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Hervé Claustre,
Centre National de la Recherche Scientifique
(CNRS), France

*CORRESPONDENCE

Haiyong Zheng

zhenghaiyong@ouc.edu.cn

RECEIVED 26 March 2024
ACCEPTED 23 April 2024

PUBLISHED 03 May 2024

CITATION

Zheng H, Bi H, Cheng X and Benfield MC
(2024) Editorial: Deep learning for
marine science.
Front. Mar. Sci. 11:1407053.
doi: 10.3389/fmars.2024.1407053

COPYRIGHT

© 2024 Zheng, Bi, Cheng and Benfield. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Editorial

PUBLISHED 03 May 2024

DOI 10.3389/fmars.2024.1407053
Editorial: Deep learning for
marine science
Haiyong Zheng1*, Hongsheng Bi2, Xuemin Cheng3

and Mark C. Benfield4

1College of Electronic Engineering, Ocean University of China, Qingdao, China, 2Center for
Environmental Science, University of Maryland, College Park, Cambridge, MA, United States,
3Shenzhen International Graduate School, Tsinghua University, Shenzhen, China, 4College of the
Coast & Environment, Louisiana State University, Baton Rouge, LA, United States

KEYWORDS

research survey, marine/underwater image enhancement/restoration/compression,
marine/underwater visual recognition/detection, dataset and labeling, marine
process/phenomenon prediction/detection, marine physical/biogeochemical variable
prediction/reconstruction, marine optics/acoustics
Editorial on the Research Topic

Deep learning for marine science
In recent years, Deep Learning (DL) technology has been widely used in marine science

and technology research, and provides powerful technical support for related researches

and applications. As ocean observation technology continues to advance, the volume of

data generated by marine scientific research is steadily increasing. This offers vast potential

for data-driven DL to demonstrate its capabilities and has therefore emerged as a valuable

technology across multiple research fields, including biology, ecosystems, climate, energy,

as well as physical and chemical interactions.

The Research Topic “Deep Learning for Marine Science” aims to provide a research

collection to collect relevant research work on the application of DL technology in marine

science. A total of 39 papers are published with contributions by 236 authors. The contents

in these papers focus on the following aspects: research survey, marine/underwater image

enhancement/restoration/compression, marine/underwater visual recognition/detection,

dataset and labeling, marine process/phenomenon prediction/detection, marine physical/

biogeochemical variable prediction/reconstruction, and marine optics/acoustics. Here, we

summarize the contents of these papers and highlight their key contributions to the

Research Topic.
1 Research survey

Although machine learning tools hold great promise, they are still not being used to

their full potential in several areas, such as species and environmental monitoring,

biodiversity surveys, fisheries abundance and size estimation, rare events, and species

detection, the study of animal behavior, and citizen science. To help researchers effectively

apply image-based machine learning methods in their research problems, Belcher et al.

write a review article that provides an easily approachable end-to-end guide.
frontiersin.org017
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In terms of underwater image restoration technology, Song et al.

make a systematic review to bridge the gap between shallow sea and

deep-sea image restoration through experimental analysis. The

review mainly describes the core concepts and methods of the

three types of shallow sea image restoration methods. It also

summarizes the research status and main challenges of deep-sea

image restoration, discusses potential solutions, conducts

experiments and in-depth discussions, and proposes several

development directions for deep-sea image restoration in the future.
2 Marine/underwater image
enhancement/
restoration/compression

It is a challenging task to store and transmit high-quality

underwater images. To improve the performance of adaptive

sampling and reconstruction of underwater images, Li et al.

combine the advantages of compressed sensing and DL to

propose ESPC-BCS-Net. The method obtains parameters (such as

sampling matrix, sparse transforms, and shrinkage thresholds)

through end-to-end learning. The experimental results are

visually and quantitatively evaluated, demonstrating that the

proposed method has good compression and reconstruction effects.

Xin et al. introduce an end-to-end network for Simultaneous

Localization And Mapping (SLAM) pre-processing in low-light

underwater environments, aiming to address the limitations of

visual SLAM systems based on feature point extraction. The

proposed network comprises a low-light enhancement branch

with a non-reference loss function, a self-supervised feature point

detector, and a descriptor extraction branch. Additionally, a unique

matrix transformation method is designed to enhance the feature

similarity between two adjacent video frames, thereby improving

the performance of underwater SLAM.

In order to solve the important problems of blur and color

distortion in underwater optical imaging and improve the ability to

accurately perceive underwater images, Zhang et al. propose a

multi-scale weighted fusion method. By merging, enhancing, and

reconstructing images, the clarity and color fidelity of underwater

images are effectively improved, and the quality of underwater

images presented is improved. Excellent results have been obtained

in many experimental indexes.

Zheng et al. propose a solution to improve the performance of

underwater monocular visual SLAM systems. The existing SLAM

algorithms are often impractical or invalid due to the complex aquatic

environment and the poor image quality obtained in such conditions.

The proposed solution involves using a Generative Adversarial

Network (GAN) to enhance the underwater images before SLAM

processing. To reduce the inference cost, the GAN is compressed

through knowledge distillation. This approach ensures real-time

inference and high-fidelity underwater image enhancement.

To improve the quality of underwater images and achieve

simultaneous restoration and super-resolution, Wang et al.

propose an end-to-end trainable model named Simultaneous

Restoration and Super-Resolution GAN (SRSRGAN). The model
Frontiers in Marine Science 028
uses GANs and consists of two stages of a cascading architecture to

restore and super-resolve damaged underwater images coarse to fine.

The proposed method is experimentally validated and demonstrates

its superiority in underwater image restoration, super-resolution,

and simultaneous restoration and super-resolution.
3 Marine/underwater visual
recognition/detection

In order to realize the fast navigation of Unmanned Surface

Vehicle (USV) in complex marine environments, a target detection

algorithm with high detection speed and accuracy is essential. To

address this Research Topic, Zhang et al. propose a YOLOv5

lightweight object detection algorithm that leverages the Ghost

module and Transformer, resulting in high-efficiency and high-

precision object detection. The proposed algorithm is tested on ship

videos collected by the “JiuHang 750” USV in different marine

environments and demonstrates promising results.

To address the problem of ship instance segmentation in

Synthetic Aperture Radar (SAR) images with high resolution and

complex backgrounds, Yasir et al. propose a unique YOLOv7

improved high-resolution remote sensing (HR-RS) image

segmentation single-stage detection method. The method

enhances the accuracy, efficiency, and model robustness of ship

instance segmentation through improvements made to the single-

stage detector, backbone network, and network feature fusion part,

and promising results have been achieved.

To enhance the economic and environmental performance of

the fishery, Avsar et al. utilize underwater images captured by an in-

trawl video recording system to obtain quantitative information on

the capture rate of Nephrops norvegicus, a target species. The study

employs real-time detection, tracking, and counting techniques to

monitor the entry of the target species into the trawl. The detection

is done using the YOLOv4 algorithm, which has a proven track

record in real-time processing underwater images to determine the

target species’ capture rate. Additionally, the algorithm has the

potential to process multiple species simultaneously.

Saito et al. utilize DL to investigate the suspended particles in

the depths of the sea. To analyze the variability of suspended

particle abundance in the images taken by the standard fixed

camera “Edokko Mark 1”, they implement object detection

technology through the YOLOv5 algorithm to create a suspended

particle detection model. They conduct the first excavation test of

cobalt-rich ferromanganese crust in the world. The ability of the

model to measure changes in the concentration of deep-sea

suspended particles is assessed, and the effectiveness of the

proposed method in detecting temporal changes of suspended

particles and detecting significant abrupt changes, such as mining

effects, is validated.

Collecting data on marine fish can be a challenging task due to

the nature of their environment, often resulting in poor-quality

data. Moreover, identifying various fish categories from small

sample images can be difficult, especially regarding fine-grained

classification. Zhai et al. propose a new attention network called the
frontiersin.org
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Sandwich Attention Covariance Metric Network (SACovaMNet),

which applies metric learning and incorporates attention modules

to comprehensively improve the feature extraction capability from

global and local perspectives. The result is an excellent performance

in the task of fine-grained fish classification.

Prior et al. develop automated video post-processing models to

implement automated image analysis of commercially important

Gulf of Mexico fish species and habitats. In addition to traditional

metrics used to measure the performance of Artificial Intelligence

and Machine Learning (AI/ML) models, such as mean Average

Precision (mAP), the automated counts are compared to validated

set counts to ensure accuracy. The adapting comparative otolith

aging methods and metrics are used to measure the model

performance, which helps researchers analyze and make

management decisions. This approach provides a valuable tool for

analyzing Gulf of Mexico fish species and habitats.

Han et al. propose a few-shot domain adaptive underwater

object detection framework to address the issues of expensive

establishment of marine species database and unstable domain

shifting of underwater objects caused by the complex marine

environment. The framework includes a novel two-stage training

method and a lightweight feature correction module that can adapt

to image-level and instance-level domain shifting on multiple

datasets. The method quickly demonstrates its knowledge transfer

capability in detecting two similar marine species.

Through the sea trial experimental data, Guo et al. propose to

automatically identify inbound and outbound ships by utilizing the

phenomenon that the sound field interference structures of inbound

and outbound ships are different due to the variation of the

topography of the shallow continental shelf. The approach utilizes

only a single scalar hydrophone to collect data and employs four

convolutional neural networks to classify inbound and outbound

ships. And this research method can be applied to the intelligent

monitoring of ships entering and leaving ports.

To address the challenge of applying DL algorithms to

underwater target detection tasks due to the complex underwater

environment and low image quality, Zhang et al. propose an

underwater target detection algorithm based on an improved

version of YOLOv4. This proposed method achieves superior

detection performance and efficiency in experiments by

incorporating a newly designed convolutional network module,

loss function, and detector strategy.

Large-scale research on plankton classification, which uses

machine learning techniques, requires powerful computing

resources. The exponential computing power of quantum

computers makes quantum machine learning a potential solution

for large-scale data processing. Therefore, Shi et al. propose a hybrid

quantum-classical convolutional neural network (CNN) for the

identification task of phytoplankton. The model demonstrates the

feasibility of using quantum deep neural networks for

phytoplankton classification for the first time. The proposed

model exhibits a faster convergence rate, higher classification

accuracy, and lower accuracy fluctuation compared to classic

CNN-based models.

Commercial fishing vessels face difficulties in collecting acoustic

data required for species classification and population evaluation
Frontiers in Marine Science 039
due to the limited calibration capability and frequent data loss of

current commercial echo sounders. To address this issue, Tong et al.

develop an automatic detection and classification model for Pacific

saury (Cololabis saira) echo trace using the YOLOv5m algorithm.

This model enables the measurement of in-situ values of Pacific

saury using a single fish echo trace. Furthermore, the living fish

calibration method is utilized to facilitate rapid calibration of

commercial echo sounders.

To measure the fish without disturbing their natural habitat and

overcome the limitation of manual measurement with potentially

harmful intervention, Marrable et al. propose a generalized, semi-

automatic method that combines the DL method with the high-

precision stereo-BRUVS calibration method. The calibration cube is

used to ensure that the accuracy of the calculated length is within a

few millimeters and that the measurement accuracy is close to the

accuracy of human measurements.

In order to distinguish the subtle changes of marine organisms

and achieve accurate fine-grained classification, Si et al. propose a

new transformer-based framework, token-selective vision

transformer, and also propose a token-selective self-attention to

select important tokens with discrimination for attention

calculation, so as to limit attention to more accurate local areas.

Experiments on three marine biological datasets verify that the

proposed method can achieve state-of-the-art performance.

Current DL methods face challenges in processing in-situ

plankton images due to large computation and long consumption

time. To address this issue, Yue et al. propose an inter-class similarity

distillation algorithm. This method enables the student network

(small scale) to acquire excellent plankton recognition ability under

the guidance of the teacher network (large scale). The experiment

proves helpful in improving the accuracy and speed of plankton

recognition, establishing effective DL models, and facilitating the

deployment of underwater plankton imaging systems.

To address the ever-changing marine environments and diverse

marine life, Schmid et al. implement edge computing technology by

integrating the latest In-situ Ichthyoplankton Imaging System-3

(ISIIS-3) in the Northern California Current. The edge server

utilizes DL techniques to achieve high-throughput in-situ plankton

classification technology for real-time data adaptive sampling.

In order to develop and evaluate a subtidal seagrass detector

method, Langlois et al. adopt a DL model to detect most forms of

seagrass appearing in various habitats in the seascape of northeast

Australia from underwater images, and classify them according to

the coverage degree of seagrass to obtain high accuracy, and better

application value and prospects.

To create a non-invasive method to recognize leopard coral

grouper (Plectropomus leopardus), Wang et al. develop a multiscale

image processing method based on matched filters with Gaussian

kernels and partial differential equation (PDE) multiscale

hierarchical decomposition with the deep convolutional neural

network models VGG19 and ResNet50 to extract shape and

texture image features of individuals. They then use these features

to identify individual Plectropomus leopardus in sequence images

captured over 50 days. To achieve this, they employ random forest,

support vector machine, and multi-layer perceptron methods for

individual recognition. The experimental results demonstrate that
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the CNN based on PDE decomposition can identify Plectropomus

leopardus effectively and with great accuracy.
4 Dataset and labeling

Catalán et al. create a new labeling dataset with the aim to

further study and improve the application of DL techniques in

identifying and classifying fish in underwater images. The dataset

consists of more than 18,400 recorded Mediterranean fish from 20

different species, which are obtained through various operations

such as different backgrounds, sample size, labeling quality, etc.

These fish were extracted from underwater images captured from

over 1,600 diverse backgrounds, which will assist in improving the

use of DL in studying underwater life.

To achieve efficient data labeling and reduce the cost of manual

labeling, Zhang et al. propose a weakly supervised learning

framework for labeling marine biological data. This method

utilizes crowdsourcing interfaces to converge to a labeled image

dataset through multiple training and production loops.

Experimental results demonstrate that training with a small

subset and iterating over the results can converge to a large,

highly annotated dataset with a small number of iterations.

Remote sensing technology can potentially capture aerial

images of cetaceans across a vast observation area. However,

current limitations in automated analysis techniques require

biologists to manually analyze all images, leading to exorbitant

tagging costs. Boulent et al. propose a human-in-the-loop approach

that merges the proficiency of biologists with DL-based automation

capabilities to create a reliable AI-assisted annotation tool for large-

scale cetacean monitoring.

DL has been applied to the image classification of marine

echinoderms in response to the need for automatic classification

in marine biology research worldwide. Zhou et al. collect image data

of marine echinoderms and classify them according to systematic

taxonomy. Based on the DL model EfficientNetV2, an automatic

classification tool (EchoAI) is developed. The EchoAI tool, along

with methods and strategies, can classify images of other categories

of marine organisms, thus helping researchers investigate the

diversity, abundance, and distribution of marine species.
5 Marine process/phenomenon
prediction/detection

Song et al. propose a new method called Time-Sequence-

Involved Space Discretization neural network (TSI-SD) to solve

the problem of large computation amount and high complexity of

the fluid numerical model. This method extracts grid correlations

from both spatial and temporal views simultaneously and combines

TSI-SD with finite volume format as an advection solver for passive

scalar advection in a two-dimensional unsteady flow field.

Compared to the previous method that only considers spatial

context, TSI-SD achieves higher simulation accuracy and reduces

the calculation amount. Comprehensive experiments have verified

the superior computational efficiency and accuracy of this method.
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Song et al. propose a spatio-temporal transformer network that

overcomes the defects of existing methods in network structure

design and prediction errors to accurately, quickly and effectively

predict ENSO events. This network simulates the inherent

characteristics of spatio-temporal variations of sea surface

temperature anomaly maps and heat content anomaly maps and

takes into account the influence of seasonal variations on the

prediction of ENSO phenomena. Additionally, an effective

recurrent forecasting strategy is proposed, which takes previous

predictions as prior knowledge to improve the reliability of long-

term forecasting.

Aiming at addressing the problem that the current method only

uses single-modal Sea Surface Height (SSH) data to detect

mesoscale eddy, which often leads to inaccurate results, Zhao

et al. propose an end-to-end mesoscale eddy detection method

based on multi-modal data fusion, and add the data of the Sea

Surface Temperature (SST) and the velocity of flow. The superior

performance of the proposed method is demonstrated on various

multi-modal mesoscale eddy datasets.

In view of the problem that the ocean front detection method in

the Southwestern Atlantic Front (SAF) mainly adopts the thermal

gradient method while ignoring dynamic features, which leads to

inaccurate manifestation of SAF. Wang et al. develop a DL model,

SAFNet, to detect the SAF through the synergistic effect of satellite

SST and SSH observation data in 10 years (2010-2019), to achieve

high-precision SAF detection with the fusion of thermal and

dynamic features.
6 Marine physical/biogeochemical
variable prediction/reconstruction

Based on satellite observations, machine learning has

successfully reconstructed the high-resolution ocean subsurface

thermohaline structure. However, due to the macro-tidal

environment and limited in-situ observations, the offshore

subsurface parameter estimation accuracy will be affected. Yu et al.

propose a new approach by coupling the TPXO tidal model and light

gradient boosting machine algorithm to develop an inversion model

of offshore subsurface thermal structure for the South Yellow Sea

(SYS) using sea surface data and in-situ observations. The

experimental results show that the reconstruction is reliable in the

SYS area, and the proposed method also provides a new exploration

direction for reconstructing offshore ocean thermal structures.

For the reconstruction of satellite-derived chlorophyll-a

concentration in a global scale, Roussillon et al. propose a method

based on physical predictors, and uses a multi-mode convolutional

neural network to globally account for interregional variabilities via

learning and combining different modes spatially. The different

modes show regional consistency with ocean dynamics, and the

work contributes to new insights into the physical-biogeochemical

processes that control temporal and spatial variability in

phytoplankton on a global scale.

The current status of the sea surface carbon dioxide partial

pressure (pCO2) in the Yellow Sea is unclear due to limited

availability of in-situ spatial and temporal distribution data. To
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address this problem, Li et al. develop a pCO2 model using a

random forest algorithm. The model uses 14 cruise datasets from

2011 to 2019, as well as input variables such as remote sensing

satellite sea surface temperature, chlorophyll concentration, diffuse

attenuation of downwelling irradiance, and in-situ salinity. The

model is trained and tested, yielding excellent prediction and

evaluation results.

Cutolo et al. develop a CLuster Optimal Interpolation Neural

Network (CLOINet) to combine remote-sensing data with in-situ

observation and create a comprehensive 3D reconstruction of the

ocean state. CLOINet combines the robust mathematical

framework of the optimal interpolation scheme with a self-

supervised clustering method and also effectively segments remote

sensing images into clusters to reveal non-local correlations and

enhance fine-scale ocean reconstruction. The network is trained

using the output of the Ocean General Circulation Model and

shows good reconstruction results in various testing scenarios.
7 Marine optics/acoustics

Huang et al. propose a Task-driven Meta-Deep-Learning

(TDML) framework to solve the problem that the nonuniform

distribution of sound speed will bring difficulties to underwater

accurate positioning. It learns the common features of the Sound

Speed Profile (SSP) through multiple base learners, accelerates the

model convergence on new tasks, and enhances the model’s

sensitivity to changes in sound field data through metatraining.

Thus, the over-fitting effect is weakened, and the inversion accuracy

is improved. Experimental results show that the proposed TDML

method can achieve fast and accurate spatio-temporal SSP inversion.

To fully consider how water environment and communication

equipment affect signal transmission and accurately simulate the

complex characteristics of the Underwater Wireless Optical

Communication (UWOC) systems, Huo et al. develop a UWOC
Frontiers in Marine Science 0511
channel emulator based on deep convolutional conditional

generative adversarial networks, which are tested in experiments

to verify their excellent performance in the time domain, frequency

domain, and universality under different water turbidity levels.

To achieve full acoustic tracking of whales with reverberation

interference, Jin et al. propose an intelligent acoustic tracking model

that enables horizontal direction discrimination and distance/depth

perception by mining unpredictable features of position

information directly from signals received from two hydrophones.

The proposed method not only achieves satisfactory prediction

performance, but also effectively avoids the reverberation effect of

signal propagation over long distances.
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The South Yellow Sea Cold Water Mass (SYSCWM), which occurs in the South

Yellow Sea (SYS) during summer, significantly impacts the hydrological

characteristics and marine ecosystems but lacks fine interior data. With

satellite observations, significant achievements have been made in

reconstructing high-resolution ocean subsurface thermohaline structure

based on machine learning. However, the accuracy of offshore subsurface

parameter estimation will be affected due to the macro-tidal environment and

fewer in situ observations. In this paper, we coupled the TPXO tide model and

Light Gradient Boosting Machine algorithm to develop an inversion model of

offshore subsurface thermal structure for the SYS using sea surface data and in

situ observations. After light modelling, the subsurface temperature structure in

the SYS is retrieved from sea surface parameters with a spatial resolution of

0.25° at depths of 0-55 m. Observation-based dataset (ARMOR3D) and in situ

observations are used for model evaluation. According to the validation of the

mooring buoy observations, the overall coefficient of determination (R2), which

determines the percentage of variance in the dependent variable that can be

explained by the independent variable, is more than 0.95. Furthermore, the R2 is

improved by 12% due to coupling tide model below the thermocline during the

maturity stage of SYSCWM, which is helpful for a better reconstruction of

SYSCWM. Comparing with the cruise data, the average R2 of the proposed

model is 0.927 which is slightly better than the accuracy of the observation-

based ARMOR3D dataset. Since the R2 exceeds 0.8 in the most area of 121°

E~123.5°E, 33°N~36°N, the reconstruction is reliable in this area. The method

provides a new explorable direction for reconstructing the ocean thermal

structure in offshore areas.

KEYWORDS

offshore thermal structure, tide model data, lightGBM, satellite observations, the
South Yellow Sea
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1 Introduction

The South Yellow Sea (SYS) is a shallow (average depth of 46

m), semi-enclosed marginal sea in the northwestern Pacific

between the Chinese mainland and the Korean Peninsula. Due

to the vast and shallow continental shelf, seasonally atmospheric

conditions, such as the Asian monsoon, significantly impact the

thermal structure of SYS (Chu et al., 1997; Sun et al., 2022). In

the winter, strong northwest winds drive the water column to be

well-mixed until spring. Weak southeasterly winds prevail in

summer, so enhanced solar radiation causes the rapid formation

of a strong and stable seasonal thermocline, preventing vertical

mixing between the upper mixed layer and deep layer so that the

cold water from the previous winter is reserved below the

thermocline (Lee et al., 2016). It is called the South Yellow Sea

Cold Water Mass (SYSCWM; Li et al., 2017a) in the SYS, which

occupies the bottom layers of the central part with a large

temperature difference between the surface and the bottom.

The SYSCWM plays an important role in the field of

hydrodynamics and biochemistry (Wang et al., 2014; Liu et al.,

2015; Xin et al., 2015; Li et al., 2016; Guo et al., 2021; Li et al.,

2021). The Yellow Sea Warm Current in winter is another

prominent feature in the SYS, which transports warm saline

water from the Tsushima Warm Current to the SYS (Zhang

et al., 2008; Diao et al., 2022; Yu et al., 2022). In addition, SYS is a

macro-tidal environment with a huge tidal range and strong

tidal currents (Lü et al., 2010; Hwang et al., 2014). These features

lead to the water mass of the SYS having high variability. As yet,

the knowledge of the SYS has primarily depended on in situ

observations (Yang et al., 2019). Despite many subsurface in situ

measurements in the SYS, continuous and fine observations

remain sparse. Satellite observations provide multiple data at

different spatiotemporal scales but are limited to the surface

layer (Ali et al., 2004). To better comprehend the dynamical

processes, it is necessary to have continuous and high

spatiotemporal resolution subsurface data in the SYS.

Compared to the temperature profiles, the vertical variation

of the salinity profiles is slight (less than 2 PSU; Li et al., 2017b).

Hence, extensive studies have been conducted to reconstruct the

temperature field by dynamical methods in the SYS, which have

the advantage of being physically consistent. Lü et al. (2010)

reproduced the three-dimensional temperature field and

dominant tidal system in the Yellow Sea (YS) based on a

wave-tide-circulation coupled numerical model. Zhu et al.

(2018) used Princeton Ocean Model to simulate the process of

the Yellow Sea Cold Water Mass (YSCWM) and added tidal

forcing and freshwater input. Yang et al. (2019) reconstructed

the cooling process of sea surface temperature (SST) with a high

spatiotemporal resolution during the typhoon passage over the

YS by a one-dimensional mixed-layer model. Wan et al. (2022)

rebuilt temperature structure and circulation of the YS in winters
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based on a high-resolution Regional Ocean Modeling System.

Relative to the above, the numerical model has well

reconstructed ocean temperature structure. Nonetheless, the

typical dynamical methods, including numerical simulation

and data assimilation, are complex and computationally

time-consuming.

Many ocean internal processes have manifestations at

surface, so it is possible to retrieve ocean interior parameters

from satellite observations for the dynamical connections (Meng

et al., 2022). Meantime, machine learning methods are flexible

and popular for the ability to extract nonlinear relationships.

Therefore, diverse machine learning methods have been applied

to estimate ocean interior information in recent years. The self-

organizing mapping neural network and support vector machine

methods were used to reconstruct the subsurface temperature

anomaly (STA) from multisource satellite observations in the

Atlantic Ocean and the Indian Ocean (Wu et al., 2012; Su et al.,

2015). Meantime, the importance of sea surface salinity (SSS)

and sea surface wind (SSW) was revealed by the fact that they

can improve the inversion accuracy. Lu et al. (2019) found that

the clustering method helps to obtain a better estimated thermal

structure. To tackle the challenge of estimating ocean subsurface

temperature (OST) in regions with huge seasonal changes,

establishing seasonal models is an effective method that could

reduce the error of estimated OST, especially in the upper ocean

(Su et al., 2021). It may therefore be more efficient that clustering

the temperature profiles by seasonal feature. However, it will

lead to a sharp reduction of training samples, so the ensemble

learning methods were used to predict the OST because they are

more appropriate for small sample training than deep learning

and classic machine learning approaches (Su et al., 2019; Su

et al., 2021). The aforementioned results demonstrate that

machine learning algorithms can successfully rebuild the large-

scale ocean temperature structure. However, the accuracy will be

affected when estimating the thermal structure of the offshore

areas using classic machine learning algorithms for the complex

tidal environment and fewer data. Therefore, it is worth

exploring but challenging to improve the accuracy of

estimating offshore subsurface temperature by considering

tides and ensemble learning algorithms.

In this study, we propose a framework that couples a tide

model with the Light Gradient Boosting Machine algorithm,

which is less computational and more appropriate for small

samples, to retrieve the subsurface temperature (ST) of the SYS

by combining sparse in situmeasurements with multiple satellite

observations. The rest of the paper is organized as follows:

Section 2 introduces the datasets and tide model. The methods

to retrieve the ST are described in Section 3. In Section 4, we

evaluate the reconstruction method and discuss the importance

of tides in the model. Finally, a brief conclusion and some

prospects are presented in Section 5.
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2 Data

2.1 In situ data

As the labeled data, three measurements are used in this

study: the mooring system, high-resolution profiler, and

shipboard survey cruises. A time series of temperature profiles

over 9 months (from 22 July 2019 to 15 May 2020), recorded by

a mooring system (named M1) which deployed in the SYS, near

the western boundary of SYSCWM (35.18°N,122.26°E,

Figures 1A, B). The M1 data has 244 temperature profiles after

quality control, including 17 depth levels (from 1 m to 55 m),

covering the maturation to disappearance of the SYSCWM. The

moored high-resolution profiler (named H1), which was

deployed at the same location as M1 from 3 June 2022 to 4

July 2022, provides a fine temperature profiles time series. This

profiler recorded vertical temperature profiles from 1 m to 50 m

during the growth to maturity of the SYSCWM. The sample

interval of H1 is 30 min and the vertical resolution is 0.1 m. In

this study, the spatiotemporal resolution of the H1 data is

averaged to daily and 1 m. In addition, the 55 m depth level of

H1 data is extrapolated from several adjacent temperatures for

their similarity. Cruise observations were carried out with 1 m

vertical resolution in the western SYS in April, July and October

2019. The cruise covered the sea west of 124°E, from 33°N to 37°

N, and a total of 5 latitude sections were used in this study. The

five temperature latitude sections obtained by CTD castings

during the cruise survey along different latitudes (33°N, 34°N,

35°N, 36°N, 37°N), named S33-S37 (Figure 1B).
2.2 Satellite data

Multisource satellite observations are used as input data,

including absolute dynamical topography (ADT), SST, SSS, and
Frontiers in Marine Science 03
14
SSW. The SSW contains u and v components (USSW, VSSW).

The ADT data are provided by SSALTO/Data Unification and

Altimeter Combination System (DUACS) and were available

through the Copernicus Marine Environment Monitoring

Service (CMEMS, https://marine.copernicus.eu/). The product

merged multiple L3 along-track measurements and conducted

the tidal corrections (Taburet et al., 2019). The SST data are

obtained from Daily Optimum Interpolation Sea Surface

Temperature (DOISST, https://psl.noaa.gov/), developed by

National Oceanic and Atmospheric Administration Physical

Sciences Laboratory (NOAA PSL). It is a blend of in situ SST

with satellite SST derived from the Advanced Very High

Resolution Radiometer (Banzon et al., 2016; Huang et al.,

2021). The SSS data are obtained from SMOS L3OS 2Q

Debiased daily valid ocean salinity values product (https://

sextant.ifremer.fr/), which are distributed by Centre Aval de

Traitement des Données SMOS (CATDS) and corrected the

offshore SSS through various in situ observations (Boutin et al.,

2018). The SSW data are provided by the Cross-Calibrated Multi-

Platform (CCMP; https://rda.ucar.edu/datasets/ds745.1/). The

CCMP uses a variational analysis method to smoothly fuse

multisource surface wind data into the gridded data at 6 hours

intervals (Atlas et al., 2011). The temporal resolution of the

CCMP data is 6 hourly while the rest is daily, and the spatial

resolution of all these data is 0.25°×0.25°.
2.3 Tide model data

We coupled the tide model data into the inputs of machine

learning model. The tide model data, including surface tidal

elevation and tidal currents, are estimated by the TPXO7 global

tidal model provided by Oregon State University, which was

built hourly on a 0.25°×0.25° grid. The tide model is based on the

hydrodynamic equation and uses the generalized inversion
A B

FIGURE 1

M2 tidal current amplitude and topography of the South Yellow Sea (SYS) and the location of different in situ observations. M1 and H1 with the
same site, indicated by the black star. (A) The amplitude of M2 tidal current from TPXO7 global tidal model in which the tidal currents are
stronger. (B) The topography and geography of the SYS. The color contours denote bathymetry. The black dots in the rectangles show the CTD
casts along five latitudinal sections (S33-S37) in the cruise survey.
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method to assimilate the measured data, including satellite

altimetry data and tide observations. Furthermore, it was

recently used for the hydrographic study in the YS (Bi et al.,

2021; Lin et al., 2021; Sun et al., 2022). The M2 tide is the most

dominant tidal component in the SYS, having stronger tidal

current (Figure 1A). The tides have complex structures in the

SYS, which is detrimental to temperature inversion. In this

study, the tidal time series of eight basic tidal components

(M2, S2, N2, K2, K1, O1, P1, and M4) are extracted by the

Matlab Tide Model Driver toolbox (https://www.esr.org/

research/polar-tide-models/tmd-software/). The tide model

data and satellite observations, which have the same spatial

resolution, were co-located with the temperature profiles by the

nearest neighbour method, and the temporal resolution is

unified to daily.
2.4 ARMOR3D dataset

We also validate the temperature estimation with the

ARMOR3D dataset (Guinehut et al., 2012), which was
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obtained through CMEMS. The ARMOR3D used multiple

linear regression and optimal interpolation, providing the

weekly temperature and salt fields at 0.25° × 0.25° resolution

over 15 regularly spaced vertical levels between surface and 80 m

depth. The weekly averaged three-dimensional temperature field

in April, July and October 2019 from ARMOR3D is used to

compare. The YSCWM below the thermocline is clearly visible

in the observation-based ARMOR3D data (Figure 2A). In

addition, the M1 temperature data are used to evaluate

ARMOR3D. In order to match the temporal resolution, the

M1 data are first calculated as weekly average and then

compared to the nearest neighboring grid in ARMOR3D. As

shown in Figure 2B, most of the data points are distributed along

the equal line with low bias, absolute error and high Pearson’s

correlation coefficient. The evident seasonal temperature

variations in ARMOR3D are well simulated compared to the

M1 observations (Figures 2C, D). Even though ARMOR3D

presents a shallower mixed layer and a more durable YSCWM

which lasts until October, it well reproduces the vertical thermal

structure at the M1 station and is worth to refer for the thermal

structure of SYS.
A B

DC

FIGURE 2

YSCWM phenomena in ARMOR3D temperature data and comparison of ARMOR3D, M1 temperature field at M1 location during July 2019 to
May 2020. (A) The distribution of weekly average surface and subsurface temperature (°C) in the SYS with a spatial resolution of 0.25°×0.25°
between 25 July and 31 July 2019 from the ARMOR3D data, selecting 0-55 m depth to correspond to the M1 data. The YSCWM is below the
thermocline. (B) Scatter plots for M1 temperature and ARMOR3D temperature from all depth. (C) Weekly average temperature data from M1
with gaps representing interruptions in the measurements. (D) ARMOR3D temperature fields at M1 site.
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3 Methods

3.1 Gaussian mixture model clustering

Considering the large seasonal variation of the thermal

structure in the SYS, we use unsupervised GMM clustering

techniques to shrink the sample space and improve the accuracy

(Landschutzer et al., 2013; Parard et al., 2015). As a probabilistic

model, GMM is often used for data clustering (Attal et al., 2015).

First, the GMM randomly initializes the Gaussian distribution

parameters of each cluster. Then the posterior probability of each

sample is calculated and used to compute the new Gaussian

distribution parameters. The process is repeated until the

expectation function is maximized. Compared with the K-means

method, GMM is more suitable for non-spherical clusters with

different sizes and densities (Wang et al., 2019; Askari, 2021).

Therefore, it is appropriate for the classification of ocean

temperature profiles (Maze et al., 2017; Sambe and Suga, 2022).

GMM requires the number of classes (K) as an input parameter.

Therefore, the Davies-Bouldin index (DBI) is used to determine

the appropriate number of classes in this study. The number of

classes having the minimized DBI is considered the optimal result.

Since the initial values of the Expectation-Maximization algorithm

are randomized, the GMM clustering was applied 20 times, and

80% of the data were randomly selected from the M1 and H1 data

each time to stabilize the clustering results. Figure 3 shows the DBI

from clustering results with different K. As a result, we judge that

stable and good clustering results could be obtained if K = 3. The

clustering results are shown in Figure 4. Although the YSCWM

temperature structure from H1 data is still growing, it is

approaching maturity. Therefore, they are named after a specific

stage of YSCWM: the maturity stage, the declining stage, and the
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disappearance stage. During the maturity stage of YSCWM with

weaker wind, the sea surface is subjected to strong thermal

radiation, forming a stable upper mixed layer and a strong

thermocline, which prevents heat transfer, so the bottom water

stays cold (Lee et al., 2016). It leads to a multi-layer temperature

structure in the SYS, with a large temperature difference between

the sea surface and the bottom (Figure 4A). In the YSCWM

declining stage, the cooling at the sea surface and stronger mixing

lead to a thicker and colder upper mixed layer and the subsequent

weakening and deepening of the thermocline (Figure 4B).

Meanwhile, critical tidal currents raise the temperature at the

bottom layer then decline the YSCWM (Li et al., 2016). Thermal

forcing at the air-ocean interface and agitation by strong winds

together cause strong vertical mixing, forming a well-mixed low

temperature structure (Figure 4C) from the sea surface to the

bottom in the YSCWM disappearance stage (Chu et al., 1997).
3.2 Light gradient boosting machine

To tackle the limitations of small data and complex

computations, we adopt the LGBM algorithm to predict the

temperature by taking advantage of its lightweight. LGBM is a

gradient boosting framework based on decision trees, which has

been well used in the marine field and shown a faster training

speed and higher accuracy for small data (Su et al., 2021; Dong

et al., 2022). Same as the other boosting algorithms, it sums the

results of multiple decision trees as the final prediction output.

Gradient-based One-Side Sampling (GOSS) and Exclusive

Feature Bundling (EFB) are two important features of LGBM.

The GOSS excludes most of the samples with small gradients

and calculates the precise information gain by the remaining
FIGURE 3

The mean value (the blue line) and confidence intervals (one s, the black error bar) of the Davies-Bouldin index (DBI) from 20 trials of Gaussian
mixture model (GMM) clustering for the different number of classes.
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samples. The EFB approach integrates many mutually exclusive

features and reduces the data dimension. To build a better

model, the Bayesian optimization strategy is used to optimize

several important parameters of LGBM. The optimization

method is a Gaussian process with a faster speed. According

to previous studies, three essential hyperparameters need to be

adjusted: the number of leaf nodes (num_leaves), the learning

rate, and the number of iterations (n_estimators). The bounds of

n_estimators were set 100 and 1000, and the best n_estimators is

400 without overfitting. It improves the accuracy by 16.6%

compared to n_estimators=100. However, the accuracy at

n_estimators=1000 is only increased by 0.1% compared to the

best n_estimators. When the learning_rate is increased to 0.01

from 0.001, the performance is improved by 21% compared to
Frontiers in Marine Science 06
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the starting learning_rate=0.001, but the effect does not enhance

when it is increased further until 0.1. The test range of

num_leveas is from 5 to 30. The performance of the model at

the best num_leveas=5 improved by 3.4% over num_leveas=30.

The optimal parameters are shown in Table 1. In addition, the

max depth is set to 5, to prevent overfitting due to excessive

complexity of the model. The other parameters are set to

default values.
3.3 Experimental setup

First, we input the eight harmonic components (M2, S2, N2,

K2, K1, O1, P1, and Q1), geographic location and time parameters
A B C

FIGURE 4

Vertical temperature structure of the classified profiles from M1 data, which represents different stages of the YSCWM: (A) the maturity stage,
(B) the declining stage, and (C) the disappearance stage.
TABLE 1 Design of experiments and parameter values.

Case Coupling tide
model or not

Clustering
or not

Training Models Parameter values

GLGBM-
tides

Yes Yes ST = LGBM (SST, ADT,
SSS, SSW, tides)

n_estimators = 400, learning_rate = 0.01, max_depth = 5, num_leaves=5

GLGBM No Yes ST = LGBM (SST, ADT,
SSS, SSW)

n_estimators = 400, learning_rate = 0.01, max_depth = 5, num_leaves=5

SVR No No ST = SVR (SST, ADT, SSS,
SSW)

C = 2.5, gamma = 1.2, kernel = rbf

ANN No No ST = ANN (SST, ADT, SSS,
SSW)

Number of neural network layers = 2, number of neurons per layer = 40,
learning_rate = 0.01, loss function = MSE
The SSW contains its two components (USSW and VSSW) and the tides include tidal elevation and tidal currents.
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into the TPXO7.2 global tidal model, to extract tidal elevation

and tidal currents data. TPXO7.2 fits best the Laplace tidal

equation in the least squares sense. Second, the datasets

consisting of tide model data, satellite observations and in situ

temperature profiles are divided into three different stages by

GMM clustering. The surface parameters (ADT, SST, SSS, SSW,

tidal elevation, and tidal currents) are used as independent input

variables and the temperature time series are used as labels to

prepare the training and test data. To ensure that the training

and test sets have a similar seasonal distribution, all samples at

the location of M1 are normalized and randomly sampled into

the training set (60%) and the test set (40%) by month (Figure 5).

Third, the model is tuned and trained using the Bayesian

optimization method to obtain suitable temperature estimators

at 17 depth levels. Figure 6 shows the technique flowchart of one

stage at a certain depth. We use a total of 162 samples to train

and 114 samples to test when using mooring observations for

validation. Finally, temperature predictions are applied to a

larger horizontal space and verified with cruise observations in

the SYS where the number of training data and evaluating data

are 276 and 78, respectively.

To evaluate the tide model coupled temperature inversion

method, we designed comparative trials named GLGBM-tides

and GLGBM. They both use the LGBM method with pre-

clustering process but the former couples the tide model while

the latter does not. Additionally, we compared other

reconstruction methods. Case SVR and Case ANN use

Support Vector Regression (SVR) model and Artificial Neural

Network (ANN) model, respectively. Table 1 summarizes the

different trials. These are optimized by the Bayesian

optimization strategy, and the parameters of different models

are shown in Table 1. The ARMOR3D dataset is also used

for comparison.
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4 Results and discussion

The sea surface data of the test samples are input into the

different models to obtain the reconstructed vertical temperature

structure. Based on the test data, we first examine the

importance of tides in offshore temperature prediction from

the time series data. Then the performance of the different

models is compared. Finally, we estimate the temperature

structure of each latitude section (S33-S37) and compared it

with the ARMOR3D dataset.
4.1 The performance of tide model data
on the temperature field reconstruction

Previous studies have shown that strong tidal mixing has an

important effect on the temperature structure and enhances

vertical heat exchange in the water column during summer in

the YS (Lü et al., 2010; Yao et al., 2012; Li et al., 2016; Yu et al.,

2016). Here, we first compared GLGBM-tides and GLGBM to

investigate how tides affect temperature estimation in this study.

Figure 7 shows the comparison between the temperature profiles

obtained by the two models and in situ observations. The profiles

are randomly selected according to spring tide and neap tide in

the maturity stage of YSCWM. In this stage, bottom vertical

disturbances are stronger (Li et al., 2016), which affects the heat

transfer and thermal structure significantly. Besides, the air-sea

heat flux and the cooling process of the previous winter strongly

influences the intensity of YSCWM (Zhu et al., 2018). This leads

to machine learning models having more difficulty accessing

these temperature variations and more considerable differences

between in situ and estimated temperature (Figure 7). However,

it can be seen that the temperature profiles obtained from
FIGURE 5

Monthly distribution of the number of temperature profiles from M1 and H1 data.
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GLGBM-tides are more consistent with the measured profiles,

especially deeper than 30 m. This confirms that the method

coupled with tide model can effectively improve the structure of

the predicted temperature profiles during the maturity stage. To

further validate the above results, several evaluation indicators
Frontiers in Marine Science 08
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metrics are used to assess the two models. Except for root mean

square error (RMSE), coefficient of determination (R2) and

absolute difference, the error (defined as the proportion of

RMSE in the actual mean temperature observations) is also

used to evaluate the accuracy and reliability of the model. The
FIGURE 6

Flowchart of the subsurface temperature (ST) estimation at different depth levels using LGBM models for a certain class. In the moored buoy
observation validation, a total of 162 samples were used for training and 114 samples for testing. In the cruise survey validation, the training data
and validation data are 276 and 78, respectively.
A B DC

FIGURE 7

Comparison among the vertical structure of temperature at depths of 1-55 m obtained by observed ST (black), GLGBM-tides (blue) and GLGBM
(red) during maturity stage of the YSCWM. The profiles are randomly selected according to spring tide (B, D) and neap tide (A, C). The max_tcv
represents the daily maximum tidal current speed.
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evaluation indicators are computed as follows:

RMSE =  
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Here, Ti denotes the observed temperature while T
0
i is the

estimated temperature by models. The �T is the mean values of Ti
over the whole observation. N is the number of test samples.

From Figures 8A-C, the evaluation indicators of the two

methods are similar within the 1-28 m depth layer. However, in

the 40 m depth level, the RMSEs of the two are 0.806 and 0.863,

respectively. Meanwhile, the accuracy of other layers has been

improved by different degrees from 30 m to 55 m. Figure 8D

shows that the smaller absolute errors occupy a larger

proportion in the GLGBM-tides model. In addition, the

enhancement is mainly manifested during the maturity stage

(Figure 9). It may be attributed to the tidal mixing primarily

influencing the range up to 30 m from the bottom during

summer (Qiao et al., 2004b). In this trial, GLGBM-tides

coupled the tide model while GLGBM not. Meanwhile, strong

tides affect the heat transfer and thermal structure of the profile,

especially the bottom layer. As a result, GLGBM-tides better

learn the temperature variation affected by tidal mixing, and it
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presents a more consistent vertical thermal structure with in situ

observations (Figure 7) and better performance than

GLGBM (Figure 8).

Furthermore, we analyzed the accuracy of the models at

three specific stages from 30 m to 50 m (Figure 9). The averaged

R2 and RMSE are significantly different in the maturity stage of

YSCWM and similar in the decline and disappearance stages. It

performs less well in the maturity stage than the other two stages

in the YSCWM deep. Strong stratification leads to a large

difference in temperature between YSCWM and the upper

layer. Besides, YSCWM is influenced not only by the air-sea

heat flux but also by the cooling process of the previous winter

(Zhu et al., 2018). It means that the thermal structure of

YSCWM is more difficult to be described by sea surface

parameters in the machine learning models hence lower R2

and higher RMSE. The averaged R2 of GLGBM-tides and

GLGBM are 0.614/0 .547, with approximately 12%

improvement. It results from the stronger influence of tidal

mixing on the temperature structure in summer. Therefore, tides

are worth considering in the offshore temperature

field reconstruction.

Overall, the GLGBM-tides has good accuracy with errors of

less than 8% at all depth layers and most absolute difference of

less than 2°C (Figures 8C, D). It is worth noting that a bump

appears above 30 m in Figure 8B. This phenomenon may be

related to the depth of the mixed layer. According to previous

research, the depth of the mixed layer in SYSCWM is about 5-25

m (Qiao et al., 2004b). The temperature does not vary

significantly within the mixed layer, which causes the lower

RMSE and higher R2. The tidal mixing primarily influences the
A B

DC

FIGURE 8

The average RMSE (A), R2 (B), Error (C) at the 17 depth levels and absolute difference density distribution (D) between the test datasets and
estimated ST from GLGBM-tides (blue) and GLGBM (red).
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range up to 30 m from the bottom, enhancing the vertical

temperature variability (Qiao et al., 2004a) and the particular

structure of the YSCWM makes it difficult for the model to

accurately describe the temperature variations. Therefore, the

accuracy of reconstruction at these depths will be worse

(Figures 8A-C).

It helps to understand the different effects of each sea surface

parameter on the ST, by analyzing the importance of sea surface

parameters at different depths. The LGBM reflects the importance

of different features by calculating the number of times the sea

surface parameters are used to segment the data across all trees.

The relative importance of each parameter is calculated by

summing and normalizing the feature importance from the
21
LGBM. Figure 10A shows the relative importance of each sea

surface parameter from GLGBM-tides. According to previous

studies, the vertical thermal structure in the Yellow Sea (YS) is

influenced by air-sea heat flux, the wind, tidal vertical mixing, and

freshwater input (Chu et al., 1997). The temperature in the mixed

layer is vertically quasi-uniform due to the mixing of multiple

dynamic processes, such as wave motion and wind. Meanwhile,

the mixed layer gradually thickens from the maturity stage to the

disappearance stage of YSCWM, which means that the sea surface

temperature (SST) can explain more subsurface temperature

variations. Consequently, SST is the main driver of the model,

with a more than 30% contribution at 17 depth levels

(Figure 10A). However, below the mixed layer, the heat transfer
FIGURE 9

The average RMSE and R2 between 30 and 50 m depth using GLGBM-tides and GLGBM in three YSCWM stages (the lines indicate the RMSE and
the bars indicate the R2).
A B

FIGURE 10

The relative importance of each sea surface parameters in three stages and maturity stage at different depths. (A) Average relative importance by
three stages of all input parameters. The parameters of tides include tidal elevation (z) and tidal currents (u, v). (B) The relative importance of the
SST and tides in YSCWM maturity stage below 30 m.
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is blocked, and it is difficult to explain the temperature change by

relying on SST alone. Therefore, the trend of SST contribution

decreases with deepening (Figure 10A).

Warming or cooling mainly drives density changes, causing

sea level changes since salinity variation is not significant in the

SYS. There is a close correlation between ADT and subsurface

thermal structure. The sea level variations are influenced more

significantly by those depths where temperature sharply

changes, such as the thermocline. Therefore, the ADT

contribution is higher at those depths where the temperature

fluctuates drastically (Figure 10A), such as the thermocline in the

maturity and declining stages and the bottom layer affected by

tides. It leads to an average relative importance of 10% and 16%

for ADT above and below 15 m depth, respectively.

SSS and SSW are also important parameters (Wu et al., 2012;

Klemas and Yan, 2014; Su et al., 2015). The SSS is related to

freshwater input (Nieves et al., 2014), which causes density

anomalies and then affects the dynamics. The contribution of

SSS is less variable from surface to 40 m depth but increases at

the bottom (Figure 10A). This may be related to the Yellow Sea

Warm Current (YSWC) in the winter, which brings a more salty

and warmer water mass, especially at the bottom and manifests

in the SSS. Wind forcing changes sea level and also affects ocean

mixing, intensifying heat exchange between layers. Southerly

winds prevail in summer and northerly winds during winter in

the SYS, which causes VSSW to contribute more than USSW

(Figure 10A). The vertical distribution of the wind (USSW and

VSSW) contribution is roughly same but increases slightly at the

bottom (Figure 10A), which is due to the mixed layer deepening

during the declining stage of YSCWM.
Frontiers in Marine Science 11
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Tide-induced mixing causes changes in the ocean heat

vertical distribution. Even though the overall tidal contribution

is weak and less variable, it may be important for a particular

stage. During the maturity stage of YSCWM, the tides

contribution (u, v, and z in Figure 10A) is about 15% within

the mixed layer but can exceed 30% below the mixed layer

(Figure 10B) causing the tidal-induced mixing mainly affects the

bottom and above 30 m range (Qiao et al., 2004b). It is

comparable to the SST contribution (Figure 10B).
4.2 Comparison with other methods

We compared other temperature prediction methods. The

SVR and ANN methods have no pre-clustering process and

tides. The overall R2 of SVR and ANN are 0.862/0.888 with the

RMSE of 1.506/1.22°C, respectively on the time series. It shows

that the GLGBM coupled tides have better accuracy from

Figures 11A-C. However, the ANN has similar accuracy above

20 m compared to GLGBM-tides, which may be related to the

dominance of SST in this depth range. Additionally, GLGBM-

tides allows errors to be smaller and more concentrated,

effectively improving model performance, as revealed by the

error density distribution (Figure 11D).

We choose H1 data to demonstrate the performance of

different methods for fine and continuous data. Since deep

learning is more applicable to large data, ANN performs

unstable. We implement ANN 20 times to obtain the average

temperature estimation. Figure 12 shows the observation from H1

and the reconstructed temperature structure from different
A B

DC

FIGURE 11

The average RMSE (A), R2 (B), Error (C) at the 17 depth levels and absolute difference density distribution (D) between the test datasets and
estimated ST from GLGBM-tides (blue), ANN (red) and SVR (grey).
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methods. The seasonal warming in the upper mixed layer has

been reproduced by all methods. Here we adopt the upper

boundary of the thermocline as the mixed layer depth (MLD)

to further evaluate the performance of models. The reconstructed

temperature fields are interpolated to 1 m vertical resolution

before calculating MLD. The results show that the MLD is

maintained around 10-15 m in the H1 observations

(Figure 12A). For the reconstructed temperature field by

GLGBM-tides (Figure 12B), the MLD changed generally

consistent with the H1 observation. Influenced by atmospheric

processes, the MLD becomes shallower from 17 June to 1 July.

This process is wel l reproduced by GLGBM-tides.

Reconstructions from other methods failed to capture this

variation. The MLD from reconstructed temperature by ANN is

stabilized at about 15 m (Figure 12C) while the MLD

reconstructed by SVR (Figure 12D) is too deep. The

reconstructed temperature from ANN can indicate the trend of

YSCWM but has large noises (Figure 12C). The temperature field

estimated from SVR fails to reproduce the strong thermocline and

YSCWM (Figure 12D). GLGBM-tides can reproduce the vertical

temperature structure well compared to the observations.

However, the overall estimate of the YSCWM by GLGBM-tides

is slightly warmer than the observations from surface to bottom.

Hence, the intensity of YSCWM from estimation is weaker. It is

noticeable that the reconstruction of the thermocline is well,

which assists in predicting the depth of the YSCWM.

We attempt to apply the temperature estimation at the

locations of the cruise observations by training the samples

from H1 and M1 and use S33-S37 data for verification. The
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ARMOR3D reanalysis data is used to compare as well. The

temperature estimation beyond the topography is deleted.

Figure 13 shows the temperature structure of 35°N and 36°N

sections (S35 and S36) in three stages of YSCWM. The overall

RMSE by all samples of GLGBM-tides and ARMOR3D is 1.781/

2.133°C, respectively. It is higher than above due to the spatial

heterogeneity of the thermal structure in SYS but the

reconstructed vertical temperature structure is still in general

agreement with the observations. In the mixed layer, the

reconstructed temperature was colder than observation while

the ARMOR3D is warmer and the reconstruction has a small

zonal variation. It is the result of the training data containing

inadequate spatial features. In contrast, the reanalysis

data shows a clear spatial difference for fully considering

spatial features during production but shows a shallower

mixed layer, such as Figures 13B, D. In the declining and

disappearance stages, the temperature reconstruction is better

for the strong mixing but the ARMOR3D still shows a

significant temperature gradient from surface to 35 m depth

(Figures 13C, D). The estimates provide a better reconstruction

of the thermocline than ARMOR3D (Figures 13A, B). The

intensity of the thermocline in the ARMOR3D data is

strong (Figures 13A, B) in maturity stage while it is weak in

declining stage (Figures 13C, D). The estimated temperature

of YSCWM by the GLGBM-tides is slightly warmer especially in

the declining stage (Figures 13C, D), but consistent in terms of

depth and spatial distribution. The ARMOR3D have the

shallower upper boundary of the YSCWM so the temperature

of YSCWM is cold as observations (see Figure 13B). Both have
A B

DC

FIGURE 12

Comparison H1 observations (A) and reconstruction from GLGBM-tides (B), ANN (C) and SVR (D) from 0-50 m in H1 period. The MLD is
indicated by the solid black line.
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good reconstruction of well-mixed temperature structure in the

disappearance stage (Figures 13E, F). However, the cold cores in

S36 could be observed (Figures 13B, D, F) by cruise data but this

special structure is difficult to reproduce. Figure 14 shows the

spatial distribution of RMSE in three stages. The accuracy of the

proposed method is good from 121°E to 123.5°E. From

Figure 14A, the RMSE increases from the center (location of

M1) along longitude towards the sides, but with larger

differences in farther regions, which may stem from the

sparseness of the offshore observations. On the contrary, the

RMSE of ARMOR3D decreases gradually from the center to the

outside but is similar on the west side of the study area.

However, the GLGBM-tides and ARMOR3D have close

overall R2, which are 0.927 and 0.884, respectively. Generally,

our reconstruction results are reliable through comparison with

ARMOR3D data.
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5 Conclusion

This paper proposed the offshore temperature

reconstruction method coupled TPXO tide model based on

LGBM, using sea surface parameters (ADT, SST, SSS, SSW,

tides). The performance of model incorporating tides is

quantitatively analyzed. In addition, the temperature

estimation is applied spatially and compare with other

ARMOR3D. The primary significance of this study is as follows:

(1) The SYS is a typical offshore sea with a huge tidal range,

resulting in the difficulty of temperature prediction by classic

machine learning method. We coupled the tide model by feeding

the estimated tidal elevation and tidal currents by the tide model

into a lightweight ensemble learning approach to retrieve SYS

thermal structure using small data. The method can generate

continuous 3D temperature field at 0-55 m in the SYS at daily
A

B

D

E

F

C

FIGURE 13

Comparison of vertical temperature distributions of in situ observations (left), reconstruction from GLGBM-tides (middle) and ARMOR3D (right)
in 0-55 m along the 35°N and 36°N section at maturity stage (A, B), declining stage (C, D) and disappearance stages (E, F) of YSCWM.
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and 0.25° × 0.25° resolution. Experiments demonstrate that

proposed method increases the R2 by 12%, compared to

GLGBM and the model tide data mainly improves the

accuracy below thermocline in the maturity stage of YSCWM.

It has significance for the depth prediction of the YSCWM.

Meanwhile, the contribution of tides is comparable with SST in

the temperature reconstruction model. The proposed method

provides a new explorable direction for reconstructing the

offshore thermal structure.

(2) The proposed method is also compared with other

machine learning approaches and ARMOR3D dataset. Time

series experiments show that the proposed method is superior to

SVR and ANN with the RMSE of 0.803°C, 1.506°C, and 1.22°C,

respectively. Compared with the cruise data, the method has

good and stable results in the three stages of YSCWM. Around

the location of M1, the RMSE and R2 have a good performance

in our experiments so our method is effective in the SYS.

Furthermore, the temperature reconstruction is comparable to

observation-based ARMOR3D dataset, with close R2 although

their RMSE differed in spatial distribution.

Due to the small samples, important oceanic phenomena at

longer time scales and larger spatial scales may not be well

represented in the reconstructed temperature fields. With

sufficient data, better accuracy will be obtained on larger

spatial and temporal scale. Therefore, extending the data over

longer time and more space to improve the prediction

performance of the model is a priority for future work.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Materials. Further

inquiries can be directed to the corresponding author.
Frontiers in Marine Science 14
25
Author contributions

All authors conceived the research question. FY and JL

conducted the analysis on the datasets of the in situ

observations. FY and GC led the design of the inversion

model. FS performed the run of the model. FY and FS wrote

the first draft and all authors reviewed and edited the final

manuscript. All authors contributed to the article and approved

the submitted version.
Funding

This research was jointly supported by the following

programs: (1) the Laoshan Laboratory science and technology

innovation projects (No. LSKJ202204304); and (2) the Key

Laboratory of Marine Science and Numerical Modeling,

Ministry of Natural Resources (Grant No. 2021-ZD-01) and

(3) the National Natural Science Foundation of China (Grant

No. 41806190).
Acknowledgments

The study is benefited from the cruise dataset collected onboard

of R/V Lanhai 101 implementing the open research cruise

NORC2020-01 supported by NSFC Shiptime Sharing Project.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
A B

FIGURE 14

Spatial distribution of the overall RMSE by depths from GLGBM-tides (A) and ARMOR3D (B). The red star indicates the location of the M1 and H1.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1075938
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yu et al. 10.3389/fmars.2022.1075938
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
Frontiers in Marine Science 15
26
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
Ali, M. M., Swain, D., and Weller, R. A. (2004). Estimation of ocean subsurface
thermal structure from surface parameters: A neural network approach. Geophys.
Res. Lett. 31, L20308. doi: 10.1029/2004GL021192

Askari, S. (2021). Fuzzy c-means clustering algorithm for data with unequal
cluster sizes and contaminated with noise and outliers: Review and development.
Expert Syst. Appl. 165, 113856. doi: 10.1016/j.eswa.2020.113856

Atlas, R., Hoffman, R. N., Ardizzone, J., Leidner, S. M., Jusem, J. C., Smith, D. K.,
et al. (2011). A cross-calibrated, multiplatform ocean surface wind velocity product
for meteorological and oceanographic applications. B. Am. Meteorol. Soc 92, ES4–
ES8. doi: 10.1175/2010BAMS2946.2

Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., and
Amirat, Y. (2015). Physical human activity recognition using wearable sensors.
Sensors-Basel 15, 31314–31338. doi: 10.3390/s151229858

Banzon, V., Smith, T. M., Chin, T. M., Liu, C., and Hankins, W. (2016). A long-
term record of blended satellite and in situ sea-surface temperature for climate
monitoring, modeling and environmental studies. Earth System Sci. Data 8, 165–
176. doi: 10.5194/essd-8-165-2016

Bi, C., Yao, Z., Bao, X., Zhang, C., Ding, Y. A., Liu, X., et al. (2021). The
sensitivity of numerical simulation to vertical mixing parameterization schemes: a
case study for the yellow Sea cold water mass. J. Oceanol. Limnol. 39, 64–78.
doi: 10.1007/s00343-019-9262-y

Boutin, J., Vergely, J. L., Marchand, S., D’Amico, F., Hasson, A., Kolodziejczyk,
N., et al. (2018). New SMOS Sea surface salinity with reduced systematic errors and
improved variability. Remote Sens. Environ. 214, 115–134. doi: 10.1016/
j.rse.2018.05.022

Chu, P. C., Fralick, C. R., Haeger, S. D., and Carron, M. J. (1997). A parametric
model for the yellow Sea thermal variability. J. Geophys. Res. 102, 10499–10507.
doi: 10.1029/97JC00444

Diao, X., Si, G., Wei, C., and Yu, F. (2022). Structure and formation of the south
yellow Sea water mass in the spring of 2007. J. Oceanol. Limnol. 40, 55–65.
doi: 10.1007/s00343-021-0206-y

Dong, L., Qi, J., Yin, B., Zhi, H., Li, D., Yang, S., et al. (2022). Reconstruction of
subsurface salinity structure in the south China Sea using satellite observations: A
LightGBM-based deep forest method. Remote Sens. Basel 14, 3494. doi: 10.3390/
rs14143494

Guinehut, S., Dhomps, A. L., Larnicol, G., and Le Traon, P. Y. (2012). High
resolution 3-d temperature and salinity fields derived from in situ and satellite
observations. Ocean Sci. 8, 845–857. doi: 10.5194/os-8-845-2012

Guo, Y., Mo, D., and Hou, Y. (2021). Interannual to interdecadal variability of
the southern yellow Sea cold water mass and establishment of “Forcing mechanism
bridge”. J. Mar. Sci. Eng. 9, 1316. doi: 10.3390/jmse9121316

Huang, B. Y., Liu, C. Y., Banzon, V., Freeman, E., Graham, G., Hankins, B., et al.
(2021). Improvements of the daily optimum interpolation Sea surface temperature
(DOISST) version 2.1. J. Climate 34, 2923–2939. doi: 10.1175/JCLI-D-20-0166.1

Hwang, J. H., Van, S. P., Choi, B. J., Chang, Y. S., and Kim, Y. H. (2014). The
physical processes in the yellow Sea. Ocean Coast. Manage. 102, 449–457.
doi: 10.1016/j.ocecoaman.2014.03.026

Klemas, V., and Yan, X. (2014). Subsurface and deeper ocean remote sensing
from satellites: An overview and new results. Prog. Oceanogr. 122, 1–9.
doi: 10.1016/j.pocean.2013.11.010

Landschutzer, P., Gruber, N., Bakker, D., Schuster, U., Nakaoka, S., Payne, M. R.,
et al. (2013). A neural network-based estimate of the seasonal to inter-annual
variability of the Atlantic ocean carbon sink. Biogeosciences 10, 7793–7815.
doi: 10.5194/bg-10-7793-2013

Lee, J. H., Pang, I. C., and Moon, J. H. (2016). Contribution of the yellow Sea
bottom cold water to the abnormal cooling of sea surface temperature in the
summer of 2011. J. Geophys. Res. 121, 3777–3789. doi: 10.1002/2016JC011658

Li, J., Jiang, F., Wu, R., Zhang, C., Tian, Y. J., Sun, P., et al. (2021). Tidally
induced temporal variations in growth of young-of-the-Year pacific cod in the
yellow Sea. J. Geophys. Res. 126, e2020JC016696. doi: 10.1029/2020JC016696
Li, J., Li, G., Xu, J., Dong, P., Qiao, L. L., Liu, S. D., et al. (2016). Seasonal
evolution of the yellow Sea cold water mass and its interactions with ambient
hydrodynamic system. J. Geophys. Res. 121, 6779–6792. doi: 10.1002/
2016JC012186

Lin, F., Asplin, L., and Wei, H. (2021). Summertime M2 internal tides in the
northern yellow Sea. Front. Mar. Sci. 8. doi: 10.3389/fmars.2021.798504

Liu, X., Huang, B., Huang, Q., Wang, L., Ni, X. B., Tang, Q. S., et al. (2015).
Seasonal phytoplankton response to physical processes in the southern yellow Sea.
J. Sea Res. 95, 45–55. doi: 10.1016/j.seares.2014.10.017

Li, A., Yu, F., Si, G., andWei, C. (2017a). Long-term temperature variation of the
southern yellow Sea cold water mass from 1976 to 2006. Chin. J. Oceanol. Limn. 35,
1032–1044. doi: 10.1007/s00343-017-6037-1

Li, A., Yu, F., Si, G. C., andWei, C. J. (2017b). Long-term variation in the salinity
of the southern yellow Sea cold water mass 1976-2006. J. Oceanogr. 73, 321–331.
doi: 10.1007/s10872-016-0405-x

Lü, X., Qiao, F., Xia, C., Wang, G., and Yuan, Y. (2010). Upwelling and surface
cold patches in the yellow Sea in summer: Effects of tidal mixing on the vertical
circulation. Cont. Shelf. Res. 30, 620–632. doi: 10.1016/j.csr.2009.09.002

Lu, W. F., Su, H., Yang, X., and Yan, X. H. (2019). Subsurface temperature
estimation from remote sensing data using a clustering-neural network method.
Remote Sens. Environ. 229, 213–222. doi: 10.1016/j.rse.2019.04.009

Maze, G., Mercier, H., Fablet, R., Tandeo, P., Radcenco, M. L., Lenca, P., et al.
(2017). Coherent heat patterns revealed by unsupervised classification of argo
temperature profiles in the north Atlantic ocean. Prog. Oceanogr. 151, 275–292.
doi: 10.1016/j.pocean.2016.12.008

Meng, L. S., Yan, C., Zhuang, W., Zhang, W. W., Geng, X. P., and Yan, X. H.
(2022). Reconstructing high-resolution ocean subsurface and interior temperature
and salinity anomalies from satellite observations. IEEE T. Geosci. Remote 60, 1–14.
doi: 10.1109/TGRS.2021.3109979

Nieves, V., Wang, J., and Willis, J. K. (2014). A conceptual model of ocean
freshwater flux derived from sea surface salinity. Geophys Res. Lett. 41 (18), 6452–
6458. doi: 10.1002/2014GL061365

Parard, G., Charantonis, A. A., and Rutgerson, A. (2015). Remote sensing the sea
surface CO2 of the Baltic Sea using the SOMLO methodology. Biogeosciences 12,
3369–3384. doi: 10.5194/bg-12-3369-2015

Qiao, F., Ma, J., Yang, Y., and Yuan, Y. (2004a). Simulation of the temperature
and salinity along 36°N in the yellow Sea with a wave-current coupled model. J.
Korean Soc Oceanogr. 39, 35–45. Available at: https://koreascience.kr/article/
JAKO200411922304273.page.

Qiao, F., Xia, C., Shi, J., Ma, J., Ge, R., and Yuan, Y. (2004b). Seasonal variability
of thermocline in the yellow Sea. Chin. J. Oceanol. Limn. 22, 299–305. doi: 10.1007/
BF02842563

Sambe, F., and Suga, T. (2022). Unsupervised clustering of argo temperature and
salinity profiles in the mid-latitude Northwest pacific ocean and revealed influence
of the kuroshio extension variability on the vertical structure distribution. J.
Geophys. Res. 127, e2021JC018138. doi: 10.1029/2021JC018138

Sun, F., Yu, F., Si, G., Wang, J., Xu, A., Pan, J., et al. (2022). Characteristics and
influencing factors of frontal upwelling in the yellow Sea in summer. Acta Oceanol.
Sin. 41, 84–96. doi: 10.1007/s13131-021-1967-z

Su, H., Wang, A., Zhang, T. Y., Qin, T., Du, X. P., and Yan, X. H. (2021). Super-
resolution of subsurface temperature field from remote sensing observations based
on machine learning. Int. J. Appl. Earth Obs. 102, 102440. doi: 10.1016/
j.jag.2021.102440

Su, H., Wu, X. B., Yan, X. H., and Kidwell, A. (2015). Estimation of subsurface
temperature anomaly in the Indian ocean during recent global surface warming
hiatus from satellite measurements: A support vector machine approach. Remote
Sens. Environ. 160, 63–71. doi: 10.1016/j.rse.2015.01.001

Su, H., Yang, X., Lu, W., and Yan, X. (2019). Estimating subsurface thermohaline
structure of the global ocean using surface remote sensing observations. Remote
Sens. Basel 11, 1598. doi: 10.3390/rs11131598
frontiersin.org

https://doi.org/10.1029/2004GL021192
https://doi.org/10.1016/j.eswa.2020.113856
https://doi.org/10.1175/2010BAMS2946.2
https://doi.org/10.3390/s151229858
https://doi.org/10.5194/essd-8-165-2016
https://doi.org/10.1007/s00343-019-9262-y
https://doi.org/10.1016/j.rse.2018.05.022
https://doi.org/10.1016/j.rse.2018.05.022
https://doi.org/10.1029/97JC00444
https://doi.org/10.1007/s00343-021-0206-y
https://doi.org/10.3390/rs14143494
https://doi.org/10.3390/rs14143494
https://doi.org/10.5194/os-8-845-2012
https://doi.org/10.3390/jmse9121316
https://doi.org/10.1175/JCLI-D-20-0166.1
https://doi.org/10.1016/j.ocecoaman.2014.03.026
https://doi.org/10.1016/j.pocean.2013.11.010
https://doi.org/10.5194/bg-10-7793-2013
https://doi.org/10.1002/2016JC011658
https://doi.org/10.1029/2020JC016696
https://doi.org/10.1002/2016JC012186
https://doi.org/10.1002/2016JC012186
https://doi.org/10.3389/fmars.2021.798504
https://doi.org/10.1016/j.seares.2014.10.017
https://doi.org/10.1007/s00343-017-6037-1
https://doi.org/10.1007/s10872-016-0405-x
https://doi.org/10.1016/j.csr.2009.09.002
https://doi.org/10.1016/j.rse.2019.04.009
https://doi.org/10.1016/j.pocean.2016.12.008
https://doi.org/10.1109/TGRS.2021.3109979
https://doi.org/10.1002/2014GL061365
https://doi.org/10.5194/bg-12-3369-2015
https://koreascience.kr/article/JAKO200411922304273.page
https://koreascience.kr/article/JAKO200411922304273.page
https://doi.org/10.1007/BF02842563
https://doi.org/10.1007/BF02842563
https://doi.org/10.1029/2021JC018138
https://doi.org/10.1007/s13131-021-1967-z
https://doi.org/10.1016/j.jag.2021.102440
https://doi.org/10.1016/j.jag.2021.102440
https://doi.org/10.1016/j.rse.2015.01.001
https://doi.org/10.3390/rs11131598
https://doi.org/10.3389/fmars.2022.1075938
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yu et al. 10.3389/fmars.2022.1075938
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M., Legeais, J., Fournier,
F., et al. (2019). DUACS DT2018: 25 years of reprocessed sea level altimetry
products. Ocean Sci. 15, 1207–1224. doi: 10.5194/os-15-1207-2019

Wang, S., Azzari, G., and Lobell, D. B. (2019). Crop type mapping without field-
level labels: Random forest transfer and unsupervised clustering techniques.
Remote Sens. Environ. 222, 303–317. doi: 10.1016/j.rse.2018.12.026

Wang, B., Hirose, N., Kang, B., and Takayama, K. (2014). Seasonal migration of
the yellow Sea bottom cold water. J. Geophys. Res. 119, 4430–4443. doi: 10.1002/
2014JC009873

Wan, X., Liu, S., and Ma, W. (2022). Numerical simulation of double warm
tongues related to the bifurcation of the yellow Sea warm current. Cont. Shelf. Res.
236, 104680. doi: 10.1016/j.csr.2022.104680

Wu, X., Yan, X., Jo, Y., and Liu, W. T. (2012). Estimation of subsurface
temperature anomaly in the north Atlantic using a self-organizing map neural
network. J. Atmos. Ocean. Tech. 29, 1675–1688. doi: 10.1175/JTECH-D-12-00013.1

Xin, M., Ma, D., and Wang, B. (2015). Chemicohydrographic characteristics of
the yellow Sea cold water mass. Acta Oceanol. Sin. 34, 5–11. doi: 10.1007/s13131-
015-0681-0
Frontiers in Marine Science 16
27
Yang, Y., Li, K. P., Du, J. T., Liu, Y. L., Liu, L., Wang, H. W., et al. (2019).
Revealing the subsurface yellow Sea cold water mass from satellite data associated
with typhoon muifa. J. Geophys. Res. 124, 7135–7152. doi: 10.1029/2018JC014727

Yao, Z., He, R., Bao, X., Wu, D., and Song, J. (2012). M2 tidal dynamics in bohai
and yellow seas: a hybrid data assimilative modeling study. Ocean Dynam. 62, 753–
769. doi: 10.1007/s10236-011-0517-1

Yu, X., Guo, X., and Takeoka, H. (2016). Fortnightly variation in the bottom
thermal front and associated circulation in a semienclosed Sea. J. Phys. Oceanogr.
46, 159–177. doi: 10.1175/JPO-D-15-0071.1

Yu, F., Ren, Q., Diao, X., Wei, C., and Hu, Y. (2022). The sandwich structure of
the southern yellow Sea cold water mass and yellow Sea warm current. Front. Mar.
Sci. 8. doi: 10.3389/fmars.2021.767850

Zhang, S., Wang, Q., Lü, Y., Cui, H., and Yuan, Y. (2008). Observation of the
seasonal evolution of the yellow Sea cold water mass in 1996-1998. Cont. Shelf. Res.
28, 442–457. doi: 10.1016/j.csr.2007.10.002

Zhu, J., Shi, J., Guo, X., Gao, H., and Yao, X. (2018). Air-sea heat flux control on
the yellow Sea cold water mass intensity and implications for its prediction. Cont.
Shelf. Res. 152, 14–26. doi: 10.1016/j.csr.2017.10.006
frontiersin.org

https://doi.org/10.5194/os-15-1207-2019
https://doi.org/10.1016/j.rse.2018.12.026
https://doi.org/10.1002/2014JC009873
https://doi.org/10.1002/2014JC009873
https://doi.org/10.1016/j.csr.2022.104680
https://doi.org/10.1175/JTECH-D-12-00013.1
https://doi.org/10.1007/s13131-015-0681-0
https://doi.org/10.1007/s13131-015-0681-0
https://doi.org/10.1029/2018JC014727
https://doi.org/10.1007/s10236-011-0517-1
https://doi.org/10.1175/JPO-D-15-0071.1
https://doi.org/10.3389/fmars.2021.767850
https://doi.org/10.1016/j.csr.2007.10.002
https://doi.org/10.1016/j.csr.2017.10.006
https://doi.org/10.3389/fmars.2022.1075938
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Haiyong Zheng,
Ocean University of China, China

REVIEWED BY

Hao Zhang,
Henan Agricultural University, China
Yong Zhang,
Sun Yat-sen University, China

*CORRESPONDENCE

Bo Wang

wb@ouc.edu.cn

Jingjie Hu

hujingjie@ouc.edu.cn

SPECIALTY SECTION

This article was submitted to
Ocean Observation,
a section of the journal
Frontiers in Marine Science

RECEIVED 09 November 2022

ACCEPTED 09 December 2022

PUBLISHED 22 December 2022

CITATION

Wang Y, Xin C, Zhu B, Wang M,
Wang T, Ni P, Song S, Liu M, Wang B,
Bao Z and Hu J (2022) A new non-
invasive tagging method for leopard
coral grouper (Plectropomus
leopardus) using deep convolutional
neural networks with PDE-based
image decomposition.
Front. Mar. Sci. 9:1093623.
doi: 10.3389/fmars.2022.1093623

COPYRIGHT

© 2022 Wang, Xin, Zhu, Wang, Wang,
Ni, Song, Liu, Wang, Bao and Hu. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 22 December 2022

DOI 10.3389/fmars.2022.1093623
A new non-invasive tagging
method for leopard coral
grouper (Plectropomus
leopardus) using deep
convolutional neural
networks with PDE-based
image decomposition

Yangfan Wang1,2, Chun Xin1, Boyu Zhu3, Mengqiu Wang1,
Tong Wang1, Ping Ni1, Siqi Song2, Mengran Liu1,2, Bo Wang1,2*,
Zhenmin Bao1,2 and Jingjie Hu1,2*

1Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life
Science, Ocean University of China, Qingdao, China, 2Key Laboratory of Tropical Aquatic
Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China,
Sanya, China, 3Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
External tagging methods can aid in the research of leopard coral grouper

(Plectropomus leopardus) in terms of its spatio-temporal behavior at

population and individual scales. However, due to the strong exclusion ability

and the damage to the body wall of P. leopardus, the retention rate of

traditional invasive tagging methods is low. To develop a non-invasive

identification method for P. leopardus, we adopted a multiscale image

processing method based on matched filters with Gaussian kernels and

partial differential equation (PDE) multiscale hierarchical decomposition with

the deep convolutional neural network (CNN) models VGG19 and ResNet50 to

extract shape and texture image features of individuals. Then based on image

features, we used three classifiers Random forest (RF), support vector machine

(SVM), andmultilayer perceptron (MLP)) for individual recognition on sequential

images of P. leopardus captured for 50 days. The PDE, ResNet50 and MLP

combination obtained a maximum accuracy of 0.985 ± 0.045 on the test set.

For individual temporal tracking recognition, feature extraction and model

training were performed using images taken in 1-20 days. The classifier could

achieve an accuracy of 0.960 ± 0.049 on the test set consisting of images

collected in the periods of 20-50 days. The results show that CNNs with the

PDE decomposition can effectively and accurately identify P. leopardus.

KEYWORDS

Plectropomus leopardus, non-invasive tagging method, convolutional neural
networks, PDE-based image decomposition, complex trait
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1 Introduction

P. leopardus represents one of the most economically

significant chordate and is mainly distributed in the Western

Pacific Ocean along the coasts of China, Vietnam, and Thailand

(Yang et al., 2020). P. leopardus has a high economic value in the

international market due to its high nutritional profile and plays

a vital role in marine ecosystems (Xia et al., 2020). However, the

P. leopardus industry has encountered many challenges in recent

years, including devastating diseases and environmental stresses,

which caused a large amount of economic loss and hampered the

healthy and sustainable development of the P. leopardus

industry (Rimmer and Glamuzina, 2019). Therefore, it is

urgent to advance the scientific culture of P. leopardus and to

select and breed new species with superior characteristics.

Designing effective external tagging methods for long-term

and stable tracking identification of P. leopardus is not only

essential for successful breeding but also a concern for ecologists

conducting population dynamics studies (Williams et al., 2002;

Zhuang et al., 2013), as well as revealing the ecological

significance of fish endotherms (Watanabe et al., 2015), and

studying the life history of fish such as foraging, migration and

reproduction (Quinn et al., 1989; Ogura and Ishida, 1995; Yano

et al., 1996; Hinch et al., 2002; Welch et al., 2004; Sulak et al.,

2009; Døving et al., 2011).

Traditionally, individual recognition has been accomplished

by capturing animals and placing visible and unique marks on

them. The traditional marking methods include implanting

acoustic markers inside the abdominal cavity of fish (Shi et al.,

2022), and then using the positioning system to track the

acoustic markers. The individual unique electric field

generated by electric fish discharges was used for recording

and tracking (Raab et al., 2022). Due to the strong exclusion

ability and the damage to the body of P. leopardus, the retention

rate of traditional invasive tagging methods is low (Bolger et al.,

2012). Besides, the infection rate and mortality rate of implanted

marker fish are relatively high (Shi et al., 2022), and the marker

will also affect the original normal life of fishes in the water, and

with the extensive use of individual markers, it is also a hazard to

the environment (Šmejkal et al., 2020), while individual electric

field tracking is only applicable to fish that can generate

electricity. This makes it difficult for breeders to manage good

individuals, which is not conducive to the implementation of

accurate breeding by tracking the growth of individuals.

Recently, molecular genetic markers such as RFLP (restriction

fragment length polymorphism), RAPD (random amplified

polymorphism DNA), SSR (simple sequence repeat), and SNP

(single nucleotide polymorphism) have also been widely used to

study the population and individual recognition (Reed et al.,

1997; Wang, 2016). However, these methods are not suitable for

a larger population because of inconsistency, inconvenience, and

higher cost, among others. Currently, photographic mark-
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recapture has gained popularity because of the advances in

digital photography and image processing software. The

abundance of species with variable natural marking patterns

makes this an attractive method for many researchers. The

image mark method has been employed particularly in the

studies of populations of marine mammals and mammalian

terrestrial predators (Karanth and Nichols, 1998; Forcada and

Aguilar, 2000; Langtimm et al., 2004; Fearnbach et al., 2012).

Some image processing methods have been used to extract, store,

and compare pattern information from digital images (Bolger

et al., 2012). With the development of computer vision, deep

learning (DL) methods, such as convolutional neural networks

(CNNs) are emerging as possibly powerful tools for individual

recognition and long-term tracking (He et al., 2016; Redmon

et al., 2016). Numerous broad models of convolutional neural

networks, such as AlexNet, Inception, VGG19, ResNet50, etc.,

have been presented (Kamilaris and Prenafeta-Boldú, 2018).

These models are trained using public datasets (e.g., CIFAR-

10, ImageNet datasets, etc.) and used to perform Multi-Category

tasks for particular items. Considering the unique body shape

and texture patterns of different P. leopardus individuals, it is a

promising technical route to extract and identify the body

surface features using CNN as an alternative method against

traditional invasive tagging methods.

In this study, we used a novel multiscale image processing

method based on matched filters with Gaussian kernels and

partial differential equation (PDE) multiscale hierarchical

decomposition (Wang et al., 2013) to segment the shape

features of P. leopardus images. Two deep CNN models,

VGG19 and ResNet50, were implemented to extract the

texture features. Then based on the shape and texture features,

three classifiers (Random forest (RF) (Kamilaris and Prenafeta-

Boldú, 2018), support vector machine (SVM) (Cortes and

Vapnik, 1995), and multilayer perceptron (MLP) (LeCun et al.,

2015) were compared for individual recognition on sequential

images of P. leopardus captured over the course of 50 days.

Finally, we found that the combination of PDE and CNN

methods could achieve the best accurate recognition of P.

leopardus. This is the first time, to our knowledge, that image

recognition analysis has been applied to the tracking of P.

leopardus. Our results will provide a new vision for using non-

invasive tagging of P. leopardus.
2 Materials and methods

2.1 Data acquisition

P. leopardus used in this study were obtained from Sanya,

Hainan Province. 50 individuals were randomly selected from a

breeding population of 10,000 P. leopardus, and reared under

laboratory conditions. The numbered clapboards were added to
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the rearing pool to facilitate individual identification. In the 50

days from September 3, 2022, to October 23 2022, each

individual was taken out from the rearing pool daily and

placed on a smooth white foam plastic plate. The P. leopardus

were anesthetized by immersion in seawater which containing

MS222 (tricaine methanesulfonate) with a concentration of 100

mg/L and kept in the solution for 3 min after loss of body

posture (Savson et al., 2022). After its body was fully stretched,

photos were taken directly for each individual using a mobile

device. Then they were placed back in the pond immediately. At

the end of the experiment, 50 images were taken for each

individual. So, we obtained a total of 2500 images for

all individuals.
2.2 Image feature extraction

2.2.1 PDE-based feature extraction
We used a PDE-based multiscale decomposition method to

extract the shape features of P. leopardus images. For the shape

detection, we used matched filtering with Gaussian kernel

(MFGK) ker(x,y; a,b)=−exp(−a−1(x−b)2/2s2) (Chaudhuri et al.,
1989), and the computed MFGK response image was as follows:

Mker x, y; a, bð Þ = maxq rq ker x, y; a, bð Þð Þ*Img x, yð Þð Þ (1)

where Img, (x, y), s, ker, a, and b denoted an image, a two-

dimensional pixel position, the standard deviation of image gray

value in Gaussian convolution kernel, two-dimensional

Gaussian functions, the dilation parameter (also known as

scaling parameter), and the translation parameter, respectively.

rq rotated the kernel function with an angle q, and * represented

the convolution operation in variables (x and y).

The normalized response image was defined as follows:

f = Mker x, y; a, bð Þ − mð Þ=s
where m and s were the mean and standard deviation of the

enhanced MFGK image Mker(x,y;a,b) The multiscale hierarchical

decomposition of an image f was defined as follows (Wang et al.,

2013). Given an initial scale parameter l0 and the PDE-based

total variation (TV) function (Rudin et al., 1992)

J f ,  lð Þ = ljj vljj2L2+jj uljjBV
where BV stood for the homogenous bounded total variation

space equipped with the norm of total variation

jj  :jjBV=  jj  :jjL1=
Z
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ul)

2
x + (ul)

2
y

q

f = u0 + v0,  where   u0, v0½ � : = argmin ∣u+v=f   J f ,  l0ð Þ

vk = uk+1 + vk+1,   k = 0, 1,…,  lk = l02
k+1

where [uk+1,vk+1:=argmin∣u+v=vkJ(vk,l02
k+1) ].
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Based on the above enhancement with MFGK and

multiscale hierarchical decomposition, many line maps ul
were generated at varying image resolutions, representing

different levels of line details to avoid the possible failure of

feature extraction caused by a single-scale segmentation. The

initial scaling parameter was l0 = 0.01 in the multiscale

hierarchical decomposition.

The binarization is performed as follows:

out x, yð Þ =
1         �u x, yð Þ   ≤ u x, yð Þ

0               otherwise
 

(

where out stands for the finally segmented binary mask of

the P. leopardus image.
2.2.2 CNN-based feature extraction
With the development of deep learning algorithms, many

general models of convolutional neural networks have been

proposed, such as AlexNet, Inception, VGGNet, ResNet, etc.

(Kamilaris and Prenafeta-Boldú, 2018). These models have been

trained on large public datasets (e.g., CIFAR-10, ImageNet datasets,

etc.) (Lecun et al., 1998) to achieve the goal of multiple-classification

tasks for specific items. After training, the deep layers and

convolutional kernels in these models can explore the visual

characteristics of images. For other classification tasks, new

characteristics can be extracted with the help of the pre-trained

convolutional layers and used as input for many classifiers. This

method of applying the “knowledge” gained from training on a

specific dataset to a new domain is also known as migration

learning (Yoshua, 2011). In this study, the VGG19 and ResNet50

of CNNmodels were used for image feature extraction. The weights

of each convolutional layer of VGG19 or ResNet50 were frozen and

fed into a new CNN. The output of the last pooling layer of the new

CNN was then taken as the extracted image features. After feature

extraction using VGG19 or ResNet50, a 4096-1D or 2048-1D vector

of features was obtained, respectively.

LeNet-5 Convolutional Neural Network (Lecun et al., 1998), as a

classic CNN, has only two convolution layers and a simple structure,

which is suitable for preliminary evaluation of the complexity of the

dataset. The structure of the model is as follows. Input layer: single

input is a 224*224*3 RGB three-channel image without feature

extraction; convolutional layer 1, containing 6 convolutional kernels

with the size of 5*5 pixels using activation function ReLU; batch

normalization layer 1; maximum pooling layer 1, with the pooling

size of 2*2; convolutional layer 2, containing 16 convolutional

kernels with the size of 5*5 pixels using activation function ReLU;

batch normalization layer 2; Maximum pooling layer 2, with the

pooling size of 2*2; fully connected layer 1, containing 120 neurons

using activation function ReLU; batch normalization layer 3; fully

connected layer 2, containing 84 neurons using activation function

ReLU; batch normalization layer 4; output layer, outputting 20

classes using activation function softmax. The loss function is
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cross entropy and the optimizer is Adam. When training on the raw

dataset, batch_size is 30 and epoch is 50.

VGG is a type of CNN model developed by the Oxford

Robotics Institute (Simonyan and Zisserman, 2015). VGG19

uses an architecture of very small (3x3) convolution filters and

pushes the depth to 19 weight layers. There are five building

blocks in VGG19, consisting of 16 convolutional layers and 3

fully connected layers. The first and second building blocks have

two convolutional layers and one pooling layer, respectively, and

four convolutional layers and one pooling layer exist in the third

and fourth building blocks. The last building block contains four

convolutional layers.

The architecture of the residual network consists of 50 layers

named ResNet50 (He et al., 2016). There is an extra identity in

ResNet50 where the ResNet model predicts the delta needed in the

final prediction from one layer to the next. ResNet50 provides

alternate paths to allow gradient flow which helps to solve the

problem of gradient disappearance. The ResNet model uses identity

mapping to bypass the weight layer of the CNN when the current

layer is not required. This model solves the overfitting problem of

the training set with the presence of 50 layers in the feature

extraction of ResNet50 (Stateczny et al., 2022).

In this study, the PDE-based multiscale decomposition and the

Convolutional Neural Networkmodels, VGG19 and ResNet50, were

used to extract shape and texture features on the original image

datasets. A total of five combined datasets are generated, which are

called: PDE+ raw dataset, VGG19+ raw dataset, ResNet50+ raw

dataset, PDE+VGG19+ raw dataset, and PDE+ResNet50+ raw

dataset. After feature extraction, the image features obtained from

each feature extraction method are visualized using the t-SNE

algorithm (Linderman et al., 2019) to visually examine the

effectiveness of several feature extraction methods.
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2.3 Training of classifiers based on
extracted features

The feature-extracted dataset is used as input to train

Random Forest (RF), Support Vector Machine (SVM), and

Multi-layer Perceptron (MLP), models, respectively. The RF

models were trained using default parameters. The SVM

models were trained with RBF kernel using default parameters.

The structure of the multi-layer perceptron was: input layer,

where the number of neurons contained depends on the length

of the features used (2048 for PDE features, 4096 for VGG19

features, 2048 for ResNet50 features); fully connected layer,

containing 1024 neurons using activation function ReLU

(LeCun et al., 2015); batch normalization layer; output layer,

outputting 50 classes using activation function softmax. The loss

function was cross entropy and the optimizer was Adam (LeCun

et al., 2015). When training on the raw dataset, batch_size is 30

and epoch is 50.

The essential architecture of our method for fully automated

segmentation and identification of P. leopardus is shown

in Figure 1.
2.4 Model assessment indicators

In a multi-classification task, there are differences in the

predicting ability of the model for different categories, and there

may be category imbalance in the predicting results. Since the

accuracy rate simply calculates the ratio of the number of correctly

predicted samples to the total number of samples, ignoring the

predicting ability of the model for different categories, it is hard to

objectively measure the predicting effect of the model. In order to
FIGURE 1

The essential architecture of our method for fully automated segmentation and identification of P. leopardus.
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measure the model’s comprehensive predicting ability for each

category, the accuracy for each category should be taken into

account, so the Precise, Recall and Macro-F1 Score are selected as

evaluation indicators (Zhou et al., 2021). The calculation method is

as follows.

True Positives (TP): all cases where we have predicted YES and

the actual result was YES. True Negatives (TN): all cases where we

have predicted NO and the actual result was NO. False Positives

(FP): all cases where prediction was YES, but the actual result was

NO (‘Type I error’). False Negatives (FN): all cases where prediction

was NO, but the actual result was YES (‘Type II error’).

Precision is the proportion of positive samples that are correctly

predicted out of all samples that are predicted to be positive:

Precision =
TP

TP + FP

Recall is the proportion of positive samples that are correctly

predicted out of all actual positive samples (including the

positive samples that were predicted incorrectly).

Recall =
TP

TP + TN

F1-Score is the harmonic mean of precision and recall.

F1 =
2� Precision� Recall
Precision + Recall

Macro-F1 is the mean of F1-Score for each category, where

N is the total number of categories.

Macro F1 = o
i
NF1i
N

2.5 Software and hardware environment

In this study, the Python 3.8.10 environment was used with the

scikit-image library for feature extraction, the scikit-learn 0.24.0

library for principal component analysis and the construction of

random forest and support vector machine models, and the

tensorflow 2.3.1 library for CNN-based feature extraction and the

training of multilayer perceptrons. The tsne library was used to

accomplish the t-SNE downscaling and visualization in the R

4.1.1 environment.
3 Results

3.1 PDE-based feature extraction

The results of the illustrative segmentation of P. leopardus

using the PDE multiscale decomposition method with different

scale parameters are shown in Figure 2. Obviously, the camera

image can be used for good segmentation with the selection of

more growth rings of body shape. Meanwhile, the segmentation
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of shape contours in the image can be still detected even though

the original image was degraded by some body color; hence, our

segmentation method was robust in noise and color.
3.2 CNN-based feature extraction

As shown in Figure 2, the PDE method can obtain more

details of the shape of P. leopardus compared with the ResNet50

model of CNNs. By visualizing several convolutional layers in

the ResNet50 model (Figure 1), we found that some kernels in

different layers could distinguish smaller tubular and periodic

structures in P. leopardus images, which made ResNet50 more

effective in the extraction of texture details.

The shape and texture features obtained by PDE-based and

CNN-based methods were visualized using the tSNE software

(Figure 3). For the shape features obtained by PDE, the points of

different categories overlapped each other and were difficult to

distinguish (Figure 3A). While we found that the CNN-based

texture features of the same individuals were gathered into a

cluster, reflecting the intra-category consistency and inter-

category dissimilarity, for example, individuals of 4, 5, 14, 15,

16, 17, 18, 19 in ResNet50 features (Figure 3B) and individuals of

5, 15, 19 in VGG19 features (Figure 3C). Features of the same

individuals using the ResNet50 model were more likely to gather

into clusters than the VGG19 features, suggesting that the

ResNet50 feature may extract more small texture information

from images than VGG19 features.
A B

C D

E F

FIGURE 2

Segmentation results produced by multiscale hierarchical
decomposition using PDE with l0 = 0.01 and li = l02i (A)
original image; (B–F) segmented image at scaling parameters l1,
l2, l3, l4, and l5, respectively.
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A

B

C

FIGURE 3

Visualization of feature-extraction methods (number labels in the range of 1~20 denote 20 individuals randomly sampled from all the P.
leopardus) (A) PDE feature; (B) CNN ResNet50 feature; (C) CNN VGG19 feature.
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3.3 Prediction performance of
combinations with different features
and classifiers

In this section, five-fold Cross-validation (5-fold CV) was

used to assess the prediction performance of the different

methods in the P. leopardus data set. For 5-fold CV, the data

set was divided into five mutually exclusive subsets; four of five

formed the estimation set (ES) for fitting input feature effects

and the fifth subset was used as a test set (TS). Three methods

(RF, SVM and MLP) were trained on the feature-extracted

(PDE, VGG19 and ResNet50) datasets, and the traditional

LeNet-5 convolutional neural network dataset of the 224*224-

pixel images from the raw dataset, respectively (Table 1).

Among the classifiers trained on the only PDE features for the

dataset, PDE+ MLP achieved the best prediction (Macro-F1 Score

0.748 ± 0.066), followed by PDE + SVM (Macro-F1 Score 0.717 ±

0.076). The predicting performance of RF was poor with Macro-F1

score of only 0.681 ± 0.117. Compared with classifiers trained on

PDE features, the simple CNN LeNet-5 with a simple structure had

a significant improvement in the predicting effect with Macro-F1

score of 0.861 ± 0.069. For the deep CNN VGG19 features, VGG19

+MLP achieved the best prediction (Macro-F1 Score 0.872 ± 0.068)

followed by VGG19 + SVM (Macro-F1 Score 0.849 ± 0.071) and

VGG19 + RF (Macro-F1 Score 0.813 ± 0.079). Only VGG19 +MLP
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outperformed the simple LeNet-5 model (Macro-F1 Score 0.861 ±

0.069) with a Macro-F1 score increased about 0.011. After training

on ResNet50 texture features, any classifier can achieve better

predictions than any other combinations on VGG19 texture

features. ResNet50 + MLP achieves the best prediction (Macro-F1

Score 0.927 ± 0.043) followed by ResNet50 + SVM (Macro-F1 Score

0.925 ± 0.048). It is interesting that SVM can also achieve similar

performance on ResNet50-extracted features.

If we combined PDE shape features with ResNet50 or

VGG19 text features to form a new feature set, any classifier

can achieve better predictions than the feature set of PDE,

VGG19, or ResNet50. In the PDE+ResNet50 dataset, the

maximum accuracy was Macro-F1 Score 0.985 ± 0.045 for

MLP. In the PDE+VGG19 dataset, the maximum accuracy

was Macro-F1 Score 0.949 ± 0.069 for MLP. We, therefore,

decided to take PDE+ResNet50+MLP and PDE+ResNet50

+SVM as the experimental model to identify individuals in the

following analyses.
3.4 Predictions effect of the model on
training sets of different sizes

Due to the constraint of time and labor costs in actual

application scenarios, it is often difficult to obtain large datasets.
TABLE 1 Predictive accuracies obtained with different combination of features and classifiers by 5-fold CV.

Input feature Classifiers Metrics
Precision Recall Macro-F1 score

LeNet-5 0.851 ± 0.078 0.869 ± 0.061 0.861 ± 0.069

ResNet50 RF 0.881 ± 0.082 0.892 ± 0.073 0.889 ± 0.079

SVM 0.923 ± 0.054 0.929 ± 0.035 0.925 ± 0.048

MLP 0.925 ± 0.046 0.931 ± 0.037 0.927 ± 0.043

VGG19 RF 0.811 ± 0.084 0.827 ± 0.102 0.813 ± 0.079

SVM 0.847 ± 0.045 0.843 ± 0.062 0.849 ± 0.071

MLP 0.862 ± 0.049 0.879 ± 0.059 0.872 ± 0.068

PDE RF 0.693 ± 0.115 0.715 ± 0.108 0.681 ± 0.117

SVM 0.724 ± 0.078 0.734 ± 0.070 0.717 ± 0.076

MLP 0.736 ± 0.071 0.753 ± 0.062 0.748 ± 0.066

PDE + ResNet50 RF 0.927 ± 0.091 0.932 ± 0.083 0.924 ± 0.074

SVM 0.981 ± 0.063 0.977 ± 0.072 0.981 ± 0.059

MLP 0.984 ± 0.051 0.981 ± 0.067 0.985 ± 0.045

PDE+VGG19 RF 0.919 ± 0.101 0.920 ± 0.105 0.911 ± 0.112

SVM 0.922 ± 0.062 0.935 ± 0.054 0.928 ± 0.071

MLP 0.941 ± 0.061 0.955 ± 0.063 0.949 ± 0.069
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To refrain from the possible effect of the small dataset, it is

necessary to investigate the predicting performance of the

classifier on different size training sets to make a trade-off

between the cost of dataset size and the predicted effect. The

images of days 1-5, 1-10, 1-15, 1-20, 1-25, 1-30, 1-35,1-40 and 1-

45 were taken from the ResNet50+ raw dataset and used for

training MLP and SVM, respectively. The evaluation has two

steps. Firstly, the prediction of these classifiers was estimated on

the set of remaining images corresponding to their training set

(e.g., for classifiers trained on images of days 1-5, the prediction

was performed on images of days 6-50, and so on). Secondly, all

classifiers trained on different periods of days were used to

predict the images of days 46-50 (Figure 4).

As shown in Figure 4, the Macro-F1 Scores of all the

classifiers increase with the expansion of the sizes of training

sets. When images of days 1-20 were used as the training set,

models achieved relative high values of macro-F1 on all test sets

with Macro-F1 Scores of 0.960 ± 0.049 for PDE+ResNet50+MLP

to identify the individuals in images of the rest days and 0.960 ±

0.104 in images of days 46-50. When the size of the training set

continues to enlarge, the curve of predicting effect goes steadily

and changes slightly with the expansion of the training set. The

highest Macro-F1 Score (0.983 ± 0.047) is achieved by PDE

+ResNet50+MLP when using images of days 1-45 as the training

set and images of days 46-50 as test sets. Furthermore, the

Macro-F1 Score of PDE+ResNet50+MLP was higher than that

of PDE+ResNet50+SVM in most sets of experiments except

using images of 1-5 days as the training set.
3.5 Temporal tracking recognition of
individuals on different time scales

In the actual scenario of breeding work, individuals need to

be tracked continuously over a while. To investigate the tracking
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ability of the PDE+ResNet50 + MLP model, predicting the

results of combination of the training set and test set for each

i n d i v i d u a l o n e v e r y d a y w e r e e x t r a c t e d a n d

summarized (Figure 5).

When trained on images of days 1-5, 1-10, and 1-15, the size

of the training set was small and the model performed poorly on

some individuals. For example, when trained on images of days

1-5, the model performed poorly on most of the individuals. As

the size of the training set increased, these hard-to-predict

individuals were gradually correctly identified by the model.

When trained with images of days 1-30, there were few

individuals that were difficult to identify, and for some

individuals, the model could achieve a 100% recognition rate.

To understand how well each individual was tracked, we

treated it as a traceable individual with an error rate of less than

or equal to 10%. Then the predicting effects for all individuals

were counted according to the above criterion (Table 2). When

the size of the training set was small, the number of traceable

individuals increased with the increase of the size of the training

set. When images of days 1-25 were used as the training set, the

number of traceable individuals was 45, accounting for 90% of

the total individuals, and the number of individuals that could be

identified at a 100% recognition rate was 27. When images of

days 1-30 were used as the training set, the proportion of

traceable individuals reached 98%, and the number of

individuals that could be 100% identified was 33.
4 Discussion

The approach described in this paper using image processing

analytical methods, which are widely used in studies on ecology

and evolution (Bolger et al., 2012), has demonstrated its

powerful application in studies on non-invasive tagging

methods for P. leopardus. The PDE-based and CNN-based
A B

FIGURE 4

The results for prediction using classifiers trained by datasets with different size. (A) The results for prediction of the whole images of the rest
days; (B) The results for prediction of the images of the 46th -50th days.
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image feature vector of each shape and texture structure, which

is invariant against translation, rotation, scaling, and even

modest distortion. As long as the feature pattern can be

extracted from each image, the individuals can be effectively

identified by using the RF, SVM and MLP classification of shape

and texture features.
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4.1 Advantages of deep convolutional
neural networks in recognition of P.
leopardus

To explore the feature extraction methods and machine

learning models suitable for the recognition of P. leopardus,
TABLE 2 The statistics for results of tracking recognition on different time scales.

Dataset Number of 100%
identification

Number of an individual
misclassified once

Number of individuals with error
rate no more than 10%

Percent of
trackable
individuals

Training
set

Test
set

1-5 days 6 - 50
days

6 1 10 20%

1-10 days 11-50
days

11 3 25 50%

1-15 days 16-50
days

21 7 36 72%

1 - 20 days 21-50
days

23 12 44 88%

1-25 days 26-50
days

27 15 45 90%

1-30 days 31-50
days

33 12 49 98%

1-35 days 36-50
days

38 9 47 94%

1-40 days 41-50
days

42 7 49 98%

1-45 days 46-50
days

47 2 47 94%
FIGURE 5

The result of tracking recognition of P. leopardus on different time scales.
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the PDE-based shape features, and CNN-based texture features

were used for feature extraction, and then RF, SVM, and MLP

were trained on the extracted features compared to the LeNet-5

model, an early convolutional neural network with fewer layers

and a simple structure. The PDE + MLP obtained the best

predictability with a Macro-F1 score of 0.748 ± 0.066 compared

with PDE+RF and PDE+SVM on the raw dataset, while the

ResNet50+MLP model achieved a Macro-F1 score of 0.927 ±

0.043, indicating that compared to the PDE-based image

segmentation that had the relatively weak ability of feature

extraction, ResNet50 extracted more details of features for

individual imaged and achieved better recognition results.

Various researchers are addressing the task of individual

recognition in different way using traditional machine learning

methods (Vaillant et al., 1994; Viola and Jones, 2001; Dollár

et al., 2009) such as thresholding (Sivakumar and Murugesh,

2014), region growing (Gómez et al., 2007; Preetha et al., 2012),

edge detection (Ma andManjunath, 1997; Huang and Kuo, 2010;

Wang et al., 2013), clustering (Celenk, 1990; Ali et al., 2006;

Kavitha and Chellamuthu, 2010; Zheng et al., 2018), super-pixel

(Li et al., 2012; Xie et al., 2019), etc. for years. PDE-based image

multiscale decomposition belongs to edge detection method.

Individual recognition research has also started to use the

convolutional neural network (CNN) for better segmentation

accuracy. That is why CNN is used successfully for

individual recognition.

In this study, the CNN-based texture features included two

categories: the features extracted by VGG19 and ResNet50. The

VGG19 network has 16 layers of convolution layer (Simonyan and

Zisserman, 2015), and the ResNet50 network has 49 layers of

convolution layer (Savson et al., 2022). Among the three

classifiers (RF, SVM, and MLP) trained with VGG19 features,

VGG19 + MLP achieved the highest Macro-F1 score (0.872 ±

0.068), with an improvement of ~0.011 compared to LeNet-5 (0.861

± 0.069). Our result is consistent with the conclusion in (He et al.,

2016) that the accuracy of convolutional neural networks (CNNs)

has been continuously improving. For example, the very deep VGG

models, which have witnessed great success in a wide range of

recognition tasks. In this study, when trained on a small dataset of

50 individuals, VGG19 or ResNet50 can better characterize the

variability among individuals than LeNet-5 due to the deeper

convolutional layers. Trained on the raw dataset, ResNet50+MLP

achieved an improvement of ~0.055 compared to VGG19+MLP,

indicating that the depth of the convolution layers in the ResNet50

network is enough for fully extracting the image features of P.

leopardus. It is generally believed that by stacking multi-layer

convolution kernels, the deep convolutional neural network

allows the model to capture higher-dimensional and abstract

features, including invisible high-frequency features that are

traditionally considered noise (Krizhevsky et al., 2012). Thus, we

purposed to use the ResNet50 to capture the patterns on the surface

of P. leopardus.
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Combined PDE-based and CNN-based features, PDE

+ResNet50+MLP achieved the best prediction and PDE+

ResNet50+SVM got the suboptimal prediction, which are both

better than those achieved by ResNet50+MLP and ResNet50

+SVM trained on the same dataset. These results indicated that

when the size of the training set was small, the CNN had

difficulty in capturing more details of the shape features of P.

leopardus. The PDE-based features generated by PDE multiscale

decomposition contained a series of segmentation results at

varying image resolutions of shape pattern details at different

levels. This process performed an iterative segmentation at an

increasing image resolution in each step, and thus detected much

smaller patterns of shape. It was exactly because the PDE-based

features added more shape features for the CNN-based features

to identify the individuals more effectively. This result also

suggested that CNNs with some image segmentation methods

may be more well-suited for individual recognition when the size

of the dataset is small compared to just using CNNs.
4.2 Prediction at different time scales
determine the optimal dataset size

In practical applications, due to the limited time available for

collecting image data of the P. leopardus, it is usually hard for

researchers to obtain enough data, so a trade-off between data

volume and predicting effect is needed. Thus, the whole dataset

was divided at different ratios to simulate the training set on

different time scales, which were used as the training set to train

the classifier and the remaining images as the test set for

prediction. When using images of days 1-20 (i.e., 20 images

per individual, 1000 images in total) as the training set, better

results could be obtained (0.960 ± 0.049). Then the curve of the

Macro-F1 changed slightly as the size of the training set

increased. When trained on images of days 1-45, a remarkable

improvement in predicting effect was obtained (0.983 ± 0.047).

Since the test set was small, which only had images from days 46-

50 when using images from days 1-45 as the training dataset, the

model may have a higher recognition rate for some specific

individuals coincidently.

After fixing the test set to images of 46-50 days, the predicting

effect of the classifiers trained on a series of image subsets of 1-45

days, compared with the image set of 1-45 days. The results showed

that the average Macro-F1 score increased with the increasing

subset size for the models. It then plateaued when using images

of days 1-20 for training and more selected days. The predicting

effect slight increased training with images of days 1-40 and days 1-

45, which may be a serendipitous result caused by the small test set.

In addition, because the images faithfully reflect a continuous

morphological change of P. leopardus over time, the images of

days 1-45 were temporal continuity with the test set of days 46-50,
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which might be another reason for the models to achieve the above

best prediction.
4.3 Reliability of CNN-based recognition
methods in long-term tracking

In the breeding work, breeders require individuals to be

traceable for a long time using tagging methods, so it is necessary

to ensure that the CNN-based method can achieve a comparatively

high correction identification ratio of individuals for a continuous

period. In our tracking experiments, we found that the performance

of predicting effects showed large differences for some individuals.

For example, the CNN-based method had a poor predicting effect

on some individuals using small-size training sets, probably because

the shape and texture features of these individuals were more

similar to each other. If we expanded the training set, the model

performed highly accurate recognition for these hard-to-identify

individuals, showing that the CNN-based method needs large

numbers of training images to obtain temporal-stable features for

individual long-term tracking.

Most of the traditional tagging methods involve puncturing

and destroying the body wall of P. leopardus, which can easily

make them die due to wound ulceration. Meanwhile, the

retention rate of the label fluctuates greatly due to the choice

of the labeling tool, the experimental individual, and the

operation methods. Generally speaking, the retention rate for

one month is between 50% and 80%. The above two types of

problems make it difficult to apply traditional tagging methods

to the tagging work of aquatic animal breeding (Jepsen et al.,

2015). Our method can also save time and cost less in

comparison with molecular methods for the individual

tracking, especially in a large population. For 100 individual

samples, it would take approximately 14 days for good

identification with the traditional molecular methods (Wang,

2016). In addition, these methods are generally laborious and

time-consuming and sometimes require invasive operations that

need a relatively large amount of sample materials, which would

require the sacrifice of animals under study to ensure a sufficient

amount of DNA for individual recognition (Mao et al., 2013).

However, our method can achieve a high-throughput operation

with aid of an ordinary digital camera, and even mobile phones

and can reduce the workload to just less than 1 hrs. Therefore,

we would propose that the use of CNN-based image recognition

method has a great applying potential in the tagging work for

P. leopardus.
4.4 Possible improving directions
of model

In this study, the CNNs were trained on images of 50 days,

which were randomly selected in the period. The sample size was
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relatively sufficient for training. However, in the actual breeding

work, there are often more individuals. It is necessary to increase

individuals in the subsequent study to explore the upper limit of

the individuals that can be classified by the CNNmethod to meet

the actual needs. Fortunately, many multiclassification models

are now available, and perform well. Although the CNN

approach outlined above has great potential, there are several

outstanding challenges with applying CNNs to a wider spectrum

of problems. One important obstacle is the large amount of

training data required by CNNs. This challenge includes both

the generation of large labeled training examples and time- and

memory-efficient training with these large examples given

limited computational resources. Fortunately, continued

improvements in simulation speed and the efficiency of CNN

training (Chilimbi et al., 2014; Urs et al., 2017) are mitigating

this problem.

Another challenge with the application of CNNs is that their

performance can be sensitive to network architecture (Szegedy

et al., 2015). There is no underlying theory for selecting optimal

network architecture, though improved architectures are sure to

continue to arise, and automated methods exist for optimizing

the many hyperparameters of a given architecture (Snoek et al.,

2012). Though we uncover some promising CNN architectures

for the recognition of P. leopardus, we suspect that substantial

improvements can still be made. Meanwhile, length calibrators

(e.g., rulers) can be added to the field of view for photograph, so

that the difference in relative size among individuals can be

involved in the dataset, which may improve the performance of

model in the temporal tracking task. Furthermore, if more

lightweight network architectures such as MobileNets (Li et al.,

2012) are used, it is promising to deploy the recognition systems

on mobile device as applications to enable mobile and real-time

recognition of P. leopardus.
5 Conclusion

In this study, a dataset involving images of 50 P. leopardus

individuals was obtained by continuous photography in 50

consecutive days. Then we performed prediction using

different classifiers with different feature extraction methods

and compare the predicting effect on the dataset. The results

shows that the feature extraction method based on deep CNN

model ResNet50 with PDE-based multiscale decomposition

segmentation method performed well in the recognition task

of P. leopardus. The prediction results on training sets of

different sizes show that the model achieves satisfactory

prediction results when the number of images per individuals

in training set reaches 20. Temporal tracking recognition

experiments on different time scales showed that the deep

CNN model ResNet50 with PDE-based segmentation method

can recognize individuals over a longer time span with better
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accuracy than other invasive tagging methods. The results of this

study will provide an important reference for the development of

non-invasive tagging methods based on deep learning and the

characterization of complex traits of P. leopardus. In the future,

we will increase the population to further verify our conclusion.
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Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China
Visual detection technology is essential for an unmanned surface vehicle (USV)

to perceive the surrounding environment; it can determine the spatial position

and category of the object, which provides important environmental

information for path planning and collision prevention of the USV. During a

close-in reconnaissance mission, it is necessary for a USV to swiftly navigate in

a complex maritime environment. Therefore, an object detection algorithm

used in USVs should have high detection s peed and accuracy. In this paper, a

YOLOv5 lightweight object detection algorithm using a Ghost module and

Transformer is proposed for USVs. Firstly, in the backbone network, the original

convolution operation in YOLOv5 is upgraded by convolution stacking with

depth-wise convolution in the Ghost module. Secondly, to exalt feature

extraction without deepening the network depth, we propose integrating the

Transformer at the end of the backbone network and Feature Pyramid Network

structure in the YOLOv5, which can improve the ability of feature expression.

Lastly, the proposed algorithm and six other deep learning algorithms were

tested on ship datasets. The results show that the average accuracy of the

proposed algorithm is higher than that of the other six algorithms. In particular,

in comparison with the original YOLOv5model, the model size of the proposed

algorithm is reduced to 12.24 M, the frames per second reached 138, the

detection accuracy was improved by 1.3%, and the mean of average precision

(0.5) reached 96.6% (from 95.3%). In the verification experiment, the proposed

algorithm was tested on the ship video collected by the “JiuHang 750” USV

under different marine environments. The test results show that the proposed

algorithm has a significantly improved detection accuracy compared with

other lightweight detection algorithms.
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object detection, USV, ghost model, lightweight, YOLO
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1 Introduction

In recent years, unmanned surface vehicle (USV) technology

has developed rapidly, and USVs are widely used in maritime

safety tasks, such as orderly and complex patrols ,

reconnaissance, and detection and tracking of specific objects.

Traditional ship detection and tracking systems typically employ

radar or AIS (Vesecky et al., 2009; Dzvonkovskaya and Rohling,

2010; Vesecky et al., 2010; Sermi et al., 2013). However, the radar

has a relatively long scanning period and slow detection speed. It

cannot distinguish between specific types of objects, and hence

false and missed detections easily occur. Information collected

by AIS can be intentionally turned off by ships, which sometimes

results in AIS unreliability. The existing ship detection methods

are based on vision; they not only have a long detection range

but also have high resolution and object detailing. The

traditional detection methods based on vision are mainly

Mean-shift (Liu et al., 2013) and HOG-SVM (Xu and Liu,

2016). Their characteristic is that they mainly rely on a single

shallow feature to complete the ship detection task. However,

these features are easily affected by the ship’s appearance, shape,

and complex environment, resulting in poor robustness. With

the rapid development of the visual field, visual object detection

based on deep learning has become a popular research topic.

Object detection algorithms based on deep learning have broad

application prospects in the marine environment (Chen et al.,

2021; Wang et al., 2022); nevertheless, their applications have

not been fully valued until now (Mittal et al., 2022). For example,

object detection can be used to perceive the surrounding

environment. The object’s orientation and image information

plays an important role in path planning, collision avoidance,

and object monitoring of a USV. At present, an object detection

algorithm based on deep learning can more accurately classify

and detect object positions. However, it has high requirements

for the vision-based processing system of the USV; moreover,

speed and accuracy of the object detection algorithm are also

major challenges.

In this study, we propose a lightweight object detection

network based on the You-Only-Look-Once-v5 (YOLOv5) to

obtain fast detection speed and high accuracy for USVs. The

object detection performance in a complex environment has

been improved. The proposed network has reduced detection

time and improvements in terms of anchor boxes, backbone, and

feature pyramid network (FPN) structure. We obtained a set of

anchor boxes through the K-means clustering method to adopt

to the ship’s characteristics. The Ghost module upgraded the

convolution (Conv) in the backbone to reduce the network

detection time. The Transformer is integrated into the cross

stage partial network (CSPNet) of the backbone and FPN

structure to achieve more useful feature extraction. The

proposed network is composed of these simple but effective

modules, thus balancing detection speed and accuracy well.
Frontiers in Marine Science 02
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Figure 1 shows the detailed flowchart of our training model.

Lastly, the experimental results demonstrate its excellent

performance on the task of detecting ship objects.

The contributions of this study include the following:
• We obtain a new set of anchor boxes to adapt to the

structural characteristics; i.e., the width of the ship is

longer than the height used by the K-means clustering

algorithm on the ship dataset.

• A combination of Conv stacking with depth-wise Conv

in the Ghost module was adopted to structure the

backbone feature extract ion in YOLOv5. In

comparison with the original Conv, the Ghost module

has better computing efficiency, which not only reduces

the model training and detection times but also

improves accuracy.

• We integrated the Transformer into the end of the

backbone and FPN structure in the YOLOv5 network,

which can improve the feature expression ability and

enhance the detection accuracy without deepening the

network depth.

• The proposed algorithm has achieved a good balance

between detection accuracy and speed. In the actual

marine environment testing process, our algorithm

obtains a high accuracy rate and is found to be robust

in the sea fog environment.
The remainder of this paper is organized as follows. In

Section 2, we show the data augmentation and related work. We

describe our approach in Section 3. The experimental results

performance and discussion are presented in Section 4. In

Section 5, we summarize this work.
2 Related work

2.1 Data augmentation

The purpose of data augmentation is to generate more

training samples based on existing datasets. The method of

data augmentation is to randomly transform the local or

global features of the images, and its role is to improve the

robustness and generalization ability of our trained model. In

certain special circumstances, highlighting, blurring, and

occlusion were encountered in the future detection process of

our model. Therefore, the hue, saturation, and value have been

adjusted in the model training process. With regard to the

geometric distortion of the image, certain operations are

performed, i.e., rotation, horizontal and vertical translation,

scaling, and shearing of the image. In addition, there are some

special data enhancement methods, such as Mixup (Zhang et al.,

2017) and Mosaic (Bochkovskiy et al., 2020). In the Mixup data
frontiersin.org
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enhancement method, new sample-label data are generated by

adding two image sample-label data pairs in proportion. In the

Mosaic data enhancement method, a new picture is generated

using four pictures through random reduction, cropping, and

arrangement. In this paper, we used a combination of Mixup,

Mosaic, and traditional data augmentation methods.
2.2 Visual object detection based on
deep learning

In recent years, visual detection technology has made great

progress, particularly detection methods that are based on deep

learning. The deep learning-based object detection algorithms

are mainly divided into two types—two-stage and one-stage. The

first step of a two-stage object detection algorithm is to generate

a position box by generating a region proposal that can extract

features; then, the second step is to perform category prediction.

It has high accuracy but slow speed; thus, it is not suitable for

real-time object detection like Fast R-CNN (Girshick, 2015) and

Faster R-CNN (Ren et al., 2015). A one-stage object detection

algorithm performs classification and bounding box regression

while generating candidate boxes and has fast speed but less

accuracy; hence, it is suitable for real-time object detection

like SSD (Liu et al., 2016) and YOLOv3 (Redmon and Farhadi,

2018). High object detection speed is essential for a USV

platform; therefore, one-stage object detection algorithms are

more suitable.

In the case of maritime object detection, many scholars have

investigated from sea–skyline detection to ship detection. Bai et al.

(2021) proposed a sea–skyline detection method based on local

Otsu segmentation and Hough transform. Later, the monopole

object detection method was introduced for ship detection, which

reduces a certain amount of interference and calculations, and it

optimizes the accuracy and speed of ship detection. Chen et al.

(2021) proposed an integrated ship detection framework based on

an image segmentation method for edge detection. The Canny edge
Frontiers in Marine Science 03
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detector and Gaussian filter are used to detect the edges of ships in

the image, suppress the edges related to the background, and,

finally, connect them to form the outline of the ship; the method

achieved an effect of 32 fps. In ship detection methods based on

deep learning, Gupta et al. (2021) proposed a classification method

for ship detection based on support vector machines (SVMs) and

convolutional neural networks (CNNs). First, the feature package is

used to deal with diverse features of different types of ships, and

then the CNN is used for feature extraction. Finally, 2,700 images

are used for training, and the accuracy rate of their model reaches

91.04%. Zou et al. (2019) improved a maritime object detection

method based on Faster R-CNN. The ResNet-50 network is

replaced by the VGG16 network. The results show that the

recognition and detection effect of small ships was significantly

improved. Zou et al. (2020) proposed an improved SSD algorithm

based on the MobileNetV2 CNN that is used in ship detection and

identification. The results show that the SSD_MobileNetV2

algorithm has better performance for ship images. Shi and Suo

(2018) proposed a ship detection algorithm based on an improved

visual attention model. Firstly, the wavelet transform (WT) is used

for feature extraction; secondly, the improved Gabor filter and deep

multifaceted transformers (DMT) algorithm are used to obtain the

directional and edge texture features of the image. The final test

demonstrated high detection accuracy and good real-time

performance. For the existing ship detection algorithms based on

deep learning, it is difficult to simultaneously obtain good detection

accuracy and real-time performance.
2.3 Ship detection based on YOLO

Since the YOLO algorithm was published, it has been widely

studied because of its good computational efficiency and

detection accuracy. Lee et al. (2018) applied the YOLOv2

algorithm to ship detection and classification. In comparison

with other machine learning algorithms, their model has better

robustness and scalability. Li and Qiao (2021) proposed a ship
FIGURE 1

Detailed flowchart of the proposed model training.
frontiersin.org

https://doi.org/10.3389/fmars.2022.1058401
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2022.1058401
detection and tracking algorithm based on YOLOv3. They used a

graph matching algorithm and Kalman filter to achieve object

matching and tracking, which solves the problems of object

occlusion and label switching. Jie et al. (2021) improved

YOLOv3 for ship detection and tracking in inland waterways;

the K-means clustering algorithm was used to improve the

anchor boxes, and it was improved by taking the single

softmax classifier and introducing the Soft-NMS algorithm.

Their algorithm could enhance the safety of inland navigation

and prevent collisions and accidents. Zhang et al. (2020)

improved a maritime object detection algorithm based on

YOLOv3. They proposed an E-CIoU loss function for

bounding box regression, and the improved method

accelerated the convergence speed and improved the detection

accuracy. Liu and Li, (2021) studied ship statistics in waterway

videos. To realize automatic detection and tracking by YOLOv3,

they designed a self-correcting network combining regression-

based direction judgment and object counting method with

variable time window. The results show that their algorithm

can achieve automatic analysis and statistical data extraction in

waterways videos. Sun et al. (2021) optimized the backbone

network CSPDarkNet of YOLOv4 for application in an auxiliary

intelligent ship navigation system. They added a receptive field

block module, and the FPN of YOLOv4 was improved by

combining the Transformer mechanism. Their algorithm

improves the inference speed and detection accuracy. Liu et al.

(2021) improved the USV maritime environment perception

ability using an improved YOLOv4 object detection algorithm.

The reverse depth-wise separable convolution (RDSC) was

applied to the backbone and FPN structures of YOLOv4,

which reduced the number of parameters of the network and

improved the accuracy by 1.78% compared with the original

model. Thus, the algorithm has a small network size and better

performance in terms of detection speed.

In summary, the ship detection methods are mostly difficult to

apply on USVs because of limited computing resources and

detection speed. Thus far, the problems of accuracy and speed of

maritime object detection have not been resolved. In comparison

with traditional object detection algorithms, the deep learning-

based object detection algorithm has good accuracy rate, but slow

detection speed. Therefore, this study focuses on improving an

object detection algorithm based on YOLOv5 to solve the problems

of real-time performance and accuracy of the maritime ship

detection algorithm applied to the USV platform.
3 Methods

The maritime object detection includes two tasks, i.e.,

classification and positioning of ships. A robust object detection

algorithm should not only consider the detection speed, but also

consider the complex environmental scenarios. In the field of object

detection, the YOLO object detection algorithm performs well in
Frontiers in Marine Science 04
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various environments, such as changes in illumination in a complex

sea environment, and recognition of distant small targets in the sea.

The fifth version YOLO object detection algorithm has been

developed, and its efficiency is very good.

YOLOv5 has high performance in terms of detection speed

and accuracy. According to the depth and width of the network,

it is divided into four versions: YOLOv5s, YOLOv5m, YOLOv5l,

and YOLOv5x. The basic network of the four versions is similar.

The structure of YOLOv5 is mainly composed of the input,

backbone, Neck, and Prediction. At the input, we perform data

augmentation operations, such as Mixup and Mosaic, which can

enrich the ship dataset and improve the detection efficiency of

small objects. Feature maps of different scales are extracted at the

backbone network. The FPN and path aggregation network

(PANet) at the Neck strengthen the feature fusion ability. The

FPN transfers high-level semantic features in a top-down

manner, and the PANet transfers low-level strong localization

features in a bottom-up manner after the FPN. The final output

is the prediction of the network, and the prediction uses the non-

maximum suppression (NMS) algorithm to filter the object

boxes. Then, we make predictions on the image features,

generate bounding boxes and predict classes.

In this study, we examine the ability of the USV to detect and

classify an object quickly. We used YOLOv5 as the base network

and improved it. The architecture of the improved YOLOv5 is

shown in Figure 2.
3.1 Anchor box calculation

In object detection tasks, choosing suitable anchor boxes can

significantly improve the speed and accuracy of object detection.

Anchor boxes are boxes presented by a fixed aspect ratio in YOLO,

which is used to predict the category and position offset of the

bounding box. The default anchor boxes are generated in the MS

COCO and VOC datasets. The COCO and VOC datasets have 80

and 20 classes, respectively, but ships are only one of their classes.

Therefore, the default anchor boxes are not fully applicable to the

objects in the ship dataset. To adapt the structural characteristics of

the width of the ship being longer than the height of the ship, we

used the K-means clustering algorithm on the ship dataset to obtain

a set of anchor boxes. The clustering results for the ship dataset

labels are shown in Figure 3. The steps to implement the

Algorithm 1 are described as follows.
Input:
A ground truth label dataset: S ={x1, x2, x3
… xm}

The number of cluster centers: k

Output:
A group of anchor boxes: {c1, c2, c3 …

ck}
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Fron
Procedure:
First, select randomly nine boxes of

ground truth labels from the ship dataset

as the cluster centers;

for i = 1,2 … k do
REPEAT

for j = 1,2,3 … m do
Calculate the distance between xj and each

cluster center {c1, c2, c3 … ck} dji = ||xi – ci
||2;

Return each label xj to cluster centers ci

with the closest distance; Update the
tiers in Marine Science 05
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cluster center ci for each class in each

cluster ci = Sx∈ci
xi
jci j;

end for
UNTIL Cluster centers no longer change.
ALGORITHM 1
Pseudocode of K-means clustering algorithm for anchor boxes.

Finally, nine sets of adaptive anchor boxes are generated

using the K-means clustering algorithm, i.e., (29,23), (58,31),

(109,30), (62,60), (112,39), (114,50), (78,89), (112,65), and (112,

87). The anchor boxes of the clustering algorithm can effectively

accelerate the convergence speed of the network and effectively

improve the gradient descent problem in the training process.
3.2 Ghost model

There are limitations regarding the memory and computing

resources of embedded industrial computers in USVs; therefore,

the key to ship detection on an USV is to find a lightweight

detection model that can balance detection accuracy and

computational complexity. CNNs are usually composed of

many convolution kernel operations, which will result in large

computational cost. During model training, many redundant

feature maps will be generated, as shown in Figure 4. Redundant

feature maps not only have high similarity but also

greatly increase computational complexity. To reduce the

computational load of the model and raise the detection speed,

an efficient architecture and high-performance GhostNet (Han

et al., 2020) structure are adopted.

The detailed structure of the Conv and Ghost model is shown

in Figure 5. Figure 5A shows the Conv operaton. A given input is
FIGURE 3

Result of ship dataset using K-means clustering. The x-
coordinate is the width of the ground truth bounding box and
the y-coordinate is the height of the ground truth bounding box.
FIGURE 2

Improved YOLOv5 network structure proposed in this paper.
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defined as X∈Rc×h×w , where c is the number of channels of the

input; h and w are the height and width of the input data,

respectively. The n feature maps are generated through ordinary

convolution that can be expressed as Y =X*f + bwhere Y∈Rc×k×k×n

is the output feature map with n channels, and * is the convolution

operation; f denotes the convolution filter of this layer, b is the bias

term, and k×k is the size of the convolution kernel f. The value of

the floating point of operations (FLOPs) can be expressed as

n·h·w·c·k·k . Owing to the large values of n and c, the usual

parameters of the model are very large. The Ghost model

comprises Conv and depth-wise Conv with less parameters and

computations. The Ghost model first obtains the necessary feature

map of half channel of the input features through Conv. These

necessary feature maps are used to perform the depth-wise Conv

that can obtain similar feature maps of the necessary feature maps.

Finally, the two parts of the feature maps from Conv and depth-

wise Conv are spliced. The schematic diagram of the Ghost

module is shown in Figure 5B. Specifically, we used the primary

convolution Y′=X*f′ generate m feature maps Y'∈Rh'×w'×m . To

obtain the required n feature maps, the following cheap operations

are used for each intrinsic feature in Y’:

yij = Fi,jðy0iÞ,∀ i = 1, 2,…m, j = 1, 2,…… s (1)

where y'i is the ith intrinsic feature map in Y’ and Fi,j is the

depth-wise Conv operation to generate the jth (except the last

one) Ghost feature map yij; y’i can obtain one or more feature

maps. The last Fi,s is the identity mapping to preserve the

intrinsic feature map as shown in Figure 5B. We can obtain

n=m·s feature maps for Y=[y11,y12…yms] , which are taken as the

output of the Ghost module. The value of the Ghost module
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FLOPs can be expressed as n
s · h · w · c · k · k + n

s (s − 1) · h · w ·

k · k. The operations Fi,j are convoluted on one channel. One

convolution kernel of ordinary convolution is convoluted on

every channel. The computational cost of the depth-wise Conv

operation is much lower than that of the ordinary convolution.

The original convolution operation in the YOLOv5

backbone network is upgraded to Conv stacking with depth-

wise Conv in the Ghost module, which can raise the operation

speed and reduce the number of parameters of the model.
3.3 Transformer encoder block

In the case of ship detection, the classification result of the

model can be affected because of the high similarity of ship

features. Generally, an image contains rich visual information,

such as the object and background information. The key is to

fully mine the information in the sample and solve the problem

of low accuracy. The Transformer’s (Vaswani et al., 2017; Zhu et

al., 2020) self-attention mechanism is used to learn the

association between the foreground and background in the

sample, so that the model can focus on the key areas for

detection. The Transformer can improve the detection

accuracy of objects. First, the Transformer constructed the

sample features into sequence form and added positional

encoding. Then, the self-attention mechanism of the

Transformer model was used to learn the association between

each feature block and assigned different attention to each

feature block. Lastly, the original feature sequences are fused,

and each feature block in the sequence can contain useful
FIGURE 4

Redundant feature maps generated by original convolution.
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information for detection in other feature blocks. These

operations can enhance the feature expression ability of

training samples and improve the accuracy of classification

and detection.

The Transformer encoder comprises L layers of alternating

Multihead Self-Attention (MSA) and Multilayer Perceptron

(MLP) modules. The model structure of Transformer is shown

in Figure 6. Therefore, the output Zlif layer l based on the

Transformer encoder is:

Z 0
l =  MSA LN   Zl−1ð Þð Þ +  Zl−1 (2)

Zl =  MLP   LN   Z0
l

� �� �
+  Z 0

l (3)

where l = {1, 2,…, L} represents the number of layers, LN(·)

presents the layer normalization operation, and Z'l represents the

output of the Lth layer of the MSA. The final output (hidden

feature) of the Transformer encoder is ZL∈ RN×P ×P .

To improve the detection accuracy of the network without

deepening the network depth, we focused on the fusion of

multilayer features on the PANet and optimization of the

feature transfer on the FPN structure. High-quality feature

map upsampling and forward transfer were obtained, and the

interference of the underlying feature background was reduced.

The Transformer was integrated into YOLOv5, which could

improve the feature expression. The Transformer was taken into

the end of the backbone structure and CSPnet module of the
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FPN structure. The spatial areas of low-level features were

weighted by the salient target position information contained

in the attention map, which highlighted the salient regions of

the low-level features and suppressed the interference of the

background. Thus, it could be more conducive to the

identification and classification of ships.

The Transformer could guide the model’s attention to

reliable and useful channels, while reducing the impact of

unreliable and useless background channels. Based on the

YOLOv5 model, we integrated the Transformer block at the

end of its backbone and Neck networks. Because the resolution

of the images at the end of the backbone network was relatively

low, applying the Transformer module on the low-resolution

feature maps could reduce the additional computational cost.
4 Experiment

4.1 Datasets

In marine transportation, there are generally five basic types

of vessels, namely, cargo ships, general cargo ships, carrier ships,

bulk carriers, and oil tankers. In addition, there are other types of

ships, such as ro-ro, reefer, barge, and liquified natural gas

carrier. Among them, cargo, carrier, and cruise ships account

for 60%–70% of global ships (Electronic Quality Shipping
A B

FIGURE 5

Conv and Ghost module structure diagrams (A) The Conv operaton, (B) The Ghost module.
FIGURE 6

Transformer encoder architecture.
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Information System, 2020). Therefore, we selected a ship dataset,

which can be found on Kaggle (Jain, 2021). It includes five

different ship types: cargo, military, carrier, cruise, and oil

tanker. Additionally, the dataset comprises 7,604 ship images,

including 1,853 cargo ships, 916 warships, 829 transport ships,

1,281 cruise ships, and 1,062 tankers. Figure 7 shows sample

images that were randomly selected from ship datasets.

The “JiuHang750” USV is designed and fabricated to detect

and trace ships and is used as our research platform. The USV was

equipped with the three-light photoelectric platform, which

comprises a 30× continuous zoom high-definition visible light

camera, an 80-mm uncooled infrared thermal imager, and a 5-km

laser rangefinder. The visible light camera can achieve 30× optical

zoom and output video images with a 1,920 × 1,080 resolution; the

stabilization accuracy of the photoelectric platform reaches 0.5

mrad, the rotation range can reach 360°, and the pitch angle can

reach 70° up and down. Based on this optoelectronic platform, the

“JiuHang750” USV collected images in the areas of Yellow Sea to

test the detection ability of the algorithm in the maritime

environment in October and December 2021 and February

2022. The video screenshots are shown in Figure 8.
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4.2 Experimental environment
and parameters

To ensure experimental consistency, all experiments in this

study were carried out under the same hardware platform and

software framework. All models used an NVIDIA RTX2080Ti

GPU (11 GB) for training and testing. The operating system was

CentOS 7, the test framework was PyTorch1.9.0, and the CUDA

version 10.2 was the parallel computing framework. The

networks were trained for 200 epochs.
4.3 Analysis of results

4.3.1 Comparison with other object
detection algorithms

In this section, we evaluate the performance of the proposed

improved YOLOv5 algorithm. Multiple evaluation indicators

were used to evaluate the performance of the different object

detection algorithms, including Average Precision (AP),

Precision (P), Recall (R), and F1-score. The mean average
FIGURE 7

Randomly selected sample images from the dataset.
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precision (mAP) was adopted to evaluate the accuracy of the

object detection algorithms. P was adopted to measure the

algorithm classification accuracy, and R was used to measure

the recall ability of the algorithm detection. The F1-score can

consider both P and R. The frames per second (FPS) is an

important indicator to evaluate the speed of a target detection

algorithm, which indicates the number of frames per second

processed by the detection algorithm. The calculation formulas

are presented as follows:

P =
TP

TP + FP
(4)

R =
TP

TP + FN
(5)

AP =
Z 1

0
PR · dR (6)

F1   =   2� P � R
P + R

(7)
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mAP = o
n
i=1APi
n

(8)

where P represents the precision rate, R represents the recall rate,

TP represents the situation where the prediction and label are

both ships, and FP represents the situation where the prediction

is a ship but the label is the background; FN represents the

situation where the prediction is the background but the label is

the ship. n represents the number of classes.

Four deep learning and two lightweight algorithms were

used to compare with the proposed algorithm, including SSD,

YOLOv3, YOLOv4, YOLOv5, YOLOv3-tiny, and YOLOv4-tiny.

The specific test results in Table 1 show that the proposed

algorithm achieves the best results between detection speed and

accuracy, and its detection precision is better than SSD,

YOLOv3, YOLOv4, YOLOv3-tiny, and YOLOv4-tiny. The

ship detection precision of our study is 0.7% and 1.5% higher

than that of YOLOv3 and YOLOv4, respectively, and 28.8% and

43.9% higher than that of YOLOv3-tiny and YOLOv4-tiny,

respectively. The FPS value of our algorithm was 138. The

detection speed of our algorithm is faster than that of SSD,
A B

FIGURE 8

(A) “JiuHang750” USV and (B) its video images collected under different weather conditions.
TABLE 1 Performance comparison of SSD, YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-tiny, YOLOv5 and the proposed algorithm in the ship dataset.

Methods mAP0.5 (%) mAP@0.5:0.95 (%) P (%) R (%) F1 (%) Model size (M) FPS

SSD 95.2 72.1 81.3 85.7 83.4 92.6M 83

YOLOv3 95.9 77.3 95.1 94.8 94.9 117M 54

YOLOv3-tiny 72.6 31.4 67.0 72.4 69.6 16.6M 149

YOLOv4 93.5 77.5 81.2 96.4 88.1 488M 26

YOLOv4-tiny 88.9 63.9 51.9 91.5 66.23 45M 98

YOLOv5 95.3 70.9 95.8 94.5 95.1 13.61M 131

Ours 96.6 79.2 95.8 94.7 95.2 12.24M 138
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YOLOv3, YOLOv4, YOLOv4-tiny, and YOLOv5. The results

show that the detection algorithm of the proposed algorithm

achieves optimal results between speed and accuracy. Therefore,

the ship detection algorithm of our study is suitable for

application to USVs.

Figure 9 shows the Precision–Recall (P–R) curves of

YOLOv3, YOLOv4, YOLOv5, and the proposed algorithm.

The P–R curves represent the predictions of the test set

samples as positive samples under different thresholds, and

different precision and recall rates are obtained. The larger the

area enclosed by the P–R curve with the coordinate axis, the

better the precision and recall of the detection algorithm. After

comparison, it can be seen that the area enclosed by the

algorithm in this study is larger than that of other object
Frontiers in Marine Science 10
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detection algorithms. Hence, the algorithm in this paper is

better than the three algorithms of YOLOv3, YOLOv4, and

YOLOv5 in terms of detection performance.
4.4 Comparison of actual test results
of USV

To test the detection effect of the proposed algorithm in an

actual maritime environment, we conducted several maritime

experiments in the Yellow Sea near Qingdao to detect and

classify ships. Figure 10 shows the detection results of the

proposed algorithm and lightweight models YOLOv3-tiny,

YOLOv4-tiny, and YOLOv5 on images collected by the
A B

DC

FIGURE 9

Precision-Recall (P-R) curves of different object detection algorithms on the ship dataset (IoU = 0.5). (A) is from YOLOv3, (B) is from YOLOv4,
(C) is from YOLOv5 and (D) is from our proposed algorithms.
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“JiuHang750” USV. The results show that the proposed

algorithm has the best detection performance in the actual

maritime environment. Each column presents the original

image and the detection results of YOLOv3-tiny, YOLOv4-

tiny, Yolov5, and the proposed algorithm from left to right.

The first row shows a ship clearly. Although YOLOv4-tiny

detects the object, the detection box is significantly smaller

than the actual position of the ship in the image. In the

second row, we show the image of a ship that is far away from

the ship and has wake waves. YOLOv4-tiny recognizes the waves

as a ship object, and the detection accuracy of the proposed

algorithm is significantly higher than that of other detection

algorithms. The third row shows the ship image under the swing

of the USV. YOLOv3-tiny and YOLOv4-tiny also detect the ship

object, but the detection box is inconsistent with the actual

position of the ship in the image; additionally, YOLOv5 does not

detect the ship object. The fourth row shows the image of the

ship under dark clouds; all algorithms detect the ship object, but

YOLOv4-tiny splits one ship object into two different objects.

Furthermore, the accuracy of the proposed algorithm is

significantly higher than that of other detection algorithms.

The fifth and sixth rows show the ship image in the case of

sea fog. Two images do not detect the ship object of YOLOv3-

tiny and YOLOv4-tiny, and the detection accuracy is also low;
Frontiers in Marine Science 11
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however, the accuracy rate of the ship object detected by the

proposed algorithm is higher.
4.5 Ablation experiments

To further evaluate the effectiveness of the proposed

algorithm and each module, ablation experiments were

designed, and Table 2 presents the results. Experiment 1 is set

as the benchmark, which demonstrates the performance of

YOLOv5s without any modification. Then, we replaced the

original anchor boxes in experiment 2. In experiment 3, we

added the Ghost module to the backbone structure. In

experiment 4, we included the attention mechanism in the

Neck network structure.

The results show that the mAP increased by 0.11% in

experiment 2 after replacing the original anchor boxes. The

original Conv operation in the backbone was replaced by Conv

stacking with depth-wise Conv in the Ghost module in

experiment 3. Compared with the results achieved by

YOLOv5s, the mAP increased by 0.14% and the size of the

model reduced by 1.45 M. In experiment 4, we integrated the

Transformer into the end of the backbone network and FPN

structure, and the mAP increased by 0.43%. These results show
FIGURE 10

Detection results of different object detection algorithms in various environments collected by “JiuHang750” USV.
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that the addition of the two modules can improve the detection

ability of the algorithm.
5 Conclusions

In this study, an object detection algorithm is improved

based on the YOLOv5 model for USVs. First, based on the shape

characteristics of ships, the K-means algorithm was used to

optimize the initial value of the anchor boxes. Second, the Ghost

module was added to the backbone, thus reducing the size of the

network and improving detection efficiency. Third, we

integrated the Transformer at the end of the backbone and

Neck structures in the YOLOv5 network, thereby improving the

model’s attention to reliable and useful features. Finally, we

conducted experiments to verify the accuracy of the proposed

algorithm and its effectiveness in real-time detection tasks. In

comparison with other deep learning object detection

algorithms, the results show that the proposed algorithm

achieves a mAP of 96.6%. Our model size is the smallest

among all other algorithms used for comparison and only

reaches 12.24 M. The detection results in different maritime

environments are also significantly better than those of other

detection algorithms. Additionally, our algorithm has obtained

good detection results in the sea fog environment. Furthermore,

the proposed algorithm was applied to the vision system of the

“JiuHang750” USV and successfully realized the identification

and classification of the surrounding ships of the USV.

Sea images are easily affected by weather and lighting,

resulting in unclear objects on images; thus, feature extraction

of objects can become difficult. In future research, we can resolve

this problem by focusing on the hardware technology for image

acquisition, image stabilization, and other aspects. In addition,

the dataset used in this study is small in terms of size, and it is

necessary to collect more photos of objects on the sea, and

especially pictures at different times and light conditions.
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ESPC-BCS-Net: A network-based
CS method for underwater image
compression and reconstruction

Zhenyue Li1, Ge Chen1,2 and Fangjie Yu1,2*

1College of Information Science and Engineering, Ocean University of China, Qingdao, China,
2Laboratory for Regional Oceanography and Numerical Modelling, Qingdao National Laboratory for
Marine Science and Technology, Qingdao, China
The Internet of Underwater Things (IoUT) is a typical energy-limited and

bandwidth-limited system where the technical bottleneck is the asymmetry

between the massive demand for information access and the limited

communication bandwidth. Therefore, storing and transmitting high-quality

underwater images is a challenging task. The data measured by cameras need to

be effectively compressed before transmission to reduce storage and reconstruc-

ted with minor errors, which is the best solution. Compressed sensing (CS) theory

breaks through the Nyquist sampling theorem and has been widely used to

reconstruct sparse signals accurately. For adaptive sampling underwater images

and improving the reconstruction performance, we propose the ESPC-BCS-Net

by combining the advantages of CS and Deep Learning. The ESPC-BCS-Net

consists of three parts: Sampling-Net, ESPC-Net, and BCS-Net. The parameters

(e.g. sampling matrix, sparse transforms, shrinkage thresholds, etc.) in ESPC-BCS-

Net are learned end-to-end rather than hand-crafted. The Sampling-Net achieves

adaptive sampling by replacing the sampling matrix with a convolutional layer. The

ESPC-Net implements image upsampling, while the BCS-Net is used to image

reconstruction. The efficient sub-pixel layer of ESPC-Net effectively avoids

blocking artifacts. The visual and quantitative evaluation of the experimental

results shows that the underwater image reconstruction still performs well when

the CS ratio is 0.1 and the PSNR of the reconstructed underwater images is

above 29.

KEYWORDS

internet of underwater things, underwater image, compressed sensing, deep learning,
convolutional neural networks
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1 Introduction

The internet of underwater things (IoUT) is an emerging

communication ecosystem to facilitate an integrated, reliable, and

coordinated communication network (Jahanbakht et al., 2021) that

connects different underwater devices in water bodies (rivers, lakes, and

oceans) and underwater environments. The underwater devices include

underwater vehicles (sea-bots, remotely operated vehicles, underwater

trackers) and underwater sensors (Bello and Zeadally, 2022). By

connecting more and more devices to the IoUT, the ecosystem

generates a huge amount of data, known as Big Data. However, due

to the large size of the captured images and the low memory of low-

power embedded devices, communication of underwater images

becomes very difficult. Furthermore, the traditional big data

processing methods (Cao et al., 2018) that rely on statistical

properties lack generalization ability. JPEG and other traditional

compression algorithms have limitations regarding reconstruction

quality, data rate, and compression performance, making them

unsuitable for resource-constrained IoUT (Monika et al., 2022b).

Compressed sensing (CS) theory has several names: compressive

sampling, compressed sensing, and compressive sensing. CS theory

breaks through Nyquist’s theorem, and it is a pre-processing

technique that exploits the signal’s sparsity for sampling the data

(Zhang et al., 2022). CS is more hardware-friendly, especially with

simultaneous sampling and compression. Some CS-based methods

have been proposed to solve underwater data processing. The SPIHT

compression algorithm for underwater images was proposed based on

embedded coding compression and CS (Cai et al., 2019). Zhang et al.

(2021) used CS to overcome underwater image distortions. The CS

multiscale entropy feature extraction method to process target

radiation noise is efficient and accurate (Lei et al., 2022).

Nevertheless, these traditional CS-based methods face the

drawbacks of requiring manual parameter adjustment for the

signal, time-consuming calculations, and poor generalization.

With the development of CS and Deep Learning, the network-

based CS methods have been applied to magnetic resonance imaging

(Kilinc et al., 2022), acoustic transmission (Atanackovic et al., 2020),

and synthetic aperture radar imaging (Cheng et al., 2022). The

network-based CS method allows the reconstruction of images

quickly once the network has been trained. Yuan et al. (2020)

proposed SARA-GAN based on Generative Adversarial Networks

with the Self-Attention mechanism for CS-MRI reconstruction. In

addition, a method called LightAMC based on CS and a convolutional

neural network was proposed for a non-cooperative communication

system (Wang Y et al., 2020). The parameters of these network-based

CS methods are trained end-to-end rather than manually tuned, with

the advantage of higher generalization and faster reconstruction.

To improve the CS performance of underwater image

reconstruction, we propose ESPC-BCS-Net. The following are the

particular contributions of the proposed ESPC-BCS-Net:
Fron
1. It is a novel network-based CS method where parameters

(excluding hyperparameters) are trained end-to-end rather

than through manual adjustment (including the sampling

matrix and sparse matrix).
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2. The ESPC-BCS-Net can be trained in unison, while the

Sampling-Net can be used separately for underwater image

sampling.

3. The Sampling-Net achieves adaptive sampling by replacing

the fixed sampling matrix with a learnable convolutional

layer.

4. The ESPC-Net avoids blocking artifacts and improves

reconstruction quality.
2 Related works

This section will present related works and briefly introduce CS

and CS-based reconstruction methods.
2.1 CS overview

Mathematically, CS reconstruction is to infer the objective signal

x ∈ R N from its randomized CS measurements:

y =  FY s = Qs = Fx                                                                       (1)

whereF ∈RM×N is the sampling matrix, Q is the sensing matrix, Y
is the sparse matrix, s is the sparse coefficient. CS ratio is defined as M

N ,M

≪N. In block compressed sensing (BCS), blocks of images are processed

simultaneously rather than the entire image, which reduces the

processing time. The image is divided into small blocks of size B×B.

The vector yi can be expressed as:

yi =  FBi xi                                                                                     (2)

where xi presents the vector form of the ith image block and Fbi is

the ith measurement matrix of size B×B. BCS solves the problem of

high decoding computational complexity by independently

measuring and recovering non-overlapping blocks, but the images

can lead to blocking artifacts (Li et al., 2017).
2.2 CS reconstruction methods

We classify the existing CS into three categories: iteration-based

method, optimization-based CS method, and network-based CS

method. The general iteration-based method for CS reconstruction is:

min
x

 
1
2
jjFx−yjj22 +lR(x)                                   (3)

where the first term 1
2 ‖Fx − y ‖22   is the data fitting term, l > 0 is

the weighting parameter, R(·) is the regularization term that requires

reconstructed data satisfies the priori information. The optimization-

based method for CS reconstruction is to solve the following

optimization problem:

min
x

 
1
2
jjFx−yjj22 +ljjYxjj1                                  (4)
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where the sparsity of the vector Yx encouraged by the l1 norm

(Qin, 2020). In addition, the common idea of network-based CS

method is to replace the operators in traditional CS methods with

neural networks (Liu et al., 2021).
3 Proposed ESPC-BCS-Net

This section will briefly introduce the proposed method and then

explain the novel ESPC-BCS-Net. As shown in Figure 1, the proposed

ESPC-BCS-Net contains Sampling-Net, ESPC-Net, and BCS-Net. We

will describe the design of these three networks in the following

sub-sections.
3.1 Problem formulation

We divided CS reconstruction into two steps:

                    r(k)=xi
(k−1)−r*∇

1
2
jjFxi

(k−1)−yjj22                             (5)

  x(k)=arg min
xi

 
1
2
jjFxi− r

(k)jj22 +ljjF(xi)jj1                        (6)

Where r is the step length of the gradient, ∇ express gradient

operations, l is the regularization parameter, F(·) is the transform

function to sparse images, xi is the image block. Inspired by a data-

driven adaptively learned matrix (Hong and Zhu, 2018), we improve

Equation (6) to learn sampling matrix F follow Equation (7):
Frontiers in Marine Science 0356
  x(k)=arg m in
xi ,F,F

 
1
2
jjFxi−r

(k)jj22 +ljjF(xi)jj1                        (7)
3.2 Architecture of ESPC-BCS-Net

3.2.1 Sampling-Net
The traditional sampling matrix, such as the random Gaussian

matrix, is computationally complex and takes up a lot of memory, so

we design a learnable sampling matrix. Sampling-Net implements

adaptive sampling, which is a learnable convolutional layer used to

replace a fixed random matrix F ∈ RM×N. The convolutional layer

uses M filters of size
ffiffiffiffi
N

p � ffiffiffiffi
N

p
to sample the image block xi of sizeffiffiffiffi

N
p � ffiffiffiffi

N
p

. After the sampling network, we get the result yi=FBixi
with size 1 × 1 × M which easily compresses the underwater image.

After the ESPC-BCS-Net network has been trained in unison,

Sampling-Net can be used as a compression network. Compared to

traditional compression algorithms, Sampling-Net is more suitable

for low-power embedded devices as it compresses data through a

simple convolution layer.

3.2.2 ESPC-Net
Inspired by the image super-resolution network (Shi et al., 2016),

we designed the ESPC-Net (efficient sub-pixel convolutional neural

network) for underwater image upsampling and reconstruction. The

convolutional layer uses N filters of size 1 × 1 to replace the (FBi)
Tyi=

(FBi)
TFBixi. After the convolutional layer, we get the result (FBi)

Tyi
with size 1 × 1 × N. Furthermore, the efficient sub-pixel operation is

depicted in Figure 1. In the end, we obtained image blocks of the sizeffiffiffiffi
N

p � ffiffiffiffi
N

p
and used them as input to the BCS-Net.
FIGURE 1

The schematic diagram of the proposed ESPC-BCS-Net consists of Sampling-Net, ESPC-Net, and BCS-Net.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1093665
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Li et al. 10.3389/fmars.2023.1093665
3.2.3 BCS-Net
The BCS-Net (block compressed sensing network) is used for

underwater image reconstruction and consists of Nr layers network,

each containing a gradient module and a proximal module. In

particular, the BCS-Net can be trained and used independently as a

network for underwater image reconstruction.

Gradient module: corresponds to Equation (5), which is used to

generate the r(k). In Equation (8), we omit the calculation process for

this ∇ 1
2 ‖Fx(k−1) − y ‖22   = FT (Fx(k−1) − y). FT is the transpose

matrix of F.

  r(k) = x(k−1) − r(k)
*F

T (Fx(k−1) − y) (8)

Proximal module: corresponds to Equation (7), which is used to

generate the reconstruction result x(k). The soft thresholding

function Soft(·,q(k) ) is used to reduce image noise.

F(k)(x(k)) = Soft(F(k)(r(k)), q(k)) (9)

We design the BCS-Net as a residual network structure and x(k) is

calculated by Equation (10). F(k) and ~F(k) have same structures, with an

efficient channel attention (ECA) block (Wang Q et al., 2020) in each unit.

              x(k) = r(k) +   ~F(k)(F(k)(x(k)))                                                           (10)
3.3 Loss function

The loss function consists of three components, Lconstraint, Lsparse,

and Lorth. The Lconstraint is for network accuracy and the Lsparse is for

signal sparsity. The Lorth is an orthogonal constraint for the sampling

matrixF. The end-to-end loss function for ESPC-BCS-Net as follows:

                       Ltotal= Lconstraint+ l1 Lsparse+ l2 Lorth                   (11)

with:

               Lconstraint=
1

NbNx
 o
Nx

i=1
 o
Nr

k=1

 jj~F(k)( F(k)(xi))−xijj22                (12)

 Lsparse =
              

 o
Nr

k=1

 jjF(k)(r(k))jj1                           (13)

 Lorth =
              

1
M2 jjFTF−Ijj22                             (14)

where the fixed hyperparameters l1 = 0.01, l2 = 0.01, theNr is the total

number of the BCS-Net phase,Nx is the total number of training blocks,Nb

is the size of each block xk, M is the size of F, I is the identity matrix.
4 Experiment results and discussion

4.1 Experiment setting

To fairly show the advantages of the ESPC-BCS-Net, we used the

same training set (91 images) as ReconNet+ (Lohit et al., 2018) rather

than thousands of images. All networks are trained on a workstation
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with Intel Core i9-10900KF CPU and NVIDIA RTX3060 GPU by

PyTorch, taking about 22 hours for each CS ratio (0.5, 0.25, 0.1, 0.04,

and 0.01). ESPC-BCS-Net parameters Nr = 10, Nx =88912, Nb =1089,

and used Adam optimization with a learning rate of 0.0001. In

training, the image block size
ffiffiffiffi
N

p � ffiffiffiffi
N

p
is 33×33. We used the

ESPC-BCS-Net for our underwater image reconstruction

experiments, and all the underwater images used were accessible

through Monika et al. (2022a).
4.2 The results of underwater images

We select different underwater images to sample and reconstruct,

including fish, turtles, corals, and underwater scenes. The visual

quality comparison of the reconstructed underwater images at

different CS ratios is shown in Figure 2. The original images

contain three high-resolution images and three noisy images. PSNR

(Peak Signal-to-Noise Ratio) and SSIM (structural similarity)

evaluated the reconstruction quality. ESPC-BCS-Net has provided a

relatively lower CS ratio with convincing visual reconstruction

quality. When the CS ratio is 0.1, the PSNR is above 29. At a CS

ratio below 0.1, underwater image reconstruction is challenging. As

shown in Figure 2E, underwater images reconstructed by ESPC-BCS-

Net are still distinguishable when the CS ratio is 0.04.
4.3 Compared with BCS-Net

To demonstrate the usefulness of the Sampling-Net and the

ESPC-Net, we conducted a comparative experiment using the BCS-

Net and ESPC-BCS-Net. The Gaussian random matrix is used as the

sampling matrix, and the same training set for ESPC-BCS-Net was

then used to train BCS-Net. As shown in Figure 3, the original

images contain a high-resolution image and a dark light image. As

shown in Figures 3C, I, the image shows very obviously blocking

artifacts with a PSNR below 23. Figures 3D–F, J–L show the results

of the ESPC-BCS-Net reconstruction, all of which are better than

BCS-Net. By comparison with the BCS-Net, the reconstructed

underwater image PSNR and SSIM of the ESPC-BCS-Net are

improved by approximately 3.5 and 0.14, respectively.
4.4 Compared with other CS-based
methods

To compare with other CS-based methods, we choose Set11

(Kulkarni et al., 2016) as the test set. We compare ESPC-BCS-Net

with other CS-based methods, including GSR (Zhang et al., 2014),

ReconNet+ (Lohit et al., 2018), BCS (Adler et al., 2017), CSNet (Shi

et al., 2017), and FISTA-CSNET* (Xin et al., 2022). Note that the

traditional CS-based methods enjoy the advantage of interpretability

and do not require training but suffer from the disadvantage of

manual adjustment of parameters and computational complexity. In

addition, we use the average running time to evaluate these CS-based

methods. The GSR is a traditional CS algorithm, which takes the

longest time, about 4 minutes. Others CS-based methods are
frontiersin.org
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network-based CS methods, and all take less than 0.3 seconds. Table 1

shows each CS ratio’s average PSNR and SSIM for different methods.

We highlight the best results in bold and underline the second-best

results. Some methods were not trained and tested at a certain CS

ratio. For example GSR was not evaluated at a CS ratio of 0.5. It is

observed that the ESPC-BCS-Net outperforms the other CS-based

methods across five different CS ratios. Even at the lowest CS ratio of

0.01, the PSNR of the reconstructed image is higher than 20.

Compared with the BCS, ESPC-BCS-Net performance is superior.

The proposed method still performs better reconstruction than the

state-of-the-art FISTA-CSNet*. These results indicate that the
Frontiers in Marine Science 0558
proposed method produces better reconstruction results while

maintaining fast runtime.
5 Conclusion

A novel network-based CS method named ESPC-BCS-Net for

underwater image compression and reconstruction is proposed. All

parameters (e.g. sampling matrix, sparse transforms, shrinkage

thresholds, etc.) of the ESPC-BCS-Net are learned end-to-end,

and its structure consists of Sampling-Net, ESPC-Net, and BCS-
A

B

D

E

F

C

FIGURE 2

Reconstructed underwater images (size of 256×256) by ESPC-BCS-Net at different CS ratios. (A) The original underwater images. (B–F) Reconstructed
underwater images.
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A B

D E F

G
IH
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K L

C

FIGURE 3

Visual comparison of BCS-Net and ESPC-BCS-Net. We evaluate the reconstructed underwater images by PSNR/SSIM. The size of (A-F) is 1024×678, and the size
of (G-L) is 960×540.
TABLE 1 Average PSNR and SSIM of different CS-based methods on Set11 and average running time (in sec) for reconstruction.

CS ratio Quality
CS-Based Methods

GSR ReconNet+ BCS CSNet FISTA-CSNet* Ours

0.01
PSNR 15.47 16.65 19.15 19.87 20.65 20.03

SSIM 0.368 0.372 0.441 0.497 0.536 0.536

0.04
PSNR 19.76 19.64 23.93 23.93 – 25.52

SSIM 0.574 0.535 0.663 0.734 – 0.789

0.1
PSNR 26.55 23.39 26.04 27.59 28.53 29.79

SSIM 0.812 0.698 0.797 0.857 0.858 0.890

0.25
PSNR 32.26 27.10 29.98 31.70 – 34.81

SSIM 0.924 0.821 0.893 0.927 – 0.952

(Continued)
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Net. The Sampling-Net achieves compressed sampling with only

one convolutional layer, which reduces computational costs and is

very suitable for resource-constrained IoUT. ESPC-Net and BCS-

Net are used for underwater image reconstruction. Furthermore, the

ESPC-Net effectively avoids blocking artifacts and improves the

reconstruction performance. The results show that ESPC-BCS-Net

achieves a PSNR of over 29 for underwater image reconstruction at a

CS ratio of 0.1. It can be concluded that ESPC-BCS-Net has

effectively improved underwater image compression and

reconstruction quality while maintaining fast runtime. The ESPC-

BCS-Net mainly focuses on the CS sampling and recovery of

underwater images, which can be easily extended to medical

images and other fields. The future scope is to implement the

proposed method on the hardware platform.
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TSI-SD: A time-sequence-
involved space discretization
neural network for passive scalar
advection in a two-dimensional
unsteady flow
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Numerical simulation of fluid is a great challenge as it contains extremely

complicated variations with a high Reynolds number. Usually, very high-

resolution grids are required to capture the very fine changes during the

physical process of the fluid to achieve accurate simulation, which will result in

a vast number of computations. This issue will continue to be a bottleneck

problem until a deep-learning solution is proposed to utilize large-scale grids

with adaptively adjusted coefficients during the spatial discretization procedure

—instead of traditional methods that adopt small grids with fixed coefficients—so

that the computation cost is dramatically reduced and accuracy is preserved.

This breakthrough will represent a significant improvement in the numerical

simulation of fluid. However, previously proposed deep-learning-based

methods always predict the coefficients considering only the spatial

correlation among grids, which provides relatively limited context and thus

cannot sufficiently describe patterns along the temporal dimension, implying

that the spatiotemporal correlation of coefficients is not well learned. We

propose the time-sequence-involved space discretization neural network (TSI-

SD) to extract grid correlations from spatial and temporal views together to

address this problem. This novel deep neural network is transformed from a

classic CONV-LSTM backbone with careful modification by adding temporal

information into two-dimensional spatial grids along the x-axis and y-axis

separately at the first step and then fusing them through a post-fusion neural

network. After that, we combine the TSI-SD with the finite volume format as an

advection solver for passive scalar advection in a two-dimensional unsteady flow.

Compared with previous methods that only consider spatial context, our method

can achieve higher simulation accuracy, while computation is also decreased as

we find that after adding temporal data, one of the input features, the

concentration field, is redundant and should no longer be adopted during the

spatial discretization procedure, which results in a sharp decrease of parameter

scale and achieves high efficiency. Comprehensive experiments, including a

comparison with SOTA methods and sufficient ablation studies, were carried out
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to verify the accurate and efficient performance and highlight the advantages of

the proposed method.
KEYWORDS

unsteady flow, spatiotemporal feature, CONV-LSTM, passive scalar advection, spatial
discretization, discretization acceleration
1 Introduction

Fluid is an indispensable component in the atmosphere and

ocean. Additionally, It is of great importance to meteorological

services, which attempt to identify safe aerospace and shipping

routes. Fluid research is mainly based on numerical simulation by

solving partial differential equations Lumley (1979). Mainstream

methods include the finite difference method Rai and Moin (1991)

and the finite volume method Leschziner (1989) 34. Owing to the

rapid variations with a high Reynolds number Kraichnan (1959),

the numerical solution requires high-resolution spatial grids to

ensure the accuracy of the simulation. In addition, when the

Reynolds number folds by ten, the computation load will fold by

1,000. Although current high-performance computing can provide

powerful computation ability for these extremely complicated

variations, as real-time simulation is always required for emergent

forecasting, improving efficiency only in computation power will

always be limited and insufficient. Efforts should be made to

optimize from the perspective of algorithm architecture.

A scale of previous works has been carried out to reduce the

computation load from the perspective of decreasing the resolution

of the grids. As early as 1982, Brown et al. Brown (1982) applied a

multigrid method to accelerate the numerical solution process of

the three-dimensional transonic potential flow. The multigrid

method was considered a classic method to reduce computational

costs in the traditional numerical solution process because it uses

different mesh divisions for different regions instead of high-

resolution mesh modeling. Inspired by this thought, Mazhukin

et al. Mazhukin et al. (1993) proposed a dynamically adaptive grid

method based on a time-dependent coordinate transformation

from the physical to a computational space for solving partial

differential equations. Additionally, Jin et al. Jin et al. (2014)

proposed the application of a coarse grid projection scheme. This

method solved the momentum equation on the fine grid level and

the pressure equation on the coarse grid level. Therefore, a

satisfactory numerical solution should not only retain the

simulating accuracy but also improve the computation’s efficiency.

This tradeoff issue has been a bottleneck problem for a long

period and will remain until a deep-learning solution that utilizes a

neural network to take the place of the classic numerical methods

module during the spatial discretization procedure is proposed. We

use the central difference RUMSEY and VATSA (1993) as an

example of traditional numerical methods for spatial

discretization and illustrate its basic idea in Figure 1A. To
0263
calculate the value of point x at time t, generally, we use

neighborhood grid points around x at time t-1,

SD =o​ aV(xneigborhood , t − 1) (1)

where SD is the calculated spatial derivative, and V is a template

composed of values at points around x within a certain distance at

time t-1 a are fixed coefficients with regard to the corresponding

truncation error Lantz (1971). Here, to capture the very subtle

variations that occur in the physical movement of unsteady flow,

traditional methods usually adopt grids with very high resolution,

which leads to an extremely large computation cost. However, the

deep-learning method addresses this problem by adopting large-

scale grids with adaptively adjusted coefficients instead of

traditional methods that adopt small grids with fixed coefficients,

as shown in Figure 1B.

SD =o​fq(xt−1)V(xneigborhood , t − 1) (2)

However, these previously proposed deep-learning-based

methods predicted the coefficients only considering spatial

correlation among grids, which provided relatively limited context

and thus could not describe patterns along the temporal dimension

sufficiently, implying that the spatiotemporal correlation of

coefficients was not well learned. We propose a novel algorithm

to extract grid correlations from spatial and temporal views together

to address this problem. We simply illustrate our algorithm in

Figure 1C. In our neural network, we added temporal

neighborhoods to help predict grid coefficients:

SD =o​fq(xt−1, xt−2,… )V(xneigborhood , t − 1) (3)

where {xt−n,…,xt−1} denotes grid values along the time

dimension within a certain range. By adding temporal

consideration, we can learn a better mapping function to predict

the spatial grid coefficients and achieve a more accurate simulation

result. Moreover, we also find that the concentration field, which

was used as one of the inputs of the neural network, turns out to be

redundant after we add temporal data. Thus, we optimized our

method and produced a more efficient neural network with fewer

parameters and better accuracy.

Thus, in this paper, we propose a novel time-sequence-involved

space discretization neural network (TSI-SD) by taking temporal

influence into consideration, which achieves an accurate and

efficient simulation result of unsteady flow. Specifically, we

produced the proposed neural network based on a classic CONV-

LSTM backbone with careful modification by adding temporal
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information into two-dimensional spatial grids along the x-axis and

y-axis separately at the first step and then fusing them together

through a post-fusion neural network. After that, we combined the

TSI-SD with the finite volume format as an advection solver for

passive scalar advection in a two-dimensional unsteady flow.

Compared with previous methods that only consider spatial

context, our method can achieve higher simulation accuracy,

while computation is also decreased after redundant input

is removed.

Finally, we highlight the contribution of this paper as follows:
Fron
• We optimized the framework of the deep-learning-based

numerical simulation methods of unsteady flow. As far as

we are aware, we are the first to utilize the temporal

relationship to help predict spatial coefficients. Moreover,

we also simplified the neural networks by means of

decreasing the parameter’s scale. Quite simply, our
tiers in Marine Science 0364
method achieved better accuracy and efficiency compared

with existing methods.

• We designed a novel neural network TSI-SD and produced

an effective spatial coefficients prediction method that takes

both temporal and spatial perspectives into consideration.

Our novel framework modeled spatial correlations

and temporal correlations and then combined the two

aspects properly with a well-designed post-fusion neural

network.

• Comprehensive comparisons and ablation studies were

carried out with three public datasets, i.e., the numerical

solution datasets of the advection equation based on the

Vanleer format under the random velocity field, deformed

flow velocity field, and the constant velocity field. Sufficient

results and explanations were provided and discussed to

verify the improvement in both the accuracy and efficiency

of the proposed idea.
A

B

C

FIGURE 1

This figure shows three methods used to solve the spatial derivative during spatial discretization. (A) Figure 1(a) shows a traditional numerical
method. (B) Figure 1(b) shows the deep-learning-based method. (C) Figure 1(c) shows our method. (A) The traditional numerical method: in the
spatial discretization part, the central difference method is used to calculate the spatial derivative with a fixed spatial discretization coefficient, and
then the temporal derivative is calculated in the temporal discretization process to obtain the numerical solution. (B)The Deep-learning-based
method: In the spatial discretization part, predict the spatial discretization coefficient and calculate the spatial derivative based on the deep learning
algorithm and the grid value at time t-1, and then calculate the temporal derivative in the temporal discretization process to obtain a numerical
solution. (C). Our method: In the spatial discretization part, predict the spatial discretization coefficient and calculate the spatial derivative based on
the deep learning algorithm and the grid value of the time series {t − n, …, t − 1}, and then calculate the time derivative in the time discretization
process to obtain a numerical solution.
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2 Related work

2.1 Traditional discretization methods of
fluid flow simulation

Many researchers have made outstanding contributions in the

field of traditional discretization methods of fluid flow simulation

Bristeau et al. (1985); Ferziger et al. (2002); Peyret and Taylor

(2012); Fletcher (2012); Toro (2013). Based on these theories,

Molenkamp et al. Molenkamp (1968) calculated the numerical

solution of the convection equation using various finite-difference

approximations, and determined that only the Roberts–Weiss

approximation convected the initial distribution correctly, but

required a huge computational cost. Mikula et al. Mikula et al.

(2014) proposed an inflow implicit/outflow explicit finite volume

method based on finite volume space discretization and semi-

implicit time discretization to solve advection equations. The

basic idea is that outflows from cells are handled explicitly, and

inflows are handled implicitly. The method achieved outstanding

results in terms of stability and computational accuracy. Zhao et al.

Zhao et al. (2019) proposed a new improved finite volume method

for solving one-dimensional advection equations under the

framework of the second-order finite volume method. The

method first applied the scalar conservation law to the elements

in the finite volume method (FVM) to ensure its conservation in

time and space and to ensure advection (i.e., conservation of

transport physical quantities); then the time integral values of

adjacent grid boundaries are equalized; finally, the equation is

established to obtain a numerical solution. Experiments showed

that this method has better stability and fewer disspation than the

traditional FVM and can maintain the accuracy of the solution.

Akitoshi Takayasu et al. Takayasu et al. (2019) proposed a

verification calculation method for one-dimensional advection

equations with variable coefficients, which was based on spectral

methods and semigroup theory. They mainly provided a method for

verification calculation using the C0 semigroup on the complex

sequence space l2,which comes from the solution of the Fourier

series. Experiments showed that the given strict error proved the

correctness of the exact solution, and the solution has high precision

and fast solution speed. Although traditional discretization method

shave achieved high solution accuracy, they have the problem of

high computational cost if outstanding solution accuracy is desired.
2.2 Traditional discretization acceleration
techniques for fluid flow simulation

To solve the problem of high computational cost while

calculating high-precision solutions in traditional discretization

methods, researchers have proposed acceleration techniques to

speed up the numerical discretization solution. Multigrid

technology stood out among various approaches Dwyer et al.

(1982); Brown (1982); Berger and Oliger (1984); Phillips and

Schmidt (1984); Phillips and Schmidt (1985); Zhang (1997);

Mazhukin et al. (1993); Jin et al. (2014). Among them, Brown
Frontiers in Marine Science 0465
et al. Brown (1982) used the multigrid mesh-embedding technique

to solve three-dimensional transonic potential flow. They used

small grids to model regions of large local gradients and large-

scale grids to model regions with relatively small gradients. Their

method improved the speed of solving equation discretization

schemes. Phillips et al. Phillips and Schmidt (1984) proposed a

multilevel multigrid method combined with a Taylor series

interpolation scheme as the best discretization acceleration

scheme after comparing the use of simple multigrid and

multilevel multigrid methods. Based on the previous method,

Phillips Phillips and Schmidt (1985) used multigrid combined

with multilevel acceleration technology to realize the accelerated

solution of scalar conservation equations. In addition, they

proposed a fast finite difference solution to the passive scalar

advection-diffusion equation. Although these acceleration

methods reduced the computational cost while maintaining high

accuracy, high computational cost remained a problem due to the

need to retain high solution grid modeling in some complex

fluid regions.
2.3 Discretization methods and
acceleration techniques combining
deep-learning with traditional
numerical methods

In recent years, machine learning has been used in the

numerical solution of partial differential equations, which have

made enormous progress. The combination of machine learning

and traditional discretization methods improved the accuracy of the

solution and accelerated the numerical calculation Raissi et al.

(2019); Ji et al. (2021); Vinuesa and Brunton (2021); Patel et al.

(2021); Eliasof et al. (2021); Cai et al. (2022). Based on these

methods, O. Obiols-Sales et al. Obiols-Sales et al. (2020) proposed

a coupled deep learning and physics simulation framework

(CFDNet) to accelerate the convergence of Reynolds-averaged

Navier–Stokes simulations. CFDNet was designed to use a single

convolutional neural network at its core to predict the main

physical properties of fluids, including velocity, pressure, and

eddy viscosity. In this paper, CFDNet was evaluated for various

use cases, and the results showed that CFDNet significantly speeded

up the numerical solution and proved that CFDNet generalized

well. Vadyala Shashank Reddy et al. Vadyala et al. (2022)

determined the numerical solution of the one-dimensional

advec t ion equat ion us ing d i ff e rent fini te -d i ff e rence

approximations and physical informatic neural networks

(PINNs). They trained a neural network to solve supervised

learning tasks that obeyed any given laws of physics described by

general non-linear partial differential equations. The PINNs

approximation was compared with other schemes through

experiments, and the results showed that the prediction results

obtained by the PINNs approximation were the most accurate.

Pathak et al. Pathak et al. (2020) proposed a hybrid ML-PDE solver

that combined machine learning and traditional solving methods of

the partial differential equation. It can obtain meaningful high-

resolution solution trajectories while solving system PDEs at lower
frontiersin.org
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resolutions. The ML part of the solver extracted spatial features by

using u-net as the model structure to predict the error accumulated

in the short time interval between the evolution of the coarse grid

and the solution of the system at a higher resolution. The predicted

error can optimize the solution generated by the coarse grid to

obtain a solution close to that generated by the fine grid, enabling

high-precision solutions at low accuracy. Y. Bar-Sinai Bar-Sinai

et al. (2019) designed a data-driven discretization scheme using a

deep-learning algorithm. They used neural networks to estimate

spatial derivatives that were optimized end-to-end to best satisfy

equations on low-resolution grids. The resulting numerical method

was very accurate, eventually achieving the same computational

accuracy as the standard finite difference method at 4 to 8 times

coarser resolution than the standard finite difference method.

Zhuang [38] improved the model structure and loss function

based on Y. Bar-Sinai and applied it to passive scalar advection in

a two-dimensional unsteady flow. They used a convolutional neural

network to learn spatial discretization coefficients to calculate

spatial derivatives. Then, they combined them with traditional

numerical methods to calculate time derivatives to obtain the

numerical solution of partial differential equations. This method

achieved a high-precision solution with a low computational cost.

Ranade et al., 2021 developed DiscretizationNet, a machine

learning-based PDE solver that combined essential features of

existing PDE solvers with ML techniques. They used a

discretization-based scheme to approximate spatiotemporal

partial derivatives and a CNN-based generative encoder-decoder

model with PDE variables as input and output features for

iteratively generating equation solutions. Although these methods

addressed the problem of traditional methods, their solution

accuracy was limited due to the problems of ignoring

spatiotemporal characteristics and input redundancy.
3 Proposed method

3.1 Problem description

If the velocity field is divergence-free, the advective form of the

scalar concentration field C(~x, t) for a given velocity field~u(~x, t) is as

follows Zhuang et al. (2021):

∂C
∂ t

+~u ·∇C = 0 (4)

The objective of the numerical solution for the passive scalar

advection in 2-D unsteady flow is to predict the concentration field

distribution at each time step in the future under the influence of

the randomly changing velocity field given the initial concentration

field. In this paper, we predict the concentration field distribution

results in the 32 time steps to demonstrate the ability of our model

to make multi-step predictions. We employ a rolling forecasting

scheme in which we input multiple velocity fields between t0 and t1
into the prediction model and combine the concentration field

distribution at t0 to predict the concentration field distribution at t1
.Then, we input multiple velocity fields between t1 and t2 into the

model and combine the concentration field distribution at t1,
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predicted by our model to predict the concentration field

distribution at t2. According to this calculation rule, we use

multiple velocity fields between tn and tn+1 and the concentration

field distribution predicted at time tn to predict the concentration

field distribution at tn+1.By repeating this process, we can get the

passive scalar advection solution at each time in the future.

Therefore, the key to our multi-step prediction method is to

recursively predict the concentration field distribution at a single

step, i.e., the numerical solution of passive scalar advection at the

next time step. We propose the time-sequence-involved space

discretization neural network (TSI-SD) to predict the space

discretization coefficient for the space derivative and then

combine the finite volume method to calculate the numerical

solution of the next time step.
3.2 Main framework of TSI-SD

The framework of the proposed method is shown in Figure 2.

This is a fusion framework of deep learning (TSI-SD) and a

traditional numerical method (FVM) for end-to-end numerical

solutions of passive scalar advection equations. It consists of three

modules: the spatial discretization coefficient prediction module

(SDCPM), the concentration template extraction module (CTEM),

and the concentration solver module based on finite volume

numerical format (CSM). For the set of multiple velocity fields

between the time steps tn and tn+1, wedecompose each velocity field

into two sub-velocity fields in the horizontal and vertical directions

(along the x-axis and y-axis) to obtain the velocity field set in the

two directions. In the next step, we build the time-sequence-

involved space discretization neural network (TSI-SD) in the

SDCPM. TSI-SD extracts the spatiotemporal features from the

decomposed velocity field sets in the two directions separately

and then fuses them to obtain the spatial discretization coefficient

of each grid point. After that, we input the coefficients into the CSM

and combine them with the surrounding point concentration

template of each grid point obtained by the CTEM to calculate

the spatial derivative. Finally, we could calculate the concentration

of each grid point at the next moment tn+1,, that is, the

concentration field of tn+1 by the FVM in the CSM.

The equation-solving process can be roughly described in the

following three steps:
1. Extract spatiotemporal features from the input velocity

fields and predict spatial discretization coefficients;

2. Extract the surrounding point concentration template for

each grid point; and

3. Fuse the predicted spatial discretization coefficient and the

concentration template to obtain the spatial derivative,

which is used to calculate the distribution of the

concentration field, i.e., the numerical solution of the

equation at the next time step by the finite volume method.
Next, we will provide details of our proposed framework for

end-to-end numerical solutions of passive scalar advection

equations. First, we introduce the SDCPM and the TSI-SD in the
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section entitled ‘Spatial Discretization Coefficient Prediction

Module’. Then, we describe in detail our proposed CTEM and

CSM modules in the Concentration Template Extraction Module’

and ‘Concentration Solver Module Based on Finite Volume

Numerical Format’ sections, respectively. Finally, we discuss the

loss function in the ‘Loss Function’ section 3.6
3.3 Spatial discretization coefficient
prediction module

In this module, we design the time-sequence-involved space

discretization neural network to predict the spatial discretization

coefficients, and the prediction function is

~a = f (U ,W), (5)

where U s the set of multiple two-dimensional velocity fields

between t nd t+1, of which size is nW s the weight of our neural

network. The time interval between the velocity fields is 1
n

U = ut , ut+1
n
,…, ut+1−1

n

n o
(6)

We decompose U into velocity field groups Ux in the horizontal

direction (along the x-axis) and Uy in the vertical direction (along

the y-axis),

Ux = uxt , u
x
t+1

n
,…, uxt+1−1

n

n o
(7)
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Uy = uyt , u
y
t+1

n
,…, uyt+1−1

n

n o
(8)

Then, we extract the spatiotemporal features separately for the

decomposed velocity field sets in the two directions. TakingUx as an

example, we input the velocity field at each time step from the

velocity field set fuxt , uxt+1
n
,…, uxt+1−1

n
gas the spatial feature of each

time step into the different conv-lstm structural unit,

Sk = uxk , (9)

and Sk is regarded as the spatial feature at time t + 1
k. A CONV-

LSTM structural unit contains convolution operations and long-

short-term memory unit processing operations. The calculation

steps can be written in the following form,

ik = Sigmoid(Conv(Sk;wxi) + Conv(hk−1;whi) + bi) (10)

fk = Sigmoid(Conv(Sk;wxf ) + Conv(hk−1;whf ) + bf ) (11)

gk = Tanh(Conv(Sk;wxg) + Conv(hk−1;whg) + bg) (12)

ck = fk⊙ck−1 + ik⊙gk = fk · ck−1 + ik⊙gk (13)

ok = Sigmoid(Conv(Sk;wxo) + Conv(hk−1;who) + bo) (14)

hk = ok⊙Tanh(ck) (15)

where ik is the input gate, which is used to calculate how much

information of the current state to retain. fx is the forget gate, and its
FIGURE 2

The framework of our approach. This framework is utilized for the solution of the passive scalar advection equation in a two-dimensional unsteady
flow. It contains three modules: SDCPM, CTEM and CSM. SDCPM: This module receives multiple velocity field information at different times, extracts
spatiotemporal features in two spatial dimensions (along the x-axis and y-axis), and finally fuses them in the spatial dimension to predict the spatial
discretization coefficient of each grid point; CTEM: This module extracts the surrounding point concentration template of each grid point
corresponding to the size of its spatial discretization coefficient template; CSM: This module calculates numerical solutions to the advection
equations based on the finite volume method(FVM).
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function is to calculate how much of the output information of the

previous moment is discarded. gx is theinformation extracted from

the current state. Ck-1 is the information of the previous moment. Ck

is the final state at the current moment, calculated by fk, ck-1, gk, and

ik. oki the output gate, which is used to calculate how much

information needs to be output (to the cell at the next moment).

hk is the final output information of the state, which is calculated by

ok and ck. wxi,whi,wxf,whf,wxg,whg,wxo,who,bi,bf,bg,and bo are the

weights designed in our neural network, and these weights will be

updated during the model training process.

After the information processing and transmission of n conv-

lstm structural units, the information ht+1−1
n
output by the last unit

is obtained. The final spatiotemporal fusion information Ix of the

horizontal velocity field is calculated by using the output

information.

Ix = conv(ht+1−1
n
) (16)

In the same way, we obtain the final spatiotemporal fusion

information Iy f the vertical velocity field.

After obtaining the spatiotemporal fusion information Ix and Iy
in two directions, it is necessary to re-fuse the spatiotemporal

features in the horizontal and vertical directions on Ix and Iy
concat(), is a feature merging operation that integrates two

features in a new dimension. After the feature merging operation,

convolution is performed on the merged features to process the

spatial information of the merged spatiotemporal features. Finally,

the spatial discretization coefficient matrix a is obtained.

a = conv(concat(Ix , Iy)) (17)

The dimension of the a matrix is (s,s,template_size*2) , where s

is the side length of the input two-dimensional velocity field, and (s,

s) is the dimension of the two-dimensional velocity field.

template_size is the number of weights required for each grid
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point. We divide a into the grid upper boundary space

discretization coefficient aup and the grid right boundary space

discretization coefficient aright with dimensions (s, s, template_size).
3.4 Concentration template
extraction module

This module and the next module follow the numerical solution

part of the traditional advection equation adopted by Zhuang et al.

Zhuang et al. (2021), and adopt the spatial derivative of the classical

Euler algorithm.

∂C
∂ x

∣x=xi =o
n

j=0
ajCi+j (18)

In the previous part, we calculated the spatial discretization

coefficient templates aup and aright, the dimensions of which are (s,

s, template_size). Therefore, we need to find the surrounding grid

point concentration templates Cup and Cright corresponding to the

position of the coefficient template, the dimensions of which are

both (s, s, template_size), which indicates that the number of

surrounding grid point concentrations required for each point in

the two-dimensional space field is template_size. As shown in

Figure 3, we input the two-dimensional concentration field Ct at

time t, and its dimension is (s, s). We model the upper and right

boundaries of each point in the two-dimensional matrix and obtain

the concentration values of m*n grid points around it as the grid

point concentration template, where

template _ size = m*n, (19)

m and n are the length and width of the two-dimensional grid

point concentration template. Finally, we obtain Cup and Cright with

dimensions (s, s, template_size).
3.5 Concentration solver module based on
finite volume numerical format

In this module, we first calculate the upper boundary

concentration Cup_edge and the right boundary concentration

Cup_edge

Cup _ edge = SUM(aup ⊙Cup) (20)

Cright _ edge = SUM(aright ⊙Cright) (21)

SUM() is the defined summation of the last dimension of the

matrix, i.e., after the matrix of (s, s, template_size) is obtained

through the dot product operation, the last dimension is summed to

obtain the boundary concentration Cedge with dimension size (s, s)

.The lower boundary concentration Clower_edge and the left boundary

concentration Cleft_edge of the grid point can be directly obtained

from the upper boundary concentration of the adjacent grid below

its position and the right boundary concentration of the adjacent

grid to the left of its position. Then, we can obtain the boundary

velocity uedge bythe same method as the calculation of the
FIGURE 3

Design of the initial concentration field. The size of the
concentration field is [0,1]×[0,1], and the concentration value is
between 0 and 1.
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concentration boundary and boundary flux via Cedge uedge. After

obtaining the flux at the four boundaries of the grid, the traditional

finite volume method is used to calculate the time derivative to

obtain the concentration field distribution at the next time step, as

shown in Figure 2.
3.6 Loss function

The format of the mean absolute error (MAE) used to train our

model is as follows:

MAE =
1
no

n

i=1
∣ Ĉ t+1 − Ct+1 ∣ (22)

where Ct+1 is the concentration field at time t+1 redicted by our

model, and Ĉ t+1 is the high-precision numerical solution at 16*16

low resolution grids. The numerical solution is calculated using

128*128 high resolution grids by the second-order Vanleer format

and then transformed to the solution at 16*16 low resolution grids

by the dimensionality reduction method Zhuang et al. (2021).
4 Experiments

In this section, we first briefly describe the datasets and

implementation details. Additionally, we carry out a number of

experiments, including comparisons with state-of-the-art (SOTA)

methods and sufficient ablation studies, to demonstrate the

excellent performance and advantages of our method.
4.1 Datasets

We used the theory of divergence-free velocity field described

by Saad and Sutherland (2016) to generate a divergence-free

random velocity field set with the resolution of 128*128. Then,

the set was divided into two parts of divergence-free random

velocity field sets: the training part and the test part. These two

parts were completely different to ensure the generalization of

the model.

For the training set, we generated a variety of random initial

concentration fields and used the second-order Vanleer numerical

format to calculate the numerical solution of the equation, i.e., the

concentration fields at multiple time steps with the resolution of

128*128 based on the set of divergence-free random velocity fields

in the training part. It is worth noting that for the Ct+1) to be

generated, our model needs to input the velocity field i at time t, t +
1
n ,…, t + 1 − 1

n. Therefore, we set the time step length of the velocity

field to be smaller than the concentration field in the generation

process to ensure that the velocity field in the time interval from t to

t+1 could be generated. Next, we sampled both the velocity field and

the concentration field at intervals to obtain a high-precision

velocity field and concentration field with a resolution of 16*16

using the dimensionality reduction method Zhuang et al. (2021).

Each training sample included an input part and an output part.
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The input part was the velocity field and the concentration field Ct

at time t at multiple time steps in the time interval from t to t+1,and

the output part was the concentration field Ct+1. The test set

generation process was consistent with the training set, but it was

necessary to ensure that the random initial concentration field

generated in the test set was different from the training set.

The initial and boundary conditions for the velocity and

concentration fields were set as follows. The size of the two-

dimensional velocity field and the two-dimensional concentration

field were both [0,1] × [0,1]. Our velocity field was a divergence-free

random velocity field, and the magnitude of the velocity was limited

between -1 and 1. The concentration field used periodic boundary

conditions, and its initial condition is to

set the concentration value range between 0 and 1. The

calculation process is shown in formulas (23)-(27).

r(x, y) = min(1, 4*

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x −

1
4
)2 + (y −

1
4
)2

r
) (23)

C1(x, y) =
1
2
½1 + cos(pr)� (24)

C2(x, y) = 0:9 − 0:8*C
2
1 (25)

C3(x, y) = 1 (26)

C(x, y) = 1 − 0:3*(C1 + C2 + C3) (27)

The C(x, y) is as shown in Figure 3. C represents the

concentration value.
4.2 Comparison with SOTA methods

In this part, four SOTA numerical solution methods for passive

scalar advection in a two-dimensional unsteady flow were selected

as our baseline: (1) traditional solvers based on 16*16 resolution

grids using the second-order Vanleer discretization format(Vanleer

16*16) Lin et al. (1994); (2) traditional solvers based on 32*32

resolution grids using the second-order Vanleer discretization

format (Vanleer 32*32) Lin et al. (1994); (3) traditional solvers

based on 64*64 resolution grids using the second-order Vanleer

discretization format (Vanleer 64*64) Lin et al. (1994); and (4) a

hybrid solver based on a CNN and the finite volume method (CNN

+FVM) Zhuang et al. (2021).

We first compared our TSI-SD method with traditional solvers,

in which TSI-SD uses a 16*16 low-resolution grid. As shown in

Figure 4, the TSI-SD method maintained the smallest prediction

error over 32 time steps, which demonstrates that our method

achieved a higher solution accuracy than the traditional method at a

resolution of 4× lower than the traditional method.

Then, we compared TSI-SD with the CNN-FVM solver trained

based on the previous spatial discretization scheme Zhuang et al.

(2021). The CNN-FVM method is currently one of the most

outstanding methods for solving partial differential equations in

deep learning. It has been proven to achieve very good prediction
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and solution results in various partial differential equations, such as

Burgers’ equation Bar-Sinai et al. (2019), and the advection

equation Zhuang et al. (2021), Additionally, the method has been

proven effective at solving complex Navier–Stokes equations

Kochkov et al. (2021),and results are as accurate as baseline

solvers, with 8–10× finer resolution in each spatial dimension,

resulting in 40- to 80-fold computational speedups. The original

CNN-FVM solver has a prediction error of 0.0043, a single-step

prediction time of 0.2712s, and a single-sample training time of 4

ms per round during the training process. Our single-step solver

had an error of 0.0029, a single-step prediction time of 0.2474s, and

a single-sample training time of 2ms per round during training. Our

single-step error was 32.56% lower than the previous method, and

the iterative prediction error after 32 steps was greatly reduced. As

shown in Figure 5, our method also outperformed the CNN-FVM

solver in continuous prediction results within 32 time steps.

The reason why our solver outperformed the CNN-FVM solver

in training time, prediction time, and prediction accuracy is as

follows. In the spatial discretization coefficent prediction part, the

inputs of the CNN solver’s prediction deep-learning model are the

concentration field with (batch_size,1,grid,_size,grid_size) and the

two velocity field (along the x-axis and y-axis) at a time step with

(batch_size,2,grid,_size,grid_size). The input to our TSI-SD was the

horizontal velocity fields along the x-axis at two time steps with

(batch_size,2,grid,_size,grid_size) and the vertical velocity fields

along the y-axis at two time steps with (batch_size,2,grid,_size,

grid_size), so our input size was larger than the previous input size.

