocker + E2 (E/a), PHTPP ERb-blocker + E2 (E/b), mifepristone PGR-
blocker + P4 (P/M), and bicalutamide AR-blocker + testosterone (T/B) in the (A) SW480 male and (B) HT29 female colon cancer cell lines (n = 3
biological replicates/group). Treatment with each receptor blocker was for a total duration of 48h in the co-therapy protocols, whilst E2, P4, or T
therapies were incubated for 24h and were initiated in the single and dual treatment groups 24h after adding their corresponding receptor blockers
for 24h. (Data were analyzed by one-way ANOVA with Tukey’s HSD post-hoc test; a = P< 0.05 compared with CT; b = P< 0.05 compared with E2
group; c = P< 0.05 compared with E/a group, d = P< 0.05 compared with E/b group; e = P< 0.05 compared with P4 group; f = P< 0.05 compared
with P/M group, and g = P< 0.05 compared with T group).
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both cell lines, and the effects were hindered by the specific AR-

blocker, bicalutamide. However, the best apoptotic actions in the

SW480 male cell line were detected after blocking AR, whilst P4

showed the highest pro-apoptotic effects in the HT29 female cell line.
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The importance of sex steroid hormones in colon cancer has

gained greater attention, since the rates of CRC in premenopausal,

as well as post-menopausal women using HRT, were markedly

lower than nonuser post-menopausal women and age-matched
A B

FIGURE 7

Percentage (mean ± SD) of living, early and late apoptotic alongside dead cells in non-treated control cells (CT) and following 17b-estradiol (E2), P4
(P4), and testosterone (T) for 24h alongside dual treatments for 48h with MPP ERa-blocker + E2 (E/a), PHTPP ERb-blocker + E2 (E/b), mifepristone
PGR-blocker + P4 (P/M), and bicalutamide AR-blocker + testosterone (T/B) in the (A) SW480 male and (B) HT29 female colon cancer cell lines (n =
3 biological replicates/group). Treatment with each receptor blocker was for a total duration of 48h in the co-therapy protocols, whilst E2, P4, or T
therapies were incubated for 24h and were initiated in the single and dual treatment groups 24h after adding their corresponding receptor blockers
for 24h. (Data were analyzed by one-way ANOVA with Tukey’s HSD post-hoc test; a = P< 0.05 compared with CT; b = P< 0.05 compared with E2
group; c = P< 0.05 compared with E/a group, d = P< 0.05 compared with E/b group; e = P< 0.05 compared with P4 group; f = P< 0.05 compared
with P/M group, and g = P< 0.05 compared with T group).
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men (6, 8, 9, 44). The risk of CRC also increased significantly in

women after oophorectomy (45, 46), and 17b-estradiol treatment in

vivo and in vitro inhibited CRC progression via ERb-mediated

actions (33–36), whilst promoted cancer progression through ERa
(47–49). Others have likewise reported lower CRC incidence in

menopausal women using P4 (50, 51), and the hormone also

triggered cell cycle arrest and apoptosis in several human CRC

cell lines, including SW480 and HT29 cells (30, 36, 52).

Furthermore, ERb expression declined significantly in malignant

relative to non-malignant colonic tissues and coincided with

drastically elevated ERa (48, 53–55), and the expression linked

with lower survival and higher recurrence rates, advanced stages,

and distant metastasis (23–25, 27–29). Although many reports also

disclosed marked declines in PGR in cancerous tissues, their results

related to its prognostic value in CRC are inconclusive (23, 30–32).

In contrast, male rats were more susceptible for developing CRC

than females (37, 38), and orchiectomy reduced, whereas

testosterone replacement therapy sustained, the numbers of

tumors in male animals (38). Similar findings were also reported

after chemically inducing CRC in male mice (39), as well as

testosterone caused dose-dependent increases in the viability of

HT29 cells (40). Moreover, AR increased in malignant clinical

samples and correlated directly with tumor size, poor

differentiation, lymph node positivity, advanced stage, and poor

prognosis (26). However, the authors did not compare the

expression between both genders. On the other hand, increased

AR in female malignant tissues has been suggested to promote CRC

aggressiveness by increasing classes III and V of b-tubulin protein,

which are commonly activated in male patients and could underly

the observed higher mortality rate in men (56).

Collectively, Our findings correlate with earlier studies reporting

gender-dependent expression of ERs (14–16), PGR (17–19), and AR

(20–22) in normal colon, which supports the notion that sex steroid

hormones contribution to colon biology could, at least in part, be

gender-specific. Moreover, our data and prior studies advocate that

ERb (33–36) and PGR (30, 36, 52) mediate tumor suppressive

actions, whereas overexpressed ERa (23–25) and AR (37–40) could

incite oncogenicity in colon. The present findings also provide

additional support for the potential prognostic values of sex steroid

receptors in CRC (23–30, 32). Although the current results also

reinforce the notion that hormonal therapy could represent an

alternative therapy for CRC (36, 38, 39, 50, 51, 57), treatment

regimens should be tailored based on gender alongside the

expression of sex steroid receptors in malignant tissues to achieve

the highest efficacy. In more detail, we suggest that the use of ovarian

sex steroid hormones (33–36, 50, 51), as well as blocking androgen

receptor (38–40), could inhibit CRC progression by modulating the

regulatory molecules of cell cycle and apoptosis. Nonetheless, further

studies using the different sex steroid hormones and/or their specific

receptor blockers, with and without 5-Fluororacil, are mandatory to

measure their therapeutic efficiencies against CRC. Additionally,

more studies are needed to elucidate the roles of sex steroid

hormones in colon neoplasia by measuring their effects on the

expression of oncogenic and tumor suppressive molecules.

Tumor sidedness is another important factor in CRC, and RSCs

are linked with older age, poor differentiation, mucinous carcinoma,
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and worse outcomes (3–5). The oncogenic pathways and molecular

features also vary substantially between proximal and distal colonic

neoplasms (3–5). Despite this, little is known about the expression

of sex steroid receptors in right and left-sided cancers. Herein, there

was an overall significant increase in the expression of ERa, whilst
PGR declined, in LSCs compared to RSCs. Furthermore, the highest

ERa alongside the lowest PGR protein expression were observed in

women aged ≥ 60 years and diagnosed with late-stage LSCs. On the

other hand, ERb and AR proteins were in general equal between

both anatomical sides. By disseminating the data according to

gender, however, late-stage LSCs obtained from females ≥ 60

years of age showed the weakest and strongest protein expression

of ERb and AR, respectively. In contrast, right and left-sided male

malignant tissues exhibited equivalent expression of ERb, as well as
AR, in the different clinical stages of CRC.

Taken together, our findings suggest that ERa and PGR protein

expression in CRC could be reliant on tumor sidedness alongside

gender, age, and clinical stage. Paradoxically, loss of ERb and AR

overexpression in malignant tissues appear to be gender-specific,

since in male patients the deregulations were constant between

RSCs and LSCs at the different stages, whilst in post-menopausal

female patients the alterations were more pronounced in distal

colon cancers, especially during the late stages. Hence, we speculate

that the rates of CRC are lower in premenopausal women (8, 9, 44)

due to higher ERb (14, 33, 35) and PGR (30, 52) alongside lower

ERa (47–49) and AR (56, 58) expression in colonic tissues, whereas

their pathological alterations following menopause might trigger

CRC. Moreover, future studies should consider gender, age, clinical

stage, and tumor sidedness to precisely explore the roles of the

targeted sex steroid receptors and/or measure their prognostic

values in CRC.

This study has several drawbacks. Firstly, we only measured the

protein expression of the targeted receptors, and future studies

should also measure their gene expression. Moreover, the patients

included had their surgical innervations between January 2019 and

December 2021 and, therefore, prognostic data (e.g., 5-year survival

rate, disease-free survival rate, etc.), as well as data related to using

hormone replacement therapy were not available to correlate them

with the expression profiles of the targeted receptors. Hence,

additional studies are still needed to measure the prognostic

values of sex steroid receptors according to gender, tumor sites,

and clinical stages. Furthermore, we only measured the expression

of the targeted receptors by IHC, and future prospective studies that

include fresh tissues are needed to validate the protein expression by

additional techniques (e.g., Western blot). More in vitro studies are

also required to investigate the molecular pathways underlying the

actions of sex steroid hormones and their receptors in CRC (e.g.,

cell cycle regulatory molecules, apoptosis regulatory molecules,

etc.). Moreover, future studies should also measure the genes and

proteins of the G-protein coupled membrane (e.g., mER, mPGR,

and mAR) and the nuclear receptors, since the membranous

receptors were shown to mediate anti-tumorigenic actions in

CRC (59, 60).

In conclusion, non-malignant tissues from women ≤ 50 years of

age showed markedly lower ERa and AR alongside stronger ERb
and PGR proteins than men and women aged ≥ 60 years, which
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could explain the commonly reported lower CRC incidence in

premenopausal women. In malignant tissues, the proteins of ERa
and AR increased significantly and concurred with decreases in ERb
and PGR, and the tumor clinical characteristics correlated positively

with ERa and AR, whilst negatively with ERb and PGR, supporting

the contributions of receptors to colon carcinogenesis. However, the

expression profiles of the sex steroid receptors in cancerous tissues

varied between genders, clinical stages, and tumor sidedness.

