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Editorial on the Research Topic

Nutrient use efficiency of plants under abiotic stress
Abiotic plant stresses such as drought, flooding, and ultraviolet (UV) radiation have

intensified in recent decades due to global climate change. Abiotic stress can result in

fundamental changes to cellular processes and whole-plant physiology that allow the plant to

adapt to the environment (Wang et al., 2021). Mineral nutrients play electrochemical,

structural, and catalytic roles in all biological organisms, and are essential for the completion

of plant life cycle (Lopez et al., 2023). Abiotic stresses and nutrient deficiency severely impact

the growth, development, and productivity of plants (Shikha et al., 2023). Environmental

changes cause abiotic stress in plants primarily by alterations in the uptake and utilization of

the nutrients. Maintaining nutrient use efficiency under abiotic stress is an effective means of

increasing plant stress resistance. Thus, the intensification of abiotic stresses will require the

development of plants with high nutrient use efficiency. There have been effects to increase

plant abiotic stress tolerance or growth with application small molecules, melatonin is such a

molecule. Exogenous melatonin application has been shown to effectively increase stress

tolerance and nutrient uptake in plants, and other compounds also play key roles in nutrient

uptake under abiotic stress conditions (Zhang et al., 2015; Liu et al., 2020a; Sun et al., 2021;

Gao et al., 2022; Ahammed and Li, 2023)

In this Research Topic, we present 11 articles related to abiotic stress responses and

nutrient use efficiency in plants, with a focus on the relevant factors that influence these

processes. Although abiotic stresses and nutrient deficiency can limit plant growth and

survival, plants have evolved a unique set of complex mechanisms to cope with environments

under high climate variation. (Liu et al., 2022; Wang et al., 2022; Abiala et al., 2023).

Therefore, research related to physiological, biochemical, and molecular responses, as well as

nutrient uptake and utilization in plants, is of paramount importance to improve plant stress

responses and nutrient use efficiency. Yue et al. integrated envirotyping techniques andmulti-

trait selection to enhance the mean performance and stability of maize genotypes, opening

the door to more systematic and dynamic characterization of the environment to better

understand genotype-by-environment interactions in multi-environment trials. Sun et al.

provided new insights into the molecular mechanism of the iron deficiency response inMalus

baccata. This study revealed that MbHY5-MbYSL7 mediates chlorophyll synthesis and iron

transport under iron-deficient conditions. D1-Pyrroline-5-carboxylate synthetase (P5CS) is
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the rate-limiting enzyme in proline biosynthesis, and plays an

essential role in plant responses to environmental stresses. Ma et al.

identified 11 PbP5CS genes in pear trees, most of which exhibited

distinct expression patterns in response to drought, waterlogging,

salinity/alkalinity, and other abiotic stresses. These findings represent

an advance in the understanding of the physiological functions of

PbP5CS genes in the enhancement of stress tolerance in pear and

other fruit trees. Song et al. performed transcriptome deep

sequencing and weighted gene co-expression network analyses to

explore the molecular mechanism of blueberry calli in response to

UV-B radiation. They found that UV-B induced the expression of

flavonoid biosynthetic pathways, and suggested that direct or indirect

regulation of MYB inhibitors or activators promotes flavonoid

biosynthesis under UV-B radiation. In a review article, Du et al.

highlighted the structure and function of TIR1/AFB family members,

with an emphasis on the potential mechanisms by which these

proteins regulate abiotic stress responses at the transcriptional and

post-transcriptional levels, including downstream regulation. For

example, they may function in the drought tolerance, salt stress,

and nitrate stress pathways. Chalcone synthase (CHS) is a key

enzyme required in flavonoid synthesis. Liu et al. isolated a CHS

gene from Poncirus trifoliata and found that relative expression of the

PtCHS gene was regulated by soil water deficit and arbuscular

mycorrhizal fungi (AMF) inoculation. Xu et al. explored the

physiological roles of CgSTPs in pummelo, and found that CgSTP4

plays important roles in sugar accumulation and pollen tube growth.

Sun et al. compared the results of physiological, transcriptome, and

metabolite analyses under different potassium conditions in apple

seedlings. They found that apple seedlings regulate the carbon

metabolism and flavonoid pathways in response to low and high

potassium stress. This study provided new insights that may be used

to improve potassium utilization efficiency in apple trees.

Melatonin is found in almost all plant tissues, and is powerful

natural antioxidants that play a significant role in enhancing plant

tolerance to various abiotic stressors such as drought (Muhammad

et al., 2023), flooding (Moustafa-Farag et al., 2020), salt (Michard

and Simon, 2020), and nutrient deficiency (Cao et al., 2022a).

Exogenous application of other compounds also enhances plant

abiotic stress resistance and nutrient utilization efficiency. The

benefits of dopamine have been reported in previous studies on

water-induced stress, which showed that exogenous dopamine

enhances the tolerance of drought (Du et al., 2022a) and

waterlogging (Cao et al., 2022b) by apple trees by regulating the

rhizosphere microbiome. Previous studies have also reported that

melatonin and dopamine significantly improve plant nutrient use

efficiency (Liu et al., 2020b; Du et al., 2022b). Ionome nutrient

uptake was decreased in drought-stressed plants, whereas exogenous

melatonin and dopamine significantly increased the uptake of

mineral elements, particularly under drought stress conditions

(Liang et al., 2018a; Liang et al., 2018b). In this Research Topic,

Huo et al. reported that exogenous melatonin effectively alleviated

damage to kiwifruit plants in response to waterlogging stress. This

study provides new insights into the links between melatonin and

amino acid metabolic systems in plant stress tolerance. Xia et al.

evaluated the effects of melatonin and AMF on kiwifruit seedling

drought tolerance. They found that melatonin and AMF have a
Frontiers in Plant Science 026
synergistic effect on improving drought tolerance by increasing

mycorrhizal colonization and nutrient uptake. Ma et al. found that

AMF (Diversispora spurca) promoted growth in walnut plants

exposed to drought stress. Similarly, AMF increased apple tree

drought resistance by regulating MAPK pathway genes (Huang

et al., 2020). AMF is a useful tool for increasing plant nutrient

uptake under drought stress conditions (Lotfabadi et al., 2022). Gao

et al. (2020) reported that dopamine promoted AMF symbiosis by

increasing carbohydrate content, and the synergistic effect of

dopamine and AMF enhanced apple tree salt resistance.

Abiotic stresses are anticipated to be among the greatest

challenges to future agriculture. It can diminish the uptake and

utilization of elements, then influence plant nutrient status.

Nutrient deficiency will continue to limit plant growth and yield.

Most of the articles associated with this Research Topic increase our

understanding of plant adaptive responses to abiotic stresses and

nutrient use efficiency, and enrich current knowledge of the

mechanisms through which melatonin and other compounds

facilitate abiotic stress responses and nutrient utilization efficiency

in plants, allowing them to adapt to unfavorable environmental

conditions. These findings will offer new opportunities for its use in

agriculture, especially in regions that are challenged by abiotic stress

or nutrient deficiency condition. We hope that this Research Topic

will inspire new ideas and stimulate further research in these fields.
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MbHY5-MbYSL7 mediates
chlorophyll synthesis and iron
transport under iron deficiency
in Malus baccata

Yaqiang Sun, Jiawei Luo, Peien Feng, Fan Yang, Yunxiao Liu,
Jiakai Liang, Hanyu Wang, Yangjun Zou*, Fengwang Ma*

and Tao Zhao*

State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple,
College of Horticulture, Northwest A&F University, Yangling, China
Iron (Fe) plays an important role in cellular respiration and catalytic reactions of

metalloproteins in plants and animals. Plants maintain iron homeostasis

through absorption, translocation, storage, and compartmentalization of iron

via a cooperative regulative network. Here, we showed different physiological

characteristics in the leaves and roots of Malus baccata under Fe sufficiency

and Fe deficiency conditions and propose thatMbHY5 (elongated hypocotyl 5),

an important transcription factor for its function in photomorphogenesis,

participated in Fe deficiency response in both the leaves and roots of M.

baccata. The gene co-expression network showed that MbHY5 was involved

in the regulation of chlorophyll synthesis and Fe transport pathway under Fe-

limiting conditions. Specifically, we found that Fe deficiency induced the

expression of MbYSL7 in root, which was positively regulated by MbHY5.

Overexpressing or silencing MbYSL7 influenced the expression of MbHY5 in

M. baccata.

KEYWORDS

Malus baccata, iron deficiency, chlorophyll synthesis, Fe transporter, regulatory
network, MbHY5
Introduction

Although iron content is very abundant in the earth, its main existing form is ferric

iron (Fe3+), which is insoluble and difficult for plants to uptake (Jeong and Guerinot,

2009). Iron (Fe) is one of the most essential micronutrients in plants and plays an

important role in whole-life processes, including chlorophyll synthesis, electron transfer,

and respiration (Kobayashi and Nishizawa, 2012). Also, iron can affect physiological
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processes such as nitrogen metabolism, carbohydrate, and

organic acid metabolism in plants (Curie and Briat, 2003; Hell

and Stephan, 2003; Kobayashi and Nishizawa, 2012).

Fe deficiency can cause a series of problems in fruit

production (Tagliavini et al., 1995; Alvarez-Fernandez et al.,

2003; Hao et al., 2022). Therefore, revealing the sophisticated

mechanism of Fe2+ uptake, transport, and homeostasis in fruit

plants is important for fruit yield and quality. Fe deficiency

affects a variety of physiological and biochemical reactions in the

leaves and roots of fruit plants. One of the most prominent

symptoms in plant is interveinal chlorosis, or veins yellowing,

which leads to a reduced photosynthetic performance of fruit

trees (Curie and Briat, 2003; Hao et al., 2022). About 80% of the

total iron was stored in chloroplasts; although iron is not a

component of chlorophyll, it is an indispensable catalyst for

chlorophyll synthesis (Yang et al., 2022). Previous studies have

shown that the number of thylakoid membranes decreased in

the lamellar structure of the chloroplast under iron deficiency

(TerBush et al., 2013). Roots under iron deficiency can form root

tip swellings or increase lateral roots and/or root hairs

(Morrissey and Guerinot, 2009).

Iron content in plants mainly depends on the uptake and

transport of exogenous iron by roots. In plants, there are two

distinct strategies for root iron uptaking (Ivanov et al., 2012).

Plant species belonging to the dicot and non-graminaceous

monocot lineages use Strategy I, which consists of three steps:

first, proton efflux from plant cells was mediated by the P-type

ATPase to decrease the pH of the rhizosphere soil, which leads to

soil acidification and an increase of iron solubility. Meanwhile,

Fe(III) is also chelated and mobilized by coumarin-family

phenolics exported by an ABC transporter PDR9 from the

cortex to the rhizosphere (Tsai and Schmidt, 2017). Next, Fe

(III) is reduced to Fe(II) by ferric reduction oxidase 2 (FRO2)

localized on the plasma membrane. Third, the divalent iron Fe

(II) was taken up into epidermal cells by metal transporter IRT1

(Eide et al., 1996; Santi and Schmidt, 2009). Subsequently,

nicotianamine synthase (NAS), yellow stripe-like (YSL), and

other transporters helped Fe(II) transport to vacuoles,

chloroplasts, and other organs and organelles for further

utilization (Walker and Connolly, 2008). Strategy II plants

(grasses) synthesize and secrete phytosiderophores (PS) which

form chelates with Fe(III) in roots, and this complex was then

transported into cells by YSL transporters (Curie et al., 2009). In

either way, YSLs play key roles in iron transportation and

acquisition. Multiple copies of YSL genes were found in the

genomes of angiosperm and gymnosperm species (Chowdhury

et al., 2022). AtYSL1, AtYSL3, AtYSL4, and AtYSL6 have been

demonstrated to be involved in the transportation of Fe and Zn

from leaves to seeds through the phloem (Murata et al., 2006;

Ishimaru et al., 2010; Kumar et al., 2019). The expression of

AtYSL2 was downregulated in response to iron deficiency (Zang

et al., 2020). In addition, YSLs have been proposed as

transporters of iron from xylem to phloem and then to young
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tissues (Le Jean et al., 2005; Morrissey and Guerinot, 2009). YSL2

and YSL7 have been found to be associated with the movement

of Fe/Zn-NA complexes to maintain Fe homeostasis in

Arabidopsis (Khan et al., 2018).

HY5 (elongated hypocotyl 5) is a member of the basic

leucine zipper (bZIP) transcription factors, which is known for

its key roles in light reception and transmission (Gangappa and

Botto, 2016; Li et al., 2020). Moreover, HY5 has been shown to

be a positive regulator in nitrate absorption, phosphate response,

and copper signaling pathways (Zhang et al., 2014; Huang et al.,

2015; Chen et al., 2016; Gao et al., 2021). Arabidopsis HY5

mutants contain less chlorophyll content (Oyama et al., 1997;

Holm et al., 2002; Xiao et al., 2022). A recent study has shown

that HY5 can bind the promoter of the FER gene in roots, which

is required for the induction of iron mobilization genes, thus

providing us a new perspective in understanding the regulatory

mechanism of iron uptake in plants (Guo et al., 2021). However,

few studies have reported the correlation of HY5 and chlorophyll

synthesis genes under Fe-deficient conditions. Moreover, no

report has yet been published on the regulative role of HY5 to

YSL iron transporters in response to iron stress in Malus.