However, in the model part, the CNN-FVM solver used a five-layer

convolutional neural network to process the data collected by the

concentration field and the velocity field with (batch_size,3,grid,

_size,grid_size) .We used the structure of a 1-layer

convolutional neural network to process the horizontal and

vertical velocity fields respectively, and then a one-layer

convolutional neural network was used to process the integrated

features. After inference analysis, our model parameters were fewer
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than the original model parameters, which resulted in a shorter

training time and prediction time in our model compared with the

original model training time. This was also confirmed by a saved

parameter file size comparison.

Finally, we demonstrated the evolution prediction effect of an

initial concentration field under different models after 32 iterations.

As shown in Figure 6, the third row shows the prediction effect of

our model. The first row is our high-precision numerical solution

generated using a 128*128 high-resolution grid. The second row

shows how we use the averaging operation to obtain a high-

precision numerical solution at a low resolution of 16*16, which

is used as the ground truth of our model. The fourth and fifth rows

are the results obtained using the second-order Vanleer 16*16 and

CNN-FVM solvers. Figure 5 shows that our model is better than the

CNN-FVM and traditional second-order Vanleer 16*16 solvers. In

Figure 6, C represents the concentration value.
4.3 Comparison between models using
velocity fields at different times as
spatiotemporal features

In this part, we used different sets of time steps as the time series

information input to TSI-SD, so that our model could extract

different time features to predict the spatial discretization

coefficient. The best prediction result represents the velocity fields

at the selected time steps that have the greatest influence on the

coefficients. Figure 7 shows that when the set of fine velocity fieldd

fut , ut+1
n
,…, ut+1−1

n
g was selected to replace velocity field set {ut−n+1,

…,ut−1,ut} to predict ut+1 could reduce the prediction error of the

model. The experimental result demonstrates that the set of fine

velocity fields extracts spatiotemporal features more effectively.

That is because the time interval of the velocity field set we chose

was close to the time of the predicted concentration field, so the

correlation between the velocity field set and the predicted
FIGURE 4

Results of our solver compared to traditional solvers. The yellow line represents our error in the 32-step iteration prediction, and the remaining three
lines represent the error of the traditional solver at different resolutions.
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concentration field was strong. The model could learn the

spatiotemporal influence of the velocity field on the concentration

field from this set of velocity fields, which could accurately predict

the spatial discretization coefficient. Meanwhile, the prediction

error of the velocity field using fut , ut+1
2
g is the best, and

experiments demonstrated that it involves lower computational

cost; therefore, so we finally choose the
Frontiers in Marine Science 1071
velocity field of fut , ut+1
2
g as the velocity field input of our final

model. We think that for the 16*16 lower resolution grid, the model

learned the time-space correlation between the velocity field set and

the concentration field well through the analysis of the velocity

fields at two times through a large amount of training data, which is

also consistent with the experimental results as shown. In future

studies, we will conduct more experiments on higher-resolution
FIGURE 6

Visualization of evolution prediction effect of an initial concentration field under different models after 32 iterations. The first row represents the
change in the concentration field calculated after 32 steps using a traditional 128*128 high-resolution solver. The second row represents the
transformation of the 128x128 high-resolution solver solution into a 16x16 training set. The third row represents the prediction results of our model
after training. The fourth row represents the prediction results of the CNN-FVM solver. The fifth row uses a traditional 16*16 low-resolution solver to
calculate the change in the concentration field after 32 steps.
FIGURE 5

Results of our solver compared to CNN-FVM solvers by Zhuang Zhuang et al. (2021). The orange line represents our error in the 32-step iteration
prediction, and the blue line represents the error of CNN-FVM solver.
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grids to obtain the optimal number of time steps after increasing

computing power.
4.4 Performance and analysis of TSI-SD
with other flow fields

In this section, we carried out an experiment to prove the

excellent performance of our model under a constant velocity field

and a two-dimensional deforming flow velocity field. We generated

the concentration under a constant velocity field, and the two-

dimensional deformation flow concentration field under the

velocity field:

u(x, y, t) = sin2(px)sin(2py)cos(
p t
T

) (28)

v(x, y, t) = sin2(py)sin(2px)cos(
p t
T

) (29)

The predicted performance is shown in Figure 8 and Figure 9. C

represents the concentration value. Our model achieved

outstanding prediction results in the iterations of 32 time steps.

However, at the same time,

there are also the following problems: even under a simple constant

velocity field, the prediction effect will become worse and worse with

the long-term iteration due to the accumulation of errors predicted by

the model at each time step. We will try to fix this in the future.
4.5 Comparison of the performance of
models with or without the concentration
field as an input feature

In this part, we verified the advantage of only taking the velocity

field as the input feature on our model. A contrast model that adds the

concentration field as feature input was designed to prove our

inference. The contrast model was identical to ours except that the
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concentration field features were fused with the spatiotemporal

features extracted from the horizontal and vertical velocity fields

(along the x-axis and y-axis) in the fusion module. Figure 10 shows

that the iteration errors on 32 time steps of our model are lower than

those of the contrast model. Therefore, we proved that the input of the

concentration field information was redundant and verified our

conclusion: the spatial discretization coefficients are strongly

correlated with the velocity field at multiple time steps before, while

the concentration field information becomes redundant when

predicting the coefficients. In other words, the change in the velocity

field is the main factor for the change in the concentration field. Our

model extracts effective spatiotemporal features from the velocity field

set to learn the influence of the change of the velocity field set on the

change of the concentration field, which is very helpful for predicting

the spatial discretization coefficient.
4.6 Experimental exploration of whether
TSI-SD has up-wind properties

In this part, we proved that the spatial discretization coefficients

predicted by our model have upwind properties on a constant

velocity field. A two-dimensional velocity field U1 with a horizontal

velocity field (along the x-axis) of +1 and a vertical velocity field

(along the y-axis) of +1, and a two-dimensional velocity field U2

with a horizontal velocity field of -1 and a vertical velocity field of

-1, were designed to prove our model’s upwind properties on a

constant velocity field. Under the two velocity fields, the

visualization process of the concentration coefficients of the upper

and right boundaries of grid points A and B was completed.

As shown in Figure 11, C represents the concentration value and

Coefficient represents the coefficient value. For the upper boundary,

the concentration on the right boundary of the constant velocity field

is mainly determined by the concentration of the two adjacent grids.

When the horizontal speed is +1 (i.e., the direction is to the right), the

grid coefficient on the left of the right boundary of grid A is greater
FIGURE 7

Mean absolute error comparison of the prediction results of models using different sets of time steps as the time series information input to TSI-SD.
For the y-axis, the different colors represent different input sets of time steps. The legend represents mean absolute error and the red box shows the
best result ( fut ,ut+1

2
g).
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than the grid coefficient on the right; when the horizontal speed is −1

(i.e., the direction is to the left), the grid coefficient on the left of the

right boundary of grid A is smaller than the grid coefficient on the

right. For the right boundary, the concentration on the upper

boundary of the constant velocity field is also mainly determined

by the concentration of the two adjacent grids. When the vertical

speed is +1 (i.e., the direction is downward), the grid coefficient above

the lower boundary of grid A is greater than the grid coefficient

below; when the horizontal speed is −1 (i.e., the direction is upward),

the grid coefficient above the lower boundary of grid A is smaller than

the grid coefficient below.

The concentration coefficient of another spatial grid point B is

almost the same as that exhibited by A. Therefore, our grid

coefficient has nothing to do with the distribution of the

concentration field, but only with the distribution of the velocity

field. The concentration field distributions at point A and point B

are completely inconsistent, but under the same velocity field, the

predicted spatial discretization coefficient distributions are basically

the same, which proves that there is no significant correlation
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between the concentration field distribution and the spatial

discretization coefficient.
5 Conclusion

We have presented a time-sequence-involved space

discretization neural network of passive scalar advection in a two-

dimensional unsteady flow. It can obtain adaptive spatial

discretization derivatives according to the spatiotemporal

property of the current environment. Then, we combined it with

the finite volume method to form an advection equation solver that

can calculate high-resolution solutions on low-resolution grids.

The highlight of our approach is the transformation of a novel

deep neural network from the classic CONV-LSTM backbone. The

network resolves spatiotemporal features by adding temporal

information to a two-dimensional spatial grid along the x- and y-

axes, and then fuses them through a post-fusion neural network.

Through spatiotemporal feature fusion, we can predict more
FIGURE 9

The predicted performance of our model in a deforming flow velocity field. The first row is the iterative solution of our 128*128 high-resolution
solver after 32 time steps, and the second row is the iterative solution of our 16*16 solver after 32 time steps.
FIGURE 8

The predicted performance of our model in a constant velocity field of vx=1 and vy=1. The first row is the iterative solution of our 128*128 high-
resolution solver after 32 time steps, and the second row is the iterative solution of our 16*16 solver after 32 time steps.
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accurate spatial discretization coefficients and more accurate

solutions. Additionally, we have made improvements in reducing

computational costs. Finally, we compared our method with other

traditional SOTA methods and demonstrated that it achieves better

accuracy than traditional solvers on meshes with 4× lower

resolution. In addition, compared with other deep-learning
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methods, our method has advantages in terms of both

computational cost and accuracy.

The following problems were also encountered: (1) the problem

of iterative error being too big after multiple time steps—we have

proposed some solutions, such as re-iteration with ground-truth

values after iterating over some time steps, which will be
FIGURE 10

Results of our solver compared to the solver of adding concentration field as the model input. The orange line represents our error in the 32-step
iteration prediction, and the blue line represents the error of the contrast model.
FIGURE 11

The comparison of prediction results of models using different temporal layers as features. The first line selects two spatial points with significant
differences in surrounding concentrations from the spatial field and extracts the upper and right boundaries of the two points. The second row is the
spatial discretization coefficient predicted by each boundary. The third row is a heat map made according to the different position coefficients in the
coefficient template when the horizontal velocity field is +1, and the vertical velocity field is +1. The third row is a heat map made according to the
different position coefficients in the coefficient template when the horizontal velocity field is -1, and the vertical velocity field is -1.
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implemented in future work; and (2) low computing power leads to

poor model generalization—in the future, we will seek to obtain

more computing power to make our model more generalizable.
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Estimating catch rates in real
time: Development of a deep
learning based Nephrops
(Nephrops norvegicus) counter
for demersal trawl fisheries

Ercan Avsar1,2*, Jordan P. Feekings1 and Ludvig Ahm Krag1

1Technical University of Denmark, Institute of Aquatic Resources, Section for Fisheries Technology,
Hirtshals, Denmark, 2Computer Engineering Department, Dokuz Eylul University, Izmir, Türkiye
Demersal trawling is largely a blind process where information on catch rates and

compositions is only available once the catch is taken onboard the vessel.

Obtaining quantitative information on catch rates of target species while

fishing can improve a fisheries economic and environmental performance as

fishers would be able to use this information to make informed decisions during

fishing. Despite there are real-time underwater monitoring systems developed

for this purpose, the video data produced by these systems is not analyzed in

near real-time. In other words, the user is expected to watch the video feed

continuously to evaluate catch rates and composition. This is obviously a

demanding process in which quantification of the fish counts will be of a

qualitative nature. In this study, underwater footages collected using an in-

trawl video recording system were processed to detect, track, and count the

number of individuals of the target species, Nephrops norvegicus, entering the

trawl in real-time. The detection was accomplished using a You Only Look Once

v4 (YOLOv4) algorithm. Two other variants of the YOLOv4 algorithm (tiny and

scaled) were included in the study to compare their effects on the accuracy of

the subsequent steps and overall speed of the processing. SORT algorithm was

used as the tracker and any Nephrops that cross the horizontal level at 4/5 of the

frame height were counted as catch. The detection performance of the YOLOv4

model provided a mean average precision (mAP@50) value of 97.82%, which is

higher than the other two variants. However, the average processing speed of

the tiny model is the highest with 253.51 frames per second. A correct count rate

of 80.73% was achieved by YOLOv4 when the total number of Nephrops are

considered in all the test videos. In conclusion, this approach was successful in

processing underwater images in real time to determine the catch rates of the

target species. The approach has great potential to process multiple species

simultaneously in order to provide quantitative information not only on the target

species but also bycatch and unwanted species to provide a comprehensive

picture of the catch composition.

KEYWORDS

demersal trawling, Nephrops counting, object detection, object tracking, sort,
underwater video processing, YOLO
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Introduction

Demersal trawling is an effective way of catching various

species. However, usage of demersal trawls is challenged by

several factors such as high bycatch rates and negative effects on

the biomass and biodiversity (Eigaard et al., 2017). In addition,

disturbance of the seabed by bottom trawls results in aqueous CO2

emissions which may inhibit marine carbon cycling after years of

continuous trawling (Sala et al., 2021). Despite the presence of such

concerns, demersal trawling is critical for catching economically

valuable commercial species like shrimp, whitefish, and Nephrops.

Nephrops excavate burrows in mud or mud/sand substrates and

emerge at specific times to feed, mate and maintain their burrows,

among others (Tully and Hillis, 1995; Aguzzi and Sardà, 2008;

Feekings et al., 2015). Their behavior is influential on catch rates

when trawling as they need to be outside of the burrows to be caught

(Main and Sangster, 1985). Besides, Nephrops-directed bottom

trawling is known to have high discard rate which eventually

causes not only economic loss but also loss of undersized

individuals (Bergmann et al., 2002). In addition to these issues, is

demersal trawling a blind process, meaning that the catch and size

composition is unknown until the trawl is taken onboard after

hours of trawling.

Advancements in underwater camera technologies may provide

solutions to some limitations in demersal trawling. In particular,

such cameras allow for recognition, counting and measurement of

the individuals making it possible to understand the catch rates of

Nephrops and unwanted species. Even though there are different

tasks such as species identification and length measurement

(Underwood et al., 2014; Underwood et al., 2018; Allken et al.,

2021), and segmentation of the fish from the background (Prados

et al., 2017) accomplished using in-trawl camera systems, they do

not concern determining the catch composition in real time. The

real-time processing of video footage collected by underwater in-

trawl cameras is important to quantify catch rates of the target

species. This information is valuable for the fishermen as it provides

insight about the ongoing fishing process and further enable active

search for better catch rates during the fishing operation. Deep

learning-based methods enable automated extraction of such

information. In fisheries research, deep learning is mostly used

for processing visual data collected either onboard or by using

underwater cameras. However, the main issue related with deep

learning methods is the substantiality of the associated computation

amount which brings about drawbacks like latency in processing

and requirement of hardware with sufficient computational

capacity. To address this issue, various deep learning models with

different sizes have been developed, and they can be applied to

different problems. A review of related literature is provided in

Section 2. There are deep learning-based methods available that are

applicable to underwater videos collected by in-trawl cameras for

real-time detection and counting of Nephrops. A fast and accurate

video processing system in Nephrops fisheries is useful for
Frontiers in Marine Science 0278
generating the spatial distribution of catch items as well as

determining the number of Nephrops caught.

In this study, a real-time processing pipeline for underwater

videos to determine the number of Nephrops caught during

demersal trawling is proposed as such information will provide a

strong decision tool for fishers to optimize their catching operation.

The processed video footages were collected by an in-trawl camera

developed earlier (Sokolova et al., 2021b). The algorithm for

Nephrops counting has three major steps that are i) Nephrops

detection, ii) tracking of the detected Nephrops, and iii)

determining the true tracks accounted for Nephrops catches. The

accurate detection of Nephrops in the video frames is important as

the subsequent steps rely on the detected Nephrops. The detection

has been accomplished using You Only Look Once v4 (YOLOv4)

model which is known to be a fast deep learning model for object

detection operating at high frames-per-second (FPS) values. In

addition, two variants of YOLOv4, namely, YOLOv4-Tiny and

YOLOv4-Scaled are used separately for Nephrops detection, and

their effects on the tracking, counting, and the overall processing

speed are observed and compared. The second step, tracking

detections, is necessary for making association between the

detections in the consecutive video frames. Simple Online

Realtime Tracking (SORT) algorithm is used as the object tracker.

For benchmarking purposes, the tracking performance of SORT is

compared with two other object tracking algorithms, those being

Minimum Output Sum of Squared Error (MOSSE) and DeepSORT.

Finally, tracked objects satisfying some predefined conditions are

considered as a Nephrops catch. These steps are illustrated in

Figure 1. In this study we address the following research questions:
• How do the different YOLO-based object detection

methods affect the overall speed and accuracy of the

counting process?

• What is the range of the processing speed of the proposed

algorithm, and can it be considered as real-time under

different circumstances?

• Is it possible to provide simple decision parameters for the

fishers during trawling operation?

• What is the relation between the precision of the object

detection and rate of correct Nephrops counts?
Related work

Utilization of deep learning methods in computer vision

applications has become widespread in recent years due to their

major advantage of automated feature extraction. However, the deep

learning models typically possess many computational layers with high

numbers of parameters. Performing all the calculations throughout all

layers of the network takes time and hence the latency becomes an

issue when the input data needs to be processed in real time.
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Depending on the type of the problem (e.g. image classification,

object detection, instance segmentation), there are various

techniques to reduce the computational cost of the deep learning

models while keeping the model performance as high as possible.

For instance, MobileNets are efficient models developed to be used

in hardware with limited computational resources (Howard et al.,

2017) and can be used as a standalone classifier for animal

classification in underwater images (Liu et al., 2019). Together

with two other improved versions (Sandler et al., 2018; Howard

et al., 2019) and single shot object detectors (SSD), they have more

diverse applications such as detection of sea cucumbers (Yao et al.,

2019), underwater objects with different scales (Zhang et al., 2021;

Wang et al., 2022b), and Nephrops burrows (Naseer et al., 2020).

Another object detection method with many versions is YOLO,

which is known for being very fast and accurate at the same time

(Redmon et al., 2015). It can predict the bounding box coordinates

and the corresponding confidence scores with one single network.

There are numerous YOLO versions dedicated to operating on

underwater images for detection of various objects such as starfish,

shrimp, crab, scallop, and waterweed (Liu et al., 2020; Zhao et al.,

2022). Among these models, the recently proposed model, YOLO-

fish was designed for fish detection and is reported to be performing

close to YOLOv4 model on two different public datasets (Muksit

et al., 2022). Even though it is claimed to be a lightweight model the
Frontiers in Marine Science 0379
associated number of parameters and the detection time are

between those of YOLOv3 and YOLOv4 (Muksit et al., 2022). In

another study, an underwater imaging system to develop and test a

lightweight YOLO model for automated fish behavior analysis was

introduced (Hu et al., 2021). In that study, a modified version of

YOLOv3-Lite model was proposed, and its detection performance

as well as the prediction speed were compared with other state of

the art models. It was shown that the proposed model works at 240

FPS processing speed while detecting the fish with higher precision

and recall values.

Changing the detection scale, increasing the number of anchor

boxes, or defining a new loss function are some of the modifications

that can be done in the YOLO network structure (Raza and Hong,

2020). Moreover, combining the output of the YOLO model with

other information sources such as optical flow and Gaussian

mixture models is another strategy to obtain an improved

detection in underwater images (Jalal et al., 2020).

In addition to underwater image and video processing methods,

there are different applications to identify fish types on the vessel.

Such studies involve usage of image classifiers based on

convolutional neural networks (CNN) (Zheng et al., 2018) or

instance segmentation networks such as Mask R-CNN (French

et al., 2020; Tseng et al., 2020). Such segmentation operations are

also useful in making morphological measurements on underwater
FIGURE 1

Overview of the algorithm steps.
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fish images (Petrellis, 2021). This approach may be practical when

the aim is to get an estimate of the individual fish sizes and weights

in the catch.

The existing studies focus on either improving the detection

performance, the computational load in individual images or

application of the deep learning models to a new problem

domain. In particular, object detection and tracking are widely

studied today in various problem domains such as face recognition

(Vijaya Kumar and Mahammad Shafi, 2022), processing of aerial

images (ElTantawy and Shehata, 2020; Wu et al., 2022), and

maritime surveillance (Jin et al., 2020). Despite the presence of

many studies with different purposes and strategies, the number of

studies concerning the real-time processing while tracking and

counting the detected fish is very limited. In a study that is aimed

to serve as a precursor to fish counting tasks, deep learning was used

to classify the environmental conditions (Soom et al., 2022).

According to the detected conditions, some traditional image

processing methods were applied to the image to detect the

presence/absence of fish. Even though no object detection and

tracking were involved, the processing speed and power

consumption of the proposed algorithm was evaluated on

different hardware with various specifications.

On the other hand, there exists tracking algorithms developed

for underwater objects like fish schools (Liu et al., 2022). In that

work, a ResNet50 model was used as the feature extractor and an

amendment detection module was proposed to improve the object

detection and hence the performance of the tracking. The proposed

model was compared with four different tracking algorithms, and it

was shown that it outperforms the others in three out of four

metrics. In two other studies, an experimental setup was prepared

for collecting video footage using a web cam placed above a small

fish tank. The fish in the tank were detected by YOLOv3-Tiny

model that is trained on the specific dataset. Next, the tracking of

the detections was accomplished by optical flow (Mohamed et al.,

2020) or Euclidean distance (Wageeh et al., 2021). In these studies,

tracking performances are provided poorly with no clear definition

of a fish count and a correct track. In another study about fish

tracking, an end-to-end model was proposed to detect and track the

fish in a tank and determine the abnormal behaviors (Wang et al.,

2022a). For the detection task, a modified version of YOLOv5 was

used and the tracking was accomplished by SiamRPN++. The

proposed model was shown to be operating at 84 FPS with higher

detection performance than the other object detectors.

As can be understood from the existing studies, there are many

efforts for object detection and tracking in underwater videos.

However, the number of applications aimed at counting specific

individuals by tracking them is very limited. One example can be

the method based on Mask R-CNN to detect and count the catch

items during trawling (Sokolova et al., 2021a). In that study, the

detections and catch counts were collected under four classes,

namely, Nephrops, round fish, flat fish, and other. The study

involves detailed experiments about different data augmentation

methods together with tracking and counting of the catch belonging

to the specified classes. Though, it focuses on improvement of the

object detection performance, overlooking the detection speed of

the algorithm.
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Current study differs from previous studies in i) counting of

Nephrops in real-time by detecting and tracking them in underwater

videos, ii) comparing the effects of three different YOLO models to

the performances at every stage of the algorithm as well as the

overall processing speed, and iii) showing the possibility of real-

time monitoring and automated description of the catch items

during trawling.
Materials and methods

The video dataset

The dataset used in this study consists of five videos collected

using an underwater image acquisition system mounted at the

codend entrance of a demersal trawl that allows in-trawl

observation during fishing (Sokolova et al., 2021b). The videos

were recorded on June 27, 2020, in Skagerrak on commercial

Nephrops grounds where the catch in each haul were length

measured to provide size and count for all caught species The

footages have different durations and Nephrops ground truth

counts. The object densities in the videos are different and such a

diversity allows for better performance estimation for real-world

applications. The details about the videos are provided in Table 1.

The stereo camera of the image acquisition system was set to record

videos with a resolution of 1280 × 720 pixels at 60 frames per

second (FPS). Only the videos from the right camera were used for

processing the frames as the entire data output from the stereo

camera is useful for generating depth maps which is not within the

scope of this study.
Nephrops detection models

Among various versions of YOLO, the fourth version

(YOLOv4) is efficient and stable with various applications in

different domains (Bochkovskiy et al., 2020). The object detection

task is considered as a regression problem by YOLOv4, and it

eliminates the necessity of using large mini-batches during training.

It optimizes the trade-off between the detection speed and accuracy,

which means that it is possible to obtain accurate detections at high

FPS values. Therefore, YOLOv4 has been selected as the primary

model for Nephrops detection in this study. In addition, two

variants of this model, YOLOv4-Tiny and YOLOv4-Scaled, are

used to compare their performances.
TABLE 1 Details of the video footages.

Duration (min) Total Nephrops (no.) FPS

Video 1 00:55 4 60

Video 2 01:31 6 60

Video 3 07:30 36 60

Video 4 08:10 40 60

Video 5 06:29 23 60
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YOLOv4 uses a CSPDarknet53 model as the feature extractor

backbone. It contains 29 convolutional layers and has advantages

like high receptive field and a large number of parameters that are

required for an accurate object detection (Bochkovskiy et al., 2020).

The output feature maps of the CSPDarknet53 are passed through a

multi-scale max-pooling operation. This operation is implemented

by a spatial pyramid pooling (SPP) layer where outputs of four max-

pooling operations with kernel sizes 1x1, 5x5, 9x9, and 13x13 are

concatenated. Processing with the SPP layer is important for

increasing the receptive field and separate the contextual features.

YOLOv4 also uses features at different levels of the feature extractor

backbone. To accomplish this, feature maps from three layers of the

CSPDarknet53 model are input to the path aggregation network

(PANet) in which the features are fused both in top-down and

bottom-up directions. Such an aggregation allows for simultaneous

utilization of localization information present in the lower level

features and semantic information in the higher level features. The

extracted features with this structure are then passed through a

YOLOv3 head to predict bounding box locations and the

corresponding confidence scores. To improve generalization and

reduce the risk of overfitting, two new methods are introduced in

the algorithm: Mosaic and Self-Adversarial Training (SAT). In

addition, a continuously differentiable and smooth function Mish

is used as the activation between the layers of the network.

YOLOv4-Tiny is a lightweight version of the original YOLOv4

architecture. The major differences are in the numbers of anchor

boxes and the convolutional layers in the backbone. Specifically, the

tiny model has six anchor boxes while the original version has nine.

Also, the number of YOLO prediction layers was reduced from

three to two, which allows higher prediction speed while

performing poor on the small objects. The scaled version of

YOLOv4 (YOLOv4-Scaled) introduces modifications in the

backbone and neck structures of the YOLOv4 architecture (Wang

et al., 2020). In particular, the first CSP layer in the CSPDarknet53

backbone was replaced by a Darknet residual layer. In addition, up

and down feature scaling operations in the PANet and pooling

operations in the SPP module are enhanced by CSP blocks that

ultimately may decrease the computation cost by 40%.
Tracking and counting of the
detected nephrops

Since the main goal of the study is to automatically count the

number Nephrops entering the trawl, the detected Nephrops should

be tracked as they appear in the frames. To accomplish this, an

algorithm to make association between the detections in the

consecutive frames should be implemented. This is done by

object tracking algorithms that are particularly useful when the

object of interest is occluded or not detected for a certain number

of frames.

Simple Online and Real-time Tracking (SORT) is the object

tracking method used in this study (Bewley et al., 2016). SORT uses

2D motion information for modeling the state (i.e. bounding box

location, area, and aspect ratio) of each track in the video. Kalman

filter with a linear velocity model predicts the state of the tracks for
Frontiers in Marine Science 0581
the next frame (Kalman, 1960). The association between the

detections and the predicted tracks is accomplished by applying

the Hungarian algorithm (Kuhn, 1955) on the cost matrix whose

entries are the IoU values between the detections and predictions. In

order to highlight the suitability of the SORT algorithm for real time

Nephrops tracking, the performance of two other tracking methods,

MOSSE and DeepSORT, are tested as well. Details of this

comparison are given in Section 4.4.

Due to occlusions or inaccuracy of the object detector model,

the target objects may not be detected in all frames when they are in

the field of view of the camera. These discontinuities in the

detection constitute a challenge for the tracking process. SORT

algorithm is capable of predicting the bounding box coordinates in

case of such discontinuities. However, if a track is not associated

with a detection for 30 consecutive frames, then this track is

considered finished. This means that the finished track will not be

considered for association with the new detections anymore.

In order to determine the count for the Nephrops catches, the

tracks output by the SORT tracker are checked. This is done with

the help of a horizontal level defined at the top 4/5 of the frame

height. When the Nephrops are leaving the frame from the bottom,

they are partly visible, and this may cause the object tracker to

assign different identities to the same Nephrops as they are about to

disappear. Such an identity switch may generate false positive

counts if the horizontal threshold is set to be the bottom of the

frame. This is the reason for selecting a level different than the

bottom of the frame.

In particular, any track satisfying at least one of the following

conditions increases the counter by one:
i. The track with the lower level of the associated bounding

box crosses the horizontal level. When the Nephrops is

tracked successfully with no occlusions or distortions, this

condition is easily satisfied. This is the most common

condition.

ii. The track with the center of the associated bounding box

crosses the horizontal level. Due to occlusions, tracking of

some Nephrops are initialized after the lower level of their

bounding box is below the horizontal level. This condition

is useful for counting such Nephrops.

iii. The track with the height of the associated bounding box is

greater than 2/3 of the frame height. Some Nephrops pass

very close to the camera causing them to appear very large

and in small number of frames. In such cases, the first two

conditions cannot be satisfied. So this condition allows for

detecting these Nephrops.
One sample counting instance for each condition are given

in Figure 2.
Model training

The models mentioned in Section 3.2 are trained using an image

dataset generated by the frames extracted from the videos included
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in this study. The majority of the frames in the videos do not

contain any objects and are consequently not useful for the training

process. Therefore, a manual selection of the frames with some

objects is required. A total number of 4044 images were selected

according to the presence of Nephrops, fish, or others. After the

selection of frames, the bounding boxes for the objects in all the

frames were manually labeled using the VIA annotation tool (Dutta

and Zisserman, 2019). Since the aim is to count the number of

Nephrops entering the gear, any object other than Nephrops was

labeled as other. Therefore, the object detection step is considered as

a binary detection problem.

The dataset was randomly divided into training and test sets with

proportions of 87.5% and 12.5%, respectively. Next, 1000 images were

generated using the Copy-Paste (CP) augmentation method and

added to the training set (Ghiasi et al., 2021). When performing the
Frontiers in Marine Science 0682
CP augmentation, pixel values corresponding to the masks of the

objects in the source images were pasted onto the destination images.

To improve the diversity in the augmented images, some geometric

transformations were applied to the images as explained in (Sokolova

et al., 2021a). The details, like number of images and the object

instances in the image dataset after the augmentation are given in

Table 2, and three sample images are provided in Figure 3.
A

B

C

FIGURE 2

Illustration of the counting conditions. Two consecutive frames in the columns. (A–C) correspond to the conditions i, ii, iii, respectively.
TABLE 2 Numbers of images and instances from both classes in the
training and test sets used in the object detection step.

Images Nephrops Instances Other Instances

Training Set 4538 3766 8014

Test Set 506 204 775
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The darknet framework was used for the training of the models

(Redmon, 2016). The training and testing were performed on a

Tesla A100 GPU with 40 GB RAM, CUDA 11.1, and cudnn

v8.0.4.30. All the coding was done with Python v3.9.12 following

the instructions and model configuration files made available at

(Bochkovskiy, 2022). Some of the hyperparameters regarding the

models and their training are listed in Table 3. Note that all the

models were trained for 6000 iterations and the weights yielding the

best detection performance were used in the subsequent steps.
Frontiers in Marine Science 0783
Performance evaluation metrics
The performances of each step in the study are evaluated and

reported separately in Section 4. To evaluate the object detection

performance, different mAP values are calculated for each of the

models using the test set. mAP is a quantification of the detection

performance by comparing the amount of overlap between the

ground truth and predicted bounding boxes. It is a widely used

metric and has good representation of the detection performance as

it considers both the prediction confidence score and the
A

B

C

FIGURE 3

Samples from the image dataset. (A) An image with a Nephrops instance. (B) An image with some other instances. (C) An image with copy-paste augmentation.
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intersection over union (IoU) values. First, the confidence scores for

the bounding boxes are converted into class labels for different

threshold values. This allows to obtain a confusion matrix for each

threshold and hence calculate the precision and recall values using

the True Positive (TP), False Positive (FP), and False Negative (FN)

in each matrix given by the following equations.

Precisionn =
TPn

TPn + FNn

Recalln =
TPn

TPn + FNn

Here the subscript n represents different confidence score

thresholds. The multiple (recall, precision) points correspond to a

curve in 2D space (precision-recall curve), and the average precision

(AP) value is the weighted mean of the precisions with the weights

being the changes in the recall values.

AP = o
n−1

i=0
(Recalli − Recalli−1)Precisioni

This AP calculation procedure is repeated for all classes

separately in the dataset. The average of all the AP values is

defined as the mAP which can be obtained by

mAP =
1
co

c

i=1
APi

where c represents the number of classes in the dataset and APi
is the AP value for the ith class.

The mAP value can be computed for different IoU thresholds

that affects the shape of the precision-recall curves. As a convention,

the mAP value is calculated for IoU = 0.50 (mAP@.50). However,

for benchmarking purposes,mAP values at different IoU thresholds

are calculated and averaged as well. In this study, three mAP values

are provided as the detection performance of the models:mAP@.50,

mAP@.75, and mAP@.50:.05:.95 (mAP values averaged for the

thresholds from 0.50 to 0.95 with steps of 0.05). In addition, since

the purpose is to track and count the Nephrops only, the AP values

belonging to Nephrops class (APnep) are also given for the same

IoU thresholds.

Having obtained the tracks as the algorithm output as explained

in Section 3.3, the tracking performance metrics were calculated.

Among the calculated metrics, multi-object tracking accuracy

(MOTA) is a combination of three error types namely, number of

misses, false positives, and mismatches. It is obtained by

normalizing the total of these three errors by the number of

ground truth tracks. In calculation of MOTA, only the track
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locations are used. In other words, no bounding box information

is considered in MOTA. To overcome this situation, another metric

called multi-object tracking precision (MOTP) is defined. MOTP is

the average overlap between the bounding boxes of predictions and

ground truths. Mostly tracked (MT) and mostly lost (ML) are two

quality measures that consider the ratio of successfully tracked

frames for an object. A track is MT if it is tracked for at least 80% of

its life span. If the tracking ratio is less than 20%, then is called ML.

Within the context of object tracking, it is also desirable to obtain

tracks preserving their identities with small numbers of untracked

frames. Therefore, it is possible to mention two more metrics here.

Identity switch (ID-Sw) is the total number of tracks changing their

identity for the same ground truth object. Fragmentation is the

number of interruptions in the track where no tracking is made.

Finally, higher order tracking accuracy (HOTA) combines errors

originating from both association and detection (Luiten et al.,

2021). Specifically, it is the geometric mean of association

accuracy and detection accuracy.
Results

Detection performance of the models

The mAP and APnep values for different IoU thresholds for all

three models are given in Table 4. These values are obtained by

passing the test set samples in the image dataset introduced in

Section 3.1 through the trained models. Note that the best weights

determined during the training phase are used for prediction on the

test set which can be considered as a regularization step to avoid

overfitting. In other words, the weights calculated in the subsequent

iterations are not considered for Nephrops detection. The best

weights are obtained at iterations 4962, 5245, and 4113 for

YOLOv4, YOLOv4-Tiny, and YOLOv4-Scaled, respectively.

In most of the performance metrics, YOLOv4-Scaled outperforms

the other two models. Nevertheless, the differences between YOLOv4

and YOLOv4-Scaled are minor which precludes suggesting the best

model for all cases. For the threshold IoU = 0.5, the scaled version is

slightly better at detection of theNephrops, but when the AP values for

both classes are considered, YOLOv4 has a higher mAP value. This

means that YOLOv4-Scaled is not as precise as YOLOv4 when

detecting the objects from the other class. On the other hand, the

difference between the performances of YOLOv4-Tiny and the other

two models is smaller when IoU = 0.5. This indicates that the tiny

version is capable of detecting the bounding boxes but not with as high

IoU values as those obtained by the other models.
TABLE 3 Summary of the model settings.

Network Size Initial Learning Rate Momentum Decay Training Epochs

YOLOv4 416 0.00100 0.949 0.0005 6000

YOLOv4-Tiny 416 0.00261 0.900 0.0005 6000

YOLOv4-Scaled 640 0.00100 0.949 0.0005 6000
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Tracking and counting performance of
the models

Note that only the tracks satisfying the count conditions were

involved in the tracking performance calculation because these are

the tracks used in counting performance calculation as well. In

addition, the tracking metrics were obtained for all five videos

separately, but their average values are provided here as one single

clustered column chart (Figure 4). The MOTA, MOTP, and HOTA
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values are given as percentages (Figure 4A) and the rest are number

of tracks (Figure 4B).

The Nephrops counts output by the algorithm associated with

the tracks are given in Table 5. The numbers of true positive counts

are reported together with the numbers of false positive and false

negative counts together with the correct count rates for each

individual video. The lowest total number of false positives is

achieved by YOLOv4-Scaled which has the highest false negative

tracks as well. Therefore, it is possible to explain the low false
TABLE 4 Performance comparison of the detector models.

mAP (%) APnep (%)

@.50 @.75 @.50:.05:.95 @.50 @.75 @.50:.05:.95

YOLOv4 97.82 85.58 71.89 97.84 91.37 74.76

YOLOv4-Tiny 95.10 73.06 62.71 94.57 76.95 64.28

YOLOv4-Scaled 97.55 88.10 72.28 98.47 94.05 75.97
Best values are provided in bold.
A

B

FIGURE 4

Tracking performances associated with the detectors. (A) Percentage values for MOTA, MOTP, and HOTA, (B) MT, ML, ID-Sw, and Fragmentation
numbers averaged over the test videos.
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positive rate by its inefficiency in generating tracks satisfying the

count conditions. The lowest amount of false tracks are achieved by

YOLOv4 which also has the highest true positives. Specifically, the

related F-scores calculated on the total counts for YOLOv4, Tiny,

and Scaled versions are 85.44%, 80.21%, and 74.44%, respectively.
Processing speed comparison of
the models

The required amount of calculations in the model and

the hardware specifications are the two major factors affecting the

processing speed. The calculation amounts are determined at the

design stage of the models, and this can be adjusted to some degree

by changing the input image sizes which is also named as network

size (see Table 3). Typically, a larger network size in the model

yields better object detection, sacrificing the processing speed and

vice versa. The input image size for the YOLOv4-Scaled model was

adjusted to be higher than the other two models to improve its

detection accuracy. Such an adjustment allowed for obtaining a
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similar accuracy with YOLOv4 model and hence benchmarking

their tracking, counting and speed performances.

The FPS values for each model and video are summarized in

Table 6. As expected, the YOLOv4-Tiny model is the fastest in all

the videos because it has a reduced number of computational layers

to enhance its speed. The slowest model is YOLOv4-Scaled. The

reason for its lower FPS values is related with its larger network size.

However, a smaller network size for this model would cause lower

detection and tracking performances eventually yielding a lower

number of true positive counts.
Benchmarking with other trackers

To evaluate the suitability of SORT, two other object tracking

algorithms were tested on the same dataset. One of these methods is

based on a correlation filter, namely, Minimum Output Sum of

Squared Error (MOSSE) filter (Bolme et al., 2010). The reason for

selecting this object tracker is that its processing speed is claimed to

reach 669 FPS (Bolme et al., 2010). In addition, usage of MOSSE was
TABLE 5 Detailed numbers of counts obtained by the detection models.

Video-1 Video-2 Video-3 Video-4 Video-5 Total

Ground Truth 4 6 36 40 23 109

YOLOv4

Output 4 4 39 31 19 97

True Positives 4 4 34 27 19 88

False Positives 0 0 5 4 0 9

False Negatives 0 2 2 13 4 21

Correct Count Rate (%) 100.00 66.67 94.44 67.50 82.61 80.73

YOLOv4-Tiny

Output 4 4 33 24 18 83

True Positives 3 4 31 21 18 77

False Positives 1 0 2 3 0 6

False Negatives 1 2 5 19 5 32

Correct Count Rate (%) 75.00 66.67 86.11 52.50 78.26 70.64

YOLOv4-Scaled

Output 3 4 27 19 18 71

True Positives 3 4 25 17 18 67

False Positives 0 0 2 2 0 4

False Negatives 1 2 11 23 5 42

Correct Count Rate (%) 75.00 66.67 69.44 42.50 78.26 61.46
frontie
TABLE 6 Comparison of image processing speed between models in frames per second (mean [min-max]).

Video-1 Video-2 Video-3 Video-4 Video-5 Average

YOLOv4
116.49
[65-123]

115.64
[76-123]

116.67
[75-123]

114.77
[69-123]

115.76
[62-122]

115.87
[69.4-122.8]

YOLOv4-Tiny
267.51
[84-323]

248.58
[96-267]

251.22
[76-318]

251.50
[75-316]

248.72
[91-311]

253.51
[84.4-307.0]

YOLOv4-Scaled
78.93
[39-80]

79.51
[51-81]

80.31
[40-82]

79.93
[44-82]

80.73
[48-82]

79.88
[44.4-81.4]
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shown to be one of the effective trackers tested in underwater videos

(Lopez-Marcano et al., 2021). The MOSSE algorithm initializes a

correlation filter based on a detected object in a frame. Next, in the

subsequent frames, the algorithm looks for a location having the

highest correlation with the initially detected object. Due to the

changes in appearance of the same Nephrops instances throughout

the video, the Nephrops detection used for generating the correlation

filter is updated every fifth frame. This approach was implemented

earlier for tracking of yellowfin bream in underwater videos (Lopez-

Marcano et al., 2021).

The other tracker evaluated is DeepSORT, an improved version of

the SORT algorithm (Wojke et al., 2017). DeepSORT uses the

appearance information of the detected objects together with their

motion information in 2D. The motion information is quantified by

the Mahalanobis distance between the detected bounding box

centroids and the Kalman filter predictions under a constant

velocity model. On the other hand, the appearance features for each

detection are obtained by passing the bounding box region through a

pre-trained CNN containing two convolutional and six residual layers.

The minimum cosine distance between the appearance features of the

detections and the last 100 features of each track is determined as the

second metric used by DeepSORT. For the benchmarking

experiments, the resources and the instructions made available in

the official repository of DeepSORT are utilized (Wojke, 2019).

Instead of reporting the full detailed results for benchmarking

trackers, only MOTA, HOTA, correct count rate, average FPS

values, and F-scores for YOLOv4 model are provided (Figure 5).

Evaluation of these metrics is sufficient for comparing the trackers

by understanding their overall performance.
Discussion

A major challenge in demersal trawling is the lack of

information about the catch entering the gear during fishing. This

study demonstrates a full pipeline to acquire, process and display
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catch information for Nephrops, in close to real-time, to act as a

decision tool for the fisher during the fishing operation. The

applicability of such tools in commercial trawling and their

potential improvements is discussed below.

One advantage of the proposed algorithm is the powerful image

acquisition system that provides mostly sediment-free clear videos

for being processed in the subsequent steps (Sokolova et al., 2021b;

Sokolova et al., 2022). In the existing literature for underwater

image processing, there are some papers where the effects of

preprocessing on underwater images are analyzed for improving

the detection performance (Han et al., 2020; Zhou et al., 2022). But

the preprocessing requires some time, degrading the overall

processing speed. In addition, there are different types of

degradations such as low contrast and color distortion present in

the underwater images (An et al., 2021). Our method does not

require any preprocessing to enhance the detection accuracy

because the image acquisition system is robust and capable of

capturing clear videos with adjustable illumination (Sokolova

et al., 2021b).
Evaluation of the algorithm steps

Since the followed strategy is tracking-by-detection, successful

Nephrops detection is expected to imply more accurate tracking

which eventually may result in better Nephrops counts. Hence,

achieving high mAP is critical at the object detection step. The

performances of object detector models may be considered as

sufficiently successful for an accurate tracking and counting task

because all three models have mAP @.50 values above 95%

(Table 4). In addition, the Nephrops detection performance, APnep
value, associated with YOLOv4-Scaled model is the highest

indicating a better detection capability of Nephrops. However, this

situation is in connection with the increased size of the YOLOv4-

Scaled model which slows down its respective detection

speed (Table 6).
FIGURE 5

Some performance metrics obtained by three different object tracking algorithms.
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In the literature, there are numerous metrics defined for

evaluating the performance of an object tracking algorithm. For

simplicity, only those metrics commonly mentioned in the object

tracking literature are provided in this paper. Among the three

models, YOLOv4 model has the best values for MOTA, MT, ML,

and HOTA. For a detection model, having higher MT and lower

ML track count means that their associated successive detections

are good enough to attain a valid track. This idea is also supported

by the high accuracy values in MOTA and HOTA. On the other

hand, an identity switch can be the source of a false positive count

provided that the switching happens somewhere close to the

horizontal level defined for counting conditions. As for the

MOTP, it is very close for three of the models. This means that

they have nearly the same level of success in bounding box

localization throughout the tracks and cannot be used as a

distinguishing factor for commenting on the counting performance.

Finally, it is possible to mention the performance for total

Nephrops counts and the processing speeds of the method.

Checking only the total counts at the end of the video may be

misleading since some Nephrops are not counted while there may be

multiple counts for some others. Therefore, checking the false

positive and false negative counts together with the true positives

gives better insight about the counting performance. The

quantification of these three types of tracks is done by calculating

the F-scores for each detector model. In addition, the rates for

correct counts in each video are provided. At this point, it is notable

that the correct count rates for Video-4 are relatively low when

compared to the other four videos. The reason for such a

remarkable difference is that Video-4 has some sediments

degrading the visibility of the objects in the video. This situation

highlights the importance of sediment-free video acquisition.

Furthermore, when Tables 4, 5 are considered together, it is

possible to conclude that high performance at the object detection

step does not always imply better correct count rates. This is

apparent for the YOLOv4-Scaled model which has a very high

detection rate but fails to achieve good count performance.

As for the processing speed, it is measured in terms of FPS. It is

the type of the detector model that has a major impact on the overall

duration of processing a frame. In addition, updating the object

tracks by the SORT algorithm takes some time. During the

experiments on the videos, it was observed that, on average, 1.6%

of the total processing duration of the frames are used by SORT

tracking algorithm when YOLOv4 is used as the object detector.

However, tracking is effective only when there is a tracked object in

the frame. Nevertheless, the maximum processing speed related

with three of the models is higher than the FPS value of the input

video (Table 6). This means that the detectors are capable of

running at real-time processing speed, but this speed may be

reduced when there is a tracked object in the video. On average,

the processing speeds of YOLOv4-Scaled is slightly below the real

time threshold while the other two models are fast enough to be

considered real-time.

The benchmarking results of SORT with MOSSE and

DeepSORT trackers revealed that SORT is a better tracker for this

application in terms of tracking accuracy, Nephrops counting, and

processing speed. The major problem with the MOSSE tracker is the
Frontiers in Marine Science 1288
requirement for updating the correlation filters frequently. This

process slows down the procedure considerably. On the other hand,

tracking without any correlation filter update step, MOSSE is quite

inefficient for this problem because the Nephrops individuals float

and rotate under the influence of water flow causing their

appearance to be changed as they are in the field of view of the

camera. As for DeepSORT, it is more accurate than MOSSE in

terms of counting performance. However, the CNN-based feature

extraction step slows down the overall tracking speed and

eventually causes the slowest processing.
Implications for the nephrops fishing

Demersal trawling is a blind process today, which means that

fishers do not know if they are catching the target species during

trawling operation. This study constitutes a basis for addressing this

problem by outputting the target catch count with a real-time speed.

In other words, it demonstrates the possibility of providing the

Nephrops catch amount throughout the trawling operation. Such

information is useful for not only improving the catch rates of the

target species but also reducing the bycatch amounts, oil and energy

consumption, and ult imate ly improve the economic,

environmental, and social sustainability of the fishery.
Further development

The first step for further improvement of the proposed method

is to run it on an edge device with limited computational power.

Note that the reported results in this study were obtained using a

powerful processing unit (Section 3.4). In real world applications, it

may not be practical to access such a computer. Therefore,

experimentation with an edge device, which is more accessible

onboard commercial fishing vessels, is one of the improvement

plans with high priority. The change of the processing platformmay

not affect the correct count rates, but will have an influence on the

overall processing speed. Nevertheless, the achieved speed with

YOLOv4-Tiny model is promising and it may still perform

sufficiently fast on an edge device.

When there is a tracked object in the video, the tracking speed

drops considerably. In other words, tracking step is a bottleneck in

the procedure. However, SORT is known to be one of the fast

tracking algorithms in the literature, which is also supported by the

benchmarking results. In case of requiring higher speed, skipping

some intermediate frames may be helpful at cost of degradation in

the count accuracy. This may contribute to the compensation of the

speed loss due to the edge device. Besides, even if there is a small

delay, the achieved processing speed may be considered as a

significant improvement when compared to hours of delay

associated with the current situation, where information on catch

rates and compositions is only available once the catch is taken

onboard the vessel.

In the longer term, the method may be extended to detect and

count more species and contribute to a larger scale in fisheries.

However, this requires generation of a larger video dataset
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containing more diverse species. In addition, the edge processing

unit may be connected to the stereo camera directly by integrating

them inside the underwater camera box. This may be coupled with a

wireless transceiver device that transmits the count information, e.g.

acoustically to a screen onboard. This key information is sufficient

for the fisher to decide whether to continue fishing in the same area.
Conclusion

This study demonstrates the possibility of using state-of-the-art

deep learning methods to develop real-time decision tools for the

trawl fisheries demonstrated here as a Nephrops counter. In

particular, the experiments are carried out with three different

object detector models on underwater videos collected by an in-

trawl camera. The detection, tracking, and counting performances

as well as the processing speeds associated with these models are

calculated. According to the obtained results, it is possible to

conclude that such a system is promising for improving the

sustainability of trawl fisheries.
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Scaling whale monitoring
using deep learning: A human-
in-the-loop solution for
analyzing aerial datasets

Justine Boulent1, Bertrand Charry1, Malcolm McHugh Kennedy1,
Emily Tissier1, Raina Fan1, Marianne Marcoux2, Cortney A. Watt2

and Antoine Gagné-Turcotte1*

1Whale Seeker, Montreal, Quebec, Canada, 2Aquatic Research Division, Fisheries and Oceans Canada,
Winnipeg, Manitoba, Canada
To ensure effective cetacean management and conservation policies, it is

necessary to collect and rigorously analyze data about these populations.

Remote sensing allows the acquisition of images over large observation areas,

but due to the lack of reliable automatic analysis techniques, biologists usually

analyze all images by hand. In this paper, we propose a human-in-the-loop

approach to couple the power of deep learning-based automation with the

expertise of biologists to develop a reliable artificial intelligence assisted

annotation tool for cetacean monitoring. We tested this approach to analyze a

dataset of 5334 aerial images acquired in 2017 by Fisheries and Oceans Canada

to monitor belugas (Delphinapterus leucas) from the threatened Cumberland

Sound population in Clearwater Fjord, Canada. First, we used a test subset of

photographs to compare predictions obtained by the fine-tuned model to

manual annotations made by three observers, expert marine mammal

biologists. With only 100 annotated images for training, the model obtained

between 90% and 91.4% mutual agreement with the three observers, exceeding

the minimum inter-observer agreement of 88.6% obtained between the experts

themselves. Second, this model was applied to the full dataset. The predictions

were then verified by an observer and compared to annotations made

completely manually and independently by another observer. The annotating

observer and the human-in-the-loop pipeline detected 4051 belugas in

common, out of a total of 4572 detections for the observer and 4298 for our

pipeline. This experiment shows that the proposed human-in-the-loop

approach is suitable for processing novel aerial datasets for beluga counting

and can be used to scale cetacean monitoring. It also highlights that human

observers, even experienced ones, have varied detection bias, underlining the

need to discuss standardization of annotation protocols.

KEYWORDS

semantic segmentation, automated cetacean detection, active learning, wildlife
monitoring, artificial intelligence
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1 Introduction

Our ability to detect and identify wildlife is the foundation of all

successful conservation and management plans, and research

(Caughley, 1974; Pollock and Kendall, 1987; Yoccoz et al., 2001;

Mackenzie et al., 2005). Conservationists, managers, and scientists

increasingly rely on remote sensing data, such as satellite and aerial

imagery to survey larger areas for tracking wildlife, and monitoring

distribution, which can provide information on population trends

over time (Fretwell et al., 2014; Cubaynes et al., 2019; Charry et al.,

2020; Shah et al., 2020; Charry et al., 2021).

Cetaceans, composed of over 90 species of dolphins, whales, and

porpoises, are central to our ocean ecosystems, contributing to

nutrient cycling and carbon sequestration, and are viewed as

keystone species to assess the overall health of our marine

ecosystems (Wilkinson et al., 2003; Pershing et al., 2010). Scientists,

conservationists, and other marine stakeholders traditionally rely on

human marine mammal observers working with survey data

collected from boats, aircraft, satellites, and other vessels to assess

cetacean abundance. The use of aerial digital photography onboard

manned and unmanned aircraft has yielded large amounts of data for

assessing population distribution and demography (Heide-Jørgensen,

2004; Charry et al., 2018; Gray et al., 2019). However, the terabytes of

photographs collected are tediously manually analyzed by humans;

the lack of scalable, standardized, automated image analysis solutions

limit the speed and cost-effectiveness of image-based surveys, as well

as the mitigation and management goals they support.

During the last decade, the fields of ecology and conservation

have benefited from the artificial intelligence (AI) and deep learning

revolution, which has led to great advances in automatic wildlife

recognition. Convolutional neural networks have been employed

for several applications related to cetacean monitoring from images

(Rodofili et al., 2022). Borowicz et al. (2019) used them to locate

areas containing large whales in WorldView-3 satellite images. Lee

et al. (2021) used convolutional neural networks to automate the

detection of belugas (Delphinapterus leucas) in aerial images, also

exploring the generalizability of a model on data collected in two

different years. Berg et al. (2022) proposed a weakly supervised
Frontiers in Marine Science 0293
approach based on anomaly detection to detect marine animals,

including cetaceans, in aerial images.

Despite these advances in image analysis, automating cetacean

detection for aerial image datasets remains a challenge, notably due to

the difficulty of building a rich enough dataset to train a generalizable

model (Borowicz et al., 2019; Gray et al., 2019; Guirado et al., 2019;

Gheibi, 2021; Lee et al., 2021; Berg et al., 2022; Rodofili et al., 2022).

Firstly, image acquisition in marine environments is a costly and

difficult task, especially for monitoring whale populations, as these

animals are constantly on the move over an extremely large area and

only surface intermittently. Secondly, marine environments are far

from homogeneous, and undergo constant changes that can influence

visual animal detection including sea state, water turbidity, and solar

reflection. There are also several natural and anthropogenic objects that

may be sources of confusion for computer vision analysis, such as

rocks, seaweed, icebergs, floating waste, and boats. Lastly, cetaceans are

challenging animals to observe even in the best of conditions, both for

deep learning models and for biologists. For example, a whale’s

visibility depends on its posture and depth in the water column at

the time of image acquisition (Figure 1). Given these constraints,

datasets often gather hundreds of negative (no whales) images for only

a few with whales, and at best cover a few species, geographic areas, and

environmental conditions. Therefore, it is difficult to develop an

automatic detection tool that is reliable.

In this study, we aimed to overcome these challenges by using a

human-in-the-loop approach with the goal of combining speed and

consistency of automated AI analysis with human’s ability to

generalize and deal with novelty. Human-in-the-loop can be

defined as the set of strategies and techniques that associate human

and machine intelligence to solve tasks automatically (Monarch et al.,

2021). Overall, this combination aims to achieve expert-human-level

accuracy with as little manual annotation time as possible. One of the

pillars of human-in-the-loop is active learning. The assumption

behind active learning is that not all samples have the same value

when training a model, with some samples containing more

significant information than others. For example, applied to beluga

whale detection, images with objects likely to be confused with

belugas are of greater interest than images with homogeneous
FIGURE 1

Examples of image diversity of belugas and narwhals in different environments and with varying estimated depths: (A) In surface waters, (B) Animals
located between 0 and 1 meter from the surface, (C) Animals between 1 and 2 meters from the surface, (D) Animals deeper than 2 meters.
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water, without confounding objects or rough waters. Therefore, by

strategically selecting and annotating these most important samples,

we can limit annotation effort while maximizing accuracy (Ren et al.,

2021). A few studies have successfully applied active learning to

wildlife monitoring, achieving high correct prediction rates while

using fewer annotated examples than in classical transfer learning

(Kellenberger et al., 2019; Miao et al., 2021).

We present a human-in-the-loop approach to partly automate

cetacean detection from unannotated aerial images. The objective is not

to develop a single model able to perform a perfect analysis, but to

develop a methodology to efficiently assist biologists in the analysis of

new aerial datasets, allowing for faster and more standardized results.

To evaluate our approach, we applied it to aerial images of a beluga

survey dataset from Fisheries and Oceans Canada (DFO) that was

previously analyzed manually. In this study, we first trained a semantic

segmentation model using active learning. On a test subset, we

compared the model predictions with manual annotations of three

observers. Once the model results reached human level quality, we

analyzed the complete aerial dataset and compared the detections from

the human-in-the-loop pipeline with the manual annotations.
2 Material and methods

2.1 Methods overview

Before diving into the details of the experiments, we provide a

high-level description of the human-in-the-loop approach we

adopted to assist marine mammal experts in the analysis of new

incoming datasets of whale surveys. The method overview is intended
Frontiers in Marine Science 0394
to give an insight on the main components of the analysis, especially

for readers not familiar with AI. For those readers, we also

recommend the following references on the use of machine

learning for wildlife monitoring (Weinstein, 2018; Tuia et al., 2022).

Our human-in-the-loop approach comprises three main steps:
(1) Preliminary analysis (Figure 2A): When a new dataset is

received for analysis, limited a priori information is available –

we do not have an estimate of the total number of whales, nor

do we know the diversity of environmental conditions. These

unknowns impede the use of AI and the initialization of the

active learning loop. For active learning to be effective, it is

necessary first to select examples of images including whales

but also representative of the dataset’s diversity, both to be

able to train and evaluate the model. To overcome this issue

and gather valuable information to start the active learning

loop, we begin with a preliminary analysis based on generic

deep learning models not trained on the new dataset. First, we

use a land segmentation model and human verification to

produce a binary land cover map. This map is used to exclude

images covered entirely by land from further analysis, and to

automatically dismiss predictions of whales made on land as

false positives. Next, we use a dimensionality reduction

technique, Uniform Manifold Approximation and

Projection for Dimension Reduction (UMAP, McInnes

et al., 2018), to plot and cluster the environmental diversity

of the dataset; this enables the selection of diverse and

representative images to annotate, preventing manual

analysis of redundant images during a single iteration.

Finally, we run a model for cetacean segmentation trained
A B

C

FIGURE 2

Overview of the human-in-the-loop pipeline. The pipeline is divided into three main stages: (A) The preliminary analysis, (B) The active learning loop,
(C) The human review of the predictions.
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Fron
on prior data (called the source model) on the new dataset,

minus the images excluded covered entirely by land.

Although its initial outputs are not accurate enough to be

used as is, the outputs are used to find images containing

potential cetaceans, providing a good starting subset for the

active learning pipeline. For further details, see section 2.3.1

Preliminary analysis.

(2) Active learning pipeline (Figure 2B): To develop a cetacean

segmentation model adapted to the new dataset without

having to annotate a significant number of images, an active

learning approach is adopted. Using the information from

the preliminary analysis but without sharing the predictions

with the human annotator, validation and test subsets are

selected for manual annotation. Training images are also

selected; however, this time, predictions are used for an AI-

assisted annotation. Depending on the quality of the

predictions, the human annotator either approves or

corrects the targets detected by the model, or adds

missing individuals. They also transform any false

positives into negative examples, which are used for

training in the next iteration. The whale source model is

then fine-tuned using both the annotations from the new

and the source datasets. Using this complementary source

data serves to maintain the generalist features already

present in the source model, and to provide enough

whale examples for the fine-tuning, which is not always

possible, as positive examples may be scarce in cetacean

datasets. Similar iterations of “training images selection –

images annotation – model fine-tuning and evaluation” are

then repeated until satisfactory results are reached on the

test subset (see section 2.3.2.1 Subsets selection and

annotation). At this point, the fine-tuned model is used to

analyze the whole dataset. For further details, see section

2.3.2 Active learning pipeline.

(3) Human review of predictions (Figure 2C): To improve the

quality of the final analysis, a human annotator manually

checks all the detections provided by the model and

corrects them if necessary. For further details, see section

2.3.3 Human review of predictions.
In the entirety of this pipeline, the human annotator is involved

in four tasks: (1) validating the segmentation of the land areas, (2)

annotating validation and test images used to monitor the deep

learning model, (3) annotating training images selected by active

learning techniques, and (4) reviewing all predictions after the

model’s final analysis.
2.2 Data specification

2.2.1 Study area
The aerial survey was designed to detect and monitor beluga

whales of the Cumberland Sound population in Clearwater Fjord,

Canada. This population is composed of roughly 1,400 individuals

(Watt et al., 2021) who are believed to reside year-round in
tiers in Marine Science 0495
Cumberland Sound, an Arctic waterway, based on information

derived from telemetry data of 14 individuals (Richard and Stewart,

2008). During the open-water season in summer a large portion of

this population congregates in Clearwater Fjord, located at the

northern end of the sound (66°34’ N, 67°26’ W).

2.2.2 Data collection
In 2017, DFO conducted a photographic survey of the

Cumberland Sound beluga population from 29 July to 12 August.

Surveys were performed using a twin-engine Havilland Twin Otter

300 plane, flying at 100-110 knots at a goal altitude of 610m.

Photographic surveys were performed over Clearwater Fjord

following 26 pre-determined parallel transect lines 700m apart

oriented east-west. To collect photographs a Nikon D810 camera,

with 25mm lens, was mounted and positioned straight down at the

rear of the aircraft to capture photographs. The camera was linked

to a GPS receiver and was set to capture one photograph every seven

to eight seconds. Each photograph covered an area of about 875m x

585m, with a 20% overlap on consecutive and adjacent photographs

along transects. The photographs were acquired over four days

flying over the same area.

2.2.3 Manual data analysis
The 5334 photographs of the area of interest were first

examined to detect belugas by a photo-analyst from DFO, called

Observer 3 in this paper. The analyst examined the georeferenced

photographs using ArcMap 10.1 software by Esri. Each image was

scanned and upon detection of a beluga whale a point annotation

was added to the target in the image. Observer 3 detected 4572

beluga occurrences within the dataset. All detections noted in our

study are whale targets in the images we processed; we did not

remove duplicate targets detected in the overlap portions of images

or interpret any abundance of these whale populations. Those

annotations were only used for comparison with the results of

our human-in-the-loop pipeline, not for training the pipeline.

Since this fully manual analysis was not conducted within this

study, the time spent analyzing the dataset has not been recorded.

However, it can be estimated that between 1328 hours (8 months

working at 8 hours a day) and 2016 hours (12 months at 8 hours a

day) were needed to perform this task without AI-assistance.
2.3 Detailed pipeline for experiments

2.3.1 Preliminary analysis
2.3.1.1 Land cover mapping

To automatically exclude images containing only land from our

analysis, and automatically dismiss any predictions falling on land,

we performed AI-assisted annotation to get a binary land

segmentation mask for each image of the dataset. The land

segmentation model used had a UNet50-ResNeXt architecture,

and was trained on a dataset of 11,702 images from similar, but

non-overlapping, Arctic surveys. This dataset was split into

training, validation, and test subsets with ratios of 70%, 15%, and

15% respectively. The model was trained for 11 epochs, with a
frontiersin.org
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learning rate of 2e-4. Loss was computed using the Log-Cosh Dice

coefficient. Since this model was not fine-tuned on the new dataset,

it made errors, especially in areas of shallow and muddy water, so

we then manually vetted the predicted annotations, modifying any

predictions that did not accurately reflect the observed coastlines.
2.3.1.2 Source whale model

A semantic segmentation model trained on another dataset, i.e.,

the source model, was used to find cetaceans in the first iteration.

The source and new datasets differ in flight altitude, geographic area

covered, and predominant species found. The source dataset was

acquired by DFO in 2013, over the Canadian Arctic Archipelago,

with a target flight altitude of about 305m. In 1562 images, 10,253

cetaceans were annotated. They consisted mostly of narwhals

(about 80%), but also belugas (about 20%) and bowhead whales

(less than 1%).

To train the source whale model, images from the source dataset

were split into training, validation, and test subsets with ratios of

70%, 15%, and 15% respectively. This split was done randomly, but

with the constraint that two images with a geospatial overlap could

not be in different subsets, so as to prevent cross-contamination. A

supervised training was carried out, using a U-Net architecture

(Ronneberger et al., 2015), and with EfficientNet-b3 (Tan and Le,

2019) as an encoder. It was trained for 50 epochs with an initial

learning rate of 2e-4. The optimizer used was AdamW and the loss

was computed with the Dice coefficient. Of the 1658 whales in the

234 test images, 1568 were segmented by the model, giving a recall

of 94.6% at 95.66% of precision. For more details on the metrics

used, refer to the section 2.3.4 Metrics.

2.3.1.3 Diversity analysis

In order to minimize redundancy in the images sent for manual

annotation, and hence the number of iterations to reach the

stopping criterion, the automatic selection of the images to

annotate was done in such a way that represented the diversity of

oceanic environments seen across all images.

To do this, we first ran all the images in the dataset through an off-

the-shelf pre-trained convolutional neural network (ResNet-50 (He et al.,

2016) from TorchVision), and extracted the final activation layer after a

forward pass through the network. The activation layer for each image

was then fed into a nonlinear dimensionality reduction tool, UMAP

(McInnes et al., 2018), which is designed to reduce the dimensionality of

high-dimensional data, while retaining some of the meaningful

characteristics of the data, such as similar elements clustering together

across space.We chose to reduce the representation of each image to two

dimensions, to enable human-readable visualizations (Figure 3). The

two-dimensional representations did indeed cluster similar

environmental conditions together in space, so that images dominated

by land cover, shallow water, white caps, or muddy water, for instance,

clustered in contiguous regions of the 2D space.

To use this information for image sampling and based on a

visual assessment of the UMAP representation, we binned the

images into 12 discrete clusters using the k-means clustering

algorithm, assigning each image in the dataset an arbitrary

number according to which environmental cluster it fell into.
Frontiers in Marine Science 0596
Using this representation, images were picked successively and

randomly from the different clusters to obtain a representative

selection of the environmental diversity.
2.3.2 Active learning pipeline
2.3.2.1 Subsets selection and annotation
2.3.2.1.1 Validation and test subsets

Creating validation and test subsets including whales was

challenging, since no a priori knowledge on the dataset was used.

Random sampling would have likely yielded subsets without any

whales, and that did not represent the dataset’s true range of

environmental diversity. For this reason, we relied on the

preliminary analysis results. For each of the test and valid subsets,

50 images were selected successively and randomly, alternating

between the different UMAP clusters to provide representative

sampling of environmental diversity. The selection algorithm also

ensured that two images with space-time overlap were not in different

subsets. For 20 images of each subset, another selection rule was

imposed using the predictions made by the source whale model: these

images had to contain at least two predictions of whales scoring above

60% confidence to be selected. Although there is some bias in this

approach since the source model’s predictions were used to select

images for its own evaluation, it was the best way to ensure we

included cetaceans in validation and testing, without having to

manually evaluate the dataset. Since belugas live in groups,

selecting an image with at least two predicted whales generally gave

access to a larger group, including whales not detected by the model.

Moreover, as the source model was not yet adapted to the target

domain, the selections also included false positives. Using a selection

of images that included not only true positives, but also false

predictions enabled us to automatically create validation and test

subsets capable of tracking the evolution of the model’s fine-tuning.

Following the selection of images for the validation and test subsets,
FIGURE 3

Clustered UMAP visualization of the new dataset. Each point
represents an image and is color-coded by cluster. To illustrate the
similarity of images within clusters, rectangles on the right show
examples of three random images from four different clusters.
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we proceeded to annotate them. One of the challenges of AI for

wildlife monitoring is that the ground truth is based on human

annotations, and therefore contains some degree of difference, owing

to inter- and intra-observer variability. To calculate the variability of

annotation between different expert marine mammal biologists, the

test subset was analyzed independently by three observers (Table 1)

(see section 2.3.4.2Measuring agreement for further details). Only the

test subset was analyzed by multiple observers as it contained a

representative sample of environmental diversity of the full dataset

and to limit the annotation workload. Observer 1, a Whale Seeker

biologist, was the primary annotator, since in addition to the test

subset, they also annotated the validation and train subsets, as well as

doing the final prediction reviews. Observer 2 was also a Whale

Seeker biologist. They both used the annotation software DIVE to

draw individual polygons around each whale. Observer 3 was a DFO

biologist who had previously annotated the entire dataset (see section

2.2.3 Manual analysis). Since the annotations from Observers 1 and 2

were individualized polygons while those from Observer 3 were

points centered on the whales, we transformed these points into a

2*2 pixels square to allow comparison. Hence, a polygon intersecting

a square is considered as a common annotation between observers.

Using the test-set annotations of the three observers, we

calculated their inter-observer agreement, a key metric in a

context where there is no real ground truth. This metric was used

as the stopping criterion of the active learning loop: the loop would

be ended once the agreement between the model predictions and

the human annotations equaled or exceeded this value.

2.3.2.1.2 Training subsets

At each iteration, 50 images were selected to be annotated for

fine-tuning. To sample images with the most uncertain targets, we

used the least confidence criterion (Monarch et al., 2021) to select

20 images based on the confidence score of the predicted targets. An

additional 25 images were selected using a most confidence

criterion. This criterion is based on the number of targets in an

image with a confidence above a specified threshold value, in this

case 90%. This criterion had the advantage of generating true whale

predictions that can be easily transformed into annotations when

the segmentation has a high enough quality. It also allowed us to

catch false positives with a high level of confidence, a frequent

occurrence when analyzing new environments. Since we were

selecting entire images and not just targets, this criterion provided

access to a large number of beluga whales, and thereby potentially to

false negatives. Finally, five images were also randomly selected for

annotation. To avoid redundancy of information, we used the

UMAP representation to select the images.
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The annotation was performed by Observer 1 with the model’s

assistance, i.e., the observer had access to the predictions of the

model to speed up analysis. To enrich the pool of negative examples

sent to the model during training, we followed a hard negative

mining approach, which means we transformed the false positives

from selected images into negative examples for the next training

iteration. Since the dataset images measured 7360 per 4912 pixels—

too large to be fed directly into machine learning algorithms— tiles

of 256 per 256 pixels were extracted around each whale and hard

negative example. To complete the dataset, negative tiles were also

extracted randomly. To avoid an unbalanced dataset, the same

number of positive and negative tiles were fed to the model. Because

positive examples are typically scarce in cetacean surveys, 750

positive examples from the source dataset were also selected

randomly to supplement those from the new dataset. A summary

of the data used in each iteration can be found in Table 2.
2.3.2.2 Model fine-tuning

A complete fine-tuning of the previously trained model was

performed on each iteration. For the first iteration, the starting

point was the source model. We used a U-Net architecture with an

EfficientNet-B3 encoder. During each training phase, several runs

were performed with different random seed states. Since the

human annotator only verifies images that contain at least one

whale prediction, we needed a fairly sensitive model. For each

iteration, between all the models from the different runs, we chose

the model with the best recall for an accuracy over 85%. More

details about the hyperparameter values used can be found

in Table 3.

2.3.3 Human review of predictions
Once the stopping criterion was reached, the final iteration of

the model was used for inference on all remaining unannotated

images. The list of images with at least one whale detected was then

sent to Observer 1 for manual revision. During this process, the

observer could approve, remove, or correct the predictions. They

could also add targets not predicted by the model, and separated

groups of whales that were segmented as one by the model, to

facilitate an individual count of the number of cetaceans.
2.3.4 Metrics
2.3.4.1 Computer vision metrics

To evaluate the performance of the models, precision (Eq. 1),

recall (Eq. 2), and F1-score (Eq. 3) were calculated. For our

application, since it was not the quality of the segmentations that
TABLE 1 Summary of annotations for the validation and test subsets according to the three observers.

Subset type
Number of images per subset

Number of annotated whales per subset

Observer 1 Observer 2 Observer 3

Validation 50 390 N/A N/A

Test 50 289 304 315
N/A stands for "not applicable".
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was important but rather binary detection quality, these three

metrics were computed not at the pixel but at the target level.

Each group of contiguous positive pixels was considered a target.

Each whale prediction that intersected a human annotation was

counted as a true positive. Recall is the most critical metric for this

application since we focus on missing as few individuals as possible.

High precision is nonetheless important so that the observer does

not spend too much time checking for false positives.

Precision =  
True   Positives

True   Positives   +   False   Positives
  (1)

Recall =  
True   Positives

True   Positives   +   False  Negatives
(2)

F1 − Score =  
2  �   Precision  �  Recall

Precision   +  Recall
(3)
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2.3.4.2 Measuring agreement

One challenge of quantifying automated approach success using

remote detection is the inherent variability in ground-truth data,

both between expert human observers and within the same

observer. Numerous studies across various taxa have measured

inter-observer variability in overall animal counts given the same

remote sensing imagery (Linchant et al., 2015; Wanless et al., 2015;

Schlossberg et al., 2016; Fossette et al., 2021). These studies report

count discrepancies in the range of 5 - 15%. Disagreement across

matched detections (rather than the overall count) is less well

documented but is likely significantly higher.

This range of inter-observer variability, even among experts,

makes 100% recall and precision a moving target, and not a

realistic or desirable goal for automated or manual approaches.

Instead, an automated solution’s recall and precision can instead

be interpreted as the algorithm’s “agreement” with the observer

who created the ground-truth annotations, and can be expected, at

best, to approach the agreement values human experts have with

respect to one another. Specifically, we defined agreement between

two observers (human or computer) as the intersection over union

(IOU) between them, which is the number of shared detections

divided by the size of the union of the two observer’s detections

(Eq. 4).

Inter  −   observer   agreement ¼

 DetectionsObsA,     ObsB  
 DetectionsObsA,     ObsB   +    DetectionsObsA   +    DetectionsObsB

(4)

Where DetectionsObsA, ObsB represents the number of whales

detected by both observers, while DetectionsObsA represents the

number of detections made only by Observer A, and

DetectionsObsB represents the number of detections made only

by Observer B.
TABLE 3 Hyperparameters used to fine-tune the model.

Architecture U-Net with Efficient-Net B3 as encoder (Ronneberger
et al., 2015; Tan and Le, 2019)
https://github.com/qubvel/segmentation_models.pytorch

Initial Learning
Rate

1e-5 to 6e-4

Optimizer AdamW

Loss function Dice Coefficient

Batch Size 30

Maximum
number of epochs

30

Transformations Randomly applied: rotation in 90-degree steps, horizontal
or vertical flip, and hue color jitter
TABLE 2 Summary of the data used in each training iteration.

Iteration 1 Iteration 2

Annotated images 50
(+50)

100
(+50)

Positive tiles

Annotated whales from the DFO dataset 768
(+768)

1283
(+515)

Annotated whales from the source domain 750
(N/A)

750
(N/A)

Total of positive tiles 1518
(+768)

2033
(+515)

Negative tiles

Hard negative tiles 157
(+157)

301
(+144)

Random negative tiles 1361
(+1361)

1732
(+371)

Total of negative tiles 1518
(+1518)

2033
(+515)
All training annotation was performed by Observer 1. The numbers displayed represent the cumulative total number of images or annotations used for each iteration. The numbers in brackets
and italics represent the number of new images or annotations added for each iteration.
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We chose this metric since, unlike concepts such as recall and

precision, it is symmetric between the two observers, rather than

assuming one to be ground truth.
3 Results

3.1 Land cover exclusion

Using the land use mapping done in the preliminary analysis,

1977 images (37% of the total) were excluded from further analysis

because they were covered by more than 95% land, leaving 3357

images to be analyzed for whales.
3.2 Evaluation on the test subset

3.2.1 Inter-observer agreement
The number of whales found in the 50 test images varied

between observers. Observer 1 was the most conservative

annotator, disregarding targets that were deep in the water

column, whereas Observer 3 was less conservative and included

deep-water targets. Therefore, the number of whales detected in the

50 images ranged between 239 to 315. The percentage of agreement

between pairs of observers ranged from 88.5% to 92.88% (Table 4).

Most of the disagreements between observers concerned targets

that might be whales swimming deep in the water column

(Figures 4A, B). Some discrepancies were due to targets

resembling waves (Figure 4C) or birds (Figure 4D).

3.2.2 Active learning loop performance
Two iterations, totaling 100 annotated images (~2% of the

complete dataset), enabled the model to exceed the minimum

inter-observer agreement value on the test subset, with model–

observer agreement percentages ranging from 90.03% to 91.37%

(Table 5; Figure 5).

Despite differences between the source and new datasets, the

source model provided an initial recall on the test subset ranging

from 75.87% to 79.93% depending on the observer. The

incorporation of target domain annotations greatly improved

the detection capabilities: the number of false negatives shrank

more than sixfold between the source model and the iteration 1

model. After iteration 2, the recall ranged from 94.75% to 98.96%.

Interestingly, across all the false negatives, none had consensus by
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all three observers, highlighting the alignment between inter-

observer discrepancies and model-observer discrepancies.

Precision increased by an average of 28.8 percentage points

after 50 annotated images were added. This upward trend

continued less steeply between iteration 1 and 2, with an

average gain of 4.23 percentage points. After iteration 1, some

of the false positives were recognizable objects like rocks, glare

effects and waves, but after iteration 2, the false positives related

to objects that we couldn’t identify. All three observers agreed on

only 7 of the false positives, and some of them could indeed be

belugas that were missed by all three (Figure 6).
3.3 Evaluation on the whole dataset

Once the active learning loop was complete, Observer 1 proceeded

to the final step of the pipeline: reviewing the predictions on the

remaining 3157 images that had not been manually annotated. In this

review, 572 predictions were removed, and 58 detections were added.

The annotations from the human-in-the-loop pipeline were then

compared with those made without AI assistance by Observer 3. In total,

4298 belugas were detected by the pipeline, while the Observer 3 detected

4572 belugas, a difference of 274 individuals. The level of mutual

agreement reached 84%, representing 4051 mutual detections. Observer

1 detected 247 belugas that were not detected by Observer 3, and

Observer 3 detected 521 belugas that were not detected by Observer 1.

As no third-party biologist reviewed the disagreements, we were

not able to arbitrate on the presence or absence of belugas.

Nevertheless, to better understand the disagreements between the

human-in-the-loop pipeline and Obsrver 3 detections, Observer 1

manually inspected the discrepancies.

Out of the 768 targets in disagreement, he assessed that 60% of

them could not be annotated with certainty, due to a lack of visibility,

related to the turbidity of the water, the conditions at sea, and

especially, to the depth of the detected target (Figure 7). While

image annotation protocols generally specify a maximum depth for

a target to be counted as a whale, in practice it is difficult to follow

these guidelines, which leaves room for some interpretation. When

analyzing groups of whales, we noticed that observers were inclined

to annotate targets at great depths as belugas, while similar targets

outside whale groups were not annotated as such. About 35% of the

uncertain targets were found in beluga whale groups. The proximity

of the belugas and the turbulence they create rendered

individualization difficult (Figure 7).
TABLE 4 Annotation agreement on the test subset between the three observers.

Agreement
(%)

Number of mutual
whales’ detections

Number of whales found only by
the 1st Observer

Number of whales found only by
the 2nd Observer

Obs. 1 – Obs. 2 92.9 287 2 20

Obs. 1 – Obs. 3 88.6 285 7 30

Obs. 2 – Obs. 3 92.9 300 8 15
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3.4 Time-tracking

We tracked the time spent by Observer 1 annotating images and

reviewing predictions to estimate the time needed for an observer to

analyze a dataset while being assisted by the human-in-the-loop
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pipeline (Figure 8). In total, 53 hours were spent for the complete

analysis of this dataset of 5534 images. The AI-assisted annotation

of the land took approximately 23 hours, given that about 80% of

the images included land. Whale detection required approximately

31 hours of manual work to analyze the eligible 3357 images (i.e.,
TABLE 5 Summary of the results between the model and the three observers on the test subset.

Agreement (%) F1-score (%) Recall (%) Precision (%) FP FN TP

Observer 1

Source model 52.14 68.55 79.93 60.00 154 58 231

Iteration 1 87.11 93.11 98.27 88.47 37 5 284

Iteration 2 91.37 95.49 98.96 92.26 24 3 286

Observer 2

Source model 51.42 75.87 75.87 61.60 149 76 239

Iteration 1 85.45 93.65 93.65 90.77 30 20 295

Iteration 2 90.96 94.75 94.60 94.90 16 17 298

Observer 3

Source model 51.50 67.92 76.97 60.78 151 70 234

Iteration 1 85.50 92.16 94.74 89.72 33 16 288

Iteration 2 90.03 95.27 96.05 94.5 17 12 292
fro
In bold, the agreement values exceeding the minimum inter-observer agreement. FP, false positives; FN, false negatives; TP, true positives.
FIGURE 4

Examples of annotation disagreement in the test subset. (A, B) Targets annotated differently by each observer with red outlines for Observer 1, green
outlines for Observer 2, and yellow boxes for Observer 3. (C) Target annotated only by Observer 3. (D) Target annotated only by Observer 2.
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with a land cover under 95%). Given that a fully manual analysis

took an estimated 1328 to 2016 hours, the time savings for the

observer using our AI-assisted approach are in the range of 96-97%.
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4 Discussion

4.1 Scaling the adoption of AI for aerial
whale monitoring

Our study presents an original deep learning-based solution

using a human-in-the-loop framework to detect whales from aerial

imagery. AI-assisted detection can process imagery significantly

faster than manual detection, thereby providing more time for

interpretation and development of mitigation strategies. Manual

analysis of a survey can take months or years, delaying evaluation of

mitigation plans, which can be detrimental to the species of interest.

Although there has been previous work using deep learning to

analyze imagery of marine mammals, they have not yet gained

traction with the global community of wildlife managers and other

ocean stakeholders. While data democratization is often put forward

as a roadblock to implement AI solutions in ecology (Ditria et al.,

2022), another major challenge is the lack of knowledge sharing and

understanding between AI experts and wildlife managers. Creating a

widespread usable framework not only requires deep expertise and

communication from multiple disciplines such as computer science

and ecology, but also the involvement of all marine stakeholders.

Full photographic surveys are desirable in the field because they are

cost-effective, requiring fewer personnel, which also means less human

risk; however, processing vast amounts of imagery that are acquired is a

major bottleneck. Our methodology, including the use of UMAP to

select the most impactful data for re-training, helps to make full

photographic surveys a viable monitoring solution, by cutting down

the number of manual annotations needed for re-training.
FIGURE 6

(A–F) Examples of predictions (original image on left, turquoise outline prediction on right) from iteration 2 identified as false positives for all three observers.
FIGURE 5

Evolution of the observer–model whale detection agreement on the
test subset through the model training iterations. The shaded area
between hash lines indicates the inter-observer minimum and
maximum whale detection agreement.
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Since each dataset is different, it is expected that the time an

expert spends on each AI-assisted analysis will vary. The greatest

time savings will likely be for repeated surveys from one year to the

next, or for analyzing historical datasets, where the target species

and geographic area are constant.
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4.2 The need of standardization
and transparency

By analyzing a dataset with a single model, AI improves

standardization: each image is processed identically, without the biases
FIGURE 7

Examples of annotation disagreements between Observer 1 (middle, in red) and Observer 3 (right, in yellow). Original unannotated image on left.
Total count of belugas in (A) Observer 1: 11, Observer 3: 12; (B) Observer 1: 13, Observer 3: 14; (C) Observer 1: 4, Observer 3: 6.
FIGURE 8

Comparison of the time spent by Observer 1 to analyze the dataset with the AI-assisted approach versus the time spent by Observer 3 to analyze the
dataset fully by hand. The exact time spent for the full manual analysis was not recorded, hence the lower and upper estimates of the time needed
to analyze a dataset of 5334 images.
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and variability that can occur during manual annotation. However, this

approach does not mean we can dowithout observers’ intervention: their

expertise is required for fine-tuning data as well as prediction verification.

Therefore, the consistency of an AI solution is limited by the consistency

of manual interventions and establishing a robust manual annotation

protocol from the outset is essential, especially regarding common

conditions for inter-observer discrepancy such as deep targets and

murky water. Standardization of protocols for assessing difficult cases

would ensure temporally spaced surveys are consistent, even if they

cannot be ground-truthed. As the AI-assisted annotation process greatly

reduces the time taken by observers to analyze the images, multiple

observers could be asked to review the annotations and arbitrate the

difficult cases. Because marine mammal management often has large

environmental, monetary, and cultural implications, a standardized

approach offers transparency for stakeholders and can go a long way

to developing trust in the scientific process.
4.3 AI perspectives

Improvements can be made to the pipeline presented here.

Going from semantic segmentation to an approach that isolates

individuals could speed up the manual revision process. However,

this approach needs to be robust to the proximity, and even overlap,

of individuals. Developing a source model with a higher

generalization capacity would also be an improvement since

better pre-analysis requires fewer active learning iterations.

Improving generalization remains an area of ongoing research

(Wang et al., 2021). Developing specialized source models for

given species and geographic areas could also improve the pre-

analysis results. Finally, extending the model’s scope from whale

detection to species identification would allow for better monitoring

of multiple species within the same geographical area.
5 Conclusion

In this study, we proposed and applied a human-in-the-loop

approach to address the challenge of a real-world cetacean

monitoring application case: analyzing a novel dataset of aerial

images for beluga whale monitoring. Through this approach and

the close collaboration between AI and the observer, expert-quality

analysis was quickly provided for the 5334 images in the dataset,

with only 100 annotated images for training. Generalization of this

approach to aerial image analysis could significantly improve

cetacean monitoring in quantity and quality. Keeping the expert

in the loop ensures human-level quality results and better

adaptation to new environmental and biological conditions in the

imagery. Using computing power instead of total human analysis

also allows more data to be analyzed in a dramatically shorter time

period, allowing more meaningful time sensitive decisions.

Improvements can still be made to the proposed method, both

for AI (better generalization of source models, multi-species

identification) and for cetacean monitoring methodology
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(standardized taxonomy and image annotation protocol), and yet

the human-in-the-loop approach proposed here constitutes a first

innovative and practical solution for automating imagery analysis

for cetacean monitoring.
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The El Niño-Southern Oscillation (ENSO) is a quasi-periodic climate type that

occurs near the equatorial Pacific Ocean. Extreme periods of this climate type

can cause terrible weather and climate anomalies on a global scale. Therefore, it

is critical to accurately, quickly, and effectively predict the occurrence of ENSO

events. Most existing research methods rely on the powerful data-fitting

capability of deep learning which does not fully consider the spatio-temporal

evolution of ENSO and its quasi-periodic character, resulting in neural networks

with complex structures but a poor prediction. Moreover, due to the large

magnitude of ocean climate variability over long intervals, they also ignored

nearby prediction results when predicting the Niño 3.4 index for the next month,

which led to large errors. To solve these problem, we propose a spatio-temporal

transformer network to model the inherent characteristics of the sea surface

temperature anomaly map and heat content anomaly map along with the

changes in space and time by designing an effective attention mechanism, and

innovatively incorporate temporal index into the feature learning procedure to

model the influence of seasonal variation on the prediction of the ENSO

phenomenon. More importantly, to better conduct long-term prediction, we

propose an effective recurrent prediction strategy using previous prediction as

prior knowledge to enhance the reliability of long-term prediction. Extensive

experimental results show that our model can provide an 18-month valid ENSO

prediction, which validates the effectiveness of our method.

KEYWORDS

EI Niño southern oscillation, long-term prediction, spatio-temporal modeling, transformer,
deep learning
1 Introduction

The EI Nino-Southern Oscillation (ENSO) is one of the recurring interannual

variability of ocean-atmosphere interactions phenomenon over the tropical Pacific

Ocean and contains three phases (onset, mature and decay) with respect to the changes

of sea surface temperature(SST). When the SST are higher than normal in the central and
frontiersin.org01105

https://www.frontiersin.org/articles/10.3389/fmars.2023.1143499/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1143499/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1143499/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1143499&domain=pdf&date_stamp=2023-03-13
mailto:liwenhui@tju.edu.cn
mailto:anan0422@gmail.com
https://doi.org/10.3389/fmars.2023.1143499
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1143499
https://www.frontiersin.org/journals/marine-science


Song et al. 10.3389/fmars.2023.1143499
eastern equatorial Pacific Ocean, it is called El Nino, and when it is

lower than normal, it is called La Nina Larkin and Harrison (2002).

With wind and SST oscillations, the ENSO has wide influences, for

example, the global atmospheric circulation Alexander et al. (2002),

crop production Solow et al. (1998), environmental and

socioeconomic (McPhaden et al. (2006)), ecology and economy

Reyes-Gomez et al. (2013). Therefore, accurate prediction of ENSO

occurrence can guide us to take preventive measures and effectively

reduce the impact of natural disasters on human society. However,

due to the predictability barrier and chaos of climate variability Mu

et al . (2019) ENSO prediction remains an extremely

challenging task.

In recent years, there are several related indicators to reveal

ENSO underlying complex climate change, such as Nino3.4 index

and the SST index Yan et al. (2020). All of them utilize the historical

SST or Heat Content (HC, Vertical mean ocean temperature above

300 m) to predict whether the ENSO event will happen in the

future. Among these indicators, the Nino3.4 index is frequently

employed to evaluate phenomenon of ENSO, which calculates

mean SST anomaly(SSTA) maps of three consecutive months in

an area of 5°N-5°S and 170°W-120°W Ham et al. (2019). The

existing ENSO prediction methods can roughly classified into

numerical prediction methods (NWP), traditional statistical

methods and deep learning methods Ye et al. (2021b). The NWP

methods usually adopt the mathematical physics and integrating

governing partial differential equations to predict future Nino3.4

index Bauer et al. (2015). Specifically, Zebiak et al. Zebiak and Cane

(1987) proposed the first coupled atmosphere-ocean model for

forcasting the ENSO phenomenon, and subsequently various

models like Intermediate Coupled Model (ICM), Hybrid Coupled

Model (HCM) and Coupled General Circulation Model (CGCM),

have been proposed to obtain 6-12 months of reliable predictions

He et al. (2019).For example, Zhang et al. Zhang and Gao (2016)

developed an ICM for enso prediction focusing on thermocline

effect on the SST, which reasonably captures the overall warming

and cooling trends from 2014-2016. Subsequently, Barnston et al.

Barnston et al. (2019) validated the ENSO prediction skill in the

North American Multi-Model Ensemble(NMME) and found that

NMME can effectively improve the ENSO prediction skill. Johnson

et al. Johnson et al. (2019) used the European Centre for Medium-

Range Weather Forecasts(ECMWF) to predict ENSO and found

that ECMWF has powerful advantages in ENSO prediction,

especially in the difficult-to-predict northern spring and summer

season. Ren et al. Ren et al. (2019) developed a statistical model to

examine the East Pacific (EP) type and Central Pacific (CP) type

predictability, and the results showed that ENSO predictability is

mainly derived from changes in the upper ocean heat content and

surface zonal wind stress in the equatorial Pacific. However, due to

weather prediction is highly dependent on initial and boundary

conditions, as well as a large variety of physical quantities, which

hinder the application of NWP in long-term prediction Ludescher

et al. (2021). Furthermore, with the horizontal resolution

increasing, the numerical models will lead to an explosion of time

costs and computational resources Mu et al. (2019); Ye et al.

(2021b). Traditional statistical methods summarized and analyze

the shallow patterns in historical data of ENSO, and then, realize
Frontiers in Marine Science 02106
the prediction of future ENSO Yan et al. (2020). Concretely, Petrova

et al. Petrova et al. (2017) decomposed the time series into dynamic

components and captured the dynamic evolution of ENSO to

obtain efficient predictions. Subsequently, PETROVA et al.

Petrova et al. (2020) added a stochastic periodic component

associated with the ENSO time scale, which further improved the

prediction. Wang et al. Wang et al. (2020) proposed a

nonparametric statistical approach based on simulation

prediction to address the limitation of long-term prediction for

statistical methods raised by highly non-linear and chaotic

dynamics. Rosmiati et al. Rosmiati et al. (2021) proposed the auto

regressive ensemble moving average (ARIMA) model to predict the

Niño3.4 Index and found that ARIMA was very effective in

predicting ENSO events. However, ENSO is non-linear ocean-

atmosphere phenomenon over time, traditional statistical

methods can not well capture the complex patterns and

knowledge to effectively predict the ENSO phenomenon Yan

et al. (2020).

As deep learning techniques have developed, researchers have

began to design neural networks for predicting weather elements

(e.g., rainfall), which can well mine complex and intrinsic

correlations, such as artificial neural networks (ANN) Feng et al.

(2016), convolutional neural networks (CNN) Ham et al. (2019); Ye

et al. (2021b); Patil et al. (2021), long short-term memory networks

(LSTM) Broni-Bedaiko et al. (2019), convolutional long short-term

memory networks (ConvLSTM) Mu et al. (2019); He et al. (2019);

Gupta et al. (2022), CNN-LSTM Zhou and Zhang (2022), graph

neural networks (GNN) Cachay et al. (2020), recurrent neural

network (RNN) Zhao et al. (2022), transformer Ye et al. (2021a)

etc. Feng et al. Feng et al. (2016) propose two methods to predict the

existence of ENSO, and the time evolution of ENSO scalar features,

which provided a new prediction direction for predicting the

occurrence for ENSO events. Broni-Bedaiko et al. Broni-Bedaiko

et al. (2019) used the LSTM networks for multi-step advance

prediction of ENSO events, which complemented the previous

models and predicted the ENSO phenomenon 6, 9, and 12

months in advance. Mu et al. Mu et al. (2019) defined ENSO

prediction as a spatio-temporal series prediction issue and used a

mixture of ConvLSTM and rolling mechanism to predict the

outcome over a longer range of events. The GNN was first used

in Cachay et al. (2020) for seasonal prediction, it predict the result

in a longer lead time. Zhao et al. Zhao et al. (2022) designed an end-

to-end network, named Spatio-Temporal Semantic Network

(STSNet), it provided a multiscale receptive domains across

spatial and temporal dimensions. The significant breakthrough

work is the CNN-based model designed by Ham et al. Ham et al.

(2019), which is proficient in predicting ENSO incidents for as long

as 1.5 years, significantly higher than most existing methods.

Subsequently, Ye et al. Ye et al. (2021b) adapted the different

sizes of the convolutional kernel to capture the different scale

information and further improved the accuracy than Ham et al.

(2019). Patil et al. Patil et al. (2021) trained CNN models using

accurate data with the all season correlation skill greater than 0.45 at

lead time of 23 months. Another major breakthrough is the

combination of the POP analysis procedure with the CNN-LSTM

algorithm by Zhou and Zhang (2022), which explores hybrid
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modeling by combining physical process analysis methods with

neural network and proves its effectiveness. In addition, deep

learning in the field of spatio-temporal prediction is now well

developed, Li et al. Li et al. (2022) developed an adversarial

learning method fully considering the spatial and temporal

characteristics of the input data to produce accurate wind field

estimates, and Lv et al. Lv et al. (2022) proposed a new generative

adversarial network model to simulate the spatial and temporal

distribution of pedestrians to generate more reasonable future

trajectories, which provides new ideas for ENSO prediction.

Although certain advances have been made in ENSO-related

studies, there are still quite limited predictions due to the following

reasons: (1) The ENSO phenomenon contains prominent spatio-

temporal characteristic, and even if the temperatures of two stations

with long time intervals and far apart locations, they may still have

complex interactions with different implications for future ENSO

prediction. The traditional CNN convolution kernel suffers from

the problem of local receptive field, for example, to obtain the SST

anomaly relationship between the North Pacific and South Atlantic,

it is necessary to stack the deep layers to obtain these two areas, but

the amount of information decays as the number of layers increases

Ye et al. (2021a). The transformer-based methods explored the

attention mechanism to capture the global receptive field. However,

these methods mainly model the spatial information, resulting in

confusing spatio-temporal features Nie et al. (2022). (2) Due to the

variable rate signal and high frequency noise in atmosphere-ocean

system, it is a challenge for predicting long-time ENSO in advance.

The previous close calendar months have significant effect on the

next month prediction, while those with longer intervals have low

effect. Existing methods ignore the nearby prediction results when

they mine the spatial-temporal patterns in the next time, resulting

large errors due to the large magnitude of ocean climate variability

over long intervals. (3) The ENSO phenomenon has an obvious

statistical characteristic of annual cycle Zhou and Zhang (2022),

and how to effectively use this interannual characteristic to capture

the correlation between historical and predicted data is the key to

improve the prediction of the future trend change in atmosphere-

ocean system.

To solve the above limitations, we designed a novel Spatial-

temporal Transformer Network for Multi-year ENSO prediction,

which is named STTN. First, as the ENSO phenomenon has

large-scale and long-term dependencies across both spatial and

temporal dimensions, we employed a multi-head spatial-

temporal network to adaptively model the variations along

with the changes in space and time, which can effectively

captures the global and successive characteristics of climate

change. Second, we designed an effective recurrent prediction

strategy to utilize the previous predictions as prior knowledge for

long-term prediction by a single model. To mitigate the negative

influence of false predictions, we encoded the contextual

information of successive predictions by temporal convolution

operation to fully exploit the historical contextual time series.

Third, we integrated the month information into the procedures

of SSTA and HC anomaly (HCA) maps feature encoding and

predictions, which guides the model to better capture the

seasonality and periodicity of the ENSO phenomenon.
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The main contributions from our work are summarized below:
• We proposed a novel spatial-temporal transformer network

to model the variations of SSTA and HCA along with the

changes in space and time, which can adaptively captures

the inherent characteristics of climatic oscillation.

• We introduced an effective recurrent prediction strategy to

treat previous predictions as prior knowledge for long-term

predictions and utilize the context of predictions to mitigate

the error accumulation during recurrent prediction.

• We integrated the temporal index as position embedding

into the feature learning procedure to facilitate mining the

influence of seasonal variation on predicting ENSO.

• The extensive experiments indicated that our single model

outperforms the state-of-the-art methods with multiple

ensemble models, which demonstrates the effectiveness of

our method at dynamic prediction.
2 Methodology

2.1 Data processing

The ENSO prediction has been defined as a spatio-temporal

prediction issue, where the objective is to use the ENSO historical

data xt-T+1,…,xt-1, xt to predict the Niño3.4 indexes for the next l

months. This process is formulated as:

½yt+1, yt+2 … yt+l� = F(xt−T+1, xt−1 … xt)   (1)

where F denotes the deep learning model, l denotes the lead month,

T denotes the length of historical input data. The illustration of our

proposed network is illustrated in Figure 1.

The time unit of ENSO historical input data contains T

consecutive months, denoted as xsstaϵ RT×H×W and xhcaϵ RT×H×W

for SSTA and HCA, respectively. T, H, and W indicate time, height,

and width for the input data, respectively. To model the spatial and

temporal correlation with a global perspective, we adopt the

transformer structure as the backbone of our method. To meet

the requirement of transformer structure, we first reshape the SSTA

and HCA 2D data into a sequence of flattened 2D patches. Taking

xssta as an example, each grid map is divided into N patches with

same size: x
0
ssta ∈ RT�N�p1�p2 , N=H×W/(p1×p2). The p1 and p2 is

the size of each patch, then each patch is converted into a one-

dimensional vector with p1×p2 dimension. Then, we adopt a linear

layer to project these vectors into D dimension. Finally, the features

of the SSTA or HCA can be represented as fssta∈RT×N×D and

fhca∈RT×N×D .
2.2 Spatial-temporal position encoding

Due to the complex historical input data with periodic

characteristics, we need to assign the position indexes for each

patch to let the network know the location and order of each patch,

so that the model can explore the correlations among different
frontiersin.org
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locations or at different times. To encode the temporal information,

we adopt different sine and cosine functions Vaswani et al. (2017),

which are periodic and can explore the temporal characteristic of

abnormal temperature. Take fssta as an example:

PO(i, 2j) = sin  (i =100002j=D)

PO(i, 2j + 1) = cos  (i =100002j=D)
(2)

where i is the time step of the input sequence or the calendar month

in the period of C, and j is the index of dimension, PO∈RT×D . For

the location of each patch within space, we learn spatial positional

embedding E∈N×D . Finally, the spatio-temporal position is added

to the feature fssta and to obtain the embedding vector z(0)ssta.

z(0)ssta = Norm(fssta + E + PO) (3)

where Norm is the LayerNorm operator, and the embedding vector

z(0)hca of HCA can also be obtained by the above process. In addition,

the calendar month information and the time step of the input

sequence also contributed to the recurrent prediction strategy

which will be presented later.
2.3 Spatial-temporal attention module

To better model the spatial and temporal characteristics of ENSO,

we adopt a multi-head attention to encode the variability. Without

losing generality, we take SSTA data as the input. The encoder

structure is shown in Figure 2A, which consists of spatial and

temporal attention, multi-layer perceptron, and residual connection

to obtain the feature representation. To capture the temporal

dynamics, we first use the self-attention mechanism in the time
Frontiers in Marine Science 04108
dimension. For example, in the case of temporal attention, exclusively

using keys from the same patches but different frames as the query,

the query, key, and value vectors in the m-th Encoder block can be

computed from the feature vector z(m−1)∈RN×T×D as follows.

q(m,a)
t = W(m,a)

q Norm(z(m−1)) ∈ RDh

k(m,a)
t = W(m,a)

k Norm(z(m−1)) ∈ RDh

v(m,a)
t = W(m,a)

v Norm(z(m−1)) ∈ RDh

(4)

where t = 1,…,T, and Norm is the LayerNorm operation, a = 1,…,A

is the index of attention heads, and A is the sum of attention heads,

the dimension of the attention head is given as Dh = D/A. W(m,a)
q ,

W(m,a)
k ,W(m,a)

v are the parameters for the projection layers. The

weights of temporal patches are obtained by a dot product

calculation as follows.

a(m,a)
t = s ( q

(m,a)T

t ffiffiffiffi
Dh

p k(m,a)
t 0

n o
t0=1,…,T

) (5)

where s is the softmax activation function and a(m,a)
t ∈ RT�T is the

temporal attention layer m in terms of a-th head. The patch

representations are calculated by these weights.

p(m,a)
t = o

T

t0=1
a(m,a)
tt 0 v(m,a)

t 0 (6)

Then, these vectors from all the attention heads are

concatenated and projected:

z(m)
t = Wt

p(m,1)
t

⋮

p(m,A)
t

2
664

3
775 (7)
FIGURE 1

The proposed STTN model architecture, which contains Input data, Patch Divide, Spatial-temporal position encoding, Encoder, SSTA and HCA
Features, and Recurrent prediction strategy. The SSTA and HCA encoder consist of multiple transformer encoder blocks. The Recurrent prediction
strategy predicts the Niño3.4 index according to the time step. Input variables are SSTA (in units of °C) and HCA (in units of °C) from t-T+1 to t (in
units of month).The STTN model outputs the Niño3.4 indexes for the next l months.
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where Wt is the parameter of the linear layer and [] indicates

concatenation operation. Further, to capture the spatial dynamics,

we use the spatial attention immediately after the temporal

attention. The spatial attention calculates the weights in the

spatial dimension, exclusively using keys from the same frame as

the query. When implementing the spatial attention, we can

exchange the spatial and temporal dimensions of zmt ∈ RN�T�D,

then the query, key, and value vectors can be computed from the

feature vector zmt ∈ RT�N�D as follows:

q(m,a)
s = W(m,a)

Q Norm (zmt ) ∈ RDh

k(m,a)
s = W(m,a)

K Norm (zmt ) ∈ RDh

v(m,a)
s = W(m,a)

V Norm (zmt ) ∈ RDh

(8)

Then, the weight of each space patch also can be computed by the

dot product calculation:

a(m,a)
s = s ( q

(m,a)T
s ffiffiffiffi
Dh

p k(m,a)
s 0

n o
s0=1,…,N

) (9)

where a(m,a)
s ∈ RN�N and s is the softmax activation function. The

encoding of the spatial attention at layerm can be similarly obtained

by Eq. 6

p(m,a)
s = o

N

s0=1
a(m,a)
ss 0 v(m,a)

s 0 (10)

Finally, we can also obtain the output z(m)
s of spatial attention as

follows:

z(m)
s = W

0
p

p(m,1)
s

⋮

p(m,A)
s

2
664

3
775 (11)

where Wp is the parameter of the linear layer and [] indicates the

concatenation operation. After using the temporal and spatial

attentions, we use the residual connection and multilayer
Frontiers in Marine Science 05109
perceptron (MLP) to ensure the stability of the gradient and mine

the spatio-temporal features.

z(m)
s = Norm (z(m)

s + z(m−1))

z(m) = Norm (MLP(z(m)
s ) + z(m)

s )
(12)

After encoding SSTA and HCA data, we get the spatio-temporal

features of SSTA and HCA respectively, and in order to perform

joint prediction, we concatenate the features of SSTA and HCA to

get the feature Z∈R(2×T×N)×D .
2.4 Recurrent prediction strategy

In order to use previous predictions as prior knowledge for

long-term prediction, we introduced an effective recurrent

prediction strategy (RPS). Specifically, we first utilized the self-

attention,cross-attention blocks, MLP layer, and residual

connection to construct the decoder of the spatial-temporal

characteristics. The structure of the decoder is depicted in

Figure 2B. Then, the temporal convolutional block with one-

dimensional convolution was adopted to encode the prediction

context, which can help reduce the error accumulation in the

recurrent prediction process. Finally, the fully connected layer

maps the feature vector into the Niño3.4 index to optimize the

whole network. It is worth noting that these operations are used in

each step of the recurrent prediction. Since the Niño3.4 index is

calculated by SSTA, we averaged the features of the SSTA to

generate the start character CLS Vaswani et al. (2017). When

predicting the Niño3.4 index for the l-th lead month, the

complete calculation is as follows. First, the output of the decoder

before the (l-1) th month is concatenated with CLS to generate the

input e0∈Rl×D , which is used for the decoder query. Meanwhile, the

time sequence position encoding and calendar month information

in the period of C are added to the output of the decoder before the

concatenation, and then e0 is input to the decoder to predict the
BA

FIGURE 2

The Encoder and Decoder Blocks. The input to the Encoder Block is the SSTA (HCA) feature output by the upper-level block. The input to the
Decoder Block is the Niño3.4 index feature output by the upper-level block.
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Niño3.4 index for the l-th lead month. The process of the decoder is

shown below:

e
0 (m) = Norm(SA(em−1) + em−1)

e
0 0 (m) = Norm(CA(e

0 (m),Z) + e
0 (m))

e(m) = Norm(MLP(e
0 0 (m)) + e

0 0 (m))

(13)

where em-1 is output of the m-1 layer decoder block, SA is self-

attention. To prevent future information leaks, we use the mask[31]

to ensure that the l-th lead month feature can only depend on known

outputs smaller than the l feature location in em-1. CA is cross-

attention, and its query/key/value can be computed by e'(m)/Z/Z. em is

the output of decoder for the l-th lead month, then we can get the l-th

lead month Niño3.4 index after through a fully connected layer.

Moreover, in order to use previous predictions as prior knowledge for

long-term projection, we concatenate eml into the input features Z of

the CA, l is an index of em, and use a one-dimensional convolution

with k convolution kernels to mitigate the error accumulation.
3 Experiments

3.1 Dataset and Evaluation metrics

3.1.1 Dataset
Following the existing work Ham et al. (2019), we validate our

proposed method on Coupled Model Intercomparison Project

Phase 5 (CMIP5, details in Table 1 Ham et al. (2019)) Taylor

et al. (2012), Simple Ocean Data Assimilation (SODA) Giese and

Ray (2011), and Global Ocean Data Assimilation System (GODAS)

Behringer and Xue (2004). These datasets contain the anomaly

maps of SST and HC from 180°W-180°E and 55°S-60°N, the spatial

resolution of each map is 5° x 5°. The goal of these datasets is to

predict the Niño3.4 indexes in the next consecutive months. The

details of the data are shown in Table 2. The training dataset

includes simulated data from the CMIP5 Taylor et al. (2012) in the

period from 1861 to 2004, the validation dataset includes the

reanalysis data from the SODA Giese and Ray (2011) in

the period from 1871 to 1973, and the test dataset includes the

reanalysis data from the GODAS Behringer and Xue (2004) in the

period from 1982 to 2017. All methods utilize the same data for

training, validation and evaluation. In addition, following the

existing work Zhou and Zhang (2022), we also validated our

proposed method in Coupled Model Intercomparison Project

Phase 6 (CMIP6 Eyring et al. (2016)), SODA, and GODAS. These

datasets contain the anomaly maps of SST and HC from 175°W-

175°E and 50°S-50°N, the spatial resolution of each map is 5° x 5°,

and the details of the data are shown in Table 3. It is worth noting

that the dataset in Table 3 was used only for comparison with Zhou

and Zhang (2022).

3.1.2 Evaluation metrics
To fairly evaluate the performances of the proposed method

and competing methods, we adopted Temporal Anomaly

Correlation Coefficient Skill (Corr) and Root Mean Square Error

(RMSE) between the predictions and observations with different
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leading months l, as used in Ham et al. (2019). Corr is a measure of

linear correlation between predicted and observed values, and

RMSE is the standard deviation of the residuals, which is a

standard measure of prediction error between predicted and

observed values. In addition to the above metrics for evaluating

the performance of ENSO prediction, we also calculated the Mean

Absolute Error (MAE) to evaluate the average absolute values. The

formulations of Corr, RMSE, and MAE are as follows:

Corr
l

= o
12

m=1

oe
t=s(Yt,m − Ym)(Pt :m : l − Pm,l)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

oe
t=s(Yt,m − Ym)

2oe
t=s(Pt :m : l − Pm,l)

2
q   (14)

RMSEl = o
12

m=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oe

t=s(Yt,m − Py·m,l)
2

e − sj j

s
  (15)

MAEl = o
12

m=1

oe
t=s Yt,m − Py·m,l

�� ��
e − sj j   (16)

where P is the predicted value, Y is the observed value, Pm,l is the

mean of P, Ym is the mean of Y, m is the calendar month, ranging

from 1 to 12. s and e are the start and end years of the

data, respectively.

3.1.3 Implementation details
Our approach was implemented on the Pytorch framework, and all

experiments were performed on an NVIDIA RTX3090ti with 24 GB of

memory. We adopted the strategy of Adaptive moment estimation

(Adam) to optimize the network learning. Following the Noam

Optimizer Vaswani et al. (2017), we adjusted the learning rate during

training. In order to clearly understand the experimental setup, we list

the main hyperparameter symbols, descriptions, and the values being

set in Table 4, the B1, B2, p
0
1, p

0
2, p1, p2 are set to 160, 80, 8, 12, 10, 14,

respectively. The number of layers M of Encoder and Decoder is fixed

to 6, the value for attention headA is fixed to 6, andD1 andD2 are set to

384 and 768. The convolution kernel of the temporal convolutional

network is k=4. The dropout rate d is set to 0.1. The pos in the input

sequence of the Encoder is set to 0, 1, 2 and it is set to 3,…26 in the

Decoder. The ENSO cycle C is set to 2. For the reproducibility of the

experiments, the seeds of CPU and GPU are both 5 when we initialize

the parameters, and the GPU seed is 0 when the model is training.
3.2 Comparisons with state-of-the-arts

We compare our method with several representative methods,

including numerical prediction and deep learning methods,

respectively. The numerical weather prediction contains Scale

Inter-action Experiment-Frontier(SINTEX-F) Luo et al. (2008)

and the North American MultiModal Ensemble (NMME)

Kirtman et al. (2014) with CanCM3, CanCM4, CCSM3, CCSM4,

GFDL-aer04, GFDL-FLOR-A06 and GFDL-FLOR-B01. The deep

learning method consists of multiple ensemble CNN Ham et al.

(2019) and multi scale CNN with parallel deep network(MS-CNN)

Ye et al. (2021b), and ensemble model ENSOTR Ye et al. (2021a)

with Transformer module. The results are shown in Figure 3. It
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TABLE 2 The training, validation and testing subsets for Niño3.4 index prediction on CMIP5 dataset.

Data Models Type Period

Training CMIP5 21 Historical run 1861–2004

Validation SODA 1 Reanalysis 1871–1973

Testing GODAS 1 Reanalysis 1982–2017
F
rontiers in Marine Science
 07111
 fro
TABLE 1 Details of the CMIP5 models used in this study.

CMIP ID Modeling Group Integration
Period

Number of ensem-
ble Members

BCC-
CSM1.1-m

Beijing Climate Center, China Meteorological Administration JAN1850 -
DEC2012

1

CanESM2 Canadian Centre for Climate Modelling and Analysis JAN1850 -
DEC2005

5

CCSM4 National Center for Atmospheric Research JAN1850 -
DEC2005

1

CESM1-
CAM5

Community Earth System Model Contributors JAN1850 -
DEC2005

1

CMCC-
CM

Centro Euro-Mediterraneo per l Cambiamenti Climatici JAN1850 -
DEC2005

1

CMCC-
CMS

1

CNRM-
CM5

Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancee en
Calcul Scientifique

JAN1850 -
DEC2005

5

CSIRO-
Mk3-6-0

Commonwealth Scientific and lndustrial Research Organization in
collaboration with Queensland Climate Change Centre of Excellence

JAN1850 -
DEC2005

5

FIO-ESM The First Institute of Oceanography, SOA, China JAN1850 -
DEC2005

1

GFDL-
ESM2G

NOAA Geophysical Fluid Dynamics Laboratory JAN1861 -
DEC2005

1

GISS-E2-H NASA Goddard lnstitute for Space Studies JAN1850 -
DEC2005

5

HadGEM2-
AO

National lnstitute of Meteorological Research/Korea Meteorological
Administration

JAN1860 -
DEC2005

1

HadCM3 DEC1859 -
DEC2005

1

HadGEM2-
CC

Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by
Instituto Nacional de Pesquisas Espaciais)

DEC1859 -
NOV2005

1

HadGEM2-
ES

DEC1859 -
NOV2005

4

IPSL-
CM5A-MR

Institut Pierre-Simon Laplace JAN1850 -
DEC2005

1

MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National lnstitute for Environmental
Studies, and Japan Agency for Marine-Earth Science and Technology

JAN1850 -
DEC2012

1

MPI-ESM-
LR

Max-Planck-Institut fur Meteorologie (Max Planck lnstitute for Meteorology) JAN1850 -
DEC2005

3

MPI-
CGCM3

Meteorological Research lnstitute JAN1850 -
DEC2005

1

NorESM1-
M

Norwegian Climate Centre JAN1850 -
DEC2005

1

NorESM1-
ME

1
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display the all-season Corr(ACorr) for three-month-moving-

average Niño3.4 index in 1982-2017 and there are several

conclusions can been observed:

3.2.1 Numerical prediction vs deep learning
All deep learning methods (e.g. CNN, MS-CNN and Transformer,

etc.) outperform the numerical prediction methods (e.g. SINTEX-F

and NMME). The main reason is that the numerical prediction

methods design mathematical models of the atmosphere and ocean

to mine complex variations with complex calculation processes, while

the data-driven deep model can automatically explore the variant

characteristics of the EI Niño-Southern Oscillation.

3.2.2 CNN-based method vs transformer-based
method

The ACorr of single CNN model is above 0.5 for a lead of 13

month prediction Ye et al. (2021b), while the ACorr of multi-scale

CNN model is above 0.5 for a lead of 15 month prediction Ye et al.

(2021b), which demonstrates that different scales of convolutional

kernel sizes utilize multiple receptive fields to better obtain the

region correlations. Moreover, the transformer-based methods (e.g.

Transformer and ENSOTR) adopt the attention mechanism to

conduct spatial interactions and easily obtain global correlations

between different regions and outperform the CNN-based methods.
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3.2.3 Transformer-based mehtod vs ours
Our proposed method dramatically outperforms the state-of-

the-art methods. Specifically, our method without using ensemble

multiple models outperforms the ensemble model ENSOTR for all

predicted lead months, especially for 3-10 lead months. Comparing

to Transformer and ENSOTR, our method not only designs the

attention mechanism across both spatial and temporal dimensions

but also incorporates the knowledge of prediction and influence of

seasonal variation into the learning procedure, which better

facilitates the EI Niño prediction.

Figure 3B shows the Corr of the Niño3.4 index variation for

each calendar month. The figure shows that our model (right)

predicts more months with a Corr of the Niño3.4 index higher than

0.5. In particular, when the target season is May-June-July (MJJ),

the SINTEX-F only contains 4 months Ham et al. (2019), the MS-

CNN contains 10 months Ye et al. (2021b), and the CNN ensemble

model (left) contains 11 months with a correlation coefficient skill

higher than 0.5. Our method has 15 months for which the

correlation coefficient skill is up to 0.5, which shows that our

method can effectively mitigate the drifts of SST and HT due to

the springtime equatorial Pacific trade winds. In summary, the

ACorr of the Niño3.4 index of our model outperforms all

competing methods and can skillfully predict the EI Niño3.4

index over 18 months.
TABLE 4 The hyperparameter symbols, descriptions and values in this study.

Symbol Description Value

B1 batchsize on CMIP5 dataset training 160

B2 batchsize on CMIP6 dataset training 80

p1 the height of patch on CMIP5 dataset training 8

P2 the width of patch on CMIP5 dataset training 12

p
0
1

the height of patch on CMIP6 dataset training 10

p
0
1

the width of patch on CMIP6 dataset training 14

M the number of layers of Encoder and Decoder 6

A the numbers of attention head 6

D1 the dimensions of fully connected layer 384

D2 the dimensions of MLP 768

k The convolution kernel of temporal convolutiona network 4

d dropout 0.1
fronti
TABLE 3 The training, validation and testing subsets for Nino3.4 index prediction on CMIP6 dataset.

Data Models Type Period

Training CMIP6 23 Historical run 1850–1980

Validation SODA 1 Reanalysis 1871–1980

Testing GODAS 1 Reanalysis 1994–2020
ersin.org

https://doi.org/10.3389/fmars.2023.1143499
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Song et al. 10.3389/fmars.2023.1143499
3.2.4 Comparison on the CMIP6 dataset
We also compare our method with POP-Net Zhou and Zhang

(2022), which is currently the best performing method trained on

the CMIP6 dataset. The results are shown in Figure 4. The ACorr of

POP-Net model is above 0.5 for a lead of 17 month prediction,

while the ACorr of our model is above 0.5 for a lead of 18 month

prediction. In general, the ENSO prediction skill of our model is

better relative to POP-Net, especially when the lead month is in the

range of 12-24. The main reason is that the STTN model can use

previous predictions as a priori knowledge for future predictions,

which can provide reliable long-term forecasts.
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3.2.5 Comparison of computational resources of
different models

Table 5 compares the number of parameters and time cost for the

training and testing of the CNN model Ham et al. (2019) and our

model. Since the CNN model uses integrated learning, the total

number of models is 11040 (23 leadmonths, 12 target months, 4

network settings, and 10 training sessions per model). The number of

parameters in the four network settings is 0.12M, 0.18M, 0.21M, and

0.32M, respectively, and the total number of parameters is 2290.8M,

which is much larger than our model. In addition, the training and

testing time of our model is much lower than that of the CNN model,

because STTN only uses the single model instead of the integrated

model. The Niño 3.4 index for the next 23 lead months is available in a

single run using the STTN model, which indicates that our model can

predict the occurrence of El Niño in a more timely and rapid manner.
3.3 Ablation study

In order to verify the importance of our different modules, we

performed ablation experiments for each module. To keep the

experiment fair, we use the same experimental setting during training

as well as testing, including data partition and network hyperparameters.

We remove the proposed module from the final network model STTN

to demonstrate the effectiveness of using the monthly index of period,

the previous prediction as prior knowledge, and TCN, respectively.W/O

X indicates the removal of the X module. Figure 5 shows the ACorr,
B

A

FIGURE 3

ENSO predicts all-season Temporal Anomaly Correlation Coefficient Skill (ACorr) in the STTN model. (A) The ACorr of the three-month-moving-
averaged Nino3.4 index with Several lead times from ˜ 1982 to 2017 in the STTN model(red), Convolutional Neural Network (CNN) model (black),
parallel deep CNNs with heterogeneous Architectures MS-CNN(Light purple), ENSO transformer(ENSOTR)(Orange color), Transformer(Lemon-
green), Scale Interaction Experiment-Frontier dynamical prediction system (Sky blue), including additional dynamic prediction systems in the North
American Multi-Modal Ensemble (NMME) project (other colors). The ACorr of the Nino3.4 index of every season in the ensemble CNN ˜ model
(B.left) and the STTN model (B.right). The light black line indicates that ACorr is equal as 0.5.
FIGURE 4

ENSO predicts all-season Temporal Anomaly Correlation Coefficient
Skill (ACorr) in the STTN model.The ACorr of the three-month-
moving-averaged Nino3.4 index index with Several lead times from
˜ 1994 to 2020 in the STTN model(red), POP-Net(Lemon-green).
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RMSR, and MAE when the monthly index of period (w/o p), previous

prediction as prior knowledge (w/o F-T N), and TCN (w/o TCN) are

removed, respectively. In addition, We also compared the effectiveness

of spatio-temporal attention and input data of different lengths.
Frontiers in Marine Science 10114
3.3.1 W/o P
The overall performance of the STTN model decreased after

removing the monthly index of period, which indicates that

although the neural network can capture the correlation between
TABLE 5 Comparison of the computational costs required for different models.

Model Number of Parameters Training time cost Testing time cost

CNN [11] 2290.8M 2700384s 1256.32s

STTN 5.7M 1395.23s 1.10s
B

C

A

FIGURE 5

Comparison of (A) Corr, (B) RMSE, and (C) MAE between Niño3.4 index predictions and observations obtained with different modules. w/o X
indicates removal of the X module. The purple line indicates the result of the CNN model.
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data, it cannot capture the period of ENSO. By adding monthly

indicators of periodicity, the model can be guided to effectively

capture the seasonality and periodicity of the El Niño phenomenon,

reducing the complexity of the model in extracting valid features

from the input data and helping the model to accurately predict the

Niño3.4 index.

3.3.2 W/o F-TCN
After removing the previous predictions as prior knowledge, the

ACorr between the predicted and observed Niño3.4 index decreased

sharply, especially in the long-term prediction, which indicates that

the model does not predict the trend of evolution of El Niño over

the next 23 months well when considering the input data alone. As

shown in Figures 4B, C, where the MAE and RMSE increase after

removing the previous prediction, it indicates that the previous

predictions can compensate over long intervals and provide reliable

long-term predictions.
Frontiers in Marine Science 11115
3.3.3 W/o TCN
With the removal of the TCN module, we observed a low

degradation in the performance of the model, which indicates that

the cycle and future features are very important information.

Compared to STTN, the model relies more on thepredicted

Niño3.4 index series after lead month 12, which suggests that the

temporal semantics are significant in the later stage for Niño3.4

index prediction.

3.3.4 Effectiveness of spatio-temporal attention
We compared the performance of the models using spatio-

temporal attention and without using spatio-temporal attention.

Figure 6A-C plots the ACorr, RMSR, and MAE of the prediction

results. We first observed that the model with spatio-temporal

attention performs better than the model without spatio-temporal

attention. The spatio-temporal attention semantically learns more

separable features and effectively reduces the spatio-temporal chaos,
B CA

FIGURE 6

Comparison of (A) Corr, (B) RMSE, and (C) MAE between Niño3.4 index predictions and observations obtained using spatio-temporal attention or
attention. The purple line indicates the result of the CNN model.
TABLE 6 The RMSE and MAE between Niño3.4 index predictions and observations obtained using different modules and the CNN model.

Model RMSE MAE

STTN-w/o C 0.6883 0.5264

STTN-w/o F-TCN 0.6849 0.5178

STTN-w/o TCN 0.65360 0.4949

STTN-w/o SA 0.6941 0.5246

CNN 0.6797 0.5350

STTN 0.6404 0.4930
frontie
The best results are in bold.
B CA

FIGURE 7

Comparison of (A) Corr, (B) RMSE, and (C) MAE between Niño3.4 index predictions and observations for different lengths of input data. The STTN-3,
STTN-6, STTN-9, STTN-12 indicate that the length of input data is 3, 6, 9, 12 months, respectively.
rsin.org

https://doi.org/10.3389/fmars.2023.1143499
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Song et al. 10.3389/fmars.2023.1143499
allowing the model to better fit the ENSO phenomenon. As can be

seen from Table 6, these modules all favor ENSO prediction, and

removing any of the modules would harm the performance.

3.3.5 Compare input data of different lengths
We compared the performance of different lengths of input

data. Figure 7A-C plots the ACorr, RMSR, and MAE of the

predicted results. We observed that the best performance is

achieved when the input data length is 3 in lead months 1-8,

better performance is achieved when the input data length is 6 or 9

in lead months 8-15, and relatively better performance is achieved

when the input data length is 12 in lead months 15-23, so we can

conclude that: (1) the early prediction may simply require the SSTA

and HCA data that are close in time to the predicted month, and the

earlier month may cause noise in the input data; and (2) longer-

term predictions require longer inputs, which we speculate may be

due to the longer inputs containing more physical laws of ENSO as

a result of the westward shift within the ocean.
3.4 Case study

To clearly show the difference between the observed and predicted

results from 1982 to 2017, we visualized the Niño3.4 index on the

GODAS dataset for 1, 3, 6, 9, 12, and 15 lead months ahead, as shown in
Frontiers in Marine Science 12116
Figure 8. From the results, we found that the Niño3.4 indexes at 1-, 3-, 6-,

and 9-lead months are accurately predicted and obtain a correlation

coefficient skill of 0.97, 0.91, 0.82, and 0.74, respectively. When the lead

month increased, the correlation coefficient skill decreased due to the

absence of evidence for a long time series and the complex climate

variation. Nonetheless, the correlation coefficient is 0.61 and over 0.5

when predicting the index for 15 lead months, which verifies the

effectiveness of our method to predict the multi-year ENSO trend.

To explore the seasonal impacts, we show the predicted Niño3.4

index of averaging the December-January-February(DJF) season of

1, 6, 12 and 18 lead months in Figure 9. It can be observed that our

method successfully predicts the amplitude of the Niño3.4 index at

6 lead months in advance. Even when we increase the lead time up

to 18 months, the trend of our predicted results still fits the curve

well when a strong El Niño or La Niña occurs. Moreover, we

visualize the predicted results of a typical Super El Niño during (A)

1982-1983, and (C) 2015-2016 as well as a Super La Niña during (B)

1988-1989 in Figure 10. The predictions are the continuous outputs

of our method from 1 to 23 lead months, and we can see that our

model can successfully predict the evolution of these strong EI Niño

phenomena and the results are consistent with the observed results

even for longer lead times.

As both the SSTA and HCA influence the ENSO phenomenon,

we visualize the contributions of these two factors in Figure 11. This

figure shows that when we input three consecutive months during
B

C D

E F

A

FIGURE 8

The Niño3.4 index of STTN model predictions and observations from 1984 to 2007 with (A) 1, (B) 3, (C) 6, (D) 9, (E) 12, and (F) 15 of lead months,respectively.
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the 1997-1998 Super El Niño event, they have different weightings

to predict the Niño3.4 index in the next 23 months, which can help

us understand how our method can predict El Niño for such a long

time. The first row indicates the heat map of SSTA and another row

indicates the heat map of HCA. Three columns indicate the time

series from December 1997 to February 1998. The darker color

represents the more important. From the figure we have the

following observations:
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• SSTA and HCA show different contributions in both the

spatial and temporal dimensions. With the increasing of

time, their importance in different spatial locations

gradually increase.

• SSTA plays a more important role than HCA at earlier

times (first two columns) in predicting the Niño3.4 index.

The third column shows that the contributions of SSTA and

HCA close to the predicted future are almost equal, which
B

C D

A

FIGURE 9

Predicted and observed values of Niño3.4 index for the December-January-February season, with (A) 1, (B) 6, (C) 12, (D) 18 months for lead months.
B

C

A

FIGURE 10

The 23 consecutive months output of STTN model in Super El Niño event at (A) 1982-1983, (C) 2015-2016 and Super La Nina at (B) 1988-1989.
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Fron
demonstrates that our method takes full advantage of these

two inputs and their complementary relationship.

• The global heat map induces a similar observation to Ham

et al. (2019) that the anomalies over the tropical western

Pacific, Indian Ocean, and subtropical Atlantic are the main

regions to accurately predict the 1997/98 El Niño

phenomenon.

• With the change over time (from first column to third

column), the contributions of the western part of the map

are increasing due to the westward movement that occurs

within the ocean.
4 Conclusion

In this paper, we propose a novel spatial-temporal transformer

network for multi-year ENSO prediction. Motivated by the

attention mechanism, we designed a spatial-temporal attention

mechanism to model the contributions of different ocean

locations with change over time. For long-term prediction, this

article proposes utilizing the accurate previous prediction as prior

knowledge and fusing the seasonal variation during the encoding of

the temporal information to facilitate the ENSO prediction.

Moreover, we use a single model instead of a multi-model

architecture to reduce computational resources, which is more

convenient for predicting ENSO with different lead times.

Extensive experiments using the model on the Coupled Model

Intercomparison Project phase 5 (CMIP5) and the Coupled Model

Intercomparison Project phase 6 (CMIP6) have shown that our

method can provide a more accurate prediction over the existing

methods, which verifies the effectiveness of the spatial-temporal

attention mechanism, the prior knowledge of previous prediction

and the temporal index for modeling the seasonal variation. In the

future, we will add more variables and fully explore the relationship

among their sea-air interactions to facilitate the reliability of multi-

year ENSO prediction.
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FIGURE 11

The heat map of the contribution of SSTA (in units of °C) and HCA (in units o °C) data to the prediction of the STTN model for the 1997/1998 Super
El Niño event for the following 23 consecutive months (The dashed and solid line distributions indicate negative and positive values of SST or HC
anomalies). The SSTA and HCA input data are from 1997-December, 1998-January, and 1998-February, respectively.
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The task of accurately classifying marine fish species is of great importance to

marine ecosystem investigations, but previously used methods were extremely

labor-intensive. Computer vision approaches have the advantages of being long-

term, non-destructive, non-contact and low-cost, making them ideal for this

task. Due to the unique nature of the marine environment, marine fish data is

difficult to collect and often of poor quality, and learning how to identify

additional categories from a small sample of images is a very difficult task,

meanwhile fish classification is also a fine-grained problem. Most of the existing

solutions dealing with few-shot classification mainly focus on the improvement

of the metric-based approaches. For few-shot classification tasks, the features

extracted by CNN are sufficient for the metric-based model to make a decision,

while for few-shot fine-grained classification with small inter-class differences,

the CNN features might be insufficient and feature enhancement is essential.

This paper proposes a novel attention network named Sandwich Attention

Covariance Metric Network (SACovaMNet), which adds a new sandwich-

shaped attention module to the CovaMNet based on metric learning,

strengthening the CNN’s ability to perform feature extraction on few-shot

fine-grained fish images in a more detailed and comprehensive manner. This

new model can not only capture the classification objects from the global

perspective, but also extract the local subtle differences. By solving the

problem of feature enhancement, this new model can accurately classify few-

shot fine-grained marine fish images. Experiments demonstrate that this method

outperforms state-of-the-art solutions on few-shot fine-grained fish

species classification.

KEYWORDS

fish species classification, computer vision, few-shot learning, fine-grained image
classification, sandwich attention
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1 Introduction

Fish species classification is critical to industry and food

production as well as conservation and management of marine

fisheries. However, most marine fish classification solutions still

require manual classification by humans (Alsmadi et al., 2019). As

fish classification is a fine-grained problem, the manual

classification process is time-consuming and requires a lot of

labor and material resources. Due to the dynamic changes of the

marine environment, the requirements for shooting equipment are

high, which means that the number of underwater images we can

obtain is small. Therefore, few-shot fine-grained fish species

classification has become a difficult problem to solve. At the same

time, due to the absorption and scattering of light in seawater

(McGlamery, 1980), as well as other impurities in seawater, most of

the collected underwater fish data have poor image quality and

complex background problems, which makes the task of few-shot

fine-grained fish species classification even more difficult. With the

rapid development of computer vision, more and more deep

learning methods have appeared in our production, life and work,

so the classification of marine species based on deep learning is very

necessary (Zhao et al., 2021; Alsmadi and Almarashdeh, 2022;

Li et al., 2022).

Few-shot learning is an emerging but important method which

attempts to learn new categories from a few labeled examples (Hou

et al., 2019). Commonly used methods to solve few-shot image

classification mainly include transfer learning (Luo et al., 2017; Peng

et al., 2019), meta-learning (Finn et al., 2017; Ren et al., 2018; Lee

et al., 2019; He et al., 2023) and metric learning (Vinyals et al., 2016;

Snell et al., 2017; Sung et al., 2018; Li et al., 2023). The first two

categories focus on finding a suitable initialization parameter model

for few-shot learning networks, then using prior knowledge

extracted from other tasks to prevent overfitting and improve

generalization capabilities. And the last category pays attention to

finding a superior similarity metric function to replace the fully

connected classification layer with a large amount of parameters,

where most existing methods use Euclidean distance and cosine

similarity as metric function to classify images. Methods based on

metric learning have achieved state-of-the-art performance in the

few-shot classification field due to the strong ability of

discrimination. Most of the current few-shot image classification

methods focus on common classification tasks, that is, the features

between categories have obvious differences. However, for fish

images, the difference between sample image categories is small,

which obviously makes this a fine-grained image classification

problem (Zhao et al., 2021), and unfortunately the above

classification methods do not take into account the difficulties

raised by fine-grained classification.

For few-shot fine-grained image classification, most of the

currently available methods take one of two approaches, they

either attempt to make the network with a more advanced feature

vector measurement module (Vinyals et al., 2016; Sung et al., 2018;

Li et al., 2019) or they rely on feature reconstruction (Zhang et al.,

2020; Wertheimer et al., 2021). However, they ignore the issue

where fine-grained images have much higher requirements for the
Frontiers in Marine Science 02121
capabilities of feature extraction modules than general classification

methods. Since the images have similar global features in different

categories of fine-grained images, and only have significant

differences in some subtle features, the extracted feature vectors

also have a certain degree of similarity (Wei et al., 2021), which puts

too much pressure on the feature measurement module. Due to the

small number of samples, few-shot learning is prone to overfitting

(Chen et al., 2019), and using a large feature extraction module is

not a perfect solution, but through extensive research, the Attention

Mechanism (AM) has been used in underwater image enhancement

and underwater image dehazing (Shi et al., 2022; Liu P. et al., 2022),

it was concluded that an AM may be a better solution for few-shot

fish image classification.

Considering the above problems, this paper proposes a novel

AM network, named Sandwich Attent ion CovaMNet

(SACovaMNet for short), which can effectively solve the

classification problem of few-shot fine-grained fish images, and

enable the CNN to more carefully and comprehensively classify

marine fish. This new SACovaMNet enables the CNN to extract

features from fine-grained images of marine fish in a more detailed

and comprehensive manner, capturing recognition objects globally

as well as extracting nuances between classes of fish samples locally,

thus improving classification accuracy. The main contributions of

this work are summarized as follows: 1) To solve the few-shot fine-

grained fish species classification problem caused by the small

number of fish images and minor differences between classes, we

carefully designed a Sandwich Attention module that combines

local attention and global attention on the basis of the few-shot

model CovaMNet to build our SACovaMNet, which enables

CovaMNet to more comprehensively extract features from fine-

grained images of marine fish and expand the distance between

prototype feature vectors of different categories; 2) Aiming at the

problem of missing feature information in the fine-grained image of

the CBAM, we improved the CBAMmodule so that it can weigh the

feature map more completely; 3) Exhaustive experiments were

conducted based on three fine-grained datasets of marine fish

organisms, and experimental results demonstrate that the

proposed method outperforms the state-of-the-art solutions.

The rest of this paper is as follows. Section 2 is a review of the

related works for few-shot fine-grained image classification. Section

3 introduces the proposed method SACovaMNet. And Section 4

shows the experimental results. Finally, a conclusion is made in

Section 5.
2 Related work

Deep learning performs very well when the amount of training

data is large, but conversely training the network to perform better

becomes problematic when the amount of training data is small. In

recent years, few-shot learning (Chen et al., 2019) has been

proposed to solve this problem. It was found that few-shot

learning is better for the problem of classifying marine fish with

sparse samples, and a brief review of the relevant aspects of the

problem-solving approach will be given.
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2.1 Fish species classification

The fish species classification task is different from general

classification tasks, it is a typical fine-grained classification task

(Zhao et al., 2021). In recent years, many methods for fish species

classification have been proposed, and fish classification models

based on biological characteristics (Kartika and Herumurti, 2016;

Tharwat et al., 2018) and deep learning models (Chen et al., 2017;

Zhao et al., 2021) are more popular. Kartika and Herumurti (2016)

proposed a K-means segmentation background and HSV color

space feature extraction method, which effectively extracted the

color features of koi carp, and finally adopted NBM and SVM

methods for identification and classification. Tharwat et al. (2018)

took a different approach, using the fusion of Weber Local

Descriptor (WLD) features and color features, and also used the

LDA algorithm to reduce the dimension of the feature vector and

increase the discrimination between different categories (fish

species), and finally used the AdaBoost classifier for classification.

Unfortunately, methods based on biometric feature extraction

cannot handle complex backgrounds or a large number of images,

however, deep learning can better solve this problem and achieve

more accurate classification results. Rathi et al. (2017) performed

classification by pre-processing images using Gaussian blur,

morphological operations, Otsu’s thresholding, and pyramid mean

translation, and further fed the enhanced images to a convolutional

neural network for classification. Prasetyo et al. (2022) proposed

Multi-Level Residual (MLR) as a new residual network strategy by

combining the low-level features of the initial block with the high-

level features of the last block using Depthwise Separable

Convolution (DSC). They used VGGNet as the backbone of the

new CNN architecture by removing the fifth block and replacing it

with components such as MLR, Asymmetric Convolution (AC),

Batch Normalization (BN), and residual features.

Unfortunately, in reality, due to the complexity of the underwater

environment (Shevchenko et al., 2018), it is impossible to obtain

enough samples for traditional deep learning training. Guo et al.

(2020) believed that the classic CNN model required a large amount

of high-quality data to obtain excellent results. For few-shot fish

images, it is difficult to obtain data diversity through image

augmentation, so a generative network is used to generate realistic

fake images with a small amount of training data, and the

classification accuracy can be improved by making the datasets

diverse and rich. However, the training method based on the

generative network is complicated, so the proposed method

considers building a few-shot learning method to solve this problem.
2.2 Few-shot learning

2.2.1 Meta-learning
Meta-learning (Hochreiter et al., 2001) is, as the name suggests,

learning to learn; the algorithm sets up a meta-learner component

and a task-specific learner component, with the training unit being
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the task, allowing information to cross between tasks. Meta-learning

is a popular approach to tackle few-shot problems. MAML (Finn

et al., 2017) proposed an algorithm for meta-learning that is model-

agnostic, and trained a model’s parameters such that a small

number of gradient updates will lead to rapid learning on a new

task. Reptile (Nichol et al., 2018) removed the re-initialization of

each task in order to simplify the update process for MAML,

making it a more natural choice in some settings. LEO (Rusu

et al., 2019) learnt a low-dimensional latent embedding of model

parameters and performed optimization-based meta-learning in

this space. While meta-learning has had some success with few-

shot problems, it is difficult to train due to its use of complex

memory addressing structures (Li et al., 2019), therefore the

proposed approach utilizes only a single CNN framework baseline

which can be end-to-end trained from scratch.

2.2.2 Transfer learning
Transfer learning (Zhuang et al., 2021) is to transfer the learned

model parameters from one model to a new model or task in order

to achieve better training results. For datasets with fewer samples,

first the model is trained on a dataset with a large number of similar

data domains, and then fine-tuned, usually with good results.

Compared with the complex training mode of meta-learning,

transfer learning can perform simple end-to-end training. Luo

et al. (2017) proposed a framework to learn representations that

are transferable across different domains and tasks in a label-

efficient manner. This method combats domain shift with a

domain-adversarial loss and uses a metric learning-based method

to generalize embeddings to new tasks. Peng et al. (2019) used the

graph convolutional neural network to construct a mapping

network between semantic knowledge and visual features,

combined image features and semantic features through the

fusion of classifier weights, and supplemented semantic features

as a priori knowledge to a few-shot classifier.

2.2.3 Metric learning
Metric-based learning methods learn a set of item functions

(embedding functions) and metrics to measure the similarity

between query and sample images and classify them in a feed-

forward manner. The main difference between metric-based

learning methods is how they learn the metrics, hence metric

learning is often referred to as similarity learning (Li et al., 2020).

Matching Networks (Vinyals et al., 2016) constructed an end-to-

end network architecture that uses cosine similarity to calculate

distances. After training, the matching network was able to generate

reasonable test labels for unobserved categories without any fine-

tuning of the network. In contrast, Prototypical Networks (Snell

et al., 2017) mapped the sample data in each category into a space

and extracted their means to represent them as protoforms of that

class, using Euclidean distance as the distance metric, they are

trained so that protoforms of the same class are represented as the

closest distance and that inter-class protoforms are represented as

the farther distance.
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2.3 Fine-grained image classification

2.3.1 Fine-grained image classification
Fine-grained image classification aims to distinguish

subcategories, such as birds or dog breeds. Fish image

classification also belongs to fine-grained image classification.

Compared with general classification tasks, fine-grained image

classification is challenging due to high intra-class and low inter-

class variance (Zhao et al., 2017). Zhang et al. (2014) proposed a

model utilizing deep convolutional features computed on bottom-

up region proposals, which learns whole-object and part detectors,

enforces learned geometric constraints between them, and predicts

a fine-grained category from a pose-normalized representation. Li

et al. (2021) proposed a so-called Bi-Similarity Network (BSNet)

that consists of a single embedding module and a bi-similarity

module of two similarity measures. After the support images and

the query images pass through the convolution-based embedding

module, the bi-similarity module learns feature maps according to

two similarity measures of diverse characteristics.

2.3.2 Few-shot fine-grained image classification
With the development of deep learning, fine-grained image

classification has achieved remarkable achievements, but largely

relies on a large number of labeled samples. However, in practical

applications in some fields, it is difficult to obtain such a large

amount of labeled fine-grained data. Therefore, few-shot fine-

grained images classification is getting more and more attention

(Liu Y. et al., 2022). CovaMNet (Li et al., 2019) proposed a deep

covariance metric to measure the consistency of distributions

between query samples and new concepts, and used the second-

order statistics of concept representation and verified that it is more

suitable to represent a concept beyond the first-order statistics, it

can naturally capture the underlying distribution information of

each concept (or category). Wertheimer et al. (2021) introduced a

novel mechanism by regressing directly from support features to

query features in closed form, without introducing any new

modules or large-scale learnable parameters. Lee et al. (2022)

proposed Task Discrepancy Maximization (TDM), which is a

feature alignment method, to define the class-wise channel

importance, and to localize the class-wise discriminative regions

by highlighting channels encoding distinct information of the class.

The AM can be used to make the feature vector reweight once

before entering the measurement module to ensure that the feature

vector pays more attention to the differences between categories, so

as to solve the problem of small differences between few-shot fine-

grained image samples.
2.3.3 Attention mechanism
Transformer (Vaswani et al., 2017) first achieved excellent

results in natural language processing (NLP), and then

researchers applied it to the field of vision (Vision Transformer,

ViT) (Dosovitskiy et al., 2021; Guo et al., 2022). Dosovitskiy et al.

(2021) is believed that the biggest reason for the promising results of

Vision Transformer is that it uses a Multi-Headed Self-Attentive

(MHSA) module and thus introduces a global attention
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mechanism, which has powerful representation capabilities.

However, due to the image processing method of Vision

Transformer, the training time and inference speed will increase

quadratically when processing large scale images. To solve this

problem, Srinivas et al. (2021) proposed a botnet combining CNN

and transformer, in which the 3 × 3 convolutional layers in the

bottleneck are replaced with MHSA, making the botnet achieve

state-of-the-art in classification, target detection and segmentation,

whilst the training time and inference speed were significantly

reduced relative to (Dosovitskiy et al., 2021).
2.4 Comparison to our approach

Compared with other meta-learning based few-shot

classification methods, our method SACovaMNet adopts the

metric learning architecture and is based on a simple CNN

network construction, which can be trained easily in an end-to-

end manner from scratch. We use a second-order measurement

algorithm that can compare the similarity in more detail, which

improves the feature measurement capability offine-grained images

compared to other first-order metric methods. Additionally, our

self-designed Sandwich Attention module strengthens the feature

extraction ability of our method for fine-grained images, making

our method more suitable for the few-shot fine-grained fish

species classification.
3 Methodology

The proposed method utilizes episodic training as the training

method, as many researchers have demonstrated it to be simple and

effective for few-shot problems (Li et al., 2019). The model structure

is shown in Figure 1. After the support images and the query images

pass through the weight-sharing feature extraction module at the

same time to obtain the feature map, the feature map then passes

through the Sandwich Attention module to finally obtain the

H×W×C feature map. The measurement module uses the second-

order covariance metric to measure the correlation between query

features and support features.
3.1 Baseline

Various metric-based networks have achieved excellent

performance in recent few-shot learning studies (Li et al., 2020).

Most of the current metric learning algorithms are first-order

metric methods such as Euclidean distance or cosine similarity

distance. Generally speaking, before the feature map enters these

measurement modules, the dimensions of the feature map need to

be reduced. Obviously, there will be a large information loss due to

this process, especially the spatial information of the feature map.

For fish samples especially captured in situ, since the difference

between categories is very small, it is very easy to lose key

information in pooling and dimensional reduction, so the above

approach is unacceptable in fine-grained fish image classification.
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Recently, (Li et al. 2019) proposed a method based on the second-

order local covariance metric. The covariance matrix is the original

second-order statistic of the sample set. Since the number of images

in each category is very small under the few-shot settings, it is

impossible to accurately learn the covariance matrix to describe the

data distribution. So the baseline introduces local covariance,

expressed as follows:

Slocal
c =

1
MK − 1o

K

i=1
(Xi − t )(X i − t )⊤, (1)

where Slocal
c represents the local covariance representation of the

c-th class, K is the total number of samples of the c-th class, usually

is set as 1 or 5, and Xi is the input sample image,M represents theM

local depths of the sample, and t is an average vector matrix.

The covariance measure is to measure the relationship between

a sample and a category, and the measure function named

Covariance Metric is as follows:

f (x,S) = x⊤Sx : (2)

The above mentioned Covariance Metric can directly describe

the underlying distribution of a concept, and it can fully take into

account the local similarity information of the feature map. Since

the fish images are fine-grained dataset, and one of the key issues for

the classification is to distinguish the local subtle differences

between fish categories so as to achieve the more accurate

classification. The proposed method has opted to use CovaMNet

(Li et al., 2019) which has achieved promisingresults in a series of

experimental settings meeting the requirements.

The whole network framework is simple and compact due to it

being based on a single end-to-end CNN, a local covariance

representation to represent the underlying distribution of each

category, and a new covariance metric that is embedded into the

network to measure the relationship between query images and

categories. The 5-way 1-shot and 5-way 5-shot episodic training
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mechanism are considered to measure the few-shot classification

method under different few-shot situations.
3.2 Sandwich attention

Although the baseline solves some problems in fish

classification to a certain extent, the measurement method can

only solve the issues in the process of comparing the similarity of

feature maps. However, by analyzing the fish image datasets, it was

found that most of the images collected in real time cannot correctly

reflect the feature information of fish samples due to a variety of

problems. In the face of complex fish images, it is expected that

feature maps will better reflect the differences between different

categories, thereby improving the accuracy of classification, so it

was decided to leverage the attention, with a novel attention module

designed as shown in Figure 2.

Firstly, in most fish images, the object to be classified is usually

only part of the whole image, and there is a lot of interference from

the background and other creatures on the seabed, which is also

reflected in the feature map extracted by the backbone, making the
FIGURE 1

Architecture of the proposed SACovaMNet model. The support images and the query image are simultaneously passed through a weight-sharing
CNN network to obtain the feature map, and the output feature map is then fed into our Sandwich Attention module to produce the feature map
(H×W×C), which is finally passed through the second-order covariance metric module for similarity calculation.
FIGURE 2

Architecture of the proposed attention mechanism, which has been
named Sandwich Attention due to it being shaped like a sandwich.
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feature map full of useless spatial information. If a manual process

was used to increase the proportion of objects identified by manual

culling, this would increase the human and financial investment.

Therefore it is believed that spatial attention is the most “cost

effective” approach to this problem. To this end, a Convolutional

Block Attention Module (CBAM) (Woo et al., 2018) module was

added to the network, so that the network can correctly locate the

position and key feature information of the recognized categories.

There are two main tandem sub-modules in CBAM, the channel

attention module and the spatial attention module, which perform

channel and spatial attention respectively.

In the channel attention module in Figure 3A, the input feature

map F (H×W×C) is subjected to global max pooling and global

average pooling to obtain two 1×1×C feature maps, which are then

fed into a two-layer neural network (MLP). Then, the features

output by MLP are summed based on element-wise, and activated

by sigmoid to generate the final channel attention feature. In the

spatial attention module in Figure 3A, the output channel attention

and the input feature map F are multiplied element-wise to generate
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the input of spatial attention module. Next, channel-based global

maximum pooling and global average pooling are performed, and

then the two feature maps are channel-based splicing operations,

one H×W×1 feature map is obtained through a convolution

operation. Finally, the spatial attention feature is generated

through the sigmoid function.

At the same time, as fish images are inherently fine-grained, and

the difficulty with fine-grained image classification is that the

differences between recognized objects are very small and only

vary in subtle ways, so the difficulty lies in making the network more

accurate in classifying fine-grained images in a few-shot setting.

With the rise of ViT in recent years, it is believed that the biggest

reason for the promising results achieved by Vision Transformer is

because of its powerful representation capabilities using a Multi-

Headed Self-Attention module (MHSA) and introducing a global

attention mechanism. In Srinivas et al. (2021), the proposed MHSA

also introduces Relative Position Encodings, as shown in Figure 3B,

thus taking into account the relative distances between features at

different locations and being able to effectively relate cross-object
B

A

FIGURE 3

The details of AM modules employed in our SACovaMNet model. (A) Schematic diagram of each attention sub-module of CBAM (Woo et al., 2018).
(B) Network structure of multi-head self-attention (MHSA) (Srinivas et al., 2021).
frontiersin.org

https://doi.org/10.3389/fmars.2023.1149186
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhai et al. 10.3389/fmars.2023.1149186
information to location awareness, so this attention mechanism is

used in the proposed model.

Based on the above thinking, both MHSA and CBAM were

fused into the proposed network. To demonstrate that this

approach works and the use of the attentional connectivity,

ablation experiments were also conducted in Section 4.4. The

final network is based on a simple end-to-end framework using a

single CNN with a compact training simple network structure, and

the experimental results are presented in Section 4.3.
3.3 Improved CBAM

Although the new model can achieve promising classification

results on few-shot fish datasets, fish classification is more difficult

due to the difference between fish datasets and general datasets, so it

is believed that while CBAM can be applied to fish classification it is

still not a perfect solution. More specifically, it is thought that the

application of CBAM in fish species classification still has the

following problems: 1) The channel attention of CBAM uses

global pooling to process the feature map, which obviously does

not take into account the importance of different spatial regions of

the feature map, resulting in a deviation in the weight calculation of

the channel, which is very important for classification, especially

that, the difficult fish classification task will obviously have a greater

impact; 2) The CBAM uses the feature map of channel attention

after global average pooling and maximum pooling to calculate the

channel weight through weight-sharing MLP, obviously, there are

some differences in the feature map information saved by these two

different pooling methods, and using the same MLP cannot fully

mine all the information it contains.

Based on the above considerations, we improved the channel

attention module of the CBAM module, as shown in Figure 4, both

adaptive average pooling and maximum pooling were performed on

the feature map (64×21×21) output by the CNN, and it was divided

into 7×7 spatial areas, then the MLP module was removed from the

CBAM, and two small CNN networks were employed to perform

weight calculations respectively, in which the convolution kernel of

the first layer of CNN has a large receptive field convolution kernel

of 7×7, the second layer is a CNN for dimensionality reduction, the

third layer is a Rectified Linear Unit (ReLU) activation function,

and the fourth layer is a CNN for dimensionality increase, so we call

it DualPath Channel Attention CBAM (DPCACBAM). The

importance of different regions of the feature map is calculated

not only to ensure that the contribution of different spatial regions

of the feature map can be comprehensively considered in the

channel attention, but also to fully mine the hidden information

in the feature map.
1 h t tps : / /www.kagg le .com/da ta se t s /kha lede l sayed ib rah im/

fishclassifierfinal
4 Experiments

In this section, extensive experiments were conducted on three

fish datasets under corresponding few-shot settings to evaluate the

proposed SACovaMNet.
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4.1 Datasets

4.1.1 WildFish
This dataset was first proposed in Zhuang et al. (2018), which is

a large-scale benchmark dataset for wild fish identification. And it is

the largest wild fish recognition image dataset, which contains 1000

fish categories and 54,459 unconstrained images, according to our

statistics, the number of images per category varies between 30 and

167. In this work, we randomly split the dataset by categories, where

550, 150, and 300 categories are used for training, validation, and

testing, respectively.

4.1.2 Fishclassifierfinal
This dataset is a dataset on the Kaggle website1, which contains

30 kinds of fish. The dataset has been divided into a train set and a

test set. We merge the images of the same fish, and the number of

fish images in each category is about 300. We randomly split the

dataset by category, where 17, 6, and 7 categories are used for

training, validation, and testing, respectively.

4.1.3 QUT fish dataset
This dataset is a dataset also published on the Kaggle website

(Anantharajah, 2014), which contains about 4,000 images of 468

fish species. After we classify the given raw images, according to our

statistics, the number of each category is between 3 and 26. In this

paper, we randomly split this dataset by the number of categories,

where 280, 80, and 123 categories are used for training, validation,

and testing, respectively.
4.2 Experimental settings

The 5-way 1-shot and 5-way 5-shot classification experiments

were conducted on WildFish and fishclassifierfinal datasets. During

the training process, episodic training mechanism was used to learn

the model parameters, and a total of 250,000 episodes were trained.

Each episode contained a query set and a support set. For the 5-way

1-shot classification task, 5 different categories of images were

required. Each category of images needed 1 support image and 15

query images. For the 5-way 5-shot classification task, 5 different

categories of images were required, and each category of images

needed 5 support images and 15 query images. The optimization

algorithm Adam (Kingma and Ba, 2014) was used, the initial

learning rate was set to 0.0001, and every 10,000 episodes the

learning rate would be reduced. During the testing process, 600

episodes were randomly constructed from the testing set, and the

top-1 mean accuracy and 95% confidence intervals (model’s skill

having a 95% probability to correctly generalize) were calculated.

Note that the proposed SACovaMNet model was trained from

scratch in an end-to-end manner and did not require fine-tuning.
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For QUT fish dataset, due to the small sample size, only the 5-way

1-shot classification experiment was conducted. In the episodic

training mechanism, in each category of each episode, there was 1

support image and 2 query images. Other experimental settings

remained unchanged.

In order to evaluate the performance of our model on the fish

datasets, a selection of state-of-the-art methods commonly used in

few-shot fine-grained images were considered for comparison,

including baseline CovaMNet (Li et al., 2019), Matching Nets

(Vinyals et al., 2016), Prototypical Nets (Snell et al., 2017),

MAML (Finn et al., 2017), FRN (Wertheimer et al., 2021), and

TDM (Lee et al., 2022). MAML and FRN use the method of meta-

learning, Matching Nets, Prototypical Nets and CovaMNet use the

method of metric learning, and TDM uses a transferable attention

module. We use the TDM method with both FRN and Prototypical

Net. For these comparative models, their experimental setup

followed the settings from their original work. The SACovaMNet

model employed a four-layer convolutional network with a kernel

size 64 of each convolutional layer as an embedding module.
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4.3 Comparison with state-of-the-arts

The experimental results are shown in Table 1, where, the

second column indicates whether the method needs to be fine-

tuned; the third and the fourth columns indicate the 5-way 1-shot

and the 5-way 5-shot classification accuracies on the WildFish

dataset, with 95% confidence intervals; the fifth and the sixth

columns represent the 5-way 1-shot and the 5-way 5-shot

classification accuracies on the fishclassifierfinal dataset, with 95%

confidence intervals; the seventh column represent the 5-way 1-shot

classification accuracies on the QUT fish dataset, with 95%

confidence intervals. SACovaMNet indicates the method

proposed in Section 3.2, and SACovaMNet* indicates the method

proposed in Section 3.3. From Table 1, it can be seen that the

baseline is more suitable for the fish datasets than other methods,

which appears to prove that it was the correct choice for the baseline

method to utilize the second-order covariance metric measure.

Experimental results have shown that the proposed method

outperforms state-of-the-art methods with higher accuracies in all
TABLE 1 The 5-way 1-shot and the 5-way 5-shot classification accuracies on the three datasets, i.e., WildFish, fishclassifierfinal, and QUT fish dataset,
with 95% confidence intervals.

Model Fine-tuning

5-Way Accuracy(%)

WildFish fishclassifierfinal QUT fish dataset

1-shot 5-shot 1-shot 5-shot 1-shot

Matching Nets (2016) N 49.37 56.76 39.84 43.64 60.40

Prototypical Nets (2017) N 49.81 79.87 51.55 75.49 67.11

MAML (2017) Y 61.93 76.40 47.73 64.45 74.06

CovaMNet (2019) N 70.87 84.33 54.54 68.52 66.86

FRN (2021) N 64.12 80.81 45.42 66.41 61.05

FRN+TDM (2022) N 43.71 81.66 41.92 69.03 37.03

ProtoNet+TDM (2022) N 60.23 78.79 52.51 73.03 61.05

SACovaMNet N 71.44 85.88 58.89 69.01 68.85

SACovaMNet* N 72.68 86.12 59.28 73.82 70.52
FIGURE 4

Architecture of the proposed DPCACBAM. The input feature map is subjected to local average pooling and maximum pooling, and then the features
obtained after passing through two CNN networks are summed element-wise, and finally a channel attentionfeature is generated through a sigmoid.
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cases. Matching Nets and Prototypical Nets are the earliest few-shot

learning methods, and the network structure is simple, so the

performance in few-shot fine-grained image classification is not

satisfactory; and MAML uses a strategy of meta-learning and fine-

tuning, so the effect has been improved. CovaMNet does not adopt

the common first-order metric, but uses the second-order metric

method, because the details of fine-grained images are preserved,

resulting in higher accuracy. FRN achieves better classification

results by reconstructing the feature space. The effect of TDM on

FRN is not as good as that on Prototypical Nets. This is because

FRN itself has more parameters than Prototypical Nets. After

adding TDM, overfitting occurs when the number of samples is

set to be very small, resulting in unsatisfactory results. Compared to

the meta-learning-based MAML that needs to be fine-tuned, our

method not only has a simple network structure, but also has a

simple training process and short training time, additionally in this

case it also achieves high accuracy. And the recent TDM has poor

performance mainly because there are very few training samples,

with the unsatisfactory results especially on the QUT fish dataset.

Compared with other methods, the proposed method demonstrates

state-of-the-art capabilities, which validates that the novel AM

module, namely Sandwich Attention, can better solve the problem

of few-shot fine-grained fish image classification.
4.4 Ablation study

We then conducted ablation study to experimentally

demonstrate the effectiveness of our different design choices. For

this ablation study, the three datasets mentioned in 4.1 were used

and the same convolutional layers as the baseline architecture were

also employed. The experimental settings were consistent with

those in 4.2. The proposed module design process was divided

into two parts, the first part to be examined was to add effective

attention to solve the problem which was encountered on the fish

datasets, and the second part considered how to incorporate

attention modules that were effective for problem solving. The

details of each experiment are explained below.

The first line of experimental results in Table 2 is the 5-way 1-

shot and 5-way 5-shot classification accuracies obtained by the
Frontiers in Marine Science 09128
baseline method CovaMNet on three datasets (i.e., WildFish,

fishclassifierfinal, QUT fish dataset); the second line of results

shows where after the features were extracted through the

convolutional layer of the baseline, the features were passed

through the CBAM (Woo et al., 2018) module to obtain the

accuracy results of the 5-way 1-shot and 5-way 5-shot; the third

line of results shows where the feature was extracted by the

convolutional layer on the baseline, and then was passed through

the CBAM module (Woo et al., 2018) and the MHSA module

(Srinivas et al., 2021), and the features obtained through the two

AM modules were paralleled before finally being sent to the

classification network to obtain the 5-way 1-shot and 5-way 5-shot

accuracy results; the results in the fourth line show where the features

were passed through the CBAM module (Woo et al., 2018) and the

MHSA module (Srinivas et al., 2021) after the features were extracted

in the convolutional layer on the baseline, the three features obtained

by the two AM modules and the features obtained by the original

extraction were paralleled and then sent to the classification network

to obtain the 5-way 1-shot and 5-way 5-shot accuracy results.

Through the comparison of experimental results, it can be found

that the original feature map extracted by the convolutional layer has

been paralleled with the CBAM and MHSA modules, forming our

Sandwich Attention module, such a network structure can allow the

network to more comprehensively consider the importance of

different regions and channels of the fish image feature map, weight

the feature map more accurately, parallel connection with the feature

map can effectively ensure the integrity of the original information, so

that our experimental results are significantly higher than our baseline.
4.5 Results visualization

For qualitative analysis, the results are presented in the form of

t-SNE diagram (Van der Maaten and Hinton, 2008), which is a

machine learning algorithm for nonlinear dimensionality

reduction, and usually reduces high-dimensional data to 2

dimensions or 3 dimensions for visualization. Here we show the

output visualization results of the baseline CovaMNet,

SACovaMNet mentioned in 3.2, and SACovaMNet* mentioned in

3.3, on the fishclassifierfinal dataset for 5-way 5-shot classification
TABLE 2 Ablation study on different choices and connections of AM modules, in terms of the 5-way 1-shot and 5-way 5-shot classification accuracies
on the three datasets, i.e., WildFish, fishclassifierfinal, and QUT fish dataset, with 95% confidence intervals.

5-Way Accuracy(%)

WildFish fishclassifierfinal QUT fish dataset

1-shot 5-shot 1-shot 5-shot 1-shot

Baseline 70.87 84.33 54.54 68.52 66.86

CBAM 73.63 85.41 57.23 68.52 68.06

CBAM+MHSA 72.97 85.29 57.61 68.21 67.04

CBAM+feature+MHSA (Ours) 71.44 85.88 58.89 69.01 68.85
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tasks. The same color in the figure represents the data of the same

category. It can be seen from Figure 5A that there is a problem of

overlap between different categories, and the boundary of each

category is unclear, which will lead to poor classification effects. In

Figure 5B, the situation where there is overlap between different

categories is reduced, however the data between the same category

is relatively scattered. In comparison, the clustering effect in

Figure 5C is better, and the boundaries between categories are

clearer. The results indicate that our method can make the

classification more accurate.
5 Conclusion

In this paper, an approach called SACovaMNet was proposed

for few-shot fine-grained marine fish species classification to

address the problems caused by a lack of marine fish data and

difficulties in classification. The proposed SACovaMNet can extract

fish features in detail by fusing CBAM and MHSA in the case of

few-shot settings. At the same time, DPCACBAM is proposed to

correctly locate the identified objects and key feature information to

improve the accuracy of the fine-grained classification, while also

applying a second-order covariance metric for similarity

comparison that fully takes into account the local similarity

information of the feature maps. Based on extensive experiments,

the proposed method is shown to be superior to the state-of-the-art

methods and the training process is much simpler, providing a basis

for research in marine life conservation and marine production.
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A Multi-Mode Convolutional
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from physical drivers
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1Laboratoire d’Océanographie Physique et Spatiale, CNRS/IFREMER/IRD/UBO, Institut Universitaire
Européen de la Mer, Plouzané, France, 2IMT Atlantique, UMR CNRS LabSTICC, Technopole Brest
Iroise, Brest, France
Time series of satellite-derived chlorophyll-a concentration (Chl, a proxy of

phytoplankton biomass), continuously generated since 1997, are still too short to

investigate the low-frequency variability of phytoplankton biomass (e.g. decadal

variability). Machine learning models such as Support Vector Regression (SVR) or

Multi-Layer Perceptron (MLP) have recently proven to be an alternative approach

to mechanistic ones to reconstruct Chl synoptic past time-series before the

satellite era from physical predictors. Nevertheless, the relationships between

phytoplankton and its physical surrounding environment were implicitly

considered homogeneous in space, and training such models on a global scale

does not allow one to consider known regional mechanisms. Indeed, the global

ocean is commonly partitioned into biogeochemical provinces (BGCPs) into

which phytoplankton growth is supposed to be governed by regionally-

”homogeneous” processes. The time-evolving nature of those provinces

prevents imposing a priori spatially-fixed boundary constraints to restrict the

learning phase. Here, we propose to use a multi-mode Convolutional Neural

Network (CNN), which can spatially learn and combine different modes, to

globally account for interregional variabilities. Each mode is associated with a

CNN submodel, standing for a mode-specific response of phytoplankton

biomass to the physical forcing. Beyond improving performance

reconstruction, we show that the different modes appear regionally consistent

with the ocean dynamics and that they may help to get new insights into

physical-biogeochemical processes controlling phytoplankton spatio-temporal

variability at global scale.

KEYWORDS

Convolutional Neural Networks, attention mechanisms, satellite ocean color,
phytoplankton physical drivers, biogeochemical regions, neural networks
interpretability, time-series regression, global scale
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1 Introduction

Phytoplankton, the microalgae that populate the upper sunlit

layers of the ocean, plays a key role in the global carbon cycle and

fuels the oceanic food web. It accounts for half of the total carbon

fixation in the global biosphere through photosynthesis (Mélin and

Hoepffner, 2011) and conditions the oceanic protein production on

which ~3,3 billion people rely for their alimentation (FAO, 2020).

Thus, understanding and monitoring phytoplankton biomass past

and current spatio-temporal variability is of crucial importance to

predict and thus anticipate its future evolution in the context of

climate change.

Ocean color satellite observations allow documentation of its

synoptic variations. Global surface chlorophyll-a concentrations

(Chl, a proxy of phytoplankton biomass) can be retrieved from

space since the launch of the “Coastal Zone Color Scanner” (CZCS)

which has operated from 1978 to 1986. At the end of 1997, the

launch of the SeaWiFS sensor, followed by others, was the

beginning of 25 years of continuous observations. Although ocean

color remote sensing products present a number of uncertainties

[due among others to radiometric properties and stability of the

sensor, the conditions in the atmosphere or water, the design of the

algorithm or the irregular spatio-temporal sampling of the ocean,

(Gregg and Casey, 2007; IOCCG, 2019)], radiometric observations

have allowed one to point out regional seasonal and interannual

phytoplankton variability and to provide new insights about

mechanisms driving its spatio-temporal variations (e.g.,

Longhurst, 1995; McClain et al., 2004; Messié and Chavez, 2012;

Racault et al., 2017). However, available ocean color time-series

remain too short to inform without ambiguity the basin-scale

phytoplankton response to natural decadal climate cycles

(Martinez et al., 2009; d'Ortenzio et al., 2012), as well as to derive

reliable anthropogenic induced long-term trends for which at least

30-40 years of homogeneous observations would be required

(Henson et al., 2010). Some in-situ biogeochemical observatories

have locally collected long-term time series, but the network

coverage is far too sparse to study basin-scale evolutions (Henson

et al., 2016). Moreover, if coupled physical-biogeochemical models

are able to reproduce the main past global Chl interannual

variations, large discrepancies are reported regarding decadal

variabilities (Henson et al., 2009b; Patara et al., 2011).

In that context, data-driven methods have appeared to be

relevant alternative approaches to reconstruct long-term,

continuous and homogeneous phytoplankton time-series based

on satellite observations (Schollaert Uz et al., 2017; Martinez

et al., 2020a; Martinez et al., 2020b). Phytoplankton growth is

limited by light and nutrient availability (e.g., nitrogen,

phosphorus, iron). Thus, along with a variety of other biological

factors influenced by temperature and/or seascape connectivity [e.g.

phytoplankton physiology (Grimaud et al., 2017) and ecology (Boyd

et al., 2010; Winder and Sommer, 2012)], the spatio-temporal

distribution of surface phytoplankton on a global scale is strongly

shaped by changes in the supply of nutrients to the sunlit upper

ocean through vertical exchange. Phytoplankton changes can also

be related to other known processes as the predation by grazers,

such as zooplankton (the so-called “top-down control”) whose
Frontiers in Marine Science 02133
variability can also be related to their physical environment (e.g.,

temperature; Beaugrand et al., 2002). Consequently, as physical

ocean and atmospheric dynamics largely drive global

phytoplankton variability (Wilson and Adamec, 2002; Wilson and

Coles, 2005; Kahru et al., 2010; Feng et al., 2015), statistical

relationships can be determined between some physical predictors

and Chl. Once such statistical relationships are established and

validated, they provide new means to retrieve past and future Chl

based on physical data from satellites (with a longer time period

than for Chl) and/or numerical model simulations.

Schollaert Uz et al. (2017) were the first to use this approach in

the tropical Pacific Ocean ([20°S-20°N]) with a linear canonical

correlation analysis applied on Sea Surface Temperature (SST) and

Sea Surface Height (SSH) vs. Chl. They reproduced most of the Chl

variability within 10° around the equator over 1958-2008, and

evidenced decadal variations corresponding to the Pacific Decadal

Oscillation (PDO). Martinez et al. (2020a) extended such an

approach to the global ocean using a Support Vector Regression

(SVR) model relying on a larger number of surface oceanic and

atmospheric predictors from numerical models. Given their

capacity to model complex non-linear relationships between data

(Hornik et al., 1989), dense neural network models (namely Multi-

Layer Perceptrons, MLPs) have been successfully applied in

geoscience and biogeochemical oceanography to regress some

variables from predictors (Long et al., 2014; Sauzède et al., 2016;

Sammartino et al., 2020). Thus, in a second study, Martinez et al.

(2020b) extended their work to satellite observations and showed

that an MLP outperforms the SVR to retrieve both Chl spatial and

temporal patterns. However, in these two studies, the considered

point-wise machine learning models explicitly relied on spatial

coordinates (periodized longitude and latitude) and temporal

information (periodized month) as predictors. This may impede

the ability of neural networks to capture changes in the boundaries

of biogeochemical provinces (BGCPs) that are naturally time-

evolving (Oliver and Irwin, 2008; Devred et al., 2009; Reygondeau

et al., 2013). In addition, these results remained hard to interpret in

terms of processes involved in the Chl reconstruction and

variability, whereas data-driven approaches have great potential

to discover new patterns, structure and relationships in scientific

datasets (Bergen et al., 2019). Understanding what drives neural

network output is also essential to ensure they behave appropriately

to the field of application (Xie et al., 2020) so as to enhance the

degree of confidence that can be placed in them.

Besides MLPs, other deep learning schemes, in particular

Convolutional Neural Networks (CNNs), have shown a much

greater ability to decompose and represent the space-time variations.

We may cite numerous successful applications in Earth science

forecasting (Haidar and Verma, 2018; Ham et al., 2019; Pan et al.,

2019; Chattopadhyay et al., 2020;Weyn et al., 2020) and reconstruction

(Cooke and Scott, 2019; Sun et al., 2019; Ai et al., 2020; Kim et al., 2020;

Jeon et al., 2021; Meng et al., 2021; Pyo et al., 2021) problems, including

studies focusing on Chl data (Yu et al., 2020; Ye et al., 2021). CNNs

assume translation equivariance of the input data (Goodfellow et al.,

2016), so that they cannot learn region-specific representations when

trained over the whole ocean (Cachay et al., 2020). On the other hand,

the a priori definition of BGCPs to train region-specific CNN models
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are not fully relevant due to their time-evolving nature, especially as

they are expected to be impacted by climate changes (Polovina et al.,

2008; Irwin and Olivier, 2009; Reygondeau et al., 2020). By contrast,

attention mechanisms (Chen et al., 2017; Jetley et al., 2018) provide a

generic approach to account for different modes of variability within

CNNs. For instance, Pyo et al. (2021) inserted such attention blocks

into a CNN and improved both performance and interpretability to

predict cyanobacteria cells from spatialized water quality predictors.

Here, we introduce a regular CNN, then a CNN with attention

mechanisms, referred to as a Multi-Mode Convolutional Neural

Network (CNNMM), to reconstruct phytoplankton dynamics from

physical predictors. The statistical models are trained between

ocean color observations vs. physical variables from satellite

observations and reanalysis outputs. The study is conducted from

1998 to 2015. We demonstrate that the CNNMM scheme

outperforms the state-of-the-art MLP data-driven approach and

illustrate its relevance to analyze the space-time variabilities of

physics-driven phytoplankton dynamics.
2 Material and methods

2.1 Chl observations, physical predictors
and climate index

The different datasets used in this study are briefly described

here. They comprise the same products as those used in Martinez

et al. (2020b), complemented with bathymetry data.

Several ocean color sensors embedded on different satellite

platforms have been operating since 1997. However, their limited

lifespan and differences in calibration lead to inter-sensor bias and

make them irrelevant for decadal time-scales studies. In order to

provide more homogeneous data, the European Space Agency

(ESA) has produced the Ocean Color Climate Change Initiative

(OC-CCI) Chl products, hereafter referred to as ChlOC-CCI.

Radiometric observations from the Sea-viewing Wide Field-of-

View Sensor (SeaWIFS, 1997-2010), the Moderate Resolution

Imaging Spectroradiometer (MODIS, 2002-present), the MEdium

Resolution Imaging Spectrometer (MERIS, 2002-2012) and the

Visible and Infrared Imaging Radiometer Suite (VIIRS, 2012-

ongoing) were consistently reprocessed to produce a global

longer-term and “bias-corrected” ocean-color time series

(Sathyendranath et al., 2019). Level 3 products from v4.2 were

downloaded at https://oceancolor.gsfc.nasa.gov/l3/, with a monthly

temporal resolution on a 1° grid and over 50°N-50°S to reduce the

number of missing data due to cloud cover and/or permanent night

in wintertime at high latitudes. Even though the OC-CCI Chl

products benefit from merged data from multiple satellite

missions to provide a better spatial and temporal coverage and a

more consistent long-term time series, it is worth noting that these

data still present some uncertainties. Indeed, with a global

uncertainty of about 30% for derived Chl (IOCCG, 2019;

Sathyendranath et al., 2019), reported accuracies may vary

significantly regionally (Szeto et al., 2011) and seasonally (Bisson

et al., 2021). Thus, one should be aware that the satellite-derived Chl

used in this study may not always properly describe the in-situ Chl
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variability. Yet, satellite-derived Chl, with the spatio-temporal

resolution chosen in this study, are still commonly used to study

global intra-annual to longer timescale variat ions in

phytoplankton biomass.

Short-Wave radiations (SW), referred to total solar irradiance

with wavelengths in the range of 300-3000 nm, are considered as a

proxy of Photosynthetically Active Radiation (PAR, 400-700 nm)

used for phytoplankton growth. SW are here preferred to PAR as

they are available over the historical period (e.g. from the 50’s) from

ocean and atmosphere numerical model outputs, that do not

include irradiance in the photosynthetic range, bearing in mind

that the model developed in this study is meant to be later used to

reconstruct phytoplankton past long-term time series. The

reanalysis daily product NCEP/NCAR (Kalnay et al., 1996)

del ivered by the National Oceanic and Atmospheric

Administration (NOAA) with a resolution of 2°x2° is used in this

study and available at https://psl.noaa.gov/data/gridded/

data.ncep.reanalysis.derived.html.

SST is usually considered as a good proxy of ocean vertical

mixing, being itself related to nutrient availability in the upper

ocean (e.g., Wilson and Coles, 2005; Behrenfeld et al., 2006;

Martinez et al., 2009; d'Ortenzio et al., 2012). Moreover, SST can

impact phytoplankton metabolic rates (Lewandowska et al., 2014).

The monthly 1°x1° SST of the Reyn_SmithOIv2 dataset produced at

NOAA using both in situ and satellite data (Reynolds et al., 2002)

was downloaded at http://iridl.ldeo.columbia.edu/.

Sea Level Anomaly (SLA) variability has been shown to be a

proxy for the thermocline/pycnocline/nutricline depth variability in

most parts of the global ocean (Wilson and Adamec, 2002). The

Ssalto/Duacs merged satellite altimetry product of CNES/

SALP project is used here. It consists in a weekly product with a

1/3°x1/3° spatial resolution and was retrieved at https://

resources.marine.copernicus.eu (accessed on December 2020).

Zonal and meridional surface currents (U and V, respectively)

could supply nutrients from remote regions through lateral

advection (Messié and Chavez, 2012). The Ocean Surface Current

Analysis Real-time (OSCAR) unfiltered product (ESR, 2009) is used

here to depict global ocean surface currents. It was generated by

NASA Earth Space Research (ESR) at a 1/3° x 1/3° resolution every

5-days from 1993. Horizontal velocities are computed from

satellite-sensed SSH gradients, surface vector winds and SST fields

with simplified physics. This product allows detection of eddies that

range from 100 to 300 km (Dohan, 2017). The data is available from

the NASA Physical Oceanography data center at https://

podaac.jpl.nasa.gov/dataset/OSCAR_L4_OC_third-deg.

Zonal and meridional surface wind stress (Uera and Vera,

respectively) exhibits global large-scale correlation patterns with

Chl (Kahru et al., 2010). In the open ocean, increased winds

contribute to deepen the mixed layer and thus to either reduce

phytoplankton light exposition in subpolar regimes or to increase

nutrients availability in subtropical regions. They account for one

part of the interannual and decadal mixed layer depth (MLD)

variability, that is reflected on phytoplankton bloom timing and

magnitude variations (Henson et al., 2009a; Kahru et al., 2010;

Martinez et al., 2011). Monthly global atmospheric reanalysis

computed by the ECMWF was used. The ERA-Interim 4 product
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was downloaded with a spatial resolution of 0.25° x 0.25° at: https://

www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/

era-interim.

The General Bathymetric Chart of the Oceans (GEBCO) produced

under the auspices of the International Hydrographic Organization

and the Intergovernmental Oceanographic Commission of UNESCO

is used. It consists in a continuous, global terrain model for ocean and

land, with a spatial resolution of 15 arc seconds. The GEBCO_2020

product was downloaded at ht tps : / /www.gebco .ne t /

data_and_products/gridded_bathymetry_data/gebco_2020/.

The monthly Multivariate El Ninõ Southern Oscillation Index

(MEI) is provided by the National Oceanic and Atmospheric

Administration (NOAA) website at https://psl.noaa.gov/enso/mei/.

The choice of the 8 physical predictors (SW, SST, SLA, U, V,

Uera, Vera, Bathy) is motivated by our will to use the most realistic

environmental conditions, that only observations allow, to learn

relationships with Chl. Among routinely measured oceanic

properties, we chose to rely on surface ones only (except for the

bathymetry), for which observations are much less scarce at global

and interannual scales than the ones below the surface. These

variables have also been selected as they are known to be proxies

of dynamical processes which drive the variability of phytoplankton

to the first order. In addition, deep neural networks are expected to

derive other related quantities (e.g., wind curl, eddy kinetic energy,

etc) on their own through operations (squares, cubes, gradients,

etc), although some subjective choices of predictors can sometimes

help the network to identify meaningful relationships.

Moreover, monthly physical fields are used in this study to

predict simultaneous monthly Chl, without considering any time-

lag. This choice is motivated by the rapid response of

phytoplankton growth to changes in physical forcing, with an

associated average turnover time of global oceanic plant biomass

on the order of a week or less (Falkowski et al., 1998). It is also

consistent with the strong large-scale correlation patterns that were

previously reported in the literature between environmental forcing

and synchronous phytoplankton biomass at monthly timescales

(Wilson and Adamec, 2002; Wilson and Coles, 2005; Feng et al.,

2015; Schollaert Uz et al., 2017).
2.2 Data pre-processing

The eight physical predictors’ datasets are extracted over [1998-

2015] and resampled to the same spatio-temporal resolution as Chl,

i.e. monthly on a 1°x1° grid between 50°N and 50°S. Some missing

values (NaN: Not a Number) remained in the different datasets such
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as on land for oceanic variables. As CNNs cannot account for NaN

values for the input predictors, a gap-filling scheme is applied. A

classic zero-filling strategy is discarded as it may lead to spurious

results especially in coastal areas. Alternatively, we extrapolate

missing data using the heat diffusion equation (see Equation 1),

that is widely used in the field of computer vision (Aubert et al.,

2006):

∂ u
∂ t (t, x) − Du(t, x) = 0,     t ∈ N   t ≤ 1000f g,   x ∈ R2  

u(0, x) =   u0(x)
        (Eq :   1

(

where u0 is the field with a zero-filling scheme for missing data,

u the interpolated field, t the iteration step and x the space

coordinates. This diffusion is applied to all the input fields

involving missing data (as illustrated in Figure S1) but is not

needed for the output field (Chl).

Given the well-known log-normal distribution of Chl data, Chl

is logarithmically transformed prior to being used in the machine

learning schemes. Back-transformation is applied afterwards to the

reconstructed log(Chl) (where log stands for the natural logarithm,

to the base e) to retrieve Chl fields that can be validated against Chl

satellite observations. As classically done in deep learning

approaches to stabilize training, we normalize each variable by

subtracting its mean from the original values and dividing by its

standard deviation over [1998-2015].
2.3 Deep learning schemes

In this study, we explore three different neural architectures: the

baseline MLP considered in Martinez et al. (2020b), a basic CNN

and the proposed multi-mode CNN. According to our choice of not

considering time-lags, those three models have in common to only

rely on instantaneous relationships. We detail below these

three architectures.

2.3.1 Baseline MLP
We implement the same MLP as in Martinez et al. (2020b). The

MLP is composed of seven dense layers (see Table 1) with

LeakyReLU activations. We refer the reader to Martinez et al.

(2020b) for more details about its architecture. It involves

1,800,000 parameters. We may point out that the MLP applies

pixel-wise, that is to say to a vector of input data, corresponding to a

predefined set of features defined at each space-time location.

Similarly to (Martinez et al., 2020b), the feature vector comprises

the following 12 variables: SLA, SST, Uera, Vera, U, V, SW, sin(lat),
TABLE 1 Summary of the models’ architectures. CNNMM8 corresponds to the multi-mode CNN composed of an attention-based module W and 8
CNNs submodels Mi trained in parallel.

Model Layers Number of neurons/filters Number of parameters

MLP 7 dense layers 12:1000:1000:500:500:120:120 ~1 800 000

CNN1 5 convolutional layers 9:16:32:64:128 ~100 000

CNNMM8 W 3 convolutional layers 9:16:32 ~7 000

Mi 5 convolutional layers 9:16:32:64:128 ~100 000
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sin(lon), cos(lon), sin(month), cos(month). Cosine and sine of

longitude are used to account for periodicity (longitude 0° =

longitude 360°), and sine of latitude is used to keep the same

ranges of values between longitude and latitude predictors. In a

similar manner, months are periodized using sine and cosine of

month to account for seasonal similarities (month 1, i.e. January, is

seasonally related to month 12, i.e. December).

2.3.2 Baseline CNN
CNNs, and their variants such as convolutional ResNets (He

et al., 2016) and Unets (Ronneberger et al., 2015) are state-of-the-

art architectures for a variety of image processing and computer

vision applications. They offer a new way of processing

multidimensional data by extracting patterns using convolution.

Here, we consider a basic CNN architecture composed of a

sequence of five 2 dimensional convolutional layers with 3x3

kernel sizes, stride and padding 1x1, and with ReLU activations.

We report the details of the mono-mode CNN (hereafter referred to

as CNN1) architecture in Table 1. Overall, it involves ~100,000

parameters. Contrary to the MLP, the CNN applies directly to the

concatenation of the 2D fields predictors.

2.3.3 Multi-mode CNN
The proposed multi-mode architecture aims at better accounting

for the space-time variabilities of the relationship between plankton

dynamics and the physical forcing. Modular neural networks were

proposed in the 80’s (Micheli-Tzanakou, 1987; Anzai and Shimada,

1988) with the aim of enabling decomposing complex tasks into more

practicable sub-parts (Auda and Kamel, 1999; Azam, 2000). They rely

on the idea that the combination of several estimators can lead to better

results than when using only one. More recently, attention-based

mechanisms (Chen et al., 2017; Kirsch et al., 2018) provide means to
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implement this general concept. As sketched in Figure 1, the proposed

architecture applies in parallel i CNNs (referred to as Mi). These i

CNNs have the same architecture than the baseline CNN introduced

above, and only differ from one another in the way their respective

weights are optimized during training. As such, for a given set of 2D

fields predictors, we are provided with i outputs with the same size than

the target Chl field. We then compute a pixel-wise weighted average of

these i outputs according to weights computed by the attention-based

network W (this product is hereafter referred as “mode”). W is also a

CNN with the same architecture than the baseline one, but with 3

convolutional layers only. This CNN also uses as inputs the

multivariate 2D fields formed by the physical forcing. Importantly,

the last layer of this CNN is a softmax layer, so that the weights are

positive and sum to one for each pixel. The key features of this multi-

mode CNN architecture are three-fold: (1) it can explicitly account for

regional physics-driven variabilities, (2) there is no need to a priori

delineate BGCPs boundaries, (3) the learnt attention-based module

defines the space-time activation domain of each mode, which may

improve the interpretability of the network. As summarized in Table 1,

the multi-mode CNN for an 8-modes configuration (referred to as

CNNMM8) comprises ~807,000 parameters (8*100 000 + 7000).
2.4 Learning settings

For evaluation purposes, the whole database is split into three

independent datasets to train, validate and test the deep-learning

schemes. We consider non-overlapping time periods for each

dataset as sketched in Figure 2: the training is performed over

[2003-2010], the validation dataset covers [1998-2001] to monitor

the generalization performance of the models during the training

phase and select models’ parameters through sensitivity tests, and
FIGURE 1

Diagram of the CNNMMi architecture. For a given set of input 2D predictors, each of size n x m, i outputs of size n x m x 1 are computed from the i
CNN submodels (Mi). Those are spatially weighted according to the i dynamic probability maps outputted at each time t from the W spatial attention
module, and summed to obtain the output Chl 2D field.
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reconstructed Chl are compared to satellite Chl over [2012-2015]

(i.e., the test time-period). Years 2002 and 2011 are discarded so

that the training, test and validation datasets are not auto-

correlated. This configuration delivers long-enough test time

periods to assess the seasonal and interannual timescales of

interest (i.e., El Niño Southern Oscillation - ENSO). It also

defines time periods during which the number of ocean color

sensors remains the same in the OC-CCI dataset (Sathyendranath

et al., 2019) to avoid confusions between possible Chl variations due

to switch in sensors or occurring in nature (Gregg et al., 2017).

We train all models using a Mean Squared Error (MSE) loss and

Adam optimizer (Kingma and Ba, 2014). The MLP is trained over

200 epochs with a learning rate of 10-4 and a dropout of 0.15. The

CNNs and CNNMMi are trained over 500 epochs with an initial

learning rate of 0.001 that is decreased to 0.0001 at the 400th epoch

to stabilize the training. Dropout values of 0.15 and 0.35 are used for

the CNN1 and CNNMMi, respectively, to prevent overfitting

(Srivastava et al., 2014)(see respective learning curves in Figure

S3). Hyperparameters settings were chosen according to sensitivity

tests summarized in (Supplemental Table S1).

During each training run, we assess the score of the trained

model on the validation dataset at the end of each epoch and save

the one with the best score. We implement all models using Python

with the Pytorch library. We run numerical experiments with a

GPU NVIDIA Tesla T4 with 32Go of RAM. As recommended by

many ethics’ guidelines for developers (Vinuesa et al., 2020; Ryan

and Stahl, 2021; Taddeo et al., 2021), we also report the carbon

footprint of the training phase of each model using the

Carbontracker Python library (Anthony et al., 2020). Our

computing server is located in France, with a detected averaged

carbon intensity of 294.21 gCO2/kWh.
2.5 Evaluation framework

We consider the following three quantitative metrics for

evaluation purposes: the root-mean-square error (RMSE, Eq. 2),

the coefficient of determination (R2, Eq. 3) and the linear regression

slope are used to compare the reconstructed log(Chl) times series vs.

OC-CCI satellite observations:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(log(Chl) − log(ChlOC−CCI))

2

N

s
              (Eq :   2)
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R2 = (o(log(Chl) − log(Chl))(log(ChlOC−CCI) − log(ChlOC−CCI))

N*  slog(Chl)*  slog(ChlOC−CCI)

)2         (Eq :   3)  

with N the number of samples, s the standard deviation and the

horizontal bar the time average, both calculated over the considered

time period.

Global map of correlation and of normalized RMSE (NRMSE,

Eq. 4) of Chl times series vs. OC-CCI satellite observations are also

used to assess regional discrepancies:

NRMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(Chl − ChlOC−CCI)

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o(ChlOC−CCI)

2
q           (Eq :   4)

To estimate the model’s ability to reproduce seasonal and

interannual variabilities, an Empirical Orthogonal Function (EOF)

analysis is performed as follows. First, the annual (monthly) ChlOC-

CCI average is removed from the initial time series to obtain the

seasonal (interannual) Chl anomalies which are then normalized

with respect to their standard deviations. We project the

reconstructed Chl time series onto these seasonal and interannual

ChlOC-CCI spatial patterns and the resulting seasonal and interannual

temporal patterns (i.e. the principal components, PCs) are compared to

those of ChlOC-CCI using Pearson correlation.

For each pixel, the percentage of variance explained by each of

the i modes of the multi-mode CNNMMi is derived to assess their

relative importance. It relies on (1) successively reconstructing Chl

while putting the probability weights of the corresponding mode to

zero, and (2) calculating the difference in RMSE that is observed

compared to when Chl is inferred with the full model.

From the obtained i percentages of variance Pk, we further

compute, for each pixel, the following entropy-based metric H:

H = −o
i

k  =1

Pk*log2(Pk)               (Eq :   5)

It allows us to evaluate to which extent the reconstruction at a

given pixel truly results from a multi-mode relationship (large

entropy values) or from a single-mode one (low entropy values).

Finally, we also assess the relative importance of each physical

predictor to reconstruct Chl using a perturbation-based method as

in Kim et al. (2020). From a given CNNMMi, the difference of the

RMSE of the predicted Chl when using the initial data vs. randomly

shuffled data (both in time and space) for each predictor

individually is computed. RMSE differences are normalized so
FIGURE 2

Time-series of the MEI. The validation, training and test time periods used to compare the implemented regression models’ performances are
indicated as orange, red and green filled sections, respectively.
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that the relative importance of all the predictors sums up to one for

each pixel.
3 Results and discussion

3.1 Performance of the mono-mode CNN
vs. MLP baseline

The reconstructed Chl from both the mono-mode CNN1 and the

state-of-the-artMLP are compared to satellite Chl over the [2012-2015]

test period to assess the added value of convolutions. When the 12

predictors [namely SLA, SST, Uera, Vera, U, V, SW, sin(lat), sin(lon),

cos(lon), sin(month), cos(month)] are used, performances obtained

with the MLP and CNN1 remain close (Table 2). However, the CNN1

contains almost twenty times less parameters than the state-of-the-art

MLP (~100 000 vs. ~1 800 000, respectively), is ten times faster to

compute and more than ten times more energy-efficient, supporting

that convolutions are better suited to reconstruct Chl.

To avoid learning constraints of time and space, the models are

trained removing the spatial coordinates, i.e. on 9 predictors. Results

further stress the relevance of convolutional architectures to reconstruct

ChlOC-CCI. Indeed, whereas the MLP highly drops in performance (R2

down to 0.59 and RMSE up to 0.5), the CNN1 still presents satisfactory

scores (R2 = 0.80 and RMSE = 0.35) (Table 2). These results averaged at

global scale are consistent over the three oceanic basins with a higher R2

between ChlOC-CCI and CNN1 than with MLP by 0.23 and 0.24

respectively in the Indian and Pacific oceans and by 0.14 in the

Atlantic Ocean (Figure 3 lower row vs. upper row).

