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Editorial on the Research Topic
Deep learning for marine science

In recent years, Deep Learning (DL) technology has been widely used in marine science
and technology research, and provides powerful technical support for related researches
and applications. As ocean observation technology continues to advance, the volume of
data generated by marine scientific research is steadily increasing. This offers vast potential
for data-driven DL to demonstrate its capabilities and has therefore emerged as a valuable
technology across multiple research fields, including biology, ecosystems, climate, energy,
as well as physical and chemical interactions.

The Research Topic “Deep Learning for Marine Science” aims to provide a research
collection to collect relevant research work on the application of DL technology in marine
science. A total of 39 papers are published with contributions by 236 authors. The contents
in these papers focus on the following aspects: research survey, marine/underwater image
enhancement/restoration/compression, marine/underwater visual recognition/detection,
dataset and labeling, marine process/phenomenon prediction/detection, marine physical/
biogeochemical variable prediction/reconstruction, and marine optics/acoustics. Here, we
summarize the contents of these papers and highlight their key contributions to the
Research Topic.

1 Research survey

Although machine learning tools hold great promise, they are still not being used to
their full potential in several areas, such as species and environmental monitoring,
biodiversity surveys, fisheries abundance and size estimation, rare events, and species
detection, the study of animal behavior, and citizen science. To help researchers effectively
apply image-based machine learning methods in their research problems, Belcher et al.
write a review article that provides an easily approachable end-to-end guide.

7 frontiersin.org
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Zheng et al.

In terms of underwater image restoration technology, Song et al.
make a systematic review to bridge the gap between shallow sea and
deep-sea image restoration through experimental analysis. The
review mainly describes the core concepts and methods of the
three types of shallow sea image restoration methods. It also
summarizes the research status and main challenges of deep-sea
image restoration, discusses potential solutions, conducts
experiments and in-depth discussions, and proposes several
development directions for deep-sea image restoration in the future.

2 Marine/underwater image
enhancement/
restoration/compression

It is a challenging task to store and transmit high-quality
underwater images. To improve the performance of adaptive
sampling and reconstruction of underwater images, Li et al.
combine the advantages of compressed sensing and DL to
propose ESPC-BCS-Net. The method obtains parameters (such as
sampling matrix, sparse transforms, and shrinkage thresholds)
through end-to-end learning. The experimental results are
visually and quantitatively evaluated, demonstrating that the
proposed method has good compression and reconstruction effects.

Xin et al. introduce an end-to-end network for Simultaneous
Localization And Mapping (SLAM) pre-processing in low-light
underwater environments, aiming to address the limitations of
visual SLAM systems based on feature point extraction. The
proposed network comprises a low-light enhancement branch
with a non-reference loss function, a self-supervised feature point
detector, and a descriptor extraction branch. Additionally, a unique
matrix transformation method is designed to enhance the feature
similarity between two adjacent video frames, thereby improving
the performance of underwater SLAM.

In order to solve the important problems of blur and color
distortion in underwater optical imaging and improve the ability to
accurately perceive underwater images, Zhang et al. propose a
multi-scale weighted fusion method. By merging, enhancing, and
reconstructing images, the clarity and color fidelity of underwater
images are effectively improved, and the quality of underwater
images presented is improved. Excellent results have been obtained
in many experimental indexes.

Zheng et al. propose a solution to improve the performance of
underwater monocular visual SLAM systems. The existing SLAM
algorithms are often impractical or invalid due to the complex aquatic
environment and the poor image quality obtained in such conditions.
The proposed solution involves using a Generative Adversarial
Network (GAN) to enhance the underwater images before SLAM
processing. To reduce the inference cost, the GAN is compressed
through knowledge distillation. This approach ensures real-time
inference and high-fidelity underwater image enhancement.

To improve the quality of underwater images and achieve
simultaneous restoration and super-resolution, Wang et al.
propose an end-to-end trainable model named Simultaneous
Restoration and Super-Resolution GAN (SRSRGAN). The model
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uses GANs and consists of two stages of a cascading architecture to
restore and super-resolve damaged underwater images coarse to fine.
The proposed method is experimentally validated and demonstrates
its superiority in underwater image restoration, super-resolution,
and simultaneous restoration and super-resolution.

3 Marine/underwater visual
recognition/detection

In order to realize the fast navigation of Unmanned Surface
Vehicle (USV) in complex marine environments, a target detection
algorithm with high detection speed and accuracy is essential. To
address this Research Topic, Zhang et al. propose a YOLOV5
lightweight object detection algorithm that leverages the Ghost
module and Transformer, resulting in high-efficiency and high-
precision object detection. The proposed algorithm is tested on ship
videos collected by the “JiuHang 750” USV in different marine
environments and demonstrates promising results.

To address the problem of ship instance segmentation in
Synthetic Aperture Radar (SAR) images with high resolution and
complex backgrounds, Yasir et al. propose a unique YOLOv7
improved high-resolution remote sensing (HR-RS) image
segmentation single-stage detection method. The method
enhances the accuracy, efficiency, and model robustness of ship
instance segmentation through improvements made to the single-
stage detector, backbone network, and network feature fusion part,
and promising results have been achieved.

To enhance the economic and environmental performance of
the fishery, Avsar et al. utilize underwater images captured by an in-
trawl video recording system to obtain quantitative information on
the capture rate of Nephrops norvegicus, a target species. The study
employs real-time detection, tracking, and counting techniques to
monitor the entry of the target species into the trawl. The detection
is done using the YOLOv4 algorithm, which has a proven track
record in real-time processing underwater images to determine the
target species’ capture rate. Additionally, the algorithm has the
potential to process multiple species simultaneously.

Saito et al. utilize DL to investigate the suspended particles in
the depths of the sea. To analyze the variability of suspended
particle abundance in the images taken by the standard fixed
camera “Edokko Mark 17, they implement object detection
technology through the YOLOV5 algorithm to create a suspended
particle detection model. They conduct the first excavation test of
cobalt-rich ferromanganese crust in the world. The ability of the
model to measure changes in the concentration of deep-sea
suspended particles is assessed, and the effectiveness of the
proposed method in detecting temporal changes of suspended
particles and detecting significant abrupt changes, such as mining
effects, is validated.

Collecting data on marine fish can be a challenging task due to
the nature of their environment, often resulting in poor-quality
data. Moreover, identifying various fish categories from small
sample images can be difficult, especially regarding fine-grained
classification. Zhai et al. propose a new attention network called the

frontiersin.org
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Sandwich Attention Covariance Metric Network (SACovaMNet),
which applies metric learning and incorporates attention modules
to comprehensively improve the feature extraction capability from
global and local perspectives. The result is an excellent performance
in the task of fine-grained fish classification.

Prior et al. develop automated video post-processing models to
implement automated image analysis of commercially important
Gulf of Mexico fish species and habitats. In addition to traditional
metrics used to measure the performance of Artificial Intelligence
and Machine Learning (AI/ML) models, such as mean Average
Precision (mAP), the automated counts are compared to validated
set counts to ensure accuracy. The adapting comparative otolith
aging methods and metrics are used to measure the model
performance, which helps researchers analyze and make
management decisions. This approach provides a valuable tool for
analyzing Gulf of Mexico fish species and habitats.

Han et al. propose a few-shot domain adaptive underwater
object detection framework to address the issues of expensive
establishment of marine species database and unstable domain
shifting of underwater objects caused by the complex marine
environment. The framework includes a novel two-stage training
method and a lightweight feature correction module that can adapt
to image-level and instance-level domain shifting on multiple
datasets. The method quickly demonstrates its knowledge transfer
capability in detecting two similar marine species.

Through the sea trial experimental data, Guo et al. propose to
automatically identify inbound and outbound ships by utilizing the
phenomenon that the sound field interference structures of inbound
and outbound ships are different due to the variation of the
topography of the shallow continental shelf. The approach utilizes
only a single scalar hydrophone to collect data and employs four
convolutional neural networks to classify inbound and outbound
ships. And this research method can be applied to the intelligent
monitoring of ships entering and leaving ports.

To address the challenge of applying DL algorithms to
underwater target detection tasks due to the complex underwater
environment and low image quality, Zhang et al. propose an
underwater target detection algorithm based on an improved
version of YOLOv4. This proposed method achieves superior
detection performance and efficiency in experiments by
incorporating a newly designed convolutional network module,
loss function, and detector strategy.

Large-scale research on plankton classification, which uses
machine learning techniques, requires powerful computing
resources. The exponential computing power of quantum
computers makes quantum machine learning a potential solution
for large-scale data processing. Therefore, Shi et al. propose a hybrid
quantum-classical convolutional neural network (CNN) for the
identification task of phytoplankton. The model demonstrates the
feasibility of using quantum deep neural networks for
phytoplankton classification for the first time. The proposed
model exhibits a faster convergence rate, higher classification
accuracy, and lower accuracy fluctuation compared to classic
CNN-based models.

Commercial fishing vessels face difficulties in collecting acoustic
data required for species classification and population evaluation
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due to the limited calibration capability and frequent data loss of
current commercial echo sounders. To address this issue, Tong et al.
develop an automatic detection and classification model for Pacific
saury (Cololabis saira) echo trace using the YOLOv5m algorithm.
This model enables the measurement of in-situ values of Pacific
saury using a single fish echo trace. Furthermore, the living fish
calibration method is utilized to facilitate rapid calibration of
commercial echo sounders.

To measure the fish without disturbing their natural habitat and
overcome the limitation of manual measurement with potentially
harmful intervention, Marrable et al. propose a generalized, semi-
automatic method that combines the DL method with the high-
precision stereo-BRUVS calibration method. The calibration cube is
used to ensure that the accuracy of the calculated length is within a
few millimeters and that the measurement accuracy is close to the
accuracy of human measurements.

In order to distinguish the subtle changes of marine organisms
and achieve accurate fine-grained classification, Si et al. propose a
new transformer-based framework, token-selective vision
transformer, and also propose a token-selective self-attention to
select important tokens with discrimination for attention
calculation, so as to limit attention to more accurate local areas.
Experiments on three marine biological datasets verify that the
proposed method can achieve state-of-the-art performance.

Current DL methods face challenges in processing in-situ
plankton images due to large computation and long consumption
time. To address this issue, Yue et al. propose an inter-class similarity
distillation algorithm. This method enables the student network
(small scale) to acquire excellent plankton recognition ability under
the guidance of the teacher network (large scale). The experiment
proves helpful in improving the accuracy and speed of plankton
recognition, establishing effective DL models, and facilitating the
deployment of underwater plankton imaging systems.

To address the ever-changing marine environments and diverse
marine life, Schmid et al. implement edge computing technology by
integrating the latest In-situ Ichthyoplankton Imaging System-3
(ISIIS-3) in the Northern California Current. The edge server
utilizes DL techniques to achieve high-throughput in-situ plankton
classification technology for real-time data adaptive sampling.

In order to develop and evaluate a subtidal seagrass detector
method, Langlois et al. adopt a DL model to detect most forms of
seagrass appearing in various habitats in the seascape of northeast
Australia from underwater images, and classify them according to
the coverage degree of seagrass to obtain high accuracy, and better
application value and prospects.

To create a non-invasive method to recognize leopard coral
grouper (Plectropomus leopardus), Wang et al. develop a multiscale
image processing method based on matched filters with Gaussian
kernels and partial differential equation (PDE) multiscale
hierarchical decomposition with the deep convolutional neural
network models VGG19 and ResNet50 to extract shape and
texture image features of individuals. They then use these features
to identify individual Plectropomus leopardus in sequence images
captured over 50 days. To achieve this, they employ random forest,
support vector machine, and multi-layer perceptron methods for
individual recognition. The experimental results demonstrate that
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the CNN based on PDE decomposition can identify Plectropomus
leopardus effectively and with great accuracy.

4 Dataset and labeling

Catalan et al. create a new labeling dataset with the aim to
further study and improve the application of DL techniques in
identifying and classifying fish in underwater images. The dataset
consists of more than 18,400 recorded Mediterranean fish from 20
different species, which are obtained through various operations
such as different backgrounds, sample size, labeling quality, etc.
These fish were extracted from underwater images captured from
over 1,600 diverse backgrounds, which will assist in improving the
use of DL in studying underwater life.

To achieve efficient data labeling and reduce the cost of manual
labeling, Zhang et al. propose a weakly supervised learning
framework for labeling marine biological data. This method
utilizes crowdsourcing interfaces to converge to a labeled image
dataset through multiple training and production loops.
Experimental results demonstrate that training with a small
subset and iterating over the results can converge to a large,
highly annotated dataset with a small number of iterations.

Remote sensing technology can potentially capture aerial
images of cetaceans across a vast observation area. However,
current limitations in automated analysis techniques require
biologists to manually analyze all images, leading to exorbitant
tagging costs. Boulent et al. propose a human-in-the-loop approach
that merges the proficiency of biologists with DL-based automation
capabilities to create a reliable Al-assisted annotation tool for large-
scale cetacean monitoring.

DL has been applied to the image classification of marine
echinoderms in response to the need for automatic classification
in marine biology research worldwide. Zhou et al. collect image data
of marine echinoderms and classify them according to systematic
taxonomy. Based on the DL model EfficientNetV2, an automatic
classification tool (EchoAl) is developed. The EchoAl tool, along
with methods and strategies, can classify images of other categories
of marine organisms, thus helping researchers investigate the
diversity, abundance, and distribution of marine species.

5 Marine process/phenomenon
prediction/detection

Song et al. propose a new method called Time-Sequence-
Involved Space Discretization neural network (TSI-SD) to solve
the problem of large computation amount and high complexity of
the fluid numerical model. This method extracts grid correlations
from both spatial and temporal views simultaneously and combines
TSI-SD with finite volume format as an advection solver for passive
scalar advection in a two-dimensional unsteady flow field.
Compared to the previous method that only considers spatial
context, TSI-SD achieves higher simulation accuracy and reduces
the calculation amount. Comprehensive experiments have verified
the superior computational efficiency and accuracy of this method.
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Song et al. propose a spatio-temporal transformer network that
overcomes the defects of existing methods in network structure
design and prediction errors to accurately, quickly and effectively
predict ENSO events. This network simulates the inherent
characteristics of spatio-temporal variations of sea surface
temperature anomaly maps and heat content anomaly maps and
takes into account the influence of seasonal variations on the
prediction of ENSO phenomena. Additionally, an effective
recurrent forecasting strategy is proposed, which takes previous
predictions as prior knowledge to improve the reliability of long-
term forecasting.

Aiming at addressing the problem that the current method only
uses single-modal Sea Surface Height (SSH) data to detect
mesoscale eddy, which often leads to inaccurate results, Zhao
et al. propose an end-to-end mesoscale eddy detection method
based on multi-modal data fusion, and add the data of the Sea
Surface Temperature (SST) and the velocity of flow. The superior
performance of the proposed method is demonstrated on various
multi-modal mesoscale eddy datasets.

In view of the problem that the ocean front detection method in
the Southwestern Atlantic Front (SAF) mainly adopts the thermal
gradient method while ignoring dynamic features, which leads to
inaccurate manifestation of SAF. Wang et al. develop a DL model,
SAFNet, to detect the SAF through the synergistic effect of satellite
SST and SSH observation data in 10 years (2010-2019), to achieve
high-precision SAF detection with the fusion of thermal and
dynamic features.

6 Marine physical/biogeochemical
variable prediction/reconstruction

Based on satellite observations, machine learning has
successfully reconstructed the high-resolution ocean subsurface
thermohaline structure. However, due to the macro-tidal
environment and limited in-situ observations, the offshore
subsurface parameter estimation accuracy will be affected. Yu et al.
propose a new approach by coupling the TPXO tidal model and light
gradient boosting machine algorithm to develop an inversion model
of offshore subsurface thermal structure for the South Yellow Sea
(SYS) using sea surface data and in-situ observations. The
experimental results show that the reconstruction is reliable in the
SYS area, and the proposed method also provides a new exploration
direction for reconstructing offshore ocean thermal structures.

For the reconstruction of satellite-derived chlorophyll-a
concentration in a global scale, Roussillon et al. propose a method
based on physical predictors, and uses a multi-mode convolutional
neural network to globally account for interregional variabilities via
learning and combining different modes spatially. The different
modes show regional consistency with ocean dynamics, and the
work contributes to new insights into the physical-biogeochemical
processes that control temporal and spatial variability in
phytoplankton on a global scale.

The current status of the sea surface carbon dioxide partial
pressure (pCO2) in the Yellow Sea is unclear due to limited
availability of in-situ spatial and temporal distribution data. To
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address this problem, Li et al. develop a pCO2 model using a
random forest algorithm. The model uses 14 cruise datasets from
2011 to 2019, as well as input variables such as remote sensing
satellite sea surface temperature, chlorophyll concentration, diftuse
attenuation of downwelling irradiance, and in-situ salinity. The
model is trained and tested, yielding excellent prediction and
evaluation results.

Cutolo et al. develop a CLuster Optimal Interpolation Neural
Network (CLOINet) to combine remote-sensing data with in-situ
observation and create a comprehensive 3D reconstruction of the
ocean state. CLOINet combines the robust mathematical
framework of the optimal interpolation scheme with a self-
supervised clustering method and also effectively segments remote
sensing images into clusters to reveal non-local correlations and
enhance fine-scale ocean reconstruction. The network is trained
using the output of the Ocean General Circulation Model and
shows good reconstruction results in various testing scenarios.

7 Marine optics/acoustics

Huang et al. propose a Task-driven Meta-Deep-Learning
(TDML) framework to solve the problem that the nonuniform
distribution of sound speed will bring difficulties to underwater
accurate positioning. It learns the common features of the Sound
Speed Profile (SSP) through multiple base learners, accelerates the
model convergence on new tasks, and enhances the model’s
sensitivity to changes in sound field data through metatraining.
Thus, the over-fitting effect is weakened, and the inversion accuracy
is improved. Experimental results show that the proposed TDML
method can achieve fast and accurate spatio-temporal SSP inversion.

To fully consider how water environment and communication
equipment affect signal transmission and accurately simulate the
complex characteristics of the Underwater Wireless Optical
Communication (UWOC) systems, Huo et al. develop a UWOC
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channel emulator based on deep convolutional conditional
generative adversarial networks, which are tested in experiments
to verify their excellent performance in the time domain, frequency
domain, and universality under different water turbidity levels.

To achieve full acoustic tracking of whales with reverberation
interference, Jin et al. propose an intelligent acoustic tracking model
that enables horizontal direction discrimination and distance/depth
perception by mining unpredictable features of position
information directly from signals received from two hydrophones.
The proposed method not only achieves satisfactory prediction
performance, but also effectively avoids the reverberation effect of
signal propagation over long distances.
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The South Yellow Sea Cold Water Mass (SYSCWM), which occurs in the South
Yellow Sea (SYS) during summer, significantly impacts the hydrological
characteristics and marine ecosystems but lacks fine interior data. With
satellite observations, significant achievements have been made in
reconstructing high-resolution ocean subsurface thermohaline structure
based on machine learning. However, the accuracy of offshore subsurface
parameter estimation will be affected due to the macro-tidal environment and
fewer in situ observations. In this paper, we coupled the TPXO tide model and
Light Gradient Boosting Machine algorithm to develop an inversion model of
offshore subsurface thermal structure for the SYS using sea surface data and in
situ observations. After light modelling, the subsurface temperature structure in
the SYS is retrieved from sea surface parameters with a spatial resolution of
0.25° at depths of 0-55 m. Observation-based dataset (ARMOR3D) and in situ
observations are used for model evaluation. According to the validation of the
mooring buoy observations, the overall coefficient of determination (R?), which
determines the percentage of variance in the dependent variable that can be
explained by the independent variable, is more than 0.95. Furthermore, the R? is
improved by 12% due to coupling tide model below the thermocline during the
maturity stage of SYSCWM, which is helpful for a better reconstruction of
SYSCWM. Comparing with the cruise data, the average R? of the proposed
model is 0.927 which is slightly better than the accuracy of the observation-
based ARMOR3D dataset. Since the R? exceeds 0.8 in the most area of 121°
E~123.5°E, 33°N~36°N, the reconstruction is reliable in this area. The method
provides a new explorable direction for reconstructing the ocean thermal
structure in offshore areas.

KEYWORDS

offshore thermal structure, tide model data, lightGBM, satellite observations, the
South Yellow Sea
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1 Introduction

The South Yellow Sea (SYS) is a shallow (average depth of 46
m), semi-enclosed marginal sea in the northwestern Pacific
between the Chinese mainland and the Korean Peninsula. Due
to the vast and shallow continental shelf, seasonally atmospheric
conditions, such as the Asian monsoon, significantly impact the
thermal structure of SYS (Chu et al.,, 1997; Sun et al., 2022). In
the winter, strong northwest winds drive the water column to be
well-mixed until spring. Weak southeasterly winds prevail in
summer, so enhanced solar radiation causes the rapid formation
of a strong and stable seasonal thermocline, preventing vertical
mixing between the upper mixed layer and deep layer so that the
cold water from the previous winter is reserved below the
thermocline (Lee et al., 2016). It is called the South Yellow Sea
Cold Water Mass (SYSCWM; Li et al,, 2017a) in the SYS, which
occupies the bottom layers of the central part with a large
temperature difference between the surface and the bottom.
The SYSCWM plays an important role in the field of
hydrodynamics and biochemistry (Wang et al., 2014; Liu et al.,
2015; Xin et al., 2015; Li et al., 2016; Guo et al., 2021; Li et al.,
2021). The Yellow Sea Warm Current in winter is another
prominent feature in the SYS, which transports warm saline
water from the Tsushima Warm Current to the SYS (Zhang
et al., 2008; Diao et al., 2022; Yu et al., 2022). In addition, SYS is a
macro-tidal environment with a huge tidal range and strong
tidal currents (Lii et al., 2010; Hwang et al., 2014). These features
lead to the water mass of the SYS having high variability. As yet,
the knowledge of the SYS has primarily depended on in situ
observations (Yang et al., 2019). Despite many subsurface in situ
measurements in the SYS, continuous and fine observations
remain sparse. Satellite observations provide multiple data at
different spatiotemporal scales but are limited to the surface
layer (Ali et al, 2004). To better comprehend the dynamical
processes, it is necessary to have continuous and high
spatiotemporal resolution subsurface data in the SYS.

Compared to the temperature profiles, the vertical variation
of the salinity profiles is slight (less than 2 PSU; Li et al., 2017b).
Hence, extensive studies have been conducted to reconstruct the
temperature field by dynamical methods in the SYS, which have
the advantage of being physically consistent. Lii et al. (2010)
reproduced the three-dimensional temperature field and
dominant tidal system in the Yellow Sea (YS) based on a
wave-tide-circulation coupled numerical model. Zhu et al.
(2018) used Princeton Ocean Model to simulate the process of
the Yellow Sea Cold Water Mass (YSCWM) and added tidal
forcing and freshwater input. Yang et al. (2019) reconstructed
the cooling process of sea surface temperature (SST) with a high
spatiotemporal resolution during the typhoon passage over the
YS by a one-dimensional mixed-layer model. Wan et al. (2022)
rebuilt temperature structure and circulation of the YS in winters
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based on a high-resolution Regional Ocean Modeling System.
Relative to the above, the numerical model has well
reconstructed ocean temperature structure. Nonetheless, the
typical dynamical methods, including numerical simulation
and data assimilation, are complex and computationally
time-consuming,.

Many ocean internal processes have manifestations at
surface, so it is possible to retrieve ocean interior parameters
from satellite observations for the dynamical connections (Meng
et al, 2022). Meantime, machine learning methods are flexible
and popular for the ability to extract nonlinear relationships.
Therefore, diverse machine learning methods have been applied
to estimate ocean interior information in recent years. The self-
organizing mapping neural network and support vector machine
methods were used to reconstruct the subsurface temperature
anomaly (STA) from multisource satellite observations in the
Atlantic Ocean and the Indian Ocean (Wu et al., 2012; Su et al,,
2015). Meantime, the importance of sea surface salinity (SSS)
and sea surface wind (SSW) was revealed by the fact that they
can improve the inversion accuracy. Lu et al. (2019) found that
the clustering method helps to obtain a better estimated thermal
structure. To tackle the challenge of estimating ocean subsurface
temperature (OST) in regions with huge seasonal changes,
establishing seasonal models is an effective method that could
reduce the error of estimated OST, especially in the upper ocean
(Suetal, 2021). It may therefore be more efficient that clustering
the temperature profiles by seasonal feature. However, it will
lead to a sharp reduction of training samples, so the ensemble
learning methods were used to predict the OST because they are
more appropriate for small sample training than deep learning
and classic machine learning approaches (Su et al, 2019; Su
et al., 2021). The aforementioned results demonstrate that
machine learning algorithms can successfully rebuild the large-
scale ocean temperature structure. However, the accuracy will be
affected when estimating the thermal structure of the offshore
areas using classic machine learning algorithms for the complex
tidal environment and fewer data. Therefore, it is worth
exploring but challenging to improve the accuracy of
estimating offshore subsurface temperature by considering
tides and ensemble learning algorithms.

In this study, we propose a framework that couples a tide
model with the Light Gradient Boosting Machine algorithm,
which is less computational and more appropriate for small
samples, to retrieve the subsurface temperature (ST) of the SYS
by combining sparse in situ measurements with multiple satellite
observations. The rest of the paper is organized as follows:
Section 2 introduces the datasets and tide model. The methods
to retrieve the ST are described in Section 3. In Section 4, we
evaluate the reconstruction method and discuss the importance
of tides in the model. Finally, a brief conclusion and some
prospects are presented in Section 5.
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2 Data
2.1 In situ data

As the labeled data, three measurements are used in this
study: the mooring system, high-resolution profiler, and
shipboard survey cruises. A time series of temperature profiles
over 9 months (from 22 July 2019 to 15 May 2020), recorded by
a mooring system (named M1) which deployed in the SYS, near
the western boundary of SYSCWM (35.18°N,122.26°E,
Figures 1A, B). The M1 data has 244 temperature profiles after
quality control, including 17 depth levels (from 1 m to 55 m),
covering the maturation to disappearance of the SYSCWM. The
moored high-resolution profiler (named HI), which was
deployed at the same location as M1 from 3 June 2022 to 4
July 2022, provides a fine temperature profiles time series. This
profiler recorded vertical temperature profiles from 1 m to 50 m
during the growth to maturity of the SYSCWM. The sample
interval of HI is 30 min and the vertical resolution is 0.1 m. In
this study, the spatiotemporal resolution of the H1 data is
averaged to daily and 1 m. In addition, the 55 m depth level of
H1 data is extrapolated from several adjacent temperatures for
their similarity. Cruise observations were carried out with 1 m
vertical resolution in the western SYS in April, July and October
2019. The cruise covered the sea west of 124°E, from 33°N to 37°
N, and a total of 5 latitude sections were used in this study. The
five temperature latitude sections obtained by CTD castings
during the cruise survey along different latitudes (33°N, 34°N,
35°N, 36°N, 37°N), named S$33-S37 (Figure 1B).

2.2 Satellite data

Multisource satellite observations are used as input data,
including absolute dynamical topography (ADT), SST, SSS, and

10.3389/fmars.2022.1075938

SSW. The SSW contains u and v components (USSW, VSSW).
The ADT data are provided by SSALTO/Data Unification and
Altimeter Combination System (DUACS) and were available
through the Copernicus Marine Environment Monitoring
Service (CMEMS, https://marine.copernicus.eu/). The product
merged multiple L3 along-track measurements and conducted
the tidal corrections (Taburet et al., 2019). The SST data are
obtained from Daily Optimum Interpolation Sea Surface
Temperature (DOISST, https://psl.noaa.gov/), developed by
National Oceanic and Atmospheric Administration Physical
Sciences Laboratory (NOAA PSL). It is a blend of in situ SST
with satellite SST derived from the Advanced Very High
Resolution Radiometer (Banzon et al., 2016; Huang et al,
2021). The SSS data are obtained from SMOS L30S 2Q
Debiased daily valid ocean salinity values product (https://
sextant.ifremer.fr/), which are distributed by Centre Aval de
Traitement des Données SMOS (CATDS) and corrected the
offshore SSS through various in situ observations (Boutin et al.,
2018). The SSW data are provided by the Cross-Calibrated Multi-
Platform (CCMP; https://rda.ucar.edu/datasets/ds745.1/). The
CCMP uses a variational analysis method to smoothly fuse
multisource surface wind data into the gridded data at 6 hours
intervals (Atlas et al., 2011). The temporal resolution of the
CCMP data is 6 hourly while the rest is daily, and the spatial
resolution of all these data is 0.25°x0.25°.

2.3 Tide model data

We coupled the tide model data into the inputs of machine
learning model. The tide model data, including surface tidal
elevation and tidal currents, are estimated by the TPXO7 global
tidal model provided by Oregon State University, which was
built hourly on a 0.25°x0.25° grid. The tide model is based on the
hydrodynamic equation and uses the generalized inversion

8
Amplitude(cm/s)

24 126E

122°E

TIEE | 120E

FIGURE 1

3
Depth(m)

122 124 126°E

TI6E

120°E

M, tidal current amplitude and topography of the South Yellow Sea (SYS) and the location of different in situ observations. M1 and H1 with the
same site, indicated by the black star. (A) The amplitude of M, tidal current from TPXO7 global tidal model in which the tidal currents are
stronger. (B) The topography and geography of the SYS. The color contours denote bathymetry. The black dots in the rectangles show the CTD

casts along five latitudinal sections (S33-S37) in the cruise survey.
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method to assimilate the measured data, including satellite
altimetry data and tide observations. Furthermore, it was
recently used for the hydrographic study in the YS (Bi et al,
2021; Lin et al., 2021; Sun et al.,, 2022). The M, tide is the most
dominant tidal component in the SYS, having stronger tidal
current (Figure 1A). The tides have complex structures in the
SYS, which is detrimental to temperature inversion. In this
study, the tidal time series of eight basic tidal components
My, S5, Ny, Ky, Ky, Oy, Py, and M,) are extracted by the
Matlab Tide Model Driver toolbox (https://www.esr.org/
research/polar-tide-models/tmd-software/). The tide model
data and satellite observations, which have the same spatial
resolution, were co-located with the temperature profiles by the
nearest neighbour method, and the temporal resolution is
unified to daily.

2.4 ARMOR3D dataset

We also validate the temperature estimation with the
ARMOR3D dataset (Guinehut et al., 2012), which was

10.3389/fmars.2022.1075938

obtained through CMEMS. The ARMOR3D used multiple
linear regression and optimal interpolation, providing the
weekly temperature and salt fields at 0.25° x 0.25° resolution
over 15 regularly spaced vertical levels between surface and 80 m
depth. The weekly averaged three-dimensional temperature field
in April, July and October 2019 from ARMOR3D is used to
compare. The YSCWM below the thermocline is clearly visible
in the observation-based ARMOR3D data (Figure 2A). In
addition, the M1 temperature data are used to evaluate
ARMOR3D. In order to match the temporal resolution, the
M1 data are first calculated as weekly average and then
compared to the nearest neighboring grid in ARMOR3D. As
shown in Figure 2B, most of the data points are distributed along
the equal line with low bias, absolute error and high Pearson’s
correlation coefficient. The evident seasonal temperature
variations in ARMOR3D are well simulated compared to the
M1 observations (Figures 2C, D). Even though ARMOR3D
presents a shallower mixed layer and a more durable YSCWM
which lasts until October, it well reproduces the vertical thermal
structure at the M1 station and is worth to refer for the thermal
structure of SYS.
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thermocline. (B) Scatter plots for M1 temperature and ARMOR3D temperature from all depth. (C) Weekly average temperature data from M1
with gaps representing interruptions in the measurements. (D) ARMOR3D temperature fields at M1 site.
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3 Methods
3.1 Gaussian mixture model clustering

Considering the large seasonal variation of the thermal
structure in the SYS, we use unsupervised GMM clustering
techniques to shrink the sample space and improve the accuracy
(Landschutzer et al., 2013; Parard et al., 2015). As a probabilistic
model, GMM is often used for data clustering (Attal et al., 2015).
First, the GMM randomly initializes the Gaussian distribution
parameters of each cluster. Then the posterior probability of each
sample is calculated and used to compute the new Gaussian
distribution parameters. The process is repeated until the
expectation function is maximized. Compared with the K-means
method, GMM is more suitable for non-spherical clusters with
different sizes and densities (Wang et al., 2019; Askari, 2021).
Therefore, it is appropriate for the classification of ocean
temperature profiles (Maze et al,, 2017; Sambe and Suga, 2022).
GMM requires the number of classes (K) as an input parameter.
Therefore, the Davies-Bouldin index (DBI) is used to determine
the appropriate number of classes in this study. The number of
classes having the minimized DBI is considered the optimal result.
Since the initial values of the Expectation-Maximization algorithm
are randomized, the GMM clustering was applied 20 times, and
80% of the data were randomly selected from the M1 and HI data
each time to stabilize the clustering results. Figure 3 shows the DBI
from clustering results with different K. As a result, we judge that
stable and good clustering results could be obtained if K = 3. The
clustering results are shown in Figure 4. Although the YSCWM
temperature structure from HI data is still growing, it is
approaching maturity. Therefore, they are named after a specific
stage of YSCWM: the maturity stage, the declining stage, and the

0.9

10.3389/fmars.2022.1075938

disappearance stage. During the maturity stage of YSCWM with
weaker wind, the sea surface is subjected to strong thermal
radiation, forming a stable upper mixed layer and a strong
thermocline, which prevents heat transfer, so the bottom water
stays cold (Lee et al., 2016). It leads to a multi-layer temperature
structure in the SYS, with a large temperature difference between
the sea surface and the bottom (Figure 4A). In the YSCWM
declining stage, the cooling at the sea surface and stronger mixing
lead to a thicker and colder upper mixed layer and the subsequent
weakening and deepening of the thermocline (Figure 4B).
Meanwhile, critical tidal currents raise the temperature at the
bottom layer then decline the YSCWM (Li et al,, 2016). Thermal
forcing at the air-ocean interface and agitation by strong winds
together cause strong vertical mixing, forming a well-mixed low
temperature structure (Figure 4C) from the sea surface to the
bottom in the YSCWM disappearance stage (Chu et al., 1997).

3.2 Light gradient boosting machine

To tackle the limitations of small data and complex
computations, we adopt the LGBM algorithm to predict the
temperature by taking advantage of its lightweight. LGBM is a
gradient boosting framework based on decision trees, which has
been well used in the marine field and shown a faster training
speed and higher accuracy for small data (Su et al., 2021; Dong
et al,, 2022). Same as the other boosting algorithms, it sums the
results of multiple decision trees as the final prediction output.
Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB) are two important features of LGBM.
The GOSS excludes most of the samples with small gradients
and calculates the precise information gain by the remaining

0.8

0.7

DBI

0.6

0.5

0.4

8 10 12 14

Number of class

FIGURE 3

The mean value (the blue line) and confidence intervals (one o, the black error bar) of the Davies-Bouldin index (DBI) from 20 trials of Gaussian

mixture model (GMM) clustering for the different number of classes
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FIGURE 4

Vertical temperature structure of the classified profiles from M1 data, which represents different stages of the YSCWM: (A) the maturity stage,

(B) the declining stage, and (C) the disappearance stage.

samples. The EFB approach integrates many mutually exclusive
features and reduces the data dimension. To build a better
model, the Bayesian optimization strategy is used to optimize
several important parameters of LGBM. The optimization
method is a Gaussian process with a faster speed. According
to previous studies, three essential hyperparameters need to be
adjusted: the number of leaf nodes (num_leaves), the learning
rate, and the number of iterations (n_estimators). The bounds of
n_estimators were set 100 and 1000, and the best n_estimators is
400 without overfitting. It improves the accuracy by 16.6%
compared to n_estimators=100. However, the accuracy at
n_estimators=1000 is only increased by 0.1% compared to the
best n_estimators. When the learning_rate is increased to 0.01
from 0.001, the performance is improved by 21% compared to

TABLE 1 Design of experiments and parameter values.

Case Coupling tide Clustering Training Models
model or not or not

GLGBM- Yes Yes ST = LGBM (SST, ADT,

tides SSS, SSW, tides)

GLGBM  No Yes ST = LGBM (SST, ADT,
SSS, SSW)

SVR No No ST = SVR (SST, ADT, SSS,
SSW)

ANN No No ST = ANN (SST, ADT, SSS,

SSW)

the starting learning _rate=0.001, but the effect does not enhance
when it is increased further until 0.1. The test range of
num_leveas is from 5 to 30. The performance of the model at
the best num_leveas=5 improved by 3.4% over num_leveas=30.
The optimal parameters are shown in Table 1. In addition, the
max depth is set to 5, to prevent overfitting due to excessive
complexity of the model. The other parameters are set to
default values.

3.3 Experimental setup

First, we input the eight harmonic components (M,, S,, N,
K,, Kj, Oy, Py, and Q,), geographic location and time parameters

Parameter values
n_estimators = 400, learning_rate = 0.01, max_depth = 5, num_leaves=5
n_estimators = 400, learning rate = 0.01, max_depth = 5, num_leaves=5
C =25, gamma = 1.2, kernel = rbf

Number of neural network layers = 2, number of neurons per layer = 40,
learning_rate = 0.01, loss function = MSE

The SSW contains its two components (USSW and VSSW) and the tides include tidal elevation and tidal currents.
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into the TPXO?7.2 global tidal model, to extract tidal elevation
and tidal currents data. TPXO7.2 fits best the Laplace tidal
equation in the least squares sense. Second, the datasets
consisting of tide model data, satellite observations and in situ
temperature profiles are divided into three different stages by
GMM clustering. The surface parameters (ADT, SST, SSS, SSW,
tidal elevation, and tidal currents) are used as independent input
variables and the temperature time series are used as labels to
prepare the training and test data. To ensure that the training
and test sets have a similar seasonal distribution, all samples at
the location of M1 are normalized and randomly sampled into
the training set (60%) and the test set (40%) by month (Figure 5).
Third, the model is tuned and trained using the Bayesian
optimization method to obtain suitable temperature estimators
at 17 depth levels. Figure 6 shows the technique flowchart of one
stage at a certain depth. We use a total of 162 samples to train
and 114 samples to test when using mooring observations for
validation. Finally, temperature predictions are applied to a
larger horizontal space and verified with cruise observations in
the SYS where the number of training data and evaluating data
are 276 and 78, respectively.

To evaluate the tide model coupled temperature inversion
method, we designed comparative trials named GLGBM-tides
and GLGBM. They both use the LGBM method with pre-
clustering process but the former couples the tide model while
the latter does not. Additionally, we compared other
reconstruction methods. Case SVR and Case ANN use
Support Vector Regression (SVR) model and Artificial Neural
Network (ANN) model, respectively. Table 1 summarizes the
different trials. These are optimized by the Bayesian
optimization strategy, and the parameters of different models
are shown in Table 1. The ARMOR3D dataset is also used
for comparison.

10.3389/fmars.2022.1075938

4 Results and discussion

The sea surface data of the test samples are input into the
different models to obtain the reconstructed vertical temperature
structure. Based on the test data, we first examine the
importance of tides in offshore temperature prediction from
the time series data. Then the performance of the different
models is compared. Finally, we estimate the temperature
structure of each latitude section (S33-S37) and compared it
with the ARMOR3D dataset.

4.1 The performance of tide model data
on the temperature field reconstruction

Previous studies have shown that strong tidal mixing has an
important effect on the temperature structure and enhances
vertical heat exchange in the water column during summer in
the YS (Lii et al., 2010; Yao et al., 2012; Li et al., 2016; Yu et al.,
2016). Here, we first compared GLGBM-tides and GLGBM to
investigate how tides affect temperature estimation in this study.
Figure 7 shows the comparison between the temperature profiles
obtained by the two models and in situ observations. The profiles
are randomly selected according to spring tide and neap tide in
the maturity stage of YSCWM. In this stage, bottom vertical
disturbances are stronger (Li et al., 2016), which affects the heat
transfer and thermal structure significantly. Besides, the air-sea
heat flux and the cooling process of the previous winter strongly
influences the intensity of YSCWM (Zhu et al., 2018). This leads
to machine learning models having more difficulty accessing
these temperature variations and more considerable differences
between in situ and estimated temperature (Figure 7). However,
it can be seen that the temperature profiles obtained from
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FIGURE 5

Monthly distribution of the number of temperature profiles from M1 and H1 data.
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Flowchart of the subsurface temperature (ST) estimation at different depth levels using LGBM models for a certain class. In the moored buoy
observation validation, a total of 162 samples were used for training and 114 samples for testing. In the cruise survey validation, the training data

and validation data are 276 and 78, respectively.
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represents the daily maximum tidal current speed.

GLGBM-tides are more consistent with the measured profiles,
especially deeper than 30 m. This confirms that the method
coupled with tide model can effectively improve the structure of
the predicted temperature profiles during the maturity stage. To
further validate the above results, several evaluation indicators
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metrics are used to assess the two models. Except for root mean
square error (RMSE), coefficient of determination (R%) and
absolute difference, the error (defined as the proportion of
RMSE in the actual mean temperature observations) is also
used to evaluate the accuracy and reliability of the model. The
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evaluation indicators are computed as follows:

1y N2
RMSE = /53K, (T,. - T,~> 1)
. \2
SN (Ti -7
R=—F—5 )
> (Ti-T)
LN (T,-T))*
Error = YN > _17( ) (3)
T
Here, T; denotes the observed temperature while T; is the

estimated temperature by models. The T is the mean values of T;
over the whole observation. N is the number of test samples.
From Figures 8A-C, the evaluation indicators of the two
methods are similar within the 1-28 m depth layer. However, in
the 40 m depth level, the RMSEs of the two are 0.806 and 0.863,
respectively. Meanwhile, the accuracy of other layers has been
improved by different degrees from 30 m to 55 m. Figure 8D
shows that the smaller absolute errors occupy a larger
proportion in the GLGBM-tides model. In addition, the
enhancement is mainly manifested during the maturity stage
(Figure 9). It may be attributed to the tidal mixing primarily
influencing the range up to 30 m from the bottom during
summer (Qiao et al., 2004b). In this trial, GLGBM-tides
coupled the tide model while GLGBM not. Meanwhile, strong
tides affect the heat transfer and thermal structure of the profile,
especially the bottom layer. As a result, GLGBM-tides better
learn the temperature variation affected by tidal mixing, and it
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presents a more consistent vertical thermal structure with in situ
observations (Figure 7) and better performance than
GLGBM (Figure 8).

Furthermore, we analyzed the accuracy of the models at
three specific stages from 30 m to 50 m (Figure 9). The averaged
R? and RMSE are significantly different in the maturity stage of
YSCWM and similar in the decline and disappearance stages. It
performs less well in the maturity stage than the other two stages
in the YSCWM deep. Strong stratification leads to a large
difference in temperature between YSCWM and the upper
layer. Besides, YSCWM is influenced not only by the air-sea
heat flux but also by the cooling process of the previous winter
(Zhu et al.,, 2018). It means that the thermal structure of
YSCWM is more difficult to be described by sea surface
parameters in the machine learning models hence lower R*
and higher RMSE. The averaged R* of GLGBM-tides and
GLGBM are 0.614/0.547, with approximately 12%
improvement. It results from the stronger influence of tidal
mixing on the temperature structure in summer. Therefore, tides
are worth considering in the offshore temperature
field reconstruction.

Overall, the GLGBM-tides has good accuracy with errors of
less than 8% at all depth layers and most absolute difference of
less than 2°C (Figures 8C, D). It is worth noting that a bump
appears above 30 m in Figure 8B. This phenomenon may be
related to the depth of the mixed layer. According to previous
research, the depth of the mixed layer in SYSCWM is about 5-25
m (Qiao et al., 2004b). The temperature does not vary
significantly within the mixed layer, which causes the lower
RMSE and higher R?. The tidal mixing primarily influences the
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The average RMSE and R? between 30 and 50 m depth using GLGBM-tides and GLGBM in three YSCWM stages (the lines indicate the RMSE and

the bars indicate the R?).

range up to 30 m from the bottom, enhancing the vertical
temperature variability (Qiao et al., 2004a) and the particular
structure of the YSCWM makes it difficult for the model to
accurately describe the temperature variations. Therefore, the
accuracy of reconstruction at these depths will be worse
(Figures 8A-C).

It helps to understand the different effects of each sea surface
parameter on the ST, by analyzing the importance of sea surface
parameters at different depths. The LGBM reflects the importance
of different features by calculating the number of times the sea
surface parameters are used to segment the data across all trees.
The relative importance of each parameter is calculated by
summing and normalizing the feature importance from the
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LGBM. Figure 10A shows the relative importance of each sea
surface parameter from GLGBM-tides. According to previous
studies, the vertical thermal structure in the Yellow Sea (YS) is
influenced by air-sea heat flux, the wind, tidal vertical mixing, and
freshwater input (Chu et al., 1997). The temperature in the mixed
layer is vertically quasi-uniform due to the mixing of multiple
dynamic processes, such as wave motion and wind. Meanwhile,
the mixed layer gradually thickens from the maturity stage to the
disappearance stage of YSCWM, which means that the sea surface
temperature (SST) can explain more subsurface temperature
variations. Consequently, SST is the main driver of the model,
with a more than 30% contribution at 17 depth levels
(Figure 10A). However, below the mixed layer, the heat transfer
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is blocked, and it is difficult to explain the temperature change by
relying on SST alone. Therefore, the trend of SST contribution
decreases with deepening (Figure 10A).

Warming or cooling mainly drives density changes, causing
sea level changes since salinity variation is not significant in the
SYS. There is a close correlation between ADT and subsurface
thermal structure. The sea level variations are influenced more
significantly by those depths where temperature sharply
changes, such as the thermocline. Therefore, the ADT
contribution is higher at those depths where the temperature
fluctuates drastically (Figure 10A), such as the thermocline in the
maturity and declining stages and the bottom layer affected by
tides. It leads to an average relative importance of 10% and 16%
for ADT above and below 15 m depth, respectively.

SSS and SSW are also important parameters (Wu et al., 2012;
Klemas and Yan, 2014; Su et al., 2015). The SSS is related to
freshwater input (Nieves et al., 2014), which causes density
anomalies and then affects the dynamics. The contribution of
SSS is less variable from surface to 40 m depth but increases at
the bottom (Figure 10A). This may be related to the Yellow Sea
Warm Current (YSWC) in the winter, which brings a more salty
and warmer water mass, especially at the bottom and manifests
in the SSS. Wind forcing changes sea level and also affects ocean
mixing, intensifying heat exchange between layers. Southerly
winds prevail in summer and northerly winds during winter in
the SYS, which causes VSSW to contribute more than USSW
(Figure 10A). The vertical distribution of the wind (USSW and
VSSW) contribution is roughly same but increases slightly at the
bottom (Figure 10A), which is due to the mixed layer deepening
during the declining stage of YSCWM.
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Tide-induced mixing causes changes in the ocean heat
vertical distribution. Even though the overall tidal contribution
is weak and less variable, it may be important for a particular
stage. During the maturity stage of YSCWM, the tides
contribution (u, v, and z in Figure 10A) is about 15% within
the mixed layer but can exceed 30% below the mixed layer
(Figure 10B) causing the tidal-induced mixing mainly affects the
bottom and above 30 m range (Qiao et al,, 2004b). It is
comparable to the SST contribution (Figure 10B).

4.2 Comparison with other methods

We compared other temperature prediction methods. The
SVR and ANN methods have no pre-clustering process and
tides. The overall R* of SVR and ANN are 0.862/0.888 with the
RMSE of 1.506/1.22°C, respectively on the time series. It shows
that the GLGBM coupled tides have better accuracy from
Figures 11A-C. However, the ANN has similar accuracy above
20 m compared to GLGBM-tides, which may be related to the
dominance of SST in this depth range. Additionally, GLGBM-
tides allows errors to be smaller and more concentrated,
effectively improving model performance, as revealed by the
error density distribution (Figure 11D).