Malus baccata has been widely used as a cold-resistant apple

rootstock, especially in Northeast China. However,M. baccata is

sensitive to iron deficiency. In this study, we compared the

physiological characteristics and the transcriptive features of M.

baccata under Fe-sufficient/deficiency conditions in the leaves

and the roots and explored the regulative role of MbHY5 to

chlorophyll metabolic genes and iron transporters (MbYSL).

Our results provide insight into the molecular mechanism of

iron deficiency response in M. baccata.
Materials and methods

Plant material and growth conditions

M. baccata in vitro shoots were cultured on MS medium (0.5

mg/l 6-BA and 0.5 mg/l IBA) for 30 days (Hao et al., 2022). Next,

seedlings (with a height ~5 cm) were transported to the rooting

medium (0.5 mg/l IBA) and cultured for 30 days. Rooted

seedlings were transplanted into an improved-Hoagland

nutrient solution and cultured for 3 weeks. Seedlings were

cultivated at 25 ± 2°C day/21 ± 1°C night with a 16-h day/8-h

night photoperiod.
Measurement of chlorophyll contents
and rhizosphere pH

Seedling leaves grown on Fe-sufficient (+Fe, 40 mM) and Fe-

deficient (-Fe, 0 mM) for 0, 24, 72, and 144 h were sampled,

respectively. Leaves were cut into pieces after cleaning and

removal of the veins. Next, 0.2 g tissues was mixed with quartz
frontiersin.org
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sand, calcium carbonate, and 95% ethanol. The absorbance of

the filtrate was measured using a spectrophotometer (Shimadzu,

Kyoto, Japan) at 663 and 645 nm. The rhizosphere pH was

measured using a pH meter.
FCR activity

FCR activity was determined by the Ferrozine assay. The

roots were first cultivated under +Fe and -Fe conditions for 0, 72,

and 144 h and were then submerged into a chromogenic

medium (0.5 mM ferrozine, 0.5 mM FeNa-EDTA, 0.5 mM

CaSO4, and 0.7% (w/v) agar (Schmidt et al., 2000)) and

incubated in the dark for 1 h. All measurements were

performed at room temperature with a Shimadzu

spectrophotometer (Kyoto, Japan).
Perls staining

Fresh root, stem, and leaf tissues were collected and placed in

a small box (2 cm*2 cm*2 cm), which contains an appropriate

amount of OCT, with tissues submerged by an embedding agent.

Next, the bottom of the box was exposed to liquid nitrogen for

quick freezing. Finally, the embedded blocks were placed on a

freezing microtome for slicing, with continuous slicing of 10~20

mm. Perls staining was conducted using a Prussian Blue Iron

Stain Kit (Solarbio, 60533ES20). Micro-tissues were transferred

into Perls solution and stained for 0.5~1 h, then they were

washed with deionized water and incubated in the methanol

solution (Sun et al., 2020). Imaging was performed with a

volume microscope (BA210, Motic) (Jia et al., 2018).
Fe content

The roots and leaves of the M. baccata seedlings treated

under +Fe and -Fe conditions (see above) at different times were

sampled 1 g for each sample. The samples were first dried at 105°

C for 30 min then were placed at 80°C for 72 h till the samples

were completely dry. Inductively coupled plasma–optical

emission spectrometry was used to determine the active iron

contents (Zheng et al., 2021).
Quantitative real-time PCR and public
RNA-seq data analysis

Total RNA was extracted from the roots of M. baccata

seedlings and was purified using the RNAprep Pure Plant Kit

(TIANGEN, Beijing, China) according to the manufacturer’s

instructions. cDNA was prepared from total RNA using the

HiScript II 1st Strand cDNA Synthesis Kit (+gDNA wiper)
Frontiers in Plant Science 03
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(Vazyme, Nanjing, Chain). The LightCycler® 480 II system

(Roche) was used for the qPCR assay, and the primers are

listed in Supplementary Table 5. The relative expression of each

gene was calculated based on the 2-△△Ct method.

A total of 30 groups of RNA-seq data from a project

(PRJNA598053) was used to analyze the expression pattern of

chlorophyll synthesis and iron transporter genes under Fe

sufficiency and Fe deficiency conditions (0, 24, and 72 h) (Sun

et al., 2020) (https://www.ncbi.nlm.nih.gov/bioproject/

PRJNA598053/ ). Data for the project were downloaded from

the NCBI database, including roots and leaves. The expression

abundance of the leaves and roots genes was calculated using the

FPKM value, and the relative expression level is shown as log2

(fold change) values.
Plasmid construction and GUS
histochemical staining

The full length of the MbHY5-coding sequence was inserted

into the PRI101 (AN) vector. The promoters (upstream ~2 kb)

of MbYSL7 or MbYSL2 were cloned respectively into the

pCAMBIA1391 vector with the GUS reporter (Li et al.,

2021b) . Histochemical GUS staining of Nicot iana

benthamiana leaves was conducted as previously described

(Liu et al., 2002; Sun et al., 2020). The samples were incubated

for 24 h at 37°C. Chlorophyll was removed by washing the

samples with 70% (v/v) ethanol for 2 days. Imaging was

performed with a volume microscope (MZ10F, Leica).
Transient expression

The full length of the MbYSL7-coding sequence was

amplified without the stop codon using the specific primer

pairs (Supplementary Table 5) and was inserted into the

PRI101 (AN) vector with the 35S promoter. In order to

repress the expression of MbYSL7, the pTRV-MbYSL7 vector

was constructed as previously described (Sun et al., 2020; Hao

et al., 2022). The MbYSL7-overexpression and VIGS vectors

were transformed into Agrobacterium tumefaciens cells

(GV3101). Infected apple seedlings were placed in a dark place

for 2 days and then were transferred to normal light conditions

for 1 day. Seedlings grown on Fe-sufficient and Fe-deficient

conditions for 0, 24, 72, and 144 h were sampled and then stored

at -80°C for RNA extraction.
Yeast one-hybrid assay

The full-length MbHY5 CDS sequence was inserted into

pB42AD (AD vector), while the MbYSL7 or MbYSL2 protein-

binding sites (CACGTG) were inserted into pLacZi (BD vector).
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The fusion vectors were transformed into the yeast EYG48 strain

(Li et al., 2021b; Wu et al., 2021).
Phylogenetic tree

Homologous YSL gene sequences of M. domestica, M.

baccata, and Arabidopsis thaliana were aligned using ClustalX

version 2.0 (Jeanmougin et al., 1998). The phylogenetic tree was

constructed in MEGA (version 11) (Tamura et al., 2021) with the

Neighbor-Joining method (bootstrap replicates = 100).
Co-expression gene network analysis

In order to identify key genes involved in Fe deficiency inM.

baccata , chlorophyll synthesis-related genes and iron

homeostasis-related genes were selected, and their expression

patterns under Fe deficiency were investigated based on the

transcriptome data. Subsequently, their co-expressed genes were

predicted using the AppleMDO database (network analysis)

(http://bioinformatics.cau.edu.cn/AppleMDO/) (Da et al.,

2019). Finally, these genes (503 genes in the leave samples and

693 genes in root samples) were selected to construct the co-

expression network using Cytoscape 3.8.0 (Shannon et al., 2003;

Zhao et al., 2017).
Statistical analysis and diagram drawing

Statistical analyses were executed using GraphPad Prism.

The correlation of MbHY5 and chlorophyll synthesis- and roots

iron homeostasis-related genes was calculated using the Pearson

correlation (Lv et al., 2021). All statistical analyses were

performed by one-way ANOVA test, with p ≤ 0.05 considered

as significantly different among different samples. Diagrams

illustrating the mechanism of chlorophyll synthesis and Fe

acquisition were created using BioRender (https://biorender.

com/) (Therby-Vale et al., 2022).
Results

M. baccata leaves and roots are sensitive
to Fe deficiency

The chlorophyll content of M. baccata leaves showed a

continual decrease from 0 to 144 h (Figure 1A) under -Fe

treatments. After 144 h, the rhizosphere pH of -Fe treatment

was lower than that of +Fe treatment, but with no statistically

significant differences (Figure 1B). The results indicated that
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iron deficiency caused lower chlorophyll content in the leaves

and a decrease in rhizosphere pH. Meanwhile, as for the

content of active Fe in the leaves, it decreased from 104 to 42

mg/kg·DW after 144-h Fe deficiency stress. Similarly, its

content in the roots also decreased from 923 to 284 mg/

kg·DW (Figures 1C, D).

We further measured the FCR activity of the roots to better

understand the iron acquisition processes. Fe-deficient roots

showed higher FCR activity in contrast with Fe-sufficient roots

at different treatment times (Figure 1E). Moreover, Perls staining

results showed that tissues (leave, stem, and root) from Fe-

sufficient conditions showed stronger Fe3+ staining than Fe-

deficient ones (Figure 1F). Interestingly, it also showed that Fe

deficiency induces a sharp decrease of Fe3+ in xylem and phloem

(Figure 1F). In conclusion, these results revealed that iron

deficiency induced morphological and biochemical changes in

M. baccata, including decreases in chlorophyll content,

rhizosphere pH, and active iron content in the leaves and roots.
Iron deficiency induced the expression of
chlorophyll synthesis genes in leaves

We hypothesized that the well-known light-responsive gene

HY5 or PIF genes may have participated in the regulation of the

chlorophyll synthesis process (Figure 2A). Indeed, we detected a

series of chlorophyll metabolic genes from RNA-seq analysis

under Fe deficiency, including Glu-tRNA reductase (HEMA),

Glu 1-semialdehyde (GSA), uroporphyrinogen III synthase

(UROS), chlorophyll synthase (CHLG), GUN, Chla oxygenase

(CAO), protochlorophyllide oxidoreductase (PPO), and divinyl

reductase (DVR). The results showed that HEMA1-1,HEMA1-2,

CHLG1-1, CHLI, PPO5, CAO1-2, and CRD1 were highly

expressed in all treatment times (Figure 2B). In contrast, the

gene expressions of DVR, CHLG1-2, CLH1-1, UROS, and CLH

were significantly lower in leaves (Figure 2B). Specially, the

expression levels of PPO3, PPO9, CHLM1-1, CLH1, PPO8,

GUN, GSA1-2, CHLM1-2, HEMA1-3, CAO1-2, CHLG1-1,

and HEMA1-1 were significantly changed under Fe deficiency.

We constructed a gene co-expression network to investigate the

correlation of HY5 or PIF genes and the chlorophyll

biosynthesis-related genes. The results showed that HY5, PIF1,

PIF3, HMEA, GSA, and GUN form a complicated co-expression

network in regulating chlorophyll biosynthesis (Figure 2C;

Supplementary Table 1). Moreover, the expression levels of

HY5 were positively correlated with those of most chlorophyll

biosynthesis-related genes, such as HMEA, GSA1-2, CAO, CHLI,

PPO, and GUN. The Pearson correlation coefficients between

HY5 and these genes ranged from 0.54 to 0.78. In contrast,

UROS, CHLG1-2, DVR, and CLH1-1 were only slightly

correlated or did not correlate with HY5 (Figure 2D).
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A

FIGURE 1

The physiological changes in the leaves and roots of M. baccata seedlings under Fe-deficient and Fe-sufficient conditions. (A) Chlorophyll
concentration in leaves. (B) Rhizosphere pH in roots. (C) Fe content in leaves. (D) Fe content in roots. (E) Chlorosis extent in leaves and
corresponding FCR activities in roots under 0, 72, and 144 h (scale bar: 0.5 cm). (F) Perls staining of different tissues, including leaf, stem, and
root (scale bar: 100 mm). Asterisks indicate statistically significant differences (**p < 0.01). Error bars denote ± SD (biological replicates = 3).
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Analysis of the expression profiles of
Strategy I-related genes under
iron deficiency