Moreover, E2 and P4 monotherapies induced apoptosis, whilst

testosterone caused proliferation in the SW480 male and HT29

female CRC cell lines, and the effects were reversed by pre-treating

the cells with the specific blockers of ERb, PGR, and AR receptors,

respectively. Collectively, this study advocates the promising

prognostic value of the targeted sex steroid receptors, as well as

the potential benefits of hormonal therapy in CRC. However, future

studies should measure the expression of membranous and nuclear

receptors of sex steroid hormones in malignant colonic tissues and

the results should be disseminated according to gender, age, clinical

stage, and tumor sidedness to accurately determine their prognostic

values in CRC. More in vivo and in vitro studies are also still needed

to measure the anti-cancer effects of sex steroid hormones and their

receptor blockers, with and without chemotherapy, to precisely

tailor hormonal therapeutic regimens against CRC based on gender

and the expression of sex steroid receptors.
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SUPPLEMENTARY FIGURE 1

(A) Immunohistochemical localization of ERa in non-malignant colonic tissues

collected from patients diagnosed with early-stage (I/II) and late-stage (III/IV)
colorectal cancer (20× objective; Scale bar = 15 mm) alongside (B) their IHC

arbitrary scores are shown as boxplots according to gender, age, tumor sides,

and cancer stages. (a = P< 0.05 comparedwithmales ≤ 50 yearswith right sided
early-stage cancer; b = P< 0.05 compared with males ≥ 60 years with right

sided early-stage cancer; c = P< 0.05 compared with females ≤ 50 years with
right sided early-stage cancer; d = P< 0.05 compared with females ≥ 60 years

with right sided early-stage cancer; e = P< 0.05 compared with males ≤ 50
years with right sided late-stage cancer; f = P< 0.05 compared with males ≥ 60

years with right sided late-stage cancer; g = P< 0.05 compared with females ≤

50 years with right sided late-stage cancer; h = P< 0.05 compared with females
≥ 60 years with right sided late-stage cancer; i = P< 0.05 compared with males

≤ 50 yearswith left sided early-stage cancer; j = P< 0.05 comparedwithmales ≥
60 years with left sided early-stage cancer; k = P< 0.05 compared with females

≤ 50 yearswith left sided early-stage cancer; l = P< 0.05 comparedwith females
≥ 60 years with left sided early-stage cancer;m = P< 0.05 compared withmales

≤ 50 years with left sided late-stage cancer; n = P< 0.05 compared withmales ≥

60 years with left sided late-stage cancer and o = P< 0.05 compared with
females ≤ 50 years with left sided late-stage cancer).

SUPPLEMENTARY FIGURE 2

(A) Immunohistochemical localization of ERb in non-malignant colonic tissues
collected from patients diagnosed with early-stage (I/II) and late-stage (III/IV)

colorectal cancer (20× objective; Scale bar = 15 mm) alongside (B) their IHC

arbitrary scores are shown as boxplots according to gender, age, tumor sides, and
cancer stages. (a = P< 0.05 compared with males ≤ 50 years with right sided early-

stage cancer; b = P< 0.05 compared with males ≥ 60 years with right sided early-
stage cancer; c = P< 0.05 compared with females ≤ 50 years with right sided early-

stage cancer; d = P< 0.05 compared with females ≥ 60 years with right sided early-
frontiersin.org
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stage cancer; e = P< 0.05 compared with males ≤ 50 years with right sided late-
stagecancer; f = P<0.05comparedwithmales≥60yearswith right sided late-stage

cancer; g = P< 0.05 compared with females ≤ 50 years with right sided late-stage

cancer; h = P< 0.05 compared with females ≥ 60 years with right sided late-stage
cancer; i = P< 0.05 compared with males ≤ 50 years with left sided early-stage

cancer; j = P< 0.05 compared with males ≥ 60 years with left sided early-stage
cancer; k = P< 0.05 compared with females ≤ 50 years with left sided early-stage

cancer; l = P< 0.05 compared with females ≥ 60 years with left sided early-stage
cancer; m = P< 0.05 compared with males ≤ 50 years with left sided late-stage

cancer; n = P< 0.05 compared with males ≥ 60 years with left sided late-stage

cancer and o = P< 0.05 compared with females ≤ 50 years with left sided late-
stage cancer).

SUPPLEMENTARY FIGURE 3

(A) Immunohistochemical localization of PGR in non-malignant colonic tissues
collected from patients diagnosed with early-stage (I/II) and late-stage (III/IV)

colorectal cancer (20× objective; Scale bar = 15 mm) alongside (B) their IHC
arbitrary scores are shown as boxplots according to gender, age, tumor sides,
and cancer stages. (a = P< 0.05 comparedwithmales ≤ 50 yearswith right sided

early-stage cancer; b = P< 0.05 compared with males ≥ 60 years with right
sided early-stage cancer; c = P< 0.05 compared with females ≤ 50 years with

right sided early-stage cancer; d = P< 0.05 compared with females ≥ 60 years
with right sided early-stage cancer; e = P< 0.05 compared with males ≤ 50

years with right sided late-stage cancer; f = P< 0.05 compared with males ≥ 60

years with right sided late-stage cancer; g = P< 0.05 compared with females ≤
50 years with right sided late-stage cancer; h = P< 0.05 compared with females

≥ 60 years with right sided late-stage cancer; i = P< 0.05 compared with males
≤ 50 yearswith left sided early-stage cancer; j = P< 0.05 comparedwithmales ≥

60 years with left sided early-stage cancer; k = P< 0.05 compared with females
≤ 50 yearswith left sided early-stage cancer; l = P< 0.05 comparedwith females

≥ 60 yearswith left sided early-stage cancer;m= P< 0.05 comparedwithmales

≤ 50 years with left sided late-stage cancer; n = P< 0.05 compared withmales ≥
60 years with left sided late-stage cancer and o = P< 0.05 compared with

females ≤ 50 years with left sided late-stage cancer).

SUPPLEMENTARY FIGURE 4

(A) Immunohistochemical localization of AR in non-malignant colonic tissues

collected from patients diagnosed with early-stage (I/II) and late-stage (III/IV)

colorectal cancer (20× objective; Scale bar = 15 mm) alongside (B) their IHC
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arbitrary scores are shown as boxplots according to gender, age, tumor sides,
and cancer stages. (a = P< 0.05 comparedwithmales ≤ 50 yearswith right sided

early-stage cancer; b = P< 0.05 compared with males ≥ 60 years with right

sided early-stage cancer; c = P< 0.05 compared with females ≤ 50 years with
right sided early-stage cancer; d = P< 0.05 compared with females ≥ 60 years

with right sided early-stage cancer; e = P< 0.05 compared with males ≤ 50
years with right sided late-stage cancer; f = P< 0.05 compared with males ≥ 60

years with right sided late-stage cancer; g = P< 0.05 compared with females ≤
50 years with right sided late-stage cancer; h = P< 0.05 compared with females

≥ 60 years with right sided late-stage cancer; i = P< 0.05 compared with males

≤ 50 yearswith left sided early-stage cancer; j = P< 0.05 comparedwithmales ≥
60 years with left sided early-stage cancer; k = P< 0.05 compared with females

≤ 50 yearswith left sided early-stage cancer; l = P< 0.05 comparedwith females
≥ 60 years with left sided early-stage cancer;m = P< 0.05 compared withmales

≤ 50 years with left sided late-stage cancer; n = P< 0.05 compared withmales ≥
60 years with left sided late-stage cancer and o = P< 0.05 compared with

females ≤ 50 years with left sided late-stage cancer).

SUPPLEMENTARY FIGURE 5

Cell cycle analysis data for SW480 cells with the gating strategy used for each
treatment group. The proportion of each phase of the cell cycle was

determined for 20,000 single cell events using the NovoExpress cell cycle
algorithm (right panel; histogram), and first gated on the SW480 cell

population using forward scatter (FSC) vs side scatter (SSC) scatter plots

(left panels), and then using DNA content height (H) vs. Area (A) scatter plots
(middle panels) to calculate single cell events (pulse processing). The plots

shown are representative of one of three similar experiments, and the
percentage of each cell cycle phase is shown (mean ± SD; n = 3).

SUPPLEMENTARY FIGURE 6

Cell cycle analysis data for HT29 cells with the gating strategy used for each

treatment group. The proportion of each phase of the cell cycle was
determined for 20,000 single cell events using the NovoExpress cell cycle

algorithm (right panel; histogram), and first gated on the HT29 cell population
using forward scatter (FSC) vs side scatter (SSC) scatter plots (left panels), and

then using DNA content height (H) vs. Area (A) scatter plots (middle panels) to
calculate single cell events (pulse processing). The plots shown are

representative of one of three similar experiments, and the percentage of

each cell cycle phase is shown (mean ± SD; n = 3).
References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin (2018) 68(6):394–424. doi: 10.3322/
caac.21492

2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/
caac.21660

3. Lee MS, Menter DG, Kopetz S. Right versus left colon cancer biology: integrating
the consensus molecular subtypes. J Natl Compr Canc Netw (2017) 15(3):411–9. doi:
10.6004/jnccn.2017.0038

4. Refaat B, Zekri J, Aslam A, Ahmad J, Baghdadi MA, Meliti A, et al. Profiling
activins and follistatin in colorectal cancer according to clinical stage, tumour sidedness
and Smad4 status. Pathol Oncol Res (2021) 27(149):1–20. doi: 10.3389/
pore.2021.1610032

5. Narayanan S, Gabriel E, Attwood K, Boland P, Nurkin S. Association of
clinicopathologic and molecular markers on stage-specific survival of right versus left
colon cancer. Clin Colorectal Cancer (2018) 17(4):e671–8. doi: 10.1016/
j.clcc.2018.07.001

6. Murphy N, Xu L, Zervoudakis A, Xue X, Kabat G, Rohan TE, et al. Reproductive
and menstrual factors and colorectal cancer incidence in the women's health initiative
observational study. Br J Cancer (2017) 116(1):117–25. doi: 10.1038/bjc.2016.345

7. Islami F, Goding Sauer A, Miller KD, Siegel RL, Fedewa SA, Jacobs EJ, et al.
Proportion and number of cancer cases and deaths attributable to potentially
modifiable risk factors in the united states. CA Cancer J Clin (2018) 68(1):31–54.
doi: 10.3322/caac.21440