We choose H1 data to demonstrate the performance of
different methods for fine and continuous data. Since deep
learning is more applicable to large data, ANN performs
unstable. We implement ANN 20 times to obtain the average
temperature estimation. Figure 12 shows the observation from H1
and the reconstructed temperature structure from different
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FIGURE 12
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Comparison H1 observations (A) and reconstruction from GLGBM-tides (B), ANN (C) and SVR (D) from 0-50 m in H1 period. The MLD is

indicated by the solid black line.

methods. The seasonal warming in the upper mixed layer has
been reproduced by all methods. Here we adopt the upper
boundary of the thermocline as the mixed layer depth (MLD)
to further evaluate the performance of models. The reconstructed
temperature fields are interpolated to 1 m vertical resolution
before calculating MLD. The results show that the MLD is
maintained around 10-15 m in the H1 observations
(Figure 12A). For the reconstructed temperature field by
GLGBM-tides (Figure 12B), the MLD changed generally
consistent with the H1 observation. Influenced by atmospheric
processes, the MLD becomes shallower from 17 June to 1 July.
This process is well reproduced by GLGBM-tides.
Reconstructions from other methods failed to capture this
variation. The MLD from reconstructed temperature by ANN is
stabilized at about 15 m (Figure 12C) while the MLD
reconstructed by SVR (Figure 12D) is too deep. The
reconstructed temperature from ANN can indicate the trend of
YSCWM but has large noises (Figure 12C). The temperature field
estimated from SVR fails to reproduce the strong thermocline and
YSCWM (Figure 12D). GLGBM-tides can reproduce the vertical
temperature structure well compared to the observations.
However, the overall estimate of the YSCWM by GLGBM-tides
is slightly warmer than the observations from surface to bottom.
Hence, the intensity of YSCWM from estimation is weaker. It is
noticeable that the reconstruction of the thermocline is well,
which assists in predicting the depth of the YSCWM.

We attempt to apply the temperature estimation at the
locations of the cruise observations by training the samples
from H1 and M1 and use S33-S37 data for verification. The
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ARMOR3D reanalysis data is used to compare as well. The
temperature estimation beyond the topography is deleted.
Figure 13 shows the temperature structure of 35°N and 36°N
sections (S35 and S36) in three stages of YSCWM. The overall
RMSE by all samples of GLGBM-tides and ARMOR3D is 1.781/
2.133°C, respectively. It is higher than above due to the spatial
heterogeneity of the thermal structure in SYS but the
reconstructed vertical temperature structure is still in general
agreement with the observations. In the mixed layer, the
reconstructed temperature was colder than observation while
the ARMORS3D is warmer and the reconstruction has a small
zonal variation. It is the result of the training data containing
inadequate spatial features. In contrast, the reanalysis
data shows a clear spatial difference for fully considering
spatial features during production but shows a shallower
mixed layer, such as Figures 13B, D. In the declining and
disappearance stages, the temperature reconstruction is better
for the strong mixing but the ARMOR3D still shows a
significant temperature gradient from surface to 35 m depth
(Figures 13C, D). The estimates provide a better reconstruction
of the thermocline than ARMOR3D (Figures 13A, B). The
intensity of the thermocline in the ARMOR3D data is
strong (Figures 13A, B) in maturity stage while it is weak in
declining stage (Figures 13C, D). The estimated temperature
of YSCWM by the GLGBM-tides is slightly warmer especially in
the declining stage (Figures 13C, D), but consistent in terms of
depth and spatial distribution. The ARMOR3D have the
shallower upper boundary of the YSCWM so the temperature
of YSCWM is cold as observations (see Figure 13B). Both have
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Comparison of vertical temperature distributions of in situ observations (left), reconstruction from GLGBM-tides (middle) and ARMOR3D (right)
in 0-55 m along the 35°N and 36°N section at maturity stage (A, B), declining stage (C, D) and disappearance stages (E, F) of YSCWM

good reconstruction of well-mixed temperature structure in the
disappearance stage (Figures 13E, I). However, the cold cores in
S$36 could be observed (Figures 13B, D, F) by cruise data but this
special structure is difficult to reproduce. Figure 14 shows the
spatial distribution of RMSE in three stages. The accuracy of the
proposed method is good from 121°E to 123.5°E. From
Figure 14A, the RMSE increases from the center (location of
M1) along longitude towards the sides, but with larger
differences in farther regions, which may stem from the
sparseness of the offshore observations. On the contrary, the
RMSE of ARMOR3D decreases gradually from the center to the
outside but is similar on the west side of the study area.
However, the GLGBM-tides and ARMOR3D have close
overall R%, which are 0.927 and 0.884, respectively. Generally,
our reconstruction results are reliable through comparison with
ARMOR3D data.
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5 Conclusion

This paper proposed the offshore temperature
reconstruction method coupled TPXO tide model based on
LGBM, using sea surface parameters (ADT, SST, SSS, SSW,
tides). The performance of model incorporating tides is
quantitatively analyzed. In addition, the temperature
estimation is applied spatially and compare with other
ARMORS3D. The primary significance of this study is as follows:

(1) The SYS is a typical offshore sea with a huge tidal range,
resulting in the difficulty of temperature prediction by classic
machine learning method. We coupled the tide model by feeding
the estimated tidal elevation and tidal currents by the tide model
into a lightweight ensemble learning approach to retrieve SYS
thermal structure using small data. The method can generate
continuous 3D temperature field at 0-55 m in the SYS at daily
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and 0.25° x 0.25° resolution. Experiments demonstrate that
proposed method increases the R® by 12%, compared to
GLGBM and the model tide data mainly improves the
accuracy below thermocline in the maturity stage of YSCWM.
It has significance for the depth prediction of the YSCWM.
Meanwhile, the contribution of tides is comparable with SST in
the temperature reconstruction model. The proposed method
provides a new explorable direction for reconstructing the
offshore thermal structure.

(2) The proposed method is also compared with other
machine learning approaches and ARMOR3D dataset. Time
series experiments show that the proposed method is superior to
SVR and ANN with the RMSE of 0.803°C, 1.506°C, and 1.22°C,
respectively. Compared with the cruise data, the method has
good and stable results in the three stages of YSCWM. Around
the location of M1, the RMSE and R? have a good performance
in our experiments so our method is effective in the SYS.
Furthermore, the temperature reconstruction is comparable to
observation-based ARMOR3D dataset, with close R although
their RMSE differed in spatial distribution.

Due to the small samples, important oceanic phenomena at
longer time scales and larger spatial scales may not be well
represented in the reconstructed temperature fields. With
sufficient data, better accuracy will be obtained on larger
spatial and temporal scale. Therefore, extending the data over
longer time and more space to improve the prediction
performance of the model is a priority for future work.
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A new non-invasive tagging
method for leopard coral
grouper (Plectropomus
leopardus) using deep
convolutional neural
networks with PDE-based
Image decomposition

Yangfan Wang'?, Chun Xin*, Boyu Zhu®, Mengqiu Wang?,
Tong Wang*, Ping Ni?, Sigi Song? Mengran Liu*?, Bo Wang™*,
Zhenmin Bao*? and Jingjie Hu"*

*Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life
Science, Ocean University of China, Qingdao, China, 2Key Laboratory of Tropical Aquatic
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External tagging methods can aid in the research of leopard coral grouper
(Plectropomus leopardus) in terms of its spatio-temporal behavior at
population and individual scales. However, due to the strong exclusion ability
and the damage to the body wall of P. leopardus, the retention rate of
traditional invasive tagging methods is low. To develop a non-invasive
identification method for P. leopardus, we adopted a multiscale image
processing method based on matched filters with Gaussian kernels and
partial differential equation (PDE) multiscale hierarchical decomposition with
the deep convolutional neural network (CNN) models VGG19 and ResNet50 to
extract shape and texture image features of individuals. Then based on image
features, we used three classifiers Random forest (RF), support vector machine
(SVM), and multilayer perceptron (MLP)) for individual recognition on sequential
images of P. leopardus captured for 50 days. The PDE, ResNet50 and MLP
combination obtained a maximum accuracy of 0.985 + 0.045 on the test set.
For individual temporal tracking recognition, feature extraction and model
training were performed using images taken in 1-20 days. The classifier could
achieve an accuracy of 0.960 + 0.049 on the test set consisting of images
collected in the periods of 20-50 days. The results show that CNNs with the
PDE decomposition can effectively and accurately identify P. leopardus.

KEYWORDS

Plectropomus leopardus, non-invasive tagging method, convolutional neural
networks, PDE-based image decomposition, complex trait
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1 Introduction

P. leopardus represents one of the most economically
significant chordate and is mainly distributed in the Western
Pacific Ocean along the coasts of China, Vietnam, and Thailand
(Yang et al,, 2020). P. leopardus has a high economic value in the
international market due to its high nutritional profile and plays
a vital role in marine ecosystems (Xia et al., 2020). However, the
P. leopardus industry has encountered many challenges in recent
years, including devastating diseases and environmental stresses,
which caused a large amount of economic loss and hampered the
healthy and sustainable development of the P. leopardus
industry (Rimmer and Glamuzina, 2019). Therefore, it is
urgent to advance the scientific culture of P. leopardus and to
select and breed new species with superior characteristics.
Designing effective external tagging methods for long-term
and stable tracking identification of P. leopardus is not only
essential for successful breeding but also a concern for ecologists
conducting population dynamics studies (Williams et al., 2002;
Zhuang et al., 2013), as well as revealing the ecological
significance of fish endotherms (Watanabe et al, 2015), and
studying the life history of fish such as foraging, migration and
reproduction (Quinn et al., 1989; Ogura and Ishida, 1995; Yano
et al., 1996; Hinch et al., 2002; Welch et al., 2004; Sulak et al.,
2009; Doving et al., 2011).

Traditionally, individual recognition has been accomplished
by capturing animals and placing visible and unique marks on
them. The traditional marking methods include implanting
acoustic markers inside the abdominal cavity of fish (Shi et al.,
2022), and then using the positioning system to track the
acoustic markers. The individual unique electric field
generated by electric fish discharges was used for recording
and tracking (Raab et al,, 2022). Due to the strong exclusion
ability and the damage to the body of P. leopardus, the retention
rate of traditional invasive tagging methods is low (Bolger et al.,
2012). Besides, the infection rate and mortality rate of implanted
marker fish are relatively high (Shi et al., 2022), and the marker
will also affect the original normal life of fishes in the water, and
with the extensive use of individual markers, it is also a hazard to
the environment (émejkal et al., 2020), while individual electric
field tracking is only applicable to fish that can generate
electricity. This makes it difficult for breeders to manage good
individuals, which is not conducive to the implementation of
accurate breeding by tracking the growth of individuals.
Recently, molecular genetic markers such as RFLP (restriction
fragment length polymorphism), RAPD (random amplified
polymorphism DNA), SSR (simple sequence repeat), and SNP
(single nucleotide polymorphism) have also been widely used to
study the population and individual recognition (Reed et al,
1997; Wang, 2016). However, these methods are not suitable for
a larger population because of inconsistency, inconvenience, and
higher cost, among others. Currently, photographic mark-
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recapture has gained popularity because of the advances in
digital photography and image processing software. The
abundance of species with variable natural marking patterns
makes this an attractive method for many researchers. The
image mark method has been employed particularly in the
studies of populations of marine mammals and mammalian
terrestrial predators (Karanth and Nichols, 1998; Forcada and
Aguilar, 2000; Langtimm et al., 2004; Fearnbach et al., 2012).
Some image processing methods have been used to extract, store,
and compare pattern information from digital images (Bolger
et al, 2012). With the development of computer vision, deep
learning (DL) methods, such as convolutional neural networks
(CNN ) are emerging as possibly powerful tools for individual
recognition and long-term tracking (He et al., 2016; Redmon
et al., 2016). Numerous broad models of convolutional neural
networks, such as AlexNet, Inception, VGG19, ResNet50, etc.,
have been presented (Kamilaris and Prenafeta-Boldu, 2018).
These models are trained using public datasets (e.g., CIFAR-
10, ImageNet datasets, etc.) and used to perform Multi-Category
tasks for particular items. Considering the unique body shape
and texture patterns of different P. leopardus individuals, it is a
promising technical route to extract and identify the body
surface features using CNN as an alternative method against
traditional invasive tagging methods.

In this study, we used a novel multiscale image processing
method based on matched filters with Gaussian kernels and
partial differential equation (PDE) multiscale hierarchical
decomposition (Wang et al., 2013) to segment the shape
features of P. leopardus images. Two deep CNN models,
VGG19 and ResNet50, were implemented to extract the
texture features. Then based on the shape and texture features,
three classifiers (Random forest (RF) (Kamilaris and Prenafeta-
Boldu, 2018), support vector machine (SVM) (Cortes and
Vapnik, 1995), and multilayer perceptron (MLP) (LeCun et al.,
2015) were compared for individual recognition on sequential
images of P. leopardus captured over the course of 50 days.
Finally, we found that the combination of PDE and CNN
methods could achieve the best accurate recognition of P.
leopardus. This is the first time, to our knowledge, that image
recognition analysis has been applied to the tracking of P.
leopardus. Our results will provide a new vision for using non-
invasive tagging of P. leopardus.

2 Materials and methods
2.1 Data acquisition

P. leopardus used in this study were obtained from Sanya,
Hainan Province. 50 individuals were randomly selected from a

breeding population of 10,000 P. leopardus, and reared under
laboratory conditions. The numbered clapboards were added to
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the rearing pool to facilitate individual identification. In the 50
days from September 3, 2022, to October 23 2022, each
individual was taken out from the rearing pool daily and
placed on a smooth white foam plastic plate. The P. leopardus
were anesthetized by immersion in seawater which containing
MS222 (tricaine methanesulfonate) with a concentration of 100
mg/L and kept in the solution for 3 min after loss of body
posture (Savson et al., 2022). After its body was fully stretched,
photos were taken directly for each individual using a mobile
device. Then they were placed back in the pond immediately. At
the end of the experiment, 50 images were taken for each
individual. So, we obtained a total of 2500 images for
all individuals.

2.2 Image feature extraction

2.2.1 PDE-based feature extraction

We used a PDE-based multiscale decomposition method to
extract the shape features of P. leopardus images. For the shape
detection, we used matched filtering with Gaussian kernel
(MFGK) ker(x,y; a,b)=—exp(—a71(x—b)2/202) (Chaudhuri et al.,
1989), and the computed MFGK response image was as follows:

o

where Img, (X, y), G, ker, a, and b denoted an image, a two-

Mier (%, y3 2, b) = maxg (rg (ker(x, y; a, b))*Img(x, y))

dimensional pixel position, the standard deviation of image gray
value in Gaussian convolution kernel, two-dimensional
Gaussian functions, the dilation parameter (also known as
scaling parameter), and the translation parameter, respectively.
rg rotated the kernel function with an angle 6, and * represented
the convolution operation in variables (x and y).

The normalized response image was defined as follows:

f= (Mker(x’ Y a’b) - “’)/S

where [ and s were the mean and standard deviation of the
enhanced MFGK image M. (x,y;a,b) The multiscale hierarchical
decomposition of an image f was defined as follows (Wang et al.,
2013). Given an initial scale parameter A, and the PDE-based
total variation (TV) function (Rudin et al., 1992)

J(£, &) = M| vallE+] wnl sy

where BV stood for the homogenous bounded total variation
space equipped with the norm of total variation

- lly= 11 -fl= (/@3 + ()5
Q
f = uo + vy, where [ug, vo]: = argmin|,,,_s J(f, Ao)

k+1
Vie = Upy1 T Vir1 k=0,1,..., Z'k = 2,02 *

. k
where [ug, 1,V =argminl e,y JvioA02") .
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Based on the above enhancement with MFGK and
multiscale hierarchical decomposition, many line maps uy;
were generated at varying image resolutions, representing
different levels of line details to avoid the possible failure of
feature extraction caused by a single-scale segmentation. The
initial scaling parameter was A, = 0.01 in the multiscale
hierarchical decomposition.

The binarization is performed as follows:

U

where out stands for the finally segmented binary mask of

u(xy) <u(xy)

out(x,y) =
otherwise

the P. leopardus image.

2.2.2 CNN-based feature extraction

With the development of deep learning algorithms, many
general models of convolutional neural networks have been
proposed, such as AlexNet, Inception, VGGNet, ResNet, etc.
(Kamilaris and Prenafeta-Bolda, 2018). These models have been
trained on large public datasets (e.g., CIFAR-10, ImageNet datasets,
etc.) (Lecun et al., 1998) to achieve the goal of multiple-classification
tasks for specific items. After training, the deep layers and
convolutional kernels in these models can explore the visual
characteristics of images. For other classification tasks, new
characteristics can be extracted with the help of the pre-trained
convolutional layers and used as input for many classifiers. This
method of applying the “knowledge” gained from training on a
specific dataset to a new domain is also known as migration
learning (Yoshua, 2011). In this study, the VGG19 and ResNet50
of CNN models were used for image feature extraction. The weights
of each convolutional layer of VGG19 or ResNet50 were frozen and
fed into a new CNN. The output of the last pooling layer of the new
CNN was then taken as the extracted image features. After feature
extraction using VGG19 or ResNet50, a 4096-1D or 2048-1D vector
of features was obtained, respectively.

LeNet-5 Convolutional Neural Network (Lecun et al., 1998), as a
classic CNN, has only two convolution layers and a simple structure,
which is suitable for preliminary evaluation of the complexity of the
dataset. The structure of the model is as follows. Input layer: single
input is a 224*224*3 RGB three-channel image without feature
extraction; convolutional layer 1, containing 6 convolutional kernels
with the size of 5*5 pixels using activation function ReLU; batch
normalization layer 1; maximum pooling layer 1, with the pooling
size of 2*2; convolutional layer 2, containing 16 convolutional
kernels with the size of 5*5 pixels using activation function ReLU;
batch normalization layer 2; Maximum pooling layer 2, with the
pooling size of 2*2; fully connected layer 1, containing 120 neurons
using activation function ReLU; batch normalization layer 3; fully
connected layer 2, containing 84 neurons using activation function
ReLU; batch normalization layer 4; output layer, outputting 20
classes using activation function softmax. The loss function is
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cross entropy and the optimizer is Adam. When training on the raw
dataset, batch_size is 30 and epoch is 50.

VGG is a type of CNN model developed by the Oxford
Robotics Institute (Simonyan and Zisserman, 2015). VGG19
uses an architecture of very small (3x3) convolution filters and
pushes the depth to 19 weight layers. There are five building
blocks in VGG19, consisting of 16 convolutional layers and 3
fully connected layers. The first and second building blocks have
two convolutional layers and one pooling layer, respectively, and
four convolutional layers and one pooling layer exist in the third
and fourth building blocks. The last building block contains four
convolutional layers.

The architecture of the residual network consists of 50 layers
named ResNet50 (He et al,, 2016). There is an extra identity in
ResNet50 where the ResNet model predicts the delta needed in the
final prediction from one layer to the next. ResNet50 provides
alternate paths to allow gradient flow which helps to solve the
problem of gradient disappearance. The ResNet model uses identity
mapping to bypass the weight layer of the CNN when the current
layer is not required. This model solves the overfitting problem of
the training set with the presence of 50 layers in the feature
extraction of ResNet50 (Stateczny et al.,, 2022).

In this study, the PDE-based multiscale decomposition and the
Convolutional Neural Network models, VGG19 and ResNet50, were
used to extract shape and texture features on the original image
datasets. A total of five combined datasets are generated, which are
called: PDE+ raw dataset, VGG19+ raw dataset, ResNet50+ raw
dataset, PDE+VGG19+ raw dataset, and PDE+ResNet50+ raw
dataset. After feature extraction, the image features obtained from
each feature extraction method are visualized using the t-SNE
algorithm (Linderman et al, 2019) to visually examine the
effectiveness of several feature extraction methods.

PDE

raw mage boundary feature

Ay =
' texture feature

FIGURE 1
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2.3 Training of classifiers based on
extracted features

The feature-extracted dataset is used as input to train
Random Forest (RF), Support Vector Machine (SVM), and
Multi-layer Perceptron (MLP), models, respectively. The RF
models were trained using default parameters. The SVM
models were trained with RBF kernel using default parameters.

The structure of the multi-layer perceptron was: input layer,
where the number of neurons contained depends on the length
of the features used (2048 for PDE features, 4096 for VGG19
features, 2048 for ResNet50 features); fully connected layer,
containing 1024 neurons using activation function ReLU
(LeCun et al.,, 2015); batch normalization layer; output layer,
outputting 50 classes using activation function softmax. The loss
function was cross entropy and the optimizer was Adam (LeCun
et al,, 2015). When training on the raw dataset, batch_size is 30
and epoch is 50.

The essential architecture of our method for fully automated
segmentation and identification of P. leopardus is shown
in Figure 1.

2.4 Model assessment indicators

In a multi-classification task, there are differences in the
predicting ability of the model for different categories, and there
may be category imbalance in the predicting results. Since the
accuracy rate simply calculates the ratio of the number of correctly
predicted samples to the total number of samples, ignoring the
predicting ability of the model for different categories, it is hard to
objectively measure the predicting effect of the model. In order to

The essential architecture of our method for fully automated segmentation and identification of P. leopardus.
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measure the model’s comprehensive predicting ability for each
category, the accuracy for each category should be taken into
account, so the Precise, Recall and Macro-F1 Score are selected as
evaluation indicators (Zhou et al., 2021). The calculation method is
as follows.

True Positives (TP): all cases where we have predicted YES and
the actual result was YES. True Negatives (TN): all cases where we
have predicted NO and the actual result was NO. False Positives
(FP): all cases where prediction was YES, but the actual result was
NO (‘Type I error’). False Negatives (FN): all cases where prediction
was NO, but the actual result was YES (‘Type II error’).

Precision is the proportion of positive samples that are correctly
predicted out of all samples that are predicted to be positive:

TP

Precisi -
recision TP + FP

Recall is the proportion of positive samples that are correctly
predicted out of all actual positive samples (including the
positive samples that were predicted incorrectly).

TP

Recall = —
AT TP+ IN

F1-Score is the harmonic mean of precision and recall.

2 x Precision x Recall

F1 —
Precision + Recall

Macro-F1 is the mean of F1-Score for each category, where
N is the total number of categories.

SNFL
N

Macro F1 =

2.5 Software and hardware environment

In this study, the Python 3.8.10 environment was used with the
scikit-image library for feature extraction, the scikit-learn 0.24.0
library for principal component analysis and the construction of
random forest and support vector machine models, and the
tensorflow 2.3.1 library for CNN-based feature extraction and the
training of multilayer perceptrons. The tsne library was used to
accomplish the t-SNE downscaling and visualization in the R
4.1.1 environment.

3 Results
3.1 PDE-based feature extraction

The results of the illustrative segmentation of P. leopardus
using the PDE multiscale decomposition method with different
scale parameters are shown in Figure 2. Obviously, the camera
image can be used for good segmentation with the selection of
more growth rings of body shape. Meanwhile, the segmentation
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of shape contours in the image can be still detected even though
the original image was degraded by some body color; hence, our
segmentation method was robust in noise and color.

3.2 CNN-based feature extraction

As shown in Figure 2, the PDE method can obtain more
details of the shape of P. leopardus compared with the ResNet50
model of CNNs. By visualizing several convolutional layers in
the ResNet50 model (Figure 1), we found that some kernels in
different layers could distinguish smaller tubular and periodic
structures in P. leopardus images, which made ResNet50 more
effective in the extraction of texture details.

The shape and texture features obtained by PDE-based and
CNN-based methods were visualized using the tSNE software
(Figure 3). For the shape features obtained by PDE, the points of
different categories overlapped each other and were difficult to
distinguish (Figure 3A). While we found that the CNN-based
texture features of the same individuals were gathered into a
cluster, reflecting the intra-category consistency and inter-
category dissimilarity, for example, individuals of 4, 5, 14, 15,
16, 17, 18, 19 in ResNet50 features (Figure 3B) and individuals of
5,15, 19 in VGG19 features (Figure 3C). Features of the same
individuals using the ResNet50 model were more likely to gather
into clusters than the VGGI19 features, suggesting that the
ResNet50 feature may extract more small texture information
from images than VGG19 features.

FIGURE 2

Segmentation results produced by multiscale hierarchical
decomposition using PDE with A0 = 0.01 and Ai = 202" (A)
original image; (B—F) segmented image at scaling parameters A1,
A2, A3, M4, and A5, respectively.
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leopardus) (A) PDE feature; (B) CNN ResNet50 feature; (C) CNN VGG19 feature.

Frontiers in Marine Science

33

frontiersin.org


https://doi.org/10.3389/fmars.2022.1093623
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Wang et al.

3.3 Prediction performance of
combinations with different features
and classifiers

In this section, five-fold Cross-validation (5-fold CV) was
used to assess the prediction performance of the different
methods in the P. leopardus data set. For 5-fold CV, the data
set was divided into five mutually exclusive subsets; four of five
formed the estimation set (ES) for fitting input feature effects
and the fifth subset was used as a test set (TS). Three methods
(RF, SVM and MLP) were trained on the feature-extracted
(PDE, VGGI19 and ResNet50) datasets, and the traditional
LeNet-5 convolutional neural network dataset of the 224¥224-
pixel images from the raw dataset, respectively (Table 1).

Among the classifiers trained on the only PDE features for the
dataset, PDE+ MLP achieved the best prediction (Macro-F1 Score
0.748 + 0.066), followed by PDE + SVM (Macro-F1 Score 0.717 +
0.076). The predicting performance of RF was poor with Macro-F1
score of only 0.681 + 0.117. Compared with classifiers trained on
PDE features, the simple CNN LeNet-5 with a simple structure had
a significant improvement in the predicting effect with Macro-F1
score of 0.861 + 0.069. For the deep CNN VGG19 features, VGG19
+ MLP achieved the best prediction (Macro-F1 Score 0.872 + 0.068)
followed by VGG19 + SVM (Macro-F1 Score 0.849 + 0.071) and
VGG19 + RF (Macro-F1 Score 0.813 + 0.079). Only VGG19 + MLP

10.3389/fmars.2022.1093623

outperformed the simple LeNet-5 model (Macro-F1 Score 0.861 +
0.069) with a Macro-F1 score increased about 0.011. After training
on ResNet50 texture features, any classifler can achieve better
predictions than any other combinations on VGGI9 texture
features. ResNet50 + MLP achieves the best prediction (Macro-F1
Score 0.927 + 0.043) followed by ResNet50 + SVM (Macro-F1 Score
0.925 + 0.048). It is interesting that SVM can also achieve similar
performance on ResNet50-extracted features.

If we combined PDE shape features with ResNet50 or
VGG19 text features to form a new feature set, any classifier
can achieve better predictions than the feature set of PDE,
VGGI19, or ResNet50. In the PDE+ResNet50 dataset, the
maximum accuracy was Macro-F1 Score 0.985 + 0.045 for
MLP. In the PDE+VGGI19 dataset, the maximum accuracy
was Macro-F1 Score 0.949 + 0.069 for MLP. We, therefore,
decided to take PDE+ResNet50+MLP and PDE+ResNet50
+SVM as the experimental model to identify individuals in the
following analyses.

3.4 Predictions effect of the model on
training sets of different sizes

Due to the constraint of time and labor costs in actual
application scenarios, it is often difficult to obtain large datasets.

TABLE 1 Predictive accuracies obtained with different combination of features and classifiers by 5-fold CV.

Input feature Classifiers Metrics
Precision Recall Macro-F1 score
LeNet-5 0.851 + 0.078 0.869 + 0.061 0.861 + 0.069
ResNet50 RE 0.881 + 0.082 0.892 + 0.073 0.889 + 0.079
SVM 0.923 + 0.054 0.929 + 0.035 0.925 + 0.048
MLP 0.925 + 0.046 0.931 + 0.037 0.927 + 0.043
VGG19 RF 0.811 + 0.084 0.827 +0.102 0.813 + 0.079
SVM 0.847 + 0.045 0.843 + 0.062 0.849 + 0.071
MLP 0.862 + 0.049 0.879 + 0.059 0.872 + 0.068
PDE RF 0.693 + 0.115 0.715 + 0.108 0.681 +0.117
SVM 0.724 + 0.078 0.734 + 0.070 0.717 + 0.076
MLP 0.736 + 0.071 0.753 + 0.062 0.748 + 0.066
PDE + ResNet50 RF 0.927 + 0.091 0.932 + 0.083 0.924 + 0.074
SVM 0.981 + 0.063 0.977 +0.072 0.981 + 0.059
MLP 0.984 + 0.051 0.981 + 0.067 0.985 + 0.045
PDE+VGG19 RF 0919 + 0.101 0.920 + 0.105 0911 +0.112
SVM 0.922 + 0.062 0.935 + 0.054 0.928 + 0.071
MLP 0.941 + 0.061 0.955 + 0.063 0.949 + 0.069
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To refrain from the possible effect of the small dataset, it is
necessary to investigate the predicting performance of the
classifier on different size training sets to make a trade-off
between the cost of dataset size and the predicted effect. The
images of days 1-5, 1-10, 1-15, 1-20, 1-25, 1-30, 1-35,1-40 and 1-
45 were taken from the ResNet50+ raw dataset and used for
training MLP and SVM, respectively. The evaluation has two
steps. Firstly, the prediction of these classifiers was estimated on
the set of remaining images corresponding to their training set
(e.g., for classifiers trained on images of days 1-5, the prediction
was performed on images of days 6-50, and so on). Secondly, all
classifiers trained on different periods of days were used to
predict the images of days 46-50 (Figure 4).

As shown in Figure 4, the Macro-F1 Scores of all the
classifiers increase with the expansion of the sizes of training
sets. When images of days 1-20 were used as the training set,
models achieved relative high values of macro-F1 on all test sets
with Macro-F1 Scores of 0.960 + 0.049 for PDE+ResNet50+MLP
to identify the individuals in images of the rest days and 0.960 +
0.104 in images of days 46-50. When the size of the training set
continues to enlarge, the curve of predicting effect goes steadily
and changes slightly with the expansion of the training set. The
highest Macro-F1 Score (0.983 + 0.047) is achieved by PDE
+ResNet50+MLP when using images of days 1-45 as the training
set and images of days 46-50 as test sets. Furthermore, the
Macro-F1 Score of PDE+ResNet50+MLP was higher than that
of PDE+ResNet50+SVM in most sets of experiments except
using images of 1-5 days as the training set.

3.5 Temporal tracking recognition of
individuals on different time scales

In the actual scenario of breeding work, individuals need to
be tracked continuously over a while. To investigate the tracking
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ability of the PDE+ResNet50 + MLP model, predicting the
results of combination of the training set and test set for each
individual on every day were extracted and
summarized (Figure 5).

When trained on images of days 1-5, 1-10, and 1-15, the size
of the training set was small and the model performed poorly on
some individuals. For example, when trained on images of days
1-5, the model performed poorly on most of the individuals. As
the size of the training set increased, these hard-to-predict
individuals were gradually correctly identified by the model.
When trained with images of days 1-30, there were few
individuals that were difficult to identify, and for some
individuals, the model could achieve a 100% recognition rate.

To understand how well each individual was tracked, we
treated it as a traceable individual with an error rate of less than
or equal to 10%. Then the predicting effects for all individuals
were counted according to the above criterion (Table 2). When
the size of the training set was small, the number of traceable
individuals increased with the increase of the size of the training
set. When images of days 1-25 were used as the training set, the
number of traceable individuals was 45, accounting for 90% of
the total individuals, and the number of individuals that could be
identified at a 100% recognition rate was 27. When images of
days 1-30 were used as the training set, the proportion of
traceable individuals reached 98%, and the number of
individuals that could be 100% identified was 33.

4 Discussion

The approach described in this paper using image processing
analytical methods, which are widely used in studies on ecology
and evolution (Bolger et al., 2012), has demonstrated its
powerful application in studies on non-invasive tagging
methods for P. leopardus. The PDE-based and CNN-based
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The result of tracking recognition of P. leopardus on different time scales.

image feature vector of each shape and texture structure, which 4.1 Advantages of deep convolutional

is invariant against translation, rotation, scaling, and even neural networks in reCOgnition of P.
modest distortion. As long as the feature pattern can be leopardus

extracted from each image, the individuals can be effectively

identified by using the RF, SVM and MLP classification of shape To explore the feature extraction methods and machine
and texture features. learning models suitable for the recognition of P. leopardus,

TABLE 2 The statistics for results of tracking recognition on different time scales.

Dataset Number of 100% Number of an individual Number of individuals with error Percent of

Training identification misclassified once rate no more than 10% trackable

set individuals

1-5 days 6 - 50 6 1 10 20%
days

1-10 days 11-50 11 3 25 50%
days

1-15 days 16-50 21 7 36 72%
days

1-20days | 21-50 23 12 44 88%
days

1-25 days 26-50 27 15 45 90%
days

1-30 days 31-50 33 12 49 98%
days

1-35 days 36-50 38 9 47 94%
days

1-40 days 41-50 42 7 49 98%
days

1-45 days 46-50 47 2 47 94%
days
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the PDE-based shape features, and CNN-based texture features
were used for feature extraction, and then RF, SVM, and MLP
were trained on the extracted features compared to the LeNet-5
model, an early convolutional neural network with fewer layers
and a simple structure. The PDE + MLP obtained the best
predictability with a Macro-F1 score of 0.748 + 0.066 compared
with PDE+RF and PDE+SVM on the raw dataset, while the
ResNet50+MLP model achieved a Macro-F1 score of 0.927 +
0.043, indicating that compared to the PDE-based image
segmentation that had the relatively weak ability of feature
extraction, ResNet50 extracted more details of features for
individual imaged and achieved better recognition results.
Various researchers are addressing the task of individual
recognition in different way using traditional machine learning
methods (Vaillant et al.,, 1994; Viola and Jones, 2001; Dollar
et al, 2009) such as thresholding (Sivakumar and Murugesh,
2014), region growing (Gomez et al., 2007; Preetha et al., 2012),
edge detection (Ma and Manjunath, 1997; Huang and Kuo, 2010;
Wang et al.,, 2013), clustering (Celenk, 1990; Ali et al., 2006;
Kavitha and Chellamuthu, 2010; Zheng et al., 2018), super-pixel
(Li et al,, 2012; Xie et al.,, 2019), etc. for years. PDE-based image
multiscale decomposition belongs to edge detection method.
Individual recognition research has also started to use the
convolutional neural network (CNN) for better segmentation
accuracy. That is why CNN is used successfully for
individual recognition.

In this study, the CNN-based texture features included two
categories: the features extracted by VGG19 and ResNet50. The
VGG19 network has 16 layers of convolution layer (Simonyan and
Zisserman, 2015), and the ResNet50 network has 49 layers of
convolution layer (Savson et al, 2022). Among the three
classifiers (RF, SVM, and MLP) trained with VGGI19 features,
VGGI19 + MLP achieved the highest Macro-F1 score (0.872 +
0.068), with an improvement of ~0.011 compared to LeNet-5 (0.861
+ 0.069). Our result is consistent with the conclusion in (He et al.,
2016) that the accuracy of convolutional neural networks (CNNs)
has been continuously improving. For example, the very deep VGG
models, which have witnessed great success in a wide range of
recognition tasks. In this study, when trained on a small dataset of
50 individuals, VGG19 or ResNet50 can better characterize the
variability among individuals than LeNet-5 due to the deeper
convolutional layers. Trained on the raw dataset, ResNet50+MLP
achieved an improvement of ~0.055 compared to VGG19+MLP,
indicating that the depth of the convolution layers in the ResNet50
network is enough for fully extracting the image features of P.
leopardus. It is generally believed that by stacking multi-layer
convolution kernels, the deep convolutional neural network
allows the model to capture higher-dimensional and abstract
features, including invisible high-frequency features that are
traditionally considered noise (Krizhevsky et al., 2012). Thus, we
purposed to use the ResNet50 to capture the patterns on the surface
of P. leopardus.
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Combined PDE-based and CNN-based features, PDE
+ResNet50+MLP achieved the best prediction and PDE+
ResNet50+SVM got the suboptimal prediction, which are both
better than those achieved by ResNet50+MLP and ResNet50
+SVM trained on the same dataset. These results indicated that
when the size of the training set was small, the CNN had
difficulty in capturing more details of the shape features of P.
leopardus. The PDE-based features generated by PDE multiscale
decomposition contained a series of segmentation results at
varying image resolutions of shape pattern details at different
levels. This process performed an iterative segmentation at an
increasing image resolution in each step, and thus detected much
smaller patterns of shape. It was exactly because the PDE-based
features added more shape features for the CNN-based features
to identify the individuals more effectively. This result also
suggested that CNNs with some image segmentation methods
may be more well-suited for individual recognition when the size
of the dataset is small compared to just using CNNs.

4.2 Prediction at different time scales
determine the optimal dataset size

In practical applications, due to the limited time available for
collecting image data of the P. leopardus, it is usually hard for
researchers to obtain enough data, so a trade-off between data
volume and predicting effect is needed. Thus, the whole dataset
was divided at different ratios to simulate the training set on
different time scales, which were used as the training set to train
the classifier and the remaining images as the test set for
prediction. When using images of days 1-20 (i.e, 20 images
per individual, 1000 images in total) as the training set, better
results could be obtained (0.960 + 0.049). Then the curve of the
Macro-F1 changed slightly as the size of the training set
increased. When trained on images of days 1-45, a remarkable
improvement in predicting effect was obtained (0.983 + 0.047).
Since the test set was small, which only had images from days 46-
50 when using images from days 1-45 as the training dataset, the
model may have a higher recognition rate for some specific
individuals coincidently.

After fixing the test set to images of 46-50 days, the predicting
effect of the classifiers trained on a series of image subsets of 1-45
days, compared with the image set of 1-45 days. The results showed
that the average Macro-F1 score increased with the increasing
subset size for the models. It then plateaued when using images
of days 1-20 for training and more selected days. The predicting
effect slight increased training with images of days 1-40 and days 1-
45, which may be a serendipitous result caused by the small test set.
In addition, because the images faithfully reflect a continuous
morphological change of P. leopardus over time, the images of
days 1-45 were temporal continuity with the test set of days 46-50,
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which might be another reason for the models to achieve the above
best prediction.

4.3 Reliability of CNN-based recognition
methods in long-term tracking

In the breeding work, breeders require individuals to be
traceable for a long time using tagging methods, so it is necessary
to ensure that the CNN-based method can achieve a comparatively
high correction identification ratio of individuals for a continuous
period. In our tracking experiments, we found that the performance
of predicting effects showed large differences for some individuals.
For example, the CNN-based method had a poor predicting effect
on some individuals using small-size training sets, probably because
the shape and texture features of these individuals were more
similar to each other. If we expanded the training set, the model
performed highly accurate recognition for these hard-to-identify
individuals, showing that the CNN-based method needs large
numbers of training images to obtain temporal-stable features for
individual long-term tracking.

Most of the traditional tagging methods involve puncturing
and destroying the body wall of P. leopardus, which can easily
make them die due to wound ulceration. Meanwhile, the
retention rate of the label fluctuates greatly due to the choice
of the labeling tool, the experimental individual, and the
operation methods. Generally speaking, the retention rate for
one month is between 50% and 80%. The above two types of
problems make it difficult to apply traditional tagging methods
to the tagging work of aquatic animal breeding (Jepsen et al.,
2015). Our method can also save time and cost less in
comparison with molecular methods for the individual
tracking, especially in a large population. For 100 individual
samples, it would take approximately 14 days for good
identification with the traditional molecular methods (Wang,
2016). In addition, these methods are generally laborious and
time-consuming and sometimes require invasive operations that
need a relatively large amount of sample materials, which would
require the sacrifice of animals under study to ensure a sufficient
amount of DNA for individual recognition (Mao et al., 2013).
However, our method can achieve a high-throughput operation
with aid of an ordinary digital camera, and even mobile phones
and can reduce the workload to just less than 1 hrs. Therefore,
we would propose that the use of CNN-based image recognition
method has a great applying potential in the tagging work for
P. leopardus.

4.4 Possible improving directions
of model

In this study, the CNNs were trained on images of 50 days,
which were randomly selected in the period. The sample size was
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relatively sufficient for training. However, in the actual breeding
work, there are often more individuals. It is necessary to increase
individuals in the subsequent study to explore the upper limit of
the individuals that can be classified by the CNN method to meet
the actual needs. Fortunately, many multiclassification models
are now available, and perform well. Although the CNN
approach outlined above has great potential, there are several
outstanding challenges with applying CNNs to a wider spectrum
of problems. One important obstacle is the large amount of
training data required by CNNs. This challenge includes both
the generation of large labeled training examples and time- and
memory-efficient training with these large examples given
limited computational resources. Fortunately, continued
improvements in simulation speed and the efficiency of CNN
training (Chilimbi et al., 2014; Urs et al., 2017) are mitigating
this problem.

Another challenge with the application of CNNs is that their
performance can be sensitive to network architecture (Szegedy
et al,, 2015). There is no underlying theory for selecting optimal
network architecture, though improved architectures are sure to
continue to arise, and automated methods exist for optimizing
the many hyperparameters of a given architecture (Snoek et al.,
2012). Though we uncover some promising CNN architectures
for the recognition of P. leopardus, we suspect that substantial
improvements can still be made. Meanwhile, length calibrators
(e.g., rulers) can be added to the field of view for photograph, so
that the difference in relative size among individuals can be
involved in the dataset, which may improve the performance of
model in the temporal tracking task. Furthermore, if more
lightweight network architectures such as MobileNets (Li et al.,
2012) are used, it is promising to deploy the recognition systems
on mobile device as applications to enable mobile and real-time
recognition of P. leopardus.

5 Conclusion

In this study, a dataset involving images of 50 P. leopardus
individuals was obtained by continuous photography in 50
consecutive days. Then we performed prediction using
different classifiers with different feature extraction methods
and compare the predicting effect on the dataset. The results
shows that the feature extraction method based on deep CNN
model ResNet50 with PDE-based multiscale decomposition
segmentation method performed well in the recognition task
of P. leopardus. The prediction results on training sets of
different sizes show that the model achieves satisfactory
prediction results when the number of images per individuals
in training set reaches 20. Temporal tracking recognition
experiments on different time scales showed that the deep
CNN model ResNet50 with PDE-based segmentation method
can recognize individuals over a longer time span with better
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accuracy than other invasive tagging methods. The results of this
study will provide an important reference for the development of
non-invasive tagging methods based on deep learning and the
characterization of complex traits of P. leopardus. In the future,
we will increase the population to further verify our conclusion.
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Visual detection technology is essential for an unmanned surface vehicle (USV)
to perceive the surrounding environment; it can determine the spatial position
and category of the object, which provides important environmental
information for path planning and collision prevention of the USV. During a
close-in reconnaissance mission, it is necessary for a USV to swiftly navigate in
a complex maritime environment. Therefore, an object detection algorithm
used in USVs should have high detection s peed and accuracy. In this paper, a
YOLOV5 lightweight object detection algorithm using a Ghost module and
Transformer is proposed for USVs. Firstly, in the backbone network, the original
convolution operation in YOLOVS5 is upgraded by convolution stacking with
depth-wise convolution in the Ghost module. Secondly, to exalt feature
extraction without deepening the network depth, we propose integrating the
Transformer at the end of the backbone network and Feature Pyramid Network
structure in the YOLOVS5, which can improve the ability of feature expression.
Lastly, the proposed algorithm and six other deep learning algorithms were
tested on ship datasets. The results show that the average accuracy of the
proposed algorithm is higher than that of the other six algorithms. In particular,
in comparison with the original YOLOvV5 model, the model size of the proposed
algorithm is reduced to 12.24 M, the frames per second reached 138, the
detection accuracy was improved by 1.3%, and the mean of average precision
(0.5) reached 96.6% (from 95.3%). In the verification experiment, the proposed
algorithm was tested on the ship video collected by the “JiuHang 750" USV
under different marine environments. The test results show that the proposed
algorithm has a significantly improved detection accuracy compared with
other lightweight detection algorithms.
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object detection, USV, ghost model, lightweight, YOLO
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1 Introduction

In recent years, unmanned surface vehicle (USV) technology
has developed rapidly, and USVs are widely used in maritime
safety tasks, such as orderly and complex patrols,
reconnaissance, and detection and tracking of specific objects.
Traditional ship detection and tracking systems typically employ
radar or AIS (Vesecky et al., 2009; Dzvonkovskaya and Rohling,
2010; Vesecky et al., 2010; Sermi et al., 2013). However, the radar
has a relatively long scanning period and slow detection speed. It
cannot distinguish between specific types of objects, and hence
false and missed detections easily occur. Information collected
by AIS can be intentionally turned off by ships, which sometimes
results in AIS unreliability. The existing ship detection methods
are based on vision; they not only have a long detection range
but also have high resolution and object detailing. The
traditional detection methods based on vision are mainly
Mean-shift (Liu et al,, 2013) and HOG-SVM (Xu and Liu,
2016). Their characteristic is that they mainly rely on a single
shallow feature to complete the ship detection task. However,
these features are easily affected by the ship’s appearance, shape,
and complex environment, resulting in poor robustness. With
the rapid development of the visual field, visual object detection
based on deep learning has become a popular research topic.
Object detection algorithms based on deep learning have broad
application prospects in the marine environment (Chen et al.,
2021; Wang et al., 2022); nevertheless, their applications have
not been fully valued until now (Mittal et al., 2022). For example,
object detection can be used to perceive the surrounding
environment. The object’s orientation and image information
plays an important role in path planning, collision avoidance,
and object monitoring of a USV. At present, an object detection
algorithm based on deep learning can more accurately classify
and detect object positions. However, it has high requirements
for the vision-based processing system of the USV; moreover,
speed and accuracy of the object detection algorithm are also
major challenges.

In this study, we propose a lightweight object detection
network based on the You-Only-Look-Once-v5 (YOLOV5) to
obtain fast detection speed and high accuracy for USVs. The
object detection performance in a complex environment has
been improved. The proposed network has reduced detection
time and improvements in terms of anchor boxes, backbone, and
feature pyramid network (FPN) structure. We obtained a set of
anchor boxes through the K-means clustering method to adopt
to the ship’s characteristics. The Ghost module upgraded the
convolution (Conv) in the backbone to reduce the network
detection time. The Transformer is integrated into the cross
stage partial network (CSPNet) of the backbone and FPN
structure to achieve more useful feature extraction. The
proposed network is composed of these simple but effective
modules, thus balancing detection speed and accuracy well.
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Figure 1 shows the detailed flowchart of our training model.
Lastly, the experimental results demonstrate its excellent
performance on the task of detecting ship objects.

The contributions of this study include the following:

* We obtain a new set of anchor boxes to adapt to the
structural characteristics; i.e., the width of the ship is
longer than the height used by the K-means clustering
algorithm on the ship dataset.

* A combination of Conv stacking with depth-wise Conv
in the Ghost module was adopted to structure the
backbone feature extraction in YOLOvV5. In
comparison with the original Conv, the Ghost module
has better computing efficiency, which not only reduces
the model training and detection times but also
improves accuracy.

¢ We integrated the Transformer into the end of the
backbone and FPN structure in the YOLOV5 network,
which can improve the feature expression ability and
enhance the detection accuracy without deepening the
network depth.

* The proposed algorithm has achieved a good balance
between detection accuracy and speed. In the actual
marine environment testing process, our algorithm
obtains a high accuracy rate and is found to be robust
in the sea fog environment.