Under iron deficiency conditions, Malus baccata, similar to

other dicots, use Strategy I to acquire Fe in roots. We summarized

the key genes reported in transferring and regulating Fe2+

transportation from the rhizosphere into root cells, including

AHA2, FRO2, PDR9, IRT1, bHLH100/101, OPT3, and FIT (Ito

and Gray, 2006; Satbhai et al., 2017; Khan et al., 2018; Lv et al.,

2021; Pei et al., 2022) (Figure 3A). Under Fe deficiency, most of

these genes were highly induced in roots, especially for PDR1,

HY5, YSL7, FDR2, and FER genes (Figure 3B).
Frontiers in Plant Science
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In order to analyze the regulatory network of iron homeostasis

genes in roots, a total of 693 iron homeostasis-related genes in

roots were selected to construct the co-expression network,

and the results showed that MbHY5–bHLH04–FIT–FRO2

constructed the biggest module, indicating that MbHY5

plays an essential role in regulation iron homeostasis in

roots (Figure 3C; Supplementary Table 2). Pearson

correlation analysis further showed that iron homeostasis-

related genes differentially expressed in root under Fe

deficiency were significantly positively related with MbHY5,

including OPT3, PDR1, bHLH104, YSL, and AHA10

(Figure 3D). The correlation coefficients ranged from 0.45 to

0.78 (Figure 3D).
B

C D

A

FIGURE 2

MbHY5 was associated with the chlorophyll synthesis genes in the leaves under Fe deficiency. (A) The assumption model of the MbHY5 gene
participating the regulation of chlorophyll synthesis. Ovals represent chlorophyll biosynthesis-related genes. HEMA: glutamyl-tRNA reductase,
GSA: glutamate-1-semialdehyde 2,1-aminotransferase, CHLH, Mg-chelatase, CHLM, Mg-protoporphyrin IX methyltransferase, CRD, Mg-
protoporphyrin IX monomethylester cyclase; DVR, divinyl chlorophyllide a 8-vinyl-reductase; CAO, Chla oxygenase; CHLG, chlorophyll
synthase; PPO, protochlorophyllide oxidoreductase. The model was drawn by BioRender (https://biorender.com/ ). (B) The heatmap showing
the expression of chlorophyll biosynthesis-related genes in Fe-deficient conditions. (C) The co-expression network of HY5/PIF and chlorophyll
biosynthesis-related genes. (D) Pearson correlation coefficients between MbHY5 and chlorophyll biosynthesis-related genes.
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MbHY5 directly promotes the expression
of MbYSL7 in response to Fe deficiency

We found that the expressions of YSL2 and YSL7 were highly

related to HY5 (r = 0.7693 and 0.7119, respectively, Pearson

correlation) (Figure 4A). The phylogenetic tree showed that each

of the apple YSL genes clustered with its closely related

homologous genes in Arabidopsis (Figure 4B). Previous studies

have shown that HY5 can bind to the promoters of SlFER and

AtBTS and induce the expression of a series of iron-uptaken

genes under iron-deficient conditions (Guo et al., 2021;

Mankotia et al., 2022).

A G-box (CACGTG) element was found in each of the

promoters of MbYSL2 and MbYSL7, which allows HY5 binding

(Figure 4C). Y1H analysis showed that MbHY5 can directly bind

to the promoter of MbYSL7, but not that of MbYSL2

(Figure 4D). Transient transformation of tobacco leaves with
Frontiers in Plant Science 07
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proMbYSL7:GUS showed lower GUS activity than co-

transformation with 35S:MbHY5 (Figures 4E, F). Similarly, co-

transformation of 35S:MbHY5 and proMbYSL2:GUS showed

slightly higher GUS activity than the transformation of

proMbYSL2:GUS only (Figures 4E, F). In conclusion, these

data suggested that MbHY5 functions as a positive and direct

regulator of MbYSL7.
Expression of MbYSL7 in transient
transgenic apple seedlings

To further investigate whether MbYSL7 was involved in

regulating Fe deficiency responses in apple, we made transient

transformed lines of apple seedlings with overexpression vector

and VIGS vector, respectively. As we can see, compared with the

control line, the expression levels of MbYSL7 were highly induced
B

C D

A

FIGURE 3

MbHY5 is related with Fe acquisition and transportation-related genes in roots in Fe-deficient conditions. (A) A model showing the acquisition
and transportation of Fe in the roots of dicot plants under Fe deficiency. Ovals represent Fe homeostasis-related genes. (B) The heatmap
showing the expression levels of the Fe homeostasis-related genes. (C) The co-expression network of HY5 and iron responsive genes in roots.
(D) Pearson correlation coefficients between MbHY5 and Fe homeostasis-related genes.
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in the transient transformed apple seedling lines of 35S:MbYSL7-1,

-2, and -3 (Figure 5A). Under –Fe treatment, the expressions of

MbYSL7 and MbHY5 were highly increased in MbYSL7

overexpression lines, compared with the control lines

(Figure 5B). The expression of MbYSL7 was greatly reduced in
Frontiers in Plant Science 08
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pTRV : MbYSL7-1 (Figure 5C). Specifically, the expression of

MbYSL7 slightly increased at the 144-h -Fe treatment, compared

with that of the 72-h treatment. In comparison, the expression level

of MbHY5 was lowest at the initial -Fe treatment but greatly

induced from 24 h onward (Figure 5D). Similar to MbHY5, we
B

C D

E F

A

FIGURE 4

MbHY5 regulates MbYSL7 under Fe deficiency. (A) Pearson correlation coefficients of MbHY5 and YSL family genes. (B) The phylogenetic tree of
the YSL proteins in three species, including Arabidopsis, M. baccata, and M. domestica. (C) Putative HY5-binding site (G-box) was found in the
promoter region of MbYSL7 and MbYSL2, respectively. (D) Y1H assay. Coding sequence of MbHY5 was inserted into pB42AD while the promoter
region of MbYSL7 or MbYSL2 was inserted into pLacZi, respectively. (E, F) GUS staining and GUS enzyme activity of transient transformations of
tobacco leaves (scale bar = 1 cm); gene constructs used for the transformations were labeled. Error bars indicate SDs (biological replicates = 3),
asterisks indicate statistically significant differences (*p < 0.05, **p < 0.01).
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found that MbYSL7 was positively related with chlorophyll

synthesis-related genes as well, including PPO5, GSA1-2, and

HEMA (Supplementary Table 3). In addition, we observed that

MbYSL7 positively correlated withmost of Fe homeostasis genes in

root either, such as AHA10, bHLH104, and PDR2; the correlation

coefficients ranged from 0.40 to 0.92 (Supplementary Table 4).

Discussion

In plants, iron deficiency leads to chlorosis caused by a

reduced chlorophyll biosynthesis (Li et al . , 2021a).
Frontiers in Plant Science 09
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Chlorophyll content decreased dramatically in chlorosis

leaves under Fe deficiency (Figure 1), which is in agreement

with the findings in citrus and grapes (Chen et al., 2004; Jin

et al., 2017). Iron deficiency increased ferric chelate reduction

(FCR) activity and decreased the rhizosphere pH of the apple

roots (Figure 1). Also, we observed a reduction of active Fe

content in the leaves and roots under iron deficiency. Perls

staining is a reliable chemical method to stain the iron

trivalent in tissues; ferric iron reacts with potassium

ferrocyanide and generates blue insoluble compounds (Lv

et al., 2021; Hao et al., 2022). Under Fe deficiency, a lower
B

C D

A

FIGURE 5

Expression of MbHY5 in transient transgenic M. baccata seedlings overexpressing or silencing MbYSL7. (A) Relative expression levels of MbYSL7
in transgenic lines overexpressing MbYSL7. (B) Relative expression levels of MbYSL7 and MbHY5 in the roots of the overexpression lines under Fe
deficiency. (C) Relative expression levels of MbYSL7 in transgenic lines silencing MbYSL7. (D) Relative expression levels of MbYSL7 and MbHY5 in
the roots of the overexpression lines under Fe deficiency. Error bars indicate SDs (biological replicates = 3), asterisks indicate statistically
significant differences (*p < 0.05, **p < 0.01).
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ferric iron content was observed compared to that of the Fe-

sufficient treatment (Figure 1).

HY5 has been found to be involved in the metabolism of

nitrogen (N), phosphorus (P), copper (Cu), sulfur (S), etc.
Frontiers in Plant Science 10
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(Zhang et al., 2014; Gangappa and Botto, 2016; Yang et al.,

2020; Gao et al., 2021). In Arabidopsis, HY5 regulates the

expression of key nitrogen signaling genes including NIA1,

NIR1, NRT1.1, NRT2.1, and AMT1;2 (Jonassen et al., 2008;
FIGURE 6

A model depicting MbHY5 as an important regulative transcription factor by regulating chlorophyll synthesis-related genes in the leaves, and Fe
acquisition and transportation-related genes in the roots under Fe deficiency.
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Jonassen et al., 2009; Yanagisawa, 2014; Chen et al., 2016; Xiao

et al., 2022). In apple, NIA2 and NRT1.1 were positively

regulated by HY5 in promoting nitrate assimilation (An

et al., 2017). Nevertheless, few studies have reported its

function in Fe uptake and homeostasis. In Arabidopsis, HY5

regulates BTS in response to Fe deficiency. Similar results were

also found in tomato, in which the HY5-FER pathway could be

involved in Fe metabolism (Guo et al., 2021; Mankotia et al.,

2022). In the present study, we firstly found that MbHY5 was

significantly changed in M. baccata under Fe deficiency. HY5

plays essential roles in photosynthetic pigment synthesis in

light responses (Liu et al., 2017; Liu et al., 2020). It regulates the

expression of chlorophyll-related genes in leaves, including

HEMA1, GUN4, CAO, PORC, and CHLH (Toledo-Ortiz et al.,

2014; Job and Datta, 2021). In addition, HY5 can regulate the

genes involved in maintaining iron homeostasis, such as FRO2,

FIT, IRTI, and PYE in roots (Mankotia et al., 2022). Further

analysis found that MbHY5 participated in the regulation of

chlorophyll synthesis in the leaves and iron acquisition in the

roots under iron deficiency (Figures 2 and 3). Our results

enriched the regulatory mechanism of HY5 in plants in

response to Fe deficiency.

YSL genes have been found to participate in plant metal

uptake, such as Cu and Fe (Ishimaru et al., 2010; Zheng et al.,

2012; Dai et al., 2018). In Arabidopsis, AtYSL1-3 and AtYSL6-8

were responsive under Fe deficiency conditions; among them,

some were characterized as long-distance signaling media or Fe

(II)-NA transporters (Waters et al., 2006; Castro-Rodriguez

et al., 2021). Previously, MtYSL7, AtYSL7, and GmYSL7 were

identified and characterized as peptide transporters without

further functional annotation (Castro-Rodriguez et al., 2021;

Gavrin et al., 2021). Our results suggested that MbYSL7 plays

an important role under Fe deficiency. Interestingly as

evidenced by our Y1H and the transient co-transformation

assays, MbYSL7 was positively regulated by MbHY5. Overall,

we propose that MbHY5-YSL7 was involved in regulating the

genes involved in chlorophyl l synthes is and iron

transportation, in both the leaves and the roots, to alleviate

iron deficiency-caused chlorosis and to promote Fe

transportation (Figure 6).
Conclusion

Contrasting differences of chlorophyll content and the

concentration of active iron were observed under +Fe and -Fe

conditions in M. baccata. We propose that MbHY5 functions as

a vital transcription factor in regulating chlorophyll synthesis

and Fe transportation. Lastly, MbHY5 directly regulates the

expression of MbYSL7 in roots under Fe deficiency.
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Multi-trait selection for mean
performance and stability of
maize hybrids in mega-
environments delineated
using envirotyping techniques

Haiwang Yue1†, Tiago Olivoto2†, Junzhou Bu1, Jie Li1,
Jianwei Wei1, Junliang Xie1, Shuping Chen1, Haicheng Peng1,
Maicon Nardino3† and Xuwen Jiang4*

1Hebei Provincial Key Laboratory of Crops Drought Resistance Research, Dryland Farming Institute,
Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China, 2Department of Plant
Science, Center of Agrarian Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil,
3Department of Agronomy, Federal University of Viçosa, Viçosa, MG, Brazil, 4Maize Research
Institute, Qingdao Agricultural University, Qingdao, China
Under global climate changes, understanding climate variables that are most

associated with environmental kinships can contribute to improving the success

of hybrid selection,mainly in environments with high climate variations. Themain

goal of this study is to integrate envirotyping techniques andmulti-trait selection

for mean performance and the stability of maize genotypes growing in the

Huanghuaihai plain in China. A panel of 26maize hybrids growing in 10 locations

in two crop seasons was evaluated for 9 traits. Considering 20 years of climate

information and 19 environmental covariables, we identified four mega-

environments (ME) in the Huanghuaihai plain which grouped locations that

share similar long-term weather patterns. All the studied traits were

significantly affected by the genotype × mega-environment × year interaction,

suggesting that evaluating maize stability using single-year, multi-environment

trials may provide misleading recommendations. Counterintuitively, the highest

yields were not observed in the locations with higher accumulated rainfall,

leading to the hypothesis that lower vapor pressure deficit, minimum

temperatures, and high relative humidity are climate variables that –under no

water restriction– reduce plant transpiration and consequently the yield. Utilizing

the multi-trait mean performance and stability index (MTMPS) prominent hybrids

with satisfactory mean performance and stability across cultivation years were

identified. G23 and G25 were selected within three out of the four mega-

environments, being considered the most stable and widely adapted hybrids

from the panel. The G5 showed satisfactory yield and stability across contrasting

years in the drier, warmer, and with higher vapor pressure deficit mega-

environment, which included locations in the Hubei province. Overall, this

study opens the door to a more systematic and dynamic characterization of
frontiersin.org01
21

https://www.frontiersin.org/articles/10.3389/fpls.2022.1030521/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1030521/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1030521/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1030521/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1030521/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1030521&domain=pdf&date_stamp=2022-11-14
mailto:Xuwen.Jiang@rhul.ac.uk
https://doi.org/10.3389/fpls.2022.1030521
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1030521
https://www.frontiersin.org/journals/plant-science


Yue et al. 10.3389/fpls.2022.1030521

Frontiers in Plant Science
the environment to better understand the genotype-by-environment interaction

in multi-environment trials.
KEYWORDS

maize hybrid, mega-environment delineation, genotype-environment interaction,
climatic variables, MTMPS
1 Introduction

Maize (Zea mays L.) is an annual herb belonging to the grass

family Poaceae in botanical classification. With its high-yielding,

diverse uses, and wide adaptability, maize has surpassed rice

(Oryza sativa L.) and wheat (Triticum aestivum L.) as the most

important cereal crop in the world (Haarhoff and Swanepoel,

2018). If the world population grows to 10 billion, it will need

70% more food than can be accomplished today (Hickey et al.,

2019). Maize is estimated to account for more than half of future

cereal demand growth. Thus, there is a huge stream of

innovation for maize breeders when trying to significantly

increase maize productivity in an environmentally sensitive

way (Yan and Tan, 2019). Since 2013, maize has become the

largest crop in China in terms of planting area and production.