8. Jang YC, Huang HL, Leung CY. Association of hormone replacement therapy
with mortality in colorectal cancer survivor: a systematic review and meta-analysis.
BMC Cancer (2019) 19(1):1199. doi: 10.1186/s12885-019-6428-0
9. Schmuck R, Gerken M, Teegen EM, Krebs I, Klinkhammer-Schalke M, Aigner F,
et al. Gender comparison of clinical, histopathological, therapeutic and outcome factors
in 185,967 colon cancer patients. Langenbecks Arch Surg (2020) 405(1):71–80. doi:
10.1007/s00423-019-01850-6

10. Chen C, Gong X, Yang X, Shang X, Du Q, Liao Q, et al. The roles of estrogen and
estrogen receptors in gastrointestinal disease. Oncol Lett (2019) 18(6):5673–80. doi:
10.3892/ol.2019.10983

11. Sato R, Suzuki T, Katayose Y, Miura K, Shiiba K, Tateno H, et al. Steroid
sulfatase and estrogen sulfotransferase in colon carcinoma: regulators of intratumoral
estrogen concentrations and potent prognostic factors. Cancer Res (2009) 69(3):914–
22. doi: 10.1158/0008-5472.CAN-08-0906

12. Prough RA, Clark BJ, Klinge CM. Novel mechanisms for DHEA action. J Mol
Endocrinol (2016) 56(3):R139–55. doi: 10.1530/JME-16-0013

13. Diviccaro S, Giatti S, Borgo F, Falvo E, Caruso D, Garcia-Segura LM, et al.
Steroidogenic machinery in the adult rat colon. J Steroid Biochem Mol Biol (2020)
203:105732. doi: 10.1016/j.jsbmb.2020.105732

14. Papaxoinis K, Triantafyllou K, Sasco AJ, Nicolopoulou-Stamati P, Ladas SD.
Subsite-specific differences of estrogen receptor beta expression in the normal colonic
epithelium: implications for carcinogenesis and colorectal cancer epidemiology. Eur J
Gastroenterol Hepatol (2010) 22(5):614–9. doi: 10.1097/MEG.0b013e328335ef50

15. Alzamora R, O'Mahony F, Bustos V, Rapetti-Mauss R, Urbach V, Cid LP, et al.
Sexual dimorphism and oestrogen regulation of KCNE3 expression modulates the
functional properties of KCNQ1 K+ channels. J Physiol (2011) 589(Pt 21):5091–107.
doi: 10.1113/jphysiol.2011.215772

16. Hases L, Archer A, Indukuri R, Birgersson M, Savva C, Korach-André M, et al.
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ZIP9 mediates the effects of DHT
on learning, memory and
hippocampal synaptic plasticity
of male Tfm and APP/PS1 mice

Leigang Song1,2, Huan Chen1,3,4, Dan Qiao1, Bohan Zhang1,
Fangzhen Guo1, Yizhou Zhang1,3,4, Chang Wang1,3,4,
Sha Li1,3,4* and Huixian Cui1,3,4*

1Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China, 2Department
of Sports Human Science, Hebei Sport University, Shijiazhuang, Hebei, China, 3Neuroscience
Research Center, Hebei Medical University, Shijiazhuang, Hebei, China, 4Hebei Key Laboratory of
Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang, Hebei, China
Androgens are closely associated with functions of hippocampal learning,

memory, and synaptic plasticity. The zinc transporter ZIP9 (SLC39A9) regulates

androgen effects as a binding site distinct from the androgen receptor (AR).

However, it is still unclear whether androgens regulate their functions in

hippocampus of mice through ZIP9. Compared with wild-type (WT) male

mice, we found that AR-deficient male testicular feminization mutation (Tfm)

mice with low androgen levels had learning and memory impairment, decreased

expression of hippocampal synaptic proteins PSD95, drebrin, SYP, and dendritic

spine density. Dihydrotestosterone (DHT) supplementation significantly

improved these conditions in Tfm male mice, although the beneficial effects

disappeared after hippocampal ZIP9 knockdown. To explore the underlying

mechanism, we first detected the phosphorylation of ERK1/2 and eIF4E in the

hippocampus and found that it was lower in Tfm male mice than in WT male

mice, it upregulated with DHT supplementation, and it downregulated after

hippocampal ZIP9 knockdown. Next, we found that the expression of PSD95, p-

ERK1/2, and p-eIF4E increased in DHT-treated mouse hippocampal neuron

HT22 cells, and ZIP9 knockdown or overexpression inhibited or further

enhanced these effects. Using the ERK1/2 specific inhibitor SCH772984 and

eIF4E specific inhibitor eFT508, we found that DHT activated ERK1/2 through

ZIP9, resulting in eIF4E phosphorylation, thus promoting PSD95 protein

expression in HT22 cells. Finally, we found that ZIP9 mediated the effects of

DHT on the expression of synaptic proteins PSD95, drebrin, SYP, and dendritic

spine density in the hippocampus of APP/PS1 mice through the ERK1/2-eIF4E

pathway and affected learning and memory. This study demonstrated that

androgen affected learning and memory in mice through ZIP9, providing new

experimental evidence for improvement in learning and memory in Alzheimer’s

disease with androgen supplementation.
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Introduction

Androgens are steroid hormones synthesized in the gonads,

adrenal glands, and brain (1) and are important for the

development of male sexual organs, secondary sexual

characteristics, sexual desire, and normal sexual function.

They also regulate learning and memory in the hippocampus

by maintaining normal synaptic plasticity and regulating

synaptic plasticity-related proteins and dendritic spine density

(2–5).

Alzheimer’s disease (AD) is a neurodegenerative disease

characterized by progressive memory impairment and

cognitive impairment (6), with pathological changes that

include formation of senile plaques due to excessive deposition

of amyloid b (Ab), neurofibrillary tangles, and extensive

neuronal loss (7). There is an increased risk of AD caused by

low serum androgen levels (8–11) or anti-androgen therapy (12–

14). While androgen supplementation has been found to

improve memory impairment (15, 16), the neuroprotective

mechanism of androgens on learning and memory in AD

remains unclear.

Testicular feminization mutation (Tfm) mice are androgen

receptor (AR)-deficient (17) and have decreased circulating

androgen (18) due to hereditary single-base deletion of the X

chromosome. Surprisingly, learning and memory in Tfm male

mice was significantly improved by androgen supplementation.

This suggests that there may be androgen-binding sites other

than the classical AR that mediate androgen-rescuing learning

and memory. The ZIP9 (Zrt-, Irt-like protein family solute carrier

family 39 member 9, SLC39A9) is the ninth in a family of 14 ZIP

proteins. It has seven transmembrane domains and one

intracellular C-terminal domain and is responsible for

transmembrane transport of Zn2+. It is also the only ZIP

protein that can couple with G-proteins during signal

transduction across membranes (19, 20). Recent studies have

found that ZIP9 can mediate biological effects of androgens in a

variety of cell types. Some of these effects include proliferation of

human and mouse melanoma cells (21), migration of human

prostate (22) and bladder (23) cancer cells, apoptosis of human

breast cancer and prostate cancer cells (20, 24, 25), and the

expression of tight junction proteins in mouse (26) and rat (27)

Sertoli cells. In a previous study it was found that androgens

induced the interaction between ZIP9 and Gna11, which affected

the expression of postsynaptic density protein 95 (PSD95) in

mouse hippocampal neuron HT22 cells (28). However, it is not

clear whether ZIP9 mediates the effects of androgens on learning

and memory in Tfm mice.

In this study, we explored whether androgens induced by ZIP9

affected learning, memory and hippocampal synaptic plasticity in

Tfm male mice and investigated the underlying mechanism.

Further, we examined whether learning and memory of AD

animal model-APP/PS1 mice was media ted through

this mechanism.
Frontiers in Endocrinology 02167
Materials and methods

Animals

Female Tfm and male C57BL/6J mice were purchased from

Jackson Laboratory (Stock #000569, BarHarbor, ME, USA) and

Vital River Laboratory Animal Technology Co., Ltd (Beijing,

China) respectively. We induced mating of Tfm female with male

C57BL/6J mice which produced the following offspring types: wild-

type (WT) female, WT male, Tfm female, and Tfm male. All

offspring were genotyped using real-time polymerase chain

reaction (PCR), and only WT and Tfm male mice were selected

for this study. APP/PS1 mice were provided by the Vital River

Laboratory Animal Technology Co., Ltd. (Beijing, China). The mice

were raised and bred at the Experimental Animal Research and

Service Center of Hebei Medical University under conditions of

constant temperature (22 ± 2°C), constant humidity (55 ± 5%),

lighting (12-h light/dark cycle), and free access to food and water.

All animal experiments were carried out according to the National

Institutes of Health Guide for Care and Use of Laboratory Animals

and approved by Laboratory Animal Ethical and Welfare

Committee of Hebei Medical University.
Cell culture

Mouse hippocampal neuron HT22 cells were cultured in phenol

red-free DMEM/F12 medium (cat# PM150316, Procell, China)

containing 10% fetal bovine serum (FBS) and 1% penicillin-

streptomycin under conditions (37 °C, 5% CO2) in a humidified

atmosphere. After digestion with 0.25% trypsin at 85%-90%

confluency, the cells were seeded into a 6-well plate, and virus

infection experiments were carried out to establish ZIP9

knockdown or overexpression HT22 stable cel l l ines.