The remainder of this paper is organized as follows. In
Section 2, we show the data augmentation and related work. We
describe our approach in Section 3. The experimental results
performance and discussion are presented in Section 4. In
Section 5, we summarize this work.

2 Related work
2.1 Data augmentation

The purpose of data augmentation is to generate more
training samples based on existing datasets. The method of
data augmentation is to randomly transform the local or
global features of the images, and its role is to improve the
robustness and generalization ability of our trained model. In
certain special circumstances, highlighting, blurring, and
occlusion were encountered in the future detection process of
our model. Therefore, the hue, saturation, and value have been
adjusted in the model training process. With regard to the
geometric distortion of the image, certain operations are
performed, i.e., rotation, horizontal and vertical translation,
scaling, and shearing of the image. In addition, there are some
special data enhancement methods, such as Mixup (Zhang et al.,
2017) and Mosaic (Bochkovskiy et al., 2020). In the Mixup data
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FIGURE 1
Detailed flowchart of the proposed model training

enhancement method, new sample-label data are generated by
adding two image sample-label data pairs in proportion. In the
Mosaic data enhancement method, a new picture is generated
using four pictures through random reduction, cropping, and
arrangement. In this paper, we used a combination of Mixup,
Mosaic, and traditional data augmentation methods.

2.2 Visual object detection based on
deep learning

In recent years, visual detection technology has made great
progress, particularly detection methods that are based on deep
learning. The deep learning-based object detection algorithms
are mainly divided into two types—two-stage and one-stage. The
first step of a two-stage object detection algorithm is to generate
a position box by generating a region proposal that can extract
features; then, the second step is to perform category prediction.
It has high accuracy but slow speed; thus, it is not suitable for
real-time object detection like Fast R-CNN (Girshick, 2015) and
Faster R-CNN (Ren et al,, 2015). A one-stage object detection
algorithm performs classification and bounding box regression
while generating candidate boxes and has fast speed but less
accuracy; hence, it is suitable for real-time object detection
like SSD (Liu et al., 2016) and YOLOv3 (Redmon and Farhadi,
2018). High object detection speed is essential for a USV
platform; therefore, one-stage object detection algorithms are
more suitable.

In the case of maritime object detection, many scholars have
investigated from sea—skyline detection to ship detection. Bai et al.
(2021) proposed a sea-skyline detection method based on local
Otsu segmentation and Hough transform. Later, the monopole
object detection method was introduced for ship detection, which
reduces a certain amount of interference and calculations, and it
optimizes the accuracy and speed of ship detection. Chen et al.
(2021) proposed an integrated ship detection framework based on
an image segmentation method for edge detection. The Canny edge
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detector and Gaussian filter are used to detect the edges of ships in
the image, suppress the edges related to the background, and,
finally, connect them to form the outline of the ship; the method
achieved an effect of 32 fps. In ship detection methods based on
deep learning, Gupta et al. (2021) proposed a classification method
for ship detection based on support vector machines (SVMs) and
convolutional neural networks (CNNs). First, the feature package is
used to deal with diverse features of different types of ships, and
then the CNN is used for feature extraction. Finally, 2,700 images
are used for training, and the accuracy rate of their model reaches
91.04%. Zou et al. (2019) improved a maritime object detection
method based on Faster R-CNN. The ResNet-50 network is
replaced by the VGGI16 network. The results show that the
recognition and detection effect of small ships was significantly
improved. Zou et al. (2020) proposed an improved SSD algorithm
based on the MobileNetV2 CNN that is used in ship detection and
identification. The results show that the SSD_MobileNetV2
algorithm has better performance for ship images. Shi and Suo
(2018) proposed a ship detection algorithm based on an improved
visual attention model. Firstly, the wavelet transform (WT) is used
for feature extraction; secondly, the improved Gabor filter and deep
multifaceted transformers (DMT) algorithm are used to obtain the
directional and edge texture features of the image. The final test
demonstrated high detection accuracy and good real-time
performance. For the existing ship detection algorithms based on
deep learning, it is difficult to simultaneously obtain good detection
accuracy and real-time performance.

2.3 Ship detection based on YOLO

Since the YOLO algorithm was published, it has been widely
studied because of its good computational efficiency and
detection accuracy. Lee et al. (2018) applied the YOLOv2
algorithm to ship detection and classification. In comparison
with other machine learning algorithms, their model has better
robustness and scalability. Li and Qiao (2021) proposed a ship
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detection and tracking algorithm based on YOLOv3. They used a
graph matching algorithm and Kalman filter to achieve object
matching and tracking, which solves the problems of object
occlusion and label switching. Jie et al. (2021) improved
YOLOV3 for ship detection and tracking in inland waterways;
the K-means clustering algorithm was used to improve the
anchor boxes, and it was improved by taking the single
softmax classifier and introducing the Soft-NMS algorithm.
Their algorithm could enhance the safety of inland navigation
and prevent collisions and accidents. Zhang et al. (2020)
improved a maritime object detection algorithm based on
YOLOV3. They proposed an E-CIoU loss function for
bounding box regression, and the improved method
accelerated the convergence speed and improved the detection
accuracy. Liu and Li, (2021) studied ship statistics in waterway
videos. To realize automatic detection and tracking by YOLOv3,
they designed a self-correcting network combining regression-
based direction judgment and object counting method with
variable time window. The results show that their algorithm
can achieve automatic analysis and statistical data extraction in
waterways videos. Sun et al. (2021) optimized the backbone
network CSPDarkNet of YOLOV4 for application in an auxiliary
intelligent ship navigation system. They added a receptive field
block module, and the FPN of YOLOv4 was improved by
combining the Transformer mechanism. Their algorithm
improves the inference speed and detection accuracy. Liu et al.
(2021) improved the USV maritime environment perception
ability using an improved YOLOV4 object detection algorithm.
The reverse depth-wise separable convolution (RDSC) was
applied to the backbone and FPN structures of YOLOv4,
which reduced the number of parameters of the network and
improved the accuracy by 1.78% compared with the original
model. Thus, the algorithm has a small network size and better
performance in terms of detection speed.

In summary, the ship detection methods are mostly difficult to
apply on USVs because of limited computing resources and
detection speed. Thus far, the problems of accuracy and speed of
maritime object detection have not been resolved. In comparison
with traditional object detection algorithms, the deep learning-
based object detection algorithm has good accuracy rate, but slow
detection speed. Therefore, this study focuses on improving an
object detection algorithm based on YOLOVS5 to solve the problems
of real-time performance and accuracy of the maritime ship
detection algorithm applied to the USV platform.

3 Methods

The maritime object detection includes two tasks, i.e.,
classification and positioning of ships. A robust object detection
algorithm should not only consider the detection speed, but also
consider the complex environmental scenarios. In the field of object
detection, the YOLO object detection algorithm performs well in
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various environments, such as changes in illumination in a complex
sea environment, and recognition of distant small targets in the sea.
The fifth version YOLO object detection algorithm has been
developed, and its efficiency is very good.

YOLOVS5 has high performance in terms of detection speed
and accuracy. According to the depth and width of the network,
it is divided into four versions: YOLOv5s, YOLOv5m, YOLOV5I,
and YOLOvV5x. The basic network of the four versions is similar.
The structure of YOLOV5 is mainly composed of the input,
backbone, Neck, and Prediction. At the input, we perform data
augmentation operations, such as Mixup and Mosaic, which can
enrich the ship dataset and improve the detection efficiency of
small objects. Feature maps of different scales are extracted at the
backbone network. The FPN and path aggregation network
(PANet) at the Neck strengthen the feature fusion ability. The
FPN transfers high-level semantic features in a top-down
manner, and the PANet transfers low-level strong localization
features in a bottom-up manner after the FPN. The final output
is the prediction of the network, and the prediction uses the non-
maximum suppression (NMS) algorithm to filter the object
boxes. Then, we make predictions on the image features,
generate bounding boxes and predict classes.

In this study, we examine the ability of the USV to detect and
classify an object quickly. We used YOLOV5 as the base network
and improved it. The architecture of the improved YOLOV5 is
shown in Figure 2.

3.1 Anchor box calculation

In object detection tasks, choosing suitable anchor boxes can
significantly improve the speed and accuracy of object detection.
Anchor boxes are boxes presented by a fixed aspect ratio in YOLO,
which is used to predict the category and position offset of the
bounding box. The default anchor boxes are generated in the MS
COCO and VOC datasets. The COCO and VOC datasets have 80
and 20 classes, respectively, but ships are only one of their classes.
Therefore, the default anchor boxes are not fully applicable to the
objects in the ship dataset. To adapt the structural characteristics of
the width of the ship being longer than the height of the ship, we
used the K-means clustering algorithm on the ship dataset to obtain
a set of anchor boxes. The clustering results for the ship dataset
labels are shown in Figure 3. The steps to implement the
Algorithm 1 are described as follows.

Input:
A ground truth label dataset: S={x;, x5, X3
e X}
The number of cluster centers: k
Output:
A group of anchor boxes: {c;, c2, C3..

Cx}
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FIGURE 2
Improved YOLOV5 network structure proposed in this paper.
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FIGURE 3

Result of ship dataset using K-means clustering. The x-
coordinate is the width of the ground truth bounding box and
the y-coordinate is the height of the ground truth bounding box.

Procedure:
First, select randomly nine boxes of
ground truth labels from the ship dataset
as the cluster centers;
fori=1,2 .. kdo
REPEAT
for j=1,2,3..m do
Calculate the distance between x; and each
cluster center {c;, ¢z, C3..Cxl djs = | 1x; — C;
127
Return each label x; to cluster centers c;

with the closest distance; Update the
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cluster center c; for each class in each

cluster g erc,-%;
’
end for

UNTIL Cluster centers no longer change.

ALGORITHM 1
Pseudocode of K-means clustering algorithm for anchor boxes.

Finally, nine sets of adaptive anchor boxes are generated
using the K-means clustering algorithm, i.e., (29,23), (58,31),
(109,30), (62,60), (112,39), (114,50), (78,89), (112,65), and (112,
87). The anchor boxes of the clustering algorithm can effectively
accelerate the convergence speed of the network and effectively
improve the gradient descent problem in the training process.

3.2 Ghost model

There are limitations regarding the memory and computing
resources of embedded industrial computers in USVs; therefore,
the key to ship detection on an USV is to find a lightweight
detection model that can balance detection accuracy and
computational complexity. CNNs are usually composed of
many convolution kernel operations, which will result in large
computational cost. During model training, many redundant
feature maps will be generated, as shown in Figure 4. Redundant
feature maps not only have high similarity but also
greatly increase computational complexity. To reduce the
computational load of the model and raise the detection speed,
an efficient architecture and high-performance GhostNet (Han
et al., 2020) structure are adopted.

The detailed structure of the Conv and Ghost model is shown
in Figure 5. Figure 5A shows the Conv operaton. A given input is
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defined as XeR™"" , where c is the number of channels of the
input; h and w are the height and width of the input data,
respectively. The n feature maps are generated through ordinary
convolution that can be expressed as Y =X*f + bwhere YER“**"
is the output feature map with »n channels, and * is the convolution
operation; f denotes the convolution filter of this layer, b is the bias
term, and kxk is the size of the convolution kernel f. The value of
the floating point of operations (FLOPs) can be expressed as
nh-w-ck-k . Owing to the large values of n and ¢, the usual
parameters of the model are very large. The Ghost model
comprises Conv and depth-wise Conv with less parameters and
computations. The Ghost model first obtains the necessary feature
map of half channel of the input features through Conv. These
necessary feature maps are used to perform the depth-wise Conv
that can obtain similar feature maps of the necessary feature maps.
Finally, the two parts of the feature maps from Conv and depth-
wise Conv are spliced. The schematic diagram of the Ghost
module is shown in Figure 5B. Specifically, we used the primary
convolution Y'=X*f generate m feature maps YER"*™ _ To
obtain the required » feature maps, the following cheap operations
are used for each intrinsic feature in Y

Y= @), Vi=1,2,..mj=1.2, (1)

where y'; is the ith intrinsic feature map in Y’ and ®@;; is the
depth-wise Conv operation to generate the jth (except the last
one) Ghost feature map y;j; y’; can obtain one or more feature
maps. The last @, is the identity mapping to preserve the
intrinsic feature map as shown in Figure 5B. We can obtain
n=m-s feature maps for Y=[y11,y1,...¥mms] » which are taken as the
output of the Ghost module. The value of the Ghost module

/

10.3389/fmars.2022.1058401

FLOPs can be expressed as % -h-w-c-k-k+%Z(s=1)-h-w-
k- k. The operations ®;; are convoluted on one channel. One
convolution kernel of ordinary convolution is convoluted on
every channel. The computational cost of the depth-wise Conv
operation is much lower than that of the ordinary convolution.
The original convolution operation in the YOLOv5
backbone network is upgraded to Conv stacking with depth-
wise Conv in the Ghost module, which can raise the operation
speed and reduce the number of parameters of the model.

3.3 Transformer encoder block

In the case of ship detection, the classification result of the
model can be affected because of the high similarity of ship
features. Generally, an image contains rich visual information,
such as the object and background information. The key is to
fully mine the information in the sample and solve the problem
of low accuracy. The Transformer’s (Vaswani et al., 2017; Zhu et
al., 2020) self-attention mechanism is used to learn the
association between the foreground and background in the
sample, so that the model can focus on the key areas for
detection. The Transformer can improve the detection
accuracy of objects. First, the Transformer constructed the
sample features into sequence form and added positional
encoding. Then, the self-attention mechanism of the
Transformer model was used to learn the association between
each feature block and assigned different attention to each
feature block. Lastly, the original feature sequences are fused,
and each feature block in the sequence can contain useful

Py

' .
r

FIGURE 4
Redundant feature maps generated by original convolution.
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DW Conv

Conv and Ghost module structure diagrams (A) The Conv operaton, (B) The Ghost module

information for detection in other feature blocks. These
operations can enhance the feature expression ability of
training samples and improve the accuracy of classification
and detection.

The Transformer encoder comprises L layers of alternating
Multihead Self-Attention (MSA) and Multilayer Perceptron
(MLP) modules. The model structure of Transformer is shown
in Figure 6. Therefore, the output Zjif layer I based on the
Transformer encoder is:

Z/l =

MSA(LN (Ziy) + Zpy @)

Z)= MLP (LN (2))) + Z' 3)

where [ = {1, 2,..., L} represents the number of layers, LN(-)

presents the layer normalization operation, and Z'; represents the
output of the Lth layer of the MSA. The final output (hidden
feature) of the Transformer encoder is Z;€ RV *F

To improve the detection accuracy of the network without
deepening the network depth, we focused on the fusion of
multilayer features on the PANet and optimization of the
feature transfer on the FPN structure. High-quality feature
map upsampling and forward transfer were obtained, and the
interference of the underlying feature background was reduced.
The Transformer was integrated into YOLOvV5, which could
improve the feature expression. The Transformer was taken into
the end of the backbone structure and CSPnet module of the

1
-
1 =
Enbedded % Multi Head
Pathes ) Attention
3
FIGURE 6

Transformer encoder architecture.
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FPN structure. The spatial areas of low-level features were
weighted by the salient target position information contained
in the attention map, which highlighted the salient regions of
the low-level features and suppressed the interference of the
background. Thus, it could be more conducive to the
identification and classification of ships.

The Transformer could guide the model’s attention to
reliable and useful channels, while reducing the impact of
unreliable and useless background channels. Based on the
YOLOvV5 model, we integrated the Transformer block at the
end of its backbone and Neck networks. Because the resolution
of the images at the end of the backbone network was relatively
low, applying the Transformer module on the low-resolution
feature maps could reduce the additional computational cost.

4 Experiment

4.1 Datasets

In marine transportation, there are generally five basic types
of vessels, namely, cargo ships, general cargo ships, carrier ships,
bulk carriers, and oil tankers. In addition, there are other types of
ships, such as ro-ro, reefer, barge, and liquified natural gas
carrier. Among them, cargo, carrier, and cruise ships account
for 60%-70% of global ships (Electronic Quality Shipping

1
P 1
LayerNorm -7‘ MLP ‘r—bé—* Dropout
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Information System, 2020). Therefore, we selected a ship dataset,
which can be found on Kaggle (Jain, 2021). It includes five
different ship types: cargo, military, carrier, cruise, and oil
tanker. Additionally, the dataset comprises 7,604 ship images,
including 1,853 cargo ships, 916 warships, 829 transport ships,
1,281 cruise ships, and 1,062 tankers. Figure 7 shows sample
images that were randomly selected from ship datasets.

The “JiuHang750” USV is designed and fabricated to detect
and trace ships and is used as our research platform. The USV was
equipped with the three-light photoelectric platform, which
comprises a 30x continuous zoom high-definition visible light
camera, an 80-mm uncooled infrared thermal imager, and a 5-km
laser rangefinder. The visible light camera can achieve 30x optical
zoom and output video images with a 1,920 x 1,080 resolution; the
stabilization accuracy of the photoelectric platform reaches 0.5
mrad, the rotation range can reach 360° and the pitch angle can
reach 70° up and down. Based on this optoelectronic platform, the
“JiuHang750” USV collected images in the areas of Yellow Sea to
test the detection ability of the algorithm in the maritime
environment in October and December 2021 and February
2022. The video screenshots are shown in Figure 8.

10.3389/fmars.2022.1058401

4.2 Experimental environment
and parameters

To ensure experimental consistency, all experiments in this
study were carried out under the same hardware platform and
software framework. All models used an NVIDIA RTX2080Ti
GPU (11 GB) for training and testing. The operating system was
CentOS 7, the test framework was PyTorch1.9.0, and the CUDA
version 10.2 was the parallel computing framework. The
networks were trained for 200 epochs.

4.3 Analysis of results

4.3.1 Comparison with other object
detection algorithms

In this section, we evaluate the performance of the proposed
improved YOLOV5 algorithm. Multiple evaluation indicators
were used to evaluate the performance of the different object
detection algorithms, including Average Precision (AP),
Precision (P), Recall (R), and Fl-score. The mean average

Cruise

Military

Tanker

FIGURE 7
Randomly selected sample images from the dataset.
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FIGURE 8
(A) "JiuHang750" USV and (B) its video images collected under different weather conditions.

precision (mAP) was adopted to evaluate the accuracy of the L AP

. . . mAP =
object detection algorithms. P was adopted to measure the n

(8)
algorithm classification accuracy, and R was used to measure
the recall ability of the algorithm detection. The F1-score can

consider both P and R. The frames per second (FPS) is an

where P represents the precision rate, R represents the recall rate,
TP represents the situation where the prediction and label are

both ships, and FP represents the situation where the prediction

important indicator to evaluate the speed of a target detection is a ship but the label is the background; EN represents the

algorithm, which indicates the number of frames per second situation where the prediction is the background but the label is

processed by the detection algorithm. The calculation formulas

the ship. n represents the number of classes.
are presented as follows:

Four deep learning and two lightweight algorithms were

TP used to compare with the proposed algorithm, including SSD,

P= TP + FP (4) YOLOV3, YOLOvV4, YOLOV5, YOLOV3-tiny, and YOLOV4-tiny.
The specific test results in Table 1 show that the proposed

TP algorithm achieves the best results between detection speed and
R:m ®) accuracy, and its detection precision is better than SSD,
YOLOv3, YOLOv4, YOLOvV3-tiny, and YOLOv4-tiny. The

1 ship detection precision of our study is 0.7% and 1.5% higher

AP = A PR dR © than that of YOLOv3 and YOLOWV4, respectively, and 28.8% and
43.9% higher than that of YOLOv3-tiny and YOLOv4-tiny,

Fl - 2w P xR 7 respectively. The FPS value of our algorithm was 138. The
P+R detection speed of our algorithm is faster than that of SSD,

TABLE 1 Performance comparison of SSD, YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-tiny, YOLOV5 and the proposed algorithm in the ship dataset.

Methods mAPO0.5 (%) mAP@0.5:0.95 (%) P (%) R (%) F1 (%) Model size (M) FPS
SSD 95.2 72.1 813 85.7 83.4 92.6M 83
YOLOV3 95.9 77.3 95.1 94.8 94.9 117M 54
YOLOV3-tiny 72.6 314 67.0 724 69.6 16.6M 149
YOLOv4 935 77.5 812 96.4 88.1 488M 26
YOLOv4-tiny 88.9 63.9 51.9 91,5 66.23 45M 98
YOLOV5 953 70.9 95.8 94.5 95.1 13.61M 131
Ours 96.6 79.2 95.8 94.7 95.2 12.24M 138

The bolded areas inside the table represent the best performance.
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YOLOv3, YOLOv4, YOLOv4-tiny, and YOLOV5. The results
show that the detection algorithm of the proposed algorithm
achieves optimal results between speed and accuracy. Therefore,
the ship detection algorithm of our study is suitable for
application to USVs.

Figure 9 shows the Precision-Recall (P-R) curves of
YOLOvV3, YOLOv4, YOLOV5, and the proposed algorithm.
The P-R curves represent the predictions of the test set
samples as positive samples under different thresholds, and
different precision and recall rates are obtained. The larger the
area enclosed by the P-R curve with the coordinate axis, the
better the precision and recall of the detection algorithm. After
comparison, it can be seen that the area enclosed by the
algorithm in this study is larger than that of other object
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FIGURE 9
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detection algorithms. Hence, the algorithm in this paper is
better than the three algorithms of YOLOv3, YOLOv4, and
YOLOVS5 in terms of detection performance.

4.4 Comparison of actual test results
of USV

To test the detection effect of the proposed algorithm in an
actual maritime environment, we conducted several maritime
experiments in the Yellow Sea near Qingdao to detect and
classify ships. Figure 10 shows the detection results of the
proposed algorithm and lightweight models YOLOv3-tiny,
YOLOv4-tiny, and YOLOvV5 on images collected by the
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Precision-Recall (P-R) curves of different object detection algorithms on the ship dataset (loU = 0.5). (A) is from YOLOv3, (B) is from YOLOv4,

(C) is from YOLOVS5 and (D) is from our proposed algorithms.
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“JiuHang750” USV. The results show that the proposed
algorithm has the best detection performance in the actual
maritime environment. Each column presents the original
image and the detection results of YOLOv3-tiny, YOLOv4-
tiny, Yolov5, and the proposed algorithm from left to right.
The first row shows a ship clearly. Although YOLOvV4-tiny
detects the object, the detection box is significantly smaller
than the actual position of the ship in the image. In the
second row, we show the image of a ship that is far away from
the ship and has wake waves. YOLOv4-tiny recognizes the waves
as a ship object, and the detection accuracy of the proposed
algorithm is significantly higher than that of other detection
algorithms. The third row shows the ship image under the swing
of the USV. YOLOv3-tiny and YOLOv4-tiny also detect the ship
object, but the detection box is inconsistent with the actual
position of the ship in the image; additionally, YOLOv5 does not
detect the ship object. The fourth row shows the image of the
ship under dark clouds; all algorithms detect the ship object, but
YOLOv4-tiny splits one ship object into two different objects.
Furthermore, the accuracy of the proposed algorithm is
significantly higher than that of other detection algorithms.
The fifth and sixth rows show the ship image in the case of
sea fog. Two images do not detect the ship object of YOLOv3-
tiny and YOLOv4-tiny, and the detection accuracy is also low;

FIGURE 10

Detection results of different object detection algorithms in various environments collected by “JiuHang750" USV.
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however, the accuracy rate of the ship object detected by the
proposed algorithm is higher.

4.5 Ablation experiments

To further evaluate the effectiveness of the proposed
algorithm and each module, ablation experiments were
designed, and Table 2 presents the results. Experiment 1 is set
as the benchmark, which demonstrates the performance of
YOLOv5s without any modification. Then, we replaced the
original anchor boxes in experiment 2. In experiment 3, we
added the Ghost module to the backbone structure. In
experiment 4, we included the attention mechanism in the
Neck network structure.

The results show that the mAP increased by 0.11% in
experiment 2 after replacing the original anchor boxes. The
original Conv operation in the backbone was replaced by Conv
stacking with depth-wise Conv in the Ghost module in
experiment 3. Compared with the results achieved by
YOLOV5s, the mAP increased by 0.14% and the size of the
model reduced by 1.45 M. In experiment 4, we integrated the
Transformer into the end of the backbone network and FPN
structure, and the mAP increased by 0.43%. These results show

3

Cargo 0.60 .|
== —weay

- \‘ it

frontiersin.org


https://doi.org/10.3389/fmars.2022.1058401
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Zhang et al.

TABLE 2 The results of the ablation experiment.

Experiment Anchor boxes Ghost module
1

2 v

3 4

4

5 4 v

The bolded areas inside the table represent the best performance.

that the addition of the two modules can improve the detection
ability of the algorithm.

5 Conclusions

In this study, an object detection algorithm is improved
based on the YOLOv5 model for USVs. First, based on the shape
characteristics of ships, the K-means algorithm was used to
optimize the initial value of the anchor boxes. Second, the Ghost
module was added to the backbone, thus reducing the size of the
network and improving detection efficiency. Third, we
integrated the Transformer at the end of the backbone and
Neck structures in the YOLOv5 network, thereby improving the
model’s attention to reliable and useful features. Finally, we
conducted experiments to verify the accuracy of the proposed
algorithm and its effectiveness in real-time detection tasks. In
comparison with other deep learning object detection
algorithms, the results show that the proposed algorithm
achieves a mAP of 96.6%. Our model size is the smallest
among all other algorithms used for comparison and only
reaches 12.24 M. The detection results in different maritime
environments are also significantly better than those of other
detection algorithms. Additionally, our algorithm has obtained
good detection results in the sea fog environment. Furthermore,
the proposed algorithm was applied to the vision system of the
“JiuHang750” USV and successfully realized the identification
and classification of the surrounding ships of the USV.

Sea images are easily affected by weather and lighting,
resulting in unclear objects on images; thus, feature extraction
of objects can become difficult. In future research, we can resolve
this problem by focusing on the hardware technology for image
acquisition, image stabilization, and other aspects. In addition,
the dataset used in this study is small in terms of size, and it is
necessary to collect more photos of objects on the sea, and
especially pictures at different times and light conditions.
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Transformer mAPO0.5 (%) Size (M) FPS
94.80 13.61 131

94.91 13.61 131

95.06 12.16 140

v/ 95.23 13.60 133

v 96.6 12.24 138
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The Internet of Underwater Things (loUT) is a typical energy-limited and
bandwidth-limited system where the technical bottleneck is the asymmetry
between the massive demand for information access and the limited
communication bandwidth. Therefore, storing and transmitting high-quality
underwater images is a challenging task. The data measured by cameras need to
be effectively compressed before transmission to reduce storage and reconstruc-
ted with minor errors, which is the best solution. Compressed sensing (CS) theory
breaks through the Nyquist sampling theorem and has been widely used to
reconstruct sparse signals accurately. For adaptive sampling underwater images
and improving the reconstruction performance, we propose the ESPC-BCS-Net
by combining the advantages of CS and Deep Learning. The ESPC-BCS-Net
consists of three parts: Sampling-Net, ESPC-Net, and BCS-Net. The parameters
(e.g. sampling matrix, sparse transforms, shrinkage thresholds, etc.) in ESPC-BCS-
Net are learned end-to-end rather than hand-crafted. The Sampling-Net achieves
adaptive sampling by replacing the sampling matrix with a convolutional layer. The
ESPC-Net implements image upsampling, while the BCS-Net is used to image
reconstruction. The efficient sub-pixel layer of ESPC-Net effectively avoids
blocking artifacts. The visual and quantitative evaluation of the experimental
results shows that the underwater image reconstruction still performs well when
the CS ratio is 0.1 and the PSNR of the reconstructed underwater images is
above 29.

KEYWORDS

internet of underwater things, underwater image, compressed sensing, deep learning,
convolutional neural networks
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1 Introduction

The internet of underwater things (IoUT) is an emerging
communication ecosystem to facilitate an integrated, reliable, and
coordinated communication network (Jahanbakht et al., 2021) that
connects different underwater devices in water bodies (rivers, lakes, and
oceans) and underwater environments. The underwater devices include
underwater vehicles (sea-bots, remotely operated vehicles, underwater
trackers) and underwater sensors (Bello and Zeadally, 2022). By
connecting more and more devices to the IoUT, the ecosystem
generates a huge amount of data, known as Big Data. However, due
to the large size of the captured images and the low memory of low-
power embedded devices, communication of underwater images
becomes very difficult. Furthermore, the traditional big data
processing methods (Cao et al., 2018) that rely on statistical
properties lack generalization ability. JPEG and other traditional
compression algorithms have limitations regarding reconstruction
quality, data rate, and compression performance, making them
unsuitable for resource-constrained IoUT (Monika et al., 2022b).

Compressed sensing (CS) theory has several names: compressive
sampling, compressed sensing, and compressive sensing. CS theory
breaks through Nyquist’s theorem, and it is a pre-processing
technique that exploits the signal’s sparsity for sampling the data
(Zhang et al., 2022). CS is more hardware-friendly, especially with
simultaneous sampling and compression. Some CS-based methods
have been proposed to solve underwater data processing. The SPIHT
compression algorithm for underwater images was proposed based on
embedded coding compression and CS (Cai et al., 2019). Zhang et al.
(2021) used CS to overcome underwater image distortions. The CS
multiscale entropy feature extraction method to process target
radiation noise is efficient and accurate (Lei et al., 2022).
Nevertheless, these traditional CS-based methods face the
drawbacks of requiring manual parameter adjustment for the
signal, time-consuming calculations, and poor generalization.

With the development of CS and Deep Learning, the network-
based CS methods have been applied to magnetic resonance imaging
(Kilinc et al., 2022), acoustic transmission (Atanackovic et al., 2020),
and synthetic aperture radar imaging (Cheng et al,, 2022). The
network-based CS method allows the reconstruction of images
quickly once the network has been trained. Yuan et al. (2020)
proposed SARA-GAN based on Generative Adversarial Networks
with the Self-Attention mechanism for CS-MRI reconstruction. In
addition, a method called Light AMC based on CS and a convolutional
neural network was proposed for a non-cooperative communication
system (Wang Y et al., 2020). The parameters of these network-based
CS methods are trained end-to-end rather than manually tuned, with
the advantage of higher generalization and faster reconstruction.

To improve the CS performance of underwater image
reconstruction, we propose ESPC-BCS-Net. The following are the
particular contributions of the proposed ESPC-BCS-Net:

1. It is a novel network-based CS method where parameters
(excluding hyperparameters) are trained end-to-end rather
than through manual adjustment (including the sampling
matrix and sparse matrix).
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2. The ESPC-BCS-Net can be trained in unison, while the
Sampling-Net can be used separately for underwater image
sampling.

3. The Sampling-Net achieves adaptive sampling by replacing
the fixed sampling matrix with a learnable convolutional
layer.

4. The ESPC-Net avoids blocking artifacts and improves
reconstruction quality.

2 Related works

This section will present related works and briefly introduce CS
and CS-based reconstruction methods.

2.1 CS overview

Mathematically, CS reconstruction is to infer the objective signal
x € R Y from its randomized CS measurements:

y= ®¥s=0Os=Dx (1)

where @ € RMN

is the sparse matrix, s is the sparse coefficient. CS ratio is defined as M a

is the sampling matrix, ©is the sensing matrix, ¥

< N. In block compressed sensing (BCS), blocks of images are processed
simultaneously rather than the entire image, which reduces the
processing time. The image is divided into small blocks of size BxB.
The vector y; can be expressed as:

yi= Dp x; ()

where x; presents the vector form of the i image block and @, is
the i measurement matrix of size BxB. BCS solves the problem of
high decoding computational complexity by independently
measuring and recovering non-overlapping blocks, but the images
can lead to blocking artifacts (Li et al., 2017).

2.2 CS reconstruction methods

We classify the existing CS into three categories: iteration-based
method, optimization-based CS method, and network-based CS
method. The general iteration-based method for CS reconstruction is:

1
min > || ®x—y| |§ +AR(x) (3)

where the first term % || @x—y |3 is the data fitting term, A > 0 is
the weighting parameter, R(-) is the regularization term that requires
reconstructed data satisfies the priori information. The optimization-
based method for CS reconstruction is to solve the following
optimization problem:

1
min —[|@x-y][ +A]|¥x]; @)
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where the sparsity of the vector ¥x encouraged by the /; norm
(Qin, 2020). In addition, the common idea of network-based CS
method is to replace the operators in traditional CS methods with
neural networks (Liu et al., 2021).

3 Proposed ESPC-BCS-Net

This section will briefly introduce the proposed method and then
explain the novel ESPC-BCS-Net. As shown in Figure 1, the proposed
ESPC-BCS-Net contains Sampling-Net, ESPC-Net, and BCS-Net. We
will describe the design of these three networks in the following
sub-sections.

3.1 Problem formulation

We divided CS reconstruction into two steps:

— 1 =
19=x D p.V [ [0x -y ®

X(k

'=arg min %H(I)xi— £ |2 A [B ), ©)
Where p is the step length of the gradient, V express gradient
operations, A is the regularization parameter, F(-) is the transform
function to sparse images, x; is the image block. Inspired by a data-
driven adaptively learned matrix (Hong and Zhu, 2018), we improve
Equation (6) to learn sampling matrix @ follow Equation (7):

10.3389/fmars.2023.1093665

%

1
x(k)=arg in(;l; 5 | \<I>xi—r(k) | |§ +M||[F(x) |y

3.2 Architecture of ESPC-BCS-Net

3.2.1 Sampling-Net

The traditional sampling matrix, such as the random Gaussian
matrix, is computationally complex and takes up a lot of memory, so
we design a learnable sampling matrix. Sampling-Net implements
adaptive sampling, which is a learnable convolutional layer used to
replace a fixed random matrix @ € RN, The convolutional layer
uses M filters of size /N x /N to sample the image block x; of size
VN x /N. After the sampling network, we get the result y;=®px;
with size 1 x 1 x M which easily compresses the underwater image.
After the ESPC-BCS-Net network has been trained in unison,
Sampling-Net can be used as a compression network. Compared to
traditional compression algorithms, Sampling-Net is more suitable
for low-power embedded devices as it compresses data through a
simple convolution layer.

3.2.2 ESPC-Net

Inspired by the image super-resolution network (Shi et al., 2016),
we designed the ESPC-Net (efficient sub-pixel convolutional neural
network) for underwater image upsampling and reconstruction. The
convolutional layer uses N filters of size 1 x 1 to replace the (®@g;)"y,=
(Dy;) " Dyix;. After the convolutional layer, we get the result ((DBI-)Tyi
with size 1 x 1 x N. Furthermore, the efficient sub-pixel operation is
depicted in Figure 1. In the end, we obtained image blocks of the size
VN x v/N and used them as input to the BCS-Net.

Sampling-Net ESPC-Net I _____P_C_S_'[\lf ____________________
i | i H i 1
1 1 1 1 1 1
1 1 1 1 1 1
o)) 1 o0 i i o0 H i o0 i
£ - e £ | i | £ | | g |
! Y 2 LB g | . g | |8 g |!
= Sl = REEREER Pl ge | Egl ilge | E gl
S S : el 5 afmece | T Eem 5 Sl oo foi T S T S s [ —)
= = n 1|8 g E gl 1 | g2 E g1 1| § 2 E gl
l» > — el i H 2 B = 1 1 2 E = : 1 2 g =l 1
< B x Y} i 'g 1 1 i = 15 i i = 15 i
o - [ = 1 [ & i | < < !
= 8 ]S ! S | LS !
0 1 1 k-1)1 (Nr-1)1 1 N
M K ahenase 1 XL icenphase i UL T Ncthphase | X
| F F
P 32 32 32 Channel 32 32 1
1 1
E M E |
i x fl © n_E
! > + B o
> _— —_ - ] - 0] ]
| 13 ,
| 2 NG} Y ] i
Efficient Sub-Pixel (ESP i
(ESP) - K-th Phase X0 !
e e T e
FIGURE 1
The schematic diagram of the proposed ESPC-BCS-Net consists of Sampling-Net, ESPC-Net, and BCS-Net.
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3.2.3 BCS-Net

The BCS-Net (block compressed sensing network) is used for
underwater image reconstruction and consists of N, layers network,
each containing a gradient module and a proximal module. In
particular, the BCS-Net can be trained and used independently as a
network for underwater image reconstruction.

Gradient module: corresponds to Equation (5), which is used to
generate the ). In Equation (8), we omit the calculation process for
this V % || dx*D -yl = T (Px*D -y). @' is the transpose
matrix of @.

P0) = D) _ 50, T (kD _ ) 8)

Proximal module: corresponds to Equation (7), which is used to
generate the reconstruction result x*. The soft thresholding
function Soft(-,6% ) is used to reduce image noise.

F(k)(x(k)) _ SOft(F(k)(T(k)), O(k)) (9)

We design the BCS-Net as a residual network structure and x* is
calculated by Equation (10). F9 and F® have same structures, with an
efficient channel attention (ECA) block (Wang Q et al., 2020) in each unit.

x® = R F(k)(F(k)(x(k))) (10)

3.3 Loss function

The loss function consists of three components, Lconstraints Lsparses
and Loyyp. The L opsiraine is for network accuracy and the Ly is for
signal sparsity. The L,,4, is an orthogonal constraint for the sampling
matrix @. The end-to-end loss function for ESPC-BCS-Net as follows:

['total= Econstraint"’ }"1 Esparse"' ;"2 ‘Corth (1 1)
with:

| QR RS

‘Cconstrainl:N N 2 ||F (F(k)(xi))_xi‘lg (12)
b Vx i=1 k=1
S (R0 (0
‘Csparse: E ||F (r )Hl (13)
k=1

Comn = — || @T@-1) 2 14
orth _WH - HZ ( )

where the fixed hyperparameters A, = 0.01, A, = 0.01, the N, is the total
number of the BCS-Net phase, N, is the total number of training blocks, N,
is the size of each block x;, M is the size of @, I is the identity matrix.

4 Experiment results and discussion
4.1 Experiment setting
To fairly show the advantages of the ESPC-BCS-Net, we used the

same training set (91 images) as ReconNet+ (Lohit et al., 2018) rather
than thousands of images. All networks are trained on a workstation
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with Intel Core i9-10900KF CPU and NVIDIA RTX3060 GPU by
PyTorch, taking about 22 hours for each CS ratio (0.5, 0.25, 0.1, 0.04,
and 0.01). ESPC-BCS-Net parameters N, = 10, N, =88912, N}, =1089,
and used Adam optimization with a learning rate of 0.0001. In
training, the image block size VN x v/N is 33x33. We used the
ESPC-BCS-Net for our underwater image reconstruction
experiments, and all the underwater images used were accessible
through Monika et al. (2022a).

4.2 The results of underwater images

We select different underwater images to sample and reconstruct,
including fish, turtles, corals, and underwater scenes. The visual
quality comparison of the reconstructed underwater images at
different CS ratios is shown in Figure 2. The original images
contain three high-resolution images and three noisy images. PSNR
(Peak Signal-to-Noise Ratio) and SSIM (structural similarity)
evaluated the reconstruction quality. ESPC-BCS-Net has provided a
relatively lower CS ratio with convincing visual reconstruction
quality. When the CS ratio is 0.1, the PSNR is above 29. At a CS
ratio below 0.1, underwater image reconstruction is challenging. As
shown in Figure 2E, underwater images reconstructed by ESPC-BCS-
Net are still distinguishable when the CS ratio is 0.04.

4.3 Compared with BCS-Net

To demonstrate the usefulness of the Sampling-Net and the
ESPC-Net, we conducted a comparative experiment using the BCS-
Net and ESPC-BCS-Net. The Gaussian random matrix is used as the
sampling matrix, and the same training set for ESPC-BCS-Net was
then used to train BCS-Net. As shown in Figure 3, the original
images contain a high-resolution image and a dark light image. As
shown in Figures 3C, I, the image shows very obviously blocking
artifacts with a PSNR below 23. Figures 3D-F, J-L show the results
of the ESPC-BCS-Net reconstruction, all of which are better than
BCS-Net. By comparison with the BCS-Net, the reconstructed
underwater image PSNR and SSIM of the ESPC-BCS-Net are
improved by approximately 3.5 and 0.14, respectively.

4.4 Compared with other CS-based
methods

To compare with other CS-based methods, we choose Setll
(Kulkarni et al., 2016) as the test set. We compare ESPC-BCS-Net
with other CS-based methods, including GSR (Zhang et al., 2014),
ReconNet+ (Lohit et al., 2018), BCS (Adler et al., 2017), CSNet (Shi
et al., 2017), and FISTA-CSNET* (Xin et al., 2022). Note that the
traditional CS-based methods enjoy the advantage of interpretability
and do not require training but suffer from the disadvantage of
manual adjustment of parameters and computational complexity. In
addition, we use the average running time to evaluate these CS-based
methods. The GSR is a traditional CS algorithm, which takes the
longest time, about 4 minutes. Others CS-based methods are
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network-based CS methods, and all take less than 0.3 seconds. Table 1
shows each CS ratio’s average PSNR and SSIM for different methods.
We highlight the best results in bold and underline the second-best
results. Some methods were not trained and tested at a certain CS
ratio. For example GSR was not evaluated at a CS ratio of 0.5. It is
observed that the ESPC-BCS-Net outperforms the other CS-based
methods across five different CS ratios. Even at the lowest CS ratio of
0.01, the PSNR of the reconstructed image is higher than 20.
Compared with the BCS, ESPC-BCS-Net performance is superior.
The proposed method still performs better reconstruction than the
state-of-the-art FISTA-CSNet*. These results indicate that the

CS ratio =0.01 (20.31/0.467)

FIGURE 2

Reconstructed underwater images (size of 256x256) by ESPC-BCS-Net at different CS ratios. (A) The original underwater images. (B—F) Reconstructed

underwater images.
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proposed method produces better reconstruction results while
maintaining fast runtime.

5 Conclusion

A novel network-based CS method named ESPC-BCS-Net for
underwater image compression and reconstruction is proposed. All
parameters (e.g. sampling matrix, sparse transforms, shrinkage
thresholds, etc.) of the ESPC-BCS-Net are learned end-to-end,
and its structure consists of Sampling-Net, ESPC-Net, and BCS-
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BCS-Net

ESPC-BCS-Net

BCS-Net

& e

CS ratio = 0.1 (29.32/0.859) CS ratio = 0.04 (25.71/0.746) CS ratio = 0.01 (22.56/0.647)
K L

ESPC-BCS-Net

CS ratio=0.1 (32.67/0.937) CS ratio = 0.04 (28.84/0.857) CS ratio =0.01 (25.31/0.735)

FIGURE 3
Visual comparison of BCS-Net and ESPC-BCS-Net. We evaluate the reconstructed underwater images by PSNR/SSIM. The size of (A-F) is 1024x678, and the size
of (G-L) is 960x540.

TABLE 1 Average PSNR and SSIM of different CS-based methods on Setll and average running time (in sec) for reconstruction.

CS-Based Methods

CS ratio Quality
ReconNet+ BCS CSNet FISTA-CSNet*

PSNR 15.47 16.65 19.15 19.87 20.65 20.03
0.01

SSIM 0.368 0.372 0.441 0.497 0.536 0.536

PSNR 19.76 19.64 23.93 23.93 - 25.52
0.04

SSIM 0.574 0.535 0.663 0.734 - 0.789

PSNR 26.55 23.39 26.04 27.59 28.53 29.79
0.1

SSIM 0.812 0.698 0.797 0.857 0.858 0.890

PSNR 32.26 27.10 29.98 31.70 - 34.81
0.25

SSIM 0.924 0.821 0.893 0.927 - 0.952

(Continued)
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TABLE 1 Continued
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CS-Based Methods

CS ratio (O]VE118%
ReconNet+ BCS CSNet FISTA-CSNet*
‘ PSNR - - 34.61 ‘ 37.19 40.03 40.18
° ‘ SSIM - ‘ - 0.943 ‘ 0.970 0.978 ‘ 0.980
Running Time (s) 235.629 ‘ 0.019 - ‘ 0.025 0.021 ‘ 0.018

Net. The Sampling-Net achieves compressed sampling with only
one convolutional layer, which reduces computational costs and is
very suitable for resource-constrained IoUT. ESPC-Net and BCS-
Net are used for underwater image reconstruction. Furthermore, the
ESPC-Net effectively avoids blocking artifacts and improves the
reconstruction performance. The results show that ESPC-BCS-Net
achieves a PSNR of over 29 for underwater image reconstruction at a
CS ratio of 0.1. It can be concluded that ESPC-BCS-Net has
effectively improved underwater image compression and
reconstruction quality while maintaining fast runtime. The ESPC-
BCS-Net mainly focuses on the CS sampling and recovery of
underwater images, which can be easily extended to medical
images and other fields. The future scope is to implement the
proposed method on the hardware platform.
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TSI-SD: A time-sequence-
iInvolved space discretization
neural network for passive scalar
advection in a two-dimensional
unsteady flow
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Yuchen Yuan® and Zhigiang Wei™

!College of Information Science and Engineering, Ocean University of China, Qingdao, China,
2College of Mathematical Science, Ocean University of China, Qingdao, China

Numerical simulation of fluid is a great challenge as it contains extremely
complicated variations with a high Reynolds number. Usually, very high-
resolution grids are required to capture the very fine changes during the
physical process of the fluid to achieve accurate simulation, which will result in
a vast number of computations. This issue will continue to be a bottleneck
problem until a deep-learning solution is proposed to utilize large-scale grids
with adaptively adjusted coefficients during the spatial discretization procedure
—instead of traditional methods that adopt small grids with fixed coefficients—so
that the computation cost is dramatically reduced and accuracy is preserved.
This breakthrough will represent a significant improvement in the numerical
simulation of fluid. However, previously proposed deep-learning-based
methods always predict the coefficients considering only the spatial
correlation among grids, which provides relatively limited context and thus
cannot sufficiently describe patterns along the temporal dimension, implying
that the spatiotemporal correlation of coefficients is not well learned. We
propose the time-sequence-involved space discretization neural network (TSI-
SD) to extract grid correlations from spatial and temporal views together to
address this problem. This novel deep neural network is transformed from a
classic CONV-LSTM backbone with careful modification by adding temporal
information into two-dimensional spatial grids along the x-axis and y-axis
separately at the first step and then fusing them through a post-fusion neural
network. After that, we combine the TSI-SD with the finite volume format as an
advection solver for passive scalar advection in a two-dimensional unsteady flow.
Compared with previous methods that only consider spatial context, our method
can achieve higher simulation accuracy, while computation is also decreased as
we find that after adding temporal data, one of the input features, the
concentration field, is redundant and should no longer be adopted during the
spatial discretization procedure, which results in a sharp decrease of parameter
scale and achieves high efficiency. Comprehensive experiments, including a
comparison with SOTA methods and sufficient ablation studies, were carried out
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to verify the accurate and efficient performance and highlight the advantages of
the proposed method.

KEYWORDS

unsteady flow, spatiotemporal feature, CONV-LSTM, passive scalar advection, spatial
discretization, discretization acceleration

1 Introduction

Fluid is an indispensable component in the atmosphere and
ocean. Additionally, It is of great importance to meteorological
services, which attempt to identify safe aerospace and shipping
routes. Fluid research is mainly based on numerical simulation by
solving partial differential equations Lumley (1979). Mainstream
methods include the finite difference method Rai and Moin (1991)
and the finite volume method Leschziner (1989) 34. Owing to the
rapid variations with a high Reynolds number Kraichnan (1959),
the numerical solution requires high-resolution spatial grids to
ensure the accuracy of the simulation. In addition, when the
Reynolds number folds by ten, the computation load will fold by
1,000. Although current high-performance computing can provide
powerful computation ability for these extremely complicated
variations, as real-time simulation is always required for emergent
forecasting, improving efficiency only in computation power will
always be limited and insufficient. Efforts should be made to
optimize from the perspective of algorithm architecture.