China’s maize planting area has exceeded 37 million hectares,

with a total production of more than 215 million tons,

accounting for one-quarter and one-fifth of the world’s maize

area and production, respectively (Hou et al., 2020).

Maize production is divided into springmaize, summermaize,

and autumn maize according to the growth period in China. The

Huanghuaihai (HHH) plain (Figure 1) is the largest concentrated

summer maize planting area in China, accounting for 31.86% and

30.68%of the country’s total area and yield, respectively (Zhai et al.,

2022). The meteorological conditions in the HHH plain are

complex, often encountering high temperatures, heat damage,

cloudy rain and lack of sunshine, and the invasion of various

diseases, which make maize yields vary greatly from year to year

(Wang et al., 2020; Shi et al., 2021; Yue et al., 2022b).

Unencouraging climate change projections suggest that the

temperature increase might be a key factor affecting the drought

risk in HHH (Yue et al., 2022c). This may put at risk the breeding

efforts that generated maize hybrids for this area and increase the

challenges of breeding programs that aim to release new hybrids

(Rizzo et al., 2022). Therefore, there is an urgent need to better

understand the genotype-by-environment interaction (GEI) in this

region to develop and improve climate-resilientmaize hybrids that

are thoroughly evaluated in different locations and years/seasons

before release. This can be one of the most effective ways for

increasing maize production in HHH under new challenges from

climate change. In this context, identifyingclimate-related variables

that are most associated with the variations of hybrids within
02
22
environments is crucial for defining management and/or

selection strategies for breeding new summer maize hybrids in

the HHH plain region (Yue et al., 2021).

Although the challenge of developing abiotic stress-tolerant

maize hybrids has generated a large literature, most practical

breeding efforts have also focused on breeding for genetic

variation, heritability for grain yield progress under favorable

conditions (Bänziger et al., 2006; Fischer and Edmeades, 2010).

Grain yield and its components are very complex agronomic

traits influenced by genotype (G), environment (E), and their

interactions (GEI). The GEI makes the genotype-to-phenotype

relationship environment-dependent, which makes the selection

of widely adapted hybrids more difficult (Ebdon and Gauch,

2002) and occurs due to the differential response of a given

genotype to a given environment stimulated by both biotic,

abiotic, or an interaction between them (Nardino et al., 2022). In

maize, for example, high temperatures (> 35°C) during flowering

generate a cascade effect that starts with the reduction of

RuBPCase activity by downregulating genes Zm0001d052595

and Zm0001d004894 which limited photosynthesis and

consequently affects maize growth and development (Niu

et al., 2021). As a consequence, maize grain yield (GY) is

reduced mainly by reducing kernel number per ear, a process

associated with carbohydrate metabolic disorders, where a lower

carbohydrate availability leads to kernel abortion under post-

pollination heat stress conditions (Dong et al., 2021; Niu et al.,

2021). Therefore, even if the two environments are strictly

similar (e.g., in terms of soil fertility, average temperatures,

and rainfall precipitation), extreme events can affect the plants

differently, mainly depending on the crop stage they occur.

The correct interpretation of GEI effects in multi-

environment trials (METs) can help to select genotypes with

high-yielding and stable under different environmental

conditions, and even select special genotypes for a certain

environment (Vaezi et al., 2019; Alizadeh et al., 2022). During

breeding practice, breeders often measure many traits related to

yield and are faced with the problem of selecting stable and

superior genotypes based on multiple traits. The multi-trait

stability index (MTSI) has been successfully used for selecting

superior genotypes based on multiple traits (Koundinya et al.,

2021; Singamsetti et al., 2021; Farhad et al., 2022; Lima et al.,

2022; Padmaja et al., 2022), and has a tremendous potential to
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combine morpho-physiological and yield traits aiming at

selecting hybrids under optimal and stress conditions (Balbaa

et al., 2022).

Identifying hybrids that rise to the top in terms of multiple

criteria from a set of evaluation sites is important but does not

contribute significantly to new insights into maize evaluation

research. Choosing an ideal genotype (stable across all

environments) may ignore specific adaptations, mainly under

the climate changes in view (Lopes et al., 2015). Therefore,

identifying mega-environments that include locations that share

similar long-term weather patterns can be an alternative to

better explore the GE interaction in favor of better selection

gains, mainly in a region/environment with high variations

among the locations/seasons (Costa-Neto et al., 2021a).

In this sense, the main goal of this study is to use

envirotyping techniques to delineate mega-environments

across the Huanghuaihai plain in China, and to select superior

hybrids within each mega-environment that are stable across the

cultivation years based on multi-trait. Overall, this study

provides new insights into a more systematic and dynamic

characterization of the test environments, helping breeders to

make better strategic decisions toward an effective multivariate

selection in maize breeding programs.
2 Materials and methods

2.1 Plant materials, locations, and
experimental design

The experimental material consisted of 26 maize genotypes

including one local check hybrid, Zhengdan 958 (Table 1). This

study was carried out in ten environments (Figure 1) across five
Frontiers in Plant Science 03
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provinces ranging from middle temperate zone to the warm

temperate zone, at an elevation from 18 to 235 m above mean

sea level spreading across the states of Hebei, Shandong,

Anhui, Henan, and Hubei during 2019-2020. The field

experiment used a randomized complete block design with

three replicates. The seeds of each tested genotype were

provided by Dryland Farming Institute, Hebei Academy of

Agriculture and Forestry Sciences, and healthy and coating

seeds were selected for this study before sowing. The plot at

each location was composed of 5 rows with 0.6 m spacing

between rows, and the area of each plot had 20.1 m2 in size. The

planting density of each genotype was strictly controlled at 7.5

plants m-2, and the field management applied during the

experiment was similar to the management practiced

by farmers.
2.2 Morphological data recording

A total of 9 yield-related agronomic traits were recorded in

this study. Agronomic traits viz., grain yield (GY, t ha-1) was

manually harvested from the middle three rows, adjusting the

moisture to 14% and converting the unit to tons per hectare;

grain moisture content (GMC, %), measured from each plant at

each plot; plant height (PH, cm), measured from the base of the

root to the top of the tassel; ear height (EH, cm), measured from

the base of the root to the stalk of the ear; ear length (EL, cm),

measured from the line up 10 ears, and dividing the data

obtained by 10; ear row (ER), counting the total number of

rows in each ear; bare tip length (BTL, cm), measured from the

top part with no grains (if any) to the part with grains; grain

weight per ear (GWE, g) and 100-seed weight (HSW, g) (Yue

et al., 2022a).
FIGURE 1

Geographical information of the 10 test locations for the trials conducted during 2019 and 2020. The ellipses show the four delineated mega-
environments (ME) based on long-term (20 years) climate information.
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2.3 Statistical Analysis

2.3.1 Mega-environment delineation
Aiming at defining mega-environments with a similar long-

term pattern of climate characteristics, we used the function

get_wheater() function from the R package EnvRtype (Costa-

Neto et al., 2021b) to download a 20-year (2001-2020), daily-

basis weather data for 19 environmental covariables (EC)

(Table 2). For each year, we considered the period between May

and October, which cover the maize growing season in the studied

locations. EnvRtype is a very practical package that downloads and

processes remote weather data from “NASA’s Prediction of

Worldwide Energy Resources” (NASA/POWER, https://power.

larc.nasa.gov/). Experimental results show that NASA/POWER

can be used as a source of climatic data for agricultural activities

with reasonable confidence for regional and national spatial scales

(Monteiro et al., 2018). A correlation analysis between

NASA/POWER data and observed data at Shenzhou location

(Supplementary Figure S1) showed a high concordance for

temperature variables and sunshine duration (r > 0.91, P< 0.01),

and relativehumidity (r=0.88,P<0.01). For rainfall precipitation, a

lower agreement (r > 0.54, P< 0.01) was observed. For the
Frontiers in Plant Science 04
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accumulated rainfall precipitation, NASA/POWER tended to

overestimate the real observed precipitation.

The 19ECobserved in each locationwere used to create the called

envirotype covariable matrix W that was further used to compute

environmental kinships using the function W_matrix() of the

EnvRtype package (Costa-Neto et al., 2021b) as proposed by (Costa-

Neto et al., 2021a). To better capture the temporal variation of the

environmental information across months of the year, six monthly

periods were considered (May-October). Therefore, each one of the

2280 variables (20 years × 19 variables × 6 periods = 2280) has become

an envirotype descriptor of environmental relatedness. Finally, quality

control was done by removing covariables that exceeded ±3SD, where

SD is the standard deviation of the covariables across environments

(Costa-Neto et al., 2021a). Then, using the W (10 rows × 2280

columns) matrix, we calculated an enviromic kernel (equivalent to a

genomic relationship), using the function envkernel() of theEnvRtype

package (Costa-Neto et al., 2021b), as follows:

KE =  
WW 0

trace WW 0ð Þ=nrow Wð Þ
where KE is the enviromic-based kernel for the similarity

between environments and W is the matrix of envirotype
TABLE 1 Basic information of the 26 tested maize hybrids.

Code Genotype Parentage Plant height (cm) Ear height (cm) Origin Maturity Input requirements

G1 Xianyu335 PH6WC×PH4CV 286 103 Liaoning Medium High

G2 Hengyu1702 H1027×HC705 255 98 Hebei Medium Medium

G3 Hengyu7182 H103×H102 245 87 Hebei Early Low

G4 Jiuheng517 H103×H92 243 78 Hebei Early Low

G5 Huanong138 B105×J66 281 102 Beijing Medium High

G6 Hengyu1587 H58×H59 254 101 Hebei Medium Medium

G7 Denongli988 Wan73-1×M518 280 120 Shandong Late High

G8 Xundan29 X313×X66 258 117 Henan Medium High

G9 Hengyu7188 HB4×H88 260 97 Hebei Medium Low

G10 Hengyu321 H14×H13 275 115 Hebei Medium Medium

G11 Hengyu1182 H11×H82 268 109 Hebei Early Low

G12 Heng110 H58/H59 242 82 Hebei Early Low

G13 Liyu16 953×L91158 264 123 Hebei Late High

G14 Denghai662 DH371×DH382 272 98 Shandong Late Medium

G15 Heng9 H1027×H765 244 79 Hebei Early Medium

G16 Zhengjie1 L112×Lx9801 259 92 Shandong Medium High

G17 Nongle988 NL278×NL167 250 113 Henan Late High

G18 Lianchuang5 CT07×Lx9801 270 106 Henan Early High

G19 Tunyu808 T88×T172 253 110 Tianjin Medium High

G20 Zhengdan958 Z58×C7-2 250 110 Henan Late Low

G21 Meiyu5 758×HC7 255 107 Henan Early Medium

G22 Lile66 C28×CH05 270 108 Henan Late High

G23 Liyu86 L5895×L5012 267 114 Hebei Medium High

G24 Hengdan6272 H462×H72 261 126 Hebei Medium Medium

G25 Weike702 WK858×WK798-2 252 107 Henan Late High

G26 Shengrui999 S68×S62 250 107 Henan Medium Medium
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descriptors. To identify mega-environments, a hierarchical

clustering (average method) was applied to KE .