Interestingly, removing the temporal predictors (i.e., sin(month)

and cos(month)) does not reduce the CNN1 performance and even

tends to slightly improve it (slope of 0.81 vs. 0.77, and interannual

correlation coefficient of 0.96 vs 0.94, Table 2). It suggests that temporal

predictors only bring redundant information already included into the

seasonally-fluctuating physical fields provided as predictors. This result

also suggests that the network benefits from being no longer monthly
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constrained when interannual time-series are considered. Indeed,

learning on periodized months may force the network to learn static

seasonal phytoplankton bloom characteristics (e.g., start, duration and

amplitude) over several years. Thus, it would impede to correctly

account for interannual delays in bloom timing or difference in the

length of the growing period (Henson et al., 2009a) that can for

instance reach ~10 weeks for major ENSO events (Racault et al., 2012)

and that would be otherwise considered through other physical fields

such as SST.

The CNN1 is further improved by the addition of two other

predictors: the bathymetry and a continental mask. The bathymetry

is considered as it would participate to distinguish open ocean

ecosystems from coastal ones, where specific processes can occur

(shelf break fronts, tidal mixing, river discharge, coastal upwelling,

etc) and where the water-leaving radiance measured by ocean color

sensors may only partially represent Chl (inorganic particles

dominate over phytoplankton concentration). Moreover, as being

more spatially resolved than OSCAR data, it is also expected to

bring additional information about the ocean circulation (especially

concerning the fine-scale dynamic) that is regionally related to the

seafloor topography (Gille et al., 2004; Bryan, 2016). The binary

continental mask (0 on ocean and 1 on land) is also added because

the oceanic predictors are filled over land with data through

diffusion (see the data section) inducing that no information on

the exact boundary between ocean and land are no longer available.

Doing so, results are slightly improved (R2 = 0.84, RMSE = 0.31 and

slope = 0.85) and the CNN1 better captures Chl spatial structure in

some places as observed over the tropical Atlantic Ocean

(Supplemental Figure S2).
3.2 Chl reconstruction improvement from
mono-mode CNN1 to multi-mode CNNMM8

Given the overall good performance of the CNN1, we chose this

model as a basis to document the impact of multi-modality. With
TABLE 2 Global performance metrics obtained with the state-of-the-art MLP, CNN1 and CNNMM8 over the [2012-2015] test period.

Predictors
Global scatterplot Corr.

Seas. PC
Corr.

Inter. PC N param
Time

computation
Km travelled

by car

Model R2 RMSE Slope

12 MLP 0.85 0.30 0.84 0.99 0.97 1 840 000 50h13 13.5

CNN1 0.86 0.30 0.87 0.99 0.98 99 889 5h 0.95

9 (without sin(lat), cos(lon), sin
(lon))

MLP 0.59 0.50 0.57 0.97 0.85 1 836 000 50h13 13.4

CNN1 0.80 0.35 0.77 0.99 0.94 99 457 4h53 0.93

7 (without sin(month), cos
(month))

CNN1 0.80 0.35 0.81 0.98 0.96 99 169 4h52 0.92

9 (+ bathymetry + continental
binary mask)

CNN1 0.84 0.31 0.85 0.99 0.95 99 457 4h54 1.04

CNNMM8 0.87 0.28 0.90 1.00 0.96 803 920 39h 8.9
The R2, RMSE and slope metrics are calculated between the reconstructed log(Chl) and satellite log(ChlOC-CCI). Correlations of seasonal and interannual 1st principal components from EOF
analysis are calculated between the reconstructed Chl and satellite ChlOC-CCI. The number of parameters used and the computation time of the training phase (performed over [2003-2010]) are
reported, as well as the associated carbon footprints in equivalent km traveled by car. Performance metrics of the proposed multi-mode approach are highlighted in bold.
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the same 9 predictors, performances of the proposed multi-mode

CNNMMi schemes are investigated from 1 to 15 modes. R2 increases

from 0.81 up to 0.87 and RMSE decreases from 0.32 down to 0.27

from one to four modes (Figure 4, see Table S2 for details). For both

metrics, a plateau is reached from the fourth mode for R2 and the

eighth mode for RMSE. Overall, the CNNMM8 model seems to be

the best trade-off between performance and computational

complexity. Thus, the CNNMM8 is investigated hereafter and

compared to CNN1 to further discuss the advantages of the

multi-modality.

Time averaged satellite ChlOC-CCI over the [2012-2015] test

period compares reasonably well with that reconstructed from

CNNMM8 (Figures 5A vs. 5B). The CNNMM8 correctly represents

the main spatial patterns with, for instance, higher Chl at high

latitudes and along the equatorial and eastern boundary upwelling,

as well as in the Arabian Sea. The CNNMM8 also captures low Chl in

the subtropical gyres delimited by the 0.07 mg.m-3 mean Chl

isocontour. The correlation map computed between ChlOC-CCI and

CNNMM8 shows values higher than 0.8 over large parts of the global

ocean and especially in the subtropical areas (Figure 5C). Conversely,

low correlation values, associated in most cases to high NRMSE

(Figure 5D), can be observed at higher latitudes than 40° and in the

eastern and tropical part of the Pacific Ocean oligotrophic gyres. This

can be due to several factors. In some places, the spatio-temporal

resolution (i.e., monthly on a 1° grid) used in the present study may

be too coarse to capture the overall Chl variability. In particular, this

would mainly explain the lack of correlation observed in the tropical

southeastern and northwestern Pacific where the dominating
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timescales of Chl variability have been very recently reported to be

below 30 days (Jönsson et al., 2023; see their Figure 7B). This may also

explain part of the Chl underestimation observed in highly energetic

areas with mesoscale and sub-mesoscale eddies (<100 km scales) that

may impact phytoplankton along dynamical fronts (Lévy et al., 2018).

This component of the ocean dynamics might not be sufficiently

resolved here, as along the Gulf Stream, the Kuroshio and Agulhas

currents and in subantarctic waters along the Antarctic Circumpolar

Current (Frenger et al., 2018). In addition, the list of predictors that

we used is not exhaustive and variables representative of some

biogeochemical and physical mechanisms may be missing. For
FIGURE 3

Scatterplots of reconstructed log(Chl) from the MLP (upper row) and CNN1 (lower row) vs. satellite ChlOC-CCI, when explicit geographic predictors
(i.e., sin(lat), cos(lon), sin(lon)) are removed from the training phase. Columns correspond to different oceanic basins (left: Indian Ocean, middle:
Pacific Ocean, right: Atlantic Ocean). The log of ChlOC-CCI vs. reconstructed log of Chl regression lines are plotted in black and the 1:1 regression
lines are plotted in red. Plots are color-coded according to the density of observations.
FIGURE 4

Performance evolution according to the number of modes of the
CNNMMi models. Metrics are computed over the [1998-2001]
validation period during which model parameters are assessed.
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instance, terrigenous inputs at the mouths of large rivers (driven by

precipitations) supply nutrient rich waters which are not considered

in our predictors. In addition, ocean color observations in these

regions may rather reflect suspended particles and colored dissolved

organic matter (respectively SPM and CDOM) rather than Chl. This

could explain the high NRMSE values observed along the Amazon,

the Congo and Kunene rivers. More generally, the predictors we used

in this study cannot account for some ocean color sources of

uncertainties (e.g., atmospheric conditions, solar zenith angle,

properties of the sensors, etc), so potentially biased Chl values

cannot be fully reproduced by the networks. Moreover, biological

effects such as zooplankton grazing (the so-called top-down control),

which are not directly accounted for by any of our predictors, may

also regionally inhibit the signature of phytoplankton growth on

satellite observations, especially at high latitudes. Proxy of iron supply

in the open ocean from other external sources, such as dust

deposition or hydrothermal vents, are also missing among our

predictors. This can limit the ability of our network to distinguish

areas of different nutrient (co-)limitations (Moore et al., 2013) and to

account for phytoplankton responses driven by the dynamics of these

sources, especially in iron-limited High Nutrient Low Chlorophyll

(HNLC) regions. As such, one part of the low correlations observed in

the eastern tropical Pacific could come from the role played by dust

deposition in altering the timing and amplitude of ENSO-related

phytoplankton response (Lim et al., 2022a). This could also partly

explain low correlations values observed in the northwestern Pacific

(Meng et al., 2022), or high NRMSE values observed in the northern

Arabian Sea where dust deposition would play a key role in

controlling phytoplankton bloom amplitude (Guieu et al., 2019).

Mean difference maps between CNNMM8 and CNN1 in terms of

correlation and NRMSE with ChlOC-CCI illustrate that the CNNMM8

improves correlations over most of the global ocean (in red in
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Figure 5E). Differences higher than 0.3, and that can exceed 0.6,

appear in the tropical zone between 20°S and 20°N (Figure 5E)

where Chl are not well reconstructed with the CNN1 (Figure S4).

Subtropical areas that already show high correlations with the

CNN1 model led to lower differences (yet show no degradation)

in the correlation scores. The analysis is a bit more contrasted for

the NRMSE metrics. NRMSE values are also improved by the

CNNMM8 over most of the global ocean (in red in Figure 5F).

However, the NRMSE is deteriorated (in blue) in several regions of

the ocean, reaching values up to 0.5 around the Amazon River

plume, and up to 0.3 at the mouths of the Congo and Kunene rivers

off the coast of Angola, although correlations are improved when

multi-modality is introduced. The use of a multi-mode CNN, whose

learning is expected to be more regionally focused than a CNN1,

might increase the NRMSE in these regions, where Chl variability

might rather reflect SPM and CDOM variability whose related

predictors are missing.

To illustrate the ability of the CNNMM8 to better capture

regional processes than CNN1, the improvement in reconstructed

Chl for specific regions when the CNN1 is trained regionally vs. the

CNN1 and CNNMM8 trained at global scale is investigated. The

CNN1 trained regionally is expected to better learn regional

processes than the CNN1 trained over the global ocean (Fourrier

et al., 2020). Table 3 shows the performance metrics obtained for

two different BGCPs, a productive vs. an oligotrophic region: the

Ninõ 3.4 region [5°N–5°S; 120°W–170°W] and the ultra-

oligotrophic part of the South Pacific Subtropical Gyre (SPSG,

[20°S–30°S; 95°W–145°W]). They present contrasting responses

to the regional learning process. The Niño 3.4 region displays a

significant potential for performance improvement as shown by the

improvement between the globally and locally learnt CNN1, which

means that the relationships learnt at global scale are different than
A B

D

E F

C

FIGURE 5

Time averaged (A) ChlOC-CCI and (B) CNNMM8 (in mg.m-3) over [2012-2015]. Oligotrophic gyre boundaries are delimited by the 0.07 mg.m-3 mean
Chl isocontour superposed in white. (C) Correlation and (D) NRMSE of ChlOC-CCI vs. CNNMM8 over the same time-period. (E) Correlation and (F)
NRMSE differences between CNNMM8 and ChlCNN1 over the same time period. NB: the colorbar is reversed for the NRMSE difference when
compared to the correlation difference to highlight in red where the Chl reconstruction with CNNMM8 is improved.
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those learnt at regional scale. Here, the CNNMM8 reaches those

performances and even outperforms the regional CNN1, confirming

the hypothesis of a better ability of the multi-mode CNN to

reconstruct regional Chl. Contrastingly, in the SPSG region the

reconstruction of Chl is already well performed by the globally and

locally learnt CNN1 with R2 = 0.85 vs. 0.92, respectively, leaving

little room for improvement by the CNNMM8. However, the

CNNMM8 allows reduction of the NRMSE. Thus, in both regions,

the CNNMM8 outperforms the regionally trained CNN1 due to its

ability to switch between different modes while it is less prone

to overfitting.

Using the proposed EOF-based analysis, the ability of the

CNNMM8 to retrieve the satellite-derived Chl spatio-temporal

variability is investigated. The first EOF modes calculated on the

seasonal and interannual ChlOC-CCI signal over [2012-2015] are

presented in Figure 6 (upper and lower row, respectively). They

respectively account for 33.2% and 13.2% of the total variance.

Regarding the seasonal variability, the observed spatial patterns

depict a clear contrast between the two hemispheres (Figure 6A),

reflecting their opposite seasonal cycles. Consistently, the associated

PC time-series depicts a sinusoidal signal with a one-year period

(black line in Figure 6B). This seasonal variability is well reproduced

by both the CNN1 and CNNMM8 models, with correlations of their

projected PCs with those of ChlOC-CCI of 0.99 and 1.00, respectively

(Figure 6B). Even though the amplitude of the ChlOC-CCI PC was

already very well captured by the monomode model, the multi-

mode one still allows the correction of the slight underestimation

that was observed otherwise.

Regarding the interannual variability, the first ChlOC-CCI EOF

mode illustrates the strong spatio-temporal signature of ENSO

events observed in the Pacific Ocean (Figure 6C), with opposite

Chl responses to ENSO-related physical anomalies observed in the

eastern Pacific compared to the western Pacific (Chavez et al.,

1999). The temporal evolution of this first interannual ChlOC-CCI
PC is highly related to the MEI (r=0.75, p<0.001) which reaches its

maximum during the strong 2015/2016 El Niño event (Figure 6D).

Here again, the interannual signal is well represented by CNN1 and

CNNMM8 with high correlation coefficients of their PCs with those

of ChlOC-CCI (0.95 and 0.96, respectively), although the amplitudes

are underestimated. These results stress the ability of the learning-

based schemes to inform about the seasonal and interannual

variability while it is not explicitly constrained during the training

phase. Indeed, neither the training loss nor the architecture exploits
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time-related information. The underestimation of the interannual

signal may be related to processes not considered, either related to

the predictors (e.g. rivers inputs of nutrients, dust, land wildfire …)

or to unresolved spatio-temporal scales. For instance, some

discrepancies in the patterns of respective interannual EOF modes

1 can be observed in the Indian ocean and in the north Atlantic

ocean (Figures S5B, D, F) where atmospheric dust inputs are most

important (Jickells et al., 2005). Other sources of error can arise

from differences between the training and the test periods chosen

for this study. Beyond differences in the amplitude of ENSO events

observed during those periods, different types of ENSO [Eastern

Pacific (EP) versus Central Pacific (CP)] have also been reported.

Thus, our training period [2003-2011] mainly hosts CP events,

whereas the strong 2015/2016 El Niño event is usually classified as

an EP event, with different processes and related impact on primary

production (Radenac et al., 2012; Racault et al., 2017). Finally,

delayed effects of climate modes have been very recently shown to

influenced Chl in large parts of the ocean (see Figure 6 of Lim et al.,

2022b), and especially in the eastern tropical Pacific one, whereas

time-lags are not considered into our model.
3.3 Emergence of coherent spatio-
temporal distribution of modes

The main advantage of the multi-mode CNN is the ability of its

different sub-models to regionally specialize during the training

phase. The training of the network benefits from all the sub-models

that activate differently in various parts of the ocean. Maps of the

percentage of variance explained by each mode of the CNNMM8 are

computed over [2012-2015] (Figures 7A–H). This resulting

regionalization, even if presenting some slight modifications of

their spatial imprints, are quite consistent from one run to another.

These percentages can regionally exceed 30% of the total variance for

somemodes in specific regions, such as in the three oligotrophic gyres

of the southern hemisphere (mode 1), and, to a lesser extent, in those

of the northern one (modes 2 and 3). These high variances which

predominate for specific modes correspond to low values of entropy

(the lower the entropy is, the more a specific mode dominates the

signal: purple areas in Figure 7I). The percentages of variance of the

remaining oceanic regions are distributed in a more balanced way

between a larger number of modes (higher entropy, Figure 7I), but

still present some regional variations.
TABLE 3 Performance metrics obtained between spatially averaged reconstructed Chl and ChlOC-CCI over two contrasted BGCPs: the Ninõ 3.4 region
([5°N–5°S, 120°W–170°W]) and the South Pacific Subtropical Gyre (SPSG, [20°S–30°S; 95°W–145°W]), when the CNN1 is either trained at global scale
or regionally, and the CNNMM8 is trained globally.

Model
Ninõ 3.4 SPSG

R2 NRMSE R2 NRMSE

Globally learned CNN1 0.28 0.17 0.85 0.14

Regionally learned CNN1 0.48 0.12 0.92 0.17

Globally learned CNNMM8 0.68 0.11 0.90 0.14
fron
Best performances are highlighted in bold.
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The eight sub-models thus depict some clear, coherent and non-

random spatial patterns. Figure 7J synthetizes areas over which the

different modes dominate, depicting for each pixel the mode that

presents the maximum of explained variance. At first glance, there

is a zonal spatial distribution of the modes in agreement with the

original BGCPs distribution from Longhurst (1995). It partly results

from latitudinal variations in physical forcing and leads to

distinguishing what is called the “westerly winds domain” from

the “trade wind domain” in the open ocean, whose seasonal changes

in MLD are driven by different processes. The first one is reported

to extend from the equator to ~30° of latitude, whereas the second

one corresponds to mid-latitude areas. From the trained CNNMM8,

mode 7 mostly activates at higher latitudes than ~30°N/°S (in blue

in Figure 7J), whereas mode 6 mainly activates at low-latitude. The

first mode highly matches the three southern hemisphere

oligotrophic gyres whereas the second and third modes coincide

with the two gyres of the northern hemisphere. The spatial

distribution of the three remaining modes (i.e., 4, 5 and 8) fits

regions with specific oceanographic dynamics. Indeed, mode 4 (in

red in Figure 7J) principally corresponds to areas of wind-induced

coastal upwellings, as the Peru, Canary and Benguela areas and to a

lesser extent to the California one, as well as to the Pacific and

Atlantic equatorial upwelling. Mode 5 (in orange, Figure 7J) seems

to stand for the mid-latitude highly dynamical parts of the ocean,

that is to say the Gulf Stream and the Kuroshio currents. Finally,

mode 8 (in yellow, Figure 7J) potentially highlights the Pacific

frontal areas such as the Transition Zone Chlorophyll Front

(Polovina et al., 2001) or the boundary between the equatorial

Pacific high nutrient low chlorophyll (HNLC) area and the

subtropical gyres.

Another feature of the multi-mode CNN is the ability of the sub-

models to be variably activated over time. When considering two

BGCPs with contrasting entropy such as the eastern North Atlantic

Subtropical Gyre (NAST-E, [35°N–42°N; 15°W–30°W]) and the

already mentioned SPSG (delimited on Figure 7J) it appears that the
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percentages of variance explained by each mode, spatially averaged

over their respective areas, present contrasted temporal patterns

(Figure 8). For instance, clear seasonal patterns emerge in the NAST-

E (Figure 8A). The activation of the 7th mode (in light blue) occurs

seasonally (with some inter-annual variability) with a maximum in

November/December and a smaller secondary peak in April before

starting to decrease. Then, the percentage of variance explained by

modes 3 and 6 (in garnet and gray, respectively) increases in turn,

followed by mode 2 (in green). The strong seasonal cycle observed here

is consistent with the seasonal phytoplankton blooms reported in the

North Atlantic. Contrastingly, in the SPSG one mode totally prevails

over the others and does not display a clear seasonal cycle (purple line

in Figure 8B). This strong dominance is also highlighted in Figures 7A,

J and in the entropy map (Figure 7I). These results show that the

learned modes vary in space but also in time and that they can be

variably activated according to the variations of the physical predictors.
3.4 Predictors’ relative importance in Chl
reconstruction according to the modes

Using the perturbation-based method described in the last

paragraph of Section 2.5, here we provide an insight in the

relative importance of the physical predictors to reconstruct

satellite-derived Chl. Histograms in Figure 9 show the normalized

distribution along with the relative importance of each predictor in

areas characterized by one dominant mode (i.e. the areas reaching

the 90th percentile of variance, delimited by the green lines in

Figures 7A–H), over the [2012-2015] test period. Those histograms

illustrate that the different modes specialize by learning specific

relationships between Chl and the physical predictors, implying

possible different physical-biogeochemical interactions and

dominant mechanisms. This is especially obvious with regards to

the SST for which the eight histograms display various

distributions. Those appear to be in general agreement with
A B
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FIGURE 6

(A) Spatial pattern and (B) associated principal component (PC, as the black line) of the EOF first mode calculated on seasonal ChlOC-CCI over
[2012-2015]. ChlCNN1 and ChlCNN-MM8 PCs obtained from the projection on ChlOC-CCI EOF spatial pattern are reported as the green and
orange lines, respectively. (C, D) same as (A, B) but for the interannual signal. In (D), the MEI is reported as the grey shaded area.
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known physical-biogeochemical processes, but also highlight some

unexpected while plausible relationships.

As expected and already noted in a previous machine learning

based study (Martinez et al., 2020b), SST has the strongest relative

importance when compared to other physical predictors in all

mode-associated regions (NB: the scale on the x-axis in Figure 9

differs for SST when compared to the other predictors). However,

this relative importance is particularly striking in the subtropical

gyres of the northern (modes 2 and 3) and southern (mode 1)

hemispheres, and in some of the equatorial areas (mode 6) where

most of the pixels reach a relative value higher than 0.5. Yet, a

maximum/peak of occurrence around 0.7 is reached only for modes

2, 3 and 6. In those latter regions representing (i) the northern

subtropical gyres and (ii) the equatorward boundaries of the
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northern and southern boundaries subtropical gyres, the strong

dominance of SST as a predictor is consistent with the SST-Chl

inverse relationship reported at global scale in literature (e.g.,

Behrenfeld et al., 2006; Martinez et al., 2009). Indeed, in the

permanently stratified ocean which is nutrient-limited, SST

variability is a proxy of vertical mixing variability and thus of the

potential uplift of nutrients within the euphotic zone (Signorini

et al., 2015).

Interestingly, this statement slightly differs for the southern

oligotrophic gyres (mode 1) where the SST importance is weaker

(but still dominant) than in the northern gyres (modes 2 & 3). On

the contrary, other predictors such as SLA and surface currents (U,

V) seem to have a greater relative importance in the southern gyres

than in the northern ones. Counterintuitively, it suggests that some
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FIGURE 7

(A–H) Percentages of variance explained by each of the 8 modes of CNNMM8. Isolines of percentile-90 of the values are superposed in green.
(I) Entropy characteristics computed from the above percentage of variance. Oligotrophic areas (with mean Chl < 0.07 mg.m-3 calculated over
[2012-2015]) are delineated as white isocontours. (J) Spatial distribution of the modes explaining the highest percentage of variance.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1077623
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Roussillon et al. 10.3389/fmars.2023.1077623
of the mechanisms that are at play in the oligotrophic gyres would

be different between the two hemispheres. One hypothetic

explanation may come from the possible stronger iron limitation

in the southern hemisphere (Moore et al., 2001), resulting in a

decoupling between the vertical inputs of macro-nutrients (e.g.

NO3, PO4) and the phytoplankton local growth, thus minimizing

the imprint of the SST-Chl inverse relationship characteristic of the

northern hemisphere gyres. Considering the lack of vertical inputs

of the limiting nutrients, lateral transport of tracers (nutrients and

phytoplankton) near transition zones surrounding the gyres may

thus be of greater relative importance in the southern hemisphere,

which is consistent with the greater importance of the SLA and

currents. The double peak SST distribution in mode 1 could then be

interpreted as one characteristic of the gyres [related to the vertical

input of nutrients and common to the southern and northern gyres

(Signorini et al., 2015)] and one related to the lateral transport of

tracers mostly at play in the southern gyres. Consistently, for both

mode 1 and mode 3, the smaller relative importance of SST occurs

where the relative importance of surface currents (U, V) is larger

(not shown), the first peak of low SST importance observed for

mode 3 corresponding to the Arabian Sea area.

For the other modes (4, 5, 7 and 8) which correspond to more

productive regions (e.g. mode 4 highlights equatorial and coastal

upwelling regions) SST, while still dominating, appears to be of

weaker relative importance than in the gyres. In addition, the other

predictors’ relative weights are more uniformly distributed. This

suggests that a significant part of the Chl variability is not explained

by processes affecting the SST but is rather related to a complex

interaction of processes whose signatures are embedded in other

predictors (e.g. lateral currents, light, winds).

Overall, Figure 9 shows that the multi-mode CNN approach

may give mechanistic insights on the functioning of specific ocean
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provinces. Hypothesis drawn from such analysis may therefore be

further tested using for example mechanistic numerical models.
4 Discussion and perspectives

CNNs have been widely used these last years in geosciences to

leverage the spatial dimension of datasets, and their ability to

capture spatial patterns have been largely demonstrated

(Makantasis et al., 2015; Shen, 2018; Brodrick et al., 2019;

Kattenborn et al., 2021). Consistently, our results confirm their

relevance to reconstruct phytoplankton spatio-temporal

distribution from physical predictors without using any explicit

geographical predictors (i.e., latitude and longitude). Compared to

previous studies based on CNNs, our study goes further and

provides a more efficient method to manage spatio-temporal

heterogeneities. This is one of the main limitations of CNNs, and

deep learning models in general, when dealing with environmental

variables (Bai et al. 2016; Reichstein et al., 2019; Yuan et al., 2020),

especially in a highly dynamical environment such as the ocean.

Introducing a multi-mode CNN, we showed that the network can

identify different areas over which the learning phase can be

regionally optimized. The sub-models have been shown to

specialize on physically-consistent regions and thus to better

capture regional processes. Such kind of neural network

architectures have been previously proposed to tackle the merging

of data from various sensors and/or spatio-temporal resolutions

(Martıńez and Yannakakis, 2014; Yang et al., 2016; Melotti et al.,

2018; Ienco et al., 2019; Joze et al., 2020; Zhang et al., 2022).

However, to our knowledge, no studies have been done to apply

them to regionalization issues. This approach focusing on regional

mechanisms converges to recent deep learning architecture built on
A

B

FIGURE 8

Temporal evolution of the percentages of variance explained by the 8 modes of the CNNMM8 in two BGCPs with contrasting entropy: (A) in the
eastern North Atlantic Subtropical Gyre (NAST-E, [35°N–42°N; 15°W–30°W]) and (B) in the SPSG ([20°S–30°S; 95°W–145°W]). The colors correspond
to the modes as in Figure 6J.
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self-attention processes such as Transformers (Dosovitskiy et al.,

2020), but are cheaper in terms of computing cost.

The multi-mode CNN not only allows a better simulation of the

chlorophyll concentration spatio-temporal variations, but it also

improves the network interpretability, which is of particular interest

in the Earth science field as it can allow one to find new unexpected

relationships among data. Some post-hoc explanation methods [i.e.,

once the model is already trained (Fan et al., 2021; Xie et al., 2020)]

specifically designed for CNNs, and which are still heavily under-

exploited in Earth sciences, may have been considered to go further

in the network interpretability (Ras et al., 2022). For instance, Ham

et al. (2019) computed heatmaps or Class Activation Maps (CAM,

Zhou et al., 2016) from a CNN to analyze which parts of the global

ocean contribute the most to the prediction of El Niño events. Zeiler

and Fergus (2014) also proposed a way to access and visualize how

much information from input data is processed according to the

different network layers of CNNs. However, these latter methods do

not allow one to optimize the regional learning nor to provide some

interpretability from the model outputs, which are both specificities

of our multi-mode CNN. Optimizing, during training, specifically

designed explanations is what the so-called intrinsic methods aim to

do. This is one of the advantages of the proposed multi-mode CNN

compared to the mono-mode.

Here, we took advantage of both the intrinsic explainable

methods and post-hoc diagnostics to increase the interpretability.

Indeed, in the present study, the intrinsic multi-modality shows

some consistency in the learning of the eight modes with the spatio-

temporal variations of the ocean dynamics, which is somehow

expected to be reflected in the variations of the phytoplankton

biomass. Applying a basic post-hoc perturbation-based method to

the CNNMM8 allowed us investigating the relative importance of the

predictors (as illustrated in Figure 9). Other post-hoc methods

shedding light on features that drive the model’s decision would

deserve to be investigated and compared with one another. For

instance, the Shapley Additive exPlanations (SHAP) method

(Lundberg and Lee, 2017), which can be applied to any kind of

neural networks, measures the effects of an input perturbation on

the network’s output to retrieve the relative importance of each

predictors (Padarian et al., 2020; Betancourt et al., 2022; Pauthenet

et al., 2022). This method would allow consideration of

interdependencies between variables, whereas removing them one

by one, as did in our study, may not be optimum.

Multi-mode CNN results are promising even if some strategies

could further improve the performance of the Chl reconstruction.

From the architecture point of view, the addition of pooling layers,

especially for the W attention module (see Figure 1), may allow a

better consideration of large-scale spatial structures and thus of the

regionalization of the different modes. Coupling the CNN sub-

models with Recurrent Neural Networks (RNNs) should help

accounting for temporal dynamics/time history with a more

sophisticated way than if adding time-lags as predictors

within our current architecture. Indeed, while instantaneous

environmental fluctuations are thought to explain much of the

observed phytoplankton temporal variability, time-lag responses of
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weeks to a few months would also be expected (Ji et al., 2010; Feng

et al., 2015; Schollaert Uz et al., 2017; Lim et al., 2022b). This would

arise from biological processes mainly, such as dormancy and

reproduction (Ji et al., 2010), or ecological interactions as species

competition or grazing pressure (Feng et al., 2015). Assessing their

own impact on the Chl reconstruction using models that take into

account temporal dependencies is certainly worth doing and would

deserve a dedicated study but was beyond the scope of this paper.

Moreover, while the current network learns different sub-models on

specific areas (spatial attention), sub-models could also learn

according to different temporal periods (temporal attention). In

addition, the current architecture could be easily adapted to learn

from predictors with different higher spatio-temporal resolutions.

This may improve the Chl reconstruction performance by

considering processes currently not resolved with the actual

monthly dataset averaged on a 1° grid, such as the mesoscale

ocean dynamics or high frequency wind events. This would also

enable a better assessment of the impact of finer scale dynamics on

Chl low-frequency variability at global scale.

New predictors should also be considered in upcoming studies

to stand for a wider range of processes, as mentioned in Section

3.2. Aerosol Optical Depth (AOD) observations could help to

account for the sporadic supply of nutrients into the ocean from

atmospheric deposition, such as dust-derived iron that can play a

significant role on interannual phytoplankton dynamics in some

regions (Letelier et al., 2019; Lim et al., 2022a; Meng et al., 2022).

Precipitations could help to distinguish wet from dry dust

deposition, known to present different iron solubility (Fan et al.,

2006), a proxy of iron bioavailability (Schulz et al., 2012). In situ

water column data provided from Argo floats could also be

considered to better represent the MLD variability rather than

using surface proxy only. However, one drawback to fix is that it

would reduce the length of available time series of more than 10

years (a sufficient data coverage is not expected before the 2010’s).

Chl is a proxy of phytoplankton biomass, and other underlying

processes can be reflected on Chl changes. For instance, in

response to changes in light conditions, phytoplankton cells can

adjust their intracellular Chl so that Chl changes may be rather

related to photoadaptation than to biomass. Thus, reconstructing

the ratio between Chl and particulate backscattering coefficient

[bbp, related to the size particles, Loisel et al., 2002] would deserve

to be investigated in future studies. Here we used SW as a proxy of

PAR, whereas SW spatiotemporal changes may not always reflect

PAR variability due to strong absorption by water vapor, ozone,

and clouds outside the PAR spectral range (Chou and Suarez,

1999). Yet, not considering the spectral form of incident radiation

can lead to large errors in modeling oceanic primary production

(Sathyendranath et al., 1989; Frouin et al., 2018). Sensitivity tests

concerning the use of SW as a proxy of PAR should be carried out

in the future, for example by comparing the results obtained here

with those obtained using PAR products from radiometric

observations or reanalysis data (e.g., MERRA-2). Finally,

considering uncertainties of the different products used (either

for the physical predictors or for the reference satellite-derived
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Chl) would deserve to be investigated. When available, using

pixel-by-pixel estimates of uncertainties as inputs of the

network may, for example, allow to give less importance on the

learned relationships between predictors and Chl where data

quality is lower. In addition, using metrics of performance that

include ocean color uncertainties would be useful to distinguish

errors that arise in our reconstructions due to such uncertainties

from those due to our network architecture and/or used predictive

input data.

Here, we have focused on comparing the ability of different deep

learning schemes to simulate phytoplankton variability at seasonal

and interannual timescales, and have shown that the proposed

approach outperforms previous machine learning models

introduced in the literature to achieve this task [namely the MLP,

and indirectly the less-performant SVR approach (Martinez et al.,

2020b)]. In (Martinez et al., 2020a), the SVR approach was

quantitatively compared to a coupled physical-biogeochemical

ocean model simulation (NEMO-DFS5.2-PISCES) and was found

to better reproduce patterns of satellite-derived Chl trends (but less

well captures their amplitudes) as well as its interannual variability.

This suggests that the proposed multi-mode CNN would, by extent,

also better reproduce some aspects of Chl long-term variabilities

than biogeochemical models, appearing as a complementary tool to

retrieve past Chl variability. Further work is expected to investigate

this point, especially regarding multi-decadal changes in global

phytoplankton that were pointed out between the CZCS and

SeaWiFS era (Martinez et al., 2009) using historical consistent

ocean color dataset built by Antoine et al. (2005). Here, we also

suggest that data-driven approaches can be complementary to

classical models’ studies to explore mechanisms driving

phytoplankton variabilities at large scales. For sure, coupled

physical-biogeochemical models, that are built upon explicit

formulation of processes governing phytoplankton distribution,

undoubtedly remain the most robust and straightforward way to

test impacts on primary production of processes that are well

understood and well parameterized. However, some unknown

processes would be missing, or others would be roughly

parameterized so that their impact on primary production would

be hard to assess without bias. As an example, large variations of

parameterized iron solubility in dust are reported among global

ocean biogeochemistry models, and the fixed values used globally

doesn’t allow reproducing all the regionally and temporally

variability of oceanic dust-derived dissolved iron (Tagliabue et al.,

2016). On the contrary, using dust deposition flux as inputs

predictors, data-driven methods could give new regards and

further clues on their regional impact on phytoplankton biomass

without having to explicitly parameterize bio-physical values such

as solubility. As another example, deriving information about

factors driving the phytoplankton ecosystem structure could be

achieved using the proposed multi-mode approach. This could be

done by learning and reconstructing the phytoplankton community

structure [using for example PHYSAT data (Alvain et al., 2008)]

with the actual set of predictors and assessing how their relative

importance vary in time and space. Such information is of great
Frontiers in Marine Science 16147
importance as phytoplankton taxonomic and size composition

strongly determines carbon fluxes (Boyd and Newton, 1995;

Guidi et al., 2009).
5 Conclusion

In this study, a new deep learning architecture was proposed to

reconstruct surface Chl from oceanic and atmospheric physical

predictors in the global ocean. Spatial attention mechanisms (i.e.

multi modes) were introduced into a CNN to regionally learn

relationships in a preferential way according to the modes. Its

performance was evaluated over a fully-independent time period

hosting the strong 2015/2016 El Niño event. Both mono and multi-

mode CNNs outperformed the previous state-of-the-art MLP

schemes to reconstruct spatial and temporal satellite-derived Chl

distribution while being computationally more efficient. One other

main interest of CNNs is their ability to not need explicit

geographical information as predictors (e.g. longitude and latitude)

leading to the opportunity to seize BGCPs boundaries evolutions

according to climate oscillations. In addition, the multi-mode

CNNMM8 allowed us to better capture some regional processes

than CNN1 thanks to its modes that can regionally learn specific

phytoplankton responses to the physical forcing. The multi-mode

CNNMM8 also provided insights into where and when the modes

preferentially activate, improving the interpretability of the network.

Those activations appeared to be in general agreement with known

physical-biogeochemical interactions at global scale. However, they

also allowed us to highlight an unexpected difference in the

mechanisms at play between the oligotrophic gyres of both

hemispheres. Overall, while some biases remain between the

reconstructed Chl fields and satellite observations, the proposed

multi-mode model is greatly valuable as it offers an interesting

perspective to reconstruct phytoplankton biomass over a long time-

period and new ways to explore the physical mechanisms at play.
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Underwater target detection
algorithm based on improved
YOLOv4 with SemiDSConv and
FIoU loss function

Chengpengfei Zhang1, Guoyin Zhang1, Heng Li1*, Hui Liu1,
Jie Tan2 and Xiaojun Xue1

1Faculty of Information Engineering and Automation, Kunming University of Science and Technology,
Kunming, China, 2College of Engineering, Tongren Polytechnic College, Tongren, China
Underwater target detection is an indispensable part of marine environmental

engineering and a fast and accurate method of detecting underwater targets is

essential. Although many target detection algorithms have achieved great

accuracy in daily scenes, there are issues of low-quality images due to the

complex underwater environment, which makes applying these deep learning

algorithms directly to process underwater target detection tasks difficult. In this

paper, we presented an algorithm for underwater target detection based on

improved You Only Look Once (YOLO) v4 in response to the underwater

environment. First, we developed a new convolution module and network

structure. Second, a new intersection over union loss was defined to substitute

the original loss function. Finally, we integrated some other useful strategies to

achieve more improvement, such as adding one more prediction head to detect

targets of varying sizes, integrating the channel attention into the network, utilizing

K-means++ to cluster anchor box, and utilizing different activation functions. The

experimental results indicate that, in comparison with YOLOv4, our proposed

algorithm improved the average accuracy of the underwater dataset detection by

10.9%, achieving 91.1%, with a detection speed of 58.1 frames per second.

Therefore, compared to other mainstream target detection algorithms, it is

superior and feasible for applications in intricate underwater environments.

KEYWORDS

deep learning, underwater detection, YOLO, convolutional neural network,
loss function
1 Introduction

Underwater target detection technology has been widely used in marine biodiversity

monitoring, marine ecosystem health assessment, and smart mariculture (Akkaynak and

Treibitz, 2019). Due to the difficulties in data acquisition and the intricate underwater

environment, underwater target detection has been an important and challenging task

when it comes to detecting targets. The existing research on underwater target detection
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methods can be broadly classified into two types: one is the

traditional approach based on using hand-crafted features and

shallow classifiers, and the other is a deep learning approach

based on automatic feature extraction. Traditional target

detection algorithms usually use a sliding window approach to

delineate the region of interest on the input picture that may

contain the target. Then, features will be extracted from the

region-of-interest by using feature extraction algorithms, such as

histogram of oriented gradient(HOG) (Dalal and Triggs, 2005),

oriented fast and rotated brief(ORB)(Rublee et al., 2011), and scale-

invariant feature transform(SIFT)(Lowe, 2004). Finally, classifiers

such as adaboost (Yoav and Schapire, 1997), support vector

machine (SVM) (Cortes and Vapnik, 1995), and deformable part

model(DPM) (Felzenszwalb et al., 2008). are used to classify the

extracted features. However, traditional target detection algorithms

have many disadvantages, such as their poor robustness, low

efficiency, and limited accuracy, which makes it difficult to meet

the current demand. For the past few years, deep convolutional

neural networks(DCNN) have been widely used in many fields such

as medical image semantic segmentation (Wang Z. et al., 2022),

urban land-use planning (Zhu et al., 2022), and autonomous

driving (Li and Jin, 2022), with satisfactory results. Many

approaches based on DCNN principles have been devised, and

their effectiveness has been proven in a variety of domains,

including in underwater target detection.

Target detection methods based on DCNN are gradually

evolving in two directions due to the divergent focus on detection

accuracy and detection speed. One is a region proposal-based target

detection algorithm, also called the two-stage algorithm. Among all

these algorithms, the R-CNN series is the most representative. R-

CNN (Girshick et al., 2014) was presented by R. Girshick et al. in

2014, and it significantly outperformed the mainstream algorithm

on the Pascal VOC dataset. It applies a selective search method to

engender region proposals and uses CNN to extract features. After

that, features are classified using SVM. Based on R-CNN, Fast R-

CNN(Girshick, 2015), Faster R-CNN (Ren et al., 2017), and Mask

R-CNN (He et al. 2018), many other two-stage methods have been

gradually proposed and achieved better accuracy and speed.

However, these two-stage algorithms have high computation

time, which makes it difficult to meet the needs for real-time

target detection. In order to resolve this issue, the regression-

based target detection algorithm, also called the one-stage

algorithm, was proposed. You Only Look Once (YOLO) (Redmon

et al., 2016) was first introduced by J. Redmon et al.in 2015. When it

was proposed, it attracted a lot of attention. YOLO’s core idea is to

use the whole picture as the input to the CNN and output the result

of bounding box prediction. (Zhang et al., 2022) Because of this,

YOLO has fast detection speed. Since its development, one-stage

algorithms such as single shot multibox detector (SSD) (Liu et al.,

2016) and RetinaNet (Lin et al., 2017). Were gradually proposed,

and one-stage target detection algorithms were developed rapidly.

Although most of the algorithms mentioned above have

achieved good performance in daily scenes, applying these deep

learning algorithms directly to process underwater target detection

tasks still has some problems. Firstly, the targets have a relatively

large variation in scale due to the shooting distance. Secondly,
Frontiers in Marine Science 02153
underwater images are generally low-quality due to the complex

and changing underwater environment, which means models have

a low target localization accuracy in the underwater target detection

assignment. Finally, looking at the research on underwater target

recognition based on deep learning, although most of the existing

detection methods have high recognition precision, the real-time

performance of many of them is insufficient due to their high

complexity, large number of parameters, and large scale. Therefore,

it is essential to develop an underwater target detection algorithm

that meets the needs for real-time detection while ensuring

recognition accuracy.

In this paper, we presented an algorithm for underwater target

detection based on improved YOLOv4 (Bochkovskiy et al., 2020) to

solve the above-mentioned issues. In terms of network structure, we

followed the original version, used CSPDarknet53 (Wang et al., 2020)

as the backbone, and introduced channel attention block into it to

emphasize useful informative features. Then, we constructed a new

convolution module by integrating the traditional convolution, the

depthwise separable convolution (DSC), and channel shuffle (Zhang

et al., 2018), named SemiDSConv for convenience. This module can

ensure the performance similar to a traditional convolution network,

reduce the computational cost, and speed up the inference while

solving the channel information separation problem caused by DSC.

Based on this new module, inspired by CSPNet, we further designed

the SemiDSCSP module, and applied it with the SemiDSConw

module to the neck part of the model to replace the original

convolution network and further reduce the inference time. In the

head part, we added a prediction head to help the model deal with

large changes in the targets’ scale. Meanwhile, we defined a new

intersection over union (IoU) loss function, FIoU, which boosts the

localization accuracy and the convergence speed of the model. In

comparison with the original YOLOv4, our improved YOLOv4 can

better deal with underwater target detection tasks. For the dataset of

URPC, the mAP was increased by 10.9% with the baseline and the

inference speed reaching 58.1 frames per second (FPS). Overall, the

presented algorithm demonstrates good results with a quick speed.

The contributions of our work can be summed up as follows:
1. Developed a new convolution module named SemiDSConv.

This module’s performance is close to the traditional

convolution network, but with less computation and faster

inference speed. Based on it, the SemiDSCSP module was

then designed and replaced the traditional convolution in the

neck part;

2. Defined a new IoU loss, FIoU, that obtains superior

localization accuracy and faster convergence speed;

3. Integrated some other useful tricks, such as introducing the

channel attention block which can help the network to

extract useful informative features more easily, adding a

new prediction head to deal with dramatic changes in the

scale of the underwater targets, using Mish as activation

function, and using the K-means++ clustering algorithm to

cluster anchor boxes;

4. On the URPC dataset, the proposed method achieved

91.1% mAP, outperforming the baseline by 10.9% with

58.1 FPS.
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2 Related work

2.1 YOLOv4

Since the YOLO algorithm was first presented by J. Redmon

et al. in 2015, it has received great attention among researchers.

YOLOv4 was introduced in 2020 and is one of the state-of-the-art

object detection algorithms. It greatly improved the detection

accuracy and computational speed of YOLOv3 (Redmon and

Farhadi, 2018). On COCO target detection dataset, YOLOv4

improves YOLOv3’s FPS by 12%. Compared to other one-stage

algorithms, such as SSD, YOLOv4 has a detection accuracy that far

exceeds theirs while having the speed to meet real-time detection

requirements. Compared to YOLOv5 and v7, it is lighter and has a

faster detection speed when handling underwater target detection

tasks with not much difference in accuracy. Thus, YOLOv4 is

suitable for real-time target detection tasks.

YOLOv4 mainly consists of three sections: the backbone, the

neck, and the head. YOLOv4 takes CSPDarknet53 as the backbone

network. CSPDarknet53 is composed of five large residual blocks

which contains one, two, eight, eight, and four residual units in them,

respectively. Each residual unit consists of 3*3 and 1*1 convolutional

layers. This architecture can help the network to get richer gradient

information while reducing the amount of calculation needed. In the

neck part, YOLOv4 uses PANet(Liu et al., 2018) to fuse the feature

information from different-size feature maps to enhance the ability of

the model to detect objects of various sizes. Meanwhile, Yolov4 adds

the SPP block into the network which can expand the receptive field,

prevent overfitting, and improve scale-invariance. In the end, the

extracted multi-scale feature maps are sent into the YOLOv3

detection head for detection.
2.2 Channel attention

Channel attention mechanisms have shown their utility across

many tasks. For the underwater image, typically, targets only

occupy a fraction of the whole image, and the rest is background

information. In order to minimize the distractions of background

information and highlight the target, channel attention can be used

to help distinguish the target from the background as channel

attention focuses on what is meaningful given an image (Woo et al.,
Frontiers in Marine Science 03154
2018). SENet(Squeeze-and-Excitation Network) (Hu et al., 2018)

was proposed by Jie Hu et al., which is a prominent representative of

channel attention. It is composed of two parts: a squeeze operation

and an excitation operation. The squeeze operation uses global

average pooling to aggregate the summarized information from

each channel, and the excitation operation adjusts the relevance of

each channel according to its weight. Therefore, the introduction of

the SE block can enhance the feature extraction capability of the

model. The structure of the SE block is indicated in Figure 1.
2.3 Activation functions

The activation Function is one of the crucial factors influencing

the performance of a neural network. The rectified linear unit

(ReLU) (Glorot et al., 2011) was proposed by Vinod Nair et al. in

2011. Its formula is defined in Equation (1).

fReLU(x) = max (0, x)  , x ∈ R : (1)

Due to its low computational cost and easy optimization

characteristics, ReLU is widely used in neural networks. However,

it is not without weaknesses. As shown in Equation (1), ReLU grows

unbounded and is directly truncated at negative values. The former

would lead to excessive differences in weights, resulting in reduced

accuracy. The latter would result in a Dead ReLU problem, i.e. if the

input is a negative value, the output of ReLU and the gradient will

become zero. Finally, the network parameters will not be updated.

Alex Krizhevsky proposed ReLU6 (Krizhevsky and Hinton, 2010)

to address the former issue, which is formulated in Equation (2).

fReLU6(x) = min (6,max (0, x))  , x ∈ R : (2)

But it still does not solve the Dead ReLU problem. In 2019,

Diganta Misra et al. presented Mish activation function (Misra,

2019), which can be defined as:

fMish(x) = xtanh( ln (1 + ex)), x ∈ R : (3)

Compared with ReLU, Mish is non-monotonic, smoother, and

allows a few negative weight inflow. Figure 2 shows visually the

differences between ReLU, ReLU6, and Mish. Better expressivity

and information flow are facilitated by these properties, and these

properties also make the network avoid saturation.
FIGURE 1

The structure of the SE block.
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2.4 General target detection

Since the rise of convolutional neural networks, many

researchers have continued to propose new methods and ideas

due to the need for various target detection tasks. Aiming to

improve the assignment of anchor labels in the current anchor-

based model, Kim (Kim and Lee, 2020) et al. proposed a

probabilistic model for assigning labels to anchors - Probabilistic

Anchor Assignment(PAA), the assignment criteria of which depend

on the combination of classification accuracy and IoU, rather than

IoU alone. Redundant hyperparameters such as IoU threshold and

number of positive samples, are then discarded to improve the

performance and stability of the model. Yang (Yang et al., 2022)

et al. proposed the Cascade Sparse Query (CSQ) mechanism, where

Query represents using the query passed in the deeper-level (higher-

level feature with lower resolution) layer to guide the detection of

small targets in this layer, and then predicting the query in this layer

to be further passed to the next layer. Sparse represents the

significant reduction of the computational overhead of the

detection head on the low-level feature layer by using sparse

convolution. Li(Li et al., 2022) et al. improved Multiscale Vision

Transformers which incorporates decomposed relative positional

embeddings, proposed MViTv2, and optimized the pooling

attention in the network using residual structures. After that,

many experiments have been conducted to verify the superiority

of the proposed algorithm in the fields of classification, detection,

and video tracking. To address the problem of sample scarcity in the

dataset, Hou(Hou et al., 2022) et al. creatively proposed a new idea

to explore the relationship between samples and help the network to

learn by focusing on the batch dimension and introducing the

Transformer structure in it. The proposed BatchFormer has

achieved good performance in a large number of experiments.
Frontiers in Marine Science 04155
2.5 Underwater target detection

In the past few years, with the evolution of deep learning-based

target detection algorithms, more and more researchers have been

implementing this technology in the underwater environment. In

2019, Moniruzzaman (Moniruzzaman et al., 2019) et al. constructed a

Halophila ovalis dataset that consists of 2,699 underwater

photographs of Halophila ovalis and presented Inception V2-based

Faster R-CNN network to detect seagrass. Experimentally, the

proposed network achieved a high mAP of 0.3464 on laboratory

images. In 2021, Zeng (Zeng et al., 2021) et al. presented a method to

introduce the adversarial occlusion network (AON) to the Faster R-

CNN algorithm and the resulting model achieves better robustness in

terms of underwater seafood. In the same year, Wang (Wang et al.,

2021) et al. introduced YOLOv5 for underwater target detection and

conducted a lot of detailed experiments and comparisons based on

this, and finally used the experimental results as the YOLOv5 baseline

for underwater target detection. For the task of underwater sea

cucumber target detection, Peng (Peng et al., 2021) et al. proposed

the Shortcut Feature Pyramid Network (S- FPN) and Piecewise Focal

Loss (PFL), which improved the multi-scale feature fusion approach of

the network and balanced the positive and negative samples, enabling

themAP to achieve a high accuracy of 94%. Yeh (Yeh et al., 2021) et al.

proposed an underwater target detector with joint image color

conversion for the problem of underwater image color absorption,

which converts underwater color images to grayscale images, and

improved the performance of the target detector with low

computational cost. In 2022, Hong (Hong et al., 2022) et al. used a

parameter calibration strategy to fine-tune the parameters of the Mask

RCNNmodel to detect and locate shrimp better. Cai (Cai et al., 2022)

et al. proposed a weakly supervised learning framework for

underwater object detection, using two detectors trained
FIGURE 2

Comparison between ReLU, ReLU6, and Mish.
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simultaneously and learning from each other to select cleaner samples,

which eventually achieved good performance. Chen (Chen et al., 2022)

et al. proposed the Sample-WeIghted hyPEr Network (SWIPENET)

and a novel training paradigm called Curriculum Multi-Class

Adaboost (CMA) to address both problems simultaneously for the

case of ambiguous underwater targets and the presence of many small

targets, which eventually achieved good performance. In 2023, Wang

(Wang et al., 2023) et al. proposed a new underwater target detection

algorithm based on reinforcement learning and image enhancement,

which automatically learns and adjusts the combined sequence of

underwater image enhancement methods by a neural network in

order to help the network’s detector achieve the best performance.

Although these works achieved quite a high degree of detection

accuracy, there are still some limitations to them, namely the low

detection speed. Therefore, how to ensure a high detection accuracy

with real-time rapid detection is still a research issue worthy of study.
3 Proposed model

3.1 Network structure

Considering the speed requirements of real-time detection tasks,

we chose the best-known and the most used one-stage algorithm—

YOLOv4-as our baseline. The framework of the improved YOLOv4 is

shown in Figure 3. We introduced a new convolution module and a

bottleneck structure based on it to speed up the network inference. A

new IoU loss function was developed to enhance detection precision

and the velocity of convergence. A new prediction head was added to
Frontiers in Marine Science 05156
deal with the large differences in underwater target scales. The

prediction head we added uses mainly high-resolution and shallow

features to predict, which makes it sensitive to small targets.

Therefore, the newly added prediction head and the original

prediction heads form a four-head structure that can better handle

the drastic changes in the size of underwater targets. The channel

attention module was introduced into the backbone to encourage the

network to retain more useful features. In addition, we used Mish

activation function to replace ReLU. It solves the Dead ReLU

problem, avoids network convergence slowdown, and, at the same

time, improves the accuracy of the network. Although it slightly

increases the computational cost, we deem it worthwhile.
3.2 SemiDSConv module

The depthwise separable convolution (DSC) is composed of two

parts: depthwise convolution and pointwise convolution. Depthwise

convolution convolves each channel of the input feature map

separately. If the amount of input channels is N, after convolving

each of the N channels, these feature maps are collocated together to

get an output feature map of channel N. Pointwise convolution is a

1×1 convolution. The pointwise convolution in DSC is mainly used

to allow DSC to freely change the number of output channels and to

perform channel fusion on the output feature map of depthwise

convolution. The ratio of the computational cost of DSC to

conventional convolution is illustrated in Equation (4)

k·k·n·s·s+n·m·s·s
k·s·n·m·s·s = 1

m + 1
k2 (4)
FIGURE 3

The improved YOLOv4 network structure.
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Where k·k. is the convolution kernel size. n and m denote the input

and output channels, separately. s·s represents the size of the feature

map. From the equation, it is clear that the computational cost of

DSC is much less than that of traditional convolution.

However, due to the characteristics of DSC, channel

information is computed separately from each other, resulting in

a significant reduction in its capability to extract and fuse features,

much weaker than traditional convolution. To overcome this issue,

the SemiDSConv module was designed. The structure of the

SemiDSConv module is indicated in Figure 4.

The SemiDSConv module first uses a 1*1 convolution kernel to

fuse the input features maps, while achieving channel

dimensionality reduction to reduce the computational cost of

subsequent convolution operations. After that, the feature maps

are computed through the traditional convolution and the

depthwise separable convolution, respectively. The channels are

then concatenated together. It then performs shuffle operations so

that the information between the channels is completely fused. The

SemiDSConv module effectively maintains the advantages of DSC

while minimizing the negative impact of its shortcomings on

the network.

Based on this, inspired by the CSPNet, we also designed the

SemiDSCSP module, which enables the network to better extract

and fuse the feature information. The structure of the SemiDSCSP

module is indicated in Figure 5.

It is worth mentioning that if all traditional convolutions in the

network are replaced with SemiDSConv, the number of network

layers will be too deep. This would make the resistance of data flow

too high and increase the inference time significantly. In the Neck

part, the feature map is extracted by the backbone, with smaller

width and height, less redundant repetitive information, and shorter

inference time. Therefore, we replaced traditional convolutions only

in the Neck to achieve good performance.
3.3 FIoU loss function

Due to differences in the network structure and the basic idea,

YOLO has its natural disadvantage in localization precision

compared with a two-stage algorithm. Therefore, the authors of

the YOLO series and other researchers have been exploring

strategies to address this issue. Among the various improvement
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strategies, improving the loss function is the most effective and

direct strategy. YOLOv4 includes three types of loss functions:

confidence loss, category loss, and localization loss (also called the

loss of bounding box coordinates). Different from YOLOv3,

YOLOv4 substitutes Complete-IoU (CIoU) (Zheng et al., 2021)

loss for cross entropy loss in YOLOv3 as the localization loss

function and obtains better convergence speed and accuracy (Jiao

et al., 2022). The CIoU loss was improved from Distance-IoU

(DIoU) (Zheng et al., 2020) loss. The DIoU loss and the CIoU

loss is defined in Equations (5)-(9):

LDIoU=1−IoU+
r2(p,pgt)

d2
(5)

LCIoU=1−IoU+
r2(p,pgt)

d2
+av: (6)

IoU=
A∩Agt

�� ��
A∪Agt

�� �� : (7)

a=
v

(1−IoUÞ+v : (8)

v ¼ 4
p2

( arctan  
wgt

hgt
− arctan  

w
h
)2: (9)

where p and pgt are the central points of the predicted box and the

ground-truth box. d is the diagonal length of the minimum

bounding rectangle. r (p, pgt) indicates the Euclidean distance

between p and pgt. A denotes the predicted box whereas Agt

denotes the ground-truth box. w, wgt,h, and hgt respectively

represent the width of the predicted box and ground-truth box

and the height of the two boxes.

As shown in Equations (6), (8), and (9), the newly added

penalty term av is to measure the discrepancy of aspect ratio

between the predicted box and the ground-truth box. The

experimental results indicate that, compared with previous IoU

loss functions (GIoU and DIoU) (Rezatofighi et al., 2019), the

localization accuracy and the convergence speed of the CIOU loss

have substantially increased. However, CIoU still has certain

limitations. Specifically, when {w= kwgt = khgt|k∈R+} is satisfied, v

becomes zero and the loss function will degrade to DIoU loss. This

drawback renders the convergence speed slow in some cases. For

the underwater target detection task, the slow convergence of the

loss function may cause the network to fail and to converge quickly
FIGURE 4

The structure of the SemiDSConv module.
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in a limited number of epochs due to the small number of samples.

It may also lead to overfitting if the training epochs are extended for

model convergence.

In order to address this situation, we designed a new loss

function that inherited some properties from CIoU loss and

added proper penalty terms to it. We call it Fast-IoU(FIoU); the

specific formula is shown as follows:

LFIoU=LIoU+LD+LR+LL= 1−IoU+

r2(p,pgt)
d2

+av + 
r2(h,hgt)

l2h
+
r2(w,wgt)

l2w
:

(10)

where, lh and lw are the height and width of the minimum

bounding rectangle. As shown in Equation (10), we divide the

whole loss function into four parts: the IoU loss LIoU, the distance

loss LD, the aspect ratio loss LR and the side length loss LL.
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Generally, LR and LL function together to optimize the similarity

between two boxes. If {w = kwgt, h = khgt|k ∈ R+} is satisfied,

although LR becomes zero, LL it is still minimizing the difference

between the two boxes’ width and height. The convergence process

of the CIoU and the FIoU is shown in Figure 6.

In order to verify the effect of different loss functions on the

network model performance, we evaluate FIoU loss function by

replacing CIoU with FIoU in the original YOLOv4 algorithm.

Figure 7 shows the training loss curves of two models in the

URPC dataset. As can be seen, the FIoU decreased more quickly

than CIoU in epochs 0 to 30. After 30 epochs, the curve of FIoU loss

functions was stable while CIoU was not. Although after 45 epochs,

both the FIoU and the CIoU loss functions were stabilized, FIoU

was still well below CIoU. It verifies that the FIOU loss function has

a quicker convergence rate and better regression accuracy than the

CIOU loss function.
FIGURE 6

The diagrams of prediction box regression in the first and second row respectively represent the prediction box regression process of CIoU and
FIoU. The green box refers to the ground truth box. The black box refers to the anchor box, and the red and blue one is the prediction boxes of
CIoU and FIoU, respectively.
FIGURE 5

The structure of the SemiDSCSP module.
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Overall, compared to CIoU loss, FIoU can get better localization

accuracy and convergence speed. This enables the YOLOv4

network using FIoU as the loss function to have a higher

performance than the network using CIoU as the loss function.

We substitute FIoU loss for CIoU loss in YOLOv4, hoping to render

it better for the underwater target detection task.
4 Experiments

4.1 Dataset

The dataset adopted in the paper was from the Target

Recognition Group of China Underwater Robot Professional

Competition (URPC), which includes four categories: echinus,

holothurian, scallop, and starfish. The dataset contained 4757

images in total. The dataset is a sequence of frames from multiple

video segments with a continuous distribution and a large similarity

between neighboring frames. Therefore, we shuffled the dataset

randomly and split the dataset into a training and test set at a ratio

of 4:1, then labeled the targets. In order to better simulate the real

situation in the underwater environment, we kept the images

without targets detected in the training set and test set. The

finally obtained training set contains 3806 images and the test set

contains 951 images. One practical issue deserves mention: the

resolution of images and the number of individual category samples
Frontiers in Marine Science 08159
are very unbalanced in the dataset. This would bring challenges to

the training of the network.
4.2 Model evaluation metrics

In the field of target detection, Average Precision(AP) is the metric

most commonly used to evaluate the performances of the model.

Before introducing AP, we present a brief overview of precision (P)

and recall (R), which are computed by Equations (11) and (12):

P= TP
TP+FP �100%: (11)

R  ¼  
TP

FN+TP
�100% (12)

where TP, FP and FN refers to the positive samples predicted to

be positive by the model, the negative samples predicted by the

model to be positive, and the positive samples predicted to be

negative by the model, respectively.

Because P and R are interactive, to combine the two metrics, AP

is introduced to evaluate the goodness of the detection accuracy of

the model, as defined in Equation (13):

AP=
Z1

0

P(R)dR: (13)
FIGURE 7

Curves of the FIoU and CIoU loss values with the epoch increasing.
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In multi-class target detection tasks, mean Average Precision is

commonly used to evaluate the overall model performance.

Namely, AP values were averaged for each category. The equation

for calculating mAP as defined below:

mAP= 1
no

n

i=0
AP: (14)

where n refers to the number of types.
4.3 Experimental environment and
parameter settings

We implement the proposed method on Python 3.9.7 and

Pytorch 1.8.1. All the methods were trained and tested using an

NVIDIA RTX3090 GPU and an Intel Xeon E7-4809 v3 CPU.

During the training phase, we set the initial training

hyperparameters for each group of experiments to be the same to

ensure the fairness of our experiments. The resolution of the input

images were consistently set to 640 × 640. To prevent the gradients

from exploding when the learning rate was high, the learning rate

was tuned based on the cosine annealing strategy (Loshchilov and

Hutter, 2016).

YOLOv4 algorithm expands the anchor mechanism. Setting a

predefined prior frame can well represent the original state of the

target to be detected and get a more reasonable potential

distribution of data sample bounding boxes. The high-quality

anchor can play an optimal role in the process of small target

detection and post-processing prediction. Therefore, when training

underwater data, it is very important to set appropriate anchors

according to the characteristics of the underwater dataset. In this

paper, we used the K-means++ (Arthur and Vassilvitskii, 2007)

clustering algorithm to cluster anchor boxes in the URPC dataset.

Finally, we obtain the anchor parameters’ fit among the underwater

targets. The clustered anchor boxes are (17,14), (24,21), (31,28),

(37,39), (48,32), (54,46), (69,62), (92,89), and (144,129).

The specific settings of the other hyperparameters are shown

in Table 1.

The loss function curves of the proposed method are

demonstrated in Figure 8, which contains three parts: localization

loss, classification loss, and confidence loss. From the figure, it can

be noted that all losses steadily decrease with the number of epochs.

The model converged in under 100 epochs.

In the testing stage, all the resolutions of the input image were

consistently set to 640 × 640. The IoU threshold was set to 0.4. All

other parameters were the same. During the test, only one GPU was
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used uniformly for testing. The average of the 10 test results for the

entire test set test time was considered as the final prediction time.
4.4 Experimental results and analysis

4.4.1 Ablation experiments
To verify the effectiveness of the proposed model or every

submodule, we present ablation experiments in this paper.

Table 2 shows the results of the ablation experiments. As listed

in Table 2, Model 1(baseline) was the original YOLOv4 network

structure. Model 2 replaced the ReLU activation function in Model

1 with the Mish activation function. Model 3 replaced the CIoU loss

function in Model 2 with our proposed FioU loss function. Model 4

was model 3 with SemiDSConv and SemiDSCSP. Model 5 was the

proposed four-head structure based on model 4 and model 6 was

the model in which the SE channel attention mechanism module

was embedded into Model 5.

The results showed that both Model 2 and Model 5 have

improved performance separately to varying degrees compared to

the previous model. In comparison to Model 2, Model 3, which used

FIoU loss function, increased the mAP by 4.3%. The proposed

Model 4 increased the mAP by 3.7% and also improved the

detection speed by about 14 FPS. After embedding SE channel

attention into the network, the proposed Model 6 attained the best

performance. Compared to the original YOLOv4 algorithm (Model

1), Model 6 ‘s mAP increased from 80.2% to 91.1%, an increase

of 10.9%.

It may be noted that the presented model not only reduces the

computational cost and improves the detection speed, but also

achieves good performance compared to the baseline.

4.4.2 Detection results comparison
To demonstrate the superiority of the proposed method in the

detection of underwater targets, we compared it with the original

YOLOv4 algorithm and six other methods: YOLOv5, YOLOv7

(Wang CY, et al., 2022), Tiny YOLOv4, YOLO-Fish(Al Muksit

et al., 2022), Faster R-CNN, and SSD. All tests were performed on

the URPC dataset. The results of these experiments are shown

in Table 3.

It can clearly be seen from Table 3 that the presented method

has the highest mAP, while the detection speed is faster than the

baseline, meeting the demand for real-time detection.

Figure 9 indicates the visualization experimental result of

YOLOv4, Tiny-YOLOv4, YOLOv5, YOLOv7, and our method for

underwater detection on the URPC dataset. As can be discerned
TABLE 1 Hyperparameter settings.

Training Epochs Batch Size Learning Rate Weight Decay Momentum Cosine Annealing

100 8 0.00522 0.00044 0.98 0.114

Translate (Image
Translation) Scale (Image Scale)

Fliplr
(Image Flip
Left-Right)

Flipud (Image Flip
Up-Down) Mosaic Mixup

0.0726 0.9 0 0.5 0.932 0
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from Figure 9, the detection result of our method was better than

YOLOv4, and considerably better than the Tiny YOLO v4.

To better demonstrate the detection results of our proposed

algorithm with other algorithms, we compared our proposed

algorithm with YOLOv5 and YOLOv7 in detail. Figure 10 shows the

detection results of the three algorithms. As shown in the figure, the

targets marked with red-dashed boxes in the figure have obscure and

blurred edges, which are difficult to distinguish from the background,

for which our algorithm can still identify and label well. At the same
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time, many targets underwater are easily misidentified due to the

complex environment, and the yellow-dashed boxes in the figure mark

the targets that are misidentified by the algorithm. As can be seen, our

proposed algorithm has a low false detection rate and is suitable for

using in complex underwater environments.

All the experimental results show that our proposed method

achieves a good trade-off between detection accuracy and detection

speed, which means that it is considered superior for underwater

target detection.
TABLE 2 Results of ablation experiments.

Model

Method

mAP(%)* Speed
(FPS)Baseline Mish FIoU Semi-

DSConv New Head SE

Model1 √ 80.2 51.2

Model2 √ 80.6(+0.4) 49.3

Model3 √ √ 84.9(+4.3) 49.3

Model4 √ √ √ 88.6(+3.7) 63.4

Model5 √ √ √ √ 90.5(+1.9) 58.5

Model6 √ √ √ √ √ 91.1(+0.6) 58.1
front
*The value within the bracket denotes the improvement compared to the previous model
TABLE 3 Experimental results of different algorithms on the URPC dataset.

Method mAP
(%)

Scallop
(%)

Starfish
(%)

Holothurian
(%)

Echinus
(%)

Model Size
(MB)

Speed
(FPS)

YOLOv4 80.2 73.5 87.2 77.7 82.3 204.8 51.2

YOLOv5 80.4 72.9 87.4 76.3 84.8 243.2 44.7

YOLOv7 80.5 73.6 89.7 73.7 85.1 186.0 48.9

YOLO-Fish 77.5 69.1 86.7 71.6 82.6 234.8 45.6

Tiny YOLOv4 63.7 58.5 70.8 56.5 69.0 23.0 114.9

Faster
R-CNN

84.4 78.2 93.3 79.1 86.9 419.2 4.8

SSD 61.5 59.3 68.4 56.0 62.2 36.4 72.3

Ours 91.1 86.2 93.2 89.7 95.2 182.7 58.1
A B C

FIGURE 8

The curves of the loss values: (A) localization loss; (B) classification loss; (C) confidence loss.
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FIGURE 9

Visualization comparison of detection results with YOLO v4, Tiny YOLO v4, YOLOv5, YOLOv7, and ours.
FIGURE 10

More detailed visualization comparison of detection results with YOLOv5, YOLOv7, and ours.
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5 Conclusions

Detecting targets with good accuracy and fast detection speed in

underwater environments is a challenging problem. In this paper,

we presented a real-time underwater target detection algorithm

based on improved YOLOv4. In our work, we first developed a new

convolutional module and network structure to enhance the feature

extraction capability for the model, reduce the computational effort,

and speed up the model inferencing. Then, we defined a new IoU

loss that improves the target detection performance and the

convergence speed of the network. Meanwhile, we optimized the

network model and made some other small improvements. We

added a new prediction head to handle dramatic changes in the

scale of the underwater targets and embedded the channel attention

block in the network, which makes the detection and classification

of the network more accurate. Experiments show that the presented

model achieves 91.1% mAP and 58.1 FPS detection speed on the

URPC dataset, outperforming the other listed algorithms in terms

of combined performance, which indicates that the proposed model

has significant advantages in handling underwater target detection

tasks and is more robust in complex underwater environments.

In our future work, how to compress model size to design a

more lightweight network and make it applicable to small,

embedded devices while maintaining accuracy is an issue that

merits further research.
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Estimating precision and
accuracy of automated video
post-processing: A step towards
implementation of AI/ML for
optics-based fish sampling

Jack H. Prior1*, Matthew D. Campbell2, Matthew Dawkins3,
Paul F. Mickle4, Robert J. Moorhead5, Simegnew Y. Alaba5,
Chiranjibi Shah5, Joseph R. Salisbury6, Kevin R. Rademacher2,
A. Paul Felts2 and Farron Wallace7

1Southeast Fisheries Science Center, Northern Gulf Institute – Mississippi State University, Pascagoula,
MS, United States, 2Southeast Fisheries Science Center, Population and Ecosystem Monitoring
Division, National Marine Fisheries Service, Pascagoula, MS, United States, 3Kitware, Inc., Clifton Park,
NY, United States, 4Stennis Space Center, MSU Science and Technology Center, Northern Gulf
Institute – Mississippi State University, Stennis Space Center, MS, United States, 5Mississippi State
University (MSU) Science and Technology Center, Northern Gulf Institute – Mississippi State
University, Starkville, MS, United States, 6Technical and Engineering Support Alliance (TESA) ProTech
Contract Company (JV), Rockville, MD, United States, 7Southeast Fisheries Science Center, Fisheries,
Assessment, Technology, and Engineering Support Division, National Marine Fisheries Service,
Galveston, TX, United States
Increased necessity to monitor vital fish habitat has resulted in proliferation of

camera-based observation methods and advancements in camera and

processing technology. Automated image analysis through computer vision

algorithms has emerged as a tool for fisheries to address big data needs,

reduce human intervention, lower costs, and improve timeliness. Models have

been developed in this study with the goal to implement such automated image

analysis for commercially important Gulf of Mexico fish species and habitats.

Further, this study proposes adapting comparative otolith aging methods and

metrics for gauging model performance by comparing automated counts to

validation set counts in addition to traditional metrics used to gauge AI/MLmodel

performance (such as mean average precision - mAP). To evaluate model

performance we calculated percent of stations matching ground-truthed

counts, ratios of false-positive/negative detections, and coefficient of variation

(CV) for each species over a range of filtered outputs using model generated

confidence thresholds (CTs) for each detected and classified fish. Model

performance generally improved with increased annotations per species, and

false-positive detections were greatly reduced with a second iteration of model

training. For all species and model combinations, false-positives were easily

identified and removed by increasing the CT to classify more restrictively. Issues

with occluded fish images and reduced performance were most prevalent for

schooling species, whereas for other species lack of training data was likely

limiting. For 23 of the examined species, only 7 achieved a CV less than 25%.

Thus, for most species, improvements to the training library will be needed and

next steps will include a queried learning approach to bring balance to the
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models and focus during training. Importantly, for select species such as Red

Snapper (Lutjanus campechanus) current models are sufficiently precise to begin

utilization to filter videos for automated, versus fully manual processing. The

adaption of the otolith aging QA/QC process for this process is a first step

towards giving researchers the ability to track model performance through time,

thereby giving researchers who engage with the models, raw data, and derived

products confidence in analyses and resultant management decisions.
KEYWORDS

fisheries, machine learning, BRUVS, Maxn, Gulf of Mexico, automation
1 Introduction

Management of fish populations requires estimates of

abundance, age/length composition, fecundity, mortality, and

other life history variables sampled representatively from a stock

(Jennings and Kaiser, 1998). Monitoring efforts are becoming

increasingly critical as populations are impacted by multiple

stressors such as fishing, climate change, biotic perturbations

(e.g., hypoxia), habitat loss, and rising levels of pollution (e.g.,

microplastics). Historically, resource surveys were conducted

using a wide-variety of traditional fisheries gears such as trawls,

traps, and nets. Over the past 30 to 40 years, optics-based

sampling methods have become a more common practice as

they avoid issues with problematic habitats such as reefs, and

have fewer issues with size and species selectivity (Cappo et al.,

2007). Moreover, optical sampling with BRUVs (Baited Remote

Underwater Videos) is less invasive, non-lethal, and can also

provide valuable habitat data valuable for single-species and

ecosystem-based management (EBM) and ecosystem-based

fisheries management (EBFM).

One downside associated with optical sampling is the immense

amount of data collected and, in turn, the human effort required to

post-process collections (i.e. annotate). For example, one year of

sampling of the combined Gulf Fishery Independent Survey of

Habitat and Ecosystem Resources (GFISHER) and the Southeast

Area Monitoring and Assessment Reef Fish Video (SEAMAP-RFV)

surveys results in ~2000 camera deployments, ~1000 hrs of video,

and ~30 TB of data requiring annotation (hereafter GFISHER refers

to these surveys in combination). Extrapolated across NMFS

Science Centers, state agencies, academic laboratories, and non-

governmental organizations, the big-data issue quickly becomes

overwhelming. In response, the National Marine Fisheries Service

(NMFS) funded the Automated Image Analysis Strategic Initiative

(AIASI) with the goal of producing software that can be trained on

object detection and classification using artificial intelligence/

machine learning (AI/ML) across a wide variety of natural

resources. A major outcome of the AIASI was the development of

the Video and Image Analytics in the Marine Environment

(VIAME ©) software in partnership with Kitware Inc. (Clifton

Park, NY).
02166
New developments in graphics processing units (GPU)

technology and artificial AI/ML processes can provide a means to

reduce human effort for post-processing data collected in marine

habitats (van Helmond et al., 2020). Frame level count data can be

generated using algorithm outputs from which any number of

metrics (e.g., MaxN and MeanCount) could be estimated. Among

the many advantages to applying algorithms to process data over

human video readers are that processing can occur 24/7, detection

and identification are standardized to a single algorithm, inter and

intra-reader variability is reduced, and computing costs are

relatively inexpensive, particularly when considering the

efficiencies in post-processing potentially gained. Additionally,

features that may be missed by human eyes can be discerned and

recognized by computer vision. The GPU-based classifications

remain consistent and do not change based on human moods or

energy levels. Despite their burgeoning development and promise,

questions pertaining to algorithm accuracy and precision remain,

particularly those related to sampling conditions that might limit

their reliability (e.g., water visibility). This is especially important

because long-term time-series require that data annotated using AI/

ML is compatible with the human annotations conducted

historically. This is critical in cases for which historic video is

unavailable for re-processing using AI/ML methods (e.g., non-

digital formats, or lost/destroyed video).

When evaluating model performance using a subset of training

imagery, AI/ML algorithms have demonstrated excellent

performance in detection and classification of a wide-variety of

object classes (Zion et al., 2007). Yet analysis of in situ collections

show less accuracy and precision than is suggested by analyzing

precision using a subset of training imagery (Salman et al., 2020). For

instance, water turbidity and/or low light intensity may reduce

model accuracy and precision (Marini et al., 2018). In addition,

videos with increased fish density (i.e., fish/unit area) and

higher levels of species diversity may be more difficult for

algorithms to process accurately. Rugose habitats of reefs may lead

to larger numbers of false negatives/positives in fish detections due to

cryptic behavior and/or coloring and mottling that resembles

complex habitat (e.g., lionfish). Fish species of different size classes

and with different swimming or schooling behaviors may be harder

to detect or classify than others (Lopez-Marcano et al., 2022),
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especially at variable distances from a camera at a fixed position

(mobile cameras face their own challenges). Regardless of the source

of error, the main challenge is that the annotation phase of post-

processing is likely impacted by detection and identification

differences arising from variable environmental conditions in

which video is collected, and therefore great care has to be taken

to ensure that time-series remain stable relative to changes made in

post-processing methods. Put more simply, there are inevitable

differences between manual and automated processing that have to

be analyzed, evaluated and compensated for if necessary.

A common approach to solving the wide variety of problems

associated with using AI/ML for classification and enumeration

(e.g., schooling) is to use different model architectures and

mathematical algorithms. For instance, convolutional neural

networks (CNN) have been shown to produce higher accuracy

than older methods such as Support-Vector Machine (SVM)

models, Gaussian-Mixture Modeling (GMM), or You-Only-Look-

Once (YOLO) based approaches (Cui et al., 2020; Marrable et al.,

2022). Fish detection at the frame level has been achieved by many

researchers and with relatively high levels of accuracy (Chuang

et al., 2014; Villon et al., 2016; Allken et al., 2021); however, tracking

an individual across the field-of-view (FOV) by linking detections

through multiple frames has been more challenging – especially

over the course of extended videos (Ditria et al., 2020). Performance

of object detection models is most often evaluated by mAP (Mean

Average Precision), receiving operator characteristic, or precision-

recall curves, which are usually generated by testing trained models

on a fraction of the annotated images (which are not used in

training models). Literature review on the topic produced only a

single study that compares fish classification performance

alternatively to ground truth counts from unannotated video

(Connolly et al., 2021). While mAP is a reliable metric for

determining performance during training, methods for evaluating

performance must be adapted for the practical application and

Quality Assessment/Quality Control (QA/QC) of model

algorithms. One purpose of this manuscript is to propose an

automated workflow that can reliably produce equivalent data to

current manual processes and, incorporates accuracy and precision

metrics that can be tracked through time as AI/ML models improve

or as camera technology changes.

Training AI/ML models to reliably track and classify fish

requires manual annotation of each individual detected, per

frame, for all frames included in training sets. Creation of the

training library in VIAME software can include both still and video

imagery and begins with manually drawing boxes around fish

targets and labeling the target with an identification (i.e. labeled

imagery). Tracks follow individuals over video frames and may

include a fish swimming at a constant speed from one end of the

FOV to another; however, tracks quite often result in one target

passing behind another, passing behind habitat, moving into and

out of turbidity plumes, or only partially crossing the periphery of

the FOV. Manually annotating these tracks while labeling all species

is a time consuming process, but is necessary to ultimately train a

comprehensive model which requires lots of imagery for a complex

set of fish assemblages, habitats and water conditions. Many studies

have achieved high accuracy in performing similar tasks while
Frontiers in Marine Science 03167
focusing annotation on few classes of target species (Shafait et al.,

2016; Villon et al., 2016; Garcia et al., 2020; Lopez-Vasquez et al.,

2020; Tabak et al., 2020; Connolly et al., 2021); however, in high

diversity sampling stations, this could lead to a loss of community

assemblage data and increased false-positive classifications on fish

species that are detected, but not included in the training dataset

(Marrable et al., 2022).

In the early stages of the machine learning process, all

annotations must be produced manually. This initial annotation

necessitates a high cost of effort, but ultimately produces models

that have increased ability to perform fish tracking and

identification. Once a model can generate annotations with

moderate success, it can enter a stage of supervised learning. At

this point, human effort can be spent editing the computer-

generated tracks rather than manually annotating each individual.

Editing includes correcting false identifications and adjusting or

deleting bounding boxes that are out of place. Additional editing

might be required to split tracks that include multiple fish, or merge

tracks where one individual’s time in the FOV is incorrectly split up

into multiple pieces. In the supervised stage of learning, the rate of

new annotations produced for the training library is drastically

increased from the manual learning stage, driving the machine

learning process faster towards true automation. As automated

methods accelerate in the development and uptake, concurrent QA/

QC processes must be developed to evaluate outcomes with

confidence, which will be necessary when data undergo review for

use in stock assessment models.

As image libraries increase in size and complexity between

training periods, each new iteration theoretically reduces error and

increases agreement relative to validation sets. However, other

factors will impact both precision and agreement, and we

hypothesize this will likely be a function of site-specific species

assemblage, species diversity, optical conditions, fish density, and

site complexity. Based on previous studies (Marini et al., 2018;

Connolly et al., 2021), it is likely that model counts become less

accurate as fish counts increase. It is also possible that the

algorithms ability to detect and classify fish will be reduced with

increased scene complexity (e.g., complex habitat and fish density)

or under less than ideal water visibility conditions (e.g., dark and

turbid). The limits at which counts become less accurate are

important to discern for practical model implementation because

it can be used to determine which datasets models can be trusted for

automation, and which datasets still require a supervised QA/QC

process in the least. In this study, we seek to report our experience

in coming to the supervised learning stage, and evaluate model

performance as a function of a variety of precision metrics. This

study also proposes developing methods and metrics for comparing

model performance using video with known counts (i.e. validation

sets in otolith aging), in addition to traditional AI/ML model

precision metrics such as mAP.

The primary use of the combined GFISHER data set is to

estimate relative abundance for focal species primarily associated

with the snapper-grouper complex and as of 2023 has been used to

assess 19 species in 28 separate assessments (https://sedarweb.org/).

While all three surveys are now combined into a singular design

(GFISHER, Thompson et al., 2022), they were historically
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conducted under separate survey designs, with identical standard

operating procedures and cross trained staffing. Thus

implementation of automated image post-processing requires that

we understand AI/ML model agreement and precision across

multiple laboratories, video annotators, video archives, and data

sets. In addition, common precision metrics such as mAP do not

appear to be reflective of precision on full-length, high frame-rate

videos beyond the domain of the training library. Thus, a method to

evaluate agreement and precision will be necessary as post-

processing moves to implementation of AI/ML models in vital

time-series data.

Currently, manual post-processing of the GFISHER video data

sets necessitates a subsampling approach (Thompson et al., 2022) in

order to provide timely products for evaluation and use in stock

assessments (e.g., relative abundance indices). A wide variety of

metrics have been used to convert video observations into datasets

used to assess fish and among the more commonly used metrics are

MaxN (Ellis and DeMartini, 1995; Campbell et al., 2015),

MeanCount (Bacheler and Shertzer, 2015), and time-at-first-

arrival (Priede et al., 1994). Ideally, a single automated annotation

would provide a dense data set that could be used to generate any

metric currently desired. For example both MaxN and MeanCount

could be generated from a dataset with frame level identification

and counts. Developers for automated processes should not only

consider current metrics in use, but also attempt to generate data

sets that could be used to create a number of as yet envisioned

metrics that are otherwise not possible to generate due to the

aforementioned constraints (namely, time).

In lieu of creating an entirely new framework to evaluate

accuracy and precision of AI/ML models, we looked to existing

structures and methods built for otolith aging (Campana, 2001).

Our logic is that counts in a video are akin to counts of annual

otolith layers used to age fish. Each read of a video, just like an

otolith, should produce similar results across reads and thus also

provide a means by which we can evaluate precision. Further,

evidence of bias associated with a particular model will have to be

dealt with in the post-processing workflow or using analytical

approaches (Connolly et al., 2021). We propose here to make use

of the analytical approaches reviewed in Campana (2001) to create a

QA/QC process to evaluate AI/ML against manually reviewed,

ground truth data sets. This will be critical as most AI/ML

models show significant improvement with increased size of

training image sets (Ding et al., 2017). Therefore there will be a

constant need for a thorough QA/QC process so that the resultant

time-series data do not risk issues with changing detection

(increasing or decreasing), classification, and enumeration

capacity. More importantly, if models do show significant drift in

those properties, then video archives could be re-run with updated

models. Finally, this process should not be confused with validation

(Campana, 2001), but rather a way to evaluate and quantify

accuracy and precision through time and across laboratories.

Further and more complex calibration work will be required to

create a validation set (i.e., one that can be used to tune absolute

abundance or density estimates). Therefore we use the term

validation here to simply refer to the manually processed and

QA/QC videos against which precision will be measured.
Frontiers in Marine Science 04168
2 Methods

2.1 Model training

In 2020, VIAME developers, Kitware Inc., deployed the Cascade

Faster Region Neural Network (CFRNN; Cai and Vasconcelos,

2018), along with a fish-motion based tracking approach similar

to past attempts (Hsiao et al., 2014; Salman et al., 2020; Dawkins

et al., 2022). VIAME software was used to manually annotate

marine fish species on video data obtained during the combined

GFISHER reef fish video survey (Figure 1). Coincidently, in January

of 2021, a new version of VIAME (0.13.0), began to employ a two-

step process that was used to train model 2.1. The first step includes

consolidating tracking data from all labels in a single-class fish

detector/tracker (either with motion infusion (m) into the CFRNN

training, or as a single-frame classifier (s) with standard CFRNN

training). The second step trains object classifiers using each label as

an individual class. Models were trained using a 4x system of RTX

6000 GPUs.

For the fully manual training stage (hereafter ‘manual’) of the

machine learning process, we compiled the initial image library

with 61.5k frame extractions from 2018 and 2019 surveys with no

discrimination towards species or video station locations. Frames

were extracted from videos at variable rates from 1 to 10 fps. In

March of 2021 software was updated to include interface options to

annotate video in addition to single frame imagery - leading to a

rapid increase in the amount of annotations compiled in the

training set. All annotations included in the training library were

produced on videos with frame rates of at least 5 fps. During May of

2021, model 2.3 was developed with a library of 170,000 annotations

across 135 classification groups (Figure 1). The data in this model

was mostly labeled at the species level, but some classifications are at

genus or family levels if identification cannot be determined with

greater resolution. Model version 2.3 was deemed capable enough

to shift the annotation efforts from the manual process, to a semi-

automated process. Following six months of performing corrections

on model 2.3 annotations, the training library vastly expanded to its

current size at 603,533 annotations across 146 classification groups

in order to train model iteration 2.4 (Figure 1).
2.2 Model parameters

Each model package has a set of configurations and pipeline

files available that can be modified to optimize performance. To

facilitate reproduction of these methods, the following paragraphs

describe the model nomenclature and text designations within the

configuration files that can be selected or altered for different

application purposes.

There are designations for the size of video fed into networks

including 0.5x, 1.0x, 2.0x. The 0.5x size processes videos at 640x640

pixels, 1.0 at native input resolution, and 2.0x increases image

resolution by a factor of 2 to 2.5. All results reviewed here were

generated at the 1.0x scale configuration for all models. The fish

tracking pipelines have been created with two different types of

models: motion (m) and single-frame (s). The 2.4m (motion) model
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is an updated version of 2.3m but uses a larger annotation library.

Model 2.3 runs a CFRNN across two motion channels and native

intensity. Model 2.4s (single-frame) is a single-frame detector

(CFRNN without motion training), built on the same library as

2.4m, but across one optical intensity input channel.

All pipelines run two classifier models by default - a ‘big’ and

‘small’ classifier, which target larger and smaller fish (measured

via raw pixel area) for better performance at each, using the

‘resnet’ or ‘resnext’ 50 and 101 architectures (He et al., 2016; Xie

et al., 2017). Only one classifier is applied for a size dependent

detection state. The small fish classifier and big fish classifier are

based on the size of annotation boxes with limits that can be

adjusted a priori. For all three model iterations compared in this

study, the area pivots of positive 7000 and negative 7000 were used

as a threshold to discriminate between “large” and “small” fish.

This means that, in the pipeline, only one model is applied for

each detection state, greater or smaller than 7000 pixels. When the

localization area (width multiplied by height) of the bounding box

is greater than or equal to 7000 square pixels, the big classifier is

used; conversely, when less than 7000 square pixels are used, the

small classifier is employed. When under the lower bound of 1000,

no classifier is applied and the detection is labeled as an

UNKNOWNFISH. The bound of 1000 was also arbitrarily

selected, although it should be noted that these detections carry

little weight if they occurred on the same track as larger detections.
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These classifiers were trained on only small and big area input

chips, respectively, for improved classification performance in

each condition. Model 2.3 employed resnext architecture for

both the large and small classifier, while both 2.4 models used

resnext101 for the large classifier, but resnet50 for the

small classifier.
2.3 Model evaluation

Automated counts from 315, 25-minute, videos from the 2021

GFISHER combined survey were generated using models 2.3, 2.4m,

and 2.4s. Videos were annotated at a rate of 5 fps, yielding 7500

frames per video. The 315 videos were selected from stations west of

the Mississippi River Delta (-89.5 W). With each object

classification, VIAME estimates and provides a confidence value.

The confidence score is calculated in eq 1.0:

scoret(c) = (b + (1:0 − b)*
on

i=0deti
n

)*
on

i=0deti*clsi(c)

on
i=0deti

Eq 1:0(a)

OR

scoret(c) = (b + (1:0 − b)*
on

t=0fish _ conf (t)

n
)*
on

t=0fish _ conf (t)*class _ conf (t, c)

on
t=0fish _ conf (t)

Eq 1:0(b)
FIGURE 1

Combined workflow of model development and the annual survey process. MaxN manual counts are the maximum number of the same species,
observed in the same frame, during a 25-minute station video. Model nomenclature “s” denotes single-frame fish tracking algorithms and “m”
denotes motion-based tracking. Models 2.4s and 2.4m are available in a GitHub repository (https://github.com/VIAME/VIAME). These models are
also available for public use as embedded pipelines on the VIAME web application.
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Variables are given as c = the class ID; n = total number of

unique localizations along the frames of each track; deti = detection

value for a particular state in a track frame i; fish_conf(t) = fish

detection value for a particular state in track time t; clsi(c) =

classifier value for class c at the track frame i; class_conf(t,c) =

classifier confidence value for class c at time t; b = posterior

probability that a track is definitely a fish [default = 0.1].

Automated counts at the model confidence thresholds (CTs) of

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95 were used to filter

VIAME output and then subsequently compared to manually

derived and reviewed data sets for 280 stations (hereafter

validation set). It is assumed in this analysis that the manual

post-processing and estimates of MaxN counts are accurate.

However it is important to understand that these are uncalibrated

values, and thus our definition of validation set is reliant on this

assumption until a field calibration method is devised. We base our

analysis, and proposed QA/QC method, from otolith aging models

outlined in Campana (2001). Calculations were executed with the

FSA Analysis R script developed by Derek Ogle of Northland

College (Ogle, 2013). In these calculations our automated counts

by multiple models are analogous to age estimations of otoliths

generated from multiple reads against the validation set. We

calculate the percent of videos with exact agreement, percent of

videos within 1 and 2 counts, the ratios of false-positive and false-

negative detections, and model coefficient of variation (CV, %). For

each increase in CT the number of stations used for calculations is

reduced number of stations with 0 automated detections increases.

Stations with zero fish detected in automated processing were

removed from the analysis so total percent agreement would not

be inflated by agreement of zero, given that most species only

appear in a fraction of the videos. Species and model specific

estimates are calculated at each CT level, for all stations with

positive observations of the selected species (i.e. verified by

manual post-processing). CV was calculated as illustrated in

Campana (2001) and eq. 2.0 below:

CVj = 100% *

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oR

i=1
(Xij−Xj)

2

R−1

q
Xj

Eq 2:0

where Xij is the ith count of the jth number of fish, Xj is the mean

count of the jth number of fish, and R is the number of times each

fish is counted (in this case 2 – one manual, one automated).

Finally, the ratio of false-positives was determined by dividing the

number of stations with automated detections when the species was

not present in the ground truth, over the total number of stations

where the species was not present as determined by the validation set

(proportion of stations with false detections). False-negatives were

also determined by dividing the number of stations without

automated detections when the species was present in the ground

truth, over the total number of stations where the species was present

(proportion of stations with undetected species). Correlation (r2) and

slope were also calculated from the linear regression of manual versus

automated model run output. Slope was used to evaluate if the linear

relationship between manual and automated counts deviated from 1

(i.e. a 1:1 relationship), while correlation was used to evaluate

variability about that predicted relationship.
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3 Results

We used a combination of false-positive rate (proportion),

percent of exact count agreement (%), percent of data within 1-2

counts (%), and model CV (%) to assess model quality per species

and provide guidance on confidence filters to apply in post-

processing automated output from VIAME when using the

models discussed in this paper (Figures 2–5; Table 1). Evaluation

of these variables is considered collectively with more weight placed

on reducing false-positives, percent of data within 1-2 counts, and

model CV. For example, model 2.4s achieved a slightly higher

percent agreement than model 2.4m for Vermilion Snapper

(Rhomboplites aurorubens) at a CT of 0.4, but had a higher rate

of false-positives than the similarly performing model 2.4m at a CT

of 0.6 – thus 2.4m @ 0.6 was chosen as the optimal model for this

species (Figure 6). Given those criteria, we determined that model

2.4s was the optimal model for 13 of the 23 evaluated species
FIGURE 2

Percent Agreement of automated counts with top performing
model 2.4s to expert derived counts for twelve commercially and
ecologically important species of reef fish commonly observed in
the Gulf of Mexico. Lines are labeled with the initials of the species
name in the legend. Species with high percent agreement coupled
with low false-positives and CV’s can potentially filter data with
higher confidence values, whereas models with worse performance
would use a decreased confidence value to filter data.
FIGURE 3

False-positive detections of automated counts with top performing
model 2.4s to expert derived counts for twelve commercially and
ecologically important species of reef fish commonly observed in the
Gulf of Mexico. Lines are labeled with the initials of the species name in
the legend. The false-positive ratio was determined by dividing the
number of stations with automated detections when the species was
not present in the ground truth, over the total number of stations where
the species was not present as determined by the validation set.
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FIGURE 4

CV% for automated counts with top performing model 2.4s to expert derived counts for twelve commercially and ecologically important species of
reef fish commonly observed in the Gulf of Mexico. Lines are labeled with the initials of the species name in the legend. Only 7 of 23 species make it
below 25% threshold: B. capriscus, C. leucosteus, H. bermudensis, L. campechanus, P. Pagrus, S. dumerili, S. rivoliana.
FIGURE 5

Percent agreement, ratio of false-positive detections, ratio of false-negative detections, and CV values across all confidences (0.1-0.95) for models
2.3, 2.4m, and 2.4s for (Lutjanus campechanus, the most observed species of the survey) with a maximum percent agreement of 42.03, and a
minimum CV value of 24.5).
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(Table 1). For 8 species, model 2.4m was optimal. Model 2.3m,

performed better for the remaining two species. In general, model

performance was greatly improved from model iteration 2.3 to 2.4

with both fish tracking methods and across most species. In

contrast, cryptic Lionfish (Pterois sp.), the 2.4 models greatly

reduced the amount of high-confidence false-positive detections.

As a pattern for most species, counts were overestimated at low

CTs, maximum percent agreement was achieved for CTs between

0.3-0.7, and counts were underestimated at high CTs (0.8-0.95). At

the CTs showing maximum percent agreement, most of the species

were undercounted, suggesting that the models tend to make
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conservative estimates in comparison to the validation set as CTs

become more restrictive. This outcome is heavily influenced by

applying more restrictive filter criteria (increased CT) because the

sample available to analyze the data is reduced by definition (i.e.

high CTs reduce detections and thus sample sizes to

conduct analyses).

Figure 2 displays the percent agreement curves for model 2.4s

counts across 12 of the most frequently observed species and are

representative of diverse groups of fish. As most automated counts

are initially overestimated, the ratio of false-positives is also greatest

at low CTs and decreases with increasing thresholds and as low
TABLE 1 Summary of model performance for 23 commercially and ecologically important species commonly observed in the 2021 SEAMAP Reef Fish
Video Survey on reef structures along the shelf of the Gulf of Mexico West of the Mississippi River (< -89.5° W).

Species % Exact
Agreement

False- Positive
Ratio CV % of videos +/- 1 of

truth
% of videos +/- 2 of

truth
Best Model
and CT

r2 at Best
CT

Balistes capriscus 52.94 0 19.97 76.47 100 2.4s @ 0.3 0.612

Bodianus
pulchellus

42.11 0.025 59.62 94.74 100 2.4m @ 0.3 0.665

Caranx crysos 47.83 0.004 27.5 73.91 78.26 2.4s @ 0.6 0.748

Calamus leucosteus 86.96 0 7.17 95.65 100 2.4s @ 0.7 0.454

Calamus nodosus 55.56 0.004 26.34 88.89 100 2.4m @ 0.4 0.333

Chaetodon
sedentarius

70 0 12.26 100 100 2.3m @ 0.5 0.238

Haemulon
aurolineatum

38.89 0.011 52.52 66.67 77.78 2.4s @ 0.6 0.664

Holacanthus
bermudensis

75 0 8.42 100 100 2.4s @ 0.6 0.781

Lutjanus
campechanus

42.03 0.071 25.39 79.22 85.99 2.4s @ 0.7 0.944

Lutjanus griseus 33.33 0 30.55 33.33 33.33 2.4s @ 0.7 0.969

Lutjanus synagris 100 0 0 100 100 2.4s @ 0.7 –

Mycteroperca
interstitialis

100 0 0 100 100 2.4s @ 0.5 1

Mycteroperca
microlepis

16.67 0.018 117.9 100 100 2.4s @ 0.5 –

Mycteroperca
phenax

47.62 0.007 26.37 80.95 92.86 2.4m @ 0.7 0.385

Pristipomoides
aquilonaris

5 0.064 96.11 37.5 45 2.4m @ 0.6 0.174

Paranthias furcifer 16.67 0 65.72 50 50 2.4m @ 0.3 0.268

Pagrus 52.17 0.011 21.34 95.65 98.55 2.4s @ 0.6 0.741

Pterois 4 0.082 132 100 100 2.3m @ 0.8 –

Rhomboplites
aurorubens

17.02 0.082 75.54 54.26 63.83 2.4m @ 0.6 0.396

Stenotomus
caprinus

14.29 0.018 68.56 71.43 100 2.4s @ 0.5 0.848

Seriola dumerili 50 0 23.57 100 100 2.4s @ 0.95 –

Seriola rivoliana 69.57 0 14.21 86.96 95.65 2.4m @ 0.7 0.749

Serranus phoebe 50 0.021 56.31 94.44 100 2.4m @ 0.7 0.46
fr
ontiersin.org

https://doi.org/10.3389/fmars.2023.1150651
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Prior et al. 10.3389/fmars.2023.1150651
confidence identifications become filtered out (Figures 3, 5;

Table 1). False-negatives were much less common than false-

positives, but occur at a higher rate at high CTs. Whitebone

Porgy (Calamus leucosteus) was the species that achieved the

highest percent agreement (86.96) and lowest CV value (7.17),

while reducing false-positives to zero. Some maximum percent

agreements are reported as 100% (Table 1), however caution

should be made in these interpretations as sample size is greatly

reduced when using CT to filter out low confidence detections.

While there is limited performance in percent exact agreement,

automated counts for almost all species were within 1 of true counts

for at least 50% of stations where the species was detected.

Strength of the linear relationship between automated and

manual counts (r2) varied by species (0.2-0.9) and improved with

increased observations in the data (Figures 6–8; Table 1).

Correlation between automated and validation set counts was

dependent upon the number of observations in the data set, site

specific fish density, and life history patterns. For instance, Red

Snapper showed high proportions of positive observations and

yielded a strong enough correlation for symmetry tests to be

conducted (Automated MaxN = Validation Set MaxN *(0.7) + 1,

r2 = 0.9439). Results of that analysis indicate decreased reliability at

sites with species specific counts >10. Thus model accuracy

deteriorates with increasing site abundance, low count values

were always more accurate, and most of the variability is

contained to those high count values. For species with low

counts, accuracy issues have less to do with site specific

abundance and more to do with the training model itself. Scamp

(Mycteroperca phenax), show weaker correlation than Red Snapper

(Automated MaxN = Validation Set MaxN *(0.37) + 0.86, r2 =

0.3847), however have ~193k fewer annotations in the library

(Figures 7, 8; Table 2). For all species, the slope of these best-
Frontiers in Marine Science 09173
confidence regression lines are less than one, which is an additional

indication that the models conservatively undercount fish (a perfect

model would have a slope = 1). Thus models would likely be less

sensitive to increases in abundance depending on the frequency of

high counts in the database.

Increased annotations used to train models resulted in

increased accuracy and precision in most cases; however there are

species-specific complexities that confound results (Table 2). For

example, while a 180% increase in annotations led to a strong

increase in percent agreement and reduction in false-positives for C.

leucosteus, model performance does not improve similarly in

cryptic and schooling species. A 266% increase in annotations

only resulted in a 1.76% improvement in maximum percent
FIGURE 6

Comparison of automated counts at the top performing model
(2.4s) and confidence threshold (0.7) for Red Snapper, Lutjanus
campechanus (the species with the most observations across all
stations of the survey). Total agreement sample size (n) at
confidence of 0.7 was 207. Residual standard error is 1.451 on 205
df. Linear regression is VIAME MaxN = Validation Set MaxN *(0.7) + 1
with r2 of 0.9439. F-statistic is 3450 on 1 and 205 df, p = 2.2e-16.
79.22% of counts within 1, and 85.99% were within 2 of validation
set counts.
FIGURE 7

Comparison of automated counts at the top performing model
(2.4m) and confidence threshold (0.7) for Scamp, Mycteroperca
phenax (a commonly observed grouper species in the Gulf of
Mexico). Total agreement n at confidence of 0.7 = 42. Residual
standard error is 1.64 on 40 df. Linear regression is VIAME MaxN =
Validation Set MaxN * (0.37) + 0.86 with R2 of 0.3847. F-statistic is
25.01 on 1 and 40 df, p-value is 1.81e-5. 80.95% of counts within 1
of ground truth, 92.86% within 2 of ground truth.
FIGURE 8

Comparison of automated counts at the top performing model
(2.4m) and confidence threshold (0.6) for Vermilion Snapper,
Rhomboplites aurorubens (a commonly observed snapper species in
the Gulf of Mexico). Total agreement n at confidence of 0.6 = 94.
Residual standard error is 16.8 on 92 df. Linear regression is VIAME
MaxN = Manual MaxN (0.12) + 1.9 with R2 of 0.3963. F-statistic is
60.4 on 1 and 92 df, p-value is 1.073-11. 54.26% of counts within 1
of ground truth, 63.83% within 2 of ground truth.
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agreement for Lionfish. While model 2.4s could achieve 4.76%

agreement for Pterois at a CT of 0.2, this was not selected as the best

option, because low CT resulted in more false-positives than the

best 2.3 model (which tracked 4% agreement at a confidence of 0.8).

The smaller, fast-moving, and denser schooling species such as

Wenchman (Prisitpomoides aquilonaris) and Vermilion Snapper

(R. aurorubens) both had substantial increases in the number of

annotations, but achieved less than 4% increases in percent

agreement despite the massive increase in annotations used to

train the models (Table 2). Model counts for Vermilion Snapper

also produced poor linear regression fits (Automated MaxN =

Manual MaxN *(0.12) + 1.9, r2 = 0.3963; Figure 6).
4 Discussion

Our efforts to create automated, fish detection and

classification algorithms, has highlighted the importance of

understanding accuracy and precision using methods that
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analyze field-collected video against ground-truthed video

collections as a complement to methods such as mAP that

evaluate a subset of training data. Ideally this would be

accomplished using a calibrated validation set but this level of

understanding remains elusive at present. Estimation of accuracy

and precision of AI/ML models is a crucial step towards their

implementation and integration into existing post-processing

frameworks because continuity of time series is critical for use

in stock assessments. For instance, stock assessment models can

now incorporate time varying catchability (Wilberg et al., 2009),

and thus if a technology changes catchability (e.g. AI/ML catches

things humans do not), abundance estimates have to be able to

measure and compensate for that effect. Critically, current manual

methods have been vetted via thorough review in assessment or

publication outlets, and thus any automation of post-processing

will have to be validated and precision metrics tracked through

time, including estimates from historic video archives. Critically,

this study assumes that human annotation produces accurate data,

but the manual counts should not be treated as a calibrated set.
TABLE 2 Count of annotations per species that contributed to the training library for each model and the difference in maximum percent agreement
between iteration 2.3 and 2.4.

Species Classification
Number of Annotations

Difference in Max % Agreement
2.3 Count 2.4 Count % Increase

Lutjanus campechanus 32440 206452 536.4 20.7

Pagrus 15625 25303 61.9 19.45

Mycteroperca phenax 7932 13062 64.7 28

Pristipomoides aquilonaris 6462 9749 50.9 2.3

Rhomboplites aurorubens 6171 27439 344.6 3.64

Mycteroperca microlepis 5032 7836 55.7 14.2

Seriola dumerili 4519 6416 42 14.3

Serranus phoebe 3055 8299 171.7 16.7

Calamus nodosus 2941 11639 295.7 22.2

Balistes capriscus 2939 12968 341.2 14.7

Calamus leucosteus 2883 8099 180.9 53.6

Holacanthus bermudensis 2404 8256 243.4 57.1

Seriola rivoliana 2228 5505 147.1 9.6

Chaetodon sedentarius 2004 8306 314.5 -7.5

Lutjanus griseus 1902 11311 494.7 33.3

Pterois sp 1606 5878 266 1.76

Caranx crysos 1571 3747 138.5 35.3

Haemulon aurolineatum 1046 7821 647.7 29.6

Mycteroperca interstitialis 989 1016 2.7 83.3

Bodianus pulchellus 967 1032 6.7 24.4

Lutjanus synagris 642 3452 437.7 75

Paranthias furcifer 480 480 0 0

Stenotomus caprinus 12 27975 233025 14.3
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We demonstrate that model performance largely depended

upon the number of classification specific annotations used in

model training, fish density, and the incidence of various

behaviors (e.g., schooling). Regardless of model iteration and

application of a confidence filter on the data, model variability

increased with increasing number of fish observed. This effect of

decreasing precision with increased abundance is particularly

pronounced for schooling or shoaling species of fish (e.g.,

Vermilion Snapper). Cryptic and small fish (e.g., Lionfish,

Butterflyfish) were also problematic as they look very similar to

the habitat and are often not detected, presumably because the

algorithm believes them to be background (e.g., soft coral).

Regardless of the underlying source of error, the method we

propose here provides researchers with defined metrics to track

model performance as a standard component of post-processing

video data sets, will help external researchers evaluate model utility

for other projects, and suggests species specific output filters for

current SEFSC-VIAME models. We believe the current precision of

our best model (2.4s) allows for implementation of a semi-

automated approach to post-processing by pre-filtering low

complexity videos (e.g., low abundance) for full automation and

light QA/QC, versus those that will require more intensive manual

processing. Thereby we can more efficiently direct manual

annotation efforts, reduce time needed to generate usable data

sets, and reduce potential effects of reader bias.

Mean Average Precision (mAP) is a standard metric for gauging

model precision and is calculated by withholding a portion of the

training set against which precision is estimated (Padilla et al., 2020).

Efforts using a portion of the dataset (the library for iteration 2.2)

reported a mAP50 value of ~70% for detection precision and achieved

~70% for top-class accuracy (Boulais et al., 2021). For model 2.4

detection precision was reported with a mAP50 of 79% for 2.4s, and

74% for 2.4m (supplementary 1). Our analysis clearly shows that

additional metrics such as percent agreement, ratio of false-positive

detections, and CVs, are necessary for understanding accuracy and

precision of models run on naive videos as opposed to evaluation of a

subset of training data. Further, these metrics are likely more valuable

for implementation of automated methods for post-processing critical

time-series survey data as they provide direct inference to performance

against existing reads that can be thought of as validated annotations.

This is especially true for generating count data for long term time-

series containing long-length, high-resolution, and high frame-rate

videos. We believe this because mAP scores are based on a selected

level of intersection of union (IoU) between frames, and are therefore

considered a measure of frame-based precision, rather than precision

over the course of a video relative to counts (i.e. abundance). A high

mAP, may not be indicative of a models capacity to produce accurate

count estimates from novel unlabeled video sets (i.e., annual survey

collection). Recent review of fish detection and monitoring methods

(Barbedo, 2022) highlights the need for a standardized measurement

of accuracy and precision between different models working in

different applications, and especially the need for doing so with

large sets of unlabeled data that represent natural conditions. This

step towards standardization is ultimately necessary to build

trustworthy models that can emulate humans in surveys and

practical situations.
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One of the more obvious results was that increases in training

library size, and specifically to class specific annotations, resulted in

improved model performance in general and within classes.

Although sample size does generally increase model performance

the resultant datasets can be imbalanced in the direction of

ubiquitous species, an issue known as longtail distribution (Cai

et al., 2021), and which is evident in the training library used in the

set of projects dealing with this data set (Table 2, Boulais et al., 2021;

Alaba et al., 2022). The longtail problem arises naturally from the

imagery as ubiquitous species are frequently observed, and thus

labeled, even from frames in which more rare species are being

targeted. While the improvements to the models can be significant,

those gains may not benefit all classes included in a model. In

contrast, uniquely mottled and/or shaped taxa (e.g., Sheepshead –

Archosargus probatocephalus) generally required fewer annotations

to generate reasonable models than for species with conspecifics

that share similar appearance (e.g., Scamp –Mycteroperca phenax

and Yellowmouth Grouper – Mycteroperca interstitialis).

An approach to dealing with the longtail distribution problem is

continued development and integration of active learning

algorithms into the training process. Active learning algorithms

include output that directs training towards the most important

classes to add to the annotation library on which models are trained.

Thus creating a focused training for species with fewer annotations

and introducing better balance to the training set. Human

supervision combined with active-learning algorithms can begin

to produce true artificial intelligence systems that recognize what is

not understood by the neural network and can autonomously

generate new classes for the training library (Lv and Dong, 2022).

Further discussion is required to determine whether there could be

a longtail bias, based on this distribution of the annotation library,

or if such bias should be integrated into model training since it is

part of the natural system (Alaba et al., 2022). The fact that Red

Snapper has the highest rate of false-positives of any species at the

optimal CT (Table 1, Figure 3) may be evidence of longtail bias.

Recent efforts (Dawkins et al., 2022) combined several large

annotation datasets, including the annotation library used for

iteration 2.4, to train an improved and versatile tracking model in

VIAME. Following another round of library growth and training

with these foci, model performance can again be compared to gauge

improvements, along with any alternative architectures or

competing model developments. For example, mathematical

changes could be made to replace the fish detection output score,

with a dedicated classifier which asks how well the fish is showing

(i.e., a score given to each fish detection based on quality of the

image in terms of the number of pixels and the fish orientation to

the camera). The detector output is currently used as a surrogate

because its score likely has some correlation with how well the fish is

displayed, even though it wasn’t created explicitly for that purpose.

Many other adjustments to parameters can be tested within the

current model configurations due to the versatility of the VIAME

software as a machine learning application. Capabilities currently

exist to estimate lengths offish and ongoing studies are using AI/ML

for otolith age/length indices. Eventually combining these systems

will lead to the future of AI/ML based governance in fisheries

management. Given the increased performance of model 2.4s from
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2.3, there should be a reduced cost in supervised correction effort,

and therefore a more efficient path to a more proficient model

2.5 (Figure 1).

For some schooling and cryptic species, increasing the number

of annotations in the training library was not entirely effective. For

instance in the case of Vermilion Snapper the training library was

increased 344% (Table 2), but model performance showed high

variability, low percentage of exact counts, and high model CV

(~75%, Table 1). Despite increased annotation, there was minimal

improvement for Lionfish classification. We hesitate to speculate on

the reasons for variable performance improvement with annotation

increases, nor can we suggest methods to deal with this problematic

bias, but challenges with high abundance obviously translates to

issues for schooling species. The first suggestion is that knowing this

bias, we can use this in a similar way to the VIAME generated CT

data, to filter out videos for automation versus those that require

more intensive supervision or a completely manual process. For

instance if initial post-processing indicates a high number of tracks

for Vermilion Snapper, we would pull that video for intensive QA/

QC or fully manual processing. In all cases in which we see this kind

of effect the frequency distribution of high-density sites indicates

that these tend to be rare occurrences, and thus filtering in this

fashion will result in decreased annotation time and effort. Recent

efforts to mathematically deal with this issue were presented in

Connolly et al. (2021). Another approach would be to train models

to detect schools and create software functionality that would subset

the portion of the image with the school to estimate a count (Li

et al., 2022). Regardless of the approach taken there will be an

obvious need to understand model performance especially at high

abundance sites.
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VIAME model output includes classification confidence

information (i.e. CT) which can be used to filter model output

and thereby optimize workflows by decreasing post-processing

effort. The value of the CT itself is not used to determine model

performance, but it may be important for gauging performance

between models that will likely use increased training library sizes

(2.3 vs 2.4), or with different training parameters (2.4m vs 2.4s). For

instance, if the best confidence for a class is at 0.5 in model 2.3, but

0.7 in model 2.4, then that could be indicative of model

improvement. Critically we observed that we can easily reduce

false-positives by increasing confidence filters even in the worst

performing models. These false-positives were common in model

2.3 and were often associated with clouds of turbidity (Figure 9),

debris, parts of the camera array, and habitat structures. Whereas

the incidences of false-positives were greatly reduced in model 2.4,

likely as the result of improved training and better background

identification. Thus, our method provides a general framework for

fine-tuning VIAME output generated using the SEFSC models we

presented in our analysis and that are hosted online (https://

viame.kitware.com/#/root), as a tool to assist human readers in

producing accurate counts and reduce post-processing effort

(Table 1). Critically, the CT filter enables video annotators to

focus on conditions and species that require more intensive

review. For instance videos with few individuals and/or with high

confidence species could be processed using automated methods

and follow up quality control processing. Species with high

percentages of automated counts within 1 of true counts will

require minimal QA/QC compared to those with lower

percentages. In contrast, models with high abundance and/or low

confidence species would require a semi-automated approach with
FIGURE 9

Example of reduction of false-positives and increase in confidence of detection and identification (Station 762101220 as turbidity plume clears the
field of view). “50% confidence” in figure refers to the confidence threshold of the model.
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an intensive manual QA/QC process. Importantly for Red Snapper,

the 2.4s model may reliably provide automated counts for stations

in the West Gulf up to a MaxN of 10 fish. Of the 280 stations

evaluated, 244 had counts <11 Red Snapper. Thus if a request were

made for red snapper data we could reliably automate ~90% of the

reads, leaving manual annotation to the remaining 10% plus a full

QA/QC process to complete for all annotations. Further training

and testing of larger sample sizes is required to establish reliability

limits for other species. We anticipate as model performance

improves through time, annotation speed will increase due to a

reduction in effort during the quality control process.

There are also benefits for a reader viewing the low confidence

VIAME detections, as sometimes the AI/ML algorithm is better at

detecting minute differences, or was trained over a range of

augmented orientations and shades simultaneously that enables

classification on characters that a human may not have seen or be

tuned to recognize. In cases where specific classification is not

necessary VIAME has a general fish detector that can be helpful

for generating counts and for visualizing individual fish. We believe

methods outlined here will provide researchers a consistent and

robust method by which model performance can be evaluated as

technology, both on the camera and algorithm sides, continues to

improve. Importantly, this approach provides a method by which

future model performance can be gauged. In the case that ecosystem

based management processes require improved assemblage data, the

automated methods provided here would offer precision metrics that

are invaluable in calibrating and tuning ecosystem models.

Moreover, the proposed methods here for a QA/QC process could

be adapted to any type of machine learning model development in

the future, and could be beneficial both inside and outside offisheries

research to ensure globally cooperative systems of trustworthy AI.

Future efforts for model improvement must include increased

annotation for species that demonstrated high levels of

misclassification rates, decreased matching to exact counts, and

increased CV values. Methods that bring balance into the training

model are therefore needed such as the queried learning or longtail

alleviation approaches mentioned earlier (Alaba et al., 2022).

Conversely, effort should not be expended on increasing

annotations for species with associated high precision models.

Many observed species have low levels of percent agreement and
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high levels of false-positives, whereas many others have not yet been

annotated in the training library. Thus a deliberate analysis that

highlights those species is needed to help direct efforts to improve

the image library itself. At times ‘handoffs’ occur when one or more

fish cross paths and causes track identity to switch among

individuals (i.e. more than one individual included in a single

track). This can result in misclassification to the wrong species

which we hope to address with the global tracking model. Dense

schools have not been annotated and represent a gap in the

annotation library. Schools of baitfish (e.g., Scad – Figure 10),

even smaller than Vermilion Snapper, will likely require

alternative annotation methods that allow for density estimation

rather than individual tracking. Other issues such as gaps in tracks,

double-boxing of single individuals, and single-boxes on multiple

individuals can also occur but are mostly nuisances and should

reduce as software and algorithms improve. Automated workflows

show promise in these early phases of development, but for many of

the reasons highlighted here it is our opinion they will always

require some variety of human oversight, thus frameworks that

include model metadata and performance against validation sets

need to be developed in concert with the algorithms themselves.

Accuracy and precision present significant hurdles for the

implementation of automated processes, but nearly as important

will be realizing the benefits of automation in reduced annotation

time. The track-based annotation and modeling can provide more

accurate identifications because they are derived from multiple

frames strung together to create a majority-vote classification over

many frames. A single correction of a track, corrects all annotations

associated with the track in a single pass and the end result is

decreased post-processing time. Using this method increases the

number of images, fish angles, and light conditions used to classify

fish, and therefore is theoretically increasing classification

agreement. It is also beneficial from a memory-cost standpoint.

One 25-minute video, which is 7500 frames at 5 fps, is compressed

to 1.17 GB (camera specifications from this survey) but when

extracted as 7500 individual PNG files, it amounts to 9.84 GB.

This reduction in memory is due to the ability to exploit correlation

between frames in storing video. (Jain, 1989). Critically, because

VIAME produces frame level counts and identifications, any

current metric in the literature can likely be produced (e.g.,
FIGURE 10

Example of a successful detection of a Sheepshead (Archosargus probatocephalus) with juxtaposition to the breakdown of performance with large
schools of small, less distinguishable fish (Scad).
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MaxN, MeanCount, Time-At-First-Arrival, etc). This will have the

additional benefit of facilitating analysis on the use of the various

derived metrics and perhaps others not yet conceived.

Our translation of the otolith aging methodology for use in

estimating the accuracy and precision of automated image analysis

models shows promise as a means to ensure data quality for time-

series creation and for both existing and anticipated data analysis

needs. Model precision and agreement varied by species, number of

annotations used in the training set, and only slightly by choice in

tracking model (motion or single frame). CV comparisons have

historically been acceptable up to around 10% in the otolith aging

literature (Campana, 2001). Few of the CV values of the presented

species with acceptable sample sizes fall in to this acceptable range

in this analysis – only 7 of 23 species have CVs less than 25%, and

only 2 are less than 10% (Figure 4). However, for this new

application of these quality control methods, it must be decided if

those are applicable in this example or determine what level is

acceptable. There is a significant amount of investigation still

needed on this topic, but we believe the framework presented

here is a good first step towards establishment of best practices

for integration of automated image post-processing into existing

standard-operating-procedures.
5 Conclusion

Advanced technology, in particular miniaturization of computing

and sensors, is providing researchers with data and insights into

marine systems that were previously inaccessible. These technological

advancements are both a boon, in that enormous amounts of data can

be collected, but simultaneously present significant bottlenecks often

due to being limited to manual post-processing methods (i.e. most

data is in storage). Therefore, it is clear that AI/ML will be a

significant component of marine laboratory toolkits to help

facilitate post-processing necessary for further analysis and optimal

use of datasets. This is particularly important in situations for which

data timeliness is an important consideration for management

decision making processes. Our experience over the course this

investigation is that AI/ML has shown significant progress in

utility, enough that we believe their integration into post-processing

pipelines is a logical next step in the near future (e.g. 5-10 years). Our

advice for researchers interested in deployment of AI/ML in optical

post-processing is to develop accuracy and precision metrics in

concert with the models themselves. This step is critical as many

iterations of models can be simultaneously developed, but for their

proper deployment their effectiveness has to be measured objectively.

Our method presented here offers a way to judge model performance

by evaluating model accuracy and precision against ground-truthed

video sets. The method assumes a linear relationship between

ground-truthed and automated counts and thus we have a simple

model by which we can evaluate bias and drift as annual collections

are analyzed and new versions of AI/ML models are developed.

While the future is bright there remains significant hurdles associated

with cryptic, schooling species, and with those having similar looking
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conspecifics. Some problems are likely going to be resolved by

increasing the number of class specific annotations for rare species

(e.g. gag) and bringing balance to training libraries, whereas solutions

for schooling species are not as obvious and are potentially a limit of

the technology. In addition to implementing model QA/QC

protocols, programs that are looking to integrate automation into

post-processing pipelines should also look to build equivalent manual

data sets over an overlapping period of time to evaluate conservation

of important time-series data.
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EchoAI: A deep-learning based
model for classification of
echinoderms in global oceans
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Chun-Sheng Wang2, Xue-Wei Xu2, Peng Zhou2*
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Introduction: In response to the need for automated classification in global

marine biological studies, deep learning is applied to image-based classification

of marine echinoderms.

Methods: Images of marine echinoderms are collected and classified according

to their systematic taxonomy. The images belong to 5 classes, 38 orders, 145

families, 459 genera, and 1021 species, respectively. The deep learning model,

EfficientNetV2, outperforms the competing model and is chosen for developing

the automated classification tool, EchoAI. Then, the EfficientNetV2-based tool,

EchoAI is applied to each taxonomic level.

Results: The accuracy for the test dataset was 0.980 (class), 0.876 (order), 0.738

(family), 0.612 (genus), and 0.469 (species), respectively. Online prediction

service is provided.

Discussion: The EchoAI model and results are facilitated for investigating the

diversity, abundance and distribution of species at the global scale, and the

methodological strategy can also be applied to image classification of other

categories of marine organisms, which is of great significance for global marine

studies. EchoAI is freely available at http://www.csbio.sjtu.edu.cn/bioinf/EchoAI/

for academic use.

KEYWORDS

echinoderms, marine organism, deep learning, EfficientNetV2, model interpretability,
image classification
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Introduction

Extensive survey on marine biodiversity is critical to the

sustainable development of oceans, which results in significant

workloads of taxonomic determination and classification. For

instance, manually determining and classifying images of marine

organisms is labor-consuming and time-costing, which requires

experienced taxonomic researchers with strong domain knowledge.

Moreover, different taxonomic researchers may make different

decisions on the same image. Therefore, technologies of automated

image classification are greatly demanded, such as machine-learning-

based strategies, which consist of feature extraction, classification

model training, and prediction. To date, there exist some machine

learning-based approaches for automatic marine image classification.

For example, these machine learning-based approaches were first

applied in fish classifications (White et al., 2006; Larsen et al., 2009;

Alsmadi, 2010). Compared with nektons, benthic fauna is relatively

motionless, making them suitable for underwater imaging. Currently,

deep learning approaches based on convolutional neural networks

(CNNs) are increasingly being applied in studies on benthic fauna,

such as automated identification of benthic epifauna with computer

vision (Piechaud et al., 2019), automated classification of fauna in

seabed photographs (Durden et al., 2021).

Among the benthic fauna, species of Echinodermata distribute

widely in the oceans, from shallow to abyssal zone, and their

biodiversity could be an indicator for health of their habitat.

Echinodermata comprises five classes, Asteroidea (starfish),

Crinoidea (sea lilies and feather stars), Echinoidea (sea urchins),

Holothuroidea (sea cucumbers), and Ophiuroidea (brittle stars)

(Mah and Blake, 2012; Stöhr et al., 2012), which differ from each

other greatly in appearance. The differences in appearance gradually

decrease with taxonomic levels going lower, while the difficulty in

classification increases. However, existing machine learning based

approaches generally train a unified model on collected images at

different taxonomic levels. Currently there is still no specific model for

classifying echinoderms at different taxonomic levels, which is in an

urgent need for further extensive marine surveys. Therefore, an image-

based artificial intelligence classification tool EchoAI for echinoderms

at different taxonomic levels is developed in this study, including

benchmark dataset construction, model training at different

taxonomic levels, model evaluation and online application.

Materials and methods

In this study, we first collected the echinoderms images from

World Register of Marine Species (WoRMS, https://marinespecies.org).

Then, we trained a deep learning model using these collected images

according to the biological systematic classification order. In the end,

model interpretation was applied to the images for detecting the key

regions. The workflow is shown in Figure 1.
Dataset preparation

The images used in this study were retrieved from the World

Register of Marine Species (WoRMS, https://marinespecies.org),
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which focuses on a worldwide collection of information on marine

species. Moreover, the WoRMS platform contains comprehensive

taxonomic information on marine species, such as scientific names,

corresponding synonyms, and habitat information. Regarding to

the dataset at each taxonomic level, the images with missing

taxonomic information were not included in the training and

test datasets.

Since the format of the raw data downloaded from WoRMS is

not exactly the same, it is first necessary to unify the format of the

files and convert all the images to the RGB format, so that the image

data is consistent with the model input. After the format unification,

the images that are corrupted for various reasons were then

removed, including images that were lost during format

conversion, images that were formatted corruptly when they were

downloaded, and images with some special formats. Since the image

data downloaded from WoRMS contained images, such as sketch,

maps, manual screening of all the images was conducted. Finally, we

obtained the dataset for benchmarking in this study

(Supplementary Table S1). The details of the datasets for the five

classification levels are shown in Table 1.
Model architecture

EfficientNetV2 model in EchoAI
The module scaling architecture EfficientNet (Tan and Le,

2019) consists of the baseline and a range of non-independent

parameters. The most common way is to scale up ConvNets by their

depth (He et al., 2016) or width (Zagoruyko and Komodakis, 2016).

Another less common, but increasingly popular, way is to scale up

the models by image resolution (Huang et al., 2019). In previous

work, it is common to scale only one of the three dimensions: depth,

width or image size. EfficientNet proposes a simple yet effective

module scaling method. The method uniformly scales the network
FIGURE 1

The workflow of EchoAI in this study. The entire pipeline starts with
dataset preparation, followed by model training using deep-learning
model, and interpretation of the prediction results.
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width, depth, and resolution with a set of fixed scaling coefficients

(Tan and Le, 2019). This strategy can reduce the number of

parameters and the amount of computational resource, while

achieving improved performance. However, the series of

EfficientNet models still have some defects.

EfficientNetV2 is an improved model based on EfficientNet, it is

a smaller and faster group of CNNs compared to the previous

models for image recognition. Many previous works, such as FixRes

(Touvron et al., 2019), and Mix&Match (Hoffer et al., 2019), usually

keep the same regularization for all image sizes, causing a drop in

the prediction accuracy. However, EfficientNetV2 proposes a

progressive learning, in the early training epochs, they train the

network with a small image size and weak regularization, then they

gradually increase the image size and add stronger regularization

(Tan and Le, 2021). In spite of training parameter efficiency, recent

works aim to improve training or inference speed instead of the

parameter efficiency. For example, RegNet (Radosavovic et al.,

2020), ResNet (Zhang et al., 2020), TResNet (Ridnik et al., 2021),

and EfficientNet-X (Li et al., 2021) focus on GPU inference speed.

NFNets (Brock et al., 2021) and BoTNets(Srinivas et al., 2021) focus

on improving training speed. Their training or inference speed

often comes with the cost of more parameters while EfficientNetV2

aims to significantly improve both training speed and parameter

efficiency than prior methods (Tan and Le, 2021) Another

improvement of EfficientNetV2 is the use of Fused-MBConv

(Gupta and Tan, 2019). The structure of the Fused-Convolution

block is shown in Supplementary Figure 1. The use of depthwise

convolutions (Sifre and Mallat, 2014) in the shallow layers of the

network slows down the training in the early stages. EfficientNetV2

leverages the network architecture search to automatically search

for the best combination of MBConv and Fused-MBConv.

Learning rate and batch size optimization for
EfficientNetV2

The learning rate is a hyperparameter that guides how to adjust

the network weights using the gradient of the loss function. The

lower the learning rate is, the slower the loss function of the network

model changes. The low learning rate allows the model to not miss

any of the minimal values, but the model tends to get trapped in the

local minima or saddle points. Moreover, the model may fail to

converge, while higher learning rates result in faster parameter

updates. A high learning rate can lead to gradient explosion,

oscillations, etc.

Batch size is the number of samples selected for each training

session. During model training, due to the large number of data

samples, a certain amount of images from the dataset is selected in

batches for training, and then the weights are updated based on the

average value of this batch of images. If the batch size is too small,

the training time of the model will be too long and the gradient will
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oscillate severely, making the model too slow to converge. If the

batch size is too large, the gradient direction between different

batches will vary too small, making the model easy to converge at

the local optimum point.

To select the best hyperparameters for model training, empirical

hyperparameters and multiple experiments are needed to find the

hyperparameters that achieve the best performance on the

validation set using grid search, where the optimized model was

called as EchoAI (Classification of Echinoderms in the Oceans

by EfficientNetV2).

Grad-CAM for model interpretation
The interpretability of network models is of great research

importance in evaluating the model robustness. Using the Grad-

CAM approach (Selvaraju et al., 2020), the interpretability of

EchoAI can be explored, providing a visual interpretation of the

decisions for the subsequent classification levels and the accuracy

analysis of each category.

Previous work (Zhou et al., 2015) has shown that the

convolutional units of various layers of CNNs actually behave as

object detectors, even no supervision on the location of the object

was provided. CAM (Zhou et al., 2016) is class activation mapping,

it can display what the model considers to be the most important in

the image during the decision making, which is similar to a heat

map. Grad-CAM (Selvaraju et al., 2020) overcomes the

disadvantage of CAM that requires replacing the classifier to

retrain the model. The basic principle of Grad-CAM is to

calculate the weights of each feature map in the convolution layer

relative to the image class, and then maps the weighted and

summed feature maps to the original input image. The general

structure of Grad-CAM is shown in Supplementary Figure 2.

For a category c, Grad-CAM’s class activation mapping is

calculated as follows:

LcGrad−CAM = ReLU(o
i
ac
i A

i)     (1)

   ac
k =

1
Zo

c1
i oc2

j
∂ Sc
∂Ak

ij

(2)

Where Sc denotes the predicted value of the model for this image;

Z=c1×c2 denotes the size of the feature map; k denotes the k-th

channel in the feature layer A; Ak
ij denotes the data of the feature

layer A at the i-th row and j-th column position in the channel k; Ak

denotes the data of the k-th channel in the feature layer A; alpha;ck
hannel in the feature laye denotes the targeted weight parameter

of Ak.

The mechanism of Grad-CAM (Supplementary Figure 2): The

model first makes decisions on the input image, then the output of

the last convolutional layer and the final model prediction score are
TABLE 1 The number of images for the five taxonomic levels.

Category Level Class Order Family Genus Species

Number of images 4026 3996 3999 4002 3925

Category Number 5 38 145 459 1021
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obtained in the forward propagation. After back-propagating

gradient information, the Grad-CAM heat map is obtained by

summing the mean value of each point of the feature map with

the ReLU activation function.
Experiments

Model evaluation criteria
In this study, we use the accuracy as an evaluation metric to

assess the classification performance of the model which rely on a

confusion matrix (Manel et al., 2001).

accuracy =
TP + TN

TP + FP + TN + FN
    (3)

where TP, TN, FP, FN are true positives, true negatives, false

positives and false negatives.

In order to explore the performance of the training results at

each taxonomy level in the echinoderm dataset, the accuracy

metric is also extended to multi-class classification tasks. For the

overall performance, the accuracy of each taxonomy was also

evaluated separately, which takes the impact of inter-class

imbalance of the dataset on the model performance into

account. The accuracy of each taxonomy is calculated the same

as the overall accuracy of the model. For the accuracy of each

taxonomy, TP, TN, FP, FN are counted in one specific taxonomy.

While for the overall accuracy of the model, TP, TN, FP, FN are

counted in the whole dataset.
Frontiers in Marine Science 04184
Results

Learning rate and batch size optimization

In order to optimize the model performance and investigate the

relationship between the hyperparameters and the performance of

the model, we train the classification model with different learning

rates (0.01, 0.001, 0.0001) and different batch sizes (4, 8, 16) at the

class level.

As shown in Figures 2A, B, the training loss and accuracy

change with the number of iterations for the model training and

evaluation. Overall, the higher the learning rate, the faster the model

converges. When the learning rate is too low, e.g., learning

rate=0.0001, the model falls into a local optimum and cannot find

the global optimal solution, and the final training loss is higher than

the other two cases. In addition, the accuracy, both in the train and

validation sets, is also lower than the other two cases. For the

learning rates of 0.01 and 0.001, the performance of the model with

a learning rate of 0.01 is better than that of the model with a

learning rate of 0.001, both in terms of training loss and accuracy on

the train set and the validation set. Thus, 0.01 is chosen as the

learning rate of the EchoAI model in our work.

In order to select the appropriate batch size, the batch sizes are

set to 4, 8, and 16, respectively. The results of different batch sizes

are shown in Figures 2C, D. In terms of the accuracy of the training

set, the accuracy of the model with a batch size=4 is lower than that

of the model with a batch size 8 or 16 on the training set, but the

difference between the models with a batch size 8 or 16 is small.
D

A B

C

FIGURE 2

Parameter optimization of the model EchoAI with different learning rates and batch sizes. (A) is the loss and accuracy of the model in the training set
for different learning rates; (B) is the accuracy of the model in the validation set for different learning rates; (C) is the loss and accuracy of the model
in the training set for different batch sizes; and (D) is the accuracy of the model in the validation set for different batch sizes.
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From the accuracy of the validation set, the accuracy of all three

batch sizes is not very different, of which, the batch size=4 is slightly

lower. Considering that the training speed is faster with the batch

size=16, and the accuracy rates on both the train and validation sets

are good, we choose 16 as the batch size for the EchoAI model.
In-depth exploration at different
taxonomic levels

When the taxonomic levels going lower, from class to species,

the number of categories increases, from 5 (class), 38 (order), 145

(family), 459 (genus), to 1021 (species), and the number of training

samples for each category decreases a lot. The performance of the

models trained at the five taxonomic levels are shown in Figure 3.

As shown in Figure 3A, EchoAI yields the highest accuracy in the

test set at the class level, because the dataset has the least number of

categories and each category has the largest number of training

samples. The optimal model yields an accuracy of 98.0% in the test

set. EchoAI in the order level yields an accuracy of 87.6% in the test set.

The accuracy of the EchoAI model in the family level reaches 73.8% in

the test set. Based on the higher number of categories in the family

level, it can be assumed that the model under the family level also has

good predictive power. The accuracy of the EchoAI model in genus

level in the test set reaches 61.2%, with the number of categories in the

dataset from 145 to 459. The accuracy of the model in the species level

reaches 46.9% in the test set, which has expanded the number of

categories in the dataset to 1021, and the model can be considered to

still have potential predictive power. Although themodels in the family,

genus and species levels do not perform as well as the models in the

class and order levels, the EchoAI model in these levels can still be used

as a reference for manual classification.

Since there exist small sample categories in the dataset, it is

necessary to focus on the accuracy of each category in addition to the

overall accuracy (Figure 3B). The accuracies of the EchoAI model show

that there is no small sample classification problem in the classification

level of Class. In Order level, its performance is slightly worse than that

of Class level classification, but better than the other three classification

levels. It is because the number of categories in the Order level is more

than that at the Class level, but less than the others, and the number of
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small sample categories in Order level is smaller. In the classification of

the Family level, the distribution of accuracy becomes scattered, the

accuracy of some categories reach100%, but the accuracy of a few

categories is lower than 75% or even 50%. Moreover, the accuracy of

some categories is 0, which shows that the imbalance problem has a big

impact on the model performance for those minority categories.

EchoAI model uses EfficientNetV2 as the backbone network, to

demonstrate its advantage, we further compare it with ResNet (He

et al., 2016) backbone on the same echinoderm dataset. The results

are shown in Figure 4. From the loss of the training set at different

taxonomic levels (Figure 4A), the convergence speed of the EchoAI

model is faster than that of ResNet at each taxonomic level, and the

final converged loss is smaller than that of ResNet. From the accuracy

of the optimal model in the test set (Figure 4B), the accuracy of the

EchoAI model is higher than that of ResNet at each taxonomic level.

The results demonstrate that EchoAI with EfficientNetV2 yields

better performance on the echinoderm dataset than ResNet.
Model results by top-n prediction

As the classification level of the dataset gradually refines, the

number of categories of the data increases and the number of training

samples for each category decreases. When the model encounters a

more complex multi-classification task, there will be a high

probability of predicting the image as other categories, especially

for those similar categories. In the previous model training, only the

classification of the maximum probability was considered as the

predicted category. For the sake of more complete and

comprehensive evaluation of the predictive power of the model, we

use another judgment criterion for evaluating the model. The model

prediction is judged to be correct if the model has the correct category

in its top n predictions (the n highest prediction probabilities by

EchoAI model). In order to investigate the effect of different values of

n on the model evaluation, we perform the evaluation on n = 1, 2, 3, 4,

5, respectively, the results for different values of n are shown in

Figure 5. We can see that the accuracy decreases with the number of

categories and a bigger n yields a higher performance. It is worth

noting that, after adjusting the model evaluation criterion, the

accuracy of the model EchoAI trained at the species level exceeds
A B

FIGURE 3

The overall effectiveness of the EchoAI models for the test set at different taxonomic levels. (A) the change of accuracy over Epoch; (B) the
distribution of accuracy for each taxon (represented by the point) predicted by the optimized EchoAI.
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0.600 in the test set, reaching 0.678, which is considered to be more

reliable with 1021 categories at the species level.
Interpretable analysis of Grad-CAM

In this study, we analyze the impact of the model when the

classification level is deepened in three perspectives: the number of

categories, the data features in each category, and the amount of

images in each category. The information of the dataset has been

given in Table 1, and it can be assumed that the size of the data

volume at the five classification levels does not affect the model

comparison within the error range. We apply Grad-CAM on the

trained models for each category. Heat maps (Figure 6) are first

drawn by applying Grad-CAM’s model at five classification level.

The Grad-CAMheatmap shows that the “attention” of the EchoAI

model trained at the Class level is well focused on the biological object

to be recognized, and the model is not disturbed by the background

environment and color. While the attention to the background and the

object itself varies at the other classification levels. In contrast, the heat

maps of the EchoAI models at other taxonomic levels show that the
Frontiers in Marine Science 06186
models do not focus exclusively on the object themselves, and there are

even cases where most of the attention is focused on the background. A

potential explanation is that Figures 6A–F, the amount of images in this

category is small, resulting in the model not learning the discriminate

features of the objects for this category.
Demonstration and web service of EchoAI

Using the optimized EchoAI model, we demonstrate some

prediction examples (shown in Figure 7). Predictions of the above

images are all accurate and the probability of prediction is close to

100%, which reflects the strong prediction ability of the model

EchoAI. To make EchoAI be accessible for taxonomic classifications

of echinoderm images, an online prediction service of EchoAI is

provided (http://www.csbio.sjtu.edu.cn/bioinf/EchoAI/). The users

could upload their own images and conduct the prediction, by

following the instructions on the webpage.
Discussion

Although EchoAI is superior to competing methods, but its

accuracy levels may still be not high enough from the perspective of

experienced taxonomists. Identification at the family, genus and species

levels are much more difficult than that at class and order levels due to

the following reasons: 1) the images at the family, genus and species

level are very morphologically heterogeneous, which are so similar that

microscopic examination is needed; 2) The number of images for each

category at the family, genus and species level is very small, which is not

sufficient for training a high-accuracy deep model. To improve the

performance of EchoAI, the training dataset could be enlarged, even

covering the microscopic images.

Verification by the expertise is important for the images fed into

the deep model. Some images retrieved from WoRMS may not be

verified by a taxonomic expert and may be misidentified. Therefore,

EchoAI would be constantly updated along with WoRMS in case

certain image is verified by a taxonomic expert. Since there may be

misidentifications in the prediction results provided by EchoAI,

where non-experts will not be able to recognize them, EchoAI could
FIGURE 5

The top-n accuracy of EchoAI at different taxonomy levels.
A B

FIGURE 4

The performance comparison of EchoAI and ResNet on the echinoderm dataset. (A) is the loss of the training set at different taxonomic levels for
EchoAI and ResNet; (B) is the optimal accuracy of EchoAI and the ResNet on the test set at each taxonomic level.
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FIGURE 7

Illustration of image prediction results by EchoAI. (A) belongs to the category Crinoidea (class classification level); (B) belongs to the category
Paxillosida (order classification level); (C) belongs to the category Gorgonocephalidae (family classification level); (D) belongs to the category
Heterocentrotus (genus classification level); (E) belongs to the category Holothuria (Thymiosycia) impatiens (species classification level).
D

A B
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C

FIGURE 6

Comparison of the original image and Grad-CAM heat map of the Echinoidea image at the five classification levels. (A) is the original image,
(B–F) are Grad-CAM heat maps at the Class, Order, Family, Genus and Species classification levels, respectively.
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be functioned as an assistant tool for experienced taxonomists and

the misidentifications could be corrected. We expect that EchoAI

would benefit the studies on the taxonomic determination.

In future research, the dataset size can be increased and the

image quality can be further improved. Considering the difficulty of

data acquisition, the development of generative models to augment

the categories with fewer samples, especially deep diffusion models

(Yang et al., 2022), will be mainly considered. The forward diffusion

process is used to model the multi-level hidden variables for this

category of image samples, and then the inverse process is used to

extract the multi-leveled feature information of the intermediate

hidden variables using neural networks, and then the new image is

generated as synthesized training samples by inverse sampling of

the hidden variables for this category.
Conclusion

In this study, based on images collected from WoRMS, we applied

and optimized EchoAI with EfficientNetV2 as the backbone model for

classifying marine echinoderms at the levels of class, order, family,

genus, species. At the genus level, the size of the dataset is 4002 and the

total number of categories is 459. The trained model achieves an

accuracy of 0.612 in the test set. The classification by EchoAI is

interpretably analyzed using Grad-CAM, and online classification

prediction service is provided based on EchoAI. In addition, the

classification module can also be extended to other platforms, such as

laboratory image analysis equipment, underwater vehicle, etc., to help

improve the efficiency of the marine survey and real-time monitoring.

The study would help investigate the diversity, abundance and

distribution of species at a global scale, and the strategy can also be

applied to the image classification of other marine organisms.
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practices for robust training

Ignacio A. Catalán1*†, Amaya Álvarez-Ellacurı́a1†,
José-Luis Lisani2†, Josep Sánchez2, Guillermo Vizoso1,
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Further investigation is needed to improve the identification and classification of

fish in underwater images using artificial intelligence, specifically deep learning.

Questions that need to be explored include the importance of using diverse

backgrounds, the effect of (not) labeling small fish on precision, the number of

images needed for successful classification, and whether they should be

randomly selected. To address these questions, a new labeled dataset was

created with over 18,400 recorded Mediterranean fish from 20 species from

over 1,600 underwater images with different backgrounds. Two state-of-the-art

object detectors/classifiers, YOLOv5m and Faster RCNN, were compared for the

detection of the ‘fish’ category in different datasets. YOLOv5m performed better

and was thus selected for classifying an increasing number of species in six

combinations of labeled datasets varying in background types, balanced or

unbalanced number of fishes per background, number of labeled fish, and

quality of labeling. Results showed that i) it is cost-efficient to work with a

reduced labeled set (a few hundred labeled objects per category) if images are

carefully selected, ii) the usefulness of the trained model for classifying unseen

datasets improves with the use of different backgrounds in the training dataset,

and iii) avoiding training with low-quality labels (e.g., small relative size or

incomplete silhouettes) yields better classification metrics. These results and

dataset will help select and label images in the most effective way to improve the

use of deep learning in studying underwater organisms.

KEYWORDS

deep learning, mediterranean, fish, pre-treatment, YOLOv5, EfficientNet, faster RCNN
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Introduction

Underwater marine images are widely used to study fish

abundance, behavior, size structure, and biodiversity at multiple

spatial and temporal scales (Aguzzi et al., 2015; Dıáz-Gil et al., 2017;

Follana-Berná et al., 2022; Francescangeli et al., 2022). In recent

years, advances in artificial intelligence and computer vision,

specifically deep learning (DL), have enabled the reduction of the

number of hours required for manually detecting and classifying

species in images. Studies have demonstrated the capabilities of

these techniques, particularly deep convolutional networks (CNN;

LeCun et al., 1998; Lecun et al., 2015) in detecting and classifying

fish in underwater images or video streams (Salman et al., 2016;

Villon et al., 2018, see reviews in Goodwin et al., 2022; Li and Du,

2022; Mittal et al., 2022; Saleh, Sheaves and Rahimi Azghadi, 2022).

These studies have utilized different types of image databases and

have faced similar unresolved questions, such as the number of fish

needed for training ( Marrable et al., 2022), the need for color image

pre-processing (e.g., Lisani et al., 2022), the need for transfer

learning from large databases (e.g., Imagenet or coco), improving

results when working with small image areas or limited computing

power (Paraschiv et al., 2022), whether to use segmentation of

bounding boxes and how well a trained set will perform for different

habitats (backgrounds). In particular, the detection and

classification of multiple species using different combinations of

backgrounds (the “domain-shift” phenomenon: Kalogeiton et al.,

2016; Ditria et al., 2020), number of species, and labeling quality, is

an area that requires further investigation. In general, it is believed

that a greater volume of training data and a greater variety of

backgrounds can improve the performance of DL datasets

(Moniruzzaman et al., 2017; Sarwar et al., 2020; Ditria et al.,

2020). Highly varied backgrounds are typical in coastal areas,

where non-invasive video-based automatic fish censusing

methods are increasingly needed for conservation and fisheries

sustainability issues (Aguzzi et al., 2020; Connolly et al., 2021;

Follana-Berná et al., 2022). However, these types of exercises are

limited, and the need for a high number of labeled individuals from

many species can be challenging in areas or laboratories with

limited resources.

The Mediterranean Sea is an example of a scarcity of

approaches in the field of DL for fish detection. A recent search

in the Web of Science for papers on “Deep Learning”, “Fish” and

“Mediterranean” (conducted in December 2022) yielded only seven

results, with only one of them taking into account the variation of

background (seasonal variation over time, in a fixed station) in a

multispecific dataset of Mediterranean fish (Ottaviani et al., 2022).

The Mediterranean is a highly diverse sea (Coll et al., 2010) where

underwater video monitoring exercises are primarily semi-

supervised (Aguzzi et al., 2015; Dıáz-Gil et al., 2017; Marini et al.,

2018b; Follana-Berná et al., 2019, Follana-Berná et al., 2022) and

monitoring is essential due to the high impact of invasive species

and climate change (Azzurro et al., 2022). In this context, the main

objective of this work is to evaluate, for newly generated

Mediterranean fish datasets of over 20 species, the relative

importance of combining backgrounds in the detection (of “fish”)

and classification (of species), how these combinations interact with
Frontiers in Marine Science 02191
the balance/unbalance in fish labeling, and how the labeling quality

affects the quality of fish detection. Additionally, we compare, as a

function of matrix size, the classification performance of a single-

step classifier (i.e., objects are classified into specific categories)

versus a classifier requiring a two-step procedure (objects are first

classified into a generic fish category, and then classified into more

specific categories).
Material and methods

Four different underwater image datasets were constructed for

analysis (Table 1). Datasets A through C are newly generated

images and are available in a free repository (Zenodo, https://

doi.org/10.5281/zenodo.7534425). Dataset A (Figure 1) was

created using images from an underwater cabled camera located

in a wreck inside Andratx Bay on the western coast of Mallorca

Island (Subeye, https://imedea.uib-csic.es/sites/sub-eye/home_es/).

The camera (SAIS-IP-bullet cam, 2096 x 1561 pixels) was situated

within the wreck (6 m depth) and has been sending still images

every 5 mins since 2019 to our research center. Dataset B was

obtained from various underwater video surveys in Palma Bay on

the southern coast of Mallorca Island. The cameras were used either

in drop-down surveys (Go-pro Hero 3, 1920 x 1440) or were

operated by scuba divers (Go-pro Hero 7, 1920 x 1440). The

obtained images included depths ranging from 5 to 20 meters,

and balanced backgrounds, including sand, seagrass meadows and

rocks were selected (Figure 1B). In both A and B datasets, more than

20 object classes (species/genus) were observed (Table 2) and

labeled by an expert using bounding boxes. The number of

observations of each species ranged from 2 to more than 3000;

this imbalance forced us to reduce the bulk of the main analyses to 9

fish classes with a higher number of observations, although some

species with a low number of labels were included for comparison

(Table 2). Subsets of the main datasets A and B were used as

validation sets, as detailed in Table 1. Training and validation

(approx 20% of the images) were conducted using an NVIDIA

QUADRO GV100 32 GB GPU. Four small test sets (images not

belonging to the validation or training sets) were also used, both

from datasets A and B and from two external datasets. The first

external dataset (dataset C, Table 1, Figure 1) consisted of images

from a second fixed camera located at 4 m from the wreck (8 m

depth, Sony Ipela SNC-CH210 2048 x 1536 pix). Additionally, a

small set (dataset D, Table 1; see Figure 1) from the OBSEA cabled

observatory located in Catalonia, NE Spain (Aguzzi et al., 2011) was

also used as a test set (Francescangeli et al., 2023).
Datasets pre-processing and scenarios

Underwater images often exhibit low contrast, color cast, noise

and haze due to depth-dependent attenuation of light wavelengths

and the scattering effect (Hsiao et al., 2014; Wang et al., 2019; Zhou

et al., 2020; Wang et al., 2023). To improve the dataset images, we

employed the Multiscale Retinex Model (MSR, Land and McCann,

1971), which has been identified as one of the best methods for
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detecting fish for labeling purposes using different backgrounds

(Lisani et al., 2022).

After image enhancement, labeling was conducted using the

free online software Supervisely (https://supervise.ly/). Six training

datasets were created to evaluate the relevance of the type of

background and number of fish within the images for neural

network training (Table 1).

Scenario E0 included all the training images available from both

datasets A and B (15128 objects and 1338 images for training, 3314

objects and 327 images for validation). Scenario E1 was a reduced

subsample of dataset A, comprising 196 images and 3074 fishes.

Scenario E2 included all of dataset B, comprising 546 images and

3032 fishes. Scenario E3 was a balanced scenario, containing around

3000 fish for each dataset A and B. Scenario E4 contained all the

training images of dataset A (12096 objects and 762 images for

training, 2442 objects and 184 images for validation). Finally,

scenario E5 consisted of a selected group of images from both

datasets A and B (approx 1500 fish each), avoiding images that
Frontiers in Marine Science 03192
appeared to disturb the training, particularly those that did not

include small fish (<100 pixels2, Figure 2) or overlapping fish.

Fish detection and classification were compared in two steps.

First, two state-of-the-art CNNs (Faster R-CNN and YOLOv5M)

were compared across scenarios for single-class detection (fish/no

fish). Second, classification metrics were compared between the

best-performing network in classifying fish/no fish, which was then

used as both a detector and classifier, and a pure classifier network

(the latter using only the bounding boxes previously classified as

“fish”). For classification training, fish were pre-classified to the

lowest taxonomical category possible (species, genus, or family).

Models metrics

Model comparison and evaluation (see below) on validation or

test sets was conducted through the analysis of the interaction of

two standard metrics: precision (P) and recall or sensitivity (R)

(Everingham et al., 2010). For a given fish class, precision is defined
TABLE 1 Combination of images and number of fish for each of the scenarios (E0-5) used to detect fish.

Scenarios

Train and Validation
datasets

Fish or image (train/valida-
tion/test)

E0 E1 E2 E3 E4 E5

Imb; all A
& B

Imb; reduced A,
no B

Imb;
All B

Bal; A
& B

Imb; All
A

Bal; reduced and
selected A & B

A FISH (train) 12096 3074 0 3074 12096 1462

FISH (validation) 2422 892 0 892 2431 140

B FISH (train) 3032 0 3032 3032 0 1716

FISH (validation) 892 0 892 892 0 388

TOTAL FISH (train) 15128 3074 3032 6106 12096 3178

TOTAL FISH (validation) 3314 892 892 1784 2431 528

A IMAGES (train) 762 196 0 196 762 168

IMAGES (validation) 184 69 0 70 184 24

B IMAGES (train) 576 0 576 576 0 305

IMAGES (validation) 143 0 143 142 0 58

TOTAL IMAGES (train) 1338 196 576 772 762 473

TOTAL IMAGES (validation) 327 69 143 212 184 82

Test datasets

A FISH (test) 235 235 235 235 235 235

IMAGES (test) 15 15 15 15 15 15

B FISH (test) 290 290 290 290 290 290

IMAGES (test) 13 13 13 13 13 13

C FISH (test) 369 369 369 369 369 369

IMAGES (test) 43 43 43 43 43 43

D FISH (test) 103 103 103 103 103 103

IMAGES (test) 21 21 21 21 21 21
A and B datasets were split into training, validation and test sets. Further, test sets C and D were obtained from different areas and backgrounds. For classification, see further in the text. Imb,
imbalanced scenario. Bal, balanced scenario.
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as the fraction of relevant fish among all retrieved fish, whereas

recall is the fraction of retrieved and relevant fish among all relevant

fish. They are defined as:

P =
TP

TP + FP
;R =

TP
TP + FN
Frontiers in Marine Science 04193
where TP=true positive, FP=false positive and FN=false negative.

Neither P nor R provide a full picture of the model

performance. To attain a more global metric for comparisons, we

calculated the F1 score and the mean average precision (mAP). The

F1 score will only be high if both P and R are high and is calculated

as:
A

B

DC

FIGURE 1

Example images from the main coastal Mediterranean datasets (A) fixed observatory, (B) varied coastal bottoms, and two other test datasets (C) fixed
observatory in Mallorca, (D) fixed observatory in Catalonia.
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TABLE 2 Count and image example (after MSR model pre-processing) of the main fish classes appearing in datasets A and B.

Class name Example Image Occurrence in A Occurrence in B Total

Unidentified fish – 3309 771 4080

Chromis chromis 2788 1357 4145

Coris julis 7 572 579

Dentex dentex 5 0 5

Diplodus annularis 121 637 758

Diplodus puntazzo 2 5 7

Diplodus sargus 3301 12 3313

Diplodus sp. 1090 8 1098

Diplodus vulgaris 1155 379 1534

Epinephelus costae 2 0 2

Epinephelus marginatus 2 0 2

Lithognathus mormyrus 395 0 395

Mugilidae (prob Chelon) 483 0 483

Mullus surmuletus 3 12 15

Oblada melanura 972 68 1040

Pomatous saltatrix 234 0 234

Sarpa salpa 20 75 95

Seriola dumerilii 1256 0 1256

(Continued)
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F1   score =
2 · P · R
P + R

The P and R values from the nets were obtained so that they

maximized the F1 score, thus achieving their best balance. The mAP

is often used for global model comparison and is calculated as the

area under the precision vs recall curve, at all levels of intersection

over union (http://cocodataset.org/). Here, we calculated mAP@0.5,

meaning that true positives are defined as detections whose bounding

boxes have at least a 50% overlap with the ground truth bounding

boxes. This overlap is measured in terms of the Intersection over

Union (IoU), which ranges from 0 to 1, as the ratio between the area

of their intersection and the area of their union.
Frontiers in Marine Science 06195
Object detection

For object (class “fish”) detection, we first compared the

performance of Faster RCNN (Ren et al., 2015) and several

configurations of the fifth version of the You Only Look Once

(YOLO) algorithm (first described by Redmon et al., 2016), using the

implementation fromUltralytics (https://github.com/ultralytics/yolov5 ).

YOLOv5 has been shown to work particularly well in underwater

environments (Wang et al., 2021). The medium pre-trained model

from YOLOv5, YOLOv5m (pre-trained on COCO image database,

http://cocodataset.org/ ) was selected after training on the E0 scenario

with the l, m and x pre-trained models (Supplementary Table S1).
TABLE 2 Continued

Class name Example Image Occurrence in A Occurrence in B Total

Serranus scriba 17 203 220

Sparus aurata 80 0 80

Sphyraena viridis 27 0 27

Symphodus sp. 22 257 279
frontie
Some species were aggregated to a genus level if species could not be recognized, or it was a genus with many species appearing in low abundances (e.g., Symphodus).
FIGURE 2

Left panel, images excluded from scenario E5 due to small fish and abundant overlap (note inset in the lower-left picture for small fish). Right panel:
types of images included in scenario E5, selected for clearly identifiable species.
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YOLOv5m (hereafter referred to as YOLO) produced the best

compromise between metrics (mAP@0.5 = 0.84, precision=0.83,

recall=0.78) and computation time and was selected for subsequent

analyses. For Faster RCNN we used the implementation for object

detection from de TensorFlow API (https://www.tensorflow.org/

api_docs), with the ResNet50 configuration, pre-trained on ImageNet

(https://www.image-net.org/). Object detection performance was

evaluated on each training scenario using the aforementioned metrics.
Classification

Fish can be classified in a single step using the YOLO algorithm,

which scans the entire image, identifies fish, and classifies them.

Alternatively, a classifier that only operates on pre-defined

bounding boxes of fish can also be used among other possibilities.

We compared the results from a state-of-the-art classifier,

EfficientNet V2 (here forth EfficientNet) (Tan and Le, 2021)

implemented with the TensorFlow API, with those from the best-

performing YOLO model. The EfficientNet was trained on the

Google Colab platform (https://colab.research.google.com/), while

the YOLO network was trained locally on an NVIDIA GPU. An

initial comparison was conducted using two sets of increasing fish

object classes (4 and 8 classes) to observe the effect of the number of

classes and instances on classification success. Given the superior

performance of YOLO on classification (see corresponding section),

it was used to further compare the effect on increasing the number

of fish categories with more than 50 individuals (4, 8, 14 species) in

expanded class sets. Each trial was trained using only the selected

classes in each set. Confusion matrices are provided for selected

results, and specific variations in the species composition were

made, re-training the network to illustrate the confounding effect of

including new fishes at the genus level that could not be classified to

species level but were morphologically similar. Direct comparisons

between YOLO and EfficientNet performance using mAP cannot be
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made due to structural differences in the networks, so F1 score

(mean ± SD) was used to compare equal sets of species datasets.
Results

Fish detection

The comparison of the two networks, YOLO and Faster RCNN,

across six scenarios revealed that YOLO performed notably better than

Faster RCNN both in validation and test sets in most cases (Tables 3, 4)

with mAP@0.5 values over 0.8 in most scenarios in the validation

datasets (Table 3). The inferior performance of Faster RCNN was

primarily attributed to lower R values. In general, using a larger

number of fish resulted in slightly better results. However, it was

noteworthy that E5 achieved nearly as good results using one-tenth

the number of objects for training, but only considering images without

small fish and using a balanced set of backgrounds. Comparing YOLO

results in the test sets across scenarios, the following patterns were

apparent (Table 4, see Supplementary Figure S1 for examples): the

evaluation of scenarios that were not trained with either A or B datasets

performed poorly on the test sets from datasets not used in training, but

not necessarily with other never-before-seen datasets (C and D, scenarios

E2, E4). The best results across test sets were obtained using a YOLO

network trained in scenario E0 (high number of fish but unbalanced

background), followed by E3 (trained on approximately half the objects

but with balanced datasets) and E5 (half the images than E3, balanced

datasets and selected images). These three training scenarios yielded

mAP@0.5 values ranging from 0.70-0.84 across all test scenarios.
Species classification

As expected, classification metrics tended to improve with an

increasing number of objects. On average, YOLO performed better
TABLE 3 Performance metrics for each scenario computed over the training datasets (see Table 1).

Training Scenario Model P R mAP@0.5

E0 Faster RCNN 0.80 0.48 0.60

YOLO 0.83 0.78 0.84

E1 Faster RCNN 0.66 0.45 0.37

YOLO 0.75 0.75 0.77

E2 Faster RCNN 0.76 0.52 0.83

YOLO 0.84 0.73 0.80

E3 Faster RCNN 0.81 0.45 0.70

YOLO 0.82 0.73 0.80

E4 Faster RCNN 0.71 0.53 0.42

YOLO 0.81 0.79 0.84

E5 Faster RCNN 0.78 0.53 0.83

YOLO 0.88 0.71 0.83
fr
See Table 4 for test sets. Noticeably, E5 yielded relatively good results with a low number of training objects (by eliminating fish that are only dots or very difficult to recognize at the species level).
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than EfficientNet when using eight species, although both networks

performed similarly on four species (Table 5). The average F1 score

for both networks was around 0.75 for four species. For eight

species, YOLO showed around 14% higher values than EfficientNet,

with a standard deviation one order of magnitude lower. In some

cases, EfficientNet had high precision and F1 score for classes with a

low number of objects (e.g., S. scriba) when the number of classes

was low. Overall, YOLO was considered a more convenient tool,

providing reasonable results in an integrated detection and

classification process. A test for confounding species showed that

if a class that could contain two similar species was included

(Diplodus sp.), YOLO confused it with D. sargus at the same

proportion as the generic Diplodus sp. (Figure 3). The category

“background” (Figure 3, see also Figure S2) comprises different

objects depending on the matrix size. In small matrices (e.g., four

sp.), wrongly classified information is included in the background

category, which in fact contains general categories like “fish”, plus

others (See Supplementary Figure S2). When the category “fish” is

included, most of the information previously attributed to

background is, in many instances, attributed to this “fish”

category (see Figure S2). This general category is comprised by

fish that were unidentifiable at a higher taxonomic resolution.

Additionally, a large proportion of true Diplodus sp was inferred

to be background, likely due to initial labeling issues: the contour of

these Diplodus sp. could not be fully determined due to partial

overlap with other fish. Using YOLO in a larger dataset (Table S2,

Supplementary Figure S2) showed that, although the average

classification power decreased, i) increasing the number of species

did not necessarily decrease the classification success for the species

with large numbers (e.g., C.chromis, D.sargus, D.vulgaris) or

conspicuous shape differences with respect to the others (e.g.,

Mugilidae) (See Figure S1 for an example), ii) several other

species with a low number of labels were reasonably classified
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(e.g., L.mormyrus, P.saltatrix). These well-detected species were

conspicuous and largely different in shape or color from the rest

(see Table 2).
Discussion

In this paper, we present a new labeled dataset of underwater

images of coastal Mediterranean fishes and investigate the best

dataset combinations for obtaining optimal deep learning (DL)-

based classification results that can be applied to various habitats.

Firstly, we compared two popular architectures, Faster RCNN and

YOLO, in terms of their object detection capabilities. Results

indicate that YOLO significantly outperforms Faster RCNN in

detecting the category “fish” and performs better than

EfficientNet in many cases, without the need for pre-defining

bounding boxes. However, in some instances, such as classifying

conspicuous species in scenarios of limited training data, directly

utilizing bounding boxes may yield better results, as observed in

other studies (Knausgård et al., 2022).

Using YOLO, we addressed specific areas that required further

investigation, particularly the “domain shift” phenomenon

(Kalogeiton et al., 2016; Ditria et al., 2020) characterized by a

decrease in classification performance with varying habitat

backgrounds and fish species assemblages. Automatic fish

classification often involves the use of relative or absolute (e.g.,

Campos-Candela et al., 2018) abundance estimators that utilize

underwater baited cameras (Connolly et al., 2021) or cabled

observatories (Bonofiglio et al., 2022) to count, classify or track

fish (Saleh et al., 2022). These underwater images differ significantly

from typical free datasets that contain single individuals; these

images contain a high diversity of species and large variability in

abundance, resulting in reduced classification success. However, as
TABLE 4 Results of the application of YOLO to the four test datasets (never seen by the trained DL nets, see Table 1).

mAP@0.5 value for each test dataset Number of training objects

Training Scenario Model A B C D Training objects Backgrounds

Faster RCNN 0.34 0.34 0.48 0.63

E0 YOLO 0.84 0.83 0.80 0.78 15128 Unbalanced

Faster RCNN 0.35 0.16 0.47 0.57

E1 YOLO 0.82 0.34 0.78 0.83 3074 Unbalanced

Faster RCNN 0.15 0.35 0.39 0.42

E2 YOLO 0.34 0.64 0.49 0.43 3032 Unbalanced

Faster RCNN 0.32 0.30 0.47 0.55

E3 YOLO 0.82 0.81 0.80 0.76 6106 Balanced

Faster RCNN 0.35 0.18 0.48 0.74

E4 YOLO 0.86 0.45 0.79 0.82 12096 Unbalanced

Faster RCNN 0.32 0.29 0.48 0.69

E5 YOLO 0.79 0.80 0.76 0.76 3178 Balanced
Balanced and unbalanced scenarios and the number of training objects are specified.
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previously identified (e.g., Saleh et al., 2022), it is necessary to

develop models that can generalize their learning and perform well

on new, unseen data samples, bridging the gap between DL and the

requirements of image-based ecological monitoring (e.g. MacLeod

et al., 2010; Christin et al., 2019; Aguzzi et al., 2020; Goodwin

et al., 2022).
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Related to the above, another common problem in classification

is the imbalance of objects per class, as the DL model tends to weigh

more heavily on the more abundant classes. Class-aware

approaches have been proposed for fish classifications (Alaba

et al., 2022). Beyond confirming that balancing improved

classification in our datasets, we found that comparable results to

an imbalanced dataset with an order of magnitude more training

images could be obtained by carefully selecting images.

Additionally, our results showed that avoiding training with

images containing many small bounding boxes yields better

precision and recall values on validation and test sets. The

relation between object size and classification properties has been

described previously, and it is recommended to separate the

classification analyses as a function of object size (e.g., Connolly

et al., 2022). However, to our best knowledge, this practice is not

commonly used in fish ecology studies applying DL algorithms to

underwater images. Overall, the fact that a model trained with a

limited number of images performs relatively well across multiple

test scenarios is a promising result for applications in

ecological studies.

Recent reviews (e.g., Goodwin et al., 2022; Saleh et al., 2022)

have concluded that for the application of DL methods to fish

ecology research, transparent and reproducible research data and

tools are necessary. This paper aims to contribute to this goal. There

have been few studies on Mediterranean fish that have been

experimental in nature (e.g., testing new network developments

on a reduced number of species, such as Paraschiv et al., 2022 for a
TABLE 5 Results of comparable classification metrics between YOLO and EfficientNet using either 4 or 8 classes.

YOLO EfficientNet

4 classes Training objects Validation objects P R F1 score P R F1 score

C. chromis 2730 854 0.80 0.65 0.72 C. chromis 0.86 0.97 0.91

D. sargus 2281 492 0.79 0.73 0.76 D. sargus 0.81 0.85 0.83

D. vulgaris 1011 251 0.83 0.61 0.70 D. vulgaris 0.74 0.37 0.50

S. scriba 152 48 0.87 0.75 0.80 S.scriba 0.94 0.71 0.81

Av F1 score 0.75 Av F1 score 0.76

Sd F1 score 0.05 Sd F1 score 0.18

8 classes

C.chromis 2730 854 0.79 0.67 0.73 C.chromis 0.62 0.96 0.75

D.sargus 2281 492 0.73 0.75 0.74 D.sargus 0.73 0.78 0.76

D.vulgaris 1011 251 0.75 0.64 0.69 D. vulgaris 0.71 0.16 0.27

S. scriba 152 48 0.81 0.75 0.78 S.scriba 0.97 0.60 0.74

S.dumerilii 870 172 0.89 0.89 0.83 S. dumerilii 0.88 0.66 0.75

D.annularis 434 195 0.85 0.72 0.78 D. annularis 0.87 0.51 0.65

O.melanura 691 184 0.80 0.80 0.62 O.melanura 0.93 0.14 0.24

C. julis 368 132 0.78 0.78 0.82 C. julis 0.87 0.82 0.84

Av F1 score 0.75 Av F1 score 0.63

Sd F1 score 0.07 Sd F1 score 0.23
fro
Bounding boxes are extracted from 343 images.
FIGURE 3

Confusion matrix based on YOLO results for eight species,
background, and one genus (Diplodus sp) that could not be attributed
to other congeneric species. Refer to the text for further explanations.
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few pelagic species). To increase the use of DL in this field, we

concur with other authors that not only should common databases

and reproducible methods be made available (e.g., Francescangeli

et al., 2023), but also that more integrated engineers-ecologists

interactions are institutionally needed (Logares et al., 2021).

Additionally, statistical corrections to DL estimates must be

developed (Connolly et al., 2021) and the use of lighter networks

(e.g., Paraschiv et al., 2022) should become more common, as

computer power may be a significant limitation for unplugged

underwater devices (e.g., Lisani et al., 2012).

In summary, our research has discovered or reinforced several

key findings that have important implications for fish ecology.

Firstly,we found that using fast, single-step classifiers like

YOLOv5, we can classify fishes in entire images cost-effectively,

without the need for a two-step approach. Secondly, while having a

large number of labeled fish images is important, a better approach

may be to use a variety of backgrounds with a smaller, more

carefully selected set of images. When selecting images, it is

important to ensure that the bounding box fully captures the fish,

and that the bounding box is not too small relative to the image.

Lastly, we found that increasing the number of classes in the

training dataset may lower overall classification metrics, but it

may not significantly affect species with a high number of labels

and can improve the identification of less abundant species.
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Introduction: The objective of fine-grained image classification on marine

organisms is to distinguish the subtle variations in the organisms so as to

accurately classify them into subcategories. The key to accurate classification

is to locate the distinguishing feature regions, such as the fish’s eye, fins, or tail,

etc. Images of marine organisms are hard to work with as they are often taken

from multiple angles and contain different scenes, additionally they usually have

complex backgrounds and often contain human or other distractions, all of

which makes it difficult to focus on the marine organism itself and identify its

most distinctive features.

Related work:Most existing fine-grained image classification methods based on

Convolutional Neural Networks (CNN) cannot accurately enough locate the

distinguishing feature regions, and the identified regions also contain a large

amount of background data. Vision Transformer (ViT) has strong global

information capturing abilities and gives strong performances in traditional

classification tasks. The core of ViT, is a Multi-Head Self-Attention mechanism

(MSA) which first establishes a connection between different patch tokens in a

pair of images, then combines all the information of the tokens for classification.

Methods: However, not all tokens are conducive to fine-grained classification,

many of them contain extraneous data (noise). We hope to eliminate the

influence of interfering tokens such as background data on the identification

of marine organisms, and then gradually narrow down the local feature area to

accurately determine the distinctive features. To this end, this paper put forwards

a novel Transformer-based framework, namely Token-Selective Vision

Transformer (TSVT), in which the Token-Selective Self-Attention (TSSA) is

proposed to select the discriminating important tokens for attention

computation which helps limits the attention to more precise local regions.
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TSSA is applied to different layers, and the number of selected tokens in each

layer decreases on the basis of the previous layer, this method gradually locates

the distinguishing regions in a hierarchical manner.

Results: The effectiveness of TSVT is verified on three marine organism datasets

and it is demonstrated that TSVT can achieve the state-of-the-art performance.
KEYWORDS

token-selective, self-attention, vision transformer, fine-grained image classification,
marine organisms
1 Introduction

Fine-grained Image Classification (FIC) is a challenging task

which utilizes subtle variations of the same species to differentiate

the different subcategories, examples include birds (Van Horn et al.,

2015), dogs (Khosla et al., 2011), and cars (Krause et al., 2013).

Unlike general image classification, FIC requires sufficient attention

being paid to the distinguishing features between the subcategories.

There are a large number of highly similar fish and plankton in the

ocean, and the classification of these subcategories (Li et al., 2019; Li

et al., 2022) is conducive to the protection of marine ecology and

biodiversity. However, the images of marine organisms are often

taken in multi-angle and multi-scene situations, additionally, the

background of marine life images is complex, which also increases

the difficulty of recognition.

Recently, fine-grained image classification methods have made

great progress due to the development of Deep Neural Networks

(DNNs) (Simonyan and Zisserman, 2015; He et al., 2016; Liu et al.,

2022; Shi et al., 2022; Wang et al., 2022). Strongly supervised fine-

grained classification methods (Branson et al., 2014; Zhang et al.,

2014; Wei et al., 2018) require labor-intensive labeling of images, so

weakly supervised classification methods which rely only on category

labels are now commonly preferred. CNN-based weakly supervised

methods on fine-grained image classification can be mainly divided

into localization methods and feature-encoding methods.

Localization methods first locate the distinguishing regions and

then extract features from these regions for classification. For

example, some works (Ge et al., 2019; Liu et al., 2020) obtain the

discriminating bounding boxes through Region Proposal Networks

(RPNs) and then feed these regions into the backbone network for

classification. However, the bounding boxes contain a lot of

background areas with interfering information. Therefore, the

discriminating regions localized by these methods are not precise

enough. In addition, whilst the feature-encoding methods (Lin T.-Y.

et al., 2015; Yu et al., 2018) make the output of the network change

from semantic features to high-order features which can represent

fine-grained information by means of feature fusion, the high-order

features obtained by these methods have large dimensions, and the

fine-grained information is not distinguishable.

Recently, Vision Transformer (ViT) (Dosovitskiy et al., 2021)

has demonstrated potent performance on various visual tasks
02202
(Carion et al., 2020; Zheng et al., 2021; Guo et al., 2022).

Specifically, in the task of image classification, a whole image is

split into several patches, and each patch is converted into a token

through linear projection. Then, the importance of each token is

obtained through the Multi-Head Self Attention (MSA), and finally

all of the tokens are combined according to the importance for

classification. MSA in Transformer provides long-range

dependency to enhance the interaction among image patches, so

Transformer is able to locate subtle features and explore their

relations from a large global scale perspective, whereas a

traditional CNN has limited receptive fields and weak long range

relationship abilities in very high layers with fixed-size

convolutional kernels. ViT is therefore better suited to fine-

grained classification tasks. In addition to the above advantages,

ViT also has certain shortcomings, such as insufficient local sensing

ability, tedious computation of MSA, and the need to consider the

correlation among all tokens, our research is dedicated to

improving these deficiencies.

Images of marine organisms are mostly taken from the bottom

of the sea, the background of the images often contains reefs, corals

and algae, which interferes with the recognition of the marine

organisms themselves. A few images of marine life are taken from

beaches, fishing boats and other scenes, the change of scenes also

affects the identification of marine life. At the same time, due to the

irresistible factors of camera angle and distance, images of the same

subcategory show diverse global features, so paying too much

attention to the global information is not conducive to correct

classification. Examples of the three different scenarios are shown

in Figure 1.

In this paper, to reduce the interference of intra-category

diverse global information and useless background information,

we propose a novel Token-Selective Vision Transformer (TSVT) for

fine-grained image classification of marine organisms, which selects

discriminative tokens layer by layer and gradually excludes

interfering tokens. We propose a localized attention mechanism

called Token-Selective Self-Attention (TSSA) to explore contextual

information in discriminating regions and enhance the interaction

amongst selected tokens. Influenced by the idea of clustering, for

each discriminative token, only the other discriminative tokens

related to it are selected for information interaction, then the class

token integrates the information of these discriminative tokens for
frontiersin.org
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classification. Finally, we verify the efficacy of TSVT for fine-

grained image classification of marine organisms on three marine

biological datasets.

In summary, our work has the following three contributions:
Fron
• We propose TSVT, a novel Vision Transformer framework

for fine-grained image classification of marine organisms

that excludes background interference and refines the range

of distinguishing regions layer by layer.

• We propose Token-Selective Self-Attention (TSSA), which

removes the interference of irrelevant tokens, and then

establish the association of selected tokens in local regions

and extract the most discriminative features.

• We conduct experiments on three different datasets to

verify the effectiveness of our method, and show that

TSVT achieves state-of-the-art performance. Additionally,

we perform comparative experiments on TSSA ’s

parameters to further explore the impact of applying

TSSA to different layers, using different methods to select

tokens and selecting different numbers of tokens on model

performance.
2 Related work

2.1 Fine-grained image classification

2.1.1 CNN for fine-grained image classification
The fine-grained image classification methods based on CNN

are mainly divided into two categories: localization methods and

feature-encoding methods.
tiers in Marine Science 03203
The basic idea of localization methods is to locate discriminative

local regions first, and perform feature extraction on these regions,

then cascade the extracted features and then again feed them to the

sub-network for classification. Earlier localization methods (Zhang

et al., 2014; Lin D. et al., 2015) rely on additional manual annotation

information such as object bounding boxes and part annotation to

help the network find the region with the most representative

features. However, since such annotations are time-consuming

and labor-intensive, more weakly supervised methods which only

require image-level labels are preferred. Some methods (Ge et al.,

2019; Liu et al., 2020) use RPN to obtain discriminative bounding

boxes and input the selected feature regions into the network to

capture local features. In addition, there are also methods to locate

discriminative regions by utilizing an attention mechanism: RA-

CNN (Fu et al., 2017) proposed Recurrent Attention to select a

series of distinguishing regions for attention mapping in a coarse-

to-fine manner; MA-CNN (Zheng et al., 2017) adopted a Multi-

Attention CNN structure to obtain multiple distinguishing regions

in parallel; MAMC (Sun et al., 2018) directed the generated

attention features to categories to help better classification; NTS-

Net (Yang et al., 2018) used a collaborative learning method to

accurately identify the feature information regions.

Feature-encoding methods obtain richer fine-grained features

for classification in the form of high-level feature interactions and

the design of loss functions. As the most representative method for

high-level feature interaction, B-CNN (Lin T.-Y. et al., 2015) used

two deep convolutional networks to extract features from the same

image, and then performed outer product operations on the feature

vectors to obtain bilinear features for classification. However, the

large feature dimensions of this method leads to a very large

number of parameters, which is not easy to drive during training.

To solve this problem, C-BCNN (Gao et al., 2016) adopted tensor

sketches to reduce the dimensions of high-dimensional features.
FIGURE 1

Some examples of marine life images. Three rows sequentially represent images with complex backgrounds, images of multiple scenes, and images
of marine life taken from multiple angles.
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Other methods attempt to capture features at higher levels to obtain

a more distinguishable feature representation. HBP (Yu et al., 2018)

combined the features of different layers through bilinear pooling,

and finally concatenated them for classification. The loss function

plays the role of a conductor’s baton in Deep Learning and model

learning is driven by it. In fine-grained image classification tasks,

there are corresponding approaches to the design of loss functions:

MaxEnt (Dubey et al., 2018) provided a training routine that

maximizes the entropy of the output probability distribution;

MC-Loss (Chang et al., 2020) focused on different local areas of

each channel in the feature map, which is more conducive to

feature learning.

2.1.2 ViT for fine-grained image classification
Transformer (Vaswani et al., 2017) was first applied to solve the

sequence to sequence problem in Natural Language Processing

(NLP) and has achieved better results than both convolutional

neural networks (CNNs) and recurrent neural networks (RNNs).

Subsequently, Transformer has been widely used in the field of

computer vision. ViT (Dosovitskiy et al., 2021) was the first

transformer-based model for image classification, which splits

images into a number of patches and inputs them to the

transformer layer, and then establishes the association between

different patches with the help of MSA, the classification is finally

carried out by using the class token. TransFG (He et al., 2022) was

the first to verify the effectiveness of vision Transformer on fine-

grained visual classification. The input of its last layer is the class

token and some important tokens representing distinguishing

features rather than all of the tokens. In addition, RAMS-Trans

(Hu et al., 2021) locates and extracts discriminative areas based on

attention weights, and then re-inputs them into ViT for

classification using multi-scale features.

In this paper, we propose TSSA, which allows each token to

select its own relevant tokens according to the attention weights for

attention computation. We integrate the one-to-one selection of

each token into the attention computation. Furthermore, we apply

TSSA to different layers of ViT to narrow the selection range layer

by layer, so as to gradually refine the distinguishing features,

yielding the major difference between our work and

previous methods.
2.2 Underwater image classification

Due to the influence of the complex imaging environment in the

ocean, the underwater images appear blurred, low contrast and low

resolution, therefore various image preprocessing methods (Qi

et al., 2022; Zhou et al., 2022; Zhou et al., 2023a; Zhou et al.,

2023b) such as image enhancement and image restoration are used

first to improve classification results. Recently, significant progress

has been made in underwater classification, thanks to the influence

of deep learning and the creation of several methods for underwater

organism detection (Chen et al., 2021; Wang et al., 2023a; Wang

et al., 2023b). The research on underwater biological image

classification can be mainly divided into two aspects, one is the
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learning of biological features, the other is the feature fusion of

different levels or types. For the feature acquisition methods, the

earlier artificial methods (Alsmadi et al., 2010; Alsmadi et al., 2011)

were only effective for specific datasets or scenarios, subsequently

universal methods based on deep learning were adopted to learn

various features. DeepFish (Qin et al., 2016) first extracted the fish

regions using matrix decomposition, and then refined and learned

these regional features by Principal Components Analysis (PCA)

(Jackson, 1993) and CNN respectively. MCNN (Prasenan and

Suriyakala, 2023) segmented fish images by the firefly algorithm

and extracted features from the segmented parts. However, these

methods require a large amount of computation, therefore, to

maintain the balance between classification effect and cost, a

number of efficient improved CNN networks were proposed:

FDCNet (Lu et al., 2018) used filtering deep convolutional neural

networks to classify deep-sea species; deconvolutional neural

network was applied to different squid classification (Hu et al.,

2020). In addition, in order to solve the noise background problem,

AdaFish (Zhang et al., 2022) adopted adversarial learning to reduce

the interference of background on classification.

Some methods (Kartika and Herumurti, 2016; Gomez Chavez

et al., 2019) have obtained some limited improvement in

classification accuracy by learning only a single feature such as

fish color or coral texture, therefore combining multi-level or multi-

part information to complete classification is another direction of

underwater image classification. One method (Cui et al., 2018)

integrated the texture and shape features of plankton to improve

CNN performance; another method (Mathur et al., 2020) combined

the characteristics of different parts of fish through cross

convolutional layer pooling for prediction; whilst yet another

method used a multi-level residual network (Prasetyo et al., 2022)

which fused high and low level information through depth

separable convolution was also proposed and achieved a good

classification effect.
3 Methodology

3.1 Preliminary: vision transformer

The inputs of ViT are a sequence of serialized tokens. First, an

image with resolution H �W is first split into fixed-size patches xp,

each of size P � P, so the number of patches N is equal to H
P � H

W .

Each patch is transformed into a token xpt by a patch embedding

layer consisting of linear projection. In addition to patch tokens,

there is a dedicated class token xcls for final classification in the

classification task. So all tokens include patch tokens and the class

token. The above tokens only contain pixel information, and

position encoding adds corresponding position information xpos
to each token to determine the position of each patch in the original

image. All tokens are then fed into the transformer encoder, and the

inputs of the transformer encoder x0 are represented in Eq. 1:

x0 = ½xcls; x1pt ; x2pt ;…; xNpt � + xpos : (1)
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Transformer encoder is the core of ViT and contains l

transformer layers of MSA and Multi-Layer Perceptron (MLP)

blocks, as well as residual connections after every block. The

output of the lth layer is represented as follows:

x*l = MSA(LN(xl−1)) + xl−1 (2)

xl = MLP(LN(x*l )) + x*l , (3)

where xl−1and xl denote the encoded image representation of

the l − 1th and lth transformer layers, x*l is the output of the MSA

block after residual connection, LN represents layer normalization,

and the class token of the last transformer layer is used for category

prediction through MLP.
3.2 Overall architecture

Marine life images of the same subcategories present different

global information such as posture and viewpoint, so an over-

reliance on global information and a lack of attention to local

information are not conducive to the correct classification. In

addition, due to the complexity of the seabed environment,

images of marine organisms often contain complex backgrounds

such as reefs and corals, which will also affect the identification of

marine organisms. In order to address the above issues, we first

consider eliminating the interference of irrelevant factors such as

the background, and locating the marine organisms themselves,

then further locating the distinguishing areas. In this manner we

propose TSVT, which selects tokens layer by layer for more accurate

classification. By doing so, the number of tokens selected by the
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latter layer is further reduced on the basis of the preceding layer so

as to more accurately refine the distinguishing areas and reduce the

computational cost. To this end, we design a local attention module

named TSSA, in which distinguishing tokens only interact with the

other distinguishing tokens selected according to the attention

weights, and the interference of background tokens is eliminated

to obtain the purest distinguishing feature information for

classification with the class token.

The framework of our TSVT is shown in Figure 2, where, the

first eight transformers remain unchanged according to the settings

of ViT, while the last four layers are Token-Selective Transformer

Layer (TS Transformer Layer). It is different from the standard

transformer layer in that it replaces the original MSA with TSSA.

The number of tokens selected in each layer is different, and the

local scope of attention is also different. The class token of the last

layer aggregates the most discriminating features in the local

regions and completes category prediction through MLP.
3.3 Token-selective self-attention

Fine-grained image classification requires focusing on local

discriminating regions, but the complex background of marine

biological images interferes with accurate localization of these

regions. To solve the above issue, we propose to eliminate the

interference of background tokens to the greatest extent and apply

local attention to the selected important discriminating tokens.

All tokens can be divided into two categories: discriminating

region tokens that play a positive effect in classification and

background interfering tokens that play a negative effect in

classification. Discriminating region tokens and background
FIGURE 2

The framework of our proposed TSVT and the details of our designed TSSA. An image is first split into a number of patches, each of which is
mapped into a feature vector by Linear Projection and combined with learnable position embedding. Contextual links between tokens are then
established in the Transformer Layers, and the selection of tokens representing the discriminating regions is performed layer by layer in the latter
four TS Transformer Layers with the number of selected tokens in each layer decreasing from the previous layers. In the TS Transformer Layer, TSSA
is a sparse selective attention mechanism that generates a mask based on the similarity between tokens so as to limit the attention computation
between non-relevant tokens.
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tokens are clustered separately for information interaction in TSSA

to ensure that discriminating tokens are no longer mixed with the

interference information of background tokens, and then the class

token integrates the information of distinctive tokens for the

final classification.

The correlation between tokens can be reflected by attention

weights. Previous work (Wang et al., 2021; He et al., 2022) has

proved that attention weights can be a good indicator for token

selection. The attention weights of each head in each transformer

layer A ∈ R(N+1)�(N+1) can be written as follows:

A = softmax(
Q · KTffiffiffiffiffi

dk
p ) = ½a0, a1, a2 … aN �, (4)

ai = ½ai,0, ai,1, ai,2 ……ai,N �, i ∈ (0,N) : (5)

According to the attention weights, the information of the token

is weighted and summed to obtain the calculation result of the

attention symbolized as Attention. The following formula is the

calculation process of MSA:

Attention = softmax(
Q · KTffiffiffiffiffi

dk
p ) · V , (6)

where Q, K and V are all obtained by the linear transformations

of tokens, all of which represent information about the token itself;

dk represents the dimensionality of K ; softmax is a normalized

exponential function; aij represents the degree of correlation

between the ith token and the jth token, that is, token i as Q and

token j as K for the calculation in Eq. 4; ai represents the set of

correlation degrees between the ith token and all tokens; and ·

represents the general matrix product.

Only the largestm elements in each row of attention weights are

selected, the selected elements remain unchanged, and the

remaining unselected elements are all set to zero, thus generating

new selective attention weights, which represent the degree of

correlation between each token and its most relevant m tokens. In

the computation of attention, the distinguishing tokens interact

with each other and the distinguishing features are strengthened.

In the implementation, to ensure parallel computing, a mask

matrix M with the same shape as the attention weights is first

generated, we set themth largest element ai in each row of attention

weights as the threshold to determine whether the elements at

different positions of mask matrix are one or zero. The process of

mask matrix conversion is represented as:

M(i,j) =
1  A(i,j) ≥ ai,

0  otherwise,

(
(7)

where (i, j) represents the position of each element in the mask

matrix the and attention weights in (n + 1)� (n + 1) positions.

Then the selective attention weights As are obtained by

computing the Hadamard product of the mask matrix and the

attention weights, as follows:

As = A⊙M, (8)

where ⊙ is the calculation symbol for Hadamard product.
Frontiers in Marine Science 06206
Without changing the relevance of the different tokens, we

further update the elements as in the selective attention weights so

that the sum of the elements in each row is equal to one, which

further increases the proportion of discriminative information in

the class token. Take the first row of As as an example, each element

of this row as
0
is computed as:

as
0
0,i =

as0,i

oN
j=1a

s
0,j

: (9)

The new selective attention weights A
0
s represent the correlation

between tokens in local areas, and then after the calculation in Eq.

10, the information between these tokens interacts and the output Z

of TSSA is obtained. In the final TS Transformer Layer, the class

token combines the token information through MLP for category

predictions.

Z = A
0
s · V : (10)

The selective attention weights of each token-selective

transformer layer are updated on the basis of the previous layer,

and the number of selected tokens m of each layer is gradually

reduced narrowing and refining the distinguishing feature regions

layer by layer.

We apply TSSA to the deep layers of the model without

destroying the globality of the shallow layers, and the local

information based on the global basis is extracted for

classification. Starting from the first token-selective transformer

layer, the distinguishing tokens only aggregate important tokens

related to them, so that the class token associated with these

distinguishing tokens can minimize the interference of the

background tokens. Our model is actually a trade-off between

globality and locality, on the basis of not losing the globality, it

can accurately locate the discriminating area and extract

local features.
4 Experiments

In this section, we mainly introduce the experimental process

and analyze the experiment results. First, we introduce the three

marine biological datasets used in experiments, and briefly

introduce the specific settings. Then, we verify the efficacy of

TSVT by ablation study and analyze the experiment results.
4.1 Datasets

We validated the effectiveness of TSVT on three datasets of

marine organisms, namely ASLO-Plankton (Sosik and Olson,

2007), Sharks1, and WildFish (Zhuang et al., 2018). ASLO-

Plankton consists of 22 categories of marine plankton images, its

training set is unbalanced, and the number of images in different

subcategories conforms to the long-tail distribution; Sharks

contains images of 14 shark species, where the background of the

images is complex and the differences between images are subtle;

WildFish is a large-scale marine fish dataset with 1000 categories
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and 54459 images in total, and we randomly select images of 200

categories from WildFish to form a new dataset WildFish200. The

statistics of the three datasets are shown in Table 1.
4.2 Implementation details

The input image size of the ASLO-Plankton, WildFish200 and

Sharks datasets is 448×448 pixels, the size of each patch is 16×16.

We set the batch size on the three datasets to 8. SGD optimizer is

employed with a momentum of 0.9. The learning rate is initialized

as 0.03 and we adopt cosine annealing as the scheduler of optimizer.

TSVT imports the pre-trained ViT-B_16 on ImageNet21k as the

pretrained model. We complete the construction of the whole

model using PyTorch and run all experiments on four

NVIDIAGTX 1070 GPUs in one computer.
4.3 Comparison with the state-of-the-arts

Our method performs on par with a number of CNN-based

methods: B-CNN (Lin T.-Y. et al., 2015), NTS-Net (Yang et al.,

2018), TASN (Zheng et al., 2019), MC Loss (Chang et al., 2020), and

the recent transformer variants: ViT (Vaswani et al., 2017), RAMS-

Trans (Hu et al., 2021), TransFG (He et al., 2022) on ASLO-

Plankton, Sharks and WildFish200. The experiment results are

shown in Table 2. It can be seen from the results that ViT-based

methods have a higher classification accuracy than CNN-based

methods. Meanwhile, TSVT reaches 74.3%, 90.4% and 94.7% top-1

accuracy on ASLO-Plankton, Sharks and WildFish200 respectively,

which achieves higher accuracy in the identification of marine
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organisms compared with other methods. The main reason for

the improvement is that our method further eliminates background

interference, accurately locates the discriminating areas, thus

enlarging the differences between categories.
4.4 Ablation study

We verify the efficacy of our proposed TSSA on the three

datasets, and further explore the impact of applying TSSA to

different layers, using different methods to select tokens and

selecting different numbers of tokens on model performance.