Subsequently, the cells were transferred into 6 or 24-well plates

for Western blot and immunofluorescence staining. With or

without pretreatment with 100 nM ERK1/2 inhibitor SCH772984

(cat#: S7101 Selleck, USA) or 25 nM eIF4E inhibitor eFT508 (eFT,

cat#: HY-100022, MCE, USA) for 2 h, the cells in the experimental

groups were treated with 10 nM dihydrotestosterone (DHT, cat#:

A0462, Tokyo Chemical Industry, Japan) for 24 h, and those in the

control group were treated with an equal volume of dimethyl

sulfoxide (DMSO).
Establishment of ZIP9 knockdown or
overexpression HT22 stable cell lines

ZIP9-knockdown and ZIP9-overexpress lentivirus targeting

ZIP9 (5 ’ -ATTGTGTTCGTGGCAATAA-3 ’ ) and the

corresponding negative control lentivirus were provided by

Genechem Inc. (Shanghai, China). HT22 cells were infected with

the lentivirus for 12 h at 20-30% confluency. The HT22 cells were
frontiersin.org
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then cultured with fresh medium for 72 h until 4.5µg/mL

puromycin was added for 48 h to kill uninfected cells. Stable

clones were selected using 2.25 µg/mL puromycin after cell

passaging, and stable ZIP9 knockdown or overexpression HT22

cell lines were established.
Immunofluorescence staining

HT22 cells were fixed with 4% paraformaldehyde (PFA) for

15 min, blocked with 10% donkey serum for 1 h at room

temperature, and incubated overnight at 4°C with the following

primary antibodies: rabbit anti-PSD95 (cat#: ab18258, Abcam,

USA), rabbit anti-phospho-ERK1/2 (cat#: 9101, cell signaling,

USA), and rabbit anti-phospho-eIF4E (cat#: ab76256, Abcam,

USA). The next day, the cells were incubated with donkey anti-

rabbit fluorescent secondary antibody (cat#: A21207, Invitrogen,

USA) for 2 h at room temperature in the dark. They were then

counterstained with 4’,6-diamidino-2-phenylindole (DAPI) (cat#:

C0065, Solarbio, China) for 10 min and sealed with anti-

fluorescence quenching sealing tablets (cat#: S2100, Solarbio,

China). Images were taken using a laser confocal microscope

(Olympus, Japan), and the average optical density was analyzed

using Fiji software (National Institutes of Health, USA). Intra and

inter-assay coefficients of variation were 2.44%-4.95% and 4.07%-

9.81% respectively.
Castration of APP/PS1 mice

After anesthetizing 6-month-old APP/PS1 mice with isoflurane

(cat#: R510-22-10, RWD, China), small incisions were made in the

scrotums to remove the testes in the experimental group, while the

scrotums were cut open and sutured without hurting the testes in

the sham operation group.
Adeno-associated virus and microinjection
in CA1

Adeno-associated virus (AAV9) and negative control virus with

GV478 as a vector were provided by Genechem Inc. (Shanghai,

China). The mice were anesthetized with isoflurane and fixed on a

brain stereotaxic instrument (StereoDrive, NeuroStar, Germany)

lying prone. After the anterior and posterior fontanelle were fully

exposed, the CA1 region (left: ML = -2.29 mm, AP = -2.28 mm, DV

= 1.62 mm; right: ML = 2.29 mm, AP=-2.28 mm, DV = 1.62 mm)

was located by the mouse brain atlas (Watson, 3rd edition).

Through the microinjection system, 1mL (1×1013 v.g./ml) of virus

was injected into the bilateral CA1 region.
Grouping and administration of mice

All our animal experiments followed the 3R principle, that is,

replacement, reduction and refinement. According to the
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experimental design, we calculated the number of animals needed

for the experiments in advance, which not only ensured that the

sample size met the needs of the experiments, but also avoided

unnecessary wastage of resources and mice. Using the formula

provided by Charan et al. (29), we determined that the number of

mice in each group was 12. Twelve three-month-old WT male mice

were in WT+nc-RNAi group, and 36 Tfm male mice were equally

divided between Tfm+nc-RNAi, Tfm+nc-RNAi+DHT, and Tfm

+ZIP9-RNAi+DHT groups. Four weeks after virus injection, the

Tfm+nc-RNAi+DHT and Tfm+ZIP9RNAi+DHT groups were

injected intraperitoneally with physiological DHT (1 mg/kg body

weight), and the WT+nc-RNAi and Tfm+nc-RNAi groups were

injected with an equal volume of vehicle until behavioral tests were

completed. Forty-eight 6-month-old APP/PS1 mice were divided

equally into Sham+nc-RNAi, Cast+nc-RNAi, Cast+nc-RNAi

+DHT, and Cast+ZIP9-RNAi+DHT groups, and then they were

castrated or sham operated. Four weeks later, the mice were injected

with adeno-associated virus. Four weeks after virus injection, the

Cast+nc-RNAi+DHT and Cast+ZIP9-RNAi+DHT groups were

injected intraperitoneally with DHT, while the Sham+nc-RNAi

and Cast+nc-RNAi groups were injected intraperitoneally with an

equal volume of vehicle until the behavioral test was completed. The

average weight of mice was 27-30g. All the mice were subjected to

behavioral tests, and the behavioral data of 10 mice in each group

was used for statistical analysis.
Y-maze

Testing was performed using a Y-shaped maze with arms

oriented at 120° angles from each other. Each arm had a size of

30×8×15 cm with markers of different colors and shapes on the

inner wall that acted as spatial localization reference for the mice.

The three arms were randomly set as the novel arm, start arm, and

other arm. During the training session, each mouse was placed in

the start arm and allowed to explore the maze freely for 5 min with

the novel arm closed off. Four hours later, the novel arm was opened

during the test session, and the mouse was placed in the start arm

and allowed to freely explore the three arms for 5 min. To avoid

smell clues affecting the next mouse, 75% ethanol was used to wipe

the bottom and inner walls of the maze after each test. The entire

process of the experiment was recorded using a camera and

analyzed using the SMART video tracking system. The evaluation

indexes were time (%), distance (%) in the novel arm, and the

number of entries into the novel arm.
Novel object recognition test

A 3-day new object recognition experiment was performed in

an open field box measuring 50×50×40 cm. On day 1, the mice were

placed in a box for 5 min of adaptive training with free exploration,

facing the sidewall close to the experimenter. On day 2, two

identical objects were placed in the left and right corners away

from the experimenter and 10 cm from each sidewall. Mice were

placed in the box with their backs to the objects and allowed to
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explore freely for 10 min. On day 3, one of the original objects was

replaced with a novel object of different color and shape, but having

the same volume. The exploration time of the mice for the two

objects was recorded within 10 min, and the exploration distance

was 2-3 cm from the objects. Exploration behavior included placing

the front paw on the object, smelling the object, licking the object.

Holding a pose or climbing an object without moving is not an

exploration of that object. The discrimination index represented by

the ratio of exploration time of the novel object to the total

exploration time, was calculated.
Morris water maze

The Morris water maze test was used to detect spatial learning

and memory in the mice. The circular pool (diameter 120 cm) was

divided into four quadrants, and the platform (diameter, 6 cm) was

placed in any quadrant 1 cm underwater. In the orientation

navigation trial, the mice were placed into the water facing the

pool wall from four quadrants, and the time to find the platform

was within 60 s, that is, the escape latency. If they could not find the

platform in 60 s, the mice were guided to the platform and remained

there for 15 s, and the escape latency was recorded as 60 s. The

distance before finding the platform and swimming trajectories

were recorded. On the 6th day, a spatial probe trial was performed.

After the platform was removed, mice were placed in water. The

number of mice crossing the position of the platform within 60s and

the time spent in the target quadrant were recorded.
Western blot

Radioimmunoprecipitat ion assay lysate containing

phenylmethylsulfonyl fluoride and phosphatase inhibitors was

added to the samples, and proteins were extracted for quantitative

analysis. After denaturation, 25 mg of protein was loaded onto a 10%
sodium dodecyl sulphatepolyacrylamide gel for protein separation

and electrotransferred onto polyvinylidene fluoride membranes.

The membranes were blocked with 5% non-fat milk at room

temperature for 1 h and incubated overnight at 4 °C with the

following primary antibodies: rabbit anti-PSD95 (cat#: ab18258,

Abcam, USA), rabbit anti-phospho-eIF4E (cat#: ab76256, Abcam,

USA), mouse anti-eIF4E (total) (cat#: ab171091, Abcam, USA),

rabbit anti-GAPDH (cat#: ab9485, Abcam, USA), rabbit anti-

phospho-ERK1/2 (cat#: 9101,cell signaling, USA), mouse anti-

Erk1/2 (cat#: 9107, cell signaling, USA), rabbit anti-ZIP9 antibody

(cat#: GTX31817,GeneTex, USA), rabbit anti-synaptophysin (SYP

cat#: CY5273, Abways, China), and rabbit anti-drebrin (cat#:

10260-1-AP, Proteintech, USA). The membranes were then

incubated with goat anti-rabbit fluorescent secondary antibody

(cat#611145002, Rockland, USA) or goat anti-mouse secondary

antibody (cat#610144002, Rockland, USA) in dark incubation

boxes for 2 h. Finally, an Odyssey imaging system (LICOR, USA)

was used for visualization and analysis. The relative expression of

the target protein was calculated according to the gray value of b-
actin or GAPDH as a reference, and the phosphorylation level of the
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proteins was determined by the ratio of phosphorylated proteins to