Finally, to visually understand the relationships between

environmental variables and their association with the location

study, we conducted a Principal Component Analysis (PCA)

with a two-way table with the average values for the

environmental variables (columns) for each location (rows).

A biplot was produced with the function fviz_pca_biplot()

from the R package factoextra (Kassambara and Mundt, 2020).

2.3.2 Environmental typology of the trials
To characterize the climate data observed during the

experimental period, we used the function env_typing() of the R

package EnvRtype to create environmental typologies based on

quantilic limits of the 19 EC (Table 2) collected between the sowing

andharvestingofeachtrial.Tobettercapture the temporalvariationof

the environmental information across crop development, the crop

cycles were divided into five main phenological stages in days after

sowing (DAS): 0-14 (Initial growing); 15-35 DAS (leaf expansion I,

V4-V8); 36-65 DAS (leaf expansion II, V8 - VT); 66-90 DAS

(flowering); and 91-120 (grain filling). For each YEAR-ME-stage

combination, frequency distributionswere computed considering the

quantiles 0.01, 0.25, 0.50, 0.75, 0.975, and 0.99; with this, extreme

values (e.g., high temperatures) can be identified.

2.3.3 Variance component analysis
To estimate the effect of the respective influences of ME and

year on the genotype behavior, for each trait we fitted a linear

random-effects model (only intercept as fixed) was fitted using
Frontiers in Plant Science 05
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the lmer() function from the lme4 R package (Bates et al., 2015),

according to the following model:

yijkn = m + Gi +Mj + Yk + GMij + GYik +MYjk + GMYijk

+ REPn j : kð Þ + ϵijkn

where yijkn is the trait scores of i-th genotype observed in the

n-th replicate, which is nested within the j-th mega-environment

of the k-th year; m is the grand mean; Gi , Mj , and Yk are the

main effects of genotype, mega-environment, and year; GMij is

the interaction effect of genotype and mega-environment; GYik is

the interaction effect of genotype and year; MYjk is the

interaction effect of mega-environment and year; GMYijk is the

interaction of genotype, mega-environment, and year; REPn(j:k)
is the effect of the replicate n (assumed to be the combination of

location and blocks) nested within the mega-environment and

year; and ϵijkn is the random error associated to yijkn . Variance

components and genetic parameters were estimated using

Restricted Maximum Likelihood, REML (Dempster et al.,

1977). Significance testing for random effects was done by the

likelihood ratio test (LRT) comparing a complete model (with all

terms) and a model without the term under test. The broad-

sense heritability on a genotype-mean basis (H2) was computed

as the ratio between genotypic variance (s2
G) and variance of a

genotype mean (s2
P), as follows (Yan, 2014; Schmidt et al., 2019).

H2 =
s2
G

s2
P
=

s2
G

s2
G +

s2
GY
K +

s2
GM
J +

s2
GMY
JK + s2

ϵ

oK
k=1

N

TABLE 2 List of environmental covariables used in the study.

Source Environmental factor Unit

Nasa POWERa Insolation Incident on a Horizontal Surface MJ m−2 day−1

Downward Thermal Infrared (Longwave) Radiative Flux MJ m−2 day−1

Extraterrestrial radiation MJ m−2 day−1

Wind speed at 2 m above the surface of the earth m s−1

Minimum air temperature at 2 above the surface of the earth °C day −1

Average air temperature at 2 above the surface of the earth °C day −1

Maximum air temperature at 2 above the surface of the earth °C day −1

Dew-point temperature at 2 m above the surface of the earth °C day −1

Relative air humidity at 2 above the surface of the earth %

Rainfall precipitation mm day −1

Calculatedb Temperature range °C d−1

Potential Evapotranspiration mm d−1

Deficit by precipitation mm d−1

Vapor Pressure Deficit kPa d−1

Slope of saturation vapor pressure curve Kpa °C d−1

Effect of temperature on radiation-use efficiency –

Growing Degree Day °C day−1

Actual duration of sunshine hour

Daylight hours hour
fr
aEstimated from NASA orbital sensors (Sparks, 2018); b processed using concepts from Allen et al. (1998) and Soltani and Sinclair (2012).
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Where J, K, and N are the numbers of mega-environments,

years, and combinations of location/blocks, respectively. s2
G,  

s2
GY ,  s2

GM , and s2
GMYare the variances of GEN, GEN×YEAR

interaction, GEN×ME interaction, and the GEN×YEAR×ME

interaction, respectively; s2
ϵ is the residual variance. An H2

close to 1 means that any observed differences among the

genotypic effects are completely due to genetic differences; On

the other hand, an H2 close to 0 means that observed genotypic

differences, are due to either genotype-by-environment

interactions or experimental errors (Yan, 2014). Finally, we

compute the accuracy (Ac) as follows:

Ac   =
ffiffiffiffiffiffi
H2

p

Both the percentage of the variance of phenotypic mean

values (considering each term of the random-effect model) and

the percentage of the variance of a genotype mean (contribution

of each component to the s2
P) were presented as filled bar plots.

2.3.4 Mean performance and stability of
single trait

Genotype selection was performed within each delineated

ME aiming at selecting genotypes that combine desired

performance within the ME and are stable across years; such a

genotype would be desired by both farmers and breeders. First,

for each ME, the average performance of the I genotypes in the K

years (�Yik) was computed. Then, the Wricke’s Ecovalence (Wi )

was used as a measure of the genotypic stability across the years

and was computed as follows:

Wi = o
K

k=1

�Yik − �Yi : − �Y: k + �Y::ð Þ

Genotypes with low values of Wi have smaller deviations

from the mean across years being then more stable. To account

for both mean performance and stability (MPSi) of genotypes,

we adapted the concept of the WAASBY index, which is based

on the weighted average of absolute scores from the singular

value decomposition of the matrix of best linear unbiased

prediction (BLUP) for the GEI effects generated by a linear

mixed-effect model (LMM) and response variable (Olivoto et al.,

2019a), by replacing the weighted average of absolute scores

(WAASB) with Wi as stability measure, since to compute

WAASB at least two Interaction Principal Component Axes

are needed. The MPSi was computed as follows:

MPSi =
rYi � qYð Þ + rWi � qsð Þ

qY + qs

where MPSi is the superiority index for genotype i that

weights between mean performance and stability; qY and qs are
the weights for mean performance and stability, respectively; rYi

and rWi are the rescaled values for mean performance Yi and

stability (Wi) , respectively of the genotype i. Here, we used

qY=70 and qs=30 to account for a higher weight for mean
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performance, since selecting highly stable hybrids that do not

perform well is not desired. The rescaled values were computed

as follows:

rYi = rWi =
nma − nmi
oma − omi

� oi − omað Þ + nma

where nma and nmi are the new maximum and minimum

values after rescaling; oma and omi are the original maximum

and minimum value, and oiis the original value for the response

variable (or ecovalence value) for the genotype i. ForWi and the

traits GMC, PH, EH, and BTL in which lower values are desired,

we used nma = 0 and nmi = 100. So, the genotype with the lowest

mean and lowest Wi would have rYi =100 and rWi =100 after

rescaling. For, GY, EL, ER, GWE, and HSW in which higher

values are desired, we used nma = 100 and nmi = 0. After

rescaling all the traits, a two-way table rMqp with q rows

(genotypes) and p columns (traits) was created. In rMqp, each

column has a 0–100 range that considers the desired sense of

selection (increase or decrease) and maintains the correlation

structure of the original set of variables (Olivoto and Nardino,

2021). Additionally, to show how the ranking of genotypes is

altered depending on the weight for mean performance and

stability, for each ME we planned 21 scenarios changing the qY/
qs ratio, as follows: 100/0, 95/5, 90/10,…, 0/100. To assist with

intuitive interpretation, a heat map graph was produced. To

compute these indexes we used the function mps() and wsmp()

of the R package metan (Olivoto and Lúcio, 2020).
2.3.5 Mean performance and stability of
multiple traits

To account for the mean performance and stability of

multiple traits, we used the function mgidi() of the metan R

package to compute the multi-trait mean performance and

stability index (MTMPS). The MTMPS is based on the

concept of the Multi-trait stability index, MTSI (Olivoto et al.,

2019b). The only difference between MTMPS and the MTSI is

that in this study the MTMPS was computed considering the

Wricke’s Ecovalence (Wi ) rather than the WAASB index. First,

an exploratory factor analysis was computed with rMqp to group

correlated variables into factors and compute the factorial scores

for each genotype, as proposed by Olivoto and Nardino (2021):

X = m + Lf + ϵ

where X is a p×1 vector of rescaled observations; m is a p×1

vector of standardized means; L is a p×f matrix of factorial

loadings; f is a p×1 vector of common factors; and e is a p×1

vector of residuals, being p and f the number of traits and

common factors retained, respectively. Initial loadings were

obtained considering only factors with eigenvalues higher than

one. After varimax rotation criteria (Kaiser, 1958) final loadings

were obtained and were used to compute the genotype scores, as

follows:
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F = Z ATR−1� �T

where F is a q×f matrix with the factorial scores; Z is a q×p

matrix containing the standardized (zero mean and unit

variance) rMqp; A is a p×f matrix of canonical loadings, and R

is a p×p correlation matrix between the MPS values. q , p , and f

represent the number of genotypes, traits, and retained

factors, respectively.

Considering the rescaled values in rMqp, the ideotype would

be the genotype that presents 100 for all analyzed traits; in other

words, is the one that has the better performance and stability for

all the analyzed traits. Thus, the ideotype was defined by a (1×p)

vector I such that I=[100,100,…,100] . The genotype ranking

was based on the Euclidean distance computed with the scores of

each genotype to the score of the ideotype, as follows:

MTMPSi = of
j=1(Fij − Fj)

2
h i0:5

Where MTMPSi is the multi-trait mean performance index

of the ith genotype, Fij represents the jth scores of the ith

genotype, Fj represents the jth scores of the ideotype. The

genotypes with the lowest MTMPS values were closer to the

ideotypes and thus showed high mean performance and better

stability in the evaluated traits.
2.3.6 Selection differentials
For each mega-environment, we assumed a selection

intensity of ~23% (six selected hybrids). The selection

differential in the percentage of population mean (DS%) was

then computed for each trait as follows:

DS% = (Xs − Xo)=  Xo � 100

Where Xs and Xo are the mean phenotypic value of the

selected genotypes and population mean, respectively.

2.3.7 Statistical software
All statistical analyses in this study were performed using the

R software 4.1.0 (R Core Team, 2022) with the packages and

functions mentioned in each method.
3 Results

3.1 Environmental kinships and typology

3.1.1 Historical data
Based on 20 years of climate information considering 19

environmental covariables, four mega-environments (ME) were

delineated (Figure 2). The ME1 included only one location

(Yicheng). The ME2 included Suixi, Jieshou, and Nanyang.

The ME3 included Handan, Gaocheng, Shenzhou, and

Dezhou; The ME4 included Jinan and Laizhou (Figure 2). The
Frontiers in Plant Science 07
27
grouped ME were geographically close (Figure 1), suggesting

that there is a relevant variation in the climate variables among

the locations.

The extraterrestrial radiation (RTA), daylight hours (N), and

deficit by precipitation (PETP) were the climate variables that

most contributed to the environment scores (Supplementary

Figures S2-6). The PCA biplot (Figure 3A) shows that ME1 is

mainly characterized by having higher rainfall precipitation,

relative humidity, and deficit by precipitation (higher deficit

means more available water). The ME2 has the higher values for

downward thermal infrared (Longwave) radiative flux. Contrary

to ME1, ME3 has higher values for vapor pressure deficit and

temperature range, meaning a drier environment (Figure 3A).

The higher differences in the vapor pressure deficit of ME3 are

specially observed from May to August (Supplementary Figure

S6). The ME4 is mainly characterized by having a lower average

temperature and consequently a small accumulation of growing

degree days (Figure 3A).

The slope of the saturation vapor pressure curve, average

temperature, and minimum and maximum temperature was

positively associated. Temperature range and vapor pressure

deficit were positively correlated but negatively correlated with

relative humidity and precipitation, whereas potential

evapotranspiration was strongly and positively correlated with

extraterrestrial radiation (Figure 3A).

3.1.2 Two years of trials
Figure 3B and C show the PCA biplot with the climate

variables and MEs for the trials conducted in 2019 and 2020,

respectively. It can be seen a high temporal (seasonal) effect, with

different correlation patterns between the climate variables in the

two years. For example, in 2019, rainfall precipitation and vapor

pressure deficit were positively correlated whereas in 2020 were

negatively correlated. This suggests that the interaction genotype

x ME x year would have an important contribution to the

phenotypic variance. In this case, identifying superior

genotypes within ME that are stable across the years would be

of great interest. Overall, ME1 had higher yields and rainfall

precipitation. The higher temperatures were observed in ME2

and the ME3 had the higher values for vapor pressure deficit and

the lower deficits by precipitation (Figure 3D).