4.4.1 Impact of applying TSSA to different layers
We applied TSSA to the shallow layers (1-4), middle layers (5-8)

and deep layers (9-12) of TSVT respectively, to explore the

influence of token selection in different layers on model

performance. The experiment results in the Table 3 show that

applying TSSA to the deep layers achieves the best performance,

whilst starting token selection in the shallow layers achieves worse

performance. A possible reason is that the attention weights in

shallow layers cannot highlight the key points that should be paid

attention to, which is not enough to be used as the indicator for

selecting tokens. On the contrary, with the deepening of layers, the

feature information is accumulated, and the model starts to notice

discriminating regions. At this time, further eliminating

background and other interference can make the discriminative

local features account for a larger proportion of final features used

for classification. Global information needs to be strengthened by

layers of accumulation, premature destruction of the association

among all tokens at shallow layers is not conducive to extracting

global features of the model. Therefore, establishing the association

among all tokens at the shallow layers first, and then discarding

some tokens at the deep layers is a trade-off between global

information and local information, which is beneficial

for classification.

When TSSA is applied to the deep layers, the classification

performance of the model is improved. So we further explore the

impact of applying TSSA to different deep layers. In different
TABLE 2 Comparison of TSVT and state-of-the-art methods on three datasets of marine organisms.

Method Backbone Accuracy(%)

ASLO-Plankton Sharks WildFish200

B-CNN VGG-16 61.9 76.2 82.1

NTS-Net ResNet-50 69.4 84.5 87.3

TASN ResNet-50 70.0 85.2 88.7

MC Loss ResNet-50 69.6 86.3 86.2

ViT ViT-B_16 72.6 88.9 93.5

RAMS-Trans ViT-B_16 73.1 89.2 93.8

TransFG ViT-B_16 73.7 89.1 94.1

TSVT (Ours) ViT-B_16 74.3 90.4 94.7
TABLE 1 Statistics of ASLO-Plankton, Sharks and WildFish200 datasets.

Dataset Classes Training Testing

ASLO-Plankton 22 743 3300

Sharks 14 743 749

WildFish200 200 7929 3523
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ablative experiments, the number of selected tokens decreases from

the first TS transformer layer and the number in the final layer

remains the same. As shown from the Table 4, the classification

accuracy is constantly improved with the increase of the number of

layers. The best effect is achieved when TSSA is applied to layers 8-

12, which indicates that the model has been able to accurately locate

the distinguishing regions from the 8th layer, and the smaller the

reduction of tokens between layers, the better the classification

performance of the model.

4.4.2 Impact of the number of selected tokens
TSVT performs token selection layer by layer, and the latter

layer continues to select tokens based on those selected in the

previous layer in order to pinpoint discriminative regions

hierarchically. In the experiments, we set a parameter p about the

selection proportion to indicate the number of selected tokens,

which is the ratio of the number of selected tokens to the number of

all tokens. We studied the influence of the parameter p on the

model, and the experiment results are shown in Table 5. When p is

0.7, TSVT achieves the best performance on the three datasets. As

the p value increases from 0.7 to 0.9, the accuracy decreases,

probably because too many background tokens are not discarded,

leading to discriminative information being mixed with interference

information. When the value of p is smaller than 0.7, the accuracy

also decreases, which is because the number of tokens is too small

and too many important tokens are discarded. When the value of p

is smaller than 0.2, the number of selected tokens in the last layer is

less than 1, so we did not conduct related experiments. In

conclusion, TSVT is sensitive to the number of selected tokens.

4.4.3 Impact of token-selective methods
We select important tokens according to the attention weights.

In this part, we select tokens randomly at layers 9-12 with the

selection ratio p = 0:7 for comparison, which further verifies the

efficacy of our selection method. The two methods of random

selection and selection according to attention weights are

respectively applied in TSSA for experiments. As can be seen

from Table 6, the accuracy of the former method decreases by
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3.6%, 1.6%, 0.6% respectively compared with the latter method

(ours) on the three datasets. The reason is that some important

distinguishing tokens are discarded in the process of random

selection, and some tokens that interfere with classification

accuracy may be selected for classification.

4.4.4 Visualization
In order to further verify the effectiveness of our method in

locating discriminating regions, we use Grad-CAM (Selvaraju et al.,

2017) to visualize the attention map generated from the attention

weights of the final layer in TSVT and compare them with ViT. As

shown in Figure 3, for images with complex backgrounds, ViT is

easily affected by these backgrounds and focuses on objects

irrelevant to classification, such as reefs and corals, while after

excluding these interferences, TSVT easily locates marine

organisms and their most distinctive features, such as patterns

and spots on the fish. Taking the image in the first row and

column as an example, ViT considers the human head as the

discriminative region, while our method can accurately use the

effective information of the hammerhead shark’s head information

to predict the category. In addition, for images where the fish are

visually small due to the long shooting distance, TSVT can locate

the positions of the small targets more accurately, whereas ViT

sometimes cannot achieve such high precision positioning.
5 Conclusion

In this paper, in order to exclude the influence of the complex

background of the seabed and accurately locate discriminating

features, we propose a novel framework called TSVT for fine-

grained image classification of marine organisms, which achieves

the best performance on the three marine organism datasets

compared with other state-of-the-art works. We propose a local

attention mechanism called TSSA that excludes interfering tokens.
TABLE 5 Ablation experiments on the number of selected tokens.

p ASLO-Plankton Sharks WildFish200

0.9 73.2 89.1 93.8

0.8 72.9 89.4 94.4

0.7 74.3 90.3 94.7

0.6 72.9 89.9 94.3

0.5 72.1 88.5 93.7

0.4 71.3 88.1 91.1

0.3 69.2 87.9 88.7
TABLE 4 Ablative experiments on applying TSSA to different deep layers.

Layers ASLO-Plankton Sharks WildFish200

12 73.2 88.9 93.7

11-12 73.6 89.4 94.3

10-12 73.4 90.0 94.3

9-12 74.3 90.4 94.7
TABLE 3 Ablative experiments on applying TSSA to different layers.

Layers ASLO-Plankton Sharks WildFish200

1-4 69.5 85.7 92.5

5-8 71.0 88.9 93.4

9-12 74.3 90.4 94.7
TABLE 6 . Ablative experiments on token-selective methods.

Selection Methods ASLO-Plankton Shark WildFish200

random 70.7 88.8 94.1

max 74.3 90.4 94.7
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Each discriminating token interacts with other discriminating

tokens in the local area to extract positive fine-grained features to

the greatest extent. Then, we explore the impact of applying TSSA

to different layers, the number of selected tokens and token-selective

methods on the performance of TSVT.

However, we still select key tokens through attention weights,

which has the limitation that it must be applied to deep layers to

ensure the reliability of the selection. Meanwhile, the number of key

tokens in each image is not the same, so selecting tokens through

more effective learning methods as well as setting learnable

parameters to control the number of selected tokens is the

future direction.
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FIGURE 3

Visualization results on marine biological datasets, in which the first and fourth rows are six images in Sharks and WildFish datasets, the second and
fifth rows are visualization of six images in the two datasets on ViT, and the third and sixth rows are visualization on TSVT.
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See you somewhere in the
ocean: few-shot domain
adaptive underwater
object detection
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1Department of Electronic Engineering, College of Information Science and Engineering, Ocean
University of China, Qingdao, Shandong, China, 2Sanya Oceanographic Institution, Ocean University
of China, Sanya, China
The current data-driven underwater object detection methods have significantly

progressed. However, there are millions of marine creatures in the oceans, and

collecting a corresponding database for each species for similar tasks (such as

object detection)is expensive. Besides, marine environments are more complex

than in-air cases. Water quality, illuminations, and seafloor topography may lead

to domain shifting with visual instability features of underwater objects. To tackle

these problems, we propose a few-shot adaptive object detection framework

with a novel two-stage training approach and a lightweight feature correction

module to accommodate both image-level and instance-level domain shifting

on multiple datasets. Our method can be trained in a source domain and quickly

adapt to an unfamiliar target domain with only a few labeled samples. Extensive

experimental results have demonstrated the knowledge transfer capability of the

proposed method in detecting two similar marine species. The code will be

available at: https://github.com/roadhan/FSCW

KEYWORDS

computer vision, underwater object detection, domain adaptive, few shot,
deep learning
1 Introduction

In recent years, with the development of deep learning technology and the

deterioration of the marine ecological environment, underwater optical object detection

has attracted more and more attention. However, many problems still need to be solved in

underwater object detection. On the one hand, the underwater environment is complex

and changeable. Affected by the scattering and absorption of the water medium, the quality

of the images is usually poor (Fu et al., 2023). These underwater factors would inevitably

involve inconsistent visual features. On the other hand, underwater images are challenging

to collect and have limited reusability. Suppose we need more samples to boost a deep-

learning model to handle a detection task. Generally, a common method is to use another

large-scale dataset (e.g., Microsoft Common Objects in Context(MSCOCO) dataset Lin
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et al. (2014)) to boost the model and finetune the model with

limited samples with new categories (Cai et al., 2022). This method

can be particularly helpful for new dataset tasks if the large-scale

dataset contains similar target categories (Zhu et al., 2021a) (e.g., the

experience of motorbike detection can help bicycle detection in

another task). However, there are domain shifts between different

datasets due to differences in shots, environments, and objects

themselves (Li et al., 2022a; Yu et al., 2022). These domain shifts

prevent us from fully exploiting prior knowledge on large datasets.

Therefore, in-air adaptive object detection algorithms are designed

to solve such problems. Different underwater optical characteristics

can also easily cause domain shifts (Liu et al., 2020), resulting in hue

changes and discrepancies in visual features. Moreover, due to

changes in the ecological environment of the new waters, similar

species may also have different appearance characteristics.

Therefore, under these domain shifts, datasets collected in one

water body are unlikely to help detection tasks in another

water environment.

Similar to in-air domain adaptive object detection (Wang et al.,

2019), we can divide underwater domain shift into image-level

domain shift and instance domain shift. Image-level shift refers to

the shift of the image in terms of style, brightness, etc. As shown in

Figure 1, we attribute water transparency and chromatic aberration

to image-level shift underwater. Instance-level shift refers to the

shift of the target in appearance and size. We group organisms of

the same family or genus but different species as instance-level shifts

underwater. Any domain shift will have a significant performance

degradation on the underwater detection network. The green

bounding box represents the undetected target. Regarding results

in Figure 1, the detection network can hardly work well under

image-level and instance-level shifts.

Unsupervised domain-adaptive object detection based on deep

learning is generally considered a solution to this kind of problem

(Chen et al., 2018; Saito et al., 2019; Shen et al., 2019). However, the

current domain-adaptive object detection algorithms have several

apparent flaws. First, these methods always need a large amount of

target domain data for training (Wang et al., 2019), which is difficult

to obtain in underwater scenes. Second, due to the algal blooms or

river floods at different times, the environmental conditions of the

offshore and river outlets may change unexpectedly and cause a

changeable aquatic background.

Although many existing few-shot object detection methods can

work with a few data, their feature extraction ability on the new

domain will be significantly affected by the changeable aquatic

background. This is because most existing few-shot object

detection considered shared weights or a separately trained

feature extraction module to extract the feature map of the new

class. Since the model has yet to see the new domain, the feature

extraction ability on the new domain would be insufficient (Li et al.,

2022d). On the other hand, most domain-adaptive methods can

adapt to a new domain with sufficient retraining on the source

domain and target domain data (Wang et al., 2019). However, such

methods usually need a large amount of target domain data. The

lengthy retraining time also hinders further applications on

underwater vision.
Frontiers in Marine Science 02213
Inspired by the theory of few-shot learning (Kang et al., 2019)

and transfer learning (Sun et al., 2021), we propose a fast few-shot

domain-adaptive algorithm to tackle the challenge of underwater

cross-domain object detection. Our contributions can be

summarized as follows: 1) Aiming at the problem of insufficient

ability of the backbone to extract features, as shown in Figure 2, we

fused the two-branch algorithm into a single-branch object

detection algorithm with a channel-level feature correction

module to solve this problem. 2) Many existing domain

adaptation algorithms need a long time to adjust to a new

domain. We propose a two-stage domain adaptation training

strategy, which only takes a short time to adapt to the new target

domain. 3) We conduct exhaustive experiments on two datasets,

demonstrating that our algorithm performs excellently on few-shot

domain adaptation problems. Compared to other domain

adaptation algorithms, our algorithm has two key advantages:
1) Boosting the model with limited data. Compared with

unsupervised domain adaptation (UDA) object detection,

which requires many unlabeled samples, our model only

needs a small number of labeled samples to complete the

training and achieve excellent performance during the

target domain adaptation.

2) Adapting new tasks with less time. When our model

encounters unfamiliar environments, it no longer needs

to be trained on both the source and target domain data

simultaneously. Instead, it only needs to be fine-tuned on a

small number of labeled target domain data sets, which

reduces the adaptation time.
2 Related work

General Object Detection refers to finding the object we need

from the image and giving an accurate mark frame and category (Li

et al., 2022a). Current deep learning-based object detection can be

divided into two architectures: one-stage and two-stage methods.

The two-stage methods are mainly based on the region

convolutional neural network (R-CNN) series. They use a

convolutional neural network (CNN) to generate region proposals

where objects may exist and perform further category prediction

and bounding box regression in the detection head module. The

one-stage methods perform end-to-end bounding box regression

and category prediction through the neural network. The one-stage

methods include You Only Look Once (YOLO) (Redmon et al.,

2016; Zhu et al., 2021b), RetinaNet (Lin et al., 2017b), etc. Usually,

two-stage methods outperform one-stage methods in accuracy, but

they have poorer inference speeds. Both two architectures require

large datasets for training. Considering the real-time requirements

of underwater object detection, we use YOLOv5 (Zhu et al., 2021b)

as the baseline in this paper

Underwater Object Detection is a particular branch of object

detection. Compared with general object detection tasks,

underwater images often have problems such as blurring, color
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shifting, and costly data collection. To tackle these problems, (Lin

et al., 2020) proposed an augmentation method called the region of

interest mix-up (RoIMix), by fusing the proposed regions of

different images to enhance the generalization of the detection

network. (Fan et al., 2020a) proposed an underwater detection

framework with feature enhancement and anchor refinement,

which improves the ability of the detector to deal with

underwater images of different scales. (Liang and Song, 2022)

applying Self-Attention modules to the region of interest (RoI)

features to improve underwater detector performance. However,

the underwater objection detection methods often have to be

deployed in an unseen underwater environment, which can lead

to a domain shift. Unfortunately, the current underwater object

detection algorithms have not yet considered the problem of

adapting to different waters.

Domain Adaptation refers to reducing domain shift by training

neural networks on source and target domain datasets. The current

domain adaptive object detection is mainly based on unsupervised

domain adaptation. According to the domain adaptation theory

(Ganin et al., 2016), when performing neural network domain

adaptation, the features extracted by the backbone must have

domain invariant properties to adapt to a new domain. Ganin et al.

2016 used a gradient reversal layer with a domain classifier to

constrain the backbone to extract features without domain shift to

achieve this goal. This method is called domain adversarial training,

which is still adopted by most domain adaptation methods. (Chen

et al., 2018) divides domain shift into image-level and instance-level

domain shift, and two adaptive components are designed to adapt to

these two domain shifts, respectively. (Saito et al., 2019) designed a

weak alignment model using adversarial alignment loss to address

domain variance. (Kiran et al., 2022) proposes the domain transfer

module (DTM) to transform the source image according to different

target domain images, enabling the network to avoid catastrophic

forgetting when performing multi-domain adaptation. (Li et al.,

2022b) proposed a novel semantic conditional adaptation

framework to reduce the cross-domain misclassification problem.

The above works only focus on domain adaptation under large

unsupervised samples and do not consider the problems
Frontiers in Marine Science 03214
encountered in few-shot domain adaptation. In the case of only a

small number of samples, labeling samples do not add too much

labor overhead. (Wang et al., 2019) considers the domain adaptation

problem under the condition of small sample labeling. He proposed a

two-layer module to adapt to the domain adaptive object detection

problem under limited loose labeling. Loose labeling means that only

part of each image is labeled, and more images are used to improve

the target information of labeling. This method is promising for cases

when image acquisition is easy but labeling is complex. Nevertheless,

the reverse more or less applies in underwater object detection.

Collecting underwater data is always expensive and time-

consuming, but labeling objects is relatively easy. Unlike other

domain adaptation methods, our model can quickly adapt to the

target domain when there are only a few labeled samples in the

target domain.

Few-shot learning refers to learning new categories with

limited data. In the field of object detection, methods can be

divided into two main branches: dual-branch methods and single-

branch methods (Köhler et al., 2021). The dual-branch methods are

shown in Figure 3A, and an auxiliary feature extraction module is

used to extract the feature vector of the support set image. Support

set vectors are then channel-level interacted with query set vectors.

(Kang et al., 2019) use a pre-trained backbone on the basis of YOLO

to extract the support set feature vector which will reweight the

query set vector. (Fan et al., 2020b) on the basis of Faster-RCNN,

use the shared weight backbone to extract the support set feature

vector to complete the reweighting step and use the multi-relation

detector to classify the target. (Lee et al., 2022) propose a method to

refine the support information through an attention mechanism

among support data before aggregating the query and support data.

The single-branch methods are shown in Figure 3B. The single-

branch methods are mainly based on transfer learning. (Wang et al.,

2020) used the transfer learning theory to unfreeze the bounding

box regression and the classification layer of Faster R-CNN achieves

excellent performance. Sun et al. proposed a method (Sun et al.,

2021) by controlling the form of intersection over the union (IoU)

output with the Faster R-CNN of the unfreezing region proposal

network (RPN) and region of interest (ROI) pooling layers and
FIGURE 1

Two different underwater domain shifts and cross-domain performance degradation of detectors.
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achieved the best performance at that time. Generally, the single-

branch methods have only one backbone with fewer parameters and

converge faster. Since the dual-branch methods considered meta-

learning and more parameters, they can achieve better performance

on few-shot learning. But their training speed is lower than single-

branch cases. Since both two kinds of methods did not consider

domain shifts, they will lead to a dramatic drop in performance

when handling new samples from another domain. Our method

combines the advantages of both approaches. To address this issue,

we propose the feature correction module (FCM) (Figure 3C),

which plays a similar role on the backbone B of dual-branch

methods to enhance feature extraction ability with few samples.

Furthermore, we use a two-stage fine-tuning method to make our

model adjust itself to the features of the new domain.
Frontiers in Marine Science 04215
3 Method

This section will briefly introduce our few-shot domain

adaptive object detection algorithm. Due to the insufficient

samples in the underwater target domain, the existing domain

adaptation methods cannot achieve good results. The main

reason for the poor performance in cross-domain object detection

tasks is that the feature extraction ability of the backbone can hardly

work in new domains (Li et al., 2022d). To solve this problem, we

propose a solution. Firstly, we can overcome the overfitting problem

of few-shot by introducing a two-stage training strategy. The

proposed strategy can also reduce the need for repeated training

on the source domain, shortening the time to adapt to the new

domain. Secondly, by introducing a feature correction module, we
FIGURE 2

Improve the dual-branch structure to a single-branch structure that is more suitable for domain adaptation problems.
B CA

FIGURE 3

The comparison among two typical few-shot learning structures and ours.
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further enhance the feature extraction ability of the backbone on

new domains. Since the feature correction module only contains

quite a few trainable parameters, it only takes a little for training.

When only a few labeled samples are in the target domain, our

method can quickly adapt to the target domain and achieve

excellent performance.
3.1 Problem definition

We follow and extend the definition of “n-shot learning” given

by (Kang et al., 2019). Suppose we have k images with labels in the

source domain. We can define these images and labels in the source

domain as Ds = f(Xs1,Ys1),…, (Xsk,Ysk)g. Similarly, we can define

the images and labels in the target domain as Dt = f(Xt1,Yt1),…, (

Xtm,Ytm)g. Since the target domain data is often less than the source

domain, we have k >> m. Here Ds and Dt represent the source

domain and target domain data, respectively. X and Y represent the

images and the corresponding target labels. Let num() denote the

number of instances in a domain. In Kang et al.’s work (Kang et al.,

2019), they defined n-shot (num(X) = n) as available samples

(instances) in a domain. In the case of instance-level domain

shift, the shape of the target will change significantly with the

region. Thus, we followed this definition to evaluate instance-level

domain shifts as n − shotinstance = num(Xt1) +… + num(Xtm), where

the num() is the number of instances of an image. Since the main

factor to cause image-level domain shifts is the environment (not

the objects), we further define n − shotimage = num0(Xt)), where the

num0() means the number of images.
3.2 Two-stage fine-tuning method

Most existing few-shot learning approaches consider only

adjusting the classification and the bounding Box regression

header without changing the parameters of the backbone (Wang

et al., 2020). Such an operation can correct new few-shot samples in

a short time. However, the underwater domain shifts will also affect

the backbone rather than the header. Inspired by Li et al.’s work (Li

et al., 2022d), which proposed a two-stage fine-tuning strategy to

correct a cross-domain classification task, we further extend the

fine- tuning method to so lve a cross -domain objec t

detection problem.

Since different layers of the backbone network can extract

different scales of features (Lin et al., 2017a), we focus on the
Frontiers in Marine Science 05216
domain correction of the backbone. Furthermore, to reduce the

fine-tuning cost and accelerate the re-training speed, we insert some

feature extraction modules (FCMs, please refer to Section 3.3 for

detail) into the backbone and only update these feature extraction

modules in the fine-tuning phase. As a result, our two-stage fine-

tuning strategy can reduce the number of trainable parameters to

solve the overfitting problem of few-shot. Our two-stage training

method reduces the number of parameters by 42% compared to

direct training YOLOv5, while our newly added FCM only increases

the number of parameters by 0.00278%. The training method is

shown in Figure 4. To overcome the underwater cross-domain

challenge, our method includes two stages:

Base training: Our first stage is only performed on the source

domain training dataset. In order to ensure a fair comparison,

except for the modification of the network module we will mention

in Section 3.3, the training hyperparameters remain the same as

those of YOLOv5. We did not perform any hyperparameter tuning.

The joint loss function is:

Ltotal = l1Lcls + l2Lobj + l3Lbox (1)

where l1, l2 and l3 is the custom hyperparameter. Among

them, both Lcls and Lobj using binary cross entropy (BCE) loss for

classification and foreground detection, respectively:

LBCE = −
w
N o

N

n=1
½yn · log F(x)x∼Ps(x) + (1 − yn) · log (1 − F(x)x∼Ps(x))�

(2)

where w is a hyperparameter, x and y represents different

images and labels. Ps/t represents our network to obtain data from

the source or target domain at different training stages. represents

the number of samples. F represents the model. Lbox uses CIoU loss

(Zheng et al., 2020):

LCIoU = IoU −
r2(bs, bsgt)

c2
+ av

� �
(3)

v =
4
p2 arctan  

wgt

hgt
− arctan  

w
h

 !2

(4)

a =
v

(1 − IoU) + v
(5)

where r represents the Euclidean distance between bs and bsgt , b
s/t

and bs=tgt represents the detected bounding box and ground truth on the
FIGURE 4

Our two-stage training approach.
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source domain dataset or target domain dataset. IoU represents the

intersection over the union.

Fine-tuning: Our second stage (fine-tuning) is performed on a

small amount of labeled target domain data. In this stage, we freeze

the neck and head modules of the detection network and only

perform gradient updates on the backbone, the function is:

∂ Ltotal
∂ nettb

=
∂ Ltotal
∂ netth

·
∂ netth
∂ nettb

(6)

W(netth) ≡ W(netsh) (7)

Among them, nett=sh represents the neck and head network

modules on the target domain dataset or source domain dataset,

and nettb represents the backbone module on the target domain

dataset. W represents the network weight.

Since the target domain dataset is adopted in the fine-tuning

stage, our BCE loss and CIoU loss function are changed accordingly

to:

LBCE = −
w
N o

N

n=1
½yn · log F(x)x∼Pt (x) + (1 − yn) · log (1 − F(x)x∼Pt (x))�

(8)

LCIoU 0 = IoU −
r2(bt , btgt)

c2
+ av

� �
(9)
3.3 Lightweight feature correction module

In the field of few-shot learning, feature reweighting for dual-

branch object detection is a popular solution (Köhler et al., 2021). In

dual-branch few-shot object detection, the channel reweighting of

the support set vector to the query set vector plays a key role in few-

shot learning. Following this idea, we aim to build a reweighting

module in our single backbone to help our model quickly adapt to
Frontiers in Marine Science 06217
new samples. However, since the backbone has yet to see this new

category, it cannot accurately extract information. Therefore, we

design a channel-level feature rectification module that can replace

the feature interaction stage in two-stage few-shot training. We

insert it into the backbone so the backbone can perform channel

correction on the generated feature vector according to the image

domain information in the new domain during the training process.

In the backbone network, a common view is that we can extract

the different scales of features from different layers (Lin et al., 2017a;

Li et al., 2022d). Inspired by this point, we uniformly insert the FCM

into the backbone network to address the instance-level and image-

level domain shifts.

The Feature Correction Module (FCM) we designed is shown

in the lower part of Figure 5, and then we insert it into

CSPDarknet53, which is the backbone of YOLOv5, as shown in

the upper part of Figure 5. In each FCM, there are two branches.

The first branch saves the raw input feature maps, and the second

generates a reweighting vector to correct the feature maps of the

first branch. Suppose the input feature map size is h*w*c. In the

second branch, the feature map will first go through a global avg-

pooling operation to obtain a 1*1*c vector followed by c groups

depthwise convolution. Next, we feed the output 1*1*c vector to a

sigmoid activation layer to normalize and reweight vectors. At

last, the reweighted vectors will multiply the feature maps of the

first branch to obtain the final outputs
4 Experiment

In this section, we will introduce the experimental results of our

method and other methods in different scenarios. The experimental

results are represented by the mean average precision (mAP) with

an IOU threshold of 0.5. The mAP is determined by Precision and

Recall. Precision represents the accuracy of the detected samples,

and Recall represents the proportion of correctly detected samples

among all correct samples.
FIGURE 5

Our model structure and the specific implementation of the feature correction module.
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Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

Among them, TP refers to the true positive, which means the

detected real samples; FN refers to the false negative, which means

the correct samples that were not detected; and FP refers to the false

positive, which means the falsely detected samples. The AP is

determined by the area under the Precision-Recall (PR) curve,

and we use the interpolation method to calculate it:

AP = o
n−1

i=1
(Recalli+1 − Recalli) · Precisioninterp(Recalli+1) (12)

Here mAP refers to the average value of each type of AP:

mAP =o
k

i=1
APi (13)

The mAP50 used in the following experiments means that the

mAP score with an IOU threshold of 0.5. The adaptation time refers

to the time required for each method to achieve the optimal effect in

the target domain, and the time unit is hours (h).
4.1 Datasets

S-UODAC2020: This dataset was processed by Song et al. (Song

et al., 2021). They used the style transfer model WCT2 (Yoo et al.,

2019) to process the original UODAC2020 dataset into seven

common underwater domains for evaluating domain adaptation,

and each domain type has 791 images. type1-type6 is the source

domain, and type7 is the target domain.

URPC20221: URPC contains 9,000 images. The original dataset

contains four categories, such as starfish. Here we only take the

starfish category for analysis.

Aquarium2: The dataset consists of 638 images collected from

two aquariums in the United States, which also contain the starfish

class. Since the paired categories in the two data sets only include

the starfish category, we use the starfish class from these two

datasets (URPC and Aquarium) for cross-domain testing, in

which URPC2022 is the source domain and Aquarium is the

target domain.
4.2 Implementation details

Our code is based on official YOLOv5x(PyTorch)3 with COCO

dataset pre-training weights. Except for our proposed FCM, we do

not adopt any other modules to modify the network. We adopt the

Stochastic Gradient Descent (SGD) optimizer with a 0.01 learning

rate and a 16 batch size. We set the picture size to 640 on the long
2 https://universe.roboflow.com/data-science-day-dry-run/aquarium-

6cfzm/dataset/1.

1 http://www.urpc.org.cn/
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side. All training time statistics are performed with a graphic card of

GTX1080ti (11G).
4.3 Benchmark comparison

In Table 1, we compared two UDA methods including SCL

(Shen et al., 2019) and SCAN (Li et al., 2022b) on the S-

UODAC2020 dataset. The four columns (holothurian, echinus,

scallop and starfish) in Table 1 represent the AP50 values of each

category in the dataset, and mAP50 represents the average value of

all categories. The time column represents the adaptation time of

the algorithm when encountering a new domain, and the unit is

hours. For the baseline, we used the network freeze strategy (freeze

backbone) recommended by YOLOv5 to solve the few-shot

problem (YOLOv5 w/ft). Since the dataset mainly includes image-

level domain shifts, the number of targets in each picture is large, we

adopt shot = num (Xt), and the performance results under ten shots

are shown in Table 1. We can find that the UDAmethods have poor

accuracy under 10-shot. The two UDA methods also take a long

time to adapt to each domain. Our method overcomes this problem

with the only additional cost of labeling a few samples, which does

not consume too much human effort.

In Table 2, we also compared methods such as SCL, SCAN, and

SIGMA (Li et al., 2022c) on the URPC2022 and Aquarium dataset

settings. The number of targets in the images of these datasets is

relatively balanced, and there are image-level and instance-level

domain offsets at the same time, so we strictly use the method to

count. We provide the results under 3-shot and 10-shot in Table 2.

The experimental results of “YOLOv5 w/ft” shown in Table 2

freezing the backbone module and fine-tuning the header module

are better than “YOLOv5 w/o ft” but worse than our results. That

means freezing the backbone module and fine-tuning the header

module (YOLOv5 w/ft) can correct the domain shift to a certain

extent, but the efficiency is lower than ours (freezing the head

module and updating the backbone).

It can be seen that the classic UDA methods (SCL, SCAN, and

SIGMA) cannot work with a small number of samples, and their

time to adapt to the unfamiliar domain is much longer than our

method, so they cannot quickly adapt to the unfamiliar domain.
4.4 Ablation analysis

To validate each component of our method, we design an

ablation study on the S-UODAC dataset, as shown in Table 3.

The “bb-ft” represents our migration learning strategy, and the

“FCM” denotes the feature correction module. The four columns

before the mAP column in Table 3 represent the AP50 values of

each category in the dataset, and mAP50 represents the average

value of all categories. Both the feature correction module and the

migration learning strategy can significantly improve the
3 https://github.com/ultralytics/yolov5
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performance of the baseline model. We achieve the best result when

these two components work simultaneously.

In Table 4, we tested with the activation functions in FCM and

found that the sigmoid function performs slightly better than

rectified linear unit (ReLU) in performance. For the three

challenging categories, the sigmoid function leads to significant

improvements. We conclude that this is because the sigmoid

normalizes the vector between 0 and 1, which helps the final

reweighting of our feature correction module. We also found that

the FCM module with the sigmoid function converges faster than

the case with the ReLU function. The result also verifies the point of

attention mechanisms in recent years (Vaswani et al., 2017).

We visualize the results of the ablation experiments. The green

bounding box in the figure refers to the correct sample missed by

the detector. Figure 6A results from the benchmark training only on

the source domain. The model missed many instances when we
Frontiers in Marine Science 08219
performed a cross-domain test. The results in Figure 6A also show

the shortcomings of current detectors in cross-domain detection

performance. Figure 6B shows the two-stage training method’s

result. We can see that the fine-tuning process can significantly

reduce the number of missed samples, but some samples are still

undetected. Figure 6C is the result of using the two-stage training

method and FCM at the same time. It can be seen that our method

has only one missed target and no false detections. Based on the

result in Figure 6, we can conclude that both the proposed two-stage

training method and FCM can efficiently resist the performance

degradation from the cross-domain detection task.

To further verify the attention improvement, Figure 7 shows

some examples using the Gradient-weighted Class Activation

Mapping (Grad-CAM) (Selvaraju et al., 2017) image under

different datasets. Gradient-weighted Class Activation Mapping

can reflect which part of the image the neural network pays
TABLE 1 Our comparison results with other methods on the S-UODAC dataset.

method holothurian echinus scallop starfish mAP50 Time

SCL 0.491 0.725 0.589 0.345 0.546 13.2h

SCAN 0.399 0.745 0.469 0.252 0.466 6.9h

YOLOv5 w/ft 0.604 0.780 0.707 0.587 0.669 0.19h

Ours 0.613 0.804 0.722 0.685 0.706 0.19h
frontie
TABLE 3 Our ablation experiments on the S-UODAC dataset.

method bb-ft FCM holothurian echinus scallop starfish mAP50

Benchmark 0.425 0.803 0.647 0.519 0.599

Ours ✓ 0.621 0.783 0.703 0.617 0.681

✓ 0.580 0.798 0.725 0.608 0.678

✓ ✓ 0.613 0.804 0.722 0.685 0.706
✓ represents the training method using the column.
TABLE 2 Our comparison results with other methods on the URPC2022 and Aquarium dataset.

method 3-shot 10-shot

mAP50 Time mAP50 Time

SCL 0.349 14.3h 0.478 15.6h

SCAN 0.545 5.1h 0.607 6.2h

SIGMA 0.636 6.6h 0.652 6.5h

YOLOv5 w/o ft 0.516 – 0.516 –

YOLOv5 w/ft 0.685 0.1h 0.714 0.14h

Ours 0.710 0.09h 0.736 0.11h
TABLE 4 Performance of different activation functions on the S-UODAC dataset.

activation holothurian echinus scallop starfish mAP50

ReLU 0.596 0.814 0.697 0.683 0.698

Sigmoid 0.613 0.804 0.722 0.685 0.706
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attention to when detecting and recognizing a certain type of object.

The redder the color of the heat map, the more the network pays

attention to this part. Figure 7A contains three raw images;

Figure 7B shows the results of YOLOv5 trained only on the

source domain. We can see that many target areas are inactivated

during the detection process. In other words, the network has not

paid attention to these areas. Figure 7C represents the Grad-CAM

results of our method. All target regions are accurately activated

after fine tuning with our approach. The heat map visualization

results indicate that our method can better locate the object in the

new domain. The heat map visualization results can also prove the

above point of view. Figure 7B (freezing the backbone module and
Frontiers in Marine Science 09220
fine-tuning the header module) performs worse than Figure 7C

(freezing the header module and fine-tuning the backbone module).

Our network paid attention to these targets without missing the

original detected samples, indicating that the extracted features are

offset from the actual feature space when the backbone is not

adapted to the target domain.

When we select the final weight, we adopt the “early stop”

strategy, which allows us to obtain the training weight when the loss

of the verification set is the smallest. Figure 8 is the loss curve image

during our fine-tuning process. In the “early stop” strategy, a

commonly used parameter is “patience”. Assuming its value is n,

it means that if the result of the kth epoch training is still the best
B CA

FIGURE 6

Visualization results of ablation experiments.
B CA

FIGURE 7

Our Grad-CAM images under different datasets.
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after n epochs, stop the training. The weight of the kth epoch is

selected as the final weight. We set n to 250. From Figure 8, we can

find that our method quickly converged in about 30th epoch. Then

the curve gradually grew up. Since the lowest point is clear, a large

enough can easily locate the lowest point.

We also test our model in a short underwater video to prove the

superiority of our method for object detection in unfamiliar waters.

Figure 9 shows the detection result of one frame. The left side is our

method, and the right is the fine-tuning results after pre-training on

a large-scale dataset (COCO) of YOLOv5. Our approach is

significantly ahead of the comparison method in both recall and

precision, and our fine-tuning uses the first frame of the video.

More details can be found in our GitHub project.
5 Discussion

Currently, deep learning has achieved remarkable results in

computer vision and has also produced good results in underwater

computer vision, such as underwater observation and underwater

image processing. However, its data-driven models also have

limitations. As discussed in the article, deep learning models

have shown a significant performance drop in test scenarios in

an unfamiliar environment with different data distributions from
Frontiers in Marine Science 10221
the training set. Previous works Chen et al. (2018); Ganin et al.

(2016) have shown that the main reason for cross-domain

performance degradation in tasks such as classification and

object detection is that the backbone cannot extract domain-

invariant features.

In the field of underwater vision, we have an urgent need for

domain adaptation algorithms:
• Underwater images are affected by plankton and river

flooding disasters, often resulting in large changes in

image colors.

• In different water domains, due to environmental influences,

biological morphology often has certain changes.

• Many different species of the same family have certain

differences in appearance, which also brings about

domain shifts.
Regardless of the data domain in which the target category

appears, humans can accurately capture the invariant features in

different domains to complete classification and labeling. Inspired

by this point, many researchers trained the backbone through

domain adversarial training and other strategies, which can make

the backbone extract domain invariant features. However, this

training method requires a large number of target domain

samples, which is very difficult to obtain in underwater scenarios.

Unfortunately, we often need more training samples to adapt to the

test scenario, especially when underwater data collection

is challenging.

We propose a few-shot domain adaptation object detection

algorithm based on a two-stage training strategy and an FCM

module, which can quickly adapt to the target domain with only

a small number of annotated samples, not only solving the defects of

previous domain adaptation work under few-shot but also being

more suitable for underwater scene applications. However, our

method still has some drawbacks. When the algorithm adapts to

the target domain, it does not consider catastrophic forgetting.

Because we only use target domain samples to fine-tune the

network rather than jointly training with source domain samples,

this inevitably leads to a performance drop in the source domain.
FIGURE 8

Our loss curve chart.
FIGURE 9

Demo on a YouTube video, the confidence threshold is 0.4 and the IOU threshold is 0.45.
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Our current solution to this problem is to retain weight files for each

domain so that they can be used at any time.
6 Conclusion

This paper proposes a novel few-shot domain adaptive object

detection framework. Our algorithm can transfer the object

knowledge information from the source domain to the target

domain, achieving a situation where only a small number of

annotated target domain samples are used. At the same time, our

algorithm also inspires unsupervised few-shot domain adaptive

object detection, such as exploring the use of an image-to-image

translation model to generate a small number of target domain

samples for training using our method.
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It is significant for port ship scheduling and traffic management to be able to

obtain more precise location and shape information from ship instance

segmentation in SAR pictures. Instance segmentation is more challenging than

object identification and semantic segmentation in high-resolution RS images.

Predicting class labels and pixel-wise instancemasks is the goal of this technique,

which is used to locate instances in images. Despite this, there are now just a few

methods available for instance segmentation in high-resolution RS data, where a

remote-sensing image’s complex backgroundmakes the task more difficult. This

research proposes a unique method for YOLOv7 to improve HR-RS image

segmentation one-stage detection. First, we redesigned the structure of the

one-stage fast detection network to adapt to the task of ship target

segmentation and effectively improve the efficiency of instance segmentation.

Secondly, we improve the backbone network structure by adding two feature

optimization modules, so that the network can learn more features and have

stronger robustness. In addition, we further modify the network feature fusion

structure, improve the module acceptance domain to increase the prediction

ability of multi-scale targets, and effectively reduce the amount of model

calculation. Finally, we carried out extensive validation experiments on the

sample segmentation datasets HRSID and SSDD. The experimental

comparisons and analyses on the HRSID and SSDD datasets show that our

model enhances the predicted instance mask accuracy, enhancing the instance

segmentation efficiency of HR-RS images, and encouraging further

enhancements in the projected instance mask accuracy. The suggested model

is a more precise and efficient segmentation in HR-RS imaging as compared to

existing approaches.

KEYWORDS

computer vision, object detection, instance segmentation, HR-RS, YOLOv7, SSDD,
HRSID, SAR Complex background images
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1 Introduction

SAR is a microwave imaging sensor built on electromagnetic

wave scattering properties that may be used in all weather

conditions and has some ability to penetrate clouds and the

ground. With the ongoing exploitation of maritime resources as

well as the increased attention being paid to the monitoring of

marine ships, it has special benefits in marine monitoring, mapping,

the military, and all of these fields(Li et al., 2022; Liu et al., 2022;

Kong et al., 2023; Yasir et al., 2023a; Yasir et al., 2023b). SAR ship

detection technique is therefore very important for protecting

marine ecosystems, maritime law enforcement, and territorial sea

security. Ocean ship monitoring has received a lot of attention

(Zhang et al., 2020b; Chen et al., 2021; Xu et al., 2022a; Zhang et al.,

2023). Synthetic aperture radar (SAR) is more suited for monitoring

ocean ships than optical sensors (Zeng et al., 2021; Zhang and

Zhang, 2021a; Xu et al., 2022b; Zhang and Zhang, 2022c) because of

its ability to operate in all weather conditions (Zhang and Zhang,

2021b). Ship monitoring is a key maritime task that is crucial for

ocean surveillance, national defense security, fisheries management,

etc. identification Ship in the SAR picture is a significant area of

remote sensing research because it relies on target detection

technology, which is in high demand (Wang et al., 2018; Chang

et al., 2019; Qian et al., 2020; Su et al., 2022). Ship identification in

satellite RS pictures has grown in importance as a research area

recently (Nie et al., 2020). The marine transportation sector is now

developing extremely quickly. The number of maritime infractions

has increased as a result of the quick expansion in ship numbers and

shipping volume. Automated ship identification plays an

increasingly essential role in maritime surveillance, monitoring,

and traffic supervision as well as in the regulation of illegal fishing

and freight transit. It can assist in gathering information about ship

dispersion. HR-RS pictures are given by a variety of airborne and

spaceborne sensors, including Gaofen-3, TerraSAR-X,

RADARSAT-2, Ziyuan-3, Sentinel-1, Gaofen-2, and unmanned

aerial vehicles (UAV), owing to the quick development of

imaging technology in the domain of RS. These HR pictures are

being used in the military and the domains of the national economy,

such as traffic control, marine management, urban monitoring, and

ocean surveillance (Mou and Zhu, 2018; Cui et al., 2019; Su et al.,

2019; Sun et al., 2021b). The HR RS pictures are especially well

suited for object identification and segmentation in areas like

military precision strikes and maritime transportation safety (Su

et al., 2019; Wang et al., 2019; Zhang et al., 2020a). Instance

segmentation, which may be characterized as a technology that

addresses both the issue of object identification and semantic

segmentation, has emerged as a significant, sophisticated, and

challenging area of research in machine vision. Parallel to

semantic segmentation, it has both pixel-level classification and

object identification properties, where dissimilar instances must be

located even if they belong to the same type (Xu et al., 2021). Since

the two-stage object identification algorithm’s introduction, other

convolutional neural network-based object detection and

segmentation methods have appeared, including the R-CNN,

Faster R-CNN (Ren et al., 2015), andMask R-CNN (He et al., 2017).
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Deep learning innovation demonstrates inspiring outcomes

recently in several fields, including object identification (Zhang

et al., 2019a; Zhang et al., 2020c; Zhang et al., 2021a), image

classification (Liu et al., 2021b; Zhou et al., 2022a; Zhou et al.,

2022b), Segmentation (Liu et al., 2021b; Zhou et al., 2021; Zong and

Wan, 2022; Zong and Wang, 2022), and so on (Zhou et al., 2019; Liu

et al., 2021a; Wu et al., 2022; Yin et al., 2022; Zhu and Zhao, 2022).

Recently, despite the existence of many excellent algorithms, like the

path aggregation network (Liu et al., 2018), Mask Score R-CNN

(Wang et al., 2020a), Cascade Mask R-CNN (Dai et al., 2016), and

segmenting objects by locations (Wang et al., 2020b) and so on (Zhang

and Zhang, 2019; Zhang et al., 2019b; Zhang et al., 2021b; Shao et al.,

2022; Zhang and Zhang, 2022a; Zhang and Zhang, 2022b; Zhang and

Zhang, 2022c; Zhang and Zhang, 2022d), common issues, such as

erroneous segmentation edges and the development of global

relations, still exist. The extension of the model will lead to

dimensional disasters if the long-range dependencies are represented

by dilated convolution or by expanding the number of channels.

YOLOv7 serves as the basic foundational framework for the

development of a framework model for RS picture object

identification and instance segmentation in order to get over CNNs’

limitations in terms of their capacity to extract spatial information.

Detecting and segmenting ships in SAR images is difficult because of

the complexity and variety of the images themselves, which include

speckle noise, shadows, and cluttered backgrounds. These elements

make it challenging to reliably identify ships among other objects in

the image and to define the ship’s boundaries.

In addition, different from moving targets such as aircraft and

vehicles, ship targets often dock side by side near the port, so it is

difficult for general detection methods to accurately distinguish each

target, resulting in a large number of missing targets. Meanwhile, Ship

case segmentation can not only accurately obtain the position of the

object, but also effectively achieve the shape information of the target,

which can further promote the research of SAR ship recognition.

However, at present, a large number of studies only focus on the SAR

ship targets detection and do not further achieve the target-level

instance segmentation. It is specifically affected by the following

factors, (1) the complexity of the instance segmentation model is

high, often reaching hundreds of megabytes, which is difficult to be

applied. (2) The running efficiency of the instance segmentation

algorithm is relatively low, and the initial training of the model takes

a long time. (3) There is not enough sample data to train the model,

which makes the performance of existing deep learning methods

insufficient. In our study, we utilized various data augmentation

techniques, such as random flipping, rotation, and scaling, to

generate additional samples from the limited dataset. These

techniques effectively increase the diversity of the training samples

and help prevent overfitting.

To overcome this problem, we propose an improved version of

the YOLOv7 object detection algorithm that incorporates an

ELAN-Net backbone and feature pyramid network (FPN) to

boost the model’s capability to extract relevant features from SAR

images in complex backgrounds. Our suggested algorithm achieves

state-of-the-art effectiveness on two benchmark datasets,

demonstrating its effectiveness in addressing the research problem
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of accurate ship identification and segmentation in complex SAR

pictures. The main contributions in this paper are outlined in the

following order:

L An upgraded YOLOv7 model has been proposed for instance

segmentation ship detection.

L An effective feature extraction module has been developed

and added to the improved backbone network, enhancing the

network’s focus on target features and making the process of

feature extraction more efficient.

L The feature pyramid module is optimized with feature fusion

to increase the accuracy of multi-scale target segmentation and

further improve the speed of image processing to boost the

identification and segmentation performance of the network for

multi-scale ship targets.

L Two ship datasets, an SSDD dataset, and an HRSID dataset

are used to evaluate the efficiency of the suggested technique. To test

the model’s robustness, two ship datasets are run (which contain

images with different scales, resolutions, and scenes).

The paper is structured as follows: Part 2 explains the materials

and experimental setup and demonstrates how the study acts as an

organizing foundation for the remaining portions of the research.

Part 3 provides a description of the research project’s results and

analyses. It has also shown the model’s potential by comparing it

with other innovatively made versions. The ablation study is

described in Section 4, and Section 5 concludes the paper.
2 Related work

2.1 Deep learning-based
instance segmentation

Instance segmentation in SAR photos has the advantage of

combining semantic segmentation with object identification. Using

semantic segmentation, each pixel of the input picture is separated

into logical groups according to where the ship targets are located. It

offers a better description and perception of the ship targets because

of the more complex interpretation technique. As the first attempt

at segmenting CNN, Mask R-CNN (Lin et al., 2017b) adds a mask

branch that is analogous to the classification and regression branch

in Faster R-CNN in order to forecast the segmentation mask for

each region of interest (RoI). Mask Scoring R-CNN (Wang et al.,

2020a) utilizes the product of the classification score and the IoU

score of the mask to construct the mask score in order to increase

the quality of an instance. Cascade Mask R-CNN is created by

combining Mask R-CNN and Cascade R-CNN (Chen et al., 2019b).

Each cascade framework adds a mask branch to complete the

instance segmentation task, combining the best features of the

two approaches. In order to improve identification accuracy,

Hybrid Task Cascade (Chen et al., 2019b) proposes integrating

the concurrent structures of identification and segmentation, which

leverage semantic segmentation branches to build a spatial context

for the bounding box. In recent years, a number of one-stage

algorithms, notably YOLACT (Bolya et al., 2019) and SOLO

(Wang et al., 2020b), have appeared that correspond to object

identification methods. In addition, a few approaches such as
Frontiers in Marine Science 03226
BlendMask (Chen et al., 2020) and PolarMask (Xie et al., 2020)

are built on an item identification network without anchors. Due to

their speed benefits, these one-stage techniques are frequently

utilized in the domain of autonomous vehicle operation and facial

detection. However, in some complex ship identification tasks, the

identification technique can only assess a ship’s length and contour

when they are important details for the particular type of ship.

Improvements to the current algorithms for segmenting SAR

images by an instance are not currently being made in a

substantial way. The HRSID (Lin et al., 2017a) dataset was

recently created for the segmentation of ship instances in

SAR images.
2.2 SAR images-based ship detection

SAR can continually monitor the planet, in contrast to optical

sensors, which are inoperable at night. Because SAR images do not

contain information about color, texture, shape, or other aspects,

they show ships differently than optical images do. Furthermore, the

SAR image has a lot of noise; as a result, identifying SAR images

might be difficult for researchers without the appropriate skills.

Because there is a dearth of data on tagged SAR ships as an

outcome, it is more challenging to identify ships from SAR

images. In order to find ships in SAR images, several deep-

learning techniques have been used (Sun et al., 2021a; Liu et al.,

2022; Sun et al., 2022; Yasir et al., 2022). (Fan et al. 2019b)

implemented a multi-level features extractor into the Faster R-

CNN for polarimetric SAR ship identification. A dense attention

pyramid network was created to identify SAR ships by densely

connecting each feature map to the attention convolutional module

(Cui et al., 2019). For pixel-by-pixel ship identification in

polarimetric SAR photos, a fully convolutional network has been

created (Fan et al., 2019a). The feature pyramid structure contained

a split convolution block and an embedded spatial attention block

(Gao et al., 2019). Against a complex background, the feature

pyramid structure can identify ship items with accuracy. Wei

et al. (Wei et al., 2020) created a high-resolution feature pyramid

structure for ship recognition that combined high-to-low-

resolution features. The challenge of ships of various sizes and

crowded berthings has been addressed by the development of a

multi-scale adaptive recalibration structure (Chen et al., 2019a). A

one-stage SAR target identification approach was suggested by Hou

et al. (Hou et al., 2019) to address the low confidence of candidates

and false positives. (Kang et al. 2017) proposed a method

integrating CFAR with faster R-CNN. The object proposals

produced by the faster R-CNN used in this method for extracting

small objects served as the protective window of the CFAR. Zou

et al. (Zou et al., 2020) integrated YOLOv3 with a generative

adversarial network with a multi-scale loss term to increase the

accuracy of SAR ship recognition. In order to identify and recognize

ships in complex-scene SAR images, Xiong et al. (Xiong et al., 2022)

suggested a lightweight model that integrated several attention

mechanisms into the YOLOv5-n lightweight model.

Results from using CNN methods to identify ships in SAR

imagery are impressive. However, there are still two significant
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areas of work that need to be addressed. One of these involves

methodically combining the most recent advancements in

computer vision to connect optical and SAR images. The other

seeks to broaden the use of ship identification to further

applications, such as instance segmentation. The two SAR image

components were combined as part of this study to enhance the

images’ suitability for RS applications, which is another goal of

the investigation.
3 Proposed improved methodology

3.1 Overall structure of our model

In addition to classifying and locating the object of interest in

an image, instance segmentation also labels each pixel that is a

component of the particular object instance. It enhances the

identification process by associating the bounding box and mask

with the object. As a result, instance segmentation will help us

identify ships more accurately and will also help us deal with

crowded sceneries and detect partially occluded ships. Semantic

segmentation-based bottom-up and identification-based top-down

techniques have been the main focus of case segmentation research

for a very long time. The majority of CNN-based models and their

derivation models, including RCNN, have been used for computer

vision tasks such as object identification, tracking, segmentation,

and classification. Faster RCNN (Chen et al., 1993) is improved by a

cutting-edge technique known as Mask RCNN (He et al., 2017),

which also does instance segmentation using region proposals.

Additionally, it locates every instance of the target object down to

the pixel level in an image.

YOLO is a single-stage object detector that can forecast a

particular object in each area of the feature maps without the aid

of the cascaded location classification stage. YOLO categorizes and

locates the object using bounding boxes and a particular

Convolution Neural Networks (CNN) network. It splits the image

into an S×S; S ∈ Z+ grid and identifies an object as a grid cell if its
Frontiers in Marine Science 04227
focal point crosses one. A one-stage detection method called YOLO

may recognize objects instantly and is very quick (Redmon et al.,

2016). The YOLOV7 algorithm, which is now the most

sophisticated in the YOLO series, balances the conflict between

the quantity of parameters, the amount of calculation, and the

performance. It also outperforms earlier iterations of the YOLO

series in terms of accuracy and speed. In this paper, we used the

improved Yolov7 for segmentation ship detection, and Figure 1

illustrates the outline of the method recommended in the research.

The 1024x1024 SAR images are concurrently supplied to the

network feature extraction at the input end, as shown in Figure 1. In

order to successfully manage the framework training, the proper

ship target labeling must be delivered. The entire deep framework is

divided into three sections: the backbone structure, which is

primarily used to extract features from the input picture; the

feature pyramid, which is used to scale the extracted features and

strengthen the expression of the target feature; and the network

prediction layer, which predicts the target at three scales. Finally,

post-processing techniques like maximum value suppression

(NMS) are used to acquire the results of the identification output.
3.2 Improved backbone networks

The two new modules that are added to the backbone structure

in this research are as follows: SiLu function is used by the MP-

Conv module, the E-ELAN module, and its activation function. The

SiLU activation function used by the MP-Conv module is known to

be more computationally efficient and effective than the traditional

ReLU activation function. By incorporating the SiLU function, the

MP-Conv module can better capture relevant features from SAR

images, leading to improved object detection performance.

Meanwhile, The MP-Conv module adopts the way of double-

branch fusion to carry out super downsampling of convolution

blocks, which on the one hand improves the operational efficiency

of target feature extraction, on the other hand, it can fuse and

enhance target feature expression. The E-ELAN module is designed
FIGURE 1

The overall structure of the proposed ship detection and segmentation model. E-ELAN, MP-Conv, Cat-Conv, and SPPSPC are some improved
modules.
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to boost the capability of the algorithm to retrieve spatial

information from the SAR image. This is achieved by

incorporating an attention mechanism that selectively weighs the

feature maps based on their relevance to the final prediction. By

selectively weighing the feature maps, the E-ELAN module can help

the model focus on the most relevant information, leading to

improved detection and segmentation performance. In addition,

the E-ELAN module can stack more blocks by considering the

shortest gradient path, so as to enhance the feature extraction

capability of the network without significantly increasing the

complexity of the model.

The E-ELANmodule is an effective network structure, as shown

in Figure 2A, that enables the network to learn more features and

has stronger robustness by managing the shortest and longest

gradient routes. The ELAN module has two branches specifically:

The first branch involves using a 1x1 convolution to adjust the

number of channels. The second branch, which is more difficult,

first passes through a 1x1 convolution module to alter the number

of channels. Then, run four 3x3 convolution modules to

extract features.

The reason for selecting the fourth B-Conv as the branch for

channel concatenating in Figure 2 is that we conducted extensive

experiments and found that this branch provides the best

performance for ship detection. Specifically, we found that by

selecting the fourth B-Conv branch, the network can effectively

capture features at different scales and resolutions, which is critical

for accurate ship instance segmentation detection in complex

background SAR images.

Two branches of the MP-Conv (Max-Pooling Convolution)

module, as seen in Figure 2B, are employed for downsampling. A

Max-pool, or maximal pooling, is used on the first branch. The

result of maximizing is downsampling and a 1x1 convolution to

change the number of layers. The second branch initially performs a

1x1 convolution to change the number of layers before passing

through a convolution block with a 3x3 convolution kernel and a 2

stride. Downsampling is another application for this convolution

block. In the end, the two branches’ results are combined, the
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number of layers equals the number of input layers, but the spatial

resolution is decreased by a factor of 2.

In summary, the proposed model structure is designed to

enhance the model’s ability to extract relevant features from SAR

images and to incorporate spatial information through the attention

mechanism. These improvements contribute to improved object

detection and segmentation performance, as demonstrated in

our experiments.
3.3 Improved neck networks

Figure 3 displays the detailed structures of two enhanced

modules in the neck network. Figure 3A illustrates how similar

the Cat-conv module is to the E-ELAN (Encoder Enhanced Layer

Aggregation Network) module, with the exception that it chooses a

different number of outputs for the second branch. Three outputs

are chosen by the E-ELAN module for final addition, and five

channels are chosen by the Cat-conv module for contact. The Cat-

conv structure utilized in this article can assist the entire pyramid

framework in aggregating multi-scale features, increasing the multi-

scale representation of ship targets, which have remarkable multi-

scale features in SAR images.

In order to increase the receptive field more efficiently and

further promote the algorithm to adapt to different resolution

images, we optimize to design of the SPPSPC (Spatial Pyramid

Pooling with Spatial Pyramid Convolution) module to replace the

original SPP module. As seen in Figure 3B, the first branch has four

branches following the Max-pool operation. Through maximal

pooling, it obtains various receptive fields. These four distinct

branches signify the network’s ability to process a variety of

objects. That is to say, it has four receptive fields for each of its

four separate scales of maximum pooling, which are utilized to

differentiate between large and small targets. In this way, the

SPPSPC module designed in this paper combines and optimizes

the feature reorganization, which can effectively increase the

accuracy of the algorithm while greatly reducing the amount of
B

A

FIGURE 2

The detailed structures of two improved modules in the backbone network. (A) The E-ELAN module. (B) The MP-Conv module. “Conv” means the
ordinary convolution-2D layer, “BN” means the batch normalization layer, “Max-Pooling” means the max pooling-2D layer; “k” is the kernel size, and
“s” is the sliding step.
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computation. The loss function used in our proposed network is a

combination of three loss functions: the localization loss, the

confidence loss, and the segmentation loss. The localization loss

measures the difference between the predicted bounding box and

the ground truth bounding box. The confidence loss measures the

objectness score and the background score. Finally, the

segmentation loss measures the pixel-wise difference between the

predicted mask and the ground truth mask. The overall loss

function is a weighted sum of these three loss functions, and it is

optimized using the stochastic gradient descent (SGD) algorithm.
4 Experimental result and discussions

4.1 Dataset overview

4.1.1 HRSID dataset
The High-Resolution SAR Images Dataset for Ship Detection

and Instance Segmentation (HRSID) provided by Wei et al. (Lin

et al., 2017b) is made up of images from 99 Sentinel-1B imageries,

36 TerraSAR-X, and 1 TanDEM-X imagery. The resolutions of the

800 x 800-pixel images, which contain 16951 ships and 5604 sliced

SAR images, range from 1 to 15 meters.
4.1.2 SSDD dataset

The first and most important stage in applying deep learning

algorithms to recognize ships is the construction of a substantial

and comprehensive dataset. As a result, the experiment makes use

of the SSDD (Li et al., 2017) dataset, which contains 1160 SAR
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pictures from Sentinel-1 TerraSAR-X, and RadarSat-2 with

resolutions ranging from 1m to 15m and polarizations in HV,

HH, VH, and VV (Table 1). Scenes of offshore ships and inshore

ships are both present in the collection as background elements.
4.2 Implementation setting

The experiments are all run on an Intel Core i9-9900KF CPU

and an NVIDIA Geforce GTX 2080Ti GPU utilizing CUDA 10.1

CUDNN 7.6.5 and PyTorch 1.7.0. In each experiment, the initial

learning rate is set to 0.01, the final one-cycle learning rate is set to

0.001, the momentum is set to 0.937, the optimizer weight decay is

set to 0.0005, and the ship detection confidence is set to 0.7. We use

the Stochastic Gradient Descent (SGD) algorithm for learning

optimization. The ship instance segmentation task in this research

also requires labeling the object instance as supervision information

and sending it to the suggested deep learning framework for

learning optimization, unlike the general detection task. In order

to more thoroughly assess the proposed model, we separated the

entire training set into the test set and the training set in a 7:3 ratio.

We then compared the detection results with the true value

annotation to assess how well the algorithm performed.
4.3 Evaluation metrics

The traditional methods for quantitatively and thoroughly

assessing the effectiveness of object detectors are the estimate

metrics precision (p), recall (r), intersection of union (IoU), and

average precision (AP) (Everingham et al., 2010). The expert
TABLE 1 Information about the SAR imageries in detail for construction.

Dataset Image (num) Size (Pixel) Satellite Resolution (m)

HRSID (Lin et al., 2017b) 5604 800 x 800 Sentinel-1B/TerraSAR-X /TanDEM-X 1-15

SSDD (Li et al., 2017) 1160 800 x 800 RadarSat-2/TerraSAR-X/Sentinel-1 1-15
The first two SAR image examples in Figure 4 show offshore ships, whereas the last two in the row, respectively, show ships docking in ports and large ships and show the cluster-distributed tiny
ships in the canal.
BA

FIGURE 3

The detailed structures of two improved modules in the neck network. (A) The Cat-Conv module. (B) The SPPSPC module. “Conv” means the
ordinary convolution-2D layer, “BN” means the batch normalization layer, “Max-Pooling” means the max pooling-2D layer; “k” is the kernel size, and
“s” is the sliding step.
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annotation of the object’s geographic coordinates is referred to as

the ground truth in supervised learning for object identification and

instance segmentation. The percentage of overlap between the

expected outcome and the actual result serves as a proxy for the

correlation between two variables; a higher level of overlap denotes

a stronger connection and a more precise prediction. Eq (1) states

that the bounding box IoU is determined by the percent of overlap

between the predicted bounding box and the ground truth

bounding box.

The efficiency of various techniques is evaluated using a number

of recognized indicators, such as AP, r, p, and IoU, and these

indications are particularly specified in the following Eq (1–5) since

SAR photo object identification tasks are comparable:

IoUbbox =
Bboxp ∩ Bboxg
Bboxp ∪ Bboxg

(1)

In object identification tasks, AP is a frequently used indicator

that compares the proportion of properly recognized items to the

total number of objects in the picture. Another often-used metric is

r, which compares the fraction of successfully recognized items to

the total number of objects in the picture. It is determined as the

ratio of true positives (items that have been accurately identified) to

the sum of true positives and false negatives (objects that were

present in the image but not detected).

p is an indicator that calculates the proportion of successfully

detected items concerning the total number of detected objects in

the picture. It is calculated by dividing the number of true positives

by the total number of true positives and false positives. IoU

(Intersection over Union) is an indicator that calculates the ratio

of the intersection of two bounding boxes to the union of two

bounding boxes to determine the similarity between two bounding

boxes (Bbox p and Bbox g). These indicators (AP, r, p, IoU) are

extensively employed in the domain of SAR picture object

identification to evaluate and compare the efficacy of

various methodologies.
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The rate of overlap between the ground mask and predicted

mask, as shown in equation (2), determines the mask IoU in a

manner similar to how segmentation precision is calculated.

IoUmask =
Maskp ∩ Maskg
Maskp ∪ Maskg

(2)

The IoU may also be used to assess segmentation tasks such as

object recognition in SAR images. The IoU is determined using

equation (2), which is comparable to the calculation for IoU of

bounding boxes that has been previously described. The IoU mask

is the ratio of the predicted mask (Mask p) and the ground truth

mask (Mask g) intersection to the union of the two masks. IoU is

also known as the Jaccard Index in the context of image

segmentation, which is a standard statistic for evaluating the

performance of image segmentation algorithms. A high IoU score

implies that the predicted mask and the ground truth mask have a

high degree of overlap, indicating that the model is accurate.

During classification, algorithms may incorrectly recognize the

surroundings and the objects. True Positives (TP), True Negatives

(TN), False Positives (FP) and False Negatives (FN) are the four

categorization findings, where TP stands for the number of

successfully categorized positive samples, TN for correctly classed

negative samples, FN for correctly classified missed positive

samples, and FP for correctly classified false alarms in the

background. These criteria establish p and r, as shown by

equations (3, 4).

Pr ecision =
TP

TP + FP
(3)

Re call =
TP

TP + FN
(4)

In classification tasks, the four categorization findings are used

to evaluate the algorithm’s performance. Precision and recall, two

often used indicators in classification tasks, are calculated using TN,
B

A

FIGURE 4

Photos are shown from the dataset used in the current paper. (A) some photos from the HRISD dataset and, (B) some photos from SSDD datasets.
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FN, TP, and FP. The equation (3) is used to calculate precision, it

calculates the fraction of correctly identified positive samples to the

total number of positive samples. A high accuracy score suggests

that the algorithm has a low number of false positives, indicating

that it accurately identifies a large majority of positive samples.

The AP is established using recall and precision measurements.

If the horizontal coordinate is the r value and the vertical coordinate

is the precision value, as shown in equation (5), then the area under

the recall-precision curve is the AP value in the Cartesian

coordinate system:

AP =  

Z 1

0
P(R)dR                 (5)

The mathematical average of all categories in a dataset with

multiple classes is defined as the mean AP (mAP). The AP measure

is extensively used to assess the effectiveness of object identification

systems. The area under the recall-precision curve, which is a plot of

recall vs. accuracy, is what it is. According to equation (5), the AP

value in the Cartesian coordinate system is the definite integral of

the accuracy value with respect to the recall value, ranging from 0 to

1. A greater AP value suggests that the algorithm is doing well, as

seen by a larger area under the recall-precision curve.

Mean Average Precision (mAP) is a statistic used to assess the

effectiveness of multi-class object identification systems. It is the

average of all the AP values in a dataset. It provides an overall

measure of the algorithm’s performance across all classes in the

dataset. A greater mAP number implies that the method performs

better across all classes in the dataset.
4.4 Visualization experiment of
proposed algorithm

Due to various incident angles of the radar signal,

environmental conditions, polarization techniques, etc., the
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preprocessing SAR images include clutter noise that interferes

with the feature of ships and prohibits ship identification and

instance segmentation using CNN. Therefore, while building a

SAR dataset for ship identification and instance segmentation,

ships should be totally and precisely labeled as opposed to

creating an optical RS dataset for object recognition and instance

segmentation (Waqas Zamir et al., 2019). In current research work,

we have established an effective and reliable algorithm for building

an HR-RS dataset for CNN-based ship identification and instance

segmentation. Instance segmentation’s impacts on low-resolution

SAR pictures may be limited in order to escape missing annotation

and incorrect annotation brought on by artificial structures that

resemble ships (Wang et al., 2019), which are displayed as

highlighted spots in low-resolution SAR images. High-resolution

remote sensing pictures are utilized to create the dataset, and the

images are sliced into 800 x 800 size segments for optimal function

development, such as multi-scale training.

The results of ship identification instance segmentation for SAR

images using the proposed model are shown in Figures 5, 6. The

ground truth mask results are shown in the first row of the figure,

and the projected instance outcomes are outcomes presented in the

second row. Figures 5, 6 demonstrate how our model’s output is

suitable for our goal of segmenting instances in HR-RS images. As

missed and false alarms increase in our model, instance

segmentation is carried out on the mask branch. Finally, these

synthetic targets can be detected and segmented quite well, and the

segmentation outcomes produced by our model are very close to

reality. With the help of our model, the instance segmentation task

in HR-RS images was completed successfully.
4.5 Ablation studies

We performed ablation experiments to assess the efficacy of

various components in their suggested ship instance segmentation
FIGURE 5

Outcomes of the proposed approach instance segmentation in the HRSID dataset (first row show the ground truth and second row is the predicted
instance outcomes).
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detection model. Table 2 shows the findings of the ablation

research. As the default model, the writers used the YOLOv7

model with an input size of 640x640 pixels. The standard model

had an AP of 57.8, with an AP50 of 83.7 and an AP75 of 69.5. Also

we have added E-ELAN, an edge enhancement module, to the basic

model in the first ablation trial. With the inclusion of E-ELAN, the

AP increased to 59.4, with an AP50 of 89.6 and an AP75 of

71.9.Then we have added MP-Conv, a multi-path convolution

module, to the basic model in the second ablation analysis. The

inclusion of MP-Conv increased the AP to 60.7, with an AP50 of

83.9 and an AP75 of 69.8. Cat-Conv, a channel attention transfer

convolution module, was added to the baseline model in the third

ablation trial. Cat-Conv increased the AP to 62.3, with an AP50 of

83.1 and an AP75 of 68.3. Also we have added SPPSPC, a spatial

pyramid pooling module, and convolution to the baseline model in

the fourth ablation trial. SPPSPC increased the AP to 63.5, with an

AP50 of 87.8 and an AP75 of 73.5. In the last, the authors added all

of the previously stated modules (E-ELAN, MP-Conv, Cat-Conv,

and SPPSPC) to the baseline model in the fifth and concluding

ablation trial. The finished model had the greatest AP of 69.7, as

well as an AP50 of 94.9 and an AP75 of 86.5. The authors

discovered that incorporating all four modules greatly enhanced

the baseline model’s performance, particularly in terms of accuracy
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and recall, showing the efficacy of their suggested model for real-

time ship instance segmentation recognition in complicated

backdrop SAR images.
4.6 Comparison with other state-of-the-
art techniques

Figures 7 and 8 show the qualitative outcomes of our model and

the comparable algorithm on the SSDD and HRSID dataset,

individually, to further validate the efficiency of instance

segmentation and ship identification. Row 1 displays the ground-

truth mask, while rows 2 to 6 display the results of Faster R-CNN,

Cascade R-CNN, Mask R-CNN, and Hybrid Task Cascade,

respectively. When compared to existing instance segmentation

techniques, the results of our improved model can accurately

recognize and separate artificial targets in a variety of scenes, as

shown in row 7. The expected instance masks, in particular,

precisely cover these contrived objectives. As a result of our

model’s nearly complete elimination of false alarms and missed

detections, our mask branch consistently accomplishes superior

instance segmentation. When contrast to bounding box

identification approaches like Faster R-CNN, Mask R-CNN,
TABLE 2 The ablation experiment study.

Model Input size E-ELAN MP-Conv Cat-Conv SPPSPC AP AP50 AP75 APS APM APL

Yolov7 640x640 – – – – 57.8 83.7 69.5 57.3 60.6 24.5

640x640 ✔ – – – 59.4 89.6 71.9 59.1 60.6 39.7

640x640 – ✔ – – 60.7 83.9 69.8 56.9 61.2 30.4

640x640 – – ✔ – 62.3 83.1 68.3 60.7 63.5 47.8

640x640 – – – ✔ 63.5 87.8 73.5 65.5 67.4 45.5

640x640 ✔ ✔ ✔ ✔ 69.7 94.9 86.5 73.4 76.8 58.6
frontier
FIGURE 6

Results of the proposed model’s instance segmentation in the SSDD detection dataset (the first row show the ground truth and the second row
shows the predicted instance outcomes).
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Cascade Mask R-CNN, Hybrid Task Cascade, and Cascade R-CNN,

instance segmentation outcomes are more closely connected to the

shape of the original targets. Additionally, separate instances within

the same category can be distinguished using the instance

segmentation. The ships in Figures 7, 8 stand out because to their

dissimilar colors, and in addition, the suggested model, when

compared to other instance segmentation approaches, has no

false alarms and no missed targets detection while also producing
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better results for mask segmentation. The results from the HRSID

and SSDD dataset show that our technique is appropriate for

instance segmentation in HR-RS photos and outperforms

existing instance segmentation strategies when it comes to

mask segmentation.

To quantitatively assess the achievement of instance

segmentation, we compared the suggested approach with other

cutting-edge approaches on the HRSID and SSDD in Tables 3 and
B

C

D

E

F

G

A

FIGURE 7

Outcomes of CNN-based techniques for visual ship identification instance segmentation using the HRSID dataset. Outcomes from (A) illustrate the
ground truth, (B) the Faster-R-CNN technique, (C) the Cascade R-CNN, (D) the Mask R-CNN, (E) the Cascade Mask R-CNN, (F) the Hybrid Task
Cascade, and (G) the results from our proposed method.
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4. Faster R-CNN, Mask R-CNN, Cascade R-CNN, Cascade Mask R-

CNN, and Hybrid Task Cascade are some of these techniques.

Tables 3 and 4 show that the suggested strategy achieves the

maximum ap of 69.7%. Hybrid Task Cascade and our model

outperform Faster R-CNN, Cascade R-CNN, Mask R-CNN,

Cascade Mask R-CNN, and Cascade R-CNN by 6.3%, 3.2%, 4.5%,

0.8%, and 2.4%, respectively. In summary, the recommended

method has superior instance segmentation effectiveness and

better precise predicted instance masks on the HRSID dataset

compared to other instance segmentation algorithms. The
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reduced parameter count, and computational expense are due to

the use of the SiLU activation function, which is more

computationally efficient than the traditional ReLU activation

function. Additionally, the E-ELAN module selectively weighs the

feature maps, further reducing the computational expense without

compromising performance. The AP50 score of our model is 94.9%,

which is also 10.2% higher than Faster R-CNN, 9.3% higher than

Cascade R-CNN, 7.4% higher than Mask R-CNN, 8.2% higher than

Cascade Mask R-CNN, and 7.3% higher than Hybrid Task Cascade.

Our model achieves an AP75 score of 86.5%, which is an
B
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A

FIGURE 8

Outcomes of CNN-based techniques for visual ship identification instance segmentation using the SSDD. Results from (A) illustrate the ground truth,
(B) the Faster-R-CNN technique, (C) the Cascade R-CNN, (D) the Mask R-CNN, (E) the Cascade Mask R-CNN, (F) the Hybrid Task Cascade, and
(G) the results from our proposed method.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1113669
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yasir et al. 10.3389/fmars.2023.1113669
improvement of 14.9% over Faster R-CNN, 9.3% over Cascade R-

CNN, 12.5% over Mask R-CNN, 9.7% over Cascade Mask R-CNN,

and 7.2% over Hybrid Task Cascade. Mask segmentation has

proven to be more precise and superior to other state-of-the-art

techniques, such as segmentation utilizing the HRSID dataset. The

efficacy of large medium, and small targets on the HRSID dataset

has also improved, according to APS, APM, and APL.

Table 3 shows that our model achieves a 70.3% AP, which

represents an improvement of 11.7% compared to Faster R-CNN,

9.2% compared to Cascade R-CNN, 13.8% compared to Mask R-

CNN, 10.3% compared to Cascade Mask R-CNN, and 2.5%

compared to Hybrid Task Cascade. In summary, the

recommended model has superior instance segmentation
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effectiveness and more precise predicted instance masks when

compared to previous instance segmentation algorithms on the

SSDD dataset. The AP50 score of our model is also 94.7%, which is

an improvement of 15.7% over Faster R-CNN, 3.3% over Cascade

R-CNN, 4% over Mask R-CNN, 7.7% over Cascade Mask R-CNN,

and 2% over Hybrid Task Cascade. Our model obtains an AP75 of

76.5 percent, which is an improvement of 11% over Faster R-CNN,

9.8% over Cascade R-CNN, 10.8% over Mask R-CNN, 8.8% over

Cascade Mask R-CNN, and 1.6% over Hybrid Task Cascade. It has

been proven that segmentation using the mask will be more

accurate and superior than segmentation using other cutting-edge

techniques, such as segmentation on the SSDD dataset. According

to APL, APM, and APS, the HRSID dataset’s small, medium, and
TABLE 3 Comparing to various cutting-edge methods on the HRSID dataset.

Methods Backbone Time
(ms)

Model
(Size)

AP AP50 AP75 APS APM APL

Faster R-CNN(Ren et al., 2015) ResNet-50
+FPN
ResNet-101
+FPN

52.6
64.2

330M 482M 64.9
63.4

84.6
84.7

71.5
71.6

65.1
65.7

66.2
67.3

17.8
25.3

Cascade R-CNN(Cai and Vasconcelos, 2019) ResNet-50
+FPN
ResNet-101
+FPN

73.9
85.5

552M 704M 67.8
66.5

85.8
85.6

77.6
77.3

68.6
68.2

68.8
69.7

29.9
28.8

Mask R-CNN (He et al., 2017) ResNet-50
+FPN
ResNet-101
+FPN

53.7
62.9

351M 503M 66.8
65.2

87.3
87.5

74.9
74.0

67.9
67.3

67.8
69.3

18.4
24.3

Cascade Mask R-CNN(Cai and Vasconcelos,
2019)

ResNet-50
+FPN
ResNet-101
+FPN

73.0
87.1

615M 768M 68.7
68.9

86.1
86.7

76.6
76.8

69.4
69.8

68.5
70.6

21.5
22.9

Hybrid Task Cascade (Chen et al., 2019b) ResNet-50
+FPN
ResNet-101
+FPN

118.9
134.6

639M 791M 67.1
67.3

88.4
87.6

79.8
79.3

70.3
70.8

72.6
73.6

39.0
32.8

Our Model ELAN-Net 87 403M 69.7 94.9 86.5 73.4 76.8 58.6
front
TABLE 4 Comparing to various cutting-edge methods on the SSDD dataset.

Methods Backbone Time
(ms)

Model
(Size)

AP AP50 AP75 APS APM APL

Faster R-CNN(Ren et al., 2015)
ResNet-50+FPN ResNet-
101+FPN

55.5 66.1 330M 482M
57.5
58.6

78.1
79.0

64.2
65.5

42.8
43.6

57.8
58.1

62.7
61.6

Cascade R-CNN (Cai and Vasconcelos,
2019)

ResNet-50+FPN ResNet-
101+FPN

61.9 70.2 552M 704M
60.7
61.1

90.2
91.4

67.8
66.7

46.4
45.7

61.7
61.4

66.4
61.3

Mask R-CNN (He et al., 2017)
ResNet-50+FPN ResNet-
101+FPN

63.0 72.3 351M 503M
55.3
56.5

91.3
90.7

64.8
65.8

41.8
41.1

55.7
54.4

59.9
60.2

Cascade Mask R-CNN(Cai and
Vasconcelos, 2019)

ResNet-50+FPN ResNet-
101+FPN

85.6 93.8 615M 768M
60.2
59.7

88.5
87.2

66.8
67.7

47.5
46.2

63.5
63.0

66.4
65.7

Hybrid Task Cascade (Chen et al.,
2019b)

ResNet-50+FPN ResNet-
101+FPN

153.2
168.5

639M 791M
68.7
67.8

91.2
92.6

75.5
74.9

52.2
54.6

68.9
67.8

70.5
73.8

Our Model ELAN-Net 96 403M 70.3 94.7 76.5 55.9 70.2 75.1
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large target efficacy has also enhanced. We achieve the similar

achievement as our model on the NWPU VHR-10 dataset under

several AP indicators, and some AP indicators even outperform it.

Tables 3, 4 show how our model performs better with fewer

parameters and less computational expense. The proposed model

incorporates several improvements to the YOLOv7 backbone

architecture, including the addition of an ELAN-Net backbone and

FPN, the SiLU activation function, and the E-ELAN module. These

improvements allow the model to more effectively extract and use

relevant features from SAR images, resulting in improved detection

and segmentation performance. Moreover, the proposed model

achieves this improved performance while using fewer parameters

and less computational expense compared to other modern models, as

shown in Tables 3 and 4. The reduced parameter count and

computational expense are due to the use of the SiLU activation

function, which is more computationally efficient than the traditional

ReLU activation function. Additionally, the E-ELANmodule selectively

weighs the feature maps, further reducing the computational expense

without compromising performance.

Furthermore, with comparable model sizes and levels of

computational complexity, our models outperform the Mask Scoring

R-CNN and Mask R-CNN. Comparing our models to Hybrid Task

Cascade and Cascade Mask R-CNN, we find that our models

outperform them while consuming less processing power and having a

smaller model size. Our network is therefore better than other modern

algorithms in terms of model size and processing complexity.

In order to assess the detectors’ capacities to locate the ship in

complex situations and to test their capacity to deliver adequately

observable results, some complex scenarios are added to the

datasets. The findings demonstrate that complex situations, like

those containing nearby ships and small ships scattered in a cluster,

continue to provide a challenge to detectors. The generated mask

may accurately show the distribution of ships with their concrete

shape pixel-by-pixel with regard to the visual identification

outcomes in instance segmentation, laying the groundwork for

further instance segmentation investigations. As a result, when

compared to other cutting-edge techniques, our model creates

instance masks that are more precise and improves the

performance of instance segmentation in HR-RS images.

The object detection of RS images has been shown to have

problems by CNN. YOLOv7 was actually created as the

fundamental detecting network, whereas the ELAN-Net backbone

network was designed for advancement. The results of our studies

demonstrate that the enhanced algorithm we built would

considerably improve the identification efficiency of small-scale

items in RS pictures and can increase the accuracy of multi-scale

object segmentation. The HRSID and SSDD datasets were used for

our investigation because there are no established, open remote

sensing mask datasets available, and there might only be a few

different varieties. We also need to conduct further research to

improve and advance the model inference speed. However, using

fuzzy preprocessing techniques to images is also necessary because

the processed images are frequently affected by unknown factors

(Versaci et al., 2015). Our next study will focus on solving the

aforementioned issues, and in order to test our new models, we will

first look for and create more RS mask datasets with a wider range
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of object classes. Additionally, we will use more accurate and

representative datasets. The next phase of our research will

involve creating a lightweight framework model that will speed

up inference without sacrificing identification accuracy.

In summary, our proposed model achieves better performance

with fewer parameters and less computational expense by

incorporating several improvements to the YOLOv7 backbone

architecture, and by using the SiLU activation function and the E-

ELAN module to more effectively extract and use relevant features

from SAR pictures.
5 Conclusions

The field of aerospace and remote sensing (RS) domains is

heavily influenced by instance segmentation and object recognition

tasks, which have a wide range of potential applications in various

real-world scenarios. In recent times, the importance of ship

identification in RS satellite images has increased. While most

current algorithms identify ships using rectangular bounding boxes,

they do not segment pixels. As a result, our research offers an

enhanced YOLOv7 one-stage detection technique for ship

segmentation and identification in RS imagery, capable of

accurately recognizing and segmenting ships at the pixel level. We

have redesigned the network structure to adapt to the task of ship

target segmentation and added two feature optimization modules to

the backbone network to increase the robustness of network feature

extraction. In addition, we improved the network feature fusion

structure and enhanced the prediction capability of multi-scale

targets by optimizing the model acceptance domain. Based on the

experimental outcomes on the SSDD and HRSID datasets, our model

demonstrates improved accuracy in predicting instance masks,

promoting the success of instance segmentation in HR-RS imaging

and encouraging further advancements in mask prediction accuracy.

Our proposed method outperforms existing methods for segmenting

ships in remote sensing images, and we plan to extend our research to

the segmentation of objects in drone images. While our proposed

approach has limitations in handling extremely small or crowded

ship instances, we acknowledge this limitation and suggest further

optimization of the network architecture and training strategies.

Additionally, we have not yet explored the potential of other

advanced techniques such as depthwise separable convolution

neural network, balance learning, and attention mechanisms, which

could be interesting directions for future research. In summary, our

proposed approach provides a more precise and effective solution for

ship segmentation and identification in RS imagery, and our future

work will focus on extending the application of our proposed method

to other remote sensing scenarios.
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ULL-SLAM: underwater low-light
enhancement for the front-end
of visual SLAM

Zhichao Xin, Zhe Wang, Zhibin Yu* and Bing Zheng

Key Laboratory of Ocean Observation and Information of Hainan Province, Faculty of Information
Science and Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya,
Hainan, China
Underwater visual simultaneous localization and mapping (VSLAM), which can

provide robot navigation and localization for underwater vehicles, is crucial in

underwater exploration. Underwater SLAM is a challenging research topic due to

the limitations of underwater vision and error accumulation over long-term

operations. When an underwater vehicle goes down, it may inevitably enter a

low-light environment. Although artificial light sources could help to some

extent, they might also cause non-uniform illumination, which may have an

adverse effect on feature point matching. Consequently, the capability of feature

point extraction-based visual SLAM systems could only sometimes work. This

paper proposes an end-to-end network for SLAM preprocessing in an

underwater low-light environment to address this issue. Our model includes a

low-light enhancement branch specific with a non-reference loss function,

which can achieve low-light image enhancement without requiring paired

low-light data. In addition, we design a self-supervised feature point detector

and descriptor extraction branch to take advantage of self-supervised learning

for feature points and descriptors matching to reduce the re-projection error.

Unlike other works, our model does not require pseudo-ground truth. Finally, we

design a unique matrix transformation method to improve the feature similarity

between two adjacent video frames. Comparative experiments and ablation

experiments confirm that the proposed method in this paper could effectively

enhance the performance of VSLAM based on feature point extraction in an

underwater low-light environment.

KEYWORDS

self-supervised learning, VSLAM, feature point matching, underwater low-light
enhancement, end-to-end network
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1 Introduction
In recent years, vision-based state estimation algorithms have

emerged as a compelling strategy for detecting indoor Garcıá et al.

(2016), outdoor Mur-Artal and Tardós (2017); Campos et al.

(2021), and underwater Rahman et al., 2018; Rahman et al.,

2019b environments using monocular, binocular, or multi-

cameras. Meanwhile, simultaneous localization and mapping

(SLAM) techniques can provide robots with real-time self-

localization and constructing a map in an unknown environment,

making SLAM vital in path planning, collision avoidance, and self-

localization tasks. Specifically, visual SLAM provides an effective

solution for many navigation applications Bresson et al. (2017),

where it is responsible for detecting unknown environments and

assisting in decision-making, planning, and obstacle avoidance.

Furthermore, in recent years, the use of autonomous underwater

vehicles (AUVs) or remotely operated underwater vehicles (ROVs)

for marine species migration Buscher et al. (2020) and coral reef

monitoring Hoegh-Guldberg et al. (2007), submarine cable and

wreck inspection Carreras et al. (2018), deep-sea exploration

Huvenne et al. (2018), and underwater cave exploration have

received increasing attention Rahman et al., 2018; Rahman

et al., 2019b.

However, unlike the terrestrial environment, the light source

conditions are often limited during deep-sea exploration. As a

result, underwater vehicles can only perform illumination

detection through the airborne light source, which leads to the

underexposure of underwater captured images. Furthermore, due to

the limited space of the aircraft, the installation distance between

the airborne lens and the light source is often too close, which will

also lead to uneven exposure of the image or even overexposure.

Meanwhile, photos captured underwater suffer from low contrast

and color distortion problems due to strong scattering and

absorption phenomena. Therefore, providing robust feature

points for tracking, matching, and localization for feature point

extraction-based visual SLAM systems is complex and challenging.

As a result, direct execution of currently available vision-based

SLAM often fails to achieve satisfactory and robust results.

To solve the problem of feature point matching, SuperPoint

DeTone et al. (2018) expressed keypoints detection as a classification

problem and realized the feature point detectionmethod based on deep

learning in this way. UnSuperPoint Christiansen et al. (2019) converted

the keypoints detection problem into regression, and the detection

head outputs the offset ratio of the keypoints in each patch relative to

the reference coordinates, thereby improving the effect of feature point

detection. Although these methods have achieved fair results in non-

underwater general scenes, there is no particular design for underwater

low-light scenes.

In recent years, deep learning-based Low-Light-Image-

Enhancement(LLIE) has achieved impressive success since the first

seminal work Lore et al. (2017). LLNet Lore et al. (2017) employed a

variant of stacking sparse denoising autoencoders to brighten and

denoise low-light images simultaneously. Zero DCE Li et al. (2021)

achieved zero-reference learning through non-reference loss

functions and treats light enhancement as an image-specific curve
Frontiers in Marine Science 02240
estimation task; it takes low-light images as input and produces high-

order curves as output while achieving fast calculations.

EnlightenGAN Jiang et al. (2021) adopted an attention-guided U-

Net as the generator and used a global-local discriminator to ensure

that the augmented results look like authentic typical light images.

Although these works can achieve likely results in in-air low-light

environments, these existing low-light enhancement networks did

not consider the uneven illumination issues during the underwater

exploration. Since there is no guarantee to keep the feature points

from two adjacent frames consistent, an image-level low-light

enhancement model may improve human visual perception but

may be useless for feature point matching (Figure 1). Data

collection is another underwater challenge. Some existing low-light

image enhancement networks Lore et al. (2017); Li et al. (2021); Jiang

et al. (2021) need a training data set by fixing multiple cameras to

adjust the camera’s exposure time or taking images at different times

of the day. It would be difficult to take underwater images at different

times of the same scene along with an underwater robot.

To address these issues, we propose a front-end network

framework for underwater monocular SLAM based on low-light

feature point extraction with siamese networks in Figure 2, named

ULL-SLAM. Our ULL-SLAM can improve the performance of

monocular SLAM in underwater low-light environments. This

unsupervised end-to-end network architecture can effectively

improve feature-matching performance, thereby obtaining better

and more robust SLAM results. Our network can accomplish both

low-light image enhancement and feature point extraction, and both

are optimized together to enhance the low-light image enhancement

network toward favorable feature point extraction and matching.

Continuous image frames are input during training, and the network

constrains the image enhancement followed by continuous frames to

improve the performance of feature point extraction and matching

between consecutive frames. Meanwhile, the image enhancement

network and the feature point extraction network share the same

backbone to improve the inference speed of the model and make the

model capable of deployment on embedded devices. Furthermore, we

have independently packaged the low-light feature point extraction

network of ULL-SLAM, which can help audiences to transplant into

any SLAM architecture based on feature point extraction and obtain

performance gains. Finally, we evaluate our method on multiple

underwater datasets. The proposed method outperforms existing

methods in position estimation and system stability. In summary,

our main contributions are as follows:
• We propose a mean frame loss and a temporal-spatial

consistency loss to improve the ability of feature point

extraction among several adjacent frames and keep the

enhanced features from the adjacent frames consistent.

• We propose an adaptive low-light enhancement network

with an uneven brightness loss, which can adjust the

brightness of an image with an arbitrary low-light level.

• We adopt the method of the siamese network to train the

network’s ability to extract feature points through

homography transformation. The siamese network

enables interest point scores and positions to be learned

automatically.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1133881
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Xin et al. 10.3389/fmars.2023.1133881
FIGURE 2

The overview framework of the proposed method. The green box is the low-light image enhancement branch, and the red box is the feature
extraction branch. The two parts share the same backbone (in the blue box), and the orange box is the output result of the model.
FIGURE 1

An image-level low-light enhancement preprocessing module (e.g., Zero-DCE Li et al. (2021)) can improve human visual perception. However, it is
unlikely to improve feature point matching performance between two adjacent frames in an underwater video. The proposed ULL-SLAM, which
includes a video-level low-light enhancement module, can effectively extract the feature points between two adjacent frames.
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2 Related work

2.1 Low light image enhancement

There are four types of popular low-light image enhancement:

1) supervised learning, 2) reinforcement learning, 3) unsupervised

learning, and 4) zero-shot learning. MBLLEN Lv et al. (2018)

extracted effective feature representation through a feature

extraction module, an enhancement module, and a fusion

module, which improves the performance of low-light image

enhancement. Ren et al. Ren et al. (2019) designed a more

complex end-to-end network, including an encoder-decoder

network for image content enhancement and a recursive neural

network for image edge enhancement. To reduce the computational

burden, Li et al. Li et al. (2018) proposed LightenNet, a lightweight

model for low-light image enhancement. LightenNet takes the low-

light image as input to estimate its illuminance pattern. It can

enhance the image by dividing the input image by the illuminance

graph. In the absence of paired training data, Yu et al. Yu et al.

(2018) used adversarial reinforcement learning to study the

exposure of photos, which they named DeepExposure. First, the

input image is segmented into sub-images based on exposure. For

each sub-image, local exposures are sequentially learned through a

reinforcement learning-based policy network, and the reward

evaluation function is approximated by adversarial learning.

EnligthenGAN Jiang et al. (2021) is based on an unsupervised

learning method and addresses the problem that training a deep

model on paired data may lead to overfitting and thus limit the

model’s generalization ability. Supervised learning, reinforcement

learning, and unsupervised learning methods either have limited

generalization ability or suffer from unstable training. Zhang et al.

Zhang et al. (2019) proposed a zero-shot learning method called

ExCNet, which is used for backlit image in painting. It first uses a

network to estimate the S-curve that best fits the input image. Once

the S-curve is estimated, guided filters separate the input image into

a base layer and a detail layer. The estimated S-curve then adjusts

the base layer. However, most of these works are image-level

models. Applying an image-level model for video preprocessing

may cause features to be inconsistent between two adjacent frames.

In many low-light underwater cases, the unique illumination from

the underwater vehicle could be more likely to cause uneven

brightness distribution than in-air cases. Unlike these works, our

model includes two loss functions to ensure the enhanced

underwater images can practically improve the feature points

matching efficiency as well as the VLSAM performance.
2.2 Underwater SLAM

Nowadays, the popular visual SLAM system is normally based

on the feature description method Rublee et al. (2011). VINS Qin

et al. (2018); Qin and Shen (2018) proposed a general monocular

fusion framework containing IMU information. Unlike the non-

underwater environment, conventional navigation and positioning

communication methods cannot be used typically underwater (such

as GPS). Hence, the visual information of the underwater robot
Frontiers in Marine Science 04242
itself provides an essential guarantee for robot navigation. In the

absence of GPS to generate ground truth for camera poses, a recent

work employs Colmap’s Schönberger and Frahm (2016);

Schönberger et al. (2016) SFM (structure-from-motion, SFM)

based method to generate relatively accurate camera trajectories.

To evaluate underwater SLAM performance, UW-VO Ferrera et al.

(2019) uses the reconstructed trajectories as ground truth trajectory

values. Due to the good properties of sound propagation in water,

some sonar-based methods Rahman et al., 2018; Rahman et al.,

2019a; Rahman et al., 2019b, SVIN Rahman et al. (2018) and SVin2

Rahman et al. (2019b)), incorporate additional sparse depth

information from sonar sensors for more accurate position

estimation. No matter which kind of feature point-SLAM system

is used, the premise of its work is to be able to extract feature points.

However, in deep-sea exploration, the feature points cannot be

easily extracted due to the low brightness of underwater imaging

and insufficient illumination. Besides, sonar sensor-based solutions

Rahman et al., 2018; Rahman et al., 2019b) remain expensive, and

we aim to propose a general underwater SLAM framework based on

purely visual information in deep-sea low-light environments.
3 Methodology

3.1 Overall framework

Feature point extraction and matching play a key role in VSLAM

process. Unfortunately, many existing low-light image enhancement

works are not designed for continuous frames. An image-level

preprocessing may improve human visual perception, but it may be

useless for feature point extraction and matching. Moreover, the

artificial illumination used for deep-sea exploration may easily cause

uneven illumination. The ULL-SLAM front-end feature point

extraction network uses a self-supervised siamese network training

framework to learn all four tasks simultaneously; the process is shown

in Figure 2. The learning tasks of the network are mainly divided into

two branches: low-light image enhancement and feature point

extraction. The two branches share the same backbone to reduce

the model’s training time and improve the model’s inference speed,

thereby ensuring that the model runs on embedded devices in real-

time. The low-light image enhancement branch is responsible for

enhancing the input original low-light image, and the feature point

extraction branch uses the siamese network to predict the two

detected feature points of the same input image.

The proposed enhancement network does not directly perform an

image-to-image mapping from the low-light image to the enhanced

image but rather estimates an enhancement curve from the low-light

image to the enhanced image by the network, and applies the

estimated enhancement curve to the low-light image to complete

the low-light enhancement of the original image. Therefore, in order

to make the estimated enhancement curve more accurate, images with

different exposure levels of the same image are used when feeding

them into the network, which is why the input part of the network

frame has 7 images with different exposure levels at the samemoment,

as shown in Figure 3. In order to ensure the color imbalance that may

occur between the front and back frames after underwater continuous
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frame image enhancement (e.g., the image scenes between the front

and back frames do not differ much, but the enhancement effect has

changed), the images at the five moments of ti, ti−1, ti−2, ti+1, ti+2 at the

input end of the network are to ensure that the texture information,

color, etc. between the front and back frames of continuous frame

image enhancement do not become distorted, and at the same time

can complete the Feature point matching, this part is explained in

detail in the ablation experiment (Figure 4) of the loss function.

The first step is to perform a spatial transformation (rotation,

scaling, tilt, etc.) on the input image through random homography

T. Through the siamese network A, output the feature points

fraction a, the position a, and the descriptor sub-information a.

In the second step, the input image passes through the siamese

network B, and then the output result is transformed by the same

random homography T to obtain the feature point score B, position

B, and descriptor information B. The feature points output by the

siamese network A and the siamese network B are spatially aligned,

and finally, the distance between the two points is minimized in the

loss function to train the network. The feature points are

differentiable through the T transformation and the loss function

so that each siamese network can be trained and tested end-to-end.
3.2 Backbone

The backbone network takes an input image and generates

intermediate feature map representations for each subtask. The first

seven convolutional layers of the backbone network are

symmetrically connected. Each layer consists of 32 convolution

kernels of size 3×3 with a stride of 1 followed by a ReLU activation

function. The Tanh activation function follows the last convolution

layer. Three max-pooling layers separate the last four pairs of

convolutional layers with a stride and kernel size of 2. After each

pooling layer, the number of channels in subsequent convolutional

layers doubles. The number of channels for 8 convolutional layers is

32-32-64-64-128-128-256-256. Each pooling layer samples twice

the height and width of the feature map, while the entire trunk

samples are eight times the height and width of the feature map. An

entry in the final output corresponds to 8 × 8 regions in the input

image. So for an input image of 480 × 640, the network will return

(480/8) · (640/8) = 4800 entries Christiansen et al. (2019). Each

entry is processed on each subtask in a fully convolutional way to

output descriptors, scores, and locations, effectively creating 4800

points of interest Christiansen et al. (2019).
Frontiers in Marine Science 05243
3.3 Low-light image enhancement branch

Underwater robots usually must deal with images with dark

light and uneven illumination distribution of continuous video

frames in the marine environment, Zero-DCE Li et al. (2021)

proposes the idea of brightening the curve as shown in Eq. 1.

This function is well designed to solve the problems of the constant

brightness value range, monotonically increasing brightening curve,

simple curve formula and network differentiability. However, this

idea does not consider that the enhanced features between two

adjacent frames should be as consistent as possible. Therefore, we

draw on this idea to propose a new solution based on the siamese

network to deal with the low-light enhancement problem of

underwater constant frame images. Specifically as follows:

LE(I(x);a) = I(x) + aI(x)(1 − I(x)),

LEn(x) = LEn−1(x) + anLEn−1(x)(1 − LEn−1(x)),
(1)

where x is the pixel coordinate; LE(I(x);a) is the augmented image

of the input image I(x); a ∈ ½−1, 1� is a trainable curve parameter

that adjusts the size of the LE curve. Each pixel is normalized to

[0,1], and all operations are performed pixel-wise.

3.3.1 Temporal-spatial consistency loss
Inspired by the spatial consistency loss Lspa proposed in Zero-

DCE [15], we further consider the temporal relationship between

two adjacent frames and propose the temporal-spatial consistency

loss Ltspa to extend the spatial consistency restriction from the

image-level to the video level. Comparing with the Lspa defined in

Zero-DCE, the proposed Ltspa takes into account the spatial

consistency between a source image and the homography

transformation of its adjacent frame.

Let S denote the siamese networks; I is the raw image. Then we can

use the spatial homography transformation matrix T to represent the

adjacent frame of the raw image as TI. Let us define Ea = S(I) and Eb =

S(TI)as the enhanced outputs from the siamese network S, respectively.

Then we can define the temporal-spatial consistency loss as follows:

Ltspa =
1
Ko

K

i=1
( Ei

a − TEi
b

�� ��

+oj∈W(i)( E
i
a − Ej

a

�� �� + TEi
b − TEj

b

��� ��� − TIi − TIj
�� ��))2, (2)

where K is the number of pixels and i is the traversal of pixels, and

W(i) is the 3×3 neighborhood of the ith pixel.
FIGURE 3

The images used for network training increase in brightness from left to right. Images with different exposure levels are used to improve the
generalization of the augmentation network and to enhance the detection and matching ability of the feature point detection network.
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3.3.2 Mean frame loss
Our network adopts continuous video frame input for training.

We propose a locally constrained loss function that stabilizes

transitions between consecutive frames of enhanced images. The
Frontiers in Marine Science 06244
scene and pixel differences between consecutive frame images are

minimal, and we adopt the idea of local optimization to control the

drift between consecutive frame-enhanced images. The specific

operations are as follows:
FIGURE 4

The ablation study of various loss functions. Tw=
all represents the feature point matching result when using all loss functions; Tw=o

tspa represents the

feature point matching result without using Ltspa; T
w=o
mf represents the feature point matching result without using Lmf ; T

w=o
ub represents the feature

point matching result without using Lub; To represents the original low-light image; i represents the image of the current moment; (i + 5) represents
the 5th image after the current moment.
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Lmf =
1

Mo
M

i=1
o
j+n

j=i
( Emean

tj+1 − Emean
tj

��� ��� + Emean
tj − Emean

ti

��� ���)2, (3)

Here Emean
t is the average pixel value of the output image of the

siamese network at the current moment; M is the total number of

images; n is the number of local images selected to participate in the

optimization; this value is 4 in actual training.

3.3.3 Uneven brightness loss
In a deep marine environment, artificial illumination is a

common light source. However, an artificial light source’s power

is always insufficient to illuminate the entire area, resulting in

uneven illumination. To prevent some places from being too dark

and to restrain overexposure, we make the brightness of each pixel

closer to a specific intermediate value. We then propose a local

uniform brightness loss function, which uses the following error

function to express the constraint.

Lub =o
N

s=1
Es − Emedianj j, Emedian

=

a1Emedian  if Emedian ≤ 0:4

a2Emedian  if Emedian ≥ 0:8

Emedian  otherwise

,

8>><
>>:

(4)

where Es represents the average value of the local pixel area. During

training, the image is divided according to the strategy that the local

area is 25 pixels, and N represents the number of local pixel areas.

Emedian describes the median value of the pixel area of the entire

image. To prevent the overall brightness of the enhanced image

from being low or over exposed, we limit its weight. When the

median pixel value is lower than or higher than the set threshold, we

use weight parameters ha1 and a2 and its compensation to ensure

that the generated image will not be overexposed or darkened and

to maintain the generated image. The specific values in training are

1.75 and 0.7, respectively.

Meanwhile, to make the enhanced image maintain stable color

and smooth illumination, we follow the color constant error loss

and smooth illumination loss in Zero-DCE Li et al. (2021),

as follows:

3.3.4 Color constancy loss
Zero-DCE Li et al. (2021), proposed color constancy loss

corrects for potential color bias in the enhanced image and

establishes the relationship between the three adjustment

channels. The loss function is defined as follows:

Lcol =o∀ (p,q)∈ϵ(Jp − Jq)
2, ϵ ∈ (R,G), (R, B), (G,B)f g, (5)

where (p, q) traverses all pairwise combinations of the three RGB

color channels, Jp represents the average luminance of color channel

p, and (p, q) represents a pair of channels.

3.3.5 Illumination smoothness loss
To maintain the monotonic relationship between adjacent

pixels, we follows the illumination smoothness loss defined in

Zero-DCE Li et al. (2021). This requirement can be expressed as:
Frontiers in Marine Science 07245
LtvA =
1
MoN

n=1oc∈x( ▽x A
c
nj j + ▽y A

c
n

�� ��)2, x = R,G,Bf g, (6)

N is the number of iterations, and∇xand∇y are the horizontal and

vertical gradient operators, respectively. For images, the horizontal

and vertical gradients are the difference between the values of the

adjacent pixels to the left and above.
3.4 Feature point extraction branch

To calculate the loss value of the network, we need to establish

the relationship between the feature points. The same image passes

through the siamese networks A and B and outputs two sets of

matrices A = ½Sa, Pa,Da�, B = ½Sb, Pb,Db�, which respectively

represent the feature point scores, feature point positions, and

feature point descriptors of the two images output by the

network. The position of the feature points detected in image A is

transformed into image B through the matrix transformation T, and

Â = ½Ŝa, P̂a, D̂a� obtained. Pa and P̂a called feature point pairs, where
P̂a = TPa, the distance between Pa and P̂a is minimized. The smaller

the distance between the two, the better the ability of the extraction

network to extract feature points. However, not all P̂a are involved

in the calculation. This is because the siamese network is uncertain

about the output of the same image after matrix transformation,

and there will be occasional weak feature points. Therefore,

according to the experience of reprojection error in SLAM, we

define that after the homography matrix transformation T DeTone

et al. (2018); Christiansen et al. (2019). The distance between the

feature points and the position is within the neighborhood of 3� 3

pixels, which means that the detected feature points are the same

point in the input image. We sent the positions of such feature

points to the loss function for calculation. The operation can

effectively improve the stability and repeatability of network

detection feature points. The Loss function is handled in the same

way as UnSuperpoint Christiansen et al. (2019). We use Lunsuperpoint

to describe it here.

Total loss.

Ltotal = Ltspa + Lmf + Lub + Lcol +WtvALtvA + Lunsuperpoint (7)

where weight WtvA is used to balance scales with different losses,

which is a direct reference to the weight setting in Zero-DCE. The

loss function Ltotal sums up the loss function of the image

enhancement branch and the loss function of the feature point

extraction branch. By minimizing the loss function Ltotal , the effect

of the enhanced image can be achieved to generate in the direction

favorable to feature point extraction, so that the network has the

ability of feature point extraction in the underwater low-

light environment.
4 Experiments

In this section, we compare the advantages of ULL-SLAM with

the widespread feature point extraction based SLAM operating in a

marine low-light environment. We choose ORB-SLAM2 Mur-Artal
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and Tardós (2017), which has stable performance in the underwater

test in our laboratory, as our baseline. ORB SLAM2 is also a visual

SLAM framework that can be used for monocular, stereo, and RGB-

D cameras based on the extraction of feature points (ORB). A new

system —ULL-SLAM is constructed by replacing its physical sign

point extraction module with our underwater low-light feature

point extraction network. We also compared it to the original

ORB-SLAM2 Mur-Artal and Tardós (2017), ORB-SLAM3

Campos et al. (2021), and Dual-SLAM Huang et al. (2020).
Fron
• Dual-SLAM Huang et al. (2020) extends ORB-SLAM2,

saves the current mapping, and activates two new SLAM

threads. One handles the incoming frame to create a new

map, and the other targets link the new and old maps.

• ORB-SLAM3 Campos et al. (2021) Visual, visual-inertial,

and multi-map SLAM using monocular, stereo, and RGB-D

cameras, achieving state-of-the-art performance.
Since we adopt a deep learning-based method to extract feature

points, we test the model’s running speed (frame-per-second, FPS)

on Jetson AGX Xavier, which is also widely equipped on ROV and

AUV. Our ULL-SLAM can reach a speed of 40.6 FPS.
4.1 Implementation details and
evaluation metrics

4.1.1 Dataset
4.1.1.1 Training dataset

The URPC dataset Liu et al. (2021) contains contains

monocular video sequences collected by the ROV on a real

aquaculture farm nearby Zhangzi Island, China. The ROV can

travel in water depths of about 5 meters. The ROV captured a total

of 190 seconds of video sequences at a 24Hz acquisition frequency.

We obtain a total of 4,538 frames from the video. The collected

video sequence scene changes significantly, the light is sufficient, but

the water quality is cloudy. In order to ensure that the feature point

extraction branch can extract more feature points, we add the image

after image sharpening in the laboratory’s previous work. The

fusion of these two kinds of data not only ensures that the feature

point extraction network can extract more feature points but also

ensures the generalization ability and robustness of the model. The

low-light image enhancement model based on zero-order learning

cannot be trained typically with simple underwater images.

However, acquiring underwater low-light data sets is difficult and

expensive. Therefore, we adopt the idea of style transfer to

transform the brightness of datasets and finally form images with

different colors and brightness for training. Considering that there

are no meaningful objects in the first 2000 consecutive images in the

original sequence, we delete them and select only the last 2538

images, respectively, for brightness conversion. Among them, we

used 1250 images for testing. In the training process, we select the

open-source offline SFM Schönberger and Frahm (2016);

Schönberger et al. (2016) library to generate a camera attitude

track from 1250 continuous frame images to evaluate underwater

SLAM performance.
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4.1.1.2 Test datasets

The training data set URPC is an artificially generated low-light

image. To test the performance of ULL-SLAM in a natural

underwater environment, we select five video clips of natural

underwater low-light scenes from the videos provided by Schmidt

Ocean Alalykina and Polyakova (2022). These video clips are

captured with an underwater vehicle to a depth of 400-500

meters in the Pacific Ocean. Each video clip is 2150, 3500, 4600,

5200, and 6000 frames, respectively. The rotation and ambiguity of

the image in each piece of data are different. We generate the

camera pose using SFM Schönberger and Frahm (2016);

Schönberger et al. (2016). We also use SFM to provide ground

truth to test the performance of the ULL-SLAM system in a natural

underwater low-light environment.

4.1.2 Evaluation metric for SLAM
To measure SLAM performance, we choose 1) absolute

trajectory error (ATE), 2) root mean square error (RMSE), and 3)

initialization performance for evaluation. ATE directly computes

the difference between the ground-truth trajectory of the camera

pose and the SLAM-estimated trajectory. RMSE can describe the

rotational and translational errors of two trajectories. The smaller

the RMSE, the better the system trajectory fit. The initialization

performance indicates the number of frames to perform underwater

SLAM initialization. The lower the initialization frame, the better

the SLAM performs and the more stable and continuous the output.

We repeated ten underwater SLAM experiments to get the best

results for all methods.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N

i=1
(Yi − f (xi))

2

s
(8)

where f (xi) represents the system’s predicted trajectory, and Yi

represents the Groundtruth of the trajectory.
4.2 Low light enhanced visualization result

We verify the effect of the proposed loss function in this section

and visualize the effect of each function separately by conducting

ablation experiments during training. It is worth noting that the loss

function we designed for continuous frames (Eq. 3) and

overexposure (Eq. 4) mainly enables the network to have a good

feature point extraction effect in the underwater low-light

environment. The two networks are optimized end-to-end

together rather than proposing a low-light image enhancement

model. Therefore, we do not compare the performance of other

low-light enhancement models on terrene in the same underwater

scene. Figures 5, 6 show the comparison of the training dataset

image and the real underwater test dataset image before and after

the low-light enhancement network, respectively. Figure 7 verifies

the ablation experiment of our proposed loss function on the low-

light image enhancement effect. It should be noted that the ultimate

purpose of our network is to focus on the effect of the network in

feature point extraction, so Figure 4 shows the effect of our

proposed loss function on feature point extraction.
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4.3 Feature point matching performance

To further reveal the superiority of the feature point extraction

effect in ULL-SLAM compared with other methods, we show the

matching pairs with ORB Rublee et al. (2011), SIFT Lowe (2004),

and SURF Bay et al. (2008) under two consecutive frames in

Figures 8, 9. We obtain ground-truth values from motion using a

structure-of-motion-based COLMAP Schönberger and Frahm

(2016); Schönberger et al. (2016) method. We conduct

experiments using 2150 consecutive frames of underwater images

with an image size of 640x480 and pre-calibrated in-camera

references. Only matching pairs in the 3×3 pixel region are

considered correct matched pairs.

To verify that the feature points detected by our system are valid

interior points, we conduct the feature point matching test through

the reprojection error of every 20 frames of images. Specifically, the

feature points extracted from the current frame are reprojected onto

the previous 20th frame image to compare the errors between the

feature points. Then we select a 3×3 pixel region. When the error

between the feature points is less than 3, the feature point is marked

as number 0 and the inner point; then, the others are marked as the

mismatched outer points and number 1. Finally, the feature-

matching error rate of our proposed method is 0.9%, the error

rate of ORB method is 6.7, the error rate of SIFT method is 5.1, and

the error rate of SURF method is 3.5. The formula is as follows:

Pix = p − KHpwinterval=20

�� �� 1 otherwise

0 pix < 3

(
(9)
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where p represents the coordinates of the feature points of the

current frame, K represents camera parameters, H represents the

transformation matrix, and pwinterval=20
represents the coordinates of

the image feature point at the 20th frame interval from the current

frame.

Error =
1
N o

N

i=1,10,20…
∣ pi − KHpwi ∣ (10)

where Nrepresents the number of image pairs involved

in reprojection.

To verify the ability of the system to extract feature points in a

natural low-light underwater environment, we conducted a feature

point detection test in the test dataset. According to the constraints

of state estimation, the SLAM system outputs accurate positional

estimation data only when a sufficient number of interior points are

matched, and when the number of interior points is too small, it will

cause the system to fail to complete the positional estimation.

Therefore, we construct a test image pair at intervals of 20 and 30

frames for the test set video clips and perform feature point

detection and matching tests in different feature point detectors.

When the number of feature points detected between the two

frames of the test image pair is greater than 50, we record the

correct samples and calculate the proportion of the accurate sample

numbers in all test pairs of the video clip. When the system is able to

detect enough feature points at 20 or 30 frames between keyframes,

it proves that the feature point matching capability of the network is

good enough. The performance of the system is demonstrated by

verifying the matching ability of the proposed network feature

points. In this way, we use this method to compare the ability of
FIGURE 5

Comparison of low-light images before and after enhancement on URPC-dark dataset.
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network feature point detection. The test results are shown in

Tables 1, 2.

Similarly, we propose a SLAM system and pay more attention to

the effectiveness of the extracted feature points on the SLAM

system. There is no direct proportion between the number of

matching feature points and the performance of SLAM.

Therefore, in the comparison experiment, we only select the

feature point extraction methods commonly used in the current

SLAM system, such as (ORB). Other feature point extraction

networks based on deep learning only focus on feature point

extraction and have yet to be transplanted into the SLAM system,

so we did not compare them.
Frontiers in Marine Science 10248
4.4 Underwater SLAM results

We aim to validate the proposed network model in low-light

feature points Extraction SLAM and the system’s effectiveness. We

adopt the ORB-SLAM2 of the stability of the effect in the early

stage of the laboratory experiment as the basic SLAM framework.

Our model replaces the ORB feature point extraction network in

the original system, keeping the back-end optimization

architecture with the original method unchanged, forming a

new SLAM system – ULL-SLAM. Our model replaces the ORB

feature point extraction network in the original system, keeping

the back-end optimization architecture with the original method
FIGURE 6

Comparison of low-light images before and after enhancement on real underwater dataset provided by Schmidt Ocean Alalykina and Polyakova (2022).
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unchanged, forming a new SLAM system – ULL-SLAM. It

conducts comparative experiments with the original ORB-SLAM

and the currently popular Dual-SLAM and ORB-SLAM3 on the

URPC-dark dataset. The quantification results are shown in

Table 3. From the results, it can be found that the quantization

error of ULL-SLAM is significantly smaller than the other three,

and the minor quantization error can make the estimated camera

pose trajectory more stable, thereby considerably improving the

initial performance. An excellent low-light feature point

extraction network can make feature matching more reliable so

that ULL-SLAM can obtain a more stable and accurate output.

In the five real underwater low-light scenes, we use Zero-DCE

as the pre-processing of underwater low-light image enhancement
Frontiers in Marine Science 11249
tool. Then, we feed the enhanced images into ORB-SLAM2 for

testing. As shown in Table 4, ORB-SLAM2 did not improve all the

data sets. The results indicate that an image-level low-light

enhancement network can hardly improve the feature point

matching and SLAM’s performance.

We compared the performance of ULL-SLAM and the other

three SLAM systems in five real underwater low-light video clips on

the test set provided by Schmidt Ocean. The visualization results of

the test tracks of these four SLAM systems are shown in Figure 10.

We can find that the SLAM trajectory obtained with ULL-SLAM is

closest to the ground truth. Meanwhile, Table 5 shows the

quantization error data of the four systems in the five video clips.

The two experimental results confirm that the ULL-SLAM system
FIGURE 7

The ablation study of various loss functions. The first row of images represents the normal network output, To represents the original low-light
image, i represents the image of the current moment. We select the ith Frame and eighth (i+8) frames after the current moment to verify the effects
of different functions, w=o represents the other functions unchanged, and the network output image after removing this function. When the loss
function Lub is removed, we can find overexposure occurs in the image after enhancement. When the loss function Lmf is removed, it can be seen
that the image scene does not change significantly at the interval of 8 frames, but the enhancement effect has changed significantly.
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FIGURE 8

Comparison of extraction methods of different feature points. The image on the left is the current frame image, and the image on the right is the
20th frame image behind the current frame image.
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FIGURE 9

Comparison of extraction methods of different feature points. The image on the left is the current frame image, and the image on the right is the
40th frame image behind the current frame image.
TABLE 1 Feature point detection effect of different feature point detectors in a real underwater environment.

Video clips Method > 50 ↑ Accuracy rate ↑

seg1 ORB 814 0.757

SIFT 822 0.765

SURF 869 0.808

ULL-SLAM 912 0.848

seg2 ORB 1511 0.863

(Continued)
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TABLE 1 Continued

Video clips Method > 50 ↑ Accuracy rate ↑

SIFT 1505 0.860

SURF 1542 0.881

ULL-SLAM 1607 0.918

seg3 ORB 1467 0.638

SIFT 1432 0.623

SURF 1502 0.653

ULL-SLAM 1624 0.706

seg4 ORB 2412 0.928

SIFT 2391 0.919

SURF 2421 0.931

ULL-SLAM 2501 0.962

seg5 ORB 2288 0.762

SIFT 2301 0.767

SURF 2327 0.776

ULL-SLAM 2433 0.811
F
rontiers in Marine Science
 1425
2
Spaced 20 frame pairs of images.
TABLE 2 Feature point detection effect of different feature point detectors on the dataset provided by Schmidt Ocean.

Video clips Method >50 ↑ Accuracy rate ↑

seg1 ORB 772 0.718

SIFT 784 0.729

SURF 816 0.759

ULL-SLAM 839 0.784

seg2 ORB 1449 0.828

SIFT 1436 0.820

SURF 1467 0.838

ULL-SLAM 1521 0.869

seg3 ORB 1349 0.586

SIFT 1327 0.577

SURF 1413 0.614

ULL-SLAM 1575 0.685

seg4 ORB 2305 0.886

SIFT 2277 0.876

SURF 2334 0.898

ULL-SLAM 2419 0.930

seg5 ORB 2196 0.732

SIFT 2225 0.741

SURF 2276 0.759

ULL-SLAM 2349 0.783
Spaced 30 frame pairs of images.
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can achieve the expected effect in the authentic underwater low-

light environment, which verifies that our proposed scheme can be

well applied in the underwater low-light environment.
4.5 Limitations and future work

The low-light image enhancement branch and feature point

extraction branch share the same network and are optimized end-

to-end, which can complement each other for mutual benefit and

improve operational efficiency simultaneously. However, we did

not consider a de-scattering module to remove forward and
Frontiers in Marine Science 15253
backward scattering noise for underwater exploration. We aim

to build a universal underwater visual SLAM framework that is

robust to various underwater conditions. We leave it as our

subsequent work.
5 Conclusion

In this paper, we propose an underwater low-light feature

point extraction network based on siamese networks and

integrate it into the back-end framework of the SLAM system

to form a new SLAM system—ULL-SLAM. To improve the
TABLE 4 Comparative experiments on the dataset provided by Schmidt Ocean.

Video clips Method ATE ↓ RMSE ↓ Initialization ↓

seg1 ORB-SLAM2 0.823 0.847 23

Zero−DCE + ORB-SLAM2 0.809 0.821 19

EnlightenGAN + ORB-SLAM2 0.779 0.792 16

MBLLEN + ORB-SLAM2 0.807 0.822 20

seg2 ORB-SLAM2 0.611 0.643 10

Zero−DCE + ORB-SLAM2 0.644 0.671 15

EnlightenGAN + ORB-SLAM2 0.581 0.601 13

MBLLEN + ORB-SLAM2 0.567 0.583 16

seg3 ORB-SLAM2 2.892 2.934 37

Zero−DCE + ORB-SLAM2 2.979 3.073 40

EnlightenGAN + ORB-SLAM2 3.017 3.225 47

MBLLEN + ORB-SLAM2 2.709 2.811 38

seg4 ORB-SLAM2 0.391 0.404 4

Zero−DCE + ORB-SLAM2 0.369 0.392 3

EnlightenGAN + ORB-SLAM2 0.322 0.359 5

MBLLEN + ORB-SLAM2 0.431 0.457 8

seg5 ORB-SLAM2 0.802 0.816 19

Zero−DCE + ORB-SLAM2 0.792 0.801 15

EnlightenGAN + ORB-SLAM2 0.676 0.692 14

MBLLEN + ORB-SLAM2 0.845 0.861 20
Zero-DCE, EnlightenGAN and MBLLEN are used for preprocessing low-light images, feeding the enhanced image into the ORB-SLAM2.
TABLE 3 Quantization errors of different SLAM systems on URPC-dark test dataset.

Method ATE ↓ RMSE ↓ Initialization ↓

ORB-SLAM2 1.711 1.764 32

Dual-SLAM 1.693 1.722 23

ORB-SLAM3 1.686 1.707 26

ULL-SLAM 1.292 1.316 3
Bold text indicates that it performs best under the same evaluation index. For example, the bold text under the column ATE (absolute trajectory error) indicates that ULL-SLAM obtained the best
performance in the ATE evaluation index, with a quantitative value of 1.292.The same goes for other bold letters.
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FIGURE 10

The performance of different SLAM systems on five real-life underwater low-light video segments.
TABLE 5 ULL-SLAM and three other SLAM systems performed in five segments of real underwater low-light environments in the test dataset provided
by Schmidt Ocean.

Video clips Method ATE ↓ RMSE ↓ Initialization ↓

seg1 ORB-SLAM2 0.823 0.847 23

Dual-SLAM 0.809 0.830 16

ORB-SLAM3 0.786 0.802 18

ULL-SLAM 0.592 0.624 4

seg2 ORB-SLAM2 0.611 0.643 10

Dual-SLAM 0.595 0.619 6

ORB-SLAM3 0.583 0.607 8

ULL-SLAM 0.490 0.523 1

seg3 ORB-SLAM2 2.892 2.934 37

Dual-SLAM 2.786 2.899 32

ORB-SLAM3 2.795 2.836 26

ULL-SLAM 2.601 2.625 9

seg4 ORB-SLAM2 0.391 0.404 4

Dual-SLAM 0.387 0.395 3

ORB-SLAM3 0.374 0.389 3

ULL-SLAM 0.319 0.331 1

(Continued)
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inference speed of the model to achieve real-time performance,

we designed the low-light image enhancement branch and the

feature point extraction branch with the same backbone.

Moreover, the loss functions of the two branches are optimized

together so that the low-light image enhancement branch can

generate feature images beneficial to feature point detection.

Thus the two are mutually beneficial. At the same time, the

proposed network can be flexibly transplanted to the popular

SLAM system based on feature point extraction to improve the

system’s performance. Experimental results show that this

method makes the output trajectory of SLAM more continuous

and stable in an underwater low-light environment and carries

out more accurate state estimation.
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In general, a single scalar hydrophone cannot determine the orientation of an

underwater acoustic target. However, through a study of sea trial experimental

data, the authors found that the sound field interference structures of inbound

and outbound ships differ owing to changes in the topography of the shallow

continental shelf. Based on this difference, four different convolutional neural

networks (CNNs), AlexNet, visual geometry group, residual network (ResNet),

and dense convolutional network (DenseNet), are trained to classify inbound and

outbound ships using only a single scalar hydrophone. Two datasets, a simulation

and a sea trial, are used in the CNNs. Each dataset is divided into a training set and

a test set according to the proportion of 40% to 60%. The simulation dataset is

generated using underwater acoustic propagation software, with surface ships of

different parameters (tonnage, speed, draft) modeled as various acoustic

sources. The experimental dataset is obtained using submersible buoys placed

near Qingdao Port, including 321 target ships. The ships in the dataset are labeled

inbound or outbound using ship automatic identification system data. The results

showed that the accuracy of the four CNNs based on the sea trial dataset in

judging vessels’ inbound and outbound situations is above 90%, among which

the accuracy of DenseNet is as high as 99.2%. This study also explains the

physical principle of classifying inbound and outbound ships by analyzing the

low-frequency analysis and recording diagram of the broadband noise radiated

by the ships. This method can monitor ships entering and leaving ports illegally

and with abnormal courses in specific sea areas.

KEYWORDS

waveguide invariant, direction estimation, convolutional neural networks, horizontal
slowly varying wedge waveguide, single hydrophone
1 Introduction

In target detection and recognition technologies, ocean targets are primarily classified

into surface and underwater targets. Synthetic aperture radar (SAR) is one of the main

methods used to identify and classify surface ships. Recently, many scholars have applied

convolutional neural networks (CNNs) to SAR ship classification. Hog–ShipCLSNet, a

novel deep-learning network with hog feature fusion for SAR ship classification, was
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proposed by Zhang et al. (2021). Xu et al. (2022) proposed a

lightweight deep-learning detector called lite-yolov5.

Underwater acoustic technology is one of the main methods of

locating underwater targets. Passive location technology for

underwater acoustic targets primarily locates the target by

processing the acoustic signal that radiates from the target, which

the hydrophone array receives. Because the system does not actively

emit an acoustic signal, it exhibits good concealment. In the early

stages, owing to the lack of sound field modeling theory,

conventional underwater target positioning technology mainly

used the time difference of arrival between each hydrophone

array element. The most representative method was the three-

sub-array positioning method (Carter, 1981). Positioning

according to the change in the direction of arrival with the

movement of the target, the main representative of which is

target motion analysis (TMA) (Nardone et al., 1984). With the

development of sound field modeling theory, some location

methods have been developed to consider and utilize waveguide

phenomena, among which the most typical methods are matched

field estimation and sound-field interference fringes.

The three-subarray positioning method assumes that acoustic

waves are cylindrical or spherical. This method estimates the

distance and azimuth of the target using the difference in the

wavefront’s curvature and the relative time delay of each element.

The calculated amount for the three-subarray positioning method

was small. However, when the target is far away, the positioning

error of the finite-aperture array is large because the wavefront’s

curvature changes slightly.

TMA methods include bearings-only and frequency-bearing

TMA (Jauffret and Bar-Shalom, 1990; Maranda and Fawcett, 1991).

Bearings-only TMA uses only target-bearing information but

requires observation platform maneuvering. The frequency-

bearing TMA does not require an observation platform to

maneuver; it uses frequency and azimuth information as

observations. The existing passive positioning method for the

TMA requires maneuvering observations or multi-observation

platforms, which require much computation and a complex

processing system.

The received signal waveform distortion caused by the

waveguide multipath dispersion characteristics was ignored by

both the three-subarray positioning and TMA methods. In a

shallow sea environment, where the boundary of the sea surface

and bottom affects the acoustic propagation, the performance is

seriously affected because the waveguide effect is not considered.

Matched field processing (MFP) is a generalized beamforming

method that uses the spatial complexities of acoustic fields in an

ocean waveguide to localize sources in range, depth, and azimuth or

to infer the parameters of the waveguide itself. It has experimentally

localized sources with accuracies exceeding the Rayleigh and

Fresnel limits for depth and a range of two orders of magnitude,

respectively. Nevertheless, there are some limitations to the MFP.

The most important liability is sensitivity to mismatch. Because

MFP exploits the environment, its model must be accurate,

especially when seeking high performance (Baggeroer et al., 1993).

Because of their respective limitations, these three underwater

acoustic target location methods have unavoidable defects when
Frontiers in Marine Science 02258
positioned in shallow-sea environments. To address this dilemma,

many scholars have investigated target location methods based on

sound field interference structures (Clay, 1987; Thode, 2000;

Cockrell and Schmidt, 2010; Song and Cho, 2015; Cho et al.,

2016; Song and Cho, 2017; Song et al., 2017; Chi et al., 2021;

Li et al., 2022). Hence, the target location method based on the

sound-field interference structure is more robust than that based on

the matched field.

The single-hydrophone acoustic acquisition and processing

system has a simple structure and low cost, making it convenient

for installation on floating and submersible buoys, underwater

gliders, unmanned underwater vehicles, and other small platforms.

However, in conventional research, researchers have believed that the

signal received by a scalar hydrophone lacks azimuthal information.

Thus, the conventional single-hydrophone target location method

can only be used for target ranging, not direction finding.

Unlike conventional research which believes that a single scalar

hydrophone does not contain azimuth information, this study

inferred that in the area where the topography of the sea floor

changes (even if the change is small), the bending degree of the

interference fringe in the range-frequency domain is different before

and after the range at the closest point of approach (rCPA), and the

interference fringe is asymmetrical before and after the range at the

closest point of approach (rCPA). Based on this asymmetric feature,

we used only a single scalar hydrophone to effectively distinguish

between inbound and outbound vessels on a shallow continental

shelf. In the concrete implementation, four network structures with

good performance in image classification were introduced, namely

AlexNet, visual geometry group (VGG), residual network (ResNet),

and dense convolutional network (DenseNet), because images often

describe the sound field interference structure (Krizhevsky et al.,

2012; Simonyan and Zisserman, 2014; He et al., 2015; Huang et al.,

2017). This ship classification algorithm can monitor ships entering

and leaving ports illegally, supervise inbound and outbound ships,

and monitor abnormal heading targets in the channel.

The remainder of this paper is organized as follows. Section 2

summarizes the experimental procedure and preprocessing of

experimental data. Section 3 describes the ship classification

algorithm, data simulating method, and training of the CNNs.

The results of the trained deep learning models are discussed in

Section 4. Section 5 introduces the definition of generalized

waveguide invariants to analyze the physical factors responsible

for the differences in the interference structure (Gao et al., 2022).

Finally, Section 6 presents the conclusions of this study.
2 Experiment

2.1 Experiment procedure

The experimental data used here were collected from a

submarine buoy deployed by the Ocean University of China. The

experimental setup is shown in Figure 1A. The experimental area

comprised shallow water with a depth of approximately 24 m and a

wedge-shaped seabed with a slowly changing horizontal (a slope of

0.057°). The submarine buoy recorded the underwater noise from
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321 inbound and outbound ships at Qingdao Port between June 15

and 22, 2022, the structure of which is shown in Figure 1B. The

trajectories of these ships originated from the signals received by the

automatic identification system (AIS) placed on the shore, as shown

in Figures 1C, D.
2.2 Experimental data preprocessing

Data preprocessing is required to achieve better performance.

The low-frequency analysis and recording (LOFAR) diagram is a

basic time-frequency representation often used for localizing sources.
Frontiers in Marine Science 03259
The short-time Fourier transform (STFT) can transform the

raw signal into a LOFAR diagram using STFT. The time of

the cloest point to the approach (tCPA) was estimated based on

the LOFAR diagram. After comparing tCPA with the AIS data, we

labeled the LOAR diagram as an inbound or outbound ship.

By processing the experimental data, we found that the

structures of the LOFAR diagrams of inbound and outbound

ships are different. LOFAR diagrams of Figures 2A, B are the

LOFAR diagrams of the same ship’s departure and arrival. In the

experimental data, the interference fringes of the outbound ships

generally bent down on the right side. In contrast, those of the

inbound ships bent down on the left side. Owing to this difference,
A B

DC

FIGURE 1

Sea trial system. (A) Submarine topographic map. The yellow circle marks the position of the submarine buoy. The middle part of the black dotted
line is the channel. The red arrow is the direction of the inbound ship, which is about 1500 m away from the submarine buoy. The green arrow is the
direction of the outbound ship, which is about 3000 m away from the submarine buoy. (B) Submersible buoys. The part in the red circle is the
hydrophone part of the self-contained hydrophone, and the cylinder in the blue box is its data-sampling and processing system. (C) AIS signal
receiving terminal. The part in the red circle is the GPS antenna, and the long black pole pointed by the blue arrow is the AIS signal antenna. (D) AIS
data system.
BA

FIGURE 2

LOFAR diagrams of the same ship entering and leaving the port. (A) Inbound time-frequency diagram. (B) Outbound time-frequency diagram.
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we used CNNs to extract features and classify inbound and

outbound ships.
3 Method

This study proposed a method based on CNNs to classify

inbound and outbound ships using a single scalar hydrophone on

a shallow continental shelf. The flowchart is shown in Figure 3A.

We used the STFT to transform the raw signal into a LOFAR

diagram. The diagram was used as the input to the trained deep-

learning models after edge detection to classify the ships.

Training deep-learning models require training datasets of

various labeled samples. As the range at the closest point of

approach, rCPA, was relatively fixed in the experimental data,

simulation data were also used during the training and validation

steps. As shown in Figure 3B, both experimental and simulation

data were used to train the models, which were tested with the

experimental and simulation test sets, respectively.
3.1 Simulation data

The simulation was divided into three steps. First, building the

ship radiated noise model and getting the ship radiated noise s(w),
and second, obtaining the channel transfer function H(w) using the
sound propagation calculation model Range-dependent acoustic

model (RAM). Finally, the hydrophone reception signal is obtained

by multiplying H(w) and s(w).
Frontiers in Marine Science 04260
3.1.1 Ship noise simulation
Ship noise is mainly composed of a line spectrum and a

continuous spectrum. Its mathematical model can usually be

expressed as

S(t) = ½1 + G(t)� � Sx(t) + Sl(t) (1)

The line spectrum component can be simulated by generating a

series of sinusoidal signals, and its parameters can be set according

to the following methods (He and Zhang, 2005).

(1) For line spectrum below 100 Hz, the fundamental frequency

of shaft frequency line spectrum can be set as s, and the frequency of

blade and harmonic line spectrum is mns Where s is the propeller

speed; the unit is turn/s; n is the number of propeller blades, and m

is the harmonic number.

(2) The line spectrum with a frequency of 100–1000 Hz has no

significant relationship with the ship’s speed but varies with the type

of ship. K frequencies can be set without loss of generality.

The construction of the continuous spectral data was completed

in three steps. First, we constructed the ship noise source level for

different tonnages and speeds according to the empirical equation

summarized by Ross (1976), as shown in Figure 4A. Next, we

constructed an finite impulse response (FIR) filter with a specific

frequency response using the LMS-adaptive algorithm, as shown in

Figure 4B. Finally, a continuous spectrum of the radiated noise of

the ship was obtained by inputting Gaussian white noise through

the filter.

After adding a line spectrum to the continuous spectrum, the

power spectrum of the radiated noise of the ship was obtained, as

shown in Figure 4C.
A

B

FIGURE 3

Ships classification algorithm flow chart. (A) Overall flow chart of ships classification algorithm. (B) Deep-learning models training flow chart.
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3.1.2 Transfer function simulation
In this section, the underwater acoustic propagation software

RAM is used to simulate the transfer function H(w) of the channel
(Collins, 1993).

The main environmental parameters for the simulation were as

follows. The experimental sea area was off the coast of Qingdao, and

the seabed terrain was a typical horizontal, slowly varying wedge

seabed. Therefore, a wedge-shaped seafloor was used for the

simulation. The sound velocity of the seabed is set as 1620 m·s-1,

the seabed density is 1.76 g·cm-3, and the seabed attenuation is 0.3

dB·l-1. The sound velocity profile was obtained from the measured

CTD data in the offshore waters of Qingdao on June 30, 2022. The

acoustic source emission band was 200 – 400 Hz; the receiver depth
Frontiers in Marine Science 05261
was 26 m; the time of the closest point of approach (tCPA)was 150 s;

the range at the closest point of approach (rCPA)was set to 1000 m;

the sound source depth (d) was 5 m, and the motion speed (v) was

10 m/s. The 3D structure chart is shown in Figure 5A.

The spectrum received by the hydrophone is calculated every

2 s. After splicing, the time-frequency diagram, as shown in

Figure 5B, is obtained. The transfer function H(w) of the channel

under different conditions is obtained by changing the parameters

such as d, v, and rCPA.

The spectrum of the radiated noise of the ship was multiplied by

the transfer function spectrum, and the LOFAR diagram was

obtained after splicing. As shown in Figure 6, the signal-to-noise

ratio is set at 10 dB.
BA

FIGURE 5

Simulation of transfer function. (A) 3D water depth distribution. (B) Time-frequency diagram of waveguide transfer function.
A C

B

FIGURE 4

The ship’s radiated noise. (A) The ship noise source level. (B) Structure of FIR filter with specific frequency. (C) Power spectrum of ship’s radiated noise.
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3.2 Network architecture
3.2.1 AlexNet

In 2012, Krizhevsky et al. proposed AlexNet, which realized a

TOP5 error rate of 15.4% (The TOP5 error rate is the probability that,

given an image, its label is not in the top five outcomes that the model

considers most likely), and realized a deep convolutional neural

network structure in a large-scale image dataset for the first time.

AlexNet includes eight layers of transformations, including five

convolution layers, two fully connected hidden layers, and one fully

connected output layer (Krizhevsky et al., 2012), as shown in Figure 7.

The network uses a rectified linear unit (ReLU) as a nonlinear mapping

function, which makes the model converge more rapidly. The dropout

mechanism was used to effectively reduce the overfitting problem to a

certain extent, and the GPU replaced the CPU for calculations,

significantly improving the training speed of the network.

3.2.2 VGG

Simonyan and Zisserman (2014) studied the depth of CNNs

based on AlexNet, proved that increasing the depth of the network
Frontiers in Marine Science 06262
can affect its performance to a certain degree, and proposed the idea

of building a depth model by reusing simple basic blocks. The

network structure of the VGG is shown in Figure 8. The first part

comprises convolution and convergence layers, and the second

comprises a fully connected layer. The original VGG network has

five convolution blocks, of which the first two blocks each have one

convolution layer, and the last three blocks each contain two

convolution layers. Because the network uses eight convolution

layers and three fully connected layers, it is usually called VGG-11.

Compared to AlexNet, VGG uses a smaller convolution core and

a deeper network structure. However, the increase in the network

depth is limited. Many network layers leads to network degradation.
3.2.3 ResNet

Based on VGG, He et al. (2015) effectively solved the problem of

decreasing the accuracy of the training set with the deepening of the

network through the design of residual blocks.

The basic structure of the residual block is shown on the right

side of Figure 9. The residual block changes the learning target to

the difference between target values H (X) and x, called the residual.

Residual mapping is often easier to optimize. Through the design of

the residual block, some neural network layers can be artificially

created to skip the connection of neurons in the next layer, thus

weakening the strong connections between each layer.
3.2.4 DenseNet

In 2017, Huang et al. proposed DenseNet based on ResNet. However,

unlike ResNet, DenseNet proposed a more radical dense connection

mechanism where all layers are interconnected (2017). Specifically, each

layer accepts all the layers in front of it as its additional input, as shown in

Figure 10, which can achieve feature reuse and improve efficiency.

3.3 Training CNNs
3.3.1 Input data preprocessing

As shown in Figure 11, before inputting in the CNNs, all of

the LOFAR diagrams were resampled to 256×256 for the
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Structure of AlexNet.
FIGURE 6

Time-frequency diagram of the received signal.
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reduction of the computation, smoothed by mean filtering

to reduce salt-and-pepper noise, and the Canny operator

detected edges for better performance. The experimental

and simulation data were split into training and test sets at

the same ratio. The ratio of the training set to the test set

is 40%:60%.
3.3.2 Network training
The implementation of the neural networks mentioned in Section

3.2 was done in Python 3 using the open-source Pytorch (Paszke et al.,

2019). The network was trained for 100 and 20 epochs on the sea trial

and simulation datasets, respectively. The batch size was set to 32. An

Intel Core i7-9700 3.00 GHz CPU trained the networks. The final

trained model could complete the classification of 128 samples in

8.53 s.
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FIGURE 8

Network structure of VGG.
FIGURE 9

Structure of residual block.
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FIGURE 10

Dense connection structure.
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4 Results

4.1 Accuracy and train loss

The results for the simulation training dataset are presented in

Figure 12. From the perspective of training loss, ResNet and DenseNet

declined rapidly, whereas AlexNet and VGG declined relatively slowly.

From the training set’s perspective, the four networks’ training

accuracy reached 100%, but that of AlexNet and VGG fluctuated

significantly. For the test dataset, the final test accuracies of AlexNet,

VGG, ResNet, and DenseNet were 99.49%, 100%, 100%, and 100%,

respectively. AlexNet and VGG exhibited larger fluctuations.

The results for the experimental dataset are illustrated in

Figure 13. Compared to the simulation dataset, the experimental

dataset fluctuated greatly, which may be due to the influence of
Frontiers in Marine Science 08264
marine environmental noise (such as the calls of marine organisms)

in individual samples. From the perspective of the test dataset, the

final test accuracies of AlexNet, VGG, ResNet, and DenseNet were

90.63%, 95.51%, 96.63%, and 99.22%, respectively. AlexNet and

VGG fluctuated less, but their final test-set accuracies were lower.

ResNet fluctuated more; however, its final test set accuracy was

higher. DenseNet fluctuated less but had the highest final test

set accuracy.

Overall, ResNet and DenseNet performed better than AlexNet

and VGG on both the simulation and experimental datasets,

possibly because they used a residual block design with a deeper

network structure. In the experimental dataset, the stability of

DenseNet was better than that of ResNet, and the final test set

accuracy of DenseNet was higher, which may be because DenseNet

adopts a denser connection mechanism.
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FIGURE 11

Input data preprocessing flow chart.
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Simulation data classification results. (A) Train loss of four networks. (B) Train accuracy of four networks. (C) Test accuracy of four networks. AlexNet
is the blue line. VGG is the red line. ResNet is the yellow line. DenseNet is the purple line.
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4.2 Confusion matrixes

Table 1 presents the confusion matrices of the four networks

trained using the experimental datasets. Each column represents a

prediction, and each row represents the true label of the data.

Among the 128 inbound and outbound ships, AlexNet mistakenly

judged three inbound ships as outbound and nine outbound ships

as inbound. The VGG mistakenly judged one inbound ship as

outbound and five outbound ships as inbound. ResNet recognized

70 outbound ships and 54 diagrams from 58 test diagrams of

inbound ships. DenseNet outperformed the other three CNNs

and recognized all 58 inbound ships and 68 diagrams from 70

testing diagrams of outbound ships. DenseNet offers a reliable

method for classifying inbound and outbound ships.
5 Analysis of physical principles

This study introduced the concept of a generalized waveguide

invariant to analyze the reasons for the differences in the interference

fringe structures of inbound and outbound ships. Based on the

conventional definition of waveguide invariance, the generalized

waveguide invariant considers the effect of azimuth change on the

waveguide invariant b and derives a new definition equation.
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Assuming that the sound source moves along a straight line and

its track does not pass through the receiver, the movement of the

sound source will not only cause a change in the sound propagation

path distance with time but also cause a change in the azimuth angle

with time.

In Figure 14, the orange circle represents the receiver’s position,

the blue rectangle represents the sound source, v represents the

sound source’s moving speed, vt and vn the radial and tangential

velocities, respectively, and q represents the azimuth.

In this case, the waveguide-invariant b was related to the

distance and azimuth of the sound propagation path. Based on

the definition equation b = r
w

dw
dr of the conventional waveguide

invariant, the definition equation of the generalized waveguide

invariant is derived as shown in Equation 2.

b=
r
w
dw
dr

=−
sp,mnðw,q,rÞ+ ∂

∂q f 1
r ∫

r
0sp,mn(w,q,r0)dr0gcotq

1
r ∫

r
0sg,mn(w,q,r0)dr0

(2)

In Equation 2, the first term of the molecule contributes to

the change in distance along the sound propagation path, and

the second term corresponds to the change in azimuth. When

the sound source is close to the nearest point and azimuth q! 0

, there is a singularity in the waveguide invariants’ values. When

the distance between the sound source and the receiver is far

enough, the azimuth change q is very weak. b is mainly
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Experimental data classification results. (A) Train loss of four networks. (B) Train accuracy of four networks. (C) Test accuracy of four networks.
AlexNet is the blue line. VGG is the red line. ResNet is the yellow line. DenseNet is the purple line.
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T

T

determined by the first term of Equation 2, and the influence of

azimuth on waveguide invariants can be ignored. The first term

in Equation 2 is a classical waveguide invariant expression.

After adding the second term, the waveguide invariant b is

related to the distance and the azimuth variation term between

the sound source and the receiver.

According to the theory of generalized waveguide invariants,

the value of waveguide invariants changes abruptly before and after

the target ship passes the nearest point, which causes asymmetric

interference fringes on the time-frequency diagram. Furthermore,

the directions of the inbound and outbound ships are opposite;

therefore, their interference fringe structures show different

characteristics: one is high on the left and low on the right, and

the other is high on the right and low on the left.
6 Conclusion

Here, we first found that the spectrum interference structure of

the acoustic signal received by a single hydrophone is asymmetric in

sea trial experimental data. Then we used this feature to classify

inbound and outbound ships using a single hydrophone through

CNNs and explained the physical principle through generalized

waveguide invariants.

This method overcame the idea that single-scalar hydrophones

can only be used for ranging, and not direction-finding. This

algorithm classified the direction of the target ship using only a

single-scalar hydrophone. However, at this stage, it was only

possible to determine approximately whether a ship was inbound

or outbound, and a more detailed course judgment could not be
Frontiers in Marine Science 10266
completed. When the seabed topography was known for specific

sea areas, this method could achieve more detailed course

discrimination and complete the positioning of the target ship or

underwater target. This algorithm could achieve more

comprehensive sea area monitoring by combining ls-ssdd-v1.0

and official-ssdd with SAR ship classification and identification.

This issue should be addressed in future studies.
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ABLE 1 Confusion matrixes of four networks trained by experimental datasets.

AlexNet Inbound Outbound ResNet Inbound Outbound

Inbound 55 3 Inbound 54 4

Outbound 9 61 Outbound 0 70

VGG Inbound Outbound DenseNet Inbound Outbound

Inbound 57 1 Inbound 58 0

Outbound 5 65 Outbound 2 68

ABLE 1 Confusion matrixes of four networks trained by experimental datasets.
fro
FIGURE 14

Schematic of sound source moving along a straight line without
passing the receiver.
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With global climate changing, the carbon dioxide (CO2) absorption rates

increased in marginal seas. Due to the limited availability of in-situ spatial and

temporal distribution data, the current status of the sea surface carbon dioxide

partial pressure (pCO2) in the Yellow Sea is unclear. Therefore, a pCO2 model

based on a random forest algorithm has been developed, which was trained and

tested using 14 cruise data sets from 2011 to 2019, and remote sensing satellite

sea surface temperature, chlorophyll concentration, diffuse attenuation of

downwelling irradiance, and in-situ salinity were used as the input variables.

The seasonal and interannual variations of modeled pCO2 were discussed from

January 2003 and December 2021 in the Yellow Sea. The results showed that the

model developed for this study performed well, with a root mean square

difference (RMSD) of 43 matm and a coefficient of determination (R2) of 0.67.

Moreover, modeled pCO2 increased at a rate of 0.36 matm year-1 (R2 = 0.27, p <

0.05) in the YS, which is much slower than the rate of atmospheric pCO2

(pCO2
air) rise. The reason behind it needs further investigation. Compared with

pCO2 from other datasets, the pCO2 derived from the RFmodel exhibited greater

consistency with the in-situ pCO2 (RMSD = 55 matm). In general, the RF model

has significant improvement over the previous models and the global data sets.

KEYWORDS

machine learning, random forest, remote sensing, the Yellow Sea, pCO2
1 Introduction

The rapid growth of fossil fuel usage and industry has increased the atmospheric carbon

dioxide (CO2) concentration by approximately 40% since the Industrial Revolution

(Landschützer et al., 2014; Friedlingstein et al., 2022). Global oceans absorb 30% of the

CO2 released by industry and human activities and they are a significant sink for
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atmospheric CO2. Coastal seas cover 7% of the oceanic surface area

but the sea-air exchange carbon fluxes (FCO2) comprise

approximately 25–50% of the global oceans (Laruelle et al., 2018),

and thus they play important roles in absorbing atmospheric CO2

(Dai et al., 2022). Due to the effects of the complex physical

environment and biological activities, great errors occur in

estimations of FCO2 in coastal seas (Landschützer et al., 2018;

Mignot et al., 2022). Therefore, estimating sea surface carbon

dioxide partial pressure (pCO2) accurately for coastal seas is

critical for precisely estimating the global FCO2 (Laruelle

et al., 2018).

In general, pCO2 is regulated by thermodynamic effects,

biogeochemical effects, mixing effects, and air–sea exchange

effects (Liu et al., 2019; Ye et al., 2022). Some environmental

variables can characterize these four effects. In particular, the sea

surface temperature (SST, °C) directly reflects thermodynamic

effects, while the chlorophyll concentration (Chl, mg m−3) and

diffuse attenuation of downwelling irradiance (Kd, m−1) can

indicate biogeochemical effects on the surface pCO2. In addition,

the SST, salinity (SSS, psu), and mixed layer depth (MLD, m) are

closely related to mixing effects, and the wind speed can

characterize the sea–air exchange process (Gu et al., 2021).

Due to their unique advantage in terms of high spatiotemporal

resolution, satellite approaches are efficient for observing pCO2. In

previous studies, both semi-analytical (Hales et al., 2012; Bai et al.,

2015; Chen et al., 2017) and empirical approaches (Lohrenz et al.,

2010; Tao et al., 2012; Qin et al., 2014; Chen et al., 2016; Chen et al.,

2019; Fu et al., 2020) were used to estimate the sea surface pCO2.

Many studies have used satellite data to estimate the sea surface

pCO2, but recent studies also examined and compared the capability

of semi-analytical and empirical algorithms for estimating the coastal

pCO2 (Chen et al., 2017; Chen et al., 2019). However, the high

spatiotemporal variability and diversity of pCO2, the inaccuracy of

satellite data, and limited availability of in-situ pCO2 data from

coastal seas make it challenging to establish a model of pCO2.

Several efforts have been made to construct various algorithms or

models, but the satellite-derived pCO2 in coastal seas generally has

higher uncertainty than that for open seas, and the root mean square

difference (RMSD) can be as high as 90 matm (Chen et al., 2019).

The Yellow Sea (YS) is an important coastal sea in the west

Pacific Ocean. The pCO2 in the YS has considerable seasonal

variations and an unbalanced spatial distribution (Wang and

Zhai, 2021). For example, extremely high pCO2 values have been

observed during the summer in the center of the YS, whereas

extremely low pCO2 values have been observed in the southwestern

YS (Qu et al., 2014; Zhai, 2018). Since the 1980s, many studies have

investigated carbonate, pCO2, and FCO2 in the YS (Xue et al., 2011;

Qu et al., 2014; Zhai et al., 2014; Zhai, 2018; Choi et al., 2019; Deng

et al., 2021). However, accurately quantifying pCO2 and FCO2 in

the YS remains a challenge. In particular, Wang and Zhai (2021)

indicated that the YS is a carbon sink and FCO2 is about –0.5 ± 1.9

mol m−2 year−1, whereas Qu et al. (2014) suggested that the YS is a

carbon source. In addition, the physical and biological conditions in

coastal seas have changed due to rapid climate change. For example,

SST and Chl have increased (Liu et al., 2021; Lu et al., 2021). These

variations will have influenced the changes in the sea surface pCO2.
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Indeed, recent studies showed that the CO2 absorption rates

increased in some coastal seas (Li and Zhai, 2019; Xiong et al.,

2020). To the best of our knowledge, no previous studies have

quantified the long-term trend in the carbon absorption capacity of

the YS due to the lack of in-situ pCO2 data over the entire YS. Thus,

in order to accurately quantify the pCO2 in the YS and understand

the response of the pCO2 to global climate change, we developed an

inversion model of pCO2 in the YS in the present study. Two

previous remote sensing studies investigated the pCO2 in the YS

(Tao et al., 2012; Qin et al., 2014), and both used in-situ SST and Chl

data to establish multiple polynomial regression (MPR) models.

This modeling method is simple but the errors are large. Therefore,

in the present study, we aimed: (1) to develop machine learning

models for accurately deriving pCO2 from satellite remote sensing

data; and (2) to analyze the long-term trend in the pCO2 during

2003–2021 in the YS.
2 Materials and methods

2.1 Study area

The YS is a semi-enclosed shelf shallow sea (29.5°N–40.5°N,

118.5°E–126.5°E) located west of the Liaodong Peninsula and east

of the Korean Peninsula (Figure 1). The mean water depth is 44 m

(Liu et al., 2009). The areas and depths of the North Yellow Sea

(NYS) and South Yellow Sea (SYS) are 70 × 103 km2 and 38 m, and
FIGURE 1

Chart of the study region. The three black dashed lines represent the
boundaries between the North Yellow Sea (NYS) and Bohai Sea, the
NYS and South Yellow Sea (SYS), and the SYS and East China Sea (ECS).
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300 × 103 km2 and 44 m, respectively. The climate and ocean

circulations exhibit strong seasonality due to the effect of the East

Asian Monsoon (Ding et al., 2018). In the winter, the YS is mainly

influenced by the Yellow Sea Warm Current (YSWC) and the

Yellow Sea Coastal Current. The Yellow Sea Warm Current invades

the YS from south to north, and brings warm ocean water to the YS,

which makes some regions into carbon sources in the YS (Xue et al.,

2011). In the summer, the central YS is occupied by the Yellow Sea

Cold Water Mass (YSCWM) and there is a strong thermocline

above the YSCWM. In addition, the northeastern extension of the

Changjiang Dilution Water (CDW) carries a considerable amount

of nutrients to the west of the SYS, and this region sustains high

phytoplankton production, thereby leading to lower pCO2 values

(Qu et al., 2014). Overall, the YS current is an important factor that

affects pCO2. A previous study showed that the coastal currents in

the YS have strengthened in recent years (Liu S, et al., 2023), which

may affect the interannual variation in the pCO2 in the YS.

The YS is surrounded by rapidly developing economic regions,

and the rapid development of mariculture has caused severe

environmental problems, such as phytoplankton blooms and

changes in ocean acidification. Therefore, the carbon cycle

process in the YS is managed by both the coastal hydrodynamics

and human activities (Choi et al., 2019).
2.2 Data sets

We collected fugacity of CO2 (fCO2) data from 14 cruises

conducted between 2011 and 2019, which homogenously covered

the entire annual cycle (Table 1). Data were derived from four

cruises conducted in 2019 by Yu et al. (2022), and data collected

from 10 other cruises by Wang and Zhai (2021).

fCO2 was conversed into pCO2 using the following formula (1):

fCO2 = pCO2 · exp p ·
B + 2s
RT

� �
(1)

where p is the total pressure (Pa), R is a gas constant (8.314 J

K−1 mol−1), T is the absolute temperature of the sea surface (K), and

B and s are rectification coefficients, which are calculated with

formulas (2) and (3).

B = ( − 1636:75 + 12:0408� T − 3:27957� 10−2T2 + 3:16528

� 10−5T3)� 10−6 (2)

s = (57:7 − 0:118T)� 10−6 (3)
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The inverse model of pCO2 in the YS was established with Chl,

SST, SSS, and Kd as input variables. In addition, Julday (Jday, or

day of year) was selected as an input to highlight the periodical

changes in pCO2 (Lefevre et al., 2005; Signorini et al., 2013). Chl

and Kd, SST, and SSS were used to represent biochemical,

thermodynamic, and mixing effects on the sea surface pCO2,

respectively. Level 3 8-days and monthly SST (°C), Chl

(mg m−3), and Kd (m−1) data sets were obtained from

Moderate Resolution Imaging Spectroradiometer (MODIS)-

Aqua for January 2003 and December 2021 (https://

oceancolor.gsfc.nasa.gov/) at a spatial resolution of 4 km. SSS

data observed directly by ocean color sensor satellites are not

available, so in-situ SSS data were used to develop the model in

this study. The HYbrid Coordinate Ocean Model (HYCOM) SSS

data set (monthly products with a 4-km resolution) was selected to

derive maps of the sea surface pCO2 (available from: https://

www.hycom.org/). In addition, the gridded atmospheric pCO2 (p

CO  air
2 ) data set (daily, with a spatial resolution of 2° × 2.5°)

provided by Rödenbeck et al. (2013) was used (available from:

http://www.bgc-jena.mpg.de/SOCOM/).

Due to the influence of cloud cover, sensor technology,

atmospheric correction algorithms, and other factors, satellite

remote sensing data have a high missing rate in time and space.

Therefore, satellite data were interpolated using Data Interpolating

Empirical Orthogonal Functions (DINEOF) to obtain more

matching pairs. A pixel located at 122°E and 33.2°N was

selected to verify the rationality of the reconstructed data. The

reconstructions agreed with the original data and complemented

the missing data well (Figure 2).

Satellite data were matched with in-situ data according to (Le

et al., 2019). Briefly, a time window of ± 8 days was applied

between the in-situ and satellite-derived data. In addition, in order

to filter sensor and algorithm noise, the median of a 3 × 3-pixel

box was focused on every sample point. If the coefficient of

variation for the effective pixels in the 3 × 3-pixel box was ≤ 0.4,

the extracted data were used to develop the model together with

the in-situ data. Finally, we obtained 638 matched pairs from 14

cruises (Figure 3).
2.3 Model training and testing,
and model selection

The 638 matched pairs were split into training and test data

sets in a stratified random manner, where they accounted for 80%

and 20% of the pairs, respectively. Histograms showing the
TABLE 1 Comparison of two empirical modeling approaches. .

Approach RMSD (matm) R2 MAE (matm) MAPE

PSO-SVR
43 0.63 35 9%

54 0.44 40 11%

RF
34 0.82 24 6%

43 0.67 32 8%
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distributions of the sample points in the training and test data sets

are presented in Figure 4. Evaluation indicators comprising the

RMSD, coefficient of determination (R2), mean absolute error

(MAE), and mean absolute percentage error (MAPE) were

employed to quantify the reliability of the pCO2 model.

Two machine learning algorithms comprising Random

Forest (RF) and particle swarm optimization-support vector

regression (PSO-SVR) were used to develop sea surface pCO2

models because of their high generalizability for nonlinear
Frontiers in Marine Science 04271
relationships (Mountrakis et al., 2011). The inversion model

was established using identical data sets. The algorithm was

determined as formula (4).

pCO2 = f (input variables)

= f (SST, Kd, SSS, Chl, cos(2p(Julday − g)=365) (4)

The value of g was optimized iteratively (0 to 365) until the

RMSD reached a minimum value.
FIGURE 3

Spatial distribution of 638 matched pairs.
FIGURE 2

Comparison of reconstructed and original data.
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2.4 Random forest

The RF consists of multiple decision trees, where the structure

of a single decision tree is based on a group of training data

(Breiman, 2001). In RF, a bootstrap strategy is used to conduct

resampling from the original data sets to produce multiple

subgroups. The structure regression trees are then obtained for

every subgroup, and the final output is the mean of the outputs of all

regression trees.

RF model development (Figure 5) requires the determination of

three customized parameters: the number of randomly selected

variables for constructing the tree (mtry), the minimum number of

terminal nodes for each tree (node size), and the number of trees

(ntree) (Sun et al., 2016).

The node size was set to 5 because this is a common value for

regression models (Sun et al., 2016). The grid search method was

used to determine the RF parameters ntree and mtry (Figure 6). The
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optimal values were determined with the minimal RMSD, and 4 and

200 were selected as the best mtry and ntree values, respectively, for

the RF model.
2.5 Model sensitivity to input variables

Sensitivity analysis was conducted to assess the sensitivity of

the model to the inherent uncertainties in SST, SSS, Chl, and Kd.

The original pCO2 (using the original inputs) was compared with

the new pCO2 (using inputs with extra added uncertainties)

derived from the same RF model to identify the model’s

sensitivity to the uncertainty in these inputs. Only one input

variable was changed in each analysis and the remaining variables

were kept the same. Statistical parameters comprising the mean

bias (MB), mean ratio (MR), RMSD, and R2 were applied to

quantify the sensitivity.
FIGURE 5

General Random Forest model development process.
FIGURE 4

Histograms showing the distributions of the sample points in the training and test data sets.
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The uncertainties of environmental variables were determined

by referring to published studies. In particular, the uncertainty of

remote sensing SST is ≤ 1°C (Hao et al., 2017), the uncertainty of

HYCOM SSS is about 0.5 when SSS is more than 32, the uncertainty

of HYCOM SSS is about 3 when SSS is less than 32 (Jang et al.,

2022), and the uncertainties of Chl and Kd are 32% and 48%,

respectively (Cui et al., 2014). Thus, we used ± 1°C, ± 1, ± 30%, and

± 45% as the uncertainties of SST, SSS, Chl, and Kd, respectively.
3 Results

3.1 Model performance

Table 1 shows that RF outperformed PSO-SVR. The R2 and

RMSD values were 0.82 and 34 matm, and 0.67 and 43 matm for the

model training and test data sets, respectively.

The sea surface pCO2 predicted by the RF model was slightly

underestimated when the sea surface pCO2 was larger than 500

matm, and slightly overestimated when pCO2 was smaller than 300

matm (Figure 7). The pCO2 values estimated by the model varied in

the range of 250−550 matm, with some larger than 550 matm and

lower than 250 matm. A histogram showing the residuals (modeled

pCO2 minus field pCO2) is presented in Figure 7, which

demonstrates that 82.45% of the residuals were within the interval

of ± 50, i.e., the observed 50 matm pCO2 standard deviation.
3.2 Model sensitivity

Statistically, when a bias of +1°C was applied to the SST input,

the RF model overestimated the sea surface pCO2 slightly (RMSD =

10 matm, R2 = 0.96, MB = 3 matm), and when a bias of –1°C was

applied to the SST input, the RF model underestimated the sea

surface pCO2 slightly (R
2 = 0.96, RMSD = 10 matm, MB = –2 matm)
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(Figure 8). These results suggest that pCO2 increased with SST, and

vice versa, which is consistent with the relationship between

temperature and pCO2 in thermodynamics.

Compared with the SST, the RF pCO2 model was more sensitive

to the uncertainties in SSS. Moreover, the RF model was more

sensitive to lower SSS values, where a change of –1 in SSS resulted in

a substantial decrease in the predicted pCO2. In particular, with

input +1 uncertainty in SSS, the RF pCO2 model tended to

overestimate the sea surface pCO2 (R
2 = 0.83, RMSD = 20 matm,

and MB = 5 matm) and with input –1 uncertainty in SSS, the RF

pCO2 model tended to greatly underestimate the sea surface pCO2

(R2 = 0.73, RMSD = 30 matm, and MB = –16 matm).

Similar to SST, the RF pCO2 model exhibited minor sensitivity

to Chl. When all data were used in the calculations with +30%

uncertainties added, the RF model slightly overestimated pCO2 (R
2

= 0.96, RMSD = 10 matm, and MB = 2 matm). With input –30%

uncertainties in Chl, the RF model slightly underestimated pCO2

(R2 = 0.95, RMSD = 11 matm, and MB = –3 matm). Similarly, the RF

pCO2 model was insensitive to Kd. With +45% and –45%

uncertainties added in Kd, the new pCO2 was not very different

from the original pCO2. In particular, with a bias of +45%

uncertainty added to Kd, the RF slightly overestimated the surface

pCO2 (R
2 = 0.93, RMSD = 16 matm, and MB = 9 matm), and with a

bias of –45% uncertainty added, the RF pCO2 model slightly

underestimated the pCO2 (R2 = 0.89, RMSD = 18 matm, and

MB= –8 matm).

The sensitivity of the RF model was different according to the

uncertainty in each environment variable, but the differences

introduced by each variable were generally within the range of

the uncertainty of the model itself.
3.3 Seasonal and interannual variations in
pCO2 in the YS

The RF model was applied to monthly MODIS and HYCOM

data for the period between January 2003 and December 2021 to

generate monthly climatological maps and determine the annual

trend in pCO2 in the YS (Figure 9).

Spatially, due to the effects of the hydrology environment and

terrestrial organic matter, the pCO2 values tended to decrease from

the nearshore to central areas, and the highest pCO2 values were

observed in the SYS. Seasonally, there were apparent variations in

pCO2 throughout the YS (Figure 9). Statistically, the average sea

surface pCO2 values were 377 ± 7 matm, 430 ± 6 matm, 426 ± 11

matm, and 378 ± 10 matm in the spring, summer, autumn, and

winter, respectively. In addition to these seasonal patterns, more

complex variations were found in the spring and autumn (Figure

S1). In most years, pCO2 decreased in March because of

phytoplankton blooms, and increased in September or November

because of the collapsing seasonal stratification.

The annual mean sea surface pCO2 values were extracted to

explore the interannual variation. The results showed that the

surface pCO2 values in the YS increased between 2003 and 2021

at a rate of 0.36 matm year−1 (R2 = 0.27, p< 0.05, N = 19) (Figure 10).
FIGURE 6

Influence of mtry and ntree on RMSD.
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According to the model sensitivity analysis results in section 3.2,

when a bias of +1°C was applied to the SST input, the RF model

overestimated pCO2 by 10 matm. The annual rate of change in the

SST determined by the remote sensing products was 0.039°C year–1

(Figure S2). Therefore, increasing the SST approximately led to an

increase in the pCO2 at a rate of 0.39 matm year–1 in the YS. The

pCO2 in the YS has increased in the past 19 years, but its rate of

increase was lower than that for pCOair
2 (with a rate of 2.31 matm

year−1; R2 = 0.99, p< 0.01, N = 19) in the same period (Figure S3).

Therefore, the DpCO2 (sea surface pCO2– pCOair
2 ) exhibited a

remarkable decreasing trend with a rate of −1.95 matm year−1 (R2

= 0.92, p< 0.01, N = 19).

Moreover, the spatial trends in pCO2 were obtained by

calculating the trend for each grid in pCO2 (Figure 10B). In

general, pCO2 increased in most regions of the YS, with a range

from 0 to 2.78 matm year−1 from 2003 to 2021. Decreasing trends

were also found in some regions. For example, pCO2 decreased in

the NYS and the runoff area of the Changjiang River. These results

indicate that the NYS and runoff area of the Changjiang River have
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more substantial carbon absorption capacities. Both pCO2 and Chl

tended to decrease in the runoff area of the Changjiang River

(Figures 10B, S4). Therefore, the decrease in the transportation of

terrestrial organic matter might be the main reason for the decrease

in pCO2 in this area, which might alleviate the seasonal

hypoxia phenomenon.
4 Discussion

4.1 Evaluation based on comparisons with
field observations of sea surface pCO2

Two algorithms were tested to establish models for estimating

pCO2. The best RMSD and R2 values for the model were 43 matm
and 0.67 in the YS, respectively (Figure 7). The accuracy of four data

sets were evaluated by comparing with field observations of sea

surface pCO2. The resolutions, names of the four data sets, and

comparisons of the results are shown in Table 2.
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FIGURE 8

Sensitivity of RF model to the uncertainties in SST, SSS, Chl, and Kd.
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FIGURE 7

Performance evaluation for RF using (A) training and (B) test data sets; and (C) histogram of residuals.
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Figure 11 shows scatter diagrams to compare the results. The

pCO2 derived from the RF model exhibited greater consistency

(RMSD = 55 matm) with the in-situ pCO2 than CSIR-ML6 (RMSD

= 71 matm), MPI-SOMFNN (RMSD = 82 matm), and SatCO2

(RMSD = 119 matm). The significant underestimation of the field

pCO2 by SatCO2 was predictable because the algorithm was

originally developed for the ECS and it may not be applicable to

the YS. Significant differences between the global pCO2 products

and in-situ data in coastal seas were expected (Landschützer et al.,

2020). Moreover, CSIR and ML6 were not effective at matching the

pCO2 in the YS, as shown by the number of scatter points in

Figure 11. The comparison of four products showed that the RF

model was the optimal method for estimating pCO2 in the YS

because the root mean square difference was less than those with the

other three products (CSIR-ML6, MPI-SOMFNN, and SatCO2).
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Understanding the variations in pCO2 can provide greater insights

into the response of the carbon absorption capacity to climate

change in the YS. Erroneous estimates may be obtained in coastal

seas if global pCO2 products are used, which might affect

quantification of the longer-term trends in global carbon budgets.
4.2 Satellite estimation of pCO2 in
coastal seas

Due to its unique advantage in terms of high spatiotemporal

resolution, satellite remote sensing is an effective method for

observing the sea surface pCO2. Table 2 lists some inversion

models for pCO2 in coastal seas. The maximum RMSD for these

models was 45.19 matm. Tao et al. (2012) and Qin et al. (2014)
FIGURE 10

(A) Long-term trends in regional average pCO2 and DpCO2 (pCO2 − pCOair
2 ); and (B) spatial trends in pCO2 during 2003–2021.
FIGURE 9

Monthly climatological maps of pCO2 in the YS from January 2003 to December 2021.
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established pCO2 estimation models based onMPR using the in-situ

SST and Chl, and the RMSD values for the two models were 15.82

−31.7 and 16.68–21.46, respectively, and both were less than 43. The

error was small for the two models, mainly because the in-situ data

used for modeling were mostly located in the YS center, with few

data located in the nearshore area. The MPR-based inversion model

was developed using the same training data sets employed in the

present study, and the error was much larger than 43 matm. Overall,

the error was acceptable for the RF model developed in this study.

The RMSD of the model for estimating the surface pCO2 in the YS
Frontiers in Marine Science 09276
was higher than that in other marginal seas due to the following

three reasons. (1) The uncertainty of satellite data and field pCO2. In

the YS, the error of satellite remote sensing Kd and Chl data can

reach 48%, and 32%, respectively (Cui et al., 2014). Moreover, the

pCO2 data used in this study were converted from fCO2, and fCO2

was estimated using the dissolved inorganic carbon and total

alkalinity. The uncertainty in the pCO2 obtained by using this

method is ± 5%, which is larger compared with ± 1% using directly

measured pCO2 data (Wang and Zhai, 2021). (2) The hydrological

complexity of the YS environment leads to a wide range of sea
TABLE 2 Published models based on remote sensing of sea surface pCO2 and global pCO2 products.

Reference Model or data set Study area Spatial resolution/Model inputs RMSD (H atm)

Gregor et al. (2019) CSIR-ML6 Yellow Sea 1° x1° 71

Landschützer et al. (2016) MPI-SOMFNN Yellow Sea 1° x1° 82

Bai et al. (2015) SatCO2 Yellow Sea 1.6 km 119

this study RF Yellow Sea 4 km 55

Parard et al. (2014) SOM Baltic Sea SST. Chl. CDOM, NPP, MLD. Jday 35

Tao et al. (2012) MPR Yellow Sea and Bohai Sea SST. Chl 31.74

Qin et al. (2014) MPR Yellow Sea SST. Chl 16.68–21.46

Chen et al. (2016) MNR West Florida Shelf SST. Kd. Chl. Iday <11.79

Liu J, et al. (2023) MNR East China Sea SST. SSS, Chl. Jday, LAT. LON 3.73-45.19
SOM, Self Organizing Map; MNR, Multi-variate Nonlinear Regression; NPP, Net Primary Production; CDOM, Colored Dissolved Organic Matter; LAT, Latitude; LON, Longitude.
B

C D

A

FIGURE 11

Scatter plots of pCO2 obtained from (A) RF model, (B) CSIR-ML6, and (C) MPI-SOMFNN; and (D) SatCO2 against the field pCO2 in the test set.
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surface pCO2 changes. In particular, the magnitude of the change in

pCO2 in the YS is 450 matm (Figure 3), but only about 350 matm in

the Gulf of Mexico (Fu et al., 2020) and the Gulf of Maine (Signorini

et al., 2013). The performance of the model constructed for the YS

was similar to that of a model for the Baltic Sea (RMSD = 47.48

matm, R2 = 0.63) (Zhang et al., 2021), where pCO2 ranged from 100

−600 matm. (3) Importantly, the RF model needed to include all of

the processes from 2011 to 2019. These three reasons explain why

estimating pCO2 is very difficult in the YS compared with other

marginal seas, and thus the error is large.
4.3 Advantages and limitations of RF model

The comparisons of the models based on the two algorithms

showed that the RF algorithm was advantageous for inverting the sea

surface pCO2 in the YS (Table 1; Figure 11), and the uncertainty was

less than 50 matm. However, the RF model still has some problems.

First, in the eastern YS, the seasonal variation in the pCO2

obtained from the RF model differed compared with the in-situ

pCO2. Choi et al. (2019) found that pCO2 tended to increase from

May to February in the Southeastern YS. However, the maximum

pCO2 obtained by RF inversion was in August (Figure 9). Wang and

Zhai (2021) divided the YS region west of 124°E into four regions

and analyzed the seasonal variations in the pCO2. They found that

the maximum values in the four regions occurred in July,

September, or October, with none in February. Due to the effect

of hydrodynamics and other factors, the seasonal patterns in the

pCO2 differ greatly in the eastern YS and western YS. Therefore, the

differences in the seasonal variations in pCO2 may be explained by

only using in-situ data for the area located west of 124°E for

modeling, and thus the model was unable to fully identify the

pCO2 control process.

Second, using the RF model to compute the interannual trends

in the pCO2 could introduce uncertainties. The homogenously

collected cruise data covered the whole annual period (Table 3).

The variation in pCO2 was influenced by physical and
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biogeochemical processes in the sea, and the increase in

atmospheric CO2 (Xue et al., 2016). However, the parameters

(SST, Chl, Kd, and SSS) used in this study could only characterize

the physical and biogeochemical processes in the sea. If changes in

pCO2 caused by increases in the atmospheric CO2 could not be

captured implicitly by one or more of the four parameters (SST, SSS,

Chl, and Kd), uncertainties would be introduced when computing

the interannual trend in the pCO2 (Chen et al., 2019). The long-

term trend of SST in the YS was influenced by regional climate

change (Park et al., 2015), that is to say, the change of SST included

the change of atmospheric CO2 internally and implicitly, therefore,

the increase in the SST appeared to can capture the effects of

increasing atmospheric CO2 on the pCO2, the interannual trend was

still credible to some extent.

Third, in the present study, RF performed poorly at simulating

data from both ends of the data sets (underestimation for high

values and overestimation for low values) (Figure 7), which may be

explained as follows. First, due to the features of the algorithm itself,

RF averages the results for all regression trees. The underestimation

of extreme values and overestimation of small values appears to be a

common problem for RF regression models (Čeh et al., 2018;

Zimmerman et al., 2018; Wolfensberger et al., 2021). Second, the

training data sets contained very few extreme pCO2 values and they

were underrepresented in the RF model, thereby leading to a more

mean-biased output from the RF model.

In general, the problems with the RF model described above were

caused by the unbalanced distributions of the modeling data sets. The

number of extreme pCO2 values (>550 matm or<250 matm) was

relatively small in the field measurements (only 4.7%) but it did not

seem to affect the interannual variation in the pCO2. However, extreme

pCO2 is an influential component of the carbon cycle and it has

significant impacts on the health of marine ecosystems. Therefore, it is

very necessary to accurately estimate the extreme pCO2. The crucial

limitation of RFmodel is that its ability to estimate new pCO2 is limited

by the range of the training data set. That mean it can not estimate the

pCO2 beyond the range of the training data set (no extrapolation).

Therefore, a better RFmodel may be developed by using a data set with
TABLE 3 Cruises and statistics for SST, SSS, and sea surface pCO2 measurements used for model training and test (mean ± standard deviation).

Season Time SST (°C) SSS pCO2 (matm) Number of observations

Spring
2012−05
2018−04
2019−04

10.4 ± 2.9 32.1 ± 0.8 361 ± 58 133

Summer

2011−06
2015−08
2016−07
2019−08

23.0 ± 3.7 31.1 ± 1.1 410 ± 88 204

Autumn

2012−11
2017−09
2017−10
2019−10
2019−11

19.3 ± 3.7 31.5 ± 0.5 425 ± 58 231

Winter
2016−01
2017−12

8.6 ± 3.1 32.2 ± 0.3 373 ± 51 92

average/Total samples — 17.2 ± 6.6 31.6 ± 0.9 400 ± 73 660
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a wider range of variation, which can improve the reproducibility of the

RF model for extreme values. Therefore, we suggest that the modeling

data set need to include all pCO2 values that can be matched to the

satellite data, some extreme values in the in-situ data sets should not be

arbitrarily deleted (excluding the low and high values caused by

measurement errors).
5 Conclusions

In this study, we constructed a RF model of the YS with SST,

SSS, Chl, Kd, and Julday as the inputs. The RF model performed

well at estimating pCO2, with an RMSD of 43 matm and R2 of 0.67.

The RF model was applied to satellite data from between 2003 and

2021 to obtain a 19-year time sequence of pCO2 in the YS. Spatially,

except for the eastern YS, the spatial pCO2 distributions derived by

the RF model matched with the in-situ data. According to the

interannual changes, the sea surface pCO2 increased in most regions

of the YS, but there were differences among the regions, with

decreased trends in the pCO2 in the NYS and the runoff area of

the Changjiang River, which appears to contrast with the

background global warming and increasing atmospheric CO2

concentration. The present study is the first to using machine

learning methods to estimate the pCO2, and also the first to

determine the long-term trend in the pCO2 in the YS. Future

research should focus on obtaining balanced in-situ pCO2 data

and coupling the RF model with a mechanistic model to develop

more accurate pCO2 models. In addition, the reasons for the

increasing trend in the pCO2 in the YS should be explored.
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Blurring and color distortion are significant issues in underwater optical imaging,

caused by light absorption and scattering impacts in the water medium. This

hinders our ability to accurately perceive underwater imagery. Initially, we merge

two images and enhance both the brightness and contrast of the secondary

images. We also adjust their weights to ensure minimal effects on the image

fusion process, particularly on edges, colors, and contrast. To avoid sharp

weighting transitions leading to ghost images of low-frequency components,

we then propose and use a multi-scale fusion method when reconstructing the

images. This method effectively reduces scattering and blurring impacts of water,

fixes color distortion, and improves underwater image contrast. The

experimental results demonstrate that the image fusion method proposed in

this paper effectively improves the fidelity of underwater images in terms of

sharpness and color, outperforming the latest underwater imaging methods by

comparison in PSNR, Gradient, Entropy, Chroma, AG, UCIQE and UIQM.

Moreover, this method positively impacts our visual perception and enhances

the quality of the underwater imagery presented.

KEYWORDS

underwater optical imaging, multi-scale weight, image enhancement, image fusion,
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1 Introduction

The ocean holds vast resources and is considered a new continent to be exploited by

mankind. However, rapid population growth, depletion of land resources, and natural

environment deterioration has increased the importance of both exploiting and protecting

marine resources. In this context, ocean information acquisition, transmission, and

processing theory and technology play a critical role in the rational exploitation and

utilization of ocean resources. Underwater images are a key source of ocean data and a

useful visualization tool for identifying the ocean.
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However, compared to the air medium, the attenuation coefficient

of light beam propagation in the water medium is much larger, leading

to poor underwater imaging quality (Yang et al., 2019). The scattering

of light by water and suspended particles also reduces image contrast,

resulting in blurred images and poor visibility. Additionally, the

attenuation characteristics in water vary with wavelengths of light,

with red light being the most attenuated, losing its energy after a

distance of 4-5 meters. This makes underwater images more likely to

have a bluish or greenish appearance.

These factors collectively limit the quality of underwater

imaging, posing significant practical and scientific challenges

in the application of underwater images in marine military,

marine environmental protection, and marine engineering.

Therefore, it is essential to develop effective techniques and

technologies to improve underwater imaging quality and

overcome these limitations.

The motivation for designing the multi-scale fusion mechanism

in underwater image enhancement is to deal with the unique

challenges that arise when imaging underwater environments. In

particular, underwater images often suffer from severe noise, low

contrast, and color distortion, which can reduce visibility and make

it difficult to distinguish between different objects in the scene.

One approach to addressing these challenges is to use image

enhancement techniques that adjust the brightness, contrast, and

color balance of the underwater images. However, standard image

enhancement techniques may not be effective in underwater

environments due to the complex nature of the underwater light

field and the scattering and absorption of light by water and

suspended particles.

To overcome these challenges, researchers have developed

multi-scale fusion mechanisms that combine information from

different scales in the image to improve the overall image quality.

This approach involves breaking down the image into different

scales and processing each scale separately before fusing the results

back together.

By using this multi-scale approach, the low-level features of the

image can be enhanced at the pixel level, while the high-level

features, such as edges and boundaries, can be preserved to

maintain the overall structure of the image. This allows for better

visibility and the ability to distinguish between different objects in

the scene, making it easier to interpret underwater images for

scientific, commercial, and military applications.

With the advancement and maturation of image processing and

computer vision technologies (Sahu et al., 2014), many scientists are

paying more attention to using these technologies as post-

processing steps to enhance the visual quality of underwater

images to meet the needs of both human visual characteristics

and machine recognition (Guo et al., 2017). Jiang et al. make efforts

in both subjective and objective aspects to fully understand the true

performance of underwater image enhancement algorithms (Jiang

et al., 2022). Image enhancement is a widely-used technique that

can be used to improve the quality of underwater photographs by

primarily increasing image contrast and correcting color distortion

(Wang et al., 2019).

Typical enhancement methods used in this field include

histogram equalization (HE) (Hummel, 1977; Pisano et al., 1998),
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generalized unsharp mask (GUM), and fusion using a

monochromatic model (Ancuti et al., 2012). Iqbal et al. developed

an Integrated Color Model (ICM) algorithm based on the integrated

color model (Iqbal et al., 2007) and an Unsupervised Colour

Correction Method (UCM) for underwater image enhancement

(Iqbal et al., 2010). Abdul Ghani et al. employed the Rayleigh

distribution function to redistribute the input image (Abdul Ghani

and Mat Isa, 2015). Huang et al. proposed the RGHS model to

enhance image information entropy (Huang et al., 2018). To solve

blurriness and color degradation issues, Zhou et al. developed a

restoration method based on backscatter pixel prior and color cast

removal from the physical point of view of underwater image

degradation (Zhou et al., 2022). Peng et al. proposed a depth

estimation method for underwater scenes based on image

blurriness and light absorption (IBLA), which can be used in the

image formation model (IFM) to restore and enhance underwater

images (Peng and Cosman, 2017).

For underwater image restoration, a common approach is to

analyze the effective degradation model of the underwater imaging

mechanism and determine the model parameters based on prior

knowledge (Chang et al., 2018). For image defogging, the Dark

Channel Prior (DCP) has attracted attention due to the similarity

between outdoor and underwater images (Ancuti et al., 2020).

Drews-Jr provided a method of Underwater Dark Channel Prior

(UDCP) (Drews-Jr et al., 2013) that only considers the G and B

channels to produce underwater DCP without taking into account

the red channel.

Deep learning-methods have gradually become a research hot

spot/highlight as the progress of artificial intelligence technology,

such as visual recognition and detection of aquatic animals (Li et al.,

2023).Chen et al. constructed a real-time adaptive underwater

image restoration method, called GAN-based restoration scheme

(GAN-RS) (Chen et al., 2019). Yu et al. developed an underwater

image restoration network using an underwater image dataset to

simulate the relevant imaging model (Yu et al., 2019). Sun et al. also

developed a framework for underwater image enhancement that

employs a Markov Decision Process (MDP) for reinforcement

learning (Sun et al., 2022). Wang et al. proposed a one-stage

CNN detector-based benthonic organism detection (OSCD-BOD)

scheme to outperform typical approaches (Chen et al., 2021). Then

they summarized on Architectures and algorithms in deep learning

techniques for marine object recognition (Wang et al., 2022),

especially in organisms (Wang et al., 2023). Li et al. proposed the

first comparative learning framework for underwater image

enhancement problem beyond training with single reference,

namely Underwater Image Enhancement via Comparative

Learning (CLUIE-Net), to learn from multiple candidates of

enhancement reference (Li et al., 2022). To address the challenges

of degraded underwater images, Zhou et al. propose a novel cross

domain enhancement network (CVE-Net) that uses high-efficiency

feature alignment to utilize neighboring features better (Zhou et al.,

2023b). They addressed that most existing deep learning methods

utilize a single input end-to-end network structure leading to a

single form and content of the extracted features. And they

presented a multi-feature underwater image enhancement method

via embedded fusion mechanism (MFEF) (Zhou et al., 2023a). To
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boost the performance of data-driven approaches, Qi et al. proposed

a novel underwater image enhancement network, called Semantic

Attention Guided Underwater Image Enhancement (SGUIE-Net),

in which we introduce semantic information as high-level guidance

across different images that share common semantic regions (Qi

et al., 2022).

We summarize our main contributions as follows:
Fron
(1) We propose a fusion frame for underwater image

enhancement. This frame supplies a basis of different in

different scenes for underwater images.

(2) We proposed a multi-scale weighted method, which

employed the white balance method to obtain initial

enhancement images as references in real conditions, and

then filter the compensated images.

(3) We applied Contrast-Limited Adaptive Histogram

Equalization (CLAHE) (Pisano et al., 1998) to the L

channel in the model in this frame, to reduce time costs

and improve efficiency compared to global image

equalization.
The following parts are organized as below: Section 2 illustrates

the presented method’s structure, including color compensation,

initial enhancement, image equalization, contrast enhancement,

and image fusion. Next, Section 3 explains our experiment and

compares the results to those of other methods. Finally, we

summarize our method and references, and then discuss its

prospects for the future in Section 4.
2 Materials and methods

From the standpoint of image fusion, two different technologies

are used on the underwater degraded image to obtain a new image

with color brightness and contrast enhancement. The weight maps

of the two images are determined and a high-quality image is

obtained by weighted fusion.

The original degraded underwater image, based on the Jaffe-

McGlamery model, can be expressed based on the follow formula:

I(x) = J(x)e−hd(x) + B∞(X)(1 − e−hd(x)) (1)

where I(x) represents the original image taken underwater, J(x)

represents transmissivity, d(x) means observer and object’s

distance, h gives attenuation coefficient, B∞(x) refer to color vector.
2.1 Color compensation and
initial enhancement

2.1.1 Color channel compensation
Several studies on underwater images have shown that green

light attenuates less than red and blue light when propagating

underwater, and, as a result, the water body, as well as most

captured underwater, is typically blue-green in appearance. Red

and blue dual-channel colour compensation is used to solve colour
tiers in Marine Science 03282
cast (Ancuti et al., 2020), and the images Icr and Icb after color

compensation is obtained as:

Icr(x) = Ir(x) + a · (�Ig − �Ir) · (1 − Ir(x)) · Ig(x) (2)

Icb(x) = Ib(x) + a · (�Ig − �Ib) · (1 − Ib(x)) · Ig (x) (3)

where Ir , Ig and Ib represent the red, green and blue colour

channels of the initial image I, each channel being in the range (0,1),
after normalization by the upper limits of their dynamic ranges; and
�Ir , �Ig and �Ib denoting the average of those channels over the whole
image.a is the compensation parameter, and the test shows that

a=1 is suitable for a variety of lighting conditions and

acquisition settings.

For underwater scenes with limited distortion, in the grayscale

world white-balance algorithm achieves good visual performance.

In this paper, in the grayscale world this method was applied to

calculate the white balance image and obtain the final colour-

corrected result by compensating for the loss in both red and

blue channel.
2.1.2 Homomorphic filtering
Due to the light limitation of underwater imaging system, the

illumination on imaging target is uneven, which deteriorates

imaging quality. Homomorphic filtering method was applied for

image compensated (Jiao and Xu, 2010). At the end, the image is

decomposed into direct irradiation, reflection component, which

are then logarithmically transformed as follows:

ln f (x, y) = ln f i(x, y) + ln f r(x, y) (4)

where fi(x, y) refer to illumination component, fr(x, y)

represents reflection component, corresponding to high-frequency

information. And equation (5) is performed with Fourier

transform:

F(u, v) = Fi(u, v) + Fr(u, v) (5)

In the frequency domain, the different frequency parts of the

underwater image are processed based on a Gaussian filter H(u, v),

with its transfer function given as below:

H(u, v) = (g H − g L)½1 − e
cD2(u,v)

D2
0 � + g L (6)

where gH is the enhanced part in high frequency, gL is the

reduced part in low frequency, andD(u, v) is referred to the distance

of the frequency in the midpoint and (u0, v0). D0 is the value of D

when (u, v) = (0, 0). The brightness range is compressed to make

them average and improve image contrast. The homomorphic filter

can appropriately separate the different components. Then,

multiply F(u, v) by H(u, v) as follows:

C(u, v) = H(u, v)F(u, v) (7)

The output of homomorphic filter is further performed by the

inverse Fourier transform and exponential transformation. The

final result g(x, y) is finally given as follows:
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g(x, y) = exp (c(x, y)) = exp(gi(x, y), gr(x, y)) (8)

where c(x, y) represents the result obtained by inverse Fourier

transform, gi(x, y) is direct illumination component and gr(x, y) is

reflection component. Figure 1 shows the preliminary enhanced image,

which was generated using color compensation and homomorphic

filtering. When comparing the two-colour images before and after

processing, it is clear that colours in three channels of the image are

more balanced by using the method described in this paper.
2.2 Image equalization and
contrast enhancement

2.2.1 Gamma correction
After color compensation, the white balance algorithm is used to

process the original/preliminary enhanced image. The goal of this step

is to improve image quality by reducing color shifts because of excessive
Frontiers in Marine Science 04283
illumination. However, because the underwater image is often brighter

after color compensation and homomorphic filtering, we convert the

preliminary enhanced image into HSV space to enlarge the contrast of

bright and dark areas. Set the gamma as follow:

s = aIge (9)

Figure 2 depicts the gamma correction curve. When g <1, the
dynamic range of low gray values increases, the image’s overall gray

value increases. When g >1, the dynamic range of low gray value

shrinks while the high gray value expands. Selecting a value greater

than 1 can correct the global contrast in high-brightness underwater

images, such as g =2.2 in our case.

2.2.2 Contrast limited adaptive
histogram equalization

The gray values of most underwater images are low and,

therefore, their histogram distribution tends to be narrow.
FIGURE 1

Comparison original images with preliminary enhancement images. (1) Original; (2) Channel R; (3) Channel G; (4) Channel B; (5) Colour
compensation and homomorphic filtering; (6) Channel R after preliminary enhancement; (7) Channel G after preliminary enhancement; (8) Channel
B after preliminary enhancement.
FIGURE 2

Gamma correction curve.
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CLAHE can be used to modify the histogram distribution of an

underwater image so that correcting colour bias and improving

image contrast to some extent (Pisano et al., 1998). In this paper,

histogram equalization was performed in LAB space, i.e. the

contrast of L component was enhanced separately in LAB space.

L stands for brightness in LAB model, while A and B stand for

colour. By enhancing the L channel separately, you can avoid

impact colour component of image.

The image is divided into several sub-blocks using local

histogram equalization, and into limited non-coincidence sub-

blocks in this paper. The pixel points in grayscale are then

calculated using bilinear interpolation technology to solve the

block effect in image reconstruction.
2.3 Image fusion by weight

2.3.1 Define the weight of fusion
After obtaining two fusion input images, we calculate the special

weight map of these inputs to reflect high contrast, regions with

edge texture change of images. Brightness, local contrast, and

saturation of the image are primarily considered in the selection

of the weight map in this paper.

To maintain consistency in local image contrast, the brightness

weight WE
k is applied to assess the exposure degree of its pixels,

giving higher weights to well situated pixels in brightness. Because

the mean natural brightness of an image pixel is typically close to

0.5, the mean experimental brightness is set to 0.5, and its standard

deviation is set to 0.25 (Ancuti and Ancuti, 2013), and the

brightness weight WE
k of image I:

WE
k (x, y) = exp −

½Lk(x, y) − 0:5�2
2s2

� �
(10)

The normalized image in grayscale is represented by Lk(x, y).