total proteins. Intra and inter-assay coefficients of variation were

1.86% to 4.73% and 4.28% to 9.77% respectively.
Immunohistochemical staining

After the behavioral study, mice were deeply anesthetized with

isoflurane, perfused with PBS, and fixed with 4% PFA. Their brains

were removed and fixed in 4% PFA for 24 h. Brains were cut from

the superior colliculus to the optic chiasma and separated along the

median sagittal plane. The left parts were prepared for Golgi

staining, and the right parts were routinely dehydrated, waxed,

embedded, and cut into 5 mm-thick sections. After dewaxing,

hydration, high pressure antigen repair, and blocking, the sections

were incubated at 4 °C overnight with the following primary

antibodies: rabbit anti-PSD95 (cat#: ab18258, Abcam, USA),

rabbit anti-synaptophysin (cat#: CY5273, Abcam, China), rabbit

anti-drebrin (cat#: 10260-1-AP, Proteintech, USA). Subsequently,

the sections were incubated with goat anti-rabbit IgG polymer

labeled with biotin (cat#: SP-9001, ZSGB-BIO, China) for 30 min,

horseradish enzyme-labeled streptomycin for 1 h, and DAB

staining. The hippocampal CA1 region was observed and imaged

under a 40× light microscope (Leica, Germany), and the average

optical density was analyzed using Fiji software (National Institutes

of Health, USA). Intra-assay coefficients of variation were 2.03%

to 4.89%.
Golgi staining

Golgi staining was performed according to the protocol

provided in the Golgi staining kit (cat#: GMS80020.1, GENMED,

China). After 24 h of post-fixation, the left brain was immersed in

mordant (Reagent A and Reagent B were mixed at 1:1) and stained

for 14 days at room temperature in the dark. They were then placed

in 30% sucrose solution, dehydrated at 4 °C for 48 h, and cut into

100-mm sections with oscillating tissue slicers. The sections were

incubated with staining solution at room temperature for 30 min,

followed by incubation with chromogenic solution for 20 min at

room temperature in the dark. They were then dehydrated, made

transparent, and sealed with neutral resin. The secondary or tertiary

dendritic spines of apical dendrites in the hippocampal CA1 region

were observed and imaged under a 100× light microscope

(Olympus, Japan). Dendritic spine density was analyzed using Fiji

software. Three sections were selected from each mouse and three

neurons were selected from each section. Intra-assay coefficients of

variation were 2.08% to 4.55%.
Statistical analysis

SPSS26.0 statistical software was used for analysis. The results

are expressed as mean ± standard deviation (SD). The Shapiro-Wilk

test for normality was performed, and the Student’s t-test was used

for two-sample comparisons of normally distributed data (P > 0.1).
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Levene’s test for homogeneity of variance was conducted on data

from multiple groups. One-way analysis of variance (ANOVA) was

performed for data with a normal distribution (P > 0.1) and

homogeneity of variance (P > 0.1), and post hoc multiple

comparisons were performed using the LSD test. The Kruskal-

Wallis H test was used to compare multiple groups of quantitative

data with non-normal distribution (P < 0.1), and post hoc multiple

comparisons were performed with the independent-samples

Kruskal-Wallis Test. The significant differences in escape latency

at 1-5 days were assessed using two-way repeated-measures

ANOVA. Differences were considered significant at P < 0.05. To

ensure validity, all the data was analyzed post-hoc with G*Power

(www.gpower.hhu.de), and the statistical power was set at equal to

or greater than to 0.8.
Results

Effects of DHT on learning and memory
in Tfm male mice after hippocampal
ZIP9 knockdown

Western blot results showed that ZIP9 was expressed in the

hippocampi ofWT and Tfmmale mice, and there was no significant

difference between the two groups (t (10) = -0.084, P = 0.935,

Cohen’s d = 0.05) (Figures 1B, C). To determine whether

androgen affects the learning and memory of Tfm male mice

through ZIP9, we transfected hippocampal neurons with AAV9-

ZIP9-RNAi and control virus (AAV9-nc-RNAi). The expression of

hippocampal ZIP9 in the Tfm+ZIP9-RNAi group was significantly

lower than that in the Tfm+nc-RNAi group (t (10) = 6.746, P < 0.05,

Cohen’s d = 3.89) (Figures 1D–F). We tested the effect of DHT

induced by ZIP9 on the behavior of WT and Tfm male

mice (Figure 1A).

The results of the YM showed that there were significant

differences in the percentage of time spent in the novel arm (F

(3,36) = 5.059, P < 0.05, h2 = 0.297), the percentage of distance in the

novel arm (F (3,36) = 5.790, P < 0.05, h2 = 0.325), and the number of

entries into the novel arm (F (3,36) = 3.614, P < 0.05, h2 = 0.231)

among all groups. The percentage of time spent in the novel arm,

the percentage of distance in the novel arm, and the number of

entries into the novel arm of the Tfm+nc-RNAi group were

significantly lower than those of the WT+nc-RNAi and Tfm+nc-

RNAi+DHT groups, whereas those of the Tfm+nc-RNAi+DHT

group were higher than those of the Tfm+ZIP9-RNAi+DHT group

(Figures 1G-J, L).

The NOR test showed significant differences in discrimination

index (DI) among all groups (F (3,36) = 12.547, P < 0.05, h2 = 0.511).

The DI in the Tfm+nc-RNAi group was significantly lower than

that in the WT+nc-RNAi group. DHT supplementation increased

the DI of Tfm male mice, whereas the increase induced by DHT

disappeared after hippocampal ZIP9 knockdown (Figures 1K, M).

In the Morris water navigation task, there were significant

differences in the escape latency at 1-5 days (F(3,36) = 3.502, P <

0.05, h2 = 0.203) and the distance to the target on the 5th day (F(3,36)
= 4.657, P < 0.05, h2 = 0.280). The values of above parameters for
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the Tfm+nc-RNAi group were significantly higher than those for

the WT+nc-RNAi and the Tfm+nc-RNAi+DHT groups, whereas

the values for Tfm+nc-RNAi+DHT group were lower than those for

the Tfm+ZIP9-RNAi+DHT group. The subsequent spatial probe

trial revealed differences in the number of target crossings (H =

19.807, P < 0.05) and time in the target zone (F(3,36) = 7.598, P <

0.05, h2 = 0.388). The number of target crossings and time in the

target zone of the Tfm+nc-RNAi group were lower than those of the

WT+ncRNAi and Tfm+nc-RNAi+DHT groups, whereas those of

the Tfm+nc-RNAi+DHT group were higher than those of the Tfm

+ZIP9-RNAi+DHT group (Figures 1N-R).
Effects of DHT on hippocampal PSD95,
drebrin, SYP protein and dendritic spine
density in Tfm male mice after
hippocampal ZIP9 knockdown

The IHC staining revealed significant inter group differences in

the optical density of synaptic plasticity related proteins, such as

PSD95 (F(3,20) = 17.942, P < 0.05, h2 = 0.729), drebrin (F(3,20) =

77.031, P < 0.05, h2 = 0.920), and SYP (F(3,20) = 16.593, P < 0.05,

h2 = 0.713). Compared to the WT+nc-RNAi group, the optical

density of PSD95, drebrin, and SYP in the Tfm+nc-RNAi group

decreased significantly. DHT supplementation increased the optical

density of these hippocampal proteins in Tfm male mice, while the

increase induced by DHT disappeared after hippocampal ZIP9

knockdown (Figures 2A-D). Western blot revealed non-

significant differences in the expression of PSD95 (F(3,20) = 5.833,

P < 0.05, h2 = 0.467), drebrin (F(3,20) = 7.278, P < 0.05, h2 = 0.552),

and SYP (F(3,20) = 12.693, P < 0.05, h2 = 0.656), as observed by IHC

staining (Figures 2E-H).

Golgi staining results showed significant inter-group differences

in the density of dendritic spines (F(3,20) = 33.942, P < 0.05,

h2 = 0.836). Compared to the WT+nc-RNAi group, the dendritic

spine density in the hippocampi of the Tfm+nc-RNAi group

decreased significantly. DHT supplementation increased the

density of dendritic spines in Tfm male mice, but this increase

was not observed after ZIP9 knockdown in the hippocampus

(Figures 2I, J).
ZIP9 mediated the effects of DHT
on the phosphorylation of ERK1/2
and eIF4E in Tfm male mice
hippocampus and HT22 cells

To reveal the underlying mechanism, we studied the effect of

DHT induced by ZIP9 on the phosphorylation of ERK1/2 and

eIF4E in the hippocampi of Tfm male mice. Western blot revealed

significant inter group differences in the phosphorylation of ERK1/2

(F(3,16) = 143.584, P < 0.05, h2 = 0.964) and eIF4E (F(3,16) = 31.446, P

< 0.05, h2 = 0.855). Compared to the WT+nc-RNAi group, the

phosphorylation of ERK1/2 and eIF4E in the Tfm+nc-RNAi group

decreased significantly. DHT supplementation increased the

phosphorylation of ERK1/2 and eIF4E in Tfm male mice, but this
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increase was not observed after ZIP9 knockdown in the

hippocampus (Figures 3A-C).

To study the effects of DHT mediated by ZIP9 on the

expression of PSD95 and the phosphorylation of ERK1/2 and

eIF4E in HT22 cells, we constructed ZIP9 knockdown or

overexpression HT22 stable cell lines by lentivirus infection.
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The expression of ZIP9 in the ZIP9-shRNA group was

significantly lower than that in the nc-shRNA group (t(8) =

17.814, P < 0.05, Cohen’s d = 25.193) (Figures 3D, E); the

expression of PSD95 (F(2,12) = 550.836, P < 0.05, h2 = 0.989),

phosphorylation of ERK1/2 (F(2,12) = 402.259, P < 0.05,

h2 = 0.985), and eIF4E (F(2,12) = 14.350, P < 0.05, h2 = 0.705) in
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FIGURE 1