In ME1 during 2019, most parts of the days in the flowering

and grain filling stages have vapor pressure deficit between 1.29

kPa d-1 and 3.33 kPa d-1. In this same ME in 2020, the vapor

pressure deficit was smaller, with values ranging from 0.24

kPa d−1 and 0.804 kPa d−1 during ~50% of the days in the

flowering and grain filling stages. Although 2019 presented on

average lower precipitation (Figure 3B), the ME1 presented the

higher deficit by precipitation, with positive values for almost ⅓

of the days during leaf expansion. In grain filling, for example,

~60% of the days had deficits that ranged from−7.54 mm day−1

to 31.5 mm day−1 (Figure 4A).
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3.2 Variance components analysis

The likelihood ratio test of the deviance analysis revealed a

significant (P ≤ 0.01) genotype effect for all the traits, except for

GY and BTL (Table 3), suggesting good prospects of selection

gains for most of the studied traits. The GEN × ME × YEAR

interaction was significant for all the traits, with the highest

contributions to the phenotypic variance of BTL, EH, ER, and

PH (Figure 5A). The results suggests that those morphological

traits are dependent on how the genotypes respond to different

environmental stimuli. The ME × YEAR interaction was

significant (P ≤ 0.01) for GMC and GY, suggesting that the

contrasting climate variables observed across the two years

affected the ME differently. Thus, it is reasonable to perform

the selection within each ME. Overall, the REP (ME×YEAR)

effect was significant for all the traits and was the component

with the highest contribution for the phenotypic variance of GY.

This high contribution likely comes from the implicit effect of

location, since the location and complete blocks were combined

to serve as replicates within each mega-environment. Here,

although showing a high contribution, the location effect is not

of primary interest, since the main goal is to identify superior

genotypes within each mega-environment.

The broad-sense heritability on the genotype-mean basis

(H2) ranged from 0.324 (GY) to 0.896 (ER and PH) (Table 3).

For the traits GY and BTL the H2 was less than 0.5, which means

that the genotypic component accounted for less than 50% of the

variance of a genotype mean (Figure 5B). For these traits, most

of the variance of the genotype mean was due to both GEN ×ME

and GEN × ME × YEAR interactions. The greater contributions

of interaction terms for these traits compared to the other ones
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reinforces that the phenotype-genotype relationship of this traits

is strictly environment-dependent, which makes more difficult

the selection of widely adapted hybrids and indicates that the

selection within delineated mega-environments would provide

better gains.
3.3 Correlation between traits in each
mega-environment

Supplementary Figure S7 shows the phenotypic correlations

among the studied traits within each mega-environment over

the two years. Overall, PH and EH were positively correlated

with each other across all the MEs. Negative correlations were

observed between PH and HSW, suggesting that taller plants

have a lower density of grains. In ME1 and ME3 a negative

correlation between GY and BTL (r = −0.13 and r = −0.12,

respectively) was observed. For ME2 and ME3, a positive

relation between GY and BTL was observed. These changes in

the relationships in the different ME resulted in a low degree of

Mantel’s correlation between the matrices (Supplementary

Figure S8) (Guillot and Rousset, 2013). Therefore, this

supports the use of a multi-trait index within each ME to take

into account the different correlation structures.
3.4 Selection differentials for mean
performance and stability

The selection considering the multiple traits resulted in

different hybrids being selected in each ME (Figures 6 and 7).
FIGURE 2

Heat map showing the delineated mega-environments considering the similarity based on 20 years of information for 19 environmental covariables.
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A B

DC

FIGURE 3

Biplot for the principal component analysis between environmental variables. (A) long-term pattern data (average of 20 years of climate
information); (B) observed climate variables in the trials during 2019; (C) observed climate variables in the trials during 2020; (D) average
information of the two years of trials. The variables are: grain yield (GY), genotype variance within mega-environment (var); average air
temperature (TMED, °C d-1); minimum air temperature (TMIN, °C d-1); maximum air temperature (TMAX, °C d-1); dew-point temperature
(T2MDEW, °C d-1) at 2 m above the surface of the earth at 2 m above the surface of the earth; total rainfall precipitation during the crop cycle
(PRECTOT, mm); daily temperature range (TRANGE, °C d-1), deficit by precipitation (PETP, mm d-1); air relative humidity (RH, %), potential
evapotranspiration (ETP, mm d-1); slope of saturation vapor pressure curve (SVP, Kpa °C d-1); vapor pressure deficit (VPD, kPa); Effect of
temperature on radiation-use efficiency (FRUE); Growing Degree Day (GDD, °C day−1); Actual duration of sunshine (n, hours); Daylight hours (N,
hours); Wind speed at 2 m above the surface of the earth (WS, m s−1); Extraterrestrial radiation (RTA, MJ m−2 day-1); Downward Thermal Infrared
(Longwave) Radiative Flux (DTIRF, MJ m−2 day-1); Insolation Incident on a Horizontal Surface (SIHS, MJ m−2 day−1).
A

B

FIGURE 4

Relative frequency for each envirotype for vapor pressure deficit (A) and deficit by precipitation (B) observed in the studied and mega-
environments across distinct crop stages and years of trials.
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Overall, two hybrids were selected only for specific MEs,

suggesting a narrow adaptation of such hybrids in such ME

(Figure 7). Only two hybrids (namely, G23 and G25) were

selected in three ME (ME1, ME2, and ME4). This suggests

that these hybrids present a wide adaptation, performing well in

different environments.

For all the MEs, four factors (FA) were retained, explaining

76.07%, 73.77%, 78.09%, and 73.64% of the total variance for

ME1, ME2, ME3, and ME4, respectively (Supplementary Table

S2). Given the different correlation structures (Supplementary

Figure S7), different traits were included in each FA within each

ME (Supplementary Table S3).

The multi-trait selection resulted in a success rate in

selecting traits with desired selection differentials (SD) of

~77% (7 out of 9 traits) in ME1, ME2, and ME3, and ~44% (4
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out of 9 traits) in ME4 (Figure 8). The six selected maize hybrids

(ranked by MTMPS) within ME1 were G10, G23, G22, G6, G25,

and G5 (Figure 6A). In ME2, the selected hybrids were G25, G4,

G23, G2, G21, and G26 (Figure 6B). In ME3 the selected hybrids

were G5, G11, G6, G4, G15, and G9 (Figure 6C). For ME4, G15,

G25, G21, G26, G18, and G23 were selected (Figure 6D).

The SD for BTL was negative for all ME except ME1. For GY

positive SD that ranged from 3.81% in ME3 to 6.17% in ME4

were observed (Figure 8; Supplementary Figures S9-12;

Supplementary Table S3). Considering the stability over the

two cultivation years, negative SD was observed for most of the

studied traits (Figure 9). For GY, negative SDs were observed in

all the ME, with lower values for ME3 and ME4. These results

show that the selected hybrids stand out as having satisfactory

mean performance (average GY ranging from 10.38 Mg ha-1 in
TABLE 3 Variance components for the main effect of genotypes (s 2
G), mega-environments (s 2

M ), cultivation year (s 2
Y ), and their interactions

estimated for nine traits assessed in 26 maize hybrids.

Source of variation BTLa EH EL ER GMC GWE GY HSW PH

s2
G 0.050ns 50.028** 0.211** 0.859** 1.357** 39.221* 0.038ns 1.770** 199.780**

s2
M 0.000ns 0.000ns 0.053ns 0.000ns 0.000ns 104.484ns 0.000ns 0.000ns 96.522ns

s2
Y 0.000ns 27.351ns 0.083ns 0.016ns 9.488* 55.866ns 0.000ns 0.000ns 31.061ns

s2
GM 0.048ns 0.000ns 0.219** 0.078ns 0.000ns 26.481ns 0.059ns 0.250ns 0.000ns

s2
GY 0.00 ns 4.622ns 0.000ns 0.000ns 0.000ns 10.899ns 0.000ns 0.000ns 4.833ns

s2
MY 0.000ns 30.248ns 0.000ns 0.000ns 2.738** 0.000ns 0.453* 0.000ns 11.210ns

s2
GMY 0.353** 59.987** 0.311** 0.484** 1.011** 77.715** 0.355** 0.852** 128.617**

s2
REP(M :Y) 0.135** 98.436** 0.657** 0.138** 4.033** 300.744** 1.521** 12.844** 108.140**

s2
ϵ 0.472 126.749 1.337 1.194 9.136 464.349 1.185 9.817 274.329

s2
P 0.117 61.950 0.327 0.959 1.636 68.744 0.117 2.103 222.846

Hb
2 0.433 0.808 0.646 0.896 0.830 0.571 0.324 0.842 0.896

Ac 0.658 0.899 0.804 0.946 0.911 0.755 0.569 0.918 0.947
fronti
aBTL, bare tip length; EH, ear height; EL, ear length; ER, ear row; GMC, grain moisture content; GWE, grain weight per ear; GY, grain yield; HSW, 100-seed weight; and PH, plant height.
bBroad-sense heritability on the mean-basis.
*P ≤ 0.05; **P ≤ 0.01 (See the P-values in Supplementary Table S1); ns P > 0.05.
A B

FIGURE 5

Percentage of the variance of phenotypic mean values (A) and percentage of the variance of a genotype mean (B).
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ME4 to 12.08 Mg ha-1 in ME1) with better stability across

contrasting cultivation years.
3.5 Ranking the mega-environments

Figure 10 shows the genotype plus genotype-by-

environment (GGE) biplot showing the ranking of the

delineated mega-environments relative to an ideal mega-

environment. Considering the average yield in each ME, the

ME1 (which included only Yicheng) is closer to the “ideal”

environment. On average, the yield in ME1 was 11.4 Mg ha-1

(Supplementary Figures S13-14). On the contrary, ME4

presented lower average yields (9.8 Mg ha-1), appearing far

from the score of the “ideal” environment (Figure 10).
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4 Discussion

4.1 Seasonal effects impacted the mega-
environments differently

The 10 environments included in this study were categorized

into 4 mega-environments (ME) by which the similarity was

assessed on an “omics” scale of 19 environmental covariables

with long-term (20 years) weather data (Figure 2). These results

support previous studies that also identified the complex

climatic conditions in HHH (Tao et al., 2017).

The two years of trials had contrasting climate characteristics

(Figures 3B,C),whichmaybe the source of the significant (P<0.05)

ME×YEAR interaction for GY (Table 3; Supplementary Table S1).

In ME1, for example, a highly distinct pattern of vapor pressure
A B DC

FIGURE 6

Genotype ranking and selected genotypes for the multi-trait mean performance and stability index (MTMPS) considering a selection intensity of 25%
within ME1 (A), ME2 (B), ME3 (C), and ME4 (D). The red and black circles represent selected and unselected genotypes in their respective environments.
FIGURE 7

Veen plot showing the selected genotypes in each ME.
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deficit, minimum and maximum air temperatures across the crop

cyclewereobserved in the twocultivationyears.While in2019most

of the flowering period in ME1 had a high vapor pressure deficit

(Figure 4A) and maximum temperatures between 34.5°C and °C

39.3°C (Supplementary Figure S15A), 2020 had milder

temperatures and a smaller vapor pressure deficit. This approach

can leverage plant ecophysiology knowledge aiding to identify the

main sources of the genotype-environment interaction to select

stress-resilient hybrids (Costa-Neto and Fritsche-Neto, 2021;

Resende et al., 2021; Carcedo et al., 2022).

In warm weather, the loss of water by evapotranspiration is

greater than in colder weather. On average, ME1 experienced

higher values of vapor pressure deficit, which by combining

relative humidity and temperature into a single quantity

(Penman and Keen, 1948) is an accurate measure for predicting

plant transpiration (Seager et al., 2015). Surprisingly,ME12019was

the most productive environment with an average yield of 1.2 Mg

ha-1 greater than the yield observed in 2020 at the same location
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(Supplementary Figure 13). The high yields in such environments

lead to the hypothesis that the deficit by precipitation (Figure 4B),

mainly during grain filling, was not sufficiently high to cause the

limited transpiration rate trait, frequently expressed in some

hybrids under high vapor pressure deficit and water-limited areas

(Shekoofa et al., 2016). As a C4-metabolism plant, maize has a

higher temperature optimum for photosynthesis than C3 plants

due to the operation of a CO2-concentrating system that inhibits

Rubisco oxygenase activity (Berry and Bjorkman, 2003). Previous

studies have shown that maize net photosynthesis is only inhibited

at leaf temperatures above 38°C and that the maximum quantum

yield of photosystem II is relatively insensitive to leaf temperatures

up to 45°C (Crafts-Brandner and Salvucci, 2002). When leaf

temperature is increased gradually, rubisco activation and net

photosynthesis acclimate by the expression of a new activase

polypeptide. This acclimation may have occurred in ME1 since

maximum air temperatures > 32°C were observed for most of the

days since leaf expansion and may explain why this environment
FIGURE 8

Selection gains for mean performance considering the selection within each ME.
FIGURE 9

Selection gains for stability considering the selection within each ME.
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presented a high yield even with ~75% of the flowering period

experiencing temperatures >34.5 °C(SupplementaryFigureS15A).