The average value of its neighboring pixels is represented by the

local contrast weightWC
k . By using local contrast weighting, we can

draw attention to the transition area between the light and dark

parts. WC
k is the input image’s brightness weight, given as follows:

WC
k (x, y) = Ik − Ikwhc (11)

where Ik refers to the brightness channel of image and Ikwhc

represents its low-pass part. The low-pass filter uses a separable

binomial kernel of 5×5 (1/16 (Pisano et al., 1998; Wang et al., 2019;

Wang et al., 2019; Yang et al., 2019; Yang et al., 2019)) with a whc=p/
2.75. The binomial kernel is very similar to the Gaussian kernel and,

as a result, easy to calculate.

We define an input image’s saturation weight WSat
K , which

makes the fusion image evenly saturated by adjusting the highly

saturated area of the input image, expressed as below:

WSat
K (x, y) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Rk(x, y) − Lk(x, y)�2 + ½Gk(x, y) − Lk(x, y)�2 + ½Bk(x, y) − Lk(x, y)�2

q

(12)

where Rk(x, y), Gk(x, y) and Bk(x, y) represent red, green and

blue channel respectively. Calculate the normalized weight �Wk(x, y)

by applying normalization to the brightness, local contrast, and
Frontiers in Marine Science 05284
saturation weights as:

�Wk(x,y)=
Wk(x,y)

okWk(x,y)
(13)

Wk(x,y)=W
E
k+W

C
k +W

Sat
K (14)
2.3.2 Multi-scale fusion
The typical intuitive method in this field is to add two weighted

images, but which will lead to significant halos. Therefore, the

experiment in this paper uses multi-scale fusion technology (Ancuti

and Ancuti, 2013), which is developed from the classic multi-scale

fusion. The following is a description of fusion computing:

Fl(x,y)=o
k

Ll½Ik(x,y)�Gl½ �Wk(x,y)� (15)

where l is pyramid decomposition layers number, k is fused

images number, �Wk(x, y) is the normalized weight, Ll½Ik(x, y)� is the
Laplacian pyramid decomposition, and Fl(x, y) is the l layer of

image pyramid, l=5 and k=2 in this experiment.

Iresult =o
l

Up½Fl(x, y)� (16)

where Iresult denotes final output image; Up½Fl(x, y)� denotes
up-sampling.
2.4 Our methodology

This paper proposes a multi-scale fusion-based underwater

image enhancement algorithm. Figure 3 depicts the algorithm

flow. Colour compensation and colour cast correction are

performed on the underwater image in shallow water, and the

compensated image is then subjected to complete the preliminary

enhancement. To get two fused input images, the enhanced image is

subjected to gamma correction equalization. Finally, to achieve the

goals of attenuation compensation and contrast and definition

improvement, a multi-scale fusion algorithm was used.

The method established in this study outperforms existing

underwater image enhancement methods in subjective visual

effects and objective evaluation indicators in an experimental

comparison of various types of underwater images in shallow water.
3 Experimental results and discussion

We compare the enhancement method set in this article with

existing professional algorithms by processing multiple underwater

images and summarizing their image visual effects and objective

image quality evaluation to verify the effectiveness of i in this

section. With reference to our previous work, our experiments

with each previous algorithm (Pisano et al., 1998; Iqbal et al., 2010;

Drews-Jr et al., 2013; Abdul Ghani and Mat Isa, 2015; Panetta et al.,

2015; Yang and Sowmya, 2015; Peng and Cosman, 2017; Huang
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et al., 2018; Chen et al., 2019) in the experiment are set in 3 parts for

more details.
3.1 Image enhancement visual effect
comparison (dataset 1)

Experiment results are shown as Figure 4. Imaging results in

Rayleigh (Abdul Ghani and Mat Isa, 2015) show varying degrees of
Frontiers in Marine Science 06285
colour restoration, especially overcompensation in the red channel loss

of several local details. Images from the algorithms demonstrate poor

quality with excessive compensation and partial colour cases (Huang

et al., 2018; Chen et al., 2019). The image contrast has improved

significantly (Pisano et al., 1998; Huang et al., 2018), but the colour

restoration effect is still poor. In terms of image enhancement and

colour restoration, UDCP has not outperformed the competition

(Drews-Jr et al., 2013). However, the experimental method described

in this paper has demonstrated best performance on a variety of
FIGURE 3

The procedure of our method.
FIGURE 4

The results comparison of underwater images from different methods. (1) The original; (2) CLAHE; (3) Rayleigh; (4) RGHS; (5) UDCP; (6) GAN-RS; (7) Our method.
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underwater images, allowing it to more effectively correct colour bias,

improve contrast, and preserve image details.

To evaluate the results of various algorithms, this article uses

several traditional image quality objective evaluation indicators:

peak signal-to-noise ratio (PNSR), average gradient (Average

Gradient), tone (Chroma). A higher PNSR value indicates that

the algorithm introduces a small amount of noise and retains

more valuable image information. The mean gradient value

reflects the small detail contrast feature in image, and the

informat ion entropy indica tes the mean amount of

information contained in that. The tone is a summary of the

color of the entire image.

The above quality assess indicators are used to evaluate the

results of each algorithm after performing comparative experiments

on the four contrast images mentioned above. Table 1 shows the

mean values of each algorithm’s enhancement results for multiple

images on various evaluation indicators. According to the results, as

seen in Figure 5, the image processed by the algorithm in this paper

introduces less noise, retains more effective image information, and

has a better processing performance than other algorithms. It also

shows that this algorithm presented in this paper shows high

practical application value and can meet the requirements in

this field.
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3.2 Image enhancement visual effect
comparison (dataset 2)

As shown in Figure 6, the experimental results indicate that the

previous six algorithms achieved different degrees of color

restoration, but could not simultaneously achieve good

enhancement effects. The Rayleigh algorithm led to excessive

compensation in the red channel and the loss of many local details,

while the ICM and UCM algorithms did not perform well in color

restoration of green-tinted images, resulting in overcompensation

and color deviation. Although CLAHE and RGHS algorithms

significantly increased the image contrast, their color restoration

effects still need to be improved. However, the experimental

method in this paper achieved excellent results for multiple

underwater images, which could more effectively correct color

deviation, significantly improve contrast, and retain image details.

The average values of the algorithmically enhanced results of

multiple images over different evaluation metrics are shown in

Table 2, such as AG (Average Gradient), UCIQE (Underwater

Color Image Quality Evaluation metric) (Yang and Sowmya,

2015), UIQM (Underwater Image Quality Measures) (Panetta

et al., 2015), tone (Chroma) and Entropy. The bold data within

the tables represent the maximum value of the column data.
TABLE 1 Objective evaluation of underwater image quality.

METHOD CLAHE Rayleigh RGHS UDCP GAN-RS OURS

PSNR 22.1945 15.3600 17.5609 19.3710 17.1422 21.0493

Gradient 2.8410 3.9744 2.7206 1.2144 1.8089 4.1863

Entropy 13.8542 16.4866 15.2486 13.5358 13.7250 16.5132

Chroma 0.7804 0.5631 0.7093 0.6749 0.6144 0.8041
front
FIGURE 5

Visual evaluation of underwater image quality (Dataset 1).
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FIGURE 6

The results comparison of underwater images from different sources. (1) The original; (2) CLAHE; (3) IBLA; (4) ICM; (5) Rayleigh; (6) RGHS; (7) UCM; (8) Ours.
TABLE 2(A) The comparison of results with Image 1.

Method CLAHE IBLA ICM Rayleigh RGHS UCM Ours

AG 6.8776 5.9204 4.4001 11.5741 8.8502 7.153 13.2663

UCIQE 0.5372 0.6133 0.5264 0.6374 0.6408 0.6042 0.6411

UIQM 1.2473 1.1661 1.1358 1.2888 1.3006 1.2154 1.4265

Chroma 0.8135 0.7936 0.6928 0.4692 0.7393 0.6584 0.7819

Entropy 14.7762 15.0386 13.7117 15.5033 15.0503 14.7392 15.6574

Bold values means the best result.
F
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By comparing various underwater image processing methods

and the proposed algorithm in this paper, as seen in Figure 7, the

method processed image obtained the maximum UCIQE value and

UIQM value, which demonstrates that the algorithm performs well

in enhancing underwater degraded images. Meanwhile, our method

also shows significant superiority in terms of image average gradient

and entropy. In terms of image chroma, the proposed algorithm

performs well in enhancing underwater green-tinted degraded

images. The above experimental results indicate that the proposed
Frontiers in Marine Science frontiersin.org09288
fusion algorithm has excellent performance in enhancing

underwater images.
3.3 Potential applications

Underwater image preprocessing is used to create high-quality

underwater images for use in other applications. The feature

matching test in this paper is performed using the SIFT (Lowe,
TABLE 2(B) The comparison of results with Image 2.

Method CLAHE IBLA ICM Rayleigh RGHS UCM Ours

AG 13.8597 9.6572 8.8445 15.5622 9.0636 8.921 15.2386

UCIQE 0.5974 0.5727 0.5712 0.6271 0.6211 0.6313 0.633

UIQM 1.3257 1.2008 1.2137 1.3773 1.3034 1.3726 1.492

Chroma 0.8135 0.6009 0.5362 0.7715 0.7458 0.4322 0.695

Entropy 15.3721 14.9253 14.4406 15.5692 14.9615 14.7066 15.5797

Bold values means the best result.
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TABLE 2(C) The comparison of results with Image 3.

Method CLAHE IBLA ICM Rayleigh RGHS UCM Ours

AG 4.0601 2.7305 2.965 6.481 3.1915 4.334 6.5679

UCIQE 0.4899 0.5034 0.5675 0.6376 0.578 0.6234 0.6387

UIQM 1.1075 0.954 1.1899 1.2996 1.0518 1.1141 1.3322

Chroma 0.7029 0.6994 0.709 0.5895 0.5997 0.6156 0.7098

Entropy 14.7915 14.6287 14.371 15.3776 14.4284 14.9684 15.5584

Bold values means the best result.
TABLE 2(D) The comparison of results with Image 4.

Method CLAHE IBLA ICM Rayleigh RGHS UCM Ours

AG 3.6143 3.4656 2.9932 6.1934 5.1815 4.8108 7.2521

UCIQE 0.439 0.511 0.5233 0.6175 0.6179 0.6019 0.6276

UIQM 1.0364 1.3517 1.3699 1.5013 1.3135 1.2299 1.5411

Chroma 0.827 0.8013 0.529 0.5281 0.7786 0.7067 0.8097

Entropy 13.8838 14.386 13.6957 16.3354 14.8868 14.4471 15.9288
Bold values means the best result.

TABLE 2(E) The comparison of results with Image 5.

Method CLAHE IBLA ICM Rayleigh RGHS UCM Ours

AG 6.0148 4.1758 4.3871 7.2555 5.8684 5.7459 6.8584

UCIQE 0.5746 0.5558 0.5922 0.6835 0.6587 0.6239 0.6874

UIQM 1.2685 1.3445 1.3998 1.4825 1.2947 1.0311 1.4871

Chroma 0.8586 0.7858 0.4803 0.7897 0.7149 0.5494 0.7969

Entropy 14.9596 13.4666 13.81 15.0161 14.4415 14.5126 15.1991
Bold values means the best result.
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2004). We find the correspondence between two sets of similar

underwater images under the same experimental conditions,

compare the number of feature points before and after image

processing, and verify the practical application of this

algorithm’s effectiveness.

Figure 8 depicts the result of feature point matching and

comparison. According to the comparison results, it can be

inferred that the images number with accurately matched

feature points has increased as a result within this method.

According to the above results, it can be inferred that after

image fusion based on this method, the corresponding fusion

image quality is significantly improved, which can better meet

the subsequent recognition requirements and show high

application value.

The image processed by ours has a good application

performance in the feature extraction process, according to

application test results. At the same time, the experiment used

feature point matching processed by various enhancement

algorithms. Table 3 exhibits the experimental comparison tests

result. The numbers of image matching feature points processed
Frontiers in Marine Science 10289
by the method in this study are higher than those of other

methods , indicat ing that i t performs better in real-

world applications.
4 Conclusions

Images captured in offshore waters often suffer from low

contrast, uneven colors, and varying degrees of blur. To address

these issues, we propose a new fusion algorithm that employs color

compensation, homomorphic filtering, and L-channel histogram

equalization technology to enhance the visual quality of underwater

images in shallow sea water through multi-scale fusion processing.

Our algorithm significantly improves the visibility of

underwater images in a variety of shallow sea scenes, enhancing

color restoration and sharpening effects as shown in subjective

image visual effect demonstrations.

Experimental comparison tests showed that utilizing our

method for image preprocessing significantly enhances the

quality of relevant underwater vision tasks. However, it should
A B

D

E

C

FIGURE 7

The comparison of result in image 1 to 5.
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b e no t e d t h a t t h e p r opo s e d me t hod c an l e a d t o

overcompensation and correction of colors. In future work, we

aim to improve the color restoration and further enhance

underwater image quality.
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FIGURE 8

SIFT feature matching. (1) Original; (2) CLAHE; (3) Rayleigh; (4) RGHS; (5) Ours.
TABLE 3 Comparison of the number of matching features points between original and processed images.

IMAGE SET ORIGINAL CLAHE Rayleigh RGHS OURS

GROUP 1 5 66 60 41 79

GROUP 2 2 51 27 25 55
fronti
ersin.org

https://li-chongyi.github.io/proj_benchmark.html
https://doi.org/10.3389/fmars.2023.1150593
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Zhang et al. 10.3389/fmars.2023.1150593
Funding

This research has obtain the support of the Key research

projects of Qingdao Science and Technology Plan (Grant

Number: 22-3-3-hygg-30-hy), the Natural Science Foundation of

Shandong Province (Grant Number: ZR2022ZD38), and Basic

Research Projects of Qilu University of Technology (Grant

Number: 2022PX053).
Acknowledgments

The authors want to thank reviewers for their suggestions in our

revision of manuscripts.
Frontiers in Marine Science 12291
Conflict of interest

LG was employed by Civil Aviation Logistics Technology Co., Ltd.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Abdul Ghani, A. S., and Mat Isa, N. A. (2015). Enhancement of low quality
underwater image through integrated global and local contrast correction. Appl. Soft
Computing 37, 332–344. doi: 10.1016/j.asoc.2015.08.033

Ancuti, C. O., and Ancuti, C. (2013). Single image dehazing by multi-scale fusion.
IEEE Trans. Image Processing 22, 3271–3282. doi: 10.1109/TIP.2013.2262284

Ancuti, C., Ancuti, C. O., Haber, T., and Bekaert, P. (2012). “Enhancing underwater
images and videos by fusion,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition. (IEEE: Providence, RI, USA), 81–88. doi: 10.1109/CVPR.2012.6247661

Ancuti, C. O., Ancuti, C., Vleeschouwer, C. D., and Sbert, M. (2020). Color channel
compensation (3C): a fundamental pre-processing step for image enhancement. IEEE
Trans. Image Processing 29, 2653–2665. doi: 10.1109/TIP.2019.2951304

Chang, H., Cheng, C. Y., and Sung, C. C. (2018). Single underwater image
restoration based on depth estimation and transmission compensation. IEEE J.
Oceanic Eng., 44 1–20. doi: 10.1109/JOE.2018.2865045

Chen, T., Wang, N., Wang, R., Zhao, H., and Zhang, G. (2021). One-stage CNN
detector-based benthonic organisms detection with limited training dataset. Neural
Networks 144, 247–259. doi: 10.1016/j.neunet.2021.08.014

Chen, X., Yu, J., Kong, S., Wu, Z., Fang, X., and Wen, L. (2019). Towards real-time
advancement of underwater visual quality with GAN. IEEE Trans. Ind. Electronics 66,
9350–9359. doi: 10.1109/TIE.2019.2893840

Drews-Jr, P., do Nascimento, E., Moraes, F., Botelho, S., and Campos, M. (2013).
“Transmission estimation in underwater single images,” in International Conference on
Computer Vision -Workshop onUnderwater Vision. (IEEE:Sydney, NSW,Australia), 825–830.

Guo, J. C., Li, C. Y., Guo, C. L., and Chen, S. J. (2017). Research progress of
underwater image enhancement and restoration methods. J. Image Graphics 22, 0273–
0287. doi: 10.11834/jig.20170301

Huang, D., Wang, Y., Song, W., Sequeira, J., and Mavromatis, S. (2018). “Shallow-
water image enhancement using relative global histogram stretching based on adaptive
parameter acquisition,” in 24th International Conference on Multimedia Modeling -
MMM2018. (MultiMedia Modeling: Bangkok, Thailand).

Hummel, R. (1977). Image enhancement by histogram transformation. Comput.
Graphics Image Processing 6, 184–195. doi: 10.1016/S0146-664X(77)80011-7

Iqbal, K., Odetayo, M., James, A., Salam, R. A., and Talib, A. Z. H. (2010).
“Enhancing the low quality images using unsupervised colour correction method,” in
2010 IEEE International Conference on Systems, Man and Cybernetics. (IEEE:Istanbul,
Turkey), 1703–1709.

Iqbal, K., Salam, R. A., Osman, A., and Talib, A. Z. (2007). Underwater image
enhancement using an integrated colour model. IAENG Int. J. Comput. Sci. 34, 239–244.

Jiang, Q., Gu, Y., Li, C., Cong, R., and Shao, F. (2022). Underwater image
enhancement quality evaluation: benchmark database and objective metric. IEEE
Trans. Circuits Syst. Video Technol. 32 (9), 5959–5974. doi: 10.1109/
TCSVT.2022.3164918

Jiao, Z., and Xu, B. (2010). Color image illumination compensation based on HSV
transform and homomorphic filtering. Comput. Eng. Applications 46, 142–144.
doi: 10.3778/j.issn.1002-8331.2010.30.042

Li, K., Wu, L., Qi, Q., Liu, W., Gao, X., Zhou, L., et al. (2022). Beyond single reference
for training: underwater image enhancement via comparative learning, in IEEE
Transactions on Circuits and Systems for Video Technology, 2022. 3225376.
doi: 10.1109/TCSVT
Li, J., Xu, W., Deng, L., Xiao, Y., Han, Z., and Zheng, H. (2023). Deep learning for
visual recognition and detection of aquatic animals: a review. Rev. Aquacul. 15 (2), 409–
433. doi: 10.1111/raq.12726

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision 60, 91–110. doi: 10.1023/B:VISI.0000029664.99615.94

Panetta, K., Gao, C., and Agaian, S. (2015). Human-visual-system-inspired
underwater image quality measures. IEEE J. Oceanic Eng. 41 (3), 541–551.
doi: 10.1109/JOE.2015.2469915

Peng, Y. T., and Cosman, P. C. (2017). Underwater image restoration based on
image blurriness and light absorption. IEEE Trans. image processing 26 (4), 1579–1594.
doi: 10.1109/TIP.2017.2663846

Pisano, E. D., Zong, S., Hemminger, B. M., DeLuca, M., Johnston, R. E., Muller, K.,
et al. (1998). Contrast limited adaptive histogram equalization image processing to
improve the detection of simulated spiculations in dense mammograms. J. Digital
Imaging 11, 193–200. doi: 10.1007/BF03178082

Qi, Q., Li, K., Zheng, H., Gao, X., Hou, G., and Sun, K. (2022). SGUIE-net: semantic
attention guided underwater image enhancement with multi-scale perception. IEEE
Trans. Image Processing 31, 6816–6830. doi: 10.1109/TIP.2022.3216208

Sahu, P., Gupta, N., and Sharma, N. (2014). A survey on underwater image enhancement
techniques. Int. J. Comput. Applications 87, 19–23. doi: 10.5120/15268-3743

Sun, S., Wang, H., Zhang, H., Li, M., Xiang, M., Luo, C., et al. (2022). Underwater
image enhancement with reinforcement learning. IEEE J. Oceanic Eng., 1–13.
doi: 10.1109/JOE.2022.3152519

Wang, N., Chen, T., Liu, S., Wang, R., Karimi, H. R., and Lin, Y. (2023). Deep
learning-based visual detection of marine organisms: a survey. Neurocomputing 532, 1–
32. doi: 10.1016/j.neucom.2023.02.018

Wang, Y., Song, W., Fortino, G., Qi, L.-Z., Zhang, W., and Liotta, A. (2019). An
experimental-based review of image enhancement and image restoration methods for
underwater imaging. IEEE Access 7, 140233–140251. doi: 10.1109/ACCESS.2019.2932130

Wang, N., Wang, Y., and Er, M. J. (2022). Review on deep learning techniques for
marine object recognition: architectures and algorithms. Control Eng. Practice 118,
104458. doi: 10.1016/j.conengprac.2020.104458

Yang, M., Hu, J., Li, C., Rohde, G., Du, Y., and Hu, K. (2019). An in-depth survey of
underwater image enhancement and restoration. IEEE Access 7, 123638–123657. doi:
10.1109/ACCESS.2019.2932611

Yang, M., and Sowmya, A. (2015). An underwater color image quality evaluation
metric. IEEE Trans. Image Process 24, 6062–6071. doi: 10.1109/TIP.2015.2491020

Yu, X., Qu, Y., and Hong, M. (2019). Underwater-GAN: underwater image
restoration via conditional generative adversarial network. Lecture Notes Comput.
Sci. 11188, 66–75. doi: 10.1007/978-3-030-05792-3_7

Zhou, J., Sun, J., Zhang, W., and Lin, Z. (2023a). Multi-view underwater image
enhancement method via embedded fusion mechanism. Eng. Appl. Artif. Intelligence
121, 105946. doi: 10.1016/j.engappai.2023.105946

Zhou, J., Yang, T., Chu, W., and Zhang, W. (2022). Underwater image restoration via
backscatter pixel prior and color compensation. Engineer. App. Art. Intelligence 111,
104785. doi: 10.1016/j.engappai.2022.104785

Zhou, J., Zhang, D., and Zhang, W. (2023b). Cross-view enhancement network for
underwater images. Eng. Appl. Artif. Intelligence 121, 105952. doi: 10.1016/
j.engappai.2023.105952
frontiersin.org

https://doi.org/10.1016/j.asoc.2015.08.033
https://doi.org/10.1109/TIP.2013.2262284
https://doi.org/10.1109/CVPR.2012.6247661
https://doi.org/10.1109/TIP.2019.2951304
https://doi.org/10.1109/JOE.2018.2865045
https://doi.org/10.1016/j.neunet.2021.08.014
https://doi.org/10.1109/TIE.2019.2893840
https://doi.org/10.11834/jig.20170301
https://doi.org/10.1016/S0146-664X(77)80011-7
https://doi.org/10.1109/TCSVT.2022.3164918
https://doi.org/10.1109/TCSVT.2022.3164918
https://doi.org/10.3778/j.issn.1002-8331.2010.30.042
https://doi.org/10.1109/TCSVT
https://doi.org/10.1111/raq.12726
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1109/JOE.2015.2469915
https://doi.org/10.1109/TIP.2017.2663846
https://doi.org/10.1007/BF03178082
https://doi.org/10.1109/TIP.2022.3216208
https://doi.org/10.5120/15268-3743
https://doi.org/10.1109/JOE.2022.3152519
https://doi.org/10.1016/j.neucom.2023.02.018
https://doi.org/10.1109/ACCESS.2019.2932130
https://doi.org/10.1016/j.conengprac.2020.104458
https://doi.org/10.1109/ACCESS.2019.2932611
https://doi.org/10.1109/TIP.2015.2491020
https://doi.org/10.1007/978-3-030-05792-3_7
https://doi.org/10.1016/j.engappai.2023.105946
https://doi.org/10.1016/j.engappai.2022.104785
https://doi.org/10.1016/j.engappai.2023.105952
https://doi.org/10.1016/j.engappai.2023.105952
https://doi.org/10.3389/fmars.2023.1150593
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Mark C. Benfield,
Louisiana State University, United States

REVIEWED BY

Shinnosuke Nakayama,
Stanford University, United States
Peng Ren,
China University of Petroleum
(East China), China

*CORRESPONDENCE

Zhiyong Zhang

zhang.zhiyo@northeastern.edu

RECEIVED 09 November 2022

ACCEPTED 03 May 2023

PUBLISHED 26 May 2023

CITATION

Zhang Z, Kaveti P, Singh H,
Powell A, Fruh E and Clarke ME (2023)
An iterative labeling method for
annotating marine life imagery.
Front. Mar. Sci. 10:1094190.
doi: 10.3389/fmars.2023.1094190

COPYRIGHT

© 2023 Zhang, Kaveti, Singh, Powell, Fruh
and Clarke. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Methods

PUBLISHED 26 May 2023

DOI 10.3389/fmars.2023.1094190
An iterative labeling method for
annotating marine life imagery

Zhiyong Zhang1*, Pushyami Kaveti 1, Hanumant Singh1,
Abigail Powell2, Erica Fruh2 and M. Elizabeth Clarke2

1College of Engineering, Northeastern University, Boston, MA, United States, 2Northwest Fisheries
Science Center, National Oceanic and Atmospheric Administration (NOAA), Seattle, WA, United States
This paper presents a labeling methodology for marine life data using a weakly

supervised learning framework. The methodology iteratively trains a deep

learning model using non-expert labels obtained from crowdsourcing. This

approach enables us to converge on a labeled image dataset through multiple

training and production loops that leverage crowdsourcing interfaces. We

present our algorithm and its results on two separate sets of image data

collected using the Seabed autonomous underwater vehicle. The first dataset

consists of 10,505 images that were point annotated by NOAA biologists. This

dataset allows us to validate the accuracy of our labeling process. We also apply

our algorithm and methodology to a second dataset consisting of 3,968

completely unlabeled images. These image categories are challenging to label,

such as sponges. Qualitatively, our results indicate that training with a tiny subset

and iterating on those results allows us to converge to a large, highly annotated

dataset with a small number of iterations. To demonstrate the effectiveness of

our methodology quantitatively, we tabulate the mean average precision (mAP)

of the model as the number of iterations increases.

KEYWORDS

iterative labeling, active learning, Faster R-CNN, NOAA, Amazon MTurk, auto-approval,
background label
1 Introduction

Technologies for imaging the deep seafloor have evolved significantly over the last three

decades (Durden et al., 2016). These technologies have enabled the study andmonitoring of

the spatiotemporal changes of marine life in the vast ocean space. They should ultimately

enable us to conduct more efficient fishery independent surveys, yielding improved stock

assessments and ecosystem-based management (Francis et al., 2007). Manned

submersibles, Remotely Operated Vehicles (ROVs), Autonomous Underwater Vehicles

(AUVs) (Singh et al., 2004b), towed vehicles (Taylor et al., 2008), and bottom-mounted and

midwater cameras (Amin et al., 2017) have all contributed to an explosion of data in terms

of our ability to obtain high-resolution, true-color (Kaeli et al., 2011) camera

imagery underwater.
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The reality, however, is that extracting actionable information

from our large underwater image datasets remains a challenging

task. The ability to process the data is not proportional to the rate at

which the data is acquired, as traditional methods were resource-

intensive in terms of manpower, time, and cost. Efforts are

underway to analyze the imagery with various levels of

automation using tools from machine learning for a variety of

fisheries and habitat monitoring applications, including coral reefs

(Singh et al., 2004a; Gleason et al., 2007; Purser et al., 2009; Chen

et al., 2021), starfish (Clement et al., 2005; Smith and Dunbabin,

2007), scallops (Dawkins et al., 2017), and commercially important

groundfish (Tolimieri et al., 2008).

In parallel, there have been significant developments in deep

learning (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014),

which further propelled these efforts by truly leveraging the

availability of large amounts of data. Multiple works have

explored the use of standard deep convolutional neural networks

for image segmentation and classification (Ramani and Patrick,

1992; Anantharajah et al., 2014; Boom et al., 2014; Cutter et al.,

2015; Fisher et al., 2016; Marburg and Bigham, 2016; Sung et al.,

2017; Kaveti and Singh, 2018; Wang et al., 2021). Reinforcement

learning has been used to enhance underwater imagery to improve

the performance of object detection networks, (Wang et al., 2023; yu

Wang et al., 2023). These works have helped marine biologists

analyze underwater imagery far more efficiently.
1.1 Generation of labeled
underwater datasets

The remarkable success of deep learning techniques is primarily

due to the availability of large labeled datasets. A number of public

underwater image databases, such as FathomNet (Katija et al.,

2021), EcoTaxa (Blue-Cloud, 2019), DeepFish (Saleh et al., 2020),

WildFish++ (Zhuang et al., 2021), and BIIGLE 2.0 (Langenkämper

et al., 2017), have come into existence in recent years. These works

provide a platform and tools for annotating, uploading, and

downloading annotated images, and sometimes also training or

testing machine learning models. Generating labeled datasets by

manually going through vast amounts of video and image streams is

a time-consuming task. Several efforts have been initiated toward

machine learning-assisted automation for annotating underwater

datasets. CoralNet 1.0 (Chen et al., 2021) is a data repository that

also deploys a feature extractor network pre-trained on a large

collection of data to generate annotations of coral reefs

automatically. (Zurowietz et al., 2018) propose a multi-stage

method where an auto encoder network generates training

proposals that are filtered by human observers and used to train a

segmentation network, the results of which are further

reviewed manually.

However, these annotation approaches require human experts

with marine biology knowledge, which makes it difficult to

generalize and scale to huge volumes of data. In fact, there are a

large number of underwater image datasets available with no

efficient means to label them. One such example is shown in

Figure 1. The absence of well-labeled data is still a primary factor
Frontiers in Marine Science 02293
limiting the widespread use of machine learning techniques for

marine science research.

One simple solution is to utilize crowdsourcing platforms

involving non-expert human users, such as Mechanical Turk

(Crowston, 2012) and Zooniverse (Simpson et al., 2014)

Crowdsourcing platforms are fairly inexpensive and highly

efficient for the rapid generation of annotated datasets. But the

results for specialized imagery, such as that associated with marine

biology, are often mixed and unreliable. Our own experience has

shown that some workers annotate images with randomly placed

labels, which requires a prohibitive amount of time and effort spent

approving or rejecting these results.
1.2 Performance enhancement on
crowdsourcing platforms

Many human-machine collaboration methods have been

proposed to improve the efficiency of human in-the-loop

annotation. Branson et al. (2010) presents an interactive, hybrid

human-computer method for image classification. Deng et al.

(2014) focuses on multi-label annotation, which finds the

correlation between objects in the real world to reduce the human

computation time required for checking their existence in the

image. Russakovsky et al. (2015) asks human annotators to

answer a series of questions to check and update the predicted

bounding boxes, while Wah et al. (2011) queries the user with

binary questions to locate the part of the object. Vijayanarasimhan

and Grauman (2008) incrementally updates the classifier

by requesting multi-level annotations, ranging from full

segmentation to a present/absent flag on the image. Kaufmann

et al. (2011) and Litman et al. (2015) adapt different models from

motivation theory and have studied the effect of extrinsic and

intrinsic motivation on worker performance.

Some recent research has shown that when non-experts are

trained and clearly instructed on the annotation protocol, they can

produce accurate results (Cox et al., 2012; Matabos et al., 2017;

Langenkämper et al., 2019), thus demonstrating the potential for

combining citizen science with machine learning. Kaveti and Akbar

(2020) designed an enhanced MTurk interface and added a guided

practice test to achieve higher annotation accuracy. Bhattacharjee and

Agrawal (2021) simplified complex tasks on MTurk by combining

batches, dummy variables, and worker qualifications. Our work is

most similar to LSUN (Yu et al., 2015), in that they hid ground truth

labels in the task to verify worker performance and allowed multiple

workers to label the same image for quality control.

Thus, we propose a human-in-the-loop annotation

methodology that can label very large datasets automatically by

combining machine learning with Mechanical Turk crowdsourcing.

We utilize a unique iterative process with auto-approval that allows

us to check the quality of the workers algorithmically, precisely,

efficiently, and without any human intervention. We can also use

the same techniques for converting historical expert annotations, as

shown in Figure 2A, to quickly create labeled data sets for machine

learning that are critically required for fisheries and ecosystem-

based management applications.
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In contrast to LSUN (Yu et al., 2015), we only label once per

object during the iterative labeling process if the category is not

controversial. We define our task as working with individual objects

in an image, as opposed to considering all the objects in an entire

image. Additionally, we remove qualification tests and add tutorials

to lower the barriers for workers to enter our tasks. In this way, we

can provide the simplest form of the task to Mechanical

Turk workers.
Frontiers in Marine Science 03294
2 The iterative labeling process

The overview of our method for the iterated labeling process for

underwater images is illustrated in Figure 3. The process begins by

building an initial deep learning model for making bounding box

predictions on a small subset of underwater images. These

predictions are then published to a crowdsourcing platform with

a well-designed assistive interface for validation. An auto-approval
FIGURE 1

Underwater image samples from one of the datasets with no annotations. There are very large marine life related image datasets that are freely
available but are not annotated. These would require significant efforts from experts in the field to label.
BA

FIGURE 2

NOAA annotation ground truth (A) Underwater images annotated by NOAA marine biologists, with dot annotations on each object. (B) Extended dot
annotations to bounding box labels with MTurk workers.
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method filters out bad labels from the crowdsourcing platform. The

filtered labels are added to the dataset and used for further training

to generate new predictions. Therefore, we start with a small set of

annotations and increase the number of annotations with each loop

until all objects in all images have been labeled. Figure 4 shows an

example of the predict-update loop for a single image.
2.1 The initial model

We start with a small seed dataset labeled by marine biologists.

This serves as our initial dataset, which we use to train our deep

learning object detection model. The seed dataset should consist of

different forms of the object that we are about to label. In our case,

this data is not large enough to completely train a high accuracy

model, but it is sufficient to make reasonable predictions to feed into

the first iteration of our process.

As the iterative labeling process does not have real-time

constraints, we chose Faster R-CNN (Ren et al., 2015) as the

object detection network in combination with ResNet-50 (He

et al., 2015) as the backbone network. Feature Pyramid Networks

(Lin et al., 2016) were applied for multi-scale object detection. We

built the network based on Detectron2 (Wu et al., 2019). We trained

the object detection network on 2 RTX 2080 GPUs with a batch size

of 2 for 60 epochs. Since the batch size is very small, group

normalization (Wu and He, 2018) was used instead of batch

normalization. Typically, we use less than 100 images for the

initial dataset, and the initial data only takes a few hours to label.

After training the initial model, we utilize it to predict the learned

object categories on new unlabeled image data. However, as there is

no ground truth available for this data, we cannot be certain if these

predictions are true positives. To address this issue, we enlist workers

from Mechanical Turk to classify and correct the predictions.
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2.2 Assistive annotation interface design

In this section, we describe the design and development of the

user interface on MTurk used to facilitate the human-in-the-loop

learning process. One of the key aspects of the interface is

presenting the user with a convenient way to determine the

accuracy of the deep learning model’s predictions, and to

annotate them if they are correct. These correct object detections

are then used as ground truth labels to continue training the deep

learning model. The fundamental idea is that through a series of

predict (using our algorithm), correct and update (with Mechanical

Turk workers), and train (using our algorithm) loops, we will end

up with a superior model.

The most common interface design for labeling object instances

in images on MTurk requires workers to detect all objects in the

image and draw bounding boxes for each object before moving on

to the next image. This process can be cumbersome when there are

a lot ( > 30) of instances per image to label and is especially

challenging when the dataset consists of unique, specialized

categories of objects. This can also affect the worker’s motivation

to perform the task (Kaveti and Akbar, 2020). We have made a few

novel design choices to construct our MTurk annotation interface,

as described below. Figure 5 shows a snapshot of our assistive

annotation interface.

2.2.1 Tutorial/examples of annotations
One of the challenges of underwater datasets is that they contain

unique and uncommon objects. Moreover, the workers on MTurk

come from diverse backgrounds with variability in experience and

expertise. To address this issue, we have dedicated a small portion of

the interface to showcase a set of labeling examples for the various

marine species encountered in the dataset. This helps to familiarize

workers with the dataset and improve the quality of their labeling.
FIGURE 3

The complete iterative labeling process: We begin by training the initial dataset with Faster R-CNN (Ren et al., 2015) in order to obtain an initial
model. Next, we use this initial model to predict objects in a new image set, and publish the prediction boxes to MTurk for correction. Auto-approval
filters the labeling results. Then, we update the labels and train on half-labeled images to obtain a new model and prediction set for the next loop.
Finally, we converge to a completely labeled dataset in 3-6 iterations.
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2.2.2 Labeling cues
Instead of asking workers to find all possible instances of

categories in a raw image, we provide several labeling cues to

make it easy for them. We show the predictions made by the

deep learning model as a dashed bounding box. The workers are

then asked to adjust it to tightly fit the object and choose the species

from a dropdown menu. These features help correct localization

and classification losses during supervision. Sometimes, the

background in images can be mistakenly predicted as a species.

To address this issue, we added a “None of the above” option to the

species dropdown menu, which corresponds to the background.

2.2.3 UI controls
The images in our underwater dataset can contain 40-50

instances of relevant objects per image. Sometimes, these instances

can be really small and occluded by other objects due to overlap, as

shown in Figure 4. Therefore, we choose to zoom in and display each

bounding box prediction individually, rather than showing all of the

boxes at the same time. This allows workers to focus on a single object

at a time, which is beneficial for labeling tiny objects and also

improves user performance when adjusting the bounding boxes.
2.3 The auto-approval process

The biggest drawback of the MTurk platform is with respect to

the quality control of workers. Although MTurk allows one to select
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workers based on certain criteria or through a test, requesters often

end up spending a lot of time and resources reviewing annotation

results. This negates the purpose of wanting to create a fully

automated human-in-the-loop annotation process. Therefore, we

have developed an auto-approval mechanism to assess how well

workers are performing and to accept or reject annotations without

any intervention.

The auto-approval is accomplished by randomly hiding ground

truth tests in the labeling tasks. Each MTurk task consists of nine

labeling tasks and one ground truth test task. The ground truth

labels are obtained from a manual labeling, which comes from the

initial and validation datasets. We compare the worker’s labeled

bounding box to the ground truth bounding box, and compute the

intersection over union (IOU) of the two bounding boxes. We

accept the worker’s annotations only if the IoU score is higher than

the threshold of 0.75. LSUN (Yu et al., 2015) proposes a similar

method, using hidden ground truth data to validate the MTurk

labeling results. However, they use the entire image as a labeling

task, while we use every single object.

2.3.1 Double checking identifications
The incorrect classification of objects can lead to incorrect

training. Therefore, even if a sub-task has passed the hidden

ground truth test, we still need to double-check the class that is

chosen. If the selected class is different from the predicted class, we

add the sub-task to the republish list. Meanwhile, we change the

class of the predicted box to the one selected by the current worker.
B C

D E F

A

FIGURE 4

An example of the iterative labeling process. The orange dashed boxes represent the predictions of each loop. These prediction boxes are published
to MTurk for correction. The updated labels, based on the MTurk results, are then used for the next iteration (A) Loop 1 predict, (B) Loop 2 predict,
(C) Loop 3 predict, (D) Loop 1 update, (E) Loop 2 update, (F) Loop 3 update.
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This means that the class of the object is determined only if two

consecutive workers choose the same category. Otherwise, the

prediction box would be repeatedly republished under this

mechanism. If an object is actually a background, it would be

republished at least twice to fully determine that it is

the background.

To get a sense of the efficiency and cost of the process, we

examined one representative batch of tasks that was given to MTurk

workers. In this batch, there were 4,583 tasks. Each task required 9

labels and 1 ground truth test, and cost three cents, which works out

to a cent for three labels. On average, each task took 3 minutes and 5

seconds to complete, and our tasks are easy to complete. For the

entire batch, it took about 6 hours to finish all the tasks. Out of the

4,583 tasks in this particular batch, 3,413 tasks were auto-approved

as passed, while 1,170 were rejected.
2.4 Training on half-labeled images

In the first iteration, where the prediction is based on the initial

model, not all object instances in the images will be discovered, and

the accuracy of the predictions cannot be guaranteed. This is

because the initial model is trained only on a small seed dataset,

which is insufficient to fully train the model. These predictions are

sent to MTurk for correction. The new bounding boxes are then

used to supervise the training of our deep learning model, which in

turn makes new and more accurate predictions. However, since the

object labels of the images are incomplete, some issues arise in the

training process. Therefore, we make modifications to the training
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phase, including feeding appropriate training data and loss

functions to suit our iterative labeling process. The detailed

changes to the loss function can be found in 2.4.4.

2.4.1 Modifications to Faster R-CNN to avoid
negative mining of potential objects

During the training of an object detection model, if an object is

not labeled in the images, it will be implicitly treated as a

background class. This is especially true for algorithms such as

SSD (Liu et al., 2015) and Faster R-CNN (Ren et al., 2015), which

use negative hard sampling to train the background class. In SSD,

the top N highest confidence predictions that do not match any

ground truth are selected and trained as negative samples.

Meanwhile, Faster R-CNN randomly selects a certain percentage

of prediction boxes without matching ground truths as negative

samples. However, this can cause serious issues with our training

because if half of the objects in the image are not labeled, it will

prevent the trained model from converging.

The solution to this issue is to identify unlabeled potential

objects and avoid training them as negative samples. When the

prediction confidence score of an anchor exceeds a specific

threshold and there are no ground truth objects that match that

prediction, it implies that the model thinks there may be a potential

object at that spot. Therefore, this object should be ignored in the

training process to be discovered later, as shown in Figure 6. In the

Region Proposal Network (RPN) of Faster R-CNN, we mark all the

prior anchors whose confidence score exceeds 0.5 without a ground

truth label as “ignored”. We exclude them from being selected as

negative samples for loss calculations and also prevent them from
FIGURE 5

The Assistive Interface is designed to help MTurk workers by providing them with a tool to focus on a specific object. By simply identifying the
species and fitting the bounding box, the labels’ reliability is significantly improved. The ground truth is hidden at the last task to implement auto-
approval.
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being selected to enter the next stage of the process, which is the

region of interest (ROI) layer.

2.4.2 Training background labels
In the previous section, we described how to avoid training

potential true positive predictions as a background class. In this

section, we discuss how to correctly train the false positive

(background) class. During the iterative labeling process, some

predictions are false positives and are corrected as “background”

by the MTurk workers. These background labels can be used in the

training process.

In the Region Proposal Network (RPN), instead of randomly

selecting negative samples, the boxes that are updated as the

“background” class from the MTurk auto-approval process

should be trained. When the number of negative samples is

significant, the probability of being trained as a potential object is

very low. This is valuable because it increases the precision of our

object detection model and avoids ignoring potential objects. We do

not calculate the localization loss of background labels as they are

negative samples, and their use ends with the RPN. Training

background labels properly can reduce false positives, in other

words, increasing the precision of the model.
2.4.3 Data augmentation
We also perform data augmentation to generate more training

samples. All the images are put through the following

transformations: a flip of the image horizontally and vertically,

adjustments to brightness by scaling the intensity randomly
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between 0.8 and1.2, and a random scaling factor corresponding to

0.8 to 1.0 of the image size.
2.4.4 Loss function
Taking into account the above mentioned changes to the

training phase, the loss function can be divided into

four components:
•The classification loss, oiLcls(pi, p
*
i ), where the predicted

labels have object class ground truths associated with

them. ground truth bounding boxes are obtained from

MTurk after auto-approval. N : RPN mini-batch size

•The classification lossojLcls(pj, p
*
j ), where a background class

ground truth box is associated with the predicted label. This

ground truth is also obtained from MTurk after the auto-

approved label is selected as back-ground.

•The classification lossokLcls(pk, p
*
k )�, where the predicted box

does not have any ground truth box associated with it but

the prediction score with respect to an object class is less

than 0.5. In this case we consider this as a negative sample.

•The regression loss l 1
NoiLreg(ti, t

*
i ) which is computed for

the predicted labels which have object class ground truth

boxes associated with them.
Putting all the components together the loss function can be

written as

L( pif g, pj
� �

, pkf g, tif g) = 1
N ½o

i
Lcls(pi, p*i )+

o
j
Lcls(pj, p*j )+

o
k

Lcls(pk, p*k )�+

l 1
No

i
Lreg (ti, t*i )

The classification loss is:

Lcls = −½p* · log(p) + (1 − p*) · log(1 − p)�
The localization loss is:

Lreg =
0:5│ t − t* │2

, if   t − t*j j < 1

t − t*j j − 0:5, otherwise

(

where i is the index of an anchor in a mini-batch, whose ground

truth is an object. j is the index of an anchor, whose ground truth is

a labeled background. k is the index of an anchor, which has no

ground truth and pk is lower than the ignore threshold. pi,j,k is the

predicted probability of being an object. p*i,j,k is the ground truth

probability where 1 indicates that it is foreground. 0 means

background. Here p*i = 1, p*j,k = 0. ti is a vector representing the 4

parameterized coordinates of the prediction bounding box. t*i is the

ground truth box associated with a positive anchor. l is the

balancing parameter of object and localization loss.
FIGURE 6

Ignoring potential objects: The dashed bounding boxes represent
potential objects with a significant classification score that have not
yet been verified and labeled. These unlabeled objects may be
wrongly classified as negative samples during training iterations,
leading to an incorrect model. To avoid this, we detect potential
objects using a classification score threshold and exclude them from
the training process.
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3 Results and discussions

3.1 Labeling a ground truth dataset

We have a large dataset with dot annotations provided by

NOAA marine biologists (Figure 2A). These annotations were

made before the advent of machine learning techniques and are

unsuitable for machine learning applications due to the absence of

bounding boxes around the objects. However, this dataset is ideal

for setting up, testing, and validating our efforts. We could then

transfer to other datasets with completely unlabeled data, as we

discuss in the next section.

We publish these dot labels to MTurk workers using our

assistive interface (see Figure 5). The workers can extend the dot

annotations to create tight and accurate bounding boxes with the

help of the instructions. An example of the extended bounding

boxes is shown in Figure 2B. We consider them as ground truth

labels to validate the iterative labeling process.

We divided our dataset into two parts, using 51 images as the

initial dataset and 632 images as our validation dataset (Table 1).

We then applied our iterative labeling process to the remaining

9822 images.

Table 1 shows the iterative labeling results. We ran six iterations

to annotate the dataset. The initial dataset is very small (534 labels, 51

images), and the trained model is relatively poor (0.6 mAP). In the

first loop, most of the rockfish were labeled, as these are easy for the

deep learning model to identify. As the images were half-labeled, we

chose to ignore the threshold of 0.5 to prevent training the model on

rockfish with prediction scores over 0.5. As the loops iterated, the

mAP and recall rate increased, enabling the trained model to detect

more rockfish. In the final loop, the mAP and recall rate stopped

growing, indicating that the model was unable to detect any more

rockfish. We used this as a stopping mechanism for our iterations.

There are a reasonable number of rockfish that are very hard to

detect. Typically, these are small and have low contrast (see
Frontiers in Marine Science 08299
Figure 7A). To help our algorithm cope with these issues, we crop

the large-size image (2448 x 2050) into nine sub-images, each

measuring 896 x 896. During prediction, we crop the image in

the same way to maintain scale consistency. We also adjust the

contrast of the images to perform data augmentation. In the end,

about 82% of the rockfish are labeled correctly with very few

false positives.

Along with rockfish labels, we also generate background labels

to identify false positives. These false positives typically include

starfish or invertebrates that resemble fish (see Figure 7B).

We should also point out that the NOAA dataset has been

annotated to a greater level of taxonomic resolution, including

coral, flatfish, groundfish, etc. The classification of the data to such

levels uses very detailed markings and is an interesting and open

problem beyond the scope of this work.
3.2 Labeling a dataset with sponges

Our second illustrative dataset, the Pacstorm dataset, contains

three categories of marine organisms: fish, starfish, and sponge. In

this case, we used 98 images as the initial dataset and 302 as our

validation data. We ran the iterative labeling process on the

remaining 3,568 images to generate labels (see Table 2).

In this dataset, fish and starfish are easy to identify and label, but

sponges are far more challenging. The reasons for this are manifold.

The sponges have many different forms (as shown in Figure 8A).

Some sponges have a hole on top, while others do not. Some

sponges look like white rocks, and others look like white dots.

Sponges also have different colors; while most of them are white,

some are brown, and dead sponges are black. The trickiest problem

is that the sponges can group together (as shown in Figure 8B),

making it hard to decide whether to annotate all of them with one

label or annotate them separately. Some sponges are covered in

mud, with only a small part of them exposed (as shown in
TABLE 1 NOAA dataset with ground truth validation.

Initial dataset

Rockfish Images mAP/50 recall precision

534 51 0.601 0.648 0.758

Iterative labeling process

Loop Rockfish Coverage mAP/50 recall precision

1 54906 0.638 0.680 0.703 0.906

2 60508 0.703 0.724 0.752 0.868

3 65084 0.756 0.778 0.803 0.864

4 67299 0.782 0.792 0.817 0.877

5 68829 0.800 0.824 0.854 0.824

6 70609 0.821 0.828 0.858 0.808
In total, we have 91,228 rockfish dot annotations spread over 10,505 images. These annotations were created by NOAAmarine biologists. We used 534 labels (51 images) as the initial dataset, and
4654 labels (632 images) as the validation dataset. We used the remaining 86,041 labels (9,822 images) to validate the iterative labeling process. NOAA originally provided dot annotations instead
of box annotations. We used the same assistive interface to generate ground truth bounding boxes. The mean average precision calculated at an IOU threshold of 0.50 (mAP/50) is a common
metric used to evaluate the performance of an object detection model, and we evaluated our work in a similar manner.
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Figure 8C). The variety of cases not only confuses the deep learning

model but also the MTurk workers. When annotating the initial and

validation dataset, these problems make it difficult to maintain

consistency in labeling patterns for sponges.

To overcome the problem of different shapes and colors, we

presented a large number of sponge examples alongside the assistive

annotation interface for worker training. By grouping the sponges

together, we can avoid predicting small sponges within a large

labeled sponge group.

In the final count, we labeled 12,660 sponges, 3,588 fish, and

2,241 starfish in 3,568 images (Table 2). The recall rate roughly

shows the coverage of the iterative labeling process. In this case,

about 90% of the fish and sponges were detected and labeled, and
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over 83% of the sponges were well-labeled. Additionally, we trained

an efficient model with an mAP of about 0.86, corresponding to

these labels.
4 Conclusion

In this paper, we present a method for rapidly labeling large

underwater datasets. We demonstrate that this method is robust,

effective, and efficient for annotating a large number of images

containing difficult classes. We began with a small initial dataset and

utilized an iterative labeling process that gradually generates
TABLE 2 The Pacstorm dataset which consists of fish, starfish and sponges.

Initial dataset

Count Recall Precision mAP/50

Fish Starfish Sponge Fish Starfish Sponge Fish Starfish Sponge All

169 84 247 0.804 0.914 0.583 0.816 0.814 0.772 0.743

Iterative labeling process

Loop Count Recall Precision mAP/50

Fish Starfish Sponge Fish Starfish Sponge Fish Starfish Sponge All

1 3306 2233 9225 0.864 0.957 0.696 0.907 0.981 0.801 0.822

2 3586 2238 10758 0.872 0.943 0.834 0.894 0.985 0.754 0.861

3 3788 2241 12660 0.881 0.938 0.828 0.909 0.975 0.727 0.860
fro
To measure the recall and precision of trained model, we manually annotated a validation dataset of 302 images, with 611 fish, 210 starfish, and 1262 sponges.
B

A

FIGURE 7

(A) Examples of rockfish that our algorithm missed (false negatives). Usually, these specimens are very small and have low contrast. (B) Examples of
background labels (false positives) for rockfish. Usually, the false positives are either parts of starfish or other invertebrates. Training background
labels properly can increase the precision of the model.
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bounding box annotations. Our method results in a dataset with

high coverage of rockfish, starfish, and sponge annotations after

only a few iterations.

We first obtained the NOAA dataset, which only had dot

annotations. We utilized MTurk workers to extend the dots to

bounding boxes with the help of an assistive labeling interface.

Then, we used these annotations as ground truth to validate our

approach. We applied the iterative labeling process to 9,822 images

and labeled 82% of the rockfish.

Next, we applied the same process to the empty Pacstorm

dataset that we wanted to label, which included the challenging

sponge class. After three iterations, we were able to label 90% of the

fish and starfish and 83% of the sponges.

Both datasets are freely available for other researchers to use via

our website. A direct link to the website is available in the Data
Frontiers in Marine Science 10301
Availability Statement below. We hope that this data, as well as the

algorithm, can serve as a benchmark for validating various machine

learning methodologies for marine biology related applications.
Author's note

Author AP was employed under contract at NOAA by Lynker

Technologies at the time of researching this study.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession
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FIGURE 8

(A)Examples of different forms of sponges. Some sponges have a hole on top, while others do not. Some sponges look like white rocks, and others
look like white dots. Sponges also come in different colors. While most of them are white, some are brown, and dead sponges are black. We
presented these examples to the MTurk workers to help them identify the sponges. (B) Sometimes sponges are grouped together, which make it
very hard to label them individually. (C) Some sponges are covered in mud, with only small part of them exposed. This make us hard to determine
the labeling standard.
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number(s) can be found below: https://fieldroboticslab.ece.

northeastern.edu/resources/.
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Underwater images play a crucial role in various fields, including oceanographic

engineering, marine exploitation, and marine environmental protection. However,

the quality of underwater images is often severely degraded due to the complexities

of the underwater environment and equipment limitations. This degradation hinders

advancements in relevant research. Consequently, underwater image restoration

has gained significant attention as a research area.With the growing interest in deep-

sea exploration, deep-sea image restoration has emerged as a new focus, presenting

unique challenges. This paper aims to conduct a systematic review of underwater

image restoration technology, bridging the gap between shallow-sea and deep-sea

image restoration fields through experimental analysis. This paper first categorizes

shallow-sea image restoration methods into three types: physical model-based

methods, prior-based methods, and deep learning-based methods that integrate

physical models. The core concepts and characteristics of representative methods

are analyzed. The research status and primary challenges in deep-sea image

restoration are then summarized, including color cast and blur caused by

underwater environmental characteristics, as well as insufficient and uneven

lighting caused by artificial light sources. Potential solutions are explored, such as

applying general shallow-sea restoration methods to address color cast and blur,

and leveraging techniques from related fields like exposure image correction and

low-light image enhancement to tackle lighting issues. Comprehensive experiments

are conducted to examine the feasibility of shallow-sea image restoration methods

and related image enhancement techniques for deep-sea image restoration. The

experimental results provide valuable insights into existing methods for addressing

the challenges of deep-sea image restoration. An in-depth discussion is presented,

suggesting several future development directions in deep-sea image restoration.

Threemain points emerged from the research findings: i) Existing shallow-sea image

restoration methods are insufficient to address the degradation issues in deep-sea

environments, such as low-light and uneven illumination. ii) Combining imaging

physical models with deep learning to restore deep-sea image quality may

potentially yield desirable results. iii) The application potential of unsupervised and

zero-shot learning methods in deep-sea image restoration warrants further

investigation, given their ability to work with limited training data.

KEYWORDS

shallow-sea image restoration, deep-sea image restoration, image formation, physical
model, prior, deep learning
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1 Background

The ocean contains many unknown organisms and vast energy

sources, which play an important role in sustaining life on earth.

The exploitation of marine resources, the development of the

marine economy, and the strengthening of the marine industry

have become integral components of countries’ strategic planning

and progress. Underwater image processing is essential for ocean

exploration; however, the complexity of the marine environment

often leads to severely degraded image quality. The differing rates of

light attenuation at various wavelengths in the ocean cause images

to predominantly appear blue–green. In addition, microorganisms

and suspended particles in the water absorb most of the light energy

and deflect its direction, resulting in low-contrast and blurred

images. These factors significantly impact the efficacy of many

underwater vision systems. Image restoration is a technique that

involves reversing the imaging process used to produce low-quality

images. Underwater image restoration technology aims to enhance

image visibility, eliminate color casts, and stretch contrast to

effectively improve the visual quality of input images, thereby

increasing the efficiency of underwater operations. Furthermore,

the restored images highlight scenes and objects, thus serving as a

preprocessing step in underwater image research. This can facilitate

advanced tasks, such as target detection, recognition, and

classification, and ultimately improve the observation and

processing of underwater information.

In contrast to images taken on land, images taken by

underwater imaging systems often suffer from low contrast, loss

of detail, color distortion, low light or non-uniform illumination,
Frontiers in Marine Science 02305
and reduced visual ranges as a result of the influence of complex

underwater imaging environments and lighting environments. The

degradation of underwater images has caused great inconvenience

to practical applications and further research. The principle of

underwater optical imaging can be seen in Figure 1. The

attenuation of light under water is primarily caused by absorption

and scattering effects, leading to degraded image quality such as

reduced contrast and blurriness. In addition, different wavelengths

of light have varying rates of attenuation when traveling

underwater, which results in color distortion in the images. In

clear water, red light is the first to disappear, at a depth of 5 meters,

followed by orange light at 10 meters. Blue light, with the shortest

visible wavelength, can travel the farthest in water, which causes

underwater images to have an undesirable blue–green hue. The

presence of small particles, plankton, and dissolved organic matter

in the water frequently causes significant noise issues in underwater

imaging and exacerbates the impact of backscattering.

The deep sea, broadly defined as the depth of the ocean where

natural light does not penetrate (NOAA, 2022), is characterized by

extreme conditions such as low temperatures, darkness, and high

pressure, making exploration difficult (Paulus, 2021). Remote-

operated vehicles (ROVs) equipped with underwater optical

photography technology become an indispensable means of deep-

sea exploration. However, images captured in the depths of the dark

ocean using artificial light sources are subject to a combination of

light attenuation, scattering interference, and uneven illumination,

resulting in images with strong halo effects that are less clear than

those taken in shallower waters. Therefore, improving the quality of

deep-sea images and extracting more useful information from them
FIGURE 1

Schematic diagram of underwater optical imaging.
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is vital to promote deep-sea exploration and to discover new deep-

sea phenomena.

In the research transition from shallow-sea to deep-sea image

restoration methods, the core issue is the composition of the light

source in the underwater imaging process. Although natural

light alone or in combination with artificial light can serve as the

light source in shallow-sea imaging, artificial light sources are

essential in deep-sea imaging because of the absence of natural

light. Artificial light sources have different characteristics from

natural light and can result in non-uniform lighting, creating

bright spots in the middle of the light source and dark spots

around the edges of deep-sea images. Furthermore, inherent

image degradation problems arise because of the absorption and

scattering of light source propagation in artificial light sources.

Numerous studies have been developed to improve the quality

of underwater images (Ancuti et al., 2018; Anwar and Li, 2020;

Wang et al., 2022). A majority focused on designing direct image

enhancement techniques or networks without taking the principles

of underwater imaging into account. Others concentrated on

developing underwater image restoration techniques that reverse

the underwater imaging process to recover the original image. This

study focuses on underwater image restoration rather than

enhancement for two reasons. First, non-physical model-based

underwater image enhancement methods can enhance the visual

quality of images to some degree but do not consider the unique

optical characteristics of underwater imaging, resulting in color

distortions, artifacts, and increased noise. Second, the effectiveness

of deep learning-based underwater image enhancement techniques

depends heavily on the quality of the training data used. However,

obtaining suitable datasets, particularly for deep-sea environments,

remains a significant challenge owing to their scarcity. Although

various reviews of underwater image enhancement (Wang et al.,

2019b; Anwar and Li, 2020; Fayaz et al., 2021) exist, there is still a

lack of systematic overview to bridge the gap between shallow-sea

studies and deep-sea studies.

After a systematic review, this research paper summarizes the

challenges and advanced solutions for shallow-sea image restoration to

provide a reliable reference for researchers in the related fields. The

study then shifts its focus to deep-sea image restoration, summarizing

the difficulties faced in this field, examining the connections and

differences between shallow-sea and deep-sea image restoration

research, exploring fields, such as exposure and low-light image

enhancement, and summarizing feasible methods for deep-sea image

recovery. The contributions of this study are as follows.
Fron
(1) This study categorizes recent methods for restoring

shallow-sea images into three groups, physical model-

based methods, prior-based methods, and deep learning-

based methods, which integrate physical models. It offers an

in-depth analysis of the fundamental concepts and essential

features of these techniques, and provide a comprehensive

overview of their classification.

(2) This study provides an overview of the latest research

advancements, challenges, and promising research

directions in deep-sea image restoration. Considering two

causes of the degradation of deep-sea images, the deep-sea
tiers in Marine Science 03306
environment and artificial light sources, this study reviews

the related research for potential solutions to these

problems. Techniques for shallow-sea image restoration

provide valuable insights for addressing degradation

issues arising from underwater environments, such as

color cast and blur. The degradation problem caused by

artificial light sources has been approached with solutions

such as layer decomposition and the integration of deep

learning and physical models.

(3) Experiments have been carried out extensively to assess the

effectiveness of shallow-sea image restoration, low-light

image enhancement, and exposure correction techniques

in handling deep-sea images. The findings reveal that,

although shallow-sea images have improved in color

correction to some extent, the issue of image light sources

has become more pronounced, and some prior techniques

have not been effective in deep-sea environments. On the

other hand, low-light image enhancement and exposure

correction can improve uniform illumination and increase

brightness; however, they also come with drawbacks such as

worsening color cast. Using the results of the analysis, this

study discusses the key scientific challenges that need to be

addressed in the field of underwater image restoration,

from shallow-sea to deep-sea image restoration, and

provides insight into potential future research directions.
2 Shallow-sea image
restoration methods

In general, restoration techniques model the degradation and

apply an inverse process to recover the original image. Therefore,

research on underwater image restoration focuses initially on the

development of a physical model that conforms to the principle of

underwater image formation. Although a more comprehensive

imaging model can be obtained by taking into account various

factors that influence the imaging process, a simpler model can

often be applied to a wider range of scenarios. Underwater image

restoration is based on prior knowledge from degradation

principles or statistical data.

In this section, underwater image restorationmethods are classified

into three categories. The first category focuses on building a physical

model that is aligned with the principle of underwater image

formation. The second category utilizes prior knowledge from

degradation principles or statistical data to make more accurate

estimates of unknowns in the imaging model. The third category is a

combination of an underwater imaging physical model and a deep

learning approach for underwater image restoration.
2.1 Physical model-based shallow-sea
image restoration methods

Currently, the image formation models (IFMs) employed in the

field of underwater image restoration are one of four types: the
frontiersin.org
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atmospheric light scattering (Koschmieder) model (Koschmieder,

1924), the simplified underwater formation model, the revised

underwater formation model, of which the Akkaynak–Treibitz

model (Akkaynak et al., 2017) is the most widely used, and the

Retinex model.
     

   
2.1.1 Koschmieder model
The Koschmieder model is an imaging model that accurately

explains the principle of image degradation caused by

atmospheric conditions through physical analysis (Koschmieder,

1924). As a result, it has been applied to various fields such as

underwater image restoration, restoration of foggy images, and

low-light image enhancement. The Koschmieder model can be

described as:

I(x)   =   J(x)t(x)   +  A 1   −   t(x)ð Þ :  (1)

t(x)   =   exp −bd(x)ð Þ :   (2)

In the Koschmieder model, I and J represent the degraded and

undegraded underwater images captured by the camera,

respectively, A denotes the background light, and t denotes

the transmittance.

Lu et al. (2015) developed a simplified underwater imaging

model that takes into account the combined effects of both natural

and artificial light sources. They used an energy attenuation model

to describe the lighting, and the model can be formulated as

follows:

Ec
W(x)   =   Ec

L(x)   +   E
c
A(x), c ∈ R,G,Bf g :   (3)

The Ec
W (x), Ec

L(x), and Ec
A(x) illuminances represent the total

illuminance, natural light source, and artificial light source,

respectively. By incorporating the Koschmieder model, a new

imaging model formula has been derived:

Ic(x)   =   (Ec
A(x)   ·  Nrer(c)

D(x)   +   Ec
L(x)   ·  Nrer(c)

d(x)) ·   rc(x)
� �

         

 �   tc(x)   +   1  −   tc(x)ð ÞAc, c ∈ R,G,Bf g :                                            
(4)

The Koschmieder model is a useful tool for accurately

describing the physical degradation of images and has been

widely applied in various fields, including low-light image

enhancement, image dehazing, and underwater image restoration.

However, the model has some limitations. Specifically, it considers

only the effects of absorption and scattering on the imaging process,

while ignoring other factors that can lead to significant image

degradation, such as the absorption of different wavelengths of

light by water.
2.1.2 Simplified underwater image
formation model

Many physical model-based methods in underwater image

restoration rely on simplified models and their derivatives. In

accordance with the principle of underwater imaging, light is

affected by absorption and scattering in water, resulting in the

degradation of underwater images such as blue-green cast and blur.
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The formation of an underwater image is often considered a linear

combination of direct transmission Ed , backscattering Eb, and

forward scattering components   Ef , as described below:

Et   =   Ed   +   Eb   +   Ef :  (5)

In underwater image restoration research, the direct

transmission component and backscattering component are

typically considered the key parts, whereas the forward scattering

component is usually difficult to obtain and has a relatively minor

impact on the formation of underwater images, and, thus, is often

neglected. A simplified underwater image formation model (IFM)

(Narasimhan and Nayar, 2000; Fattal, 2008; Narasimhan and

Nayar, 2008) is used to mathematically simulate the underwater

degradation process, which can be expressed as:

Ic(x)   =   Jc(x)tc(x)   +  Ac 1  −   tc(x)ð Þ, c∈ R,G,Bf g, (6)

where I represents the underwater degraded image, J represents

the undegraded image captured by the camera, A represents the

background light, c represents the red, green, and blue (RGB) color

channel, and t represents the transmittance according to the light

attenuation law, which can be further expressed as the attenuation

index (Zhao et al., 2015):

tc(x)   =   exp −bcd(x)ð Þ, (7)

where d represents the water depth and b is the attenuation

coefficient. The mathematical expression of the IFM is very similar

to that of the Koschmieder model. Even so, we still consider the IFM

an independent part for two reasons: (1) the Koschmieder model is

an “accurate” description of the imaging process in the atmosphere,

whereas the IFM is a “simulation” of the underwater imaging

process under the analysis of the underwater environment and

certain assumptions; and (2) research based on the Koschmieder

model is often used to develop a new physical model of underwater

imaging, whereas research based on the IFM is used to estimate the

transmission map and background light more accurately under

specific prior conditions in order to obtain a restored image with

enhanced quality.

Not all underwater scenes can be effectively modeled using the

simplified underwater IFM. To address the issue of water types and

artificial light source interference in underwater images, Chiang and

Chen (2012) considered the difference between the attenuation of

different light wavelength and adjusted the normalized residual

energy ratio Nrer based on that of Ocean Type I (extremely clear

waters) as follows:

Nrer(l)   =  

0:8 – 0:85    if l   =   650 – 750  mm   (R),

0:93 – 0:97 if l   =   490 – 550  mm   (G),

0:95 – 0:99 if l   =   400 – 490  mm ðB),

8>><
>>:

(8)

where l is the wavelength. In underwater scenes, there is a

relationship between the transmittance and the normalized residual

energy ratio:

tc(x)   =   Nrer(c), c ∈ R,G,Bf g : (9)
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Then, the underwater imaging model considering the artificial

light source, blur, and wavelength attenuation can be expressed as:

Ic(x) = (EA
c (x) · Nrer(c)

D(x) + EL
C · Nrer(c)d(x)) · rc(x)

� �

· Nrer(c)d(x) + (1 − Nrer(c)d(x)) :Ac, c

∈ R,G,Bf g (10)

Simplified underwater IFMs are widely used in shallow-sea

image restoration research and have achieved satisfactory results.

However, they have significant limitations in deep-sea image

restoration research. The simplified underwater IFM attributes

the degradation of underwater images to three factors: the

absorption and scattering characteristics of water, the distance

between the target and the camera, and the geometric angle

between the light source, the camera, and the target. It is an

approximate model derived by reverse-deriving the degradation

process through computer simulation of the underwater imaging

process, neglecting the forward scattering component. In the deep-

sea environment, the forward scattering component is a crucial

factor that cannot be ignored, and the composition of the imaging

light source differs significantly from that in the shallow-sea

environment. Therefore, computer simulations based on

shallow-sea imaging environments cannot accurately describe

the degradation of images in deep-ocean environments.

Moreover, the simplified models used in the field of underwater

image restoration are based on the assumption that the light sources

is parallel natural light, such as sunlight. Although a few models

consider the presence of artificial light sources during the imaging

process, they are often considered auxiliary light sources with

negligible effects on imaging. However, in the deep-sea

environment, without natural light, an artificial light source with

a bright center and dark surroundings becomes the only light source

for imaging, resulting in an inaccurate description of the

degradation process of deep-sea images by underwater imaging

models. Furthermore, the deep-sea environment is different from

the shallow-sea environment, and the absorption and scattering of

light in deep-sea environments differ from those in general shallow-

water environments. Therefore, simplified underwater imaging

models are not suitable for deep-sea image enhancement

and restoration.
2.1.3 Akkaynak–Treibitz model
The Akkaynak–Treibitz model is proposed as an alternative to

the IFM model currently used in underwater image restoration.

Akkaynak et al. (2017) conducted in situ experiments in the Red

Sea and the Mediterranean Sea, and found that attenuation

coefficients of light depend on the imaging range and object

reflectivity. The study also quantified the error arising from

neglecting such dependencies. Building on these findings,

Akkaynak and Treibitz (2018) proposed a revised underwater

physical imaging model, as expressed in Equation 11. In the

revised model, the attenuation coefficients of the direct

transmission component and the backscattering component are
Frontiers in Marine Science 05308
different, and the relationship between the distance between the

camera and the target and the direct transmission component is

mainly investigated:

Ic(x)   =   Jc(x)e−b
D
c (vD)z   +  Ac(1  −   e−b

B
c (vB)z), c ∈ R,G,Bf g, (11)

where vD and vBare both vectors and vD  = fz, r, E, Sc, b 0g and

vB   =  fE, Sc, b, b 0g , z represents the distance between the camera

and the target, r represents the reflectivity, E is the irradiance, Sc is

the camera response function, b 0  is the light scattering coefficient,

and b is the physical scattering attenuation coefficient of the

water body.

Subsequently, Akkaynak and Treibitz identified a functional

dependence between the direct transmission attenuation coefficient

bD
c and the camera–target distance z , as described in Equation 12.

They proposed the “sea-thru” underwater image restoration

method (Akkaynak and Treibitz, 2019) based on this relationship,

along with a practical approach for estimating the parameters of the

corrected model:

bD
c (z)   =   a  �   exp (b  �   z)   +   c  �   exp (d  �   z), (12)

where a and c are coefficients related to the type of water body

and their values can be calculated based on the relevant data

measured on site, and d is the depth of the water.

The Akkaynak–Treibitz model can be regarded as an

enhancement of the simplified underwater IFM through

optimization. This entails introducing non-uniform attenuation

coefficients for the direct transmission component and

backscattering transmission component and establishing distinct

correlations between the two-component attenuation coefficient

and the camera–target distances. Although the Akkaynak–Treibitz

model has been further confirmed by many scholars in the field of

shallow-sea image restoration and has led to the development of

effective shallow-sea image restoration methods, it is still an

approximate model simulating the imaging process of shallow-

sea degradation.

2.1.4 Retinex model
The Retinex theory (Land and McCann, 1971; Land, 1977) is an

effective method for addressing complex lighting issues in images. It

can balance dynamic range compression, edge enhancement, and

color preservation in image processing. Many researchers have

applied it to the fields of underwater image enhancement and

restoration. The implementation of Retinex requires certain

assumptions, such as that the color of objects as seen by the

human eye is the result of the object’s reflection of light under

different conditions, and that all colors in nature are composed of

fixed wavelengths of the three primary colors, red, green, and blue.

Meanwhile, the color of objects in the real world depends solely on

the object’s reflection properties and is not affected by the non-

uniformity of lighting, resulting in color constancy.

Based on the Retinex theory, the Retinex model (Land and

McCann, 1971; Land, 1977) is represented by the following

equation:

S(x)   =   L(x)   ·  R(x), (13)
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where L(x) represents the illumination component, background

information, or global information, R(x) represents the reflectance

component or the attributes of the photographed object, S(x)

represents the observed image, xrepresents the pixel, and the

symbol “ · } denotes pixel multiplication.

The Retinex model has achieved good results in the fields of

underwater image enhancement and low-light image enhancement.

Kimmel et al. (2003) first proposed an optimized algorithm for the

Retinex model based on a variational framework, which has

inspired the development of methods based on a variational

framework to address the problem of underwater image

degradation. Zhuang et al. (2021) proposed a Bayesian

optimization algorithm for a single-frame underwater imaging

model based on multiorder gradient priors for reflectance and

illuminance enhancement, without the need for additional prior

knowledge of underwater imaging. Later, Zhuang et al. (2022),

proposed a modified variational model with different reflectance

and illumination priors that are independent of prior knowledge of

underwater imaging.

Based on the Retinex theory, Zhang and Peng (2018) proposed

to use the global background light color as the light source color to

restore the underwater image color, and proposed an imaging

model that considered both the underwater imaging degradation

principle and the light source characteristics, as follows:

Ic(x)   =   LcMc(x)tc(x)   +   Lc 1  −   tc(x)ð Þ, c ∈ R,G,Bf g, (14)

where L is the light source color andM is the surface reflectance.

The Retinex model differs significantly from the three physical

imaging models mentioned earlier. Most shallow-sea image

restoration methods that utilize the Retinex model achieve

accurate estimation of both the illumination and reflection

components through different mathematical derivations. Such

methods have the advantage of being faster, but often require

additional prior knowledge of underwater imaging and thus are

subject to the limitations of prior knowledge. Therefore, the Retinex

shallow-sea image restoration method without additional

prior knowledge cannot guarantee good results in deep-sea

image restoration.

To sum up, the physical imaging model applied in shallow-sea

image restoration lacks generalizability in deep-sea image

restoration. Therefore, it is necessary and feasible to construct

deep-sea imaging physics based on the environmental

characteristics of the deep sea and the light source characteristics

of deep-sea imaging combined with deep-sea-collected images.
2.2 Prior-based shallow-sea image
restoration methods

Based on prior knowledge, the unknown quantities in the

physical model, transmission map and background light, are

estimated more accurately.

He et al. (2011) introduced the dark channel prior (DCP)

method for dehazing natural land images by leveraging the fog

imaging model. They creatively solved the problem of dehazing

natural land images by estimating background light and
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transmission maps. The DCP method is based on a statistical

prior known as the dark channel, which is derived from the

observation that, in most outdoor haze-free images, pixels in non-

sky regions have at least one color channel with very low luminance

values. The dark channel is defined as follows:

Jdark(x) = m in
c∈ r,g,bf g

m in
y∈W(�)

(Jc(y))

� �
: (15)

Based on this statistical prior, the estimation of ambient light

was suggested by selecting the brightest points in the top 0.1% of the

dark channel of the observed image, and the transmission map

could be calculated using the following formula:

~t(x)   =   1   −  wm in
c

m in
y∈W(x)

(
Ic(y)
Ac )

� �
, (16)

where the variable w(0   <  w   ≤   1) is used to make the

restored image more realistic. A value of 0.95 is typically

employed for w .
Although the DCPmethod is not effective when applied directly

to underwater images, it has inspired many other underwater image

restoration methods (Hautière et al., 2008; Carlevaris-Bianco et al.,

2010). The underwater dark channel prior (UDCP) method

accounts for the fact that water absorbs different wavelengths of

light differently, with the transmission distance of red light being

shorter. Drews et al. (2016) found that, although the DCP method

fails in the red channel of underwater images, the blue and green

channels are still suitable for the DCP method. Consequently, they

applied the DCP method to the blue-green channel of a degraded

underwater image, resulting in significant improvement in the

restored image. Galdran et al. (2015) have proposed the red

channel prior (RCP) method, as shown in Equation 17, which

restores the color of shortwave-related underwater images based on

the red wavelength with the fastest attenuation. These methods can

be considered variants of the DCP method:

JRED(x)   =  min m in
y∈W(x)

(1  −   JR(y)), m in
y∈W(x)

(JG(y)), m in
y∈W(x)

(JB(y))

� �
:

(17)

As the RCP method is effective in restoring artificially

illuminated areas of underwater images, Zhou et al. (2021a)

combined the RCP method with a quadratic guidance filter to

refine the transmission map in underwater image restoration.

Chiang and Chen (2012) corrected the color of underwater

images by compensating for the attenuation of different colors of

light along the propagation path and used the DCP method to

achieve defogging. Peng et al. (2018) proposed the generalized dark

channel prior (GDCP) method, which estimates ambient light

through depth-dependent color changes, and calculates the scene

transmission through the difference between the observed value and

the estimated value. This method applies to a wide range of

scenarios. Li et al. (2016b) proposed a new underwater dark

channel prior model that combines the grayscale world

assumption to achieve blue-green channel dehazing and red

channel color correction, and used an adaptive exposure map to

adjust the color of the image. Gao et al. (2016) proposed the bright
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channel prior (BCP) method, which is suitable for underwater

images and can restore underwater images by estimating

background light and transmission map through the bright

channel, drawing on prior knowledge of the dark channel.

In contrast to the DCP method, the maximum intensity prior

(MIP) method (Carlevaris-Bianco et al., 2010) uses the attenuation

difference between the three color channels of an underwater

image to estimate the depth of the scene and restore the image.

The MIP method involves comparing the maximum intensity of

the red channel with the maximum intensity of the green and blue

channels on a small image patch. It then calculates the difference

between the maximum intensity of the red channel and the

maximum intensity of the green and blue channels using the

following formula:

D(x) = max
x∈W ,c∈R

Ic(x) − max
x∈W ,c∈ B,Gf g

Ic(x) : (18)

Here, the transmission at the point x is estimated by the

following formula:

~t(x) = D(x) + 1 −max
x

D(x)

� �
: (19)

Wang et al. (2017) proposed the maximum attenuation

identification (MAI) method, which is based on a simple prior

knowledge of underwater imaging: that the intensity of light decays

as an exponential function of distance. They rewrote the simplified

underwater imaging model as follows:

I(x)   =   J(x)x(x)   +  A 1   −   x(x)ð Þ, (20)

and, further, estimated the attenuation x as:

x ! 1  −  
1  −  maxy∈W(x) IR(y)ð Þ

1  −  AR(x) : (21)

Peng et al. (2015) observed that in underwater images the scenes

that are farther away from the camera appear more blurred. Based

on this observation, they proposed a blur prior (BP) to estimate the

distance between the scene point and the camera in order to obtain

the depth map of the underwater image and then restore the

degraded image. This method is effective under different lighting

conditions. Peng and Cosman (2017) later proposed a new method

called image blurriness and light absorption (IBLA), which takes

into account the absorption characteristics of underwater light and

further optimizes the estimation of the depth map and background

light. They proposed a new hypothesis that scene points that retain

more red light in the red channel map are closer to the camera,

which is used to estimate the depth map edR, as expressed in the

following formula:

edR   =   1  −   Fs(R), (22)

where Fs is a stretching function:

Fs(V)   =   V  −   min (V)
max (V)  −   min (V) , (23)

where V is a vector, which can represent the red channel R, the

MIP, and the BP. The final depth map of IBLA is obtained by

combining the three estimated depth maps.
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The principle of the minimum information loss prior (MILP)

states that the underwater imaging model can be mapped from the

transmission map to the undegraded image; however, the input

value range is ½0 – 255� and its effective mapping range is ½a – b�. Li
et al. (2016a) proposed an effective underwater image dehazing

algorithm that combines the MILP to restore the visibility, color,

and natural appearance of underwater images. They also proposed a

simple but effective contrast ratio enhancement algorithm based on

the histogram prior, which improves the contrast and brightness of

underwater images.

Song et al. (2018) proposed the underwater light attenuation

prior (ULAP) method based on the observation of a large number of

underwater images. The calculation of the depth map using the

ULAP method is as follows:

d(x)   =  m0   +   m1m(x)   +  m2v(x) : (24)

In this formula, m represents the maximum value of the blue-

green channel intensity and v represents the intensity value of the

red channel.

Inspired by the color-line algorithm for land image dehazing

(Fattal, 2014), Berman et al. (2016) found that by clustering the

pixels of haze-free color images using k-means, each color

cluster in the RGB space was distributed along a straight line,

which they called the haze line. They used this discovery to

achieve image depth map estimation and haze-free image

restoration. Later, Menaker et al. (2017) introduced the haze

line into the field of underwater image restoration and restored

the image by combining the blue-to-green and blue-to-red

channel attenuation ratio and the extracted parameters in the

existing water-type library. They also chose the best-restored

image based on the grayscale world assumption. Berman et al.

(2020) further optimized the method by automatically selecting

the best-restored image based on the color distribution of the

underwater image. Bekerman et al. (2020) proposed a robust

underwater image restoration algorithm that estimates

attenuation from image color distribution and estimates veiling

l ight from scene objects based on the underwater

optical characteristics.

Zhou et al. (2021b) proposed an underwater background light

estimation model based on flatness, hue, and brightness feature

priors, which adaptively selects the most obvious features according

to the input image to obtain more accurate background light and

transmission map estimation. This method is inspired by the

underwater scene prior.

Underwater image restoration methods that combine multiple

prior advantages also continue to be developed (Zhao et al., 2015; Li

et al., 2016b; Peng and Cosman, 2017). For instance, Zhang and

Peng (2018) used two kinds of priors, MIP and UDCP, and

saliency-guided multi-feature fusion to restore salient areas of

underwater images. Zhou et al. (2021c) also developed a new

method for underwater depth estimation that combines the

advantages of the revised physical model of underwater imaging

with priors and includes image segmentation and smoothing. In

Table 1, a summary of the prior-based shallow-sea image

restoration methods is provided.
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Currently, there are two types of prior knowledge used in the field

of shallow-sea image restoration: objective principles under the

environmental conditions of shallow-sea imaging, and general

statistical phenomena in shallow-sea images. However, the

applicability of these priors in deep-sea conditions needs to be

verified. In addition, the prior knowledge used in shallow-sea image
Frontiers in Marine Science 08311
restoration should be optimized for deep-sea imaging conditions.

Another approach is to extract objective principles and common

phenomena from the specific imaging environment and images of the

deep sea and use these to inform the development of a joint prior

method that combines the advantages of different prior methods to

achieve the most accurate parameter estimation for deep-sea images.
TABLE 1 A summary of prior-based methods for shallow-sea image restoration.

Physical
model Characteristic Year Methods Priori principle

Koschmieder
model

Physically accurate models; the model is simple; and
the model has a wide range of applications

2010

MIP
(Carlevaris-
Bianco et al.,
2010)

The difference in attenuation between the RGB color channels of
an underwater image

2015
RCP (Galdran
et al., 2015)

Red channel correction for underwater based on the DCP

2016

UDCP (Drews
et al., 2016)

Underwater DCP using G-B channels for transmission estimation

BCP (Gao
et al., 2016)

Bright channel prior based on the DCP

2017
MAI (Wang
et al., 2017)

The difference in attenuation between the RGB color channels of
an underwater image

2018
ULAP (Song
et al., 2018)

The difference between blue-green light attenuation and the
attenuation of red light underwater

2020

Berman’s
(Berman et al.,
2020)

Haze line prior

Bekerman’s
(Bekerman
et al., 2020)

Image color distribution

Image
formation
model

Approximate simulation of underwater imaging
process; the model is relatively simple; and it is for
underwater imaging only

2015
BP (Peng
et al., 2015)

Scenes farther from the camera tend to be blurrier

2016

Li’s (Li et al.,
2016b)

Blue-green channels dehazing and red channel correction based on
DCP

Li_HDP (Li
et al., 2016a)

Histogram distribution prior

2017
IBLA (Peng
and Cosman,
2017)

Scenes farther from the camera tend to be blurrier; scene points
that retain more red light in the red channel map are closer to the
camera

2018
GDCP (Peng
et al., 2018)

Generalization of DCP

2020
Hou’s (Hou
et al., 2020b)

Establish an underwater total variation model based on UDCP, in
which UDCP is used to estimate the transmission map

2021

Zhou’s (Zhou
et al., 2021a)

Secondary-guided transmission map optimization based on DCP

Zhou and
Wang’s (Zhou
et al., 2021b)

Based on flatness, hue, and lightness feature priors

Revised
formation
model

Optimization of underwater imaging models; more
parameters involved in the model; and generally
applicable to different underwater scenes

2019

Sea-thru
(Akkaynak
and Treibitz,
2019)

Estimates backscatter using the underwater derivation method of
the DCP method, and uses the spatially varying illuminant to
obtain the range-dependent attenuation coefficients
DCP, Dark Channel Prior; MIP, Maximum Intensity Prior; RCP, Red Channel Prior; UDCP, Underwater Dark Channel Prior; MAI, Maximum Attenuation Identification; ULAP, Underwater
Light Attenuation Prior; BP, Blur Prior; Li_HDP, Li’method based on Histogram Distribution Prior; IBLA, underwater image restoration based on Image Blurriness and Light Absorption; GDCP,
Generalization of the Dark Channel Prior.
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2.3 Deep learning-based shallow
-sea image restoration combined
with physical models

Deep learning has gained popularity in underwater image

restoration and has shown promising results in recent years.

Anwar and Li (2020) have classified deep learning networks into

five categories, namely, encoder–decoder networks, modular design

networks, multibranch designs, depth-guided networks, and dual-

generator generative adversarial networks (GANs), and provided

detailed introductions to these networks. Although most deep

learning networks prioritize directly generating visually appealing

images, a few seek to recover more realistic images by leveraging the

knowledge of the image degradation process, which may overcome

the lack of ground-truth underwater images. Depth-guided

networks, for instance, consider the relationship between depth

and the estimation of transmission ratio and background light in

the underwater imaging model, making it a valuable technique for

shallow-sea image restoration. Eigen et al. (2014) applied neural

networks to depth estimation, and researchers have subsequently

combined depth prediction with the underwater IFM to achieve

significant advancements in underwater image restoration (Hou

et al., 2020a). In addition to these methods, there are other ways to

restore images by integrating physical imaging models with deep

learning networks. This section aims to investigate various

approaches that combine deep learning techniques with physical

imaging models, such as the Koschmieder model, the IFM, and the

Akkaynak–Treibitz model, for the restoration of shallow-

sea images.

2.3.1 Koschmieder model-based approach
Kar et al. (2021) proposed a multidomain image restoration

method based on the Koschmieder model and zero-shot learning.

In this approach, the network is trained using the degraded image

and the degraded image generated by the Koschmieder model, and

then the learned mapping is used to transfer between the

undegraded image and the degraded image to obtain the restored

image. The network estimates the unknown parameters of

background light and transmission map in the Koschmieder

model separately. The projection estimation network is

implemented using multiscale feature extraction and feature

selection of color channels, as illustrated in Figure 2C. When

applied to the field of underwater image restoration, this method

requires compensation for the red channel, which is performed as

follows:

CF(x)   =   (mIG  −  mIR)�IR(x)IG(x) : (25)

IR   =   IR   +  CF : (26)
2.3.2 IFM-based approach
Lu et al. (2018) were among the first to use deep learning

technology to tackle the problem of underwater image depth

estimation, proposing a method based on optical cameras and

deep convolutional neural networks for real-world underwater
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images. Ding et al. (Ding et al., 2017) used a convolutional neural

network to estimate a depth map from a white balance-corrected

image, which was then directly converted into a transmission map.

Cao et al. (2018) proposed two network models, one for estimating

the background light and the other for estimating depth. In the

depth estimation network, two depth networks were overlaid to

preserve both global features and local details, and the rough depth

map was connected to the first layer of the refining network to

preserve more detailed information. Pan et al. (2018) improved the

contrast of underwater images using white balance and DehazeNet

(Cai et al., 2016). They fused the two using a Laplacian pyramid and

applied an edge enhancement algorithm to the fused image.

DehazeNet estimated the transmission map and obtained the

contrast-enhanced image based on the IFM. As shown in

Figure 2A, Yan and Zhou (2020) creatively employed an imaging

model as a constraint for network training, using the underwater

image imaging model as a feedback controller for a GAN network to

ensure that the estimation results were more realistic and consistent

with the real image. In addition, a domain adaptation mechanism

was introduced in the network to eliminate the domain difference

between synthetic and real images.

2.3.3 Akkaynak–Treibitz model-based approach
The Akkaynak–Treibitz model integrates with deep learning

methods in two ways. One is by generating synthetic image data for

deep learning network training; the other is by guiding the deep

learning network to estimate the physical model parameters to

restore underwater images. As shown in Figure 2B, Liu et al. (2021)

estimated the parameters of the revised underwater imaging

physical model through an advanced global–local feature fusion

network and restored the image under the guidance of the

Akkaynak–Treibitz model. Desai et al. (2021) took advantage of

the underwater parameter sensitivity of the Akkaynak–Treibitz

model to propose reliable estimation methods for the relevant

parameters. They used the reference image and its depth map as

input to synthesize the underwater dataset and then used the

synthetic dataset to train a conditional GAN network for

underwater image restoration. Han et al. (2022) synthesized the

reference images in the real underwater Heron Island coral reef

dataset (HICRD) based on the new attenuation coefficient and

background light estimation method. They proposed a network that

uses a conditional GAN network and contrastive learning to

improve the mutual information between the original image and

the restored image. Lu et al. (2021) used an encoder network to

extract features for the background light, backscattered

transmission map, and direct transmission map based on the

revised underwater IFM. Three independent decoder networks

estimated these three components simultaneously. A scene

attention module was designed in the network to refine the

results. Finally, the estimated value was brought into the IFM to

obtain the underwater restored image.

In the field of shallow-sea image restoration, combining

physical models and deep learning methods has shown great

potential and achieved remarkable results. Therefore, it is

reasonable to explore the effectiveness of this approach in deep-

sea image restoration as well. However, the shortage of deep-sea
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image data and the absence of reliable reference images have posed

a challenge for traditional deep learning methods. Combining

physical models with deep learning can reduce reliance on

reference data to some extent. On the one hand, using a proper

physical model to simulate the degradation process of deep-sea

images we can construct deep-sea image datasets based on a large

number of land images. On the other hand, physical models can

serve as a constraint for the deep learning network to enable fast

training with limited data. Alternatively, physical models can be

integrated with deep-sea images to transform the image restoration

process into a parameter estimation or linear solution problem,

which can be solved more easily. Furthermore, exploring
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unsupervised deep learning methods, such as zero-shot learning

in the field of deep-sea image restoration, is also promising. These

methods could potentially improve the quality of deep-sea image

restoration without relying on large numbers of labeled data.
3 Deep-sea image
restoration methods

The exploration from shallow-sea to deep-sea environments

presents significant challenges for imaging and observation owing

to the absence of light in deeper waters. Artificial light sources must
A

B

C

FIGURE 2

Shallow-sea image restoration methods based on the fusion of deep learning and physical models. (A) The deep learning network is based on the
image formation model (IFM) (Yan and Zhou, 2020). (B) The deep learning network is based on the Akkaynak–Treibitz model (Liu et al., 2021).
(C) The deep learning network is based on the Koschmieder model (Kar et al., 2021).
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be used for imaging but result in image degradation such as low

light and non-uniform illumination. Current research on

illumination problems in underwater imaging is limited. Figure 3

demonstrates a transition from shallow-sea to deep-sea image

restoration, highlighting other relevant approaches to exposure

and low-light enhancement to address the problems caused by

artificial light sources.

In this research paper, the current methods for deep-sea image

restoration are divided into two categories. The first category

includes general methods that can be utilized to tackle specific

problems in deep-sea images and the second category consists of

methods designed specifically for deep-sea images.
3.1 General image restoration models
applied to deep-sea images

A general image restoration method can be applied to the field

of deep-sea image restoration by taking into account the light

source problem during the imaging process or by generalizing the

method used to solve degradation problems in shallow-sea images.

This can help to mitigate the degradation caused by light source

issues in deep-sea images to some extent.

The specific degradation issue in deep-sea images, as

distinguished from that in shallow-sea images, lies in the use of

artificial light sources. Therefore, studies that target lighting effects,

such as vignetting, halo, and uneven illumination and exposure, can

achieve good results in deep-sea image restoration. The general

image restoration methods that have strong generalization

capabilities can be used to address specific degradation issues

present in deep-sea images by considering the light source

problem in the imaging process. Researchers, such as Wen et al.

(2013), have achieved good results in restoring deep-sea images

using the underwater optical imaging model and the underwater

dark channel estimation method. Lu et al. (2016) proposed a

solution to the halo problem caused by artificial light sources,

rather than the more general problems of deep sea image

restoration such as color correction and brightness distribution,

or outside the shallow-water image restoration process, to address

degradation caused by light sources. Lu et al. (2015) considered a

scenario where both ambient light and artificial light sources exist in

enhancing shallow-water images and proposed an ambient light

estimation algorithm based on color lines, a local adaptive filtering
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algorithm to enhance images, and correction of color bias based on

spectral features, followed by illumination compensation for dark

regions of the image to achieve global contrast enhancement of

underwater images. Li’s method (Li et al., 2020) took into account

the improper installation of underwater light sources, lighting

unevenness caused by environmental factors, and local

overexposure, and proposed an adaptive filter correction to

lighting and combined image segmentation and an image

enhancement exponential metric to improve the adaptiveness of

filter parameters.

In shallow-sea image restoration, the imaging models and prior

knowledge used remain valid even when lighting conditions change.

Such methods often have advantages in deep-sea image restoration.

Wavelength compensation and image dehazing (WCID) proposed

by Chiang and Chen (2012) determines the influence of artificial

light sources on the imaging process by comparing the separated

foreground and background intensity and compensates for the

difference in light attenuation caused by artificial light sources.

Color restoration is then done based on the residual energy ratio of

different color channels and the scene depth combined with the

corresponding attenuation. Li et al. (2018b) proposed a layer-wise

transmission fusion method and a color-line background light

estimation method to improve the illumination problem of

single-input images by removing scattering. Deng’s method

(Deng et al., 2019) considered attenuation under different lighting

conditions based on a new scene depth estimation. The background

light is estimated based on the grayscale opening and scene depth

estimation to avoid pixels in white objects and artificial lighting

areas being mistakenly estimated as background light, and the

defogged image can be obtained based on the estimated

background light and transmission map. Although DCP and MIP

are often ineffective owing to underwater illumination conditions,

the IBLA method (Peng and Cosman, 2017) estimates the scene

depth based on image blurriness and light absorption, which is

more suitable for different lighting conditions. The GDCP method

(Peng et al., 2018) estimates the background light based on the color

change-dependent scene depth estimation and estimates the scene

transmission from the difference between the observed intensity

and the estimated intensity, which is suitable for image restoration

under various special environment lighting and turbid media

conditions. The RCP method (Galdran et al., 2015) focuses on the

problem of light spots in images caused by artificial light sources

rather than the low-illumination problem of deep-sea images.
FIGURE 3

Relevant research directions to deep-sea image restoration.
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However, despite their ability to generalize, the methods that are

primarily designed for shallow-sea image restoration may not fully take

into account the unique differences and lighting conditions present in

deep-sea environments. Although these methods can still be applied to

deep-sea image restoration, they may require further optimization to

fully address the specific challenges of this environment.
3.2 Specially-designed models for deep-
sea image restoration

Considering deep-sea image restoration based on the knowledge

of shallow-sea imaging is a solid starting point, but the methods

developed for shallow-sea image restorationmay not fully address the

unique and complex challenges of deep-sea imaging. Therefore, it is

important to research new image restoration methods specifically

tailored for deep-sea environments. For example, Wen et al. (2013)

proposed a new underwater imaging model and transmittance

estimation method for extreme underwater environments such as

deep-sea and turbid waters. This model draws inspiration from the

fog image imaging model (Narasimhan and Nayar, 2000;

Narasimhan and Nayar, 2003; Fattal, 2008; Tan, 2008), but takes

into account the additional effects of underwater absorption and

scattering on imaging. The new imaging model is described as:

Ic(x)   =   Jc(x)   ·   tcb (x)   +  A
c   ·   ta (x); c ∈ R,G,Bf g, (27)

where tcb represents the proportion of scene radiation that

reaches the camera directly, and ta represents the sum of the

effects of underwater absorption and scattering.

Liu et al. (2019) addressed the issue of regional color shift caused by

the use of colored or uneven artificial light sources in deep-sea imaging

by focusing on the illumination characteristics of deep-sea images and

incorporating them into a simplified underwater imaging model. They

proposed a frequency-domain-based hue estimation method to correct

global color shift and combined it with scattering correction to improve

pixel-level color shift and contrast. Subsequently, Liu et al. (2022)

utilized the underwater simplified IFM and illumination parameters to

simulate imaging principles under different lighting conditions and

synthesized the first underwater uneven illumination dataset. They

then used this dataset to train a proposedmultiresolution image feature

reconstruction convolutional neural network for deep-sea

image enhancement.

The field of deep-sea image restoration is of great research value

and significance as it allows for the full utilization of information in

deep-sea images, which is beneficial for further deep-sea

exploration tasks. However, in comparison to shallow-sea image

restoration, research in this field is lacking. The complex deep-sea

imaging environment and the unique characteristics of deep-sea

images urgently require further study.
3.3 Analysis of deep-sea image
restoration problems

Degradation problems in deep-sea image restoration can be

divided into two categories: one is the color shift, low contrast, and
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blur caused by underwater characteristics; the other is low light,

non-uniform illumination, and noise caused by artificial light

sources. The restoration of underwater images has been analyzed

in detail in Section 2. To address the degradation problem caused by

artificial light-assisted imaging, Cao et al. (2020) proposed

NUICNet, a fully connected network suitable for deep-sea images

with an illumination correction loss. NUICNet views the

underwater uneven illumination image as the product of the

additive combination of the ideal image and the illumination

layer and solves the problem with two modules: feature fusion

and illumination layer separation. The feature extraction module

combines the input image with parameters trained on the

benchmark dataset (ImageNet; Deng et al., 2009) as hypercolumn

features; the illumination layer separation module outputs the ideal

image and illumination layer through an end-to-end network using

the hypercolumn features as input.

Nevertheless, many deep learning-based image enhancement

methods are supervised, requiring a large number of paired training

data that consist of high-quality ground-truth images with diverse

content. Currently, there is a dearth of deep-sea image data and no

established deep-sea benchmark dataset with reference images. The

problem of degradation induced by artificial light sources in deep-

sea images could be tackled by drawing inspiration from research in

related fields, such as exposure image correction and low-light

image enhancement. Shallow-sea image enhancement methods

based on deep learning would also be beneficial for restoring

deep-sea images or serve as a valuable reference, given the success

of these methods in eliminating various degradations of shallow-

sea images.

3.3.1 Exposure image correction
At present, exposure errors remain a primary concern in

camera imaging. These errors can be divided into two categories:

overexposure, where certain areas in the image appear too bright

and washed out, and underexposure, where certain areas appear too

dark. Both types of exposure problems can occur in the same image,

and they are common issues in deep-sea images. Therefore, research

in the field of exposure can be leveraged to inspire the development

of methods for deep-sea image restoration.

Wang et al. (2019a) proposed a network that employs local and

global feature encoders to learn the mapping from underexposed

images to illumination maps in order to achieve well-exposed

images based on the Retinex model. Instead of directly learning

the mapping from underexposure to the corrected image, this

network learns the mapping from the illumination layer to the

corrected image in order to preserve global features, such as color

distribution, average brightness, and scene category, as well as local

features, such as contrast, sharp details, intensity, shadow, and

highlights. The network is constructed with dual modules for local

and global feature extraction and smooths the output illumination

map to obtain a high-precision illumination map. Figure 4A

illustrates the network structure and implementation process of

the method.

To address the issue of uneven exposure in deep-sea images,

several methods have been proposed. Yu et al. (2018) presented a

method that uses image segmentation to determine local exposure
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and apply it to the entire image. The resulting image is a fusion of

images with different exposure levels to achieve a corrected image.

Zhang et al., (2019a) considered both overexposure and

underexposure in images and proposed a dual-illumination

estimation network, which uses guidance to fuse corrected images

with the input image to obtain a well-exposed image. Afifi et al.

(2021) tackled the same problem by breaking down exposure

correction into the two sub-problems of detail enhancement and

color enhancement and proposed a coarse-to-fine deep network,
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which was trained on a constructed paired dataset and successfully

solved the sub-problems.

The study of exposure correction in images, particularly those

with multiple exposures, holds valuable insights for addressing the

degradation caused by artificial light sources in deep-sea images. As

data collection in the field of exposure research is relatively

straightforward, there is an abundance of reliable paired training

datasets. However, the differences between these datasets and those

of the deep-sea environment make it necessary to adapt exposure
A

B

D

C

FIGURE 4

Representative deep learning network models. (A) The deep learning network of Wang’s method (Wang et al., 2019a). (B) The deep learning network
of Zero-DCE (Guo et al., 2020). (C) The deep learning network of EnLightenGAN (Jiang et al., 2021). (D) The deep learning network of Jin’s method
(Jin et al., 2022).
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correction methods to the unique characteristics of the deep sea and

reduce their dependence on training data.

3.3.2 Low-light image enhancement
Research on low-light image enhancement can provide valuable

insights for deep-sea image restoration, as the deep sea is also

considered a low-light environment. In low-light conditions, images

captured by cameras often have issues such as loss of detail, reduced

contrast, poor visibility, and noise.

For low-light image enhancement, Lore et al. (2017) proposed a

method that utilizes stacked sparse denoising autoencoders to learn

latent features in low-light images and to obtain an output image

with minimal noise and optimized contrast. Guo et al. (2017)

proposed a new low-light image restoration method based on the

Retinex model, which initializes an illumination map by selecting

the maximum value in the pixel channel and refining it with the

structure prior, ultimately producing an illumination-corrected

image based on the refined illumination map. Li et al. (2018a)

proposed a four-layer fully convolutional neural network, in which

the first two layers focus on high-light areas, the third layer focuses

on low-light areas, and the last layer is used to reconstruct the

illumination map. The gamma-corrected illumination map and the

original image are combined using the Retinex model to produce a

well-exposed image. Fu et al. (2016) proposed a weighted

variational model for estimating reflection and illumination maps

from input images. This model can suppress noise and estimate

more detailed reflection maps than the traditional Retinex model.

Guo et al. (2020) took into consideration low light and uneven

illumination caused by different illumination conditions and

proposed the zero-deep curve estimation (Zero-DCE) network, as

shown in Figure 4B. This network does not rely on paired data and

transforms image enhancement into a curve estimation problem,

iteratively finding the best-fitting curve pair and adjusting the

original image pixel by pixel to achieve image illumination

correction. A lightweight network of Zero-DCE is named Zero-

DCE++ (Li et al., 2021b).

Jiang et al. (2021) introduced unpaired training into the field of

low-light image enhancement for the first time. The network adopts

a PatchGAN-based global–local double discriminator structure to

solve the problem of overexposure and underexposure

simultaneously. In addition, the network incorporates a self-

attention mechanism known as U-Net (Ronneberger et al., 2015)

to improve the visual effect of brightness correction in regions of

varying illumination. The network details are shown in Figure 4C.

For night image enhancement, Jin et al. (2022) performed layer

decomposition using three independent unsupervised networks.

They used the light effect layer to guide the light suppression

module, reducing the influence of light effects and enhancing the

dark areas. The detailed network structure is shown in Figure 4D.

In addition, Zhang et al., (2019b) proposed a KinD network to

decouple the original image space into illumination components

and reflection components and take images with different exposure

levels as inputs for their proposed model. The illumination

adjustment module in the model can adjust the illumination level

according to specific needs. Later, Zhang et al. (2021) further

optimized the low-light image enhancement effect by introducing
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a multiscale brightness attention module and abandoning the U-

Net network model structure of the reflectance restoration module

in the KinD network, resulting in the KinD++ network.

Research on low-light image enhancement has shown

promising results in brightness correction and noise suppression

through the use of the Retinex layer decomposition method.

However, to apply this method to deep-sea image restoration, it is

necessary to take into account the unique characteristics of the

deep-sea environment and reduce reliance on training data.
3.4 Deep learning-based methods design

Deep learning-based methods are becoming mainstream in

shallow-sea image quality improvement research, but their

reliance on training data needs careful consideration when they

are designed for deep-sea images. The following potential solutions

are considered.

First, some well-trained, supervised deep learning models have

demonstrated good generalization and robustness to effectively

solve challenging underwater image quality enhancement

problems, such as Ucolor (Li et al., 2021a) and U-shape (Peng

et al., 2023). Ucolor is a multicolor space deep network model that

uses the transmission map estimation output by GDCP to guide

network model training, offering advantages that combine

traditional and deep learning methods for richer image feature

extraction. U-shape is based on the transformer network and is

strengthened by a self-attention mechanism and a multicolor space

loss function designed according to the human vision principle.

This kind of supervised model could serve as a fundamental model

for deep-sea image restoration.

Second, semisupervised and unsupervised learning methods are

less dependent on data and are better suited to the current situation

in which reliable reference data cannot be obtained. For instance,

Semi-UIR (Huang et al., 2023), a semisupervised underwater image

restoration method based on the mean teacher approach,

incorporates unpaired data into the model training process and

introduces pseudo-reference images and contrastive regularization

to counteract network overfitting. The unsupervised method UDnet

(Saleh et al., 2022) requires only degraded images, with a reference

image generated by a conditional variational autoencoder with

probabilistic adaptive instance normalization and a multicolor

space stretching module.

Other semi-supervised and unsupervised learning methods

based on GANs or zero-shot learning can help deep-sea image

quality enhancement network design. The combination of imaging

models and GANs, as shown in Figure 2, has produced promising

results in enhancing underwater image quality. However, when

integrating the Retinex model into deep learning methods for low-

illumination image enhancement, several limitations must be

considered. The ideal assumption used in Retinex-based low-light

image enhancement methods, that reflectivity is the final

enhancement result, may still impact the final outcome. In

addition, despite the use of the Retinex theory, deep networks

may still be at risk of overfitting (Li et al., 2021b). Similar

considerations should be taken into account for deep learning-
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based restoration methods that integrate physical models, including

the fusion strategy, the assumptions of the physical model, and the

need to prevent overfitting. Refer to Table 2 for a detailed

examination of some representative network models. It is worth

considering whether or not supervised shallow-sea image

enhancement networks, such as Ucolor and U-shape, known for

their robustness, can achieve ideal results in deep-sea image

enhancement. The impact of deep networks on different levels of

data dependency will also be analyzed in the next section.
4 Experiment analysis

In order to extend the application of underwater image restoration

to the deep sea, this section uses both the shallow-sea image dataset

and the deep-sea underwater image dataset to conduct subjective and

objective evaluations. The results of the experiments will be analyzed

and summarized to highlight the strengths and weaknesses of each

prior-based method in deep-sea image restoration. In addition, visual

examples of some classic and advanced deep-sea image enhancement,

low-light image enhancement, exposure image correction, and

shallow-sea image enhancement methods will be applied to the

OceanDark dataset to further investigate reliable techniques for

deep-sea image restoration.
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4.1 Experiment setup

In order to reflect the advantages and characteristics of eachmethod,

all the experiment methods adopted in this research paper are based on

the open-source code from the original studies and are tested using the

Linux+ NVIDIA RTX 3090 GPU experimental environment.

The experiment datasets used are the real shallow-sea

underwater image enhancement benchmark dataset (UIEB) (Li

et al., 2019) and the deep-sea underwater image dataset

OceanDark (Porto Marques et al., 2019). Detailed information on

the datasets can be found in Table 3. In the comparison experiment,

the underwater image colorfulness measure (UIQM) (Panetta et al.,

2016), underwater color image quality evaluation (UCIQE) (Yang

and Sowmya, 2015), and the blind/reference less image spatial

quality evaluator (BRISQUE) (Mittal et al., 2012) were selected as

three no-reference underwater image quality evaluation indicators

to quantitatively evaluate the enhancement effects of different

methods on deep-sea degraded images.

The experimental methods used in this study include a selection

of prior-based shallow-sea image restoration methods, including

DCP (Kaiming He et al., 2011), MIP (Carlevaris-Bianco et al., 2010),

IBLA (Peng and Cosman, 2017), ULAP (Song et al., 2018), UDCP

(Drews et al., 2016), GDCP (Peng et al., 2018), and (Li et al., 2016a).

The aim is to assess the applicability of these methods in the deep-
TABLE 2 A summary of representative deep learning-based methods incorporated with physical models.

Method Learning
type*

Model-based Layer
decomposition Loss function

Retinex UIFM Others

Wang’s (Wang et al.,
2019a)

S √ Reconstruction loss; smoothness loss; color loss

Zero-DCE (Guo et al.,
2020)

Z
Spatial consistency loss; exposure control loss; color constancy loss;
illumination loss

EnlightenGAN (Jiang
et al., 2021)

U
Global self-feature preserving loss; local self-feature preserving loss;
global generator loss; local generator loss

Jin’s (Jin et al., 2022) U √ √
Initial loss; gradient exclusion loss; color constancy loss;
reconstruction loss

Yan and Zhou’s (Yan
and Zhou, 2020)

S √ Adversarial loss; cycle loss; pixel loss; coral loss

IPMGAN (Liu et al.,
2021)

S √ GAN loss; L1 distance loss; SSIM loss

Kar’s (Kar et al., 2021) Z √
Transmission relation loss; light similarity loss; saturated pixel loss;
gray-world assumption loss; total variation loss
*S, supervised learning; U, unsupervised learning; UIFM, underwater imaging formation model; Z, zero-shot learning.
The "√" indicates the model type and layer decomposition applied by this method.
TABLE 3 Datasets information.

Dataset Year Image
category Characteristics

UIEB 2019
Shallow-
sea images

Real-world underwater dataset, containing 890 images with reference images and 183 images without reference images. The
imaging light sources consist of full natural light, full artificial light source, and a combination of half natural and half artificial
light.

OceanDark 2019
Deep-sea
images

Real-world underwater dataset, 183 deep-sea images without reference images; artificial light source.
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sea environment and analyze their advantages and limitations. In

addition, the experiments were also conducted with a variety of

low-light image enhancement methods, such as low-light image

enhancement (LIME) (Guo et al., 2017), joint enhancement and

denoising (JED) (Ren et al., 2018), LightenNet (Li et al., 2018a),

KinD (Zhang et al., 2019b), Wang’s method (Wang et al., 2019c),

Zero-DCE (Guo et al., 2020), Zero-DCE++ (Li et al., 2021c), the

robust Retinex decomposition network (RRDNet) (Zhu et al.,

2020) and KinD++ (Zhang et al., 2021), nighttime image

enhancement methods, such as Jin’s method (Jin et al., 2022);

and underwater low-light and poor visibility methods, such as

L2uwe (Marques and Branzan Albu, 2020), MLLE (Zhang et al.,

2022), and hyper-laplacian reflectance priors (HLRP) (Zhuang

et al., 2022). A set of deep learning-based methods that have

shown excellent performance in shallow-sea image enhancement

were also employed. They are divided into the supervised methods

Ucolor (Li et al., 2021a) and U-shape (Peng et al., 2023), the

semisupervised method Semi-UIR (Huang et al., 2023), and the

unsupervised methods UDnet (Saleh et al., 2022) and Kar’s

method (Kar et al., 2021). These methods aim to assist the

design of new deep-sea image degradation problems. The

significance of the image enhancement scheme was analyzed,

with advantages and limitations in enhancing deep-sea images

discussed. In total, 25 methods were compared and analyzed to

determine their effectiveness in enhancing deep-sea images by

addressing issues related to underwater light absorption and

scattering, low light caused by artificial light sources, and

uneven illumination.
4.2 Experiment results

4.2.1 Results of prior-based underwater
image restoration

Deep-sea images and shallow-sea images share a common

problem: color shift and blur that are caused by underwater light

absorption and reflection. Thus, a natural consideration is whether

or not we can apply shallow-sea image restoration methods to deep-

sea images to deal with the color shift and blur problem. However,
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there are objective differences between deep and shallow sea

environments. To verify this, experiments were conducted with

prior-based shallow-sea image restoration methods using both

UIEB and OceanDark datasets.

Based on the objective evaluation results in Tables 4, 5, the

shallow-sea image restoration methods showed improvements in

both UIQM (Panetta et al., 2016) and UCIQE (Yang and Sowmya,

2015) metrics for the UIEB and the OceanDark deep-sea dataset

compared with the scores of “raw” images. UIQM is a combination

of colorfulness, sharpness, and contrast, and UCIQE is also a linear

combination of image characteristics such as chroma, saturation,

and contrast. UIQM and UCIQE may assign high ratings to images

with severely degraded naturalness (e.g., the ULAP-enhanced

images score higher). In contrast, BRISQUE based on natural

scene statistics is more suitable to evaluate the quality of

enhanced deep-sea images, and the lower the score, the better.

Comparing the metric values in Table 5 with those in Table 4, it can

be concluded that these shallow-sea image restoration methods

perform worse on OceanDark than on UIEB. This proves that deep-

sea images suffer from more severe degradation than shallow-

sea images.

To analyze the challenges encountered when applying shallow-

sea image restoration methods to deep-sea image restoration, the

visual effects of the different methods are shown in Figure 5. The

DCP method produces deep-sea images with a more severe blue-

green tint than other methods and fails to restore images with white

targets. The deep-sea images restored using the MIP method have

more bright and dark areas. Both IBLA and ULAP can effectively

enhance contrast, but they each introduce false colors and are more

sensitive to degradation caused by artificial light sources, resulting

in over-dark and bright areas with a significant loss of image details.

Although both GDCP and UDCP are based on the underwater

DCP, they produce conflicting results in the restoration of deep-sea

images. UDCP causes an overall decrease in image brightness,

whereas GDCP overexposes deep-sea images. Li’s method, based

on minimum information loss and histogram prior, has achieved

the best visual effect in terms of color correction and texture detail

preservation, but it makes bright areas too bright and introduces

obvious blocky artifacts.
frontiersin.org
TABLE 4 Objective evaluations of classic shallow-sea image restoration methods on UIEB dataset.

Raw DCP MIP IBLA ULAP UDCP GDCP Li’s

BRISQUE 25.36 25.61 27.36 24.78 25.40 24.64 25.06 32.90

UIQM 1.854 3.208 3.053 3.239 3.630 3.623 2.147 4.418

UCIQE 0.5006 0.5279 0.5454 0.5638 0.5767 0.5720 0.6015 0.6742
The best-performing results are indicated in bold font.
TABLE 5 Objective evaluations of classic shallow-sea image restoration methods on OceanDark dataset.

Raw DCP MIP IBLA ULAP UDCP GDCP Li’s

BRISQUE 32.59 31.29 32.32 35.88 31.64 32.59 29.74 28.42

UIQM 1.652 2.077 2.269 1.995 2.462 2.151 1.686 2.587

UCIQE 0.5448 0.5653 0.6291 0.5813 0.6328 0.5626 0.5639 0.5813
The best-performing results are indicated in bold font.
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Following the above analysis, it is clear, both subjectively and

objectively, that the priori-based methods designed for shallow-

sea images have a certain level of effectiveness; however, they cannot

be directly applied to deep-sea image restoration.

4.2.2 Results of the methods for complex
environmental problems

A further problem of deep-sea images is low light and uneven

illumination caused by artificial light sources. As discussed in

Section 3.3, the methods that are purposely designed for image

exposure correction and low-light image enhancement might be

useful in improving the quality of deep-sea images. To verify this

idea, we performed a group of experiments and demonstrated their

results using various deep-sea images.

Considering that there are few methods specifically designed for

deep-sea images, we selected and compared 14 methods that might

be effective in addressing some problems caused by the deep-sea

environment. Listed in Table 6, these methods were originally

developed for various fields, such as underwater images (e.g.,

L2uwe, MLLE, HLRP), low-light images [e.g., LIME, JED,

LightenNet, KinD, KinD++, RRDNet, Wang’s method (Wang

et al., 2019c), Kar’s method (Kar et al., 2021)], night images [e.g.,

Jin’s method (Jin et al., 2022)], and over/underexposed images (e.g.,

Zero-DCE, Zero-DCE++).

The advantages and limitations of these methods for deep-sea

image restoration are analyzed in Table 7 and Figure 6, providing a

reference for research in deep-sea image restoration. It is important

to note that the comparisons of these methods are based on their

effectiveness in deep-sea image restoration and may not reflect their

overall performance in their respective fields of origin.
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With regard to color correction, Figure 6A demonstrates that

the methods specifically designed for underwater image

enhancement, such as MLLE and HLRP, perform better than

those from other fields. Meanwhile, the methods from the low-

light and exposure correction field, such as RRDNet, often lack a

color correction process and may even introduce new color casts

when addressing degradation caused by artificial light sources.

When it comes to illumination correction, low-light image

enhancement methods, such as LIME, Zero-DCE, Zero-DCE++,

KinD, and KinD++, achieve good results, but have limitations in

preserving details, correcting color cast, and reducing artifacts in

deep-sea images. This highlights the need for further research that

incorporates deep-sea characteristics to find solutions.

In terms of handling sudden changes in pixel values, such as the

red beam in Figure 7B, methods such as HLRP and L2uwe are more

effective. However, HLRP leads to overexposure in the center of the

light source instead of darkening the light source area, and L2uwe

results in a contrast that is too high in the processed deep-sea image.

As shown in Figures 6C, D, in extreme examples of deep-sea images

neither low-light enhancement nor underwater image enhancement

methods have achieved satisfactory results. The severe lack of

illumination and the overexposure of foreground targets in deep-

sea images requires further research.

According to the objective evaluation results shown in Table 7,

underwater image enhancement methods show increases in both

UIQM and UCIQE, whereas the low-light image enhancement and

nighttime image enhancement methods have led to decreases in

these twometrics. This is because UIQM and UCIQE place a greater

weight on color measurement, which is not required for low-light

image enhancement and nighttime image enhancement as they do
A B D E F GC

FIGURE 5

(A–G) represent column numbers. The visual effect of different prior-based methods on the OceanDark dataset.
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not aim to correct color deviation caused by underwater light

absorption. When compared with “raw” images, most image

enhancement methods across various fields did not show

significant improvements on the BRISQUE index. This indicates
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that, no matter the method of shallow-sea image restoration—low-

light image enhancement, night image enhancement, or exposure

image correction—they all have limitations in deep-sea image

enhancement. On the BRISQUE index, however, the MLLE
TABLE 7 Objective evaluations of image enhancement methods in various fields on the OceanDark dataset.

BRISQUE UIQM UCIQE

Raw 32.59 1.652 0.5448

L2uwe 31.36 3.390 0.5661

MLLE 25.77 3.166 0.5733

HLRP 41.24 1.967 0.5837

LIME 24.36 1.395 0.5265

Wang’s 30.80 1.051 0.5295

JED 35.50 0.790 0.5092

LightenNet 28.40 1.187 0.5191

RRDNet 29.06 1.532 0.5517

Zero-DCE 34.40 1.182 0.4624

Zero-DCE++ 32.34 2.663 0.4816

KinD 32.68 1.428 0.4968

KinD++ 33.31 1.283 0.5001

Jin’s 54.70 1.216 0.5342

Kar’s 34.19 4.399 0.6259

Ucolor 25.82 4.059 0.5231

U-shape 6.988 3.749 0.5407

UDnet 30.98 3.523 0.5348

Semi-UIR 20.86 4.050 0.5879
front
The best-performing results are indicated in bold font.
TABLE 6 The methods for complex environmental problems.

Method Year Application scenes Imaging model Deep learning based

LIME 2017 Low light Retinex

JED 2018 Low light Retinex decomposition

LightenNet 2018 Low light Retinex √

KinD 2019 low light Retinex decomposition √

Wang’s 2019 Low light Absorption light scattering model

Zero-DCE 2020 Low light, exposure \ √

RRDNet 2020 Low light Retinex decomposition √

L2 uwe 2022 Underwater low light \

KinD++ 2021 Low light Retinex decomposition √

Kar’s 2021 Low light, underwater, haze Koschmieder √

ZeroDCE++ 2021 Low light, exposure \ √

MLLE 2022 Underwater low visibility \

HLRP 2022 Underwater low visibility Retinex variational correction

Jin’s 2022 Night image Retinex layer decomposition √
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method for underwater improvement showed promising results.

This is because the technique produces an improved image that is

more realistic in terms of both color and content.

4.2.3 Results of deep learning-based underwater
image enhancement

In this section, we aim to explore the potential effectiveness of

the robust shallow-sea image enhancement method in addressing

the degradation of deep-sea images and the influence of various

data dependencies on deep learning image enhancement. The

OceanDark dataset is used to experiment with supervised deep

learning methods, including Ucolor and U-shape methods, the

semisupervised learning method Semi-UIR, and the unsupervised

deep learning method UDnet and Kar’s method. The objective

evaluation results with UIQM, UCIQE, and BRISQUE are listed

in Table 7.

The visual results, as illustrated in Figure 6, indicate that deep

learning-based shallow-sea image enhancement methods, with the

exception of Kar’s method, exhibit superior visual outcomes in

deep-sea image color correction and the retention of underwater

environmental details. Notably, the supervised model Ucolor

demonstrates distinct advantages in color correction, also

evidenced by its UIQM score in Table 7. Furthermore, the U-

shape method produces remarkably robust results using the

BRISQUE indicator. Compared with the unsupervised methods,

the supervised deep learning approach for enhancing shallow-sea

images has produced more competitive visual results, but problems

remain with low light and uneven illumination created by artificial

light sources, and lower lighting may decrease color correction
Frontiers in Marine Science 19322
accuracy. Kar’s method performed well using the UIQM and

UICQE indicators. This is because the technique accounts for

how underwater images degrade, producing a restored image with

more details preserved.

In terms of implementation efficiency, it is important to note

that the running time of the various deep learning methods is not

always long. As shown in Table 8, methods such as KinD, Zero-

DCE, Zero-DCE++, and Jin’s method have relatively shorter

running times, making them more suitable for real-time

applications. Shallow-sea image restoration methods that utilize

deep learning techniques. These methods do not provide a

processing time advantage due to the inherent complexity

involved in transforming from image to image. However, KinD

and KinD++ address the complexity of the image problem by

dividing it into two simpler sub-problems. Similarly, Zero-DCE

and Zero-DCE++ tackle the problem by estimating curves from

the image. As a result, these methods effectively reduce the

time cost.
5 Conclusion

This study provides an overview of the current state of research

on underwater image restoration, focusing on research gaps

between shallow-sea image restoration and deep-sea image

restoration. It identifies the causes of degradation in underwater

images, classifies and examines existing restoration methods, and

evaluates their strengths and weaknesses. By comparing the results

of classic shallow-sea image restoration techniques applied to both
Input

DCP

MIP

IBLA

ULAP

UDCP

GDCP

Li’s

A B D E F GC

FIGURE 6

(A–G) represent column numbers. The visual effect of different deep learning-based methods on the OceanDark dataset.
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TABLE 8 Runtime of deep learning-based methods.

Method KinD Zero-DCE RRDNet KinD++ Zero-DCE++ Jin’s Kar’s* Ucolor U-shape UDnet Semi-UIR

Elapsed time/ms 6.36 1.09 85.64 37.90 4.17 4.86 163299.01 34779.23 419.7 704.04 238.22
F
rontiers in Marine
 Science
 20323
 fr
*The run time of Kar’s method is based on 1000 iterations in order to ensure the quality of image restoration.
A

B

D

C

FIGURE 7

(A–D) different degradation types in the deep-sea environment. Comparison results of experiments in the OceanDark dataset.
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shallow-sea and deep-sea datasets, and the results of the latest

methods for underwater image enhancement, exposure correction,

and low-light enhancement using the deep-sea dataset, this study

concludes that existing methods in the related fields are insufficient

to address the deep-sea image degradation problem. Following an

analysis of the similarities and differences between shallow-sea and

deep-sea image degradation and the experimental results, we

suggest the following research directions to guide future research

on underwater image restoration.
Fron
(1) Combining an underwater formation physical model with

deep learning techniques has great potential in the domain

of deep-sea image restoration. The combination aims to

retain two advantages: producing more realistic and

naturally restored images and improving the robustness

and adaptability of the methods. However, two major

challenges must be addressed. (i) The physical model for

the deep-sea environment is not well studied. In particular,

the existing underwater imaging model cannot accurately

express the deep-sea lighting conditions, resulting in a

significant reduction of visual areas; and (ii) different

underwater scenarios and types of degraded images

require high adaptability of the models to meet the

demands of practical applications.

(2) Given the current scarcity of deep-sea image datasets,

future research in deep-sea image restoration should

explore the potential application of unsupervised learning

and zero-shot learning. However, the relationship between

these learning strategies and deep-sea image restoration is

not well understood, and further research is needed to

evaluate the effectiveness of unsupervised learning and

zero-shot learning in deep-sea image restoration.

(3) To be applicable in real-world environments, methods for

deep-sea image restoration should be optimized for real-

time performance. However, most existing methods for

underwater image restoration require significant

processing time. Inspired by the application fields and

requirements of low-light image enhancement, improving

the real-time performance of deep learning-based

underwater image restoration methods can simplify

complex image processing procedures, such as estimating

curve parameters (Guo et al., 2020) or splitting into

multiple sub-problems that are easier to handle (Zhang

et al., 2019b).

(4) The establishment of an underwater image quality

evaluation system is important. There is a lack of publicly

available datasets that can support training deep learning-

based deep-sea image restoration methods, and the

evaluation systems are not optimal. This hinders the

progression of research in this field and the selection of

appropriate methods for practical applications.

(5) Aside from what has been mentioned in this research

paper, there are more issues related to deep-sea images that

are rarely studied. When collecting deep-sea images, the

landing of equipment on the seabed can cause an influx of
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seabed dust, microorganisms, and suspended particles,

which often lasts for a long time (even hours) and leads

to red-yellowish and blurry images. Developing solutions to

address this problem is crucial for practical applications.

Although much of the research in underwater image

restoration focuses on single images, the practical

application of underwater images also extends to videos.

However, there is a lack of attention given to the restoration

of underwater videos. This research gap needs to be

addressed, as underwater videos play a significant role in

practical applications. Urgent attention is needed to address

processing efficiency and frame-to-frame consistency in

underwater video restoration.
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Generalised deep learning
model for semi-automated
length measurement of fish
in stereo-BRUVS

Daniel Marrable1*, Sawitchaya Tippaya1, Kathryn Barker1,
Euan Harvey2, Stacy L. Bierwagen3, Mathew Wyatt4,
Scott Bainbridge3 and Marcus Stowar3

1Curtin Institute for Computation, Curtin University, Perth, WA, Australia, 2Curtin University, School of
Molecular and Life Sciences, Perth, WA, Australia, 3Australian Institute of Marine Science, Townsville,
QLD, Australia, 4Australian Institute of Marine Science, Indian Ocean Marine Research Centre,
The University of Western Australia, Perth, WA, Australia
Assessing the health of fish populations relies on determining the length of fish in

sample species subsets, in conjunction with other key ecosystem markers;

thereby, inferring overall health of communities. Despite attempts to use

artificial intelligence (AI) to measure fish, most measurement remains a manual

process, often necessitating fish being removed from the water. Overcoming this

limitation and potentially harmful intervention by measuring fish without

disturbance in their natural habitat would greatly enhance and expedite the

process. Stereo baited remote underwater video systems (stereo-BRUVS) are

widely used as a non-invasive, stressless method for manually counting and

measuring fish in aquaculture, fisheries and conservation management.

However, the application of deep learning (DL) to stereo-BRUVS image

processing is showing encouraging progress towards replacing the manual

and labour-intensive task of precisely locating the heads and tails of fish with

computer-vision-based algorithms. Here, we present a generalised, semi-

automated method for measuring the length of fish using DL with near-human

accuracy for numerous species of fish. Additionally, we combine the DL method

with a highly precise stereo-BRUVS calibration method, which uses calibration

cubes to ensure precision within a few millimetres in calculated lengths. In a

human versus DL comparison of accuracy, we show that, although DL

commonly slightly over-estimates or under-estimates length, with enough

repeated measurements, the two values average and converge to the same

length, demonstrated by a Pearson correlation coefficient (r) of 0.99 for n=3954

measurement in ‘out-of-sample’ test data. We demonstrate, through the

inclusion of visual examples of stereo-BRUVS scenes, the accuracy of this

approach. The head-to-tail measurement method presented here builds on,

and advances, previously published object detection for stereo-BRUVS.

Furthermore, by replacing the manual process of four careful mouse clicks on

the screen to precisely locate the head and tail of a fish in two images, with two
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fast clicks anywhere on that fish in those two images, a significant reduction in

image processing and analysis time is expected. By reducing analysis times, more

images can be processed; thereby, increasing the amount of data available for

environmental reporting and decision making.
KEYWORDS

stereo-BRUVS, deep learning, automated fish length, photogrammetry, machine
learning, cameras
1 Introduction

It is estimated that one third of global fish stocks are overfished

(Duarte et al., 2020) which impacts the ecosystem services provided

by fish (Steneck and Pauly, 2019). Numerous management actions

at local, national and international scales will be required to rebuild

fish stocks by improving governance, including lowering fishing

pressure; implementing harvest controls which limit the types of

gear used and the size and number of fish caught; and the use of

closed-area management or sanctuaries (MacNeil et al., 2020;

Melnychuk et al., 2021). Fishery-dependent information from

traps, hook and line, trawls and nets has provided much of the

data for monitoring the status of fish populations. With the

implementation of closed areas and sanctuaries, there has been an

increase in the interest of fishery-independent sampling techniques,

as many of the conventional sampling techniques are not

permissible. Fishery-independent techniques have largely been

based on underwater visual census (UVC) (Brock, 1954). Baited

remote underwater video systems (BRUVS) (Ellis and DeMartini,

1995; Cappo et al., 2001; Cappo et al., 2003) can collect a relative

abundance of data on a range offish species from numerous habitats

and depths (Harvey et al. 2021). While estimates of abundance are

an important metric, accurate and reliable information on the

length and size of fish within wild populations is more useful

(Jennings and Polunin, 1997; Jennings and Kaiser, 1998). This is

because it has been shown that fishing and other impacts decrease

the mean length, length frequency and biomass of fish populations

(Roberts, 1995; McClanahan et al., 1999). For UVC, biomass is

calculated from fish length based on visual estimates by SCUBA

divers (Wilson et al., 2018) with the standing biomass of fish

thought to be a good metric for expressing the health of fish

populations (Friedlander and DeMartini, 2002; Seguin et al.,

2022). But these estimates have been demonstrated to be neither

accurate nor precise, which can affect biomass estimates (Harvey

et al., 2002). Stereo video systems are a more accurate and precise

technique for non-destructively estimating the lengths of fish

(Harvey and Shortis, 1995; Harvey et al., 2001a; Harvey et al.,

2010) and have been modified for use by SCUBA divers (Goetze

et al., 2019), remotely operated vehicles (ROVs) (Schramm et al.,

2020; Jessop et al., 2022; Hellmrich et al., 2023) and BRUVS

(Harvey et al., 2007; Langlois et al., 2020; Harvey et al. 2021).

Determining the size and quantity of fish populations in a

specific area is crucial to understanding and assessing the health of
02329
fish stocks so that informed decisions can be made about

sustainable fishing and management practices (Pauly et al., 2002).

Fish measurement provides important information in the context of

stock assessment by monitoring changes in the size of fish, which

gives insight into the impacts of fishing and other factors on the

overall health of fish communities and ecosystems.

Automation has the potential to improve the accuracy,

efficiency and consistency of fish measurement (e.g. Shortis, 2015;

Marrable et al., 2022) to reliably increase the accuracy of stock

assessment information that can then be used to support and design

improvements to sustainable fishing practices which protect fish

populations and ecosystems. Some benefits of using automation

include: 1) improved accuracy – automated systems can measure

fish more precisely than manual methods, reducing the potential for

human error; 2) increased efficiency – automated systems can

process large numbers of fish much more quickly than manual

methods, reducing the time and effort required for stock

assessments; 3) consistent data – automated systems can provide

consistent and standardised measurements, reducing the potential

for variation due to differences in the way measurements are taken;

4) reduced labour – automated systems can reduce the need for

manual labour, freeing up resources for other tasks and potentially

reducing costs.
1.1 Traditional approaches to
measuring fish

Existing methods that enhance manual measurement by using

automation and computer vision have the potential to support

fishing operations and ecosystem monitoring; however, these

remain inaccessible to most small-scale fisheries due to their

associated high cost (Andrialovanirina et al., 2020). Even systems

that use remote surveillance monitoring to measure, process and

count discarded fish via video record once the vessel has returned to

port have shown that the analytical processing time required is

equally as labour intensive (Needle et al., 2015; French et al., 2019).

Such examples provide further justification for the need of

computer vision tools to increase the efficiency monitoring for

managing vessel operations. Similar challenges are faced by those

conducting research in aquaculture and fish ecology. There is a

seemingly exponential trend in the availability of automated fish

detection tools for researchers, yet their documented use is still
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minimal, with researchers also requiring ways to measure and track

fish (Bradley et al., 2019; Lopez-Marcano et al., 2021).

Assessing the health of fish populations depends on

determining the average length of fish in sample population

subsets and inferring health in conjunction with other key

ecosystem markers. Methods applying the length-based

measurement of fish for assessing the health of fisheries have been

around for decades (Pauly and Morgan, 1987) with few

technological advancements until recently. Manual measurement

remains the principal tool in collecting essential management

information on board fishing vessels. However, this method is

documented as highly time consuming and involves considerable,

and potentially harmful, handling of fish to gain accurate

measurements (Upton and Riley, 2013). Traditionally, evaluating

stock levels has relied on manually measuring fish length, as it is

frequently the only possibility where monitoring is limited and

collecting length measurements is easier than quantifying a total

catch (Rudd and Thorson, 2018). However, this method does not

consider the fluctuations in fish recruitment and death rates over

time, which is crucial for comprehending the indirect impacts of

fishing on predator–prey dynamics and for identifying the factors

that influence the structure of fish communities on a larger scale

(Jennings and Polunin, 1997). Average length is also considered an

operational indicator of fishing impact; whereas indices on the

composition of species assemblage are difficult to interpret, average

length is well understood and reference points can be set (Rochet

and Trenkel, 2003). As well as causing impacts on targeted species,

commercial fishing affects bycatch, including by-product and

discarded/released species; and sometimes habitats, when fishing

gear (e.g. demersal trawling) interacts with the sea floor or benthic

zones (Little and Hill, 2021). An increasing range of mechanisms

and technical tools is being used to reduce interactions with

seabirds, marine mammals, reptiles and other vulnerable species.

Such bycatch-reduction measures include tori lines, sprayers, and

seal and turtle excluder devices (Cresswell et al., 2022). In Australia,

as around the world, guidelines and rules on fish measurement

methodology and length quotas are enacted and overseen

by governments1.
1.2 The move toward automation

Monitoring devices and advances in data processing and

analysis techniques can, and should, form part of an effective

monitoring approach. However, data or capacity limitation is

widespread in global fisheries resulting in ineffective or non-

existent management as a result of this lack of data and/or an

inability to generate statistical estimates of stock status. Significant

improvements in management outcomes, leading to conservation

and livelihood benefits, could be achieved through cost-effective

analytical approaches; these exist, but are hampered by a range of

challenges, including data availability and requirements; resources
1 https://www.daf.qld.gov.au/business-priorities/fisheries/recreational/

recreational-fishing-rules/measuring.
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for processing and analysis; and a lack of understanding of costs and

advantages (Dowling et al., 2016; Cresswell et al., 2022). Deep

learning (DL) can address these challenges by replacing the

manual, labour-intensive task of precisely locating the heads and

tails of fish with computer-vision-based algorithms (e.g. Marrable

et al., 2022). White et al. (2006) were the first to test this method

with computer vision on a fishing vessel. Measurement using digital

imagery is a growing field and has been successfully implemented

with both single image (e.g. Lezama-Cervantes et al., 2017;

Monkman et al., 2019; Andrialovanirina et al., 2020; Wibisono

et al., 2022), and stereo image (e.g. Johansson et al., 2008; Shafait

et al., 2017; Suo et al., 2020; Connolly et al., 2021; Lopez-Marcano

et al., 2021; Marrable et al., 2022). Datasets now also exist to

explicitly support the development of DL algorithms; for instance,

segmentation, classification and size estimation (e.g. DeepFish,

Garcia-d’Urso et al., 2022).

Automated fish detection has been demonstrated using a range

of computer vision methods of measurement targeting single

species for aquaculture (Atienza-Vanacloig et al., 2016; Shi et al.,

2020; Yang et al., 2021). Some invasive methods of measurement

involve channelling fish past stationary cameras (Miranda and

Romero, 2017; Shafait et al., 2017), or methods which use active

sources of light, such as sonar (Uranga et al., 2017), which are

potentially stressful to the fish. Furthermore, removing fish from the

water (White et al., 2006) or measurement on board trawlers

(Monkman et al., 2019) adds to fish mortality. These challenges

highlight the importance of developing automated methods for

non-invasive means of measurement, such as BRUVS.

Although there have been advances in using DL for image

analysis, video imagery presents additional complexities and

requirements, particularly with regard to curated and structured

data (e.g. Marrable et al., 2022).

Recent reviews of machine learning in aquaculture found that

there is a need for DL and neural networks to optimise current

approaches but have also identified certain pitfalls in the process,

including noise, occlusions and dynamic viewing spaces (Yang

et al., 2021; Zhao et al., 2021).

Stereo baited remote underwater video systems (stereo-BRUVS)

are widely, and increasingly, used as a non-invasive, stressless

method for counting and measuring fish in aquaculture, fisheries

and conservation management (Harvey and Shortis, 1995; Harvey

et al., 2021). Recently, Marrable et al. (2022) demonstrated the

application of DL to stereo-BRUVS imagery for the semi-

automation of fish identification and early success with species

identification. Extending the application of DL to automate fish

length measurement would greatly enhance and advance marine

environment monitoring, speeding up data collation on localised

fish populations and increasing the amount of data that can be

processed and used for environmental reporting and decision

making. The current limitation of BRUVS is that the data

processing is a highly time-consuming manual exercise, prone to

human error and is costly, delaying the production of length data

and limiting how much BRUVS imagery can be processed

(Connolly et al., 2021; Marrable et al., 2022). However, as with

species identification, mean length data is highly valuable for

determining frequency distributions of fish populations and the
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spatial and temporal changes required for environmental

assessment and reporting. In addition to cost and processing

time, BRUVS is limited by the MaxN ecological abundance

metric (Whitmarsh et al., 2017), creating an opportunity for a

much larger use of the data held within a video, such as including

fishery-independent assessments of fishing pressure. Recent use of

open-source image processing software to measure fisheries catch

has also been successful for a wide range of fish sizes

(Andrialovanirina et al., 2020).
1.3 A semi-automated and generalised
method of length measurement

Here we present a semi-automated and generalised method of

measuring the length of fish using DL with near-human accuracy

for numerous species offish across a wide range of habitats. Speed of

analysis is therefore much increased, and demonstrates progress

towards the use of stereo-BRUVS for length measurement in

fisheries, aquaculture and marine ecology research applications.
2 Method

In this section, we describe the DL method used for locating the

heads and tails of fish, combined with a highly precise stereo-

BRUVS calibration method method (Shortis, 2015), which makes

use of calibration cubes to ensure precision in calculated lengths to

the nearest millimetre. Once trained and deployed, this semi-

automated approach solves the problem of finding the same fish

in both images; that is, the ‘fish correspondence challenge’, with

ecologists only having to select the same fish in the left and right

images by clicking anywhere on the body, eliminating the need for

four very precise clicks on the head and tail in both images. The

method is illustrated in Figure 1 and examples of the results

in Figure 2.
2 https://cocodataset.org.
2.1 Datasets

The fish length measurement data made available for this study

study (Australian Institute Of Marine Science, 2020) was taken

from OzFish stereo-BRUVS imagery along with annotations

conducted by fish ecologists using EventMeasure. In order to

develop a training dataset for the DL model, the head and tail

annotations, which were initially made manually by the ecologists,

were extracted by exporting the frame number and pixel location of

each annotation in the frame from the data files.

The original OzFish dataset has 37695 measurements inside

unique bounding boxes which indicate the location and extent of a

fish and include markers which identify its head and tail. Crops

from pairs of stereo images were taken from the full images to create

head and tail stereo pairs. Small fish, or ones far away in the

background, were excluded by filtering out any fish objects smaller

than 200 pixels in either height or length. Another filter was applied

to exclude fish that had been measured with a root mean square
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(RMS) value >20 mm. The RMS value is calculated by the

photogrammetry library in EventMeasure and is an indicator of

how close two corresponding points in each image are to the

epipolar line calculated by the opposite point. An RMS value

greater than 20 mm is considered by SeaGIS (outlined in the

EventMeasure software manual) as an imprecise measurement or

error in calibration and, therefore, was discarded in this study. This

reduced the number of images for training to 15558 stereo pairs of

cropped fish images.
2.2 Data preparation

The annotated data in OzFish did not include head or tail labels

and does not store the annotations in any particular order. There

was no consistent order to which the heads and tails were labelled.

Head and tail labels are required to train the DL model to classify

them. Therefore, a systematic review of the images was conducted

to reorder many of the annotations, resulting in a dataset in which

two labels, ‘head’ and ‘tail’ in consistent order, were reliably applied

to all of the points for training the DL model.

The final step, before training and testing the system, was to split

the data between ‘in-sample’ and ‘out-of-sample’ datasets. The videos

in OzFish have had the metadata removed before publishing,

although the data were given prefix letters in their filenames to

indicate they were taken from different deployments and at different

locations. Calibration files required for photogrammetry were only

published for the images with the prefix A and E. As these calibration

files are needed to do a human versusmachine comparison, they were

withheld from any training or validation and made up the out-of-

sample data used for testing algorithm performance. Images with

prefix B and G were not published with calibration files; however,

these files were not needed for training the head and tail detection

model and made up the in-sample training data.

After filtering the data, a total of 13555 stereo pairs of cropped

fish images remained with correct head and tail labels. The available

data for training and testing amounted to 59 unique family, 153

unique genus and 319 different species. The in-sample data were

split 70% (5348 stereo pairs) for training, and 30% (2292 stereo

pairs) for validation and hyperparameter tuning. In this study, the

calibration file verification process, taken to ensure that the ground-

truth length in OzFish dataset and calculated length using

photogrammetry was consistent, resulted in approximately 30%

of the out-of-sample data (1761 stereo pairs) being removed. The

remaining out-of-sample data comprised 4154 stereo pairs.
2.3 Model training

This study used You Only Look Once (YOLO; Redmon et al.,

2016) a type of DL model used in object-detection algorithms.

Specifically, the YOLOv5 model, which has been pre-trained on the

Common Objects in Context2 (COCO) dataset, was chosen for its
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ability to handle various sizes, numbers of classes, and

computational requirements. The variant used in this study was

the ‘YOLOv5 small’ model. To adapt the model for head and tail

detection, transfer learning was employed, which built on

knowledge gained from the pre-trained model while reducing the

amount of training data and time needed. A subset of the in-sample

dataset was used to retrain the model according to the standard

procedure outlined on the YOLOv5 website3.

The YOLOv5 model needs to be trained by defining the extent

of an object of interest (heads and tails in this case) by defining a

bounding box. Therefore, the head and tail points in the training

data were converted to bounding boxes by defining a box of 25 × 25
3 https://github.com/ultralytics/yolov5 Access Date (Nov 22, 2022).
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pixels around the head and tail points, respectively. Finally, the in-

sample training and validation fish crop images with head and tail

labels were used to train the YOLOv5 small model. The early-

stopping method was also implemented in this study to avoid

overfitting the model.
2.4 Model prediction

The head and tail predictions from the object-detection model

were converted to overall fish length by first taking the bounding

box predictions from the trained DL model and converting them to

points by using the centre location of the box in stereo image pairs.

On occasions when the DL model failed to find one or two of either

a head or a tail in both images, the location of the missing feature
FIGURE 1

Illustrates the workflow for data preparation, model training and model evaluation.
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was estimated by taking the reflection of one the classifier feature

locations in the bounding box of the fish. On occasions when the

model returned more than one candidate for a head or tail, the one

with the highest confidence score was chosen. On the occasions

when predicted head and tail points were inconsistent in both left

and right cropped fish images; for example, if head or tail points

were swapped, the predicted result was discarded as an incorrect

measurement. Once the four required points were returned by the

model, the camera calibration files were used along with

EventMeasure’s photogrammetry library to calculate the length of

the fish.
2.5 Model evaluation

The out-of-sample dataset was used for evaluating the

performance of the model and gives an indication of model

generalisability and performance in different domains. Inference

for both heads and tails was performed on the 4154 out-of-sample

data (stereo pairs of cropped fish images), and heads and tails pixel

coordinates were converted to the original scale of stereo-BRUVS

imagery. EventMeasure’s stereophotogrammetry tool was used to

calculate the length of a fish from the four predicted points of head

and tail pairs. Two hundred predictions were removed by the post-

processing steps described in the previous section, and the

remaining 3954 automated measurements were then compared to

the manual measurements made by the fish ecologists. Results are

presented in Figures 3, 4.
2.5.1 Recall, Precision and F1 Score
Simplifying model performance for fish head and tail detection

into a single metric can be beneficial. One such metric is the F1
score, which is a combination of recall and precision. Recall is the

likelihood of detecting all actual positive instances, while precision
Frontiers in Marine Science 06333
is the proportion of true positive (TP) predictions out of all positive

predictions. False negative (FN) represent the number of

predictions the model missed and false positive (FP) predictions

are incorrectly predicted results. The F1 score is calculated by taking

the harmonic mean of recall and precision.

The recall, precision and F1 score for fish head and tail detection

are presented in Table 1.

Recall =
TP

TP + FN
(1)

Precision =
TP

TP + FP
(2)
FIGURE 3

Human versus DL comparison showing how DL and
photogrammetry-derived length compares with human and
photogrammetry-derived length for the same fish. The Pearson
correlation coefficient is 0.99 indicating that even though DL
sometimes overestimates or underestimates the length compared
with a manual measurement by an ecologist; with repeat
measurements, the total length estimates average to be very similar.
FIGURE 2

Presents four out-of-sample examples of automated fish length measurements using the method described in this study. The example presents fish
of different sizes, habitat and distance from the camera.
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F1 =
2� Recall � Precision
Recall + Precision

(3)
2.5.2 Human–machine comparison
The Pearson correlation coefficient used for the human–

machine comparison was calculated by:

r = o​(xi − �x)(yi − �y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o​(xi − �x)2o​(yi − �y)2

q (4)

Where:
Fron
x are the individual DL inference length results
�x is the average DL length

yi are the individual human annotated length results
�y is the average human annotated length
3 Results

The following section presents the results of the human–

machine comparison by comparing the machine learning and

photogrammetry-derived length measurements with the

ecologists’ manual measurements (Figure 3) and the density of
tiers in Marine Science 07334
those measurements and compared in Figure 4. The results

presented here are calculated from the out-of-sample data.

Table 1 shows the DL precision (P), recall (R) and F1 for heads,

tails and the combination of both.
4 Discussion

The semi-automated method presented in this paper

demonstrates the potential to rapidly increase analysis time and

decrease reporting time for assessing fish biomass. Challenges

remain for a completely autonomous solution, some of which are

discussed below.
4.1 Semi-automation of length
measurement

The challenge of applying this model in real-world scenarios is

that the model cannot currently match the fish in the corresponding

left and right images. This was not a problem when building and

testing the model, as the data were already analysed by experienced

ecologists who had matched the stereo image pairs. To address this

challenge, the DL model was adapted to communicate with Event

Measure; wherein, the DL model requires an ecologist to click

anywhere on the body of the fish in both images. Inference on the

length is conducted after the ecologist has solved the image

correspondence problem by identifying the same fish in each of the

left and right images. The fish is then precisely cropped from the

stereo-BRUVS image using the DL method described in Marrable

et al. (2022), which places a bounding box over the fish, then parsed

by the head and tail DL model. Without isolating the fish first, the

model returns all of the heads and tails of all the fish it finds with no

correspondence data to match them. The head and tail locations are

returned to EventMeasure which automatically calculates the length

of the fish using its photogrammetry library. This reduces the number

of mouse clicks on the screen, from four precise clicks (i.e. left head,

left tail, right head, right tail) to two. Additionally, placing clicks

anywhere on the body is significantly faster and requires much less

precision. This semi-automated method of length measurement has

the potential to significantly increase analysis speed.

Furthermore, by requiring ecologists to choose the corresponding

fish individuals, users can draw on their contextual knowledge to wait

for a moment when a fish is the best pose for measurement and not

occluded by other fish, seagrass, the BRUVS bait bag or other objects.

This reduces false positive detection. Context is something that is not

currently possible by using computer vision alone.
TABLE 1 Deep learning precision (P), recall (R) and F1 for classification.

Feature Images Labels P R F1

Head 8308 8308 77.50% 70.50% 73.83%

Tail 8308 8308 77.20% 69.50% 73.15%

Both 8308 16616 77.40% 70.00% 73.51%
FIGURE 4

Histogram of the human versus DL comparison demonstrating the
density of the number of length measurements. A higher density of
points indicates the total number of measurements aggregate to
close agreement.
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4.2 Sources of error

The DL model cannot correspond the head and tail of a given fish

and, therefore, the largest source of error is incorrect correspondence;

that is, when a head and tail pair are matched to two different fish.

This is because the model searches within the bounding box for

features that look like heads and tails and returns the match with the

highest confidence. This works well when there is only one matching

pair; however, there are occasions when there are heads and tails

belonging to many fish. The model has no knowledge of

correspondence and so matches them based on the highest

confidence level, and sometimes pairs them incorrectly. An example

of this is seen in Figure 5. This results in either the incorrect length

being calculated from the photogrammetry, or the RMS value

returned from EventMeasure being >20, so no length is reported.

Figure 5A shows an example where two fish tails fall within the

bounding box and the model identifies the wrong tail. This false

positive is seen most commonly where fish are schooling and

swimming between 30° and 45° to the plane of the camera. Angles

within this span produce a large bounding box with more likelihood

that tails from other fish will be captured. One way to reduce this

effect is to automate a rotation of the bounding box, Figure 5B, or the

image in sympathy with the orientation of the fish to reduce the

empty space in the bounding box. Automating this process remains a

challenge, as even establishing that a false positive detection has

occurred would require logic and processing beyond the capability of

the current model. There are published detection models that use

rotated labels (Li et al., 2018) for ship identification in satellite

images; but, as yet, YOLOv5 does not have the ability to train using

rotated bounding boxes. Addressing these false positive cases

remains the subject of ongoing research.
4.3 Stereo calibration

Harvey and Shortis (1998) highlight the importance of precise

measurement systems for accurate length. This was also the

objective of this approach by using the OzFish dataset for model

training and validation. The OzFish data were calibrated using the

calibration cube method (Shortis, 2015) which is more accurate and

precise than using 2D calibration patterns as reported by Boutros

et al. (2015) in their comparison study.
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4.4 Model generalisability

Previous published models capable of automating the length

measurement of fish have either used a single camera out of water

(Monkman et al., 2019); been limited to a single species (White et al.,

2006); or used less accurate stereophotogrammetry calibration

methods (Tonachella et al., 2022). The model presented in this study

was trained and tested on 319 unique species of fish, making it much

more generalisable than any other previously published model. The

data used to train this model was restricted to the species in the OzFish

dataset, which includes those mostly found along the coast of Western

Australian. However, the species richness and diversity shows evidence

that the model generalises across different species with varying colour,

texture and morphometrics. An effort to separate in-sample and out-

of-sample data was made to give some indication of model

generalisability by training and testing to data collected at different

dates and locations. Howwell themodel works with species outside the

OzFish data will be the focus of future work. For applications in marine

environments with species not included in the OzFish data, the

method described in this study should be repeated with a new

training corpus that includes species in which users wish to measure.
4.5 Challenges with data quality

One reason for choosing the OzFish dataset for DL training was

because the data were annotated by expert fish ecologists. However,

when auditing the DL data there were still errors in the labelling.

Some errors included head and tail points that seemed to be

systematically shifted a few pixels away from the head and tail of

the fish, which may have been caused by incorrect synchronisation

of the stereo-BRUVS. There were also some instances where labels

were randomly out of place, such as labels placed on a rock.

One issue that continues to be a challenge for computer-vision-

based DL is that it is so far incapable of using context in the way fish

ecologists do to help them label fish. For example, in the OzFish

dataset, where a fish was partially occluded by an object, labels were

placed where heads or tails would logically be expected, estimated by

ecologists from experience and numerous previous observations of

similar fish. When such an example is viewed by a computer-vision

algorithm which, unlike an ecologist, cannot extrapolate from the

context, the algorithm may see a label on a rock and interpret that
BA

FIGURE 5

Example of a false positive detection of a tail leading to an incorrect length measurement; (A) two fish tails fall withinthe bounding box and the
model identifies the wrong tail. (B) the yellow box demonstrates that rotating theobject-detection bounding box, would eliminate the second tail
from the area and correct the false tail label.
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rock as a fish head or tail. In such cases, those data must be removed

as they would incorrectly train the DL model to detect some rocks as

fish heads and tails. Additionally, there were many instances of

seemingly very small fish labelled with heads and tails which were

very hard to distinguish between in static images. However, upon

viewing the moving video, swimming behaviours clearly indicated the

direction fish were swimming in, which made head and tail

identification easy to the human eye. Although there are published

DL tracking algorithms (Bertinetto et al., 2016; Hu et al., 2022),

YOLO-based methods only consider static images for training or

inference. Combining tracking with head and tail detection will be the

focus of future work so that numerous length measurements of the

same fish can be made to calculate the average size, a method that is

shown to be more statistically robust and less prone to measurement

error (Harvey et al., 2001b). Validation experiments of measurements

from stereo-BRUVS (Harvey and Shortis, 1995; Harvey et al., 2003;

Harvey et al., 2010) have been conducted using three or more repeat

measurements of fish. However, this is seldom done when conducting

field surveys due to the extra labour required.
4.6 Combining optical and acoustic
sampling methods

In recent years, size-spectrum models derived from acoustic

surveys have emerged as essential tools for fish stock assessment

and ecosystem-based fisheries management. Acoustic surveys possess

the advantage of rapidly and efficiently covering vast spatial scales.

However, stationary video platforms, such as stereo-BRUVS, are

constrained by a limited field of view and can only monitor a small

area around the camera. Acoustic surveys also face challenges,

including difficulties in discriminating between fish species and

detecting fish close to the seabed or within dense schools.

Size and shape information of fish targets is extracted from echo

data by adjusting model parameters, such as growth rates, mortality

rates, and species-specific traits, to match observed data (Edwards

et al., 2017; Froese et al., 2019). Calibration and validation of these

models often necessitate biological samples, which are invasive due to

the physical capture and potential harm to fish during the process.

Assessing fishery resources in reef ecosystems, where obtaining

biological samples is sometimes prohibited, remains challenging. To

address these limitations, optic-acoustic methods combine video

footage and acoustic measurements (Ryan and Kloser, 2016; Demer

et al., 2020). Underwater cameras or video systems, either mounted

on a research vessel, towed platform, or remotely operated vehicle

(ROV), capture images or footage of fish, providing high-resolution

information on size, shape, colour, and behaviour, which aids in

species identification and refining size distribution estimates

without the need for biological samples.

The automated length measurement offish in stereo-videos using

the method described in this study could be integrated with the optic-

acoustic approach to capitalise on the strengths of both methods.

Combining acoustic surveys with stereo-BRUVS, such as the

preliminary work by Landero-Figueroa et al. (2016), or other

sampling techniques can help overcome the limitations of each

method and provide more accurate and comprehensive information
Frontiers in Marine Science 09336
on fish populations for stock assessment and ecosystem-based

fisheries management. This non-invasive approach enables

continuous monitoring of fish populations without harming the

organisms or their habitats, offering a promising alternative for

sustainable fishery management.
5 Conclusion

The semi-automated length measurement method presented

here builds on and advances previously published DL-based fish

detection from stereo-BRUVS imagery (Marrable et al., 2022). This

new method combines that fish detection approach to isolate and

crop individual fish from a busy scene with a new DL model for

detecting the head and tail and applying photogrammetry to

determine fish length measurements.

Although not completely autonomous, the machine-assisted, semi-

automated labelling approach solves both the object correspondence

challenge and allows for expert contextual knowledge to choose which

fish (and in which pose) are sent for analysis using DL. This is expected

to significantly reduce labour and analysis time by speeding up the

manual process of precisely locating the head and tail of the fish in both

images by carefully placing four mouse clicks on the screen, to two fast

clicks anywhere on a fish while still using expert knowledge to truth

and validate the result. By accelerating stereo-BRUVS analysis, more

imagery can be processed; thereby, increasing the amount of data

available for environmental reporting and decision making.
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R., Morales-Blake, A. R., Patiño-Barragán, M., et al. (2017). A suitable ichthyometer for
systemic application. Lat. Am. J. Aquat. Res. 45, 870–878. doi: 10.3856/vol45-issue5-
fulltext-1

Li, S., Zhang, Z., Li, B., and Li, C. (2018). Multiscale rotated bounding box-based
deep learning method for detecting ship targets in remote sensing images. Sensors 18.
doi: 10.3390/s18082702

Little, R., and Hill, N. (2021). 2021 state of the environment report marine chapter –
expert assessment – management effectiveness – commercial fishing. doi: 10.26198/
WWR3-4D52

Lopez-Marcano, S., Jinks, E. L., Buelow, C. A., Brown, C. J., Wang, D., Kusy, B., et al.
(2021). Automatic detection of fish and tracking of movement for ecology. Ecol. Evol.
11, 8254–8263. doi: 10.1002/ece3.7656

MacNeil, M. A., Chapman, D. D., Heupel, M., Simpfendorfer, C. A., Heithaus, M.,
Meekan, M., et al. (2020). Global status and conservation potential of reef sharks.
Nature 583, 801–806. doi: 10.1038/s41586-020-2519-y

Marrable, D., Barker, K., Tippaya, S., Wyatt, M., Bainbridge, S., Stowar, M., et al.
(2022). Accelerating species recognition and labelling of fish from underwater video
with machine-assisted deep learning. Front. Mar. Sci. 9. doi: 10.3389/fmars.2022.
944582Marrable2022

McClanahan, T. R., Muthiga, N. A., Kamukuru, A. T., Machano, H., and Kiambo, R.
W. (1999). The effects of marine parks and fishing on coral reefs of northern tanzania.
Biol. Conserv. 89, 161–182. doi: 10.1016/S0006-3207(98)00123-2
frontiersin.org

https://doi.org/10.1016/j.fishres.2019.105425
https://doi.org/10.1016/j.compag.2016.10.009
https://doi.org/10.25845/5E28F062C5097
https://doi.org/10.1002/lom3.10020
https://doi.org/10.1111/faf.12361
https://doi.org/10.2307/3797016
https://doi.org/10.3389/fmars.2021.658135
https://doi.org/10.3389/fmars.2021.658135
https://doi.org/10.4027/amdlfs.2016.03
https://doi.org/10.1038/s41586-020-2146-7
https://doi.org/10.1111/2041-210X.12641
https://doi.org/10.1093/icesjms/fsz149
https://doi.org/10.3354/meps230253
https://doi.org/10.3354/meps230253
https://doi.org/10.1093/icesjms/fsy199
https://doi.org/10.1038/s41597-022-01416-0
https://doi.org/10.1038/s41597-022-01416-0
https://doi.org/10.1111/2041-210X.13189
https://doi.org/10.3354/meps07192
https://doi.org/10.1016/S0165-7836(03)00080-8
https://doi.org/10.1016/S0165-7836(01)00356-3
https://doi.org/10.1016/S0165-7836(01)00356-3
https://doi.org/10.4031/MTSJ.44.1.3
https://doi.org/10.1016/j.marpol.2021.104430
https://doi.org/10.1016/j.ecss.2022.108210
https://doi.org/10.1016/j.ecss.2022.108210
https://doi.org/10.1109/TPAMI.2022.3172932
https://doi.org/10.1109/TPAMI.2022.3172932
https://doi.org/10.1007/s003380050061
https://doi.org/10.1016/j.ecss.2022.108017
https://doi.org/10.1016/j.ecss.2022.108017
https://doi.org/10.1111/2041-210X.13470
https://doi.org/10.1111/2041-210X.13470
https://doi.org/10.3856/vol45-issue5-fulltext-1
https://doi.org/10.3856/vol45-issue5-fulltext-1
https://doi.org/10.3390/s18082702
https://doi.org/10.26198/WWR3-4D52
https://doi.org/10.26198/WWR3-4D52
https://doi.org/10.1002/ece3.7656
https://doi.org/10.1038/s41586-020-2519-y
https://doi.org/10.3389/fmars.2022.944582Marrable2022
https://doi.org/10.3389/fmars.2022.944582Marrable2022
https://doi.org/10.1016/S0006-3207(98)00123-2
https://doi.org/10.3389/fmars.2023.1171625
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Marrable et al. 10.3389/fmars.2023.1171625
Melnychuk, M. C., Kurota, H., Mace, P. M., Pons, M., Minto, C., Osio, G. C., et al.
(2021). Identifying management actions that promote sustainable fisheries. Nat.
Sustainability 4, 440–449. doi: 10.1038/s41893-020-00668-1

Miranda, J. M., and Romero, M. (2017). A prototype to measure rainbow trout’s length
using image processing. Aquacult. Eng. 76, 41–49. doi: 10.1016/j.aquaeng.2017.01.003

Monkman, G. G., Hyder, K., Kaiser, M. J., and Vidal, F. P. (2019). Using machine
vision to estimate fish length from images using regional convolutional neural
networks. Methods Ecol. Evol. 10, 2045–2056. doi: 10.1111/2041-210X.13282

Needle, C. L., Dinsdale, R., Buch, T. B., Catarino, R. M., Drewery, J., Butler, N., et al.
(2015). Scottish Science applications of remote electronic monitoring. ICES J. Mar. Sci.
72 (4), 1214–1229. doi: 10.1093/icesjms/fsu225

Pauly, D., Christensen, V., Guénette, S., Pitcher, T. J., Sumaila, U. R., Walters, C. J.,
et al. (2002). Towards sustainability in world fisheries. Nature 418, 689–695.
doi: 10.1038/nature01017

Pauly, D., and Morgan, G. R. (1987). Length-based methods in fisheries research:
WorldFish, 299.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look once:
unified, real-time object detection,” in Proceedings of the IEEE conference on computer
vision and pattern recognition. 779–788.

Roberts, C. M. (1995). Rapid build-up of fish biomass in a caribbean marine reserve.
Conserv. Biol. 9, 815–826. doi: 10.1046/j.1523-1739.1995.09040815.x

Rochet, M.-J., and Trenkel, V. M. (2003). Which community indicators can measure
the impact of fishing? a review and proposals. Can. J. Fish. Aquat. Sci. 60, 86–99.
doi: 10.1139/f02-164

Rudd, M. B., and Thorson, J. T. (2018). Accounting for variable recruitment and
fishing mortality in length-based stock assessments for data-limited fisheries. Can. J.
Fish. Aquat. Sci. 75, 1019–1035. doi: 10.1139/cjfas-2017-0143

Ryan, T. E., and Kloser, R. J. (2016). Improved estimates of orange roughy biomass
using an acoustic-optical system in commercial trawlnets. ICES J. Mar. Sci. 73, 2112–
2124. doi: 10.1093/icesjms/fsw009

Schramm, K. D., Marnane, M. J., Elsdon, T. S., Jones, C., Saunders, B. J., Goetze, J. S.,
et al. (2020). A comparison of stereo-BRUVs and stereo-ROV techniques for sampling
shallow water fish communities on and off pipelines. Mar. Environ. Res. 162, 105198.
doi: 10.1016/j.marenvres.2020.105198

Seguin, R., Mouillot, D., Cinner, J. E., Stuart Smith, R. D., Maire, E., Graham, N. A. J.,
et al. (2022). Towards process-oriented management of tropical reefs in the
anthropocene. Nat. Sustain. 6 (2), 148–157. doi: 10.1038/s41893-022-00981-x

Shafait, F., Harvey, E. S., Shortis, M. R., Mian, A., et al. (2017). Towards automating
underwater measurement of fish length: a comparison of semi-automatic and manual
stereo–video measurements. ICES J. Mar. Sci. 74 (6), 1690–1701. doi: 10.1093/icesjms/
fsx007
Frontiers in Marine Science 11338
Shi, C., Wang, Q., He, X., Zhang, X., and Li, D. (2020). An automatic method of fish
length estimation using underwater stereo system based on LabVIEW. Comput.
Electron. Agric. 173, 105419. doi: 10.1016/j.compag.2020.105419

Shortis, M. (2015). Calibration techniques for accurate measurements by underwater
camera systems. Sensors 15, 30810–30826. doi: 10.3390/s151229831

Steneck, R. S., and Pauly, D. (2019). Fishing through the anthropocene. Curr. Biol.
29, R987–R992. doi: 10.1016/j.cub.2019.07.081

Suo, F., Huang, K., Ling, G., Li, Y., and Xiang, J. (2020). “Fish keypoints detection for
ecology monitoring based on underwater visual intelligence,” in 2020 16th
International Conference on Control, Automation, Robotics and Vision (ICARCV).
542–547. doi: 10.1109/ICARCV50220.2020.9305424

Tonachella, N., Martini, A., Martinoli, M., Pulcini, D., Romano, A., and
Capoccioni, F. (2022). An affordable and easy-to-use tool for automatic fish
length and weight estimation in mariculture. Sci. Rep. 12, 15642. doi: 10.1038/
s41598-022-19932-9

Upton, K. R., and Riley, L. G. (2013). Acute stress inhibits food intake and alters
ghrelin signaling in the brain of tilapia (oreochromis mossambicus). Domest. Anim.
Endocrinol. 44, 157–164. doi: 10.1016/j.domaniend.2012.10.001

Uranga, J., Arrizabalaga, H., Boyra, G., Hernandez, M. C., Goñi, N., Arregui, I., et al.
(2017). Detecting the presence-absence of bluefin tuna by automated analysis of
medium-range sonars on fishing vessels. PloS One 12, e0171382. doi: 10.1371/
journal.pone.0171382

White, D. J., Svellingen, C., and Strachan, N. J. C. (2006). Automated measurement
of species and length of fish by computer vision. Fish. Res. 80, 203–210. doi: 10.1016/
j.fishres.2006.04.009

Whitmarsh, S. K., Fairweather, P. G., and Huveneers, C. (2017). What is big
BRUVver up to? methods and uses of baited underwater video. Rev. Fish Biol. Fish.
27, 53–73. doi: 10.1007/s11160-016-9450-1

Wibisono, E., Mous, P., Firmana, E., and Humphries, A. (2022). A crew-operated
data recording system for length-based stock assessment of indonesia’s deep demersal
fisheries. PloS One 17, e0263646. doi: 10.1371/journal.pone.0263646

Wilson, S. K., Graham, N. A. J., Holmes, T. H., MacNeil, M. A., and Ryan, N. M.
(2018). Visual versus video methods for estimating reef fish biomass. Ecol. Indic.
85, 146–152. doi: 10.1016/j.ecolind.2017.10.038

Yang, L., Liu, Y., Yu, H., Fang, X., Song, L., Li, D., et al. (2021). Computer vision
models in intelligent aquaculture with emphasis on fish detection and behavior
analysis: a review. Arch. Comput. Methods Eng. 28, 2785–2816. doi: 10.1007/s11831-
020-09486-2

Zhao, S., Zhang, S., Liu, J., Wang, H., Zhu, J., Li, D., et al. (2021). Application of
machine learning in intelligent fish aquaculture: a review. Aquaculture 540, 736724.
doi: 10.1016/j.aquaculture.2021.736724
frontiersin.org

https://doi.org/10.1038/s41893-020-00668-1
https://doi.org/10.1016/j.aquaeng.2017.01.003
https://doi.org/10.1111/2041-210X.13282
https://doi.org/10.1093/icesjms/fsu225
https://doi.org/10.1038/nature01017
https://doi.org/10.1046/j.1523-1739.1995.09040815.x
https://doi.org/10.1139/f02-164
https://doi.org/10.1139/cjfas-2017-0143
https://doi.org/10.1093/icesjms/fsw009
https://doi.org/10.1016/j.marenvres.2020.105198
https://doi.org/10.1038/s41893-022-00981-x
https://doi.org/10.1093/icesjms/fsx007
https://doi.org/10.1093/icesjms/fsx007
https://doi.org/10.1016/j.compag.2020.105419
https://doi.org/10.3390/s151229831
https://doi.org/10.1016/j.cub.2019.07.081
https://doi.org/10.1109/ICARCV50220.2020.9305424
https://doi.org/10.1038/s41598-022-19932-9
https://doi.org/10.1038/s41598-022-19932-9
https://doi.org/10.1016/j.domaniend.2012.10.001
https://doi.org/10.1371/journal.pone.0171382
https://doi.org/10.1371/journal.pone.0171382
https://doi.org/10.1016/j.fishres.2006.04.009
https://doi.org/10.1016/j.fishres.2006.04.009
https://doi.org/10.1007/s11160-016-9450-1
https://doi.org/10.1371/journal.pone.0263646
https://doi.org/10.1016/j.ecolind.2017.10.038
https://doi.org/10.1007/s11831-020-09486-2
https://doi.org/10.1007/s11831-020-09486-2
https://doi.org/10.1016/j.aquaculture.2021.736724
https://doi.org/10.3389/fmars.2023.1171625
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Mark C. Benfield,
Louisiana State University, United States

REVIEWED BY

Philippe Blondel,
University of Bath, United Kingdom
Peng Ren,
China University of Petroleum, China
Ning Wang,
Dalian Maritime University, China

*CORRESPONDENCE

Jianfeng Tong

jftong@shou.edu.cn

RECEIVED 09 February 2023
ACCEPTED 22 May 2023

PUBLISHED 05 June 2023

CITATION

Tong J, Wang W, Xue M, Zhu Z, Han J
and Tian S (2023) Automatic single fish
detection with a commercial echosounder
using YOLO v5 and its application for
echosounder calibration.
Front. Mar. Sci. 10:1162064.
doi: 10.3389/fmars.2023.1162064

COPYRIGHT

© 2023 Tong, Wang, Xue, Zhu, Han and
Tian. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 05 June 2023

DOI 10.3389/fmars.2023.1162064
Automatic single fish
detection with a commercial
echosounder using YOLO v5
and its application for
echosounder calibration

Jianfeng Tong1,2,3*, Weiqi Wang1, Minghua Xue1,
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University, Shanghai, China, 4School of Electrical Engineering and Telecommunications,
The University of New South Wales, Sydney, NSW, Australia, 5Key Laboratory of Sustainable
Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China
Nowadays, most fishing vessels are equipped with high-resolution commercial

echo sounders. However, many instruments cannot be calibrated andmissing data

occur frequently. These problems impede the collection of acoustic data by

commercial fishing vessels, which are necessary for species classification and

stock assessment. In this study, an automatic detection and classification model

for echo traces of the Pacific saury (Cololabis saira) was trained based on the

algorithm YOLO v5m. The in situ measurement value of the Pacific saury was

measured using single fish echo trace. Rapid calibration of the commercial echo

sounder was achieved based on the living fish calibration method. According to

the results, the maximum precision, recall, and average precision values of the

trained model were 0.79, 0.68, and 0.71, respectively. The maximum F1 score of

the model was 0.66 at a confidence level of 0.454. The living fish calibration offset

values obtained at two sites in the field were 116.30 dB and 118.19 dB. The sphere

calibration offset value obtained in the laboratory using the standard sphere

method was 117.65 dB. The differences between in situ and laboratory

calibrations were 1.35 dB and 0.54 dB, both ofwhichwerewithin the normal range.

KEYWORDS

fishing vessel, automatic detection, commercial echosounder calibration, Cololabis
saira, deep learning, single fish detection
1 Introduction

As an important method for fishery resource surveys, hydroacoustic technology

enables fast and independent testing, that is both harmless for the resources and

accurate. Moreover, underwater acoustic spatial information with time series can be

obtained (Foote and Rothschild, 2009; Haris et al., 2021). Hydroacoustic detection
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technology plays an important role in analyzing fish migration

paths (Martignac et al., 2015; Gjøsæter et al., 2017), fish habitat

distribution (Slotte et al., 2004; O'Donncha et al., 2021), and fish

resource changes (Melvin et al., 2016; Aranis et al., 2022). It also

allows to study zooplankton sound scattering layers (Boswell et al.,

2020; Xue et al., 2021). The acoustic characteristics of a single

organism or a biotic aggregate are defined as echo traces (Reid,

2000). The SHAPES theory (Coetzee, 2000) was published to

provide a method of analyzing fish populations based on these

echo traces. The main parameters the theory uses are the

morphology and echo strength distribution of echo traces. Based

on the above theory of fish echo trace analysis, the distributions of

adult and juvenile sardine aggregation were found to be significantly

different in the Mediterranean region (Tsagarakis et al., 2012).

Swarms of anchovy (Engraulis ringens), common sardine

(Sardinops sagax), and Pacific jack mackerel (Trachurus

symmetricus) were identified by the SHAPES theory in northern

and south-central Chilean waters. This analysis innovatively uses a

statistical model to automate the classification of large quantities of

fish echo traces (Robotham et al., 2010). The above studies

demonstrate the feasibility of distinguishing species and age

groups by features of fish school echo traces. However, the echo

traces that emerge in response to discrete single fish situated around

the school were often ignored. The echo traces of discrete

individuals are usually inverted ‘V’-shaped or lightning-shaped

(Reid, 2000). In previous studies (Boyra et al., 2019; Julie et al.,

2020; Khodabandeloo et al., 2021), single fish echo traces were the

main data source for measuring the in situ target strength values of

different fish species. These single fish echo traces are important for

fish species classification. Different fish species (Sawada et al., 2009),

swimming tilt angles (Fernandes et al., 2016; Tong et al., 2022),

swimming speeds (Lee et al., 2010), and fish swim bladder sizes

(Sobradillo et al., 2019) affect the magnitude of fish target strength

values. Because of dense fish aggregation during fishing activities,

there are numerous targets on the echogram, making the detection

and extraction of single fish echo images more challenging because

of interference of environmental and instrument noises. Thus, most

current in situ target strength measurement applications still

require rigorous equipment and environmental conditions, while

having limited application scope for measured target

strength values.

Previous studies predicted the categories of echo trace and

large-scale automatic classification using the calculation power of

computers. Initially, statistical models were used to classify

morphological parameters of the acoustic image measurements

and echo strength values (LeFeuvre et al., 2000). These models

include supervised machine learning models, such as classification

tree (Fernandes, 2009), random forest (Fallon et al., 2016), support

vector machine (Robotham et al., 2010), as well as unsupervised

machine learning models such as K-means (Ito et al., 2013),

Gaussian mixture models (Robotham et al., 2010), and principal

component analysis (Lawson et al., 2001). However, statistical

models are dependent. Digital image processing techniques and

related acoustic methods are required to capture and enhance the

echo trace features and infer the variability between feature

parameters to complete the automatic identification process. Basic
Frontiers in Marine Science 02340
hypotheses are established based on feature values and variability to

guide model training, which increases the difficulty and time

consumption of data processing.

Deep learning techniques have been employed to develop a

number of available network frameworks (Wang et al., 2022; Wang

et al., 2023a). These frameworks and the modules that are based on

them have been widely applied for underwater image enhancement

(Wang et al., 2023b; Wang et al., 2023c) and noise control (Wang

et al., 2023d). Among them, convolutional neural network (CNN) is

one of the more widely used network architectures. The advent of

CNN has increased the freedom of machine self-learning (Rathi

et al., 2017; Albawi et al., 2018; Gu et al., 2018) while providing

more possibilities for the identification of fish echo traces.

Currently, target detection algorithms based on CNN can be

classified into two-stage algorithms represented by Faster R-CNN

(Li et al., 2015) and one-stage algorithms represented by YOLO

(You Only Look Once) (Jalal et al., 2020). The two-stage algorithms

mainly include two stages of interest region extraction and image

detection, and can achieve higher recognition accuracy than single-

stage algorithms. The increased computational power obtained by

the region of interest extraction stage also limits the speed with

which the algorithm can detect the target. Compared with a two-

stage algorithm, the YOLO algorithm-based single-stage algorithm

implements target detection and bounding box regression

operations directly on the image, thus achieving a higher target

detection speed. However, its recognition accuracy is slightly lower

than that of the two-stage algorithmmodel. In a recent study, a deep

learning-based target detection algorithm was applied to the target

detection of underwater fish optical images. Li et al. (2015) and Li

et al., (2016) captured underwater acoustic images and achieved

recognition of fish in images by the faster R-CNN algorithm.

Wageeh et al. (Wageeh et al., 2021) used a YOLO model with the

introduction of an image enhancement algorithm to achieve

automatic detection and counting of fish at a fish farm. Wang

et al. (Wang et al., 2021) established a basic line for underwater

object detection based on the YOLO v5 algorithm, which facilitated

subsequent research on the detection of underwater objects. Jalal

et al. (Jalal et al., 2020) proposed a method for detecting and

identifying fish in complex underwater environments by combining

a Gaussian mixture model, an optical flow module to detect the

temporal information of fish swimming in the video, and a YOLO

target recognition module to improve the comprehensive accuracy

of video target detection. Acoustic images are usually captured in

the form of one-channel graphing, which contains less information

than optical images, usually containing three channels. This is

challenging for acoustic image recognition using the YOLO

model. The YOLO model is still valid for small target echo target

recognition in the presence of noise in acoustic images (Fang and

Wang, 2021).

In this study, the acoustic data collected by commercial Pacific

saury (Cololabis saira) fishing vessels were used as original dataset

to train the YOLO model. The pre-processing module of the

acoustic data was established using image processing. Based on

the YOLO v5 algorithm, the automatic target detection model was

constructed to complete the automatic detection and target

identification of single fish and fish schools in the echograms.
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Finally, echo traces extracted from the target recognition were used

to identify single fish and calibrate the echosounder of the

commercial fishing vessel.
2 Materials and methods

2.1 Acoustic data collection

The fishing platform is the ocean-going Pacific saury fishing

vessel FV ‘Ming Hua,’ with a total length of 73.98 m and a draft of

5 m. The vessel entered the fishing grounds on May 13, 2021, and

carried out the fishing of Pacific saury and squid (Todarodes

pacificus). In this study, the data collected at the time of catching

Pacific saury were used as the original dataset. The main area of the

Pacific saury is the high seas region of the northwest Pacific Ocean

(41°–48° N, 166°–172° E) (Figure 1), using a stick-held dipnet for

fishing. The acoustic instrument used for acoustic data collection

was a Hondex HE-1500Di (The Honda Electronics Co., Ltd.,

Toyohashi, Japan) single-beam commercial echo sounder. The

basic parameters of the echo sounder are shown in Table 1. The

commercial echo sounder was modified to save the raw echo level

data collected by the transducer directly and combine it with both

GPS data and time series. Then, the data were stored on a flash

memory card. The detecting depth of the echo sounder was 300 m,

and each memory card could collect 6.8 h of acoustic data.
2.2 Processing algorithm

2.2.1 Acoustic data pre-processing
The acoustic echograms obtained from the original acoustic

dataset contain electromagnetic pulse noise from other fishing

vessel equipment, environmental noise, and zooplankton
Frontiers in Marine Science 03341
reverberation. These noises can be a great obstacle for the

identification and labeling of fish schools and single fish, as well

as a challenge for learning single fish and fish school features during

the model training process. In this study, an acoustic data pre-

processing algorithm is proposed based on digital image processing

technology to remove both noise and reverberation. The algorithm

flow is shown in Figure 2.

The echo level value in the acoustic data was first converted to

sound backscattering strength values. The conversion formula is

shown in Equation (1):

Sv = EL + 20 log (r) + 2ar − 10 log (j� ct
2
) − K0 (1)

where EL is the received echo level (dB re 1 mV); a is the sound

absorption coefficient; r is the depth value; j is the equivalent beam

angle; c is the sound speed in water; and t is the pulse length. K0 is a

transmitting and receiving factor, which is determined by the

sphere calibration (dB) according to Equation (7). The data

within 5 m of the sea surface of the acoustic data were removed

according to the draft depth of the fishing vessel to avoid

interference of the data by bubbles generated by the vessel and

the movement of the surf. The integration threshold range of the

acoustic data is set, and the part outside the integration threshold is

removed to avoid the disturbance of the echo data by zooplankton

and large predators. The integration threshold was set to range from

− 20 dB to   64 dB according to the integration settings in previous

small pelagic fish resource surveys (Axenrot et al., 2004;

Trumpickas et al., 2020). The small discrete noise generated by

bubbles and the high-frequency impulse noise caused by

instruments were removed using the open-close operation and

the 3*3 median filter, respectively. The edge detection algorithm

was used to detect the edge of the echo trace. The morphology,

depth, and scattering strength of the echo trace are measured using

the regionprops function. To prepare the echogram data for the
FIGURE 1

The black frame in the left figure panel indicates the range of acoustic monitoring; the black dots in the right figure panel indicate acoustic
monitoring data sampling sites; the black triangles indicate acoustic and biological sampling sites.
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process of target detection by YOLO v5, the grayscale image was

transformed by the first-order numerical matrix. Each value in the

matrix is mapped to the set colormap, the colors in the colormap are

all RGB colors, and each color is a double float value in the interval

[0,1]. The data of the matrix is normalized to correspond with the

color value, and different values represent different colors. Thus, the

indexed image using RGB color is formed. At this stage, the acoustic

data preprocessing is complete. The specific process of pre-

processing is detailed in Appendix A.

2.2.2 Echo trace classification and labeling
After pre-processing and morphological measurements, the

echo traces that remained on the 50-kHz echograms were filtered.

The location of the Pacific saury school was approximately

determined by comparing the time of each catch in the fishing

logbook for further filtering. The method of determining whether

an echo trace is a single fish by analyzing the echo trace height

related to pulse length has been applied to in situ target strength
Frontiers in Marine Science 04342
measurements (Didrikas and Hansson, 2004; Sawada et al., 1993).

In this study, the above method was used to filter and separate single

fish echo traces. The fish school was filtered with reference to the

SHAPES algorithm (Coetzee, 2000). Echo traces with a height larger

than 1 m and a length longer than 5 m were classified as fish

schools. The remaining echo traces were classified as multiple fish.

The three types of echo traces were labeled as “0” for single fish, “1”

for multiple fish, and “2” for fish schools.
2.3 YOLO v5 model

2.3.1 Model structure
The YOLO v5 model is one of the representative models of one-

stage target detection models based on deep learning. The four main

versions in the existing YOLO v5 series are named YOLO v5s,

YOLO v5m, YOLO v5l, and YOLO v5x. The differences between

these four versions are the depth and width of the model network.

Different network depths determine the number of convolutional

layers, and different network widths determine the number of

convolutional kernels in one convolutional layer. The network

depth and width of these four versions of the model increase

sequentially. An increase in the number of convolutional kernels

and convolutional layers represents an enhancement in the

recognition accuracy of the model, but also increases the size of

model. To run the model on devices with low computing power

while ensuring the detection accuracy, YOLO v5m was used as the

base training model for the automatic detection experiments.

YOLO v5m has a smaller model complexity compared to YOLO

v5l and YOLO v5x, thus enabling model training on lower-

computing devices. YOLO v5m also has a better small target

detection capability compared to YOLO v5s. The main network

structure of the model is shown in Figure 3. Its structure consists of

four parts: Input, Backbone, Neck, and Prediction.

The size of the imported RGB images in three channels set at the

input side was 640 by 640 pixels When importing the images from

the dataset into the model for training, the model automatically

scaled the image size to the set size using the adaptive image scaling

module. The Mosaic data enhancement algorithm and adaptive

anchor frame calculation method were used at the input side to

enhance the generalization ability of the model.

The backbone network part of the model mainly includes the

four modules of focus, CBL, CSP, and SPPF. Among them, the focus

module is used for downsampling, slicing, and convolution.

Adjacent pixels in the image were first sampled using the down

sampling and slicing method. After this operation, an image was

divided into four feature maps, thus the number of channels is

expanded four times without loss of information, and the size of the

obtained feature maps was 320*320*12. Then, the image was

convoluted by using convolutional kernel, and the final feature

maps were also 320*320*32. Compared with common down

sampling, the focus module completes image down sampling

without loss of information. The CBL module contains

convolution (conv), batch normalization (BN), and Leaky Relu,

which serve to convolve the input data. The CSP module contains

the CBL module and its components, with the addition of a residual
FIGURE 2

The architecture of the developed acoustic data pre-processing
algorithm.
TABLE 1 Main parameters of the Hondex HE-1500Di echo sounder.

Parameters Values

Frequency 50 kHz

Transducer type TD-47

Beam type Single beam

Pulse length (ms) 1.7

Pulse interval (s) 1

Transmit power (w) 1000

Absorption coefficient (dB/m) 0.0129

Equivalent beam angle (dB re 1 Str) -13.79
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component to avoid network degradation caused by gradient

disappearance. The CSP module enables the model to learn more

features. The SPPF module converts feature maps of arbitrary size

into feature vectors of fixed size via the CBL module and

maxpooling. The image was sliced and convolved into a

320*320*32 feature map by the focus module, convolved, and the

residual features of the image were extracted by the CBL module.

The number of network channels was expended through the SPPF

module after earning the residual image features with the

CSP module.

2.3.2 Model training
Model training was conducted using an Intel (R) Core (TM) i7-

10875H CPU @ 2.30 GHz, GPU selected NVIDIA Geforce

GTX1650 with 4 GB of video memory, using PyTorch 1.13 as the

deep learning framework. The number of epochs was set to 300 in

model training, and the batch size was set to 16.

2.3.3 Model evaluation indicators
Precision (P), recall (R), mean average precision (mAP), and

F1-Score were used as indicators to evaluate the performance of the

echo trace target detection model. P represents the precision and

accuracy of the model, while R represents its recall and

completeness. Formulas of P and R are shown in Equations (2)

and (3):

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

where TP is truly positive, indicating that prediction and actual

exist at the same time; FP is false positive, indicating that actually

does not exist but prediction does; FN is a false negative, indicating

that actual exists, but prediction does not. While mAP represents

the average accuracy of all target categories detected by the model,

the formula is obtained by averaging the average precision (AP)

values of all targets. The F1-score represents the summed average of
Frontiers in Marine Science 05343
precision and recall with a maximum value of 1 and a minimum

value of 0. This parameter allows for a more intuitive representation

of the detection accuracy of the model. AP and mAP could be

calculated using Equations (4) and (5):

AP = o
n−1

i=1
(ri+1 − ri) ∗ Pinter(ri + 1) (4)

mAP = o
k
i=1APi
k

(5)

where ri+1 − riri is the amount of change in recall and Pinter(ri +

1) is the precision of the interpolation segment when the recall is ri.

The F1-Score is calculated according to Equation (6):

F1score = 2*
P*R
P + R

(6)
2.4 Living fish calibration for the
commercial echo sounder

When acoustic surveys are conducted using fishing vessels, the

lack of sufficient time for standard process instrument calibration of

echo sounder indicates the need to evaluate instrument

performance using a simplified method. In previous studies,

certain calibration methods using objects with known physical

properties have been used to calibrate the echosounder, including

the calibration sphere method (Knudsen, 2009), the natural seafloor

calibration method (Eleftherakis et al., 2018), and the living fish

calibration method (Johannesson and Losse, 1977). Of these, the

natural seafloor calibration method and the living fish calibration

method (both relative calibration methods) can test the

performance of the echo sounder within a short period, and are

thus suitable for the calibration of acoustic instruments on

commercial fishing vessels. The acoustic data collected in this

study were not detected at the sea bottom because the area is

located in the deep sea. Hence, the living fish calibration method

was used for commercial echo sounder calibration.
FIGURE 3

The main architecture of the YOLO v5m model.
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The instrument calibration of the commercial echo sounder was

performed in a laboratory pool before the fishing vessel was put to

sea. The sphere calibration offset K0 was obtained in a standard

sphere calibration process. The formula for sphere calibration offset

is shown in Equation (7):

K0 = EL + 40 log (r) + 2ar − TS (7)

where r is the distance between the target and transducer; a is

the hydroacoustic absorption coefficient; TS is the target strength of

the calibration sphere; EL is the echo level (dB re 1mV) of the

calibration sphere on the beam axis. The YOLO v5 model was used

to detect single fish echo traces, and the max echo level values of the

echo trace in the bounding box were extracted for calculating the

on-axis measurement value (MV) (dB).MV is calculated according

to Equation (8):

MV = EL + 40 log (r) + 2ar − 2D (8)

where D is the directivity of the transducer. This study used a

single-beam transducer to measure the target echo level value.

When the target is directly below the transducer, D is 0, and the

target echo level value reaches the maximum at this time. The

prolate spheroidal model (PSM) was used to simulate the target

strength of the Pacific saury, and the catches caught during the

acoustic monitoring were sampled to obtain 100 fish from two

sampling sites. The total length and fork length of the Pacific saury

were measured on board. The correlation coefficient Asoft   was

calculated based on the swim bladder fish model, as shown in

Equation (9):

Asoft = 20 log (
F
2a

) + 20 log (
Lb
L
) − 40 (9)

where F is defined as the absolute value of the backscattering

amplitude from the fish in the far field region; a is half of the fork

length; Lb is the length of the swim bladder, and L is the fork length

of the fish. For the ratio of the length of the swim bladder to the fork

length of the fish in Equation (9), a typical value of 0.34 is assumed

based on the research of Furukawa (Furusawa, 1988). The TSmodel is

calculated based on Equation (9), as shown in Equation (10):

TSmodel = Asoft + 20 log (L) (10)

The living fish calibration offset K is obtained by subtracting the

in situ MV from the TSmodel , as shown in Equation (11):

K = MV − TSmodel (11)
3 Results

3.1 Pre-processing algorithm experiment

The raw acoustic data were collected over 7 d of fishing. During

the catching process, the number of Pacific sauries in the total catch

was highest, which shows that when fishing with the collector light,

the fish that rise to the sea surface are mainly saury; furthermore,

the fish that are attracted by the beam emitted by the transducer are

saury. An example original acoustic echogram obtained during the
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fishing process is shown in Figure 4. The fish gradually concentrated

within the water layer about 30 m from the sea surface when the fish

trap light was turned on. The echo data within 30 m intercepted

from Figure 4 are shown in Figure 5, where Figure 5A shows the fish

underwater during the search process. Figures 5B, C show the

underwater fish when the fish trap light is turned on. The fish

gradually gathered in the water layer around 20 m and formed a

dense cluster. Figure 5D shows the fish underwater during the

fishing process. The fish were mainly concentrated in the water

layer of 20–30 m depth, while the fish within 20 m were relatively

discrete. Many bubbles and noise signals were generated by the

fishing vessel in the above images, and reverberant signals were

generated by plankton, which is the main prey of the Pacific saury.

The acoustic echogram after pre-processing using the algorithm

and labeling is shown in Figure 6. The echograms of the echo trace

of Pacific saury were separated, and the noise and reverberation

generated by the plankton were removed. The depth and

morphology of fish could be seen more clearly in the echograms.

The isolated echo traces were boxed out using the red bounding

box. The parameters obtained from the measurements were used to

classify the echo trace as “0” for single fish, “1” for multiple fish, and

“2” for schools. The labeled results are located in the upper left

corner of the red bounding box.
3.2 Dataset construction

The pre-processed echograms are used as automatic recognition

model training dataset. The duration of each pre-processed

echogram was 30 min, and the depth of the echogram was 30 m.