Effects of DHT on learning and memory of Tfm male mice after hippocampal ZIP9 knockdown. (A) Experimental procedure. Mice treated with
microinjections in CA1, DHT (i.p. 1 mg/kg/day), and behavioral tests. (B, C) Representative Western blot (B) and quantification (C) of ZIP9 in
the hippocampus of WT and Tfm male mice (*P > 0.05, n = 6). (D) Schematic diagram of microinjections in the hippocampal CA1 region
(E, F). Knockdown efficiency of ZIP9 protein in Tfm male mice hippocampi infected with AAV9-ZIP9-RNAi or AAV9-nc-RNAi (*P < 0.05, n = 6).
(G) Schematic diagram of the YM. (H) Trajectories of the YM. (I, J, L) YM performed to assess spatial reference memory. (K) Schematic diagram of
the NOR. (M) NOR performed to assess memory retention. (N) Trajectories of the MWM (the 5th day). (O-R) MWM was used to test spatial learning
and memory. DHT, dihydrotestosterone; ZIP9, Zrt-, Irt-like protein 9; Tfm, Testicular feminization mutation; YM, Y-maze test; NOR, novel object
recognition test; MWM, Morris water maze. (*P < 0.05, n = 10).
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the nc-shRNA+DHT group were significantly higher than those in

the nc-shRNA and ZIP9-shRNA+DHT groups (Figures 3F-I). IF

staining showed that the optical density of PSD95 (F(2,12) = 39.748,

P < 0.05, h2 = 0.869), p-ERK1/2 (F(2,12) = 17.002, P < 0.05,

h2 = 0.739), and p-eIF4E (F(2,12) = 33.090, P < 0.05, h2 = 0.847)

in the nc-shRNA+DHT group were significantly higher than those

in nc-shRNA and the ZIP9-shRNA+DHT groups (Figures 3J-O).
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We observed the effects of DHT on the expression of PSD95 and

phosphorylation of ERK1/2 and eIF4E in ZIP9-overexpression

HT22 cells. The results of Western blot showed that the

expression of ZIP9 in the ZIP9-oe group was significantly higher

than that in the nc-oe group (t(8) = -6.160, P < 0.05, Cohen’s d =

-8.711, Figures 4A, B); expression of PSD95 (F(2,12) = 1003.038, P <

0.05, h2 = 0.994), phosphorylation of ERK1/2 (F(2,12) = 385.322, P <
B

C
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H I J

A

FIGURE 2

Effects of DHT on hippocampal PSD95, drebrin, SYP protein and dendrite spine density of Tfm male mice after hippocampal ZIP9 knockdown.
(A–D) Representative immunohistochemical staining images (A) and quantification (B-D) of PSD95 (B), drebrin (C), and SYP (D) in the hippocampal
CA1 region of the four groups of mice. Scale bars = 50 mm. (E–H) Representative Western blot (E) and quantification (F–H) of PSD95 (F), drebrin
(G), and SYP (H) in the hippocampus of the four groups of mice. (I, J) Representative images (I) and quantification (J) of Golgi staining in the
hippocampus of the four groups of mice. I(a) Scale bars = 200 mm. I(b-e) Scale bars = 5 mm. DHT, dihydrotestosterone; Tfm, Testicular feminization
mutation; PSD95, postsynaptic density protein 95; SYP, synaptophysin; ZIP9, Zrt-, Irt-like protein 9. (*P < 0.05, n = 6).
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0.05, h2 = 0.985), and eIF4E (F(2,12) = 291.648, P < 0.05, h2 = 0.980)

in the nc-oe+DHT group were significantly higher than those in the

nc-oe group, but lower than those in the ZIP9-oe+DHT group

(Figures 4C-F). IF staining showed that the optical densities of

PSD95 (F(2,12) = 126.544, P < 0.05, h2 = 0.955), p-ERK1/2 (F(2,12) =

132.102, P < 0.05, h2 = 0.957) and p-eIF4E (F(2,12) = 86.879, P < 0.05,

h2 = 0.935) in the nc-oe+DHT group were significantly higher than

those in the nc-oe group, but lower than those in the ZIP9-oe+DHT

group (Figures 4G-L).
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ZIP9 mediated the effects of DHT on the
phosphorylation of ERK, eIF4E and
expression of PSD95 in HT22 cells
pretreated with SCH772984

We used SCH772984, a specific inhibitor of ERK1/2, to verify

whether ERK1/2 is involved in the expression of PSD95 in HT22

cells induced by DHT through ZIP9. Western blot revealed

significant inter group differences in the phosphorylation of
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FIGURE 3

Effects of DHT on the phosphorylation of ERK1/2 and eIF4E in Tfm male mice and HT22 cells after ZIP9 knockdown. (A–C) Representative Western
blot (A) and quantification (B, C) of the phosphorylation of ERK1/2 (B) and eIF4E (C) in the hippocampus of the four groups of mice. (D, E) The
knockdown efficiency of ZIP9 protein in HT22 cells infected with ZIP9-shRNA or nc-RNA. (F-I) Representative Western blot (F) and quantification
(G-I) of the expression of PSD95 (G), and the phosphorylation of ERK1/2 (H), eIF4E (I) in HT22 cells. (J, K) Representative IF staining images (K) and
quantification (J) of PSD95 in HT22 cells. (L, M) Representative IF staining images (L) and quantification (M) of p-ERK1/2 in HT22 cells.
(N, O) Representative IF staining images (N) and quantification (O) of p-eIF4E in HT22 cells after ZIP9 knockdown. Scale bars = 20 mm. IF,
immunofluorescence; DHT, dihydrotestosterone; Tfm, Testicular feminization mutation; ERK1/2, Extracellular signal-regulated kinase ½; eIF4E,
HT22, hippocampal neuron cells; ZIP9, Zrt-, Irt-like protein 9; PSD95, postsynaptic density protein 95. (*P < 0.05, n = 5).
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ERK1/2 (F(3,16) = 374.158, P < 0.05, h2 = 0.986), eIF4E (F(3,16) =

124.188, P < 0.05, h2 = 0.959), and the expression of PSD95 (F(3,16) =

274.867, P < 0.05, h2 = 0.981). The phosphorylation of ERK1/2 and

eIF4E and the expression of PSD95 in the nc-oe+DHT group were

higher than those in the nc-oe group and lower than those in the

ZIP9-oe+DHT group, whereas these values for the ZIP9-oe+S

+DHT group were lower than those for the ZIP9-oe+DHT group
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(Figures 5A-D). Consistent with the results of Western blot, IF

staining demonstrated that the optical densities of p-ERK1/2 (F(3,16)
= 59.122, P < 0.05, h2 = 0.917), p-eIF4E (F(3,16) = 55.533, P < 0.05,

h2 = 0.912), and PSD95 (F(3,16) = 48.888, P < 0.05, h2 = 0.902) were

significantly different in all groups. The optical densities of p-ERK1/

2, p-eIF4E, and PSD95 in the nc-oe+DHT group were higher than

those in the nc-oe group and lower than those in the ZIP9-oe+DHT
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FIGURE 4

Effects of DHT on the expression of PSD95 and the phosphorylation of ERK1/2, eIF4E in HT22 cells after ZIP9 overexpression. (A, B) The overexpression
efficiency of ZIP9 protein in HT22 cells infected with ZIP9-oe or nc-oe. (C–F) Representative Western blot (C) and quantification (D–F) of PSD95
(D), and the phosphorylation of ERK1/2 (E) and eIF4E (F) in HT22 cells. (G, J) Representative IF staining images (J) and quantification (G) of PSD95 in
HT22 cells. (H, K) Representative IF staining images (K) and quantification (H) of p-ERK1/2 in HT22 cells. (I, L) Representative IF staining images (L) and
quantification (I) of p-eIF4E in HT22 cells. Scale bars = 20 mm. DHT, dihydrotestosterone; ERK1/2, Extracellular signal-regulated kinase ½; eIF4E,
Eukaryotic translation initiation factor 4E; ZIP9, Zrt-, Irt-like protein 9; PSD95, postsynaptic density protein 95. (*P < 0.05, n = 5).
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group, whereas those in the ZIP9-oe+S+DHT group were lower

than those in the ZIP9-oe+DHT group (Figures 5E-J).
ZIP9 mediated the effects of DHT on the
phosphorylation of eIF4E and the
Expression of PSD95 in HT22 cells
pretreated with eFT508

Finally, we used eFT508, a specific inhibitor of eIF4E, to

confirm whether eIF4E was involved in the expression of PSD95

in HT22 cells induced by DHT through ZIP9. Western blot

r evea l ed s i gn ifican t in t e r group d i ff e r ence s in the

phosphorylation of eIF4E (F(3,16) = 320.397, P < 0.05,
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h2 = 0.984) and the expression of PSD95 (F(3,16) = 497.501, P <

0.05, h2 = 0.989). The phosphorylation of eIF4E and the

expression of PSD95 in the nc-oe+DHT group were higher than

those in the nc-oe group and lower than those in the ZIP9-oe

+DHT group, whereas those in the ZIP9-oe+eFT+DHT group

were lower than those in the ZIP9-oe+DHT group (Figures 6A-C).

The IF staining demonstrated significant inter group differences in

the optical densities of p-eIF4E (F(3,16) = 74.668, P < 0.05,

h2 = 0.933) and PSD95 (F(3,16) = 59.422, P < 0.05, h2 = 0.918.

The optical densities of p-eIF4E and PSD95 in the nc-oe+DHT

group were higher than those in the nc-oe group and lower than

those in the ZIP9-oe+DHT group, whereas these values for the

ZIP9-oe+eFT+DHT group were lower than those for the ZIP9-oe

+DHT group (Figures 6D-G).
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FIGURE 5

ZIP9 mediated the effects of DHT on the phosphorylation of ERK1/2, eIF4E and Expression of PSD95 after ZIP9 overexpression. (A–D) Representative
Western blot (A) and quantification (B–D) of the phosphorylation of ERK1/2 (B), eIF4E (C) and the expression of PSD95 (D) in HT22 cells pretreated
with SCH772984. (E, H) Representative IF staining images (H) and quantification (E) of p-ERK1/2 in HT22 cells. (F, I) Representative IF staining images
(I) and quantification (F) of p-eIF4E in HT22 cells. (G, J) Representative IF staining images (J) and quantification (G) of PSD95 in HT22 cells. Scale
bars = 20 mm. DHT, dihydrotestosterone; ZIP9, Zrt-, Irt-like protein 9; PSD95, postsynaptic density protein 95, ERK1/2, Extracellular signal-regulated
kinase ½; eIF4E, Eukaryotic translation initiation factor 4E. S, SCH772984. (*P < 0.05, n = 5).
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ZIP9 mediated the effects of DHT
on learning and memory of APP/PS1
male mice

We verified the effect of DHT induced by ZIP9 on the behavior

of APP/PS1 male mice (Figure 7A). The YM test showed significant

inter group differences in the percentage of time spent (F(3,36) =

13.241, P < 0.05, h2 = 0.525), the percentage of distance travelled (F

(3,36) = 7.551, P < 0.05, h2 = 0.386), and the number of entries (F(3,36)
= 7.675, P < 0.05, h2 = 0.390) in the ovel arm. The values of above

parameters for Cast+nc-RNAi group were significantly lower than

those for the sham+nc-RNAi and Cast+nc-RNAi+DHT groups,

whereas the values for Cast+nc-RNAi+DHT group were higher

than those for the Cast+ZIP9-RNAi+DHT group (Figures 7B-E).