A scale of previous works has been carried out to reduce the
computation load from the perspective of decreasing the resolution
of the grids. As early as 1982, Brown et al. Brown (1982) applied a
multigrid method to accelerate the numerical solution process of
the three-dimensional transonic potential flow. The multigrid
method was considered a classic method to reduce computational
costs in the traditional numerical solution process because it uses
different mesh divisions for different regions instead of high-
resolution mesh modeling. Inspired by this thought, Mazhukin
et al. Mazhukin et al. (1993) proposed a dynamically adaptive grid
method based on a time-dependent coordinate transformation
from the physical to a computational space for solving partial
differential equations. Additionally, Jin et al. Jin et al. (2014)
proposed the application of a coarse grid projection scheme. This
method solved the momentum equation on the fine grid level and
the pressure equation on the coarse grid level. Therefore, a
satisfactory numerical solution should not only retain the
simulating accuracy but also improve the computation’s efficiency.

This tradeoff issue has been a bottleneck problem for a long
period and will remain until a deep-learning solution that utilizes a
neural network to take the place of the classic numerical methods
module during the spatial discretization procedure is proposed. We
use the central difference RUMSEY and VATSA (1993) as an
example of traditional numerical methods for spatial
discretization and illustrate its basic idea in Figure 1A. To
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calculate the value of point x at time f, generally, we use
neighborhood grid points around x at time #-1,

SD = 2 o V(xneigbarhoodr t-1) (1)

where SD is the calculated spatial derivative, and V is a template
composed of values at points around x within a certain distance at
time -1 ¢ are fixed coefficients with regard to the corresponding
truncation error Lantz (1971). Here, to capture the very subtle
variations that occur in the physical movement of unsteady flow,
traditional methods usually adopt grids with very high resolution,
which leads to an extremely large computation cost. However, the
deep-learning method addresses this problem by adopting large-
scale grids with adaptively adjusted coefficients instead of
traditional methods that adopt small grids with fixed coefficients,
as shown in Figure 1B.

SD = E fe(xt—l)v(xneigborhood) t— 1) (2)

However, these previously proposed deep-learning-based
methods predicted the coefficients only considering spatial
correlation among grids, which provided relatively limited context
and thus could not describe patterns along the temporal dimension
sufficiently, implying that the spatiotemporal correlation of
coefficients was not well learned. We propose a novel algorithm
to extract grid correlations from spatial and temporal views together
to address this problem. We simply illustrate our algorithm in
Figure 1C. In our neural network, we added temporal
neighborhoods to help predict grid coefficients:

SD = E fe(xffl’xth) )V(xneigbarhaod> t— 1) (3)

where {x;_,,...,x;~1} denotes grid values along the time
dimension within a certain range. By adding temporal
consideration, we can learn a better mapping function to predict
the spatial grid coefficients and achieve a more accurate simulation
result. Moreover, we also find that the concentration field, which
was used as one of the inputs of the neural network, turns out to be
redundant after we add temporal data. Thus, we optimized our
method and produced a more efficient neural network with fewer
parameters and better accuracy.

Thus, in this paper, we propose a novel time-sequence-involved
space discretization neural network (TSI-SD) by taking temporal
influence into consideration, which achieves an accurate and
efficient simulation result of unsteady flow. Specifically, we
produced the proposed neural network based on a classic CONV-
LSTM backbone with careful modification by adding temporal
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https://doi.org/10.3389/fmars.2023.1132640
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Song et al. 10.3389/fmars.2023.1132640
A —
1
|1 = 1|
X ~
Fixed Coefficient a =~ A ~Lime Derivative
[ N ] A———
_-v
g -
. T
Xt-n Xt-1 Imm A Xt
e
Vi1
B e,
]Vlem‘lel !
N A
LY 1
- - !
0o folXer) Predicted Coefficient dlte?e_m:".i: n _: R §
- ~
BRE'N ’,’
L
Xt-n Xe-1 Xt Xt Xt
Vet
c CNGRT ) !
1 1 1
P
I e 1 1
=5 leeorasses i - >|:E] A
1 1 1
: »: : -
' _______ | Predicted Coefficient u“ ime Derivative !
see fo(Xeon, X:—l) [ = N T €
~ /'
BTN
Xt—n Xt-1 Xt Xt Xt
Vet
FIGURE 1

This figure shows three methods used to solve the spatial derivative during spatial discretization. (A) Figure 1(a) shows a traditional numerical
method. (B) Figure 1(b) shows the deep-learning-based method. (C) Figure 1(c) shows our method. (A) The traditional numerical method: in the
spatial discretization part, the central difference method is used to calculate the spatial derivative with a fixed spatial discretization coefficient, and
then the temporal derivative is calculated in the temporal discretization process to obtain the numerical solution. (B)The Deep-learning-based
method: In the spatial discretization part, predict the spatial discretization coefficient and calculate the spatial derivative based on the deep learning
algorithm and the grid value at time t-1, and then calculate the temporal derivative in the temporal discretization process to obtain a numerical
solution. (C). Our method: In the spatial discretization part, predict the spatial discretization coefficient and calculate the spatial derivative based on
the deep learning algorithm and the grid value of the time series {t — n, ..., t — 1}, and then calculate the time derivative in the time discretization
process to obtain a numerical solution.

information into two-dimensional spatial grids along the x-axis and

y-axis separately at the first step and then fusing them together

through a post-fusion neural network. After that, we combined the

TSI-SD with the finite volume format as an advection solver for

passive scalar advection in a two-dimensional unsteady flow.

Compared with previous methods that only consider spatial

context, our method can achieve higher simulation accuracy,

while computation is also decreased after redundant input

is removed.

Finally, we highlight the contribution of this paper as follows:

We optimized the framework of the deep-learning-based
numerical simulation methods of unsteady flow. As far as
we are aware, we are the first to utilize the temporal
relationship to help predict spatial coefficients. Moreover,
we also simplified the neural networks by means of
decreasing the parameter’s scale. Quite simply, our
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method achieved better accuracy and efficiency compared
with existing methods.

We designed a novel neural network TSI-SD and produced
an effective spatial coefficients prediction method that takes
both temporal and spatial perspectives into consideration.
Our novel framework modeled spatial correlations
and temporal correlations and then combined the two
aspects properly with a well-designed post-fusion neural
network.

Comprehensive comparisons and ablation studies were
carried out with three public datasets, i.e., the numerical
solution datasets of the advection equation based on the
Vanleer format under the random velocity field, deformed
flow velocity field, and the constant velocity field. Sufficient
results and explanations were provided and discussed to
verify the improvement in both the accuracy and efficiency
of the proposed idea.
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2 Related work

2.1 Traditional discretization methods of
fluid flow simulation

Many researchers have made outstanding contributions in the
field of traditional discretization methods of fluid flow simulation
Bristeau et al. (1985); Ferziger et al. (2002); Peyret and Taylor
(2012); Fletcher (2012); Toro (2013). Based on these theories,
Molenkamp et al. Molenkamp (1968) calculated the numerical
solution of the convection equation using various finite-difference
approximations, and determined that only the Roberts—Weiss
approximation convected the initial distribution correctly, but
required a huge computational cost. Mikula et al. Mikula et al.
(2014) proposed an inflow implicit/outflow explicit finite volume
method based on finite volume space discretization and semi-
implicit time discretization to solve advection equations. The
basic idea is that outflows from cells are handled explicitly, and
inflows are handled implicitly. The method achieved outstanding
results in terms of stability and computational accuracy. Zhao et al.
Zhao et al. (2019) proposed a new improved finite volume method
for solving one-dimensional advection equations under the
framework of the second-order finite volume method. The
method first applied the scalar conservation law to the elements
in the finite volume method (FVM) to ensure its conservation in
time and space and to ensure advection (i.e., conservation of
transport physical quantities); then the time integral values of
adjacent grid boundaries are equalized; finally, the equation is
established to obtain a numerical solution. Experiments showed
that this method has better stability and fewer disspation than the
traditional FVM and can maintain the accuracy of the solution.
Akitoshi Takayasu et al. Takayasu et al. (2019) proposed a
verification calculation method for one-dimensional advection
equations with variable coefficients, which was based on spectral
methods and semigroup theory. They mainly provided a method for
verification calculation using the C, semigroup on the complex
sequence space I>,which comes from the solution of the Fourier
series. Experiments showed that the given strict error proved the
correctness of the exact solution, and the solution has high precision
and fast solution speed. Although traditional discretization method
shave achieved high solution accuracy, they have the problem of
high computational cost if outstanding solution accuracy is desired.

2.2 Traditional discretization acceleration
techniques for fluid flow simulation

To solve the problem of high computational cost while
calculating high-precision solutions in traditional discretization
methods, researchers have proposed acceleration techniques to
speed up the numerical discretization solution. Multigrid
technology stood out among various approaches Dwyer et al.
(1982); Brown (1982); Berger and Oliger (1984); Phillips and
Schmidt (1984); Phillips and Schmidt (1985); Zhang (1997);
Mazhukin et al. (1993); Jin et al. (2014). Among them, Brown
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et al. Brown (1982) used the multigrid mesh-embedding technique
to solve three-dimensional transonic potential flow. They used
small grids to model regions of large local gradients and large-
scale grids to model regions with relatively small gradients. Their
method improved the speed of solving equation discretization
schemes. Phillips et al. Phillips and Schmidt (1984) proposed a
multilevel multigrid method combined with a Taylor series
interpolation scheme as the best discretization acceleration
scheme after comparing the use of simple multigrid and
multilevel multigrid methods. Based on the previous method,
Phillips Phillips and Schmidt (1985) used multigrid combined
with multilevel acceleration technology to realize the accelerated
solution of scalar conservation equations. In addition, they
proposed a fast finite difference solution to the passive scalar
advection-diffusion equation. Although these acceleration
methods reduced the computational cost while maintaining high
accuracy, high computational cost remained a problem due to the
need to retain high solution grid modeling in some complex
fluid regions.

2.3 Discretization methods and
acceleration techniques combining
deep-learning with traditional
numerical methods

In recent years, machine learning has been used in the
numerical solution of partial differential equations, which have
made enormous progress. The combination of machine learning
and traditional discretization methods improved the accuracy of the
solution and accelerated the numerical calculation Raissi et al.
(2019); Ji et al. (2021); Vinuesa and Brunton (2021); Patel et al.
(2021); Eliasof et al. (2021); Cai et al. (2022). Based on these
methods, O. Obiols-Sales et al. Obiols-Sales et al. (2020) proposed
a coupled deep learning and physics simulation framework
(CFDNet) to accelerate the convergence of Reynolds-averaged
Navier-Stokes simulations. CFDNet was designed to use a single
convolutional neural network at its core to predict the main
physical properties of fluids, including velocity, pressure, and
eddy viscosity. In this paper, CFDNet was evaluated for various
use cases, and the results showed that CFDNet significantly speeded
up the numerical solution and proved that CFDNet generalized
well. Vadyala Shashank Reddy et al. Vadyala et al. (2022)
determined the numerical solution of the one-dimensional
advection equation using different finite-difference
approximations and physical informatic neural networks
(PINNs). They trained a neural network to solve supervised
learning tasks that obeyed any given laws of physics described by
general non-linear partial differential equations. The PINNs
approximation was compared with other schemes through
experiments, and the results showed that the prediction results
obtained by the PINNs approximation were the most accurate.
Pathak et al. Pathak et al. (2020) proposed a hybrid ML-PDE solver
that combined machine learning and traditional solving methods of
the partial differential equation. It can obtain meaningful high-
resolution solution trajectories while solving system PDEs at lower
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resolutions. The ML part of the solver extracted spatial features by
using u-net as the model structure to predict the error accumulated
in the short time interval between the evolution of the coarse grid
and the solution of the system at a higher resolution. The predicted
error can optimize the solution generated by the coarse grid to
obtain a solution close to that generated by the fine grid, enabling
high-precision solutions at low accuracy. Y. Bar-Sinai Bar-Sinai
et al. (2019) designed a data-driven discretization scheme using a
deep-learning algorithm. They used neural networks to estimate
spatial derivatives that were optimized end-to-end to best satisfy
equations on low-resolution grids. The resulting numerical method
was very accurate, eventually achieving the same computational
accuracy as the standard finite difference method at 4 to 8 times
coarser resolution than the standard finite difference method.
Zhuang [38] improved the model structure and loss function
based on Y. Bar-Sinai and applied it to passive scalar advection in
a two-dimensional unsteady flow. They used a convolutional neural
network to learn spatial discretization coefficients to calculate
spatial derivatives. Then, they combined them with traditional
numerical methods to calculate time derivatives to obtain the
numerical solution of partial differential equations. This method
achieved a high-precision solution with a low computational cost.
Ranade et al., 2021 developed DiscretizationNet, a machine
learning-based PDE solver that combined essential features of
existing PDE solvers with ML techniques. They used a
discretization-based scheme to approximate spatiotemporal
partial derivatives and a CNN-based generative encoder-decoder
model with PDE variables as input and output features for
iteratively generating equation solutions. Although these methods
addressed the problem of traditional methods, their solution
accuracy was limited due to the problems of ignoring
spatiotemporal characteristics and input redundancy.

3 Proposed method
3.1 Problem description

If the velocity field is divergence-free, the advective form of the
scalar concentration field C(X, t) for a given velocity field #(X, t) is as
follows Zhuang et al. (2021):

aC

The objective of the numerical solution for the passive scalar
advection in 2-D unsteady flow is to predict the concentration field
distribution at each time step in the future under the influence of
the randomly changing velocity field given the initial concentration
field. In this paper, we predict the concentration field distribution
results in the 32 time steps to demonstrate the ability of our model
to make multi-step predictions. We employ a rolling forecasting
scheme in which we input multiple velocity fields between t, and t;
into the prediction model and combine the concentration field
distribution at £, to predict the concentration field distribution at #;
.Then, we input multiple velocity fields between ¢, and ¢, into the
model and combine the concentration field distribution at #;,
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predicted by our model to predict the concentration field
distribution at #,. According to this calculation rule, we use
multiple velocity fields between t, and t,,; and the concentration
field distribution predicted at time f, to predict the concentration
field distribution at t,,;.By repeating this process, we can get the
passive scalar advection solution at each time in the future.
Therefore, the key to our multi-step prediction method is to
recursively predict the concentration field distribution at a single
step, i.e., the numerical solution of passive scalar advection at the
next time step. We propose the time-sequence-involved space
discretization neural network (TSI-SD) to predict the space
discretization coefficient for the space derivative and then
combine the finite volume method to calculate the numerical
solution of the next time step.

3.2 Main framework of TSI-SD

The framework of the proposed method is shown in Figure 2.
This is a fusion framework of deep learning (TSI-SD) and a
traditional numerical method (FVM) for end-to-end numerical
solutions of passive scalar advection equations. It consists of three
modules: the spatial discretization coefficient prediction module
(SDCPM), the concentration template extraction module (CTEM),
and the concentration solver module based on finite volume
numerical format (CSM). For the set of multiple velocity fields
between the time steps t,, and f,,,1, wedecompose each velocity field
into two sub-velocity fields in the horizontal and vertical directions
(along the x-axis and y-axis) to obtain the velocity field set in the
two directions. In the next step, we build the time-sequence-
involved space discretization neural network (TSI-SD) in the
SDCPM. TSI-SD extracts the spatiotemporal features from the
decomposed velocity field sets in the two directions separately
and then fuses them to obtain the spatial discretization coefficient
of each grid point. After that, we input the coefficients into the CSM
and combine them with the surrounding point concentration
template of each grid point obtained by the CTEM to calculate
the spatial derivative. Finally, we could calculate the concentration
of each grid point at the next moment t,,;,, that is, the
concentration field of t,.; by the FVM in the CSM.

The equation-solving process can be roughly described in the
following three steps:

1. Extract spatiotemporal features from the input velocity
fields and predict spatial discretization coefficients;

2. Extract the surrounding point concentration template for
each grid point; and

3. Fuse the predicted spatial discretization coefficient and the
concentration template to obtain the spatial derivative,
which is used to calculate the distribution of the
concentration field, i.e., the numerical solution of the
equation at the next time step by the finite volume method.

Next, we will provide details of our proposed framework for

end-to-end numerical solutions of passive scalar advection
equations. First, we introduce the SDCPM and the TSI-SD in the
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FIGURE 2

The framework of our approach. This framework is utilized for the solution of the passive scalar advection equation in a two-dimensional unsteady
flow. It contains three modules: SDCPM, CTEM and CSM. SDCPM: This module receives multiple velocity field information at different times, extracts
spatiotemporal features in two spatial dimensions (along the x-axis and y-axis), and finally fuses them in the spatial dimension to predict the spatial
discretization coefficient of each grid point; CTEM: This module extracts the surrounding point concentration template of each grid point
corresponding to the size of its spatial discretization coefficient template; CSM: This module calculates numerical solutions to the advection
equations based on the finite volume method(FVM).

section entitled ‘Spatial Discretization Coefficient Prediction U :{ AT 1} (8)

Module’. Then, we describe in detail our proposed CTEM and g SO i

CSM modules in the Concentration Template Extraction Module’ Then, we extract the spatiotemporal features separately for the

and ‘Concentration Solver Module Based on Finite Volume  decomposed velocity field sets in the two directions. Taking U, as an

Numerical Format® sections, respectively. Finally, we discuss the  example, we input the velocity field at each time step from the

loss function in the ‘Loss Function’ section 3.6 velocity field set {uf,u},1,...,u7,, 1 }as the spatial feature of each
time step into the diiferelnr[ conv-ls;m structural unit,

3.3 Spatial discretization coefficient 5= ©
prediction module and Sy is regarded as the spatial feature at time ¢ + . A CONV-
LSTM structural unit contains convolution operations and long-

In this module, we design the time-sequence-involved space short-term memory unit processing operations. The calculation
discretization neural network to predict the spatial discretization ~ Steps can be written in the following form,

coefficients, and the prediction function is iy = Sigmoid(Conv(S; wys) + Conv(ley; W) + by) (10)

a=f(U,w), ©)
fi = Sigmoid(Conv(Sy; wyr) + Conv(hy_y; wyy) + by) (11)
where U s the set of multiple two-dimensional velocity fields

between t nd t+1, of which size is nW s the weight of our neural & = Tanh(Conv(Sy; wyg) + Conv(hy_y; wyg) + by) (12)
network. The time interval between the velocity fields is L
G = frOCk-1 + ikOLke = fic * Gt + ik OLk (13)
U= {ut,uﬂé, ...,um,%} (6)
We decompose U into velocity field groups U, in the horizontal oy = Sigmoid(Conv(Sy; wy,) + Conv(hy_i; wyo) + b,) (14)
direction (along the x-axis) and U, in the vertical direction (along
the y-axis), hy. = 0,0 Tanh(c,) (15)
X . where i is the input gate, which is used to calculate how much
Ux = {upu”b e ut+l—l} (7) . . . . .
" " information of the current state to retain. f, is the forget gate, and its
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function is to calculate how much of the output information of the
previous moment is discarded. g, is theinformation extracted from
the current state. Cy_; is the information of the previous moment. Cy
is the final state at the current moment, calculated by f, 1, gr> and
ir. oxi the output gate, which is used to calculate how much
information needs to be output (to the cell at the next moment).
hy is the final output information of the state, which is calculated by
0k and Cr. Wiis Wi Wap WipWagpWieWxoWhooDisbpbgpand b, are the
weights designed in our neural network, and these weights will be
updated during the model training process.

After the information processing and transmission of n conv-
Istm structural units, the information h;,, 1 output by the last unit
is obtained. The final spatiotemporal fusion information I, of the
horizontal velocity field is calculated by using the output
information.

(16)

I, = conv(hy,;_1)

In the same way, we obtain the final spatiotemporal fusion
information I, f the vertical velocity field.

After obtaining the spatiotemporal fusion information I, and I,
in two directions, it is necessary to re-fuse the spatiotemporal
features in the horizontal and vertical directions on I, and I,
concat(), is a feature merging operation that integrates two
features in a new dimension. After the feature merging operation,
convolution is performed on the merged features to process the
spatial information of the merged spatiotemporal features. Finally,

the spatial discretization coefficient matrix ¢ is obtained.
a = conv(concat(I,,I,)) (17)

The dimension of the o matrix is (s,s,template_size*2) , where s
is the side length of the input two-dimensional velocity field, and (s,
s) is the dimension of the two-dimensional velocity field.
template_size is the number of weights required for each grid

1.0

0.8

0.6

-04

FIGURE 3

Design of the initial concentration field. The size of the
concentration field is [0,1]1x[0,1], and the concentration value is
between 0 and 1.
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point. We divide o into the grid upper boundary space
discretization coefficient ¢, and the grid right boundary space
discretization coefficient ¢4, with dimensions (s, s, template_size).

3.4 Concentration template
extraction module

This module and the next module follow the numerical solution
part of the traditional advection equation adopted by Zhuang et al.
Zhuang et al. (2021), and adopt the spatial derivative of the classical
Euler algorithm.

n
?)_i lx=x, = E%Ci+j (18)

j=0
In the previous part, we calculated the spatial discretization
coefficient templates ¢, and Og,, the dimensions of which are (s,
s, template_size). Therefore, we need to find the surrounding grid
point concentration templates C,, and C,,g,, corresponding to the
position of the coefficient template, the dimensions of which are
both (s, s, template_size), which indicates that the number of
surrounding grid point concentrations required for each point in
the two-dimensional space field is template_size. As shown in
Figure 3, we input the two-dimensional concentration field C, at
time ¢, and its dimension is (s, s). We model the upper and right
boundaries of each point in the two-dimensional matrix and obtain
the concentration values of m*n grid points around it as the grid

point concentration template, where

template _size = mxn, (19)

m and n are the length and width of the two-dimensional grid
point concentration template. Finally, we obtain C,, and C,g,, with
dimensions (s, s, template_size).

3.5 Concentration solver module based on
finite volume numerical format

In this module, we first calculate the upper boundary
concentration C,, _c4.e and the right boundary concentration

Cupfedge

Cup_edge = SUM(aup O} Cup) (20)

Cright?edge = SUM(aright O] Cright) (21)

SUM() is the defined summation of the last dimension of the
matrix, ie., after the matrix of (s, s, template_size) is obtained
through the dot product operation, the last dimension is summed to
obtain the boundary concentration C,g, with dimension size (s, s)
.The lower boundary concentration Cjyye, cqqe and the left boundary
concentration Cip cqq Of the grid point can be directly obtained
from the upper boundary concentration of the adjacent grid below
its position and the right boundary concentration of the adjacent
grid to the left of its position. Then, we can obtain the boundary
velocity u.4e bythe same method as the calculation of the
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concentration boundary and boundary flux via Ceuee Uege. After
obtaining the flux at the four boundaries of the grid, the traditional
finite volume method is used to calculate the time derivative to
obtain the concentration field distribution at the next time step, as
shown in Figure 2.

3.6 Loss function

The format of the mean absolute error (MAE) used to train our
model is as follows:
MAE =

E | CHI - Ct+1 | (22)
i=1

I |~

where Cy,, is the concentration field at time #+1 redicted by our
model, and C,,, is the high-precision numerical solution at 16*16
low resolution grids. The numerical solution is calculated using
128%128 high resolution grids by the second-order Vanleer format
and then transformed to the solution at 16*16 low resolution grids
by the dimensionality reduction method Zhuang et al. (2021).

4 Experiments

In this section, we first briefly describe the datasets and
implementation details. Additionally, we carry out a number of
experiments, including comparisons with state-of-the-art (SOTA)
methods and sufficient ablation studies, to demonstrate the
excellent performance and advantages of our method.

4.1 Datasets

We used the theory of divergence-free velocity field described
by Saad and Sutherland (2016) to generate a divergence-free
random velocity field set with the resolution of 128*128. Then,
the set was divided into two parts of divergence-free random
velocity field sets: the training part and the test part. These two
parts were completely different to ensure the generalization of
the model.

For the training set, we generated a variety of random initial
concentration fields and used the second-order Vanleer numerical
format to calculate the numerical solution of the equation, i.e., the
concentration fields at multiple time steps with the resolution of
128*128 based on the set of divergence-free random velocity fields
in the training part. It is worth noting that for the C to be
generated, our model needs to input the velocity field i at time ¢, t +
1, .. t+1—1 Therefore, we set the time step length of the velocity
field to be smaller than the concentration field in the generation
process to ensure that the velocity field in the time interval from ¢ to
t+1 could be generated. Next, we sampled both the velocity field and
the concentration field at intervals to obtain a high-precision
velocity field and concentration field with a resolution of 16¥16
using the dimensionality reduction method Zhuang et al. (2021).
Each training sample included an input part and an output part.
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The input part was the velocity field and the concentration field C,
at time t at multiple time steps in the time interval from f to t+1,and
the output part was the concentration field C,;. The test set
generation process was consistent with the training set, but it was
necessary to ensure that the random initial concentration field
generated in the test set was different from the training set.

The initial and boundary conditions for the velocity and
concentration fields were set as follows. The size of the two-
dimensional velocity field and the two-dimensional concentration
field were both [0,1] x [0,1]. Our velocity field was a divergence-free
random velocity field, and the magnitude of the velocity was limited
between -1 and 1. The concentration field used periodic boundary
conditions, and its initial condition is to

set the concentration value range between 0 and 1. The
calculation process is shown in formulas (23)-(27).

r(x,y) = min(1,4ﬂ/(x—i)2 +(y—i)2) (23)
Ci(x,y) = % [1 + cos(mr)] (24)
Cy(x,y) = 0.9 — 0.8+C} (25)

Glxy) =1 (26)

Clx,y) =1-0.3%(C, + C, + C3) (27)

The C(x, y) is as shown in Figure 3. C represents the
concentration value.

4.2 Comparison with SOTA methods

In this part, four SOTA numerical solution methods for passive
scalar advection in a two-dimensional unsteady flow were selected
as our baseline: (1) traditional solvers based on 16*16 resolution
grids using the second-order Vanleer discretization format(Vanleer
16*16) Lin et al. (1994); (2) traditional solvers based on 32*32
resolution grids using the second-order Vanleer discretization
format (Vanleer 32%32) Lin et al. (1994); (3) traditional solvers
based on 64*64 resolution grids using the second-order Vanleer
discretization format (Vanleer 64¥64) Lin et al. (1994); and (4) a
hybrid solver based on a CNN and the finite volume method (CNN
+FVM) Zhuang et al. (2021).

We first compared our TSI-SD method with traditional solvers,
in which TSI-SD uses a 16*16 low-resolution grid. As shown in
Figure 4, the TSI-SD method maintained the smallest prediction
error over 32 time steps, which demonstrates that our method
achieved a higher solution accuracy than the traditional method at a
resolution of 4x lower than the traditional method.

Then, we compared TSI-SD with the CNN-FVM solver trained
based on the previous spatial discretization scheme Zhuang et al.
(2021). The CNN-FVM method is currently one of the most
outstanding methods for solving partial differential equations in
deep learning. It has been proven to achieve very good prediction
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and solution results in various partial differential equations, such as
Burgers’ equation Bar-Sinai et al. (2019), and the advection
equation Zhuang et al. (2021), Additionally, the method has been
proven effective at solving complex Navier-Stokes equations
Kochkov et al. (2021),and results are as accurate as baseline
solvers, with 8-10x finer resolution in each spatial dimension,
resulting in 40- to 80-fold computational speedups. The original
CNN-FVM solver has a prediction error of 0.0043, a single-step
prediction time of 0.2712s, and a single-sample training time of 4
ms per round during the training process. Our single-step solver
had an error of 0.0029, a single-step prediction time of 0.2474s, and
a single-sample training time of 2ms per round during training. Our
single-step error was 32.56% lower than the previous method, and
the iterative prediction error after 32 steps was greatly reduced. As
shown in Figure 5, our method also outperformed the CNN-FVM
solver in continuous prediction results within 32 time steps.

The reason why our solver outperformed the CNN-FVM solver
in training time, prediction time, and prediction accuracy is as
follows. In the spatial discretization coefficent prediction part, the
inputs of the CNN solver’s prediction deep-learning model are the
concentration field with (batch_size, 1,grid,_size,grid_size) and the
two velocity field (along the x-axis and y-axis) at a time step with
(batch_size,2,grid,_size,grid_size). The input to our TSI-SD was the
horizontal velocity fields along the x-axis at two time steps with
(batch_size,2,grid,_size,grid_size) and the vertical velocity fields
along the y-axis at two time steps with (batch_size,2,grid,_size,
grid_size), so our input size was larger than the previous input size.
However, in the model part, the CNN-FVM solver used a five-layer
convolutional neural network to process the data collected by the
concentration field and the velocity field with (batch_size,3,grid,
_size,grid_size) .\We used the structure of a 1-layer

convolutional neural network to process the horizontal and
vertical velocity fields respectively, and then a one-layer
convolutional neural network was used to process the integrated
features. After inference analysis, our model parameters were fewer

—&¢—Vanleer 16¥16 —#—Vanleer 32%*32 =& Vanleer 64%64

Mean absolute error

FIGURE 4

10.3389/fmars.2023.1132640

than the original model parameters, which resulted in a shorter
training time and prediction time in our model compared with the
original model training time. This was also confirmed by a saved
parameter file size comparison.

Finally, we demonstrated the evolution prediction effect of an
initial concentration field under different models after 32 iterations.
As shown in Figure 6, the third row shows the prediction effect of
our model. The first row is our high-precision numerical solution
generated using a 128128 high-resolution grid. The second row
shows how we use the averaging operation to obtain a high-
precision numerical solution at a low resolution of 16¥16, which
is used as the ground truth of our model. The fourth and fifth rows
are the results obtained using the second-order Vanleer 16¥16 and
CNN-FVM solvers. Figure 5 shows that our model is better than the
CNN-FVM and traditional second-order Vanleer 16*16 solvers. In
Figure 6, C represents the concentration value.

4.3 Comparison between models using
velocity fields at different times as
spatiotemporal features

In this part, we used different sets of time steps as the time series
information input to TSI-SD, so that our model could extract
different time features to predict the spatial discretization
coefficient. The best prediction result represents the velocity fields
at the selected time steps that have the greatest influence on the
coefficients. Figure 7 shows that when the set of fine velocity fieldd
{urrtpy15 .. 11y 1} was selected to replace velocity field set {u.1,
<ol Uy} to predict uy, could reduce the prediction error of the
model. The experimental result demonstrates that the set of fine
velocity fields extracts spatiotemporal features more effectively.
That is because the time interval of the velocity field set we chose
was close to the time of the predicted concentration field, so the
correlation between the velocity field set and the predicted

TSI-SD

16

24 32

Time steps

Results of our solver compared to traditional solvers. The yellow line represents our error in the 32-step iteration prediction, and the remaining three

lines represent the error of the traditional solver at different resolutions.
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Time steps

Results of our solver compared to CNN-FVM solvers by Zhuang Zhuang et al. (2021). The orange line represents our error in the 32-step iteration

prediction, and the blue line represents the error of CNN-FVM solver.

concentration field was strong. The model could learn the
spatiotemporal influence of the velocity field on the concentration
field from this set of velocity fields, which could accurately predict
the spatial discretization coefficient. Meanwhile, the prediction
error of the velocity field using {u;u,1} is the best, and
experiments demonstrated that it involves lower computational
cost; therefore, so we finally choose the

velocity field of {u;, 1,1} as the velocity field input of our final
model. We think that for the 16*16 lower resolution grid, the model
learned the time-space correlation between the velocity field set and
the concentration field well through the analysis of the velocity
fields at two times through a large amount of training data, which is
also consistent with the experimental results as shown. In future
studies, we will conduct more experiments on higher-resolution

Time Step =0

Time Step =8

Fine Reference

Coarse Reference

TSI-SD

Vanleer

FIGURE 6

Time Step = 16

Time Step = 24 Time Step = 32

1.0

0.2

-0.0
C

Visualization of evolution prediction effect of an initial concentration field under different models after 32 iterations. The first row represents the
change in the concentration field calculated after 32 steps using a traditional 128*128 high-resolution solver. The second row represents the
transformation of the 128x128 high-resolution solver solution into a 16x16 training set. The third row represents the prediction results of our model
after training. The fourth row represents the prediction results of the CNN-FVM solver. The fifth row uses a traditional 16*16 low-resolution solver to

calculate the change in the concentration field after 32 steps.
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grids to obtain the optimal number of time steps after increasing
computing power.

4.4 Performance and analysis of TSI-SD
with other flow fields

In this section, we carried out an experiment to prove the
excellent performance of our model under a constant velocity field
and a two-dimensional deforming flow velocity field. We generated
the concentration under a constant velocity field, and the two-
dimensional deformation flow concentration field under the
velocity field:

u(x, y,t) = sinz(nx)sin(Zﬂy)cos( %t) (28)

v(x, y,t) = sinz(ﬂy)sin(ZEx)cos(%t) (29)

The predicted performance is shown in Figure 8 and Figure 9. C
represents the concentration value. Our model achieved
outstanding prediction results in the iterations of 32 time steps.
However, at the same time,

there are also the following problems: even under a simple constant
velocity field, the prediction effect will become worse and worse with
the long-term iteration due to the accumulation of errors predicted by
the model at each time step. We will try to fix this in the future.

4.5 Comparison of the performance of
models with or without the concentration
field as an input feature

In this part, we verified the advantage of only taking the velocity
field as the input feature on our model. A contrast model that adds the
concentration field as feature input was designed to prove our
inference. The contrast model was identical to ours except that the

{ur, Uey1/a Urs12, Ursajal:

10.3389/fmars.2023.1132640

concentration field features were fused with the spatiotemporal
features extracted from the horizontal and vertical velocity fields
(along the x-axis and y-axis) in the fusion module. Figure 10 shows
that the iteration errors on 32 time steps of our model are lower than
those of the contrast model. Therefore, we proved that the input of the
concentration field information was redundant and verified our
conclusion: the spatial discretization coefficients are strongly
correlated with the velocity field at multiple time steps before, while
the concentration field information becomes redundant when
predicting the coefficients. In other words, the change in the velocity
field is the main factor for the change in the concentration field. Our
model extracts effective spatiotemporal features from the velocity field
set to learn the influence of the change of the velocity field set on the
change of the concentration field, which is very helpful for predicting
the spatial discretization coefficient.

4.6 Experimental exploration of whether
TSI-SD has up-wind properties

In this part, we proved that the spatial discretization coefficients
predicted by our model have upwind properties on a constant
velocity field. A two-dimensional velocity field U; with a horizontal
velocity field (along the x-axis) of +1 and a vertical velocity field
(along the y-axis) of +1, and a two-dimensional velocity field U,
with a horizontal velocity field of -1 and a vertical velocity field of
-1, were designed to prove our model’s upwind properties on a
constant velocity field. Under the two velocity fields, the
visualization process of the concentration coefficients of the upper
and right boundaries of grid points A and B was completed.

As shown in Figure 11, C represents the concentration value and
Coefficient represents the coefficient value. For the upper boundary,
the concentration on the right boundary of the constant velocity field
is mainly determined by the concentration of the two adjacent grids.
When the horizontal speed is +1 (i.e., the direction is to the right), the
grid coefficient on the left of the right boundary of grid A is greater
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than the grid coefficient on the right; when the horizontal speed is —1
(i.e., the direction is to the left), the grid coefficient on the left of the
right boundary of grid A is smaller than the grid coefficient on the
right. For the right boundary, the concentration on the upper
boundary of the constant velocity field is also mainly determined
by the concentration of the two adjacent grids. When the vertical
speed is +1 (i.e., the direction is downward), the grid coefficient above
the lower boundary of grid A is greater than the grid coefficient
below; when the horizontal speed is —1 (i.e., the direction is upward),
the grid coefficient above the lower boundary of grid A is smaller than
the grid coefficient below.

The concentration coefficient of another spatial grid point B is
almost the same as that exhibited by A. Therefore, our grid
coefficient has nothing to do with the distribution of the
concentration field, but only with the distribution of the velocity
field. The concentration field distributions at point A and point B
are completely inconsistent, but under the same velocity field, the
predicted spatial discretization coefficient distributions are basically
the same, which proves that there is no significant correlation
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Time Step = 16

between the concentration field distribution and the spatial
discretization coefficient.

5 Conclusion

We have presented a time-sequence-involved space
discretization neural network of passive scalar advection in a two-
dimensional unsteady flow. It can obtain adaptive spatial
discretization derivatives according to the spatiotemporal
property of the current environment. Then, we combined it with
the finite volume method to form an advection equation solver that
can calculate high-resolution solutions on low-resolution grids.

The highlight of our approach is the transformation of a novel
deep neural network from the classic CONV-LSTM backbone. The
network resolves spatiotemporal features by adding temporal
information to a two-dimensional spatial grid along the x- and y-
axes, and then fuses them through a post-fusion neural network.
Through spatiotemporal feature fusion, we can predict more
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The predicted performance of our model in a deforming flow velocity field. The first row is the iterative solution of our 128*128 high-resolution
solver after 32 time steps, and the second row is the iterative solution of our 16*16 solver after 32 time steps.
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accurate spatial discretization coefficients and more accurate
solutions. Additionally, we have made improvements in reducing
computational costs. Finally, we compared our method with other
traditional SOTA methods and demonstrated that it achieves better
accuracy than traditional solvers on meshes with 4x lower
resolution. In addition, compared with other deep-learning
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methods, our method has advantages in terms of both
computational cost and accuracy.

The following problems were also encountered: (1) the problem
of iterative error being too big after multiple time steps—we have
proposed some solutions, such as re-iteration with ground-truth
values after iterating over some time steps, which will be
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The comparison of prediction results of models using different temporal layers as features. The first line selects two spatial points with significant
differences in surrounding concentrations from the spatial field and extracts the upper and right boundaries of the two points. The second row is the
spatial discretization coefficient predicted by each boundary. The third row is a heat map made according to the different position coefficients in the
coefficient template when the horizontal velocity field is +1, and the vertical velocity field is +1. The third row is a heat map made according to the
different position coefficients in the coefficient template when the horizontal velocity field is -1, and the vertical velocity field is -1.
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implemented in future work; and (2) low computing power leads to
poor model generalization—in the future, we will seek to obtain
more computing power to make our model more generalizable.
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Demersal trawling is largely a blind process where information on catch rates and
compositions is only available once the catch is taken onboard the vessel.
Obtaining quantitative information on catch rates of target species while
fishing can improve a fisheries economic and environmental performance as
fishers would be able to use this information to make informed decisions during
fishing. Despite there are real-time underwater monitoring systems developed
for this purpose, the video data produced by these systems is not analyzed in
near real-time. In other words, the user is expected to watch the video feed
continuously to evaluate catch rates and composition. This is obviously a
demanding process in which quantification of the fish counts will be of a
qualitative nature. In this study, underwater footages collected using an in-
trawl video recording system were processed to detect, track, and count the
number of individuals of the target species, Nephrops norvegicus, entering the
trawl in real-time. The detection was accomplished using a You Only Look Once
v4 (YOLOv4) algorithm. Two other variants of the YOLOv4 algorithm (tiny and
scaled) were included in the study to compare their effects on the accuracy of
the subsequent steps and overall speed of the processing. SORT algorithm was
used as the tracker and any Nephrops that cross the horizontal level at 4/5 of the
frame height were counted as catch. The detection performance of the YOLOv4
model provided a mean average precision (MAP@50) value of 97.82%, which is
higher than the other two variants. However, the average processing speed of
the tiny model is the highest with 253.51 frames per second. A correct count rate
of 80.73% was achieved by YOLOv4 when the total number of Nephrops are
considered in all the test videos. In conclusion, this approach was successful in
processing underwater images in real time to determine the catch rates of the
target species. The approach has great potential to process multiple species
simultaneously in order to provide quantitative information not only on the target
species but also bycatch and unwanted species to provide a comprehensive
picture of the catch composition.

KEYWORDS

demersal trawling, Nephrops counting, object detection, object tracking, sort,
underwater video processing, YOLO
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Introduction

Demersal trawling is an effective way of catching various
species. However, usage of demersal trawls is challenged by
several factors such as high bycatch rates and negative effects on
the biomass and biodiversity (Eigaard et al., 2017). In addition,
disturbance of the seabed by bottom trawls results in aqueous CO,
emissions which may inhibit marine carbon cycling after years of
continuous trawling (Sala et al., 2021). Despite the presence of such
concerns, demersal trawling is critical for catching economically
valuable commercial species like shrimp, whitefish, and Nephrops.

Nephrops excavate burrows in mud or mud/sand substrates and
emerge at specific times to feed, mate and maintain their burrows,
among others (Tully and Hillis, 1995; Aguzzi and Sarda, 2008;
Feekings et al., 2015). Their behavior is influential on catch rates
when trawling as they need to be outside of the burrows to be caught
(Main and Sangster, 1985). Besides, Nephrops-directed bottom
trawling is known to have high discard rate which eventually
causes not only economic loss but also loss of undersized
individuals (Bergmann et al., 2002). In addition to these issues, is
demersal trawling a blind process, meaning that the catch and size
composition is unknown until the trawl is taken onboard after
hours of trawling.

Advancements in underwater camera technologies may provide
solutions to some limitations in demersal trawling. In particular,
such cameras allow for recognition, counting and measurement of
the individuals making it possible to understand the catch rates of
Nephrops and unwanted species. Even though there are different
tasks such as species identification and length measurement
(Underwood et al., 2014; Underwood et al., 2018; Allken et al,,
2021), and segmentation of the fish from the background (Prados
et al,, 2017) accomplished using in-trawl camera systems, they do
not concern determining the catch composition in real time. The
real-time processing of video footage collected by underwater in-
trawl cameras is important to quantify catch rates of the target
species. This information is valuable for the fishermen as it provides
insight about the ongoing fishing process and further enable active
search for better catch rates during the fishing operation. Deep
learning-based methods enable automated extraction of such
information. In fisheries research, deep learning is mostly used
for processing visual data collected either onboard or by using
underwater cameras. However, the main issue related with deep
learning methods is the substantiality of the associated computation
amount which brings about drawbacks like latency in processing
and requirement of hardware with sufficient computational
capacity. To address this issue, various deep learning models with
different sizes have been developed, and they can be applied to
different problems. A review of related literature is provided in
Section 2. There are deep learning-based methods available that are
applicable to underwater videos collected by in-trawl cameras for
real-time detection and counting of Nephrops. A fast and accurate
video processing system in Nephrops fisheries is useful for
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generating the spatial distribution of catch items as well as
determining the number of Nephrops caught.

In this study, a real-time processing pipeline for underwater
videos to determine the number of Nephrops caught during
demersal trawling is proposed as such information will provide a
strong decision tool for fishers to optimize their catching operation.
The processed video footages were collected by an in-trawl camera
developed earlier (Sokolova et al., 2021b). The algorithm for
Nephrops counting has three major steps that are i) Nephrops
detection, ii) tracking of the detected Nephrops, and iii)
determining the true tracks accounted for Nephrops catches. The
accurate detection of Nephrops in the video frames is important as
the subsequent steps rely on the detected Nephrops. The detection
has been accomplished using You Only Look Once v4 (YOLOv4)
model which is known to be a fast deep learning model for object
detection operating at high frames-per-second (FPS) values. In
addition, two variants of YOLOv4, namely, YOLOv4-Tiny and
YOLOV4-Scaled are used separately for Nephrops detection, and
their effects on the tracking, counting, and the overall processing
speed are observed and compared. The second step, tracking
detections, is necessary for making association between the
detections in the consecutive video frames. Simple Online
Realtime Tracking (SORT) algorithm is used as the object tracker.
For benchmarking purposes, the tracking performance of SORT is
compared with two other object tracking algorithms, those being
Minimum Output Sum of Squared Error (MOSSE) and DeepSORT.
Finally, tracked objects satisfying some predefined conditions are
considered as a Nephrops catch. These steps are illustrated in
Figure 1. In this study we address the following research questions:

* How do the different YOLO-based object detection
methods affect the overall speed and accuracy of the
counting process?

*  What is the range of the processing speed of the proposed
algorithm, and can it be considered as real-time under
different circumstances?

 Is it possible to provide simple decision parameters for the
fishers during trawling operation?

*  What is the relation between the precision of the object
detection and rate of correct Nephrops counts?

Related work

Utilization of deep learning methods in computer vision
applications has become widespread in recent years due to their
major advantage of automated feature extraction. However, the deep
learning models typically possess many computational layers with high
numbers of parameters. Performing all the calculations throughout all
layers of the network takes time and hence the latency becomes an
issue when the input data needs to be processed in real time.
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FIGURE 1
Overview of the algorithm steps

Depending on the type of the problem (e.g. image classification,
object detection, instance segmentation), there are various
techniques to reduce the computational cost of the deep learning
models while keeping the model performance as high as possible.
For instance, MobileNets are efficient models developed to be used
in hardware with limited computational resources (Howard et al.,
2017) and can be used as a standalone classifier for animal
classification in underwater images (Liu et al, 2019). Together
with two other improved versions (Sandler et al., 2018; Howard
et al,, 2019) and single shot object detectors (SSD), they have more
diverse applications such as detection of sea cucumbers (Yao et al.,
2019), underwater objects with different scales (Zhang et al., 2021;
Wang et al., 2022b), and Nephrops burrows (Naseer et al., 2020).

Another object detection method with many versions is YOLO,
which is known for being very fast and accurate at the same time
(Redmon et al., 2015). It can predict the bounding box coordinates
and the corresponding confidence scores with one single network.
There are numerous YOLO versions dedicated to operating on
underwater images for detection of various objects such as starfish,
shrimp, crab, scallop, and waterweed (Liu et al., 2020; Zhao et al.,
2022). Among these models, the recently proposed model, YOLO-
fish was designed for fish detection and is reported to be performing
close to YOLOv4 model on two different public datasets (Muksit
et al., 2022). Even though it is claimed to be a lightweight model the
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associated number of parameters and the detection time are
between those of YOLOv3 and YOLOv4 (Muksit et al., 2022). In
another study, an underwater imaging system to develop and test a
lightweight YOLO model for automated fish behavior analysis was
introduced (Hu et al., 2021). In that study, a modified version of
YOLOV3-Lite model was proposed, and its detection performance
as well as the prediction speed were compared with other state of
the art models. It was shown that the proposed model works at 240
FPS processing speed while detecting the fish with higher precision
and recall values.

Changing the detection scale, increasing the number of anchor
boxes, or defining a new loss function are some of the modifications
that can be done in the YOLO network structure (Raza and Hong,
2020). Moreover, combining the output of the YOLO model with
other information sources such as optical flow and Gaussian
mixture models is another strategy to obtain an improved
detection in underwater images (Jalal et al., 2020).

In addition to underwater image and video processing methods,
there are different applications to identify fish types on the vessel.
Such studies involve usage of image classifiers based on
convolutional neural networks (CNN) (Zheng et al., 2018) or
instance segmentation networks such as Mask R-CNN (French
et al.,, 2020; Tseng et al., 2020). Such segmentation operations are

also useful in making morphological measurements on underwater
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fish images (Petrellis, 2021). This approach may be practical when
the aim is to get an estimate of the individual fish sizes and weights
in the catch.