According to the size of imported images (640*640*3), the resolution

in the vertical direction was 4.6 cm and the resolution in the

horizontal direction was 2.81 sec. Because the speed of the fishing

vessel was not constant during the fishing process, the horizontal

resolution of each data is different. See Appendix B for details. A total

of 91 echograms were finally available in the dataset. A total of

10,710 echo traces were extracted from the echograms, including

7,725 single-fish echo traces, 2,346 multiple-fish echo traces, and 639

echo traces of the school. The dataset was randomly divided into a

training set (85%), a validation set (5%), and a test set (15%).
FIGURE 4

Example of an original acoustic echogram associated with Pacific
saury during the search and catch period.
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3.3 Model training results

Table 2 presents the evaluation metrics of the observation used

to test the effectiveness of the trained model. The recall of the model

reached a maximum of 0.68 when the number of training epochs

was 211. The precision and mAP_0.5 reached maximum values of

0.79 and 0.71, respectively, when the number of epochs was 281.

The mAP_0.5:0.95 reached a maximum of 0.43 when the number of

epochs was 300. The curve of the F1-score related to the confidence

level is shown in Figure 7. The F1-score for all classes at a

confidence level of 45.4% reached a maximum value of 0.66. At a

confidence level of about 55%, the F1-score remained above 0.6,

then decreased rapidly until it reached zero. The echograms from

the test set were imported into the trained model. Detection results

are shown in Figure 8.
3.4 Calibration of the commercial
echo sounder

Figure 9 shows the in situ MV histograms for two sampling sites

with biological sampling. The maximum value of the in situ MV

observed on June 4, 2021, was 94.35 dB, and the minimum value

was 54.93 dB. The maximum value observed on July 5 was 95.58 dB,

and the minimum value was 55.13 dB. The difference between the

two maximum values was 1.23 dB, and the difference between the

two minimum values was 0.2 dB.

The average, standard deviation, maximum, and minimum

values of the measured body lengths of the Pacific saury samples

collected at the two stations are presented in Table 3. The histogram

of the TSmodel calculated from the measured body lengths is shown

in Figure 10. The in situ MVand TSmodel measurements are averaged

and differenced to obtain the value of living fish calibration offset K .
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The calculated living fish calibration parameters are shown

in Table 4.

The data in Table 4 show that the mean in situ MV measured on

Jun 4, 2021, was 70.48 dB and 73.85 dB on Jul 5, 2021. The mean

values of the correlation coefficients Asoft for the two sites measured

by the model method were -95.29 and -92.47, respectively, and the

calculated TSmodel values were -45.82 dB and -44.34 dB, respectively.

The living fish calibration offset K values were 116.30 dB and 118.19

dB, respectively. Compared with the K0 measured from the

standard sphere method calibration, the differences between K

and K0 were 1.35 dB and 0.54 dB, respectively.
4 Discussion

4.1 Automatic echo trace detection

In this study, no training set of echo traces was available to pre-

train the model. Therefore, a training set was created to train the

automatic detection model for subsequent automatic detection of

echo traces. The training set was created using the integral threshold

setting method, median filter, and open-close operation to remove

noise and reverberation from images. In the actual experiment,

the noise and reverberation that were present in the original

echograms (Figure 5) were removed. At the same time, the echo

traces of single fish, multiple fish, and schools of fish were retained

more completely (Figure 6). The method used in this study is

simpler than denoising using the dB difference method (Fernandes,

2009; Brautaset et al., 2020). The reason for its simplicity is the

overwhelming dominance of Pacific saury in the detected

echograms and the fact that the used instrument is a single-beam

with a single-frequency echo sounder.

The adopted YOLO v5 deep learning automatic detection

model has a maximum value of 0.71 for mAP at intersection over
FIGURE 5

Acoustic echograms associated with Pacific saury in the surface layer (5–30 m) during the searching the catching periods. (A) The swarm during the
searching process. (B) The swarm when the fish collector light was turned on. (C) The swarm after a period of illumination of the water surface by
the collector light. (D) The swarm during the catching process.
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union (IOU) thresholds (Redmon and Farhadi, 2018) of 0.5 and

0.43 at an IOU threshold of 0.5:0.95 after 300 rounds of training.

These values indicate that the prediction accuracy is low when the

set prediction box and the actual box have an overlap of 50–95%,

and most targets at the set prediction box and the actual box at 50%
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overlap are accurately predicted. The identification accuracy of the

model is higher for larger objects in the echogram and lower for

smaller objects in the echogram, which is also consistent with the F1

score curve for evaluating model performance (Figure 7). The

maximum F1 score of the trained automatic detection model is
TABLE 2 The main results of model training.

Parameter Precision (P) Recall (R) mAP_0.5 mAP_0.5:0.95

Result 0.79 0.68 0.71 0.43

Epoch 280 210 280 299
FIGURE 6

Results of echogram pre-processing and echo trace labeling. The figure panels of (A–D) correspond to the original echo images in Figure 5. The
small pink numbers represent single fish (“0”), multiple fish (“1”), and fish groups (“2”).
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0.66, which still represents a large advantage. The number of images

in the training set and the resolution of the images are essential

factors affecting the F1 score of the model (Chicco and Jurman,

2020; Jalal et al., 2020; Fourure et al., 2021). The single-beam
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echograms are sparse and contain less information in one echo

trace. Therefore, more samples are needed to improve the F1 score

of the trained model.

4.2 Calibration of the commercial
echo sounder

The measured in situ MV histogram curves were similar to

those obtained by Sawada et al. (Sawada et al., 2011) when

measuring the in situ target strength of Diaphus theta, in which

the distribution of the value at site Jul 5, 2021, had a larger interval

and a higher mean value than that at site Jun 04, 2021, and the

distribution at site Jun 04, 2021, was more concentrated. The

distribution of TSmodel measured from the fork length at the site

sampled by the PSM method was similar to the distribution of

measurement values obtained in situ. The distribution of TSmodel on

Jun 4, 2021, was mainly concentrated between -45 dB and -46.5 dB,

while the distribution on Jul 5, 2021, was in the range of -42 dB to

-47 dB, which is largely different from the in situ MV distribution

characteristics. The mean TSmodel at the two sites were -45.82 dB and

-44.34 dB, respectively, while the mean target strength of the Pacific
FIGURE 7

Curves of F1 scores related to the confidence level. The thinner
three lines indicate the F1 scores for each class. The thick line
indicates the F1 score for all classes.
FIGURE 8

Automatic annotation of test set echograms.
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saury calculated by PSM by Sawada et al. (Sawada et al., 2009) was

-39.9 dB. A gap exists between the target strength calculated by the

developed model and that calculated by Sawada et al. This may be

caused by the following reasons: First, Sawada et al. used fewer

samples for their calculations, all of which were based on “bird

sampled”. This makes the target strength value selective and leads to

a smaller interval distribution. Second, the frequency they used was

70 kHz, and the frequency used in the present study was 50 kHz.

The target strength values of fish were different at different

frequencies. In PSM calculations, the angle of inclination of the

swim bladder is another important factor that affects the target

strength value of fish. In this study, the typical swim bladder length

to fork length ratio was substituted into the PSM model for

calculations. The size of the swim bladder tilt angle was not

adequately considered. Measurements of the tilt angle distribution

of swim bladder are necessary in further studies.

The living fish calibration offset K calculated by in situ MV   and

TSmodel   for the two sites differed by 1.35 dB and 0.54 dB, respectively,

compared to the K0 calibrated in the laboratory using the standard

sphere method. According to the standard deviation threshold of 2 dB

given by the Biosonics instrument calibration manual (Biosonics, 2004),

the values obtained in the present study were within the standard range.

The shipboard commercial echo sounder can carry out scientific

acoustic survey work. As a rapid acoustic instrument performance

testing method, the living fish calibration method is also feasible to a

certain degree. The calibration method for rapid instrument

performance testing can efficiently obtain more accurate acoustic

survey data to expand the coverage area of fish resources. However,

compared to the calibration of acoustic instruments using the standard

calibration sphere method, there are still certain deviations, which

mostly originate from the swimming behavior of fish and physical

changes in the marine environment (Simmonds andMaclennan, 2008).

4.3 Fishing vessel acoustic monitoring

Commercial fishing vessels worldwide are commonly equipped

with echo sounders for vertical detection of underwater

information. However, current acoustic monitoring of fishery

resources still relies on research vessels. In most cases, the

underwater information detected by commercial echo sounders is

not collected and analyzed. The main reasons for this situation

include the absence of information such as geographic information

location and time series associated with the echo intensity level;

moreover, the echo sounders are often not calibrated when using

fishing vessels for acoustic monitoring (Haris et al., 2021). These

reasons result in the acoustic data collected by commercial fishing

vessels remaining unutilized, as these data cannot be applied to

classify fish species and assess resources.
FIGURE 9

Observed in situ MV histograms of Pacific saury from two sampling sites
(Jun 4, 2021, and Jul 5, 2021.) The solid blue line was sampled on Jun
4, 2021, and the dashed orange line was sampled on Jul 5, 2021.
TABLE 3 Average, standard deviation, maximum, and minimum fork
length of Pacific saury at two sampling sites, which had synchronized
acoustic data and biological sampling data.

Sampling sites

Jun 4, 2021 Jul 5, 2021

Number 50 50

Avg. (mm) 282.84 242.04

S.D. (mm) 8.01 30.92

Max (mm) 305 301

Min (mm) 267 192
FIGURE 10

The TSmodel of Pacific saury measured using the prolate spheroidal
model. The solid blue line was sampled on Jun 4, and the dashed
orange line was sampled on Jul 5.
TABLE 4 Mean values of in situ MV, TSmodel, Asoft, and K of the Pacific saury measured at two sampling sites on Jun 4 and Jul 5; the value of K0 is
measured from the standard sphere calibration process.

Sampling site MV  (dB) TSmodel(dB) Asoft K(dB) K0(dB)

Jun 4 70.48 -45.82 -95.29 116.30
117.65

Jul 5 73.85 -44.34 -92.47 118.19
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The most important work of this study was the combination of

the automatic detection model and the living fish calibration method

to propose an echo sounder calibration method that is suitable for

commercial fishing vessels. The developed method uses a deep

learning target recognition method (YOLO v5) to quickly identify

single fish echo traces in the echogram without the need to extract

feature parameters by a manual operation before identification.

Identification is based on the absolute dominance of the target fish

species in the fishing process. The ease of access to target biological

samples during fishing operations enables the measurement of model

target strength values in a short period of time using the PSMmethod.

The performance of the shipboard echo sounder is tested by

comparing it with the in situ measurement value and deriving the

offset of the acoustic data. The method can be used without impacting

fishing operations. The offset is removed in a subsequent pre-

processing step to make the data available for scientific research.

The single-beam acoustic data used in this study are commonly

available on commercial fishing vessels. The sparse nature of the

single-beam data enables the acquisition of more acoustic detection

areas with less storage space. The species classification results

obtained by identifying single-beam data can be used for resource

assessments and can aid fishing staff. For multi-species mixed

fisheries, the method still needs further verification. With the

development of fish detection technology, echo sounders equipped

with multi-beam and broadband transducers are gradually used on

fishing vessels. Of these, the broadband acoustic technique can obtain

continuous echo features over the entire frequency band range, obtain

a spectrogram of target echo intensity with frequency, and increase

the amount of information on an individual echo trace (Xue et al.,

2021). When using deep learning methods for target recognition, the

developed method increases the training accuracy of the model and

improves the success rate of target detection. Applying this method to

broadband acoustic data is an important direction for future research.
5 Conclusions

Fishing vessels equipped with echosounders provide unique

opportunities for the monitoring and assessment of fishery

resources. A key challenge in the use of echo data collected from

commercial echosounders is data calibration. This paper presents a

deep learning method for the automatic detection of single fish echo

traces. The results demonstrated that by combining the detected single

fish echo traces with fishing samples, the echo data could be calibrated

to a level similar to that of scientific echosounders, which aids scientific

interpretation of these data. However, the current calibration method

is still at a relatively moderate level, and traditional calibration with a

standard sphere should be conducted whenever an opportunity arises.
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Image-based machine learning methods are becoming among the most widely-

used forms of data analysis across science, technology, engineering, and

industry. These methods are powerful because they can rapidly and

automatically extract rich contextual and spatial information from images, a

process that has historically required a large amount of human labor. A wide

range of recent scientific applications have demonstrated the potential of these

methods to change how researchers study the ocean. However, despite their

promise, machine learning tools are still under-exploited in many domains

including species and environmental monitoring, biodiversity surveys, fisheries

abundance and size estimation, rare event and species detection, the study of

animal behavior, and citizen science. Our objective in this article is to provide an

approachable, end-to-end guide to help researchers apply image-based

machine learning methods effectively to their own research problems. Using a

case study, we describe how to prepare data, train and deploy models, and

overcome common issues that can cause models to underperform. Importantly,

we discuss how to diagnose problems that can cause poor model performance

on new imagery to build robust tools that can vastly accelerate data acquisition in

the marine realm. Code to perform analyses is provided at https://github.com/

heinsense2/AIO_CaseStudy.

KEYWORDS

machine learning, image analysis, deep neural network, underwater imagery, computer
vision, artificial intelligence, distribution shift
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1 Introduction

Imagery from the ocean has long been used to survey marine

environments, quantify physical conditions, and monitor the

inhabitants of marine ecosystems (Longley and Martin, 1927;

Drew, 1977; Beijbom et al., 2015; Lombard et al., 2019; Marochov

et al., 2021). This reliance on imagery as a means of extracting data

from marine systems has only grown with the increasing

accessibility of satellite imagery and the decreasing cost and

increasing quality of imaging systems that can be deployed

directly in the field (Durden et al., 2016; Williams et al., 2019;

Bamford et al., 2020; Rodriguez-Ramirez et al., 2020). Yet visual

data bring with them some unique challenges. Images and video are

expensive to process due in part to the fact that imagery is

inherently high-dimensional; for example, a single grayscale

image of one-megapixel resolution, a coarse image by modern

standards, is a 220-dimensional data object. Researchers who

collect imagery in the course of their work often return from field

campaigns with terabytes to petabytes of such high-dimensional

imagery that must then be processed (Schoening et al., 2018).

The role of image analysis (see Table 1 for glossary of bolded

terms) is to compress high-dimensional visual data into much

lower-dimensional summaries relevant to a particular task or

study objective. As humans, we perform this type of visual data

compression naturally (Marr, 1982). We look at an image and with

proper training, can classify what is present in the image, localize

and count distinct objects, and partition the image into regions of

one type or another. The objective of image-based machine
learning (ML), a subfield of computer vision, is to train computer

algorithms to perform these same tasks with a high level of

accuracy. Doing so can tremendously accelerate image processing

and greatly reduce its cost (Norouzzadeh et al., 2018), while also

providing an explicit, standardized, and reproducible workflow that

can be shared easily among researchers and applied to new

problems (Goodwin et al., 2021; Katija et al., 2022). Despite the

promise of these methods, the expertise required to apply, adapt,

and troubleshoot ML methods using the kinds of image datasets

marine scientists collect still creates a high barrier to entry (Crosby

et al., 2023).

A number of recent articles provide overviews of how modern

image-based machine learning methods work and how these

methods have been applied to problems in marine science (e.g.,

Michaels et al., 2019; Goodwin et al., 2021; Li et al., 2022). Here, we

focus on the practical problem of how to implement image-based

ML pipelines on real imagery from the field. The remainder of this

paper is structured as a sequence of steps involved in defining an

analytical task to be solved, preparing training data, training and

evaluating models, deploying models on new data, and diagnosing

and fixing performance issues. To provide concreteness, we present

a running case study: object detection of marine species using

imagery and software tools from the open source FathomNet

database and interface (Katija et al., 2022). We use this case study

to demonstrate each phase of constructing and troubleshooting a

ML pipeline, and we provide code and guidelines needed to
Frontiers in Marine Science 02353
reproduce each step in a github repository: https://github.com/

heinsense2/AIO_CaseStudy.
1.1 Building and using a machine learning
pipeline

Researchers often have a clear idea of how they want to use the

data extracted from imagery. This idea forms the starting point for

designing amachine learning pipeline to automatically extract data

from imagery. Building a machine learning pipeline to solve image

analysis tasks involves a series of steps:

1.1.1 Define an analytical task
This step requires working to define the objective of image

analysis and the target metrics to be extracted from imagery. The

type of imagery to be analyzed should be specified. This step may

also involve defining performance criteria and setting benchmarks

for acceptable performance.

1.1.2 Generate and organize training
and testing datasets

This step involves developing and organizing image libraries for

training, testing, and deploying models. This involves both

organizing imagery with appropriate file structure and, very often,

hand-labeling ground truth data to be used to train and test models.

This step requires software tools that allow a researcher to organize

images and to label, or annotate, imagery so it can be later used to

train and test machine learning models.

1.1.3 Select and train appropriate machine
learning models

This step requires identifying a machine learning model

architecture capable of performing the desired image analysis

task, as well as software and hardware implementations capable

of training and deploying the model to perform inference on

new imagery.
1.1.4 Evaluate model performance
This step involves summarizing and visualizing model

predictions and performance measures, and often comparing

these measures across alternative model architectures or

training schedules.
1.1.5 Diagnose performance issues and apply
interventions to improve performance

This step involves applying a trained model to new imagery and

re-evaluating its performance. If performance is below target levels,

it may be necessary to modify training methods, datasets, or model

architecture to improve performance.

In the following sections, we walk through each of these steps to

illustrate how each is accomplished, and how the steps combine to

produce an adaptable pipeline with robust performance.
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TABLE 1 Glossary of terms relevant to image-based machine learning.

Term Definition

Image
analysis

The process of extracting task-relevant information from imagery.

Machine
learning

A body of mathematical and computational methods for extracting information from data to make predictions.

Machine
learning
pipeline

A computer program or set of programs that reads in training data, specifies and trains a ML model, produces model predictions, and provides
performance metrics.

Image
annotation

Process of generating ground truth labels for images, which are typically used to train ML models or evaluate performance.

Ground truth A verified record, often produced by a human annotator, that describes what is contained within the image. Sometimes also called an annotation, or
label.

Image
classification

A task in which a whole image is assigned a class from a list of valid classes.

Object
detection

A task in which objects within a set of classes of interest are detected and localized within an image, typically either within a bounding box, or polygon
region. Many object detection methods also classify objects.

Instance
segmentation

A task in which individual instances of objects in a class or classes of interest are localized within an image. Sometimes used synonymously with object
detection, when objects are localized within polygons rather than bounding boxes.

Semantic
segmentation

A task in which all individual pixels in an image are assigned to a class, but individual instances of objects are not specified.

Supervised
learning

A type of machine learning that involves training a model with example input-output pairs.

Panoptic
labels

A type of annotation that assigns a class to each pixel in an image and delineates the borders of instances of distinct objects of interest.

Few-shot
learning

Machine learning methods designed to achieve good performance by training on few examples.

Deep neural
network
(DNN)

A machine learning method based on networks of interconnected computing nodes called “neurons.” DNNs take data as input, process the data through
one or more sequential layers of processing known as “hidden layers,” and return predictions about the image.

Classification
accuracy

Fraction of class predictions that are correct: (true positives + true negatives)/total number of predictions.

Precision The fraction of positive class predictions that are correct: true positives/total predicted positives.

Recall The fraction of positives present in the dataset that are correctly predicted by a model:
true positives/total positives present in dataset. Sometimes referred to as sensitivity.

F1 score A performance measure that incorporates both precision and recall: 2 (precision x recall)/(precision + recall).

Intersection-
over-union
(IoU)

A measure of spatial localization performance used in object detection and instance segmentation. IoU measures the number of pixels contained within
both the predicted instance location and the ground truth (“intersection” between the two areas), divided by the total number of unique pixels contained
within the predicted instance location, and ground truth (“union” of the two areas).

Mean
average
precision
(mAP)

An average measure of classifier performance when bounding boxes or object instances are classified. Incorporates precision, recall, and IoU.

k-fold cross
validation

A type of model evaluation in which training, validation, and test data are partitioned into k different splits, and performance measures are evaluated on
each split.

Distribution
shift

Systematic differences in image statistics, scene complexity, class identities and distributions, and other relevant features between a training set and a new
dataset to which a model is to be applied.

Image
augmentation

The process of applying random digital alterations to training imagery during the training process to improve model generalization.

Image
resolution

The resolution of the image in pixels. Many ML pipelines reduce image resolution by default to save memory and reduce training and deployment times.

(Continued)
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2 Defining an image analysis task

2.1 Overview

Defining the image analysis task to be solved is the first step in

any machine learning pipeline. Is the goal to assign an image to one

class or another – for example, to decide whether a particular

species is or is not present or a particular environmental condition

is or is not met? Or is the aim instead to identify and count objects

of interest – for example, to find all crustaceans in an image and

identify them to genus? Or is the objective to divide regions of the

image into distinct types and quantify the prevalence of those types

– for example, to partition the fraction of a benthic image occupied

by different algae or coral morphotypes? The answers to these

questions determine how one proceeds with gathering appropriate

labeled data, selecting and training a model, and deploying that

model on new data.
2.2 Technical considerations

Many of the traditional problems marine scientists currently

use imagery to address fall into one of three categories: image

classification, object detection, or semantic segmentation. More

complex tasks such as tracking (Katija et al., 2021; Irisson et al.,

2022), functional trait analysis (Orenstein et al., 2022), pose

estimation (Graving et al., 2019), and automated measurements

(Fernandes et al., 2020) often rely on these more basic tasks as

building blocks.

In image classification problems, a computer program is

presented with an image and asked to assign the image to one of

a set of classes. Classes could be defined based on the presence or

absence of particular objects (e.g., shark present or shark absent;

Sharma et al., 2018), or represent a set of categories to which the

image must be assigned, for example on the basis of what kind of

animal is present in the image (Piechaud et al., 2019) or what type of

habitat is represented in the image (Jackett et al., 2023). An

important distinction between whole-image classification and

other common image analysis tasks is that in image classification,

classes are assigned at the scale of the entire image (Chapelle et al.,

1999; Fei-Fei et al., 2004). Thus, objects of interest are not spatially

localized within the image, nor does the model provide information

on the properties of individual pixels or spatial regions within the

image. Whole image classification is appropriate for some tasks,
Frontiers in Marine Science 04355
such as simply detecting the presence or absence of a particular

species of interest or environmental condition, but is less

appropriate for others, for example, counting individuals of a

particular species when multiple individuals can occur within a

single image (Beery et al., 2021). Nevertheless, this task remains

relevant in many automated image analysis problems (Qin et al.,

2016; Villon et al., 2021; Kyathanahally et al., 2022) and is the

approach of choice for certain types of marine microscopy data

where images are typically stored as extracted region of interest

(e.g., Luo et al., 2018; Ellen et al., 2019).

A second common task involves detecting and spatially

localizing objects of interest within images, a task known as

object detection or instance segmentation. Separating instances of

the same type of object (e.g., there are nine fish identified as Atlantic

cod in this image) in a given image is often crucial if imagery is

being used to estimate abundances (Moeller et al., 2018), and most

object detection pipelines can also be trained to detect objects of

many different classes, which is valuable for analyzing images that

contain multiple objects of interest that belong to different classes

(see Scoulding et al., 2022 for a discussion of limitations at

high density).

A third task, known as semantic segmentation, involves

assigning a class to each pixel in an image. Semantic

segmentation differs from object detection in that one is not

interested in detecting and discriminating instances of a

particular class, but rather in determining the class membership

of each pixel in an image. This can be useful for tasks such as

estimating the percent cover of algae, corals, or other benthic

substrate types (e.g., Beijbom et al., 2015; Williams et al., 2019). If

images are collected in a controlled and standardized way, the

percentage of each image occupied by different species or classes of

object can be estimated by the relative abundance of pixels assigned

to each class.

Image-based ML tools have also been used for a variety of

applications beyond the three tasks described above. Examples

include “structure-from-motion” studies, in which the three-

dimensional structure of objects are inferred and reconstructed

from a sequence of images taken from different locations in the

environment (Francisco et al., 2020), animal tracking and visual

field reconstruction (Hein et al., 2018; Fahimipour et al., 2023),

quantitative measurement and size estimation (Fernandes et al.,

2020), animal postural analysis (Graving et al., 2019), and re-

identification of individual animals in new images based on a set

of previous observations (Nepovinnykh et al., 2020).
TABLE 1 Continued

Term Definition

Background
imagery

Images that do not contain classes of interest.

Class
coarsening

The process of lowering the resolution of classes by grouping several fine classes (e.g., species A, B, C, and D) into coarser classes (e.g., genus 1, genus 2).
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2.3 Case study: species detection
and classification from benthic and
midwater imagery

To provide a concrete example, we consider an object detection

and classification task that seeks to localize and identify marine

animals in deep-sea imagery collected from the Eastern Pacific

within the Monterey Bay and surrounding regions. Images were

collected by the Monterey Bay Aquarium Research Institute

(MBARI) during Remotely Operated Vehicle (ROV) surveys

conducted between 1989 and 2021 (Robison et al., 2017), and are

housed in the open-source FathomNet database (FathomNet.org;

Katija et al., 2022). We focus on six common biological taxa that are

observed broadly across the sampling domain, at a range of depths,

and over several decades of sampling (Figure 1. shows iconic image

of each class): the fish genera Sebastes (Rockfish) and Sebastolobus

(Thornyheads), and the squid species Dosidicus gigas (Humboldt

squid), Chiroteuthis calyx (swordtail squid), Gonatus onyx (black-

eyed squid), and the siphonophore, Nanomia bijuga. Although

classes of interest are sometimes clearly visible in images as

shown in Figure 1, FathomNet contains many images with small

subjects, complex visual backgrounds, heterogeneous lighting, and a

host of other challenging visual conditions (Figure 2) that are

ubiquitous in marine science applications.

We selected the six classes shown in Figures 1, 2 from the much

larger set of classes available in FathomNet based on three criteria:

(i) hundreds to thousands of human-generated labels were available

for each class providing us with a sufficient number of labeled

instances to explore performance of ML models under different

partitions of the data, (ii) images of these classes were collected over

a relatively broad spatial region and/or depth range compared to

many other classes in FathomNet, allowing us to compare

performance across spatial partitions of the data, and (iii) images

of these classes were collected over many years, allowing us to

partition the dataset temporally. Because searchable metadata,

including depth and collection date, are included with the images

in FathomNet, we were able to quickly create these partitions. As

described in “Diagnosing and Improving Model Performance on

New Data” below, we use these spatial and temporal partitions of

the data to illustrate how ML models can fail when applied to new

data, and how to diagnose and address such performance issues. We

will return to this case study at the end of each section to provide a

concrete example of each step involved in constructing and

evaluating a machine learning pipeline.
3 Labeled imagery for training and
evaluating models

3.1 Overview

The image-based ML methods that are currently most widely

applied for marine science applications are based on supervised
learning (Cunningham et al., 2008; Goodfellow et al., 2016). In

supervised learning problems, the user provides a training dataset in
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which the desired output corresponding to a given input is specified

for a set of examples. For object detection and classification

problems, training data typically consist of a set of images (the

image set) in which objects of interest are localized and identified by

a human annotator. Labels (also sometimes referred to as “ground

truths” or “annotations”) are standardized records of identity and,

in some cases, spatial information describing what is contained

within the image.

To train a supervised ML pipeline to perform image analysis

automatically, one needs a suitable training dataset consisting of

images and corresponding labels. A researcher has two choices for

acquiring labeled data: manually create a set of labels to be used for

training, or use images and labels from a pre-existing database

(Table 2). At present, the number of publicly available annotated

datasets containing marine imagery is relatively small, and the size

and spatial, temporal, and taxonomic coverage of these datasets is

still rather limited. In practice, this means that researchers typically

need to create a new training dataset of annotated imagery de novo.

This custom training set can then be used as a stand-alone training

set or combined with images and labels from existing databases to

fully train a ML model to carry out a specified task (Knausgård

et al., 2021).
3.2 Technical considerations

When building and working with training datasets, there are

several issues a researcher should consider that can help determine

which software tools are most useful, and how to best structure the

labeling process to solve the desired image analysis task.

3.2 1 Label types
The most common method for creating new labels involves

manual labeling of imagery (Mahajan et al., 2018; see Ji et al., 2019

for discussion of unsupervised methods). The type of label used

depends on several considerations. The first consideration is the

type of image analysis task that will allow the researcher to access

the information they want to extract from the imagery (see

“Defining the image analysis task” above).

If the objective is image classification, then labels consist of a

class label assigned to each image in the training set (Figure 3A). For

example, suppose the objective is to take in new images and to

determine which images contain a target species and which do not.

An appropriate training dataset would consist of a set of

representative images from sampling cameras, each of which

would be labeled by a human annotator as containing or not

containing the target species.

If the objective of image analysis is to localize and classify objects

within an image, then manually generated labels must contain

information about the locations and classes of objects of interest

within an image. The most commonly used labeling formats for

object detection are bounding box labels and polygon labels

(Figures 3B, C). Bounding boxes are rectangular regions that

enclose each object of interest and carry the appropriate class ID

for the object (Figure 3B). Polygon labels, sometimes also referred to
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as “masks,” are enclosing polygons that outline an object of interest

(Figure 3C). These too are associated with the class label of the object.

If the objective of image analysis is to assign the pixels in an

image to distinct classes (i.e., semantic segmentation), for example

to compute the fraction of the region captured in an image

composed of different types of benthic cover, then labels must

assign the pixels in an image to distinct classes (Figure 3D). This is
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typically done within labeling software by manually selecting the

borders of local regions within the image and assigning a class to

these regions. Some semi-automated “assisted methods” have been

developed to aid in semantic labeling of images (e.g., Uijlings et al.,

2020, “magic wand” tool in BIIGLE, Langenkämper et al., 2017).

Machine learning-based computer vision libraries such as

Detectron 2 (Wu et al., 2019) and Deeplab v3+ (Chen et al., 2018)
FIGURE 1

Focal species included in case study (iconic images). Focal species included fish in the genera Sebastolobus (A) and Sebastes (B), squid species
Gonatus onyx (C) Chiroteuthis calyx (D), and Dosidicus gigas (E). Panel (F) shows an image of the siphonophore, Nanomia bijuga, alongside a
juvenile C. calyx (F, lower organism in image), which are believed to visually and behaviorally mimic N. bijuga (Burford et al., 2015). Images in panels
(A-F) were selected for clarity and subjects are enlarged for visualization. (Figure 2) shows focal species in images that are more representative of
typical images in FathomNet.
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contain models that operate on an additional type of label referred to as

a panoptic label. Panoptic labels include both class assignments for

each pixel within an image and instance labels, so that the distinct

pixels belonging to an individual instance of an object, for example, an

individual squid, are grouped together (Figure 3D). We are not aware

of past studies in marine science that have made use of panoptic labels,

however, this type of labeling and segmentation could be useful in cases

where a researcher wants to simultaneously characterize foreground

objects of interest and background or substrate conditions.
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3.2.2 Labeled data file formats
A variety of formats exist for storing manually generated labels.

Unfortunately, there has been little standardization of the file formats

used to encode labels of marine imagery, nor have researchers included

consistent metadata within these files (Howell et al., 2019; Schoening

et al., 2022). When creating new labels, we recommend choosing from

among several formats that are most widely used in the computer

vision community. These include YOLO text files, Pascal VOC XML

files, and COCO (“common objects in context”, https://
FIGURE 2

Typical images from FathomNet containing focal species. Focal species from Figure 1 shown in the context of more typical images from FathomNet.
The focal class present in each image is noted in the upper right corner. Note complex and variable visual conditions, small size of objects of
interest, clutter, and complex backgrounds. These conditions are typical in marine imagery collected for scientific sampling purposes.
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cocodataset.org/) Java Script Object Notation (JSON) formats. Pascal

VOC and COCO formats both allow for convenient storage of

metadata, making them attractive options.
3.2.3 Software for manually labeling imagery
A web search for the term “image labeling” will return many

graphical user interface-based software tools designed to help users

perform manual image labeling. In our experience, many of these

tools work reliably, and are easy for human annotators to learn to

use. Some widely-used, free labeling tools are CVAT (https://

cvat.org), VGG Image Annotator (https://www.robots.ox.ac.uk/
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~vgg/software/via/), and Annotator J (https://biii.eu/annotatorj).

Tools developed specifically for use in marine environments

include BIIGLE (Langenkämper et al., 2017), VIAME (Richards

et al., 2019), and EcoTaxa (Picheral et al., 2017; see Gomes-Pereira

et al., 2016 for a review). These software tools are typically intuitive

to use, but different tools have different capabilities that are

important to understand when deciding which package to use for

a given project. When selecting a software tool, there are four issues

we suggest considering: (i) the speed and ease with which images

can be loaded, labeled, and the labels exported; (ii) features the

labeling tool offers such as convenient batch loading of images,

zooming in and out, rotating images, assisted labeling, etc.; (iii) the
TABLE 2 Publicly available databases containing annotated images from marine environments.

Dataset Name Subject

Approx.
label
count Label type

Label
file
type

Geographic
location

Published
reference URL

Save the Turtles Turtles 2,000 Bounding box .txt Global NA 1

OzFish Fish 45,000 Bounding box .json Australia
doi: 10.25845/
5e28f062c5097 2

Labeled fish in the wild Fish 1,000 Bounding box .dat California
doi: 10.1109/
WACVW.2015.11 3

Fathomnet
Marine organisms and
objects 75,000 Bounding box .json Global

doi: 10.1038/s41598-
022-19939-2 4

SUIM (Semantic Segmentation of
Underwater Imagery)

Marine organisms and
objects 1,500

Semantic
segmentation .bmp Global arXiv: 2004.01241 5

Fish-Pak Fish 900 Whole image NA Pakistan
doi: 10.17632/
n3ydw29sbz.3 6

Nature Conservancy Fisheries
Monitoring Fish aboard boats 8,000 Whole image NA Global NA 7

CoralNet Coral 94,000,000
Semantic
segmentation NA Global NA 8

LifeCLEF-16 Fish Dataset Fish 9,000 Bounding box .xml Global
doi: 10.1007/978-3-
319-44564-9_26 9

Trash-ICRA19: A Bounding Box
Labeled
Dataset of Underwater Trash

Marine robotics, debris,
fauna 5,500 Bounding box .json Sea of Japan

doi: 10.1109/
ICRA.2019.8793975 10

TrashCan 1.0: An Instance-
Segmentation
Labeled Dataset of Trash
Observations

Marine robotics, debris,
fauna 7,000

Instance
segmentation .json Sea of Japan arXiv: 2007.08097 11

Woods Hole Plankton Dataset Marine plankton 3,500,000 Whole image NA
Woods Hole
Harbor

doi: 10.4319/
lom.2007.5.204 12

Moorea labeled corals (MCL) Corals and non-corals 400,000
Semantic
segmentation NA Mo’orea

doi: 10.1109/
CVPR.2012.6247798 13

RSMAS + EILAT Corals 2,000 Whole image NA Red Sea
doi: 10.17632/
86y667257h.2 14

ZooScan Marine zooplankton 19,000 Whole image NA France
doi: 10.1093/plankt/
fbp124 15

Kaggle Plankton Data Marine plankton NA Whole image NA
Hatfield Marine
Science Center NA 16

Wildfish Fish 55,000 Whole image NA Global
doi: 10.1145/
3240508.3240616 17

(Continued)
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label types the software allows (i.e., whole image labeling, bounding

box labels, polygon labels, semantic labels, panoptic labels); and (iv)

and labeled data file formats the software is capable of importing

and exporting (e.g., Pascal VOC XML, COCO JSON).

3.2.4 Publicly available databases of annotated
imagery from the field

In the computer vision literature, large, publicly available

labeled image datasets such as ImageNet (14.2 million images;

Russakovsky et al., 2015) and COCO (over 320,000 images; Lin

et al., 2014) have been pivotal in driving the development of image-

based ML methods. These datasets provide researchers with a

source of data for quickly testing new model architectures, and

for benchmarking and comparing new models using the same data

sources. However, perhaps not surprisingly, these datasets contain

relatively few images and label classes that are directly relevant to

the use cases of interest to most marine scientists (Qin et al., 2016).

Over the past decade, a number of curated open source databases
Frontiers in Marine Science 09360
containing labeled imagery from marine environments have begun

to come online. The largest and most thoroughly curated of these

are listed in Table 2. Depending on the specific problem a researcher

is interested in addressing, these datasets may provide useful

resources for model pre-training (Salman et al., 2016; Orenstein

and Beijbom, 2017; Knausgård et al., 2021; Li et al., 2022), or if

classes of interest are contained within one or more of these

datasets, they may contain sufficient examples to train an initial

model that can be deployed on new imagery and fine-tuned with

new labels if needed.

3.2.5 Size of training set and balance among
classes

An obvious question that arises when creating a training dataset

is the question of how many images are required to achieve a

desired level of performance. Several recent studies have sought to

address this question for the tasks of instance segmentation (Ditria

et al., 2020) and whole image classification (Piechaud et al., 2019;
TABLE 2 Continued

Dataset Name Subject

Approx.
label
count Label type

Label
file
type

Geographic
location

Published
reference URL

Labeled fishes in the wild Fish 1,000 Bounding box NA
Southern California
Bight

doi: 10.1109/
WACVW.2015.11 18

DIDSON Imaging Sonar fish dataset Fish 1,500 Whole image NA
Ocqueoc River,
Michigan, USA

doi: 10.1038/
sdata.2018.190 19

OBSEA EMSO Fish, underwater scenes 1,200 Whole image NA
OBSEA-EMSO
testing-site

doi: 10.1038/s41598-
018-32089-8 20

FishCLEF-2015 Fish 14,000
Semantic
segmentation .xml NA

doi: 10.1007/978-3-
319-24027-5_46 21

UNICT Underwater Background Underwater scenes 3,500
Semantic
segmentation .xml NA

doi: 10.1016/
j.cviu.2013.12.003 22

SeaCLEF-17 Dataset Fish, marine animals NA Whole image .xml Taiwan NA 23

Japan E-Library of Deep Sea Images
Organisms, geologic
features, debris NA Whole image NA

Deep-sea
environments NA 24
frontier
1. https://www.kaggle.com/datasets/smaranjitghose/sea-turtle-face-detection?msclkid=2540da87b6dd11eca46690336c5e94aa
2. https://github.com/open-AIMS/ozfish
3. https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/
4. https://fathomnet.org/
5. https://github.com/xahidbuffon/SUIM
6. https://data.mendeley.com/datasets/n3ydw29sbz/3
7. https://www.kaggle.com/competitions/the-nature-conservancy-fisheries-monitoring/data
8. https://coralnet.ucsd.edu
9. https://www.imageclef.org/lifeclef/2015/fish
10. https://doi.org/10.13020/x0qn-y082
11. https://doi.org/10.13020/g1gx-y834
12. https://hdl.handle.net/10.1575/1912/7341, https://doi.org/10.4319/lom.2007.5.204
13. https://doi.org/10.1109/CVPR.2012.6247798
14. https://doi.org./10.17632/86y667257h.2
15. https://www.seanoe.org/data/00446/55741/
16. https://www.kaggle.com/c/datasciencebowl
17. https://github.com/PeiqinZhuang/WildFish
18. https://www.st.nmfs.noaa.gov/aiasi/DataSets.html
19. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6176783/
20. https://www.nature.com/articles/s41598-018-32089-8
21. https://link.springer.com/chapter/10.1007/978-3-319-24027-5_46
22. https://tinyurl.com/UNICT-Underwater-Bkg-Modeling
23. https://www.imageclef.org/lifeclef/2017/sea
24. https://www.godac.jamstec.go.jp/jedi/e/index.html
Cells labeled "NA" (not applicable) are not applicable to the corresponding dataset.Note that some databases are actively curated and updated over time. Image and label counts are approximate
and current as of October, 2022.
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Villon et al., 2021). In these studies, performance metrics often

begin to saturate at around 1,000 and 2,000 labels of a given class,

beyond which point adding additional labeled data results in

diminishing gains in performance. This saturation of performance

around roughly 1,000 labeled instances per class is also consistent

with other analyses of ML model performance on field imagery

(e.g., Schneider et al., 2020 but see Durden et al., 2021). While the

precise number of labels required to provide a desired level of

performance is unlikely to follow a hard and fast rule, such numbers

do provide ballpark estimates of the number of labeled instances per

class one ought to have before expecting high performance from a

ML model. It is worth noting, however, that many studies that

report saturating performance as label count increases compute

these metrics on test sets selected at random from the overall set of

images used to train, test, and validate models (e.g., Ditria et al.,

2020; Villon et al., 2021). As we will show later, the method of test

set construction can have a major impact on measurements of

model performance.

In practice, when constructing training sets, several factors are

likely to influence the number of training labels available for each

class. The first is the time and cost required to manually generate

labels. Whole image classification by humans can be reasonably fast

(e.g., 5 seconds per image, Villon et al., 2018); instance

segmentation tends to be slower (e.g., 13.5 sec per image, Ditria

et al., 2020); and more elaborate labeling such as panoptic is slower

still (e.g., up to 20 minutes per image, Uijlings et al., 2020). How

much time and money might it cost to create a labeled dataset?

Assuming the per-image human instance labeling rate reported by

Ditria et al. (2020), it would take 3.75 hours to label 1,000 images of

a single class, which is not insignificant if objects of many different

classes must be labeled. Katija et al. (2022) performed a more
Frontiers in Marine Science 10361
detailed valuation of the data contained within the initial release of

FathomNet and estimated the initially uploaded dataset consisting

of approximately 66,000 images to have taken over 2,000 hours of

expert annotation time at a cost of roughly $165,000 for the labeling

effort alone.

A second factor that influences the size of image datasets has to

do with limited availability of images of rare classes. Even relatively

large annotated image databases from the field typically contain

many classes that are represented by far fewer than 1,000 instances

(Schneider et al., 2020). Given the highly skewed distribution of

species abundances documented in ecosystems around the world

(McGill et al., 2007), it is simply expected that few species will be

common, and most species will be far rarer. This distribution of

species abundances is likely to result in image sets that contain

relatively few training images of most species (Villon et al., 2021).

When this is the case, using training routines (e.g., weighted

penalization of errors, Schneider et al., 2020; hard negative

mining, Walker and Orenstein, 2021) and ML pipelines that

enhance performance on rare classes may be the only option. As

an example of the latter, Villon et al. (2021) recently showed that,

few-shot learning models can begin to saturate performance with

tens of training examples per class rather than the thousand or more

required by more conventional ML models. For this reason,

development of few-shot learning methods is likely to be an

important area of research in the coming years.

3.2.6 Scope of training imagery versus
deployment imagery

One common source of underperformance of machine learning

methods on new imagery can be traced to the range of conditions

and class distributions present in the training set relative to new
FIGURE 3

Examples of different label types. (A) Whole image labels assign a class to the entire image, in this case the squid species that occurs in the image.
(B) Bounding box labels bound objects of interest within boxes and assign a class to each box. (C) Polygon labels bound each object of interest with
a polygon and assign a class to each polygon. (D) Semantic segmentation assigns a class to each pixel in an image, in this case, pixels are labeled
either “C. calyx” or “Open water” classes. In panoptic segmentation, pixels are assigned a class, and pixels belonging to the same instance of a given
class are grouped together. Here, pixels assigned to the C. calyx class would be grouped into a single instance.
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datasets on which the model is to be used. A good rule of thumb is

to try to create a training dataset that spans the range of conditions

you expect to sample when deploying the model on new imagery.

For example, if you plan to use an image classifier on shallow water

imagery collected from 30 distinct sampling locations across the

daylight cycle, to the extent possible, train on imagery that contains

the spatial and temporal variation inherent in this target use case.

This does not necessarily mean labeling more imagery, but rather,

labeling images that span the range of conditions expected when the

model is applied to new image data. González et al. (2017) provide a

detailed discussion of strategies for building a training and

validation routines that yields reliable estimates of the future

performance of a trained ML pipeline.
3.3 Case study: bounding box data from
the FathomNet database with species- and
genus-level class labels

As described above, our case study focused on six biological taxa

detected in imagery collected in the Monterey Bay and surrounding

regions of the coastal eastern Pacific. Images and corresponding

labels for the classes used in our case study can be downloaded

programmatically from FathomNet. Labels are downloadable from

FathomNet in the widely-used COCO JSON format, which includes

object bounding box instances corresponding to each image, along

with their classes, and metadata associated with each image.

Because we wished to apply a ML model called YOLO that does

not accept COCO JSON as an input format, we had to convert

labeled data to an admissible input format and create the necessary

directory structure. Code to download and convert images and

organize directories is provided at https://github.com/

heinsense2/AIO_CaseStudy.
4 Selecting and training a machine
learning model

4.1 Overview

After specifying an image analysis task and building a training

dataset, the next step is identifying a particular machine learning

model to train and test. Here, we are focused primarily on modern

computer vision methods for automated analysis, many of which

rely on deep learning – learning algorithms that involve the use of

deep neural networks (DNNs). Deep learning is a form of

representation learning, in which the objective is not only to use

input data (e.g., an image) to make predictions (e.g., the class to

which the image belongs), but also to discover efficient ways to

represent the input data that make it easier to make accurate

predictions (Bengio et al., 2013). Deep learning models are

representation learning algorithms that teach themselves which

features of an image are important for making predictions about

the image. By training on a set of labeled images, these algorithms
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learn a mapping between raw pixel values and the desired output

based on these features.
4.2 Technical considerations

Foundational work in deep learning demonstrated that

networks that are good at representing features useful for

prediction often share common structural features (LeCun et al.,

2015), and this idea has fueled the use of deep neural networks with

convolutional structure (Convolutional Neural Networks or

CNNs), network pre-training, and other practices that help

ensure that networks can quickly be trained to perform a target

task on a new dataset, rather than having to be fully re-designed and

trained de novo for each new application.

4.2.1 Selecting a machine learning model
The field of DNN-based models capable of performing image

classification, object detection, and semantic segmentation is

enormous, and expanding by the day. Table 3 provides a list of

models that have shown promising results on imagery collected

from either marine environments, or terrestrial environments that

present similar challenges to those frequently encountered in

marine environments (e.g., complex backgrounds, heterogeneous

lighting, variable image quality, etc.) that is up to date as of this

publication. Benchmarking sites (e.g., https://paperswithcode.com/

sota/object-detection-on-coco) are another useful resources for

tracking the most recent high-performing models on standard

computer vision tasks.

In a practical sense, choosing which ML model to use in any

particular setting involves first determining which models can

perform the target task (e.g., whole image classification vs. semantic

segmentation). For any given target task, there will be many available

models to choose from. We recommend researchers consider three

things when choosing from among these models: (i) have previous

studies evaluated and compared model performance? Has any study

been done that applied a particular model in a similar setting with

favorable performance? (ii) Is open-source code or a GUI-based

implementation of the model available? If so, how easy does it appear

to be to implement? Is it compatible with the computational

hardware you have available? (iii) How many additional packages,

software updates, and other back-end steps are required to be able to

train and deploy a given model using new data? In our experience,

perhaps the major hurdle associated with applying any given ML

model to a new dataset is the time required to configure the software

and system specifications necessary to run the model code. This

“implementation effort” may ultimately dictate which model an end

user ultimately selects. If a givenMLmodel has been shown to exhibit

good performance, but implementing that model requires significant

knowledge of command-line interfaces, software package installers or

dependencies, virtual environment management, hardware

compatibility, or GPU programming, it may simply require too

much invested time at the outset to be a viable option for

most researchers.
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4.2.2 Hardware implementation: CPU vs. GPU,
local vs. cloud

Another decision a user must make when implementing ML

pipelines is whether to run the computations involved in training,

testing, and deploying the model on a computer’s central processing

unit (CPU) or on the computer’s graphics processing unit (GPU).

Among the technological developments that enabled widespread

use of DNN models is software and hardware innovations that

allow these models to be trained rapidly and in parallel using GPUs.

The technical details of ML implementations on these two distinct

types of hardware are discussed in Goodfellow et al. (2016) and

Buber and Diri (2018). The advantage of training using a CPU is

that any computer can, in principle, be used to perform training

without the need for specialized hardware that some computers

have and others lack. The disadvantage is that, in the absence of

custom parallelization, training a DNN model of any depth using

CPUs can be prohibitively slow. Fortunately, many consumer-grade

workstations now ship with GPUs that are compatible with deep

learning frameworks like PyTorch (Paszke et al., 2019) and

Tensorflow (Abadi et al., 2016), and many universities and

research institutes are investing in shared GPU clusters. Another
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option for accessing machines capable of training ML models is

through cloud computing services such as Google Colab, Amazon

Web Services, Microsoft Azure, and others. Free cloud services

maybe a good option for researchers seeking to perform small pilot

studies of ML model performance on their own datasets. Paid cloud

services may be a particularly good option for researchers who wish

to have access to many GPUs or powerful GPUs for relatively short

periods of time, but who do not need or wish to manage their own

local computing hardware.
4.3 Case study: object detection and
classification with YOLO

Our case study task involves detecting objects of interest, along

with a bounding box and class label for each object. We selected one

of the most widely used object detection and classification pipelines,

YOLO (“You-Only-Look-Once”, Redmon et al., 2016). YOLO is

heavily used in industry and research applications, has fast

deployment times relative to other deep architectures, and is

relatively easy to use. Moreover, various versions of YOLO have
TABLE 3 Machine learning models applied to analysis of field imagery.

Model Study Task type Application
Performance
measures

Test set
construction
(in-domain vs.
out-of-domain)

Code
provided?

Mask R-
CNN Ditria et al., 2020

instance
segmentation,
classification

Identify and segment single fish species
in seagrass meadows

F1 scores,
mAP50

in-domain, out-of-
domain no

DeepMac Beery et al., 2021

instance
segmentation,
classification

Instance segmentation from terrestrial
camera traps

mAP, mean
RMSE, RSSE not reported no

SOLO (v1,
v2) Lv et al., 2021

instance
segmentation,
classification,
panoptic
segmentation

Instance segmentation of camouflaged
animals (terrestrial and aquatic).

Mean absolute
error,
root mean
absolute error not reported yes, 1

R-CNN
Salman et al.,
2020

bounding box
detection,
classification

Fish detection in a variety of field
settings (e.g. crowded, dynamic
background) Average F1 score in-domain yes, 2

Fast R-CNN
Chegini et al.,
2022

bounding box
detection,
classification

Detection and instance segmentation of
weeds.

mAP, precision,
recall, F1 score in-domain

no, some
pseudocode
provided

YOLO
Jalal et al., 2020;
Yusup et al., 2020

bounding box
detection,
classification,
instance
segmentation

Fish detection and classification in
images and video Accuracy in-domain yes, 3

Megadetector Beery et al., 2021

bounding box
detection,
coarse classification

Object detection in terrestrial camera
traps

mAP, RMSE,
RSSE not reported yes, 4

Ensemble
Vision
Transformer

Kyathanahally
et al., 2022

whole image
classification

Whole image classification in several
field imagery
datasets, compared several DNNs/
ensembles

Reduction in
error relative to
other

Varies by dataset,
mostly in-domain
or k-fold in-domain no

(Continued)
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been incorporated into more complex detection and classification

pipelines that have shown promising results on marine imagery (e.g.,

Knausgård et al., 2021; Peña et al., 2021). For all analyses, we used

initial weights provided in YOLO v5 from pre-training on the COCO

dataset (https://github.com/ultralytics/yolov5 ). We selected the

“small” network size as a compromise between network flexibility

and the number of network weights that need to be estimated during

training. Prior to training and testing, we reduced the resolution of

images to 640 x 640 px (the impact of changing resolution is

evaluated below). We included the five classes of squid and fish in

our primary analysis, and reserved images of the siphonophore, N.

bijuga, for a later analysis (see “Distractor classes” below).

We benchmarked training and deployment of YOLO v5 using

both in-house hardware (a single workstation with four GPUs), and a

cloud-based implementation. For the local hardware implementation,

we used a Lambda Labs Quad workstation running Ubuntu 18.04.5

LTS and equipped with four NVIDIA GeForce RTX 2080 Ti/PCIe/

SSE2 GPUs, each with 11,264 MB of memory. The machine also had

a 24 Intel Core i9-7920X CPUs @2.90GHz with 125.5GiB of memory.

Our cloud implementation used Google Colab (https://

colab.research.google.com ), a cloud-based platform for organizing

and executing Python programs using code notebooks (termed
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“Colab Notebooks”). Our cloud implementation made use of these

resources using a Google Compute Engine backend with a single

NVIDIA K80/Tesla T4 GPU with 16 GB of memory. In both local

and cloud implementations, all models were trained for 300 epochs

(or for fewer epochs when early stopping conditions were met) using

all available GPUs. Run times on our local and cloud

implementations were comparable, with the 4 GPU local machine

performing slightly faster (mean of 19.1 sec per training epoch; 1.59

hours to complete 300 epochs) than the single GPU cloud

implementation (mean of 26.8 sec per training epoch; 2.23 hours to

complete 300 epochs). System specifications, software versions,

training settings and all other details required to repeat our

analyses are described in the accompanying code tutorial at https://

github.com/heinsense2/AIO_CaseStudy.
5 Evaluating model performance

5.1 Overview

After training models, a final step in the model building process

is to evaluate model performance. Many metrics are available for
TABLE 3 Continued

Model Study Task type Application
Performance
measures

Test set
construction
(in-domain vs.
out-of-domain)

Code
provided?

classification
methods

Densenet
169
Convnet
Ensemble Wyatt et al., 2022

whole image
classification

Whole image classification from coral
thumbnails

Data-shifting
accuracy using
Expected
Calibration Error

in-domain, out-of-
domain yes, 5

RetinaNet,
YOLO v5 Katija et al., 2022

bounding box
detection,
classification

Object detection, classification of many
class types
in diverse benthic imagery

Accuracy,
confusion matrix

in-domain, out-of-
domain yes, 6

Inception v3 Allken et al., 2019
whole image
classification Species classification for trawl surveys Accuracy in-domain no

AlexNet Jaüger et al., 2015.
whole image
classification

Spcecies identification of fish from
thumbnails Accuracy, mAP in-domain no

GoogLeNet Villon et al., 2018
whole image
classification

Fish species classification from
underwater
thumbnail images Accuracy in-domain no

CNN-SENet
Knausgård et al.,
2021

bounding box
detection,
classification

Temperate fish detection, classification,
compared several DNNs Accuracy in-domain no

Conv. GANs Zhao et al., 2018
whole image
classification Live fish identification in aquaculture Accuracy in-domain yes, 7
1. https://github.com/aim-uofa/AdelaiDet/
2. https://github.com/ahsan856jalal/Fish-Abundance
3. https://github.com/ahsan856jalal/Fish-detection-and-classification-using-HOGY.git
4. https://github.com/microsoft/CameraTraps/blob/main/megadetector.md
5. https://doi.org/10.5281/zenodo.6317553
6. https://github.com/fathomnet/models
7. https://github.com/Zhaojian123/Transactions-of-the-ASABE
A selection of past models used to perform image analysis tasks on field imagery. Performance measures reported describes which performance measures were reported for test sets in each study.
Test set construction describes whether the statistics reported were computed using a test set derived from the same overall dataset used to train the model (“in-domain”), or whether the test set
was deliberately constructed using data from new spatial or temporal regions (“out-of-domain”). The Code provided column indicates whether the study provided the code used in their analyses.
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measuring the performance of ML models, and the most

appropriate metric in any given application will depend both on

the task the model is trained to execute (e.g., image classification vs.

semantic segmentation), and the relative importance of different

kinds of errors the model can make (e.g., false positives vs. false

negatives), which must, of course, be determined by the researcher.

Goodwin et al (2021) and Li et al (2022) provide approachable

discussions of common metrics, along with formulae for computing

them and the logic that underlies them. Tharwat (2020) provides a

more technical account of classification metrics and their strengths

and weaknesses. In very general terms, one typically wishes to

evaluate the ability of the MLmodel to predict the correct class of an

object, image, or subregion of the image, and, if the method

provides spatial predictions about objects or semantic classes

located in different parts of the image, one would like to know

how accurate these spatial predictions are.
5.2 Technical considerations

For whole image classification, performance metrics seek to

express the tendency of the model to make different kinds of errors

when predicting classes. For example, suppose a researcher has 300

sea surface satellite images, and a model is trained to determine

which images contain harmful algal blooms (HABs) and which do

not (Henrichs et al., 2021). The classification accuracy of the model

is the ratio of images that were assigned the correct class (HAB

present vs. HAB absent) over the total number of images classified:

(true positives + true negatives)/(total images classified). If the

model correctly predicted 100 images that contained HABs, and

correctly predicted 100 images that did not contain HABs, the

accuracy is 200/300 = 0.67. Accuracy is an appealing measure

because of its simplicity but it can be misleading, particularly

when the dataset contains multiple classes and the relative

frequency of classes differs (see discussion in Tharwat, 2020).

Other widely-used metrics including precision, recall, and F1

score, were designed to capture other aspects of model

performance, while avoiding some of the biases of classification

accuracy. The precision of a classifier measures the fraction of

positive class predictions that are correct. If the model classifies 130

images as containing HABs and 100 of these images actually

contain HABs, the precision of the classifier is 100/130 = 0.77.

Recall, sometimes also referred to as “sensitivity,” measures the

ability of a model to detect all images or instances of a given class

that are present in the dataset, thereby expressing how sensitive the

model is to the presence of a class. If the classifier correctly classifies

100 images containing HABs but the dataset contains 160 images

that contain HABs, the model’s recall is 100/160 = 0.63. The F1
score provides a composite performance measure that incorporates

both precision and recall: F1 = 2 (precision x recall)/(precision

+ recall).

For methods that make spatial predictions, there is an

additional question of whether the model’s spatial predictions are

located in the right place. Among the most widely-used methods for

measuring the spatial overlap between predictions and data this
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involves computing the spatial overlap between a prediction from

the model and objects in the labeled image. This is often measured

using the intersection-over-union (IoU): the intersection area of the

predicted borders or bounding box of an object and the borders or

bounding box of the label, divided by the total number of unique

pixels covered by the bounding box and the label. Pairs in which the

predictions precisely overlap labels will have equal intersection and

union, giving an IoU value of one. Complete mismatches, partial

spatial matches, or cases where the predicted and labeled bounding

boxes differ in size will result in a union that exceeds the intersection

and an IoU value less than one, with a minimum of zero when there

is no overlap between predicted and observed bounding boxes.

In object detection and classification tasks, the added

complication of predictions being spatial raises some questions

about how one ought to compute the accuracy of class predictions.

A standard practice is to consider a given bounding box a valid

“prediction” if its IoU value exceeds some pre-specified threshold,

which is often set arbitrarily at 0.5. For bounding box-ground truth

pairs exceeding this threshold, one then evaluates performance

using one or more of the same metrics applied in whole image

classification (e.g., accuracy, precision, recall, F1 score, etc.). A

widely-used metric is the mean average precision (mAP), which

is most commonly calculated from the precision-recall curve as the

average precision of model predictions over a set of evenly spaced

recall values (Everingham et al, 2010), where the precision-recall

curve represents model precision as a function of model recall

across a range of values of a threshold parameter. The thresholds

most often used are the box or instance confidence score and the

IoU of predicted and labeled object detections. By default, YOLO v5

produces two measures of mean average precision: mAP@0.5,

which is the mean average precision of the model assuming

matches constitute all prediction-ground truth pairs with IoU >=

0.5, and a second measure, mAP@0.5:0.95, which is the arithmetic

mean of average precision of the model computed across a range of

threshold IoU values in the set, {0.50, 0.55,0.60,…,0.90, 0.95}.

Different studies and machine learning software implementations

compute mAP slightly differently, so ensuring that you understand

how it is being computed is important when comparing predictions

across studies or ML methods.

5.2.1 Cross validation and performance
evaluation

When evaluating the performance of a model on test images

held out during training, the exact values of performance metrics

will depend on the particular subset of images used during testing.

Because training, validation, and testing image sets are typically

selected at random from the overall image set, random variability in

exactly which images end up in training, validation, and test sets will

invariably introduce stochasticity in performance estimates. One

way to address this is to create several or even many random subsets

of the overall image dataset into training, validation, and test sets.

This is sometimes referred to as k-fold cross validation, where k

denotes the number of training/validation/test splits included in the

analysis. The objective of this type of cross validation is to provide

more robust measures of performance by averaging over multiple
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random partitions of the data into training, validation, and

testing sets.

5.2.2 Non-random partitioning and “out-of-
domain” performance

In addition to cross validation using random partitions of the

data, it is also becoming more common to evaluate model

performance on non-random partitions of data into training/

validation and test datasets (Schneider et al., 2020; Taori et al.,

2020). Typically, this is done to produce test sets that are more

representative of new data on which the ML pipeline is intended to

be used. For example, if one wishes to train an image classifier to

classify coral species from images (Wyatt et al., 2022), and this

classifier is intended to be used at new locations in the future, one

way to test its performance would be to divide the annotated

imagery available into distinct spatial locations, and to construct

the training and validation set from a subset of those locations,

while holding out other locations that the model never sees during

training. This type of model evaluation seeks to determine whether

models are capable of performing well on images that may have

very different statistics than the images on which they were trained.

We will come back to this issue in the following section.
5.3 Case study: performance on
object detection and classification of
underwater imagery

In-domain performance on test imagery. Images of our target

classes in FathomNet were collected at many different physical

locations, and over decades of sampling (32 years spanning 1989-

2021) using remotely operated vehicles equipped with a range of

different types of imaging equipment. This led to an image set with

complex and diverse backgrounds, highly variable visual conditions,

and a wide range of image statistics (Figure 2) – characteristics that
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we expect will also be typical of medium- to long-term image

datasets collected from other locations. Despite this variability, after

training YOLO v5, we were able to achieve high object detection

and classification performance on test imagery selected at random

from the same spatial region or temporal period used to build the

training set (Table 4 “in domain”). Mean average precision (mAP)

of model predictions ranged from 0.67-0.95, and three classes had

mAP values of 0.88 or above. Model F1 scores had an average value

of 0.77, and three classes had F1 scores of 0.81-0.92. To put these

performance metrics in context, Ditria et al. (2020) quantified the

ability of citizen scientists and human experts to detect and classify

a fish species (Girella tricuspidata) in images taken from shallow-

water seagrass beds in Queensland, Australia. Citizen scientists and

experts had mean F1 scores of 0.82 and 0.88, respectively.

Comparing performance of YOLO v5 on our dataset to these

benchmarks implies that our detection and classification results

are in the same range as those of human annotators on a

similar task.

5.3.1 Out-of-domain performance: evidence for
distribution shifts

As noted above, many researchers who wish to use machine

learning pipelines to analyze imagery from the field often intend to

use trained pipelines to analyze new imagery taken at later dates or

different physical locations, rather than focusing solely on images

taken from the same database used to construct the training set

(Beery et al., 2018; Wyatt et al., 2022). To simulate this scenario, we

performed a nonrandom, four-fold cross-validation procedure on

the overall set of annotated imagery available on our classes of

interest in FathomNet. This involved two different kinds of

nonrandom partitioning of the dataset. The first was a temporal

partition, in which we divided all annotated images of our focal

classes into images collected prior to 2012, and images collected

from 2012 through the present. This partitioning resulted in pre-

2012 and post-2012 (2012 onward) image subsets. Splitting the data
TABLE 4 Average performance of YOLO v5 object detection and classification on images selected at random from the same spatial or temporal
partition used to build the training set (“in-domain”), or the partition held out (“out-of-domain”).

in domain out of domain

Class p r mAP F1 p r mAP F1

Average 0.76 0.79 0.81 0.77 0.64 0.61 0.62 0.62

C. calyx (1) 0.90 0.94 0.95 0.92 0.81 0.87 0.89 0.84

D. gigas (2) 0.60 0.64 0.67 0.62 0.62 0.59 0.64 0.60

G onyx (3) 0.80 0.90 0.89 0.85 0.51 0.37 0.38 0.43

Sebastes (4) 0.71 0.63 0.67 0.67 0.53 0.53 0.49 0.53

Sebastolobus (5) 0.81 0.82 0.88 0.81 0.70 0.67 0.71 0.69

Squid (1-3) 0.88 0.92 0.94 0.90 0.78 0.85 0.85 0.81

Fishes (4-5) 0.80 0.77 0.84 0.78 0.77 0.72 0.77 0.74
frontiers
Note near universal decrease in all performance measures in out-of-domain data consistent with distribution shifts across spatial and temporal partitions. Metrics reported are precision (p), recall
(r), mean average precision (mAP), and F1 score (F1). Drops in mAP and F1 between in-domain and out-of-domain sets of greater than 0.10 are bolded. “Squid” and “Fish” rows give results for
class coarsening experiment (see “Class Coarsening” in text), where species and genus-level classes are aggregated into coarser classes, fishes (Sebastes and Sebastolobus) and squid (C. calyx, D.
gigas, and G. onyx). Note mAP and F1 scores on “Fishes” class in out-of-domain data exceeds performance on either of the individual fish genera, indicating an overall enhancement in
performance through class aggregation.
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at 2012 yielded a similar number of labeled instances for most

classes before and after the split. The second partition we performed

was a spatial partition. Images from all sampling dates were pooled

together. But for each class, we divided images either by depth or by

latitude and longitude to ensure that images of each class were

divided into distinct spatial “regions,” defined arbitrarily as region 1

and region 2. This temporal and spatial partitioning resulted in a

four-fold partition of the data: two temporal sampling periods, and

two spatial regions. We measured average performance over the

four data partitions by training on one of the partitions and testing

on the other (e.g., training on pre-2012 images and testing on post-

2012 images).

Figure 4 and Table 4 shows the results of this analysis.

Performance metrics were generally lower in the out-of-domain

partition than in the partition from which training data were drawn

(general trend of decreasing performance evident in Figure 4). This

decrease in performance was particularly extreme for certain

classes. For example, average mAP and F1 scores for the black-

eyed squid, Gonatus onyx, were cut approximately in half – from

0.89 and 0.85, respectively, to 0.38 and 0.43 – when a model trained

on one partition was deployed on the other. As previously suggested
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(Katija et al., 2022), these findings imply that distribution shift
occur in the FathomNet dataset, and that these shifts can

significantly degrade performance when models are trained on

data from one set of locations or time periods and deployed on

imagery from new locations or time periods. This phenomenon

appears to be widespread in imagery collected from the field

(Schneider et al., 2020; Wyatt et al., 2022).
6 Diagnosing and improving model
performance on new imagery

6.1 Overview

Although ML-based frameworks have shown impressive

classification performance on imagery from marine systems (e.g.,

Kyathanahally et al., 2022), inevitably, all models make errors.

Moreover, the degree to which a previously trained model makes

errors when applied to new image datasets can change over time as

new imagery changes relative to the original dataset used to perform

training. Therefore, one key step in building and maintaining a ML
FIGURE 4

YOLO v5 model performance on imagery from FathomNet. Change in mean average precision (left) and F1 score (right) when a model is tested
using out of sample data from the same spatial or temporal partition from which training data was selected (“in-domain”), and when the same model
is tested using data from a different spatial or temporal partition (“out-of-domain”). Colors indicate different classes, and lines connect points from
the same spatial or temporal partitioning of the data to indicate trends.
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pipeline for automated image analysis is diagnosing performance

problems and finding ways to fix them (Norouzzadeh et al., 2018).

In this section, we address issues that can degrade performance of a

ML pipeline, and suggest approaches for remedying these issues.

Many such issues can be traced back to the problem of distribution

shift (Beery et al., 2018; Schneider et al., 2020; Taori et al., 2020). A

distribution shift occurs when the imagery on which a ML pipeline

is trained differs in some systematic way from the imagery on which

the pipeline is deployed – that is, the new imagery the ML method is

being used to analyze. The term “distribution shift” refers to a

generic set of differences that may occur between one set of images

(the “in-domain” set) and another (the “out-of-domain” set),

including things like differences in lighting, camera attributes,

image scene statistics, background clutter, turbidity, and the

relative abundances and appearances of different classes of objects

(Taori et al., 2020; Scoulding et al., 2022; Wyatt et al., 2022).

Many existing ML methods perform poorly under distribution

shifts without careful training interventions (Beery et al., 2018;

Schneider et al., 2020; Taori et al., 2020). Despite this, human

labelers exhibit similar performance on original and distribution

shifted datasets (Shankar et al., 2020), suggesting that distribution

shifts do not reduce the information needed to accurately identify

objects per se, but rather that the structure and training of ML

models cause them to fail on distribution shifted imagery (Taori

et al., 2020). Given that distribution shifts are documented here

(Figure 4, Table 4), and in past studies of imagery from the field

(e.g., Beery et al., 2018; Schneider et al., 2020; Katija et al., 2022), a

natural question is whether there are steps that can be taken to

reduce their effects on model performance.
6.2 Technical considerations

A wide array of methods have been proposed to improve the

performance of ML models on new imagery that is distribution

shifted relative to training images. These range from training

interventions like digitally altering (i.e., “augmenting”) training

imagery to destroy irrelevant features that can result in

overtraining (Bloice et al., 2019; Buslaev et al, 2020; Zoph et al.,

2020), to the use of more robust inference frameworks such as

ensemble models, which combine predictions of multiple machine

learning models (Wyatt et al., 2022). To provide a sense for how

some of these methods work, we applied a suite of training

interventions to our case study dataset.

Image augmentation is a widely used method for improving

model performance on out-of-sample and out-of-domain imagery

(Bloice et al., 2019; Buslaev et al, 2020; Zoph et al., 2020). Image

augmentation involves applying random digital alterations of

training imagery during the training process to help avoid over-

fitting ML models to specific nuances of training imagery that are

not useful for identifying objects of interest in general.

Augmentation of training images is used by default in many ML

pipelines (including YOLO v5) as part of the training process, but

augmentation parameters are often tunable, so having some

understanding of how different types of augmentation affect

performance on field imagery is useful.
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Increasing image resolution is another straightforward training

intervention. Due to the computational and memory demands of

training DNN-based ML models, it is common to reduce image

resolution during training, testing, and deployment (e.g.,

Kyathanahally et al., 2022). However, if objects of interest

constitute relatively small regions of the overall image (e.g.,

Figure 2), reducing resolution can coarsen or destroy object

features that can be important for detection and classification.

The loss or degradation of these features during training and

deployment, mean that they cannot be used to accurately detect

and classify objects in new imagery that is distribution shifted

relative to the training set. It may, therefore, be beneficial in some

applications to maintain higher image resolutions during training

and deployment.

Training using background imagery is another intervention

that is relatively easy to implement. While it can be costly to label

new imagery for the reasons discussed above, it can be relatively

cheap to identify “background images,” defined simply as images

that do not contain objects of interest. Training a ML model by

deliberately including background imagery in the training set has

been proposed as one method for helping models to better

generalize to new image sets (Villon et al., 2018).

A fourth type of intervention is known as class coarsening.
Intuitively, objects that are visually similar are likely to be harder to

discriminate than are objects that look very different. Given this,

one potential solution to improve model predictions under

distribution shifts is to coarsen class labels in a way that results in

similar looking classes being aggregated into a single super-class

(Williams et al., 2019; Katija et al., 2022). In biological applications,

this may result in aggregating classes with finer phylogenetic

resolution (e.g., species or genus-level classes) into classes with

coarser resolution (e.g., family or order-level classes or coarse

species groups). For instance, rather than requesting individual

species of sea fan and corals, one might simply specify “sea fans”

and “corals” as classes (but see Howell et al., 2019 for a discussion of

the need to aggregate with care). Whether this is a suitable training

intervention obviously depends on the ultimate goal of the image

analysis and whether coarser class labels are acceptable.

A final intervention we consider is training on images that

include objects in distractor classes. The definition of the term

“distractor” in the computer vision literature has varied (e.g., see

Das et al., 2021 vs. Zhu et al., 2018). Here, we define a distractor

class as a class of object that shares visual characteristics with a

target class and could reasonably be confused with the target class

during classification. This working definition is consistent with the

way the term “distractor” is used in the visual neuroscience

literature (e.g., Bichot and Schall, 1999). When training ML

models to detect a certain class or small set of classes, it is

common to train models using labels of only the class or classes

of interest. However, if distractor classes are regularly present in

new imagery, they can degrade model performance. Deliberately

including images of distractor classes in the training set is a form of

adversarial training that may improve model performance when

distractor classes occur in new imagery.

In addition to these simple training interventions, a variety of

other solutions to improve model robustness on new imagery have
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been proposed. These include the use of ensemble models, where

predictions are derived not from just one deep neural network, but

from many networks whose predictions are combined to make an

overall class prediction (Wyatt et al., 2022), adversarial training,

sometimes also called “active learning,” in which models are re-

trained with images on which they previously made errors (Mathis

et al., 2020), training on synthetic data (Schneider et al., 2020), and

stratified training in which the relative abundance of classes in the

training set are modified by excluding or including extra examples

of one class or another (Schneider et al., 2020). There are related

methods that seek instead to analyze the output of automated

systems at the sample level, rather than the individual level, to

correct errors and detect changes in new domains (González et al.,

2019; Walker and Orenstein, 2021). We refer the reader to the

research cited in this section, and to Taori et al. (2020); Schneider

et al (2020) and Koh et al. (2021) for further reading on methods for

improving performance under distribution shifts.
6.3 Case study: training interventions and
performance on out-of-domain imagery

6.3.1 Image augmentation
To test whether and how augmentations might improve model

performance on new imagery, we applied three kinds of augmentation

to images during training: orientation augmentations, in which the

training image and corresponding bounding box is scaled or flipped by

a random amount, color space augmentations, in which the color

attributes of the training image are randomly perturbed during

training, and mosaic augmentation, in which sets of training images

from the training set are randomly selected, cropped, and recombined

to form a new composite “mosaic” image used in training. We tested

the impact of each of these augmentation types by starting with all of

them active, then dropping one augmentation type at a time. For each

of these augmentation “treatments,” we computed performance

metrics on the out-of-domain testing set, averaging over all four

partitions of the data. Augmentation parameters and parameter

values are defined in the case study code accompanying

this manuscript.

Applying no augmentations at all resulted in the poorest

performance (Table 5), whereas the best performance occurred

when all augmentations were applied. However, the effects of
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augmentations were highly variable among different partitions of

the data, and among classes. These results suggest that

augmentation may indeed be a way to improve generalization on

new imagery, but that effect of augmentation may differ from one

class to another. We did not observe a systematic decrease in

performance under any augmentation scheme. However, Tan

et al. (2022) recently reported such decreases in performance in

the context of marine benthic imagery, emphasizing that it is

important to choose augmentation routines with care.

6.3.2 Image resolution
To explore the impact of changing image resolution in our case

study, we modified the default resolution specified in YOLO v5 (640

px x 640 px) to a higher resolution (1280 px x 1280 px). Between 91%

and 98% of images available in FathomNet for each class have a

resolution equal to or greater than 640 pixels along at least one axis.

Images with resolution lower than 1280 x 1280 were loaded at full

resolution and padded at the borders to reach the desired training

resolution. Effects of increased image resolution were not large. For

example, the average change in mean average precision on out-of-

domain data across the four partitions was 0.04, and the largest

performance increase was only 0.05 (for G. onyx), while performance

on C. calyx actually dropped slightly when we used higher resolution

imagery. It is worth noting that differences in resolution between

training and testing data can cause degraded performance (Recht

et al., 2019), which may have contributed to a lack of improvement in

performance in some of the partitions (e.g., pre-2012 vs. post-2012

splits, for which image resolution systematically differed).

6.3.3 Training on background imagery
To test whether training on background imagery could improve

out-of-domain performance, we re-trained YOLO v5 using the post-

2012 partition as a training set, but we also included background

images from the pre-2012 and post-2012 partitions in the training

imagery. Including background imagery improved performance on

all classes (Table 6), with the largest increases in performance for

Dosidicus gigas and Gonatus onyx, the classes with the fewest labels in

the training set (n = 42, and n = 84 labeled instances, respectively).

6.3.4 Class coarsening
To explore whether class coarsening improved performance

under distribution shifts, we coarsened class labels from the species
TABLE 5 Effect of image augmentation on performance of YOLO v5 on out of domain set.

Augmentation type p r mAP F1

No augmentation 0.38-0.62 0.17-0.72 0.20-0.67 0.22-0.62

No mosaic 0.47-0.79 0.37-0.84 0.34-0.85 0.36-0.81

No orientation 0.51-0.77 0.34-0.84 0.36-0.84 0.39-0.8

No color space 0.54-0.84 0.36-0.86 0.41-0.89 0.42-0.85

All augmentations 0.54-0.83 0.41-0.88 0.45-0.90 0.47-0.85
fron
Metrics reported are precision (p), recall (r), mean average precision (mAP), and F1 score (F1). Each cell reports the range of values across classes after averaging performance of each class over
spatial and temporal partitions. “No augmentation” used only raw training images to train model. “No mosaic” used orientation augmentations and color space augmentations only. “No
orientation” used color space and mosaic augmentations only. “No color space” used mosaic and orientation augmentations only, and “All” used mosaic, orientation, and color space
augmentations. A description of these augmentation types is given in the text, and specifics of implementation in YOLO v5 and parameter values are provided in the case study code: https://
github.com/heinsense2/AIO_CaseStudy.
tiersin.org
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(Gonatus onyx, Chiroteuthis calyx, and Dosidicus gigas) and genus

level (Sebastes and Sebastolobus) to the coarse categories of squids

and fishes. Table 4 shows performance of YOLO v5 when trained

and tested on these coarser classes. As expected, coarsening classes

resulted in a smaller average drop in model performance when

models were applied to out-of-domain data. For the squid class, out-

of-domain performance was higher than for any individual class in

the fine class model except for C. calyx (class for which the model

had the highest performance). Out-of-domain performance for the

fish class was higher than performance on either of the individual

fish genera in the analysis where genera were treated as

separate classes.

6.3.5 Training with distractor classes
To quantify the impact of training with distractor classes on

model performance, we restricted our analysis to two classes: the

swordtail squid, Chiroteuthis calyx, and the siphonophore,

Nanomia bijuga. In particular, we sought to determine whether a

trained ML model could discriminate images of juvenile swordtail

squid in an image set containing images of juvenile C. calyx and

imagery of N. bijuga, a distractor class that is a mimicked both

morphologically and behaviorally by juvenile C. calyx (Burford

et al., 2015). Because the spatial distributions and habitat use of

these two species overlap, a researcher interested in C. calyx would

likely need to contend with images containing N. bijuga, either by

itself or in the same image as the target class C. calyx (e.g. as in

Figure 1F). A naïve approach for training a ML model to detect

juvenile C. calyx, would be to train only on images of this target

class, and then to deploy the model on new images containing one

or both of the two classes.

Table 7 shows performance of YOLO v5 trained to detect

juvenile C. calyx using this naïve approach. Mean average

precision is relatively poor as are precision and recall scores (e.g.,

mAP = 0.54). Moreover, 22% of the instances of N. bijuga in test

data were erroneously classified as C. calyx, indicating that the

model often mistook the distractor class for the target class. To

determine whether training on both the target and distractor class

could help remedy this issue, we re-trained YOLO v5 with a training
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set containing labeled imagery of both juvenile C. calyx and N.

bijuga. We then applied this model to test imagery. Training on

both classes resulted in a pronounced increase in all performance

metrics to levels that match or exceed reported performance of

human labelers in similar tasks (precision = 0.86, recall = 0.9, mAP

= 0.87). Moreover, despite the strong morphological resemblance

between N. bijuga and juvenile C. calyx (Figure 1F), the model

trained on both classes never classified new images of C. calyx as N.

bijuga or vice versa (0% misclassification rate). A third approach to

improving model performance in the presence of distractor classes

that is less costly than manually labeling distractor classes is to

include in the training set images that contain the distractor, but to

treat these as unlabeled “background” imagery. That is, if an image

contains only the distractor class, it would be included in the

training set with no instance labels. To test this approach, we

used the same images of C. calyx and N. bijuga used to train the

two-class model, but we included no labels for the N. bijuga class.

Performance using this approach was only slightly lower than

performance of the model trained on labels of the distractor

(Table 7), indicating that such training be a viable alternative to

building a full dataset containing labels for distractors as well as the

target class.

6.3.6 Summary of training interventions and their
effects on performance on new imagery

The image set and number of classes used in our case study was

intentionally limited, so our findings should also be taken with this

in mind. Overall, we found that image augmentation (improvement

in mAP of 0.18-0.25, F1 of 0.04-0.25), and class coarsening (average

improvement in mAP of 0.21-0.25, F1 of 0.13-0.19) provided

improvements in performance on new imagery in all or most

classes in the dataset. Training distractors also resulted in large

improvements in performance for the target class used in the

distractor analysis (improvement in mAP of 0.25-0.33, F1 of 0.22-

0.33). The impact of training on background imagery was more

variable, but still resulted in overall improvements in performance

for most classes (improvement in mAP of 0-0.08, F1 of 0.01-0.11).

Training and deploying the model on high-resolution imagery (as
TABLE 6 Effect of including background imagery on performance of YOLO v5 on out of domain imagery (temporal partitions).

No BG images BG images

class
num. labels
in training set p r mAP F1 p r mAP F1

C. calyx 351 0.84 0.88 0.90 0.86 0.87 0.88 0.90 0.88

D. Gigas 229 0.48 0.46 0.51 0.47 0.57 0.60 0.59 0.58

G. onyx 94 0.66 0.53 0.57 0.59 0.76 0.51 0.60 0.61

Sebastes 445 0.67 0.54 0.61 0.60 0.65 0.60 0.63 0.62

Sebastolobus 1178 0.74 0.82 0.83 0.78 0.76 0.82 0.84 0.79
frontiers
“No BG images” shows performance of standard training in which no background images are included in the training set. “BG images” shows statistics for training runs in which background
images from pre-2012 and post-2012 periods that did not contain any classes of interest were included in the training set. Metrics reported are precision (p), recall (r), mean average precision
(mAP), and F1 score (F1). Bolded mAP and F1 score values in “BG images” show cases where these statistics improved relative to training without background images. Results from the two
temporal partitions are averaged.
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opposed to images with reduced resolution) had the smallest and

most variable effect on performance (e.g., change in mAP of -0.04-

0.05), but this should be taken with the caveat that our image set

consisted of a mix of high- and low-resolution imagery, and that

resolution mismatches between training and testing data can

sometimes result in poor performance (Hendrycks and Dietterich,

2019; Recht et al., 2019).
7 Recommendations and conclusions

Image-based machine learning methods hold tremendous

promise for marine science, and for the study of natural systems

more generally. These methods can vastly accelerate image

processing, while also greatly lowering its costs (Gaston &

O'Neill, 2004; MacLeod et al., 2010; Norouzzadeh et al., 2018;

Katija et al., 2022). In doing so, they could fundamentally change

the spatial coverage and frequency of sampling achieved by field

research and monitoring efforts. Our objective in this work has been

to provide a guide for researchers who may be new to these

methods, but wish to apply them to their own data. If image-

based machine learning methods are to be more widely adopted and

fully exploited, the current high barrier to entry associated with

these methods must be lowered (Crosby et al., 2023). We therefore

conclude with four suggestions for the research community that we

believe could help expand the use of, and access to image-based

machine learning tools across marine science.
7.1 Open sharing of labeled image datasets
from the field

At present, the ability of researchers to test and engineer ML

methods relevant to the tasks marine scientists want to perform on

imagery is constrained by the limited publicly available data for

training and testing these methods. Thus, among the most

important steps that can be taken to improve ML models for use

in the marine domain, is to increase the availability, coverage,

quality, and size of domain-relevant labeled image datasets, as well

as the standardization of label formats and class naming

conventions across those datasets. As Table 2 shows, available

datasets focus rather heavily on tropical fishes, benthic habitats,

coral, and marine phytoplankton, whereas imagery of other kinds of

objects of interest and imagery from other habitats is not as well
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represented. Researchers who generate manually labeled image

datasets in the course of their work would contribute much to the

community by making those datasets available in a form that is

easily readable by ML pipelines. The issue of readability extends

beyond using standard file formats and labeling methods, it also

means using class naming conventions that are interpretable and

useable by other researchers in the future (Schoening et al., 2022).

Idiosyncratic class definitions – for example the use of project- or

institution-specific operational taxonomic units – are one major

factor that limits the utility of many existing image datasets (Howell

et al., 2019). The more standardized and interoperable such datasets

become, the more tractable it will be to fully exploit the tremendous

volume of ocean imagery currently being collected (Schoening

et al., 2022).

Good methods for releasing and publicizing datasets include

stand-alone publications (e.g., Saleh et al., 2020; Ditria et al., 2021),

publication of datasets as part of standard research publications

(e.g., Sosik & Olson, 2007), or contributing datasets to existing open

image repositories such as FathomNet (Katija et al., 2022) and

CoralNet (Williams et al., 2019). Of course, constructing labeled

image datasets requires funding, domain expertise, and a significant

commitment of personnel time. It is therefore crucial that

researchers who generate such datasets and the funding sources

that support them receive credit. This will involve a shift in

perspective from viewing labeled imagery as simply a means to an

end, to viewing these kinds of datasets as valid research products in

their own right (Qin et al., 2016; Ditria et al., 2021; Koh et al., 2021).

Fortunately, this shift in perspective is already beginning to occur,

and we expect funding agencies, tenure and promotion committees,

and the broader research community will continue to move in the

direction of recognizing the value of producing and sharing high-

quality labeled image datasets.
7.2 Sharing of open source code for
repeating analyses

A second recommendation is aimed at researchers who are

developing and testing ML methods for analyzing imagery from

the field. It is now commonplace among the larger computer

vision community for preprints, conference publications, and

journal publications to include links to code repositories that

contain the code necessary to repeat analyses. We encourage

researchers who are developing ML methods to solve problems
TABLE 7 Effects of distractor class on model performance.

p r mAP F1 Misclassification frequency

Train without distractor 0.49 0.68 0.54 0.56 0.22

Train with distractor as background 0.88 0.70 0.79 0.78 0.008

Train with distractor
labels

0.86 0.90 0.87 0.89 0
Precision (p), recall (r), mean average precision (mAP), and F1 score are shown along with misclassification frequency, the fraction of labeled instances of the distractor class, N. bijuga, that were
erroneously classified as the target class, C. calyx.
Detection of an object class of interest – in this case, juveniles of the swordtail squid, C. calyx – in imagery containing the class of interest and a distractor class, N. bijuga, that closely resembles the
target class (see Figure 1F).
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in marine science to follow this same practice. Providing the code

that accompanies work described in publications can accelerate

research. While newer studies are beginning to follow this

practice, it is still not as widespread among researchers working

in marine science as it is in the broader machine learning

community (Table 3). Code can be efficiently shared, for

example, through GitHub repositories or through “model zoo”

features of existing image repositories (e.g., https://github.com/

fathomnet/models). The machine learning community is adopting

standards to further enable model sharing via model and dataset

cards, resources that allow users to understand at a glance what

they are downloading (Mitchell et al., 2019). Applying similar

standards in the marine science community would help ensure

that code and accompanying data is structured and benchmarked

consistently across studies.
7.3 Develop and adopt standards for model
evaluation that accurately capture
performance in common use-cases

At present, there has been little standardization of model

performance metrics reported in papers that apply image-based

machine learning to problems in marine science. Different papers

report different metrics that often include just one or a few of the

performance measures described in “Evaluating model performance”

above. The most commonly reported metric across studies is

classification accuracy (Table 3), but, as noted above, this metric is

subject to biases that inherently make comparisons across studies

problematic (Tharwat, 2020). Another less obvious issue is that

different studies compute performance metrics from test data sets

that are built in very different ways. For example, some studies

compute performance from a single random partition of the data into

training, validation, and test sets. Others perform several random

partitions of the overall dataset using a k-fold cross-validation

procedure. Others still report true out-of-domain statistics

computed on test data from specific locations or time periods that

were held out during training (see Table 3). The manner in which test

imagery is selected (e.g., at random from in-domain data vs. from

out-of-domain data) can have a major impact on performance

measures, and any fair comparison between methods clearly

requires that performance statistics of competing methods be

computed in the same way.

In the end, the most appropriate performance measures will be

the ones that best reflect how a model will perform at the task for

which it is ultimately intended to be used (González et al., 2017). At

the same time, adopting a standard will likely be necessary if

performance is to be compared among studies. To achieve this

compromise, it will be productive for the community of developers

and users of image-based machine learning methods to begin a

conversation about the most appropriate standards for evaluating

models and comparing model performance among studies, with the

goal of identifying metrics that meet the needs of researchers. One

potentially fruitful question that could guide this conversation is

how the standard performance measures used to evaluate machine

learning models (e.g., precision, recall, F1) relate to widely-used
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statistics scientists often want to compute using image data (e.g.,

abundance, species richness, measures of ecological community

composition, Durden et al., 2021).
7.4 Develop open source, GUI-based
applications that implement full image
analysis pipelines

A full pipeline for applying image-based ML models in a versatile

way requires software to carry out tasks ranging from image labeling

and curation to visualizing results of ML model predictions. The

transition from largely manual analysis of imagery to ML-based

automated analysis is already taking place in other fields, and the

availability of free, GUI-based, and actively maintained software

packages that integrate all of these tasks has helped facilitate this

transition. We point to the DeepLabCut package (Mathis and Mathis,

2020; Mathis et al., 2020, https://github.com/DeepLabCut/

DeepLabCut) developed for the study of neuroscience and

quantitative behavior from laboratory videos as a potent example of

how easy-to-use software can rapidly increase use of ML methods

within a field. Although some efforts are underway to produce similar

“all-in-one” packages for analyzing imagery from marine

environments (e.g., the VIAME project; Richards et al., 2019), and

several application-specific packages are already in use (e.g. CoralNet,

Lozada-Misa et al., 2017; ReefCloud, ReefCloud, 2021), most research

groups that apply image-based ML models to data from the field still

use custom software pipelines that often combine many packages and

software modules (see references in Table 3). We believe that creating

software architectures that allow users to easily build their own

annotated image libraries and to quickly test and evaluate

performance of a suite of widely used ML methods may be the

single biggest step that can be taken to encourage broader adoption of

these methods in marine science.
8 Conclusions

The evolving research needs of the marine science community will

undoubtedly lead to new priorities, and we do not intend these

suggestions to be exhaustive. Yet, we believe these steps would go a

long way toward making image-based machine learning easier to use,

more reliable, and more accessible. As we move toward these goals, it

will be crucial to create an open dialogue between researchers who are

developing and testing image-basedMLmethods and researchers who

are collecting, labeling, and analyzing imagery from the field. Such a

dialogue will help fuel the development of novel methods that

empower marine scientists to use machine learning to study the

ocean in ways that were never before possible.
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Edge computing at sea:
high-throughput classification of
in-situ plankton imagery for
adaptive sampling

Moritz S. Schmid1*, Dominic Daprano2, Malhar M. Damle2,
Christopher M. Sullivan2,3, Su Sponaugle1,4, Charles Cousin5,
Cedric Guigand5 and Robert K. Cowen1

1Hatfield Marine Science Center, Oregon State University, Newport, OR, United States, 2Center for
Quantitative and Life Sciences, Oregon State University, Corvallis, OR, United States, 3College of
Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States,
4Department of Integrative Biology, Oregon State University, Corvallis, OR, United States, 5Bellamare
LLC, San Diego, CA, United States
The small sizes of most marine plankton necessitate that plankton sampling

occur on fine spatial scales, yet our questions often span large spatial areas.

Underwater imaging can provide a solution to this sampling conundrum but

collects large quantities of data that require an automated approach to image

analysis. Machine learning for plankton classification, and high-performance

computing (HPC) infrastructure, are critical to rapid image processing;

however, these assets, especially HPC infrastructure, are only available post-

cruise leading to an ‘after-the-fact’ view of plankton community structure. To be

responsive to the often-ephemeral nature of oceanographic features and

species assemblages in highly dynamic current systems, real-time data are key

for adaptive oceanographic sampling. Here we used the new In-situ

Ichthyoplankton Imaging System-3 (ISIIS-3) in the Northern California Current

(NCC) in conjunction with an edge server to classify imaged plankton in real-time

into 170 classes. This capability together with data visualization in a heavy.ai

dashboard makes adaptive real-time decision-making and sampling at sea

possible. Dual ISIIS-Deep-focus Particle Imager (DPI) cameras sample 180 L s-

1, leading to >10 GB of video per min. Imaged organisms are in the size range of

250 µm to 15 cm and include abundant crustaceans, fragile taxa (e.g.,

hydromedusae, salps), faster swimmers (e.g., krill), and rarer taxa (e.g., larval

fishes). A deep learning pipeline deployed on the edge server used multithreaded

CPU-based segmentation and GPU-based classification to process the imagery.

AVI videos contain 50 sec of data and can contain between 23,000 - 225,000

particle and plankton segments. Processing one AVI through segmentation and

classification takes on average 3.75 mins, depending on biological productivity. A

heavyDB database monitors for newly processed data and is linked to a heavy.ai

dashboard for interactive data visualization. We describe several examples where

imaging, AI, and data visualization enable adaptive sampling that can have a

transformative effect on oceanography. We envision AI-enabled adaptive

sampling to have a high impact on our ability to resolve biological responses

to important oceanographic features in the NCC, such as oxygen minimum
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zones, or harmful algal bloom thin layers, which affect the health of the

ecosystem, fisheries, and local communities.
KEYWORDS

adaptive sampling, edge computing, ocean technology, underwater imaging, plankton
ecology, machine learning, data visualization, California Current
1 Introduction

Marine plankton form the base of most ocean food webs.

Understanding how these communities are likely to change in the

future in response to climate change is a critical knowledge need

(Ratnarajah et al., 2023). Yet how specific environmental drivers

impact different levels of the food web, and how this might transfer

up and down different food webs remains poorly understood.

Plankton communities in most oceans are diverse and complex.

They range over many orders of magnitude in size, thus

simultaneous sampling of many taxa can be challenging

(Lombard et al., 2019). This issue is exacerbated by plankton net

systems that destroy fragile organisms such as jellies and other

gelatinous animals (e.g., appendicularians and salps; Wiebe and

Benfield, 2003) known to be important to the oceanic carbon cycle

(Hopcroft et al., 1998; Luo et al., 2022). Plankton in-situ imaging

enables the sampling of plankton across a wide range in size, from a

few hundred microns to > 10 cm, while keeping fragile organisms

intact since no net, and thereby no physical contact, are involved.

This can be achieved by a multitude of systems that have different

purposes (e.g., O-Cam, Briseño-Avena et al., 2020a; Scripps

Plankton Camera system, Orenstein et al . , 2020; and

PlanktonScope, Song et al., 2020).

The northernCalifornia Current (NCC) off the coast ofCalifornia,

Oregon, and Washington, is a dynamic, highly productive eastern

boundary current that is of high importance to national fisheries and

food security (Reese and Brodeur, 2006; Hickey and Banas, 2008). As

part of a study of the planktonic food web dynamics of this system, we

used the high resolution In Situ Ichthyoplankton Imaging System-3

(ISIIS-3; Figure 1) to image plankton ranging from250µm to15 cm, in

their in-situ (i.e., natural) environment (Cowen and Guigand, 2008).

While ISIIS was developed initially to enhance research of

ichthyoplankton (i.e., larval fishes), it obtains images of plankters

ranging fromdiatomsandprotists tocopepods, jellies, and larvalfishes,

and has been successfully deployed in a multitude of systems (e.g., the

NCC, Swieca et al., 2020; the Straits of Florida, Robinson et al., 2021;

and in the Gulf of Mexico and the Mediterranean, Greer et al., 2023).

Use of ISIIS and now ISIIS-3 creates a big data challenge. The

combination of high-resolution imagery and the need to image a

large volume of water results in extremely high numbers of imaged

plankton individuals (0.1 to > 1 billion per study; Schmid et al.,

2020; Robinson et al., 2021; Schmid et al., 2021; Schmid et al.,

2023b). The two line scan cameras of the ISIIS-3 gather 10 GB of

data per min, and >35 TB for a typical two-week research cruise

(160 h of imagery).
02377
FIGURE 1

ISIIS-3 and its components (A) Lateral view; 1 = CTD; 2 = two
shadowgraph line-scan cameras; 3 = fluorescence and pH sensors
as well as altimeter; 4 = LISST-200X particle imager; 5 = pump and
dissolved oxygen probe; 6 = flowmeter; 7 = main computer
housing. (B) Close-up of the two stacked Bellamare ISIIS-DPI-125
camera units. ISIIS-3 can be deployed through a narrow gate and
boom (e.g., on R/V Langseth, A) or via the A-frame (e.g., on R/V
Sikuliaq, (C), while side deployments using a crane are also possible
and were carried out in the past (e.g., on R/V Atlantis). Photos credit:
Ellie Lafferty.
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Simultaneous with the development of the ISIIS technology

over the last 10 yr., data processing and machine learning pipelines

for plankton imagery have also undergone much development

(Irisson et al., 2021). Initially, plankton underwater imagery was

hand-sorted, but as hard- and software became increasingly

available, plankton sorting was automated on desktops with

dedicated graphics cards. More recently, university and national

supercomputing center machines with enterprise-level graphics

cards for machine learning (e.g., NVIDIA A100/V100/P100;

Schmid et al., 2021) have become widely available. However,

computing time on high-end machines with powerful graphics

cards must often be shared with other labs. One solution to this

limitation is to tap into nationally funded supercomputing centers,

for instance through NSF’s XSEDE infrastructure (now ACCESS;

Schmid et al., 2021). XSEDE and ACCESS themselves allocate

resources on major national supercomputing centers such as the

San Diego Supercomputing Center, or the Pittsburgh

Supercomputing Center. While such computing power is critical

for analyzing large datasets, they are by necessity ‘post-cruise’

analysis tools, as large node clusters are not portable.

The fact that plankton imagery is usually analyzed after the

cruise due to the large quantity of data, precludes it from being used

for adaptive sampling, which by definition needs near-immediate

data availability. With advancements in ocean technology, thanks to

the increased affordability and availability of advanced hard-, and

software, the number of studies working on real-time identification

and adaptive sampling based on different underwater vehicles has

increased though in recent years (Fossum et al., 2019; Ohman et al.,

2019; Stankiewicz et al., 2021; Bi et al., 2022). However, having the

necessary computing power at sea to classify large quantities of

videography remains a bottleneck.

Recent increased availability of edge servers in the civilian

sector may resolve this bottleneck, enabling oceanographers to

take significant computing power to sea with the potential to

acquire and analyze extensive data sets while at sea and even

during active deployments. In the case of plankton imaging, edge

servers coupled with deep-learning pipelines, enable researchers to

not only store and back-up the data on redundant drives, but to

process the incoming videography (i.e., segmentation and

classification), and analyze the data for distributional patterns,

all while the instrument is being towed behind the ship. These

combined technologies enable the scientific sampling plan to

change based on real-time information gathered at-sea. This

approach has major consequences for the way oceanographic

research can be conducted as it makes adaptive sampling

possible - meaning that oceanographic features of interest, e.g.,

accumulations of particular taxa in low or even hypoxic oxygen

waters on the NCC shelf (Chan et al., 2008; Chan et al., 2019), can

be targeted for resampling immediately after their detection. A

separate benefit of processing data at sea is the ability to reduce (or

completely remove) the lag between scientific research cruise

completion and being able to work with data for ecological

analyses. Here we describe a deep learning pipeline for plankton

classification at sea, including databasing and visualization for

adaptive sampling. We describe the necessary hardware setup for

such an adaptive sampling processing pipeline and how it could be
Frontiers in Marine Science 03378
adapted for other imaging systems. The major deliverable is the

open-sourced code for the pipeline including classification as well

as automation scripts for databasing and visualization. At-sea

processing of complex data has the potential to transform

oceanographic science.
2 Materials and equipment

2.1 In-situ ichthyoplankton imaging
system-3

The In-situ Ichthyoplankton Imaging System (ISIIS) vehicle has

undergone several design modifications since its early inception

(Cowen and Guigand, 2008). Here we report on the third vehicle

iteration or model - the ISIIS-3. ISIIS-3 (Figure 1) was developed

based on several lessons learned from the original design, including

a robust open-frame sled design and dual tow point bridle that

promotes the shedding of buoyed markers of active fishing gear

(e.g., crab pots). The system includes a dual camera setup (55 mm
pixel resolution) instead of a single camera to enable a narrower sled

design, but without compromising the total sampling volume of 180

L s-1. The system is also more modular than the ISIIS-1 and ISIIS-2

towed vehicles, enabling easier integration of new electronic

components. For instance, ISIIS-3 is fitted with a Sequoia

Scientific LISST-200X particle imager covering the 1 mm - 500

mm size range, a CTD (Sea-Bird SBE 49 FastCAT), dissolved oxygen

probe (Sea-Bird 43), fluorescence sensor (Wet Labs FLRT),

photosynthetically active radiation sensor (PAR; Biospherical

QCP-2300), and a pH sensor (Seabird SBE 18). ISIIS-3 is towed

behind the ship at 2.5 m s-1 where it undulates typically between 1 m

and 100 m depth or as close as 2 m above the seafloor in shallower

waters on the shelf. Data are continuously multiplexed in the ISIIS-3

vehicle, and then sent to the ISIIS-3 control computer on the ship

through the glass-fiber of the oceanographic wire, where data are

then de-multiplexed and time-stamped.
2.2 Edge server configuration at sea

The edge server used here was a Western Digital (WD)

Ultrastar-Edge MR with two Intel Xeon Gold 6230T 2.1 GHz

CPUs, each with 20 cores (40 cores total), a NVIDIA Tesla T4

GPU, 512 GiB DDR4 memory, >60 TB of NVMe flash storage, as

well as 100 GbE and 10 GbE networking (Figure 2). The edge server

ran with Ubuntu 20.04 and DNS, DHCP, TFTP, and HTTP

services, enabling the setup of an intranet around the edge server.

The NVMe file space of the edge server was configured into a RAID

to allow for limited redundancy; specifically, we use ZFS cut with

RAIDZ2 with no spares. This provided around 40 TB of usable

space and allowed failure of a drive without having to rebuild the

drive during data collection. Rebuilding a drive during live data

collection would slow down write speed substantially and

potentially lead to a loss of image frames.

The DHCP on the edge server enabled other machines on the

network (switch and VLAN) to be serviced by the edge server
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(Figure 2). This allowed us to deploy a Dell S4148F switch with 10

GbE, 40 GbE and 100 GbE ports to support a large range of devices

that needed to be connected to the edge server. SFP+ to RJ45

transceiver modules were used to allow laptops and other devices

to connect to the isolated network. The DHCP server was configured

to have known hosts with fixed addresses to best support services that

relied on being on the same IP upon reboots. SAMBA services were

used to allow the ISIIS-3 control computer (running Windows 10) to

directly save incoming video data to the edge server. An additional

Ubuntu 20.04 desktop was used to control the processing pipeline on

the edge server through SSH, and a MacOSX desktop was used for

running the webserver that visualized real-time classified plankton

information (e.g., length of segmented particles and plankton as well

as taxonomic identity), using the Python API 2.0 HeavyDB interface

(Schmid et al., 2023a; see reference to heavyDB). A 10-m 100 GbE

QSFP28 AOC cable allowed the set-up of the edge server in a separate

temperature-controlled server room on the ship, removing the edge

server fan noise from the science labs while retaining an extremely

fast connection and leaving enough I/O for simultaneous writing of

incoming imagery, data offload, pipeline control, and sending of data

to a database. The ISIIS-3 control computer only supported a 10GbE

network card, but over the SAMBA mounts the ISIIS-3 control

computer was able to write to the edge server at ~400MB/s, about

twice the throughput that was needed for the raw imagery, leaving

plenty of I/O on the drives of the edge server to simultaneously

process data.
Frontiers in Marine Science 04379
3 Methods

3.1 Image processing pipeline

The image processing pipeline controller scripts are primarily

written in Python 3 and call binaries that need to be compiled first

(Figure 3). Segmentation (https://github.com/paradom/Threshold-

MSER/tree/spectra-dev) and classification binaries are provided in

the zenodo pipeline repository for this paper (http://dx.doi.org/

10.5281/zenodo.7739010). Incoming video files are automatically

ingested into the image processing pipeline by the automate.py script

monitoring the incomingdata folder (Figure3). IncomingAVIfiles are

segmented via threshold-MSER (T-MSER; Panaïotis et al., 2022) using

the CPU cores of the edge server (Figure 3). T-MSER is optimized for

multithreading and general speed due to the volume of data generated

by the two ISIIS-Deep Particle Imager (DPI) cameras. Multithreading

of segmentation and classification is controlled by the OpenMP

Python library and based on available resources. On the edge server

with 40 cores, 20 processes can be run in parallel. After the flat-fielding

of individual frames, T-MSER uses a signal-to-noise ratio (SNR)

switch, after which low noise frames are directly segmented using

Maximally Stable Extremal Regions (MSER,Matas et al., 2004; Bi et al.,

2015; Cheng et al., 2019), and high noise frames are first pre-processed

with a thresholding approach before applying MSER. T-MSER was

written inC++.The lower size cutofffor the segmentation, determining

which size segments (i.e., plankton) are retained, can be set to the
FIGURE 2

The hardware setup associated with the ISIIS-3 control computer and edge server. ISIIS-3 is connected to the ISIIS-3 control computer via fiber (all
optic connections in blue). Incoming data are used for flying the sled (e.g., using depth information, altimeter, and speed through the water) and
incoming imagery and environmental sensor data are time-stamped and deposited directly on the edge server. While the connection from ISIIS-3
control computer to the switch is rated at 10 GbE, the connection from the switch to the edge server is a 100 GbE active optics cable (AOC) to
allow for additional I/O for running the pipeline, offloading data, and sending data to the visualization display.
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desired value based on the study’s objectives; here we used 49 pixels of

object area as the lower size cutoff for retention of segments.

As soon as AVIs are segmented automate.py starts the

classification process on these segments using a sparse

Convolutional Neural Net (sCNN, Graham et al., 2015; Luo et al.,

2018; Schmid et al., 2021). The edge server’s NVIDIA T4 GPU

(Figure 3) supported four classification processes running in parallel.

The sCNN was previously trained on an image library containing 170

classes of particles and plankton from the NCC, until the error rate of

the classifier plateaued at ~ 5% after 399 epochs. After applying the

classifier to new imagery, a random subset of images was classified by

two human annotators and compared with the automated

identifications to create a confusion matrix. Based on the confusion

matrix information (e.g., false positives and true positives) and the

knownunderlyingassignedprobabilities per imagegivenby the sCNN,

we used probability filtering (Faillettaz et al., 2016) to remove very low

probability images from the dataset that lead to false positives and false

negatives. Using LOESS modeling, we established at which assigned

probability a cutoff had to be made to achieving 90% predictive

accuracy for the taxon. Removal of these low‐confidence images
Frontiers in Marine Science 05380
retains true spatial distributions (Faillettaz et al., 2016). The process

and accuracies are described in more detail in previously published

work (Briseño-Avena et al., 2020b; Schmid et al., 2020; Swieca et al.,

2020; Schmid et al., 2021; Greer et al., 2023; Schmid et al., 2023b). The

pipeline described here is open-sourced at: http://dx.doi.org/

10.5281/zenodo.7739010.
3.2 Database and webserver visualization

Ship data (e.g., GPS feed), ISIIS-3 environmental sensor data

(e.g., pH, dissolved oxygen), plankton size measurements, and

classification probabilities are merged based on microsecond-

accurate timestamps by the populate_heavyai.py script and its

subroutines (Figure 3). The same script also uploads merged data

into the HeavyDB database as soon as they become available. A

heavy.ai dashboard that is linked to HeavyDB can then visualize the

data in an immersive way, enabling data interpretation and

adaptive sampling.
4 Results

4.1 At-sea processing with the edge server

In July 2022, ISIIS-3 was towed along six transects off the WA

and OR coasts with each transect ranging from 8 to 14 h long.

During these tows, ISIIS-3 imaged plankton ranging from small

phytoplankton and protists, to crustaceans, gelatinous plankton

such as salps and appendicularians, and larval fishes. These

organisms spanned a large size range and differed significantly in

their body form (e.g., fragile gelatinous plankton vs hard-shelled

crustaceans, Figure 4). By imaging these different organisms in a

non-invasive way, we obtained data on their overall distribution

and abundance across multiple scales, as well as insights into their

natural behaviors and orientations in the water column and

potential predators-prey relationships (Ohman, 2019). Along the

six transects, 36 TB of data were collected from the two ISIIS-DPI

cameras, totaling over 120 h of imagery (60 h per camera).

T-MSER segmentation on the edge server’s 40 CPUs took 1.1

mins per 50 sec of video data, while classification on the T4 GPUs

took an additional 2.65 mins on average, bringing the total time lag

between data collection and having classified results to 3.75 mins.

The speed of the pipeline becomes even more apparent when taking

into account that an AVI contains between 23,000 and 225,000

segments of particles and organisms, depending on the biological

productivity (Panaïotis et al., 2022). Especially dense phytoplankton

layers led to longer segmentation and classification times. With that

in mind, segmentation and classification together can take between

2.5 - 5 min per 50 sec AVI.
4.2 Database and visualization of plankton
classifications for adaptive sampling

The HeavyDB database updated automatically as new data were

classified, and included the taxonomic identifications and lengths of
FIGURE 3

Pipeline schematic depicting the imagery data processing pipeline
deployed at sea. The automate.py script controls all subsequent
processes, including ingestion of imagery into segmentation and
classification, merging of the different data products, and upload
into HeavyDB. The HeavyAI dashboard monitors the HeavyDB and
visualizes new data (e.g., depth stratified plankton identifications) as
they become available. The dynamic and interlinked figures in the
dashboard are then used for adaptive sampling. Flowchart text with
file extensions depicts all the files necessary to run the pipeline,
which can be found in the online repository. Text without file
extensions describes larger concepts and gives context.
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each detected object together with their environmental data (e.g., pH,

oxygen), as well as GPS location from ship sensors. Database and

heavy.ai dashboard were very responsive, running on the edge server’s

512 GBmemory and the NVMe flash storage. Hence, visualization of

data on the heavy.ai dashboardwas smooth andupdated quickly based

on the user selections (Figure 5). The dashboard can be customized by

the user to show different data presentations. Shown here are standard

features – number of classified images used in the data presentation,

number of unique taxa classified, allocation of classified images across

taxa, sampling location, as well as location specific sampling depth
Frontiers in Marine Science 06381
(note, in this case, our transect ran east-west along a constant latitude).

The user can select which taxa (or all) to display – in this example, we

show the vertical distribution (in 2-mdepth bins) of all taxa combined.

Wealso show the size spectrumof all classified segments across 76 bins

of major axis segmented image size (i.e., based on number of pixels).

Other datapresentations caneasilybedevelopedby theuserbyclicking

“add chart” on the dashboard. Data presentation is updated

continually as new classifications are completed. Heavy.ai dashboard

graphics are dynamic and interlinked so that selection of a taxon, size

range, or time interval, leads to all other plots defaulting to that sub-

selection. For instance, selection of Oithona sp. copepods in the taxa

overview leads to the size spectrum and 3-D vertical distribution plots

showing only data of Oithona sp. copepods. Multiple simultaneous

selections are possible and a powerful and intuitive tool for

adaptive sampling.
5 Discussion

Using the edge server for live classification of plankton imagery

yielded bountiful data for exploration during the cruise and for

adaptive sampling. Use cases for adaptive sampling in biological

oceanography that have the potential to transform oceanography

include on-the-fly and fast detection of species of interest, detection

and resampling of thin layer associated organisms, as well as high

spatial resolution adaptive sampling of taxa present in, or at the

interface of, environmental features of high importance such as low

oxygen zones on the NCC shelf.
5.1 Example applications for
adaptive sampling

Access to real-time or near real-time taxon-specific distribution

and abundance data is novel in most oceanographic studies,

particularly access to very detailed spatial and vertical resolution.

With such data in hand, while at sea, the researcher can be

responsive to short-lived events (e.g., thin layers, sub-mesoscale

eddies, other aggregative features), to specific taxa that might be

ephemeral or highly patchy, and to environmental conditions that

are of particular interest (e.g., low oxygen). With the ability to

identify such features or taxa of interest while still at sea, the

researcher can adapt their sampling to a more specific target.

Below are several examples where sampling could be adapted in

response to the detection of specific features or events.
5.1.1 Vertical migration
Diurnal vertical migration (DVM) is a well-known, but often

challenging process to adequately sample biologically. Acoustic

echograms can help visualize the movement of reflective organisms,

but actual species composition of the observed acoustic signal requires

in situ sampling. While a plankton net might be able to verify the

dominant species present in such a feature, it will not provide detailed

vertical distribution data of different species. Fine spatial separation

may occur under some scenarios as different species may swim/rise at
FIGURE 4

ISIIS-DPI images of key taxa in the Northern California Current
including primary producers, protists, crustaceans, cnidarians,
ctenophores, echinoderms, heteropods, pteropods, chaetognaths,
pelagic tunicates, and larval fishes.
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different speeds, and determination, let alone verification of that

pattern is difficult at best with only acoustic data (Figure 6). Towing

an imaging system such as ISIIS-3with near-real time data output, can

enable a detailed biological survey of the feature, even as it is rising or

falling in the water column.

5.1.2 Thin layers and other patchy features
Algal thin layers are often highly transient in location and

persistence. While their presence may be predictable in some

situations (e.g., Greer et al., 2013; Greer et al., 2020; McManus
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et al., 2021), actual encounter of them may be a chance occurrence,

and indication of their presence may be vague (e.g., Chl a signal

appearing highly noisy). Verifying the presence, and detailing the

vertical distribution of organisms associated with a thin layer can

only be done with focused vertical sampling. Real-time high

resolution imagery data can more accurately verify the presence

of a thin layer and its various species constituents, and then can be

utilized in developing an adaptive sampling plan to more fully

resolve the dimensions and species interactions associated with the

thin layer.
FIGURE 5

(A) The HeavyAI dashboard displayed on the adaptive sampling display. The user can add and delete different figure types. Clockwise from the upper
left, are: the vertical distribution of plankton counts in the water column, the relative abundance of taxa (as a pie chart), the geolocation of samples
(map), the size distribution of plankton taxa (histogram), and the vertical distribution of plankton taxa with longitude. Selecting a swath of vertical
distribution or a specific taxon in the pie chart automatically adapts all other figures to the sub-selection, for instance only showing a certain taxon –

multiple sub-selections at the same time are possible (e.g., adapting all figures to only show Oithona sp. copepods in the top 20 meters that have a
certain size). The HeavyAI dashboard monitors the underlying HeavyDB for new incoming data to display. (B) This setup lends itself to near real-time
data exploration and adaptive sampling.
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Vertically and spatially discrete aggregations of other organisms

are not uncommon (Robinson et al., 2021), though difficult to

predict. Their presence may be associated with a specific life stage,

or in response to certain biological or physical features and their

relative importance (i.e., as a predator or prey source) may depend

on the extent of the patch (or bloom). For example, small patches of

dense hydromedusae aggregations (Figure 7), which can exert

substantial predation pressure on larval fishes and copepods

(Corrales-Ugalde and Sutherland, 2021; Corrales-Ugalde et al.,

2021), are difficult to sample with nets. As with other

aggregations, when hydromedusae are identified though in-situ

imaging and real-time AI at sea, researchers have the potential to

adjust sampling efforts to resolve the dimensions and density

of patches.
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5.1.3 Specific environmental conditions of
high interest

As with focused sampling around biological aggregations,

adaptive sampling around specific oceanographic conditions can

reveal novel biological patterns and associations. Follow-up

sampling at various physical interfaces, as identified by other

sensors, might reveal changes in organism distributions

warranting further study. For example, vertical or horizontal

frontal features detected by Acoustic Doppler Current Profilers

(ADCP; Figure 8), might suggest broad, then more fine-tuned

sampling as real-time data analyses reveal spatial biological

patterns. Eddie fronts (potentially detected by ADCP) are prime

examples for where adaptive re-sampling of the eddy’s interface

could provide valuable insight into the taxonomic make-up of eddy,

interface, and exterior water masses (Schmid et al., 2020).

Finally, coupling physical and optical sensors can enhance

adaptive sampling capability. On the NCC shelf, in particular, low

oxygen upwelled water can quickly become further hypoxic when

primary productivity decays after phytoplankton blooms (Chan et al.,

2008). Such lowoxygen zones are increasing in frequency andduration

and have become an emerging threat to fisheries (Chan et al., 2008;

Chan et al., 2019) that can lead to substantial financial loss. Sensors on

imagingsystemscandetect such lowoxygenzones (Figure9) andusing

the imager, these low oxygen waters can be re-sampled on transects

passing fromnormoxicwaters, through the interface, and into the core

of hypoxic waters. Near-real-time processing can detect the expected

and unexpected presence of different taxa, which can lead to new

insights and hypotheses. For example, in 2016, anchovy larvae were

imaged in low oxygen waters (Briseño-Avena et al., 2020b) on the

Newport Hydrographic Line, a transect sampled since 1961 (Peterson

and Miller, 1975).

In combination, the examples presented here are a considerable

advancement in our ability to find, identify, and thoroughly sample

ephemeral and other hard-to-detect features in the ocean. Adaptive

sampling using cutting edge technology is critical to expand our

understanding of the processes that are driving ocean biology.
5.2 Processing speeds

The edge server’s NVMe flash drives and CPU succeeded in

segmenting the incoming.avi video files almost at 1:1 ratio of

collection time vs processing time. A single NVIDIA T4 GPU

with 16 GB memory was able to classify data in four parallel

instances, adding on average another 2.65 mins for classification

of each AVI. While the achieved processing times were good and
FIGURE 7

A snapshot of ISIIS-DPI imagery as the sled is towed along a transect in the southern California Current. Dense patches of organisms, in this case
hydromedusae, can be observed and re-sampled to identify the extent of patches and layers. Using near real-time classification with an edge server
enables the identification and quantification of dense patches. The layer shown here spans 1.17 m from edge to edge.
FIGURE 6

A snapshot from the EK80 18 kHz backscatter signal showing
evidence of plankton diel vertical migration to surface waters during
early evening hours. Time is on the x-axis, depth on the y-axis.
Combining live observations from the EK80 with live ISIIS-DPI
imagery and the heavyAI dashboard enables a new way of adaptive
sampling by being able to pinpoint the taxa comprising such diel
migration patterns.
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within our expectations, we envision more powerful hardware in

conjunction with even more specialized software to segment

incoming AVIs at a ratio of 1:0.5 or faster – and cutting down on

classification time in a similar way, in order to go from near real-

time processing and display of data to real-time classification and

display. Depending on the detected oceanographic features or a

priori features the user wants to investigate with regards to the

distribution of taxa, the ability to see which taxa are present with a

1 min time lag vs a 5 mins time lag, likely makes a big difference.
5.3 Implementing the adaptive sampling
pipeline with other imaging system setups
and edge servers

The pipeline code and workflow described here were designed

with the idea of being agnostic to the imaging system used as well as

the specific edge server available. For instance, while our specific

setup receives large quantities of data through a fiber optic cable

that are then ingested into the pipeline on the edge server, this is by

no means a necessary pathway. The output of any imaging system

could be used with this setup by similarly creating network drives

on the imaging system’s data collection computer, pointing to the

edge server for writing files and immediate processing – how the

imagery gets to the edge server is of little importance as long as the

time lag between collecting the data and starting to process is

minimized. This also means that while the presented pipeline is

targeting live data-feed imaging systems, one could easily take the

setup described here and supply data from profilers that do not

transmit data live (e.g., the Underwater Vision Profiler 6), as soon as

the data from a profile is retrieved. In that context, a user can also

replace the segmentation and classification described here with an

instant segmentation approach such as the You Only Look Once

(YOLO; Jiang et al., 2022) algorithm or similar. The idea of an edge

server is to have powerful hardware (i.e., CPU, GPU, memory,

storage) in a relatively low power consumption package that has a

small footprint and is ruggedized. There are a diversity of edge

servers available on the market that can be bought or home-built
FIGURE 9

ISIIS-3 control display during a transect on the Heceta Head line (43.98° N) off Oregon, with environmental data plotted on the left (e.g., dissolved
Oxygen as low as < 1 ml L-1 at 100 m depth). The right panel shows the undulating flight pattern (red line) and demonstrates ISIIS-3’s ability to
sample hypoxic waters at near bottom depths (blue points are the seafloor as indicated by the altimeter).
FIGURE 8

A snapshot of an ADCP vector diagram as seen on the real-time
readout on research vessels. Using real time classification of
encountered plankton in conjunction with ADCP data allows the
immediate re-sampling of ocean conditions of high importance,
such as vertical and horizontal fronts. In this ADCP vector diagram,
surface waters (5-60 m) are characterized by distinct northeastward
flow, while at depths below 75 m water is moving in a northwest to
west direction. Using readouts from the heavyAI dashboard, the
ISIIS-3 imager can be towed specifically at the interface of such
divergent flows in order to collect the most insightful data on taxa
distributions, potential predator-prey interactions facilitated by such
features, as well as behavioral observations. The y-axis shows depth;
however, each arrow has a directional and speed component.
Colors are not quantitative but indicate shallow and deep bins. The
direction of the arrows indicates 360 deg direction, with arrows
upward indicating “North”.
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and that could be used instead of the one used here. When

switching to a GPU-based YOLO or Mask R-CNN (He et al.,

2017) object detection, the user would be less reliant on CPUs and

thus might prefer a setup with fewer CPUs while swapping in

several more powerful GPUs instead.
5.4 Conclusion

ISIIS-3 in conjunction with a deep learning pipeline deployed on

an edge server at sea is a powerful combination for adaptive sampling,

reducing lag between data collection and addressing on ecological

questions, as well as for scientific discussions with cruise participants.

Several applications of adaptive sampling were presented that have the

potential to be transformative for oceanographic research, including in-

situ target species identification, and HAB thin layer characterization.

In the northern California Current, where hypoxia and ocean

acidification are endangering commercially important taxa such as

Dungeness crab and hence the livelihood of communities, adaptive

sampling of taxa distributions in such features could prove a very

effective tool for better understanding the responses of such taxa to

environmental disturbances.
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In the Southwestern Atlantic, the Falkland Current intrudes onto the South

American shelf, resulting in the meeting of two water masses which are

completely different in temperature and dynamic characteristics, thus generating

the Southwestern Atlantic Front (SAF). Therefore, the SAF has prominent

characteristics of thermal and dynamics. The current ocean front detection is

mainly by performing gradient operations on sea surface temperature (SST) data,

where regions with large temperature gradients are considered as ocean fronts.

The thermal gradient method largely ignores the dynamical features, leading to

inaccurate manifestation of SAF. This study develops a deep learning model,

SAFNet, to detect the SAF through the synergy of 10-year (2010-2019) satellite-

derived SST and sea surface height (SSH) observations to achieve high accuracy

detection of SAF with fused thermal and dynamic characteristics. The comparative

experimental results show that the detection accuracy of SAFNet reaches 99.45%,

which is significantly better than other models. By comparing the frontal

probability (FP) obtained by SST, SSH and SST-SSH fusion data respectively, it is

proved that the necessity of fusion multi-source remote sensing data for SAF

detection. The detection results of fusion data can reflect the spatial distribution of

SAF more comprehensively and accurately. According to the meridional variation

of FP, the main reason for the seasonal variation of the SAF is the change in its

thermal characteristics, and the SAF has stable dynamic characteristics.

KEYWORDS

Southwestern Atlantic fronts, multi-source remote sensing data, deep learning, ocean
dynamics, ocean thermodynamics
1 Introduction

The Southwestern Atlantic (SA) mainly refers to the area of the Atlantic between 35°S-

60°S and 50°W-70°W, that connects to the Drake Passage. Topographically, the area

consists of the South American continental shelf in the northwest and the Argentine basin

in the southeast. Due to its location between subtropical waters and the cold waters in the
frontiersin.org01387

https://www.frontiersin.org/articles/10.3389/fmars.2023.1140645/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1140645/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1140645/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1140645/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1140645&domain=pdf&date_stamp=2023-06-14
mailto:chunyongma@ouc.edu.cn
https://doi.org/10.3389/fmars.2023.1140645
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1140645
https://www.frontiersin.org/journals/marine-science


Wang et al. 10.3389/fmars.2023.1140645
Southern Ocean, the SA is rich in ocean currents and associated

hydrological phenomena, including frontal systems. As shown in

Figure 1A, the SA mainly contains three major ocean currents, the

Brazil Current, the Falkland Current and the Antarctic Circumpolar

Current (ACC). ACC is the strongest cold current in the South

Hemisphere. As a tributary of the ACC at Cape Horn, the Falkland

Current flows northward along the 1000m isobath and invades into

the shelf waters of South American (within the 200m isobath) at

about 45°S (Piola et al., 2013). Under the influence of the Brazil

Current (a strong warm current), the shelf water on the west side is

warmer than the Falkland Current (a strong cold current) on the

east side. Since the ocean front refers to the boundary between

different water masses in the ocean, the Falklands Current enters the

waters of the South American continental shelf, resulting in the

meeting of two water masses with completely different temperature

and dynamic characteristics, generating the Southwestern Atlantic

Front (SAF) (Wang et al., 2021). As an important part of the

Southern Ocean Front (Chapman et al., 2020), the SAF has great

impacts on the ecological environment, fishery production and

material transport in the SA (Lopes et al., 2016). Therefore, it is of

great significance to detect the SAF accurately.

In the frontal regions, the properties of water mass change

rapidly, which are characterized with enhanced horizontal gradients

of temperature, salinity, density, etc (Legeckis, 1979). Therefore,

researchers often calculate the gradient magnitude map by gradient

operation on satellite remote sensing observations (Text S1), and

reserve the area with large gradient by a specific threshold to identify

the ocean front (Moore et al., 1999; Dong et al., 2006; Wang et al.,

2020). Among them, sea surface temperature (SST) data are widely

used for ocean front detection (Freeman et al., 2016). Figures 1B, D, F

are display the SST distribution over the SA, the SST gradient

magnitude map, and the SST front (Southwestern Atlantic thermal

front) obtained from the magnitude map by gradient threshold,

respectively. Figure 1B shows that the temperature difference

between the two sides of the 200m isobath is obvious. SST gradient

magnitude map indicates the magnitude of the temperature gradient,

which can reflect the intensity of the front. As can be seen from

Figure 1D, the maximum SST gradient magnitude are mainly

distributed along the west of the 200m isobaths, which coincides

exactly with the spatial distribution of the SST front (yellow zone) in

Figure 1F. Therefore, the Southwestern Atlantic thermal front (SST

front) is mainly distributed along the South American shelf water on

the western side of the 200m isobath. Apart from that, the SAF is a

typical “current-induced front” (Wang et al., 2021) and thus has

prominent dynamic characteristics. Since sea surface height (SSH)

data can be used to represent the dynamic characteristics of ocean

phenomena, they have been widely used in the study of dynamic

fronts in recent years (Chambers, 2018). Figure 1C shows the SSH

distribution over the SA. Different from the SST distribution, the SSH

distribution is mainly divided by the 1000m isobath, which is exactly

consistent with the pathway of the Falkland Current. The invasion of

the South American shelf water by the Falkland Current along the

1000m isobath leads to the encounter of two water masses with

different dynamic characteristics, resulting in a large difference in the

SSH, thus generating the SSH front (Southwestern Atlantic dynamic

front). According to Figures 1E, G, the Southwestern Atlantic
Frontiers in Marine Science 02388
dynamic front is mainly distributed along the 1000m isobath,

which is different from the spatial distribution of the Southwestern

Atlantic thermal front. It should be emphasized that for two distinct

water masses, the fronts formed between them are unique. The

reason for the difference in the spatial distribution of thermal and

dynamic fronts comes from the different expression of front

characteristics (Takahashi and Kawamura, 2005; Liu and Hou,

2012). Thermal front is the expression of the thermal

characteristics of SAF, and the dynamic front is the performance of

SAF’s dynamic characteristics. Both of them are part of SAF.

Therefore, to achieve high-precision SAF detection that fuses

dynamic and thermal characteristics cannot only rely on SST or

SSH but requires the synergy of SST and SSH. Meanwhile, it is

challenging to establish a feature association between massive SST

and SSH data and accurately identify the SAF from complex feature

fusion data (Liu et al., 2021). Traditional gradient-based frontal

detection method (Text S1) cannot solve the above problems

(Kittler, 1983).

In recent years, deep learning methods, especially convolutional

neural networks (CNNs) have shown excellent performance in

mining complex rules hidden in multi-source long term series

data, and are increasingly applied to the study of various ocean

phenomena such as mesoscale eddies, internal waves, and sea ice

(Gao et al., 2022; Zhang and Li, 2022; Li et al., 2022a). Since ocean

fronts separate water mass classes and neural networks are robust in

assigning classes in complex data, edge detection driven by the

underlying neural network may be a good way to find fronts (Li

et al., 2022b). Compared with traditional frontal detection methods,

deep learning methods have advantages in automatic feature

extraction and modeling the relationship between multi-source

remote sensing data and ocean fronts. This study develops a deep

learning model, SAFNet, to perform feature fusion of SST and SSH

data spanning 10 years (2010-2019), and extract the SAF from the

fusion data. Comparative experiments show that SAFNet can

achieve accurate detection of SAF. Finally, by comparing the

seasonal frontal probability (FP) derived from SST, SSH and SST-

SSH fusion data respectively, the necessity of the fusion data for SAF

detection is proved, and a new understanding of the spatiotemporal

distribution and seasonal variation of SAF is obtained. Apart from

that, the code of the SAFNet will be updated to GitHub: https://

github.com/yangxiaomao225/SAFNet.

The rest of the paper is organized as follows. Section 2

introduces the multi-source remote sensing data used to establish

the dataset for training and testing the proposed model and the

structure of the SAFNet. Some comparative experiments and

spatiotemporal distribution of the FP are shown and discussed in

Section 3. In the last section, some conclusions are drawn.
2 Data and method

2.1 Data for training and testing the deep
learning model

The altimeter data used in this study are generated by

Copernicus Marine and Environmet Monitoring Service
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(CMEMS) using data from the TOPEX/Poseidon, Jason-1, Jason-2,

and Envisat missions. The daily gridded SSH data with a spatial

resolution of 0.25°×0.25°from January 2010 to December 2019,

spanning 10 years. Since SSH products contain two kinds of data,
Frontiers in Marine Science 03389
sea level anomalies (SLAs) and absolute dynamic topography

(ADT), this study uses ADT, the sum of the time-mean dynamic

topography and time-varying SLAs. The daily SST data with a 0.25°

spatial resolution refers to the NOAA Optimum Interpolation (OI)
FIGURE 1

Introduction to the SAF background. (A) is the chart of the SA. (B, C) are 10-year (2010-2019) mean SST and SSH distributions over SA. (D, E) are
mean SST and SSH gradient magnitude maps obtained from SST and SSH for 2010-2019. (F, G) are SST fronts (yellow zone) and SSH fronts (green
zone) obtained from the corresponding gradient magnitude map by the threshold. The black and brown solid contours are 200m and 1000m
isobaths, respectively.
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SST product (Reynolds et al., 2007), which is constructed from

infrared satellite observations of the Advanced Very High-

Resolution Radiometer (AVHRR) and has the same period as the

SSH data.

In this study, with the help of the above SSH and SST data, a

SAF dataset is established for training and testing the proposed

SAFNet. Since the Southwestern Atlantic thermal front (SST front)

and dynamic front (SSH front) are part of the SAF and represent

different oceanographic characteristics of the SAF, this study first

uses the traditional gradient-based front identification method

(Text S1) to calculate SST and SSH front through SST and SSH,

respectively. Then, the union of the two kinds of fronts is used to

represent the SAF in the ideal state, which incorporated the thermal

and dynamic characteristics. We describe the creation of the dataset

with two samples from the SAF dataset (Text S2; Figure S1).

Thus, SAFs obtained from SST and SSH data in the SA (35°S-

57°S, 55°W-70°W, 128×128 pixels) during the period 2010-2018 are

used as the training dataset and SAFs obtained from 2019 data are

used as the validation dataset in this study. There are 3,287 training

samples and 365 validation samples, and pixels in each sample are

labeled as “1” or “0” for front or non-front, respectively.
2.2 SAFNet

2.2.1 Overall Structure of the SAFNet
To achieve accurate detection of the SAF by fusing multiple

oceanographic features, the proposed deep learning model needs

to simultaneously obtain dynamic and thermal characteristics

from SSH and SST data, and can accurately detect SAF from

these features. Through the traditional gradient-based front

detection method (Text S1), we know that the front are the

pixels with large gradients. Therefore, the proposed model needs

to have two capabilities: 1) The pixels with large gradients in SST

and SSH data are extracted and fused as key features. 2) Accurately

extract the pixels with large gradients from the fusion features, so

as to achieve high-precision detection of SAF. Thus, the SAFNet

model consists of two sub-networks: a data fusion network (DFN)

to establish the SSH-SST feature fusion relationship and a feature

extraction network (FEN) to accurately identify pixels with large

gradients from the fusion data for SAF detection. Considering the

complex nonlinear relationship between SST and SSH in the SAF,

the DFN is developed based on CNNs containing dense

connections, and the FEN is developed based on U-Net

(Ronneberger et al., 2015), a classical semantic segmentation

network in deep learning, as shown in Figure 2. In order to

show the detection performance of SAFNet, this study

compared SAFNet with two deep learning models on the

validation set for SAF detection accuracy. The first one is

LinkNet (Chaurasia and Culurciello, 2017), a classical semantic

segmentation model, and the other one is D-LinkNet (Zhou et al.,

2018), which has achieved excellent results in the field of road

recognition. Since they do not contain a data fusion module, to

make a fair comparison, this study adds DFN to LinkNet and D-

LinkNet so that the two models can fuse the features of SST and

SSH like SAFNet.
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2.2.2 DFN
Considering that different satellite sensors observe SSH and SST

data, the fusion of two multi-source heterogeneous data belongs to

multi-modal data fusion. Multi-modal data fusion based on deep

learning is widely applied in medical image segmentation. There are

three data fusion strategies: input-level fusion, layer-level fusion,

and decision-level fusion (Zhou et al., 2019). Unlike the other two

data fusion strategies, layer-level fusion can effectively integrate and

fully use multi-modal data. In the layer-level fusion strategy,

DenseNet (Huang et al., 2017) is the most commonly used

network, so an improved DenseNet structure (Dolz et al., 2019) is

used as the DFN in this study. The SSH and SST data with 128×128

pixels are imported into two different data streams, respectively, and

the features of SSH and SST are extracted through the convolutional

layers in the data stream. These features are densely connected

between layer pairs in the same data stream and between layer pairs

across data streams, and finally a fused data set combining SST and

SSH features is obtained, as shown in Figure 2. The mathematical

expression of DFN is as follows:

xsl=H
s
l (x

1
l−1,x

2
l−1,x

1
l−2,x

2
l−2,…,x10,x

2
0)    s=1 or 2 (1)

where s refers to SSH or SST stream, x1l , x
2
l denote the outputs of

the lth layer in SSH and SST streams and Hs
l  represents the

mapping function of the two data streams at lth layer composed

of a convolution layer followed by a batch normalization and a

Rectified Linear Unit (ReLU) activation function. Therefore, DFN

can alleviate the vanishing gradient problem, introduce implicit

deep supervision, and reduce the risk of overfitting tasks with

smaller training sets.
2.2.3 FEN
In this study, the FEN is used to accurately detect the SAF based

on the output of the DFN. To improve the detection accuracy, the

convolutional block attention module (CBAM) (Woo et al., 2018)

and dilated convolution layers (DCLs) are integrated into the FEN.

FEN uses an encoder-decoder structure. The architecture of FEN

includes six parts: input, encoder, center, decoder, concatenations

and output. The goal of the encoder is to gradually extract pixels

with large gradients from the fusion data through various

convolutional layers, to capture the SAF features at different

representation levels. The encoder contains one CNNCBAM block,

six ResNetCBAM blocks, and three Max pooling layers. A CNNCBAM

block is one CNN layer stacking with the CBAM, and a ResNetCBAM
block is a ResNet unit integrated with the CBAM. The legend on the

right in Figure 2 shows that a ResNet unit contains two CNN layers,

stacking the CBAM after the second CNN layer. Adding the

attention mechanism to the FEN can effectively capture the

thermal and dynamic dependencies of the SAF at different scales.

CBAM is divided into two modules: channel attention module and

spatial attention module. These two modules can generate the

feature map’s weight matrix in two dimensions. Then the weight

matrices are multiplied by the input feature map for adaptive

feature refinement so that the network is more targeted to extract

features. The center part consists of several DCLs with skip

connections. Considering the SAF’s narrowness, connectivity, and
frontiersin.org

https://doi.org/10.3389/fmars.2023.1140645
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2023.1140645
complexity, it is important to increase the receptive field of feature

points in the center part and keep detailed information. DCLs are

undoubtedly the best option. The decoder includes four stages, and

between each stage, the scale of the feature map is restored by

upsampling until the output feature map is the same size as the

input data. Six ResNetCBAM blocks are integrated into the decoder

to recover the SAF’s details accurately. The concatenation fuses the

encoder and decoder at the same level, effectively preventing feature

loss. The output consists of two CNNCBAM blocks, a 3×3

convolutional layer, and a sigmoid layer, finally outputs a value

between [0,1]. If it is greater than 0.5, the pixel is the SAF;

Otherwise, it is a non-front.

2.2.4 Loss function
Detection of the SAF is a typical binary classification problem,

which only needs to determine which pixels are fronts and which

are not. Therefore, the binary cross-entropy loss function

(BCELoss) is an effective training method. However, classifying

the pixels as front or non-front is a highly imbalanced problem. The
Frontiers in Marine Science 05391
weight of BCELoss cannot be set correctly when the specific

difference between positive and negative samples is unknown, so

the detection effect cannot be guaranteed. The dice coefficient loss

function can improve this problem (Zhou et al., 2018). The dice

coefficient is a measure function used to evaluate the similarity of

two samples, with a larger value indicating more similarity and a

smaller dice coefficient loss. Thus, this study defined the loss

function as follows:

Loss = 1 − o
N
i=1 Pi ∩

​ GTij j
oN

i=1( Pij j + GTij j) +o
N

i=1
BCELoss(Pi,GTi) (2)

BCELoss(P,GT)= −o
W

i=0
o
H

j=0
½gtij· log pij+(1−gtij)· log (1−pij)� (3)

where the N is the number of samples, P is the detection result

map of the SAFNet, GT is the SAF that has been labeled in the

dataset.  W is the width of the feature map, H is the height of the

feature map, gt is a pixel in GT , and p is a pixel in P.
FIGURE 2

The overall structure of the SAFNet which consist of a data fusion network (DFN) and a feature extraction network (FEN).
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3 Results and discussion

3.1 Performance of SAFNet

The SAFNet is trained using the NVIDIA RTX A6000 48G GPU

and PyTorch deep learning packages. The ADAM optimizer with

the learning rate set to 0.01 and the learning rate decay set to 0.1 to

optimize the model. The batch size and the number of epochs are

set to 32 and 50.

Four metrics are adopted to evaluate the performance of

SAFNet and the compared methods (LinkNet, D-LinkNet), i.e.,

Intersection over Union (IoU), Accuracy, Precision and Recall

(Text S3). The objective evaluation results of the three models on

the validation set are presented in Table S1. To visually show the

differences of each model in SAF detection, the ground truth of

four days are arbitrarily selected from the validation set and

compared with the detection results of the three models. As

shown in Figure 3, SAFNet achieves 99.45% detection accuracy

for SAF, which is significantly better than the other two models.

Since CBAM and DCLs are integrated in SAFNet, this study

proves that CBAM and DCLs can effectively improve the

detection accuracy of the proposed model for SAF through

ablation experiments (Text S4; Table S2; Figure S2), which

further proves that the SAFNet can be used as an effective tool

to detect the SAF accurately.
3.2 Spatiotemporal distributions of the SAF

In this study, the comparison experiment and ablation

experiment in Section 3.1 fully proves that SAFNet can achieve

high-precision detection of SAF. This subsection will prove that the

detection results of SAF based on SST-SSH fusion data can reflect

the spatial distribution of SAF more comprehensively and

accurately than that based on SST or SSH alone. In

oceanography, researchers often approximate the spatiotemporal

distribution of a front by obtaining its climatological distribution.

At present, there are two main methods used to calculate the

climatological distribution of fronts. The first one is to calculate

the gradient magnitude of the mean SST or SSH data, and use the

gradient magnitude map to represent the distribution of fronts. The

other one is to use the daily front distribution to calculate the frontal

probability (FP), and use the FP distribution to represent the

distribution of fronts. The region with large gradient in the

gradient magnitude map corresponds to the region with large

probability of the FP distribution (Figure S3), so both the

gradient magnitude and FP can accurately reflect the spatial

distribution of the front (Wang et al., 2020). Since the detection

result of SAFNet is the spatial distribution of daily SAF that fuses

SST and SSH features, FP is used to represent the climatological

mean distribution of the SAF in this study. The FP at each pixel is

defined as follows:

Frontal Probability= 
Nfront

Ntotal
�100% (4)
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where Nfront is the number of times that the pixel is identified as

a front, Ntotal is the total number of observation days.

Figure 4 displays the seasonal spatiotemporal distributions of

the SAF FP obtained by SST, SSH and the SST-SSH fusion data

from 2010 to 2019. By comparing the detection results of the three

kinds of data, it is found that the frontal signal of the Southwestern

Atlantic thermal front (derived from the SST data) is abundant

in the South American shelf waters (within the 200m isobath), while

the signal of the Southwestern Atlantic dynamic front (derived from

the SSH data) is almost lost in the shelf waters. This is mainly

because the current over the shelf does not organize into intensified

velocity core or pattern, so that no outstanding SSH gradient exist.

However, due to the invasion of the Falkland Current, the shelf

water has obvious temperature differences, producing noticeable

thermal characteristics (Text S5; Figure S4). Furthermore, the

seasonal variation of the thermal front is obvious, which is

stronger in summer and weaker in winter. The dynamic front is

stable in four seasons and exists all the time. The reasons for this

phenomenon come from two aspects: 1) In winter, the increasing

surface cooling effects make SSTs uniform, leading to a decrease in

the temperature difference between the Falkland Current and shelf

water and the disappearance of the thermal front. 2) The Falkland

Current intrudes into the shelf water all year around, resulting in

the stable existence of SSH difference between water masses, so the

distribution of dynamic fronts is relatively stable (Text S5; Figure

S4). Hence, in the detection of the SAF, the thermal front has

seasonal limitations and the dynamic front has spatial limitations,

which indicates that neither the Southwestern Atlantic thermal

front nor the dynamic front can fully accurately reflect the SAF.

They only reflect the SAF’s thermal and dynamic characteristics,

respectively (Text S5). The detection results of SAF by fusion data

can fuse the information of the thermal front and the dynamic front

and complement the advantages of the two fronts to realize the

comprehensive and accurate detection of the SAF. Through the

detection results of the fusion data, this study further understands

the SAF distribution. North of 50°S, the SAF is mainly distributed

along the continental slope break zone between the 200m and

1000m isobaths, and south of 50°S, the SAF is mainly distributed

along 1000m isobath, as displayed in Figures 4L–O.

Figures 4A, F, K display the meridional variation of the FP for

detection results of three kinds of data. According to the above

results, neither the thermal or dynamic front can represent SAF

accurately and comprehensively. Therefore, through the meridional

variation of the thermal and dynamic fronts, the changes of the

thermal and dynamic characteristics of the SAF can be revealed. By

comparing the three graphs, we know that the SAF has stable

dynamic characteristics, and the main reason for the seasonal

variation of the SAF is the change in its thermal characteristics.

Between the 40°S and 50°S, SAF is stronger in summer and fall than

in winter and spring, mainly because the temperature gradient

between the shelf water and the Falkland Current is not obvious due

to the spatially uniform surface cooling in winter. However, in the

35°S-40°S region, SAF is weakest in summer. This is mainly because

this region is affected by the Brazil Current (a strong warm current)

and has a high temperature, while the shelf water temperature is
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also high in summer, which makes the temperature gradient small

and the front intensity weak in this region.
4 Conclusion

SAF is a typical current-induced front with prominent

dynamic and thermal characteristics. Therefore, this study
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proposes the SAFNet that can fuse SST and SSH features over

2010-2019 and detect the SAF from the fusion data accurately,

thus achieving an overall high-precision detection of SAF by

fusing thermal and dynamic characteristics. The CBAM and

DCLs are integrated into the SAFNet. The comparative

experiments and ablation experiments show that SAFNet can

achieve high precision detection of SAF, and the detection

accuracy reaches 99.45%. By comparing the seasonal detection
FIGURE 3

The results of the SAF detection. (A–D) are SAF ground truth of four days in validation set, the white zone represents the SAF, and the blue zone is
the non-frontal zone. (E–P) are detection results of each model. The red and brown solid contours are 200m and 1000m isobaths, respectively.
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results of SAF FP obtained by SST, SSH, and the fusion of SST-

SSH, this study finds that SAF is mainly distributed along the

continental slope break zone of South America and the 1000m

isobath. According to the meridional variation of FP, we know

that the SAF has stable dynamic characteristics, and the reason for

the seasonal difference of SAF is the change in its thermal

characteristics. The SAF between 40°S and 50°S is weakest in

winter due to the uniform surface cooling. In the 35°S-40°S region,

the warm Brazil Current makes the water temperature generally

higher and the temperature gradient is not obvious in summer,

which leads to the weakest SAF.
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Simultaneous restoration and
super-resolution GAN for
underwater image enhancement

Huiqiang Wang, Guoqiang Zhong*, Jinxuan Sun, Yang Chen,
Yuxiao Zhao, Shu Li and Dong Wang*

College of Computer Science and Technology, Ocean University of China, Qingdao, China
Underwater images are generally of low quality, limiting the performance of

subsequent perceptual tasks, such as underwater object detection and

recognition. However, only a few methods can improve the quality of

underwater images by simultaneously restoring and super-resolving underwater

images. In this paper, we propose an end-to-end trainable model based on

generative adversarial networks (GANs) called Simultaneous Restoration and

Super-Resolution GAN (SRSRGAN) to obtain clear super-resolution underwater

images automatically. In particular, our model leverages a cascaded architecture

with two stages of carefully designed generative adversarial networks to restore

and super-resolve corrupted underwater images in a coarse-to-fine manner. The

major advantages of SRSRGAN are twofold. First, it is a unified solution that can

simultaneously restore and super-resolve images. Second, SRSRGAN is not limited

by the prior experience of the types and levels of underwater degraded images but

can perform the inference using only observed corrupted images. These two

advantages enable SRSRGAN to enjoy better flexibility and higher practicability in

realistic underwater scenarios. Extensive experimental results demonstrate the

superiority of SRSRGAN in underwater image restoration, super-resolution, and

simultaneous restoration and super-resolution.

KEYWORDS

image enhancement, generative adversarial network, simultaneous restoration and
super-resolution, deep learning, underwater images
1 Introduction

With 70% of the earth’s surface covered by water, there is great potential for exploiting

underwater resources. The underwater environment offers numerous valuable resources,

such as marine biology, mineral resources, and tidal energy. However, there is a wide gap

between the plentiful marine resources and their exploitation. To this end, various kinds of

methods have been proposed to obtain information about the underwater environment to

promote the use of marine resources. Among others, a crucial way to obtain information

from the underwater environment is image understanding, while the images captured in
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realistic underwater scenarios usually have severe defects, such as

blurriness, noise, and color distortion (Soni and Kumare, 2020).

Specifically, underwater image defects are caused by various

factors. Light rays exponentially decay as the underwater depth

increases, which makes underwater images of low contrast and

darkness (Ancuti et al., 2018). Furthermore, lights of different colors

have different absorption rates underwater, depending on the

wavelengths, which results in color distortion of underwater

images (Chiang and Chen, 2012). In addition, bubbles and

suspended particles in water may cause noise in underwater

images (Lu et al., 2017b). Hence, the poor visibility of underwater

images seriously affects the exploration of the underwater

environment. On the other hand, high-resolution images are

essential in many realistic underwater applications, such as

marine animal recognition (Chen et al., 2021; Wang et al.,

2023b), seabed detection, and deep ocean resources exploration

(Lu et al., 2017a). Therefore, the critical tasks for underwater image

enhancement are eliminating defects and obtaining super-

resolution (SR) images.

To the best of our knowledge, only a few approaches can

simultaneously restore and super-resolve underwater images. In

particular, Cheng et al. (2018) propose a method that restores

underwater images by the white balance (Liu et al., 1995) with the

contrast limited adaptive histogram equalization (CLAHE) (Reza,

2004) and super-resolves the restored image by a super-resolution

generative adversarial network (GAN) (Ledig et al., 2017). However,

due to the fact that this method only utilizes traditional color

correction as a preprocessing step for the input image of the super-

resolution model during the restoration stage, it limits its ability to

remove other types of degradation features. Recently, Islam et al.
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(2020a) also introduce an approach to learning enhanced super-

resolution underwater images. However, their proposed method is

limited in its ability to model complex degradation features due to

its lack of consideration for capturing multi-scale features in the

network architecture design. Due to these limitations, these

methods are difficult to generate high-fidelity and high-quality

super-resolution images in underwater image enhancement in

real-world scenarios.

To address the above issues, we propose simultaneous

restoration and super-resolution GAN (SRSRGAN) to obtain

underwater images of high visual quality, which is an end-to-end

trainable model based on GAN. With a two-stage design,

SRSRGAN captures underwater degradation information and

fine-grained high-frequency information in the restoration stage

and the super-resolution stage, respectively. In the restoration stage,

benefiting from the superior structure of the proposed multi-level

degradation restoration generator (MLDRG), our model leverages

degradation information among different scales, positions, and

channels to transform degraded images to clean images. In the

super-resolution stage, the high frequency learning module

(HFLM) excavates fine-grained high-frequency information to

super-resolve clean images. In addition, we adopt a relativistic

discriminator to further enhance the quality of our generated

underwater images. Thanks to the corporation of the restoration

stage and the super-resolution stage, SRSRGAN enjoys two highly

expected merits, i.e., i) it provides a unified solution for

simultaneous underwater image restoration and super-resolution

reconstruction; ii) it is free from the prior of the underwater

corruption types and ratios. Extensive experimental results show

that SRSRGAN is superior to the state-of-the-art (SOTA) methods
FIGURE 1

The proposed SRSRGAN model provides realistic underwater image enhancement results through an effective inference. The first and second rows,
from left to right, are the original underwater image, the bicubic interpolation enhanced image, and the image enhanced by our method.
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in underwater image restoration/enhancement, single image super-

resolution (SISR), and simultaneous restoration and super-

resolution. The qualitative enhancement effect of SRSRGAN is

shown in Figure 1.

In summary, our main contributions are as follows:
Fron
• We propose a new underwater image enhancement model

for simultaneous restoration and super-resolution of

underwater images, called SRSRGAN, which does not

require any prior image degradation information to

perform inference in advance. Therefore, it can flexibly

deal with complex underwater scenarios.

• We design a two-stage framework to process underwater

images. In the restoration stage, the proposed MLDRG

leverages degradation information from different scales,

posit ions, and channels to transform degraded

underwater images to clean images. Moreover, the super-

reso lu t ion s tage i s presented to enhance the

representational ability of high-frequency features for

underwater image super-resolution. In addition, this

staged design improves the flexibility of the network model.

• Qualitative and quantitative comparisons among

SRSRGAN, underwater image restoration/enhancement

methods, SISR methods, and existing simultaneous

restoration and super-resolution methods show the

superiority of SRSRGAN.
2 Related work

In the existing work, few methods are available for simultaneous

restoration and super-resolution of underwater images, except the

ones mentioned in Section 1 (Ledig et al., 2017; Cheng et al., 2018).

Therefore, in this section, we mainly review the research progress of

underwater image restoration/enhancement and SISR.
2.1 Underwater image restoration/
enhancement

Traditional underwater image restoration/enhancement

algorithms aim to recover a clean image from the degraded

observation, including automatic white balance (Liu et al., 1995),

histogram equalization (Hummel, 1977), and CLAHE (Reza, 2004).

Although these methods improve the quality of underwater images

to a certain extent, there are still various problems, such as color

deviation, artificial artifacts, and noise amplification. Inspired by the

morphology and function of the teleost fish retina, Gao et al. (2019)

propose an underwater image enhancement model to solve the

problems of blurring and nonuniform color biasing in underwater

images. Moreover, several methods are proposed inspired by the

dark channel prior (He et al., 2011). Particularly, Drews et al. (2013)

consider underwater images’ blue and green channels as underwater

visual information sources, and apply a dark channel method to

process underwater visual information. Galdran et al. (2015)
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propose a dark channel variant called the red channel method to

restore the lost contrast and colors associated to short wavelengths

in underwater images. Recently, Li et al. (2022) propose a

framework called ACCE-D that uses multiple filters and adaptive

color and contrast enhancement strategies to enhance underwater

images. In addition, Alenezi et al. (2022) propose a method to

enhance underwater images by estimating global background light

and transmission maps. However, these methods have a common

limitation in that the prior assumptions may be invalid with the

changes in environmental status.

As convolutional neural networks develop rapidly, some deep

networks are used to establish mapping relationships from an

underwater image to the clear one (Hou et al., 2018; Lu et al.,

2018). In particular, Li et al. (2020) give an overview of the previous

work for underwater image restoration and establish a CNN model

named Water-Net to get restored underwater images. Additionally,

the emergence of GAN (Goodfellow et al., 2014) provides more

chances for underwater image restoration. For example, Li et al.

(2018) propose WaterGAN to generate underwater images from in-

air images, which uses two fully convolutional networks to estimate

the depth of the generated underwater images and correct their

color, respectively. Different from it, UGAN uses two GAN-based

models for underwater image generation and color correction,

respectively (Fabbri et al., 2018). In recent work, Underwater

GAN (Yu et al., 2019) uses Wasserstein GAN-GP (Gulrajani

et al., 2017) as the network’s backbone for underwater image

restoration. Additionally, Guo et al. (2020) propose a multi-scale

dense GAN (UWGAN) for underwater image enhancement. These

methods improve the quality of underwater images to a certain

extent. However, they only focus on restoring the color contrast and

color distortion of underwater images and do not further improve

the image quality by improving the image resolution. Liu et al.

(2022) propose a twin adversarial contrastive learning method to

enhance the visual quality of underwater images. Many previous

underwater image enhancement methods have only focused on

restoring the color contrast and color distortion of underwater

images. However, their method has limited ability to remove noise

in underwater images. Therefore, Wang et al. (2023a) propose an

end-to-end underwater attention generative adversarial network to

alleviate the influence of underwater noise problem. These methods

improve the quality of underwater images to some extent.
2.2 Single image super-resolution

In some early survey papers on image super-resolution

(Nasrollahi and Moeslund, 2014; Köhler et al., 2017; Yang et al.,

2019), there are two principal categories of image super-resolution:

multiple image super-resolution (MISR) (Tsai, 1984; Capel and

Zisserman, 2001; Caner et al., 2003; Farsiu et al., 2004; Harmeling

et al., 2010) and SISR (Storkey, 2002; Lian, 2006; Yang et al., 2008;

Yang et al., 2010; Dong et al., 2016). Here, we mainly introduce

SISR, as the number of underwater images is still very small

in general.

Interpolation-based SR methods are typically used to increase

the resolution of an image, such as bicubic interpolation (Keys,
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1982) and Lanczos filtering (Duchon, 1979). The reconstructed

edges are generally blurred in the super-resolution images obtained

by these methods. These methods obtain the SR image, while the

reconstructed edges are generally blurry. Subsequent methods focus

on matching the edges of the low-resolution (LR) and high-

resolution (HR) images (Li and Orchard, 2000; Muresan, 2005).

However, the HR images they generate still suffer from blurring

and artifacts.

Sparse representation SR methods are based on the sparse signal

representation and compressed sensing theory. Yang et al. (Yang

et al., 2008; Yang et al., 2010) train two dictionaries for LR and HR

patches jointly. They consider the sparse representations of LR and

HR images and utilize the spare representations of the LR images to

obtain the HR images. Moreover, the natural image prior

framework is added to guide the sparse representation SR method

(Kim and Kwon, 2010). However, such an SR method based on the

spare representation needs a long time to train the sparse coding

dictionary. More recently, Timofte et al. (Timofte et al., 2013;

Timofte et al. , 2014) improve the efficiency of sparse

representation SR methods using anchored neighborhood

regression on the LR patch in the dictionary. Nevertheless, the

texture details are generally absent from the generated SR images.

With the rapid development of deep learning, many SR

methods based on deep learning have emerged and achieved

excellent performance in recent years. Dong et al. (Dong et al.,

2014; Dong et al., 2016) propose a fully convolutional network to

establish a mapping between the LR and HR images, which has

great superiority over the previous approaches. Later, Shi et al.

(2016) propose a sub-pixel convolutional neural network, which

expands the channels of output features by the convolutional layers

and then rearranges the tensor to obtain the HR images. With the

depth of neural networks increasing, Kim et al. (2016) use a deep

neural network similar to VGG-net to generate SR images. In

addition, some researchers propose to utilize the residual

networks to achieve an excellent SR effect (Lim et al., 2017;

Zhang et al., 2018b; Zhang et al., 2018c; Chen et al., 2019).

Furthermore, with the flourishing of GAN-based models, recent
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work has shown great success in SISR. Ledig et al. (2017) propose a

super-resolution generative adversarial network (SRGAN) to

recover SR images from LR images. Wang et al. (2018) enhance

SRGAN by modifying the generator with residual in-residual dense

blocks, which can generate realistic images with natural textures.

Unfortunately, these methods are only suitable for images taken in

the air but cannot perform well on underwater images.

At present, a few researchers are involved in the field of

underwater image super-resolution. Particularly, Lu et al. (2017a)

propose a two-step method for underwater image super-resolution.

Firstly, they obtain a scattered HR image and a descattered HR

image by self-similarity SR methods; secondly, they fuse the two HR

images to obtain the final image. More recently, Islam et al. (2020b)

propose a fully convolutional neural network using residual

learning for underwater SISR, called super-resolution using deep

residual multipliers (SRDRM). In addition, they also formulate an

adversarial training pipeline (SRDRM-GAN). However, the

generated images by these methods have limited image quality

and visual perception. In this paper, we propose an end-to-end

trainable GAN-based model called SRSRGAN, which can

simultaneously restore and super-resolve underwater images.
3 The proposed model

SRSRGAN aims to build an effective simultaneous restoration

and super-resolution model for underwater image enhancement,

which obtains an input underwater image IU and outputs a clear

super-resolution image ISR.

In this section, we elaborate on the proposed end-to-end

trainable model SRSRGAN, which consists of a restoration stage

(Rstage, fR( · )) and a super-resolution stage (SRstage, fSR( · )), as

shown in Figure 2.

In brief, SRSRGAN first feeds it into fR( · ) to learn the clear

image IR for a given degraded image IU . Then, IR is further passed

through fSR( · ) to obtain the super-resolution image ISR. In the

following part, we first illustrate the restoration stage in Section 3.1.
FIGURE 2

The overall network architecture of SRSRGAN.
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Then, we describe the super-resolution stage in Section 3.2. Finally,

we introduce our end-to-end trainable framework of SRSRGAN in

Section 3.3.
3.1 Restoration stage

The light passing through the water attenuates as the depth

increases, and the background light will also affect the underwater

images. In order to restore a clear image IR from an underwater

image IU containing noise and distortion, we propose a GAN-based

model in the restoration stage. Mathematically,

min
GR

 max
DR

V(GR,DR) = EIT∼pdata(IT )½log  DR(I
T )�+

EIU∼pG(IU )½log  (1 − DR(GR(I
U )))�, (1)

where IUand IT denote the image to be restored and the ground-

truth image, respectively.

3.1.1 Network architecture
The overall network architecture of our proposed restoration

model is shown in Figure 3, which is designed to restore the clear
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image IR from the noisy and distorted underwater image IU . To

make SRSRGAN better deal with underwater degradation, we

carefully design a multi-level degradation restoration generator

(MLDRG) consisting of an encoder and a decoder.

3.1.1.1 Multi-level degradation restoration generator

Our MLDRG focuses on dealing with noise and color

degradation because color degradation and noise degradation are

frequent in underwater images.

Specifically, color distortion is an extremely important issue

when processing underwater images. Due to the unique properties

of the underwater environment, color distortion in underwater

images is even more severe, which has an adverse impact on the

quality and usability of the images. To address this issue, we utilize

the channel attention blocks (CAB) (Hu et al., 2018) to enhance the

network’s focus on color information, thereby improving the

network’s color restoration capability. To better handle the color

restoration of shallow feature colors, we place the CAB in the first

and last part of the decoder. The role of the CAB is to enhance the

network’s focus on shallow features, thereby improving the

network’s color restoration capability. In the first part of the

decoder, the CAB can assist the network in better capturing the

color information of shallow features, providing a better foundation
FIGURE 3

The network architecture of the restoration stage.
FIGURE 4

The patch discriminator of the restoration stage.
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for subsequent color restoration. In the last part of the decoder, the

CAB can further enhance the network’s focus on shallow features,

thereby improving the network’s color restoration capability.

On the other hand, due to the random, irregular, and uneven

distribution of noise in images, the presence of noise can increase

the difficulty of model restoration and negatively impact image

quality. Therefore, we implement a self-attention block (SAB)

(Vaswani et al., 2017) in front of the decoder to remove the noise

with different characteristics in underwater images. Specifically,

SAB can determine the weight of each pixel by calculating its

similarity with other pixels, allowing the network to focus more

on the contextual information related to the current pixel. This can

help the network better understand the structural information in

the image and remove the random and irregular noise. Hence, the

generator has the capacity to better handle the noise of underwater

images than that without the attention block. For implementation

details, the global feature maps are coded into queries, keys, and

values in dq, dk, and dv dimensions, respectively. The attention

function is defined as:

Attention(Q,K ,V) = softmax(
QKTffiffiffiffiffi

dk
p )V , (2)

where Q is a matrix for queries, K and V are matrices for keys and

values, respectively.

In addition, we implement the spectral normalization (SN)

(Miyato et al., 2018) after each convolutional layer in MLDRG.

SN layers control the Lipschitz constant of MLDRG by constraining

the spectral norm (s(W) = 1) of each layer. In particular, the

Lipschitz constant describes the intensity of the output as it

changes with the input. For the Lipschitz continuous function f,
if it satisfies

jjf(x0
) − f(x)jj22

jjx0
− xjj22

≤ k, (3)

then k (k ≥ 0) is called the Lipschitz constant. In other words,

MLDRG is insensitive to the perturbation of the inputs. Hence, it

can better handle noisy underwater images than that without the SN

layer. This discovery has the same viewpoint as (Lin et al., 2019) that

the Lipschitz continuity is effective for image-denoising tasks.

Ideally, the generator should be able to retain more multi-scale

information and spatial context information while providing

flexibility for the super-resolution stage. To this end, we employ

the residual block with the SN layer to extract features at 5 scales. In

order to switch scales in our restoration framework, we use a 3� 3

convolutional layer with stride 2 for downsampling and a bilinear

interpolation algorithm for upsampling after a 3� 3 convolutional

layer with stride 1. Considering the intrinsic information loss in

downsampling and upsampling, we add a residual block at each sale

to fuse useful information from the encoder to the decoder.

3.1.1.2 Restoration discriminator

Figure 4 shows the discriminator of the restoration stage. The

discriminator DR distinguishes the ground-truth image IT from the

generated image IR at the level of image patches. Specifically, given

an input image Id to be discriminated, it first extracts the shallow
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features F0 of the discriminated image by a 3� 3 convolutional

layer. Mathematically,

F0 = Conv(Id) : (4)

Since the extraction of deep features is essential to discriminate

the images, we design 4 convolutional blocks, each containing a 3�
3 convolutional layer with stride 1 and a 3� 3 convolutional layer

with stride 2. In addition, considering the Lipschitz continuity of the

discriminator, we add an SN layer and a Leaky ReLu function after

each convolutional layer to stabilize its network training. Therefore,

we feed the previously extracted shallow feature F0 into 4 designed

convolutional blocks to further excavate the deep features of the

input image. Mathematically,

Fi = HBlocki (Fi−1), i = 1, 2,…,N , (5)

where HBlocki denotes the i-th convolutional block in the path

discriminator, and N denotes the number of convolutional blocks.

Hence, FN is the final output of the patch discriminator, and F1 ∼
FN−1 are intermediate feature maps extracted from our

convolutional blocks.

Finally, we utilize a 3� 3 convolutional layer to predict a 16�
16 probability matrix Poutput for image patch discrimination.

Through the probabil ity matrix, we can increase the

discriminator’s sensitivity to image patch detail discrimination,

thus forcing MLDRG to generate more realistic details.

Mathematically,

Poutput = Conv(FN ) : (6)

Moreover, the discriminator loss in the restoration stage can be

defined as:

LRD = −EIT∼pdata(IT )½log  DR(I
T )�+

EIU∼pG(IU )½log  (DR(GR(I
U )))� : (7)
3.1.2 Loss function
To remove the corruption from the observed underwater

images, we formulate some objective functions. First, the

adversarial loss for MLDRG can be formulated as:

LRAdv = −EIU∼pG(IU )½log  (DR(GR(I
U )))� : (8)

In the restoration stage, we define the mean absolute error

(MAE) loss to measure the pixel gap between the generated images

and the target images. Mathematically,

LRMAE =
1

WHo
W
i=1oH

j=1 ITi,j − GR(I
U )i,j

�� �� : (9)

Moreover, in order to enhance the human visual quality of

reconstructed images, we formulate a perceptual loss to measure the

distance between the restored images and the ground-truth images

on the perceptual feature space. It can be formulated as:

LRPerceptual =
1

WHo
W
i=1oH

j=1 fx,y(I
T )i,j − fx,y(GR(I

U ))i,j
�� ��, (10)
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where fx,y symbol denotes a pre-trained VGG-net feature extractor,

which can obtain the feature map of the y-th convolutional layer

before the x-th max-pooling layer (Simonyan and Zisserman, 2015),

while W and H symbols denote the width and height of the

obtained corresponding feature map, respectively.
3.2 Super-resolution stage

SISR is aimed at generating the high-resolution image ISR from

the low-resolution image ILR. Generally, the degradation process

from IHR to ILR is unknown and can be affected by various factors,

such as defocusing and noise. Following the common practice

(Zhang et al., 2017; Zhang et al., 2018a; Liang et al., 2022), we

obtain ILR by a downsampling operation with the scaling factor r.

For an image with C channels, the ILR and ISR are described as a

C �W � H tensor and a C � rW � rH tensor, respectively.

To add the texture details to the restored image IR fed from the

restoration stage, we propose another GAN-based model, which is

aimed at generating the corresponding super-resolution image ISR

from the restored image IR. The objective function of the super-

resolution stage is formulated as:

min
GSR

 max
DSR

V(GSR,DSR) = EIHR∼pdata(IHR)½log  DSR(I
HR)�+

EILR∼pG(ILR)½log  (1 − DSR(GSR(I
LR)))�, (11)

where ILR and IHR symbols denote the corresponding high-

resolution and low-resolution images, respectively.

3.2.1 Network architecture
The generator of the super-resolution stage is illustrated in

Figure 5, which consists of a high frequency learning module

(HFLM) and an upsampling module (UM). Due to the effective

collaboration of HFLM and UM, our super-resolution stage can

restore many high-frequency details from low-resolution

underwater images.
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3.2.1.1 High frequency learning module

After obtaining the restored images after the restoration stage,

we further seek to excavate the high-frequency information of

underwater images. High-frequency information can be described

as Figure 6, where ILR is obtained by bicubic interpolation of the

restored image, and IHR is the high-resolution ground truth image.

Our task in the super-resolution stage is to learn these high-

frequency information. The task of our high-frequency feature

learning module is to learn these high-frequency information. To

this end, HFLM first directly transmits the low frequency

information of the low resolution image to the upsampling

module through a connection, and then learns the high frequency

information of the image through 16 residual-in-residual blocks

(Wang et al., 2018). In each dense block, it captures and transmits

high frequency information by establishing dense residual

connections in the network. Specifically, each layer is connected

to all previous layers, making it easier for high frequency features to

propagate throughout the network and be better captured and

represented. Mathematically,

FH
i =

r · HDi
(ILR) + ILR,  i = 1;

r · HDi
(Fi−1) + FH

i−1, i = 2,…,N ,

(
(12)

where ILR and r denote the output of the restoration stage and the

residual scaling parameter, respectively, HDi
represents the i-th

dense block, N represents the number of the dense blocks, and

FH
i represents the i-th intermediate high-frequency feature.

Specifically, we set r and N to 0:2 and 16, respectively.

Furthermore, we add an SN layer after each convolutional layer

to constrain the Lipschitz continuity of HFLM, and the leak rate of

the Leaky Relu activation function is set to 0:2.
3.2.1.2 Upsampling module

After obtaining the high-frequency information provided FH
N by

the HFLM, we adopt a pixshuffle layer for upsampling, passing the

FH
N through convolutional layers and inter-channel recombination

to obtain a high-resolution feature map ISR. Similar to HFLM, we
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FIGURE 5

The generator of the super-resolution stage.
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add an SN layer after each convolutional layer to constrain the

Lipschitz continuity of UM and stabilize the network training.

Mathematically,

ISR = UM↑(F
H
N + ILR) : (13)
3.2.1.3 Super-resolution discriminator

The architecture of the super-resolution stage’s discriminator is

similar to that of the restoration stage. However, for image super-

resolution, we expect the output by its discriminator to be the

probability that the real image IHR is relatively more realistic than

the fake image ISR. To this end, we use a relativistic discriminator

(Jolicoeur-Martineau, 2018), which is defined as:

DSR(I
HR, ISR) = s (PSR(I

HR) − E½PSR(ISR)�), (14)

DSR(I
SR, IHR) = s (PSR(I

SR) − E½PSR(IHR)�), (15)

where ISR denotes the output of the generator in the super-

resolution stage, PSR(I) denotes the probability output of the

patch discriminator, E½·� represents the operation of taking the

average probability output obtained from mini-batch images, and s
denotes the sigmoid activation function. Then, we formulate the

discriminator loss as follows:

LSRD = −EIHR∼pdata(IHR)½log  DSR(I
HR,GSR(I

LR))�+

− EILR∼pG(ILR)½log  (1 − DSR(GSR(I
LR), IHR))� : (16)
3.2.2 Loss function
Similar to the restoration stage, The MAE loss and perception

loss are both used to optimize its generator in the super-resolution

stage for a better reconstruction effect. Mathematically,

LSRMAE =
1

r2WHo
rW
i=1orH

j=1 IHRi,j − GSR(I
LR)i,j

�� ��, (17)
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LSRPerceptual =
1

WHo
W
i=1oH

j=1 fx,y(I
HR)i,j − fx,y(GSR(I

LR))i,j
�� �� : (18)

In addition, we formulate the adversarial loss for the generator

as follows:

LSRAdv = −EIHR∼pdata(IHR)½log  (1 − DSR(I
HR,GSR(I

LR)))�+

− EILR∼pG(ILR)½log  DSR(GSR(I
LR), IHR)� : (19)

It can be clearly seen that the adversarial loss in our super-

resolution stage includes both IHR and ISR = GSR(I
LR). Hence, the

gradient of the generator in the super-resolution stage benefits from

both the generated images and the ground-truth images. In

contrast, the gradient of the generator in the previous stage only

benefits from the generated images.
3.3 SRSRGAN

SRSRGAN combines the restoration stage and the super-

resolution stage into an end-to-end trainable model. Concretely,

the generator of SRSRGAN combines generators of the restoration

stage and the super-resolution stage. For training, we adopt a two-

stage training strategy. In the first stage, we use a restoration

discriminator to supervise the restoration stage generator’s

training, which serves as a pre-training for the restoration stage

generating adversarial network. In the second stage, we directly use

the super-resolution stage discriminator to supervise the entire

SRSRGAN model’s training. Finally, we can train SRSRGAN as

an end-to-end GAN-based model.

During inference, by feeding degraded underwater images into

the SRSRGAN model, we can obtain clean high-resolution

underwater images end-to-end.

In addition, by doing so, SRSRGAN has the following

advantages in addition to the benefits brought by its well-

designed model structure:
FIGURE 6

The representation of high frequency information.
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Fron
• Removing noise from images will generally introduce

artifacts to the images, while the devised super resolution

stage in SRSRGAN can generate texture details to avoid the

artifacts.

• The generator of SRSRGAN benefits from both the image

restoration and image super-resolution tasks, leading to

better performance than using the restoration stage and

super-resolution stage sequentially.

• During inference, degraded images only require one

forward pass through the network to complete both

image restoration and super-resolution reconstruction.
4 Experiments

We applied our SRSRGAN to underwater image restoration/

enhancement, SISR, and simultaneous restoration and super-

resolution. We also made a comparison with the state-of-the-art

(SOTA) methods for underwater images.

We took the underwater image IU as input in the restoration

stage and the ground-truth image IT for model training. IR was the

restored image generated in the restoration stage. In the super-

resolution stage, we downsampled IR (IHR) with a scaling factor r =

2 to get ILR. ISR was the super-resolved image generated in the

super-resolution stage.

We conducted experiments in PyTorch on NVIDIA GeForce

RTX 3090 GPUs. To optimize SRSRGAN, we employed the Adam

(Kingma and Ba, 2014) optimizer to perform global iterative

learning with b1 = 0:9 and b2 = 0:999, and its learning rate was

set to 2� 10−4. Considering the model depth, we adopted the

warming-up strategy (He et al., 2016) to improve the learning

rate gradually.
4.1 Data and metrics

4.1.1 Dataset
We used 790 images from the UIEBD (Li et al., 2020) dataset

and 1500 images from the UFO-120 (Islam et al., 2020a) dataset to

train SRSRGAN and the compared methods, except Gao et al.

(2019) and SESR (Islam et al., 2020a). For Gao et al. (2019)’s

method, we downloaded the results from the author’s GitHub

webpage; for SESR, we downloaded the released well-trained

model from the author’s GitHub webpage. In addition, we

employed various datasets to test them, including the other 100

images in the UIEBD dataset with the corresponding reference

images, 120 images in the UFO-120 dataset with the corresponding

reference images, the same underwater scene shot by seven different

professional cameras (Ancuti et al., 2018), 248 images in the USR-

248 (Islam et al., 2020b) dataset, 25 images previously used for the

evaluation in related papers (Emberton et al., 2015; Galdran et al.,

2015; Ancuti et al., 2018; Guo et al., 2020), and 19 real underwater

images we collected from the Internet.
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4.1.2 Full-reference metrics
We performed a full-reference evaluation of underwater images

with widely used metrics, i.e., peak signal to noise ratio (PSNR) and

structural similarity index (SSIM) (Wang et al., 2004). We treated

the clear HR image as the ground-truth image. The higher the

PSNR value is, the closer the enhanced image is to the ground-truth

image in terms of image content. Similarly, the higher the SSIM

value is, the closer the enhanced image is to the ground-truth image

in terms of image texture and structure.

4.1.3 Non-reference metrics
We adopted two commonly used non-reference metrics for

underwater image quality evaluation, i.e., UCIQE (Yang and

Sowmya, 2015) and UIQM (Panetta et al., 2016). A higher

UCIQE score indicates that the enhanced image has less color

cast, less blur, and better contrast. Meanwhile, a higher UIQM score

indicates that the enhanced image is more in line with

human perception.
4.2 Evaluation on underwater
image restoration

We first qualitatively compared SRSRGAN with several SOTA

underwater image restoration/enhancement methods. As Figure 7

illustrates, FUnIE-GAN (Islam et al., 2020c), CycleGAN (Zhu et al.,

2017), and Gao et al. (2019)’s method have limited positive effects

on the greenish water image, while FUnIE-GAN (Islam et al.,

2020c) has a less positive effect on the bluish water image.

Pix2Pix (Isola et al., 2017) has an obvious reddish color shift.

UGAN (Fabbri et al., 2018) and Gao et al. (2019)’s method

aggravate the noise effect that introduces light spots in the first

image. In addition, TACL (Liu et al., 2022)’s ability to correct the

green and blue tones of underwater images is limited. In contrast,

SRSRGAN can rectify the greenish and bluish hue of the images,

and eliminate the blurring and noise on the images.

In addition, Figure 8 shows that images contain the standard

Macbeth Color Checker taken by seven different professional

cameras, i.e., Panasonic TS1, Pentax W80, Olympus Tough 8000,

Pentax W60, Olympus Tough 6000, FujiFilm Z33, and Canon D10.

The images processed by Gao et al. (2019)’s method still suffer from

obvious color distortion. FUnIE-GAN (Islam et al., 2020c) deals

well with the bluish color deviation but produces a reddish color

shift when handling the dark image. On the contrary, SRSRGAN

obtains the best color correction for different cameras.

The performance of SRSRGAN and its comparison methods is

quantitatively evaluated in terms of the full-reference and non-

reference metrics, as shown in Table 1. For the full-reference

evaluation, the results are obtained by comparing the results of

each method with the corresponding ground truth (reference)

images. It can be seen that SRSRGAN achieves the highest PSNR

and SSIM value, which means that the images generated by

SRSRGAN have the closest content and structure to the ground-

truth images. Moreover, SRSRGAN obtains the highest UCIQE and
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UIQM score, which indicates that the images generated by

SRSRGAN have the best color and human visual perception.
4.3 Evaluation on underwater image
super-resolution

Following the same procedure, we evaluated the qualitative and

quantitative SR performance of SRSRGAN, respectively. In

Particular, we took the existing underwater SISR methods for

comparison, i.e., SRDRM (Islam et al., 2020b) and SRDRM-GAN

(Islam et al., 2020b). In addition, we compared SRSRGAN with

some SOTA SISR methods (for images taken in the air), including
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VDSR (Kim et al., 2016), EDSR (Lim et al., 2017), DBPN (Haris

et al., 2018), SRCNN (Dong et al., 2016), SRGAN (Ledig et al.,

2017), and ESRGAN (Wang et al., 2018). From Figure 9, we can find

that ESRGAN achieves the best results among the SISR methods for

images taken in the air, while SRDRM and SRDRM-GAN can better

handle underwater images than ESRGAN. In contrast, SRSRGAN

generates clear super-resolution images with the correct color and

sharp texture details.

Table 2 illustrates the quantitative evaluation on SRSRGAN and

the compared methods. It is obvious that SRSRGAN obtains the

highest score for both PSNR and SSIM, which indicates that the

images generated by SRSRGAN have the highest pixel similarity

and structure consistent with the ground-truth images.
FIGURE 7

Qualitative comparison between SRSRGAN and the SOTA restoration/enhancement methods. From left to right are the original underwater images,
the results of UGAN (Fabbri et al., 2018), Pix2Pix (Isola et al., 2017), CycleGAN (Zhu et al., 2017), Gao et al. (2019)’s method, TACL (Liu et al., 2022),
FUnIE-GAN (Islam et al., 2020c), and SRSRGAN. Our sample image is sourced from the public dataset UIEBD (Li et al., 2020).
FIGURE 8

The results of SRSRGAN and the compared methods on a set of underwater images taken by different professional cameras, which contain the
standard Macbeth Color Checker (Ancuti et al., 2018). The names of the cameras used to take the photos are listed at the top of each column. From
top to bottom are original underwater images, the results of the Gao et al. (2019)’s method, FUnIE-GAN (Islam et al., 2020c), and SRSRGAN,
respectively. Our sample image is sourced from publicly available image data in the paper (Ancuti et al., 2018). Our sample image is sourced from
the public dataset UIEBD (Li et al., 2020).
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4.4 Evaluation on simultaneous restoration
and super-resolution

In this experiment, we compared SRSRGANwith existingmethods

for simultaneous restoration and super-resolution of underwater

images, i.e., Cheng et al. (2018)’s method and SESR (Islam et al.,

2020a). The results of the qualitative comparison are shown in

Figure 10. It can be seen that Cheng et al. (2018)’s method increases

the contrast and brightness of underwater images while the images still

have a bluish shift in some patches. It can also be seen from Figure 10

that SESR (Islam et al., 2020a) tends to produce artifacts on the

enhanced images. SRSRGAN is more effective in restoring the colors
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and increasing the resolution of underwater images. This is because the

end-to-end trainable model forces the generator of SRSRGAN to

complete the ultimate task that restores and super-resolves

underwater images simultaneously. In other words, the generator of

SRSRGAN benefits from both the restoration stage and the super-

resolution stage, so that it can better adapt to the simultaneous

restoration and super-resolution task for underwater images.

The quantitative evaluation of SRSRGAN and its comparison

methods are shown in Tables 3 and 4. It is obvious that SRSRGAN

is effective for color correction, deblurring, and contrast restoration,

with the highest scores. In addition, SRSRGAN delivers sharpness

and fine-grained texture details with the highest PSNR and SSIM.
TABLE 1 Quantitative evaluation on the restored images generated by SRSRGAN and the compared methods on the UIEBD dataset.

Method PSNR/SSIM UCIQE UIQM

UGAN (Fabbri et al., 2018) 19.79/0.7108 0.6299 3.3218

Pix2Pix (Isola et al., 2017) 20.02/0.7230 0.5941 3.1349

CycleGAN (Zhu et al., 2017) 18.71/0.7547 0.5941 3.0144

Water-Net (Li et al., 2020) 19.13/0.7471 0.5721 3.0593

FUnIE-GAN (Islam et al., 2020c) 20.44/0.7257 0.5541 3.1255

Shallow-UWnet (Naik et al., 2021) 20.11/0.728 0.5123 3.0730

TACL (Liu et al., 2022) 20.41/0.733 0.5447 3.168

SRSRGAN 20.92/0.7731 0.6453 3.3467
The best results are shown in boldface.
FIGURE 9

Visual comparison with several SOTA SISR methods, including SRDRM (Islam et al., 2020b), SRDRM-GAN (Islam et al., 2020b), VDSR (Kim et al.,
2016), EDSR (Lim et al., 2017), DBPN (Haris et al., 2018), SRCNN (Dong et al., 2016), SRGAN (Ledig et al., 2017), and ESRGAN (Wang et al., 2018). Our
sample image is sourced from the public dataset UIEBD (Li et al., 2020).
TABLE 2 Quantitative evaluation on the underwater image super-resolution on the UIEBD dataset.

Method PSNR SSIM Method PSNR SSIM

SRDRM (Islam et al., 2020b) 18.85 0.7102 SRDRM-GAN (Islam et al., 2020b) 18.93 0.7210

VDSR (Kim et al., 2016) 18.36 0.6440 EDSR (Lim et al., 2017) 18.83 0.7166

SRCNN (Dong et al., 2016) 18.78 0.7197 SRGAN (Ledig et al., 2017) 18.54 0.7159

ESRGAN (Wang et al., 2018) 18.22 0.6462 SRSRGAN 20.92 0.7731
frontie
The best results are shown in boldface.
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4.5 Ablation study

For the proposed SRSRGAN, we added a self-attention block

(SAB) to the generator of the restoration stage to learn the

important parts of the global features. Meanwhile, we used the

spectral normalization (SN) to constrain the Lipschitz continuity of

the generators and the discriminators. Furthermore, in the super-

resolution stage, we employed the high frequency learning module

(HFLM) to excavate fine-grained features from the input LR images.

To test the effects of these components in SRSRGAN, we conducted

an ablation study to verify their effectiveness.

Table 5 illustrates the performance of SRSRGAN and its

variants with different components in terms of PSNR and SSIM.

We can see that SAB makes a slight improvement to the

performance of SRSRGAN than that without SAB. This is due to

the fact that the attention block learns the important parts of the

underwater images. Hence, the generator can make more efforts to

restore the important parts. In addition, we can see that removing

SN from SRSRGAN greatly degrades the performance of

SRSRGAN. The reason behind this is that SN effectively

guarantees the Lipschitz continuity of SRSRGAN. To be specific,
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SN stabilizes the training of SRSRGAN by constraining the

Lipschitz continuity of its generator and discriminator.

Last but not least, HFLM plays an important role in SRSRGAN,

and the variant without HFLM gets the lowest score for both PSNR

and SSIM. This can be attributed to the fact that HFLM effectively

extracts features of the input images. As a result, with the valid

extraction features, the generator of the super-resolution stage can

accurately increase the resolution of the images.
5 Conclusion

In this paper, we propose an end-to-end trainable model called

SRSRGAN, which is free from the prior of corruption types and

levels of underwater images. Meanwhile, SRSRGAN is a unified

solution for simultaneous restoration and super-resolution of

underwater images. Specifically, it captures underwater

degradation information and fine-grained high-frequency

information in two stages. Moreover, benefiting from the superior

structure of the proposed MLDRG, our model leverages

degradation information among different scales, positions, and
FIGURE 10

Visual comparison between SRSRGAN and several SOTA methods on simultaneous restoration and super-resolution of underwater images, i.e.,
Cheng et al. (2018) and SESR (Islam et al., 2020a).
TABLE 3 Quantitative evaluation of SRSRGAN and the compared methods on the UFO-120 and USR-248 datasets.

Method UFO-120 USR-248

PSNR SSIM PSNR SSIM

Cheng et al. (2018) 26.03 0.77 27.23 0.81

SESR (Islam et al., 2020a) 27.17 0.77 26.16 0.77

SRSRGAN 28.08 0.78 29.13 0.85
frontie
The best results are shown in boldface.
rsin.org

https://doi.org/10.3389/fmars.2023.1162295
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wang et al. 10.3389/fmars.2023.1162295
channels in the restoration stage to transform degraded images to

clean images. Besides, the HFLM excavates fine-grained high-

frequency information to super-resolve clean images. Extensive

experimental results demonstrate the superiority of SRSRGAN in

underwater image restoration, super-resolution, and simultaneous

restoration and super-resolution.
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TABLE 5 Comparisons of the performance of SRSRGAN and its variants with different components on the UIEBD dataset.

Method PSNR SSIM

SRSRGAN without SAB and SN 19.29dB 0.7204

SRSRGAN without SAB 19.96dB 0.7528

SRSRGAN without SN 19.75dB 0.7335

SRSRGAN without HFLM 18.79dB 0.7153

SRSRGAN 20.92dB 0.7731
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The best results are shown in boldface.
TABLE 4 Quantitative evaluation of SRSRGAN and the compared methods on the UIEBD dataset.

Method PSNR/SSIM UCIQE UIQM

Cheng et al. (2018) 19.92/0.7381 0.5792 2.7404

SESR (Islam et al., 2020a) 18.19/0.6917 0.5385 2.7064

MLDRG 18.55/0.6698 0.5389 2.5356

MLDRG+SRGAN 18.36/0.6592 0.5185 2.6286

SRSRGAN 20.92/0.7731 0.6453 3.3467
The best results are shown in boldface.
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Underwater monocular visual simultaneous localization and mapping (SLAM)

plays a vital role in underwater computer vision and robotic perception fields.

Unlike the autonomous driving or aerial environment, performing robust and

accurate underwater monocular SLAM is tough and challenging due to the

complex aquatic environment and the collected critically degraded image

quality. The underwater images’ poor visibility, low contrast, and color

distortion result in ineffective and insufficient feature matching, leading to the

poor or even failure of the existing SLAM algorithms. To address this issue, we

propose introducing the generative adversarial network (GAN) to perform

effective underwater image enhancement before conducting SLAM.

Considering the inherent real-time requirement of SLAM, we conduct

knowledge distillation to achieve GAN compression to reduce the inference

cost, while achieving high-fidelity underwater image enhancement and real-

time inference. The real-time underwater image enhancement acts as the image

pre-processing to build a robust and accurate underwater monocular SLAM

system. With the introduction of real-time underwater image enhancement, we

can significantly promote underwater SLAM performance. The proposedmethod

is a generic framework, which could be extended to various SLAM systems and

achieve various scales of performance gain.

KEYWORDS

generative adversarial networks, SLAM, knowledge distillation, underwater image
enhancement, real-time, underwater SLAM
1 Introduction

Recently, many vision-based state estimation algorithms have been developed based on

the monocular, stereo, or multi-camera systems in indoor (Garcıá et al., 2016), outdoor

(Mur-Artal and Tardós, 2017; Campos et al., 2021), and underwater environments Rahman

et al. (2018); Rahman et al. (2019b). Underwater SLAM (Simultaneous Localization and

Mapping) is an autonomous navigation technique used by underwater robots to build a

map of an unknown environment and localize the robot within the map. Underwater

SLAM provides a safe, efficient, and cost-effective way to explore and survey unknown
frontiersin.org01411
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underwater environments. Specifically, monocular visual SLAM

provides an effective solution to many navigation applications

Bresson et al. (2017), detecting unknown environments and

assisting in decision-making, planning, and obstacle avoidance

based on only a single camera. Monocular cameras are the most

common vision sensors, which are inexpensive and ubiquitous

mobile agents, making them a popular choice of sensor for SLAM.

There has been increasing attention on using an autonomous

underwater vehicle (AUV) or remotely operated underwater vehicle

(ROV) to conduct the monitoring of marine species migration

Buscher et al. (2020) and coral reefs Hoegh-Guldberg et al. (2007),

the inspection of submarine cables and wreckage Carreras et al.

(2018), deep ocean exploration Huvenne et al. (2018) and underwater

cave exploration Rahman et al. (2018); Rahman et al. (2019b). Unlike

atmospheric imaging, the captured underwater images have issues

with low contrast and color distortion due to the strong scattering

and absorption phenomena. In detail, underwater pictures are usually

critically degraded due to large suspended particles, poor visibility,

and under-exposure. Thus it is complex and challenging to detect

robust features to track for visual SLAM systems. As a result, directly

performing the current available vision-based SLAM usually cannot

obtain a satisfactory and robust result.

To address this issue, Cho et al. Cho and Kim (2017) combined

Contrast-limited Adaptive Histogram Equalization (CLAHE) Reza

(2004) to conduct real-time underwater image enhancement to

promote the underwater SLAM performance. Furthermore, Huang

et al. Huang et al. (2019) performed underwater image

enhancement by converting RGB images to HSV space and then

performing color correction based on Retinex theory. Then the

enhanced outputs were applied for downstream underwater SLAM.

However, these methods only achieved marginal improvement and

could not work in highly turbid conditions.
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Generative adversarial networks (GANs) Goodfellow et al.

(2014) had been adopted for underwater image enhancement

Anwar and Li (2020); Islam et al. (2020a) to boost underwater

vision perception. Compared 48 with the model-free enhancement

methods Drews et al. (2013); Huang et al. (2019), GAN-based

image-to image (I2I) translation algorithms could enhance textile

and content representations and generate realistic images with clear

and plausible features Ledig et al. (2017), especially in highly turbid

conditions Han et al. (2020); Islam et al. (2020c). This line of

research has mostly taken place in the computer vision fields, with

the main focus on underwater single image restoration Akkaynak

and Treibitz (2019); Islam et al. (2020b). Benefiting from the

superior performance of GAN-based approaches, some

researchers attempted to use CycleGAN to boost the performance

of ORB-SLAM in an underwater environment Chen et al. (2019).

The experimental results have shown that CycleGAN-based

underwater image enhancement can lead to more matching

points in a turbid environment. However, CycleGAN Zhu et al.

(2017) could not meet the real-time requirement. Nevertheless,

CycleGAN-based underwater image enhancement may also

increase the risk of incorrect matching pairs. Besides, the feature

matching analysis and detailed quantitative SLAM results are

missing in Chen et al. (2019) for discussing the potential of

adopting the underwater enhancement for promoting underwater

SLAM performance in real-world underwater environments. To

address these issues, we aim to comprehensively analyze this point.