The NOR test showed a significant inter group differences in DI

(F(3,36) = 11.338, P < 0.05, h2 = 0.486). The DI of the Cast+nc-RNAi

group was significantly lower than that of the sham+nc-RNAi

group. DHT supplementation increased the DI of castrated APP/

PS1 mice, while this increase disappeared after ZIP9 knockdown in

the hippocampus (Figure 7F).

In the Morris water navigation task, there were significant inter

group differences in the escape latency at 1-5 days (F(3,36) = 4.307, P <

0.05, h2 = 0.264) and the distance to the target on the 5th day (F(3,36) =

7.271, P < 0.05, h2 = 0.377). The values of above parameters for the

Cast+nc-RNAi group were significantly higher than those of the Sham

+nc-RNAi and Cast+nc-RNAi+DHT groups, whereas the values for

the Cast+nc-RNAi+DHT group were lower than those for the Cast

+ZIP9-RNAi+DHT group. The subsequent spatial probe trial
Frontiers in Endocrinology 11176
demonstrated significant differences in the number of target

crossings (F(3,36) = 3.803, P < 0.05, h2 = 0.241) and time in the

target zone (F(3,36) = 9.821, P < 0.05, h2 = 0.450). The number of target

crossings and time in the target zone of the Cast+nc-RNAi group were

lower than those of the sham+nc-RNAi and Cast+nc-RNAi+DHT

groups; however, those of the Cast+nc-RNAi+DHT group were lower

than those of the Cast+ZIP9-RNAi+DHT group (Figures 7G-K).
ZIP9 mediated the effects of DHT on
hippocampal PSD95, Drebrin, SYP
protein and dendritic spine density
of APP/PS1 male mice

After the behavioral experiments, we studied the effects of DHT

mediated by ZIP9 on the expression of PSD95, drebrin, SYP, and

the density of dendritic spines in the hippocampi of APP/PS1 male

mice. The IHC staining revealed significant inter group differences

in the optical density of PSD95 (F(3,20) = 10.479, P < 0.05,

h2 = 0.611), drebrin (F(3,20) = 12.782, P < 0.05, h2 = 0.657) and

SYP (F(3,20) = 30.519, P < 0.05, h2 = 0.821). Compared with the

Sham+nc-RNAi group, the optical density of PSD95, drebrin, and

SYP in the Cast+nc-RNAi group decreased significantly. The DHT

supplementation increased the optical density of these proteins in

castrated APP/PS1 mice, while the increase vanished after ZIP9

knockdown in the hippocampi (Figures 8A-D). Western blot

revealed similar results for the expression of PSD95 (F(3,20) =

27.055, P < 0.05, h2 = 0.802) and drebrin (F(3,20) = 9.642, P <
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FIGURE 6

ZIP9 mediated the effects of DHT on the phosphorylation of eIF4E and the expression of PSD95 in HT22 cells pretreated with eFT508. (A-C)
Representative Western blot (A) and quantification (B, C) of the Phosphorylation of eIF4E (B) and expression of PSD95 (C) in HT22 cells pretreated
with eFT508. (D, F) Representative IF staining images (F) and quantification (D) of p-eIF4E in HT22 cells pretreated with eFT508. (E, G)
Representative IF staining images (G) and quantification (E) of PSD95 in HT22 cells pretreated with eFT508. Scale bars = 20 mm. DHT,
dihydrotestosterone; ZIP9, Zrt-, Irt-like protein 9; PSD95, postsynaptic density protein 95, ERK1/2, Extracellular signal-regulated kinase ½; eIF4E,
Eukaryotic translation initiation factor 4E; eFT, eFT508. (*P < 0.05, n = 5).
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0.05, h2 = 0.591) and SYP (F(3,20) = 6.262, P < 0.05, h2 = 0. 484) in

the hippocampi as observed by IHC staining (Figures 8E-H).

Golgi staining results showed a significant inter group

differences in the density of dendritic spines (F(3,20) = 30.471, P <

0.05, h2 = 0.820). Compared to the Sham+nc-RNAi group, the

dendritic spine density in the hippocampi of the Cast+nc-RNAi

group decreased significantly. DHT supplementation increased

dendritic spine density in castrated APP/PS1 mice, but this

increase was not observed after ZIP9 knockdown in the

hippocampus (Figures 8I, J).
ZIP9 mediated the effects of DHT on the
phosphorylation of ERK1/2 and eIF4E in
APP/PS1 mice hippocampus

We studied the effect of DHT mediated by ZIP9 on the

phosphorylation of ERK1/2 and eIF4E in the hippocampi of APP/
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PS1 mice. Western blot revealed significant inter group differences

in the phosphorylation levels of ERK1/2 (F(3,20) = 31.214, P < 0.05,

h2 = 824) and eIF4E (F(3,20) = 13.242, P < 0.05, h2 = 0. 665).

Compared to the Sham+nc-RNAi group, the phosphorylation of

ERK1/2 and eIF4E in the Cast+nc-RNAi group decreased

s i gn ifi can t l y . DHT supp l emen ta t i on improved th e

phosphorylation of ERK1/2 and eIF4E in castrated APP/PS1

mice, while improvement was not observed after ZIP9

knockdown in the hippocampus (Figures 9A-D).
Discussion

The effect of androgens was previously thought to be mediated

by AR. Androgens bind to intracellular AR and form a receptor-

ligand complex, which is transferred into the nucleus to regulate

target genes and exert biological effects. In addition to the classic

AR, recent studies have found that androgen can also exert effects
B C D
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FIGURE 7

ZIP9 mediated the effects of DHT on learning and memory of APP/PS1 male mice. (A) Experimental procedure. Mice were treated with castration,
microinjections in CA1, DHT (i.p. 1 mg/kg/day), and behavioral tests. (B) Representative trajectories of the YM (test). (C–E) YM was performed to test
for spatial reference memory. (F) NOR was performed to assess memory retention. (G) Representative trajectories of the MWM (the 5th day). (H-K)
MWM was used to test spatial memory and long-term memory. DHT, dihydrotestosterone; YM, Y-maze test; NOR, novel object recognition test;
MWM, Morris water maze. (*P < 0.05, n = 10).
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through other binding sites, such as GPRC6A (30, 31), TRPM8 (32),

OXER1 (33) and ZIP9 (28). As a member of the ZIP family, ZIP9

participates in the transport of Zn2+ from extracellular to

intracellular matrix (19). It can also bind to androgens and

further couple with the G protein to exert biological effects. In

cancer studies, androgens have been found to bind to ZIP9 and

exert biological effects. Bulldan et al. (22) found that ZIP9 mediates
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testosterone-induced migratory activity of metastatic prostate

cancer cells. Chen et al. (23) suggested that DHT may increase

the migration and invasion of AR-negative bladder cancer cells via

ZIP9, thus promoting the progression of muscle-invasive bladder

cancer. Thomas et al. (24) reported that the expression of ZIP9 was

upregulated in breast and prostate cancer tissues, and androgen

promoted the apoptosis of breast cancer MDAMB-468 cells and
B
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FIGURE 8

ZIP9 mediated the effects of DHT on hippocampal PSD95, drebrin, SYP protein and dendritic spine density in APP/PS1 male mice. (A-D) Representative
IHC images (A) and quantification (B–D) of PSD95 (B), drebrin (C), and SYP (D) in the hippocampal CA1 region of the four groups of mice. Scale bars =
50 mm. (E–H) Representative Western blot (E) and quantification (F–H) of PSD95 (F), drebrin (G), and SYP (H) in the hippocampus of the four groups of
mice. (I, J) Representative images (I) and quantification (J) of Golgi staining in the hippocampus of the four groups of mice; Scale bars = 5 mm. DHT,
dihydrotestosterone; ZIP9, Zrt-, Irt-like protein 9; PSD95, postsynaptic density protein 95; SYP, synaptophysin. (*P < 0.05, n = 6).
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prostate cancer PC-3 cells through ZIP9. The authors also noted

that ZIP9 was a potential therapeutic target in breast and prostate

cancer. ZIP9 is also widely expressed in normal tissues and cells,

such as the testis, pancreas, heart, prostate and brain (24). In a study

of Sertoli cells, Bulldan et al. (34) found that testosterone can

promote the expression of the tight junction protein claudin and

the formation of tight junctions through ZIP9, highlighting the

importance of this mechanism in male reproductive function.

Converse et al. (35) found that androgen regulated stage-

dependent pro- and anti-apoptosis in teleost ovaries through

ZIP9 by activating different G proteins. They also demonstrated

via another study (36) that ZIP9 mediated androgen effect in

promoting the proliferation of vascular endothelial cells. Malviya

et al. (37) suggested that testosterone promotes mineralization in

human osteoblastic SAOS-2 cells and myogenesis in mouse

myogenic L6 cells through ZIP9. Although our previous studies

have shown that T-BSA rapidly increases the expression of PSD95

protein in HT22 cells through ZIP9, it is not yet known whether

ZIP9 is involved in learning and memory as an androgen binding

site in the hippocampus. The present study used AR-deficient Tfm

male mice with learning and memory impairments to study the

effects of androgens mediated by ZIP9 on hippocampal learning

and memory. The results showed that ZIP9 was expressed in the

hippocampus of WT and Tfm male mice with no significant

differences between the groups, suggesting that ZIP9 did not

directly affect the learning and memory of Tfm mice. However,

this did not exclude the possibility that ZIP9, as an androgen-

binding site, affects learning and memory in mice.