Another climate variable that can explain the higher yield of

ME1 in 2019 is the minimum temperatures. In 2020, ~75% of

the days during the grain filling stage had minimum air

temperatures below 19.2°C (Supplementary Figure S15B),

which resulted in a negative correlation between GY and

minimum temperature (Figure 3C). Previous studies have

shown that temperatures below 20°C rose abruptly the redox

state of the primary electron acceptor of photosystem II (QA),

and increase the non-photochemical quenching of chlorophyll

fluorescence, suggesting a restriction in electron transport in

such conditions (Labate et al., 1990; Sowiński et al., 2020).
4.2 Higher precipitation does not ensure
higher yields

Overall, the environments in 2020 presented accumulated

rainfall during the experiment greater than 500 mm, researching

~920 mm in ME1 (Supplementary Figure S16). As a result, these

environments showed a higher deficit by precipitation (positive

deficits mean more water availability), and a lower vapor

pressure deficit (Figure 4B). Unexpectedly, higher yields were

not observed in such environments. In Jieshou, for example, the

average yield was 2.6 t ha-1 smaller in 2020 compared to 2019,

even with rainfall precipitation ~2.4-fold higher, with 387 mm in

2019, and 917 mm in 2020 (Supplementary Figure S16).
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A possible explanation for the lower yields observed in

environments with higher water availability may be related to

the restricted plant transpiration in such cases. Water moves

from the soil into plant roots, and by negative pressures within

the xylem due to capillary forces in the cell walls, to the leaves.

The water, warmed by the sun, turns into vapor passing out

through stomata, at the same time that allows absorption of CO2

to photosynthesize (Taiz and Zeiger, 2010). The propulsive force

of this process is regulated by the difference in the concentration

of water vapor between the intercellular spaces of the leaves and

the external atmospheric mass; the energy of this process is

provided by the amount of radiation available. In ME1 during

2020, for example, ~87% of the grain filling period presented

relative humidity greater than 70% (Supplementary Figure

S15C). In addition, the wind speed in such a location had the

lowest average (0.20 m s-1). The combination of high relative

humidity and lower wind speed might have dramatically

reduced plant transpiration. While limitation on transpiration

at high vapor pressure deficit is a promising trait that could be

incorporated into breeding programs to improve drought

tolerance in maize (Yang et al., 2012), lower yield under

elevated air relative humidity may be related to the hindered

acquisition of mineral nutrients, mainly those supplied to plant

roots by mass flow (NO3
−, Ca+2, and Mg+2), considering the

transpiration-driven mass flow concept (Cramer et al., 2009).
4.3 Envirotyping helped to better
understand the genotype-
environment interaction

The significant GEN×ME×YEAR interaction suggests the

complex interaction of the genotypes with contrasting

environments on the trait phenotypic expression. Similar

reports were also observed in previous studies (Kamutando

et al., 2013; Mebratu et al., 2019; Yue et al., 2020; Singamsetti

et al., 2021). Along with the global changes in climatic variables

over the past decades, there is a growing consensus that future

food production will be threatened by environmental conditions

(Ceglar and Kajfež-Bogataj, 2012; Steward et al., 2018).

Therefore, knowledge about the influence of climatic variables

on maize yield and genotypic variation within a certain

environment is particularly necessary. Among the climatic

factors investigated, temperature, vapor pressure deficit, deficit

by precipitation, and relative humidity were key environmental

factors to distinguish yield across different environments, which

in turn affects GE interactions (de Araujo et al., 2019).

Growing resilient crops with consistent yield performance in

unpredictable and complex weather changes is critical to

ensuring food security. Given the large scale of production,

high degree of mechanization, and developed biotechnology,

coupled with measures and technical means such as reasonably

dense planting, scientific fertilization, biological pest control,
FIGURE 10

GGE biplot showing ranking of test mega-environment relative
to an ideal test mega-environment.
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and water-saving irrigation, the maize yield level of Unites States

of America has long been among the highest in the world (~10.5

Mg ha-1). China’s maize yield in 2020 was 6.35 Mg ha-1 which

was 60% of the US yield level (Guo et al., 2021). Given the huge

difference in corn production between China and the United

States, how to select and breeding excellent corn hybrids that

adapt to the climate characteristics of different ecological regions

is the key to ensuring the healthy and stable development of

China’s corn industry (Yue et al., 2022b). Since the 1960s, the

Dryland Farming Institute, Hebei Academy of Agriculture and

Forestry Sciences has been focusing on the breeding of new high-

yield and stable maize hybrids and the multi-environment trials

of summer maize in the HHH Plain, making full use of foreign

germplasm resources to improve local germplasm. A series of

excellent summer maize hybrids were selected and bred.

Here, we provided evidence that using envirotyping techniques

to define mega-environments based on climate variables may help

breeders to better understand the genotype-by-environment

interaction. Several studies define mega-environments based on

the genotypes’ response in a single year (Singh et al., 2019;Mushayi

et al., 2020; Enyew et al., 2021), but since the environmental pattern

that defines the genotype responsemay change significantly across

years (Figure 4), this may lead to mistaken recommendations. In

most studies that evaluate genotypes across multiple locations and

years, the average yield across years is used to fill a two-way table

(genotypes x locations) that is further used inAMMIorGGEbiplot

analysis (Shojaei et al., 2022). Here, wehave shownhow integrating

multi-trait selection for mean performance (within mega-

environments) and stability (across years) with detailed

environmental typology may be useful to identify specific

adaptations (such as tolerance to warmer environments),

increasing the sustainability of breed programs mainly under the

climate changes in view (Lopes et al., 2015). Therefore, our results

can leverage plant ecophysiology knowledge aiding in identifying

the primary sources of the genotype-environment interaction in

plant breeding programs (Costa-Neto and Fritsche-Neto, 2021;

Resende et al., 2021). The use of this approach becomes particularly

interesting due to the dynamism and exhaustivity of the data

available (climate information available for all points of the

globe) that make it possible to replicate the procedure anywhere,

anytime, and the possibility of including additional information

such as soil proprieties, crop management, companion organisms,

and crop canopy (Xu, 2016).
4.4 The multi-trait selection provided
desired gains for most of the
studied traits

To the best of our knowledge, this is the first introduction of

the term multi-trait mean performance and stability index

(MTMPS). The MTMPS can be seen as an adaptation of the

MTSI (Olivoto et al., 2019b) where several parametric and non-
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parametric stability measures (beyond the WAASB) can be used.

Similar to the MTSI, genotypes that have lower values of

MTMPS are assumed to have better mean performance and

stability based on the set of accessed traits. Multi-trait stability

index has recently been employed as a robust tool to assist the

selection of elite genotypes based on the mean performance and

stability of various variables. Some examples include the

selection of resistant soybean genotypes to drought and

salinity (Zuffo et al., 2020), bread wheat ideotypes for

adaptation to early sown conditions (Farhad et al., 2022),

barnyard millet lines for shoot fly resistance (Padmaja et al.,

2022), drought tolerant chickpea genotypes (Hussain et al.,

2021), pea lines adapted to autumn sowings in broomrape-

prone Mediterranean environments (Rubiales et al., 2021), and

maize inbred lines under optimal and drought stress conditions

(Balbaa et al., 2022).

A key factor in using the MTMPS is choosing an adequate

qY/qs ratio for each trait, which will likely change the genotype

ranking. By plotting the genotype ranks in several scenarios of

qY/qs ratio (Supplementary Figure S17) it is possible to identify

groups of genotypes with similar performance regarding stability

and productivity. For example, in ME1, G10 and G23 (selected

by the MTMPS) remained well-ranked regardless of the qY/qs
ratio. This suggests that they have both high yield and

satisfactory stability. On the other hand, G8 remained poorly

ranked either considering only the mean performance or

stability (Supplementary Figure S17). The poor performance

for GY –and possibly for all the other traits–made this genotype

the last ranked within ME1 (Figure 6A). In our case, highly

stable hybrids across years could be identified as those that are

better ranked when qY/qs tends to 0. One example in ME1 would

be G21, which was the top-ranked when only stability was

considered in the MPS (Supplementary Figure S17).

Here, we found that the use of the MTMPS provided desired

gains for the mean performance and stability for most of the

studied traits (Figures 8 and 9) and that the selection within

mega-environments with similar climatic patterns may provide

satisfactory gains. The use of MTMPS is expected to grow

rapidly among breeders helping to identify hybrids that

combine desired mean performance and stability for

important traits. For example, envirotyping and morpho-

physiological and yield traits accessed [eg., Balbaa et al.

(2022)] can be combined to identify stress-adaptive traits with

a high yield and helps to better understand the genotype-by-

environment interaction.
5 Conclusions

Considering 20 years of climate information and 19

environmental covariables, we identified four mega-

environments (ME) for maize cultivation in the Huanghuaihai

plain in China. Overall, most of the studied traits were
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significantly affected by genotype × mega-environment × year

interaction. The vapor pressure deficit, maximum temperature,

relative humidity, and deficit by precipitation were the climate

variables that most contributed to the envirotyping. This provides

relevant evidence that evaluating maize stability and adaptation to

mega-environments using single-year, multi-environment trials

may provide misleading recommendations. Counterintuitively,

higher yields were not observed in the environments with

higher accumulated rainfall precipitation. We provide strong

pieces of evidence that vapor pressure deficit, minimum

temperatures, and relative humidity may be climate variables

that –in environments with no water restriction–, have a

relevant control on the plant transpiration and consequently,

yield. Utilizing the MTMPS approach in this study led to

identifying six different selected hybrids in each mega-

environment, with higher stability and prominent mean

performance for most of the studied traits. G23 and G25 were

selected within three out of the four mega-environments, being

identified as stable. The G5 shows satisfactory yield and stability

across contrasting years in the drier, warmer, and with higher

vapor pressure deficit mega-environment, which included

locations in the Hubei province. To the best of our knowledge,

this is the first study that integrated envirotyping techniques and

multi-trait selection for mean performance and stability, opening

the door to a more systematic and dynamic characterization of the

environment to better understand the genotype-by-environment

interaction in multi-environment trials.
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UV-B induces the expression
of flavonoid biosynthetic
pathways in blueberry
(Vaccinium corymbosum) calli

Yan Song, Bin Ma, Qingxun Guo, Lianxia Zhou, Changyi Lv,
Xiaoming Liu, Jianlei Wang, Xintong Zhou
and Chunyu Zhang*

Department of Horticulture, College of Plant Science, Jilin University, Changchun, China
Ultraviolet-B (UV-B) radiation is an environmental signal that affects the

accumulation of secondary metabolites in plants. In particular, UV-B

promotes flavonoid biosynthesis, leading to improved fruit quality. To explore

the underlying molecular mechanism, we exposed blueberry (Vaccinium

corymbosum) calli to UV-B radiation and performed a transcriptome deep

sequencing (RNA-seq) analysis to identify differentially expressed genes (DEGs).

We detected 16,899 DEGs among different treatments, with the largest number

seen after 24 h of UV-B exposure relative to controls. Functional annotation

and enrichment analysis showed a significant enrichment for DEGs in pathways

related to plant hormone signal transduction and phenylpropanoid and

flavonoid biosynthesis. In agreement with the transcriptome data, flavonol,

anthocyanin and proanthocyanidin accumulated upon UV-B radiation, and

most DEGs mapping to the phenylpropanoid and flavonoid biosynthetic

pathways using the KEGG mapper tool were upregulated under UV-B

radiation. We also performed a weighted gene co-expression network

analysis (WGCNA) to explore the relationship among genes involved in plant

hormone signal transduction, encoding transcription factors or participating in

flavonoid biosynthesis. The transcription factors VcMYBPA1, MYBPA2.1,

MYB114, MYBA2, MYBF, and MYB102 are likely activators, whereas MYB20,

VcMYB14, MYB44, and VcMYB4a are inhibitors of the flavonoid biosynthetic

pathway, as evidenced by the direction of correlation between the expression

of these MYBs and flavonoid biosynthesis-related genes. The transcription

factors bHLH74 and bHLH25 might interact with MYB repressors or directly

inhibited the expression of flavonoid biosynthetic genes to control flavonoid

accumulation. We also observed the downregulation of several genes

belonging to the auxin, gibberellin and brassinosteroid biosynthetic

pathways, suggesting that MYB inhibitors or activators are directly or

indirectly regulated to promote flavonoid biosynthesis under UV-B radiation.