In this paper, we target to perform a lightweight GAN-based

image enhancement framework for underwater monocular SLAM

to promote performance. The proposed GAN-based image

enhancement can promote the feature matching performance

(Please refer to section 4.3.2 and Figure 1 for more details), which

can further lead to better and more robust SLAM results. To speed
BA

FIGURE 1

The illustrations of (A) underwater images and (B) the ORB [41] feature-matching under three settings: without any enhancement, with CycleGAN,
and with our method. Blue lines represent correct feature matching pairs and Red lines represent incorrect feature matching pairs. The proposed
underwater enhancement can significantly promote feature-matching performance. Best viewed in color.
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up the underwater image enhancement progress and reduce the risk

of incorrect matching pairs, we propose to perform GAN

compression Li et al. (2020b) to accelerate underwater image

enhancement inference. The knowledge distillation Aguinaldo

et al. (2019) is adopted to reduce the computational costs and the

inference time. We propose a generic robust underwater SLAM

framework shown in Figure 2, which could be extended to various

SLAM systems (e.g., ORB-SLAM2 Mur-Artal and Tardós (2017),

Dual-SLAM Huang et al. (2020) and ORB-SLAM3 Campos et al.

(2021)) and achieve a performance gain with the real-time GAN-

based underwater image enhancement module. The proposed

method performs favorably against state-of-the-art methods in

both position estimation and system stability. To sum up, our

main contributions are listed as follows:
Fron
•We introduce a generic robust underwater monocular SLAM

system, which can be extended to different SLAM

algorithms and achieve a large performance gain.

• To accelerate GAN-based image enhancement, we perform

GAN compression through knowledge distillation for

performing real-time underwater image enhancement as a

compelling image pre-processing module. As a result, we

can obtain more robust, stable, and accurate state

estimation outputs.

•Our method can achieve current state-of-the-art performance

and tailored analysis about 1) underwater image

enhancement, 2) robust and accurate feature matching,

and 3) SLAM performance is included in our paper.
2 Related work

2.1 Underwater image enhancement

The underwater image enhancement algorithms could mainly

fall into three categories: 1) model free Asmare et al. (2015); 2)

model-based Akkaynak and Treibitz (2019) and 3) data-driven Li
tiers in Marine Science 03413
et al. (2018); Islam et al. (2020b); Islam et al. (2020c) algorithms.

The representative model-free CLAHE Reza (2004) method could

enhance an underwater image without the image formation process.

Asmare et al. Asmare et al. (2015) converted the images into the

frequency domain and proposed to enhance the high-frequency

component to promote the image quality. Though these model-free

methods could perform image enhancement with a very high speed,

they still heavily suffered from over-enhancement, color distortion,

and low contrast Li et al. (2020a), and they only achieved slight

improvement under highly turbid conditions. Model-based

methods considered the physical parameters and formulated an

explicit image formation process. Drews et al. Drews et al. (2013)

proposed to apply dark channel prior He et al. (2010) in the

underwater setting to perform underwater dehazing. The Sea-

Thru method Akkaynak and Treibitz (2019) firstly proposed to

estimate the backscattering coefficient and then recover the color

information with the known range based on RGB-D images.

However, collecting a large-scale underwater RGB-D image

dataset is expensive and time-consuming. The latter data-driven

underwater image enhancement algorithms Li et al. (2018); Han

et al. (2020); Islam et al. (2020b); Islam et al. (2020c) combined deep

CNNs to conduct underwater image restoration based on large-

scale paired or unpaired data. UWGAN Li et al. (2018) proposed to

combine multi-style underwater image synthesis for the underwater

depth estimation. SpiralGAN Han et al. (2020) proposed a spiral

training strategy to promote image enhancement performance.

FUnIE-GAN Islam et al. (2020c) could perform real-time

underwater image enhancement for underwater object detection.

Unlike this object-level enhancement algorithm, we target to

perform real-time GAN-based underwater image enhancement

for a more challenging underwater SLAM, which requires high-

fidelity pixel correspondences.
2.2 Underwater SLAM

The popular ORB-SLAM Mur-Artal and Tardós (2017); Elvira

et al. (2019) introduced an efficient visual SLAM solution based on
FIGURE 2

The overview framework of the proposed method. The left part on the red dotted line illustrates the GAN-based underwater image enhancement
module. In contrast, the right part shows the downstream underwater monocular SLAM with learned Gs for real-time inference. Gt and Gs indicate

the teacher and student generators, respectively. Given a pre-trained Gt , we aim to conduct GAN compression through knowledge distillation. flngN1
represent the chosen N layers of Gt to compress and fl}ngN1 indicate the compressed layers of Gs . fn indicates the additional convolutional layer to
achieve channel reduction to achieve shape matching between the intermediate layers of Gt and Gs . Ldis is computed to transfer the learned
knowledge of Gt to Gs . We compute pixel-wise loss Lpix , angular loss Langular and conditional GAN loss LcGAN between Gs(x) and y.
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ORB feature descriptor Rublee et al. (2011). VINS Qin et al. (2018);

Qin and Shen (2018) proposed a general monocular framework

with the IMU information. Unlike the aerial setting, underwater is a

typical global positioning system (GPS) denied environment, where

visual information provides valuable navigation queues for robot

navigation. Currently, without the GPS for camera pose ground

truth generation, a recent work Ferrera et al. (2019a) adopted

Colmap Schönberger and Frahm (2016); Schönberger et al. (2016)

to generate relatively precise camera trajectory based on structure-

from-motion (SFM). UW-VO Ferrera et al. (2019b) further adopted

the generated trajectory as ground truth to evaluate the underwater

SLAM performance. Because of the good properties of sound 116

propagation in the water, some sonar-based methods Rahman et al.

(2018); Rahman et al. (2019a; Rahman et al. (2019b) (e.g., SVIN

Rahman et al. (2018) and SVin2 Rahman et al. (2019b)) combined

the additional sparse depth information from the sonar sensor to

perform more accurate position estimation. However, these are

more suited for long-range underwater missions rather than close-

range ones. Besides, the sonar sensor is still expensive, and we target

to propose a general underwater SLAM framework based on the

visual information.
3 Methodology

3.1 Overall framework

We aim to propose a generic robust underwater monocular

SLAM framework, which contains two main procedures: Real-time

GAN-based Underwater Image Enhancement and Downstream

Underwater SLAM based on the enhanced underwater images

generated from the former stage. First, we refer the readers to

check the overall framework in Figure 2. To perform real-time

GAN-based I2I translation for underwater image enhancement, we

adopt the knowledge distillation Aguinaldo et al. (2019)for GAN

compression to achieve better performance-speed tradeoff. The

network parameters and computational costs could be heavily

reduced after compression while achieving comparable or even

better underwater enhancement performance.
3.2 GAN-based underwater
image enhancement

To achieve underwater image enhancement from a source

domain X to a target domain Y (e.g., the source turbid

underwater image domain and another target clear underwater

image domain). The conditional GAN pipeline Mirza and Osindero

(2014) is chosen in our work since it could generate more natural

and realistic image outputs based on full supervision. For generating

reasonable image outputs in the target domain, the adversarial loss

is applied:

LcGAN = Ex,y½log  D(x, y)� + Ex½log  (1 − D(x,Gs(x)))�, (1)
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where x and y are image samples from X and Y, respectively.
The adversarial loss LcGAN Isola et al. 137 (2017) could reduce the

distance between the generated sample distribution and the real

sample distribution. Besides the adversarial loss, the pixel-wise Lpix

is also included to measure the pixel difference (1-norm) between

the generated image output and the corresponding real clear image:

Lpix = ‖Gs(x) − y ‖1; (2)

please note that we compute both Lpix and LcGAN based on the

output of Gs rather than Gt .

Angular loss. To further promote the naturalness of

synthesized outputs, we adopt the angular loss Langular Han et al.

(2020) to obtain better image synthesis:

Laugular = EX,Y½∠ (Gs(x), y)�, (3)

where ∠ indicates the angular distance between Gs(x) and y in

RGB space. It is observed that the used Langular could lead to better

robustness and enhancement outputs to some critical over-under

exposure problems in the underwater images. The color distortion

could be effectively alleviated by Langular . Through the integration of

the above-mentioned loss functions, we could achieve effective and

reasonable underwater image enhancement. However, it cannot

meet the real-time inference requirement in Isola et al. (2017); Han

et al. (2020); Zhu et al. (2017).
3.3 GAN compression through
knowledge distillation

We performGAN compression through knowledge distillation to

save computational costs and achieve the tradeoff between

enhancement performance and inference speed. The detailed

design of the proposed GAN compression module is shown in

Figure 2, which contains the teacher generator Gt , the student

generator Gs, and the discriminator D. In detail, we transfer the

learned knowledge learned from Gt to Gs by matching the

distribution of the feature representations. We initialize the teacher

network Gt with a pre-trained underwater enhancement model and

Gt is frozen during the whole training procedure. The optimized

teacher network could guide the student network on extracting

effective feature representations and achieving better enhancement

performance. The distillation objective can be formulated as:

Ldis = o
N

n=1
‖ fn(Gn

s (x)) − Gn
t (x) ‖2, (4)

where Gn
s (x) and Gn

t (x) (with channel number c = 16) are the

intermediate feature representations of the n-th selected feature

layer in Gs and Gt , andN denotes the number of selected layers. fn is

the convolutional layer with 1� 1 kernel to achieve channel

reduction, which will not introduce many training parameters. In

our experiments, we set N = 6 and select the middle intermediate

feature representations. Different from Li et al. (2020b), we do not

perform a neural architecture search (NAS) considering its huge

time consumption. The channel number in Gs is set to 16. More
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ablation studies about the channel number c selection can be found

in Sec. 4.4.
3.4 Full objective function

We update the final objective function of the proposed method as:

L = LcGAN + Ldis + Langular + lLpix , (5)

where l is a hyper-parameter to balance the loss component.

We set l = 10 in our experiments following the setup in Isola et al.

(2017) to better balance the contribution of pixel-wise supervision

and other components in the proposed method.
3.5 Downstream underwater SLAM

For the downstreammonocular SLAMmodule, we have explored

different in-air SLAM systems: ORB-SLAM2, Dual-SLAM and

ORB-SLAM3 to perform state estimation based on the enhanced

underwater images after the image resizing for obtaining the

approximate image inputs. To be noted, the two modules are

optimized separately and the SLAM system is running in a hard-

core engineering manner. The in-air visual SLAM algorithms

underperform in the aquatic environment as the critical image

degradation. With the real-time GAN-based underwater image

enhancement module, the model could better model the complex

marine environment and find robust features to track from the

enhanced underwater images, which leads to more stable and

continuous SLAM results. Besides, the proposed framework could

be extended to various SLAM systems to achieve performance gain.
4 Experiments

In this section, we first provide the implementation details of

the proposed method and review the experimental setup. Then we

report the inference speed comparison of different underwater

image enhancement algorithms, followed by the detailed

performance comparison of different algorithms. Next, we target

to analyze the underwater SLAM performance from three aspects:

1) underwater image enhancement performance, 2) feature

matching analysis, and 3) qualitative and quantitative underwater

SLAM performance of different SLAM baselines under various

settings. Finally, we provide ablation studies to explore the

tradeoff between the underwater enhancement performance and

the inference speed.
4.1 Implementation details and
experimental setup

4.1.1 Implementation details
To obtain a lightweight and practical underwater enhancement

module, we perform the knowledge distillation to compress the
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enhancement module to meet the real-time inference requirement.

The trained SpiralGAN model (also other GAN models) is chosen

as the teacher model Gt to stabilize the whole training procedure

and speed up the convergence. It is worth noting that Gt is frozen

when performing the knowledge distillation. The image resolution

of underwater enhancement is set to 256� 256, and we perform

upsampling to resize the enhanced image outputs to 640� 480

based on bilinear interpolation for further SLAM. The

hyperparameter c for selected feature layers is set to 16, and we

include the discussion about choices of c in our ablation studies. For

optimizer, we choose Adam optimizer Kingma and Ba (2014) in all

our experiments and set the initial learning rate to 0:0002.
4.1.2 Datasets
4.1.2.1 Training datasets for underwater
image enhancement

We adopt the training dataset from the previous work Fabbri

et al. (2018), which contains 6,128 paired underwater turbid-clear

images synthesized from CycleGAN Zhu et al. (2017). The

proposed method has been only trained with one underwater

dataset and can be extended to different unseen underwater

image sequences for performing underwater image enhancement.
4.1.2.2 Datasets for underwater SLAM

URPC dataset contains a monocular video sequence collected

by the ROV in a real aquaculture farm. The ROV navigates at a

water depth of about 5 meters. Operating ROV collected a total of

190 seconds of a video sequence with an acquisition frequency

24Hz. A total of 4,538 frames of RGB images (640� 352 image

resolution) were obtained. The collected video sequence has large

scene changes and low water turbidity. The image suffers severe

distortion, and the watercolor is bluish-green. Considering the first

2,000 consecutive images do not contain meaningful objects, we

remove them and only choose the last 2,538 images for

experimental testing. We choose the open-source offline SFM

library Colmap Schönberger and Frahm (2016); Schönberger et al.

(2016) to generate the camera pose trajectory for evaluating the

underwater SLAM performance. OUC fisheye Zhang et al. (2020)

dataset is a monocular dataset collected by the fisheye camera in a

highly turbid underwater environment. It provides 10 image

sequences from three water turbidity: 1) slight water turbidity

with about 6m visibility; 2) middle water turbidity with about 4m

visibility and 3) high water turbidity with about 2m visibility. The

image sequences are collected with the acquisition frequency of

30Hz and each sequence lasts about 45 seconds. In our experiments,

we evaluate an image sequence containing 1,316 frames

(1, 920� 1, 080 image resolution) with high water turbidity. The

severe distortion and heavy backscattering lead to a significant

influence on feature tracking. The trajectory is also generated from

Colmap Schönberger and Frahm (2016); Schönberger et al. (2016).

4.1.3 SLAM baselines
We chose three baselines: ORB-SLAM2, Dual-SLAM and ORB-

SLAM3 for comparison:
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• ORB-SLAM2 Mur-Artal and Tardós (2017) is a complete

SLAM system for monocular, stereo, and RGB-D cameras.

The adopted ORB-SLAM2 system has various applications

for indoor and outdoor environments. We choose it as the

baseline for performing underwater mapping and

reconstruction.

• Dual-SLAM Huang et al. (2020) extended ORB-SLAM2 to

save the current map and activate two new SLAM threads:

one is to process the incoming frames for creating a new

map and another is to link the created new map and older

maps together for building a robust and accurate system.

• ORB-SLAM3 Campos et al. (2021) perform visual, visual-

inertial, and multi-map SLAM based on monocular, stereo,

and RGB-D cameras, which has achieved current state-of-

the-art performance and provided a more comprehensive

analysis system.
4.1.4 Evaluation metric for SLAM
To measure the SLAM performance, we choose 1) Absolute

Trajectory Error (ATE), 2) Root Mean Square Error (RMSE), and 3)

Initialization performance for evaluation. ATE directly calculates the

difference between the camera pose ground truth and the estimated

trajectory from SLAM. RMSE can describe the rotation and

translation errors of the two trajectories. The smaller the RMSE is,

the better the system trajectory fits. The initialization performance

indicates the number of frames to perform the underwater SLAM

initialization. The lower the initialization frames, the better SLAM

performance, and more stable and continuous outputs. To make a

fair comparison, we repeat the underwater SLAM experiments 5

times to obtain the best result for all methods.
4.2 Inference speed comparison

In this section, we target to provide the inference speed

comparison of different underwater image enhancement methods

under the same experimental setting. For underwater image

enhancement methods, we choose CLAHE Reza (2004), UDCP

Drews et al. (2013) and FUnIE-GAN Islam et al. (2020c) for

underwater image enhancement comparison. To measure the

frames per second (FPS) for different methods, we test the speed of
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various methods on the practical Jetson AGX Xavier, which is widely

equipped on underwater ROVs and AUVs. The detailed FPS and

memory access cost (MAC) comparison is shown in Table 1 (the

testing image resolution is set to 640� 480 (default image resolution

of ORB-SLAM2 and ORB-SLAM3) for all methods to make a fair

comparison). Compared with the default image resolution

(256� 256) adopted in FUnIE-GAN, the proposed FPS

computation setting is more practical and can lead to more

reasonable and accurate translated outputs. As reported, UDCP has

a very low underwater image enhancement speed, and it costs several

seconds to process only one image. Besides, SpiralGAN and FUnIE-

GAN cannot perform real-time (e.g., ≥ 30) underwater image

enhancement. Our method has fewer network parameters and can

achieve real-time GAN-based underwater image enhancement.
4.3 Performance comparison

4.3.1 Underwater image enhancement results
Firstly, we target to demonstrate that the proposed method

could generate high-quality image synthesis outputs after the

underwater image enhancement module. We have provided a

direct comparison with the model-free image enhancement

algorithms (CLAHE and UDCP) and GAN-based image

enhancement method (FUnIE-GAN) in Figure 3 on the URPC

dataset. Compared with the previous model-free image

enhancement methods, the proposed method could enhance the

content representations of the objects. The synthesis image by

FUnIE-GAN has visible visual artifacts. In contrast, the proposed

GAN-based image enhancement method could achieve better

results with more reasonable outputs. To be noted, the proposed

method has been only trained on one underwater dataset and can be

extended to different unseen underwater image sequences for

testing. The strong generalization ability could alleviate the efforts

of the model-based algorithms to change the physical parameters,

which is also time-consuming. The GAN-based image

enhancement module has shown powerful effectiveness and

achieved better results. We provide more underwater image

enhancement result comparisons in our supplementary.

4.3.2 Feature matching analysis
We have designed comprehensive feature-matching experiments

to reveal whether the proposed underwater image enhancement
TABLE 1 Quantitative FPS, MACs(G) and Parameter(M) comparison of various methods.

Method FPS ↑ MACs (G) ↓ Parameter(M) ↓

CLAHE 260.0 – –

UDCP 0.041 – –

FUnIE-GAN 7.36 47.96 7.02

CycleGAN 3.25 266.40 11.38

SpiralGAN 17.63 34.75 4.99

Proposed 31.83 8.81 1.28
The image resolution is set to 640� 480 for evaluation based on practical Jetson AGX Xaviver. ↑ ( ↓) indicates that the larger (smaller) the value is, the better the performance.
The best results are in bold. "-" means not applicable.
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could promote the feature-matching performance for SLAM. First,

following the experimental setup in Cho and Kim (2017), we report

the ORB, SIFT, and SURF feature-matching results. For a fair

comparison, 500 same image pairs are chosen for performing

feature matching based on various feature descriptors with two

different frame intervals: 20 and 30. If the matching points number

is larger than 50, we regard the matching as successful and report the

successful matching rate. The detailed results are illustrated in

Figure 4. Besides, we also provide the average number of matching

points of different feature descriptors. Compared with feature

matching performance conducted on the original images, UDCP

Drews et al. (2013) could only lead tomarginal improvement or slight

degradation. FUnIE-GAN Islam et al. (2020c) failed to generate

reasonable enhanced image outputs with plausible textile
Frontiers in Marine Science 07417
information. There is an observable performance degradation

compared with the “original” setting. In contrast, the proposed

method can improve performance under all settings.

Furthermore, to verify that the yielded feature matching points

are valid interior points, we conduct feature point matching

evaluation through reprojection. In detail, the feature points

extracted from the current frame are reprojected to the previous

20th image frame. We obtain the ground truth feature matching

based on Structure-from-Motion. For defining accurate feature

matching points; we choose a 3� 3 pixel area:
• When the distance between the projected point (computed

based on the estimated transformation matrix H and the

intrinsic camera parameter K) and the detected feature
FIGURE 4

The qualitative feature matching results of various methods based on different feature descriptors. The lines and the bars indicate the feature
matching success rates and average matching points based on various feature descriptors, respectively.
FIGURE 3

The qualitative results of different underwater image enhancement methods. Best viewed in color.
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point is less than 3, such detected feature matching points

are marked as tbfInner points (denoted as Pi),

• Other detected feature points are falsely matched as Outlier

points (denoted as Ps).
We have provided the qualitative feature matching performance

under three settings: 1) w/o underwater enhancement, 2)

enhancement by CycleGAN, and 3) our method in Figure 1. As

reported, CycleGAN adopted in Chen et al. (2019) a as a pre-

processing module could increase the number of correct matching

pairs. However, the number of incorrect matching pairs also

increased. The proposed method can significantly increase the

number of correct matching pairs with few errors.

For the quantitative comparison, we compute the error rate

statistically based on 100 pairs as follows:

Err : =
Po

Pi + Po
: (6)

The proposed method could achieve a matching error rate of

1.2%, significantly outperforming the error rate of 11.5% achieved

by CycleGAN. The error rate of 10.1% under the setting without

underwater enhancement is also reported for better comparison. As

reported, the proposed method could effectively promote the

feature matching performance. Finally, it is worth noting that

Chen et al. (2019) did not conduct feature matching

accuracy analysis.
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4.3.3 Qualitative and quantitative results
In this section, we aim to provide both qualitative and

quantitative underwater SLAM performance comparisons using

real-world underwater datasets. Similarly, the qualitative image

enhancement results on both URPC and OUC fisheye datasets

are reported in Figure 5. Our method could effectively alleviate the

over-under exposure problem and increases contrast and

brightness. Besides, our enhancement module could render more

details and utilize previous content representations from the

original input images. We combine different image enhancement

methods with ORB-SLAM2 to explore the improvement of

underwater SLAM performance on the URPC dataset. Due to the

fact that it is time-consuming to perform UDCP, we do not perform

UDCP for the downstream underwater SLAM. The quantitative

SLAM performance comparison can be found in Table 2. The

proposed GAN-based underwater image enhancement method

could heavily promote underwater SLAM performance with a

real-time processing inference time. On the other hand, the

FUnIE-GAN cannot synthesize enhanced outputs and there is a

performance degradation compared to the SLAM performance

conducted on the original underwater images.

Furthermore, we combine the GAN-based underwater image

enhancement module with two SLAM systems: Dual-SLAM and

ORB-SLAM3. The quantitative results are shown in Table 3. The

estimated camera pose trajectory is more stable and the initial

performance has been promoted heavily. The reasonable image
FIGURE 5

The qualitative results of our GAN-based underwater image enhancement on (A) URPC dataset and (B) OUC fisheye dataset. Best viewed in color.
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enhancement could result in more reliable feature matching so that

our method could achieve more stable and accurate outputs. The

image enhancement module could promote the underwater SLAM

performance in all metrics. Besides, the qualitative trajectory results

are also included in Figure 6. The proposed framework

outperforms current SLAM methods in both qualitative and

quantitative evaluations.

4.3.4 Highly turbid setting
Comprehensive experiments have demonstrated that the

proposed method can generate realistic enhanced images with

high fidelity and image quality, which can be applied to promote

underwater monocular SLAM performance. To further

demonstrate the effectiveness and the generalization performance

of the proposed framework, we perform experiments on OUC

fisheye dataset Zhang et al. (2020). For better illustration, we

provide the original underwater image and the enhanced output

image in Figure 5B. Similarly, the quantitative and qualitative

results under various settings are reported in Table 4 and

Figure 7, respectively. The proposed framework can also promote

SLAM performance under various challenging settings.
4.4 Ablation studies

4.4.1 Tradeoff between enhancement
performance and inference speed

To better explore the performance-computation tradeoff, we

have conducted experiments using different values of cin Gs. We
Frontiers in Marine Science 09419
report the computational costs, inference time, and SLAM results in

Table 5. SpiralGAN Han et al. (2020) sets c = 32 and the proposed

compressed method (c = 16) has achieved comparable or even

better performance with higher speed. When c = 8, though it

could perform real-time underwater image enhancement with a

very high inference speed (FPS=47.54), there is a noticeable

enhancement performance drop compared with the proposed

method (c = 16).
5 Discussions

In this work, the GAN-based image enhancement module and

the downstream visual SLAM are optimized separately. The image

enhancement is only adopted as an effective image pre-processing

module. We assume that the enhanced image could have higher

image quality. However, if the GAN-based module cannot generate

reasonable images, there would be performance degradation for the

SLAM system. The wrong enhanced underwater outputs could lead

to error accumulation. We target to optimize the two modules in a

multi-task learning manner. The two modules could be mutually

beneficial. Besides, we target to build a general open-source

underwater SLAM framework which is robust to various

underwater conditions. Furthermore, we also target integrating

visual-inertial global odometry to combine the scale information

into our system. We leave these as our future work.

Furthermore, we adopted the camera pose estimation results

from the 3D reconstruction as the pseudo ground truth to evaluate
TABLE 3 Quantization error of different SLAM methods under two settings: 1) without and 2) with the proposed GAN-based underwater image
enhancement on the URPC dataset.

Method ATE ↓ RMSE ↓ Initialization ↓

ORB-SLAM2 w/o 1.418 1.484 84

ORB-SLAM2 w/ 1.344 1.447 23

Dual-SLAM w/o 1.438 1.502 49

Dual-SLAM w/ 1.350 1.444 6

ORB-SLAM3 w/o 1.405 1.472 69

ORB-SLAM3 w/ 1.332 1.433 3
The best results are in bold.
TABLE 2 Quantization error ORB-SLAM2 baseline with different enhancement methods on the URPC dataset.

Method ATE ↓ RMSE ↓ Initialization ↓

ORB-SLAM2 w/o 1.418 1.484 84

ORB-SLAM2 CLAHE 1.397 1.468 61

ORB-SLAM2 FUnIE-GAN 1.474 1.505 136

ORB-SLAM2 CycleGAN 1.501 1.565 159

ORB-SLAM2 SpiralGAN 1.348 1.446 24

ORB-SLAM2 Proposed 1.344 1.447 23
The best results are in bold.
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SLAM performance since it is very challenging and difficult to

obtain absolutely accurate ground truth in the underwater setting.

To alleviate the ground truth acquisition, we utilize the Structure-

from-Motion technique for more robust pose estimation

Schönberger and Frahm (2016) in an offline manner since it

combines the global bundle adjustment (BA) and pose-graph
Frontiers in Marine Science 10420
optimization for more effective and accurate state estimation.

The SIFT feature point adopted in Schönberger and Frahm

(2016) ¨ 354; Schönberger et al. (2016) is also more accurate

than ORB which is widely used in SLAM systems. However, the

reconstructed camera poses through 3D reconstruction may still

have errors and cannot work under some adverse underwater
FIGURE 7

The qualitative results of different SLAM methods on the OUC fisheye dataset under two settings: 1) without and 2) with the proposed GAN-based
underwater image enhancement.
FIGURE 6

The qualitative results of different SLAM methods on URPC dataset under two settings: 1) without and 2) with the proposed GAN-based underwater
image enhancement.
TABLE 4 Quantization error of different SLAM methods under two settings: 1) without and 2) with the proposed GAN-based underwater image
enhancement on the OUC fisheye dataset.

Method ATE ↓ RMSE ↓ Initialization ↓

ORB-SLAM2 w/o 2.655 2.700 153

ORB-SLAM2 w/ 2.410 2.450 10

Dual-SLAM w/o 2.676 2.688 59

Dual-SLAM w/ 2.586 2.520 1

ORB-SLAM3 w/o 2.654 2.667 33

ORB-SLAM3 w/ 2.559 2.561 2
The best results are in bold.
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environments (e.g., motion blur, camera shaking, an extensive

range of rotation, and etc.).
6 Conclusion

This paper has proposed a generic and practical framework to

perform robust and accurate underwater SLAM. We have designed

a real-time GAN-based image enhancement module through

knowledge dist i l lat ion to promote underwater SLAM

performance. With the adaptation of an effective underwater

image enhancement as a pre-processing image module, we could

synthesize enhanced underwater images with high fidelity for

further underwater SLAM, leading to observable performance

gains. The proposed framework can work effectively in an

extensible way, in which external modifications can plug in the

underwater monocular SLAM algorithms.
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While suspended particles play many important roles in the marine environment,

their concentrations are very small in the deep sea, making observation difficult

with existing methods: water sampling, optical sensors, and special imaging

systems. Methods are needed to fill the lack of environmental baseline data in the

deep sea, ones that are inexpensive, quick, and intuitive. In this study we applied

object detection using deep learning to evaluate the variability of suspended

particle abundance from images taken by a common stationary camera, “Edokko

Mark 1”. Images were taken in a deep-sea seamount in the Northwest Pacific

Ocean for approximately one month. Using the particles in images as training

data, an object detection algorithm YOLOv5 was used to construct a suspended

particle detection model. The resulting model successfully detected particles in

the image with high accuracy (AP50 > 85% and F1 Score > 82%). Similarly high

accuracy for a site not used for model training suggests that model detection

accuracy was not dependent on one specific shooting condition. During the

observation period, the world’s first cobalt-rich ferromanganese crusts

excavation test was conducted, providing an ideal situation to test this model’s

ability to measure changes in suspended particle concentrations in the deep sea.

The time series showed relatively little variability in particle counts under natural

conditions, but there were two turbidity events during/after the excavation, and

there was a significant difference in numbers of suspended particles before and

after the excavation. These results indicate that this method can be used to

examine temporal variations both in small amounts of naturally occurring

suspended particles and large abrupt changes such as mining impacts. A

notable advantage of this method is that it allows for the possible use of

existing imaging data and may be a new option for understanding temporal

changes of the deep-sea environment without requiring the time and expense of

acquiring new data from the deep sea.

KEYWORDS

suspended particle, monitoring tools, machine learning, object detection, computer
vision, YOLO, deep-sea mining, sediment plume
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Introduction

Deep-sea environmental functions are influenced by suspended

particle concentrations while animals here depend on these

particles for survival, making the variability of these particles of

geochemical, oceanographic and biological importance. Much

of the suspended solids in the ocean exist as aggregate particles of

detritus, microorganisms, and clay minerals . Particle

concentrations decrease rapidly with depth as organisms feed on

and decompose particles in the settling process. Suspended particle

concentrations in the open ocean are very low (5-12 mg/L; Brewer
et al., 1976; Biscaye and Eittreim, 1977; Gardner et al., 1985) at

depths greater than 200 m, and most deep waters have low natural

concentrations even near the sea floor (Gardner et al., 2018). These

particles are responsible for much of the transport of elements to

the deep-sea, are a major energy source for deep-sea biota, and form

seafloor sediments (Lal, 1977; Alldredge and Silver, 1988).

Low concentrations make suspended particle abundance in the

deep sea difficult to observe. Water sampling can detect minute

quantities of suspended particles; however, it cannot be performed

frequently due to the difficulty of collecting physical samples in the

deep sea. Therefore, changes on fine time scales are difficult to

observe with this method. Optical sensors, such as turbidimeters,

can take continuous measurements to get better temporal

understanding but their accuracy is low when particle

concentrations are very low, such as in the deep sea, because the

signal is lost in electronic noise due to low scattering intensity

(Gardner et al., 1985; Omar and MatJafri, 2009). In fact, previous

studies that have used optical sensors to examine suspended

particles in the deep sea were focused on nepheloid layers which

by definition have elevated concentrations of particles compared to

the surrounding environment (Martıń et al., 2014; Gardner et al.,

2018; Haalboom et al., 2021). Special imaging systems that take

pictures of particles or plankton as they pass through a known

volume illuminated by a specific light source can both take

continuous measurements and provide good accuracy when

particle concentrations are very low. In-situ imaging systems

include Video Plankton Recorder II (VPR) (Davis et al., 2005)

and Underwater Vision Profiler 5 (UVP) (Picheral et al., 2010),

which are primarily used as profilers. However, these systems are

intended for small spatial sampling: the VPR uses approximately 1 –

350 ml of seawater while the UVP captures an approximate area 180

x 180 mm2 in front of the camera. These systems also require large

amounts of money, time, and expertise for installation and analysis.

A general problem with deep-sea surveys is that they are difficult to

access, expensive, and have limited space for equipment. An

observation method that compensates for these shortcomings is

needed because little data can be obtained in a single survey (Amon

et al., 2022).

This study proposes a method to evaluate variation in

suspended particle abundance by applying deep learning-based

object detection to images from a common stationary camera.

Object detection is a technique related to computer vision that

detects the position and number of specific objects in images. In the

last decade, accuracy has improved dramatically as deep learning

techniques such as convolutional neural networks have been
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incorporated (Zhao et al., 2019; Zou et al., 2023). In particular,

one-stage algorithms which perform object region estimation and

classification of each candidate region within a single network, such

as YOLO (Redmon et al., 2016), SSD (Liu et al., 2016), RetineNet

(Lin et al., 2020), and EfficientDet (Tan et al., 2020), enable fast

detection. In the marine field, studies have applied object detection

to organisms (Ditria et al., 2020; Salman et al., 2020; Bonofiglio

et al., 2022; Kandimalla et al., 2022; Knausgård et al., 2022) and

debris (Fulton et al., 2019; Xue et al., 2021), obtaining high detection

accuracy (e.g., >80% in F1 Score and Average Precision (AP50)

indices). In underwater images, suspended particles scatter light

from illumination and appear as circular white reflections. Image

processing research often views particles as noise sources and

remove them from images (Walther et al., 2004; Cyganek and

Gongola, 2018; Wang et al., 2021). On the other hand, when they

are targets for object detection, such characteristics may

facilitate detection.

Taking advantage of the fact that particles appear in high

luminosity, we hypothesized that applying object detection would

allow us to evaluate the variation in particle abundance. In this

study, fixed-point imaging was conducted for approximately one

month on a seamount summit located in the Northwest Pacific

Ocean. Using the particles in a subset of images as training data, a

particle detection model using the object detection algorithm

YOLOv5 was constructed to evaluate the variability in the

amounts of suspended particles. During several days of the

per iod , a smal l - sca le excavat ion test of coba l t - r ich

ferromanganese crusts (hereafter referred to as “crusts”), which is

a potential seafloor mineral resource (Hein, 2004), was also

conducted. This activity provided us a test case to assess rapid,

large changes in suspended particle abundance in the deep sea. Our

proposed approach is intended for use as a simple and auxiliary

monitoring tool for exploring temporal variations in the deep-sea

environment. There is an increasing need to collect baseline data in

the deep sea to assess environmental impacts of ever-expanding

human activities there (Ramirez-Llodra et al., 2011; Amon et al.,

2022). In particular, deep-sea mining can generate large amounts of

resuspended particles, or sediment plumes, which can impact

ecosystems (Washburn et al., 2019; Drazen et al., 2020).

Understanding the variability of suspended particles in their

natural state is essential for environmental impact assessments

(Glover and Smith, 2003; Tyler, 2003).
Materials and methods

Study site

The study site was the flat summit of Takuyo-Daigo Seamount

located in the northwestern Pacific Ocean (Figure 1A). The Takuyo-

Daigo Seamount rises to a depth of approximately 900-1200 m,

approximately 4500 m above the 5400 m deep-sea plain. The

summit area is approximately 2220 km². The basement rocks on

the summit are covered with crusts about 10 cm thick, and thin

sediments are distributed on top. Most of the sediments are sand

composed of planktonic and benthic foraminifera (Hino and Usui,
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2022; Ota et al., 2022). Suzuki et al. (in review) sampled water in this

area and reported a suspended solid concentration of about 20 mg/L.
Image collection

The deep-sea monitoring device “Edokko Mark 1 HSG type”

(Okamoto Glass Co., Ltd.) was installed at two locations in the

north and south of the study site (St. 3 and St. 7) to capture video

(Figures 1B, C). The two locations were selected close (~50 – 100 m)

to the excavation area to allow for comparison between sites and

represent different levels of sediment deposition. Based on

preliminary flow observations and sediment-plume modelling, the

plume from the excavation was expected to flow primarily towards

St.3 with relatively little towards St.7 (Suzuki et al, in review).
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The video recording period was from June 23 to July 30, 2020. The

shooting time was set to 1 minute every 4 hours from June 23 to July

2 to extend battery life, and 1 minute every hour from July 3 to July

30 for detailed observation. The 2 seconds between when the lights

were turned on until the brightness of the lights stabilized was

removed from all videos before analysis. The camera was

approximately 1.2 m from the bottom, at an angle of

approximately 64° to the bottom, and with a horizontal angle of

view of approximately 110° (in air). The screen resolution was 1080

p/30 fps. Illumination was approximately 1.6 m above the bottom,

at an angle of approximately 30° to the bottom, and at a half

illumination angle of ±60° (in air). The total luminous flux was

approximately 4000 lumens (in air). An example of the acquired

images is shown in Figure 2. Suspended particles were white or

translucent and were around ten pixels in size.
A

B C

FIGURE 1

Study site (A, B) and the deep-sea bottom monitoring device “Edokko Mark 1 HSG type” (C). In (B), the red stars represent sites of image collection,
the area in orange represents the location of the excavator operation during the excavation test. For bathymetry of the study site which was at ~950
m, contour lines are for every 2 meters with blue being deeper.
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Suspended particles detection

Pre-processing of image
When analyzing underwater images, pre-processing is

performed to facilitate the identification of objects. In this study,

an edge-preserving smoothing filter was used as a processing

method to emphasize suspended particles. In water, light

absorption by water and scattering of light by suspended particles

and plankton cause image degradation such as color distortion,

contrast reduction, and blurring. In previous studies, underwater

image preprocessing methods by pixel values correction, physical

modeling (Ancuti et al., 2018; Dai et al., 2020; Li et al., 2020; Zhang

et al., 2022), and deep learning (Islam et al., 2019; Wang Y. et al.,

2019; Anwar and Li, 2020; Li et al., 2020; Jian et al., 2022) were

proposed. The goal of these methods is to make the target, such as

seafloor or organisms, more visible by restoring color and removing

haze. However, suspended particles are considered as noise that

should be removed, making existing pre-processing methods for

underwater images likely counterproductive in this study. The edge-

preserving smoothing filter is a process that preserves the contour

lines of the object while smoothing the rest of the image as noise.

Therefore, it can be useful in both enhancing the contours of

suspended particles and removing blurring. Typical examples

include median filter and bilateral filter (Tomasi and Manduchi,

1998; Zhu et al., 2019; Chen et al., 2020). In this study, we used the

domain transform filter by Gastal and Oliveira (2011), which is

based on a transform that defines an isometry between curves on

the 2D image manifold in 5D and the real line. This filter is

implemented as a “detail enhancement” function in OpenCV

(Intel), a Python library for computer vision, for easy and quick

processing. Figure 2 shows the original and processed images and
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their brightness histograms. The filter processing enhanced the light

and dark parts of the images and made the particles sharper.

Model training and validation
An object detection algorithm YOLOv5 (Ultralytics, https://

github.com/ultralytics/yolov5) was used to create the suspended

particle detection model. YOLOv5 is the fifth generation of You

Only Look Once (YOLO) (Redmon et al., 2016), released in June

2020. YOLO performs one-stage object detection using

convolutional neural networks. YOLOv5 has four training models

(s, m, l, x) with different computational load and detection accuracy.

In this study, YOLOv5x, which has the highest computational load

and detection accuracy, was selected since the particles targeted

have few features and are likely difficult to detect. The training and

validation data were images captured every 1 second on July 3, 7, 11,

14, and 20 at St. 3. These days were selected because they contained

a relatively large number of particles, with the goal of increasing the

number and variation of data. The training data consisted of 1028

images containing a total of 3484 particles, and the validation data

consisted of 255 images containing a total of 958 particles. The ratio

of training data to validation data was distributed approximately 8:2

for both the number of images and the number of classes. St. 7 was

not used as training data, only for accuracy verification using the

validation data. This allows us to examine whether the detection

model works accurately when the location (background of the

image) is changed. As with St. 3, the validation data for St. 7

consisted of images captured on July 3, 7, 11, 14, and 20. There was

a total of 255 images, containing 575 particles. The hyperparameters

were the default settings of YOLOv5. The number of epochs,

indicating the number of training iterations, was set to 100, and

the batch size was set to 4. The input image size was 1280 × 720
A B

DC

FIGURE 2

Examples of images at St. 3 which are original (A) and pre-processed with edge-preserving smoothing filter (B). (C, D) are histograms of the HSB
color model with pixel brightness (range 0-255) on the horizontal axis, (C) for the original image and (D) for the processed image. The objects in the
upper center of the screen are instruments that are not relevant to this study.
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pixels. The loss function was the bounding box regression loss with

mean squared error. The loss function is a measure of the

magnitude of the discrepancy between the correct value

(validation data) and the predicted value (detection result), which

is used to optimize the model.

The detection accuracy of the model was evaluated based on

intersection over union (IOU), a measure of the overlap of the area

of the rectangles of the annotations of the correct and predicted

values. Assuming that the validation data are ground truth, the

rectangle of the validation data is Rv, and the rectangle of the

detection results is Rd, IOU is defined as follows.

IOU =  
area(Rd ∩ Rv)
area(Rd ∪ Rv)

The IOU was compared to the threshold value t. When IOU ≥ t,

the detection result was considered correct. In this study, the

commonly used value t = 50% was used.

Precision (P), which indicates the percentage of detected

rectangles that are correct, and recall (R), which indicates the

percentage of detected rectangles that should be detected, are

defined as follows.

P =  
True   Positive

True   Positive + False   Positive

R =  
True   Positive

True   Positive + False  Negative

Then, the average precision (AP), a measure of the model’s

detection accuracy, is defined as follows.

AP =  
Z 1

0
P(R)dR

In this study, AP50, which means the threshold for IOUs is

50%, was used. AP50 is one of the most common performance

indicators for object detection accuracy (Padilla et al., 2020). In

addition, the F1 Score, an index that shows the balance between

precision and recall, was used to confirm model’s performance:

F1 =  
2

P−1 +  R−1

For both AP50 and F1 Score, the closer to 100 on the percentage

scale, the better the model’s accuracy.

Suspended particles detection
Particle detection was performed on captured images at 5-

second intervals for each video. Only the upper 40% of the image

was used to assess the temporal changes of the particles. The upper

40% of the viewing area was chosen because this was the portion of

the image that did not overlap with the seafloor, and similarities in

properties between the seafloor and suspended particles hindered

detection. The complexity of the seafloor also appeared to cause

some areas of false positives in particle detection at the location not

used to train the model (see “Results” chapter for details). The

average number of particles for each video (particle numbers

counted every 5 seconds averaged over 1 minute) was defined as

N40, and was used to evaluate time-series changes. N40 was square-
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root transformed before statistical analysis (2-way ANOVA and

Tukey’s HSD test). To focus on rapid increases in suspended

particles (described below), we defined a “turbidity event” as a

period when N40 was observed to be more than 10x the pre-

excavation average. The time required to detect a single image was

about 1.5 seconds when a CPU (Intel Core i9-10850K, 3.6 GHz) was

used, which was roughly the same whether there were zero or more

than 200 particles.
Excavation test

During image collection, the world’s first small-scale excavation

test of crusts was conducted (Japan Oil, Gas and Metals National

Corporation, 2020). The test period was July 9-16, 2020, and a total

of seven dredging excavations were conducted. The total excavation

distance was 129 m, the excavation width was 0.5 m, and the total

dredging time was 109 minutes (Figure 1B). The excavation area

was located on top of a 5-7 m high hill, surrounded by a seafloor at a

depth of ~950 m. The excavator moved along the seafloor with a

crawler, excavated the crusts with a cutterhead, and collected the

excavated material by a dredge hose to supplement the cyclone tank.

For further details please see Suzuki et al. (in review).
Result

Detection accuracy

The highest AP50 in the learning process was 85.8%, which

occurred at 96 epochs (Figure 3A; Table 1). Therefore, the model

trained up to 96 epochs was used in this study. The loss function

trend (Figure 3B) showed that the error decreased as the model was

trained, and no overlearning occurred. The values converged after

approximately 30 epochs, indicating that the number of training

iterations was sufficient. For St. 7, which was not used to train the

model, the validation results showed an accuracy of AP50 = 87.9%

(Table 1). The F1 Scores were >80% for both St. 3 (82.1%) and St. 7

(86.1%) (Table 1).

Examples of model detection results are shown in Figures 4, 5.

The sizes of the particles detected ranged from approximately 5 to

20 pixels (Figure S1). Particles were mainly detected in the upper

40% of image where the background was blackish water; in St. 3, the

percentage of particles located in the upper 40% was 99%, and in St.

7, it was 97% (Figure 6). On the lower 60% of the image field, where

whitish sandy seafloor was the primary background, similar whitish

particles were difficult to identify and were rarely detected.

Suspended particles that appeared blurred and elliptical due to

the fast flow were not detected. The reason for these non-detections

was that particles with indistinct contours were not included in the

training data in order to avoid false positives for the seafloor and

organisms. In the lower part of St. 7, there were two areas of false

positives, which corresponded to whitish sediment patches

(Figures 6B, C). Other factors that could contribute to false

detections include the appearance of organisms such as shrimp

and fish, or the slight swaying of the camera system itself due to the
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current, but manual visual inspection of the images confirmed that

these were not an issue with our dataset (Figure S2).
Fluctuation in suspended particle
abundance

The 2-way ANOVA found statistically significant differences for

the number of particles detected in the upper 40% of images, N40,

between St. 3 and St. 7 (F1, 1390 = 106.44, p< 0.001) and among times

(i.e., before, during and after the excavation) (F2, 1390 = 7.51, p<

0.001), while the interaction term for station and time was not

significant (F2, 1390 = 0.01, p = 0.988). Spectral analysis including the

entire duration of the study revealed no tidal (diurnal or half-

diurnal) variation in the time series of N40 (Figure S4).

Natural conditions
Under natural conditions (before the excavation test), N40 had

mean values of 3.6 and 2.3 with maximum values of 18.5 and 15.8
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for St. 3 and 7, respectively (Table 2, Figure S3). There was a

significant difference between St. 3 and St. 7 (Tukey’s HSD test, p<

0.001). Standard deviation was half of the mean for each station

before excavation (Table 2).

Conditions during and after the excavation test
During the excavation test N40 had mean values of 4.7 and 2.3

with maximum values of 248.0 and 4.0 for St. 3 and 7, respectively.

After the test,  N40 had mean values of 4.8 and 2.9 with maximum

values of 88.7 and 46.7 for St. 3 and 7, respectively (Table 2, Figure

S3). There was a significant difference between St. 3 and St. 7 both

during (p< 0.001) and after (p< 0.001) the excavation. During

excavation standard deviation was ~4 times the mean for St. 3, but

only 22% of the mean for St. 7. After excavation standard deviation

was roughly the mean at both stations (Table 2).

At St. 3, therewas no significant difference between before, during,

and after excavation (p > 0.1); however, at St. 7, the number of particles

after excavation was significantly larger than the number of particles

both before (p< 0.01) and during (p< 0.01) excavation.
TABLE 1 Accuracy validation of the detection model.

Model training Precision (%) Recall (%) AP50 (%) F1 (%)

St. 3 Used 85.6 78.8 85.8 82.1

St. 7 Unused 87.4 84.8 87.9 86.1
front
The results for St. 3 and St. 7 are described. “Model raining” means whether the image of the stations was used for model training. AP50 means average precision (AP) with 50% thresholds for
correct detection, and F1 means F1 Score. The closer to 100 for both AP50 and F1 Score, the better the model’s performance.
A B

FIGURE 3

Model training transition. (A) average precision (AP) with 50% thresholds for correct detection, AP50, and (B) box regression loss. The blue line in
(B) shows transition of training while the orange line shows transition of validation.
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Turbidity events
The N40 showed 3 turbidity events during the observation

period, two at St. 3 and one at St. 7, which all occurred either during

or after the excavation (Figure 7). For St. 3, the first event was on

July 11 at 10:00 during excavation (maximum N40 = 248.0) and was

observed at only this time. The second event occurred four days

after the end of the excavation test on July 20 and was observed

from 13:00 to 20:00 (maximum N40 = 88.7). For St. 7, the turbidity

event occurred on July 20 and was observed from 14:00 to 19:00

(maximum N40 = 46.7). For both St. 3 and St. 7, the maximum N40

after the excavation test occurred at 16:00 on July 20 (Figure 7).
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Discussion

The results of this study suggest that object detection with deep

learning may serve as a valuable tool for assessing suspended

particle abundance in the deep sea using image datasets. The

detection model could detect particles in images with high

accuracy at locations used for both model training and those not

used (Table 1; Figures 4, 5). The model enabled us to assess

temporal changes of particles, including natural small-scale

variability and rapid increases possibly caused by anthropogenic

disturbance (i.e., small-scale crusts excavation test) (Figure 7).
A B

D

E F

G

C

FIGURE 4

Examples of original images (left column) and particle detection results (right column) in St. 3. Detected particles are surrounded by red rectangles.
The number in the upper right corner of the detected image represents the number of particles. The green lines crossing the images show the
upper 40%. The images in the right column were pre-processed to enhance light and dark areas. Images were taken at (A, B) 15:00 on July 3 (before
excavation test), (C, D) 10:00 on July 11 (turbidity event during excavation test), and (E, F) 16:00 on July 20 (turbidity event after excavation test).
(G) examples of detected particles. The objects in the upper center of the screen are instruments that are not relevant to this study.
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The detection model’s wide measurement range combined with

the ease of eliminating artifacts and possibility of examining both

short and long time scales suggest that our method for examining

deep-sea suspended particle concentrations can compensate for

many shortcomings of existing methods. The detection model was

able to measure from zero to hundreds of particles in an image,

which may help overcome the detection limits of optical sensors

(Gardner et al., 1985; Omar and MatJafri, 2009). To measure low

concentrations by optical sensors, it is useful to narrow the

measurement range to a higher sensitivity. However, Baeye et al.

(2022) measured seafloor disturbance tests with turbidimeters and

found that low range turbidimeters are often saturated. Also,

measuring low turbidity with optical sensors can often produce

electronic noise (Omar and MatJafri, 2009). A detection model that

can easily visually identify whether noise is artificial or not (see

Figure 6) may be useful as a reference for optical sensors. The fine

time scale measurements of the detection model can also

complement the sparseness of the measurements generally

associated with water sampling. In our study, the measurement

interval was 1 – 4 hours, but it can be further fine-tuned according

to the interval of image capture. Because detection models can cover

a large area, they may be better suited as a monitoring tool than

specialized camera systems which generally examine trace amounts

of seawater, such as VPR (Davis et al., 2005) or UVP (Picheral et al.,
Frontiers in Marine Science 08430
2010). Since one of the objectives of special camera systems is to

observe the morphology of plankton and particles, there is a tradeoff

between the delicacy of image quality and the narrowness of the

measurement space (Lombard et al., 2019). The basic principle of

the method in this study is the same as that of the special camera

system in the sense that it measures particles in the image. However,

the general stationary camera used in this study captured reflected

light over a wider area, allowing it to measure sparsely distributed

particles, as shown in Figures 4B, 5B. As a bonus, general stationary

cameras are much cheaper and user-friendly than specialized

camera systems and are commonly used in various deep-sea studies.

Our study is the first that we know of to attempt to use deep

learning to quantify suspended particle abundance. While other

computational methods exist besides deep learning which may

serve useful in quantifying suspended particles, such as binary

processing and motion detection, these methods have inherent

characteristics that may lead to false measurements. Binary

processing, which separates images into background and target

objects, may be able to measure particles that stand out against a

black background, but if objects other than particles, such as

organisms, are captured in the image, they too will be separated

from the background and subject to measurement. Motion

detection, which detects moving objects against a fixed

background, may also be an option for observation of flowing
A B

D

E

C

FIGURE 5

Examples of original images (left column) and suspended particle detection results (right column) at St. 7. Images were taken at (A, B) 15:00 on July
3 (before excavation test) and (C, D) 16:00 on July 20 (turbidity event after excavation test). (E) examples of detected particles.
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particles (Neri et al., 1998); however, in our study, the video

(images) included mobile shrimp and fish while motion was also

created by the slight swaying of the camera system itself caused by

the current. The use of motion detection would also prevent the use

of the vast amounts of video data collected during ROV dives. In

general, using deep learning to train a system with target examples

is much easier than manually programming the process to predict

and avoid all possible false positive targets as described above

(Jordan and Mitchell, 2015), greatly reducing the need for manual
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visual confirmation and additional processing. One remaining

challenge is that false positives occurred in certain areas of the

seafloor at the station not used for model training (Figure 6), but

this can be addressed by increasing the diversity of the dataset used for

training (e.g., variations in the environment and shooting conditions).

Our model results suggest that similar evaluations using this

method can be made for image data from various locations and also

areas where no trained data are used. Most of the particles detected

were in the portion of the image where the background was blackish
A B

C

FIGURE 6

Positions of the detected particles. The vertical and horizontal axes represent the x and y coordinates on the image, normalized from 0 to 1,
respectively. (A) St. 3 and (B) St. 7. (C) example of an area of false positives caused by whitish sediment in St. 7.
TABLE 2 The values for the number of particles detected in the upper 40% of images, N40, for the entire observation period divided into before,
during, and after the excavation.

Excavation test Count Mean Std Mdn Min Max

St. 3

Before 203 3.6 1.7 3.1 0.0 18.5

During 168 4.7 18.9 3.0 0.0 248.0

After 327 4.8 6.6 4.0 0.0 88.7

St. 7

Before 203 2.3 1.1 2.3 0.0 15.8

During 168 2.3 0.5 2.3 0.0 4.0

After 327 2.9 2.9 2.4 0.0 46.7
frontier
Count represents the number of 60-second observations (i.e., samples), Std represents standard division, Mdn represents the median, Min represents the minimum value, and Max represents the
maximum value.
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water, and by extracting only the detection results from that part,

the possibilities of false positives were greatly reduced. In deep

water, where no sunlight reaches, the background is always black

water at any location unless the seafloor is captured, and turbidity is

generally low, so the environmental conditions affecting the images

are fairly similar regardless of specific habitat. Therefore, the model

may be similarly accurate for any deep-sea image data set. However,

it should be noted that the image dataset used in this study is for

only two sites, and could be insufficient in terms of quantity and

diversity. It is still necessary to test the model’s performance using

data sets with a greater variety of shooting and environmental

conditions. Much of the work on underwater object detection has

been done on fish (Ditria et al., 2020; Salman et al., 2020; Bonofiglio

et al., 2022; Kandimalla et al., 2022; Knausgård et al., 2022), which,

although they look and behave differently from suspended particles,

could be a useful reference for dataset collection. Ditria et al. (2020),

which targeted one type of fish for detection, tested the model’s

performance accuracy on images from the same estuarine region as

the training data and on images from a different estuarine region,

and found similarly high accuracy (> 92% for F1 Score and AP50).

Salman et al. (2020), which proposed a method to detect moving

fish, demonstrated that the approach is robust to image variability

using a large underwater video repository containing diverse

environments and fish species (> 80% for F1 Score).

Future work required to improve our particle-detection method

includes extending the diversity of image datasets used for accuracy
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validation and identifying the limits of applicability of the model.

Examples of future datasets to explore include images from habitats

with a wide range of environmental conditions including particle

size, suspended particle concentration, and flow velocity (how fast

flowing blurry particles can be detected). In terms of imaging

conditions, particular attention may need to be paid to lighting,

which affects the visibility of suspended particles (Walther et al.,

2004; Cyganek andGongola, 2018). The detection results also need to

be calibrated with physical collections of suspended particles to

convert what is essentially qualitative data into actual quantitative

data. Otherwise, they cannot be compared with observations from

other studies (e.g., Biscaye and Eittreim, 1977; Gardner et al., 2018).

Laboratory dilution methods that convert turbidimeter readings

(formazin turbidity units, FTU) to concentrations (mg/L) may be a

reference for calibration. For example, Spearman et al. (2020) diluted

sediment samples with seawater from the field to create suspensions

of known concentrations. Optical sensors were then immersed in

these suspensions and their FTU readings were recorded, and this

process was repeated over a range of concentrations. For futurework,

a similar calibration may be possible by replacing the optical sensor

with a camera and using a water tank. Furthermore, even if abrupt

changes due to anthropogenic impacts are measured, it is still

remains largely unknown what thresholds of suspended particles

will be ecologically relevant (Washburn et al., 2019; Drazen et al.,

2020), although this work is not directly related specifically to

our methods.
A

B

FIGURE 7

Temporal changes of the number of detected particles in the upper 40% of images, N40 for (A) St. 3 and (B) St. 7. The orange vertical lines indicate
the times of excavation.
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Our model may provide new insights into temporal changes of

suspended particles. The extremely low N40 values before the

excavation highlight the difficulties of measurement by previous

methods. But the fact that these particles constitute the primary

food source of organisms in the deep sea (Lal, 1977; Alldredge and

Silver, 1988) suggest that changes in observed particles from, for

example, N40 = 1 to N40 = 10 would constitute a possible 900%

increase in food supply. Thus, even “small” temporal variability may

be of large importance in the deep sea, and our detection model may

be able detect these miniscule changes.

The observations following the excavation test also have

interesting implications on future impacts of deep-sea mining.

The cause of differences in average N40 among time periods and

the rapid increases of particles, or turbidity events, may be a

sediment plume of broken crust particles, a large amount of

resuspended sediment generated by disturbance, or resuspension

of natural sediment or sediment deposited from the plume after

excavation (Sharma et al., 2001; Aleynik et al., 2017). The fact that

for N40 at St. 7, there was no difference before and during the

excavation test, but there were differences before and after and

during and after may suggest that once deposited, the particles from

excavation increased the amount of suspended particles in the

surrounding area over time due to resuspension (Sharma et al.,

2001; Aleynik et al., 2017). However, human disturbance is often

associated with increased variability, and the extremely large

standard deviation during the excavation at St. 3 compared to

other times suggests that there may have been alterations in

suspended particle concentrations during the test as well

(Table 2). Much remains unexplored about dynamics of sediment

plumes (Washburn et al., 2019; Drazen et al., 2020) and

resuspension in deep-sea seamounts (Turnewitsch et al., 2013).

These likely causes are not discussed in detail because they are

beyond the scope of this paper which is focused on methodology.

For further details please see Suzuki et al. (in review). If turbidity

events were indeed caused by the excavation test, one would expect

there to be plumes generated during each of the 7 excavations. A

likely reason why only one event was observed during excavation is

that the excavation time was too short to be captured by the one-

minute-per-hour video recording. Due to the limitations in our

dataset, we chose to use the excavation test as an example of high

particle concentrations for our model rather than attempt to focus

on and define the extent of impacts from excavation itself. This

highlights the importance of carefully considering sampling

intervals to ensure the ability to examine particular hypotheses.

A notable advantage of our detection model is that it can be

adapted to observational data acquired for other purposes, even

opening up the possibility of providing new insights from the

thousands of hours of data collected in the past. The detection

model is likely to be applicable to any deep-sea region and camera

system, as long as the entire image does not show the seafloor.

Monitoring deep-sea environments with imagery is a common

research topic (Bicknell et al., 2016); therefore, there is already an

abundance of image data to which the detection model could

potentially be applied. A fundamental challenge for ocean
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observations is to reduce costs (Wang Z. A. et al., 2019). This

challenge is particularly acute in deep-sea surveys where access to

the field is difficult (Amon et al., 2022). Leveraging existing imaging

data may reduce the need for new surveys and the need for

familiarization and installation of specialized equipment, and may

allow for rapid data collection at a lower cost. Detection models can

be a new option to make better use of existing data and improve our

understanding of suspended particles in the deep sea.
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SUPPLEMENTARY FIGURE 1

Size of the detected particles. The vertical and horizontal axes indicate the
size in pixels along the x- and y-axes, respectively. Note that many points are

plotted overlapping each other.
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SUPPLEMENTARY FIGURE 2

Example of images showing possible false positive targets. Shrimp, fish,
and a rope used to secure the camera system were captured. (A, B)
are from St. 3 and (C, D) are from St. 7. The number in the upper right

corner of the images represents the number of particles detected by
the model.

SUPPLEMENTARY FIGURE 3

Box-and-whisker plots of suspended particle counts detected in the upper
40% of images (N40). Plotted separately before, during, and after excavation

test at St. 3 and St. 7.

SUPPLEMENTARY FIGURE 4

Results of spectral analysis on the number of suspended particles
detected in the upper 40% of images (N40). (A) St. 3 and (B) St. 7. The
data used were taken from July 3, 2020, when the image taking interval was
1 hour.
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Subtidal seagrass detector:
development of a deep
learning seagrass detection
and classification model for
seagrass presence and density
in diverse habitats from
underwater photoquadrats

Lucas A. Langlois*, Catherine J. Collier and Len J. McKenzie

Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University,
Cairns, QLD, Australia
This paper presents the development and evaluation of a Subtidal Seagrass

Detector (the Detector). Deep learning models were used to detect most forms

of seagrass occurring in a diversity of habitats across the northeast Australian

seascape from underwater images and classify them based on how much the

cover of seagrass was present. Images were collected by scientists and trained

contributors undertaking routine monitoring using drop-cameras mounted over

a 50 x 50 cm quadrat. The Detector is composed of three separate models able

to perform the specific tasks of: detecting the presence of seagrass (Model #1);

classify the seagrass present into three broad cover classes (low, medium, high)

(Model #2); and classify the substrate or image complexity (simple of complex)

(Model #3). We were able to successfully train the three models to achieve high

level accuracies with 97%, 80.7% and 97.9%, respectively. With the ability to

further refine and train these models with newly acquired images from different

locations and from different sources (e.g. Automated Underwater Vehicles), we

are confident that our ability to detect seagrass will improve over time. With this

Detector we will be able rapidly assess a large number of images collected by a

diversity of contributors, and the data will provide invaluable insights about the

extent and condition of subtidal seagrass, particularly in data-poor areas.
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1 Introduction

Seagrasses are one of the most valuable marine ecosystems on

the planet, with their meadows estimated to occupy 16 - 27 million

ha globally across a variety of benthic habitats within the nearshore

marine photic zone (Mckenzie et al., 2020). Seagrass meadows are

an integral component of the northeast Australian seascape that

includes: the Great Barrier Reef, Torres Strait, and the Great Sandy

Marine Park. Seagrass ecosystems in these marine domains are

ecologically, socially and culturally connected and contain values of

national and international significance (Johnson et al., 2018).

The Great Barrier Reef (the Reef) is the most extensive reef

system in the world, in which seagrass is estimated to cover

approximately 35,679 km2 (Mckenzie et al., 2022b). Over 90% of

the Reef’s seagrass meadows occur in subtidal waters, with the

deepest record to 76 m (Carter et al., 2021c), although most field

surveys are in depths shallower than 15 m (Mckenzie et al., 2022b).

There are 15 seagrass species reported within the Reef, occurring in

estuaries, coastal, reef and deep water habitats and forming

meadows comprised of different mixes of species (Carter et al.,

2021a). Seagrass ecosystems of the Reef support a range of goods

and benefits to species of conservation interest and society. The

seagrass habitats of Torres Strait to the north are also of national

significance due to their large extent, diversity and the vital role they

play to ecology and the cultural economy of the region (Carter et al.,

2021b). Similarly, the seagrasses within the Great Sandy Marine

Park to the south support internationally important wetlands,

highly valued fisheries and the extensive subtidal meadows in

Hervey Bay are critical for marine turtles and the second largest

dugong population in eastern Australia (Preen et al., 1995;

Mckenzie et al., 2000). Catchment and coastal development,

climate change and extreme weather events threaten seagrass

ecosystem resilience and drive periodic decline. Maintaining up-

to-date information on the distribution and condition of seagrass

meadows is needed to protect and restore seagrass ecosystems.

A wide range of methods have been applied to assess and

monitor changes in subtidal seagrass, including free-diving, SCUBA

diving, towed camera, towed sled, grabs or drop–camera (Mckenzie

et al., 2022b). Most of these techniques rely on trained scientists to

visually confirm, quantify and identify the presence of seagrass in

situ. This labour-intensive work, combined with the tremendously

large area of the Reef, makes assessing the state (extent and

condition) of subtidal seagrass prohibitively time consuming

and expensive.

In recent years, the use of digital cameras and autonomous

underwater vehicles (AUVs) has led to an exponential increase in

availability of underwater imagery. When this imagery is geotagged

or geolocated, it provides an invaluable resource for spatial

assessments, and when collected by a range of providers and the

wider community who are accessing the Reef for a range of other

activities (tourism, Reef management), is highly cost effective. For

example, the Queensland Parks and Wildlife Service uses drop-

cameras to collect photoquadrats of the benthos within seagrass

habitats for processing by and inclusion in the Inshore Seagrass

component of the GBR Marine Monitoring Program (MMP). Recent

projects such as The Great Reef Census (greatreefcensus.org) aim at
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tapping into the power of citizen science to collect images and

provide new sources of information about the Reef. A similar

approach could be applied to seagrass. This digital data can be

analysed automatically if the workflows are in place to deal with

structured big data streams.

Deep learning technology provides potentially unprecedented

opportunities to increase efficiency for the analysis of underwater

images. Deep learning models or Deep Neural Networks (DNNs)

are being used for counting fish (Sheaves et al., 2020), identifying

species of plankton (Schröder et al., 2020) and estimating

macroalgae (Balado et al., 2021) or coral cover (Beijbom et al.,

2015). Few studies explored their application for seagrass coverage

estimation (Reus et al., 2018) as well as detection and classification

(Moniruzzaman et al., 2019; Raine et al., 2020; Noman et al., 2021).

While these showed interesting technical methods, they were not

necessarily developed specifically for operational applications. An

operational model that can detect seagrass within the Reef will

improve our capability to rapidly assess and easily provide data

critical for large scale assessments. In particular, there is a need for a

model that can detect seagrass presence even with diverse physical

appearances among the 15 species in the Reef, and in a range of

habitat types with variable benthic substrates. As seagrass can also

be very sparse in the Reef, with an historic baseline of 22.6 ± 1.2%

cover (Mckenzie et al., 2015) and subtidal percent covers frequently

less than 10%, a detector is needed to cope with such circumstances.

In this paper we detail the development of a Subtidal Seagrass

Detector (the Detector) using a DNN to analyse underwater images to

detect and classify seagrasses. This enables rapid processing of many

images. It will form an integral step in workflow from image capture to

provision of rapidly and easily accessed information. Up-to-date

information on the extent and condition of seagrass is required for

marine spatial planning and for the implementation of other

management responses to protect Reef and seagrass ecosystems.
2 Material and methods

2.1 Detector model datasets

Our subtidal image dataset was composed of 7440 photoquadrats

collected by drop-camera and SCUBA divers as part as the MMP

(Mckenzie et al., 2022a), the Seagrass-Watch Global Seagrass

Observing Network (Seagrass-Watch, 2022) and the Torres Strait

Ranger Subtidal Monitoring Program (Carter et al., 2021b). Images

were captured between 2014 and 2021 from 28 sites across 18 unique

locations within the coastal and reef subtidal habitats from Torres

Strait to Hervey Bay (Figure 1; Supplementary Table S1). Images were

annotated by assessing: (1) the percent cover of seagrass (Mckenzie

et al., 2003), (2) the seagrass morphology of the dominant species

based on largest percent cover (straplike, oval–shaped or fernlike), (3)

percent cover of algae, (4) substrate complexity (simple or complex),

and (5) quality of the photo (0=photo unusable, 1=photo clear with

more than 90% of quadrat in the frame, 2=photo with bad visibility

with more than 90% of quadrat in the frame, 3= photo clear with

quadrat partially not visible, 4= photo oblique with quadrat not

totally on the bottom). Only photos with a rating of 1 (5782 in total)
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were retained to ensure optimal performance. All images were

cropped to the outer boundary of the quadrat and standardised to

a 1024 × 1024 pixel size.

2.1.1 Seagrass presence detector (Model #1)
We defined seagrass presence as an area of the seafloor, also

known as benthos, spatially dominated by seagrass, which we

classed as ≥3% cover (sensu Mount et al., 2007). Images with

seagrass cover less than 3% were excluded, resulting in the

removal of an additional 819 images from the analysis. This

maximised the power of detection to levels where seagrass was

clearly visible. There were 1727 images with seagrass absent and

3236 with seagrass present. To ensure a balance dataset of the two

classes, 1727 images were chosen at random out of the 3236 while
Frontiers in Marine Science 03438
ensuring the inclusion of all images from the minor seagrass

morphology classes oval-shaped (522) and fernlike (165). The

remaining images with seagrass present (1509) were retained for

further testing.

2.1.2 Seagrass cover category
classifier (Model #2)

Cover categories were first established based on four cover

quantiles, which were equivalent to seagrass percent cover

categories of; ≥3 <9%, ≥9 <15%, ≥15 <30% and ≥30%. However,

the resulting model did not adequately distinguish between the two

middle categories (less than 60% accuracy). Therefore, those two

classes were merged resulting in three main classes used in Model

#2: (1) low seagrass cover (≥3 <10%), (2) medium seagrass cover
FIGURE 1

Map showing the location and number of images used for the Subtidal Seagrass Detector in the Torres Strait, the Great Barrier Reef World Heritage
Area and Great Sandy Marine Park.
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(≥10 <30%), and (3) high seagrass cover (≥30%) (Figure 2). The

classes were somewhat unbalanced with 1082, 1509 and 644 images

respectively. However, more images in the medium class were

beneficial as it helped improve accuracy for that class which is the

most commonly occurring at MMP sites (long term mean of 14%

seagrass cover for coastal and reef subtidal sites where seagrass is

present). When we ran the same model on a down-sampled version

of the dataset (644 images for each class) the overall accuracy was

lower (-3.3%): accuracy for the low and high cover class increased

(+12.5% and +7.9% respectively), while the accuracy for the

medium class significantly decreased (-26.3%).

2.1.3 Substrate complexity classifier (Model #3)
The substrate complexity classifier was applied to all images

without any seagrass present. Those images were labelled either as

‘simple substrate’ or as ‘complex substrate’. The ‘simple’ category

was assigned to clear images with mostly sandy bottoms while the

‘complex’ category was assigned to images that met at least one of

the following conditions:
Fron
• had consolidated substrates, such as rock, live coral or coral

rubble

• had a visually significant amount of macroalgae

• labelling was difficult (e.g. poor visibility, small seagrass

species, poor image contrast).
Out of the 1727 images without seagrass, 1129 had simple

substrate and 598 had complex substrate. Similar to Model #1, a

random 531 simple substrate images were excluded and retained for

further testing to unsure a balance dataset during training. This

classifier can provide a potential reason for the absence of seagrass

as well as highlighting potential shortfall in the seagrass detection

from Model #1. In complex substrate habitats, seagrass could be

present, however, percent cover is most likely to be low (<10%) and
tiers in Marine Science 04439
particularly difficult to detect by the model. Images predicted into

this category can be later manually inspected to confirm the absence

of seagrass.

All three final datasets were split 60-20-20 into a training,

validation and test set.
2.2 Deep neural network modelling

2.2.1 Image classification workflow
Our overall aim for this study was to develop a Detector that

would be able to achieve three separate classification tasks: (1)

detect the presence/absence of seagrass, (2) estimate the seagrass

cover (low, medium or high), and (3) identify the level of

complexity of the substrate (simple or complex). Separate deep

learning models were developed to execute each of these tasks

independently which maximised model accuracy and reduced

category imbalance (Figure 3). All model training and testing was

conducted in Python using Keras (Chollet, 2015) on a local machine

(Intel Core i9-10900KF CPU 3.70GHz, 3696 Mhz, 10 Cores, 20

Logical Processors, 64GB 3200 MHz, GPU NVIDIA GeForce

RTX 3090).

2.2.2 Model architecture
The classification models were composed of a binary

classification model for Model #1 and Model #3 and multiclass

classification for Model #2. The classification employed deep

learning also known as DNNs. Training a neural network can be

a protracted process and requires a large number of images to

achieve satisfactory results. Transfer learning has been developed

where an already successfully trained network such as VGG16 can

be used as a feature extractor and coupled with a new classifier

trained for the new specific task (Tammina, 2019). Our initial

network was composed of a VGG16 model pre-trained on the
FIGURE 2

Distribution of seagrass percent cover in the image dataset used for Model #2.
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ImageNet classification tasks (Zhang et al., 2015). Instead of the

final dense layer from the original VGG16 model, we created our

own custom classier composed of a sequence of two fully connected

layers with 512 nodes and ReLU activation (Agarap, 2018), two

consecutive dropout (Srivastava et al., 2014) with probability of 0.05

and 0.5 to prevent overfitting and a final dense layer with one node

for each of predicted class activated by either the Sigmoid or

Softmax function (Figure 4).

Contrary to other studies (Raine et al., 2020) we chose not to

split our original images as it would have meant having to create

new labels for thousands of sub-images. Instead, the input image

size was increased. After multiple trials we found that optimal

results were achieved for the input size of 1024x1024 pixels. We also

tried more complex networks for feature extraction such as

Resnet50 and EfficientNet but they did not perform as well

overall (-1.7 and -5.2% in overall accuracy respectively).

2.2.3 Model training
The DNNs were all trained independently on batches of eight

random images per training iteration. When the DNN has gone

through as many iterations as needed to process the full training

image set, this constituted an epoch. Throughout the whole training

process, the progress of the learning is monitored by evaluating the

model performance on the validation image set.

We started with an initial training phase where only the final

classification layers (custom classifier part) were trainable and the

rest of the VGG16 layers were frozen. During this phase the Adam

optimizer (Kingma and Ba, 2014) was used with an initial learning

rate of 0.001. If the loss on the validation image set did not improve

after 10 epochs the learning rate was reduced by half up to four
Frontiers in Marine Science 05440
times after which the training was stopped. That process lasted 60 to

68 epochs. A fine-tuning training phase followed, where the VGG16

layers were unfrozen and set as trainable. This was done over 100

epochs and with the RMSprop optimizer (Tieleman and Hinton,

2014) and a much slower learning rate of 0.00001. The fine-tuning

is meant to ensure the feature extraction is optimised for our input

size as well as increasing performance of the models.

To further prevent overfitting and best capture, the potential

illumination and turbidity variations of underwater images, colour-

based data augmentation was applied where brightness (-70 to 70),

contrast (0.1 to 0.3), blur (sigma 0 to 0.5) and the red channel (-50

to 50) were randomly altered at each training iteration.

2.2.4 Model evaluation (testing)
The training process stopped once all the DNNs have reached a

plateau where further training did not further improve performances

on the validation set.

We then conducted final evaluation of the model performances

on the test image set (20% of the total) where accuracy was assessed

in detail. ForModel #1 andModel #3, further testing was conducted

by running the model on the remaining images not included in the

training, validation and test sets.
3 Results

3.1 Model #1

Model #1 achieved 97.0% accuracy (Supplementary Table S2) on

the test image set (691). We had 3 false positive and 18 false negative
FIGURE 3

Diagram detailing the image classification workflow process of the Detector with the three deep learning models involved.
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classifications (Figure 5; Supplementary Table S3A). The false positives

were all images from Low Isles and taken on SCUBA. We suspect that

the presence of turf algae and the low image quality could be the source

of the misclassification. The small number of false positives suggests the

model was not overestimating seagrass presence.

Of the false negative images, 16 had a percent cover lower than 10%

and in nine of these percent cover was lower than 5% (Figure 6). In

addition, 14 of the false negative images had a complex substrate with

seven having more than 15% algae cover. This was further confirmed by

running the model on the remaining seagrass photos not included in the

training, validation and test sets. Themodel failed to detect seagrass in 38

out of 1509 images, achieving 97.4% accuracy. A similar pattern was
Frontiers in Marine Science 06441
observed where 31 of the misclassified images had less than 10% seagrass

cover and 33 had complex substrate (Figure 6).
3.2 Model #2

Model #2 had an overall accuracy of 80.7% (Supplementary Table

S2) on the test image set (647). The highest accuracy was achieved for the

medium cover class (84.3%), followed by the low cover class (78.5%) and

the high cover class (75.9%). However, these differences in accuracies

weremarginal andmost likely a consequence of the unbalanced nature of

the cover classes image dataset (Figure 7; Supplementary Table S3C).
A

B

C

FIGURE 4

Convolution neural network architecture of: (A) Model #1, (B) Model #2 and (C) Model #3.
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All the misclassified images of the low cover classes (45) were

incorrectly predicted to be in the medium cover category.

Misclassification occurred for images with percent cover between 7

and 9% (31) (Figure 8A). Furthermore, 32 of which also had a complex

substrate, further highlighting the difficulty categorising images close to
Frontiers in Marine Science 07442
the threshold of 10%, especially for complex substrates where algae for

example could be biasing the predictions.

There were 48 misclassified images of the medium cover classes,

of which 31 were predicted as low cover and 17 as high cover. The

false low cover images were mostly close to the 10% threshold with
FIGURE 6

Histogram of the distribution of the seagrass percent cover and substrate complexity present in the images misclassified (false negative) by Model #1
from the test set (18) and the remaining seagrass photo set (38).
FIGURE 5

Examples of images misclassified by Model #1 with false positives on top row and false negative on the bottom row.
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27 of these images being between 10 and 15% seagrass cover

(Figures 8B, C). Images dominated by smaller seagrass species

with rounded and fernlike morphology were also a source of

misclassification. The false high classifications were solely

dominated by straplike species and 10 images had a seagrass

cover between 20 and 30% (Figures 8D, E).

There were 32 misclassified images of the high cover class, which

were all predicted as a medium cover. Similar to the previous classes, a

vast majority of these were close to the adjacent cover category

threshold with 28 of these images having less than 38% seagrass

cover (Figures 8F, G). Straplike morphology dominated in 27 of the

misclassified images except for those with percent cover of more than

40% which were dominated by rounded and fernlike morphology.

The type of substrate was not a significant driver of prediction

errors for the medium and high cover class.
Frontiers in Marine Science 08443
3.3 Model #3

Our subtidal substrate complexity classifier (Model #3) achieved

an accuracy of 97.9% (Supplementary Table S2) on the test image set

(240) and on the simple substrate only images remaining (531).

There were two images misclassified as complex and three images

were misclassified as simple instead of complex out of the test image

set (Figure 9; Supplementary Table S3D). These images were also

difficult to manually classify because they were mostly composed of a

simple sandy substrate with some additional features such as algae or

soft coral, or have poor visibility.

There were 11 images misclassified as complex instead of simple

out of the simple substrate images remaining. These had 7% algae

cover on average and 10 had more than 3%. This may be a

consequence of the arbitrary binary classification used during the
FIGURE 7

Examples of images misclassified by Model #2 from the low, medium and high cover categories.
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labelling process. It is very difficult to establish a clear difference

between a quadrat with a simple sandy substrate with some algae or

other features like coral and a complex substrate. These instances

are uncommon within the dataset, with 82 images labelled as simple

substrate and more than 3% algae cover and occurred mainly only

at the Dunk Island and Low Isles sites (36 and 30 images

respectively). This could be easily refined further by increasing

the image dataset and by setting clearer thresholds or rules to define

the substrate complexity classes.
Frontiers in Marine Science 09444
4 Discussion

4.1 Method performance and limitation

The main goal of this research was to determine the potential

for deep learning models to detect the presence of seagrass within

underwater photos. Seagrass was identified in images containing a

mix of seagrass species, seagrass morphologies and from a range of

habitats/substrates with a very high level of accuracy (97%). This
A
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FIGURE 8

Histogram of the distribution of the seagrass percent cover and substrate complexity present in the misclassified images by Model #2 of (A) the low
cover category (false medium), the medium cover category with (B, C) false low and (D, E) false high for straplike and rounded/fernlike species, and
the high cover category (false medium) for (F) straplike and (G) rounded/fernlike.
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was achieved using a simple neural network architecture. The

performance of Model #1 was higher than previously published

deep learning seagrass detection models (Raine et al., 2020).

However, a direct comparison between the accuracies is difficult

due to differences in image dataset size and classifiers for seagrass

morphology between studies.

We found that most of the misclassification occurred for images

with complex substrate especially those with high algae percent

cover. This is typical for deep learning classification models that are

still lacking the ability to apply extreme generalization the way

humans do (Chollet, 2017). Differentiating among well-defined

objects is usually straight forward with numerous documented

examples on image datasets such as ImageNet (Krizhevsky et al.,

2017). The model outcomes for complex substrate, could possibly

be improved by increasing the overall number of images, but also by

having a balanced number of images with the same level of algae

with and without seagrass. Indeed, deep learning models can

continue to “learn” with additional imagery, so as new images are

being collected, our models can be further trained which will lead to

improved performance over time.

We also demonstrated it was possible to categorise seagrass

cover into three broad classes with an accuracy of 80.7%. The choice

of category boundaries was crucial in the model performance. Most

of the classification errors happened around these boundaries and
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resulted in an image being placed into the adjacent category, rather

than for example two categories away (i.e. a high being classed as

low or vice versa). This needs to be considered when applying the

model. For instance, the medium seagrass cover category was

defined as ≥10 <30% during the labelling process, however the

percent cover range of the images predicted in that class ranged

from 7 to 35%. Despite these misclassification potential errors,

using broad seagrass cover categories is sufficient in the context of

mapping. At the scale of the photoquadrat used in this study, it is

currently more accurate and easier to assess seagrass cover with a

classification model rather than a regression model via

segmentation of the image. Because of the very small morphology

of the seagrass species in the Reef and the high level of complexity in

the background (e.g. macroalgae, rubbles, turf algae), automated

segmentation or even manual annotation of seagrass leaves is

incredibly difficult in particular for strap-like species.

Seagrass percent cover estimates can be difficult to assign for

low densities. Except for a few structurally large species, individual

seagrass leaves are very small and therefore may not be easy to

identify. A study from Moniruzzaman et al. (2019) developed deep

learning models to detect single leaves of Halophila ovalis. This was

effective for oblique close-up images with a sand background, but is

likely to be less effective with nadir quadrat images as used in this

study. Photoquadrats are used so that cover can be easily quantified
FIGURE 9

Examples of images misclassified by Model #3 with false complex on top row and false simple on the bottom row.
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in a standardised manner. While it would require a significant effort

to label a photoquadrat dataset with individual bounding boxes, it

might be the best way to detect very low seagrass density (<3%) and

deserves further investigation.

An alternative method to estimate percent cover of benthic taxa

(e.g. coral, algae, seagrass) and substrate (e.g. sand, rock) is using a

point annotation system. This method has been successfully used

for coral reefs and invertebrate communities (González-Rivero

et al., 2016) and is publicly available through platforms such as

CoralNet or ReefCloud. In seagrass habitats, the point annotation

method is only able to detect seagrass when cover is above 25%

(Kovacs et al., 2022). This is because the method relies on classifying

an area (224x224 pixels) around the annotated point. The

dimension of the annotation area is not visible through the

labelling interface and the person conducting the labelling is

expected to label only what is directly under the point. This

approach is appropriate for well–defined and larger objects like

coral, however, it is not well adapted to scattered, low and sparse

seagrass cover where there could be seagrass within the classifying

area but not directly under the point, resulting in a high level of

misclassification. By classifying the patches directly, others studies

have shown very high overall accuracy for multi-species seagrass

detection (Raine et al., 2020) and even the addition of semi-

supervised learning to reduce labelling effort (Noman et al.,

2021). However, this was achieved on a dataset composed of

images from Moreton Bay (Queensland, Australia), which does

not encompass all species present within our study area and does

not include complex substrate background.

While we acknowledge the limitations of our models, especially

Model #2, we believe to have developed the most operationally

relevant subtidal seagrass detection deep learning model for the

Reef to date with a lot of potential for future improvements.
4.2 Operationalisation and mainstreaming

This study was undertaken to demonstrate the feasibility of a

subtidal seagrass detection model as a step towards operationalisation

and mainstreaming of big data acquisition and analysis (Dalby

et al., 2021).

Traditional direct field observations provide instantaneous data,

but need to be performed or overseen by formally trained scientists,

and the data requires time consuming transcription into a database.

Images (e.g. photoquadrats), however, can be collected by a variety

of contributors such as environmental practitioners, Indigenous

ranger groups or members of the public without a formal scientific

background (i.e. citizen scientists), requiring less capacity and

resources. For example, rangers from the Queensland Park and

Wildlife Services (QPWS) conduct subtidal seagrass monitoring

using drop cameras that is currently integrated into the MMP

(Mckenzie et al., 2021). Citizen scientists, QPWS Rangers and

Indigenous rangers frequently access the Reef and seagrass

habitats of northern Australia. Simplifying the methods and

minimising the time required to capture data by using

photoquadrats can vastly increase the volume, velocity, variety

and geographic spread of image data collection. The models
Frontiers in Marine Science 11446
presented in this study facilitate the ability to mainstream data

capture and increase the rate of image processing, enabling

scientists to maximise big data analysis and reporting. With our

current computer, the models are able to process and produce

predictions for 1500 images in under two minutes. In our

experience it would take approximately 12 to 25 hours for a

trained person to manually label that number of images

depending on their complexity. Scaling up the process will

require some specific infrastructure to store data and powerful

cloud computing capacity (CPU and GPU) on platforms such as

AWS or Azure to handle on-demand inference of new data. In

addition of the deep learning models, we aim to grow our capacity

for image data handling. In parallel with the development of the

models presented here we have been working on streamlining a

higher efficiency image processing workflow. This includes

handling either time-lapse or video (e.g. GoPro) input sources

and a DDN model (YOLOv5) to generate deep learning ready

standardized quadrat images via detecting quadrat metal frame and

cropping the image.

The operational applications for the subtidal seagrass detector

are wide-ranging, including mapping and monitoring of the vast

and remote northern Australian and global seagrass habitats. Image

collection combined with a geotagging/geolocation, will enable the

production of spatially explicit maps of subtidal areas. Our models

are most adapted to this application as maps tend to only need

simple information like seagrass presence/absence. However, we

have also shown potential for monitoring with the ability to detect

broad seagrass cover categories which with further refinement could

enable temporal changes in seagrass abundance to be assessed.
4.3 Future directions

While the findings in this study are encouraging, we very

much intend to further refine and improve those models and the

associated data processing workflow over time. One of the main

advantages of using DNNs is their capacity to incrementally

improve when additional training data is provided. Therefore, as

more and more diverse images are supplied it will help us build

more robust models and give greater confidence in the

predictions. Our models are currently limited to be used on

subtidal nadir photoquadrats captured using a drop-camera.

However, with the increasing popularity of Autonomous

Underwater Vehicles (AUVs), our DNNs would need to be

trained to accept more versatile image inputs (e.g. oblique and

without guiding bounds).
5 Conclusion

In this study, we developed a Subtidal Seagrass Detector capable

of detecting the presence of seagrass as well as classifying seagrass

cover and substrate complexity in underwater photoquadrats by

using Deep Neural Networks. The three subsequent models

achieved high level accuracies with 97%, 80.7% and 97.9%,

respectively. This demonstrates great potential towards the
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operationalisation of the Detector for accurate automated seagrass

detection over a wide range of subtidal seagrass habitats.
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The complex and variable oceanic environment challenges channel modeling of

Underwater Wireless Optical Communication (UWOC) systems. Most of the

classical modeling methods focus mainly on the water environment and

ignore the effect of communication equipment on signal transmission, thus

making it difficult to model the UWOC channel’s complicated characteristics

comprehensively. In this work, a UWOC channel emulator based on Deep

Convolutional Conditional Generative Adversarial Networks is established and

verified to address the challenge, which can effectively learn the characteristics

of channel response and generate emulated signals with randomness like a real

UWOC system in a practical application environment. Compared with the

approaches based on multi-layer perceptron and convolutional neural

network, the experimental results of the proposed method indicate

outstanding performances in time domain, frequency domain and universality

with different turbidity levels, respectively. This approach provides a new idea for

applying deep learning techniques to the field of UWOC channel modeling.

KEYWORDS

Underwater Wireless Optical Communication, Generative Adversarial Networks, deep
learning, UWOC, GAN, channel modeling
1 Introduction

Nowadays, with the gradual deepening of marine research, there has been a significant

increase in underwater activities such as marine environment monitoring, offshore oil

exploration, underwater archaeology, and underwater experimental data collection, so a

reliable and high transmission rate underwater wireless communication technique is

urgently needed (Zeng et al., 2017). Acoustic communication can no longer meet the

growing demand for high-speed rates due to its low bandwidth and high transmission

delay. Additionally the transmission distance of underwater radio frequency (RF)

communication is suppressed because of the skin effect of radio waves (Kaushal and

Kaddoum, 2016; Miramirkhani and Uysal, 2018). While utilizing the Underwater Wireless
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Optical Communication (UWOC) technique, which features high

bandwidth, fast transmission rate, good confidentiality and low

cost, is gaining more and more attention and has broad application

prospects (Chi et al., 2015).

When light propagates through seawater, photons will

randomly collide with water molecules or other particles in

seawater and deviate from the original propagation direction,

leading to a phenomenon of beam divergence, thus causing a loss

of optical power at the receiving end. Meanwhile, the farther the

distance of light transmission, the more severe the beam divergence

becomes, while the loss of the received optical signal directly affects

the communication distance and transmission rate of the UWOC

system (Mobley, 1994; Gabriel et al., 2013). Furthermore, the

attenuation characteristics of the UWOC channel to the optical

signal vary with different marine environmental parameters, such as

depth and water quality. The complicated absorption and scattering

characteristics of the same channel for various wavelengths of light

also vary greatly (Zeng et al., 2017). Therefore, the complexity of the

UWOC channe l pose s cons ide rab l e d i fficu l t i e s f o r

channel modeling.

In recent years, with the development of theory, optoelectronic

technology and the improvement of computer performance, the

research on UWOC channels has made remarkable progress.

Sermsak Jaruwatanadilok modeled the impulse response of the

UWOC channel using vector radiative transfer theory which

includes multiple scattering effects and polarization. And the

scattering effects were quantified as a function of distance and bit

error rate (BER) (Jaruwatanadilok, 2008). Brandon M. Cochenour

et al. proposed the Beam-Spread Function (BSF) to estimate the

impact of scattering effects on the received signal power in the

underwater light propagation process (Cochenour et al., 2008).

Chadi Gabriel et al. quantified the UWOC channel impulse

response for different water types and link distances using the

Monte Carlo approach (Gabriel et al., 2013). Shijian Tang et al.

presented a closed-form expression of double Gamma functions to

model the UWOC channel impulse response, which fits well with

the Monte Carlo simulation results (Tang et al., 2014). Also using

numerical Monte Carlo simulations, Sanjay Kumar Sahu and

Palanisamy Shanmugam obtained a more accurate UWOC

channel model by improving the scattering phase function(Sahu

and Shanmugam, 2018).

The aforementioned studies mainly focus on the loss of optical

signals during the propagation in different water types. Actually, in

the process of signal transmission, it is inappropriate to ignore the

effect of optical and electrical devices at the transmitter and receiver

ends, such as the dark current noise of the photomultiplier tube

(PMT), the impulse response of the electronic amplifier, the

nonlinear response of the laser, the errors in digital-to-analog (D/

A) or analog-to-digital (A/D) conversion and so on. Therefore, a

realistic and reliable UWOC channel model is required to

completely capture the effects of all parts of the communication

system on signal transmission, which is a complex process that

neural networks are ideally suited to emulate. Yiheng Zhao et al.

proved the feasibility of utilizing neural networks for UWOC

channel modeling by proposing a channel emulator called two
Frontiers in Marine Science 02450
tributaries heterogeneous neural network (TTHnet) (Zhao et al.,

2019), which is based on a combined design of multi-layer

perceptron (MLP) and convolutional neural network (CNN). The

1.2m saltwater channel experiments verified the TTHnet regarding

both spectrum and BER mismatch, realizing more accurate

performance than other channel emulators.

Generative Adversarial Networks (GAN) (Goodfellow et al.,

2014), composed of a generator and a discriminator, is one of the

most critical research directions in deep learning. Owing to its

outstanding data generation capability, GAN has been widely used

in computer vision and natural language processing (Pan et al.,

2019). In order to generate samples with specific properties, Mhdi

Mirza and Simon Osindero proposed a Conditional Generative

Adversarial Network (CGAN), where conditional information is

added to guide the GAN generator to generate samples (Mirza and

Osindero, 2014). The content and structure of the conditional

information can be flexibly changed according to the application

scenario. For instance, CGAN has been utilized for image resolution

enhancement (Ledig et al., 2017) and semantic segmentation of

images (Souly et al., 2017), as well as for generating images from text

descriptions (Reed et al., 2016; Liang et al., 2017). Apart from

applications in computer vision, previous studies in the field of

communication have proved that GAN is an effective approach for

channel modeling. Davide Righini et al. proposed an approach to

generate channel transfer functions for power line communication

using Mixture Generative Adversarial Nets (Hoang et al., 2018),

which outperforms traditional modeling methods (Righini et al.,

2019). In Ref. (Ye et al., 2020), CGAN was employed to model

channel effects in end-to-end wireless communication system, and

simulation results show that the CGAN approach is effective in

additive white Gaussian noise (AWGN) channels, Rayleigh fading

channels, and frequency-selective channels. Yudi Dong et al. also

developed a CGAN-based channel estimation method for multiple-

input multiple-output (MIMO) mmWave wireless communication

systems, which has better robustness and reliability compared with

conventional methods and other deep learning methods (Dong

et al., 2021).

In this article, a Deep Convolutional Conditional Generative

Adversarial Networks (DCC-GAN) method for modeling UWOC

channels is developed and experimentally tested at different

turbidity waters and various transmission rates. The performance

is evaluated by spectrum mismatch, BER mismatch and correlation

coefficient. The experimental results show that the generator can

generate emulated signals with randomness like the real UWOC

channel, proving that our proposed model can learn and analyze the

characteristics of the channel well. To the best of our knowledge,

this is the first study to apply GAN to emulate UWOC channels,

which has great potential for exploration in channel modeling.

The rest of the paper is organized as follows. In Section 2, the

theoretical principle of the proposed channel emulator is presented,

and then the architecture of DCC-GAN is described in detail. In

Section 3, the experimental setup for making UWOC datasets is

introduced. In Section 4, a series of experiments are carried out to

demonstrate the effectiveness of the proposed method. Finally, a

brief conclusion is given in Section 5.
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2 The proposed channel emulator
based on DCC-GAN

2.1 GAN and CGAN

GAN, as its name implies, is a generative network model for

learning data distribution in the way of adversarial training, where

the aim is to learn a model that can produce samples close to the

target distribution. In this article, the DCC-GAN is applied to

model the distribution of the UWOC channel output based on

a GAN.

The GAN system consists of two parts, namely the generator G

and the discriminator D. The input to the generator is a noise

sample z which is subject to a specific prior distribution pz, e.g.,

Gaussian distribution. Then, the generator transforms the noise

sample z into a generated sample G(z). The discriminator takes

either a real sample x from the target distribution pdata or a

generated sample as input and returns the probability that the

input comes from the target distribution rather than the generator.

During the training stage, the objective of the discriminator is to

learn to distinguish whether the current sample is from the real

dataset or the data generated by the generator, while the objective of

the generator is to generate fake samples that are as similar as

possible to the real samples to fool the discriminator. If the

discriminator can successfully distinguish between the two types

of samples, then this information is fed back to the generator so that

the generator can learn to generate samples more like the real

samples. As the number of adversarial training epoch increases, the

learning ability of the generator and the discriminating ability of the

discriminator become stronger and stronger. Finally, the training

progress ends when the discriminator can no longer discriminate

between the real samples and the generated fake ones better than

random guessing.

Generally, denote the parameter sets of the generator and

discriminator as qG and qD, respectively, the objective functions

of the generator and discriminator can be mathematically expressed
Frontiers in Marine Science 03451
as follows:

LG = min   
qG

 Ez∼pz (z)½log  (1 − D(G(z)))� (1)

LD = max   
qD

 Ex∼pdata(x)½log  D(x)� + Ez∼pz (z)½log  (1 − D(G(z)))� (2)

The objective of G is to maximize the output of D when the

input to D is G(z), while the objective of D is to return a high value

when the input is a real sample x and a low one when the input is G

(z), thus forming an adversarial training mechanism.

As shown in Figure 1, the GAN can be extended to a CGAN

model if a conditional information y is imposed on the generator

and discriminator. The conditional information attaches

constraints to the original GAN so that the generator can

generate data under the guidance of the conditional information,

which addresses the issue of uncontrollable sample categories

generated by the original GAN. Then, the optimization functions

of the generator and discriminator become:

LG = min   
qG

 E~x∼pg (~x)½log  (1 − D(~xjy))� (3)

LD = max   
qD

 Ex∼pdata(x)½log  D(x y)� + E~x∼pg (~x)½log  (1 − D(~x
��� ���y))�

(4)

Where, pg is the generator model distribution implicitly defined

by ~x = G(zjy), z ∼ pz(z).

CGAN is employed in the proposed UWOC channel emulator

to simulate the output signal with the given conditioning

information on the transmitted signal.
2.2 Architecture of DCC-GAN

Although the original GAN is a powerful generative model, it

always suffers from difficulties in training and poor quality of the

generated results. By combining GAN with CNN, Deep
FIGURE 1

Structure of CGAN.
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Convolutional Generative Adversarial Networks (DCGAN)

(Radford et al., 2016) can significantly improve the quality of the

generated results by exploiting the powerful feature extraction

ability of two-dimensional convolutional layer and also find an

appropriate network structure for stable training by improving

CNN, thus remarkably overcoming the shortcomings of the

original GAN. In this work, the hierarchical one-dimensional

convolutional layers are used to replace the original MLP.

Therefore, the proposed method is called “Deep Convolutional

Conditional GAN”. It is appropriate to employ convolutional layers

since convolutional operations between signals can represent the

channel response. The specific parameters of DCC-GAN are shown

in Table 1, where K denotes the batch size, and the dimension of the

noise sample z is 8. Every 100 adjacent signals are sequentially input

to the network, with each signal containing 20 sampling points.
2.3 Improvement of the objective function

According to Ref. (Goodfellow et al., 2014), minimizing the

original GAN’s loss function is equivalent to minimizing the

Jensen–Shannon (JS) divergence between the target distribution

pdata and the generator model distribution pg, which tends to cause

the gradients to vanish when the discriminator saturates. This

training difficulty arises because the JS divergence is potentially

not continuous for the generator’s parameters (Arjovsky et al.,

2017). So, the Earth-Mover (also called Wasserstein-1) distance W

(q, p) is introduced to replace JS divergence in Wasserstein GAN

(Arjovsky et al., 2017), where the discriminator is also called a critic.

Using the Kantorovich-Rubinstein duality, the critic loss function

can be obtained as Eq. (5) where Z is the set of 1-Lipschitz
Frontiers in Marine Science 04452
functions.

min   
qD∈Z

 Lcritic

= min   
qD∈Z

  E~x∼pg (~x)½D(~x y)� − Ex∼pdata(x)½D(x
�� ��y)�n o

(5)

In this case, minimizing Lcritic is equivalent to minimizing the

Wasserstein-1 distance W(pdata, pg) by optimizing the generator’s

parameters. Nevertheless, to enforce the Lipschitz constraint on the

critic, Wasserstein GAN suggests clipping the weights of the critic to

a compact space, which may result in either vanishing or exploding

gradients when the clipping threshold is not tuned carefully. To

avoid undesirable behaviors, a soft version of the constraint called

the Wasserstein GAN Gradient Penalty (WGAN-GP) algorithm

(Gulrajani et al., 2017) is proposed as an alternative way to enforce

the Lipschitz constraint, and the gradient penalty metric Lgp is

defined as:

Lgp = lEx̂∼px̂ (x̂ )½(∇x̂ D(x̂ jy)2 − 1)2� (6)

Where, px̂ is defined as sampling uniformly along straight lines

between pairs of points sampled from pdata and pg, l denotes

penalty coefficient.

In this article, the WGAN-GP algorithm is introduced to

improve the training instability of DCC-GAN. The objective

function of D is then reformulated as a combination of critic loss

and gradient penalty metric, which is described as:

LD = min   
qD

  Lcritic + Lgp
� �

(7)

And the objective function of G is modified as:

LG = min   
qG

 E~x∼pg (~x)½−D(~xjy)� (8)

In the experiments, l is set to 5, which works well on the

proposed DCC-GAN and the UWOC datasets.
2.4 Training details of DCC-GAN

The improvement in training instability not only allows us to

enhance sample quality by experimenting with a broader range of

network architectures but also requires little hyperparameter

tuning. The training procedure of DCC-GAN is illustrated in

Algorithm 1 in detail. The training process aims to obtain an

ideal generator architecture, which can model the distribution of the

UWOC channel output, that is, to realize the function of the

channel emulator. In each iteration, the generator and

discriminator training processes are carried out alternately. When

one model is trained, the other one is fixed. The real data can be

obtained from the transmitted signal through the real channel,

while the fake data is obtained from the transmitted signal through

the generator. The loss function of Eq. (8) is utilized to update the

generator’s parameters. The real, fake, and true-fake joint

distribution data are fed into the discriminator, respectively, with

the transmitted signal as conditional information. The parameters

of the discriminator are updated according to the loss function of
TABLE 1 Model parameters of DCC-GAN.

Type of layer Activation
function

Kernel size Output shape

Generator

Input – – K × 100 × (20 + 8)

Conv1D ReLU 5 K × 100 × 64

Conv1D ReLU 3 K × 100 × 32

Conv1D ReLU 3 K × 100 × 16

Conv1D Tanh 3 K × 100 × 20

Discriminator

Input – – K × 100 × (20 +
20)

Conv1D ReLU 5 K × 100 × 64

Conv1D ReLU 3 K × 100 × 32

Conv1D ReLU 3 K × 100 × 16

Conv1D – 3 K × 100 × 8

Dense ReLU – 64

Dense – – 1
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Eq. (7). Both models are optimized by the Adam optimizer using

stochastic gradient descent, with an initial learning rate a of 0.0002.

The initial hyperparameter values in Algorithm 1 are derived from

a previous study on RF channel modeling(Ye et al., 2020). In order

to ensure that the algorithm can handle a wide range of input data

while still converging within a reasonable number of epochs,

extensive experimentation is carried out to fine-tune these values.

Ultimately, experimental results indicate that setting l to 5 and

using a batch sizem of 20 yield the best performance. Assuming that

k represents the number of discriminator iterations per generator

iteration, the optimal convergence can be obtained in the

experiments when k is set to 6. The number of training epochs is

set to at least 200.
Fron
Require: The number of discriminator

iterations per generator iteration k, the

batch size m, the gradient penalty coefficient

λ and the learning rate α.

1: for number of training epochs do
2: for number of training iterations do

3: for k steps do
4: for i = 1,…, m do

5: Sample real signal x ∼ pdata(x), noise

variable z ∼ pz(z)

6: Sample a random number d ∼ U ½0, 1�
7: Get the transmitted signal y as

condition information.

8: ~x←G(zjy)
9:     x̂ ← dx + (1 − d )~x
10: L(i) ←D(~xjy) − D(xjy) + l(∇x̂ D(x̂ jy)2 − 1)2

11: end for

12: qD ←Adam(∇qD
1
mo

m

i=1
L(i))

13: end for

14: Sample minibatch of noise variables

fz(i)gmi=1 ∼ pz(z)

15: Sample minibatch of transmitted signal

fy(i)gmi=1
16: f~x(i)gmi=1 ←fG(z(i)jy(i))gmi=1
17: qG ←Adam(∇qG

1
mo

m

i=1
− D(~xjy))

18: end for

19: end for
ALGORITHM 1 Minibatch stochastic gradient descent training of DCC-

GAN. Assume the generator parameter qG and the discriminator parameter
qD. The default values of k=6, m=20, l=5 and a=0.0002 are used.
3 Experimental setup and details

This section describes the experimental procedure for making

the UWOC dataset in detail. To simulate the characteristics of the

UWOC channels, a 35 meters underwater laser communication

system was built. The entire experimental setup of the UWOC

system is shown in Figure 2. The main components of the UWOC

system are shown in Figure 3.
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3.1 Experimental setup

3.1.1 Transmitter
As shown in Figure 3B, a semiconductor laser (OXXIUS,

LaserBoxx-488) with an emission peak wavelength of 488 nm is

employed at the transmitter end, which meets the requirements of

blue-green light in the 450 nm to 550 nm band where the

attenuation of seawater is much less than that of other

wavelengths(Duntley, 1963). The laser has built-in driver

circuitry, which can accept analog signal input directly and adjust

the emitted optical power according to the application scenario.

3.1.2 Establishment of UWOC channel
The underwater channel for light transmission is built in a 5 m

× 1 m × 1 m water tank, shown in Figure 3A, which is filled with

clear tap water or artificial turbid water. The communication

distance of 35 m is achieved by using six reflective mirrors fixed

to the tank’s inner walls on both sides by cardan joints. The

reflection of each 5 m light path is realized by fine-tuning the

angle of the mirrors. A total propagation distance of 35 m (5 m × 7)

can be obtained, through six reflections, as shown in Figure 3D.

3.1.3 Receiver
As shown in Figure 3C, a PMT (Hamamatsu, R1527) is

employed at the receiver end, which has a spectral response in

the range 185 nm-680 nm, with an optimal spectral response of

about 400 nm, and works well with the 488 nm laser. Although the

PMT has the advantages of low noise and high gain, the output

current is still shallow, so a signal amplifier unit (AMP)

(Hamamatsu, C11184) is needed. They are powered by high

voltage and DC power, respectively.
3.2 Experimental procedure

An integral experimental setup is demonstrated in Figure 2. At

first, the non-return-to-zero on-off-keying (NRZ-OOK) modulated

signals are loaded into an arbitrary waveform generator (AWG) as

the transmitted signal. Then, the AWG performs D/A conversion of

the signals and outputs analog electrical signals to drive the laser for

intensitymodulation. Thus, optical signals for underwater transmission

can be generated. After passing through a 35m underwater channel, the

PMT detects and the AMP amplifies the optical signals, and then the

received photons are converted back into electrical signals. Afterward, a

memory oscilloscope (OSC) is employed to sample and record the

corresponding digital signals. Finally, the offline processing operations

are performed, including synchronization, demodulation, and the BER

calculation. Meanwhile, the synchronized signals are adopted as the

received signal, and the received signal and the corresponding

transmitted signal are collected to make the UWOC dataset.

According to the setup of the network architecture in Figure 2,

the received and the corresponding transmitted signals are combined

to train the proposed DCC-GAN. In detail, as conditional

information, the transmitted signal is fed into the generator along

with a noise sample. Then, the generator outputs a fake received
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signal, and the discriminator will decide whether the input signal is a

real signal or a fake one from the generator under the guidance of the

transmitted signal. The generator and discriminator can find their

optimal parameters individually according to the training strategy in

Algorithm 1. When the training process finishes, the function of

emulating the UWOC channel is realized. Finally, to evaluate the

model’s generalization ability, independent samples from the test set

are employed to estimate the trained channel emulator.

This work produces a series of datasets under different

experimental conditions, and the experiment parameters are shown

in Table 2. Besides the tap water channel, two artificial turbid water

channels are also created by adding a specific quantity of Aluminum
Frontiers in Marine Science 06454
Hydroxide (Al(OH)3), which is commonly used as a scattering agent.

The attenuation coefficient at wavelength 488 nm is measured to be

0.1169 m-1 (tap water), 0.2318 m-1 and 0.471 m-1 in three types of

water, respectively. Correspondingly, the transmitting optical powers

are also finely adjusted to obtain the optimal received signal.
4 Experiment results and analysis

In this section, the performance of the proposed channel

emulator is demonstrated and analyzed concerning different types

of water and various transmission rates. In detail, metrics such as
B C

DA

FIGURE 3

Components of the UWOC system. (A) Water tank. (B) Transmitter: 488nm laser. (C) Receiver: photomultiplier tube (PMT), amplifier unit (AMP),
oscilloscope (OSC), DC power supply and high voltage power supply. (D) 35 m blue-green light reflection paths.
FIGURE 2

Experimental setup and block diagram of the UWOC system and channel emulator.
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the absolute amplitude spectrum mismatch, Pearson correlation

coefficient, and the BER mismatch between each emulated received

signal and real received signal are calculated and compared.

Suppose a real received signal and its emulated signal are

denoted as X and ~X, respectively. The calculation of absolute

amplitude spectrum mismatch is described as:

spectrum mismatch(X, ~X) = abs(FFT(X) − FFT(~X)) (9)

The BER mismatch can be computed as:

BER mismatch(X, ~X) = abs(BER(X) − BER(~X)) (10)

And the correlation coefficient is defined as:

Corr(X, ~X) =
Cov(X, ~X)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var(X)Var(~X)

p (11)

Where, Var( · ) is the variance, Cov(X, ~X) represents the

covariance of X and ~X.

The BER directly reflects the noise intensity of the UWOC channel,

so three typical channels with different orders of magnitude of BER,

shown in Table 3, are selected to test the performance of DCC-GAN.

To compare with conventional neural networks and demonstrate the

superiority of the generative adversarial approach, a CNN model is

designed with similar complexity. Its specific structure and parameters

are shown in Table 4. Furthermore, an MLP model is also introduced

from a previous study (Ye et al., 2017) related to wireless channel

estimation, which contains five layers and neurons in each layer are

200,500,250,120 and 200, respectively. The activation function of each

layer is ReLU, except for no activation function in the last layer. In both

models, the Adam optimizer updates the weights and the loss function

is Mean Square Error (MSE), the batch size for training is 20 and the

learning rate is 0.001.
4.1 Performance comparison in the
time domain

In engineering applications, the Pearson correlation coefficient is

often used to measure the similarity between signal sequences
Frontiers in Marine Science 07455
(Ahmed, 2015). The correlation coefficient value lies from -1 to 1,

where 1 represents perfect correlation, while -1 shows a negative

correlation and 0 indicates no correlation. Figure 4 shows the

comparison of correlation coefficients of the signals generated by

the three neural network-based channel emulators in channel-1,

channel-2 and channel-3, respectively. During the training process,

the convergence rate of DCC-GAN is similar to CNN and faster than

MLP. After 200 training epochs, the correlation coefficient of DCC-

GAN is 0.99 in all cases, while the values of CNN and MLP are 0.95,

0.96, 0.95 and 0.83, 0.86, 0.84 in channel-1, channel-2 and channel-3,

respectively. Figure 5 shows the BER mismatch performance

comparison of the three network models in three channels. From

the figure, the BER mismatch performance of DCC-GAN is much

better than MLP and CNN, where the BER mismatches of DCC-

GAN-based channel emulator are 6.7%, 10.4%, 9.3% of the CNN-

based method and only 0.03%, 0.16%, 0.82% of the MLP-based

method in channel-1, channel-2 and channel-3, respectively. It

indicates that the signal waveform generated by the DCC-GAN-

based channel emulator is the closest to the real signal.

Due to the bandwidth limitation of the electro-optical devices, the

nonlinear distortion of the UWOC system increases with the

transmission rate. To estimate the proposed method at various

transmission rates, the BER versus transmission rate curves are

demonstrated in Figure 6A. When the transmission rate increases,

the BER curves of the emulated and real received signals exhibit a

same trend towards a specific increase. The maximum BERmismatch

of the DCC-GAN-based channel emulator is 0.4 dB at various

transmission rates. Hence the proposed channel emulator is

generally applicable to the variation of transmission rate.

In addition to bandwidth limitation, inappropriate working point

settings of optoelectronic devices can also cause system errors. At the

receiver, the supply voltage directly affects the PMT’s dark current

noise and gain performance, prompting the need for an appropriate

working point to optimize the output signal-to-noise ratio for each

application scenario. Figure 6B displays a comparison of BER between

the real signal of the UWOC system and the emulated signal generated

by DCC-GAN at various PMTworking points. Results show that as the

supply voltage gradually increases, the BER trend of the simulated

signal aligns well with that of the real signal, with the optimal voltage
TABLE 2 Experimental parameters.

Water Types Optical Power Attenuation Coefficient Bitrate

water type I 0.1 mW 0.1169 m-1 16 ~ 24Mbps

water type II 0.2 mW 0.2318 m-1 16 ~ 24Mbps

water type III 0.3 mW 0.471 m-1 16 ~ 24Mbps
f

TABLE 3 Parameters of three typical channels.

Channel Status Water Types Bitrate (Mbps) BER

channel-1 water type III 16 4.5 × 10-4

channel-2 water type II 20 1.83 × 10-3

channel-3 water type I 24 3.28 × 10-2
ro
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being around 1000 V. When the voltage exceeds 700 V, the BER

mismatch does not surpass 0.72 dB, which signifies the capability of

DCC-GAN to effectively capture changes in the channel state due to

the nonlinear response of optoelectronic devices.
4.2 Comparison in the frequency domain

Features in the frequency domain can show some phenomena that

cannot be found in the time domain, so some experiments are carried
Frontiers in Marine Science 08456
out to compare the spectrum of the signals. The results generated by

three neural network-based channel emulators and the real received

signal in channel-1 are shown in Figure 7A. The absolute mismatches

of magnitude between each emulated spectrum and the real one are

shown in Figure 7B for a more transparent demonstration, where the

average mismatches of MLP, CNN and DCC-GAN are 2.56, 1.14 and

0.25 dB, respectively. Figures 8, 9 show the comparison of the spectrum

performance for three channel emulators in channel-2 and channel-3,

respectively. The average spectrum mismatches are 2.38, 0.89 and 0.24

dB in channel-2, 2.53, 0.97 and 0.34 dB in channel-3, respectively.
TABLE 4 Model Parameters of CNN.

Type of layer Activation function Kernel size/Pool size Output shape

Input – – K × 100 × 20

Conv1D ReLU 5 K × 100 × 64

MaxPooling1D – 2 K × 50 × 64

Conv1D ReLU 3 K × 50 × 32

MaxPooling1D – 2 K × 25 × 32

Conv1D – 3 K × 25 × 16

Flatten – – K × 400

Dense Tanh – K × 64

Dense – – K × 2000
B CA

FIGURE 4

The performance of correlation coefficient for different channel emulators on the test set after 200 training epochs in (A) channel-1, (B) channel-2
and (C) channel-3.
B CA

FIGURE 5

The performance of BER mismatch for different channel emulators on the test set after 200 training epochs in (A) channel-1, (B) channel-2 and (C)
channel-3.
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BA

FIGURE 6

BER comparison of real received signal and emulated signal at various (A) transmission rates and (B) PMT working points.
BA

FIGURE 7

(A) Spectrum comparison of real received signal and signals generated by three channel emulators in channel-1. (B) Corresponding spectrum
mismatch between the real spectrum and the generated spectrum.
BA

FIGURE 8

(A) Spectrum comparison of real received signal and signals generated by three channel emulators in channel-2. (B) Corresponding spectrum
mismatch between the real spectrum and the generated spectrum.
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FIGURE 9

(A) Spectrum comparison of real received signal and signals generated by three channel emulators in channel-3. (B) Corresponding spectrum
mismatch between the real spectrum and the generated spectrum.
FIGURE 10

Comparison of DCC-GAN generated samples and real samples.
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From the mismatch curves in Figures 7B, 8B, and 9B, it can be noticed

that the mismatch of MLP is high at all frequency bands, the mismatch

of CNN is mainly clustered in the higher frequency bands, while the

mismatch of DCC-GAN is lower than the others in all bands, and

inevitable the lowest average spectrum mismatch. Obviously, the

spectrum generated by the proposed emulator is the closest one to

the real signal in all experimental channels. Therefore, the DCC-GAN-

based channel emulator can more accurately capture the characteristics

of different channels in the frequency domain.
4.3 Discussion on other advantages
of DCC-GAN

Benefiting from the diversity of samples generated by GAN, the

DCC-GAN-based channel emulator has the additional capability to

simulate the randomness of the received signal. This means that the

emulated signal generated by the proposed model will not be

identical each time for the same input signal, just like an actual

receive procedure. For example, if a certain digital sequence is

transmitted twice, two signals with slight random differences will be

received. In Figure 10, these two real signals are named true signal 1

and true signal 2. Then, the same signal is fed into the channel

emulator multiple times to check the differences. Two signals of

simulations are selected to compare with the two real received

signals. For better visualization, the relative errors of each signal to

the true signal 1 are also displayed, and the average error are 0.0302,

0.0309 and 0.0296 V, respectively. The three error curves are not
Frontiers in Marine Science 11459
identical to each other, and the average error between the generated

signal and the real signal is quite close to the average error between

the real signals, indicating that the generated signals have similar

random characteristics to the real signal.

Kernel density estimation (KDE) is a non-parametric estimation

method which is commonly used in statistics to estimate the

probability density function of a random variable(O’Brien et al.,

2016). Based on the KDE approach, the comparisons of the data

distribution generated by MLP, CNN and DCC-GAN with the real

signal are shown in Figures 11A–C, respectively. The real data satisfies

a bimodal distribution with a peak-to-peak distance of 0.956 and two

half-peak widths of 0.117 and 0.125. For the above three properties,

the errors of the data distribution generated by DCC-GAN are only

0.001, 0.001 and 0.002, respectively, while the values of CNN andMLP

are 0.039, 0.128, 0.096 and 0.381, 0.483, 0.542, respectively. So it can be

clearly observed that the distribution generated by DCC-GAN

converges most approximately to the real distribution.

The above experimental results reveal that the emulated signal

and the real signal share highly similar characteristics, the DCC-

GAN-based channel emulator can not only learn the channel

distribution accurately, but also output the emulated signal with

randomness to restore the UWOC channel more realistically.
5 Conclusion

This paper proposes a novel DCC-GAN-based model to emulate

the UWOC channel more realistically, which combines the advantages
B

C

A

FIGURE 11

Comparison between the real distribution of UWOC channel and the distribution of data generated by (A) MLP, (B) CNN and (C) DCC-GAN.
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of CGAN, DCGAN and WGAN-GP algorithms to achieve high-

quality generated results and stable training. A series of evaluation

experiments regarding the spectrum, correlation coefficient and BER

have verified the universality of the proposed channel emulator on

different water channels and various transmission rates. The results

indicate the effectiveness of DCC-GAN by demonstrating superior

performance in both time and frequency domains compared with

MLP and CNN-based approaches. Besides, the proposed model can

learn the distribution of channel output more realistically to restore

the underwater communication signal. The trained model can be used

offline to generate diverse signal samples for subsequent experimental

analysis, which will offer significant savings on experimental costs and

effectively expedite the research advance of the UWOC systems.

Therefore, this study opens a promising way to apply deep learning

techniques in the UWOC channel modeling field.
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An acoustic tracking model
based on deep learning using
two hydrophones and its
reverberation transfer
hypothesis, applied to
whale tracking

Kangkang Jin, Jian Xu*, Xuefeng Zhang, Can Lu,
Luochuan Xu and Yi Liu

School of Marine Science and Technology, Tianjin University, Tianjin, China
Acoustic tracking of whales’ underwater cruises is essential for protecting marine

ecosystems. For cetacean conservationists, fewer hydrophones will provide

more convenience in capturing high-mobility whale positions. Currently, it has

been possible to use two hydrophones individually to accomplish direction

finding or ranging. However, traditional methods only aim at estimating one of

the spatial parameters and are susceptible to the detrimental effects of

reverberation superimposition. To achieve complete whale tracking under

reverberant interference, in this study, an intelligent acoustic tracking model

(CIAT) is proposed, which allows both horizontal direction discrimination and

distance/depth perception by mining unpredictable features of position

information directly from the received signals of two hydrophones. Specifically,

the horizontal direction is discriminated by an enhanced cross-spectral analysis

to make full use of the exact frequency of received signals and eliminate the

interference of non-source signals, and the distance/depth direction combines

convolutional neural network (CNN) with transfer learning to address the adverse

effects caused by unavoidable acoustic reflections and reverberation

superposition. Experiments with real recordings show that 0.13 km/MAE is

achieved within 8 km. Our work not only provides satisfactory prediction

performance, but also effectively avoids the reverberation effect of long-

distance signal propagation, opening up a new avenue for underwater

target tracking.

KEYWORDS

underwater acoustic target tracking, two hydrophones, cross-spectral analysis,
convolutional neural network, transfer learning
frontiersin.org01462

https://www.frontiersin.org/articles/10.3389/fmars.2023.1182653/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1182653/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1182653/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1182653/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1182653/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1182653/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1182653&domain=pdf&date_stamp=2023-08-01
mailto:jian.xu@tju.edu.cn
https://doi.org/10.3389/fmars.2023.1182653
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1182653
https://www.frontiersin.org/journals/marine-science


Jin et al. 10.3389/fmars.2023.1182653
1 Introduction

Whales play an extremely important role in the structure and

dynamics of natural ecosystems (Roman et al., 2014). They can not

only improve primary productivity (Henley et al., 2020), but also

regulate carbon dioxide in the atmosphere and marine environment

(Roman et al., 2016). Since the moratorium on commercial whaling

in 1986, the global whale population has continued grown, with a

concomitant increase in the frequency of the whale stranding

(Parsons and Rose, 2022), which has attracted widespread

attention. In 2020, Klaus pointed out the whale stranding

typically occur during their migrations (Vanselow, 2020). Despite

several attempts by some scholars to use satellite tags for individual

movement behaviors, they still are unable to understand whale

movements below the surface, which leaves the potential patterns or

causes of whale stranding incompletely expressed (Perez et al.,

2022). Therefore, mastering the continuous and high-precision

movement trajectories of whales is of great value for the

protection of whale diversity and stranding management.

Passive acoustic monitoring (PAM) offers a novel, long-term,

large-scale monitoring advantage that can provide species

distribution and activity information for vocal species, making it

an ideal bioacoustic tool for whale tracking (Davis et al., 2017;

Aulich et al., 2019). PAM utilizes a distributed single-receiver

hydrophone system, which enables the estimation of cetacean

population densities without the need for tracking and directly

protecting whales during migration. Currently, there is a growing

expectation for tracking systems designed for high-mobility whales

to have a smaller design, low power consumption, and fewer

hydrophones (Ferreira et al., 2021; Frasier et al., 2021; Cheeseman

et al., 2022; Jones et al., 2022). Previous studies have explored the

use of two hydrophones to determine the orientation or distance of

underwater targets using acoustic-based technology. However, due

to the coupling between the azimuth and distance parameters (Ding

et al., 2020), the distance estimates expressed according to the

analytic equations are poor when the azimuth varies with the

interference of reverberation and acoustic reflections, which

significantly reduces the tracking accuracy of the whales.

With the increasing development of artificial intelligence, new

statistical prediction methods based on deep learning have shown

better performance in existing underwater target location

prediction. In recent years, more and more deep neural networks

have been proposed one after another, such as CNNs (Song, 2018;

White et al., 2022), deep neural networks (DNNs) (Yangzhou et al.,

2019), recurrent neural networks (RNNs) (Shankar et al., 2020) and

transformers (Kujawski and Sarradj, 2022). These models have been

successfully applied in many fields of geophysics. Jiang et al. (2020)

proposed a new algorithm fusing deep neural network and CNN for

sound source orientation using the voltage difference and cross-

correlation function extracted from binaural signals. The CNN

architecture developed by (White et al., 2022) uses a custom

image input to exploit the temporal and frequency domain

feature differences between each sound source to achieve multi-

category ocean sound source detection. All these works

demonstrate the potential of deep learning for sound source
Frontiers in Marine Science 02463
localization and detection. Notably, ITAI Orr et al. (2021)

successfully published a paper in the journal of Science Robotics,

using the deep neural network to improve the angle resolution by

four times. However, these methods have significant limitations: 1)

Relying on manually selected features to define a signal of interest

requires highly sophisticated knowledge (Jiang et al., 2019) of

signal processing and may not adequately describe the complex

and variable time-frequency properties of sound. 2) The large

number of parameters is a time-consuming step that requires

exploring various neural network hyperparameters to obtain an

optimal model.

While CNNs offer significant advantages such as automatically

extracting relevant features from whale signals. However, their

application necessitates access to large public PAM datasets. To

address these problems, the concept of transfer learning was

suggested (Bursać et al., 2022). Transfer learning is employed as a

modeling strategy wherein a model trained on one data set (source

model) is utilized to make predictions on another data set (target

model). This approach enables the model to undergo update

learning with small samples, thereby enhancing the adaptability

of learning methods (Obara et al., 2022). This can be done in two

ways: (a) fine-tuning the source model on the target dataset; (b)

using the source model as a feature extractor to extract robust

features for the target dataset to build the target model. (Saeed

Khaki 2021) utilized transfer learning between corn and soybean

yields by sharing the weights of the backbone feature extractors

(biological information transfer), which demonstrated the ability of

the model to predict accurately (Khaki et al., 2021).

In this study, given the favorable properties of transfer learning,

we apply this approach to address localization errors due to

different effects of reverberation on different signals. Thus, we

propose CIAT, a composite intelligent acoustic tracking model,

which mines and preserves the signal-spatial unpredictability

features from two hydrophones, to achieve accurate and efficient

whale tracking. This study dramatically opens a new path to

tracking whale cruises without large physical “real” arrays.

Specifically, our key innovations include:
(1) Remove the effects of non-source signals: an unsupervised

algorithm based on enhanced cross-spectral analysis is used

for horizontal azimuth estimation, which ensures the

uniqueness of the solutions of CIAT and eliminate the

interference of non-source signals.

(2) CNN-based distance/depth estimation pre-trained model:

Automatically mine and efficiently establish signal-space

feature transfer mechanism.

(3) Combining transfer learning to improve computational

efficiency: For Munk or SWellEX-96 (SW-96) application

environments, CIAT shares weights of the convolutional

layers of the pre-trained model to reduce model parameters

and subsequently helps the training process despite the

small-field discretized measured data.

(4) Strengthen robustness and scalability: Comparing the

experimental data of the random walk characteristics of
frontiersin.org
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two hydrophones proves that CIAT has strong robustness

and scalability.
2 Materials and methods

2.1 Dataset

Acquiring labeled underwater acoustic target data is challenging

in practical applications. To overcome this problem, the network is

trained on the synthetic data based on the prior hydrological

environment information and the sound field model, to establish

the pre-training model. Then, the knowledge learned by the model

on the synthetic data is transferred to the small-domain discretized

actual data to enhance the model’s performance across different

domains. Especially in the ocean waveguide environment, there are

factors such as noise, reverberation, and interference, which will

cause differences between the synthetic training data and the

measured data. Transfer learning offers significant advantages

when applied to new tasks, as it does not necessitate an identical

data structure. This flexibility is particularly beneficial in dealing

with deviations between synthetic and actual data. In this study, we

use the measured dataset as the validation set of CIAT. As shown in

Figure 1 and Table 1, the actual experimental dataset is briefly

described, together with its deployment and environmental

parameters (Fu et al., 2020; Kwon et al., 2020; Gupta et al., 2021;

Ajala et al., 2022; Zhang et al., 2022).

From Figure 2, it is evident that there are many similarities

between the acoustic signals of the sound source ship and bowhead

whales. Specifically, there is a clear comb-like structure at the

vocalization of the bowhead whale, which corresponds to the

sound source ship. What’s more, both the radiated signal from

the sound source ship and the calls of whales share common

characteristics such as uniform background noise and being

considered quasi-steady-state processes in the short term. To
tiers in Marine Science 03464
fulfill the validation requirements of this study, the SW-96

experimental data is well-suited. Hence, this study employs

acoustic data resembling whale signals to assess the feasibility of

CIAT. As the availability of measured data is limited, synthetic data

will be used to complement the CIAT data preparation. Detailed

data information can be found in Table 2.

Synthetic data are generated through broadband modeling

based on normal wave theory. Normal wave model is a classic

sound field model, which mainly studies the amplitude and phase

changes of sound signal in the sound field. It is suitable for far fields

such as low frequency, shallow sea, constant level and other far

fields. The solution is expressed as an integral solution in the wave

equation. KRAKEN (Byun et al., 2019) uses the finite difference

method to discretize the continuous problem in the wave equation,

and the resulting solution is as follows:

p(r, z) =
i

r(zs)
ffiffiffiffiffiffiffiffi
8pr

p · exp   −
ip
4

� �
·o∞

l=1
y (zs, rl)ffiffiffi

rl
p exp (irlr) (1)

where, r is the horizontal distance, is the depth, represents the

density of seawater, zs represents the depth of the sound source, and

y(zs,rl) is a constant and is the lth order normal wave.

The waveguide environment is simulated by the KRAKEN

simulation program, and the parameters refer to the SW-96 or

Munk experiment. And set the placement depth of the simulated

sound source to 9m and the distance between the two hydrophones

to be 150m. After calculating the sound pressure values of the

broadband receiving space points, the solution of the time-varying

wave equation is obtained by the Fourier synthesis method of the

frequency domain solution. By doing so, uninterrupted time

domain reception signals for both hydrophones are generated.

p(r, z, tj) =
1
No

N
k=1S(wk) p(r, z,wk)e

−jwktj (2)

where, S(wk) is the sound source spectrum; is the number of

FFT points, and the transmission frequency (wk) is {109, 127, 145,

163, 198, 232, 280, 335, 385}.
FIGURE 1

The study area near San Diego, California. The red dot marks the recording position VLA (32°40.254’ N, 117°21.620’ W) with a slight skew a, the
yellow line is the track of the source ship from south to north, and the filled rectangle is defined as hydrophone signals selected as the data source
for this CIAT.
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2.2 Model architecture

According to Risoud et al. (2018), azimuth, distance and depth

are the three key parameters for sound source localization.

However, it is important to note that azimuth estimation and

distance/depth estimation are different types of tasks that may

require different model architectures and feature representations.

Traditional algorithms, such as cross-spectral analysis, are
Frontiers in Marine Science 04465
commonly used for azimuth estimation by analyzing the

phase information of the sound signals (Li et al., 2019). In

contrast, deep learning models have powerful feature learning and

expressive capabilities, which can effectively capture distance- and

depth-related patterns and features in sound signals. To simplify

the training and inference process of the model and improve the

accuracy of parameter estimation, we will estimate these parameters

separately using their respective features and information. Doing so
FIGURE 2

Power spectrum and time-frequency plots of the received signal from No. 1st hydrophone and the bowhead whale signal. (A1) The power spectrum of
the signal received by No. 1st hydrophone, and (B1) the time-frequency diagram. (A2) The power spectrum of the bowhead whale, and (B2) the time-
frequency plot. Data source NOAA Ocean Passive Acoustics Data Recorded by instrument NRS01 (72.443N, 156.602W) under the mooring platform.
TABLE 1 Overview of analytical acoustic data recorded by two acoustic recorders.

Name Position Deployed
years Start time End time Duration time

(min) Sampling Rate (Hz) Depth (m) Bandwidth
(Hz)

1
32°40.254’ N
117°21.620’ W

10/5/96 23:15 0:30 75 1500 94.125 100~400

2
32°40.254’ N
117°21.620’ W

11/5/96 23:15 0:30 75 1500 99.755 100~400
The sensor calibration of all acoustic recorders is 185.3dB, and the water depth is 216.5m.
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avoids introducing data association problems and redundant

information. Our proposed model combines three key

technologies: unsupervised learning algorithm based on enhanced

cross spectral analysis, CNN and transfer learning (Ramıŕez-Macıás

et al., 2017; Fortune et al., 2020; Kovacs et al., 2020), and Figure 3

shows the CIAT flowchart.

It can be seen from Figure 3 that CIAT begins by using the

improved cross-spectrum analysis method to determine the

direction of the sound source and can effectively focus on the

position of the sound source, which helps to improve the accuracy

and robustness of the sound source localization. Subsequently,

employ a combination of CNN and transfer learning to estimate

the distance/depth of the sound source. By using the CNN model,

we can extract features about the depth and distance of sound

sources from the input signal. Transfer learning allows us to

leverage models pre-trained on other related tasks, thereby

accelerating the convergence of the network and improving

performance. Finally, the azimuth estimation and the distance/

depth estimation results are integrated to realize the trajectory

prediction. Figure 4 shows a detailed overview of the steps

involved in the process.
Fron
Step 1: Enhanced cross-spectral analysis is used to get the

horizontal azimuth. We calculate the cross-spectral values

of the time-domain data within the frames, and then filter

the spectral peaks of the frequency points to get the target

angle information. Compared with traditional algorithms,

this unsupervised learning algorithm eliminates the

interference of non-source signals and the multiple

solutions of CIAT.

Step 2: A pre-trained model is built based on the CNN

algorithm to mine signal-spatial features. The source data
tiers in Marine Science 05466
of ambient-field spatial features are reconstructed using

broadband modeling, and more unpredictable features

between the received signals and the target positions are

mined by establishing a signal-spatial transfer mechanism.

Compared with the traditional beamforming technology,

the pre-trained model could directly perceive the signal-

spatial features instead of indirectly extracted phase and

frequency features.

Step 3: Use transfer learning to increase the generalization

ability of the CIAT model. The convolutional layers of the

pre-trained model are frozen by transfer learning to

preserve the effect of signal-spatial feature perception in a

specific application environment (Xu and Vaziri-Pashkam,

2021; Bedriñana-Romano et al., 2022; Dumortier et al.,

2022). Small-domain discrete actual data is added to the

target environment to strengthen the non-mapping

connection between the fully connected layer features and

the actual target locations. The CIAT model could adapt to

dynamic perturbations in the marine environment,

significantly improving tracking accuracy.
Based on the received signals from the two hydrophones, the

azimuth of the sound source is first calculated using an enhanced

cross-spectrum analysis. Then a pre-trained model is built using

CNN algorithm to infect signal-spatial features. Finally, transfer

learning is combined to enhance the generalization ability of the

CIAT model.

2.2.1 Enhanced cross-spectral algorithm
The cross-spectrum method utilizes the principle of signal

correlation (Virovlyansky, 2020; Lo, 2021) and can effectively

suppress noise. Let s1(t) and s2(t) be the broadband signals
FIGURE 3

Schematic diagram of the overall architecture of CIAT.
TABLE 2 Data description.

Data Name Data Composition Data Description Data size

Synthetic data
Source data Based on SW-96 environmental parameters using broadband modeling 6999

Munk data Based on Munk environmental parameters using broadband modeling _

Actual data SW-96 data SWellEX-96 experiment _
fr
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received by the two hydrophones, then the cross energy spectral

density is expressed as:

E12(f ) = F1(f )F*2 (f ) = F1(f )j j2ei2p fDt (3)

where, F1(f) and F2(f) are the spectral density functions of s1(t)

and s2(t), respectively. According to the time delay characteristics of

the Fourier transform, the time delay information is included in the

phase information of the cross spectrum, then the phase of the

cross-spectrum density at the frequency f is:

j(f ) = arctan½I(f )=Q(f )� (4)

For a wideband signal with a bandwidth of B, in order to

improve the accuracy of the phase difference measurement, we

divide the time-domain received signals of the two hydrophones

into frames, and calculate the cross-spectrum value of each frame

separately. Then calculate the phase difference of each frequency

sampling point in the signal bandwidth according to the above

formula, and take the maximum value as the accurate phase

difference of the center frequency sampling point to calculate the

azimuth angle of the incident signal. Without considering the phase

ambiguity, the maximum phase difference is:

Dj(f ) = max(arctan½I(fm)=Q(fm)�) (5)

where, (f0 − B
2 ) ≤ fm ≤ (f0 + B

2 ). The improved cross-spectral

analysis method estimates the azimuth of the target by taking the

frequency point corresponding to the maximum spectral value.

Compared with the traditional cross-spectrum method, the method

effectively eliminates the interference of non-source signals, thereby

significantly improving the direction-finding accuracy.
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2.2.2 Training process
CNN is one of the most powerful deep learning architectures

that can automatically extract necessary features from raw data

without any hand-crafted features. It has gained popularity in

various fields such as image recognition, speech recognition, and

natural language processing. In addition, the main reasons for using

dual-channel end-to-end training are as follows. (1) the input is

provided by raw audio data recorded by two hydrophones, which

allows it to perform joint feature learning with passive whales,

avoiding manual feature selection. Meanwhile, (2) an end-to-end

data-driven approach brings us the possibility to capture more

complex spatiotemporally correlated latent features of the two

hydrophones through the main convolution operation (Chen and

Schmidt, 2021; Dayal et al., 2022).

Table 3 shows the size and number of convolutional filters in

the proposed topological network. Adding a batch normalization

layer after the input layer enhances the training process by reducing

the drift of the input data distribution. This normalization

technique accelerates network training by ensuring more stable

gradients and mitigating the impact of varying input distributions.

By normalizing the activations within each mini-batch, batch

normalization promotes faster convergence and improves the

overall efficiency of the network, and then concatenates two

identical convolutional blocks. From an audio signal processing

perspective, a convolutional unit can be viewed as a set of finite

impulse response (FIR) filters with learnable coefficients, allowing

more complex and comprehensive sample latent features to be

extracted from large-scale data. The max pooling operation

preserves more important features. The same is true for the
FIGURE 4

A detailed overview of the three steps performed by CIAT.
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remaining two convolution blocks. The “distributed features” are

flattened and fed into a fully connected hidden layer of 100 units,

designed to integrate and arrange the content in the filtered acoustic

signal to obtain the final function as a solution.

q = (R,D) = Fout HL(HL−1(⋯Hl(⋯H1(s))))
� �

(6)

where H() is the calculation process of a complete hidden layer.

s is the time domain acoustic data of two hydrophones. Fout(x)= Act

(wx + b) represents the fully connected layer, where w and b are the

parameters of the fully connected layer. ReLU activation function is

used in all layers except the output layer to ensure that all outputs

are positive and reduce the risk of gradient explosion and gradient

disappearance during network training. In each training round, the

model is optimized for accuracy using the Adam algorithm.

2.2.3 Model fine-tuning
In CIAT, we build the target models using exactly the same

architecture as the pre-trained (Zhong et al., 2021) models and use

the parameters of these pre-trained models (except for the

parameters of the output layer) as initial parameters. These

transferred models are then retrained using small samples of

actual data, a process called fine-tuning. Different transfer

learning experiments are also performed to test the robustness of

the transfer learning scheme by passing only some parameters of

the hidden layers or fine-tuning the parameters of the selected

layers, and the model performance was evaluated using the same

approach. Here, we demonstrate that even using a small

experimental training set, it is possible to extract significant

signal-spatial features by expanding the dataset with computer-

generated raw acoustic data.
2.3 Prediction performance evaluation

Model performance metrics for Mean Absolute Error (MAE),

Root Mean Square Error (RMSE) and Correct Positioning Ratio
Frontiers in Marine Science 07468
(CPR) are defined as below:

MAE =
1
No

N
i=1( ri − rî

�� �� + di − dî
�� ��) (7)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
No

N
i=1 (ri − rî )

2 + (di − dî )
2� 	r

(8)

CPR = o
N
i=1(h(i))
N

∗ 100% (9)

h(i) = 1, r−r̂j j
r < 0:1    and   

d−d̂j j
d < 0:1

0,    else

8<
: (10)

where N is the number of test sets, r is the real distance, and r̂ is

the predicted distance; d is the real depth, and d̂ is the predicted

depth. The smaller theMAE and RMSE, the better the performance,

and the larger the CPR value, the better the model performance.

These three indicators can intuitively reflect the closeness of the

predicted result to the true value (Masmitja et al., 2020; Fonseca

et al., 2022; Guzman et al., 2022; Skarsoulis et al., 2022).
3 Results

3.1 Horizontal azimuth estimation

The azimuth estimation process refers to Step 1 of the Model

Architecture. We use enhanced cross-spectral analysis to obtain the

target horizontal azimuth information. The local northeast

coordinate system is established with the 1st hydrophone of the

HLA as the origin, and the relative coordinates of other positions

are recalculated by Universal Transverse Mercator Grid System

(UTM) transformation to obtain the actual azimuth (blue line in

Figure 5A). To determine the mutual spectral values of the two

signals, two hydrophones of VLA (Chambault et al., 2022; Yang

et al., 2022) are chosen to record time-domain data in frames.

Assuming the normal direction of the line connecting the 1st

hydrophone and the sound source ship at the 60th minute is 0°,

the azimuth angle less than 60min is q, and the azimuth angle more

than 60min is 180°-q.
Due to the similarity in average spectral values of the signals

captured by the two hydrophones, the traditional cross-spectrum

analysis method faces challenges in distinguishing them. As a result,

the calculated angle tends to be either 0 or NaN (not a number),

indicating that it cannot be reliably determined due to the similarity

in average spectral values. Compared to conventional spectral

analysis algorithms, our enhanced cross-spectral analysis ensures

the accuracy of azimuth estimation by finding the spectral peaks

corresponding to the main frequency points. This unsupervised

learning algorithm maintains the intrinsic connection between the

two received signals, eliminates the influence of non-source signals,

and ensures the unique solution and objectivity of CIAT.

In Figure 5A, the boxplot visually represents the distribution and

dispersion of the azimuth data. It effectively summarizes key statistics

such as medians, quartiles, etc., providing insight into the central
TABLE 3 CIAT parameters.

Type/stride CIAT parameters

BN

conv (1×5)(16)

max pool (1×3)

conv (1×5)(16)

max pool (1×3)

conv (1×5)(32)

max pool (1×3)

conv (1×5)(32)

max pool (1×3)

FC-
Dropout(-)

Output (range and depth)
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tendency and variability of azimuth values. Additionally, the

scatterplot in the same figure shows azimuth data obtained from a

fifth-order polynomial fit, which reveals patterns and trends exhibited

throughout the specified time period. As seen in detail (Table 4),

particularly, the Absolute Error (AE) in the angle exceeds 10° at about

59 minutes. This phenomenon that the azimuth error is the largest

when the target is closest to the hydrophone is consistent with the

results of Watkins and Schevill et al., which confirms the effectiveness

of our horizontal azimuth estimation algorithm and further boosts

the credibility of our intelligent acoustic tracking model.
3.2 Distance/depth estimation

Distance/depth estimation includes CNN pre-trained model

and transfer learning. First, the pre-trained model of CNN is built

for processing received signals. The input of the model is N * 2 * S

dimension, where N represents the signal sample length, 2 denotes

the number of channels, and S represents the signal frame length.

To ensure compatibility and optimize performance, we implement

the entire framework using the Python programming language and

the TensorFlow library on a Windows 10 x64 system. Compared to

large networks like U-Net, CNN has a shallow network structure

that does not require many parameters to train its performance.

This characteristic has led our model to outperformmost previously

used models in this research area.

The frame lengths 1001, 2001, and 3001 all demonstrate

conformity to the normal distribution as predicted by the theory,

thus verifying the validity of the model and its prediction accuracy.

Notably, the frame length of 1001 exhibits the highest accuracy in

predictions (Figure 5B). Since the underwater depth of the whales is

almost constant during migration, this paper does not place a high

value on depth changes. For the frame length of 1001, the distance

estimation errors within 6 km are 0.0322 km/MAE, 0.0805 km/

RMSE, and 94.57%/CPR. The above fully illustrates that our CNN

pre-trained model could directly perceive the signal-spatial features.

We visualize the trend changes of weights acting on 16

convolutional kernel units in the first layer of the dual-channel
Frontiers in Marine Science 08469
system. Figure 6 illustrates this, where (a) represents the weight

values of 16-1; (b) 16-2; (c) 16-3; and (d) 16-4. The shaded regions

indicate perfect recordings when both sound waves arrive

simultaneously, otherwise, they indicate a delay. From Figure 6,

we can infer the following:
1) The trend changes between different weights reflect the time

difference or phase difference of the sound waves reaching

the two hydrophones. The weights show significant changes

or overlaps at specific positions. For example, at the

upward-pointing Perfect shaded arrow, we can infer that

the time or phase difference of the sound waves’ arrival is

small.

2) The differences between different weights can reflect the

variations in the signals received by the two hydrophones. If

the weights exhibit noticeable differences at certain

positions, such as the right-pointing Delayed shaded

arrow, it suggests significant discrepancies in the signals

received by the hydrophones at that position.
By considering the combined trend changes and differences in

weights, we can deduce that the signals received by the two

hydrophones have different arrival times and phase differences,

and there are significant discrepancies at certain positions. This

aligns with the actual scenario of sound propagation reaching the

two hydrophones, thereby enhancing the model’s interpretability

and reliability.

Further, Figure 7 provides insights into the intermediate layer

feature representations of CIAT. When examining the signal

features of different time frames (signals 1, 2, 3), the features

extracted from the last 100 frames are slightly better than those

extracted from the first and tenth frames. The reason behind this

observation is that the initial time period predominantly captures

the direct path sound signal, which does not exhibit a distinct

multipath reflection signal pattern. As the network layers deepen,

the extracted features become more specific and sparser, indicating

the presence of spatial selective gradients within CIAT. Comparing

(a) and (b) in Figure 7, without transfer learning (marked by
BA

FIGURE 5

Estimation results. (A) SW-96 experimental data azimuth estimation. (B) Comparison of distance estimation results for pre-trained model frame
lengths of 1001 and 2001.
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ellipses), the obtained features are blurry, and even with increasing

network layers, the features extracted from two similar time frames

remain indistinguishable. However, through transfer learning

(marked by rectangles), the learned features are not only

representative but also avoid the issue of feature blurriness.

The observations strongly suggest that CIAT is capable of

extracting signal features from various time frames through a

nonlinear feature extractor. Additionally, the model exhibits good

generalization capabilities when applied to real-world data. These

findings lay a solid foundation for the potential success of using

CIAT in tracking whales during migration.
Frontiers in Marine Science 09470
Next, the signal-spatial feature parameters of our pre-trained

model obtained in the ideal environment are applied to the target

environment by transfer learning to evaluate the effect of the target

model on the perception of the actual received signal features

(Gemba et al., 2017; Worthmann et al., 2017; Agrelo et al., 2021;

Coli et al., 2022). The target model’s input is Munk-based synthetic

data to determine the effective transfer of signal-spatial feature

mechanism, thus ensuring the feasibility of the proposed model.

After that, the CNN pre-trained model’s convolutional layer is

frozen. However, this frozen CNN pre-trained model does not serve

as the final model for the effect of dynamic ocean perturbations,
B

C D

A

FIGURE 6

Respectively act on the weights of the dual-channel convolution kernels. (A) represents the weight value of 16-1; (B) 16-2; (C) 16-3; (D) 16-4. The
shaded areas represent: two sound waves arriving at the same time are recorded as Perfect, otherwise, Delayed.
TABLE 4 Azimuth estimation results.

Time/min Actual azimuth Conventional Spectral Analysis AE Enhanced cross Spectral Analysis AE

10 174.424° 0 174.424° 173.935° 0.489°

20 176.873° NaN _ 171.728° 5.145°

30 179.805° NaN _ 174.083° 5.722°

40 173.227° NaN _ 171.121° 2.106°

50 151.641° NaN _ 146.687° 4.954°

59 90.659° NaN _ 100.807° 10.148°
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which would result in an environmental mismatch between the

source and target model datasets. Therefore, we use transfer

learning to share the weight parameters of the CNN pre-trained

model and put small sample data to the target model for achieving

accurate prediction positions by fine-tuning the fully connected

layer and setting Dropout 0.5 to build the Munk target model.

The estimation errors of the Munk target model are 0.015km/

MAE and 97%/CPR (Figure 8A). It can be seen that the predicted

distance of the target in the Munk environment is consistent with

the actual distance, indicating that our transfer learning algorithm

could make the model’s generalization performance enhanced and

adapt to different environments with guaranteed accuracy. In

addition, we test the reproducibility of the transfer algorithm by

changing the signal pattern of the source from comb to FM

emission and also set Dropout 0.3. Figure 8B shows that the

distance estimation errors are 0.031km/MAE and 93%/CPR,

which also has high accuracy and proves the robustness of

the CIAT.

Next, we apply this transfer algorithm to the actual

experimental data with ambient noise and reverberation. Based

on our frozen CNN pre-trained model, the first 9 minutes of raw

acoustic data from two hydrophones are used as the input to the

SW-96 target model, and two Dropout layers (0.5 and 0.1) are

added to complete the sound source ship distance/depth prediction.

As shown in the distance results, the estimation error of distance

obtained within 8 km without transfer learning is 0.15 km/MAE
Frontiers in Marine Science 10471
(Figure 8C), while with transfer learning the distance estimation

errors are 0.13 km/MAE, 0.164 km/RMSE, and 100% CPR,

respectively (Figure 8D), demonstrating that the distance

prediction accuracy using transfer learning at sparse data is

higher than that without transfer learning. And Figure 9A shows

that the predicted depth of the target in the SW-96 environment is

consistent with the actual depth. Besides, in the same experimental

environment, we also compare CIAT and traditional matching field

processing (MFP) techniques (Wang et al., 2020). The results are

shown in Table 5, which shows that the traditional method is

severely limited by multipath propagation and spatial correlation in

the marine environment, and it cannot complete the tracking task

solely by relying on two hydrophones. These further verify that our

proposed model only based on two hydrophones can adapt to the

effects of dynamic marine environmental perturbations brought

about by scene switching and can be extended to applications in

actual marine environments.
3.3 Transferability and sensitivity

Our model enables to perform high-precision tracking in both

Munk and SW-96 actual environments, and it is a key advantage of

our CIAT to achieve high-precision tracking at 8 km 0.13 km/MAE

in actual marine environments using two hydrophones. At the same

time, CIAT can also adapt to switching between different marine
B

A

FIGURE 7

The middle layer feature representation for CIAT. (A) Without transfer learning; (B) With transfer learning.
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environments like Munk and SW-96, but since both CNN and

transfer learning in CIAT are black-box models, there is currently

no effective physical mechanism to explain this phenomenon.

Therefore, another important direction of our work focuses on

explaining the physical mechanism of CIAT to support switching

between different marine environments.

Theoretically, our CIAT is mainly affected by the ambient noise

and ocean reverberation that exist in different marine environments

when applied. However, since the source dataset is synthetic data

used for broadband modeling, it is determined that the features

shared will not be ambient noise.

From the SW-96 experimental results, the CIAT is directly

applied to sound source distance/depth estimation after the first 9

minutes of transfer training. The statistical errors of the predicted

10-16 min distance are 0.367 km/MAE, 0.429 km/RMSE, and

91.87%/CPR, while the statistical errors of 10-19 min are 0.545

km/MAE, 0.628 km/RMSE, and 61.13%/CPR, and the effective time

of the model tracking time is longer than 7 min (Figure 9B). From

the measured data MAE, RMSE and CPR (Figure 9C), these three

performance indicators can show that the error of CIAT increases

with increasing tracking time, demonstrating that the spatial

characteristics of the transmitted signals belong to the time
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domain. Additionally, as tracking time increases, various interface

scattered acoustic waves are continuously superimposed in the

hydrophone signals, also exhibiting time-domain characteristics.

Therefore, we believe that the signal-spatial features conveyed by

the transfer learning of CIAT are oceanic reverberations, which are

the physical mechanism of their ability to support switching

between different marine environments.

Transfer learning in CIAT conveys the signal-spatial features

that are ocean reverberations, which support the interpretation of

switching between different marine environments. We then

conducted two sets of experiments to further measure the ability

of CIAT to adapt to such environmental differences.

Group 1: The spacing between the two hydrophones is fixed for

different permutations.

As shown in Figure 10A, the prediction error distribution tends

to be consistent, although the combination categories are not

identical. Setting the distance to 5.63m, the prediction errors for

different combinations are shown in Table 6, which proves that the

signal-spatial features perceived by the pre-trained model are

effectively transferred under a certain spacing. Therefore, the

model can obtain accurate prediction results using 2 hydrophones

under a certain spacing. This experiment illustrates that under a
B

C D

A

FIGURE 8

Positioning and tracking results. (A) Distance estimation results for synthetic data of the Munk environment, and (B) results for the change of signal
form to FM signal. (C) The prediction result of SW-96 experimental sound source distance without transfer learning, and (D) with transfer learning.
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certain spacing, the change in spatial location has little effect on the

adaptive ability of CIAT.

Group 2. One hydrophone is settled, and the spacing between

the two hydrophones is adjusted.

Figure 10B shows that the prediction error distribution still

tends to be similar when the spacing between two hydrophones is

changed. As shown in Table 7, the prediction errors fluctuate

slightly without significant differences. This experiment illustrates
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that CIAT is still highly adaptable to the environment when the

spacing and spatial location of two hydrophones are both changed.
4 Discussion

In this study, we propose a composite intelligent tracking model

(CIAT) to achieve both azimuth and distance/depth estimation with
B

C

A

FIGURE 9

Tracking results. (A) Depth estimation results. (B) Tracking trajectory of the sound source ship. X-axis the distance of the source ship from the 1st
hydrophone, Y-axis the azimuth of the source ship, and Z-axis the time dimension. Green line the real trajectory and the orange line is the
predicted. (C) The three indicators of MAE, RMSE, and CPR verify the accuracy of the CIAT model, and show the trend of the indicators as time
increase and evaluate the generalization ability of the model.
TABLE 5 Comparison results of CIAT and MFP.

Distance
(m)

CIAT AE MFP AE

MAE: 116.229 MAE: 2451.375

8368 8161.774 206.225 8600 232

8219 8033.095 185.904 6600 1619

8083 7982.247 100.752 100 7983

7932 7846.973 85.026 7600 332

7780 7799.913 19.913 7600 180

7627 7684.014 57.014 5100 2527

7495 7454.631 40.368 5100 2395

7343 7577.628 234.628 3000 4343
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solely two hydrophones, thereby allowing complete and accurate

tracking of whales, especially 0.13 km/MAE within the range of

8km. It addresses that the current spatial-temporal correlation

techniques are limited by the hydrophone quantity accumulation,

arrival time sensitivity and low tracking accuracy. Additionally,

another important direction of our study focuses on explaining the

physical mechanism of CIAT to support switching applications in

different marine environments.

For the horizontal azimuth estimation, we use the enhanced

cross-spectral analysis based on unsupervised algorithm to

overcome the problem that traditional methods are seriously

affected by non-source signals and multiple solutions of CIAT.

We calculate the cross-spectrum values of the time domain sub-

frames of the two hydrophone received signals, and then estimate

the azimuth of the target based on the obtained spectral peaks of the

corresponding frequency points. The results demonstrate that the

minimum error reaches 0.489° and the average error is 4.762°
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within 75 min, which solves the failure of the traditional cross-

spectral orientation methods and obtains the azimuth information

with high precision.

For the distance/depth estimation, the spatial feature source

data is reconstructed by broadband modeling to overcome the

sparsity of the measured data. Then, a CNN pre-trained model is

constructed to mine more obvious and robust features between the

received signals and the target positions by establishing the signal-

spatial transfer mechanism to avoid the dependence on indirectly

extracted features such as phase and frequency.

Transfer learning is used to improve the generalization ability of

CIAT model. For the Munk and SW-96 marine environments, the

perceptual effects of signal-spatial features are preserved by freezing

the convolutional layers of the CNN pre-trained model. Then small

domain discretization of actual data is introduced to the target

model to enhance the non-mapping relationship between fully

connected layer features and actual target locations. The results
BA

FIGURE 10

Prediction error distribution for repeated experiments. (A): (a) Error histogram, probability density function and cumulative distribution function of
error points at 5.63m. (b) 19-11.26m. (c) 14-38.41m. (d) 7-67.56m. (e) and (f) Error distribution plots and the mean PDF. (B): (a) Error histogram,
probability density function and error point cumulative distribution function for different hydrophone spacing, respectively. (b) 3-8 (c) 8-12 (d) 13-7
(e) and (f) Error distribution plots and the mean PDF.
TABLE 6 Numerical statistical properties of errors.

Max/m Min/m Mean/m Variance/m Median/m Skewness/m Kurtosis/m

1-2 665.88 -631.85 10.63 237.12 10.94 0.021 2.15

2-3 658.59 -606.03 0.39 223.89 -8.62 0.11 2.24

3-4 546.37 -505.06 -2.88 245.52 27.43 -0.029 1.84

18-19 565.90 -484.46 -5.60 248.80 -6.21 -0.041 1.85

19-20 547.84 -500.84 -6.29 248.10 -2.05 -0.035 1.84

20-21 626.94 -641.60 6.28 239.46 14.93 -0.064 2.09
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demonstrate that our model exhibits generalization capabilities that

enable it to adapt to changes in scene switching, hydrophone

spacing, and signal reception form, and accurately predict

target location information even with less data and unknown

environmental conditions. Furthermore, from the perspective of

theoretical analysis and repeatable experiments, it is demonstrated

that the signal-spatial features transmitted by transfer learning

are ocean reverberation. This is crucial to explain the physical

mechanism by which CIAT enables to support switching between

different marine environments.

Our proposed whale tracking model breaks the paradigm of

improving tracking accuracy by accumulating physically “real”

arrays, but fully senses and mines the unpredictable signal-spatial

features of the two hydrophones for precise tracking. Especially, the

transmitted signal-spatial features are found to be oceanic

reverberations during the prediction process. This provides an

explanation for the physical mechanism by which CIAT would be

able to support switching applications in different marine

environments. However, one of the most important limitations of

this study is the small size of the training/validation set used. It is

foreseeable that in the future, more acoustic received signal could be

collected as an extension to provide more precise information for

whale diversity conservation and stranding management.
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Bursać, P., Kovačević, M., and Bajat, B. (2022). Instance-based transfer learning for
soil organic carbon estimation. Front. Env. Sci. 10. doi: 10.3389/fenvs.2022.1003918

Byun, G., Akins, H., Song, H. C., and Kuperman, W. A. (2019). Robust matched field
processing for array tilt and environmental mismatch. J. Acoust. Soc Am. 146, 2962–
2962. doi: 10.1121/1.5137294

Chambault, P., Kovacs, K. M., Lydersen, C., Shpak, O., Teilmann, J., Albertsen, C.
M., et al. (2022). Future seasonal changes in habitat for Arctic whales during predicted
ocean warming. Sci. Adv. 8, eabn2422. doi: 10.1126/sciadv.abn2422

Cheeseman, T., Southerland, K., and Park, J. (2022). Advanced image
recognition: a fully automated, high-accuracy photo-identification matching
system for humpback whales. Mamm. Biol. 102(3), 915–929. doi: 10.1007/
s42991-021-00180-9

Chen, R., and Schmidt, H. (2021). Model-based convolutional neural network
approach to underwater source-range estimation. J. Acoust. Soc Am. 149, 405–420.
doi: 10.1121/10.0003329

Coli, G. M., Boattini, E., Filion, L., and Dijkstra, M. (2022). Inverse design of soft
materials via a deep learning–based evolutionary strategy. Sci. Adv. 8 (3), eabj6731.
doi: 10.1126/sciadv.abj6731

Davis, G. E., Baumgartner, M. F., Bonnell, J. M., and Bell, J. (2017). Long-term
passive acoustic recordings track the changing distribution of North Atlantic right
whales (Eubalaena glacialis) from 2004 to 2014. Sci. Rep. 7, 13460. doi: 10.1038/s41598-
017-13359-3

Dayal, A., Yeduri, S. R., Koduru, B. H., Jaiswal, R. K., Soumya, J., Srinivas, M. B., et al.
(2022). Lightweight deep convolutional neural network for background sound classification
in speech signals. J. Acoust. Soc Am. 151, 2773–2786. doi: 10.1121/10.0010257

Ding, J., Ke, Y., Cheng, L., Zheng, C., and Li, X. (2020). Joint estimation of binaural
distance and azimuth by exploiting deep neural networks. J. Acoust. Soc Am. 147, 2625–
2635. doi: 10.1121/10.0001155
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Shengke Wang1* and Guoqiang Zhong1*
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Mesoscale eddies play a significant role in marine energy and matter

transportation. Due to their huge impact on the ocean, mesoscale eddy

detection has been studied for many years. However, existing methods mainly

use single-modal data, such as the sea surface height (SSH), to detect mesoscale

eddies, resulting in inaccurate detection results. In this paper, we propose an

end-to-end mesoscale eddy detection method based upon multi-modal data

fusion. Particularly, we don’t only use SSH, but also add data of other twomodals,

i.e., the sea surface temperature (SST) and the velocity of flow, which are closely

related to mesoscale eddy detection. Moreover, we design a novel network

named SymmetricNet, which is able to achieve multi-modal data fusion in

mesoscale eddy detection. The proposed SymmetricNet mainly contains a

downsampling pathway and an upsampling pathway, where the low-level

feature maps from the downsampling pathway and the high-level feature

maps from the upsampling pathway are merged through lateral connections.

In addition, we apply dilated convolutions to the network structure to increase

the receptive field without sacrificing resolution. Experiments on multi-modal

mesoscale eddy dataset demonstrate the advantages of the proposed method

over previous approaches for mesoscale eddy detection.

KEYWORDS

deep learning, mesoscale eddy detect ion, mult i-modal , data fus ion,
dilated convolutions
1 Introduction

With the development of deep learning (LeCun et al., 2015), many practical problems,

such as those in the fields of pattern recognition and computer vision, have been tackled

with breakthrough results (Krizhevsky et al., 2012; Sermanet et al., 2014). Among others,

semantic segmentation as an important branch of computer vision (Mottaghi et al., 2014;

Cordts et al., 2016; Caesar et al., 2018), has benefited from the powerful deep learning

models (Everingham et al., 2015). Since fully convolutional networks achieved the state-of-
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the-art performance on semantic segmentation (Long et al., 2015), a

variety of deep learning approaches have been proposed for

semantic segmentation (Chen et al., 2015; Ronneberger et al.,

2015; He et al., 2017). Specifically, in this work, we model the

mesoscale eddy detection problem from the perspective of

semantic segmentation.

Mesoscale eddies (also known as weather-type ocean eddies)

refer to ocean eddies with a diameter of 100-300 km and a life span

of 2-10 months (Wyrtki et al., 1976; Chelton et al., 2007). They are

generally divided into two categories, namely cyclonic eddies

(counterclockwise rotation in the northern hemisphere) and anti-

cyclonic eddies (counterclockwise rotation in the southern

hemisphere). Mesoscale eddies not only play an important role in

the transport of energy and particles in the ocean, but also have

great effects on the oceanic biological environment. In consequence,

there are many pieces of work on mesoscale eddy detection in the

literature. Concretely, mesoscale eddy detection is to label the areas

in an image where mesoscale eddies exist. However, it is very

challenging to build a suitable detection method which can

accurately detect the irregular shape of mesoscale eddies.

In the early days, traditional methods based on manual

annotation, mathematical or physical knowledge and image

processing techniques were used to detect mesoscale eddies.

Nichol uses computers to search regions connected by the same

gray level value in gray level images (Nichol, 1987), attempting to

extract a similar eddy structure from the relationship diagram

generated by these regions. Peckinpaugh and Holyer propose a

method for eddy detection, which uses the Hough transformation

method (Illingworth and Kittler, 1988) based on the edge detection

in the remote sensing images (Peckinpaugh and Holyer, 1994). Due

to the irregular shape of mesoscale eddies, Ji et al. use ellipse

detection to detect mesoscale eddies (Ji et al., 2002). With the

inspiration of ellipse detection, Fernandes proposes a new eddy

detector which is capable offinding several eddies per satellite image

(Fernandes, 2009). With the enrichment of satellite remote sensing

data, a number of mesoscale eddy detection methods based on

diverse data have been proposed. These mesoscale eddy detection

methods can be divided into those using Eulerian data and those

using Lagrangian data. For Eulerian data, the main methods are

edge detection methods (Canny, 1986), Okubo-Weiss parameter

value methods (Isern-Fontanet et al., 2003; Penven et al., 2005;

Chelton et al., 2007), wavelet analysis methods based on the

vorticity (Doglioli et al., 2007), wind angle methods based on

geometric or kinematic characteristics of the flow field

(Chaigneau et al., 2008), methods by using sea surface height

variation (Chelton et al., 2011; Faghmous et al., 2012) and so on.

For Lagrangian data, there are mainly Lagrangian stochastic

methods (Lankhorst, 2006), rotation methods (Griffa et al., 2008),

spiral trajectory search methods based on geometric features of

trajectories (Dong et al., 2011a) and so on. However, these

traditional methods have some defects in computational time and

detection performance.

In recent years, the success of deep learning in various fields has

provided a new paradigm for mesoscale eddy detection (Santana

et al., 2022; Yu et al., 2022). Compared with traditional methods, deep

learning based methods can extract rich feature information to
Frontiers in Marine Science 02479
improve the accuracy of mesoscale eddy detection. Unfortunately,

there are not many deep learning based mesoscale eddy detection

methods. Among them, Lguensat et al. propose EddyNet on SSH data

for pixel-wise classification of eddies (Lguensat et al., 2018), which is a

simple network architecture based on the U-Net (Ronneberger et al.,

2015). Subsequently, Du et al. propose DeepEddy based on the

principal component analysis network (PCANet) (Chan et al.,

2015) and spatial pyramid pooling (SPP) (He et al., 2015),

achieving a classification of SAR images (Du et al., 2019). Recently,

Xu et al. adapt the PSPNet to mesoscale eddy detection (Xu et al.,

2019), which is an architecture for semantic segmentation. Duo et al.

use bounding boxes to achieve an object detection task for mesoscale

eddy detection only based on sea level anomaly (SLA) data, not

locating mesoscale eddies accurately by classifying each pixel (Duo

et al., 2019). Similar to EddyNet, Santana et al. apply the U-Net model

to mesoscale eddy detection based on SSH and SLA (Santana et al.,

2020). Moschos et al. propose a deep learning method on SST, only

completing a classification task on mesoscale eddy detection similar

to DeepEddy (Moschos et al., 2020). Li et al. (2022) proposes a

mesoscale detection network based on the extraction of eddy-related

spatiotemporal information from multisource remote sensing data.

However, there are some drawbacks in these approaches. There is no

approach to detect mesoscale eddies using multi-modal data yet. In

addition, some tasks such as classification and object detection are

not suitable for mesoscale eddy detection, not segmenting mesoscale

eddies with irregular shapes. Therefore, we model mesoscale eddy

detection as a semantic segmentation problem in this paper.

Specifically, we design an end-to-end deep network to detect

mesoscale eddies by fusing multi-modal data, leading to improved

accuracy over the previous methods.

Except for the methodology, a major challenge in mesoscale eddy

detection lies in the fact that there are very few labeled datasets

available. To address this problem, we build a multi-modal mesoscale

eddy dataset. Specifically, we download the multi-modal data from

the same sea area at the same time from the Copernicus Marine

Environment Monitoring Service (CMEMS)1. The multi-modal data

contain the sea surface height (SSH), the sea surface temperature

(SST) and the velocity of flow, which can be used for mesoscale eddy

detection, either independently or synthetically (Voorhis et al., 1976;

Fu et al., 2010; Dong et al., 2011b; Mason et al., 2014). It should be

noted that the flow velocity data contains two directions, namely

zonal and meridional velocity, because the velocity vector at a certain

point in the ocean is decomposed into the east/west direction (zonal)

and the north/south direction (meridional). Hence, different from the

SSH and SST data which include only one channel, the velocity of

flow has two channels. Additionally, due to the extensive use of the

SSH data for mesoscale eddies detection, we asked the experts to label

the ground truth on the SSH images base on semantic segmentation

tool so that it is easy to compare with previous mesoscale eddy

detection approaches.

The multi-modal dataset we collected contains different

variables affecting mesoscale eddies in the same sea area, so we

concatenate four channels occupied by these three multi-modal
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data and input them into the network together for feature learning.

In order to fuse multi-modal data for mesoscale eddy detection and

reduce the loss of information during feature extraction, we propose

a novel deep architecture dubbed SymmetricNet. SymmetricNet

mainly consists of a downsampling pathway and an upsampling

pathway. Particularly, we combine the low-level feature maps of

high resolution from the downsampling pathway and the high-level

feature maps with rich semantic information from the upsampling

pathway via lateral connections. We use element-by-element

addition to achieve the fusion of the feature maps, replacing the

concatenation of feature maps which is widely used to merge feature

maps in previous semantic segmentation approaches. Furthermore,

considering that convolutional operations reduce resolution and

tend to lose fine-grained information, dilated convolutions (Yu and

Koltun, 2016) are used in the upsampling pathway, which can

increase the receptive field and aggregate multi-scale contextual

information without losing resolution. As a result, the final feature

map of our model has not only rich semantics, but also rich

contextual information. In contrast to EddyNet and PSPNet, our

method makes use of multi-modal data fusion for mesoscale eddy

detection. In contrast to DeepEddy, SymmetricNet can locate

multiple mesoscale eddies in a sea area, and classify them as

cyclonic eddies or anti-cyclonic eddies.

In summary, the main contributions of our work are:
Fron
• We construct a mesoscale eddy multi-modal dataset

containing the SSH, SST and the velocity of flow. It is

annotated by experts based on the SSH images from dataset;

• We propose a novel end-to-end SymmetricNet, which can

achieve multi-modal data fusion and mesoscale eddy

detection. SymmetricNet is composed mainly of a

downsampling pathway and an upsampling pathway,

which fuses low- leve l fea ture maps from the

downsampling pathway with high-level feature maps from

the upsampling pathway via lateral connections. In

addition, we employ dilated convolutions in an effort to

increase the receptive field and to obtain more contextual

information without losing resolution;

• Our approach outperforms previous methods, achieving

excellent performance for mesoscale eddy detection on the

multi-modal dataset collected by us.
The rest of this paper is organized as follows. In Section 2, due

to the lack of related work, we describe directly the structure of our

proposed SymmetricNet and the loss function. In Section 3, we

present the constructed multi-modal dataset, the parameter settings

used to train our network, and three comparative experiments. In

Section 4, we discuss the results of comparative experiments.

Section 5 concludes this paper.
2 Materials and methods

In this section, we first introduce the structure of our proposed

network dubbed SymmetricNet, which is a symmetric network as
tiers in Marine Science 03480
shown in Figure 1. We then introduce lateral connections and

dilated convolutions applied to SymmetricNet. We use lateral

connections to fuse low-level feature maps with high-level feature

maps, which replace the concatenation in previous methods with an

element-by-element addition. In addition, dilated convolutions are

used to increase the receptive field and obtain contextual

information. Finally, we describe the loss function for the

optimization of SymmetricNet.
2.1 Network architecture

2.1.1 SymmetricNet
Recent semantic segmentation methods usually use the

encoder-decoder structure due to its great successes in many

applications (Chen et al., 2018). The SymmetricNet is also a

symmetric encoder-decoder architecture. As shown in Figure 1,

SymmetricNet is composed of a downsampling pathway (left side),

an upsampling pathway (right side) and a transition block (in the

middle). As can be seen in Figure 1, there are four downsampling

blocks in the downsampling pathway and four upsampling blocks

in the upsampling pathway. Thus, the architecture of SymmetricNet

is symmetric.

In the downsampling pathway, each downsampling block

mainly consists of two layers of 3×3 convolution, each followed

by a batch normalization (BN) layer and a rectified linear unit

(ReLU). Next, a 2 × 2 max pooling operation with a stride of two is

employed to each block for downsampling. Furthermore, in order

to avoid over-fitting in our network, a dropout layer is applied to the

fourth downsampling block. Particularly, the number of channels is

doubled when performing a downsampling block. The

downsampling pathway can be viewed as that the length and

width of the feature maps are halved and the number of channels

is doubled when passing a downsampling block. Similarly, in the

upsampling pathway, each upsampling block consists of a

deconvolutional operation, a lateral connection and a 3×3 dilated

convolution with a rate of four. The deconvolutional operation in

each upsampling block can double the length and width of the

feature maps and halve the number of channels. The lateral

connection fuses low-level feature maps from the downsampling

pathway with high-level feature maps from the upsampling

pathway. Thus, the effect of the upsampling pathway can be

viewed as that the length and width of the feature maps are

doubled, and the number of channels is halved when passing a

upsampling block. Except for these four downsampling blocks and

four upsampling blocks, there is a transition block following the

fourth downsampling block, which consists of two layers of 3×3

convolution, each followed by a BN layer and an ReLU layer.

Similar to the fourth downsampling block, there is a dropout

layer at the end of the transition block to avoid over-fitting

in SymmetricNet.

In the end, we take the output of the last upsampling block as

input into the final softmax layer to achieve pixel-level classification,

and finally attain the segmentation results for mesoscale

eddy detection.
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2.1.2 Lateral connections and
dilated convolutions

In recent years, convolution has become an increasing popular

method in deep learning thanks to its effectiveness in extracting rich

semantic information from feature maps. However, fine-grained

information can be lost by continuously convolutional operations.

Although the resolution of feature maps increases when they are

upsampled, some important details may be difficult to recover by

the deconvolutional operation. Therefore, in SymmetricNet, the

low-level feature maps of high resolution are fused with the high-

level feature maps to capture fine-grained information lost in the

downsampling pathway.

Additionally, dilated convolutions are adopted in our network

to replace conventional convolutions so as to avoid the massive loss

of contextual information as in conventional convolutional

networks. Dilated convolution introduces the dilation rate in an

attempt to increase the receptive field at a single pixel, and obtain

more contextual information. Figure 2 illustrates the difference

between a conventional convolutional kernel and two dilated

convolutional kernels. Figure 2A shows the 3×3 convolutional

kernel of conventional convolution, whereas Figure 2B and

Figure 2C show the 3×3 convolutional kernels of dilated

convolutions with a rate of two and four, respectively. The orange

areas represent the non-zero parameters of the convolutional

kernel, while the white areas represent the parameters filled

with zero. There is a gap between the nonzero parameters of

the dilated convolutional kernel, which is equal to the dilated

rate minus one. It is obvious that the receptive field becomes
Frontiers in Marine Science 04481
larger due to the expansion of the convolutional kernel, and the

increase of the receptive field results in enriched contextual

information. However, the major drawback of dilated convolution

lies in its excessive computational complexity and large memory

requirement as the size of the dilated convolutional kernel

increases. Therefore, we only apply dilated convolutions to the

upsampling pathway.

Figure 3 illustrates a lateral connection of the low-level feature

maps from the downsampling pathway and the high-level feature

maps from the upsampling pathway in detail. Firstly, the high-level

feature maps output from the transition block or upsampling blocks

are upsampled by a deconvolutional operation. Next, we select the

corresponding low-level feature maps in the downsampling

pathway according to the size of the high-level feature maps,

because the sizes of the feature maps that need to be added must

be the same. Then, we apply a 3×3 dilated convolution with a rate of

four to the low-level feature maps of high resolution, performing

semantic extraction without reducing the resolution. In this case, we

can mitigate the disadvantage that the low-level feature maps have

weak semantic information. Subsequently, the low-level feature

maps of high resolution and the high-level feature maps with rich

semantic information are added in an element-by-element manner.

Ultimately, a 3×3 dilated convolution with a rate of four is applied

to the fused feature maps in an effort to gain multi-scale contextual

information, while maintaining the resolution.

The lateral connections between the low-level feature maps of

high resolution from the downsampling pathway and the high-level

feature maps with rich semantic information from the upsampling
FIGURE 1

Schematics of the proposed SymmetricNet.
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pathway achieve feature maps fusion, resulting in the feature maps

with fine-grained and rich semantic information.
2.2 Loss function

In our work, we use a loss function which combines the dice loss

function and the cross-entropy loss function for the optimization of

SymmetricNet. It is defined as

L(P,G) = −log(1 − DL(P,G)) + Llog(P,G), (1)

where DL(P,G) the dice loss function, and Llog(P,G) is the cross-

entropy loss function.

We regard the mesoscale eddy detection problem as a semantic

segmentation problem, which is essentially a pixel-level

classification problem. The dice loss function is a popular loss
Frontiers in Marine Science 05482
function for training pixel-level classification networks, which is a

similarity measure function used to calculate the similarity of two

samples. Dice loss function is helpful to address the problem of class

imbalance in semantic segmentation. Dice loss function combined

with cross-entropy loss function can improve the stability of model

training. Let us first introduce the dice coefficient which describes

the similarity between the prediction and the ground truth. Denote

by P the prediction and by G the ground truth. |P| and |G| represent

the sums of elements in P and G respectively. Then, the dice

coefficient function is defined as

DC(P,G) =
2 P ∩  Gj j
Pj j + Gj j : (2)

According to the above formula, the prediction and the ground

truth are exactly the same when the dice coefficient is one, and the

segmentation result is optimal. By contrast, a dice coefficient of 0
FIGURE 3

Illustration of a lateral connection.
B

C

A

FIGURE 2

Comparison between a conventional convolutional kernel and two dilated convolutional kernels. (A) The 3×3 convolutional kernel of conventional
convolution; (B) The 3×3 convolutional kernel of dilated convolution with a rate of 2; (C) The 3×3 convolutional kernel of dilated convolution with a
rate of 4.
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refers to a completely erroneous segmentation result, implying that

the prediction and the ground truth do not match at all. In other

words, the larger the dice coefficient, the better the performance. As

a result, we define the dice loss function as follows:

DL(P,G) = 1 − DC(P,G) = 1 −
2 P ∩  Gj j
Pj j + Gj j (3)

However, there is a disadvantage in the dice loss function. The

gradient of the dice loss function mainly depends on the sum of the

elements in the prediction and the ground truth. The gradient will

change sharply if it is too small, making the training difficult.

Besides, mesoscale eddy detection is actually a 3-class

classification problem, i.e., the cyclonic eddies, anti-cyclonic

eddies and background classes. Therefore, the cross-entropy loss

function can reduce the training difficulty of the network, which is

the most commonly used loss function for multi-class

classification problems.

In the end, we use the loss function in Eq.(1) to train our

network, achieving excellent performance for mesoscale

eddy detection.
3 Results

In this section, we first explain the details of the collected

dataset. Then, we introduce parameter settings for training the

proposed SymmetricNet. Finally, we demonstrate that our method

is superior to other methods for mesoscale eddy detection in three

aspects, i.e., the comparisons on different modals of data, different

networks and different loss functions.
3.1 Dataset

So far, there are very few public datasets available for mesoscale

eddy detection. Therefore, it is necessary to build a reliable dataset

as the first step. In most papers on mesoscale eddy detection to date,

the authors rely mainly on the SSH data for detection, lacking the

data of other modals closely related to mesoscale eddy detection.

Motivated by this observation, we construct a multi-modal dataset,

which is composed of the SSH, SST and the velocity of flow.

Firstly, we download the SSH, SST and the velocity of flow for a

total of ten years from January, 2000 to December, 2009 on the

website of CMEMS. Specifically, the SSH, SST and the velocity of

flow of our dataset are downloaded from the GLOBAL OCEAN

ENSEMBLE PHYSICS REANALYSIS product, where the spatial

resolution is 0.25 degree × 0.25 degree. The dimension of these

three-modal data is 681 × 1440, where 681 is the dimension of the

latitude, and 1440 is the dimension of the longitude. There is one

datum for each month, such that there are 120 data coming from

120 consecutive months. h/south direction (meridional). Then, we

choose the data of 40 months for a three-month interval of totally

120 months in order to make the data to be diverse. Lastly, we

randomly select the data of these three modals from multiple

regions with the size of 128 × 128, ensuring that the
Frontiers in Marine Science 06483
corresponding positions of the SSH, SST and the velocity of flow

are the same.

In this case, the multi-modal data have four channels, where the

first channel corresponds to the SSH, the second channel

corresponds to the SST, the third and fourth channels correspond

to the velocity of flow. Figure 4 shows examples of the SSH, SST and

the velocity of flow corresponding to the channels. Considering that

previous methods only use the SSH data, experts are invited to label

the SSH images as the ground truth to make it easy to conduct

comparison. In labeling, the cyclonic eddies are annotated as -1, the

anti-cyclonic eddies are annotated as 1, and the background is

annotated as 0. The SSH image and the ground truth in a certain sea

area are shown in Figure 5. Figure 5A shows the SSH image, while

Figure 5B shows the ground truth, where the yellow areas represent

the anti-cyclonic eddies, the dark blue areas represent the cyclonic

eddies, and the light blue areas represent the area without eddies. In

the end, we randomly select 512 and 256 samples as the training and

test sets, respectively.
3.2 Parameter settings

In our network, we adopted 8, 16, 32, 64 and 128 convolutional

kernels for the 3×3 convolution applied to each downsampling

block and intermediate transition block. Symmetrically, the

numbers of all convolutional kernels of each upsampling block

were taken as 64, 32, 16, and 8, respectively. The dropout in the last

downsampling block and the transition block were set to 0.3 and

0.5, respectively. We trained our network using the Adam

optimizer, which had an initial learning rate of 1.0 × 10-3 and a

minimum learning rate of 1.0 × 10-30. Additionally, the batch size

was set to 8 and the number of epochs was set to 50.
3.3 Comparative experiments

In this section, in order to validate the effectiveness of our

constructed multi-modal dataset, our proposed network, and our

combined loss function, we conducted comparative experiments on

different modals of data, different networks, and different loss

functions, respectively.

3.3.1 Results on different modals of data
To study the significance of our constructed multi-modal

dataset, we selected the SSH, SST and the velocity of flow

separately from the corresponding channel of the multi-modal

dataset. Then we trained and tested our network on these three

modals of data and multi-modal data. There was no validation set

because the amount of the collected data was not very large. Thus,

we firstly compared the loss and accuracy on the training set to

make an optimistic evaluation of the network. Figure 6 shows the

learning curves on three modals of data and multi-modal data of

training set, where the green, orange, blue and red curves represent

the learning curves by using the SSH, SST, the velocity of flow and

multi-modal data, respectively. As can be seen from Figure 6A, the
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losses gradually decrease and the loss using the multi-modal data is

lower than that using other three modals of data as the training

epoch increases. Similarly, it is observed in Figure 6B that the

accuracy gradually increase and the accuracy using the multi-modal

data is higher than that using other three modals of data as the

training epoch increases.

Moreover, the loss and accuracy on three modals of data and

multi-modal data after training 50 epochs are shown in Table 1,

where the cross-entropy loss, dice loss and our loss combining the

cross-entropy loss and the dice loss are shown, respectively. As can

be seen from the table, the multi-modal data deliver the best results.
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We tested our network using three modals of data and multi-

modal data of the same test set. In addition to the measure of global

accuracy shown in Table 1, we added four evaluation indexes to

further prove the effectiveness of our collected multi-modal data, i.e.,

the pixel precision of cyclonic eddies, anti-cyclonic eddies,

background classes and the mean precision of these three classes.

Table 2 shows the detection results on three modals of data and

multi-modal data, which demonstrate the significance of the multi-

modal data. Through these experiments on the training and test sets,

we can clearly see that the method based on the multi-modal data

outperforms the methods based on the other three modals of data.
B

C D

A

FIGURE 4

Examples of the SSH, SST and the velocity of flow corresponding to the channels of a multi-modal remote sensing image. (A) The SSH channel; (B) The SST
channel; (C) The zonal velocity; (D) The meridional velocity.
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BA

FIGURE 5

Example of the SSH image and the ground truth in a certain sea area. (A) Two examples of the SSH images; (B) The ground truth labeled by experts
according to the SSH images.
BA

FIGURE 6

Loss and accuracy curves obtained by using our model on three modals of data and multi-modal data. (A) Loss curve (B) Accuracy curve.
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In order to visually demonstrate the advantage of our multi-

modal data over three single-modal of data, the examples of eddy

detection results using three modals of data and multi-modal data

of test set are shown in Figure 7. Through comparing with the

ground truth, we can see that mesoscale eddy detection results

based on multi-modal data are closest to ground truth.

3.3.2 Results on different networks
The result using the proposed network is compared with those

of other networks with the objective of verifying the effectiveness of

our framework. As mentioned in Section 1, there are few

representative mesoscale eddy detection methods based on deep

learning. Among them, DeepEddy, Duo et al. (2019) and Moschos

et al. (2020) perform tasks of classification and object detection, and

they cannot segment mesoscale eddies from remote sensing images.

For methods using pixel-wise classification for mesoscale eddy

detection, there are EddyNet, PSPNet and Santana et al. (2020).

Considering that both the structure of EddyNet and Santana et al.

(2020) rely on the U-Net, we select EddyNet as the representative of

them. Hence, we choose to compare EddyNet and PSPNet with our

proposed network. Besides, the SymmetricNet without dilated

convolution is another compared network to prove the

effectiveness of our network, which can also be viewed as an

ablation study. Figure 8 shows the learning curves of these

compared networks using the multi-modal training set, where the

blue, orange, green and red curves represent the learning curves of

EddyNet, PSPNet, SymmetricNet without dilated convolution and

the proposed network, respectively. Figure 8A shows that the losses

of all the models gradually decrease and the loss of our network is

lower than that using the other networks as the training epoch

increases. Similarly, it is observed from Figure 8B that the accuracy

of all the models gradually increase and the accuracy of our network

is higher than that using the other networks as the training

epoch increases.
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Similar to the preceding subsection, we also give detection

performances by using the compared networks on the multi-modal

training and test sets in Tables 3, 4, respectively. As can be observed

from the tables, our proposed network yields best results among

compared networks. Examples of eddy detection using the compared

networks on the multi-modal test set are shown in Figure 9.

To demonstrate the advantage of the proposed network using

our constructed multi-modal dataset more convincingly, the

accuracy results obtained by using SymmetricNet and the

compared networks on three modals of data and multi-modal

data are shown in Table 5. The performance by using the

proposed SymmetricNet on our constructed multi-modal data is

the best.

3.3.3 Results on different loss functions
In this work, we trained our network with a loss function that

combines the dice loss function and the cross-entropy loss function.

The dice loss function is popular in semantic segmentation, and the

cross-entropy loss function has been widely used on classification

problems. In our experiments, we used different loss functions when

training the proposed SymmetricNet on the multi-modal dataset to

validate the effectiveness of our loss function.

The comparison among the cross-entropy loss function, dice

loss function and our combined loss function is shown in Tables 6,

7. As can be seen from the tables, in terms of loss, precision and

accuracy, our loss function achieves the best performance.
4 Discussion

In this section, we discuss the results of the comparative

experiments in Section 3.3. We show the results of comparative

experiments from three aspects, i.e., results on different modals of

data, results on different networks and results on different loss
TABLE 2 Detection results obtained by using our model on three modals of data and multi-modal data of test set.

Dataset Pixel precision Mean Global accuracy

Anti-cyclonic Cyclonic Non eddy

SSH 83.56% 90.16% 97.67% 90.46% 96.69%

SST 74.37% 69.51% 92.70% 78.86% 91.64%

Velocity of flow 82.41% 89.42% 97.63% 89.82% 96.50%

Multi-modal data 87.85% 91.51% 98.14% 92.5% 97.06%
The best results are highlighted in boldface.
TABLE 1 Loss and accuracy obtained by using our model on three modals of data and multi-modal data of training set.

Dataset Cross-entropy loss Dice loss Our loss Global accuracy

SSH 0.0935 0.1314 0.2351 96.77%

SST 0.2144 0.2889 0.5565 93.16%

Velocity of flow 0.0940 0.1341 0.2381 96.50%

Multi-modal data 0.0763 0.1076 0.1902 97.32%
The best results are highlighted in boldface.
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functions. Here, we firstly discuss the results from two aspects, i.e., the

effect of different modals of data, the effect of different networks. The

analysis of loss function is introduced in Section 2.2, thus there is no

further discussion in this section. Lastly, we discuss future research.
4.1 The effect of different modals of data

In Section 3.3.1, we show results on different modals of data.

Firstly, we show the learning curves on three modals of data
Frontiers in Marine Science 10487
respectively and multi-modal data in Figure 6, and show the loss

and accuracy on three modals of data and multi-modal data after

training 50 epochs in Table 1. From Figure 6 and Table 1, we can see

that the results based on multi-modal data are significantly better

than those based on the three single-modal data. Additionally, one

can clearly see the influence of the three modals of data on

mesoscale eddy detection. It is evident that the SSH is the most

important among the three modals, which has been widely studied

in the literature. The velocity of flow also plays a significant role in

the research of mesoscale eddy detection. Not only is the
B

C D

E F

A

FIGURE 7

Eddy detection results obtained by using the proposed model on three modals of data and multi-modal data of test set. (A) Original SSH image in a
region of sea; (B–E) Eddy detection results from the same region of sea using the SSH, SST, the velocity of flow and the multi-modal data,
respectively; (F) Ground truth labeled by experts in the same region of sea according to the SSH image.
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characteristics of the velocity of flow closely related to mesoscale

eddies, but it occupies two of the four channels of multi-modal data.

In addition, because a large fraction of the ocean satisfies the

geotropic balance, the velocity of flow also directly links to the

gradient of SSH. Therefore, both of these two modals of data have

similar effects on mesoscale eddy detection. In comparison, the

effect of SST on mesoscale eddy detection is not as evident as its

counterparts. However, because SST can represent mesoscale eddies

to a certain extent, it also has a certain positive influence on the

mesoscale eddy detection. Therefore, multi-modal data can more

comprehensively characterize mesoscale eddies during training,

which is beneficial to the improvement of mesoscale eddy

detection performance.

After the training, we show comparison results on the test set. In

addition to the global accuracy shown in Table 1, we add the

precision to further verify the experimental results. Precision refers

to the proportion of the number of correctly classified pixels in a

category to the number of all pixels predicted to be in this category,

which is suitable for mesoscale eddy pixel-by-pixel classification

task. Table 2 shows the precision of the three categories, i.e.,

cyclonic eddies, anti-cyclonic eddies and background. At the same

time, we also calculate the mean precision of these three categories

to verify the effectiveness of SymmetricNet. Regardless of the

precision of a single category, the mean precision or the global

accuracy, the results of SymmetricNet on the multi-modal data test

set are higher than the results on other single-modal data. For
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cyclonic eddies and anti-cyclonic eddies which are difficult to detect,

SymmetricNet achieved 91.51% and 87.85% precision on the multi-

modal test set, which has great improvement compared with the

results based on the other three single-modal data.

Lastly, we show Figure 7 to verify the validity of multi-modal

data qualitatively. It is clear that the detection result using the SST

data misses many eddies and the detection result using the velocity

of flow data detects some ‘fake’ eddies erroneously. Although the

detection results based on the SSH data and our multi-modal data

are similar, one can assert that the detection result based on our

multi-modal data is more accurate than that based on the SSH data

in terms of detection details.
4.2 The effect of different networks

In order to prove that SymmetricNet proposed is superior to the

current existing methods in mesoscale eddy detection, this paper

applies multi-modal data to different networks models to conduct

comparative experiments. In this paper, we carry out mesoscale

eddy detection from the perspective of semantic segmentation.

Thus, the compared methods chosen are EddyNet and PSPNet,

which use pixel-by-pixel classification to achieve mesoscale eddy

detection. EddyNet and the network proposed by Santana are

implemented based on U-Net, the network structures of the two

are roughly the same. Therefore, this paper selects EddyNet as the
BA

FIGURE 8

Loss and accuracy curves obtained by using different networks on the multi-modal training set. (A) Loss curve (B) Accuracy curve.
TABLE 3 Loss and accuracy obtained by using different networks on the multi-modal training set.

Method Cross-entropy loss Dice loss Our loss Global accuracy

Eddynet 0.1636 0.2168 0.4083 94.58%

PSPNet 0.1015 0.1461 0.2595 96.27%

SymmetricNet (LC) 0.0867 0.1182 0.2126 97.04%

SymmetricNet (LC+Dilated) 0.0763 0.1076 0.1902 97.32%
The best results are highlighted in boldface.
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TABLE 4 Detection results obtained by using different networks on the multi-modal test set.