The existing studies focus on either improving the detection
performance, the computational load in individual images or
application of the deep learning models to a new problem
domain. In particular, object detection and tracking are widely
studied today in various problem domains such as face recognition
(Vijaya Kumar and Mahammad Shafi, 2022), processing of aerial
images (ElTantawy and Shehata, 2020; Wu et al., 2022), and
maritime surveillance (Jin et al,, 2020). Despite the presence of
many studies with different purposes and strategies, the number of
studies concerning the real-time processing while tracking and
counting the detected fish is very limited. In a study that is aimed
to serve as a precursor to fish counting tasks, deep learning was used
to classify the environmental conditions (Soom et al, 2022).
According to the detected conditions, some traditional image
processing methods were applied to the image to detect the
presence/absence of fish. Even though no object detection and
tracking were involved, the processing speed and power
consumption of the proposed algorithm was evaluated on
different hardware with various specifications.

On the other hand, there exists tracking algorithms developed
for underwater objects like fish schools (Liu et al., 2022). In that
work, a ResNet50 model was used as the feature extractor and an
amendment detection module was proposed to improve the object
detection and hence the performance of the tracking. The proposed
model was compared with four different tracking algorithms, and it
was shown that it outperforms the others in three out of four
metrics. In two other studies, an experimental setup was prepared
for collecting video footage using a web cam placed above a small
fish tank. The fish in the tank were detected by YOLOv3-Tiny
model that is trained on the specific dataset. Next, the tracking of
the detections was accomplished by optical flow (Mohamed et al.,
2020) or Euclidean distance (Wageeh et al., 2021). In these studies,
tracking performances are provided poorly with no clear definition
of a fish count and a correct track. In another study about fish
tracking, an end-to-end model was proposed to detect and track the
fish in a tank and determine the abnormal behaviors (Wang et al.,
2022a). For the detection task, a modified version of YOLOv5 was
used and the tracking was accomplished by SiamRPN++. The
proposed model was shown to be operating at 84 FPS with higher
detection performance than the other object detectors.

As can be understood from the existing studies, there are many
efforts for object detection and tracking in underwater videos.
However, the number of applications aimed at counting specific
individuals by tracking them is very limited. One example can be
the method based on Mask R-CNN to detect and count the catch
items during trawling (Sokolova et al,, 2021a). In that study, the
detections and catch counts were collected under four classes,
namely, Nephrops, round fish, flat fish, and other. The study
involves detailed experiments about different data augmentation
methods together with tracking and counting of the catch belonging
to the specified classes. Though, it focuses on improvement of the
object detection performance, overlooking the detection speed of
the algorithm.
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Current study differs from previous studies in i) counting of
Nephrops in real-time by detecting and tracking them in underwater
videos, ii) comparing the effects of three different YOLO models to
the performances at every stage of the algorithm as well as the
overall processing speed, and iii) showing the possibility of real-
time monitoring and automated description of the catch items
during trawling.

Materials and methods
The video dataset

The dataset used in this study consists of five videos collected
using an underwater image acquisition system mounted at the
codend entrance of a demersal trawl that allows in-trawl
observation during fishing (Sokolova et al., 2021b). The videos
were recorded on June 27, 2020, in Skagerrak on commercial
Nephrops grounds where the catch in each haul were length
measured to provide size and count for all caught species The
footages have different durations and Nephrops ground truth
counts. The object densities in the videos are different and such a
diversity allows for better performance estimation for real-world
applications. The details about the videos are provided in Table 1.
The stereo camera of the image acquisition system was set to record
videos with a resolution of 1280 x 720 pixels at 60 frames per
second (FPS). Only the videos from the right camera were used for
processing the frames as the entire data output from the stereo
camera is useful for generating depth maps which is not within the
scope of this study.

Nephrops detection models

Among various versions of YOLO, the fourth version
(YOLOV4) is efficient and stable with various applications in
different domains (Bochkovskiy et al., 2020). The object detection
task is considered as a regression problem by YOLOv4, and it
eliminates the necessity of using large mini-batches during training.
It optimizes the trade-off between the detection speed and accuracy,
which means that it is possible to obtain accurate detections at high
FPS values. Therefore, YOLOv4 has been selected as the primary
model for Nephrops detection in this study. In addition, two
variants of this model, YOLOv4-Tiny and YOLOv4-Scaled, are
used to compare their performances.

TABLE 1 Details of the video footages.

Duration (min) Total Nephrops (no.) FPS

Video 1 00:55 4 60
Video 2 01:31 6 60
Video 3 07:30 36 60
Video 4 08:10 40 60
Video 5 06:29 23 60
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YOLOvV4 uses a CSPDarknet53 model as the feature extractor
backbone. It contains 29 convolutional layers and has advantages
like high receptive field and a large number of parameters that are
required for an accurate object detection (Bochkovskiy et al., 2020).
The output feature maps of the CSPDarknet53 are passed through a
multi-scale max-pooling operation. This operation is implemented
by a spatial pyramid pooling (SPP) layer where outputs of four max-
pooling operations with kernel sizes 1x1, 5x5, 9x9, and 13x13 are
concatenated. Processing with the SPP layer is important for
increasing the receptive field and separate the contextual features.
YOLOV4 also uses features at different levels of the feature extractor
backbone. To accomplish this, feature maps from three layers of the
CSPDarknet53 model are input to the path aggregation network
(PANet) in which the features are fused both in top-down and
bottom-up directions. Such an aggregation allows for simultaneous
utilization of localization information present in the lower level
features and semantic information in the higher level features. The
extracted features with this structure are then passed through a
YOLOvV3 head to predict bounding box locations and the
corresponding confidence scores. To improve generalization and
reduce the risk of overfitting, two new methods are introduced in
the algorithm: Mosaic and Self-Adversarial Training (SAT). In
addition, a continuously differentiable and smooth function Mish
is used as the activation between the layers of the network.

YOLOvV4-Tiny is a lightweight version of the original YOLOv4
architecture. The major differences are in the numbers of anchor
boxes and the convolutional layers in the backbone. Specifically, the
tiny model has six anchor boxes while the original version has nine.
Also, the number of YOLO prediction layers was reduced from
three to two, which allows higher prediction speed while
performing poor on the small objects. The scaled version of
YOLOv4 (YOLOv4-Scaled) introduces modifications in the
backbone and neck structures of the YOLOv4 architecture (Wang
et al,, 2020). In particular, the first CSP layer in the CSPDarknet53
backbone was replaced by a Darknet residual layer. In addition, up
and down feature scaling operations in the PANet and pooling
operations in the SPP module are enhanced by CSP blocks that
ultimately may decrease the computation cost by 40%.

Tracking and counting of the
detected nephrops

Since the main goal of the study is to automatically count the
number Nephrops entering the trawl, the detected Nephrops should
be tracked as they appear in the frames. To accomplish this, an
algorithm to make association between the detections in the
consecutive frames should be implemented. This is done by
object tracking algorithms that are particularly useful when the
object of interest is occluded or not detected for a certain number
of frames.

Simple Online and Real-time Tracking (SORT) is the object
tracking method used in this study (Bewley et al., 2016). SORT uses
2D motion information for modeling the state (i.e. bounding box
location, area, and aspect ratio) of each track in the video. Kalman
filter with a linear velocity model predicts the state of the tracks for
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the next frame (Kalman, 1960). The association between the
detections and the predicted tracks is accomplished by applying
the Hungarian algorithm (Kuhn, 1955) on the cost matrix whose
entries are the IoU values between the detections and predictions. In
order to highlight the suitability of the SORT algorithm for real time
Nephrops tracking, the performance of two other tracking methods,
MOSSE and DeepSORT, are tested as well. Details of this
comparison are given in Section 4.4.

Due to occlusions or inaccuracy of the object detector model,
the target objects may not be detected in all frames when they are in
the field of view of the camera. These discontinuities in the
detection constitute a challenge for the tracking process. SORT
algorithm is capable of predicting the bounding box coordinates in
case of such discontinuities. However, if a track is not associated
with a detection for 30 consecutive frames, then this track is
considered finished. This means that the finished track will not be
considered for association with the new detections anymore.

In order to determine the count for the Nephrops catches, the
tracks output by the SORT tracker are checked. This is done with
the help of a horizontal level defined at the top 4/5 of the frame
height. When the Nephrops are leaving the frame from the bottom,
they are partly visible, and this may cause the object tracker to
assign different identities to the same Nephrops as they are about to
disappear. Such an identity switch may generate false positive
counts if the horizontal threshold is set to be the bottom of the
frame. This is the reason for selecting a level different than the
bottom of the frame.

In particular, any track satisfying at least one of the following
conditions increases the counter by one:

i. The track with the lower level of the associated bounding
box crosses the horizontal level. When the Nephrops is
tracked successfully with no occlusions or distortions, this
condition is easily satisfied. This is the most common
condition.

ii. The track with the center of the associated bounding box
crosses the horizontal level. Due to occlusions, tracking of
some Nephrops are initialized after the lower level of their
bounding box is below the horizontal level. This condition
is useful for counting such Nephrops.

iii. The track with the height of the associated bounding box is
greater than 2/3 of the frame height. Some Nephrops pass
very close to the camera causing them to appear very large
and in small number of frames. In such cases, the first two
conditions cannot be satisfied. So this condition allows for
detecting these Nephrops.

One sample counting instance for each condition are given
in Figure 2.

Model training

The models mentioned in Section 3.2 are trained using an image
dataset generated by the frames extracted from the videos included
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in this study. The majority of the frames in the videos do not
contain any objects and are consequently not useful for the training
process. Therefore, a manual selection of the frames with some
objects is required. A total number of 4044 images were selected
according to the presence of Nephrops, fish, or others. After the
selection of frames, the bounding boxes for the objects in all the
frames were manually labeled using the VIA annotation tool (Dutta
and Zisserman, 2019). Since the aim is to count the number of
Nephrops entering the gear, any object other than Nephrops was
labeled as other. Therefore, the object detection step is considered as
a binary detection problem.

The dataset was randomly divided into training and test sets with
proportions of 87.5% and 12.5%, respectively. Next, 1000 images were
generated using the Copy-Paste (CP) augmentation method and
added to the training set (Ghiasi et al., 2021). When performing the
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CP augmentation, pixel values corresponding to the masks of the
objects in the source images were pasted onto the destination images.
To improve the diversity in the augmented images, some geometric
transformations were applied to the images as explained in (Sokolova
et al, 2021a). The details, like number of images and the object
instances in the image dataset after the augmentation are given in
Table 2, and three sample images are provided in Figure 3.

TABLE 2 Numbers of images and instances from both classes in the
training and test sets used in the object detection step.

- Images  Nephrops Instances = Other Instances

Training Set 4538 3766 8014

Test Set 506 204 775
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The darknet framework was used for the training of the models
(Redmon, 2016). The training and testing were performed on a
Tesla A100 GPU with 40 GB RAM, CUDA 11.1, and cudnn
v8.0.4.30. All the coding was done with Python v3.9.12 following
the instructions and model configuration files made available at
(Bochkovskiy, 2022). Some of the hyperparameters regarding the
models and their training are listed in Table 3. Note that all the
models were trained for 6000 iterations and the weights yielding the
best detection performance were used in the subsequent steps.

10.3389/fmars.2023.1129852

Performance evaluation metrics
The performances of each step in the study are evaluated and

reported separately in Section 4. To evaluate the object detection
performance, different mAP values are calculated for each of the
models using the test set. mAP is a quantification of the detection
performance by comparing the amount of overlap between the
ground truth and predicted bounding boxes. It is a widely used
metric and has good representation of the detection performance as
it considers both the prediction confidence score and the

FIGURE 3

Samples from the image dataset. (A) An image with a Nephrops instance. (B) An image with some other instances. (C) An image with copy-paste augmentation
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TABLE 3 Summary of the model settings.

Network Size

10.3389/fmars.2023.1129852

YOLOv4 ‘ 416 0.00100
YOLOvV4-Tiny ‘ 416 0.00261
YOLOvV4-Scaled ‘ 640 0.00100

intersection over union (IoU) values. First, the confidence scores for
the bounding boxes are converted into class labels for different
threshold values. This allows to obtain a confusion matrix for each
threshold and hence calculate the precision and recall values using
the True Positive (TP), False Positive (FP), and False Negative (FN)
in each matrix given by the following equations.

L TP,
Precision,, = ———
TP, + FN,,
TP,
Recall, = ——"—
TP, + FN,

Here the subscript n represents different confidence score
thresholds. The multiple (recall, precision) points correspond to a
curve in 2D space (precision-recall curve), and the average precision
(AP) value is the weighted mean of the precisions with the weights
being the changes in the recall values.

n-1
AP = (Recall; — Recall;_)Precision;
i=0
This AP calculation procedure is repeated for all classes
separately in the dataset. The average of all the AP values is
defined as the mAP which can be obtained by

1.¢
mAP = =S AP,
Ci=l

where ¢ represents the number of classes in the dataset and AP;
is the AP value for the i’ class.

The mAP value can be computed for different IoU thresholds
that affects the shape of the precision-recall curves. As a convention,
the mAP value is calculated for IoU = 0.50 (mAP@.50). However,
for benchmarking purposes, mAP values at different IoU thresholds
are calculated and averaged as well. In this study, three mAP values
are provided as the detection performance of the models: mAP@.50,
mAP@.75, and mAP@.50:.05:.95 (mAP values averaged for the
thresholds from 0.50 to 0.95 with steps of 0.05). In addition, since
the purpose is to track and count the Nephrops only, the AP values
belonging to Nephrops class (AP,,) are also given for the same
IoU thresholds.

Having obtained the tracks as the algorithm output as explained
in Section 3.3, the tracking performance metrics were calculated.
Among the calculated metrics, multi-object tracking accuracy
(MOTA) is a combination of three error types namely, number of
misses, false positives, and mismatches. It is obtained by
normalizing the total of these three errors by the number of
ground truth tracks. In calculation of MOTA, only the track
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Initial Learning Rate

Momentum Decay Training Epochs
0.949 0.0005 6000
0.900 0.0005 6000
0.949 0.0005 6000

locations are used. In other words, no bounding box information
is considered in MOTA. To overcome this situation, another metric
called multi-object tracking precision (MOTP) is defined. MOTP is
the average overlap between the bounding boxes of predictions and
ground truths. Mostly tracked (MT) and mostly lost (ML) are two
quality measures that consider the ratio of successfully tracked
frames for an object. A track is MT if it is tracked for at least 80% of
its life span. If the tracking ratio is less than 20%, then is called ML.
Within the context of object tracking, it is also desirable to obtain
tracks preserving their identities with small numbers of untracked
frames. Therefore, it is possible to mention two more metrics here.
Identity switch (ID-Sw) is the total number of tracks changing their
identity for the same ground truth object. Fragmentation is the
number of interruptions in the track where no tracking is made.
Finally, higher order tracking accuracy (HOTA) combines errors
originating from both association and detection (Luiten et al.,
2021). Specifically, it is the geometric mean of association
accuracy and detection accuracy.

Results
Detection performance of the models

The mAP and AP, values for different IoU thresholds for all
three models are given in Table 4. These values are obtained by
passing the test set samples in the image dataset introduced in
Section 3.1 through the trained models. Note that the best weights
determined during the training phase are used for prediction on the
test set which can be considered as a regularization step to avoid
overfitting. In other words, the weights calculated in the subsequent
iterations are not considered for Nephrops detection. The best
weights are obtained at iterations 4962, 5245, and 4113 for
YOLOvV4, YOLOv4-Tiny, and YOLOv4-Scaled, respectively.

In most of the performance metrics, YOLOv4-Scaled outperforms
the other two models. Nevertheless, the differences between YOLOv4
and YOLOv4-Scaled are minor which precludes suggesting the best
model for all cases. For the threshold IoU = 0.5, the scaled version is
slightly better at detection of the Nephrops, but when the AP values for
both classes are considered, YOLOv4 has a higher mAP value. This
means that YOLOv4-Scaled is not as precise as YOLOv4 when
detecting the objects from the other class. On the other hand, the
difference between the performances of YOLOv4-Tiny and the other
two models is smaller when IoU = 0.5. This indicates that the tiny
version is capable of detecting the bounding boxes but not with as high
IoU values as those obtained by the other models.
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TABLE 4 Performance comparison of the detector models.

10.3389/fmars.2023.1129852

@.50:.05:.95 @.50:.05:.95
YOLOv4 97.82 85.58 71.89 97.84 91.37 74.76
YOLOv4-Tiny 95.10 73.06 6271 94.57 76.95 64.28
YOLOv4-Scaled 97.55 88.10 72.28 98.47 94.05 75.97

Best values are provided in bold.

Tracking and counting performance of
the models

Note that only the tracks satisfying the count conditions were
involved in the tracking performance calculation because these are
the tracks used in counting performance calculation as well. In
addition, the tracking metrics were obtained for all five videos
separately, but their average values are provided here as one single
clustered column chart (Figure 4). The MOTA, MOTP, and HOTA
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FIGURE 4

Tracking performances associated with the detectors. (A) Percentage values for MOTA, MOTP, and HOTA, (B) MT, ML, ID-Sw, and Fragmentation

numbers averaged over the test videos.

MOTP

values are given as percentages (Figure 4A) and the rest are number
of tracks (Figure 4B).

The Nephrops counts output by the algorithm associated with
the tracks are given in Table 5. The numbers of true positive counts
are reported together with the numbers of false positive and false
negative counts together with the correct count rates for each
individual video. The lowest total number of false positives is
achieved by YOLOv4-Scaled which has the highest false negative
tracks as well. Therefore, it is possible to explain the low false

HOTA

ID-Sw

Fragment.
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TABLE 5 Detailed numbers of counts obtained by the detection models.

10.3389/fmars.2023.1129852

Video-1 Video-2 Video-4
Ground Truth 4 6 36 40 23 109
Output 4 4 39 31 19 97
True Positives 4 4 34 27 19 88
YOLOv4 False Positives 0 0 5 4 0 9
False Negatives 0 2 2 13 4 21
Correct Count Rate (%) 100.00 66.67 94.44 67.50 82.61 80.73
Output 4 4 33 24 18 83
True Positives 3 4 31 21 18 77
YOLOvV4-Tiny False Positives 1 0 2 3 0 6
False Negatives 1 2 5 19 5 32
Correct Count Rate (%) 75.00 66.67 86.11 52.50 78.26 70.64
Output 3 27 19 18 71
True Positives 3 25 17 18 67
YOLOv4-Scaled False Positives 0 2 2 0 4
False Negatives 1 11 23 5 42
Correct Count Rate (%) 75.00 66.67 69.44 42.50 78.26 61.46

positive rate by its inefficiency in generating tracks satisfying the
count conditions. The lowest amount of false tracks are achieved by
YOLOV4 which also has the highest true positives. Specifically, the
related F-scores calculated on the total counts for YOLOv4, Tiny,
and Scaled versions are 85.44%, 80.21%, and 74.44%, respectively.

Processing speed comparison of
the models

The required amount of calculations in the model and
the hardware specifications are the two major factors affecting the
processing speed. The calculation amounts are determined at the
design stage of the models, and this can be adjusted to some degree
by changing the input image sizes which is also named as network
size (see Table 3). Typically, a larger network size in the model
yields better object detection, sacrificing the processing speed and
vice versa. The input image size for the YOLOv4-Scaled model was
adjusted to be higher than the other two models to improve its
detection accuracy. Such an adjustment allowed for obtaining a

similar accuracy with YOLOv4 model and hence benchmarking
their tracking, counting and speed performances.

The FPS values for each model and video are summarized in
Table 6. As expected, the YOLOv4-Tiny model is the fastest in all
the videos because it has a reduced number of computational layers
to enhance its speed. The slowest model is YOLOv4-Scaled. The
reason for its lower FPS values is related with its larger network size.
However, a smaller network size for this model would cause lower
detection and tracking performances eventually yielding a lower
number of true positive counts.

Benchmarking with other trackers

To evaluate the suitability of SORT, two other object tracking
algorithms were tested on the same dataset. One of these methods is
based on a correlation filter, namely, Minimum Output Sum of
Squared Error (MOSSE) filter (Bolme et al., 2010). The reason for
selecting this object tracker is that its processing speed is claimed to
reach 669 FPS (Bolme et al., 2010). In addition, usage of MOSSE was

TABLE 6 Comparison of image processing speed between models in frames per second (mean [min-max]).

Video-1 Video-2 Video-5 Average
YOLOv4 116.49 115.64 116.67 114.77 115.76 115.87
[65-123] [76-123] [75-123] [69-123] [62-122] [69.4-122.8]
267.51 248.58 251.22 251.50 248.72 253.51
YOLOv4-Tiny
[84-323] [96-267] [76-318] [75-316] [91-311] [84.4-307.0]
78.93 79.51 80.31 79.93 80.73 79.88
YOLOv4-Scaled
vaSead (39-80] (51-81] 40-82] [44-82] [48-82] [44.4-81.4]
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shown to be one of the effective trackers tested in underwater videos
(Lopez-Marcano et al., 2021). The MOSSE algorithm initializes a
correlation filter based on a detected object in a frame. Next, in the
subsequent frames, the algorithm looks for a location having the
highest correlation with the initially detected object. Due to the
changes in appearance of the same Nephrops instances throughout
the video, the Nephrops detection used for generating the correlation
filter is updated every fifth frame. This approach was implemented
earlier for tracking of yellowfin bream in underwater videos (Lopez-
Marcano et al., 2021).

The other tracker evaluated is DeepSORT, an improved version of
the SORT algorithm (Wojke et al., 2017). DeepSORT uses the
appearance information of the detected objects together with their
motion information in 2D. The motion information is quantified by
the Mahalanobis distance between the detected bounding box
centroids and the Kalman filter predictions under a constant
velocity model. On the other hand, the appearance features for each
detection are obtained by passing the bounding box region through a
pre-trained CNN containing two convolutional and six residual layers.
The minimum cosine distance between the appearance features of the
detections and the last 100 features of each track is determined as the
second metric used by DeepSORT. For the benchmarking
experiments, the resources and the instructions made available in
the official repository of DeepSORT are utilized (Wojke, 2019).

Instead of reporting the full detailed results for benchmarking
trackers, only MOTA, HOTA, correct count rate, average FPS
values, and F-scores for YOLOv4 model are provided (Figure 5).
Evaluation of these metrics is sufficient for comparing the trackers
by understanding their overall performance.

Discussion

A major challenge in demersal trawling is the lack of
information about the catch entering the gear during fishing. This
study demonstrates a full pipeline to acquire, process and display

10.3389/fmars.2023.1129852

catch information for Nephrops, in close to real-time, to act as a
decision tool for the fisher during the fishing operation. The
applicability of such tools in commercial trawling and their
potential improvements is discussed below.

One advantage of the proposed algorithm is the powerful image
acquisition system that provides mostly sediment-free clear videos
for being processed in the subsequent steps (Sokolova et al., 2021b;
Sokolova et al,, 2022). In the existing literature for underwater
image processing, there are some papers where the effects of
preprocessing on underwater images are analyzed for improving
the detection performance (Han et al., 2020; Zhou et al., 2022). But
the preprocessing requires some time, degrading the overall
processing speed. In addition, there are different types of
degradations such as low contrast and color distortion present in
the underwater images (An et al, 2021). Our method does not
require any preprocessing to enhance the detection accuracy
because the image acquisition system is robust and capable of
capturing clear videos with adjustable illumination (Sokolova
et al., 2021b).

Evaluation of the algorithm steps

Since the followed strategy is tracking-by-detection, successful
Nephrops detection is expected to imply more accurate tracking
which eventually may result in better Nephrops counts. Hence,
achieving high mAP is critical at the object detection step. The
performances of object detector models may be considered as
sufficiently successful for an accurate tracking and counting task
because all three models have mAP @.50 values above 95%
(Table 4). In addition, the Nephrops detection performance, AP,
value, associated with YOLOv4-Scaled model is the highest
indicating a better detection capability of Nephrops. However, this
situation is in connection with the increased size of the YOLOv4-
Scaled model which slows down its respective detection
speed (Table 6).

111.57
85.44 83.96
80.73 7399 8165 78.05 78.90
17.88 51.80
b 45.56 42.92
38.48

i I I I

MOTA HOTA Correct Count Rate Average FPS F-Score

HSORT mMOSSE ®m DeepSORT

FIGURE 5

Some performance metrics obtained by three different object tracking algorithms.
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In the literature, there are numerous metrics defined for
evaluating the performance of an object tracking algorithm. For
simplicity, only those metrics commonly mentioned in the object
tracking literature are provided in this paper. Among the three
models, YOLOv4 model has the best values for MOTA, MT, ML,
and HOTA. For a detection model, having higher MT and lower
ML track count means that their associated successive detections
are good enough to attain a valid track. This idea is also supported
by the high accuracy values in MOTA and HOTA. On the other
hand, an identity switch can be the source of a false positive count
provided that the switching happens somewhere close to the
horizontal level defined for counting conditions. As for the
MOTP, it is very close for three of the models. This means that
they have nearly the same level of success in bounding box
localization throughout the tracks and cannot be used as a
distinguishing factor for commenting on the counting performance.

Finally, it is possible to mention the performance for total
Nephrops counts and the processing speeds of the method.
Checking only the total counts at the end of the video may be
misleading since some Nephrops are not counted while there may be
multiple counts for some others. Therefore, checking the false
positive and false negative counts together with the true positives
gives better insight about the counting performance. The
quantification of these three types of tracks is done by calculating
the F-scores for each detector model. In addition, the rates for
correct counts in each video are provided. At this point, it is notable
that the correct count rates for Video-4 are relatively low when
compared to the other four videos. The reason for such a
remarkable difference is that Video-4 has some sediments
degrading the visibility of the objects in the video. This situation
highlights the importance of sediment-free video acquisition.
Furthermore, when Tables 4, 5 are considered together, it is
possible to conclude that high performance at the object detection
step does not always imply better correct count rates. This is
apparent for the YOLOv4-Scaled model which has a very high
detection rate but fails to achieve good count performance.

As for the processing speed, it is measured in terms of FPS. It is
the type of the detector model that has a major impact on the overall
duration of processing a frame. In addition, updating the object
tracks by the SORT algorithm takes some time. During the
experiments on the videos, it was observed that, on average, 1.6%
of the total processing duration of the frames are used by SORT
tracking algorithm when YOLOV4 is used as the object detector.
However, tracking is effective only when there is a tracked object in
the frame. Nevertheless, the maximum processing speed related
with three of the models is higher than the FPS value of the input
video (Table 6). This means that the detectors are capable of
running at real-time processing speed, but this speed may be
reduced when there is a tracked object in the video. On average,
the processing speeds of YOLOv4-Scaled is slightly below the real
time threshold while the other two models are fast enough to be
considered real-time.

The benchmarking results of SORT with MOSSE and
DeepSORT trackers revealed that SORT is a better tracker for this
application in terms of tracking accuracy, Nephrops counting, and
processing speed. The major problem with the MOSSE tracker is the
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requirement for updating the correlation filters frequently. This
process slows down the procedure considerably. On the other hand,
tracking without any correlation filter update step, MOSSE is quite
inefficient for this problem because the Nephrops individuals float
and rotate under the influence of water flow causing their
appearance to be changed as they are in the field of view of the
camera. As for DeepSORT, it is more accurate than MOSSE in
terms of counting performance. However, the CNN-based feature
extraction step slows down the overall tracking speed and
eventually causes the slowest processing.

Implications for the nephrops fishing

Demersal trawling is a blind process today, which means that
fishers do not know if they are catching the target species during
trawling operation. This study constitutes a basis for addressing this
problem by outputting the target catch count with a real-time speed.
In other words, it demonstrates the possibility of providing the
Nephrops catch amount throughout the trawling operation. Such
information is useful for not only improving the catch rates of the
target species but also reducing the bycatch amounts, oil and energy
consumption, and ultimately improve the economic,
environmental, and social sustainability of the fishery.

Further development

The first step for further improvement of the proposed method
is to run it on an edge device with limited computational power.
Note that the reported results in this study were obtained using a
powerful processing unit (Section 3.4). In real world applications, it
may not be practical to access such a computer. Therefore,
experimentation with an edge device, which is more accessible
onboard commercial fishing vessels, is one of the improvement
plans with high priority. The change of the processing platform may
not affect the correct count rates, but will have an influence on the
overall processing speed. Nevertheless, the achieved speed with
YOLOv4-Tiny model is promising and it may still perform
sufficiently fast on an edge device.

When there is a tracked object in the video, the tracking speed
drops considerably. In other words, tracking step is a bottleneck in
the procedure. However, SORT is known to be one of the fast
tracking algorithms in the literature, which is also supported by the
benchmarking results. In case of requiring higher speed, skipping
some intermediate frames may be helpful at cost of degradation in
the count accuracy. This may contribute to the compensation of the
speed loss due to the edge device. Besides, even if there is a small
delay, the achieved processing speed may be considered as a
significant improvement when compared to hours of delay
associated with the current situation, where information on catch
rates and compositions is only available once the catch is taken
onboard the vessel.

In the longer term, the method may be extended to detect and
count more species and contribute to a larger scale in fisheries.
However, this requires generation of a larger video dataset
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containing more diverse species. In addition, the edge processing
unit may be connected to the stereo camera directly by integrating
them inside the underwater camera box. This may be coupled with a
wireless transceiver device that transmits the count information, e.g.
acoustically to a screen onboard. This key information is sufficient
for the fisher to decide whether to continue fishing in the same area.

Conclusion

This study demonstrates the possibility of using state-of-the-art
deep learning methods to develop real-time decision tools for the
trawl fisheries demonstrated here as a Nephrops counter. In
particular, the experiments are carried out with three different
object detector models on underwater videos collected by an in-
trawl camera. The detection, tracking, and counting performances
as well as the processing speeds associated with these models are
calculated. According to the obtained results, it is possible to
conclude that such a system is promising for improving the
sustainability of trawl fisheries.
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Scaling whale monitoring
using deep learning: A human-
in-the-loop solution for
analyzing aerial datasets

Justine Boulent®, Bertrand Charry*, Malcolm McHugh Kennedy®,
Emily Tissier’, Raina Fan', Marianne Marcoux? Cortney A. Watt?®
and Antoine Gagné-Turcotte™

Whale Seeker, Montreal, Quebec, Canada, 2Aquatic Research Division, Fisheries and Oceans Canada,
Winnipeg, Manitoba, Canada

To ensure effective cetacean management and conservation policies, it is
necessary to collect and rigorously analyze data about these populations.
Remote sensing allows the acquisition of images over large observation areas,
but due to the lack of reliable automatic analysis techniques, biologists usually
analyze all images by hand. In this paper, we propose a human-in-the-loop
approach to couple the power of deep learning-based automation with the
expertise of biologists to develop a reliable artificial intelligence assisted
annotation tool for cetacean monitoring. We tested this approach to analyze a
dataset of 5334 aerial images acquired in 2017 by Fisheries and Oceans Canada
to monitor belugas (Delphinapterus leucas) from the threatened Cumberland
Sound population in Clearwater Fjord, Canada. First, we used a test subset of
photographs to compare predictions obtained by the fine-tuned model to
manual annotations made by three observers, expert marine mammal
biologists. With only 100 annotated images for training, the model obtained
between 90% and 91.4% mutual agreement with the three observers, exceeding
the minimum inter-observer agreement of 88.6% obtained between the experts
themselves. Second, this model was applied to the full dataset. The predictions
were then verified by an observer and compared to annotations made
completely manually and independently by another observer. The annotating
observer and the human-in-the-loop pipeline detected 4051 belugas in
common, out of a total of 4572 detections for the observer and 4298 for our
pipeline. This experiment shows that the proposed human-in-the-loop
approach is suitable for processing novel aerial datasets for beluga counting
and can be used to scale cetacean monitoring. It also highlights that human
observers, even experienced ones, have varied detection bias, underlining the
need to discuss standardization of annotation protocols.

KEYWORDS

semantic segmentation, automated cetacean detection, active learning, wildlife
monitoring, artificial intelligence
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1 Introduction

Our ability to detect and identify wildlife is the foundation of all
successful conservation and management plans, and research
(Caughley, 1974; Pollock and Kendall, 1987; Yoccoz et al., 2001;
Mackenzie et al., 2005). Conservationists, managers, and scientists
increasingly rely on remote sensing data, such as satellite and aerial
imagery to survey larger areas for tracking wildlife, and monitoring
distribution, which can provide information on population trends
over time (Fretwell et al., 2014; Cubaynes et al., 2019; Charry et al.,
2020; Shah et al,, 2020; Charry et al., 2021).

Cetaceans, composed of over 90 species of dolphins, whales, and
porpoises, are central to our ocean ecosystems, contributing to
nutrient cycling and carbon sequestration, and are viewed as
keystone species to assess the overall health of our marine
ecosystems (Wilkinson et al., 2003; Pershing et al., 2010). Scientists,
conservationists, and other marine stakeholders traditionally rely on
human marine mammal observers working with survey data
collected from boats, aircraft, satellites, and other vessels to assess
cetacean abundance. The use of aerial digital photography onboard
manned and unmanned aircraft has yielded large amounts of data for
assessing population distribution and demography (Heide-Jorgensen,
2004; Charry et al,, 2018; Gray et al,, 2019). However, the terabytes of
photographs collected are tediously manually analyzed by humans;
the lack of scalable, standardized, automated image analysis solutions
limit the speed and cost-effectiveness of image-based surveys, as well
as the mitigation and management goals they support.

During the last decade, the fields of ecology and conservation
have benefited from the artificial intelligence (AI) and deep learning
revolution, which has led to great advances in automatic wildlife
recognition. Convolutional neural networks have been employed
for several applications related to cetacean monitoring from images
(Rodofili et al.,, 2022). Borowicz et al. (2019) used them to locate
areas containing large whales in WorldView-3 satellite images. Lee
et al. (2021) used convolutional neural networks to automate the
detection of belugas (Delphinapterus leucas) in aerial images, also
exploring the generalizability of a model on data collected in two
different years. Berg et al. (2022) proposed a weakly supervised

C

FIGURE 1
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approach based on anomaly detection to detect marine animals,
including cetaceans, in aerial images.

Despite these advances in image analysis, automating cetacean
detection for aerial image datasets remains a challenge, notably due to
the difficulty of building a rich enough dataset to train a generalizable
model (Borowicz et al., 2019; Gray et al., 2019; Guirado et al., 2019;
Gheibi, 2021; Lee et al., 2021; Berg et al., 2022; Rodofili et al., 2022).
Firstly, image acquisition in marine environments is a costly and
difficult task, especially for monitoring whale populations, as these
animals are constantly on the move over an extremely large area and
only surface intermittently. Secondly, marine environments are far
from homogeneous, and undergo constant changes that can influence
visual animal detection including sea state, water turbidity, and solar
reflection. There are also several natural and anthropogenic objects that
may be sources of confusion for computer vision analysis, such as
rocks, seaweed, icebergs, floating waste, and boats. Lastly, cetaceans are
challenging animals to observe even in the best of conditions, both for
deep learning models and for biologists. For example, a whale’s
visibility depends on its posture and depth in the water column at
the time of image acquisition (Figure 1). Given these constraints,
datasets often gather hundreds of negative (no whales) images for only
a few with whales, and at best cover a few species, geographic areas, and
environmental conditions. Therefore, it is difficult to develop an
automatic detection tool that is reliable.

In this study, we aimed to overcome these challenges by using a
human-in-the-loop approach with the goal of combining speed and
consistency of automated AI analysis with human’s ability to
generalize and deal with novelty. Human-in-the-loop can be
defined as the set of strategies and techniques that associate human
and machine intelligence to solve tasks automatically (Monarch et al.,
2021). Overall, this combination aims to achieve expert-human-level
accuracy with as little manual annotation time as possible. One of the
pillars of human-in-the-loop is active learning. The assumption
behind active learning is that not all samples have the same value
when training a model, with some samples containing more
significant information than others. For example, applied to beluga
whale detection, images with objects likely to be confused with
belugas are of greater interest than images with homogeneous

Examples of image diversity of belugas and narwhals in different environments and with varying estimated depths: (A) In surface waters, (B) Animals
located between 0 and 1 meter from the surface, (C) Animals between 1 and 2 meters from the surface, (D) Animals deeper than 2 meters.
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water, without confounding objects or rough waters. Therefore, by
strategically selecting and annotating these most important samples,
we can limit annotation effort while maximizing accuracy (Ren et al,
2021). A few studies have successfully applied active learning to
wildlife monitoring, achieving high correct prediction rates while
using fewer annotated examples than in classical transfer learning
(Kellenberger et al., 2019; Miao et al., 2021).

We present a human-in-the-loop approach to partly automate
cetacean detection from unannotated aerial images. The objective is not
to develop a single model able to perform a perfect analysis, but to
develop a methodology to efficiently assist biologists in the analysis of
new aerial datasets, allowing for faster and more standardized results.
To evaluate our approach, we applied it to aerial images of a beluga
survey dataset from Fisheries and Oceans Canada (DFO) that was
previously analyzed manually. In this study, we first trained a semantic
segmentation model using active learning. On a test subset, we
compared the model predictions with manual annotations of three
observers. Once the model results reached human level quality, we
analyzed the complete aerial dataset and compared the detections from
the human-in-the-loop pipeline with the manual annotations.

2 Material and methods
2.1 Methods overview

Before diving into the details of the experiments, we provide a
high-level description of the human-in-the-loop approach we
adopted to assist marine mammal experts in the analysis of new
incoming datasets of whale surveys. The method overview is intended

10.3389/fmars.2023.1099479

to give an insight on the main components of the analysis, especially
for readers not familiar with AI. For those readers, we also
recommend the following references on the use of machine
learning for wildlife monitoring (W einstein, 2018; Tuia et al., 2022).

Our human-in-the-loop approach comprises three main steps:

(1) Preliminary analysis (Figure 2A): When a new dataset is
received for analysis, limited a priori information is available —
we do not have an estimate of the total number of whales, nor
do we know the diversity of environmental conditions. These
unknowns impede the use of Al and the initialization of the
active learning loop. For active learning to be effective, it is
necessary first to select examples of images including whales
but also representative of the dataset’s diversity, both to be
able to train and evaluate the model. To overcome this issue
and gather valuable information to start the active learning
loop, we begin with a preliminary analysis based on generic
deep learning models not trained on the new dataset. First, we
use a land segmentation model and human verification to
produce a binary land cover map. This map is used to exclude
images covered entirely by land from further analysis, and to
automatically dismiss predictions of whales made on land as
false positives. Next, we use a dimensionality reduction
technique, Uniform Manifold Approximation and
Projection for Dimension Reduction (UMAP, Mclnnes
et al,, 2018), to plot and cluster the environmental diversity
of the dataset; this enables the selection of diverse and
representative images to annotate, preventing manual
analysis of redundant images during a single iteration.
Finally, we run a model for cetacean segmentation trained

New dataset Land-iltered dataset
+
UMAPand
 kemeans clustering
Land cover mapping T
1, ‘Source model annotations.
» Minimum YES "
Excluds images ith N ! Modelevaluation [RREIP y/ocil Obsorver AN L
5 and manual human review 4 agreement
: 1
! | Model predictions | no —
F inal mode
Land-filtered dataset | ___,  |[RTSERISISTN SR
Validation subset | Test subset ———— ew Eaning lieretion
! 1 Model fine-tuning
—" ; [l T - J Final model inference on
Diversity analysis ‘Source model annotations hmm:m “ “M"ggﬁy‘gﬁg[;ﬂgg goens unannotated images
1 Labelling by Observer [5-8 29,
! i ! |
UMAP and -assi Training subset
lcmeans clustering 1 i & " letton Final Model predictions
l Annotated test subset l
\—> Training subset <—|
7 Annotated validation subset
Segmentation by source mode/
{
: Final Model predictions  —» 2 > EEEHRERICCN >  Fuly snalysed dataset | ——>
UMAP visualisation of land-fitered y
dataset (see Figure 3)
& Processed by human Observer Active learning loop
FIGURE 2

Overview of the human-in-the-loop pipeline. The pipeline is divided into three main stages: (A) The preliminary analysis, (B) The active learning loop,

(C) The human review of the predictions

Frontiers in Marine Science

94

frontiersin.org


https://doi.org/10.3389/fmars.2023.1099479
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Boulent et al.

on prior data (called the source model) on the new dataset,
minus the images excluded covered entirely by land.
Although its initial outputs are not accurate enough to be
used as is, the outputs are used to find images containing
potential cetaceans, providing a good starting subset for the
active learning pipeline. For further details, see section 2.3.1
Preliminary analysis.

(2) Active learning pipeline (Figure 2B): To develop a cetacean
segmentation model adapted to the new dataset without
having to annotate a significant number of images, an active
learning approach is adopted. Using the information from
the preliminary analysis but without sharing the predictions
with the human annotator, validation and test subsets are
selected for manual annotation. Training images are also
selected; however, this time, predictions are used for an AI-
assisted annotation. Depending on the quality of the
predictions, the human annotator either approves or
corrects the targets detected by the model, or adds
missing individuals. They also transform any false
positives into negative examples, which are used for
training in the next iteration. The whale source model is
then fine-tuned using both the annotations from the new
and the source datasets. Using this complementary source
data serves to maintain the generalist features already
present in the source model, and to provide enough
whale examples for the fine-tuning, which is not always
possible, as positive examples may be scarce in cetacean
datasets. Similar iterations of “training images selection —
images annotation — model fine-tuning and evaluation” are
then repeated until satisfactory results are reached on the
test subset (see section 2.3.2.1 Subsets selection and
annotation). At this point, the fine-tuned model is used to
analyze the whole dataset. For further details, see section
2.3.2 Active learning pipeline.

(3) Human review of predictions (Figure 2C): To improve the
quality of the final analysis, a human annotator manually
checks all the detections provided by the model and
corrects them if necessary. For further details, see section
2.3.3 Human review of predictions.

In the entirety of this pipeline, the human annotator is involved
in four tasks: (1) validating the segmentation of the land areas, (2)
annotating validation and test images used to monitor the deep
learning model, (3) annotating training images selected by active
learning techniques, and (4) reviewing all predictions after the
model’s final analysis.

2.2 Data specification

2.2.1 Study area

The aerial survey was designed to detect and monitor beluga
whales of the Cumberland Sound population in Clearwater Fjord,
Canada. This population is composed of roughly 1,400 individuals
(Watt et al,, 2021) who are believed to reside year-round in
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Cumberland Sound, an Arctic waterway, based on information
derived from telemetry data of 14 individuals (Richard and Stewart,
2008). During the open-water season in summer a large portion of
this population congregates in Clearwater Fjord, located at the
northern end of the sound (66°34’ N, 67°26° W).

2.2.2 Data collection

In 2017, DFO conducted a photographic survey of the
Cumberland Sound beluga population from 29 July to 12 August.
Surveys were performed using a twin-engine Havilland Twin Otter
300 plane, flying at 100-110 knots at a goal altitude of 610m.
Photographic surveys were performed over Clearwater Fjord
following 26 pre-determined parallel transect lines 700m apart
oriented east-west. To collect photographs a Nikon D810 camera,
with 25mm lens, was mounted and positioned straight down at the
rear of the aircraft to capture photographs. The camera was linked
to a GPS receiver and was set to capture one photograph every seven
to eight seconds. Each photograph covered an area of about 875m x
585m, with a 20% overlap on consecutive and adjacent photographs
along transects. The photographs were acquired over four days
flying over the same area.

2.2.3 Manual data analysis

The 5334 photographs of the area of interest were first
examined to detect belugas by a photo-analyst from DFO, called
Observer 3 in this paper. The analyst examined the georeferenced
photographs using ArcMap 10.1 software by Esri. Each image was
scanned and upon detection of a beluga whale a point annotation
was added to the target in the image. Observer 3 detected 4572
beluga occurrences within the dataset. All detections noted in our
study are whale targets in the images we processed; we did not
remove duplicate targets detected in the overlap portions of images
or interpret any abundance of these whale populations. Those
annotations were only used for comparison with the results of
our human-in-the-loop pipeline, not for training the pipeline.

Since this fully manual analysis was not conducted within this
study, the time spent analyzing the dataset has not been recorded.
However, it can be estimated that between 1328 hours (8 months
working at 8 hours a day) and 2016 hours (12 months at 8 hours a
day) were needed to perform this task without Al-assistance.

2.3 Detailed pipeline for experiments

2.3.1 Preliminary analysis
2.3.1.1 Land cover mapping

To automatically exclude images containing only land from our
analysis, and automatically dismiss any predictions falling on land,
we performed Al-assisted annotation to get a binary land
segmentation mask for each image of the dataset. The land
segmentation model used had a UNet50-ResNeXt architecture,
and was trained on a dataset of 11,702 images from similar, but
non-overlapping, Arctic surveys. This dataset was split into
training, validation, and test subsets with ratios of 70%, 15%, and
15% respectively. The model was trained for 11 epochs, with a
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learning rate of 2e-4. Loss was computed using the Log-Cosh Dice
coefficient. Since this model was not fine-tuned on the new dataset,
it made errors, especially in areas of shallow and muddy water, so
we then manually vetted the predicted annotations, modifying any
predictions that did not accurately reflect the observed coastlines.

2.3.1.2 Source whale model

A semantic segmentation model trained on another dataset, i.e.,
the source model, was used to find cetaceans in the first iteration.
The source and new datasets differ in flight altitude, geographic area
covered, and predominant species found. The source dataset was
acquired by DFO in 2013, over the Canadian Arctic Archipelago,
with a target flight altitude of about 305m. In 1562 images, 10,253
cetaceans were annotated. They consisted mostly of narwhals
(about 80%), but also belugas (about 20%) and bowhead whales
(less than 1%).

To train the source whale model, images from the source dataset
were split into training, validation, and test subsets with ratios of
70%, 15%, and 15% respectively. This split was done randomly, but
with the constraint that two images with a geospatial overlap could
not be in different subsets, so as to prevent cross-contamination. A
supervised training was carried out, using a U-Net architecture
(Ronneberger et al,, 2015), and with EfficientNet-b3 (Tan and Le,
2019) as an encoder. It was trained for 50 epochs with an initial
learning rate of 2e-4. The optimizer used was AdamW and the loss
was computed with the Dice coefficient. Of the 1658 whales in the
234 test images, 1568 were segmented by the model, giving a recall
of 94.6% at 95.66% of precision. For more details on the metrics
used, refer to the section 2.3.4 Metrics.

2.3.1.3 Diversity analysis

In order to minimize redundancy in the images sent for manual
annotation, and hence the number of iterations to reach the
stopping criterion, the automatic selection of the images to
annotate was done in such a way that represented the diversity of
oceanic environments seen across all images.

To do this, we first ran all the images in the dataset through an off-
the-shelf pre-trained convolutional neural network (ResNet-50 (He et al,,
2016) from TorchVision), and extracted the final activation layer after a
forward pass through the network. The activation layer for each image
was then fed into a nonlinear dimensionality reduction tool, UMAP
(MclInnes et al,, 2018), which is designed to reduce the dimensionality of
high-dimensional data, while retaining some of the meaningful
characteristics of the data, such as similar elements clustering together
across space. We chose to reduce the representation of each image to two
dimensions, to enable human-readable visualizations (Figure 3). The
two-dimensional representations did indeed cluster similar
environmental conditions together in space, so that images dominated
by land cover, shallow water, white caps, or muddy water, for instance,
clustered in contiguous regions of the 2D space.

To use this information for image sampling and based on a
visual assessment of the UMAP representation, we binned the
images into 12 discrete clusters using the k-means clustering
algorithm, assigning each image in the dataset an arbitrary
number according to which environmental cluster it fell into.
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FIGURE 3

Clustered UMAP visualization of the new dataset. Each point
represents an image and is color-coded by cluster. To illustrate the
similarity of images within clusters, rectangles on the right show
examples of three random images from four different clusters.

Using this representation, images were picked successively and
randomly from the different clusters to obtain a representative
selection of the environmental diversity.