We used androgen supplementation and hippocampal ZIP9

knockdown models to determine whether androgen affects learning

and memory of Tfm male mice through ZIP9. Testosterone can be

partially converted by aromatase into estrogen (38, 39), which can

affect synaptic plasticity in the hippocampus of mice (40, 41). To

avoid this, we used non-aromatized DHT. Behavioral experiments

showed that DHT supplementation significantly improved learning

and memory in Tfmmale mice, but this improvement was inhibited

after hippocampal ZIP9 knockdown. This suggests that DHT

improved the learning and memory of Tfm male mice through

ZIP9. After behavioral experiments, we evaluated hippocampal

synaptic plasticity in Tfm male mice since it plays an important
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role in learning and memory. PSD95 is essential for synaptic

plasticity of the nervous system as a scaffold protein in the

postsynaptic structure, PSD95-knockout mice showed long-term

potentiation, long-term depression impairment, and significant

spatial learning and memory impairment in behavioral tests (42).

As an important actin-binding protein widely distributed in

dendritic spines, drebrin can regulate synaptic plasticity and affect

cognitive function by combining with F-actin to promote dendritic

spine maturation (36). SYP is important for synaptic plasticity and

cognitive function and its content can be used as an index to

evaluate the number, density, and transmission efficiency of

synapses (43). Dendritic spines are the main sites of synapse

formation. Loss of dendritic spines is closely related to a decline

in cognitive ability (44, 45). Therefore, we investigated the

expression level of synaptic proteins PSD95, drebrin, SYP and the

density of dendritic spines to observe the effect of DHT

supplementation on synaptic plasticity in Tfm male mice. The

results showed that the expression of these components, as well

as density of dendritic spines were significantly lower than in WT

male mice, with a significant increase after DHT supplementation.

To explore how DHT works, we knocked down hippocampal ZIP9

in Tfm male mice and found that the increase in the expression of

PSD95, drebrin, and SYP, and the density of dendritic spines

induced by DHT disappeared. Combined with the results of the

behavioral experiments, we postulate that DHT improves

hippocampal synaptic plasticity in Tfm male mice through ZIP9,

thereby improving their learning and memory.

The extracellular-signal-regulated kinase (ERK) may be a key

downstream signal molecule of ZIP9-mediated androgen effect.

Profaska-Szymik et al. (46) found that senescence driven by

androgens via ZIP9 in regressed vole testes has a functional link

with ERK. Other studies (20, 27, 47–51) have also found ZIP9

mediated androgen biological effects through ERK pathway. In the

nervous system, ERK plays a vital role in synaptic plasticity,

learning, and memory (52–55). The phosphorylation of ERK1/2

can enhance the uncoupling of nNOS-PSD95 in the mouse

hippocampus, increase the expression of PSD95 protein,

promoting memory retrieval et al. (56). The cap-binding

translation initiation factor eIF4E, cooperating with proteins such

as helicase eIF4A and scaffolding protein eIF4G binds to mRNA,
B C DA

FIGURE 9

ZIP9 mediated the effects of DHT on the phosphorylation of ERK1/2 and eIF4E in APP/PS1 mice hippocampus. (A, B) Representative Western blot (A)
and quantification (B) of the phosphorylation of ERK1/2 in the hippocampus of the four groups of mice. (C, D) Representative Western blot (C) and
quantification (D) of the phosphorylation of eIF4E in the hippocampus of the four groups of mice. DHT, dihydrotestosterone; ZIP9, Zrt-, Irt-like
protein 9; ERK1/2, Extracellular signal-regulated kinase ½; eIF4E, Eukaryotic translation initiation factor 4E. (*P < 0.05, n = 6).
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allowing the recruitment of ribosomes and translation initiation

(57, 58). Gindina et al. (59) found upregulation of eIF4E in dendritic

spines during memory formation in adult male Sprague-Dawley

rats. These results are consistent with those of our study. The

phosphorylation of ERK1/2 and eIF4E in the hippocampus of Tfm

male mice was significantly lower than that in WT male mice; DHT

supplementation significantly increased these levels, suggesting that

there was abnormal phosphorylation of ERK1/2 and eIF4E in Tfm

male mice, and that DHT could improve this abnormality. To find

out whether ZIP9 mediated this effect of DHT, we knocked down

hippocampal ZIP9 in Tfm male mice and found that the beneficial

effect of DHT were inhibited. These results were also confirmed at a

cellular level. This confirmed that increase in the expression of

PSD95 and phosphorylation of ERK1/2 and eIF4E in HT22 cells

induced by DHT were inhibited after ZIP9 knockdown and

enhanced after ZIP9 overexpression.

Although we found that DHT promoted the phosphorylation of

ERK1/2, eIF4E and the expression of PSD95 through ZIP9, the

mechanism still required experimental verification. We found that

pretreatment with SCH772984, a specific inhibitor of ERK1/2,

significantly inhibited the phosphorylation of ERK1/2, eIF4E and

expression of PSD95. Pretreatment with eFT508, a specific inhibitor

of eIF4E, significantly inhibited the phosphorylation of eIF4E and

expression of PSD95 in ZIP9-overexpression HT22 cells. These

results are consistent with those of other studies showing that

ERK1/2 activation can regulate synaptic protein synthesis by

phosphorylating eIF4E, which subsequently affects synaptic

plasticity (60, 61). Combined with animal and cell experiments, it

was concluded that ZIP9 mediated the effects of DHT on improving

the expression of synaptic plasticity-related proteins and dendritic

spine density in the hippocampus of Tfm male mice through the

ERK1/2-eIF4E pathway, thus improving learning and memory.

The serum level of total or free testosterone in AD patients is

significantly lower than that in normal elderly men (62), and the

decreased level of testosterone in vivo leads to cognitive decline,

which was measured by learning and memory (63). Studies have

reported that cognitive function of AD patients improved to varying

degrees after testosterone replacement therapy (64). This suggests

that androgen decline may be a risk factor for AD in older men.

Therefore, castration surgery or androgen supplement therapy are

often used to intervene in AD animal models to study the

pathological mechanism of androgen regulation of AD cognitive

impairment (65–68). APP/PS1 is a double-transgenic mouse model

that overproduces Ab and is often used to study the mechanisms of

AD neuropathology. Ab plaques appear in the cerebral cortex at

approximately 4 months of age and in the hippocampus at 6

months of age, and increase in size and number with age (69, 70).

Obvious learning and memory deficits emerge at 6-10 months old

(71, 72). This study found that castration significantly impaired the

learning and memory of APP/PS1 mice and decreased the

expression of PSD95, drebrin, SYP, and dendritic spine density.

Supplementation with DHT ameliorated the adverse effects of

castration. To verify whether the improvement induced by DHT

in castrated mice depends on ZIP9, we knocked down hippocampal

ZIP9 in castrated APP/PS1 mice and found that the improvement of
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learning and memory, the expression of PSD95, drebrin, SYP, and

dendritic spine density induced by DHT were significantly

suppr e s s ed . Cas t r a t i on s i gn ifi can t l y dec r e a s ed the

phosphorylation of ERK1/2 and eIF4E in the hippocampus of

APP/PS1 mice, and DHT supplementation could improve this

deficiency state. To determine the effect of DHT on the

phosphorylation of ERK1/2 and eIF4E through ZIP9, we knocked

down hippocampal ZIP9 in castrated APP/PS1 mice and found that

the phosphorylation of ERK1/2 and eIF4E was significantly

downregulated. This suggests that ZIP9 mediates the effects of

DHT on the expression of synaptic plasticity-related proteins and

dendritic spine density in the hippocampi of APP/PS1 mice through

the ERK1/2-eIF4E pathway and affects their learning and memory.

The ZIP9 has been described as a membrane androgen receptor

(19, 20, 26, 28, 46, 48, 73–75). Thomas et al. (24) found ZIP9 in the

perinuclear and plasma membrane of MDA-MB-468 cells, while

some studies also detected it in the reverse Golgi network (76). In

addition, since membrane permeable DHT was used in this study,

the current data do not support the conclusion that DHT played a

role only through ZIP9 located in the cell membrane. However, our

experimental results confirmed that DHT could regulate

hippocampal synaptic plasticity through ZIP9, thus affecting

learning and memory, which was consistent with our

research theme.

However the findings of this study have to be seen in light of

some limitations. Firstly, considering that the topic of this study is

the effects of DHT mediated by ZIP9 on hippocampal synaptic

plasticity and learning and memory, we did not detect hippocampal

Ab in APP/PS1 mice, although senile plaque formed by excessive

deposition of Ab is one of the pathological features of AD.

Therefore, we are unable to know the effects of DHT mediated by

ZIP9 on hippocampal pathology in APP/PS1 mice. Secondly, ZIP9

has both androgen signaling and zinc transport functions, and the

mechanism of zinc ion on learning and memory is still unclear.

Since this study focused on ZIP9-mediated androgen influence on

synaptic plasticity and learning memory in mice, its zinc transport

function was not investigated. Finally, only male mice were used in

this study, and the results of this study may not be applicable to

female animals because of gender differences.

Based on the above experiments, we concluded that ZIP9

mediated the effects of DHT on improving hippocampal synaptic

plasticity-related proteins and dendritic spine density in Tfm male

mice through the ERK1/2-eIF4E pathway, improving learning and

memory. DHT can also affect learning and memory in castrated

APP/PS1 mice through this mechanism. This study provides

important experimental data for further research into the use of

androgen supplementation in Alzheimer’s Disease to improve

learning and memory.
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