Method Pixel precision Mean Global accuracy

Anti-cyclonic Cyclonic Non eddy

Eddynet 75.48% 80.41% 94.44% 83.44% 93.77%

PSPNet 84.51% 84.44% 97.57% 88.84% 96.25%

SymmetricNet (LC) 87.07% 86.76% 98.01% 90.61% 96.72%

SymmetricNet (LC+Dilated) 87.85% 91.51% 98.14% 92.5% 97.06%
F
rontiers in Marine Science
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The best results is highlighted in boldface.
B
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FIGURE 9

Eddy detection results obtained by using different networks on the multi-modal test set. (A) SSH image in a region of sea; (B–E) Eddy detection
results from the same region of sea using the compared networks; (F) Ground truth labeled by experts in the same region of sea according to the
SSH image.
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representative of the two. In addition, this paper replaces the dilated

convolutions in SymmetricNet with the traditional convolutions,

and uses it as a compared network to verify the effectiveness of

dilated convolutions. Figure 8 shows loss and global accuracy curves

of different networks on the multi-modal training set, Table 3 shows

loss and global accuracy of different networks after training

50 epochs on multi-modal data. Global accuracy, precision of

different categories and average precision of different networks

on the multi-modal test set are shown in Table 4. We can see

that the results of mesoscale eddy detection based on SymmetricNet

are better than those obtained based on other comparative

networks no matter in the process of training or testing. The

number of convolutional layers of EddyNet is relatively shallow,

which leads to insufficient feature extraction. Although the number

of network layers of PSPNet are relatively deep, the downsampling

scale of the pyramid pooling module in the network is large,

resulting in serious information loss. Additionally, dilated

convolutions can expand the receptive field to obtain more

contextual information. Therefore, these comparative networks

have poor performance on mesoscale eddy detection compared

with SymmetricNet.

In addition to using quantitative indicators to verify the

effectiveness of SymmetricNet proposed in this study, Figure 9

compares the results of mesoscale eddy detection based on different

networks from a qualitative perspective. Apparently, the detection

result of our method is the closest to the ground truth. However,

EddyNet misses a lot of eddies, PSPNet locates eddies inaccurately,

and SymmetricNet without dilated convolution detects some

‘fake’ eddies.

Table 5 shows the global accuracy of different networks based

on different modals of data, further proving that the multi-modal

data and SymmetricNet improve the mesoscale eddy detection

performance. As can be seen from the table, our method is better

than the others for all the data used, and the results obtained on our

constructed multi-modal data are better than those tested on the

individual modals of data for all the networks.
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4.3 Future research

In this paper, we collect a multi-modal dataset and design

SymmetricNet to detect mesoscale eddies, improving the accuracy

of the mesoscale eddy detection. However, there are some

shortcomings in this study, which need further improvement and

perfection in future research. In this subsection, future research will

be discussed in the following three aspects:
• To solve the problem that only single-modal data are mainly

used for mesoscale eddy detection, a multi-modal dataset

containing the SSH, SST and the velocity of flow is

constructed. In the future study, we will continue to

consider other modals of data affecting mesoscale eddies

and expand the multi-modal data. In addition, in order to

make the network have strong generalization ability, we will

also increase the number of samples in the dataset in the

future. Furthermore, in the process of data labeling, this study

only uses SSH images for annotation. Although the

annotation based on the SSH images is helpful for

comparison with existing methods only using SSH, this

study cannot output suitable fused feature maps for

labeling. Therefore, the future research will find a suitable

multi-modal data fused feature map, completing the

annotation on the multi-modal data, and make the data

match the ground truth.

• In response to the inaccuracy of the mesoscale eddy

detection method, this study designs a deep network

named SymmetricNet. Although SymmetricNet has

achieved relatively good results, there is still room for

improvement. The future work will continue to optimize

the network. In this paper, we detect mesoscale eddies by

pixel-by-pixel classification of ocean remote sensing images.

Consequently, in the future research, we will learn ideas

from current excellent work in semantic segmentation and

improve existing networks to obtain better results.
TABLE 5 Accuracy obtained by using different networks on three modals of data and multi-modal data of test set.

Method SSH SST Velocity of flow Multi-modal data

Eddynet 93.66% 89.59% 93.55% 93.77%

PSPNet 96.15% 89.80% 95.77% 96.25%

SymmetricNet (LC) 96.37% 89.83% 95.90% 96.72%

SymmetricNet (LC+Dilated) 96.69% 91.64% 96.50% 97.06%
The best result is highlighted in boldface.
TABLE 6 Loss and accuracy obtained by using different loss functions on the training set.

Method Crossentropy loss Dice loss Our loss Global accuracy

Only crossentropy loss 0.0922 – – 96.31%

Only dice loss – 0.1149 – 96.69%

Our loss 0.0763 0.1076 0.1902 97.32%
The best results are highlighted in boldface.
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• Considering the lifetime of mesoscale eddies, we will detect

the eddies trajectories following its path until its

disappearance in the future. We think it would be

significant to discuss the mesoscale eddy detection from

this perspective.
5 Conclusions

In this paper, we construct a multi-modal dataset for mesoscale

eddy detection, which contains the SSH, SST and velocity of flow

data. Additionally, a new network termed SymmetricNet is proposed,

which is capable of fusing multi-modal data to boost the mesoscale

eddy detection accuracy. SymmetricNet is capable of fusing low-level

feature maps from the downsampling pathway and high-level feature

maps from the upsampling pathway via lateral connections. In

addition, dilated convolution is employed in our proposed network

to obtain rich contextual information without losing resolution. To

evaluate the constructed multi-modal dataset, our proposed network

and the combined loss function, we conduct extensive experiments

on different modals of data, different networks and different loss

functions. It was demonstrated that the proposed method using our

constructed multi-modal dataset outperforms the state-of-the-art

existing approaches on mesoscale eddy detection.
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Sound speed distribution, represented by a sound speed profile (SSP), is of great

significance because the nonuniform distribution of sound speed will cause

signal propagation path bending with Snell effect, which brings difficulties in

precise underwater localization such as emergency rescue. Compared with

conventional SSP measurement methods via the conductivity-temperature-

depth (CTD) or sound-velocity profiler (SVP), SSP inversion methods leveraging

measured sound field information have better real-time performance, such as

matched field process (MFP), compressed sensing (CS) and artificial neural

networks (ANN). Due to the difficulty in measuring empirical SSP data, these

methods face with over-fitting problem in few-shot learning that decreases the

inversion accuracy. To rapidly obtain accurate SSP, we propose a task-driven

meta-deep-learning (TDML) framework for spatio-temporal SSP inversion. The

common features of SSPs are learned through multiple base learners to

accelerate the convergence of the model on new tasks, and the model’s

sensitivity to the change of sound field data is enhanced via meta training, so

as to weaken the over-fitting effect and improve the inversion accuracy.

Experiment results show that fast and accurate SSP inversion can be achieved

by the proposed TDML method.

KEYWORDS

sound speed profile (SSP) inversion, artificial neural networks (ANN), few-shot learning,
task-driven meta-learning (TDML), over-fitting effect
1 Introduction

Underwater acoustic wave has become the most popular signal carrier in underwater

wireless sensor networks (UWSNs) because of its smaller attenuation and better long-

distance propagation performance compared with radio or optical signal by Erol-Kantarci

et al. (2011). However, unlike terrestrial radio, underwater sound speed has significant

spatio-temporal variability due to the influence of temperature, salinity, pressure by Jensen

et al. (2011). This variability will lead to significant Snell effects, which is reflected in the

bending of signal propagation path. The bending path brings difficulties for accurate sonar
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ranging according to Dinn et al. (1995) and localization according

to Isik and Akan (2009); Carroll et al. (2014); Liu et al. (2015); Wu

and Xu (2017) in underwater applications such as target detection

and rescue. Nevertheless, if the sound speed distribution is

obtained, the signal propagation trajectory can be estimated for

correcting ranging and positioning errors, which is of great

significance for localization applications.

The sound speed distribution of a certain region is usually

represented by a sound speed profile (SSP), which is intuitively

expressed as a function of sound speed with depth. During the past

decades, SSP inversion methods have been widely adopted in

underwater wireless sensor networks for estimating sound speed

distribution by leveraging sound field information such as time of

arrival (TOA) and received signal strength indication (RSSI). The

research of novel SSP inversion methods is very promising because

they are more automatic and less labor-time-consuming than direct

measurement of sound speed by sound velocity profiler (SVP) or

conductivity-temperature-depth (CTD) systems refer to Zhang

et al. (2015); Huang et al. (2018).

The SSP inversion is a difficult work because the classical ray

tracing theory by Munk and Wunsch (1979) and normal mode

theory by Munk and Wunsch (1983); Shang (1989) only establish

the one-way mapping from ocean environmental information to

sound field information, while to the best of our knowledge, there

has been no empirical formula for the reverse mapping.

Representative works of SSP inversion includes matching field

processing (MFP) by Tolstoy et al. (1991), compressed sensing

(CS) by Choo and Seong (2018); Li et al. (2019) and artificial neural

networks (ANN) by Stephan et al. (1995); Huang et al. (2018). With

the same degree of inversion accuracy when there are enough

training data, the ANN outperforms MFP and CS in real-time

performance due to the fact that after ANN converges, the SSP can

be obtained through only once forward propagation by feeding

measured sound field information, while iterative processes are

ineluctable in MFP and CS based methods for searching the

coefficients of principal components decomposed by the empirical

orthogonal function (EOF).

For learning-based SSP inversion methods such as ANN, two

conditions need to be satisfied: 1) training data and testing data

should be taken from a same domain that is independent and

identical distribution (i.i.d.) refer to Weiss et al. (2016); 2) there

should be enough training data to avoid over-fitting problem.

However, these two conditions are hard to be met at the same

time because of two reasons. First, there are obvious spatio-

temporal differences in the distribution and shape of SSPs as

shown in Figures 1, 2, so SSPs sampled in different regions and

time periods can not be used together as training data for a certain

task. Second, due to the high labor and economic cost in measuring

SSPs through SVP or CTD systems, SSPs are collected non-

uniformly in different regions and time periods, leading to

insufficient training SSPs in the spatio-temporal intervals that

those tasks belong to. When training the learning model on a

small dataset, which is called few-shot learning, there would be

over-fitting problem (weak generalization performance), so that the

inversion accuracy can not be guaranteed.
Frontiers in Marine Science 02494
For accurately estimating the sound speed distribution in a

random ocean area, there are still two important problems to be

solved: how to maintain good generalization ability of the inversion

model especially in few-shot learning situations, and how to select

appropriate reference SSPs for an inversion task to satisfy the i.i.d.

condition without knowing the actual sound-speed distribution of

the task. Many approaches have been proposed to deal with the

overfitting problem, such as regularization by Goodfellow et al.

(2016), training dataset expanding with generative adversarial

networks by Jin et al. (2020), and meta-learning approach by

Finn et al. (2017). Regularization establishes a way to limit the

model scale by narrowing down the values of weight parameters (L2

norm) or making the model parameters sparse (L1 norm). By this

way, the ability of fitting complex relationships of the model is

weaken so that overfitting problem could be reduced. Training

dataset expanding aims to enrich the training dataset that could

represent the whole situation of target domain, however, if the

original training data concentrates on a small region, the expanded

training dataset will not be uniformly distributed in the target

domain, thus the model is still prone to be overfitting. Although

training dataset expanding could be achieved artificially to balance

the distribution of training data, it usually needs a heavy workload.

Meta-learning (ML) is a newly emerging machine learning

method that is very suitable for few-shot learning by Vanschoren

(2018); Hospedales et al. (2020). Though ML, a learning model

gains experience over multiple learning episodes that covering a

distribution of related tasks, and uses the experience to improve its

future learning performance for a designated task. The ‘learning to

learn’ feature of ML could lead to a variety of benefits such as data

and computing efficiency. Currently, many ML frameworks and

algorithms have been established in typical fields such as

classification by Snell et al. (2017), object detection by Pérez-Rúa

et al. (2020) in computer vision, exploration policies by Alet et al.

(2020) in robot control, domain adaptation by Cobbe et al. (2019),

hyper–parameter optimization by Finn et al. (2017), neural

architecture search summarized by Elsken et al. (2019), etc. The

model-agnostic meta-learning (MAML) for fast adaptation of deep

networks proposed by Finn et al. (2017) establishes a fast training

method for deep learning models on few-shot learning tasks, which

becomes almost the most famous work of hyper–parameter

optimization. Though MAML provides an idea of model

optimization, it has inspired the solution of few-shot learning

problems in many fields such as meta-reinforcement learning

framework by Alet et al. (2020) for exploration issues. Due to the

fact that historical SSPs are usually not accompanied by sound field

data, the labeled data composed of sound field data and SSPs need

to be constructed through ray theory, resulting in the inability to

directly adopt meta learning frameworks from other fields into

construction of underwater sound speed field. Therefore, it is

necessary to establish a more applicable meta learning SSP

inversion framework based on the practical problems in

underwater SSP inversion.

In this paper, we propose a meta-deep-learning framework for

few-shot spatio-temporal SSP inversion named as task-driven meta-

learning (TDML), which provides a training strategy that is suitable
frontiersin.org
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for multiple types of few-shot dataset learning. The core idea of

TDML is to learn the common feature of different kinds of SSPs via

a series of base learners, which forms a set of initialization

parameters of the task learner. By this means, the convergence

rate of the model could be accelerated and the sensibility to the

input data could be retained, so that the model will not be over

trained on few-shot task samples. The ability of fitting complex

relationship or the training dataset is not changed by meta-learning

itself, and it could be combined with regularization or training

dataset expanding for solving overfitting issues in different

applications. To guarantee that the distributions of reference SSPs

and the inversion task meet the i.i.d. condition, all historical SSPs

are first classified into different clusters by a proposed Pearson-

correlation-based SSP local density clustering (PC-SLDC)

algorithm, then the cluster which the task belongs to is decided

by a proposed spatio-temporal-information-based K-nearest

neighbor (STI-KNN) mapping algorithm. The contribution of

this paper is summarized as follows:
Frontiers in Marine Science 03495
• To accurately obtain sound-speed distribution in a random

ocean area under few-shot learning situations, we propose a

task-driven meta-deep-learning framework for spatio-

temporal SSP inversion.

• To reduce negative transfer effect and deal with the over-

fitting problem, we propose a task-driven meta-deep-

learning SSP inversion algorithm, in which the updating

rate of neuron connection weights could be dynamically

adjusted and the convergence of inversion model could be

accelerated.

• To satisfy the i.i.d. condition and select reference SSPs that

possibly has the most similar distribution to the inversion

task, we first propose a Pearson-correlation-based SSP local

density clustering algorithm for historical SSPs clustering,

then propose a spatio-temporal-information-based K-

nearest neighbor algorithm for mapping the inversion

task to a proper cluster leveraging the spatio-temporal

information.
B C
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FIGURE 1

Historical SSPs sampled in different months from 40–50°C N and 150–160°C E of the North Pacific.
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The rest of this paper is organized as follows. In Sec. 2, we

briefly review related works about SSP inversion and few-shot

learning. In Sec. 3, the source of input data during training and

inversion phase is provided. In Sec. 4, we first propose a TDML

framework for spatio-temporal SSP inversion, then present an SSP

clustering algorithm and task mapping algorithm to find proper

reference SSPs for a specified inversion task. Simulation results are

discussed in Sec. 5, and conclusions are given in Sec. 6.
2 Related works

2.1 Underwater SSP inversion

MFP, CS and ANN are three classical SSP inversion methods. In

Tolstoy et al. (1991), the MFP technique is first introduced in SSP

inversion with four steps: empirical orthogonal decomposition,
Frontiers in Marine Science 04496
candidate SSPs generation, simulated sound field calculation and

sound field matching, the candidate SSP corresponding to the

optimal matching sound field will be recorded as the final

inversion result. Instead of reverse mapping from sound field

information to sound speed distribution, the purpose of MFP is to

find matching principal component coefficients. However, the high

time complexity debase the real-time performance of MFP. In Li and

Zhang (2010), the coefficient searching space was reduced first, then a

traversal method was used to find the optimal solution, while in Li

et al. (2015) a parallel grid searching algorithm was proposed to

reduce the time consumption. However, the searching accuracy

depends on the scanning step, so that the time overhead increases

as the accuracy of SSP inversion improves. Heuristic optimization

algorithms were introduced in Zhang (2005); Tang and Yang (2006);

Zhang et al. (2012); Sun et al. (2016); Zheng and Huang (2017) to

speed up the searching process of the optimal EOF coefficients,

such as the simulated annealing algorithm in Zhang (2005),
B C
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FIGURE 2

Historical SSPs sampled from different regions of the North Pacific Ocean in June (including historical periods).
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geneticalgorithm in Tang and Yang (2006); Sun et al. (2016), and

particle swarm optimization (PSO) algorithm in Zhang et al. (2012);

Zheng and Huang (2017). However, to get the optimal result with a

high probability, multiple iterations are necessary in these heuristic

algorithms. Consequently, the time overhead of SSP inversion can not

be reduced to a desired level.

In Li et al. (2019), a mapping relationship is established as a

dictionary to describe the effect of small perturbation of principal

component coefficients on the change of sound field data. Because

the principal component coefficients can be solved directly by the

dictionary and sound field data with a few iterations of the least-

squares calculation, it can achieve better real-time performance

than MFP. Nevertheless, the first-order Taylor expansion

approximation for the nonlinear mapping relationship is adopted

in the design of the dictionary, so the inversion accuracy is sacrificed

to some extent.

Recently, Bianco et al. (2019) presented a detailed review of

machine learning applications in the field of acoustic, showing that

machine learning technologies have become very promising in

ocean parameter estimation, such as seafloor characterization by

Michalopoulou et al. (1993), range estimation by Komen et al.

(2020), geoacoustic inversion by Piccolo et al. (2019), and SSP

inversion by Bianco and Gerstoft (2017). A dictionary learning

method is proposed in Bianco and Gerstoft (2017) for SSP inversion

that can better explain sound speed variability with fewer

coefficients compared with classical EOF decomposition, however,

it still requires a lot of time for searching the related dictionary

elements and coefficients.

Inspired by the ability of deep neural networks to fit nonlinear

functions, we have proposed an ANN-based SSP inversion method

in our previous works (Huang et al., 2018; Huang et al., 2021).

Through off-line training, the ANN is able to learn the mapping

relationship from signal propagation time to sound speed

distribution; and during the inversion stage, the SSP can be

estimated via once forward propagation by feeding the measured

signal propagation time into the SSP inversion model, so the time

overhead can be reduced. With enough training data, the ANN can

hold a good inversion accuracy while significantly outperforms the

MFP and CS in time overhead performance during the inversion

stage, which indicates that the deep neural networks are very

promising in the SSP inversion fields. However, due to the

difficulty of SSP measurement and spatial-temporal distribution

of SSP, the neural network model needs to be trained on small

dataset in some cases, which is prone to be over-fitting. Therefore,

how to deal with the over-fitting problem in few-shot learning is

well worth studying.
2.2 Few-shot learning

Conventional deep neural networks are trained from scratch for

a given task with lots of training samples. However, in some fields

such as SSP inversion, historical data is scarce because of the

difficulty in measuring SSPs by CTD or SVP systems, so the

model should be able to learn the distribution features of data

with only a small amount of samples, which is commonly known as
Frontiers in Marine Science 05497
few-shot learning. In this case, the conventional deep neural

network will easily fall into over-fitting problem.

To solve the over-fitting problem in few-shot learning, some

studies have been done recently as surveyed in Vanschoren (2018);

Hospedales et al. (2020). Aiming at few-shot learning on specific

tasks, multi-task learning jointly learns several related tasks, and

benefits from the effect regularization due to parameter sharing

refer to Rich (1997); Yang and Hospedales (2016). Transfer learning

(TL) has been developed for few-shot learning in the past decade as

surveyed in Weiss et al. (2016); Pan and Yang (2010). TL uses past

experience of a source task to improve learning on a new task by

transferring the model’s parameter prior in Chang et al. (2018) or

the feature extractor from the solution of a previous task in Yosinski

et al. (2014). Because the TL model is first trained on a specific task,

features of the task are memorized in the model, which would affect

the learning rate and accuracy for a new task.

Recently, ML surveyed by Vanschoren (2018); Hospedales et al.

(2020) has become a promising method for few-shot learning.

Different from MTL and TL, a meta-objective is usually defined

in ML to evaluate how well the base learner performs when helping

to learn a new task. In Ravi and Larochelle (2017), a long short-term

memory meta-learner is used to learn an update rule for training a

neural network learner. During the training phase, the base learner

provides the current gradient and loss to the meta learner, which

then update the model parameters. In Finn et al. (2017), a model-

agnostic meta-learning algorithm is proposed to learn a model

parameter initialization which achieves better generalization

performance to similar tasks. The Hessian matrix is illustrated in

Finn et al. (2017) for gradient descent, which enhance the sensitivity

of the model to the input data. The work of Nichol et al. (2018)

further improves the learning rate of model on a new task by

executing stochastic gradient decent for several iterations.

The concept of ML would be suitable for dealing with the over-

fitting problem of underwater sound speed inversion with only a

few reference samples. However, the negative transfer effect caused

by training with different kinds of SSPs still needs to be solved so as

to improve the inversion accuracy.
3 Preliminary

The SSP inversion is to establish the mapping from signal

propagation time to the sound speed distribution. For clearly

illustrating the inversion model, it is important to know more

about the source of input data. In this section, we will present the

signal propagation time measurement method for SSP inversion,

and derive the simulated signal propagation time by ray tracing

theory corresponding to each historical SSP for training

inversion model.
3.1 Signal propagation time measurement

For SSP inversion, accelerating the measurement of signal

propagation time is of great important to improve the real-time

performance. Thus, the autonomous underwater vehicle (AUV)
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assisted signal propagation measurement system proposed in our

previous work Huang et al. (2021) is adopted in this paper, which

has the advantages of stability and mobility compared with

traditional ship-towed or seafloor fixed arrays in Zhang et al.

(2015); Choo and Seong (2018); Li and Zhang (2010); Li et al.

(2015); Zhang (2005); Tang and Yang (2006); Zhang et al. (2012);

Zheng and Huang (2017); Zhang (2013).

The AUVs are able to suspend in the water. One AUV sailing at

the bottom of the ocean act as the source node to start the

measurement process, the other three AUVs are receivers that sail

approximately in the same vertical plane with the bottom AUV and

keep a fixed horizontal distance Dph from each other. During once

time measurement, the signal travels a round trip, then the clock

asynchronization error can be reduced via the bidirectional TOA

technology. The idea of virtual anchoring is introduced to increase

the amount of measured time data. After one turn of

communication, the three AUVs move forward with the distance
Dph
P and start a new turn of measurement. After moving P − 1

times, a signal propagation time sequence containing 3*P items can

be obtained as the measurement result.
3.2 Signal propagation time simulation

The learning model of SSP inversion is usually trained offline, so

the required input signal propagation time can not be measured at the

model training stage. Therefore, the classical ray tracing theory is

introduced to provide signal propagation time information as input

data corresponding to a given SSP for inversion model training.

Assume the preset horizontal distance series of the AUV system

is P = ½p1, p2,…, pm�,m = 1, 2,…, 3P that forms totally M = 3P
transceiver pairs, then for a given SSP S = ½(s1, 1),…, (sd , d)�T , the
relation between P and S can be expressed according to our

previous derivation Huang et al. (2021) as:

pm = s1
cos   ϑ1,m o

D−1

d=1

Dzd
sd+1 − sd

(
ffiffiffiffiffiffiffi
ϒm
d

p
−

ffiffiffiffiffiffiffiffiffi
ϒm
d+1

p
)

����
����,

ϒm
d = 1 − cos   ϑ1,m

s1

� �2
(sd)2,

(1)

where D is the total depth of the SSP, ϑ1,m is the initial grazing

angle at depth of the first speed point s1 from source to the mth

receiver, and Dzd is the depth difference of the linear SSP at the dth

layer with depth boundaries of d and d + 1. Referring to (1), the pm

is actually a function of the initial grazing angle ϑm, which is not a

prior parameter but can be obtained through searching algorithms.

The ideal signal propagation time can be simulated according to our

previous derivation Huang et al. (2021) by:

tm = o
D−1

d=1

Dzd
sd+1 − sd

ln  
sd(1 +

ffiffiffiffiffiffiffiffiffiffi
ϒm

d+1

p
)

sd+1(1 +
ffiffiffiffiffiffiffi
ϒm

d

p
)

 !�����
����� (2)

where the tm is also a function of the initial grazing angle ϑ1,m.

Actually, the peak detection error of arrival signal, and the

position error of AUV will affect the measurement result of signal
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propagation time refer to Huang et al. (2021), so these errors should

be considered to make the simulated signal propagation time more

appropriate to the actual situation. Affected by clock

asynchronization, environmental noise and multipath effect, the

time detection of arrival signal will fluctuate around the real

propagation time. It is shown that the measurement errors of

signal propagation time are usually converted into range

measurement errors that following normal Gaussian distribution

according to Zhou et al. (2010); Thomson et al. (2018), with real

distance as mean values and standard deviations to be one percent

of real distances. The error level is reasonable that can be easily

satisfied by existing underwater distance measurement technologies

according to Kussat et al. (2005), and the location error could be

further reduced by using ray tracing technique in Huang et al.

(2019). However, the original time measurement error is adopted in

this paper that following normal Gaussian distribution wc ∼
W(mc = 0,sc), where mc is the mean value and sc is the standard

deviation. The noisy signal propagation time that fluctuates around

the real time value is equivalent to the superpositon of time

measurement error with normal distribution on the real signal

propagation time, thus the simulated signal propagation time tmw
will be:

tmw = tm + wc : (3)

For the distance scale about 400-500 meters of the AUV-assisted

signal propagation time measurement system, the standard deviation

sc will be a few miliseconds (500(m)*0:01=1500(m=s)).

According to Misra and Enge (2006), the position error of any

surface AUV can be expressed as Gaussian distribution wm
sp ∼

W(msp,ssp), where msp is the mean error and ssp is the standard

deviation. When the geometry topology of satellites is

symmetrically and uniformly distributed relative to target at the

ocean surface and the system bias of satellites has been corrected,

the mean error will follow msp = 0. To reduce the impact of

positioning error of the bottom AUV, there will be a position

correction process of the bottom AUV before signal propagation

time measurement, which is assisted by the surface AUVs forming a

symmetrical topology such as equilateral triangle. In this case, the

positioning error of the bottom AUV will also follow a normal

distribution wbp ∼ W(mbp = 0,sbp) according to Thomson et al.

(2018), where mbp is the mean error and sbp is the standard

deviation. However, if the trajectory of the bottom AUV deviates

too much, the mean positioning error will not be statistical zero

because the surface AUVs could not form a symmetrical

distribution relative to the bottom AUV, and the distance

measurementerrors caused by using empirical sound speed value

will not be spatial averaged.

Considering the positioning errors of AUVs, the simulated

horizontal distance series will be Pw = ½p1
w , p2

w ,…, pm
w �,m = 1, 2,…,

3P, where pm
w = pm + wbp + wm

sp . By putting pm
w into (1), the initial

grazing angle ϑmw that considering position errors of AUVs can be

searched. Then the signal propagation time tmw considering

positioning errors can be calculated by (2).
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4 Task-driven meta-learning
framework for SSP inversion
1 For SSP with fixed number of sampling points, Euclidean distance is

equivalent to mean square error Choo and Seong (2018) and root mean

square error Zhang et al. (2015) in describing vector difference, and they are

positively correlated.
Due to the high labor and time costs of SSP measurement with

CTD or SVP system, there are usually a few reference SSPs that are

similar to the potential distribution of the inversion task. In this

case, the learning model is prone to be over-fitting when it is trained

on a small dataset, resulting in weak generalization ability and low

SSP inversion accuracy. To fast and accurately estimate the regional

sound speed distribution with a few reference SSP samples, we

propose a TDML framework for spatio-temporal SSP inversion as

shown in Figure 3. We aim to learn the common features of

different SSP groups through meta learning, that is, to train

several base learners on multiple few-shot SSP datasets to

collaboratively update the parameters of a global learner, so as to

find a good set of initialization parameters for the target task

learner. Thereafter, merely a few iterations of training is required

to make the task learner converge on the few-shot dataset;

meanwhile, the model retains the memory of common features.

Considering the spatio-temporal difference of SSP distribution,

the ocean region is divided according to spatio-temporal

information. A base learner is established for each region, and

different types of SSPs obtained by clustering are also allocated to

each spatio-temporal interval according to the spatio-temporal

information of the cluster center, which could be used as training

data. The spatio-temporal division scales are usually in varied

forms, however, in this paper, the space is divided by 1 degree

and time is divided by month.

In the proposed TDML framework, several kinds of learning

models could be used as the base learner or task learner such as

neural networks in Benson et al. (2000); (Huang et al., 2018; Huang

et al., 2021) and Gaussian process in Yin et al. (2020). In order to

guarantee a good robustness performance, the auto-encoding
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feature-mapping neural network (AEFMNN) proposed in our

early work Huang et al. (2021) is utilized as the base and task

learners. When the measured signal propagation time is fed into the

trained task learner, the inversion SSP could be quickly obtained

with once forward propagation.
4.1 SSPs clustering and task mapping

4.1.1 Pearson-correlation-based SSP local
density clustering

The difference of SSP behaves in the variation trend of sound

speed values with depth. To obtain SSP clusters with similar

distribution, we propose a PC-SLDC algorithm, the structure of

which is given in Figure 4. The SSPs distribution in the ocean is

continuous, if the clusters of SSPs are divided without overlapping,

the task SSP whose real distribution is at the margin of the cluster

domain may not be accurately estimated because the reference data

in this cluster is not uniformly or symmetrically distributed around

the task SSP (as shown in Figure 4), which may lead to overfitting

problem. Therefore, its better to cluster SSPs with partly

overlapping. In this case, the SSP sample that lays at the margin

of a cluster domain may belong to another cluster at the same time.

Euclidean distance has been widely adopted to describe the

difference between two SSPs such as Choo and Seong (2018);

Zhang et al. (2015)1, but it can not reflect whether the variation

trends with depth of two SSPs are consistent or not, especially for

shallow-water SSPs that their gradients may be positive or negative.
FIGURE 3

Task-driven Meta-learning Framework for SSP inversion.
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Therefore, a correlation check process is first established, in which a

standard SSP with negative gradient is introduced as a reference to

calculate the Pearson correlation coefficient between each historical

SSP data and the reference one. Assume the reference SSP is Sr =

½(s1r , 1), (s2r , 2),…, (sdr , d)�T , and the ith original SSP is Soi = ½(s1oi , 1), (
s2oi , 2),…, (sdoi , d)�T , where d is the depth of corresponding sound

speed in meters2, the Pearson correlation coefficient rr,oi can be

calculated by:
2 The sampling depth interval of original SSP data from world ocean

database 2018 (WOD’18) is meter
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rr,oi =
o
D

d=1

sdr − ur
� �

sdoi − uoi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
D

d=1

sdr − ur
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
D

d=1

sdoi − uoi

� �2s , (4)

where ur =
1
Do

D

d=1

sdr is the average sound speed of SSP Sr , and uoi =
1
Do

D

d=1

sdoi

represents the average sound speed of SSP Soi . With equation (4), all

historical SSP data SO = fSo1 , So2 ,…, Soig, i = 1, 2,…, I will be

divided into two group: the SSP group SO− with negative gradient

or the SSP group SO+ with positive gradient.

After the correlation check, the SSPs in each subset could be further

clustered into different groups based on the Euclidean distance. If So−1 =

½(s1o−1 , 1),…, (sdo−1 , d)�Tand So−2 = ½(s1o−2 , 1),…, (sdo−2 , d)�Tare both SSPs in

SO− , the Euclidean distance eo−1 ,o−2 is calculated as:
FIGURE 4

SSP Local density clustering method based on Pearson correlation test.
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eo−1 ,o−2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oD

d=1 sdo−1 − sdo−2

� �2r
: (5)

Similarly, for So+1 = ½(s1o+1 , 1),…, (sdo+1 , d)�
T and So+2 = ½(s1o+2 , 1),…, (

sdo+2 , d)�
T in SO+ , the Euclidean distance eo+1 ,o+2 can be calculated as:

eo+1 ,o+2 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
oD

d=1 sdo+1 − sdo+2

� �2r
: (6)

For classical K-means clustering algorithm or density-based

spatial clustering (DBSCAN) algorithm, one sample is usually

classified into one class. However, repetitive clustering of SSP is

allowed in PC-SLDC algorithm, the details of which is given in

Algorithm 1.
Fron
Input: historical SSPs:

SO = fSo1 , So2 ,…, Soig, including I SSPs;

reference SSP with Negative Gradient: Sr;

euclidean distance threshold: ψdis;

neighbor number threshold: ψnum.

Output: SSP cluster set:

Sc = fSC1
,…, SCp

,…, SC(p+1)
,…, SC(p+q)

g,
including P clusters with negative gradient

and

Q clusters with positive gradient

Step 1 Initialization:
SSP set with negative gradient SO− = ∅;

SSP set with positive gradient SO+ = ∅;

euclidean distance matrix Med;

candidate cluster center SSP set SCt = ∅;

neighbor SSP set SNbr = ∅;

SSP cluster set SC = ∅;

Step 2 Correlation check:

foreach SSP sample Soi in SO do
calculate the Pearson correlation coefficient

ρr,oi between Sr and Soi according to (6);

If ρr,oi > 0 then

Add Soi to SO;

else

add Soi to SO+.

Step 3 Local density clustering of SSPs with

negative gradient:
assign SCt = SO and label the elements as

SCt = fSct1 , Sct2 ,…, Sctag;
calculate the Euclidean distance among SSPs

in SCt by (7) and store the results in Med;

While SCt ≠ ∅ do
Randomly pick an SSP sample Scta ∈ SCt;

Reset SNbr = ∅;

foreach SSP SSP So−â ∈ SO−do

Check the Euclidean distance ecta ,o−â
if ecta ,o−â < Ydisthen

add So
â
�to SNbr

if SSPs in SNbr ≥ ψnum then

add a new cluster SCp
¼ SNbrto SC;

remove SSPs from Sct that are also contained in
tiers in Marine Science 09501
SCp

else

remove Scta from SCt

Step 4 Local density clustering of SSPs with

positive gradient:
repeat Step 3 by replacing SO with SO+,

a with b, - with +, equation (7) with (8),

and SCp
with SCðpþqÞ.
ALGORITHM 1
Pearson-correlation-based SSP local density clustering algorithm

At the beginning, all unclassified SSPs in SO− have the opportunity to

become a new class center and they form a candidate cluster center

set SCt . The Euclidean distance between each other is calculated

through (5) and stored in an Euclidean distance matrixMed . An SSP

sample Scta ∈ SCtr is randomly picked up, if the Euclidean distance

between any SSP So− ∈ SO− and the current candidate center Scta is

less than a threshold Ydis, then the former will be a neighbor of the

latter and added to a neighbor SSP set SNbr . If the number of SSPs in

SNbr exceeds a certain threshold Ynum, the current candidate point

Scta will be taken as the true center to establish a group SCp
, and all

neighbors are added into SCp
. Otherwise, Scta will be removed from

SCt and a new candidate center SSP will be chosen to repeat theabove

process. The whole process will be done again for SSPs in SO+ .

4.1.2 Spatio-temporal-information-based target
task mapping

For a specified SSP inversion task, those historical sampled SSPs

having the similar distribution with the target task is suitable for

training the task inversion model. However, the sound speed

distribution of the target task is not a prior information, thus the

potential training SSPs can not be found according to the

distribution features of SSPs. Since that the distributions of SSPs

are similar when these SSPs are sampled with close spatio-temporal

information, the search of suitable training data can be realized

based on the similarity of spatio-temporal information.

For target task mapping, we propose an STI-KNN task mapping

algorithm to find proper reference data for the task inversion model,

and the prior SSP clusters SC is obtained by Algorithm 1. When an

inversion task is assigned, we define a spatio-temporal distance

parameter f to describe the similarity between the sampling regions

of a reference SSP and the task, which can be expressed as:

f = l*fa + (1 − l)*fb , (7)

where fa is the sampling time difference, fb is the sampling

location difference, and 0 ≤ l ≤ 1 is a factor to balance fa and

fb .
The fa is calculated by:

fa =
at − aoj j, if at − aoj j < 183

365 + min  (at ,ao) −max  (at ,ao), otherwise

(
(8)

where at and ao are the time information of SSP inversion task and

a random SSP in SO (Algorithm 1), respectively. Due to the high

similarity of SSPs sampled at the same period in different years
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within a certain area, it is not necessary to distinguish the year

differences, thus the sampling time information is defined in days. If

an SSP is collected on February 1, the sampling time value equals to

32, because the 1st day on February is the 32th day of the year.

However, it should be noted that the time difference will not exceed

half a year (183 days), because the time code is cyclic. For instance,

assume two SSPs are sampled on October 1 in the last year (the

244th day of a year) and January 1 in the current year (the 1st day of

a year), the actual time difference is 365 + 1 − 244 = 122, but not

244 − 1 = 243. This is because the 1st day of the last year is equal to

the 1st day of the current year, which could be virtually regarded as

the 366th day of the last year (without lose of generality, the leap

year is taken as an example).

The space information is defined by the latitude and longitude

coordinate of an SSP. The fb is calculated by:

fb =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bx

t − bx
o )

2 + (by
t − by

o )2
q

, (9)

where subscript t and o have the same meaning as (8), bx and by

represent the longitude and latitude coordinates of SSP sampling

space after coding, respectively. As we focus on the distribution of

sound speed in the Pacific Ocean of the Northern Hemisphere, the

coded by equals to the SSP’s latitude coordinate, while bx is defined

as:

bx =
b̂ x
��� ��� − 180, if 0∘E < b̂ x < 180∘E

180 − b̂ x
��� ���, if 0∘W < b̂ x < 180∘W

8><
>: (10)

where b̂ x is the original longitude coordinate of the SSP.

After comparing the spatio-temporal distance between all

historical SSPs and the target SSP, the cluster which contains

most of the k nearest SSPs will be determined as the mapping

result of the target task. The factor l in (7) is determined through

random verifications, which is conducted based on real sampled

SSP data from WOD’18 in the Pacific Ocean with different kinds of

distribution. Through these random verifications, the accuracy of

mapping the target task to the exact cluster, that has similar SSP

distribution with the task, will be statistically tested under different

l values, and the most appropriate l will be determined according

to the highest mapping accuracy.

The training data for an SSP inversion task can be artificially

provided or automatically selected by machine learning algorithms.

For automated SSP inversion system with much less human cost,

the lambda will affect the probability of providing suitable training

data for the task learner. Since the SSPs with different distribution

compared with those of the task area will mislead the learning

process of task learner, the inversion accuracy will decrease when

the SSP cluster of the task is wrongly mapped. Therefore, the task

mapping accuracy that corresponding to the factor l indicates the

confidence coefficient of an inverted SSP result. The STI-KNN

algorithm is given in Algorithm 2.
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Input: historical SSPs:

SO = fSo1 , So2 ,…, Soig;
SSP clusters:

Sc = fSC1
,…, SCp

,…, SC(p+1)
,…, SC(p+q)

g;
spatio-temporal information of historical SSPs:

F = f(ao1 , b
x
o1 , b

y
o1 ),…, (aoi , b

x
oi , b

y
oi )g;

spatio-temporal information inversion task:

j = (at , bx
t , b

y
t );

number threshold of neighbors: κ.

Output: SSP cluster of the target task: Sct.

Step 1: calculate the spatio-temporal distance

between target task and historical SSPs by (9);

Step 2: sort the spatio-temporal distance;

Step 3: choose κ SSPs from SO with the lowest

spatio-temporal distance;

Step 4: select the cluster SCp
or SCðpþqÞ containing

the most of the κ SSPs as the mapping result of the

target task.

ALGORITHM 2
STI-KNN task mapping algorithm
4.2 Task-driven meta-learning

To solve the over-fitting problem and increase the SSP inversion

accuracy with few-shot reference samples, we propose a TDML SSP

inversion model as shown in Figure 5 that includes a meta-training

phase and an SSP inversion phase. There is a global learner, several

base learners and a task learner in the proposed model. Through K

base learners each trained with V-shot SSPs from different clusters,

which is called K-way V-shot learning, a good set of initialization

parameters for the global learner is found, so that the task learner

initialized by the global learner could converge quickly with a few

training times on the task SSP training set.

According to the SSP clustering result by the proposed PC-

SLDC algorithm, the SSP distribution of the target task is either

positive or negative, and the base learner trained by SSPs with the

opposite gradient will contribute negatively to the global learner,

which will slow down the convergence progress of the task model,

even decrease the inversion accuracy. To diminish the negative

transfer, the SSP clusters that having the same gradient direction

with that of the task SSP set are chosen as the candidate training sets

for base learners. Moreover, if the distribution of SSPs learned by

the base learner k is more similar to that of the task training SSPs,

the base learner k will have more influence on the parameter

updating of the global learner, which is achieved by adjusting the

gradient learning rate. Thus, the negative transfer could be further

weakened, and the task learner could converge faster so as to avoid

over-fitting on few-shot reference samples.

Concretely, we propose a TDML SSP inversion algorithm to

illustrate the model training and application process. The neuron

connection parameter of global learner is randomly initialized as
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W1
g while updated iteratively. At the beginning of the nth batch3, all

the K base learners are initialized by the global learner Wn
g ,

meanwhile, K SSP clusters are randomly chosen from the P

available training SSP clusters (K ≤ P) for training the K base

learners respectively, each of which consists of 1 testing and V

training samples. For base learner k, the V SSPs are used forone step

learning with the lose function defined as:

l(k) Wn
kð Þ = o

V

v=1

1
2o

D

d=1

sdv −~s
d
v

� �2
+ ‖Wn

k ‖1

 !
,Wn

k = Wn
g , (11)

where sdv is the sound speed of the vth training SSP at depth d,~s
d
v is the

corresponding inverted sound speed, and Wn
k 1 is the regularization

item of the base learner k. Next, the local parameters are updated with

back propagation (BP) algorithm by Rumelhart et al. (1986):
3 During each iteration, the base learner is trained and updated by one

batch, so the total number of batches is equal to the number of iterations
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_Wn
k = Wn

k − h∇Wn
k
l(k)(Wn

k ), (12)

where h is the learning rate of base learners. Then, the base learner

is test on the left 1 SSP data Stst with lose function:

l(k) _Wn
k

� �
=
1
2o

D

d=1

sdtst −~s
d
tst

� �2
, (13)

where sdtst and ~sdtstare the sound speed of the testing and inverted

SSP, respectively. Finally, the parameters of the global learner are

updated by optimizing the performance L with respect to Wn
g

(Wn
g = Wn

k ) across all base learners. The global optimization

problem is expressed as follows:

min  
Wn

g

L = min  
Wn

g
o
K

k=1

l(k) _Wn
k

� �
: (14)

Note that the meta-optimization is performed over the initial

parameter Wn
g during current iteration, whereas the objective is

computed using the updated parameters _Wn
k . In this way, the
FIGURE 5

Task-driven meta-learning model for SSP inversion.
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sensitivity of the model could be enhanced so that one or a small

number of gradient updating steps on a new task will produce

maximally effective behavior on that task according to Finn

et al. (2017).

To further improve the quality of initialization parameters

learned by the global learner, a correlation coefficient ⋲k(k =

1, 2,…,K) is introduced into each base learner to adjust the

updating speed of model parameters, which is concretely the

Pearson correlation coefficient between the mean SSP of the kth

meta training cluster and the mean SSP of the inversion task

training SSPs. With the K-way V-shot training, the meta-

optimization is actually performed through stochastic gradient

descent, such that the global learner is updated by:

_Wn
g = Wn

g − x∇Wn
g o

K

k=1

⋲kl
(k) _Wn

k

� �
, (15)

where _Wn
g represents the global leaner after parameter updating,

and x is the global learning rate. If the meta training is not over, the

parameters of global learner in the (n + 1) th batch will be initialized

as Wn+1
g = _Wn

g .

After meta-training, the parameters of global learner _WN
g is

transfer as the initialization for the task learner, so that W1
t = _WN

g .

Then the task learner is trained on a few training SSPs by one or a

small number of steps, and the converged model is parameterized as
_Wt . When feeding measured sound field information such as signal

propagation time into model Wt , the inverted SSP ~Se can be

estimated via once forward propagation, thereby improving the

inversion efficiency. The detailed TDML algorithm for SSP

inversion is given in Algorithm 3.
Fron
Input: target task SSPs: STSK;

SSP clusters:

Sc = fSC1
,…, SCp

,…, SC(p+1)
,…, SC(p+q)

g;
task, global, base learners initialized by:

W 1
g ;

meta-training iterations: N;

target task training iterations: N̂ ;

Output: SSP inversion result: Se.

Step 1: preprocessing: get rid of SSP

clusters in Sc with negative or positive

gradient which is different from SSPs in STSK;

Step 2: meta-training:
foreach iterations n ≤ N do

SSPs preparation for K-way V-shot learning;

foreach base learner k dotrain with V-shot

SSPs and update the parameter by (13), (14);

test the base learner according to (15).

compute the global objective function by (16);

update the global learner via (17);

Step 3: task learner training:
assignment W 1

t = _WN
g ;

train task learner for N̂ times: W 1
t → _Wt;

Step 4: task SSP inversion:
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measure the signal propagation time �Tω;

invert SSP Se by feeding �Tω.
ALGORITHM 3
Task-driven meta-learning algorithm for SSP inversion

To reduce the impact of the time measurement error on the

inversion model, which is caused by inaccurate positioning of the

communication system, the joint AEFMNN and ray tracing model

proposed in our previous work Huang et al. (2021) is introduced as

the basic learning model for the base and task learner, and the anti-

noise performance of TDML is inherited. In Huang et al. (2021), the

robust feature extraction performance of the autoencoder has been

evaluated by comparing the variation trend of correlation coefficients

on the input signals and implicit features under different levels of time

measurement error, in which the positioning error of AUVs is set to

be zero for simulating a single error source. The signal propagation

time correlation coefficients are calculated by correlating the error-

influenced signal propagation time with the ideal one, and the

correlation coefficient of implicit features is obtained via

correlations between the implicit features extracted when the input

signal propagation time is influenced by the measurement errors or

without errors. Detailed anti-noise performance of AEFMNN can be

referred to Figure 12 in Huang et al. (2021).

The learning model of base and task learner is given in Figure 6.

There are total 7 layers in AEFMNN model that have been

described in detail by Huang et al. (2021): noisy time input layer

Tv,w , encoding hidden layer Fec , decoding hidden layer Fdc,

decoding time output layer ~Tv , translating hidden layer Ftr ,

translating output SSP layer ~Sv , and the hidden feature layer Fed
shared by the encoder, decoder and translation neural network.

In Figure 6, the signal propagation time with measurement

errors Tv,w is simulated to reflect the real situation, while the one

without errors ~Tv is computed to be the labeled time information

for updating the parameters of the auto-encoder. The auto-encoder

and the translation neural network are updated in turn during once

training. Through narrowing the gap between the estimated signal

propagation time ~Tv and the simulated time Tv , the auto-encoder is

first trained to extract the implicit features that reduces the impact

of measurement errors of the input data. Then by narrowing the gap

between the inverted SSP ~Sv and the labeled SSP Ŝ v , the translation

neural network is trained to establish the mapping relationship

from the implicit features to the sound speed distribution.

Taking the nth iteration (V-shot) for base learner k as an

example, the parameters of the auto-encoder is updated by BP

algorithm with the time lose function l(k)t (Wn
k ) expressed as:

l(k)t Wn
kð Þ = o

V

v=1

1
2 o

M

m=1

~tmv − tmvð Þ2+ ‖Wn
k,ec,dc ‖1

� 	
, (16)

where ~tmv is the estimated signal propagation time of the mth

receiver, tmv is the corresponding theoretical time information

without noise, and Wn
k,ec,dc is the regularization item related to the

parameters of the auto-encoder. Then, the translation neural

network transform the hidden features to sound speed

distribution with lose function (11) modified as:
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l(k) Wn
kð Þ = o

V

v=1

1
2o

D

d=1

~sd̂v − ŝ d̂v
� �2

+ ‖Wn
k,tr ‖1

 !
, (17)

where ~sd̂v is the inverted sound speed at depth d̂ , ŝ d̂v is the

corresponding labeled sound speed, and Wn
k,tr is the regularization

item related to the parameters of the translation neural network.

The forward propagation process of AEFMNN is done by following

equations:

f jec = G o
M

m=1
tmv,w · wn

ec,m,j

� �
+ binec,w · wn

ec,b,j

� 	
, (18)

f d̂ed = G o
J

j=1
f jec · w

n
ec,j,d̂

� �
+ bhidec · wn

ec,b,d̂

 !
, (19)
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f jdc = G o
D̂

d̂ =1

f d̂ed · w
n
dc,d̂ ,j

� �
+ bindc · w

n
dc,b,j

 !
, bindc = bhided , (20)

~tmv = G o
J

j=1
f jdc · w

n
dc,j,m

� �
+ bhiddc · wn

dc,b,m

 !
, (21)

f jtr = G o
D̂

d̂ =1

f d̂ed · w
n
tr,d̂ ,j

� �
+ bintr · w

n
tr,b,j

 !
, bintr = bhided , (22)

~sd̂v = G o
J

j=1
f jtr · w

n
tr,j,d̂

� �
+ bhidt · wn

tr,b,d̂

 !
: (23)
FIGURE 6

Joint Ray Tracing and AEFMNN SSP inversion model by Huang et al., 2021.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1146333
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Huang et al. 10.3389/fmars.2023.1146333
where the special subscript b of the weight parameter w indicates

that the weight connects the bias neuron of current layer and the

neurons in next layer. Among (18) to (23), the leaky rectified linear

unit (LReLU) by Maas et al. (2013) is introduced as the activation

function, which is expressed as:

G(t) =
t t > 0

zt t ≤ 0

(
(24)

where z is a fixed constant between − 1 and 0 (0.25 in this paper).

The outputs of the translation neural network are the sound

speeds at different depth, so the number of output neurons depends

on the sampling depth of the SSP. If there are too many sampling

points in an SSP, the required parameters of the neural network will

increase significantly, thereby leading to the over-fitting problem

when trained on few-shot dataset. To reduce the model complexity,

an stratified-line SSP simplification algorithm proposed in our

previous work Huang et al. (2019) is introduced, by which an

original SSP Sv could be accurately approximated to be Ŝ v via a few

feature points.
5 Simulation and discussion

In this section, the performance of the proposed PC-SLDC

algorithm for SSP clustering, the accuracy of task mapping with

STI-KNN algorithm, the SSP inversion efficiency and accuracy

under TDML framework are verified by simulations on historical

SSP data in the shallow Pacific ocean with water depth of 400 m.

However, the application is not limited to the experimental area, but
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also applicable to shallow or deep ocean where the sound speed

distribution is consistent in a certain spatio-temporal range and the

sound speed at each depth layer approximately obeys Gaussian

distribution with the root-mean-square error (RMSE) on the order

of a few meters per second. The experiments are done via Matlab

“R2019a”, and all SSPs are real sampled in the Pacific Ocean that

come from the WOD’18 Boyer et al. (2021), the sonar data used for

SSP inversion is simulated through ray theory.
5.1 Accuracy of target task mapping

To guarantee the convergence performance of the learning

model, the i.i.d. condition of training and testing data needs to be

satisfied. Therefore, similarly clustering the empirical SSPs and

finding which cluster the target task belongs to become extremely

important. To evaluate the performance of proposed PC-SLDC and

STI-KNN algorithms, we first divide the SSPs into clusters base on

PC-SLDC, then test the target task mapping accuracy by STI-KNN,

finally compare the SSP similarity under different clustering criteria.

In Figure 7, the mapping accuracy of STI-KNN algorithm for

target task is tested on 391 historical SSPs sampled in the Northern

Pacific Ocean with each checking 7 neighbor SSP samples. When the

Euclidean density distance threshold is set to be Ydis ≤ 10 and the

element number of clusters is set to be Ynum ≥ 15 in PC-SLDC,

the accuracy of STI-KNN can be up to 96% with l = 0:02. When the

Euclidean density distance threshold is set to be Ydis ≤ 8 andthe

element number of clusters is set to be Ynum ≥ 12 in PC-SLDC,

the accuracy of STI-KNN can be up to 97.85% with 0:01 ≤ l ≤ 0:036
FIGURE 7

Mapping accuracy of SSP inversion task by STI-KNN algorithm.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1146333
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Huang et al. 10.3389/fmars.2023.1146333
. The l is set to be 0:02 in our following simulations, and SSPs are

clustered with sidis ≤ 10,Ynum ≥ 15.

After target task mapping, we evaluate the clustering

performance by testing the error distances of 20 samples to the

mean SSP of the cluster that each sample maps to via STI-KNN as

shown in Figure 8, the cluster of which is obtained by PC-SLDC and

compared with clustering merely by SSP sampling month or

location. The SSPs of items 1, 2 and 3 are the same group with

negative gradients, while the SSPs of items 4, 5 and 6 are the same

group with positive gradients. The location threshold is 5 longitude

and latitude, and the month threshold is 1 month. From the result,

the SSPs clustered through PC-SLDC are more similar to their

cluster elements than SSPs clustered merely by month or location

information. In particular, the RMSE of test SSPs to the mean SSP of

the cluster obtained by month is much worse than the other two,

this is because the empirical SSPs within each month are sampled

dispersedly around the Northern Pacific Ocean, the distributions of

which are obviously different.

The average SSP of each cluster can be used for roughly estimating

the sound speed distribution of a certain area, however, the variation of

sound speed can not be reflected in different regions or sampling date,

and the estimation error of sound speed will increase with the area scale

or time interval expanding. Therefore, it is necessary to further improve

the accuracy of sound speed inversion by learning to establish the

mapping relationship from signal propagation time to sound

speed distribution.
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5.2 SSP inversion under TDML framework

The TDML framework proposed in this paper aim to improve

the SSP inversion accuracy while reduce the time as much as

possible. In this section, we test the accuracy and time efficiency

of the proposed TDML-based SSP inversion method compared with

some classical SSP inversion methods as base lines.

5.2.1 Base lines and parameter settings
5.2.1.1 MFP-EOF-PSO

There are four steps included in this classical SSP inversion

method: principal component extraction, candidate SSPs

generation, simulated sound field calculation and sound field

matching; the candidate SSP corresponding to the optimal

matching sound field will be recorded as the final inversion result.

Heuristic algorithms are widely used in searching for the matched

item, and PSO is adopted as an example in this paper.

5.2.1.2 CS

The CS-based SSP inversion is a new method that is combined

with EOF. In this method, the eigenvectors of EOF are utilized to

form the compressed sensing dictionary.

5.2.1.3 AEFMNN-based single learning model

The single AEFMNN SSP inversion model has the same model

structure with any base learner of TDML. Such a model is set up for

comparing to evaluate the anti-over-fitting performance of TDML.
FIGURE 8

Error distances of SSPs to the average SSP of the task cluster.
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5.2.1.4 TL

TL is a classical method that can be used for few-shot learning.

Two AEFMNNmodels having the same structure with base learners

of TDML are introduced. One model is trained on SSPs that are not

belong to the task cluster, while the other is trained by the task

cluster; the trained parameters of the former model are set to be the

initialization for the later model.

5.2.1.5 ML

The difference between ML and TDML for SSP inversion is that

all SSP clusters, excluding the task cluster, can be used for meta-

training in ML, while only SSP clusters having the same positive or

negative gradients with the task cluster can be used for meta-

training in TDML. By this means, we verify the performance of

TDML against the negative migration.

The parameter settings of TDML are shown in Table 1. As the

position error of the bottom AUV in Figure 9 is harmful for sound

field measurement, the location should be modified before the

measuring process. According to our previous work on ray-

tracing-based positioning correction Huang et al. (2019), the

bottom AUV can be relocated with the help of those surface

AUVs according to the average sound speed distribution of the

task area. Under 10000 times simulation tests, the location error

can be reduced through ray tracing technique based on average

empirical SSP distritbution Huang et al. (2019), and follows the

Gaussian distribution with average error 0m and standard

deviation less than 0:1m under the time measurement error level

sc = 3ms (three surface AUVs form a equilateral triangle with 100

m between each other, and the position errors of surface AUVs are

not considered). In reality, the location error of bottom AUV may

be larger than simulated due to the topology chaning of surface

AUVs and the movement of underwater flow. Since the AEFMNN

is the basic inversion model introduced in this paper, the SSP

inversion accuracy of all these methods will be influenced when

the location error increases, however, the anti-overfitting

performance and the convergence performance will still be

different with these methods. Some specific parameter settings

of base lines are given in Table 2.

5.2.2 Accuracy comparison
To verify the effectiveness of task mapping based on spatio-

temporal information, the inversion average accuracy of TDML

with 100 testing times is compared with clustering criterion by

location or month in Table 3. Results show that the TDML trained

with clustering by month or location is hard to converge because the

training samples in every cluster may be far different from each

other, thus the inversion errors are much higher than the clustering

by spatio-temporal information.

To evaluate the accuracy performance of TDML, the RMSE results

of SSP inversion on two different clusters with negative or positive

gradients are tested as examples in Table 4 compared with other

inversion methods. The inversion results in Table 4 are average results

with 100 testing times. The results indicate that through leveraging

sound field information such as signal propagation time, the SSP

inversion accuracy behaves better than rough estimating by the average
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SSP of the cluster. Actually, the signal propagation time is a sensitive

function of sound speed changes, while with measured signal

propagation time, these changes can be seized to some extent by

those SSP inversion methods.

For evaluating the anti-over-fitting ability, both the SSP

inversion accuracy during task training and testing processes are

tested for deep-learning-based methods. Among these methods, the

TDML performs best for testing SSP samples. The accuracy of SSP
TABLE 1 Parameter settings of TDML.

TDML

Training SSP clusters Sc 18-/4+

Base learners K 3

SSPs for base learner training Sv 9

SSPs for base learner testing Stst 1

Meta-training episodes (batches) * 40

Task training episodes 40

Task training SSPs per episode 5

Maximum SSP depth 400 m

Points of simplified SSPs 8

Ideal horizontal distance (Figure 1) 80,120,…,440

m (10 items)

Bottom AUV’s location error mbp 0 m

Bottom AUV’s location error sbp 0.1 m

Surface AUVs’ location error msp 0 m

Surface AUVs’ location error ssp 0.1 m

Time measurement error mc 0 s

Time measurement error sc 0.003 s

Learning rate for base/meta learner hed =0.01

xed =0.01

htr =0.00003

xtr =0.00003

Learning rate for task learner ĥ ed = 0:01

ĥ tr = 0:0001

Input layer neurons 10

Hidden layer neurons 200

Hidden feature neurons 8

Output layer neurons of auto-encoder 10

Output layer neurons of translator 8

Training SSPs in the task cluster 60%

Validating SSPs in the task cluster 20%

Testing SSPs in the task cluster 20%
* One episode corresponds to a round of parameter updating, using 3 SSP clusters that is equal
to the number of base learners.
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inverted by CS is a little worse than MFP (combined with EOF and

PSO) due to the first-order Taylor linear approximation at the

dictionary establishing process. Because of the scarcity of training

samples after clustering by PC-SLDC, the SSP inversion via

AEFMNN is prone to be over-fitting, which is why the training

accuracy can be extremely high but the testing accuracy will be

greatly reduced, and reflected in large test-validation values. For TL,

ML and TDML, the anti-over-fitting capability is improved.

However, it should be noted that the inversion accuracy by TL is

not as good as ML or TDML, and this is mainly because the

initialization parameters of the task model are pre-trained in
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different ways. For TL, the model is pre-trained by another SSP

cluster, which makes it retain much characteristics of pre-training

cluster when transferring model parameters, thereby reducing the

ability to learn new SSP distribution. On the contrary, the ML or

TDML is pre-trained by meta models to learn more public features

among SSP clusters, and the second-order gradient descent by (15)

makes the model more sensitive to the changes of signal

propagation time. Therefore, the ML-based model is not likely to

be over-fitting on pre-training SSP clusters.

For cluster 1, the accuracy improvement of TDML is not

obvious compared with that of ML. In fact, this phenomenon is
B

A

FIGURE 9

Convergence comparison of different deep learning methods for SSP inversion. (A) Cluster 1with negative gradients. (B) Cluster 2 with positive gradients.
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related to the training SSP clusters. Among the 22 training SSP

clusters for ML, 18 clusters are distributed in negative gradient,

which is the same with the target task cluster. To verify the

resistance ability of TDML to negative migration, SSPs with

positive gradient are chosen to be the target task, and the

comparison of inversion accuracy with different methods is given

in cluster 2. For ML, most of pre-training SSP clusters are

distributed in negative gradient, so it is difficult for the ML model

to learn the common features of SSPs with positive gradient,

resulting in bad learning ability on the new task. On the contrary,

the pre-training clusters for TDML are all distributed in positive

gradient, the accuracy performance can be guaranteed.

To give a more intuitive understanding of the negative

migration in ML, the convergence of inversion tasks belonging to

cluster 1 and 2 are displayed in Figures 9A, B, respectively. It can be

noticed that with TDML, the model can converge after only 20

times of training, which is much faster than other methods. In few-
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shot learning, reducing the repeated training of samples is helpful to

deal with the over-fitting problem. For task cluster 1, the initial

parameters of TDML for task learner are closer to the optimal

solution than ML; while for task cluster 2, the negative migration of

ML is so obvious that the initial parameter is far from the optimal

solution, and the convergence rate is also significantly reduced.

However, for TDML in Figures 9A, B, there are decreasing

processes and exist turning points that the RMSE error (m/s)

becomes stable after a few of training episodes. Especially, the gap

between the beginning and the convergence stage of TDML is

smaller in Figure 9B, which indicates that the TDML does work and

forms a good set of initial parameters of the task model.

For intuitively expressing the inversion results, the SSP inversion

example through different methods is given in Figure 10. The result of

TDML has better fitting with the original SSP curve.

5.2.3 Time efficiency comparison
The time efficiency of inversion method is very important for

emergency tasks such as underwater rescue. As the training of

learning models could be finished offline before task assignment,

more attention should be paid to the time overhead on the inversion

stage, which is compared in Figure 11. The match sound field

information needs to be searched by heuristic algorithms in MFP,

which is very time-consuming. For CS-based method, several

iterations are needed to gradually reduce the residual. However,

for learning-based methods, only once forward propagation is

enough to obtain the inverted SSP with a well trained model, so

the time efficiency is enormously improved.
6 Conclusion

To satisfy the accurate and time-efficient requirements of

underwater localization applications such as emergency rescue,

we propose a TDML framework for fast and accurately estimating

the regional SSP that is beneficial for positioning correction. The

TDML can be competent for most ocean SSP inversion tasks,

especially in few-shot learning scenarios. By simultaneously

learning different kinds of SSPs with several base learners, the

common features of SSPs can be captured and transferred to the

task learner, and the sensitivity of the task learner to the unique

characteristics of task SSPs can also be maintained. Thus, the model

can converge quickly in the face of new SSP inversion tasks, so as to

reduce the over-fitting effect in few-shot learning.
TABLE 2 Parameter settings of base lines.

ML

Training SSP clusters 22

TL

Pre-training episodes 40

Local training episodes 40

Learning rate 0.01 for auto-encoder

0.00003 for translator

AEFMNN

Training episodes 40

Learning rate 0.01 for auto-encoder

0.0001 for translator

CS

EOF feature vectors 6

CS orders 4

MFP-EOF-PSO

EOF feature vectors 5

PSO iterations 18

PSO particles 20
TABLE 3 RMSE OF SSP inversion by TDML based on different clustering criterion.

Result (m/s)

Cluster 1 2

Criterion Validation Test Validation Test

Location 13.945 14.894 11.723 22.603

Month 14.605 13.621 14.617 13.633

STI-KNN 1.178 1.235 0.998 1.036
The physical meaning of bold characters mainly reflects the generalization ability of the model.
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TABLE 4 RMSE of SSP inversion by different methods.

Cluster Result (m/s)

1 Cluster mean 1.335

1 EOF 1.320

1 CS 1.330

V1 T2 Gap3 Space4 Ratio Space Ratio

1 AEFMNN 1.112 1.402 0.290 < 0.12 0% > 0.12 100%

1 TL 1.130 1.317 0.188 < 0.12 6% > 0.12 94%

1 ML 1.183 1.266 0.083 < 0.12 72% > 0.12 28%

1 TDML 1.178 1.235 0.058 < 0.12 97% > 0.12 3%

Cluster Result (m/s)

2 Cluster mean 1.241

2 EOF 1.211

2 CS 1.217

V1 T2 Gap3 Space4 Ratio Space Ratio

2 AEFMNN 1.028 1.448 0.420 < 0.09 4% > 0.09 96%

2 TL 1.219 1.263 0.044 < 0.09 73% > 0.09 27%

2 ML 1.304 1.284 -0.021 < 0.09 90% > 0.09 10%

2 TDML 0.998 1.036 0.038 < 0.09 94% > 0.09 6%
F
rontiers in Marine S
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1 Validation mean error (m/s). 2 Test mean error (m/s). 3 Gap mean = Test mean error - Validation mean error (m/s). 4 Gap space (m/s).
The physical meaning of bold characters mainly reflects the generalization ability of the model.
FIGURE 10

Time overhead of SSP inversion.
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To guarantee the i.i.d conditions, we propose a PC-SLDC

algorithm for clustering the empirical SSPs with similar

distribution. Then we propose an STI-KNN algorithm to map the

target inversion task, so that proper training samples for the task

can be found. To address the negative learning problem in ML, only

clusters having the positive correlation with the task can be chosen

as training tasks, and the learning rates of different base learners

change with the similarity between the meta training data and the

task training data. The experiment results show that the TDML has

better generalization ability compared with other learning methods

for SSP inversion, that is, the good accuracy performance is not only

obtained in the model training stage, but also maintained in the SSP

inversion (testing) stage. Moreover, the TDML inherits the

advantage of time efficiency of ANN during the inversion stage.

Although TDML has better accuracy performance compared

with AEFMNN, TL, ML, there are still some factors that limit the

performance of TDML. 1)High noise level of signal propagation

time that beyond the bearing capacity of AEFMNN will affect the

SSP inversion accuracy. 2)The mapping accuracy of a given task to

the SSP distribution cluster it belongs to has great influence on the

confidence coefficient performance of SSP inversion result. 3)The

SSP inversion accuracy will be limited when the real SSP

distribution of a given task lays out of distribution coverage of

reference SSPs, though it is accurately mapped to a cluster. For

example, assume the time of SSP inversion task and most of its
Frontiers in Marine Science 20512
neighbor reference SSPs with least spatio-temporal distance is

ideally the same, however, the location of SSP inversion task is at

the external margin of the area constructed by the sampling location

of reference SSPs. In this case, the TDML will not able to accurately

invert the SSP of the task due to the spatial difference of SSP

distribution, the problem of which is also exist in other SSP

inversion methods.

In our future work, we are going to further verify the TDML in

both shallow and deep ocean experiments, and apply the TDML SSP

inversion method to underwater positioning and navigation systems.
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Toward efficient deep learning
system for in-situ plankton
image recognition

Junbai Yue1†, Zhenshuai Chen1†, Yupu Long1, Kaichang Cheng1,
Hongsheng Bi2 and Xuemin Cheng1*

1Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China,
2University of Maryland Center for Environmental Science, Solomons, MD, United States
Plankton is critical for the structure and function of marine ecosystems. In the past

three decades, various underwater imaging systems have been developed to

collect in-situ plankton images and image processing has been a major

bottleneck that hinders the deployment of plankton imaging systems. In recent

years, deep learning methods have greatly enhanced our ability of processing in-

situ plankton images, but high-computational demands and longtime

consumption still remain problematic. In this study, we used knowledge

distillation as a framework for model compression and improved computing

efficiency while maintaining original high accuracy. A novel inter-class similarity

distillation algorithm based on feature prototypes was proposed and enabled the

student network (small scale) to acquire excellent ability for plankton recognition

after being guided by the teacher network (large scale). To identify the suitable

teacher network, we compared emerging Transformer neural networks and

convolution neural networks (CNNs), and the best performing deep learning

model, Swin-B, was selected. Utilizing the proposed knowledge distillation

algorithm, the feature extraction ability of Swin-B was transferred to five more

lightweight networks, and the results had been evaluated in taxonomic dataset of

in-situ plankton images. Subsequently, the chosen lightweight model and the

Bilateral–Sobel edge enhancement were tested to process in-situ images with

high level of noises captured from coastal waters of Guangdong, China and

achieved an overall recall rate of 91.73%. Our work contributes to effective deep

learning models and facilitates the deployment of underwater plankton imaging

systems by promoting both accuracy and speed in recognition of plankton targets.

KEYWORDS

in-situ plankton images, image processing, knowledge distillation, model deployment,
deep learning
1 Introduction

Plankton play a pivotal role in marine food webs and are essential for integrated

ecosystem assessment (Brun et al., 2015; Piredda et al., 2017; Braz et al., 2020). For example,

plankton often provide information on living resources (Wang et al., 2022), environmental

conditions (Lv et al., 2022), and fisheries (Azani et al., 2021). Effective monitoring of
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plankton allows researchers to deduce their dynamics and identify

the underlying processes (Bi et al., 2022). Thus underwater imaging

systems are increasingly being deployed to collect in-situ plankton

images on various platforms (Davis et al., 1996; Benfield et al., 2000;

Gorsky et al., 2000; Cowen and Guigand, 2008) to estimate

abundances of different plankton groups and examine their

spatial and temporal dynamics (Bi et al., 2013; Hermand et al.,

2013; Guo et al., 2018; Luo et al., 2018). In recent years, imaging

systems have increasingly been used for high-frequency long-term

plankton monitoring (Campbell et al., 2020; Orenstein et al., 2020;

Song et al., 2020; Bi et al., 2022).

In plankton image processing, it is difficult to balance accuracy

and processing speed. To improve accuracy, researchers utilize not

only advanced optical mechanisms to acquire more information

(Buskey and Hyatt, 2006; Hermand et al., 2013; Guo et al., 2018) but

also deep learning systems to achieve high accuracy (Li and Cui,

2016; Luo et al., 2018; Kyathanahally et al., 2021; Li et al., 2021;

Kyathanahally et al., 2022). As a result of these evolutions, the

speeds of computing have dropped, making it difficult to deploy

excellent algorithms on site because of the following: (1) The

amount of raw data increases with the continuous sampling; (2)

neural networks in deep learning have a huge number of parameters

and computations; (3) as data transmission is often limited in open

ocean, the processing ability of underwater computing hardware is

extremely limited. Therefore, it is necessary to develop portable data

processing procedures for independent underwater equipment to

deal with abovementioned problems. In other words, the algorithm

should be improved in terms of computing speed and storage

capacity while ensuring the accuracy and generalization.

In the era of deep learning, researchers try to compress the

neural network models to reduce the amount of parameters and

complexity of calculation. The mainstream methods include model

pruning (Tanaka et al., 2020), model quantization (Fan et al., 2020),

parameter sharing (Wu et al., 2018), and knowledge distillation

(Hinton et al., 2015). Knowledge distillation is able to realize the

interaction of parameters and features among multiple neural

networks and possesses excellent performance and flexibility. In

general, large-scale models tend to have better learning abilities and

can accurately extract the key features of the samples in datasets.

According to the core idea of knowledge distillation, large-scale

models are taken as the teacher networks, and the iterative

operations aim to reduce the loss function between the

probability distributions or feature vectors output of the teacher

networks and other smaller scale models (called the student

networks). With the progress of training, the student networks

gradually learn the feature extraction mechanisms guided by the

teacher networks. It means that small-scale models can achieve

equal accuracy in specific tasks as large-scale models through this

method. Knowledge distillation was proposed by Hinton et al., 2015

and initially used Kullback–Leibler (KL) divergence as the loss

function. Subsequently, various works were proposed in multiple

distillation strategies. For example, Romero et al., 2014 proposed

the distillation method using feature maps computed by middle

layers in neural network (FitNet). Peng et al., 2019 and Tung and

Mori, 2019 demonstrated the distillation processes based on
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correlation congruence (CC) and similarity preserving (SP),

respectively. Similarly, it is also worth exploring to propose model

compressing techniques in the scenarios of in-situ plankton

image processing.

Based on the characters of PlanktonScope (an in-situ underwater

imaging system proposed by Bi et al., 2022 and attached algorithm

pipeline), the present study attempts to introduce knowledge

distillation method and demonstrate efficient detection and

recognition tasks on in-situ plankton images. We designed and

implemented an inter-class similarity distillation algorithm based

on feature prototype projection (prototype projection distillation,

PPD) to realize the compression of forward calculation model. In

order to seek the appropriate teacher network and ensure the original

accuracy, we carried out a comparative study and examined the

accuracy of five convolution neural networks (CNNs) and three

Transformer architectures. Combined with transfer learning, the

Swin-B network model (from Transformer architectures) was

found to express the highest accuracy and was selected as the

preliminary algorithm for classification (teacher network).

Meanwhile, a Bilateral–Sobel edge enhancement method was

proposed to highlight the edge pixel regions of targets to suppress

the noise and background of in-situ images. This technique aimed to

solve the segmentation difficulties caused by noise stickiness and edge

destruction. Finally, the selected student networks and Bilateral–

Sobel edge enhancement were integrated into algorithm pipeline, and

these schemes were evaluated in accuracy and time consumption on

the dataset captured via PlanktonScope in the coastal areas of

Guangdong, China.
2 Materials and methods

The knowledge distillation and edge enhancement method are

employed in the procedures of recognition and detection in

algorithm pipeline, respectively. In Section 2.1, the algorithm

pipeline of PlanktonScope is presented and the datasets applied in

experiments are described. In Section 2.2, the basic theory and

mathematical model of the proposed inter-class similarity

knowledge distillation method based on feature prototype

projection (PPD) are illustrated in details. In Section 2.3, as

candidates for the teacher network in distillation, Transformer

and CNN model families are described. In Section 2.4, the

Bilateral–Sobel edge enhancement algorithm used to improve

effect of detection is presented.
2.1 Description of algorithm pipeline
and datasets

2.1.1 Basic algorithm pipeline of PlanktonScope
Figure 1 presents the content of algorithm pipeline. Plankton

image detection and recognition include two stages: extraction and

classification (Bi et al., 2015). Extraction is to extract the pixel

regions of the targets from the in-situ images to separate the targets

and background. Classification is to extract the features of the
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segmented targets and judge the class of the targets according to

their features. The steps can be summarized as follows: (1) input the

in-situ image and adjust the brightness; (2) operate denoising and

edge enhancement; (3) implement the threshold segmentation

proposed by (Otsu, 1979) based on maximum between-cluster

variance to finish binarization; (4) demonstrate the morphological

closing operation (Said et al., 2016) to fill the discontinuities, holes,

and edge breaks; (5) implement the contour extraction based on

boundary tracking (Suzuki, 1985; Marini et al., 2018) to obtain the

regions of interest (ROIs) of the targets; (6) classify the detected

targets using the selected calculation model; and (7) operate

statistics of the quantity and species of plankton. The

contributions of PPD method and Bilateral–Sobel edge

enhancement are in steps (6) and (2), respectively.

2.1.2 Test dataset for detection and
recognition tasks

The dataset for efficiency test of the proposed methods was

collected by PlanktonScope in the coastal area of Guangdong,

China. This dataset contains 209 in-situ images (2180 × 1635) for

testing. These images are all 8-bit, and the whole set contains a total

of 494 plankton targets, of which 258 areMedusaes. In addition, the

other classes include Copepoda, Spirulina, Appendicularia,

Chaetognatha, and Echinodermata (in Figure 2). The ground

truths of ROIs are manually annotated. As the result of deep

diving depth and illumination conditions of the monitoring

system, the collected in-situ images are relatively dark, with pixel

value of brightness ranging from 22 to 163. Even the human eye
Frontiers in Marine Science 03517
cannot distinguish a target in such weak contrast. Therefore,

brightness adaptive processing is carried out for images:

I0u,v =

pmax          Iu,v > pmax

Iu,v        pmax ≥ Iu,v ≥ pmin

pmin          Iu,v < pmin

8>><
>>:

(1)

I00u,v =
255(I0u,v − pmin)
pmax − pmin

(2)

When the pixel values of one image are sorted, if the first 1%

and last 1% pixel values are removed, pmin to pmax is the value range

of rest pixels. Moreover, Equation 1 removes the extreme values,

and Equation 2 normalizes the other values to obtain the final result

of brightness adjustment. Figures 2A, B show a pair of original and

processed images.

2.1.3 Plankton dataset for classification training
To train and evaluate the classification networks, we used a

large-scale and standardized taxonomic dataset of plankton

captured in the South China Sea. This dataset was created over a

long period via PlanktonScope, and it has 30,720 segmented targets,

which have been divided into 12 classes. Each class contains 2,560

images (8-bit), of which 2,048 are in the training set, and 512 in the

test set. In addition, the size span of ROIs is in the range of 152–

12002 (pixels). The actual field of view corresponding to one image

is 4.796 cm × 3.597 cm, and one pixel converts to 22 microns.

Figures 2C–N show examples from different classes.
FIGURE 1

The flowchart of the algorithm pipeline and related results.
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2.2 Knowledge distillation framework for
model deployment

2.2.1 Basic theory of the method
Processing image on-site often suffers from limited computing

hardware. Therefore, it is necessary to reduce the number of

parameters and improve computing speed. An inter-class similarity

distillation method based on feature prototypes projection (PPD) was

proposed for model compression. This method can reduce the scale of

parameters and time consumption under the maintenance of accuracy.

The intermediate data output by the hidden layers of neural

networks are abstract representations after undergoing nonlinear

calculations and feature transformations. These data are the results

of feature extractions, and the corresponding calculations are the

expected knowledge. The core idea of knowledge distillation is to

impart expected knowledge from the teacher network (usually with

large parameters and high-recognition performance) to the student
Frontiers in Marine Science 04518
network (usually with small parameters and high-computing

speed). The expected knowledge is generally the intermediate or

final result (feature or probability, etc.) from the teacher network

(Romero et al., 2014; Hinton et al., 2015; Peng et al., 2019; Tung and

Mori, 2019). Therefore, the loss function in the training of the

student network consists of two parts: one is the cross-entropy (CE)

loss L1 between the real label and the logical value output from the

student network and the other is the difference L2 of the

intermediate or final result between teacher and student

networks. The linear combination of these two parts constitutes

the final loss function L(L = aL1 + (1 − a)L2) to guide the training,

where the weight a balances the loss of the two parts and it is a

hyperparameter which needs to be selected artificially. This

hyperparameter a would bring great uncertainty to the

distillation effect, so we proposed a distillation method without

this hyperparameter through the experiments on the plankton in-

situ images.
FIGURE 2

Samples of datasets. (A) Original image before brightness adjustment; (B) processed result after brightness adjustment; (C–N) examples of taxonomic dataset
captured in South China Sea: (C) Appendicularia; (D) Chaetognatha; (E) Spirulina; (F) Copepoda_1; (G) Copepoda_3; (H) Unknown classes; (I) Skeletonema;
(J) Euphausiids; (K) Copepoda_2; (L) Creseis; (M) Medusae; and (N) Echinodermata.
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Figure 3 shows the overview of our distillation process. First, the

teacher network was trained on taxonomic dataset and converged

after multiple epochs. Then, we used the trained teacher network to

calculate (extract) the features of all samples, and took the

arithmetic mean value of features in each class as the respective

feature prototypes c. Subsequently, the training of student network

started. On forward calculation, both the teacher and student

network operated the calculation (extraction) of all samples to

obtain the feature expression ti andsi(the vectors output from

hidden layers). Then, the cosine similarity between the features of

all samples and the feature prototypes of each class is calculated to

obtain j(Teacher) and j(Student). Therefore, we could arrange the

results and obtain the inter-class similarity matrix of both teacher

and student networks. Next, we took the mean square error (MSE)

between the two matrices as loss function and operated

back propagation.

The inter-class similarity matrix of the teacher network was

regarded as the expected knowledge, so we only updated the

parameters of the student network to learn the distribution of

inter-class similarity. This resulted in the gradual improvement of

the recognition accuracy of the student network. Compared with

the classical knowledge distillation methods, the advantages of our

method are as follows: (1) The selection of feature prototype helps

to avoid the interference of feature outliers. (2) Only one loss

function relying on inter-class similarity is used, without extra

calculation of classification loss. (3) There is no need to set

hyperparameters a , which reduces the impact of manual factors

on performance.

2.2.2 Mathematic details of the model
The learning mechanism of neural network can be understood

as the mapping from the sample space (input data) to the high-

dimensional feature space. Using xi and fi to represent the sample

and feature vectors, respectively, the cosine similarity between two

feature vectors is defined as follows:

si,j =
fif

T
j

‖ fi ‖2 ‖ fj ‖2
(3)
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For classification tasks, the ideal situation is that the feature vectors of

different classes are orthogonal to each other, and those of the same

classes are toward the common direction, corresponding to 0 and 1 in

similarity, respectively. The network is aimed at reducing the inter-class

similarity and increasing the intra-class similarity. A trained network

which satisfies the test standard is considered to satisfy the

aforementioned requirements. The network can be regarded as a

feature extractorF to encode the sample vectors:

ti = F (xi) (4)

for the class labeled byk, we calculate the means of all vectors tk in

feature space T k and normalize them by l2-norm to obtain the feature

prototype:

ck =
t0k

‖ t0k ‖2
=

t0kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o
D

j=1
(t0k,j)

2

s , t0k =
1
Mk o

ti∈T k

ti
(5)

C = Concat(c1, c2,…, cK) (6)

whereMk donates the number of vectors labeled by class k and D

donates the dimension of tk. Equation 6 is the matrix representation

of the combination of all classes’ feature prototypes.

Furthermore, the inner product of the teacher feature ti (also

standardized by l2-norm), and the feature prototype ck is performed to

obtain the cosine similarity distance, which is the expected knowledge in

distillation, as shown in Equation 7. To simplify the calculation, the

cosine similarity calculation between the teacher feature ti and all feature

prototypes can be obtained in the form ofmatrices, as shown in Equation

8.

ji,k =
tic

T
k

‖ ti ‖2
=
o
D

j=1
ti,jck,j

ffiffiffiffiffiffiffiffiffiffi
o
D

j=1
t2i,j

s (7)

F(ti) =
tiC

T

‖ ti ‖2
=

tiC
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
D

j=1
(ti,j)

2

s (8)
FIGURE 3

Process overview of the proposed PPD methods.
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For the student network, the untrained encoder is considered

unreliable. However, it can calculate the student feature si initially.

Using Equations 7, 8, we obtain Equations 9, 10 to calculate the

cosine similarity of student features:

ji,k =
sic

T
k

‖ si ‖2
=
o
D

j=1
si,jck,j

ffiffiffiffiffiffiffiffiffiffi
o
D

j=1
s2i,j

s (9)

F(si) =
siC

T

‖ si ‖2
=

siC
Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o
D

j=1
(si,j)

2

s (10)

We calculate the MSE loss and use the gradient descent

algorithm to guide the student network to learn the similarity

between the individual samples encoded by the teacher network

and finally improve the recognition ability of the lightweight

networks. The loss function is expressed as follows:

LPPD−MSE =
1
No

N

i=1
‖F(ti) −F(si) ‖22 (11)
2.3 Transformer models

Underwater plankton images are often acquired under

suboptimal imaging conditions. Despite the complete extraction

of ROIs, targets often remain visually unclear. A CNN model can

continuously be iterated into a forward computing graph for feature

extraction through gradient descent. The spatial perception of CNN

is the regular expansion of receptive field with the convolutional

layers increasing. This implies a fixed interaction mode of global

and local information of the image and causes a trend of overfitting

and parameter redundancy. Therefore, plagued with complex

features and high requirements of data processing, new neural

network architecture, that is, the Transformer was chosen to

improve the recognition accuracy at the beginning of teacher

networks’ training. This network architecture has demonstrated

its strong performance over CNN in ecological automatic

classification (Kyathanahally et al., 2022).

Transformer was proposed by Google in 2017 (Vaswani et al.,

2017) and has achieved great success in the field of natural language

processing (NLP). It employs a multi-head attention mechanism to

extract features at any distance in the entire text, so that a single

piece of information can flexibly implement multi-position and

cross-scale interactive encodings. In 2020, Vision Transformer

(ViT) was proposed (Dosovitskiy et al., 2020), and the encoder

part of the initial Transformer was applied to extract image features.

This scheme achieved the highest results in various computer vision

(CV) tasks. To further incorporate the characteristics of image

processing, the hierarchy of feature interactions in sub-regions of

image (tokens) and their internal pixels were considered, which led

to the proposal of Swin Transformer (Liu et al., 2021). This network

shows better performance in characterization process and improves
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computational efficiency, which renders it potentially applicable to

various fields.

This study focuses on the performance of Transformer

architectures on the plankton taxonomic dataset (Section 2.1.3).

We utilized several CNN and Transformer neural networks to

evaluate the classification accuracy and computing speed.

Furthermore, given the effectiveness of transfer learning (Pan and

Yang, 2010) in plankton classification studies (Orenstein and

Beijbom, 2017; Lumini and Nanni, 2019), we introduced transfer

learning to provide pre-trained models (PTMs) for neural networks.

These PTMs showed excellent performance in general CV scenarios,

and their parameters experienced many iterations on large-scale

public datasets. In some applications with specific requirements,

these models can reach the accuracy by secondly training on the

small datasets and fine-tuning the parameters. Under traditional

training modes, the same accuracy needs a large amount of data and

training times. The pre-training is beneficial to save computing

resources and reduce data consumption.
2.4 Bilateral–Sobel edge enhancement

We proposed an edge enhancement method for fragile image

texture to preprocess the images. The edge enhancement was divided

into two steps: suppression of high-frequency noise and highlight of

visual edge. The kernel of Bilateral filtering (Tomasi and Manduchi,

1998; Bhonsle et al., 2012) was used, and on the basis of Gaussian

kernel which considers the spatial relationship of pixels, it pays extra

attention to the value distribution of adjacent pixels. Therefore,

Bilateral filtering can protect the weak edge while denoising, so we

choose it as the denoising procedure. In an odd-order Bilateral

filtering kernel, the weights of matrix are set as follows:

Gx,y =
1
tG

exp −
x2 + y2

2s2
G

� �
(12)

Wx,y,u,v =
1
tW

exp −
(Iu+x,u+y − Iu,v)

2

2s2
W

� �
(13)

where (u, v) denotes the global position of the central pixel; xandy

represent the local coordinates of adjacent pixels; sG and sW are the

standard deviations of the normal distribution; tG and tW are weight

coefficients applied to ensure the sum of the weights in the kernels are

1; and I is the pixel value before processing. As one can see, in the

spatial kernel G and value kernel W, the closer the adjacent pixel to

the central pixel in Euclidean distance and grayscale value,

respectively, the greater its contribution to smoothing calculation.

Furthermore, the final kernel function B is the inner product of the

two matrices.

The above design can prevent the smooth denoising from

breaking slight and thin edges and, thus, preserve the complete

foreground information within in-situ images. However, the

foreground and background remain indistinguishable in case of

close pixel values of areas. To extract the objects submerged into the

background, we further applied the Sobel operator (Vincent and

Folorunso, 2009) to completely separate the edge part in the
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gradient dimension for the images obtained after bilateral filtering.

The gradient values in the two directions of images, Sx and Sy are

calculated using standard Sobel kernels Dx and Dy , respectively, and

synthesize into the final result Sxy through vector addition. The

entire process is expressed as follows:

Dx =

−1 0 1

−2 0 2

−1 0 1

2
664

3
775, Dy =

−1 −2 −1

0 0 0

1 2 1

2
664

3
775, Sxy =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2x + S2y

q
(14)

After the gradient image Sxy is obtained through the above steps,

and it is used as input for steps (3) to (7) in the algorithm pipeline

described in Section 2.1.1.

3 Results

In order to examine the effectiveness of proposed methods and

their contribution to the performance of algorithm pipeline, in this

part, we designed a set of experiments and present the results. The

sequence of results is shown in the order of algorithm pipeline. In

Section 3.1, the effects of Bilateral–Sobel edge enhancement on in-situ

images from test dataset (Section 2.1.2) are shown. In Section 3.2, we

compared the performance of CNN and Transformer families on

taxonomic dataset (Section 2.1.3), and took the outstanding model as

the teacher network to verify the superiority of the knowledge

proposed distillation method over the traditional ones in Section

3.3. Finally, in Section 3.4, we validated the selected methods using

test dataset, and paid extra attention to the results on gelatinous

plankton (Medusae). These experiments were conducted on the same

computing hardware, using an Intel Core i7-8750H processor, 16GB

of RAM, and Nvidia GeForce GTX 1060 graphics cards.
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3.1 Effects of Bilateral–Sobel
edge enhancement

3.1.1 Visualization of Gaussian, Bilateral, and
Sobel processing results

First, we compared Gaussian and Bilateral operators to filter an

image of an individual of Medusae and evaluated the results of

subsequent binarization. As shown in Figure 4A, the boundary on

both sides of the upper part in the raw image is weakly connected.

Upon the application of Gaussian filtering, as shown in Figure 4C,

the concerned edge breaks, whereas Bilateral filtering retains the

shape of the edge to the best extent (Figure 4B).

Figures 4D–G show the independent and united results of the

Bilateral and Sobel operators. As shown in Figure 4E, it is obvious

that the single gradient calculation cannot suppress the high-

frequency noise of the background. Although a single Bilateral

filter can preserve the weak edges as much as possible while

denoising, some too weak edges are still stick together with the

background (Figure 4F). This will make some background regions

be recognized as part of ROIs. Therefore, we used a combination of

Bilateral–Sobel edge enhancement to perform a comprehensive

operation in spatial, value, and gradient domains, so as to achieve

complete segmentation of the target in binarization step.

3.1.2 Comparative experiments on
edge enhancement

In order to quantitatively analyze the effect of Bilateral–Sobel edge

enhancement and other preprocessing methods on target extraction,

we used steps (1)–(5) of the algorithm pipeline described in Section

2.1.1 for target extraction. We used the find contours function in the

OpenCV library for target extraction at step (5). In addition, we set the
A B

D E F G

C

FIGURE 4

Visual evaluation of enhancement methods. (A) Before processing; (B) Bilateral filtering; (C) Gaussian filtering; (D) before processing; (E) operation by
Sobel kernel only; (F) operation by Bilateral kernel only; and (G) operation by Bilateral and Sobel kernels; (B–G) experienced subsequent binarization.
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denoising and edge enhancement operations for step (2) as follows: no

denoising and edge enhancement, only Gaussian filtering, only

Bilateral filtering, combination of Gaussian filtering and Sobel

gradient calculation, and combination of Bilateral filtering and Sobel

gradient calculation. All experimental subjects were raw images from

the dataset presented in Section 2.1.2. The evaluation indicators were

the precision (the quantity ratio of complete ROIs to extracted ROIs)

and recall (the quantity ratio of complete ROIs to the total targets), as

well as the extraction speed [number of images processed by steps (1)

to (5) within 1 s]. In in-situ images, some targets have blurry edges,

which can easily cause edge breaks during the process of extraction,

resulting in one target being divided into multiple ROIs. The complete

ROI refers to the fact that the specific target does not have broken pixel

connections, which means that the complete ROI does not share a

target with other ROIs. The results present in Table 1 show that our

preferred method exhibits the best extraction result, implying our edge

enhancement renders the target much easier to be detected.
3.2 Performance of CNN and
Transformer schemes

In this section, we compared the performance of neural networks

with extensive parameter volumes both in CNN and Transformer

families. We demonstrated the test on the taxonomic dataset from

South China Sea (Section 2.1.3). Furthermore, the effectiveness of the

parameters pre-trained by the ImageNet dataset (Ridnik et al., 2021)

was verified in the plankton classification task. In this experiment,

MobileNet V2 (Sandler et al., 2018), ShuffleNet V2 (Ma et al., 2018),

ResNet50, ResNet101, and ResNet152 (He et al., 2016) were selected

from the CNN architectures; Swin-T (Liu et al., 2021), ViT-B

(Dosovitskiy et al., 2020), and Swin-B (Liu et al., 2021) were selected

from the Transformer architectures. We conducted two types of

training modes: (1) direct training on the taxonomic dataset and (2)

loading the pre-training model and then fine-tuning by the taxonomic

dataset. The accuracy (the number of correctly classified samples

divided by the total number of samples) results and the size

(quantified as storage memories) of models are presented in Table 2.

The CE loss function was used in the training process.

As shown in Table 2, the best performance is reached by pre-

trained Swin-B with an accuracy of 94.34%. Furthermore, for both

two network families, transfer learning yields higher accuracy than
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direct training. In addition, the performances of the Transformer

variants are inferior to that of the CNN variants in direct training

when the network is initialized by random parameters. Thus, the

Transformer architectures may not be suitable for medium and

small-scale datasets without any priori information, and its feature

perception is not as experienced as the mode of CNNs in this case.

However, pre-training may equivalently improve the amount of

data in the source domain, and resulted in the Transformers’

performance exceeding that of the CNNs. We have discussed this

situation at the end of this paper. From the results, we considered

that the pre-trained Swin-B model stood out in the application of

plankton classification and planned to integrate it into the following

knowledge distillation algorithm.
3.3 Experimental results of the proposed
knowledge distillation method

3.3.1 Comparison with classical knowledge
distillation methods

The trained Swin-Bmodel in Section 3.2was selected as the teacher

network to guide the convergence of student network. This model

occupies storage of 87M and its reasoning speed is 26 targets per

second. We compared the proposed knowledge distillation method

with the other four classic technologies reported in recent years

mentioned in Part 1, including: KD: knowledge distillation (Hinton

et al., 2015); FitNet (Romero et al., 2014); SP: similarity preserving

(Tung and Mori, 2019); CC: correlation congruence(Peng et al., 2019);

and CE: cross-entropy (Ferdous et al., 2020). Five neural networks with

different parameter volumes and reasoning speeds were used as student

networks. In addition, a multi-layer perceptron structure was used to

match the output dimensions of student networks with the teacher

network. Using the dataset described in Section 2.1.3, the final results of

the five methods are presented in Table 3.

The column of CE (baseline) represents classification training

by using cross entropy loss function, without any knowledge

distillation processes. The accuracy achieved in this column is

taken as the baseline. As shown in the table, the proposed

method (PPD) guides five student networks to improve the

accuracy (number of correctly classified samples divided by the

total number of samples), and achieves a higher or nearly equal

increase compared with other methods. Moreover, the accuracy of
TABLE 1 Results of comparative experiments on edge enhancement.

Methods
Precision
(%)

Recall
(%)

Extraction speed
(images/s)

No denoising and edge enhancement 89.21 50.40 19

Gaussian 89.47 69.11 18

Bilateral 93.41 69.10 8

Sobel 79.25 17.07 16

Gaussian–Sobel 87.34 84.14 14

Bilateral–Sobel 98.73 94.71 7
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ShuffleNet V2 with the help of PPD (93.13%) exceeds ResNet50

under traditional training (93.02%), whereas the parameter volume

of the former is only 5% of the latter. This implies that our method

can make the lightweight network show better recognition ability

than large scale neural networks under traditional training.

All networks use Adam (Kingma and Ba, 2014) as the training

optimizer. After each epoch of training and validation, the model

parameters were saved once, and the current highest validation

accuracy rate was recorded. If the highest validation accuracy rate

remained unchanged for several epochs, the learning rate was reduced

(the learning rates of ShuffleNet V2 and MobileNet V2 are reduced by

10 times; the learning rate of ResNet50, Swin-T and ResNet101 are

reduced by four times.) and load the model parameters corresponding

to the highest accuracy to continue the training.

3.3.2 Evaluation of different loss functions
One of the key points of the proposed method is the similarity

enhancement of feature descriptions between teacher and student

networks. In the experiments above, we used MSE as the loss

function (Equation 11), which usually appears in regression tasks. In

this section, we discussed other two common loss functions from

classification tasks: the CE and KL divergence loss functions. ShuffleNet
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V2 and Swin-T with better performance in Table 3 were used as the

student network and the results are presented in Table 4. It can be seen

that theMSE was most applicable to our frameworks, implying that the

learning of our defined knowledge should be regarded as a regression

process. The reasons for the poor performance of the other two loss

functions can be inferred as follows: The dot product of the similarity

matrix and the one-hot coding resulted in the loss of the relationship

information between classes, leading the degradation of the final effect;

Because the features are processed by the l2-norm during distillation,

the value of similarity was distributed in a narrow range of [−1,1], and

both CE and KL loss need to perform softmax operation on the outputs

similarity value; thus, they caused the output probability distribution

being excessively smooth and weakening the positive response of intra-

class features.
3.4 Examination of the update of
algorithm pipeline

We finally demonstrated the experiments to examine the

upgrade of algorithm pipeline, hoping that the quality of image

processing can reach excellent performance. As for the
TABLE 2 Performance of different neural networks and training strategies on taxonomic dataset.

Neural network
Size
(megabytes)

Accuracy(%)

Random initialization
of parameters

Pre-trained model

CNNs

MobileNet V2 0.3 86.47 90.97

ShuffleNet V2 1.3 88.26 92.35

Res50 24 90.84 93.23

Res101 43 91.05 93.42

Res152 58 89.55 92.99

Transformer

Swin-T 27 89.70 93.93

ViT-B 86 88.54 94.09

Swin-B 87 89.13 94.34
TABLE 3 Comparative experimental results of different knowledge distillation methods.

Student networks
Size

(megabytes)

Classification
speed

(targets/s)

Accuracy(%)

CE
(baseline)

PPD
(ours)

CE + KD CE + FitNet CE + SP CE + CC

ShuffleNet V2 1.3 301 92.35
93.13
(+0.78)

92.94
(+0.59)

92.92
(+0.57)

92.48
(+0.13)

93.15
(+0.80)

MobileNet V2 1.6 310 91.59
92.46
(+0.87)

92.51
(+0.92)

92.56
(+0.97)

91.94
(+0.35)

92.35
(+0.76)

ResNet50 26 76 93.02
93.62
(+0.60)

93.02
(+0.00)

93.41
(+0.39)

93.25
(+0.24)

93.12
(+0.10)

Swin-T 28 68 93.82
94.21
(+0.39)

94.22
(+0.40)

93.86
(+0.04)

94.04
(+0.22)

93.98
(+0.16)

ResNet101 45 36 93.23
93.82
(+0.59)

93.59
(+0.36)

93.15
(−0.08)

92.55
(+0.32)

93.20
(−0.03)
f
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segmentation stage, the Bilateral–Sobel edge enhancement aided in

the target extraction and location. In the stage of classification, we

further verified the three student networks that performed well in

the previous experiments (Section 3.3.1) and the selected teacher

network, Swin-B (Section 2.1.2). In addition, Medusae is difficult in

target extraction and classification due to its weak edge connection

and similar gray value to background and so forth, so we paid extra

attention to the detection effect of Medusae. The results are

presented in Table 5.

It can be summarized that the trained Swin-B still exhibits the

best performance. However, the model is very large and the

processing time is more than 1 s, which is not suitable for

terminal deployment. ShuffleNet V2 and Swin-T, which were

guided by Swin-B with the proposed PPD, also perform better.

The lightweight ShuffleNet V2 exhibits better performance than

ResNet50 and requires only 273 milliseconds to process one in-situ

image. Swin-T exhibits a better accuracy and also satisfies the

acceptable storage capacity and processing speed.
4 Discussion

4.1 Deep understanding of the operations
on plankton features

We applied knowledge distillation and updated the algorithm

pipeline to pursue better detection and recognition effects of

targets in plankton in-situ images. Here, it should be

emphasized that our design inspirations of the methods focus

on the mathematical operations on plankton features. In order to

explain understandably, we define two temporary terms of

plankton ROIs: (1) regional features, which represent the relative
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spatial position of ROIs in the background, and (2) classification

features, which represent the class properties (including shape,

texture features, etc.). Regional features and classification features

are the features of ROIs in space and as objects, respectively.

According to the steps of algorithm pipeline, we enhance the

regional features and extract the classification features.

Bilateral–Sobel edge enhancement enhances the regional

features of targets and makes them be easily separated. In the

previous segmentation tasks, it is challenged to distinguish the

targets, interference noise, and chaotic background. For example, as

for gelatinous plankton, their narrow edges of and dense noises

possess the same spatial frequency, and the gray scale of interest

pixel region and background are visually fused. Therefore, ROIs,

noises, and background are mixed in regional features and cannot

be separated by single methods such as filtering. To solve these

problems, we combined the distinguishing abilities of the filter

kernel functions (Bilateral–Sobel operator) in the spatial, value, and

gradient domains, to reduce the correlation of the mixed region

features. In addition, the subsequent separation can be easily

realized to obtain the complete ROIs. The verified experiments of

the complete extraction reached the accuracy and recall rate of

98.73% and 94.73%, respectively.

For the classification steps, the discrimination of classification

features of extracted ROIs is weak. However, neural networks can be

used to map them to high-dimensional expressions, which can be

easily distinguished. According to the experimental results, the best

way for us to demonstrate the extraction of classification features is

to fine-tune the calculation model of the pre-trained Swin-B on the

taxonomic dataset, with the best accuracy of 94.34%. Moreover, the

multi-head attention mechanism of the Transformer variants

implements global and long-distance perception, which is

different from the layer-by-layer expansion of CNN. The
TABLE 4 Effect of PPD method with different loss functions.

Student networks
Accuracy(%)

CE PPD-CE PPD-KL PPD-MSE

ShuffleNet V2 92.35
91.94
(−0.41)

92.30
(−0.05)

93.13
(+0.78)

Swin-T 93.82
93.73
(−0.09)

93.59
(−0.23)

94.21
(+0.39)
TABLE 5 Performance of different models on test dataset.

Networks
Size
(megabytes)

Time
(ms/image)

All classes Medusae

Precision (%) Recall (%) Precision (%) Recall (%)

ShuffleNet V2
(93.13%)

1.3 273 89.23 87.91 100.00 89.72

ResNet50
(93.03%)

26 596 88.78 86.73 100.00 89.23

Swin-T
(94.21%)

28 617 92.38 91.73 100.00 92.76

Swin-B
(94.34%)

87 1343 93.37 92.85 100.00 93.87
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Transformer variants require sufficient training data, and the

performance of the Transformers was inferior to that of CNNs

without transfer learning. However, the perception mechanisms of

neural network to ordinary images and in-situ images are naturally

similar; thus, the application of the pre-training network is

equivalent to increasing the size of the dataset. Consequently, the

Transformer variants can fully explore their potentials. To illustrate

this inference, we used principal components analysis (PCA) to

compress the output features from Swin-B before and after fine-

tuning to two-dimensional representations, as shown in Figure 5.

The network pre-trained by large ordinary image datasets exhibits a

certain ability to distinguish the plankton targets. After transfer

learning, it can further realize the feature clustering in small datasets

and make each class region preserve sufficient feature distance.

Therefore, the method we adopted has the potential to be applied in

various specific scenarios.

Knowledge distillation is to transplant the extraction ability of

classification features. Here, we discuss the characteristics of the

proposed PPDmethod, classical knowledge distillation method, and

traditional supervised learning. For the classification tasks,

traditional supervised learning utilizes the cross-entropy loss to

push the outputs close to the extreme values of 1 and 0. Whereas,

the classical knowledge distillation methods attempt to learn the

information of probability distribution output by the teacher

networks and promote the student networks’ perception of inter-

class similarity. The proposed PPD method demonstrates the

similarity calculation of classification features via interactions

between an independent sample and a complete class. Our

distillation mode combined intermediate feature learning with the

generation of classification probabilities by using inter-class

similarity. So, the gradient descent can simultaneously perform

feature learning and supervised classification. The feature prototype

extracted from the teacher network Swin-B and the sample features

output from the teacher network were compressed into two-

dimensional representation through PCA, and the results are

shown in Figure 6. It can be seen that the feature prototypes are

located in the centers of each cluster, which fully have the enough

ability to express the features of each class. More importantly, some

individual outlier features do not have obvious influences on the
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feature prototypes. Therefore, it can be seen that the average

features as the characteristic prototypes are in line with the

mathematical expectation. The interference from an outlier value

is avoided and the damage of noise data to the classification

performance is reduced. The proposed knowledge distillation

method was tested through sufficient comparative experiments

and obtained satisfactory results, and our novel method can be

considered in wide range of applications.
4.2 Prospects for the development of
in-situ monitoring

According to extensive experiments conducted above, our

proposed methods have updated the algorithm pipeline and

achieved satisfactory results on the test dataset. The lightweight

neural networks can reach high accuracy and be appropriate to be

deployed. The excellent effects and the practicability of Transformer

variants and the proposed PPD method are verified in the plankton

in-situ images.

The image processing for the current algorithm pipeline can

be developed continuously. We are considering designing end-to-

end deep learning object detection frameworks in our systems as

many works have done in CV field. In addition, as the qualities of

in-situ images are generally not ideal, it is necessary to build a

large-scale plankton object detection dataset in the next period.

Furthermore, unsupervised learning for plankton classification

may be discussed and unlabeled data may be used to improve the

representation ability of the models. In addition, the use of

computer programs to assist in labeling and cleaning in-situ

data are also expected to rapidly expand the database. For

recognition tasks, compared with CNN in most recognition

tasks, Transformer has not been saturated with the growth of

network parameters and dataset size (Vaswani et al., 2017).

Therefore, we still believe that with the continuous surge of

underwater data, the Transformer will have a broader prospect

in plankton monitoring applications. In terms of model

compression, in addition to knowledge distillation, pruning is

another kind of effective method. In recent years, researchers have
A B

FIGURE 5

Visual evaluation of the ability to distinguish features before (A) and after (B) fine-tuning of the pre-training model.
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explored how to effectively combine the two methods, and related

works have been carried out (Park and No, 2022; Liang et al.,

2023), revealing the excellent effect that the combination schemes

can bring.

In addition, the quality of dataset at the sensor side should be

also focused on, especially the development of high-quality

underwater optical imaging system. The adaptability of the

imaging systems to the coastal, estuarine, and other complex

water areas especially with high turbidity and water velocity need

to be improved. A sincere suggestion is to introduce new hardware

aids from the perspective of optical design, and the high quality of

the source information will greatly reduce the difficulty of

subsequent image processing.
4.3 Conclusions

This study proposed and demonstrated a novel knowledge

distillation method and synchronously equipped new algorithm

system for target detection and recognition regarding in-situ images

of plankton. The experiments were based on the datasets captured

by the experienced underwater imaging system PlanktonScope.

Furthermore, the method expanded the analytical ability to

gelatinous plankton, which has been a challenge till now, and

achieved high recognition recall rate and short processing time.

Especially, a new inter-class similarity distillation algorithm based

on feature prototypes was proposed. For the first time, we used the

similarity assessment of features among independent samples and

complete classes as a regression task to realize knowledge

distillation. Consequently, better performance was shown on the

taxonomic dataset of plankton. Moreover, through experiments and

comparisons with classical methods, we formed the final update of

algorithm pipeline and discussed the work results and inner

principle. The improvement of optical imaging and the

exploration in image processing in the field of deep learning will

be the two main focus points of future work.
Frontiers in Marine Science 12526
Data availability statement

The data and the code used for algorithm implementation will

be made available by the authors, without undue reservation.

Author contributions

JY, ZC, and YL completed the background investigation, method

design, and experiments, and led the writing of the paper. KC provided

materials of the original algorithm pipeline and participated in the

comparative experiments. HB and XC provided valuable suggestions

for the whole work and revised the paper. All authors contributed to

the article and approved the submitted version.

Funding

This work was supported in part by the National Key Research and

Development Program of China (No. 2017YFC1403602) and the

Shenzhen Science and Technology Innovation Program (Nos.

KCXFZ20211020163557022, JSGG20191129110031632,

JCYJ20170412171011187), and the National Natural Science Foundation

of China (Nos. 61527826, 51735002), and the Major Scientific and

Technological Innovation Project of the Shandong Provincial Key

Research and Development Program (2019JZZY020708).

Acknowledgments

The authors express their sincere gratitude to the reviewers and editors

who provided valuable comments and assistance for the publication.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
FIGURE 6

The visualization results of the feature prototype and the features of each sample output by the teacher network.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1186343
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yue et al. 10.3389/fmars.2023.1186343
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated
Frontiers in Marine Science 13527
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Azani, N., Ghaffar, M., Suhaimi, H., Azra, M., Hassan, M., Jung, L., et al. (2021). “The
impacts of climate change on plankton as live food: A review,” in IOP Conf. Ser.: Earth
Environ. Sci. (Virtual, Indonesia: IOP Science) 869(1), 012005. doi: 10.1088/1755-1315/
869/1/012005

Benfield, M. C., Shaw, R. F., and Schwehm, C. J. (2000). Development of a vertically
profiling, high-resolution, digital still camera system. Louisiana State Univ. Baton
Rouge Dept Oceanogr. Coast. Sci. 2000. doi: 10.21236/ADA609777

Bhonsle, D., Chandra, V., and Sinha, G. R. (2012). “Medical image denoising using
bilateral filter,” in Int. J. Image Graph. Sign. Proces (MECS Publisher) 4(6). 36–43.
doi: 10.5815/ijigsp.2012.06.06

Bi, H., Cook, S., Yu, H., Benfield, M. C., and Houde, E. D. (2013). Deployment of an
imaging system to investigate fine-scale spatial distribution of early life stages of the
ctenophore Mnemiopsis leidyi in Chesapeake Bay. J. Plankton Res. 35 (2), 270–280.
doi: 10.1093/plankt/fbs094

Bi, H., Guo, Z., Benfield, M. C., Fan, C., Ford, M., Shahrestani, S., et al. (2015). A
semi-automated image analysis procedure for in situ plankton imaging systems. PloS
One 10 (5), e0127121. doi: 10.1371/journal.pone.0127121

Bi, H., Song, J., Zhao, J., Liu, H., Cheng, X., Wang, L., et al. (2022). Temporal
characteristics of plankton indicators in coastal waters: High-frequency data from
PlanktonScope. J. Sea. Res. 189, 102283. doi: 10.1016/j.seares.2022.102283

Braz, J. E. M., Dias, J. D., Bonecker, C. C., and Simoes, N. R. (2020).
Oligotrophication affects the size structure and potential ecological interactions of
planktonic microcrustaceans. Aquat. Sci. 82 (3), 1–10. doi: 10.1007/s00027-020-
00733-z

Brun, P., Vogt, M., Payne, M. R., Gruber, N., O'brien, C. J., Buitenhuis, E. T., et al.
(2015). Ecological niches of open ocean phytoplankton taxa. Limnol. Oceanogr. 60 (3),
1020–1038. doi: 10.1002/lno.10074

Buskey, E. J., and Hyatt, C. J. (2006). Use of the FlowCAM for semi-automated
recognition and enumeration of red tide cells (Karenia brevis) in natural plankton
samples. Harmful Algae 5 (6), 685–692. doi: 10.1016/j.hal.2006.02.003

Campbell, R. W., Roberts, P. L., and Jaffe, J. (2020). The Prince William Sound
Plankton Camera: a profiling in situ observatory of plankton and particulates. ICES J.
Mar. Sci. 77 (4), 1440–1455. doi: 10.1093/icesjms/fsaa029

Cowen, R. K., and Guigand, C. M. (2008). In situ ichthyoplankton imaging system
(ISIIS): system design and preliminary results. Limnol. Oceanogr.-Meth. 6 (2), 126–132.
doi: 10.4319/lom.2008.6.126

Davis, C. S., Gallager, S. M., Marra, M., and Stewart, W. K. (1996). Rapid visualization of
plankton abundance and taxonomic composition using the Video Plankton Recorder.Deep-
Sea Res. Pt. II 43 (7-8), 1947–1970. doi: 10.1016/S0967-0645(96)00051-3

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
et al. (2020). An image is worth 16x16 words: Transformers for image recognition at
scale. doi: 10.48550/arxiv.2010.11929

Fan, A., Stock, P., Graham, B., Grave, E., Gribonval, R., Jegou, H., et al. (2020).
Training with quantization noise for extreme model compression. arXiv preprint arXiv.
doi: 10.48550/arXiv.2004.07320

Ferdous, R. H., Arifeen, M. M., Eiko, T. S., and Mamun, S. A. (2020). “Performance
analysis of different loss function in face detection architectures,” in Proc. Int. Conf.
Trends in Comput. Cognit. Eng. 659–669. doi: 10.1007/978-981-33-4673-4_54

Gorsky, G., Picheral, M., and Stemmann, L. (2000). Use of the Underwater Video
Profiler for the study of aggregate dynamics in the North Mediterranean. Estuar. Coast.
Shelf Sci. 50 (1), 121–128. doi: 10.1006/ecss.1999.0539

Guo, B., Yu, J., Liu, H., Xu, W., Hou, R., and Zheng, B. (2018). Miniaturized in situ
dark-field microscope for in situ detecting plankton. Ocean Opt. Inf. Technol. 10850,
243–250. doi: 10.1117/12.2505639

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (Las Vegas, USA:
IEEE), 770–778.

Hermand, J. P., Randall, J., Dubois, F., Queeckers, P., Yourassowsky, C., Roubaud, F.,
et al. (2013). “In-situ holography microscopy of plankton and particles over the
continental shelf of Senegal,” in 2013 Ocean Elec. (SYMPOL). (Kochi, India: IEEE),
1–10. doi: 10.1109/SYMPOL.2013.6701926

Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural
network. doi: 10.48550/arxiv.1503.02531
Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization. arXiv
[Preprint] arXiv.1412.6980.

Kyathanahally, S. P., Hardeman, T., Merz, E., Bulas, T., Reyes, M., Isles, P., et al.
(2021). Deep learning classification of lake zooplankton. Front. Microbiol 12.
doi: 10.3389/fmicb.2021.746297

Kyathanahally, S. P., Hardeman, T., Reyes, M., Merz, E., Bulas, T., Brun, P., et al.
(2022). Ensembles of data-efficient vision transformers as a new paradigm for
automated classification in ecology. Sci. Rep. 12 (1), 18590. doi: 10.1038/s41598-022-
21910-0

Li, X., and Cui, Z. (2016). Deep residual networks for plankton classification. Oceans
2016 MTS/IEEE Monterey IEEE, 1–4. doi: 10.1109/OCEANS.2016.7761223

Li, Y., Guo, J., Guo, X., Zhao, J., Yang, Y., Hu, Z., et al. (2021). Toward in situ
zooplankton detection with a densely connected YOLOV3model. Appl. Ocean Res. 114,
102783. doi: 10.1016/j.apor.2021.102783

Liang, C., Jiang, H., Li, Z., Tang, X., Yin, B., Zhao, T., et al (2023). HomoDistil:
homotopic task-agnostic distillation of pre-trained transformers. arXiv preprint arXiv:
2302.09632. doi: 10.48550/arxiv.2302.09632

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., et al. (2021). “Swin transformer:
Hierarchical vision transformer using shifted windows,” in Proc. Proc. IEEE Int. Conf.
Comput. Vis. (Montreal, Canada: IEEE), 10012–10022.

Lumini, A., and Nanni, L. (2019). Deep learning and transfer learning features
for plankton classification. Ecol. Inform. 51, 33–43. doi: 10.1016/j.ecoinf.
2019.02.007

Luo, J. Y., Irisson, J. O., Graham, B., Guigand, C., Sarafraz, A., Mader, C., et al. (2018).
Automated plankton image analysis using convolutional neural networks. Limnol.
Oceanogr.-Meth 16 (12), 814–827. doi: 10.1002/lom3.10285

Lv, Z., Zhang, H., Liang, J., Zhao, T., Xu, Y., and Lei, Y. (2022). Microalgae removal
technology for the cold source of nuclear power plant: A review. Mar. pollut. Bull. 183,
114087. doi: 10.1016/j.marpolbul.2022.114087

Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proc. Eur. Conf. Comput. Vis.
(Munich, Germany: Springer), 116–131.

Marini, S., Fanelli, E., Sbragaglia, V., Azzurro, E., Del Rio Fernandez, J., and Aguzzi, J.
(2018). Tracking fish abundance by underwater image recognition. Sci. Rep. 8 (1), 1–12.
doi: 10.1038/s41598-018-32089-8

Orenstein, E. C., and Beijbom, O. (2017). “Transfer learning and deep feature
extraction for planktonic image data sets,” in IEEE Winter Conf. App. Comput. Vis.
(Santa Rosa, USA: IEEE), doi: 10.1109/WACV.2017.125

Orenstein, E. C., Kenitz, K. M., Roberts, P. L. D., Franks, P. J. S., Jaffe, J. S., and
Barton, A. D. A. (2020). Semi-and fully supervised quantification techniques to
improve population estimates from machine classifiers. Limnol. Oceanogr.-Meth. 18
(12), 739–753. doi: 10.1002/lom3.10399

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Tran. Syst. Man Cybern. 9 (1), 62–66. doi: 10.1109/TSMC.1979.4310076

Pan, S. J., and Yang, Q. (2010). “A survey on transfer learning,” in IEEE Tran. Knowl.
Data Eng. (IEEE). Vol. 22. 1345–1359. doi: 10.1109/TKDE.2009.191

Park, J., and No, A. (2022). “Prune your model before distill it,” in Proc. Eur. Conf.
Comput. Vis. (Tel-Aviv, Israel: Springer), 120–136.

Peng, B., Jin, X., Liu, J., Li, D., Wu, Y., Liu, Y., et al. (2019). “Correlation congruence
for knowledge distillation,” in Proc. IEEE Int. Conf. Comput. Vis. (Seoul, South Korea:
IEEE), 5007–5016.

Piredda, R., Tomasino, M. P., D'Erchia, A. M., Manzari, C., Pesole, G., Montresor,
M., et al. (2017). Diversity and temporal patterns of planktonic protist assemblages at a
Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. 93 (1).
doi: 10.1093/femsec/fiw200

Ridnik, T., Ben-baruch, E., Noy, A., and Zelnik-manor, L. (2021). Imagenet-21k
pretraining for the masses. doi: 10.48550/arxiv.2104.10972

Romero, A., Ballas, N., Kahou, S. E., Chassang, A., Gatta, C., and Bengio, Y. (2014).
Fitnets: Hints for thin deep nets. doi: 10.48550/arxiv.1412.6550

Said, K. A. M., Jambek, A. B., and Sulaiman, N. (2016). A study of image processing
using morphological opening and closing processes. Int. J. Control Theor. App. 9 (31),
15–21.
frontiersin.org

https://doi.org/10.1088/1755-1315/869/1/012005
https://doi.org/10.1088/1755-1315/869/1/012005
https://doi.org/10.21236/ADA609777
https://doi.org/10.5815/ijigsp.2012.06.06
https://doi.org/10.1093/plankt/fbs094
https://doi.org/10.1371/journal.pone.0127121
https://doi.org/10.1016/j.seares.2022.102283
https://doi.org/10.1007/s00027-020-00733-z
https://doi.org/10.1007/s00027-020-00733-z
https://doi.org/10.1002/lno.10074
https://doi.org/10.1016/j.hal.2006.02.003
https://doi.org/10.1093/icesjms/fsaa029
https://doi.org/10.4319/lom.2008.6.126
https://doi.org/10.1016/S0967-0645(96)00051-3
https://doi.org/10.48550/arxiv.2010.11929
https://doi.org/10.48550/arXiv.2004.07320
https://doi.org/10.1007/978-981-33-4673-4_54
https://doi.org/10.1006/ecss.1999.0539
https://doi.org/10.1117/12.2505639
https://doi.org/10.1109/SYMPOL.2013.6701926
https://doi.org/10.48550/arxiv.1503.02531
https://doi.org/10.3389/fmicb.2021.746297
https://doi.org/10.1038/s41598-022-21910-0
https://doi.org/10.1038/s41598-022-21910-0
https://doi.org/10.1109/OCEANS.2016.7761223
https://doi.org/10.1016/j.apor.2021.102783
https://doi.org/10.48550/arxiv.2302.09632
https://doi.org/10.1016/j.ecoinf.2019.02.007
https://doi.org/10.1016/j.ecoinf.2019.02.007
https://doi.org/10.1002/lom3.10285
https://doi.org/10.1016/j.marpolbul.2022.114087
https://doi.org/10.1038/s41598-018-32089-8
https://doi.org/10.1109/WACV.2017.125
https://doi.org/10.1002/lom3.10399
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1093/femsec/fiw200
https://doi.org/10.48550/arxiv.2104.10972
https://doi.org/10.48550/arxiv.1412.6550
https://doi.org/10.3389/fmars.2023.1186343
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Yue et al. 10.3389/fmars.2023.1186343
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018).
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (Salt Lake City, USA: IEEE), 4510–4520.

Song, J., Bi, H., Cai, Z., Cheng, X., He, Y., Benfield, M. C., et al. (2020). Early warning of
Noctiluca scintillans blooms using in-situ plankton imaging system: an example from
Dapeng Bay, PR China. Ecol. Indic. 112, 106123. doi: 10.1016/j.ecolind.2020.106123

Suzuki, S. (1985). Topological structural analysis of digitized binary images by border
following. Comput. Gr. Image Process. 30 (1), 32–46. doi: 10.1016/0734-189X(85)90016-7

Tanaka, H., Kunin, D., Yamins, D. L. K., and Gnguli, S. (2020). Pruning neural
networks without any data by iteratively conserving synaptic flow. Proc. Adv. Neural
Inf. Process. Syst. 33, 6377–6389. doi: 10.48550/arXiv.2006.05467

Tomasi, C., and Manduchi, R. (1998). “Bilateral filtering for gray and color images,”
in 6th Int. Conf. Comput. Vis. (Mumbai, India: IEEE). doi: 10.1109/ICCV.1998.710815
Frontiers in Marine Science 14528
Tung, F., andMori, G. (2019). “Similarity-preserving knowledge distillation,” in Proc.
IEEE Int. Conf. Comput. Vis. (Seoul, South Korea: IEEE), 1365–1374.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., et al. (2017).
Attention is all you need. Proc. Adv. Neural Inf. Process. Syst. 30. doi: 10.48550/
arXiv.1706.03762

Vincent, O. R., and Folorunso, O. (2009). “A descriptive algorithm for sobel image
edge detection,” in Proc. Inf. Sci. IT Educ. Conf, Vol. 40. 97–107.

Wang, Y., Liu, Y., Guo, H., Zhang, H., Li, D., Yao, Z., et al. (2022). Long-term
nutrient variation trends and their potential impact on phytoplankton in the southern
Yellow Sea, China. Acta Oceanol. Sin. 41 (6), 54–67. doi: 10.1007/s13131-022-2031-3

Wu, J., Wang, Y., Wu, Z., Veeraraghavan, A., and Lin, Y. (2018). Deep k-means: Re-
training and parameter sharing with harder cluster assignments for compressing deep
convolutions. doi: 10.48550/arXiv.1806.09228
frontiersin.org

https://doi.org/10.1016/j.ecolind.2020.106123
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.48550/arXiv.2006.05467
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1007/s13131-022-2031-3
https://doi.org/10.48550/arXiv.1806.09228
https://doi.org/10.3389/fmars.2023.1186343
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Frontiers in Marine Science

OPEN ACCESS

EDITED BY

Hongsheng Bi,
University of Maryland, United States

REVIEWED BY

Suja Cherukullapurath Mana,
Sathyabama Institute of Science and
Technology, India
Katalin Blix,
UiT The Arctic University of Norway,
Norway

*CORRESPONDENCE

Zhimin Wang

wangzhimin@ouc.edu.cn

Yongjian Gu

yjgu@ouc.edu.cn

†These authors have contributed
equally to this work and share
first authorship

RECEIVED 04 February 2023

ACCEPTED 11 September 2023
PUBLISHED 25 September 2023

CITATION

Shi S, Wang Z, Shang R, Li Y, Li J, Zhong G
and Gu Y (2023) Hybrid quantum-classical
convolutional neural network for
phytoplankton classification.
Front. Mar. Sci. 10:1158548.
doi: 10.3389/fmars.2023.1158548

COPYRIGHT

© 2023 Shi, Wang, Shang, Li, Li, Zhong and
Gu. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 25 September 2023

DOI 10.3389/fmars.2023.1158548
Hybrid quantum-classical
convolutional neural network
for phytoplankton classification

Shangshang Shi †, Zhimin Wang*†, Ruimin Shang, Yanan Li,
Jiaxin Li, Guoqiang Zhong and Yongjian Gu*

Faculty of Information Science and Engineering, Ocean University of China, Qingdao, China
The taxonomic composition and abundance of phytoplankton have a direct

impact on marine ecosystem dynamics and global environment change.

Phytoplankton classification is crucial for phytoplankton analysis, but it is

challenging due to their large quantity and small size. Machine learning is the

primary method for automatically performing phytoplankton image

classification. As large-scale research on marine phytoplankton generates

overwhelming amounts of data, more powerful computational resources are

required for the success of machine learning methods. Recently, quantum

machine learning has emerged as a potential solution for large-scale data

processing by harnessing the exponentially computational power of quantum

computers. Here, for the first time, we demonstrate the feasibility of using

quantum deep neural networks for phytoplankton classification. Hybrid

quantum-classical convolutional and residual neural networks are developed

based on the classical architectures. These models strike a balance between the

limited function of current quantum devices and the large size of phytoplankton

images, making it possible to perform phytoplankton classification on near-term

quantum computers. Our quantum models demonstrate superior performance

compared to their classical counterparts, exhibiting faster convergence, higher

classification accuracy and lower accuracy fluctuation. The present quantum

models are versatile and can be applied to various tasks of image classification in

the field of marine science.

KEYWORDS

hybrid quantum-classical neural network, quantum convolutional neural network,
phytoplankton classification, parameterized quantum circuit, ansatz
1 Introduction

Phytoplankton is the most important primary producer in the aquatic ecosystem. As

the main supplier of dissolved oxygen in the ocean, phytoplankton plays a vital role in the

energy flow, material circulation and information transmission in the marine ecosystem

(Barton et al., 2010; Gittings et al., 2018). The species composition and abundance of

phytoplankton are key factors in marine ecosystem dynamics, exerting a direct influence on
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global environment change. As such, much attention has been paid

to the identification and classification of phytoplankton (Zheng

et al., 2017; Pastore et al., 2020; Fuchs et al., 2022).

With the rapid development of imaging devices for

phytoplankton (Owen et al., 2022), a huge number of

phytoplankton images can now be collected in a short time.

However, it has become impossible to classify and count these

images using traditional manual methods, i.e. expert-based

methods. To increase the efficiency of processing these images,

machine learning methods has been introduced, including support

vector machine (Hu and Davis, 2005; Sosik and Olson, 2007),

random forest (Verikas et al., 2014; Faillettaz et al., 2016), k-

nearest neighbor (Glüge et al., 2014), and artificial neural network

(Mattei et al., 2018; Mattei and Scardi, 2020). In particular,

convolutional neural network (CNN), which achieves state-of-

the-art performance on image classification, has become widely

used in this field in recent years. A variety of CNN-based

architectures have been proposed to identify and classify

phytoplankton with high efficiency and precision (Dai et al., 2017;

Cui et al., 2018; Wang et al., 2018; Fuchs et al., 2022).

To conduct large-scale research on marine phytoplankton,

more powerful computational resources are desired to ensure the

success of machine learning methods for handling the

overwhelmingly increasing volume of data. Along with the

remarkable progress in the field of quantum computing (Arute

et al., 2019; Zhong et al., 2020; Bharti et al., 2022; Madsen et al.,

2022), quantum machine learning (QML) has emerged as a

potential solution for large-scale data processing (Biamonte et al.,

2017). There is a growing consensus that even the near-term NISQ

(noisy intermediate-scale quantum) devices may find advantageous

applications (Preskill, 2018), one of which is the quantum neural

network (QNN) (Jeswal and Chakraverty, 2019; Kwak et al., 2021).

The QNN takes the parameterized quantum circuit (PQC) as a

learning model (Benedetti et al., 2019), and can be naturally

extended to a quantum deep neural network with the flexible

multilayer architecture. The quantum convolutional neural

network (QCNN) is a typical model of quantum deep neural

networks that has recently received a lot of attention and

achieved significant developments. QCNN has demonstrated its

success in processing both quantum and classical data, including

quantum many-body problems (Cong et al., 2019), identification of

high-energy physics events (Chen et al., 2022), COVID-19

prediction (Houssein et al. , 2022) and MNIST dataset

classification (Oh et al., 2020).

In this work, we explore the potential of QCNN for performing

phytoplankton classification. There are two typical architectures of

QCNN: the fully quantum parameterized QCNN (Cong et al., 2019)

and the hybrid quantum-classical CNN (Liu et al., 2021). Due to the

large size of phytoplankton images and the limited number of

qubits and quantum operations available on current quantum

devices, it is currently impractical to learn the images using fully

quantum parameterized QCNN. Therefore, we adopt the hybrid

quantum-classical convolutional neural network (QCCNN)

architecture to achieve good multi-classification of the

phytoplankton dataset. QCCNN integrates the PQC into the

classical CNN architecture by replacing the classical feature map
Frontiers in Marine Science 02530
with the quantum feature map. This makes QCCNN friendly to

current NISQ devices in terms of both the number of qubits and

circuit depths, while retaining important features of classical CNN,

such as nonlinearity and scalability (Liu et al., 2021).

Moreover, the QCCNN may face challenges such as the barren

plateau problem (i.e. vanishing gradient) and degradation problem

(i.e. saturated accuracy with increasing depth) (Deng, 2021). To

address these issues, we further propose a hybrid quantum-classical

residual network (QCResNet) that incorporates a residual

architecture to enhance the QCCNN’s performance.

It is worth noting that the visual transformer has recently

achieved remarkable performance in image processing

(Dosovitskiy et al., 2020) by identifying long-range dependencies

and obtaining global information. Its success has led to its

application in classifying plankton datasets (Baek et al., 2022;

Dagtekin and Dethlefs, 2022; Kyathanahally et al., 2022; Shao

et al., 2022). In the future, it will be intriguing to develop

quantum visual transformer models based on the quantum self-

attention mechanism (Li et al., 2022; Shi et al., 2023; Zhao et al.,

2022), and explore their potential for phytoplankton classification.

The main contribution of this work is as follows:
(1) For the first time, the feasibility of using quantum deep

neural networks for phytoplankton classification is

demonstrated. This represents a concrete example of the

application of quantum machine learning methods in the

field of marine science.

(2) Several specific architectures for QCCNN and QCResNet

are developed, which are accessible on near-term NISQ

devices. Particularly, the QCResNet architecture is

proposed to enhance the QCCNN’s performance. These

models are versatile and can be directly applied to other

image classification tasks.

(3) The QCCNN and QCResNet models demonstrate

exceptional performance in phytoplankton classification

compared to template CNN and ResNet models.

Moreover, the impact of PQC’s expressibility and

entangling capability on QCCNN’s performance is

explored.
The rest of the paper is organized as follows. Section 2 provides

introduction to the preliminaries of QNN. In section 3, we discuss

the architectures of QCCNN and QCResNet. Section 4 describes the

phytoplankton dataset used in the experiment. Section 5 presents

the experimental results, including the performance of QCCNN

and QCResNet, as well as the impact of ansatz circuit on QCCNN’s

performance. Finally, conclusions are given in section 6.
2 Quantum neural network

QNN is a type of variational quantum algorithm, which is also

the hybrid quantum-classical algorithm. Typically, QNN consists of

four parts: data encoding, forward transformation performed by the

ansatz, quantummeasurement and parameter optimization routine,

as illustrated in Figure 1. It’s worth noting that the first three parts
frontiersin.org
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are implemented on the quantum device, while the optimization

routine is executed on the classical computer, which then feeds the

updated parameters back into quantum device.

Data encoding is the process of embedding classical data

into quantum states by applying a unitary transformation,

i.e.jx 〉 = Uej0 〉⊗ nwhere jx 〉is proportional to the data vector x.
Data encoding can be regarded as a quantum feature map that

maps the data space to the quantum Hilbert space (Schuld and

Killoran, 2019). QNNs leverage this exponentially large Hilbert

space as the feature space, making it extremely difficult to

simulate using classical resources (Havlıč́ek et al., 2017). One

of the most commonly used encoding method in QNN is the

angle encoding. It embeds classical data into the rotation angles

of the quantum rotation gates. For example, given a normalized

data vector x = (x1,…xN )
T with xi ∈ ½0, 1) , angle encoding can

embed it into

R⊗N
y (x)j0 〉⊗N = ⊗

N

i=1
cos

xi
2
j0 〉 + sin xi

2
j1 〉

� �
; (1)

where Ry is the rotation gate about the ŷ axes, i.e. Ry(xi) =

½cos xi
2 ,   − sin xi

2 ;   sin
xi
2 ,   cos

xi
2 � . For more information on data

encoding strategies, please refer to (Hur et al., 2022).

The ansatz can be seen as a quantum analogue of feedforward

neural network, which utilizes the quantum unitary transformation

to implement the feature map of data. Essentially, the ansatz is a

PQC with adjustable quantum gates. These adjustable parameters

are optimized to approximate the target function that maps features

into different domains representing different classes. Therefore, the

structure of ansatz circuit plays a crucial role in specific learning

tasks. In most cases, the hardware-efficient ansatz is adopted in

QNN, which uses a limited set of quantum gates and a particular

qubit connection topology that is specific to the quantum devices on

hand. The gate set usually contains three single-qubit gates and one

two-qubit gates. An arbitrary single-qubit gate can be expressed as a

combination of rotation gates about the x̂ , and ẑ axes. For

example, using the X-Z decomposition, a single-qubit gate can be

represented as

U1q(a , b , g ) = Rx(a)Rz(b)Rx(g ); (2)

where a, b, and g are the rotation angles. The two-qubit gates

are utilized to create entanglement between qubits. There are fixed

two-qubit gates without adjustable parameters, such as the CNOT
Frontiers in Marine Science 03531
gate, and the ones with adjustable parameters, such as the controlled

Rx(q) and Rz(q) gates. A comprehensive discussion of the properties

of different ansatz circuits is presented in (Sim et al., 2019).

Quantum measurement produces an output value that can be

used as a prediction for the data. The measurement operation

corresponds to a Hermitian operator M, which can be decomposed

as M =oiliji 〉 〈 ij , where li is the ith eigenvalue and ji 〉 is the

corresponding eigenvector. When a measurement is performed, the

quantum state jy 〉 will collapse to one of the eigenstates ji 〉 with a

probability pi = j 〈 ijy 〉 j2. Then, the expectation value of the

measurement outcome is

〈M 〉 =oili · pi =oili 〈 ijy 〉j j2: (3)

The most fundamental measurement outcomes are the

probabilities fpig and the expectation 〈M 〉 . The commonly

used measurement in quantum computing is the computational

basis measurement, also known as the Pauli-Z measurement, with

the Hermitian operator

sz = ( + 1)j0 〉 〈 0j + ( − 1)j1 〉 〈 1j: (4)

When performing the sz measurement, a qubit will collapse to

the state j0 〉 ( j1 〉) with the probabi l i ty . p0 = j 〈 0jy 〉 j2
(p1 = j 〈 1jy 〉 j2), and the corresponding eigenvalue is +1 (−1).

The expectation value 〈sz 〉 is a value within the range [-1, 1].

Due to the collapse principle of quantum measurement, in practice

the probability and the expectation value are estimated using s

samples of measurement, where s is known as the number of shots.

Optimization routine is used to update the parameters of the

ansatz circuit. These parameters correspond to the adjustable

rotation angles of gates and are updated based on the data.

Optimizing the parameters q is in fact the process of minimizing

the loss function L(q). Similar to classical models, QNN can use

various loss functions such as mean squared error loss and cross-

entropy loss. For example, the multi-category cross-entropy loss can

be expressed as

L(q) = −
1
No

N

j=1
o
C

c=1
½yjc · f (pi=c)�: (5)

In this equation, N is the batch size; C is the number of

categories; yjc ∈ f0, 1g is the class label; pi=c is the probability of

measuring the eigenstates ji 〉 corresponding to the category c; and

f ( · ) represents the post-processing of the measurement outcome,

which is used to associate the outcome to the label yjc.

Similar to classical neural networks, the parameters in QNN can

be updated based on the gradient of the loss function. For instance,

the gradient descent method can be used to update the ith parameter

qi as follows:

q 0
i = qi − d · ∂ L(q)= ∂ q i; (6)

where d is the learning rate. In quantum computing, there is no

backpropagation algorithm to directly calculate the gradient of the

loss function. Instead, derivatives are typically evaluated using the

difference method or the parameter shift rule on the quantum

devices (Wierichs et al., 2022).
FIGURE 1

Architecture of QNN model. QNN is a hybrid quantum-classical
algorithm. The forward transformation is implemented by the
quantum computer, while the optimization of parameters is done by
the classical computer.
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3 Methods

3.1 Quantum-classical convolutional
neural network

The QCCNN can be constructed based on classical CNN

models. Specifically, using the CNN architecture presented in the

supplementary material (Supplementary Figure 1) as a template, the

QCCNN can be designed by implementing the convolutional layers

with PQC. Figure 2 shows two possible QCCNN architectures. In

Figure 2A, the QCCNN consists of one quantum convolutional

layer and one classical convolutional layer, and Figure 2B shows a

QCCNN with two quantum convolutional layers.

The models in Figure 2A and Figure 2B are named QCCNN-1

and QCCNN-2, respectively. Below, we delve into the details of the

two architectures.

3.1.1 Quantum convolutional layer
The architecture of the quantum convolution layer #1 and

quantum convolution layer #2 used in Figure 2 is illustrated in
Frontiers in Marine Science 04532
Figures 3A, B respectively. They consist of similar components as

QNN, including the encoding circuit, ansatz circuit and

quantum measurement.

In the quantum convolution layer #1, the filter window size is

set to 2×2, and the four elements are embedded using four qubits

through four Ry(q) gates; while in the quantum convolution layer

#2, the filter window size is set to 3×3, and the nine elements are

embedded using nine qubits through nine Ry(q) rotation gates. The

ansatz is implemented using two typical hardware-efficient circuits,

as shown in Figure 4. Figure 4A depicts the all-to-all configuration

of two-qubit gates, which has the larger expressibility and

entangling capability but the higher circuit complexity, while

Figure 4B depicts the circuit-block configuration of two-qubit

gates, which has the smaller expressibility and entangling

capability but the lower circuit complexity (Sim et al., 2019). The

expressibility and entangling capability of the ansatz can be

increased by stacking the circuit as multi layers.

Expressibility and entangling capability are two key

characteristics that describe the representative capability of a PQC

in the exponentially large Hilbert space (Sim et al., 2019). It’s
B

A

FIGURE 2

Architecture of the QCCNN with (A) one quantum and one classical convolutional layer (named QCCNN-1) and (B) two quantum convolutional
layers (named QCCNN-2).
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important to note that the Hilbert space serves as the feature space

of QCCNN, which means that the difference in the representative

capability of the ansatz circuit can significantly affect the

performance of QCCNN. However, the specific impact of this
Frontiers in Marine Science 05533
difference remains ambiguous. In the experiment section, we

explore this impact in more detail.

For the quantum measurement in Figure 3, the four (nine)

qubits are measured individually using the sz operator. The
B

A

FIGURE 3

Architecture of the quantum convolutional layer #1 (A) and #2 (B) used in Figure 2.
B

A

FIGURE 4

Two typical ansatz circuits with (A) all-to-all configuration and (B) circuit-block configuration of two-qubit gates. These circuits are used as a single
layer, i.e. L = 1. Multiple layers can be stacked to increase the expressibility and entangling capability of the circuit.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1158548
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2023.1158548
resulting probabilities of each qubit collapsing to state j0 〉 are then
used as four (nine) feature channels for the next layer. It’s worth

noting that the quantum convolutional layer does not have an

activation function, and the nonlinearity arises from the process of

data encoding and quantum measurement. This is a significant

difference between QNN and classical models.

3.1.2 Classical operations
The classical operations of QCCNN include classical

convolutional layers, pooling layers, and fully connected layers,

which follow the typical operations of CNN. Specifically, in the

convolutional layers, a window size of 3×3 is used, and the

activation function is the ReLu function. A Max Pooling layer is

employed to reduce the number of trainable parameters. Finally, at

the end of QCCNN, two fully connected layers are used to connect

the convolutional and output layer.
3.2 Quantum residual network

Similar to the method used to design QCCNN, QCResNet can

be constructed based on the template ResNet presented in the

supplementary material (Supplementary Figure 2). Figure 5
Frontiers in Marine Science 06534
illustrates two possible architectures for QCResNet. In Figure 5A,

the QCResNet consists of one quantum residual unit and one

classical residual unit, while Figure 5B has two quantum residual

units. The two models are named QCResNet-1 and QCResNet-

2, respectively.

As shown in Figure 5, both quantum residual unit #1 and

quantum residual unit #2 utilize one quantum convolutional layer.

It is worth noting that the quantum convolutional layer in quantum

residual unit #1 uses a filter window size of 3×3, but outputs three

feature channels, which differs from the one shown in Figure 3B.

The architecture of the quantum convolutional layer used in

quantum residual unit #1is presented in the supplementary

material (Supplementary Figure 3). On the other hand, the

quantum convolutional layer used in quantum residual unit #2 is

identical to the one shown in Figure 3B.
4 Datasets and networks

The image dataset of phytoplankton used in this work was

obtained by analyzing water from Woods Hole Harbor using a

custom-built imaging-in-flow cytometer (Sosik and Olson, 2007).

Sampling was conducted between late fall and early spring in 2004
B

A

FIGURE 5

Architecture of the QCResNet with (A) one quantum residual unit (named QCResNet-1) and (B) two quantum residual units (named QCResNet-2).
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and 2005. The dataset consists of 6600 images that were visually

inspected and manually identified, with an even distribution across

22 categories, resulting in 300 images per category. Example images

of the 22 categories are shown in Figure 6. All images were

randomly divided into training set and test set, with each set

containing 150 images for each category. This results in a

balanced distribution of images across the categories.

In the experiment, the QCCNN and QCResNet were simulated

on the classical computer, which required significant computational

resources. As a result, it was not practical to train our quantum

models using the full dataset of 6600 images. To address this issue,

we compiled a sub-dataset consisting of 1200 images across four

categories of phytoplankton, which are DactFragCeratul,

Dactyliosolen, Dinobryon and Ditylum. In addition, to make the

images accessible to the QCCNN and QCResNet models, all images

are resized to 20×20 pixels. It is important to note that these

limitations are only due to the difficulty of simulating the

quantum circuit with a large number of qubits on the classical

computer. The dataset used in the experiments is available on

GitHub (Shi, 2023).

In the experiment, six neural networks are evaluated using the

phytoplankton dataset. These networks include the template CNN

(Supplementary Figure 1), template ResNet (Supplementary

Figure 2), QCCNN-1 and QCCNN-2 (Figure 2), QCResNet-1 and

QCResNet-2 (Figure 5). The specific architectures of these models

are discussed in Section 3. A detailed comparison of their

parameters is presented in the Supplementary Material (Section

3). In general, the quantum convolutional layer uses fewer

parameters than the classical models, resulting in the faster
Frontiers in Marine Science 07535
convergence of the quantum models, as demonstrated in the

following experiments.

In this work, the quantum and classical neural networks are

implemented using the PennyLane software (Bergholm et al., 2018)

and Pytorch framework, respectively. PyTorch-compatible

quantum nodes in PennyLane are used to construct the hybrid

quantum-classical neural networks. The loss function used is the

cross-entropy function, as shown in Eq. (5). The parameters in the

quantum and classical layers are trained together and updated based

on the SGD method. The number of shots used in the quantum

measurement is set to 1500, as discussed in the Supplementary

Material (Section 4). The six neural networks have learning rates

ranging from 0.05 to 0.1, with a batch size of 15 and trained for 50

epochs each.
5 Experimental results and discussions

5.1 Training loss and classification accuracy

To compare the performance of classical and quantum models,

we first analyze the models’ training loss and classification accuracy.

Figure 7 displays the curves of the training loss and test

classification accuracy of the template CNN and QCCNN models.

It is clear from the curves that the QCCNN model converges much

faster than the CNN model. Furthermore, the classification

accuracy of QCCNN-1 is 93.67%, which is almost the same as

that of CNN. However, the accuracy fluctuation of QCCNN is

much smaller, indicating that QCCNN has better generalization.
FIGURE 6

Example images of the 22 categories of phytoplankton: (A), Asterionellopsis; (B), Chaetoceros; (C), Ciliate; (D), Cylindrotheca; (E), DactFragCeratul;
(F), Dactyliosolen; (G), Detritus; (H), Dinobryon; (I), Dinoflagellate; (J), Ditylum; (K), Euglena; (L), Guinardia; (M), Licmophora; (N), Nanoflagellate; (O),
other cells< 20mm; (P), Pennate; (Q), Phaeocystis; (R), Pleurosigma; (S), Pseudonitzschia; (T), Rhizosolenia; (U), Skeletonema; (V), Thalassiosira.
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The stronger performance of QCCNN can be attributed to the

unique feature space of QCCNN, that is, the exponentially large

Hilbert space created by the quantum circuit. This quantum feature

space enables QCCNN to capture more abstract information from

the data and generalize better. As the number of qubits and depth of

quantum circuit increase, the quantum feature space will become

completely intractable for classical computers, leading to a quantum

advantage for QCCNN.

In addition, it’s interesting to note that the accuracy of

QCCNN-1 is higher than that of QCCNN-2. The experiments

show that adding more quantum convolutional layers to QCCNN

does not necessarily improve the model’s performance. This is likely

because more quantum convolutional layers significantly increase

the feature space, making it more difficult to train the model.

Therefore, the number and position of quantum convolutional

layers used in QCCNN should be optimized for the specific

learning tasks. Similar results have also been observed in the

quantum-inspired CNN (Shi et al., 2022).

The curves for the training loss and test classification accuracy

of the template ResNet and QCResNet models are shown in

Figure 8. Similar to the findings for QCCNN, QCResNet exhibits

similar features. QCResNet converges faster than ResNet; the

classification accuracy of QCResNet-1 is 94.5%, which is higher
Frontiers in Marine Science 08536
than ResNet’s 91.5%; QCResNet shows much smaller fluctuations

in accuracy compared to ResNet. The larger fluctuations in the

training loss and accuracy curves of ResNet, compared to CNN, can

be reduced by increasing the depth of the networks. Additionally,

the performance of QCResNet-1 is better than that of QCResNet-2,

indicating that the number and position of quantum convolutional

layers used in QCResNet should be optimized for the specific

learning tasks, as it is for QCCNN.
5.2 Confusion matrix and other
evaluation metric

In order to conduct a more comprehensive evaluation of the

model’s classification performance, we compute the confusion

matrices of the results obtained by the six neural networks, as

shown in Figure 9. A confusion matrix is an N × Nmatrix, where N

represents the number of target categories. It summarizes the

correct and incorrect predictions generated by the models on the

multiple-class classification task.

Furthermore, based on the confusion matrices, we calculate

additional evaluation metrics, in addition to classification accuracy,

to analyze the generalization ability of the six neural networks.
BA

FIGURE 7

Curves of the training loss (A) and test classification accuracy (B) of CNN and QCCNN for phytoplankton classification.
BA

FIGURE 8

Curves of the training loss (A) and test classification accuracy (B) of ResNet and QCResNet for phytoplankton classification.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1158548
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Shi et al. 10.3389/fmars.2023.1158548
These metrics include precision, recall, F1-score, specificity, false

positive rate (FPR), false discovery rate (FDR) and false negative

rate (FNR). The definitions of these metrics can be found in the

Supplementary Material (Section 5). Table 1 presents the results,

where the metrics are computed as the arithmetic mean of the

metric values for each class, namely the macro metric, as illustrated

in the supplementary.

Now we can analyze the performance of the six neural networks

in greater detail, based on the confusion matrix in Figure 9 and the

evaluation metrics presented in Table 1. Firstly, QCResNet-1

outperforms the other models in all evaluation metrics, indicating

that the use of a residual architecture effectively enhances the

performance of QCCNN. In particular, when compared to

ResNet, QCResNet-1 exhibits significantly stronger performance
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on type IV phytoplankton (i.e. Detritus), as shown in Figure 9.

However, QCResNet-1 performs poorly on type III phytoplankton

(i.e. Dinobryon) when compared to the CNN and QCCNN-1

models. In general, QCResNet-1, QCCNN-1 and CNN models

achieve comparable performance in terms of evaluation metrics;

however, their classification outcomes differ significantly across the

four phytoplankton categories.

Secondly, the QCCNN-2, QCResNet-2 and ResNet models

exhibit poor performance, which is consistent with the results

shown in Figures 7 , 8. As per Figure 9, the primary weakness of

QCCNN-2 is its poor performance on type III phytoplankton, with

a prediction accuracy that is approximately 10 percentage points

lower. On the other hand, QCResNet-2 performs poorly on type IV

phytoplankton. In future work, it would be interesting to compare
TABLE 1 Results of the eight evaluation metrics for the six neural networks.

Metrics CNN QCCNN-1 QCCNN-2 ResNet QCResNet-1 QCResNet-2

Accuracy 0.94 0.9367 0.8983 0.915 0.945 0.91

Precision 0.9407 0.9368 0.8981 0.915 0.9458 0.9110

Recall 0.94 0.9367 0.8983 0.915 0.945 0.91

F1-Score 0.9403 0.9367 0.8982 0.915 0.9454 0.9105

Specificity 0.98 0.9789 0.9661 0.9717 0.9817 0.97

FPR 0.02 0.0211 0.0339 0.0283 0.0183 0.03

FDR 0.0593 0.0631 0.1019 0.085 0.0557 0.0891

FNR 0.06 0.0633 0.1017 0.085 0.055 0.09
B C

D E F

A

FIGURE 9

Confusion matrix of the results obtained by the six neural networks, namely (A) template CNN, (B) QCCNN-1, (C) QCCNN-2, (D) template ResNet,
(E) QCResNet-1 and (F) QCResNet-2. The classes I, II, III and IV represent DactFragCeratul, Dactyliosolen, Dinobryon and Detritus, respectively.
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the performance of these models on other datasets and

learning tasks.
5.3 Influence of ansatz circuit for QCCNN

The quantum convolutional layer is a crucial element of both

QCCNN and QCResNet. Its primary function is to utilize the ansatz

circuit, i.e. a PQC, as a filer to perform the forward transformation

in CNN. Therefore, the features of the ansatz circuit have a

significant impact on the performance of QCCNN and

QCResNet. Analyzing this relationship can help improve the

performance of QNN models.

The ansatz circuit can be quantitatively characterized by its

expressibility and entangling capability (Sim et al., 2019).

Expressibility refers to the ability of a circuit to generate states

that are highly representative of the Hilbert space. One way to

calculate expressibility is by comparing the distribution of states

generated by sampling the PQC’s parameters to the uniform

distribution of states in the Haar-random state ensemble. On the

other hand, entangling capability describes the correlation between

multiple qubits, that is, the inherent correlation within the quantum

state. The entangling capability of an ansatz circuit can be

quantified using the entanglement measures, such as the Meyer-

Wallach measure. Generating highly entangled states with low-

depth circuits can provide significant advantages for QNN, such as

the ability to capture non-trivial correlations in quantum data.

There should be a relationship between the expressibility and

entangling capability of the ansatz circuit and the performance of

the corresponding QNNs. Below, we use QCCNN-1 as the basic

model to exploit this dependence. Note that in the experiments

discussed above, QCCNN-1 uses the circuit shown in Figure 4A as

its ansatz. As mentioned in Section 3.1.1, Figure 4A circuit has

higher expressibility and entangling capability, while Figure 4B

circuit is lower but can be stacked to increase its expressibility

and entangling capability. By replacing the ansatz of QCCNN-1

with multiple layers of Figure 4B circuit, we obtain five versions of

QCCNN-1.

The classification accuracy of the five versions of QCCNN-1 is

shown in Figure 10. The figure shows that QCCNN-1 using

Figure 4A circuit as the ansatz achieves higher accuracy

compared to that using Figure 4B. This suggests that higher

expressibility and entangling capability of the ansatz circuit can

indeed result in better performance of the QCCNN model.

However, for QCCNN-1 using multi-layers of Figure 4B as the

ansatz, the accuracy does not always increase with the number of

layers. Specifically, the accuracy of QCCNN-1 with 2 layers is the

highest, while those with 1, 3 and 4 layers are close. Note that the

circuit using 4 layers of Figure 4B achieves similar expressibility and

entangling capability as that of Figure 4A, as presented in (Sim et al.,

2019). Therefore, this suggests that in addition to the properties of

expressibility and entangling capability, there are other influential

factors on the models’ performance.

One such factor is the number of trainable parameters. When

the number of layers is increased, the expressibility and entangling

capability increase, but so does the number of trainable parameters.
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More parameters make the model more difficult to train, which can

decrease its generalization and offset the positive effect of increasing

the expressibility and entangling capability. Another factor is the

topological structure of the ansatz circuit. A quantitative method for

characterizing the architecture of PQC and its correlation to the

performance of the corresponding QCCNN need to be exploited in

detail. We leave this for future work.
6 Conclusion

In this work, we develop several hybrid quantum-classical

convolutional and residual neural networks and demonstrate their

efficiency for phytoplankton classification. The QCCNN and

QCResNet models are constructed by incorporating quantum-

enhanced forward transformations into classical CNN and ResNet

models. These hybrid architectures strike a good balance between

the limited functionality of current NISQ devices and the large-size

images of phytoplankton.

QCResNet outperforms classical models in terms of prediction

performance, while QCCNN performs comparably to its classical

counterparts. More remarkably, both QCCNN and QCResNet

exhibit much faster convergence and more stable classification

accuracy curves, with less fluctuation. We also find that the

performance of QCCNN and QCResNet depends on several

factors, including the expressibility, entangling capability and

topological structure of the ansatz circuit, as well as the number

of training parameters. By considering all these factors, the model’s

performance can be improved. Our QCCNN and QCResNet

models are versatile and can be easily expanded for other image

classification tasks.

In the future, we plan to optimize the architecture of QCCNN

and QCResNet from both quantum and classical perspectives. This

includes optimizing the structure of quantum convolutional layer

and the template CNN and ResNet architecture. Additionally, due

to computational resources limitations, in this work we construct a
FIGURE 10

Classification accuracy of the five versions of QCCNN-1, which
utilize the circuit of Figure 4A and 1, 2, 3 and 4 layers of Figure 4B as
the ansatz.
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mini model of QCNN and evaluate its performance using a

relatively small dataset. In the future, it will be necessary to

demonstrate the scalability of our models and find practical and

advantageous applications in more marine science tasks.
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CLOINet: ocean state
reconstructions through remote-
sensing, in-situ sparse
observations and deep learning
Eugenio Cutolo1,2*, Ananda Pascual1, Simon Ruiz1,
Nikolaos D. Zarokanellos2 and Ronan Fablet3

1IMEDEA (CSIC-UIB), Esporles, Spain, 2Balearic Islands Coastal Observing and Forecasting System
(SOCIB), Palma, Spain, 3IMT Atlantique, CNRS UMR Lab-STICC, INRIA team Odyssey, Brest, France
Combining remote-sensing data with in-situ observations to achieve a

comprehensive 3D reconstruction of the ocean state presents significant

challenges for traditional interpolation techniques. To address this, we

developed the CLuster Optimal Interpolation Neural Network (CLOINet), which

combines the robust mathematical framework of the Optimal Interpolation (OI)

scheme with a self-supervised clustering approach. CLOINet efficiently

segments remote sensing images into clusters to reveal non-local correlations,

thereby enhancing fine-scale oceanic reconstructions. We trained our network

using outputs from an Ocean General Circulation Model (OGCM), which also

facilitated various testing scenarios. Our Observing System Simulation

Experiments aimed to reconstruct deep salinity fields using Sea Surface

Temperature (SST) or Sea Surface Height (SSH), alongside sparse in-situ salinity

observations. The results showcased a significant reduction in reconstruction

error up to 40% and the ability to resolve scales 50% smaller compared to

baseline OI techniques. Remarkably, even though CLOINet was trained

exclusively on simulated data, it accurately reconstructed an unseen SST field

using only glider temperature observations and satellite chlorophyll

concentration data. This demonstrates how deep learning networks like

CLOINet can potentially lead the integration of modeling and observational

efforts in developing an ocean digital twin.
KEYWORDS

deep-learning, ocean, remote-sensing, SST, SSH, gliders, OSSE
1 Introduction

Nowadays, there is an increased consciousness of the role played by the ocean in many

crucial aspects of human safety, health, and well-being due to the cumulative impacts of

climate change, unsustainable exploitation of marine resources, pollution, and uncoordinated

development (Ryabinin et al., 2019; Pascual et al., 2021). In response to these challenges,
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which UNESCO has encapsulated in 10 objectives for the Ocean

Decade (2021-2030), the European Union is endeavoring to develop a

digital twin of the ocean. The concept of digital twins involves

creating a digital representation of real-world entities or processes,

based on both real-time and historical observations, to depict the past

and present and to model potential future scenarios.

In the ocean case and especially to address climate change-

related concerns, one major challenge is understanding the state

and evolution of the ocean’s interior. Its stratification significantly

influences large-scale integrated variables like ocean heat content,

acidification, and oxygenation (Durack et al., 2014; Wang et al.,

2018). Moreover, numerous studies have highlighted the

importance of resolving submesoscale dynamics to account for

the majority of vertical ocean transport, which is vital for carbon

export, fisheries, nutrient availability, and pollution displacement

(Pascual et al., 2017). These challenges underscore the need for

high-resolution, three-dimensional representations of the ocean

state. High-resolution numerical models and data assimilation

techniques, which align model outputs with actual observations,

are currently the most common solutions (Mourre et al., 2004;

Carrassi et al., 2018).

Operational simulations now assimilate near-real-time

observations, including in-situ (ship-based observations,

underwater gliders, and floats) and remote sensing data

(Hernandez-Lasheras and Mourre, 2018). Satellite observations

provide frequent global snapshots of the sea surface, for instance

Sea Surface Temperature and Chlorophyll concentration images

offer resolutions as fine as 1 km on a daily basis. In contrast, the

current capabilities of remote altimeters are limited to a 200 km

wavelength for the global ocean at mid-latitudes and about 130 km

for the Mediterranean Sea (Ballarotta et al., 2019), though

significant advancements are upcoming with the Surface Water

and Ocean Topography (SWOT) mission successfully launched in

December 2022 (Morrow et al., 2019). Notably, Sea Surface Height

(SSH) data are unaffected by cloud cover. Even with such

observations about the surface, the uncertainties regarding the

ocean interior remain significant due to the sparse distribution of

in-situ observations in time and space (Siegelman et al., 2019). As a

result, while data-assimilating models adhere to physical balances,

they still lack accuracy (Arcucci et al., 2021).

The ocean twin strategy proposes data-driven approaches as a

complementary method for revealing the ocean state. In previous

oceanographic studies, multivariate methods allowed to elaborate

three-dimensional hydrographic fields relying on their vast in-situ

measurements collected during ocean campaigns (Gomis et al.,

2001; Cutolo et al., 2022). However, these methods are not easily

scalable to a global observing system due to the big number of

parameters involved, such as correlation lengths. Machine learning

techniques offer a solution to these scalability issues, as the models

are directly learned from the data. A key challenge for these

techniques is the need for a substantial quantity of realistic

training data. General circulation and process study models could

then play a new role here, providing a cost-effective way to generate

large datasets that adhere to ocean physics in what is usally called a
Frontiers in Marine Science 02542
Observing System Simulation Experiment (OSSE) (Arnold and

Dey, 1986). Even datasets that only approximate the true state of

the ocean can be valuable, as long as they cover a broad range of

scenarios. This aspect is particularly important to prevent the risk

of deep neural networks merely memorizing the input climatology

instead of learning to capture the actual dynamics of the ocean.

Training the networks on a wide range of scenarios ensures that

they can accurately interpret and adapt to situations that

substantially differ from the norm, rather than being limited to

recognizing repetitive patterns. Additionally, to effectively

generalize beyond their training data, neural networks must be

meticulously designed to maintain the integrity of relevant input

features throughout their layers. In this context, explainable AI aims

to advance beyond the black-box applications typical in ocean

remote sensing studies, promoting a deeper understanding of the

models data-flows (Zhu et al., 2017).

Despite these difficulties, recent studies have demonstrated the

potential of deep-learning methods for various dynamical system

tasks. These range from idealized situations (Fablet et al., 2021) to

realistic case studies, such as interpolating missing data in satellite-

derived observations of sea surface dynamics (Barth et al., 2020;

Fablet et al., 2020; Manucharyan et al., 2021). With regard to

reconstructing hydrographic profiles from satellite data, there’s a

spectrum of approaches: from proof-of-concept studies using self-

organizing maps (SOMs) and neural networks (Charantonis et al.

(2015); Gueye et al. (2014)) and feed-forward or long short-term

memory (LSTM) neural networks (Sammartino et al., 2020;

Contractor and Roughan, 2021; Fablet et al., 2021; Jiang et al.,

2021) as well as (Pauthenet et al., 2022) relying instead on

multilayer perceptron. Even considering these past works the

interpolation of temperature and salinity profiles given some in-

situ and sea surface information is an open challenge.

In this study, we introduce an innovative modular neural

network designed to seamlessly integrate remote-sensing images

with in-situ observations for a complete 3D reconstruction of the

ocean state. This integration is based on the Optimal Interpolation

(OI) scheme’s mathematical principles (Gandin, 1966). However,

our method differs from traditional applications of OI that usually

estimate correlations between points using Euclidean distance.

Instead, we calculate distances within a custom-designed latent

space. Specific modules within our neural network transform both

the input remote-sensing fields and the in-situ measurements

information into this latent space made of ‘clusters’. Within these

clusters, multi-variate and non-local correlations become more

easily identifiable and can be effectively applied to enhance the

correlation matrix. Like attention mechanisms in advanced neural

models (Vaswani et al., 2017), which focus on key aspects in large

datasets for tasks such as language processing or image recognition,

our neural network module similarly identifies crucial correlational

patterns through the latent space of clusters.

We privileged a network structure composed of independent

nested modules to facilitate the understanding and analysis of its

internal information flow from the input data to the covariance

structure. To the best of our knowledge, this is the first work in
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which neural networks achieve the most optimal combination of

remote-sensing and in-situ observations without previous

knowledge of the study area’s climatology. This study is

structured as follows: section 2 presents the main synthetic

dataset that we used for the training and testing and some real

observations for some preliminary use case scenario. All the details

regarding the network architecture can be found in section 3, while

the results are presented and discussed in section 4.
2 Data

Neural networks need large amounts of data to be trained

appropriately. A common choice in oceanography where such a

significant quantity of actual observations are unavailable is relying

on numerical models. In our case, we chased NATL60, a simulation

based on the Nucleus for European Modelling of the Ocean

described. We used the fields of this model to simulate both

remote-sensing and in-situ observations in a so-called Observing

System Simulation Experiment (OSSE) (Arnold and Dey, 1986).

The model output is sampled in these experiments to replicate the

different types of partial observations available. The advantage is

that we can quickly check the obtained improvements since the

model output also provides the ground truth we aim to reconstruct.

The danger of what is usually called “supervised learning” only

aiming to minimize the discrepancy with the provided ground truth

is that the network weights memorize the “right answers” so in our

context the model climatology. We faced this problem, including

two self-supervised terms in our loss function as we describe later

but also accurately selecting a highly varying training and test

dataset as presented here in subsection 2.1.

Finally, we proved the generalization capabilities of our

network, testing it with actual multi-platform observations. In

particular, we used the remote-sensing products of Sea Surface

Temperature (SST) and Chlorophyll-a concentration (CHL) from
Frontiers in Marine Science 03543
CMEMS, together with temperature observations from gliders, as

described in subsection 2.2.
2.1 eNATL60 based OSSE

Our primary experiments utilized the eNATL60 configuration

of the Nucleus for the European Modelling of the Ocean (NEMO)

model (Gurvan et al., 2022), featuring a 1/60° horizontal resolution

and 300 vertical levels across the North Atlantic. This high-

resolution configuration is essential for understanding ocean

dynamics, particularly for surface oceanic motions down to 15

km, which aligns with SWOT observations (Ajayi et al. (2020)). We

direct readers to this work for a detailed understanding of

NATL60’s capabilities. Additionally, numerous studies have

employed the non-extended version of NATL60 for resolving

fine-scale dynamical processes (Amores et al., 2018; Fresnay et al.,

2018; Metref et al., 2019; Metref et al., 2020).

For our training and testing data, we utilized daily averages of Sea

Surface Temperature (SST) and Sea Surface Height (SSH), both

individually and combined, from the eNATL60 simulation spanning

an entire year. Alongside these, we gathered in-situ salinity

observations at three specific depths: 5 m, 75 m, and 150 m. Our

focus was then to reconstruct the 2D salinity fields at these depths. In

particular our analysis predominantly focused on the 5 m and 150 m

depths, selected to assess the robustness of our model both within and

beyond the mixed-layer depth. To ensure that our network’s training

and testing in-situ observations mirrored real oceanographic

conditions, we adopted two distinct sampling strategies: random

and regular. This approach allowed us to evaluate the network’s

performance in various realistic observational scenarios. The

random strategy selects N domain points based on a uniform

distribution, while the regular strategy uses a homogeneous grid

sampling with a fixed spacing of dx. By varying N and dx, we
conducted different experiments to observe metric variations.
FIGURE 1

Training area (A) and testing area (B) presented with the SWOT passages in the fast-sampling phase. The coordinates of the SWOT passages comes
from the simulated SWOT product from the MITgcm LLC4320 model (L2 LR SSH), available on the AVISO website: http://doi.org/10.24400/527896/
a01-2021.006.
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Our focus was on two marine areas: the subpolar northwest

Atlantic for training, and the Western Mediterranean Sea for

testing. Both regions are notable for SWOT passages during its

rapid-sampling phase (see Figure 1). The Mediterranean region, in

particular, is known for its dynamic oceanographic characteristics

and has been extensively studied through in-situ and remote-

sensing methods (Ruiz et al., 2009). Using different regions for

training and testing helps prevent overfitting in the neural network.

Overfitting occurs when a model learns the specifics and noise in

the training data to an extent that interfere with the model’s

performance on new data. Since the climatology of the northwest

Atlantic differs significantly from that of the Western

Mediterranean Sea, we ensure that our network is not just

memorizing patterns from the training data but is effectively

learning to generalize across different oceanographic contexts.

Additionally, we diversified the dataset by sampling the same day

with varying N or dx values.

For simplicity, our approach assumes a synoptic scenario,

where all observations occur simultaneously. Future work will

address the non-synoptic nature of actual sampling and explore

how the network accommodates this. Furthermore, in this study, we

did not incorporate simulated noise or measurement errors into our

data, opting to explore these aspects in subsequent research. Despite

this, the practical effectiveness of our network is demonstrated

through tests using actual observational data, details of which are

provided in the following subsection.
2.2 Real observations

2.2.1 Remote-sensing observations
In our study, we have used Sea Surface Temperature (SST) and

Ocean Color (CHL) imagery from the 18th of February, 2022,

distributed by CMEMS. The CHL has 1 km spatial resolution, and it

is a level-3 product obtained by multi-Sensor processing from

OceanColor (Volpe et al., 2019). The SST also has a 1 km spatial

resolution and it is based on level-2 product based on multi-channel

sea surface temperature (SST) retrievals, which it has generated in

real-time from the Infrared Atmospheric Sounding Interferometer

(IASI) on the European Meteorological Operational-A (MetOp-

A) satellite.

2.2.2 Glider observations
Gliders are autonomous underwater vehicles that allow sustained

collection at high spatial resolution (1 km) and low costs compared to

conventional oceanographic methods. Many studies confirmed the

feasibility of using coastal and deep gliders to monitor the spatial and

low-frequency variability of the coastal ocean (Alvarez et al., 2007;

Heslop et al., 2012; Ruiz et al., 2019; Zarokanellos et al., 2022). In this

work we used the observations from two gliders in the Balearic Sea as

a part of the Calypso 2022 experiment. The two gliders carried out a

suite of sensors that measure temperature, conductivity and pressure

(CTD), dissolved oxygen (oxygen optode), Chlorophyll fluorescence

and Turbidity (FNLTU). The two gliders were programmed to profile

from the surface up to 700 m with a vertical speed of 0.18 ± 0.02 m/s
Frontiers in Marine Science 04544
and moved horizontally at approximately 20–24 km per/day. Data

were processed following the methodology described in Troupin et al.

(2015). In this study, we have used the temperature data at 15 m from

the 10th of February until the 18th of February.
3 Methods

When sparse observations are available, the most common

technique that has been adopted in oceanography and in different

fields of science using a gridded product is Optimal Interpolation

(OI) (Gandin, 1966). The technique relies on a solid mathematics

basis and has been the state-of-the-art approach for many

geophysical products until now. Since the proposed neural

approach and specifically our prior builds over the OI framework

we reviewed it in subsection 3.1. Then, we introduce CLOINet our

neural approach and its submodules in subsection 3.2. Lastly, we

present the metrics we used for bench-marking purposes.
3.1 Baseline: OINet

A common approach to explain the OI math start considering y

as the vector containing all the observations we have of the true state

x, which is unknown. We can relate them with the following

observation model Equation 1:

y = Hx + ϵ (1)

where H is the observation (or masking) operator, and ϵ is the

observation error. Under Gaussian hypotheses for ϵ and the prior

on x, we can obtain the best possible estimation of true state xs given

the observations y through a linear operator K (the Kalman gain see

Welch and Bishop (1995)):

xs = Ky (2)

K = BHT(HBHT + R)−1 (3)

where R is the observation error covariance matrix and B is the

error covariance specific of the analysis. In Equation 3, we are

assuming an a-priori knowledge of both R and B, which could be

theoretically obtained by repeating the same experiments many

times. Practically, a parameterized covariance matrix is often used

to substitute the complete climatology covariances Gaspari and

Cohn (1999). The most common parametrization for this matrix is

a Gaussian-shaped correlation, depending only on the points’

distances and pre-determined correlation lengths. So for two

generic position vectors ri and rj, we have:

Bi,j = cov(ri, rj)  = e
−o3

n=1

(ri,n − rj,n)
2

2c2n (4)

where the sum for dimension n considers the squared difference

of the components of the position vectors ri,n and rj,n divided by the

squared nth correlation length cn. Regarding the observation error

matrix, we assume from now on that it is diagonal Equation 5:
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Ri,j = Ii,jϵ (5)

A different case where the observation errors are correlated is

possible. However, R is often assumed diagonal to reduce

computational costs (Miyoshi and Kondo, 2013). Finally,

inserting B and R in Equation 3 and then in Equation 2 we can

compute our estimated field xs.

In our experiments, we established a baseline method with

OINet, a simple neural network, that automatically discover the

OI correlation lengths among different variables (SST, SSH, and

salinity) and dimensions. OINet is then provided with the same

input data as CLOINet, including surface fields (SST and/or SSH)

and in-situ salinity observations. It operates in a two-step

process: the first step involves transforming the multivariate

surface fields into a unified field, making it compatible for

being used with the salinity observations. The second step is to

estimate the three correlation lengths specific to the current set of

observations. While the first step involves 2 convolutional layers

the second one is a simple feed-forward neural networks able to

process a generic number of O observations (see the bottom part

of Figure 2).
Frontiers in Marine Science 05545
Beyond the parameter estimation this module is simply

realizing an OI using the formula in Equation 4 to calculate the

covariances. Notably this approach not only automates the tuning

of parameters but also leverages GPU power for more efficient

interpolation computations.
3.2 CLuster enhanced Optimal
Interpolation Network

Ocean dynamics often display non-local and anisotropic

patterns, which traditional Optimal Interpolation (OI) methods

struggle to account for effectively. The main challenge with OI lies

in its correlation function assumptions, which may not accurately

reflect the actual physical conditions of the ocean. For instance, as

seen in Equation 4 OI typically presumes that points in close

proximity are strongly correlated, while distant points are not.

However, oceanographic phenomena can exhibit the opposite

behavior. For example, ocean fronts, characterized by narrow

zones with strong horizontal density gradients, act as boundaries
FIGURE 2

Flow chart of CLOINet information processing: Red and green elements (boxes and arrows) represent the processing paths for the SST input surface
field and the in-situ salinity observations, respectively. Purple elements indicate the combined use of both inputs. The bold text along the arrows
specifies the network module in operation. The line style and width of each box vary to represent different processing stages, ranging from thin and
dashed for inputs to solid and thick for outputs. Inside each box, capital letters denote the corresponding tensor dimensions: W for field width, H for
field height, S for the number of input surface fields, P for the number of OINet priors, C for the number of clusters (consistent across all modules in
our tests), D for the number of depths, and O for the number of in-situ observations. Colorbars are omitted for clarity. The lower part of the image
illustrates the CNN architecture of the three modules, along with the number of parameters used.
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between water masses with distinct physical and bio-optical

properties. Conversely, in dynamic ocean features like meanders

and eddies, water masses can remain similar over vast distances.

Here, we aim to benefit from the wealth of information from

remote sensing regarding the shape of the ocean features, whether

they belong to the mesoscale or the submesoscale. The key idea is

grouping a set of objects in such a way that each object is more

similar to the objects belonging to its same group (called a cluster)

than the rest. This procedure in statistics is called clustering.

Applying this concept to reconstructing the ocean state, our

approach is to reveal non-local correlations by clustering grid

points that are part of the same oceanic features. This led us to

develop CLOINet (Cluster-enhanced Optimal Interpolation Net),

an end-to-end system designed to optimally interpolate sparse in-

situ observations using available remote-sensing images. CLOINet

is able to process any kind of surface fields (2D images) and in-situ

observations (2D masks and observation values). Its main

submodule is CLuNet, which transforms 2D fields into fuzzy

clusters. While satellite images could directly been passed to this

module in-situ observation profiles are initially processed by OINet,

which serves as a prior, converting them into images. Finally a

further submodule, RefiNet, module merges the fuzzy clusters from

both surface fields and observation priors into a final cluster set.

Within this latent cluster space an alternative distance could replace

the euclidean distance allowing a better estimation of B and

consequently obtains the reconstructed field xs.

Our network structure allows a joint training of all modules,

minimizing their specific loss function terms summed up in a global

loss function. Convolutional Neural Networks (CNN) layers. Here

following, we describe the details of the network submodules and

how we obtained the interpolation in an end-to-end scheme also

summarized in Figure 2).
3.2.1 Clusters space transformation: CluNet
The first module of our scheme, called CluNet is in charge of

transform any images into a set of clusters. Piratically speaking it

segments the input 2D images (like multivariate remote-sensing fields

or the observations priors) into C clusters of similar points. In this

context, we consider two points similar according to their positions (as

in Equation 4) but also their values in the input 2D fields. In particular,

we worked within the so-called “fuzzy logic”, where the membership

function mjk, which expresses how much the j point belongs to the k

cluster, could assume every value between 0 and 1. Considering this

continuous range means that each grid point could be part of more

than one cluster as long as the following normalization holds:

o
C

k=1

mjk = 1     ∀j (6)

For its non-binary logic, this clustering technique is called

“Fuzzy Clustering” or soft k-means. being this last the simpler

binary case in which mjk could be just 1 or 0. CluNet takes the

remote-sensing images as input and gives the tensor composed by

all the mjk through various CNN and finally a softmax layer to

guarantee Equation 6. The associated training loss, referred to as a
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Robust fuzzy C-means (Chen et al., 2021) loss, is composed of two

terms:

LRFCM(y;  q) 

= o
j∈Ω

o
C

  k=1

mq
jk(y; q) yj  −  vk

�� ��2+ b  o
j∈Ω

o
C

  k=1

mq
jk(y; q)  o

l∈Njm∈Mk

o
lm

mq
lm(y;

(7)

y is the vector containing the surface field that we want to

cluster with yj its value at point j in our domain Ω. q is a parameter

that satisfies q ≥ 1 and controls the amount of fuzzy overlap between

clusters. Minimizing the first term achieves that points with high

membership function for the k cluster should be similar to its center

vk defined as follows Equation 8:

vk =
oj∈Wm

q
jk(y; q)yj

oj∈Wm
q
jk(y; q)

(8)

The second term guarantees the membership function’s spatial

smoothness, forcing the j point to have a similar value to its

neighborhood Nj. The parameter b controls the intensity of

this constraint.

In summary, to obtain the clustering, we minimize Equation 7

with respect to the parameters of the CNN layers included in

CluNet, which stand in the q vector. Since in this loss term, we do

not directly provide any ground truth (i.e., the best way of

clustering the inputs), this part of the network could be

considered self-supervised since it learns indirectly from the rest

of the loss term. As it show in Figure 2 we used this module twice,

firstly for clustering surface input fields and secondly for

clustering the 2D fields coming from the observations priors

described hereafter. Consequently in the global loss there are

two terms like Equation 7.

3.2.2 Observations priors
We have outlined the process by which CluNet segments any

set of 2D fields into distinct clusters. To handle in-situ

observations, which are essentially vectors of observations at

different depths, we utilize OINet to convert them into a series

of images that can then be clustered. As previously mentioned,

OINet has the capability to autonomously determine the

appropriate correlation lengths for a given set of observations

and then perform a canonical Optimal Interpolation (OI). In our

approach, we generate four different versions of these

interpolations, each initiated with correlation lengths that are

submultiples of the domain sizes. These parameters, among

others, are then fine-tuned during the learning phase. This

process results in four fields that CluNet subsequently clusters

into areas exhibiting similar values, despite being derived using

different correlation lengths. The clusters formed from these

observations provide insights into the certainty we have about

specific regions and the extent to which a particular depth is

influenced by surface conditions. Essentially, this method allows

us to address potential anisotropy in the uncertainties without

having to rely on fixed length scales.
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3.2.3 Data fusion in the clusters space: RefiNet
We now have a set of clusters derived from the surface fields,

and an additional set for each depth of the in-situ observations. For

each depth, the corresponding sets of surface and observation

clusters are processed through RefiNet. The resulting clusters,

along with their membership vectors, are used to compute the

covariance matrix as follows Equation 9:

Bi,j = cov(ri, rj) = 1 −o
C

k=1

(m0
ik −m0

jk)
2 (9)

In this equation, we sum the differences in the membership

functions of points ii and jj across all clusters. This process, while

bearing similarities to Equation 4 deviates by using subtraction

instead of an exponential function since mik and mjk are already

bounded within the 0-1 range. This summation represents a non-

local distance in the cluster space, replacing the classical Euclidean

distance. Consequently, two points within the same cluster (i.e.,

with similar membership vectors) will be correlated, regardless of

their spatial distance.

Using parametrization (9), we then compute the associated

optimal interpolation as Equation 3 and then Equation 2. This

forms an end-to-end architecture that uses remote sensing images

and in-situ data to output regularly-gridded vertical profiles (see

Figure 2 for the data flow).

The training loss combines three components: two clustering-

based losses Equation 7 (one for the surface fields and one for the

observations priors) and a supervised reconstruction term. So

globally we minimize Equation 10:

L = aLsrfRFCM + bLobs RFCM + gLMSE (10)

where a, b and g are the weights of the three loss terms, and

LMSEis given by Equation 11:

LMSE = (xs − x)2 (11)

This last term is just the mean squared error with respect to the

ground truth x. Within the considered supervised training strategy,

self-supervised losses Equation 7 act as regularization terms to

improve generalization performance and explainability. We

maintain equal weights of a, b, and g at 1, as no significant

differences were observed with other values. Our network also

shows relative insensitivity to other hyperparameters, such as the

number of clusters. However, our cross-validation tests indicated

that setting this number to 20 yielded the best results.
3.3 Performance metrics

To understand how the clusters sets were changing according to

the input data we computed the associated entropy fields. In fact,

given that the membership vector is normalized and thus it can be

seen as a distribution, its entropy definition is Equation 12:

Si =   −o
C

k=1

m0
ik   log m

0
ik (12)
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To assess the performance of the proposed approach, we first

define the error between the ground truth and the estimated field

value Equation 13:

xerr =  x − xs (13)

then we easily obtain our first performance metric: the Root

Mean Squared Error (RMSE) Equation 14:

RMSE =
ffiffiffiffiffiffiffi
x2err

p
(14)

We will present this metric in percentage of the standard deviation

of the ground truth fields. Now considering the standard deviation of

the error over the whole N snapshot Equation 15:

serr =
oN

t=1 xerr(t) − xerr(t)
� �2

N
(15)

we can compute the explained variance score dividing by the

standard deviation of the ground truth Equation 16.

sS(x, y) = 1 −
serr

strue
(16)

To highlight the effective resolution of the different

reconstruction methods we use the noise-to-signal ratio NSR

(Ballarotta et al., 2019) Equation 17:

NSR(l) =
PSD(xerr , l)
PSD(x, l)

(17)

the effective resolution is in fact given by the wavelength ls
where the NSR ls is 0.5.
4 Results and discussion

This section first reports numerical experiments using NATL60

OSSEs to evaluate the proposed approach quantitatively. The

concluding subsection presents an application to real observations.
4.1 Clusters entropy

The initial part of our analysis focuses on understanding how

CLOINet, via CluNet and subsequently RefiNet, organizes clusters

based on different data inputs: SST, SSH, and various sets of

randomly located in-situ salinity observations. To illustrate this,

we plotted some example entropy fields in Figure 3 along with

statistics on how entropy changes with an increasing number of

observations N. In the four panels on the left side of Figure 3 we

display two clusters’ entropy fields (panels a and e) and their

corresponding input fields for SSH (panel b) and SST (panel f)

from a selected snapshot. In the four panels on the right side, we

present the entropy associated with the in-situ observations’ clusters

at two different depths z = 5 (panel c) and z = 150m (panel g)

together with the correspondent refined clusters entropy (panel d

and h) along with the refined clusters’ entropy (panels d and h).

This particular snapshot was chosen for its submesoscale

features. The differences between SSH and SST-based entropy are
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noticeable; the SSH clusters highlight more prominent features,

while SST forms smaller clusters that extend to deeper depths. The

correspondence between the surface fields and their cluster entropy

is relatively straightforward, but differences in other sets are more

subtle. For observation clusters’ entropy, we observe lower entropy

(blue regions) near points with similar observations. Areas of higher

entropy occur between two observation points with differing values.

This behavior varies at different depths, explaining the differences

between panels c and d. The refined clusters, influenced by both

observations and surface fields, exhibit subtler changes, but we can

still see an increase in entropy with depth, particularly noticeable in

the northeast region of panels d and h.

Beyond this specific snapshot, panel i shows the percentage

change in entropy between the two depths, averaged across the

entire test dataset as a function of the number of observations.

When only SST data is available, the changes in clusters are more

pronounced, as SST information is less directly related to the

ocean’s interior compared to SSH or combined SST and SSH

data. As expected, all deltas increase with the number of

observations, eventually reaching a saturation point where they

decrease. This occurs because the clusters’ information becomes less

critical, and the field can be reconstructed relying primarily on in-

situ observations.
4.2 RMSE and correlation

WWe present the outcomes of the random sampling OSSE in

Figure 4. The first two rows illustrate a ground truth salinity

example at two different depths, alongside the reconstructions by

the baseline OINet and CLOINet with various surface input fields.

Again, we chose the same snapshot from Figure 3 for its distinct

submesoscale features.
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OINet can effect ively use surface information for

reconstructing the surface layer, but it struggles to propagate

this information to deeper layers. We also experimented forcing

a bigger correlation length in the z axis but we ended up with a

reversed scenario: a well-reconstructed bottom layer but a poorly

reconstructed (not shown). This limitation arises because the

simple network cannot determine which surface fields to

prioritize based on the in-situ observations.

In the case of CLOINet, we observe different results based on

the input fields provided. SST leads to better surface

interpolations, while SSH is more effective for deeper fields.

This outcome aligns with our expectations, as SSH data is

depth-integrated and thus more informative than SST for

understanding the shape of water masses at depth. Notably,

when both SST and SSH are used as inputs, the network

effectively leverages their shape information to enhance both

surface and interior reconstructions, leading to a reduction in

RMSE by about 40% at both depths.

The results across the entire testing set show similar patterns.

On panel l (m) we show how for all methods, the RMSE

(correlation) decreases (increases) in proportion to the number of

observations. In these plots, solid lines represent surface salinity

fields, while dashed lines indicate interior fields at z = 150m.

Interestingly, on average, OINet’s performance is comparable to

CLOINet’s for surface reconstructions but falls short for interior

reconstructions. This fact is mostly related with presence or not of

submesoscale features as the next subsection analysis will show. The

variation in CLOINet’s surface inputs shows minimal impact on

surface results, with only slight improvements observed in the SST

+SSH case. However, the introduction of the SSH field significantly

enhances the interior field reconstructions. Once again, this

confirms that SSH provides more comprehensive information

about the entire water column compared to SST.
FIGURE 3

The entropy of the cluster sets, resulting from the input SSH and SST, is depicted in panels a and e, respectively, while the corresponding fields
themselves are shown in panels b and f. Panels c and d (and g and h) display the entropy of the observation and refined cluster sets at a depth of Z =
5 m and Z = 150 m, respectively. The dots in these panels represent salinity observations at these depths, with their colors indicating the magnitude
of salinity (scale not shown). Panel i illustrates the variation in the entropy of the refined cluster sets along the vertical axis, corresponding to different
numbers of observations. The varying colors in this panel represent different networks.
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FIGURE 4

Example of salinity field interpolation at Z = 5m (first row, panels A, C, E, G, I) and Z = 150m (second row, panels B, D, F, H, I) with ten random
observations. The first column shows the ground truth, and the subsequent columns represent various interpolation methods. The two bottom plots
display the RMSE (panel L) and correlation coefficient (panel M) as functions of the number of observations in a random sampling scenario, averaged
across the entire test dataset. In these plots, the solid line corresponds to Z = 5m, while the dashed line represents Z = 150m.
FIGURE 5

This figure shows the explained variance for various interpolation methods averaged across the entire test dataset, in a scenario with regular
sampling at 45 km intervals. Panels (A-D) display the results at Z = 5m for OI, CLOINet-SST, CLOINet-SSH, and CLOINet-SST+SSH, respectively,
panels (E-H) are instead relative to Z = 150m. Black dots mark the locations of in-situ observations while the spatial average value for each method
is indicated on the corresponding subplot. Panel (I) compares the Power Spectral Density (PSD) of the different reconstruction methods with the
ground truth, with each color representing a different method. Panel (L) shows the corresponding score, where the colors denote different sampling
resolutions. In both panels (I, L), solid lines represent surface fields, while dashed lines correspond to fields at a depth of z = 150m. The red line
across panel (L) marks the 0.5 threshold value, indicating the effective resolution of the interpolation methods.
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4.3 Resolved scales

In Figure 5, we present the results of the OSSE conducted with

regular grid sampling, varying the spacing between observations to

understand how different methods resolve various spatial scales.

Specifically, we examined the impact of sampling resolution on the

explained variance and the Power Spectral Density (PSD)-based

score. The explained variance for the different reconstruction

methods at a sampling resolution of 20 km is shown in panels a,

c, e, and g (and panels b, d, f, and h for the interior field). When

provided with the same inputs as OINet (SST and SSH), CLOINet

slightly surpasses it on the surface and by about 20% in the interior.

Again, we observe superior performance from CLOINet-SSH in the

interior, while the inferior performance of the network relying

solely on SST suggests that, on average, this field does not

significantly account for salinity variability.

The PSD-based score, shown in panel l, indicates the effective

resolution of the reconstruction (the point at which the score falls

below 0.5) demonstrating how CLOINet generally resolves smaller

scales than OINet across various sampling resolutions. For higher

resolutions, such as 5 and 12 km, CLOINet resolves scales

approximately 1.5 times larger than OINet. The training set’s

averaged spectra, depicted in panel i, reveal that OINet is

typically limited to reconstructing larger scales. Indirectly, this
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suggests that the variability explained in the test region is

predominantly due to larger scales, which even OINet can

adequately account for.
4.4 Real ocean data preliminary tests

In line with many deep learning studies, our research focuses on

applying neural networks, initially trained on synthetic data, to real-

world observations. We evaluated CLOINet’s effectiveness in

improving Sea Surface Temperature (SST) estimates using glider

surface temperature observations, enhanced with shape

information from a Chlorophyll (CHL) snapshot (refer to

Figure 6). Both OINet and CLOINet were able to reconstruct the

general SST pattern observed in reality. CLOINet demonstrated a

slightly superior performance, as evidenced by higher correlation

values. This improvement aligns with our qualitative observations,

suggesting that CLOINet more accurately preserves submesoscale

features. Notably, this achievement was realized without the

networks being specifically trained on CHL data. In these

preliminary tests, the CHL data was provided as if it were the

SST and SSH fields, demonstrating the networks’ versatility in

utilizing shape information from various types of variables.

Achieving similar levels of accuracy with traditional Optimal
FIGURE 6

The top panel displays the Chlorophyll-a (CHL-a) concentration in the Western Mediterranean Sea on February 18, 2022. The dots represent
temperature observations from two gliders over the preceding 48 hours, while the red box outlines the area where interpolation was performed. The
bottom panels, labeled a, b, and c, show the actual Sea Surface Temperature (SST) this same day and the reconstructed SST using CLOINet and
OINet, respectively. The correlation values for each reconstruction method are indicated in the corresponding plots.
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Interpolation (OI) methods would be more complex, likely

necessitating intricate, predefined multi-variate correlation

functions and extensive parameter tuning.
5 Conclusion

In this, we presented CLOINet, a comprehensive end-to-end

neural network designed to combine sparse in-situ observations

into a full 3D field leveraging shape information from kind of ocean

remote sensing images. We conducted end-to-end training of

CLOINet within a supervised framework, using Observing System

Simulation Experiments (OSSEs) based on the NEMO-derived

NATL60 simulation. Our study focuses on comparing the

reconstruction of 3D salinity capabilities of CLOINet with those

of a data-driven version of classical Optimal Interpolation, which

we have named OINet. This comparison also extends to

applications involving real observational data.

Our research covered various scenarios, including both

randomly and regularly spaced in-situ salinity observations,

paired with different remote sensing inputs such as Sea Surface

Temperature (SST), Sea Surface Height (SSH), or a combination of

both. Upon creating a 3D salinity field, we thoroughly analyzed how

our performance metrics responded to variations in the number

and density of in-situ observations.

In dense regular sampling we showed how CLOINet was able to

resolve scales 1.5 smaller scales compared to OINet while in random

sampling contexts, CLOINet showed enhanced performance in

terms of both RMSE and correlation, especially notable when

limited observations were available. This improvement was

significant in scenarios involving in-depth fields and areas rich in

submesoscale features, where RMSE improvements reached as high

as 40%.

Despite not incorporating simulated errors to mimic actual

sampling instruments, the promising results with real data highlight

the potential of our approach in operational contexts. In fact,

CLOINet adeptly handled noisy CHL fields and gliders in-situ

temperature and successfully reconstructed the general pattern of

an unseen SST field, without specific training for this task. These

outcomes also demonstrate that, apart from reconstructing salinity,

the process of transforming input data into a latent space composed

of clusters enables comprehensive multi-variate analysis.

Our training approach, which combined two self-supervised

losses with a supervised reconstruction loss, enabled the network to

generalize effectively. This was evident as it performed accurately in

the Western Mediterranean test area, distinctly different from the

North Atlantic training region. This suggests that our method is not

limited by specific regional climatology and could potentially be

scaled for global application.

Overall, the modular design of CLOINet not only enhances

our understanding of its internal processes but also positions it

for future enhancements. One promising direction for
Frontiers in Marine Science 11551
subsequent research is extending the model to incorporate

space-time dynamics. Another intriguing possibility is

employing this neural network approach for guiding an

adaptive sampling multi-platform ocean campaign. Given the

significant role of SSH data in assessing the reconstruction of

the deeper water layers, the upcoming high-resolution SSH

observations from SWOT present an exciting opportunity for

further refining and applying CLOINet.
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