2.3.2 Active learning pipeline
2.3.2.1 Subsets selection and annotation
2.3.2.1.1 Validation and test subsets

Creating validation and test subsets including whales was
challenging, since no a priori knowledge on the dataset was used.
Random sampling would have likely yielded subsets without any
whales, and that did not represent the dataset’s true range of
environmental diversity. For this reason, we relied on the
preliminary analysis results. For each of the test and valid subsets,
50 images were selected successively and randomly, alternating
between the different UMAP clusters to provide representative
sampling of environmental diversity. The selection algorithm also
ensured that two images with space-time overlap were not in different
subsets. For 20 images of each subset, another selection rule was
imposed using the predictions made by the source whale model: these
images had to contain at least two predictions of whales scoring above
60% confidence to be selected. Although there is some bias in this
approach since the source model’s predictions were used to select
images for its own evaluation, it was the best way to ensure we
included cetaceans in validation and testing, without having to
manually evaluate the dataset. Since belugas live in groups,
selecting an image with at least two predicted whales generally gave
access to a larger group, including whales not detected by the model.
Moreover, as the source model was not yet adapted to the target
domain, the selections also included false positives. Using a selection
of images that included not only true positives, but also false
predictions enabled us to automatically create validation and test
subsets capable of tracking the evolution of the model’s fine-tuning.
Following the selection of images for the validation and test subsets,
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we proceeded to annotate them. One of the challenges of AI for
wildlife monitoring is that the ground truth is based on human
annotations, and therefore contains some degree of difference, owing
to inter- and intra-observer variability. To calculate the variability of
annotation between different expert marine mammal biologists, the
test subset was analyzed independently by three observers (Table 1)
(see section 2.3.4.2 Measuring agreement for further details). Only the
test subset was analyzed by multiple observers as it contained a
representative sample of environmental diversity of the full dataset
and to limit the annotation workload. Observer 1, a Whale Seeker
biologist, was the primary annotator, since in addition to the test
subset, they also annotated the validation and train subsets, as well as
doing the final prediction reviews. Observer 2 was also a Whale
Secker biologist. They both used the annotation software DIVE to
draw individual polygons around each whale. Observer 3 was a DFO
biologist who had previously annotated the entire dataset (see section
2.2.3 Manual analysis). Since the annotations from Observers 1 and 2
were individualized polygons while those from Observer 3 were
points centered on the whales, we transformed these points into a
2*2 pixels square to allow comparison. Hence, a polygon intersecting
a square is considered as a common annotation between observers.

Using the test-set annotations of the three observers, we
calculated their inter-observer agreement, a key metric in a
context where there is no real ground truth. This metric was used
as the stopping criterion of the active learning loop: the loop would
be ended once the agreement between the model predictions and
the human annotations equaled or exceeded this value.

2.3.2.1.2 Training subsets

At each iteration, 50 images were selected to be annotated for
fine-tuning. To sample images with the most uncertain targets, we
used the least confidence criterion (Monarch et al., 2021) to select
20 images based on the confidence score of the predicted targets. An
additional 25 images were selected using a most confidence
criterion. This criterion is based on the number of targets in an
image with a confidence above a specified threshold value, in this
case 90%. This criterion had the advantage of generating true whale
predictions that can be easily transformed into annotations when
the segmentation has a high enough quality. It also allowed us to
catch false positives with a high level of confidence, a frequent
occurrence when analyzing new environments. Since we were
selecting entire images and not just targets, this criterion provided
access to a large number of beluga whales, and thereby potentially to
false negatives. Finally, five images were also randomly selected for
annotation. To avoid redundancy of information, we used the
UMAP representation to select the images.

10.3389/fmars.2023.1099479

The annotation was performed by Observer 1 with the model’s
assistance, i.e., the observer had access to the predictions of the
model to speed up analysis. To enrich the pool of negative examples
sent to the model during training, we followed a hard negative
mining approach, which means we transformed the false positives
from selected images into negative examples for the next training
iteration. Since the dataset images measured 7360 per 4912 pixels —
too large to be fed directly into machine learning algorithms — tiles
of 256 per 256 pixels were extracted around each whale and hard
negative example. To complete the dataset, negative tiles were also
extracted randomly. To avoid an unbalanced dataset, the same
number of positive and negative tiles were fed to the model. Because
positive examples are typically scarce in cetacean surveys, 750
positive examples from the source dataset were also selected
randomly to supplement those from the new dataset. A summary
of the data used in each iteration can be found in Table 2.

2.3.2.2 Model fine-tuning

A complete fine-tuning of the previously trained model was
performed on each iteration. For the first iteration, the starting
point was the source model. We used a U-Net architecture with an
EfficientNet-B3 encoder. During each training phase, several runs
were performed with different random seed states. Since the
human annotator only verifies images that contain at least one
whale prediction, we needed a fairly sensitive model. For each
iteration, between all the models from the different runs, we chose
the model with the best recall for an accuracy over 85%. More
details about the hyperparameter values used can be found
in Table 3.

2.3.3 Human review of predictions

Once the stopping criterion was reached, the final iteration of
the model was used for inference on all remaining unannotated
images. The list of images with at least one whale detected was then
sent to Observer 1 for manual revision. During this process, the
observer could approve, remove, or correct the predictions. They
could also add targets not predicted by the model, and separated
groups of whales that were segmented as one by the model, to
facilitate an individual count of the number of cetaceans.

2.3.4 Metrics
2.3.4.1 Computer vision metrics

To evaluate the performance of the models, precision (Eq. 1),
recall (Eq. 2), and Fl-score (Eq. 3) were calculated. For our
application, since it was not the quality of the segmentations that

TABLE 1 Summary of annotations for the validation and test subsets according to the three observers.

Subset type

Number of images per subset

Number of annotated whales per subset

Validation 50

Test 50

N/A stands for "not applicable".
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Observer 1 Observer 2 Observer 3
390 N/A N/A
289 304 315
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TABLE 2 Summary of the data used in each training iteration.

10.3389/fmars.2023.1099479

Iteration 1 Iteration 2

Annotated images 50 100
(+50) (+50)
Positive tiles
Annotated whales from the DFO dataset 768 1283
(+768) (+515)
Annotated whales from the source domain 750 750
(N/A) (N/A)
Total of positive tiles 1518 2033
(+768) (+515)
Negative tiles
Hard negative tiles 157 301
(+157) (+144)
Random negative tiles 1361 1732
(+1361) (+371)
Total of negative tiles 1518 2033
(+1518) (+515)

All training annotation was performed by Observer 1. The numbers displayed represent the cumulative total number of images or annotations used for each iteration. The numbers in brackets

and italics represent the number of new images or annotations added for each iteration.

was important but rather binary detection quality, these three
metrics were computed not at the pixel but at the target level.
Each group of contiguous positive pixels was considered a target.
Each whale prediction that intersected a human annotation was
counted as a true positive. Recall is the most critical metric for this
application since we focus on missing as few individuals as possible.
High precision is nonetheless important so that the observer does
not spend too much time checking for false positives.
True Positives

Precision = — — (1)
True Positives + False Positives

True Positives
Recall = — . 2
True Positives + False Negatives

2 X Precision X Recall
F1 — Score = — (3)
Precision + Recall

TABLE 3 Hyperparameters used to fine-tune the model.
Architecture U-Net with Efficient-Net B3 as encoder (Ronneberger

et al., 2015; Tan and Le, 2019)

https://github.com/qubvel/segmentation_models.pytorch

Initial Learning le-5 to 6e-4
Rate
Optimizer AdamW

Loss function Dice Coefficient

Batch Size 30

Maximum 30
number of epochs

Transformations Randomly applied: rotation in 90-degree steps, horizontal

or vertical flip, and hue color jitter
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2.3.4.2 Measuring agreement

One challenge of quantifying automated approach success using
remote detection is the inherent variability in ground-truth data,
both between expert human observers and within the same
observer. Numerous studies across various taxa have measured
inter-observer variability in overall animal counts given the same
remote sensing imagery (Linchant et al.,, 2015; Wanless et al., 2015;
Schlossberg et al., 2016; Fossette et al., 2021). These studies report
count discrepancies in the range of 5 - 15%. Disagreement across
matched detections (rather than the overall count) is less well
documented but is likely significantly higher.

This range of inter-observer variability, even among experts,
makes 100% recall and precision a moving target, and not a
realistic or desirable goal for automated or manual approaches.
Instead, an automated solution’s recall and precision can instead
be interpreted as the algorithm’s “agreement” with the observer
who created the ground-truth annotations, and can be expected, at
best, to approach the agreement values human experts have with
respect to one another. Specifically, we defined agreement between
two observers (human or computer) as the intersection over union
(IOU) between them, which is the number of shared detections
divided by the size of the union of the two observer’s detections
(Eq. 4).

Inter — observer agreement = (4)

Detectionsppsa,  obsB
Detectionsopss, opsp + Detectionsgpy +  Detectionspyg

Where Detectionsopsa, obsp represents the number of whales
detected by both observers, while Detectionsopss represents the
number of detections made only by Observer A, and
Detectionspopsp represents the number of detections made only
by Observer B.
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We chose this metric since, unlike concepts such as recall and
precision, it is symmetric between the two observers, rather than
assuming one to be ground truth.

3 Results
3.1 Land cover exclusion

Using the land use mapping done in the preliminary analysis,
1977 images (37% of the total) were excluded from further analysis
because they were covered by more than 95% land, leaving 3357
images to be analyzed for whales.

3.2 Evaluation on the test subset

3.2.1 Inter-observer agreement

The number of whales found in the 50 test images varied
between observers. Observer 1 was the most conservative
annotator, disregarding targets that were deep in the water
column, whereas Observer 3 was less conservative and included
deep-water targets. Therefore, the number of whales detected in the
50 images ranged between 239 to 315. The percentage of agreement
between pairs of observers ranged from 88.5% to 92.88% (Table 4).

Most of the disagreements between observers concerned targets
that might be whales swimming deep in the water column
(Figures 4A, B). Some discrepancies were due to targets
resembling waves (Figure 4C) or birds (Figure 4D).

3.2.2 Active learning loop performance

Two iterations, totaling 100 annotated images (~2% of the
complete dataset), enabled the model to exceed the minimum
inter-observer agreement value on the test subset, with model-
observer agreement percentages ranging from 90.03% to 91.37%
(Table 5; Figure 5).

Despite differences between the source and new datasets, the
source model provided an initial recall on the test subset ranging
from 75.87% to 79.93% depending on the observer. The
incorporation of target domain annotations greatly improved
the detection capabilities: the number of false negatives shrank
more than sixfold between the source model and the iteration 1
model. After iteration 2, the recall ranged from 94.75% to 98.96%.
Interestingly, across all the false negatives, none had consensus by

10.3389/fmars.2023.1099479

all three observers, highlighting the alignment between inter-
observer discrepancies and model-observer discrepancies.
Precision increased by an average of 28.8 percentage points
after 50 annotated images were added. This upward trend
continued less steeply between iteration 1 and 2, with an
average gain of 4.23 percentage points. After iteration 1, some
of the false positives were recognizable objects like rocks, glare
effects and waves, but after iteration 2, the false positives related
to objects that we couldn’t identify. All three observers agreed on
only 7 of the false positives, and some of them could indeed be
belugas that were missed by all three (Figure 6).

3.3 Evaluation on the whole dataset

Once the active learning loop was complete, Observer 1 proceeded
to the final step of the pipeline: reviewing the predictions on the
remaining 3157 images that had not been manually annotated. In this
review, 572 predictions were removed, and 58 detections were added.

The annotations from the human-in-the-loop pipeline were then
compared with those made without Al assistance by Observer 3. In total,
4298 belugas were detected by the pipeline, while the Observer 3 detected
4572 belugas, a difference of 274 individuals. The level of mutual
agreement reached 84%, representing 4051 mutual detections. Observer
1 detected 247 belugas that were not detected by Observer 3, and
Observer 3 detected 521 belugas that were not detected by Observer 1.

As no third-party biologist reviewed the disagreements, we were
not able to arbitrate on the presence or absence of belugas.
Nevertheless, to better understand the disagreements between the
human-in-the-loop pipeline and Obsrver 3 detections, Observer 1
manually inspected the discrepancies.

Out of the 768 targets in disagreement, he assessed that 60% of
them could not be annotated with certainty, due to a lack of visibility,
related to the turbidity of the water, the conditions at sea, and
especially, to the depth of the detected target (Figure 7). While
image annotation protocols generally specify a maximum depth for
a target to be counted as a whale, in practice it is difficult to follow
these guidelines, which leaves room for some interpretation. When
analyzing groups of whales, we noticed that observers were inclined
to annotate targets at great depths as belugas, while similar targets
outside whale groups were not annotated as such. About 35% of the
uncertain targets were found in beluga whale groups. The proximity
of the belugas and the turbulence they create rendered
individualization difficult (Figure 7).

TABLE 4 Annotation agreement on the test subset between the three observers.

Number of whales found only by = Number of whales found only by

the 1°t Observer the 2™ Observer

Agreement Number of mutual

(%) whales’ detections
Obs. 1 - Obs. 2 92.9 287
Obs. 1 - Obs. 3 88.6 ‘ 285
Obs. 2 - Obs. 3 92.9 ‘ 300
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Raw image Annotation - Observer 1 Annotation - Observer 2 Annotation - Observer 3

Annotation - Observer 1 Annotation - Observer 2 Annotation - Observer 3

Raw image Annotation - Observer 2

FIGURE 4
Examples of annotation disagreement in the test subset. (A, B) Targets annotated differently by each observer with red outlines for Observer 1, green
outlines for Observer 2, and yellow boxes for Observer 3. (C) Target annotated only by Observer 3. (D) Target annotated only by Observer 2.

3.4 Time-tracking pipeline (Figure 8). In total, 53 hours were spent for the complete
analysis of this dataset of 5534 images. The Al-assisted annotation

We tracked the time spent by Observer 1 annotating images and  of the land took approximately 23 hours, given that about 80% of
reviewing predictions to estimate the time needed for an observer to  the images included land. Whale detection required approximately
analyze a dataset while being assisted by the human-in-the-loop 31 hours of manual work to analyze the eligible 3357 images (i.e.,

TABLE 5 Summary of the results between the model and the three observers on the test subset.

Agreement (%) F1-score (%) Recall (%) Precision (%)

Observer 1

Source model 52.14 68.55 79.93 60.00 154 58 231

Tteration 1 87.11 93.11 98.27 88.47 37 5 284

Iteration 2 91.37 95.49 98.96 92.26 24 3 286
‘ Observer 2

Source model 51.42 75.87 75.87 61.60 149 76 239

Iteration 1 85.45 93.65 93.65 90.77 30 20 295

Tteration 2 90.96 94.75 94.60 94.90 16 17 298
‘ Observer 3

Source model 51.50 67.92 76.97 60.78 151 70 234

Iteration 1 85.50 92.16 94.74 89.72 33 16 288

Iteration 2 90.03 95.27 96.05 94.5 17 12 292

In bold, the agreement values exceeding the minimum inter-observer agreement. FP, false positives; FN, false negatives; TP, true positives.
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FIGURE 5

Evolution of the observer—-model whale detection agreement on the
test subset through the model training iterations. The shaded area
between hash lines indicates the inter-observer minimum and
maximum whale detection agreement.

with a land cover under 95%). Given that a fully manual analysis
took an estimated 1328 to 2016 hours, the time savings for the
observer using our Al-assisted approach are in the range of 96-97%.

FIGURE 6
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4 Discussion

4.1 Scaling the adoption of Al for aerial
whale monitoring

Our study presents an original deep learning-based solution
using a human-in-the-loop framework to detect whales from aerial
imagery. Al-assisted detection can process imagery significantly
faster than manual detection, thereby providing more time for
interpretation and development of mitigation strategies. Manual
analysis of a survey can take months or years, delaying evaluation of
mitigation plans, which can be detrimental to the species of interest.

Although there has been previous work using deep learning to
analyze imagery of marine mammals, they have not yet gained
traction with the global community of wildlife managers and other
ocean stakeholders. While data democratization is often put forward
as a roadblock to implement AI solutions in ecology (Ditria et al.,
2022), another major challenge is the lack of knowledge sharing and
understanding between Al experts and wildlife managers. Creating a
widespread usable framework not only requires deep expertise and
communication from multiple disciplines such as computer science
and ecology, but also the involvement of all marine stakeholders.

Full photographic surveys are desirable in the field because they are
cost-effective, requiring fewer personnel, which also means less human
risk; however, processing vast amounts of imagery that are acquired is a
major bottleneck. Our methodology, including the use of UMAP to
select the most impactful data for re-training, helps to make full
photographic surveys a viable monitoring solution, by cutting down
the number of manual annotations needed for re-training.

(A—F) Examples of predictions (original image on left, turquoise outline prediction on right) from iteration 2 identified as false positives for all three observers.
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FIGURE 7

Examples of annotation disagreements between Observer 1 (middle, in red) and Observer 3 (right, in yellow). Original unannotated image on left.
Total count of belugas in (A) Observer 1: 11, Observer 3: 12; (B) Observer 1: 13, Observer 3: 14; (C) Observer 1: 4, Observer 3: 6.

Since each dataset is different, it is expected that the time an
expert spends on each Al-assisted analysis will vary. The greatest
time savings will likely be for repeated surveys from one year to the
next, or for analyzing historical datasets, where the target species
and geographic area are constant.

4.2 The need of standardization
and transparency

By analyzing a dataset with a single model, Al improves
standardization: each image is processed identically, without the biases

human-in- land segmentation annotation of validation annotation of

whale predictions
the-loop predictions revision and test subsets

training subsets annotation

lower estimate upper estimate

fu" manual _

0 204060 1200 1400 1600

Analysis method

1800 2000
Hours of labour spent by Observer analysing images
FIGURE 8

Comparison of the time spent by Observer 1 to analyze the dataset with the Al-assisted approach versus the time spent by Observer 3 to analyze the

dataset fully by hand. The exact time spent for the full manual analysis was not recorded, hence the lower and upper estimates of the time needed
to analyze a dataset of 5334 images.
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and variability that can occur during manual annotation. However, this
approach does not mean we can do without observers’ intervention: their
expertise is required for fine-tuning data as well as prediction verification.
Therefore, the consistency of an Al solution is limited by the consistency
of manual interventions and establishing a robust manual annotation
protocol from the outset is essential, especially regarding common
conditions for inter-observer discrepancy such as deep targets and
murky water. Standardization of protocols for assessing difficult cases
would ensure temporally spaced surveys are consistent, even if they
cannot be ground-truthed. As the Al-assisted annotation process greatly
reduces the time taken by observers to analyze the images, multiple
observers could be asked to review the annotations and arbitrate the
difficult cases. Because marine mammal management often has large
environmental, monetary, and cultural implications, a standardized
approach offers transparency for stakeholders and can go a long way
to developing trust in the scientific process.

4.3 Al perspectives

Improvements can be made to the pipeline presented here.
Going from semantic segmentation to an approach that isolates
individuals could speed up the manual revision process. However,
this approach needs to be robust to the proximity, and even overlap,
of individuals. Developing a source model with a higher
generalization capacity would also be an improvement since
better pre-analysis requires fewer active learning iterations.
Improving generalization remains an area of ongoing research
(Wang et al., 2021). Developing specialized source models for
given species and geographic areas could also improve the pre-
analysis results. Finally, extending the model’s scope from whale
detection to species identification would allow for better monitoring
of multiple species within the same geographical area.

5 Conclusion

In this study, we proposed and applied a human-in-the-loop
approach to address the challenge of a real-world cetacean
monitoring application case: analyzing a novel dataset of aerial
images for beluga whale monitoring. Through this approach and
the close collaboration between Al and the observer, expert-quality
analysis was quickly provided for the 5334 images in the dataset,
with only 100 annotated images for training. Generalization of this
approach to aerial image analysis could significantly improve
cetacean monitoring in quantity and quality. Keeping the expert
in the loop ensures human-level quality results and better
adaptation to new environmental and biological conditions in the
imagery. Using computing power instead of total human analysis
also allows more data to be analyzed in a dramatically shorter time
period, allowing more meaningful time sensitive decisions.
Improvements can still be made to the proposed method, both
for AI (better generalization of source models, multi-species
identification) and for cetacean monitoring methodology
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(standardized taxonomy and image annotation protocol), and yet
the human-in-the-loop approach proposed here constitutes a first
innovative and practical solution for automating imagery analysis
for cetacean monitoring.
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The El Nifio-Southern Oscillation (ENSO) is a quasi-periodic climate type that
occurs near the equatorial Pacific Ocean. Extreme periods of this climate type
can cause terrible weather and climate anomalies on a global scale. Therefore, it
is critical to accurately, quickly, and effectively predict the occurrence of ENSO
events. Most existing research methods rely on the powerful data-fitting
capability of deep learning which does not fully consider the spatio-temporal
evolution of ENSO and its quasi-periodic character, resulting in neural networks
with complex structures but a poor prediction. Moreover, due to the large
magnitude of ocean climate variability over long intervals, they also ignored
nearby prediction results when predicting the Nifio 3.4 index for the next month,
which led to large errors. To solve these problem, we propose a spatio-temporal
transformer network to model the inherent characteristics of the sea surface
temperature anomaly map and heat content anomaly map along with the
changes in space and time by designing an effective attention mechanism, and
innovatively incorporate temporal index into the feature learning procedure to
model the influence of seasonal variation on the prediction of the ENSO
phenomenon. More importantly, to better conduct long-term prediction, we
propose an effective recurrent prediction strategy using previous prediction as
prior knowledge to enhance the reliability of long-term prediction. Extensive
experimental results show that our model can provide an 18-month valid ENSO
prediction, which validates the effectiveness of our method.

KEYWORDS

El Nifio southern oscillation, long-term prediction, spatio-temporal modeling, transformer,
deep learning

1 Introduction

The EI Nino-Southern Oscillation (ENSO) is one of the recurring interannual
variability of ocean-atmosphere interactions phenomenon over the tropical Pacific
Ocean and contains three phases (onset, mature and decay) with respect to the changes
of sea surface temperature(SST). When the SST are higher than normal in the central and
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eastern equatorial Pacific Ocean, it is called El Nino, and when it is
lower than normal, it is called La Nina Larkin and Harrison (2002).
With wind and SST oscillations, the ENSO has wide influences, for
example, the global atmospheric circulation Alexander et al. (2002),
crop production Solow et al. (1998), environmental and
socioeconomic (McPhaden et al. (2006)), ecology and economy
Reyes-Gomez et al. (2013). Therefore, accurate prediction of ENSO
occurrence can guide us to take preventive measures and effectively
reduce the impact of natural disasters on human society. However,
due to the predictability barrier and chaos of climate variability Mu
et al. (2019) ENSO prediction remains an extremely
challenging task.

In recent years, there are several related indicators to reveal
ENSO underlying complex climate change, such as Nino3.4 index
and the SST index Yan et al. (2020). All of them utilize the historical
SST or Heat Content (HC, Vertical mean ocean temperature above
300 m) to predict whether the ENSO event will happen in the
future. Among these indicators, the Nino3.4 index is frequently
employed to evaluate phenomenon of ENSO, which calculates
mean SST anomaly(SSTA) maps of three consecutive months in
an area of 5°N-5°S and 170°W-120°W Ham et al. (2019). The
existing ENSO prediction methods can roughly classified into
numerical prediction methods (NWP), traditional statistical
methods and deep learning methods Ye et al. (2021b). The NWP
methods usually adopt the mathematical physics and integrating
governing partial differential equations to predict future Nino3.4
index Bauer et al. (2015). Specifically, Zebiak et al. Zebiak and Cane
(1987) proposed the first coupled atmosphere-ocean model for
forcasting the ENSO phenomenon, and subsequently various
models like Intermediate Coupled Model (ICM), Hybrid Coupled
Model (HCM) and Coupled General Circulation Model (CGCM),
have been proposed to obtain 6-12 months of reliable predictions
He et al. (2019).For example, Zhang et al. Zhang and Gao (2016)
developed an ICM for enso prediction focusing on thermocline
effect on the SST, which reasonably captures the overall warming
and cooling trends from 2014-2016. Subsequently, Barnston et al.
Barnston et al. (2019) validated the ENSO prediction skill in the
North American Multi-Model Ensemble(NMME) and found that
NMME can effectively improve the ENSO prediction skill. Johnson
et al. Johnson et al. (2019) used the European Centre for Medium-
Range Weather ForecaststECMWF) to predict ENSO and found
that ECMWF has powerful advantages in ENSO prediction,
especially in the difficult-to-predict northern spring and summer
season. Ren et al. Ren et al. (2019) developed a statistical model to
examine the East Pacific (EP) type and Central Pacific (CP) type
predictability, and the results showed that ENSO predictability is
mainly derived from changes in the upper ocean heat content and
surface zonal wind stress in the equatorial Pacific. However, due to
weather prediction is highly dependent on initial and boundary
conditions, as well as a large variety of physical quantities, which
hinder the application of NWP in long-term prediction Ludescher
et al. (2021). Furthermore, with the horizontal resolution
increasing, the numerical models will lead to an explosion of time
costs and computational resources Mu et al. (2019); Ye et al
(2021b). Traditional statistical methods summarized and analyze
the shallow patterns in historical data of ENSO, and then, realize
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the prediction of future ENSO Yan et al. (2020). Concretely, Petrova
etal. Petrova et al. (2017) decomposed the time series into dynamic
components and captured the dynamic evolution of ENSO to
obtain efficient predictions. Subsequently, PETROVA et al.
Petrova et al. (2020) added a stochastic periodic component
associated with the ENSO time scale, which further improved the
prediction. Wang et al. Wang et al. (2020) proposed a
nonparametric statistical approach based on simulation
prediction to address the limitation of long-term prediction for
statistical methods raised by highly non-linear and chaotic
dynamics. Rosmiati et al. Rosmiati et al. (2021) proposed the auto
regressive ensemble moving average (ARIMA) model to predict the
Nifio3.4 Index and found that ARIMA was very effective in
predicting ENSO events. However, ENSO is non-linear ocean-
atmosphere phenomenon over time, traditional statistical
methods can not well capture the complex patterns and
knowledge to effectively predict the ENSO phenomenon Yan
et al. (2020).

As deep learning techniques have developed, researchers have
began to design neural networks for predicting weather elements
(e.g., rainfall), which can well mine complex and intrinsic
correlations, such as artificial neural networks (ANN) Feng et al.
(2016), convolutional neural networks (CNN) Ham et al. (2019); Ye
etal. (2021b); Patil et al. (2021), long short-term memory networks
(LSTM) Broni-Bedaiko et al. (2019), convolutional long short-term
memory networks (ConvLSTM) Mu et al. (2019); He et al. (2019);
Gupta et al. (2022), CNN-LSTM Zhou and Zhang (2022), graph
neural networks (GNN) Cachay et al. (2020), recurrent neural
network (RNN) Zhao et al. (2022), transformer Ye et al. (2021a)
etc. Feng et al. Feng et al. (2016) propose two methods to predict the
existence of ENSO, and the time evolution of ENSO scalar features,
which provided a new prediction direction for predicting the
occurrence for ENSO events. Broni-Bedaiko et al. Broni-Bedaiko
et al. (2019) used the LSTM networks for multi-step advance
prediction of ENSO events, which complemented the previous
models and predicted the ENSO phenomenon 6, 9, and 12
months in advance. Mu et al. Mu et al. (2019) defined ENSO
prediction as a spatio-temporal series prediction issue and used a
mixture of ConvLSTM and rolling mechanism to predict the
outcome over a longer range of events. The GNN was first used
in Cachay et al. (2020) for seasonal prediction, it predict the result
in a longer lead time. Zhao et al. Zhao et al. (2022) designed an end-
to-end network, named Spatio-Temporal Semantic Network
(STSNet), it provided a multiscale receptive domains across
spatial and temporal dimensions. The significant breakthrough
work is the CNN-based model designed by Ham et al. Ham et al.
(2019), which is proficient in predicting ENSO incidents for as long
as 1.5 years, significantly higher than most existing methods.
Subsequently, Ye et al. Ye et al. (2021b) adapted the different
sizes of the convolutional kernel to capture the different scale
information and further improved the accuracy than Ham et al.
(2019). Patil et al. Patil et al. (2021) trained CNN models using
accurate data with the all season correlation skill greater than 0.45 at
lead time of 23 months. Another major breakthrough is the
combination of the POP analysis procedure with the CNN-LSTM
algorithm by Zhou and Zhang (2022), which explores hybrid
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modeling by combining physical process analysis methods with
neural network and proves its effectiveness. In addition, deep
learning in the field of spatio-temporal prediction is now well
developed, Li et al. Li et al. (2022) developed an adversarial
learning method fully considering the spatial and temporal
characteristics of the input data to produce accurate wind field
estimates, and Lv et al. Lv et al. (2022) proposed a new generative
adversarial network model to simulate the spatial and temporal
distribution of pedestrians to generate more reasonable future
trajectories, which provides new ideas for ENSO prediction.

Although certain advances have been made in ENSO-related
studies, there are still quite limited predictions due to the following
reasons: (1) The ENSO phenomenon contains prominent spatio-
temporal characteristic, and even if the temperatures of two stations
with long time intervals and far apart locations, they may still have
complex interactions with different implications for future ENSO
prediction. The traditional CNN convolution kernel suffers from
the problem of local receptive field, for example, to obtain the SST
anomaly relationship between the North Pacific and South Atlantic,
it is necessary to stack the deep layers to obtain these two areas, but
the amount of information decays as the number of layers increases
Ye et al. (2021a). The transformer-based methods explored the
attention mechanism to capture the global receptive field. However,
these methods mainly model the spatial information, resulting in
confusing spatio-temporal features Nie et al. (2022). (2) Due to the
variable rate signal and high frequency noise in atmosphere-ocean
system, it is a challenge for predicting long-time ENSO in advance.
The previous close calendar months have significant effect on the
next month prediction, while those with longer intervals have low
effect. Existing methods ignore the nearby prediction results when
they mine the spatial-temporal patterns in the next time, resulting
large errors due to the large magnitude of ocean climate variability
over long intervals. (3) The ENSO phenomenon has an obvious
statistical characteristic of annual cycle Zhou and Zhang (2022),
and how to effectively use this interannual characteristic to capture
the correlation between historical and predicted data is the key to
improve the prediction of the future trend change in atmosphere-
ocean system.

To solve the above limitations, we designed a novel Spatial-
temporal Transformer Network for Multi-year ENSO prediction,
which is named STTN. First, as the ENSO phenomenon has
large-scale and long-term dependencies across both spatial and
temporal dimensions, we employed a multi-head spatial-
temporal network to adaptively model the variations along
with the changes in space and time, which can effectively
captures the global and successive characteristics of climate
change. Second, we designed an effective recurrent prediction
strategy to utilize the previous predictions as prior knowledge for
long-term prediction by a single model. To mitigate the negative
influence of false predictions, we encoded the contextual
information of successive predictions by temporal convolution
operation to fully exploit the historical contextual time series.
Third, we integrated the month information into the procedures
of SSTA and HC anomaly (HCA) maps feature encoding and
predictions, which guides the model to better capture the
seasonality and periodicity of the ENSO phenomenon.
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The main contributions from our work are summarized below:

*  We proposed a novel spatial-temporal transformer network
to model the variations of SSTA and HCA along with the
changes in space and time, which can adaptively captures
the inherent characteristics of climatic oscillation.

*  We introduced an effective recurrent prediction strategy to
treat previous predictions as prior knowledge for long-term
predictions and utilize the context of predictions to mitigate
the error accumulation during recurrent prediction.

*  We integrated the temporal index as position embedding
into the feature learning procedure to facilitate mining the
influence of seasonal variation on predicting ENSO.

* The extensive experiments indicated that our single model
outperforms the state-of-the-art methods with multiple
ensemble models, which demonstrates the effectiveness of
our method at dynamic prediction.

2 Methodology
2.1 Data processing

The ENSO prediction has been defined as a spatio-temporal
prediction issue, where the objective is to use the ENSO historical
data x, 7.1 X;1, % to predict the Nifio3.4 indexes for the next !
months. This process is formulated as:

b’t+1>)’t+2 )’t+l] = F i1, Xy oe %) (1)

where F denotes the deep learning model, I denotes the lead month,
T denotes the length of historical input data. The illustration of our
proposed network is illustrated in Figure 1.

The time unit of ENSO historical input data contains T
consecutive months, denoted as x.;,¢ R and x;,,¢ RV
for SSTA and HCA, respectively. T, H, and W indicate time, height,
and width for the input data, respectively. To model the spatial and
temporal correlation with a global perspective, we adopt the
transformer structure as the backbone of our method. To meet
the requirement of transformer structure, we first reshape the SSTA
and HCA 2D data into a sequence of flattened 2D patches. Taking
Xssta @s an example, each grid map is divided into N patches with
same size: x;sm e RPN*Pxp2 - N=HxW/(p;xp,). The p; and p, is
the size of each patch, then each patch is converted into a one-
dimensional vector with p;xp, dimension. Then, we adopt a linear
layer to project these vectors into D dimension. Finally, the features
of the SSTA or HCA can be represented as fssmeRTXNXD and
Frea€RTND

2.2 Spatial-temporal position encoding

Due to the complex historical input data with periodic
characteristics, we need to assign the position indexes for each
patch to let the network know the location and order of each patch,
so that the model can explore the correlations among different
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The proposed STTN model architecture, which contains Input data, Patch Divide, Spatial-temporal position encoding, Encoder, SSTA and HCA
Features, and Recurrent prediction strategy. The SSTA and HCA encoder consist of multiple transformer encoder blocks. The Recurrent prediction
strategy predicts the Nifio3.4 index according to the time step. Input variables are SSTA (in units of °C) and HCA (in units of °C) from t-T+1 to t (in
units of month).The STTN model outputs the Nifio3.4 indexes for the next | months

locations or at different times. To encode the temporal information,
we adopt different sine and cosine functions Vaswani et al. (2017),
which are periodic and can explore the temporal characteristic of
abnormal temperature. Take f;, as an example:

PO(i,2j) = sin (i /10000%/P)

. (2)
PO(i,2j + 1) = cos (i /10000%/P)

where i is the time step of the input sequence or the calendar month
in the period of C, and j is the index of dimension, POeR™P | For
the location of each patch within space, we learn spatial positional

embedding EEN” . Finally, the spatio-temporal position is added

to the feature f;, and to obtain the embedding vector zs(ft)a.

28, = Norm(f,, + E + PO) (3)
where Norm is the LayerNorm operator, and the embedding vector

(0)
Zhca

the calendar month information and the time step of the input

of HCA can also be obtained by the above process. In addition,

sequence also contributed to the recurrent prediction strategy
which will be presented later.

2.3 Spatial-temporal attention module

To better model the spatial and temporal characteristics of ENSO,
we adopt a multi-head attention to encode the variability. Without
losing generality, we take SSTA data as the input. The encoder
structure is shown in Figure 2A, which consists of spatial and
temporal attention, multi-layer perceptron, and residual connection
to obtain the feature representation. To capture the temporal
dynamics, we first use the self-attention mechanism in the time
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dimension. For example, in the case of temporal attention, exclusively
using keys from the same patches but different frames as the query,
the query, key, and value vectors in the m-th Encoder block can be

(m—l)eRNxTxD

computed from the feature vector z as follows.

qgm @) W(’" “Norm(z" V) € R
K™ = Wi Norm(z ) € RP: (4)
Vi) = WimadNorm(z"V) € RP»

where t = 1,...,T, and Norm is the LayerNorm operation, a = 1,...,A

is the index of attention heads, and A is the sum of attention heads,
the dimension of the attention head is given as D;, = D/A. W,(]"”“),
W,((m’“), W™ are the parameters for the projection layers. The
weights of temporal patches are obtained by a dot product
calculation as follows.

(ma)”
afm’“) = o 4

(5)

o 5
t=1,...,T

where G is the softmax activation function and a!™” € RT*7 s the
temporal attention layer m in terms of a-th head. The patch
representations are calculated by these weights.

(m a) _

2 a(m ,a) (m a) (6)

Then, these vectors from all the attention heads are
concatenated and projected:

(m,1)

P

me) =W,

(m,A)

P
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Decoder Block is the Nifio3.4 index feature output by the upper-level block.

where W, is the parameter of the linear layer and [] indicates
concatenation operation. Further, to capture the spatial dynamics,
we use the spatial attention immediately after the temporal
attention. The spatial attention calculates the weights in the
spatial dimension, exclusively using keys from the same frame as
the query. When implementing the spatial attention, we can
exchange the spatial and temporal dimensions of z/" &€ RN*T*D
then the query, key, and value vectors can be computed from the

= RTXNXD

feature vector z}" as follows:

qm = W(Qm’“)Norm (z") € RP»
k(™) = W Norm (2") € RP» ®)
yima) — Wg,m’a)Norm (z") € RP»

Then, the weight of each space patch also can be computed by the
dot product calculation:

(ma) _ g g™ { (nm)}
a" = o k™ g W ©)

where a{™? & RV*N and ¢ is the softmax activation function. The
encoding of the spatial attention at layer m can be similarly obtained
by Eq. 6

(ma) _ < yma) (ma)
m,a) __ 5 5
P =S a v (10)
J=1
Finally, we can also obtain the output z™ of spatial attention as
follows:
pmy
2" =W,|: (11)
pgrmA)

where W, is the parameter of the linear layer and [] indicates the
concatenation operation. After using the temporal and spatial
attentions, we use the residual connection and multilayer
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perceptron (MLP) to ensure the stability of the gradient and mine
the spatio-temporal features.

Z™ = Norm (2" + z"V)

(12)
2™ = Norm (MLP(z{"™) + z{™)

After encoding SSTA and HCA data, we get the spatio-temporal
features of SSTA and HCA respectively, and in order to perform
joint prediction, we concatenate the features of SSTA and HCA to
get the feature ZER® TP

2.4 Recurrent prediction strategy

In order to use previous predictions as prior knowledge for
long-term prediction, we introduced an effective recurrent
prediction strategy (RPS). Specifically, we first utilized the self-
attention,cross-attention blocks, MLP layer, and residual
connection to construct the decoder of the spatial-temporal
characteristics. The structure of the decoder is depicted in
Figure 2B. Then, the temporal convolutional block with one-
dimensional convolution was adopted to encode the prediction
context, which can help reduce the error accumulation in the
recurrent prediction process. Finally, the fully connected layer
maps the feature vector into the Nifio3.4 index to optimize the
whole network. It is worth noting that these operations are used in
each step of the recurrent prediction. Since the Nifo3.4 index is
calculated by SSTA, we averaged the features of the SSTA to
generate the start character CLS Vaswani et al. (2017). When
predicting the Nifo3.4 index for the I-th lead month, the
complete calculation is as follows. First, the output of the decoder
before the (I-1) th month is concatenated with CLS to generate the
input e’eR*P
time sequence position encoding and calendar month information
in the period of C are added to the output of the decoder before the
concatenation, and then ¢’ is input to the decoder to predict the

, which is used for the decoder query. Meanwhile, the
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Nino3.4 index for the I-th lead month. The process of the decoder is
shown below:

¢ ™ = Norm(SA(e™") + ")

e m = Norm(CA(e/ m 7))+ ¢ (m)y
™ = Norm(MLP(¢ ™) + ¢ (™)

(13)

where €™ is output of the m-1 layer decoder block, SA is self-
attention. To prevent future information leaks, we use the mask[31]
to ensure that the I-th lead month feature can only depend on known
outputs smaller than the [ feature location in e™*. CA is cross-
attention, and its query/key/value can be computed by ¢™/Z/Z. ¢™ is
the output of decoder for the I-th lead month, then we can get the I-th
lead month Nifo3.4 index after through a fully connected layer.
Moreover, in order to use previous predictions as prior knowledge for
long-term projection, we concatenate e;” into the input features Z of
the CA, [ is an index of ¢, and use a one-dimensional convolution
with k convolution kernels to mitigate the error accumulation.

3 Experiments
3.1 Dataset and Evaluation metrics

3.1.1 Dataset

Following the existing work Ham et al. (2019), we validate our
proposed method on Coupled Model Intercomparison Project
Phase 5 (CMIP5, details in Table 1 Ham et al. (2019)) Taylor
et al. (2012), Simple Ocean Data Assimilation (SODA) Giese and
Ray (2011), and Global Ocean Data Assimilation System (GODAS)
Behringer and Xue (2004). These datasets contain the anomaly
maps of SST and HC from 180°W-180°E and 55°S-60°N, the spatial
resolution of each map is 5° x 5°. The goal of these datasets is to
predict the Nifio3.4 indexes in the next consecutive months. The
details of the data are shown in Table 2. The training dataset
includes simulated data from the CMIP5 Taylor et al. (2012) in the
period from 1861 to 2004, the validation dataset includes the
reanalysis data from the SODA Giese and Ray (2011) in
the period from 1871 to 1973, and the test dataset includes the
reanalysis data from the GODAS Behringer and Xue (2004) in the
period from 1982 to 2017. All methods utilize the same data for
training, validation and evaluation. In addition, following the
existing work Zhou and Zhang (2022), we also validated our
proposed method in Coupled Model Intercomparison Project
Phase 6 (CMIP6 Eyring et al. (2016)), SODA, and GODAS. These
datasets contain the anomaly maps of SST and HC from 175°W-
175°E and 50°S-50°N, the spatial resolution of each map is 5° x 5°,
and the details of the data are shown in Table 3. It is worth noting
that the dataset in Table 3 was used only for comparison with Zhou
and Zhang (2022).

3.1.2 Evaluation metrics

To fairly evaluate the performances of the proposed method
and competing methods, we adopted Temporal Anomaly
Correlation Coefficient Skill (Corr) and Root Mean Square Error
(RMSE) between the predictions and observations with different
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leading months J, as used in Ham et al. (2019). Corr is a measure of
linear correlation between predicted and observed values, and
RMSE is the standard deviation of the residuals, which is a
standard measure of prediction error between predicted and
observed values. In addition to the above metrics for evaluating
the performance of ENSO prediction, we also calculated the Mean
Absolute Error (MAE) to evaluate the average absolute values. The
formulations of Corr, RMSE, and MAE are as follows:

12 Ef:S(Yt,m - Ym)(Ptml - pm,l)

C(I)rr - E, e YV O\2\¢ D 2 (14)
m=1 \/Et:s(Y",m - Ym) Et:s(Pt.m.l - Pm,l)
12 Ef= (Yt,m - Py-m,l)2
RMSE; = > T (15)
m=1
12 Ef: ’Yt,m - Py»m,l‘
MAE; = T (16)
m=1

where P is the predicted value, Y is the observed value, 1_3”,,1 is the
mean of P, Y,, is the mean of Y, m is the calendar month, ranging
from 1 to 12. s and e are the start and end years of the
data, respectively.

3.1.3 Implementation details

Our approach was implemented on the Pytorch framework, and all
experiments were performed on an NVIDIA RTX3090ti with 24 GB of
memory. We adopted the strategy of Adaptive moment estimation
(Adam) to optimize the network learning. Following the Noam
Optimizer Vaswani et al. (2017), we adjusted the learning rate during
training. In order to clearly understand the experimental setup, we list
the main hyperparameter symbols, descriptions, and the values being
set in Table 4, the By, By, py, ps» P1» P2 are set to 160, 80, 8, 12, 10, 14,
respectively. The number of layers M of Encoder and Decoder is fixed
to 6, the value for attention head A is fixed to 6, and D, and D, are set to
384 and 768. The convolution kernel of the temporal convolutional
network is k=4. The dropout rate d is set to 0.1. The pos in the input
sequence of the Encoder is set to 0, 1, 2 and it is set to 3,...26 in the
Decoder. The ENSO cycle C is set to 2. For the reproducibility of the
experiments, the seeds of CPU and GPU are both 5 when we initialize
the parameters, and the GPU seed is 0 when the model is training,

3.2 Comparisons with state-of-the-arts

We compare our method with several representative methods,
including numerical prediction and deep learning methods,
respectively. The numerical weather prediction contains Scale
Inter-action Experiment-Frontier(SINTEX-F) Luo et al. (2008)
and the North American MultiModal Ensemble (NMME)
Kirtman et al. (2014) with CanCM3, CanCM4, CCSM3, CCSM4,
GFDL-aer04, GFDL-FLOR-A06 and GFDL-FLOR-BO1. The deep
learning method consists of multiple ensemble CNN Ham et al.
(2019) and multi scale CNN with parallel deep network(MS-CNN)
Ye et al. (2021b), and ensemble model ENSOTR Ye et al. (2021a)
with Transformer module. The results are shown in Figure 3. It
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TABLE 1 Details of the CMIP5 models used in this study.

CMIP ID Modeling Group Integration =~ Number of ensem-
Period ble Members
BCC- Beijing Climate Center, China Meteorological Administration JAN1850 - 1
CSM1.1-m DEC2012
CanESM2 Canadian Centre for Climate Modelling and Analysis JAN1850 - 5
DEC2005
CCSM4 National Center for Atmospheric Research JAN1850 - 1
DEC2005
CESM1- Community Earth System Model Contributors JAN1850 - 1
CAM5 DEC2005
CMCC- Centro Euro-Mediterraneo per 1 Cambiamenti Climatici JAN1850 - 1
CM DEC2005
CMCC- 1
CMS
CNRM- Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancee en JAN1850 - 5
CM5 Calcul Scientifique DEC2005
CSIRO- Commonwealth Scientific and Industrial Research Organization in JAN1850 - 5
Mk3-6-0 collaboration with Queensland Climate Change Centre of Excellence DEC2005
FIO-ESM The First Institute of Oceanography, SOA, China JAN1850 - 1
DEC2005
GFDL- NOAA Geophysical Fluid Dynamics Laboratory JAN1861 - 1
ESM2G DEC2005
GISS-E2-H NASA Goddard Institute for Space Studies JAN1850 - 5
DEC2005
HadGEM2- National Institute of Meteorological Research/Korea Meteorological JAN1860 - 1
AO Administration DEC2005
HadCM3 DEC1859 - 1
DEC2005
HadGEM2- Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by DECI1859 - 1
CcC Instituto Nacional de Pesquisas Espaciais) NOV2005
HadGEM2- DECI1859 - 4
ES NOV2005
IPSL- Institut Pierre-Simon Laplace JAN1850 - 1
CM5A-MR DEC2005
MIROC5 Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental JAN1850 - 1
Studies, and Japan Agency for Marine-Earth Science and Technology DEC2012
MPI-ESM- Max-Planck-Institut fur Meteorologie (Max Planck Institute for Meteorology) JAN1850 - 3
LR DEC2005
MPI- Meteorological Research Institute JAN1850 - 1
CGCM3 DEC2005
NorESM1- Norwegian Climate Centre JAN1850 - 1
M DEC2005
NorESM1- 1
ME

TABLE 2 The training, validation and testing subsets for Nifio3.4 index prediction on CMIP5 dataset.

Data Models Type Period
Training CMIP5 21 Historical run 1861-2004
Validation SODA 1 Reanalysis 1871-1973
Testing GODAS 1 Reanalysis 1982-2017
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TABLE 3 The training, validation and testing subsets for Nino3.4 index prediction on CMIP6 dataset.

Data Models Type Period
Training CMIP6 23 Historical run ‘ 1850-1980
Validation SODA 1 Reanalysis ‘ 1871-1980
Testing GODAS 1 Reanalysis ‘ 1994-2020

display the all-season Corr(ACorr) for three-month-moving-
average Nifo3.4 index in 1982-2017 and there are several
conclusions can been observed:

3.2.1 Numerical prediction vs deep learning

All deep learning methods (e.g. CNN, MS-CNN and Transformer,
etc.) outperform the numerical prediction methods (e.g. SINTEX-F
and NMME). The main reason is that the numerical prediction
methods design mathematical models of the atmosphere and ocean
to mine complex variations with complex calculation processes, while
the data-driven deep model can automatically explore the variant
characteristics of the EI Nifo-Southern Oscillation.

3.2.2 CNN-based method vs transformer-based
method

The ACorr of single CNN model is above 0.5 for a lead of 13
month prediction Ye et al. (2021b), while the ACorr of multi-scale
CNN model is above 0.5 for a lead of 15 month prediction Ye et al.
(2021b), which demonstrates that different scales of convolutional
kernel sizes utilize multiple receptive fields to better obtain the
region correlations. Moreover, the transformer-based methods (e.g.
Transformer and ENSOTR) adopt the attention mechanism to
conduct spatial interactions and easily obtain global correlations
between different regions and outperform the CNN-based methods.

TABLE 4 The hyperparameter symbols, descriptions and values in this study.

3.2.3 Transformer-based mehtod vs ours

Our proposed method dramatically outperforms the state-of-
the-art methods. Specifically, our method without using ensemble
multiple models outperforms the ensemble model ENSOTR for all
predicted lead months, especially for 3-10 lead months. Comparing
to Transformer and ENSOTR, our method not only designs the
attention mechanism across both spatial and temporal dimensions
but also incorporates the knowledge of prediction and influence of
seasonal variation into the learning procedure, which better
facilitates the EI Nifio prediction.

Figure 3B shows the Corr of the Nifo3.4 index variation for
each calendar month. The figure shows that our model (right)
predicts more months with a Corr of the Nifo3.4 index higher than
0.5. In particular, when the target season is May-June-July (MJ]),
the SINTEX-F only contains 4 months Ham et al. (2019), the MS-
CNN contains 10 months Ye et al. (2021b), and the CNN ensemble
model (left) contains 11 months with a correlation coefficient skill
higher than 0.5. Our method has 15 months for which the
correlation coefficient skill is up to 0.5, which shows that our
method can effectively mitigate the drifts of SST and HT due to
the springtime equatorial Pacific trade winds. In summary, the
ACorr of the Nifio3.4 index of our model outperforms all
competing methods and can skillfully predict the EI Nifo3.4
index over 18 months.

Symbol Description Value
B, batchsize on CMIP5 dataset training 160
B, batchsize on CMIP6 dataset training 80
)2 the height of patch on CMIP5 dataset training 8
P, the width of patch on CMIP5 dataset training 12
P; the height of patch on CMIP6 dataset training 10
P,1 the width of patch on CMIP6 dataset training 14
M the number of layers of Encoder and Decoder 6
A the numbers of attention head 6
Dy the dimensions of fully connected layer 384
D, the dimensions of MLP 768
k The convolution kernel of temporal convolutiona network 4
d dropout 0.1
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ENSO predicts all-season Temporal Anomaly Correlation Coefficient Skill (ACorr) in the STTN model. (A) The ACorr of the three-month-moving-
averaged Nino3.4 index with Several lead times from ~ 1982 to 2017 in the STTN model(red), Convolutional Neural Network (CNN) model (black),
parallel deep CNNs with heterogeneous Architectures MS-CNN(Light purple), ENSO transformer(ENSOTR)(Orange color), Transformer(Lemon-
green), Scale Interaction Experiment-Frontier dynamical prediction system (Sky blue), including additional dynamic prediction systems in the North
American Multi-Modal Ensemble (NMME) project (other colors). The ACorr of the Nino3.4 index of every season in the ensemble CNN ~ model
(B.left) and the STTN model (B.right). The light black line indicates that ACorr is equal as 0.5

3.2.4 Comparison on the CMIP6 dataset

We also compare our method with POP-Net Zhou and Zhang
(2022), which is currently the best performing method trained on
the CMIP6 dataset. The results are shown in Figure 4. The ACorr of
POP-Net model is above 0.5 for a lead of 17 month prediction,
while the ACorr of our model is above 0.5 for a lead of 18 month
prediction. In general, the ENSO prediction skill of our model is
better relative to POP-Net, especially when the lead month is in the
range of 12-24. The main reason is that the STTN model can use
previous predictions as a priori knowledge for future predictions,
which can provide reliable long-term forecasts.

——sTIN
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FIGURE 4

ENSO predicts all-season Temporal Anomaly Correlation Coefficient
Skill (ACorr) in the STTN model.The ACorr of the three-month-
moving-averaged Nino3.4 index index with Several lead times from
" 1994 to 2020 in the STTN model(red), POP-Net(Lemon-green).
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3.2.5 Comparison of computational resources of
different models

Table 5 compares the number of parameters and time cost for the
training and testing of the CNN model Ham et al. (2019) and our
model. Since the CNN model uses integrated learning, the total
number of models is 11040 (23 leadmonths, 12 target months, 4
network settings, and 10 training sessions per model). The number of
parameters in the four network settings is 0.12M, 0.18M, 0.21M, and
0.32M, respectively, and the total number of parameters is 2290.8M,
which is much larger than our model. In addition, the training and
testing time of our model is much lower than that of the CNN model,
because STTN only uses the single model instead of the integrated
model. The Nifio 3.4 index for the next 23 lead months is available in a
single run using the STTN model, which indicates that our model can
predict the occurrence of El Nifio in a more timely and rapid manner.

3.3 Ablation study

In order to verify the importance of our different modules, we
performed ablation experiments for each module. To keep the
experiment fair, we use the same experimental setting during training
as well as testing, including data partition and network hyperparameters.
We remove the proposed module from the final network model STTN
to demonstrate the effectiveness of using the monthly index of period,
the previous prediction as prior knowledge, and TCN, respectively. W/O
X indicates the removal of the X module. Figure 5 shows the ACorr,
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TABLE 5 Comparison of the computational costs required for different models.

Number of Parameters Training time cost Testing time cost
CNN [11] ‘ 2290.8M 2700384s 1256.32s
STTN ‘ 57M 1395.23s 1.10s

RMSR, and MAE when the monthly index of period (w/o p), previous ~ 3.3.1 W/o P
prediction as prior knowledge (w/o F-T N), and TCN (w/o TCN) are The overall performance of the STTN model decreased after
removed, respectively. In addition, We also compared the effectiveness ~ removing the monthly index of period, which indicates that

of spatio-temporal attention and input data of different lengths. although the neural network can capture the correlation between
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FIGURE 5
Comparison of (A) Corr, (B) RMSE, and (C) MAE between Nifio3.4 index predictions and observations obtained with different modules. w/o X
indicates removal of the X module. The purple line indicates the result of the CNN model.
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data, it cannot capture the period of ENSO. By adding monthly
indicators of periodicity, the model can be guided to effectively
capture the seasonality and periodicity of the El Nifio phenomenon,
reducing the complexity of the model in extracting valid features
from the input data and helping the model to accurately predict the
Nino3.4 index.

3.3.2 W/o F-TCN

After removing the previous predictions as prior knowledge, the
ACorr between the predicted and observed Nifo3.4 index decreased
sharply, especially in the long-term prediction, which indicates that
the model does not predict the trend of evolution of El Nifio over
the next 23 months well when considering the input data alone. As
shown in Figures 4B, C, where the MAE and RMSE increase after
removing the previous prediction, it indicates that the previous
predictions can compensate over long intervals and provide reliable
long-term predictions.

10.3389/fmars.2023.1143499

3.3.3 W/o TCN

With the removal of the TCN module, we observed a low
degradation in the performance of the model, which indicates that
the cycle and future features are very important information.
Compared to STTN, the model relies more on thepredicted
Nifio3.4 index series after lead month 12, which suggests that the
temporal semantics are significant in the later stage for Nifio3.4
index prediction.

3.3.4 Effectiveness of spatio-temporal attention
We compared the performance of the models using spatio-
temporal attention and without using spatio-temporal attention.
Figure 6A-C plots the ACorr, RMSR, and MAE of the prediction
results. We first observed that the model with spatio-temporal
attention performs better than the model without spatio-temporal
attention. The spatio-temporal attention semantically learns more
separable features and effectively reduces the spatio-temporal chaos,
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Comparison of (A) Corr, (B) RMSE, and (C) MAE between Nifio3.4 index predictions and observations obtained using spatio-temporal attention or

attention. The purple line indicates the result of the CNN model.

TABLE 6 The RMSE and MAE between Nifio3.4 index predictions and observations obtained using different modules and the CNN model.

Model RMSE MAE
STTN-w/o C 0.6883 0.5264
STTN-w/o F-TCN 0.6849 05178
STTN-w/o TCN 0.65360 0.4949
STTN-w/o SA 0.6941 0.5246
CNN 0.6797 0.5350
STTN 0.6404 0.4930

The best results are in bold.
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Comparison of (A) Corr, (B) RMSE, and (C) MAE between Nifio3.4 index predictions and observations for different lengths of input data. The STTN-3,
STTN-6, STTN-9, STTN-12 indicate that the length of input data is 3, 6, 9, 12 months, respectively.
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allowing the model to better fit the ENSO phenomenon. As can be
seen from Table 6, these modules all favor ENSO prediction, and
removing any of the modules would harm the performance.

3.3.5 Compare input data of different lengths

We compared the performance of different lengths of input
data. Figure 7A-C plots the ACorr, RMSR, and MAE of the
predicted results. We observed that the best performance is
achieved when the input data length is 3 in lead months 1-8,
better performance is achieved when the input data length is 6 or 9
in lead months 8-15, and relatively better performance is achieved
when the input data length is 12 in lead months 15-23, so we can
conclude that: (1) the early prediction may simply require the SSTA
and HCA data that are close in time to the predicted month, and the
earlier month may cause noise in the input data; and (2) longer-
term predictions require longer inputs, which we speculate may be
due to the longer inputs containing more physical laws of ENSO as
a result of the westward shift within the ocean.

3.4 Case study

To dlearly show the difference between the observed and predicted
results from 1982 to 2017, we visualized the Nifio3.4 index on the
GODAS dataset for 1, 3, 6, 9, 12, and 15 lead months ahead, as shown in

10.3389/fmars.2023.1143499

Figure 8. From the results, we found that the Nifi03.4 indexes at 1-, 3-, 6-,
and 9-lead months are accurately predicted and obtain a correlation
coefficient skill of 0.97, 0.91, 0.82, and 0.74, respectively. When the lead
month increased, the correlation coefficient skill decreased due to the
absence of evidence for a long time series and the complex climate
variation. Nonetheless, the correlation coefficient is 0.61 and over 0.5
when predicting the index for 15 lead months, which verifies the
effectiveness of our method to predict the multi-year ENSO trend.

To explore the seasonal impacts, we show the predicted Nifo3.4
index of averaging the December-January-February(DJF) season of
1, 6, 12 and 18 lead months in Figure 9. It can be observed that our
method successfully predicts the amplitude of the Nifo3.4 index at
6 lead months in advance. Even when we increase the lead time up
to 18 months, the trend of our predicted results still fits the curve
well when a strong El Nifo or La Nifia occurs. Moreover, we
visualize the predicted results of a typical Super El Nifio during (A)
1982-1983, and (C) 2015-2016 as well as a Super La Nifa during (B)
1988-1989 in Figure 10. The predictions are the continuous outputs
of our method from 1 to 23 lead months, and we can see that our
model can successfully predict the evolution of these strong EI Nifio
phenomena and the results are consistent with the observed results
even for longer lead times.

As both the SSTA and HCA influence the ENSO phenomenon,
we visualize the contributions of these two factors in Figure 11. This
figure shows that when we input three consecutive months during
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the 1997-1998 Super El Nifo event, they have different weightings
to predict the Nifi03.4 index in the next 23 months, which can help
us understand how our method can predict El Nino for such a long
time. The first row indicates the heat map of SSTA and another row
indicates the heat map of HCA. Three columns indicate the time
series from December 1997 to February 1998. The darker color
represents the more important. From the figure we have the

following observations:
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* SSTA and HCA show different contributions in both the
spatial and temporal dimensions. With the increasing of
time, their importance in different spatial locations

gradually increase.

* SSTA plays a more important role than HCA at earlier
times (first two columns) in predicting the Nifio3.4 index.
The third column shows that the contributions of SSTA and
HCA close to the predicted future are almost equal, which
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The 23 consecutive months output of STTN model in Super El Nifio event at (A) 1982-1983, (C) 2015-2016 and Super La Nina at (B) 1988-1989.
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FIGURE 11

The heat map of the contribution of SSTA (in units of °C) and HCA (in units o °C) data to the prediction of the STTN model for the 1997/1998 Super
El Nifio event for the following 23 consecutive months (The dashed and solid line distributions indicate negative and positive values of SST or HC
anomalies). The SSTA and HCA input data are from 1997-December, 1998-January, and 1998-February, respectively.

demonstrates that our method takes full advantage of these
two inputs and their complementary relationship.

* The global heat map induces a similar observation to Ham
et al. (2019) that the anomalies over the tropical western
Pacific, Indian Ocean, and subtropical Atlantic are the main
regions to accurately predict the 1997/98 El Nino
phenomenon.

* With the change over time (from first column to third
column), the contributions of the western part of the map
are increasing due to the westward movement that occurs
within the ocean.

4 Conclusion

In this paper, we propose a novel spatial-temporal transformer
network for multi-year ENSO prediction. Motivated by the
attention mechanism, we designed a spatial-temporal attention
mechanism to model the contributions of different ocean
locations with change over time. For long-term prediction, this
article proposes utilizing the accurate previous prediction as prior
knowledge and fusing the seasonal variation during the encoding of
the temporal information to facilitate the ENSO prediction.
Moreover, we use a single model instead of a multi-model
architecture to reduce computational resources, which is more
convenient for predicting ENSO with different lead times.
Extensive experiments using the model on the Coupled Model
Intercomparison Project phase 5 (CMIP5) and the Coupled Model
Intercomparison Project phase 6 (CMIP6) have shown that our
method can provide a more accurate prediction over the existing
methods, which verifies the effectiveness of the spatial-temporal
attention mechanism, the prior knowledge of previous prediction
and the temporal index for modeling the seasonal variation. In the
future, we will add more variables and fully explore the relationship
among their sea-air interactions to facilitate the reliability of multi-
year ENSO prediction.
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The task of accurately classifying marine fish species is of great importance to
marine ecosystem investigations, but previously used methods were extremely
labor-intensive. Computer vision approaches have the advantages of being long-
term, non-destructive, non-contact and low-cost, making them ideal for this
task. Due to the unique nature of the marine environment, marine fish data is
difficult to collect and often of poor quality, and learning how to identify
additional categories from a small sample of images is a very difficult task,
meanwhile fish classification is also a fine-grained problem. Most of the existing
solutions dealing with few-shot classification mainly focus on the improvement
of the metric-based approaches. For few-shot classification tasks, the features
extracted by CNN are sufficient for the metric-based model to make a decision,
while for few-shot fine-grained classification with small inter-class differences,
the CNN features might be insufficient and feature enhancement is essential.
This paper proposes a novel attention network named Sandwich Attention
Covariance Metric Network (SACovaMNet), which adds a new sandwich-
shaped attention module to the CovaMNet based on metric learning,
strengthening the CNN's ability to perform feature extraction on few-shot
fine-grained fish images in a more detailed and comprehensive manner. This
new model can not only capture the classification objects from the global
perspective, but also extract the local subtle differences. By solving the
problem of feature enhancement, this new model can accurately classify few-
shot fine-grained marine fish images. Experiments demonstrate that this method
outperforms state-of-the-art solutions on few-shot fine-grained fish
species classification.

KEYWORDS

fish species classification, computer vision, few-shot learning, fine-grained image
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1 Introduction

Fish species classification is critical to industry and food
production as well as conservation and management of marine
fisheries. However, most marine fish classification solutions still
require manual classification by humans (Alsmadi et al., 2019). As
fish classification is a fine-grained problem, the manual
classification process is time-consuming and requires a lot of
labor and material resources. Due to the dynamic changes of the
marine environment, the requirements for shooting equipment are
high, which means that the number of underwater images we can
obtain is small. Therefore, few-shot fine-grained fish species
classification has become a difficult problem to solve. At the same
time, due to the absorption and scattering of light in seawater
(McGlamery, 1980), as well as other impurities in seawater, most of
the collected underwater fish data have poor image quality and
complex background problems, which makes the task of few-shot
fine-grained fish species classification even more difficult. With the
rapid development of computer vision, more and more deep
learning methods have appeared in our production, life and work,
so the classification of marine species based on deep learning is very
necessary (Zhao et al, 2021; Alsmadi and Almarashdeh, 2022;
Li et al,, 2022).

Few-shot learning is an emerging but important method which
attempts to learn new categories from a few labeled examples (Hou
et al,, 2019). Commonly used methods to solve few-shot image
classification mainly include transfer learning (Luo et al., 2017; Peng
et al, 2019), meta-learning (Finn et al., 2017; Ren et al,, 2018; Lee
etal, 2019; He et al,, 2023) and metric learning (Vinyals et al., 20165
Snell et al., 2017; Sung et al,, 2018; Li et al.,, 2023). The first two
categories focus on finding a suitable initialization parameter model
for few-shot learning networks, then using prior knowledge
extracted from other tasks to prevent overfitting and improve
generalization capabilities. And the last category pays attention to
finding a superior similarity metric function to replace the fully
connected classification layer with a large amount of parameters,
where most existing methods use Euclidean distance and cosine
similarity as metric function to classify images. Methods based on
metric learning have achieved state-of-the-art performance in the
few-shot classification field due to the strong ability of
discrimination. Most of the current few-shot image classification
methods focus on common classification tasks, that is, the features
between categories have obvious differences. However, for fish
images, the difference between sample image categories is small,
which obviously makes this a fine-grained image classification
problem (Zhao et al., 2021), and unfortunately the above
classification methods do not take into account the difficulties
raised by fine-grained classification.

For few-shot fine-grained image classification, most of the
currently available methods take one of two approaches, they
either attempt to make the network with a more advanced feature
vector measurement module (Vinyals et al., 2016; Sung et al., 2018;
Li et al,, 2019) or they rely on feature reconstruction (Zhang et al.,
2020; Wertheimer et al., 2021). However, they ignore the issue
where fine-grained images have much higher requirements for the
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capabilities of feature extraction modules than general classification
methods. Since the images have similar global features in different
categories of fine-grained images, and only have significant
differences in some subtle features, the extracted feature vectors
also have a certain degree of similarity (Wei et al., 2021), which puts
too much pressure on the feature measurement module. Due to the
small number of samples, few-shot learning is prone to overfitting
(Chen et al.,, 2019), and using a large feature extraction module is
not a perfect solution, but through extensive research, the Attention
Mechanism (AM) has been used in underwater image enhancement
and underwater image dehazing (Shi et al., 2022; Liu P. et al., 2022),
it was concluded that an AM may be a better solution for few-shot
fish image classification.

Considering the above problems, this paper proposes a novel
AM network, named Sandwich Attention CovaMNet
(SACovaMNet for short), which can effectively solve the
classification problem of few-shot fine-grained fish images, and
enable the CNN to more carefully and comprehensively classify
marine fish. This new SACovaMNet enables the CNN to extract
features from fine-grained images of marine fish in a more detailed
and comprehensive manner, capturing recognition objects globally
as well as extracting nuances between classes of fish samples locally,
thus improving classification accuracy. The main contributions of
this work are summarized as follows: 1) To solve the few-shot fine-
grained fish species classification problem caused by the small
number of fish images and minor differences between classes, we
carefully designed a Sandwich Attention module that combines
local attention and global attention on the basis of the few-shot
model CovaMNet to build our SACovaMNet, which enables
CovaMNet to more comprehensively extract features from fine-
grained images of marine fish and expand the distance between
prototype feature vectors of different categories; 2) Aiming at the
problem of missing feature information in the fine-grained image of
the CBAM, we improved the CBAM module so that it can weigh the
feature map more completely; 3) Exhaustive experiments were
conducted based on three fine-grained datasets of marine fish
organisms, and experimental results demonstrate that the
proposed method outperforms the state-of-the-art solutions.

The rest of this paper is as follows. Section 2 is a review of the
related works for few-shot fine-grained image classification. Section
3 introduces the proposed method SACovaMNet. And Section 4
shows the experimental results. Finally, a conclusion is made in
Section 5.

2 Related work

Deep learning performs very well when the amount of training
data is large, but conversely training the network to perform better
becomes problematic when the amount of training data is small. In
recent years, few-shot learning (Chen et al, 2019) has been
proposed to solve this problem. It was found that few-shot
learning is better for the problem of classifying marine fish with
sparse samples, and a brief review of the relevant aspects of the
problem-solving approach will be given.
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2.1 Fish species classification

The fish species classification task is different from general
classification tasks, it is a typical fine-grained classification task
(Zhao et al,, 2021). In recent years, many methods for fish species
classification have been proposed, and fish classification models
based on biological characteristics (Kartika and Herumurti, 2016;
Tharwat et al., 2018) and deep learning models (Chen et al., 2017;
Zhao et al., 2021) are more popular. Kartika and Herumurti (2016)
proposed a K-means segmentation background and HSV color
space feature extraction method, which effectively extracted the
color features of koi carp, and finally adopted NBM and SVM
methods for identification and classification. Tharwat et al. (2018)
took a different approach, using the fusion of Weber Local
Descriptor (WLD) features and color features, and also used the
LDA algorithm to reduce the dimension of the feature vector and
increase the discrimination between different categories (fish
species), and finally used the AdaBoost classifier for classification.
Unfortunately, methods based on biometric feature extraction
cannot handle complex backgrounds or a large number of images,
however, deep learning can better solve this problem and achieve
more accurate classification results. Rathi et al. (2017) performed
classification by pre-processing images using Gaussian blur,
morphological operations, Otsu’s thresholding, and pyramid mean
translation, and further fed the enhanced images to a convolutional
neural network for classification. Prasetyo et al. (2022) proposed
Multi-Level Residual (MLR) as a new residual network strategy by
combining the low-level features of the initial block with the high-
level features of the last block using Depthwise Separable
Convolution (DSC). They used VGGNet as the backbone of the
new CNN architecture by removing the fifth block and replacing it
with components such as MLR, Asymmetric Convolution (AC),
Batch Normalization (BN), and residual features.

Unfortunately, in reality, due to the complexity of the underwater
environment (Shevchenko et al., 2018), it is impossible to obtain
enough samples for traditional deep learning training. Guo et al.
(2020) believed that the classic CNN model required a large amount
of high-quality data to obtain excellent results. For few-shot fish
images, it is difficult to obtain data diversity through image
augmentation, so a generative network is used to generate realistic
fake images with a small amount of training data, and the
classification accuracy can be improved by making the datasets
diverse and rich. However, the training method based on the
generative network is complicated, so the proposed method
considers building a few-shot learning method to solve this problem.

2.2 Few-shot learning

2.2.1 Meta-learning

Meta-learning (Hochreiter et al., 2001) is, as the name suggests,
learning to learn; the algorithm sets up a meta-learner component
and a task-specific learner component, with the training unit being
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the task, allowing information to cross between tasks. Meta-learning
is a popular approach to tackle few-shot problems. MAML (Finn
etal,, 2017) proposed an algorithm for meta-learning that is model-
agnostic, and trained a model’s parameters such that a small
number of gradient updates will lead to rapid learning on a new
task. Reptile (Nichol et al., 2018) removed the re-initialization of
each task in order to simplify the update process for MAML,
making it a more natural choice in some settings. LEO (Rusu
et al,, 2019) learnt a low-dimensional latent embedding of model
parameters and performed optimization-based meta-learning in
this space. While meta-learning has had some success with few-
shot problems, it is difficult to train due to its use of complex
memory addressing structures (Li et al., 2019), therefore the
proposed approach utilizes only a single CNN framework baseline
which can be end-to-end trained from scratch.

2.2.2 Transfer learning

Transfer learning (Zhuang et al., 2021) is to transfer the learned
model parameters from one model to a new model or task in order
to achieve better training results. For datasets with fewer samples,
first the model is trained on a dataset with a large number of similar
data domains, and then fine-tuned, usually with good results.
Compared with the complex training mode of meta-learning,
transfer learning can perform simple end-to-end training. Luo
et al. (2017) proposed a framework to learn representations that
are transferable across different domains and tasks in a label-
efficient manner. This method combats domain shift with a
domain-adversarial loss and uses a metric learning-based method
to generalize embeddings to new tasks. Peng et al. (2019) used the
graph convolutional neural network to construct a mapping
network between semantic knowledge and visual features,
combined image features and semantic features through the
fusion of classifier weights, and supplemented semantic features
as a priori knowledge to a few-shot classifier.

2.2.3 Metric learning

Metric-based learning methods learn a set of item functions
(embedding functions) and metrics to measure the similarity
between query and sample images and classify them in a feed-
forward manner. The main difference between metric-based
learning methods is how they learn the metrics, hence metric
learning is often referred to as similarity learning (Li et al., 2020).
Matching Networks (Vinyals et al., 2016) constructed an end-to-
end network architecture that uses cosine similarity to calculate
distances. After training, the matching network was able to generate
reasonable test labels for unobserved categories without any fine-
tuning of the network. In contrast, Prototypical Networks (Snell
et al., 2017) mapped the sample data in each category into a space
and extracted their means to represent them as protoforms of that
class, using Euclidean distance as the distance metric, they are
trained so that protoforms of the same class are represented as the
closest distance and that inter-class protoforms are represented as
the farther distance.
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2.3 Fine-grained image classification

2.3.1 Fine-grained image classification

Fine-grained image classification aims to distinguish
subcategories, such as birds or dog breeds. Fish image
classification also belongs to fine-grained image classification.
Compared with general classification tasks, fine-grained image
classification is challenging due to high intra-class and low inter-
class variance (Zhao et al., 2017). Zhang et al. (2014) proposed a
model utilizing deep convolutional features computed on bottom-
up region proposals, which learns whole-object and part detectors,
enforces learned geometric constraints between them, and predicts
a fine-grained category from a pose-normalized representation. Li
et al. (2021) proposed a so-called Bi-Similarity Network (BSNet)
that consists of a single embedding module and a bi-similarity
module of two similarity measures. After the support images and
the query images pass through the convolution-based embedding
module, the bi-similarity module learns feature maps according to
two similarity measures of diverse characteristics.

2.3.2 Few-shot fine-grained image classification

With the development of deep learning, fine-grained image
classification has achieved remarkable achievements, but largely
relies on a large number of labeled samples. However, in practical
applications in some fields, it is difficult to obtain such a large
amount of labeled fine-grained data. Therefore, few-shot fine-
grained images classification is getting more and more attention
(Liu Y. et al., 2022). CovaMNet (Li et al., 2019) proposed a deep
covariance metric to measure the consistency of distributions
between query samples and new concepts, and used the second-
order statistics of concept representation and verified that it is more
suitable to represent a concept beyond the first-order statistics, it
can naturally capture the underlying distribution information of
each concept (or category). Wertheimer et al. (2021) introduced a
novel mechanism by regressing directly from support features to
query features in closed form, without introducing any new
modules or large-scale learnable parameters. Lee et al. (2022)
proposed Task Discrepancy Maximization (TDM), which is a
feature alignment method, to define the class-wise channel
importance, and to localize the class-wise discriminative regions
by highlighting channels encoding distinct information of the class.
The AM can be used to make the feature vector reweight once
before entering the measurement module to ensure that the feature
vector pays more attention to the differences between categories, so
as to solve the problem of small differences between few-shot fine-
grained image samples.

2.3.3 Attention mechanism

Transformer (Vaswani et al,, 2017) first achieved excellent
results in natural language processing (NLP), and then
researchers applied it to the field of vision (Vision Transformer,
ViT) (Dosovitskiy et al., 2021; Guo et al., 2022). Dosovitskiy et al.
(2021) is believed that the biggest reason for the promising results of
Vision Transformer is that it uses a Multi-Headed Self-Attentive
(MHSA) module and thus introduces a global attention
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mechanism, which has powerful representation capabilities.
However, due to the image processing method of Vision
Transformer, the training time and inference speed will increase
quadratically when processing large scale images. To solve this
problem, Srinivas et al. (2021) proposed a botnet combining CNN
and transformer, in which the 3 x 3 convolutional layers in the
bottleneck are replaced with MHSA, making the botnet achieve
state-of-the-art in classification, target detection and segmentation,
whilst the training time and inference speed were significantly
reduced relative to (Dosovitskiy et al., 2021).

2.4 Comparison to our approach

Compared with other meta-learning based few-shot
classification methods, our method SACovaMNet adopts the
metric learning architecture and is based on a simple CNN
network construction, which can be trained easily in an end-to-
end manner from scratch. We use a second-order measurement
algorithm that can compare the similarity in more detail, which
improves the feature measurement capability of fine-grained images
compared to other first-order metric methods. Additionally, our
self-designed Sandwich Attention module strengthens the feature
extraction ability of our method for fine-grained images, making
our method more suitable for the few-shot fine-grained fish
species classification.

3 Methodology

The proposed method utilizes episodic training as the training
method, as many researchers have demonstrated it to be simple and
effective for few-shot problems (Li et al., 2019). The model structure
is shown in Figure 1. After the support images and the query images
pass through the weight-sharing feature extraction module at the
same time to obtain the feature map, the feature map then passes
through the Sandwich Attention module to finally obtain the
HxWxC feature map. The measurement module uses the second-
order covariance metric to measure the correlation between query
features and support features.

3.1 Baseline

Various metric-based networks have achieved excellent
performance in recent few-shot learning studies (Li et al., 2020).
Most of the current metric learning algorithms are first-order
metric methods such as Euclidean distance or cosine similarity
distance. Generally speaking, before the feature map enters these
measurement modules, the dimensions of the feature map need to
be reduced. Obviously, there will be a large information loss due to
this process, especially the spatial information of the feature map.
For fish samples especially captured in situ, since the difference
between categories is very small, it is very easy to lose key
information in pooling and dimensional reduction, so the above
approach is unacceptable in fine-grained fish image classification.
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FIGURE 1
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Module Module
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Architecture of the proposed SACovaMNet model. The support images and the query image are simultaneously passed through a weight-sharing
CNN network to obtain the feature map, and the output feature map is then fed into our Sandwich Attention module to produce the feature map
(HXWxC), which is finally passed through the second-order covariance metric module for similarity calculation.

Recently, (Li et al. 2019) proposed a method based on the second-
order local covariance metric. The covariance matrix is the original
second-order statistic of the sample set. Since the number of images
in each category is very small under the few-shot settings, it is
impossible to accurately learn the covariance matrix to describe the
data distribution. So the baseline introduces local covariance,
expressed as follows:

v L Sx, - nyx, - ), M)
i=1

¢ MK -1%4
where ! represents the local covariance representation of the
c-th class, K is the total number of samples of the c-th class, usually
is set as 1 or 5, and X; is the input sample image, M represents the M
local depths of the sample, and 7 is an average vector matrix.

The covariance measure is to measure the relationship between
a sample and a category, and the measure function named
Covariance Metric is as follows:

f(xZ) = x Zx. )

The above mentioned Covariance Metric can directly describe
the underlying distribution of a concept, and it can fully take into
account the local similarity information of the feature map. Since
the fish images are fine-grained dataset, and one of the key issues for
the classification is to distinguish the local subtle differences
between fish categories so as to achieve the more accurate
classification. The proposed method has opted to use CovaMNet
(Li et al., 2019) which has achieved promisingresults in a series of
experimental settings meeting the requirements.

The whole network framework is simple and compact due to it
being based on a single end-to-end CNN, a local covariance
representation to represent the underlying distribution of each
category, and a new covariance metric that is embedded into the
network to measure the relationship between query images and
categories. The 5-way 1-shot and 5-way 5-shot episodic training
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mechanism are considered to measure the few-shot classification
method under different few-shot situations.

3.2 Sandwich attention

Although the baseline solves some problems in fish
classification to a certain extent, the measurement method can
only solve the issues in the process of comparing the similarity of
feature maps. However, by analyzing the fish image datasets, it was
found that most of the images collected in real time cannot correctly
reflect the feature information of fish samples due to a variety of
problems. In the face of complex fish images, it is expected that
feature maps will better reflect the differences between different
categories, thereby improving the accuracy of classification, so it
was decided to leverage the attention, with a novel attention module
designed as shown in Figure 2.

Firstly, in most fish images, the object to be classified is usually
only part of the whole image, and there is a lot of interference from
the background and other creatures on the seabed, which is also
reflected in the feature map extracted by the backbone, making the

FIGURE 2
Architecture of the proposed attention mechanism, which has been
named Sandwich Attention due to it being shaped like a sandwich.
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feature map full of useless spatial information. If a manual process
was used to increase the proportion of objects identified by manual
culling, this would increase the human and financial investment.
Therefore it is believed that spatial attention is the most “cost
effective” approach to this problem. To this end, a Convolutional
Block Attention Module (CBAM) (Woo et al., 2018) module was
added to the network, so that the network can correctly locate the
position and key feature information of the recognized categories.
There are two main tandem sub-modules in CBAM, the channel
attention module and the spatial attention module, which perform
channel and spatial attention respectively.

In the channel attention module in Figure 3A, the input feature
map F (HxWxC) is subjected to global max pooling and global
average pooling to obtain two 1x1xC feature maps, which are then
fed into a two-layer neural network (MLP). Then, the features
output by MLP are summed based on element-wise, and activated
by sigmoid to generate the final channel attention feature. In the
spatial attention module in Figure 3A, the output channel attention
and the input feature map F are multiplied element-wise to generate

10.3389/fmars.2023.1149186

the input of spatial attention module. Next, channel-based global
maximum pooling and global average pooling are performed, and
then the two feature maps are channel-based splicing operations,
one HxWxI1 feature map is obtained through a convolution
operation. Finally, the spatial attention feature is generated
through the sigmoid function.

At the same time, as fish images are inherently fine-grained, and
the difficulty with fine-grained image classification is that the
differences between recognized objects are very small and only
vary in subtle ways, so the difficulty lies in making the network more
accurate in classifying fine-grained images in a few-shot setting.
With the rise of ViT in recent years, it is believed that the biggest
reason for the promising results achieved by Vision Transformer is
because of its powerful representation capabilities using a Multi-
Headed Self-Attention module (MHSA) and introducing a global
attention mechanism. In Srinivas et al. (2021), the proposed MHSA
also introduces Relative Position Encodings, as shown in Figure 3B,
thus taking into account the relative distances between features at
different locations and being able to effectively relate cross-object
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FIGURE 3

The details of AM modules employed in our SACovaMNet model. (A) Schematic diagram of each attention sub-module of CBAM (Woo et al., 2018).
(B) Network structure of multi-head self-attention (MHSA) (Srinivas et al., 2021).
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information to location awareness, so this attention mechanism is
used in the proposed model.

Based on the above thinking, both MHSA and CBAM were
fused into the proposed network. To demonstrate that this
approach works and the use of the attentional connectivity,
ablation experiments were also conducted in Section 4.4. The
final network is based on a simple end-to-end framework using a
single CNN with a compact training simple network structure, and
the experimental results are presented in Section 4.3.

3.3 Improved CBAM

Although the new model can achieve promising classification
results on few-shot fish datasets, fish classification is more difficult
due to the difference between fish datasets and general datasets, so it
is believed that while CBAM can be applied to fish classification it is
still not a perfect solution. More specifically, it is thought that the
application of CBAM in fish species classification still has the
following problems: 1) The channel attention of CBAM uses
global pooling to process the feature map, which obviously does
not take into account the importance of different spatial regions of
the feature map, resulting in a deviation in the weight calculation of
the channel, which is very important for classification, especially
that, the difficult fish classification task will obviously have a greater
impact; 2) The CBAM uses the feature map of channel attention
after global average pooling and maximum pooling to calculate the
channel weight through weight-sharing MLP, obviously, there are
some differences in the feature map information saved by these two
different pooling methods, and using the same MLP cannot fully
mine all the information it contains.

Based on the above considerations, we improved the channel
attention module of the CBAM module, as shown in Figure 4, both
adaptive average pooling and maximum pooling were performed on
the feature map (64x21x21) output by the CNN, and it was divided
into 7x7 spatial areas, then the MLP module was removed from the
CBAM, and two small CNN networks were employed to perform
weight calculations respectively, in which the convolution kernel of
the first layer of CNN has a large receptive field convolution kernel
of 7x7, the second layer is a CNN for dimensionality reduction, the
third layer is a Rectified Linear Unit (ReLU) activation function,
and the fourth layer is a CNN for dimensionality increase, so we call
it DualPath Channel Attention CBAM (DPCACBAM). The
importance of different regions of the feature map is calculated
not only to ensure that the contribution of different spatial regions
of the feature map can be comprehensively considered in the
channel attention, but also to fully mine the hidden information
in the feature map.

4 Experiments

In this section, extensive experiments were conducted on three
fish datasets under corresponding few-shot settings to evaluate the
proposed SACovaMNet.
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4.1 Datasets

4.1.1 WildFish

This dataset was first proposed in Zhuang et al. (2018), which is
a large-scale benchmark dataset for wild fish identification. And it is
the largest wild fish recognition image dataset, which contains 1000
fish categories and 54,459 unconstrained images, according to our
statistics, the number of images per category varies between 30 and
167. In this work, we randomly split the dataset by categories, where
550, 150, and 300 categories are used for training, validation, and
testing, respectively.

4.1.2 Fishclassifierfinal

This dataset is a dataset on the Kaggle website', which contains
30 kinds of fish. The dataset has been divided into a train set and a
test set. We merge the images of the same fish, and the number of
fish images in each category is about 300. We randomly split the
dataset by category, where 17, 6, and 7 categories are used for
training, validation, and testing, respectively.

4.1.3 QUT fish dataset

This dataset is a dataset also published on the Kaggle website
(Anantharajah, 2014), which contains about 4,000 images of 468
fish species. After we classify the given raw images, according to our
statistics, the number of each category is between 3 and 26. In this
paper, we randomly split this dataset by the number of categories,
where 280, 80, and 123 categories are used for training, validation,
and testing, respectively.

4.2 Experimental settings

The 5-way 1-shot and 5-way 5-shot classification experiments
were conducted on WildFish and fishclassifierfinal datasets. During
the training process, episodic training mechanism was used to learn
the model parameters, and a total of 250,000 episodes were trained.
Each episode contained a query set and a support set. For the 5-way
1-shot classification task, 5 different categories of images were
required. Each category of images needed 1 support image and 15
query images. For the 5-way 5-shot classification task, 5 different
categories of images were required, and each category of images
needed 5 support images and 15 query images. The optimization
algorithm Adam (Kingma and Ba, 2014) was used, the initial
learning rate was set to 0.0001, and every 10,000 episodes the
learning rate would be reduced. During the testing process, 600
episodes were randomly constructed from the testing set, and the
top-1 mean accuracy and 95% confidence intervals (model’s skill
having a 95% probability to correctly generalize) were calculated.
Note that the proposed SACovaMNet model was trained from
scratch in an end-to-end manner and did not require fine-tuning.

1 https://www.kaggle.com/datasets/khaledelsayedibrahim/

fishclassifierfinal
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AvgPool

Input feature F

FIGURE 4

Architecture of the proposed DPCACBAM. The input feature map is subjected to local average pooling and maximum pooling, and then the features
obtained after passing through two CNN networks are summed element-wise, and finally a channel attentionfeature is generated through a sigmoid.

10.3389/fmars.2023.1149186

Channel Attention

For QUT fish dataset, due to the small sample size, only the 5-way
1-shot classification experiment was conducted. In the episodic
training mechanism, in each category of each episode, there was 1
support image and 2 query images. Other experimental settings
remained unchanged.

In order to evaluate the performance of our model on the fish
datasets, a selection of state-of-the-art methods commonly used in
few-shot fine-grained images were considered for comparison,
including baseline CovaMNet (Li et al,, 2019), Matching Nets
(Vinyals et al., 2016), Prototypical Nets (Snell et al., 2017),
MAML (Finn et al., 2017), FRN (Wertheimer et al., 2021), and
TDM (Lee et al., 2022). MAML and FRN use the method of meta-
learning, Matching Nets, Prototypical Nets and CovaMNet use the
method of metric learning, and TDM uses a transferable attention
module. We use the TDM method with both FRN and Prototypical
Net. For these comparative models, their experimental setup
followed the settings from their original work. The SACovaMNet
model employed a four-layer convolutional network with a kernel
size 64 of each convolutional layer as an embedding module.

4.3 Comparison with state-of-the-arts

The experimental results are shown in Table 1, where, the
second column indicates whether the method needs to be fine-
tuned; the third and the fourth columns indicate the 5-way 1-shot
and the 5-way 5-shot classification accuracies on the WildFish
dataset, with 95% confidence intervals; the fifth and the sixth
columns represent the 5-way 1-shot and the 5-way 5-shot
classification accuracies on the fishclassifierfinal dataset, with 95%
confidence intervals; the seventh column represent the 5-way 1-shot
classification accuracies on the QUT fish dataset, with 95%
confidence intervals. SACovaMNet indicates the method
proposed in Section 3.2, and SACovaMNet* indicates the method
proposed in Section 3.3. From Table I, it can be seen that the
baseline is more suitable for the fish datasets than other methods,
which appears to prove that it was the correct choice for the baseline
method to utilize the second-order covariance metric measure.
Experimental results have shown that the proposed method
outperforms state-of-the-art methods with higher accuracies in all

TABLE 1 The 5-way 1-shot and the 5-way 5-shot classification accuracies on the three datasets, i.e., WildFish, fishclassifierfinal, and QUT fish dataset,

with 95% confidence intervals.

5-Way Accuracy(%)

Fine-tuning WildFish fishclassifierfinal QUT fish dataset
1-shot 5-shot 1-shot 5-shot 1-shot

Matching Nets (2016) N 49.37 56.76 39.84 43.64 60.40
Prototypical Nets (2017) N 49.81 79.87 51.55 75.49 67.11
MAML (2017) Y 61.93 76.40 47.73 64.45 74.06
CovaMNet (2019) N 70.87 84.33 54.54 68.52 66.86
FRN (2021) N 64.12 80.81 45.42 66.41 61.05
FRN+TDM (2022) N 4371 81.66 41.92 69.03 37.03
ProtoNet+TDM (2022) N 60.23 78.79 52.51 73.03 61.05
SACovaMNet N 71.44 85.88 58.89 69.01 68.85
SACovaMNet* N 72.68 86.12 59.28 73.82 70.52
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cases. Matching Nets and Prototypical Nets are the earliest few-shot
learning methods, and the network structure is simple, so the
performance in few-shot fine-grained image classification is not
satisfactory; and MAML uses a strategy of meta-learning and fine-
tuning, so the effect has been improved. CovaMNet does not adopt
the common first-order metric, but uses the second-order metric
method, because the details of fine-grained images are preserved,
resulting in higher accuracy. FRN achieves better classification
results by reconstructing the feature space. The effect of TDM on
FRN is not as good as that on Prototypical Nets. This is because
FRN itself has more parameters than Prototypical Nets. After
adding TDM, overfitting occurs when the number of samples is
set to be very small, resulting in unsatisfactory results. Compared to
the meta-learning-based MAML that needs to be fine-tuned, our
method not only has a simple network structure, but also has a
simple training process and short training time, additionally in this
case it also achieves high accuracy. And the recent TDM has poor
performance mainly because there are very few training samples,
with the unsatisfactory results especially on the QUT fish dataset.
Compared with other methods, the proposed method demonstrates
state-of-the-art capabilities, which validates that the novel AM
module, namely Sandwich Attention, can better solve the problem
of few-shot fine-grained fish image classification.

4.4 Ablation study

We then conducted ablation study to experimentally
demonstrate the effectiveness of our different design choices. For
this ablation study, the three datasets mentioned in 4.1 were used
and the same convolutional layers as the baseline architecture were
also employed. The experimental settings were consistent with
those in 4.2. The proposed module design process was divided
into two parts, the first part to be examined was to add effective
attention to solve the problem which was encountered on the fish
datasets, and the second part considered how to incorporate
attention modules that were effective for problem solving. The
details of each experiment are explained below.

The first line of experimental results in Table 2 is the 5-way 1-
shot and 5-way 5-shot classification accuracies obtained by the

10.3389/fmars.2023.1149186

baseline method CovaMNet on three datasets (i.e., WildFish,
fishclassifierfinal, QUT fish dataset); the second line of results
shows where after the features were extracted through the
convolutional layer of the baseline, the features were passed
through the CBAM (Woo et al, 2018) module to obtain the
accuracy results of the 5-way 1-shot and 5-way 5-shot; the third
line of results shows where the feature was extracted by the
convolutional layer on the baseline, and then was passed through
the CBAM module (Woo et al,, 2018) and the MHSA module
(Srinivas et al, 2021), and the features obtained through the two
AM modules were paralleled before finally being sent to the
classification network to obtain the 5-way 1-shot and 5-way 5-shot
accuracy results; the results in the fourth line show where the features
were passed through the CBAM module (Woo et al., 2018) and the
MHSA module (Srinivas et al., 2021) after the features were extracted
in the convolutional layer on the baseline, the three features obtained
by the two AM modules and the features obtained by the original
extraction were paralleled and then sent to the classification network
to obtain the 5-way 1-shot and 5-way 5-shot accuracy results.
Through the comparison of experimental results, it can be found
that the original feature map extracted by the convolutional layer has
been paralleled with the CBAM and MHSA modules, forming our
Sandwich Attention module, such a network structure can allow the
network to more comprehensively consider the importance of
different regions and channels of the fish image feature map, weight
the feature map more accurately, parallel connection with the feature
map can effectively ensure the integrity of the original information, so
that our experimental results are significantly higher than our baseline.

4.5 Results visualization

For qualitative analysis, the results are presented in the form of
t-SNE diagram (Van der Maaten and Hinton, 2008), which is a
machine learning algorithm for nonlinear dimensionality
reduction, and usually reduces high-dimensional data to 2
dimensions or 3 dimensions for visualization. Here we show the
output visualization results of the baseline CovaMNet,
SACovaMNet mentioned in 3.2, and SACovaMNet* mentioned in
3.3, on the fishclassifierfinal dataset for 5-way 5-shot classification

TABLE 2 Ablation study on different choices and connections of AM modules, in terms of the 5-way 1-shot and 5-way 5-shot classification accuracies
on the three datasets, i.e., WildFish, fishclassifierfinal, and QUT fish dataset, with 95% confidence intervals.

5-Way Accuracy(%)

WildFish fishclassifierfinal QUT fish dataset
5-shot 1-shot 5-shot 1-shot
Baseline 70.87 84.33 54,54 68.52 66.86
CBAM 73.63 85.41 57.23 68.52 68.06
CBAM-+MHSA 72.97 85.29 57.61 68.21 67.04
CBAM-+feature+MHSA (Ours) 71.44 85.88 58.89 69.01 68.85
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FIGURE 5

Visualization comparison of the t-SNE on baseline CovaMNet, SACovaMNet, and SACova-MNet*. The same color represents one category. (A)
Visualization of t-SNE on baseline CovaMNet. (B) Visualization of t-SNE on SACova-Mnet. (C) Visualization of t-SNE on SACova-MNet*.

tasks. The same color in the figure represents the data of the same
category. It can be seen from Figure 5A that there is a problem of
overlap between different categories, and the boundary of each
category is unclear, which will lead to poor classification effects. In
Figure 5B, the situation where there is overlap between different
categories is reduced, however the data between the same category
is relatively scattered. In comparison, the clustering effect in
Figure 5C is better, and the boundaries between categories are
clearer. The results indicate that our method can make the
classification more accurate.

5 Conclusion

In this paper, an approach called SACovaMNet was proposed
for few-shot fine-grained marine fish species classification to
address the problems caused by a lack of marine fish data and
difficulties in classification. The proposed SACovaMNet can extract
fish features in detail by fusing CBAM and MHSA in the case of
few-shot settings. At the same time, DPCACBAM is proposed to
correctly locate the identified objects and key feature information to
improve the accuracy of the fine-grained classification, while also
applying a second-order covariance metric for similarity
comparison that fully takes into account the local similarity
information of the feature maps. Based on extensive experiments,
the proposed method is shown to be superior to the state-of-the-art
methods and the training process is much simpler, providing a basis

for research in marine life conservation and marine production.
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A Multi-Mode Convolutional
Neural Network to reconstruct
satellite-derived chlorophyll-a
time series in the global ocean
from physical drivers

Joana Roussillon™, Ronan Fablet?, Thomas Gorgues’,
Lucas Drumetz?, Jean Littaye® and Elodie Martinez®

Laboratoire d'Océanographie Physique et Spatiale, CNRS/IFREMER/IRD/UBO, Institut Universitaire
Européen de la Mer, Plouzané, France, ?2IMT Atlantique, UMR CNRS LabSTICC, Technopole Brest
Iroise, Brest, France

Time series of satellite-derived chlorophyll-a concentration (Chl, a proxy of
phytoplankton biomass), continuously generated since 1997, are still too short to
investigate the low-frequency variability of phytoplankton biomass (e.g. decadal
variability). Machine learning models such as Support Vector Regression (SVR) or
Multi-Layer Perceptron (MLP) have recently proven to be an alternative approach
to mechanistic ones to reconstruct Chl synoptic past time-series before the
satellite era from physical predictors. Nevertheless, the relationships between
phytoplankton and its physical surrounding environment were implicitly
considered homogeneous in space, and training such models on a global scale
does not allow one to consider known regional mechanisms. Indeed, the global
ocean is commonly partitioned into biogeochemical provinces (BGCPs) into
which phytoplankton growth is supposed to be governed by regionally-
"homogeneous” processes. The time-evolving nature of those provinces
prevents imposing a priori spatially-fixed boundary constraints to restrict the
learning phase. Here, we propose to use a multi-mode Convolutional Neural
Network (CNN), which can spatially learn and combine different modes, to
globally account for interregional variabilities. Each mode is associated with a
CNN submodel, standing for a mode-specific response of phytoplankton
biomass to the physical forcing. Beyond improving performance
reconstruction, we show that the different modes appear regionally consistent
with the ocean dynamics and that they may help to get new insights into
physical-biogeochemical processes controlling phytoplankton spatio-temporal
variability at global scale.

KEYWORDS

Convolutional Neural Networks, attention mechanisms, satellite ocean color,
phytoplankton physical drivers, biogeochemical regions, neural networks
interpretability, time-series regression, global scale
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1 Introduction

Phytoplankton, the microalgae that populate the upper sunlit
layers of the ocean, plays a key role in the global carbon cycle and
fuels the oceanic food web. It accounts for half of the total carbon
fixation in the global biosphere through photosynthesis (Meélin and
Hoepfner, 2011) and conditions the oceanic protein production on
which ~3,3 billion people rely for their alimentation (FAO, 2020).
Thus, understanding and monitoring phytoplankton biomass past
and current spatio-temporal variability is of crucial importance to
predict and thus anticipate its future evolution in the context of
climate change.

Ocean color satellite observations allow documentation of its
synoptic variations. Global surface chlorophyll-a concentrations
(Chl, a proxy of phytoplankton biomass) can be retrieved from
space since the launch of the “Coastal Zone Color Scanner” (CZCS)
which has operated from 1978 to 1986. At the end of 1997, the
launch of the SeaWiFS sensor, followed by others, was the
beginning of 25 years of continuous observations. Although ocean
color remote sensing products present a number of uncertainties
[due among others to radiometric properties and stability of the
sensor, the conditions in the atmosphere or water, the design of the
algorithm or the irregular spatio-temporal sampling of the ocean,
(Gregg and Casey, 2007; IOCCG, 2019)], radiometric observations
have allowed one to point out regional seasonal and interannual
phytoplankton variability and to provide new insights about
mechanisms driving its spatio-temporal variations (e.g.,
Longhurst, 1995; McClain et al., 2004; Messié and Chavez, 2012;
Racault et al,, 2017). However, available ocean color time-series
remain too short to inform without ambiguity the basin-scale
phytoplankton response to natural decadal climate cycles
(Martinez et al., 2009; d'Ortenzio et al., 2012), as well as to derive
reliable anthropogenic induced long-term trends for which at least
30-40 years of homogeneous observations would be required
(Henson et al., 2010). Some in-situ biogeochemical observatories
have locally collected long-term time series, but the network
coverage is far too sparse to study basin-scale evolutions (Henson
et al., 2016). Moreover, if coupled physical-biogeochemical models
are able to reproduce the main past global Chl interannual
variations, large discrepancies are reported regarding decadal
variabilities (Henson et al., 2009b; Patara et al., 2011).

In that context, data-driven methods have appeared to be
relevant alternative approaches to reconstruct long-term,
continuous and homogeneous phytoplankton time-series based
on satellite observations (Schollaert Uz et al., 2017; Martinez
et al., 2020a; Martinez et al,, 2020b). Phytoplankton growth is
limited by light and nutrient availability (e.g., nitrogen,
phosphorus, iron). Thus, along with a variety of other biological
factors influenced by temperature and/or seascape connectivity [e.g.
phytoplankton physiology (Grimaud et al., 2017) and ecology (Boyd
et al,, 2010; Winder and Sommer, 2012)], the spatio-temporal
distribution of surface phytoplankton on a global scale is strongly
shaped by changes in the supply of nutrients to the sunlit upper
ocean through vertical exchange. Phytoplankton changes can also
be related to other known processes as the predation by grazers,
such as zooplankton (the so-called “top-down control”) whose
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variability can also be related to their physical environment (e.g.,
temperature; Beaugrand et al, 2002). Consequently, as physical
ocean and atmospheric dynamics largely drive global
phytoplankton variability (Wilson and Adamec, 2002; Wilson and
Coles, 2005; Kahru et al., 2010; Feng et al., 2015), statistical
relationships can be determined between some physical predictors
and Chl. Once such statistical relationships are established and
validated, they provide new means to retrieve past and future Chl
based on physical data from satellites (with a longer time period
than for Chl) and/or numerical model simulations.

Schollaert Uz et al. (2017) were the first to use this approach in
the tropical Pacific Ocean ([20°S-20°N]) with a linear canonical
correlation analysis applied on Sea Surface Temperature (SST) and
Sea Surface Height (SSH) vs. Chl. They reproduced most of the Chl
variability within 10° around the equator over 1958-2008, and
evidenced decadal variations corresponding to the Pacific Decadal
Oscillation (PDO). Martinez et al. (2020a) extended such an
approach to the global ocean using a Support Vector Regression
(SVR) model relying on a larger number of surface oceanic and
atmospheric predictors from numerical models. Given their
capacity to model complex non-linear relationships between data
(Hornik et al., 1989), dense neural network models (namely Multi-
Layer Perceptrons, MLPs) have been successfully applied in
geoscience and biogeochemical oceanography to regress some
variables from predictors (Long et al., 2014; Sauzeéde et al., 2016;
Sammartino et al., 2020). Thus, in a second study, Martinez et al.
(2020b) extended their work to satellite observations and showed
that an MLP outperforms the SVR to retrieve both Chl spatial and
temporal patterns. However, in these two studies, the considered
point-wise machine learning models explicitly relied on spatial
coordinates (periodized longitude and latitude) and temporal
information (periodized month) as predictors. This may impede
the ability of neural networks to capture changes in the boundaries
of biogeochemical provinces (BGCPs) that are naturally time-
evolving (Oliver and Irwin, 2008; Devred et al., 2009; Reygondeau
etal., 2013). In addition, these results remained hard to interpret in
terms of processes involved in the Chl reconstruction and
variability, whereas data-driven approaches have great potential
to discover new patterns, structure and relationships in scientific
datasets (Bergen et al., 2019). Understanding what drives neural
network output is also essential to ensure they behave appropriately
to the field of application (Xie et al., 2020) so as to enhance the
degree of confidence that can be placed in them.

Besides MLPs, other deep learning schemes, in particular
Convolutional Neural Networks (CNNs), have shown a much
greater ability to decompose and represent the space-time variations.
We may cite numerous successful applications in Earth science
forecasting (Haidar and Verma, 2018; Ham et al,, 2019; Pan et al,
2019; Chattopadhyay et al., 2020; Weyn et al., 2020) and reconstruction
(Cooke and Scott, 2019; Sun et al., 2019; Ai et al., 2020; Kim et al., 2020;
Jeon et al., 2021; Meng et al., 2021; Pyo et al., 2021) problems, including
studies focusing on Chl data (Yu et al, 2020; Ye et al, 2021). CNNs
assume translation equivariance of the input data (Goodfellow et al.,
2016), so that they cannot learn region-specific representations when
trained over the whole ocean (Cachay et al., 2020). On the other hand,
the a priori definition of BGCPs to train region-specific CNN models
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are not fully relevant due to their time-evolving nature, especially as
they are expected to be impacted by climate changes (Polovina et al,
2008; Irwin and Olivier, 2009; Reygondeau et al., 2020). By contrast,
attention mechanisms (Chen et al., 2017; Jetley et al., 2018) provide a
generic approach to account for different modes of variability within
CNNG. For instance, Pyo et al. (2021) inserted such attention blocks
into a CNN and improved both performance and interpretability to
predict cyanobacteria cells from spatialized water quality predictors.

Here, we introduce a regular CNN, then a CNN with attention
mechanisms, referred to as a Multi-Mode Convolutional Neural
Network (CNNjyv), to reconstruct phytoplankton dynamics from
physical predictors. The statistical models are trained between
ocean color observations vs. physical variables from satellite
observations and reanalysis outputs. The study is conducted from
1998 to 2015. We demonstrate that the CNNy;; scheme
outperforms the state-of-the-art MLP data-driven approach and
illustrate its relevance to analyze the space-time variabilities of
physics-driven phytoplankton dynamics.

2 Material and methods

2.1 Chl observations, physical predictors
and climate index

The different datasets used in this study are briefly described
here. They comprise the same products as those used in Martinez
et al. (2020b), complemented with bathymetry data.

Several ocean color sensors embedded on different satellite
platforms have been operating since 1997. However, their limited
lifespan and differences in calibration lead to inter-sensor bias and
make them irrelevant for decadal time-scales studies. In order to
provide more homogeneous data, the European Space Agency
(ESA) has produced the Ocean Color Climate Change Initiative
(OC-CCI) Chl products, hereafter referred to as Chloc ccr-
Radiometric observations from the Sea-viewing Wide Field-of-
View Sensor (SeaWIFS, 1997-2010), the Moderate Resolution
Imaging Spectroradiometer (MODIS, 2002-present), the MEdium
Resolution Imaging Spectrometer (MERIS, 2002-2012) and the
Visible and Infrared Imaging Radiometer Suite (VIIRS, 2012-
ongoing) were consistently reprocessed to produce a global
longer-term and “bias-corrected” ocean-color time series
(Sathyendranath et al,, 2019). Level 3 products from v4.2 were
downloaded at https://oceancolor.gsfc.nasa.gov/13/, with a monthly
temporal resolution on a 1° grid and over 50°N-50°S to reduce the
number of missing data due to cloud cover and/or permanent night
in wintertime at high latitudes. Even though the OC-CCI Chl
products benefit from merged data from multiple satellite
missions to provide a better spatial and temporal coverage and a
more consistent long-term time series, it is worth noting that these
data still present some uncertainties. Indeed, with a global
uncertainty of about 30% for derived Chl (IOCCG, 2019;
Sathyendranath et al., 2019), reported accuracies may vary
significantly regionally (Szeto et al., 2011) and seasonally (Bisson
etal., 2021). Thus, one should be aware that the satellite-derived Chl
used in this study may not always properly describe the in-situ Chl
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variability. Yet, satellite-derived Chl, with the spatio-temporal
resolution chosen in this study, are still commonly used to study
global intra-annual to longer timescale variations in
phytoplankton biomass.

Short-Wave radiations (SW), referred to total solar irradiance
with wavelengths in the range of 300-3000 nm, are considered as a
proxy of Photosynthetically Active Radiation (PAR, 400-700 nm)
used for phytoplankton growth. SW are here preferred to PAR as
they are available over the historical period (e.g. from the 50’s) from
ocean and atmosphere numerical model outputs, that do not
include irradiance in the photosynthetic range, bearing in mind
that the model developed in this study is meant to be later used to
reconstruct phytoplankton past long-term time series. The
reanalysis daily product NCEP/NCAR (Kalnay et al., 1996)
delivered by the National Oceanic and Atmospheric
Administration (NOAA) with a resolution of 2°x2° is used in this
study and available at https://psl.noaa.gov/data/gridded/
data.ncep.reanalysis.derived.html.

SST is usually considered as a good proxy of ocean vertical
mixing, being itself related to nutrient availability in the upper
ocean (e.g., Wilson and Coles, 2005; Behrenfeld et al., 2006;
Martinez et al., 2009; d'Ortenzio et al., 2012). Moreover, SST can
impact phytoplankton metabolic rates (Lewandowska et al., 2014).
The monthly 1°x1° SST of the Reyn_SmithOIv2 dataset produced at
NOAA using both in situ and satellite data (Reynolds et al., 2002)
was downloaded at http://iridL.ldeo.columbia.edu/.

Sea Level Anomaly (SLA) variability has been shown to be a
proxy for the thermocline/pycnocline/nutricline depth variability in
most parts of the global ocean (Wilson and Adamec, 2002). The
Ssalto/Duacs merged satellite altimetry product of CNES/
SALP project is used here. It consists in a weekly product with a
1/3°x1/3° spatial resolution and was retrieved at https://
resources.marine.copernicus.eu (accessed on December 2020).

Zonal and meridional surface currents (U and V, respectively)
could supply nutrients from remote regions through lateral
advection (Messie and Chavez, 2012). The Ocean Surface Current
Analysis Real-time (OSCAR) unfiltered product (ESR, 2009) is used
here to depict global ocean surface currents. It was generated by
NASA Earth Space Research (ESR) at a 1/3° x 1/3° resolution every
5-days from 1993. Horizontal velocities are computed from
satellite-sensed SSH gradients, surface vector winds and SST fields
with simplified physics. This product allows detection of eddies that
range from 100 to 300 km (Dohan, 2017). The data is available from
the NASA Physical Oceanography data center at https://
podaac.jpl.nasa.gov/dataset/ OSCAR_L4_OC_third-deg.

Zonal and meridional surface wind stress (Uera and Vera,
respectively) exhibits global large-scale correlation patterns with
Chl (Kahru et al., 2010). In the open ocean, increased winds
contribute to deepen the mixed layer and thus to either reduce
phytoplankton light exposition in subpolar regimes or to increase
nutrients availability in subtropical regions. They account for one
part of the interannual and decadal mixed layer depth (MLD)
variability, that is reflected on phytoplankton bloom timing and
magnitude variations (Henson et al., 2009a; Kahru et al., 2010;
Martinez et al., 2011). Monthly global atmospheric reanalysis
computed by the ECMWF was used. The ERA-Interim 4 product
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was downloaded with a spatial resolution of 0.25° x 0.25° at: https://
www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/
era-interim.

The General Bathymetric Chart of the Oceans (GEBCO) produced
under the auspices of the International Hydrographic Organization
and the Intergovernmental Oceanographic Commission of UNESCO
is used. It consists in a continuous, global terrain model for ocean and
land, with a spatial resolution of 15 arc seconds. The GEBCO_2020
product was downloaded at https://www.gebco.net/
data_and_products/gridded_bathymetry_data/gebco_2020/.

The monthly Multivariate El Nind Southern Oscillation Index
(MEI) is provided by the National Oceanic and Atmospheric
Administration (NOAA) website at https://psl.noaa.gov/enso/mei/.

The choice of the 8 physical predictors (SW, SST, SLA, U, V,
Uera, Vera, Bathy) is motivated by our will to use the most realistic
environmental conditions, that only observations allow, to learn
relationships with Chl. Among routinely measured oceanic
properties, we chose to rely on surface ones only (except for the
bathymetry), for which observations are much less scarce at global
and interannual scales than the ones below the surface. These
variables have also been selected as they are known to be proxies
of dynamical processes which drive the variability of phytoplankton
to the first order. In addition, deep neural networks are expected to
derive other related quantities (e.g., wind curl, eddy kinetic energy,
etc) on their own through operations (squares, cubes, gradients,
etc), although some subjective choices of predictors can sometimes
help the network to identify meaningful relationships.

Moreover, monthly physical fields are used in this study to
predict simultaneous monthly Chl, without considering any time-
lag. This choice is motivated by the rapid response of
phytoplankton growth to changes in physical forcing, with an
associated average turnover time of global oceanic plant biomass
on the order of a week or less (Falkowski et al., 1998). It is also
consistent with the strong large-scale correlation patterns that were
previously reported in the literature between environmental forcing
and synchronous phytoplankton biomass at monthly timescales
(Wilson and Adamec, 2002; Wilson and Coles, 2005; Feng et al.,
2015; Schollaert Uz et al., 2017).

2.2 Data pre-processing

The eight physical predictors’ datasets are extracted over [1998-
2015] and resampled to the same spatio-temporal resolution as Chl,
i.e. monthly on a 1°x1° grid between 50°N and 50°S. Some missing
values (NaN: Not a Number) remained in the different datasets such

10.3389/fmars.2023.1077623

as on land for oceanic variables. As CNNs cannot account for NaN
values for the input predictors, a gap-filling scheme is applied. A
classic zero-filling strategy is discarded as it may lead to spurious
results especially in coastal areas. Alternatively, we extrapolate
missing data using the heat diffusion equation (see Equation 1),
that is widely used in the field of computer vision (Aubert et al.,
2006):

{

u the interpolated field, ¢ the iteration step and x the space

94 (t,x) - Au(t,x) =0, { t EN £ <1000}, x € R?

(Eq. 1)
u(0,x) = up(x)

where u, is the field with a zero-filling scheme for missing data,

coordinates. This diffusion is applied to all the input fields
involving missing data (as illustrated in Figure S1) but is not
needed for the output field (Chl).

Given the well-known log-normal distribution of Chl data, Chl
is logarithmically transformed prior to being used in the machine
learning schemes. Back-transformation is applied afterwards to the
reconstructed log(Chl) (where log stands for the natural logarithm,
to the base e) to retrieve Chl fields that can be validated against Chl
satellite observations. As classically done in deep learning
approaches to stabilize training, we normalize each variable by
subtracting its mean from the original values and dividing by its
standard deviation over [1998-2015].

2.3 Deep learning schemes

In this study, we explore three different neural architectures: the
baseline MLP considered in Martinez et al. (2020b), a basic CNN
and the proposed multi-mode CNN. According to our choice of not
considering time-lags, those three models have in common to only
rely on instantaneous relationships. We detail below these
three architectures.

2.3.1 Baseline MLP

We implement the same MLP as in Martinez et al. (2020b). The
MLP is composed of seven dense layers (see Table 1) with
LeakyReLU activations. We refer the reader to Martinez et al.
(2020b) for more details about its architecture. It involves
1,800,000 parameters. We may point out that the MLP applies
pixel-wise, that is to say to a vector of input data, corresponding to a
predefined set of features defined at each space-time location.
Similarly to (Martinez et al., 2020b), the feature vector comprises
the following 12 variables: SLA, SST, Uera, Vera, U, V, SW, sin(lat),

TABLE 1 Summary of the models’ architectures. CNNyug corresponds to the multi-mode CNN composed of an attention-based module W and 8

CNNs submodels M; trained in parallel.

Model Layers Number of neurons/filters Number of parameters
MLP 7 dense layers 12:1000:1000:500:500:120:120 ~1 800 000
CNN; 5 convolutional layers 9:16:32:64:128 ~100 000
CNNMMms 3 convolutional layers 9:16:32 ~7 000
M; 5 convolutional layers 9:16:32:64:128 ~100 000
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sin(lon), cos(lon), sin(month), cos(month). Cosine and sine of

longitude are used to account for periodicity (longitude 0° =
longitude 360°), and sine of latitude is used to keep the same
ranges of values between longitude and latitude predictors. In a
similar manner, months are periodized using sine and cosine of
month to account for seasonal similarities (month 1, i.e. January, is

seasonally related to month 12, i.e. December).

2.3.2 Baseline CNN

CNNs, and their variants such as convolutional ResNets (He
et al., 2016) and Unets (Ronneberger et al., 2015) are state-of-the-
art architectures for a variety of image processing and computer
vision applications. They offer a new way of processing
multidimensional data by extracting patterns using convolution.
Here, we consider a basic CNN architecture composed of a
sequence of five 2 dimensional convolutional layers with 3x3
kernel sizes, stride and padding 1x1, and with ReLU activations.
We report the details of the mono-mode CNN (hereafter referred to
as CNN,) architecture in Table 1. Overall, it involves ~100,000
parameters. Contrary to the MLP, the CNN applies directly to the
concatenation of the 2D fields predictors.

2.3.3 Multi-mode CNN

The proposed multi-mode architecture aims at better accounting
for the space-time variabilities of the relationship between plankton
dynamics and the physical forcing. Modular neural networks were
proposed in the 80’s (Micheli-Tzanakou, 1987; Anzai and Shimada,
1988) with the aim of enabling decomposing complex tasks into more
practicable sub-parts (Auda and Kamel, 1999; Azam, 2000). They rely
on the idea that the combination of several estimators can lead to better
results than when using only one. More recently, attention-based
mechanisms (Chen et al., 2017; Kirsch et al., 2018) provide means to

Input predictors
attimet
(Monthly on a 1°x1° grid)

10.3389/fmars.2023.1077623

implement this general concept. As sketched in Figure 1, the proposed
architecture applies in parallel i CNNs (referred to as M;). These i
CNNs have the same architecture than the baseline CNN introduced
above, and only differ from one another in the way their respective
weights are optimized during training. As such, for a given set of 2D
fields predictors, we are provided with i outputs with the same size than
the target Chl field. We then compute a pixel-wise weighted average of
these i outputs according to weights computed by the attention-based
network W (this product is hereafter referred as “mode”). W is also a
CNN with the same architecture than the baseline one, but with 3
convolutional layers only. This CNN also uses as inputs the
multivariate 2D fields formed by the physical forcing. Importantly,
the last layer of this CNN is a softmax layer, so that the weights are
positive and sum to one for each pixel. The key features of this multi-
mode CNN architecture are three-fold: (1) it can explicitly account for
regional physics-driven variabilities, (2) there is no need to a priori
delineate BGCPs boundaries, (3) the learnt attention-based module
defines the space-time activation domain of each mode, which may
improve the interpretability of the network. As summarized in Table 1,
the multi-mode CNN for an 8-modes configuration (referred to as
CNNpms) comprises ~807,000 parameters (8100 000 + 7000).

2.4 Learning settings

For evaluation purposes, the whole database is split into three
independent datasets to train, validate and test the deep-learning
schemes. We consider non-overlapping time periods for each
dataset as sketched in Figure 2: the training is performed over
[2003-2010], the validation dataset covers [1998-2001] to monitor
the generalization performance of the models during the training
phase and select models’ parameters through sensitivity tests, and

Multi-Mode CNN (CNNy;.)

SST (t) (nxmxi)
e =

— W

(nxmx1)

CNNs
submodels

FIGURE 1

Weighted maps
(W;(t), outputs from W)

Diagram of the CNNuwm; architecture. For a given set of input 2D predictors, each of size n x m, i outputs of size n x m x 1 are computed from the i
CNN submodels (M;). Those are spatially weighted according to the i dynamic probability maps outputted at each time t from the W spatial attention

module, and summed to obtain the output Chl 2D field.
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reconstructed Chl are compared to satellite Chl over [2012-2015]
(i.e., the test time-period). Years 2002 and 2011 are discarded so
that the training, test and validation datasets are not auto-
correlated. This configuration delivers long-enough test time
periods to assess the seasonal and interannual timescales of
interest (i.e., El Nifio Southern Oscillation - ENSO). It also
defines time periods during which the number of ocean color
sensors remains the same in the OC-CCI dataset (Sathyendranath
etal., 2019) to avoid confusions between possible Chl variations due
to switch in sensors or occurring in nature (Gregg et al., 2017).

We train all models using a Mean Squared Error (MSE) loss and
Adam optimizer (Kingma and Ba, 2014). The MLP is trained over
200 epochs with a learning rate of 10 and a dropout of 0.15. The
CNNs and CNNyy; are trained over 500 epochs with an initial
learning rate of 0.001 that is decreased to 0.0001 at the 400™ epoch
to stabilize the training. Dropout values of 0.15 and 0.35 are used for
the CNN; and CNNyy;, respectively, to prevent overfitting
(Srivastava et al., 2014)(see respective learning curves in Figure
S3). Hyperparameters settings were chosen according to sensitivity
tests summarized in (Supplemental Table S1).

During each training run, we assess the score of the trained
model on the validation dataset at the end of each epoch and save
the one with the best score. We implement all models using Python
with the Pytorch library. We run numerical experiments with a
GPU NVIDIA Tesla T4 with 32Go of RAM. As recommended by
many ethics’ guidelines for developers (Vinuesa et al., 2020; Ryan
and Stahl, 2021; Taddeo et al., 2021), we also report the carbon
footprint of the training phase of each model using the
Carbontracker Python library (Anthony et al., 2020). Our
computing server is located in France, with a detected averaged
carbon intensity of 294.21 gCO2/kWh.

2.5 Evaluation framework

We consider the following three quantitative metrics for
evaluation purposes: the root-mean-square error (RMSE, Eq. 2),
the coefficient of determination (R?, Eq. 3) and the linear regression
slope are used to compare the reconstructed log(Chl) times series vs.
OC-CCI satellite observations:

RMSE \/E(log(Chl) -

log(Chloc_ccr))?

10.3389/fmars.2023.1077623

—log(Chl))(log(Chloc-ccr) = log(Chloc-cer)) s

log(Chl
:(E( og(Chl) )

RZ

N Oiogchi*  Olog(Chloe-ccry (Eq.3)
with N the number of samples, ¢ the standard deviation and the
horizontal bar the time average, both calculated over the considered
time period.
Global map of correlation and of normalized RMSE (NRMSE,
Eq. 4) of Chl times series vs. OC-CCI satellite observations are also
used to assess regional discrepancies:

\/E(Chl — Chloc_car)’

\/ 2 (Chloc_car)’

To estimate the model’s ability to reproduce seasonal and

NRMSE = (Eq. 4)

interannual variabilities, an Empirical Orthogonal Function (EOF)
analysis is performed as follows. First, the annual (monthly) Chloc
ccr average is removed from the initial time series to obtain the
seasonal (interannual) Chl anomalies which are then normalized
with respect to their standard deviations. We project the
reconstructed Chl time series onto these seasonal and interannual
Chloc ccr spatial patterns and the resulting seasonal and interannual
temporal patterns (i.e. the principal components, PCs) are compared to
those of Chloc ¢y using Pearson correlation.

For each pixel, the percentage of variance explained by each of
the i modes of the multi-mode CNNy; is derived to assess their
relative importance. It relies on (1) successively reconstructing Chl
while putting the probability weights of the corresponding mode to
zero, and (2) calculating the difference in RMSE that is observed
compared to when Chl is inferred with the full model.

From the obtained i percentages of variance Py, we further
compute, for each pixel, the following entropy-based metric H:

H == Pixlog,(Py) (Eq. 5)
k —

-1
It allows us to evaluate to which extent the reconstruction at a
given pixel truly results from a multi-mode relationship (large
entropy values) or from a single-mode one (low entropy values).
Finally, we also assess the relative importance of each physical
predictor to reconstruct Chl using a perturbation-based method as
in Kim et al. (2020). From a given CNNy;, the difference of the
RMSE of the predicted Chl when using the initial data vs. randomly
shuffled data (both in time and space) for each predictor

N (Eq. 2) individually is computed. RMSE differences are normalized so

3
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FIGURE 2

Time-series of the MEI. The validation, training and test time periods used to compare the implemented regression models’ performances are

indicated as orange, red and green filled sections, respectively.
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that the relative importance of all the predictors sums up to one for
each pixel.

3 Results and discussion

3.1 Performance of the mono-mode CNN
vs. MLP baseline

The reconstructed Chl from both the mono-mode CNN; and the
state-of-the-art MLP are compared to satellite Chl over the [2012-2015]
test period to assess the added value of convolutions. When the 12
predictors [namely SLA, SST, Uera, Vera, U, V, SW, sin(lat), sin(lon),
cos(lon), sin(month), cos(month)] are used, performances obtained
with the MLP and CNN; remain close (Table 2). However, the CNN;
contains almost twenty times less parameters than the state-of-the-art
MLP (~100 000 vs. ~1 800 000, respectively), is ten times faster to
compute and more than ten times more energy-efficient, supporting
that convolutions are better suited to reconstruct Chl.

To avoid learning constraints of time and space, the models are
trained removing the spatial coordinates, ie. on 9 predictors. Results
further stress the relevance of convolutional architectures to reconstruct
Chloc car- Indeed, whereas the MLP highly drops in performance (R
down to 0.59 and RMSE up to 0.5), the CNN; still presents satisfactory
scores (R = 0.80 and RMSE = 0.35) (Table 2). These results averaged at
global scale are consistent over the three oceanic basins with a higher R*
between Chlpc ooy and CNN; than with MLP by 0.23 and 0.24
respectively in the Indian and Pacific oceans and by 0.14 in the
Atlantic Ocean (Figure 3 lower row vs. upper row).

Interestingly, removing the temporal predictors (ie., sin(month)
and cos(month)) does not reduce the CNN; performance and even
tends to slightly improve it (slope of 0.81 vs. 0.77, and interannual
correlation coefficient of 0.96 vs 0.94, Table 2). It suggests that temporal
predictors only bring redundant information already included into the
seasonally-fluctuating physical fields provided as predictors. This result
also suggests that the network benefits from being no longer monthly

10.3389/fmars.2023.1077623

constrained when interannual time-series are considered. Indeed,
learning on periodized months may force the network to learn static
seasonal phytoplankton bloom characteristics (e.g., start, duration and
amplitude) over several years. Thus, it would impede to correctly
account for interannual delays in bloom timing or difference in the
length of the growing period (Henson et al, 2009a) that can for
instance reach ~10 weeks for major ENSO events (Racault et al., 2012)
and that would be otherwise considered through other physical fields
such as SST.

The CNN; is further improved by the addition of two other
predictors: the bathymetry and a continental mask. The bathymetry
is considered as it would participate to distinguish open ocean
ecosystems from coastal ones, where specific processes can occur
(shelf break fronts, tidal mixing, river discharge, coastal upwelling,
etc) and where the water-leaving radiance measured by ocean color
sensors may only partially represent Chl (inorganic particles
dominate over phytoplankton concentration). Moreover, as being
more spatially resolved than OSCAR data, it is also expected to
bring additional information about the ocean circulation (especially
concerning the fine-scale dynamic) that is regionally related to the
seafloor topography (Gille et al., 2004; Bryan, 2016). The binary
continental mask (0 on ocean and 1 on land) is also added because
the oceanic predictors are filled over land with data through
diftusion (see the data section) inducing that no information on
the exact boundary between ocean and land are no longer available.
Doing so, results are slightly improved (R* = 0.84, RMSE = 0.31 and
slope = 0.85) and the CNN; better captures Chl spatial structure in
some places as observed over the tropical Atlantic Ocean
(Supplemental Figure S2).

3.2 Chl reconstruction improvement from
mono-mode CNN; to multi-mode CNNmms

Given the overall good performance of the CNNj, we chose this
model as a basis to document the impact of multi-modality. With

TABLE 2 Global performance metrics obtained with the state-of-the-art MLP, CNN; and CNNymg over the [2012-2015] test period.

Time

Global scatterplot Corr. Corr. N . Km travelled
aram
Predictors Seas. PC Inter. PC P computation by car
Model R? RMSE  Slope
12 MLP 0.85 0.30 0.84 0.99 0.97 1 840 000 50h13 13.5
CNN, 0.86 0.30 0.87 0.99 0.98 99 889 5h 0.95
9 (without sin(lat), cos(lon), sin MLP 0.59 0.50 0.57 0.97 0.85 1 836 000 50h13 134
(lon))
CNN, 0.80 0.35 0.77 0.99 0.94 99 457 4h53 0.93
7 (without sin(month), cos CNN, 0.80 0.35 0.81 0.98 0.96 99 169 4h52 0.92
(month))
9 (+ bathymetry + continental CNN; 0.84 0.31 0.85 0.99 0.95 99 457 4h54 1.04
binary mask)
CNNpmg | 0.87 0.28 0.90 1.00 0.96 803 920 3%h 8.9

The R% RMSE and slope metrics are calculated between the reconstructed log(Chl) and satellite log(Chloc.ccr). Correlations of seasonal and interannual 1st principal components from EOF
analysis are calculated between the reconstructed Chl and satellite Chloc_ccr. The number of parameters used and the computation time of the training phase (performed over [2003-2010]) are
reported, as well as the associated carbon footprints in equivalent km traveled by car. Performance metrics of the proposed multi-mode approach are highlighted in bold.
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FIGURE 3

Scatterplots of reconstructed log(Chl) from the MLP (upper row) and CNN; (lower row) vs. satellite Chloc.cc), Wwhen explicit geographic predictors
(i.e., sin(lat), cos(lon), sin(lon)) are removed from the training phase. Columns correspond to different oceanic basins (left: Indian Ocean, middle:
Pacific Ocean, right: Atlantic Ocean). The log of Chloc-cc; Vs. reconstructed log of Chl regression lines are plotted in black and the 1.1 regression
lines are plotted in red. Plots are color-coded according to the density of observations.

the same 9 predictors, performances of the proposed multi-mode
CNNjvi; schemes are investigated from 1 to 15 modes. R? increases
from 0.81 up to 0.87 and RMSE decreases from 0.32 down to 0.27
from one to four modes (Figure 4, see Table S2 for details). For both
metrics, a plateau is reached from the fourth mode for R? and the
eighth mode for RMSE. Overall, the CNNy;s model seems to be
the best trade-off between performance and computational
complexity. Thus, the CNNy;g is investigated hereafter and
compared to CNN; to further discuss the advantages of the
multi-modality.

Time averaged satellite Chloc.ccr over the [2012-2015] test
period compares reasonably well with that reconstructed from
CNNpyvs (Figures 5A vs. 5B). The CNNypg correctly represents
the main spatial patterns with, for instance, higher Chl at high
latitudes and along the equatorial and eastern boundary upwelling,
as well as in the Arabian Sea. The CNNy\g also captures low Chl in
the subtropical gyres delimited by the 0.07 mg.m™ mean Chl
isocontour. The correlation map computed between Chloc ccr and
CNNyvis shows values higher than 0.8 over large parts of the global
ocean and especially in the subtropical areas (Figure 5C). Conversely,
low correlation values, associated in most cases to high NRMSE
(Figure 5D), can be observed at higher latitudes than 40° and in the
eastern and tropical part of the Pacific Ocean oligotrophic gyres. This
can be due to several factors. In some places, the spatio-temporal
resolution (i.e., monthly on a 1° grid) used in the present study may
be too coarse to capture the overall Chl variability. In particular, this
would mainly explain the lack of correlation observed in the tropical
southeastern and northwestern Pacific where the dominating
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timescales of Chl variability have been very recently reported to be
below 30 days (Jonsson et al., 2023; see their Figure 7B). This may also
explain part of the Chl underestimation observed in highly energetic
areas with mesoscale and sub-mesoscale eddies (<100 km scales) that
may impact phytoplankton along dynamical fronts (Lévy et al., 2018).
This component of the ocean dynamics might not be sufficiently
resolved here, as along the Gulf Stream, the Kuroshio and Agulhas
currents and in subantarctic waters along the Antarctic Circumpolar
Current (Frenger et al., 2018). In addition, the list of predictors that
we used is not exhaustive and variables representative of some
biogeochemical and physical mechanisms may be missing. For

Determination coeff. R?
o
[ee]
S

0.83
0.82
0.81
0 2 4 6 8 10 12 14 16
Number of modes
FIGURE 4

Performance evolution according to the number of modes of the
CNNmmi models. Metrics are computed over the [1998-2001]
validation period during which model parameters are assessed.

frontiersin.org


https://doi.org/10.3389/fmars.2023.1077623
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org

Roussillon et al.

instance, terrigenous inputs at the mouths of large rivers (driven by
precipitations) supply nutrient rich waters which are not considered
in our predictors. In addition, ocean color observations in these
regions may rather reflect suspended particles and colored dissolved
organic matter (respectively SPM and CDOM) rather than Chl. This
could explain the high NRMSE values observed along the Amazon,
the Congo and Kunene rivers. More generally, the predictors we used
in this study cannot account for some ocean color sources of
uncertainties (e.g., atmospheric conditions, solar zenith angle,
properties of the sensors, etc), so potentially biased Chl values
cannot be fully reproduced by the networks. Moreover, biological
effects such as zooplankton grazing (the so-called top-down control),
which are not directly accounted for by any of our predictors, may
also regionally inhibit the signature of phytoplankton growth on
satellite observations, especially at high latitudes. Proxy of iron supply
in the open ocean from other external sources, such as dust
deposition or hydrothermal vents, are also missing among our
predictors. This can limit the ability of our network to distinguish
areas of different nutrient (co-)limitations (Moore et al., 2013) and to
account for phytoplankton responses driven by the dynamics of these
sources, especially in iron-limited High Nutrient Low Chlorophyll
(HNLC) regions. As such, one part of the low correlations observed in
the eastern tropical Pacific could come from the role played by dust
deposition in altering the timing and amplitude of ENSO-related
phytoplankton response (Lim et al., 2022a). This could also partly
explain low correlations values observed in the northwestern Pacific
(Meng et al., 2022), or high NRMSE values observed in the northern
Arabian Sea where dust deposition would play a key role in
controlling phytoplankton bloom amplitude (Guieu et al., 2019).
Mean difference maps between CNNypvig and CNN; in terms of
correlation and NRMSE with Chlgc.ccy illustrate that the CNNyuvs
improves correlations over most of the global ocean (in red in

>

' Chlge-ca

Correlation

m
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Figure 5E). Differences higher than 0.3, and that can exceed 0.6,
appear in the tropical zone between 20°S and 20°N (Figure 5E)
where Chl are not well reconstructed with the CNN, (Figure S4).
Subtropical areas that already show high correlations with the
CNN; model led to lower differences (yet show no degradation)
in the correlation scores. The analysis is a bit more contrasted for
the NRMSE metrics. NRMSE values are also improved by the
CNNyps over most of the global ocean (in red in Figure 5F).
However, the NRMSE is deteriorated (in blue) in several regions of
the ocean, reaching values up to 0.5 around the Amazon River
plume, and up to 0.3 at the mouths of the Congo and Kunene rivers
off the coast of Angola, although correlations are improved when
multi-modality is introduced. The use of a multi-mode CNN, whose
learning is expected to be more regionally focused than a CNNj,
might increase the NRMSE in these regions, where Chl variability
might rather reflect SPM and CDOM variability whose related
predictors are missing.

To illustrate the ability of the CNNyg to better capture
regional processes than CNNj, the improvement in reconstructed
Chl for specific regions when the CNN; is trained regionally vs. the
CNN; and CNNyys trained at global scale is investigated. The
CNN; trained regionally is expected to better learn regional
processes than the CNN; trained over the global ocean (Fourrier
et al., 2020). Table 3 shows the performance metrics obtained for
two different BGCPs, a productive vs. an oligotrophic region: the
Nin6é 3.4 region [5°N-5°S; 120°W-170°W] and the ultra-
oligotrophic part of the South Pacific Subtropical Gyre (SPSG,
[20°S-30°S; 95°W-145°W]). They present contrasting responses
to the regional learning process. The Nifio 3.4 region displays a
significant potential for performance improvement as shown by the
improvement between the globally and locally learnt CNN;, which
means that the relationships learnt at global scale are different than
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Time averaged (A) Chloc.cci and (B) CNNuwms (in mg.m™®) over [2012-2015]. Oligotrophic gyre boundaries are delimited by the 0.07 mg.m™ mean
Chlisocontour superposed in white. (C) Correlation and (D) NRMSE of Chloc.cc) vs. CNNpmg over the same time-period. (E) Correlation and (F)
NRMSE differences between CNNumg and Chlenng over the same time period. NB: the colorbar is reversed for the NRMSE difference when
compared to the correlation difference to highlight in red where the Chl reconstruction with CNNmmsg is improved.
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TABLE 3 Performance metrics obtained between spatially averaged reconstructed Chl and Chloc.cc) over two contrasted BGCPs: the Nind 3.4 region
([5°N-5°S, 120°W-170°W]) and the South Pacific Subtropical Gyre (SPSG, [20°S-30°S; 95°W-145°W]), when the CNN; is either trained at global scale

or regionally, and the CNNypws is trained globally.

Nin6 3.4

Globally learned CNN; 0.28 ‘ 0.17 0.85 0.14
Regionally learned CNN; 0.48 ‘ 0.12 0.92 0.17
Globally learned CNNyns 0.68 ‘ 0.11 0.90 0.14

Best performances are highlighted in bold.

those learnt at regional scale. Here, the CNNyyg reaches those
performances and even outperforms the regional CNNj, confirming
the hypothesis of a better ability of the multi-mode CNN to
reconstruct regional Chl. Contrastingly, in the SPSG region the
reconstruction of Chl is already well performed by the globally and
locally learnt CNN1 with R* = 0.85 vs. 0.92, respectively, leaving
little room for improvement by the CNNyps. However, the
CNNyvs allows reduction of the NRMSE. Thus, in both regions,
the CNNyvg outperforms the regionally trained CNN; due to its
ability to switch between different modes while it is less prone
to overfitting.

Using the proposed EOF-based analysis, the ability of the
CNNpmms to retrieve the satellite-derived Chl spatio-temporal
variability is investigated. The first EOF modes calculated on the
seasonal and interannual Chloc ccr signal over [2012-2015] are
presented in Figure 6 (upper and lower row, respectively). They
respectively account for 33.2% and 13.2% of the total variance.
Regarding the seasonal variability, the observed spatial patterns
depict a clear contrast between the two hemispheres (Figure 6A),
reflecting their opposite seasonal cycles. Consistently, the associated
PC time-series depicts a sinusoidal signal with a one-year period
(black line in Figure 6B). This seasonal variability is well reproduced
by both the CNN; and CNNypg models, with correlations of their
projected PCs with those of Chloc.ccy of 0.99 and 1.00, respectively
(Figure 6B). Even though the amplitude of the Chloc.ccp PC was
already very well captured by the monomode model, the multi-
mode one still allows the correction of the slight underestimation
that was observed otherwise.

Regarding the interannual variability, the first Chloc ccr EOF
mode illustrates the strong spatio-temporal signature of ENSO
events observed in the Pacific Ocean (Figure 6C), with opposite
Chl responses to ENSO-related physical anomalies observed in the
eastern Pacific compared to the western Pacific (Chavez et al,
1999). The temporal evolution of this first interannual Chloc.ccr
PC is highly related to the MEI (r=0.75, p<0.001) which reaches its
maximum during the strong 2015/2016 El Nifio event (Figure 6D).
Here again, the interannual signal is well represented by CNN; and
CNNvs with high correlation coefficients of their PCs with those
of Chlpc ccr (0.95 and 0.96, respectively), although the amplitudes
are underestimated. These results stress the ability of the learning-
based schemes to inform about the seasonal and interannual
variability while it is not explicitly constrained during the training
phase. Indeed, neither the training loss nor the architecture exploits
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time-related information. The underestimation of the interannual
signal may be related to processes not considered, either related to
the predictors (e.g. rivers inputs of nutrients, dust, land wildfire ...)
or to unresolved spatio-temporal scales. For instance, some
discrepancies in the patterns of respective interannual EOF modes
1 can be observed in the Indian ocean and in the north Atlantic
ocean (Figures S5B, D, F) where atmospheric dust inputs are most
important (Jickells et al., 2005). Other sources of error can arise
from differences between the training and the test periods chosen
for this study. Beyond differences in the amplitude of ENSO events
observed during those periods, different types of ENSO [Eastern
Pacific (EP) versus Central Pacific (CP)] have also been reported.
Thus, our training period [2003-2011] mainly hosts CP events,
whereas the strong 2015/2016 El Niflo event is usually classified as
an EP event, with different processes and related impact on primary
production (Radenac et al., 2012; Racault et al, 2017). Finally,
delayed effects of climate modes have been very recently shown to
influenced Chl in large parts of the ocean (see Figure 6 of Lim et al.,
2022b), and especially in the eastern tropical Pacific one, whereas
time-lags are not considered into our model.

3.3 Emergence of coherent spatio-
temporal distribution of modes

The main advantage of the multi-mode CNN is the ability of its
different sub-models to regionally specialize during the training
phase. The training of the network benefits from all the sub-models
that activate differently in various parts of the ocean. Maps of the
percentage of variance explained by each mode of the CNNyy5 are
computed over [2012-2015] (Figures 7A-H). This resulting
regionalization, even if presenting some slight modifications of
their spatial imprints, are quite consistent from one run to another.
These percentages can regionally exceed 30% of the total variance for
some modes in specific regions, such as in the three oligotrophic gyres
of the southern hemisphere (mode 1), and, to a lesser extent, in those
of the northern one (modes 2 and 3). These high variances which
predominate for specific modes correspond to low values of entropy
(the lower the entropy is, the more a specific mode dominates the
signal: purple areas in Figure 7I). The percentages of variance of the
remaining oceanic regions are distributed in a more balanced way
between a larger number of modes (higher entropy, Figure 71), but
still present some regional variations.
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(A) Spatial pattern and (B) associated principal component (PC, as the black line) of the EOF first mode calculated on seasonal ChlOC-CCI over
[2012-2015]. ChICNN1 and ChICNN-MM8 PCs obtained from the projection on ChlOC-CCI EOF spatial pattern are reported as the green and
orange lines, respectively. (C, D) same as (A, B) but for the interannual signal. In (D), the MEI is reported as the grey shaded area.

The eight sub-models thus depict some clear, coherent and non-
random spatial patterns. Figure 7] synthetizes areas over which the
different modes dominate, depicting for each pixel the mode that
presents the maximum of explained variance. At first glance, there
is a zonal spatial distribution of the modes in agreement with the
original BGCPs distribution from Longhurst (1995). It partly results
from latitudinal variations in physical forcing and leads to
distinguishing what is called the “westerly winds domain” from
the “trade wind domain” in the open ocean, whose seasonal changes
in MLD are driven by different processes. The first one is reported
to extend from the equator to ~30° of latitude, whereas the second
one corresponds to mid-latitude areas. From the trained CNNpvs,
mode 7 mostly activates at higher latitudes than ~30°N/°S (in blue
in Figure 7]), whereas mode 6 mainly activates at low-latitude. The
first mode highly matches the three southern hemisphere
oligotrophic gyres whereas the second and third modes coincide
with the two gyres of the northern hemisphere. The spatial
distribution of the three remaining modes (i.e., 4, 5 and 8) fits
regions with specific oceanographic dynamics. Indeed, mode 4 (in
red in Figure 7]) principally corresponds to areas of wind-induced
coastal upwellings, as the Peru, Canary and Benguela areas and to a
lesser extent to the California one, as well as to the Pacific and
Atlantic equatorial upwelling. Mode 5 (in orange, Figure 7]) seems
to stand for the mid-latitude highly dynamical parts of the ocean,
that is to say the Gulf Stream and the Kuroshio currents. Finally,
mode 8 (in yellow, Figure 7]) potentially highlights the Pacific
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