KEYWORDS

RNA sequencing, UV-B radiation, flavonoid, blueberry, transcription, plant hormone
signal transduction
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Introduction

Plants are constantly exposed to changing environmental

conditions, among which ultraviolet-B (UV-B) radiation (280–

315 nm) is an important factor that limits plant growth and

development (Dotto and Casati, 2017). Plants accumulate

flavonoids that protect against potential damage caused by UV

exposure; importantly, flavonoids are also economically

important compounds in fruits, as they possess nutritional

benefits for human health (Norberto et al., 2013). Thus,

despite the possible damage it can induce, the controlled

application of UV-B radiation of fruits and other crops has

been proposed as a means to improve fruit quality and their

antioxidant contents (Henry-Kirk et al., 2018; González-Villagra

et al., 2020).

Flavonoid compounds (flavonol, anthocyanin, and

proanthocyanidin) are synthesized by the general

phenylpropanoid biosynthetic pathway; the expression of the

structural genes encoding the corresponding enzymes is

upregulated by UV-B radiation and stimulates the accumulation

of flavonoid compounds (Xie et al., 2011; Martıńez-Lüscher et al.,

2014). The UV-B-induced signaling pathway involves the UV-B

photoreceptor UV resistance locus 8 (UVR8), the E3 ubiquitin

ligase constitutively photomorphogenic 1 (COP1) and the basic

zipper (bZIP) TF elongated hypocotyle (HY5) and zinc finger TF B-

box domain containing protein (BBX) (Rizzini et al., 2011). These

proteins direct or indirect regulate the transcription levels of

regulators and flavonoid biosynthetic genes to affect flavonoid

accumulation (Qiu et al., 2018; Bai et al., 2019). Among these

regulators, four subgroups (4, 5, 6, and 7) from the 22 existing

R2R3-MYB transcription factor gene family subgroups play

regulatory roles in the biosynthesis of flavonoid compounds.

More specifically, subgroup 4 encodes suppressors of flavonoid

biosynthesis, while subgroups 5, 6, and 7 encode positive regulators

of flavonoid biosynthesis (Kranz et al., 1998; Plunkett et al., 2018;

Zhang et al., 2021). For example, the subgroup 4 FaMYB1 from

strawberry (Fragaria ananassa) suppressed anthocyanin and

flavonol accumulation and VvMYBC2-L1 from grapevine (Vitis

vinifera) suppressed proanthocyanidin biosynthesis (Aharoni et al.,

2001; Cavallini et al., 2015). At the same time bHLH transcription

factor also effected flavonoid biosynthesis by interacting with MYB

TFs or regulating structural genes of flavonoid biosynthesis (Matus

et al., 2010; Zhu et al., 2020). UV-B also affects the expression of

MYB transcription factor genes. For example, in Arabidopsis

(Arabidopsis thaliana), the expression of MYB111, MYB12, and

production of anthocyanin pigment 1 (PAP1) is upregulated in

response to UV-B radiation (Heijde and Ulm, 2018). In grapevine

berries, UV-B triggers the upregulation of flavonol synthase 1

(VvFLS1) via VvMYBF1 from subgroup 7, leading to a strong

increase in flavonol concentration (Martıńez-Lüscher et al., 2014).

In apple (Malus domestica), the expression of MdMYB10 from

subgroup 6 and MdMYB22 from subgroup 7 is downregulated

throughout fruit development under reduced UV radiation and
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influences anthocyanin and flavonol production (Henry-Kirk et al.,

2018). Thus, transcription factors have important roles in

accumulating of UV-B-induced flavonoids.

Plant hormones also play critical parts in helping plants

adapt to adverse environmental conditions (Yu et al., 2020). The

growth-promoting hormones auxin, gibberellins, and

brassinosteroids negatively regulate UV-B stress tolerance

(Hectors et al., 2012; Roro et al., 2017; Liang et al., 2020) and

inhibit flavonoid accumulation via direct interaction of some

constituent proteins of their signalling pathway with MYBs or by

binding to the promoters ofMYB or structural genes involved in

flavonoid biosynthesis to modulate their expression (Zhang Y.

et al., 2017; Tan et al., 2019; Liang et al., 2020). However, it is

unclear which genes related to plant hormone signalling

participate in UV-B-induced flavonoid biosynthesis.

Blueberries (Vaccinium corymbosum) are often referred to as

a “superfood” due to the health benefits associated with the

phenylpropanoid compounds they contain, particularly

anthocyanins, proanthocyanidins and flavonols (Ribera et al.,

2010; Norberto et al., 2013). In recent years, several structural

genes involved in flavonoid biosynthesis have been cloned and

characterized in blueberry (Zhang et al., 2016; Zhang C. et al.,

2017). Regulatory genes involved in this process have also been

described, such as VcMYBA and VcMYBPA1, which regulate

anthocyanin and proanthocyanidin biosynthesis, respectively

(Zifkin et al., 2012; Plunkett et al., 2018). UV-B induces

anthocyanin biosynthesis in the peel of harvested blueberry

fruits by upregulating the expression of the structural and

regulatory genes VcMYB21 and VcR2R3MYB. UV-B radiation

also increases flavonoid accumulation and promotes

VcMYBPA1 expression, but the underlying mechanism is

unknown (Nguyen et al., 2017; González-Villagra et al., 2020).

In this study, we identified genes that are differentially

expressed in blueberry calli in response to UV-B irradiation

through transcriptome deep sequencing (RNA-seq) analysis and

functional annotation of these differentially expressed genes

(DEGs). To elucidate the mechanism driving flavonoid

biosynthesis in blueberry fruits, we also assembled a regulatory

network encompassing the plant hormone signal transduction

pathways, transcription factor genes, and the flavonoid

biosynthesis pathway by deploying weighted gene co-

expression network analysis (WGCNA). The results presented

here will broaden our understanding of UV-B-induced flavonoid

biosynthesis and provide basic information on how to improve

blueberry quality via simple exposure to UV-B light.
Materials and methods

Plant materials and stress treatments

White loose blueberry (Vaccinium corymbosum) calli were

obtained from the cultivar ‘Northland’, which was cultured on a
frontiersin.org
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modified woody plant medium with Murashige and Skoog

vitamins containing 3.0 mg/L 2,4-dichlorophenoxyacetic acid

(2,4-D), 30 g/L sucrose, and 7 g/L agar, pH 5.4 ± 0.2. All calli

were cultured under a 16-h light/8-h dark photoperiod at 25°C

and subcultured every 21 days. UV-B was applied by means of

narrow band lamps (TL20/01; 311-nm Philips, Netherlands)

positioned above the calli at the height of about 10 cm. The calli

were harvested right before (0 h) and after treatment consisting of

1, 3, 6, 12, and 24 h of UV-B radiation, frozen in liquid nitrogen

and stored at –80°C. All samples were collected as three

independent biological replicates and were labeled 0h_1, 0h_2,

0h_3, 1h_1, 1h_2, 0h_3, 3h_1, 3h_2, 3h_3, 6h_1, 6h_2, 6h_3,

12h_1, 12h_2, 12h_3, 24h_1, 24h_2, and 24h_3, respectively, for

RNA-seq analysis. For reverse transcription quantitative PCR

(RT-qPCR) and measurements of flavonol, anthocyanin, and

proanthocyanidin contents (using the 0 h and 24 h samples),

each biological replicate was assessed as three technical replicates.
Transcriptome sequencing

Total RNAs were extracted with TRIzol reagent (Invitrogen,

USA) and RNA concentration and purity was measured using a

NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE).

RNA integrity was assessed using an RNA Nano 6000 Assay Kit

for the Agilent Bioanalyzer 2100 system (Agilent Technologies,

CA, USA). Sequencing libraries were generated using a

NEBNext UltraTM RNA Library Prep Kit for Illumina (NEB,

USA). The libraries were sequenced on an Illumina HiSeq 2500

platform, and 150 bp paired-end reads were generated. Raw

reads in fastq format were processed through in-house perl

scripts to obtain clean data. Q20, Q30, GC-content, and the

sequence duplication level of the clean reads were calculated.

The clean reads were mapped to the reference Vaccinium

corymbosum cv. Draper V1.0 genome sequence (https://www.

vaccinium.org/genomes) using Hisat2 software.
Differential expression analysis and
functional annotation

Gene expression levels were quantified as fragments per

kilobase of transcript per million fragments mapped (FPKM)

values. Differentially expressed genes (DEGs) resulting from the

comparison of the 0 h sample to the 1, 3, 6, 12, and 24 h samples

were identified using the criteria of absolute log2(fold change) ≥1

and a false discovery rate (FDR) < 0.01 by DEGSeq2. Gene

function was annotated based on the following databases:

Clusters of Orthologous Groups (COG) (Tatusov et al., 2000),

Gene Ontology (GO) (Ashburner et al., 2000), Kyoto

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al.,

2004), Eukaryotic Orthologous Groups (KOG) (Koonin et al.,

2004), NCBI non-redundant protein sequences (NR) (Deng
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et al., 2006), Protein family (Pfam) (Finn et al., 2014), Swiss-

Prot (A manually annotated and reviewed protein sequence

database) (Apweiler et al., 2004) and evolutionary genealogy of

genes: Non-supervised Orthologous Groups (eggNOG) (Huerta-

Cepas et al., 2017). KEGG pathway enrichment analysis of DEGs

was implemented with KOBAS software (Mao et al., 2005). The

phenylpropanoid and flavonoid biosynthetic pathways were

mapped against the phenylpropanoid, flavonoid, flavonol, and

anthocyanin KEGG pathways using the DEGs identified above.

Heatmap representations of gene expression levels were drawn

using log10(FPKM) with the Tbtools (v1.098761) software (Chen

et al., 2020).
Weighted gene co-expression
network analysis

WGCNA was performed with the WGCNA package in R

(Langfelder and Horvath, 2008). First, the WGCNA algorithm

assumes that the gene network follows a scale-free distribution,

defines the gene co-expression correlation matrix and the

adjacency function formed by the gene network, and then

calculates the correlation coefficients of different nodes, based

on which WGCNA builds a hierarchical clustering tree. The

different branches of the clustering tree represent different gene

modules. The co-expression degree of genes in significant

individual modules is high, while the co-expression degree of

genes belonging to different modules is low. Genes with different

expression levels were assigned to various modules via a

dynamic tree cut. There were at least 30 genes per co-

expression module. Correlations among various modules were

calculated using 0.25 as the similarity threshold. For genes in

each module, KEGG pathway enrichment analysis was

conducted to reveal the biological functions of each module.

The genes within the WGCNA kMEblue module were selected

to screen for enrichment of the plant hormone signal

transduction pathway, transcription factor genes, and

flavonoid biosynthetic pathway genes, and to draw the

corresponding expression heatmap and regulatory network of

the flavonoid pathway. Pearson’s correlation coefficients were

compared using SPSS 19.0 software.
RNA-Seq data validation

Total RNA was extracted from each sample using an RNA

Extraction Kit (Sangon Biotech, Shanghai, China). RT-qPCR

was performed on an ABI 7900HT real-time PCR system. Ten

genes of interest (4CL2, VcCHI3, DFR, VcF3’5’H, VcF3H-2,

VcLAR, MYB44, MYB114, VcMYBPA1, and ARF18) involved

in flavonoid biosynthesis and belonging to the WGCNA

kMEblue module were selected for analysis, using GAPDH

(AY123769) as the reference transcript. Primer sequences are
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shown in Table S1. The relative expression levels of each gene

were calculated using the 2–DDCt method.
Measurement of flavonoid contents

The contents of flavonoid compounds including flavonols,

anthocyanins, and proanthocyanidins for calli at 0 h and 24 h

UV-B treatment were determined as described by Yang et al.

(2022a). Each sample was ground to a powder and 0.5 g was

extracted in 5 mL 80% (v/v) methanol at 4°C for 2 h to isolate the

flavonols. The mixtures were centrifuged (8,000 g, 10 min, 4°C),

1 mL of the supernatant was removed and mixed with 1 mL

methanol, and then 0.1 mL of 10% (w/v) aluminum chloride, 0.1

mL 1 M KOAc, and 2.8 mL water were added and the mixtures

was incubated for 30 min at 25°C. Rutin was used as a master

standard and the absorbance at 415 nm was measured. To

measure total anthocyanin contents, samples (0.5 g) were

extracted in 3 mL of 1% HCl in methanol and incubated at 4°

C for 16 h. After centrifugation (8,000 g, 10 min, 4°C), a 2-mL

supernatant was diluted with 2 mL water and the absorbance was

measured at 530 nm and 650 nm. Total anthocyanin content was

calculated using a previously published formula (Rabino and

Mancinelli, 1986). Proanthocyanidin was detected using the

DMACA method. Briefly, samples (0.5 g) were extracted in 5

mL of 70% (v/v) acetone containing 0.1% (w/v) ascorbic acid at

4°C for 30 min. After centrifugation (8,000 g, 10 min, 4°C), a 3-

mL supernatant aliquot was extracted with 3 mL of ether at −20°

C for 1 h. Then, 2 mL of the lower phase of the extracted liquid

was removed and mixed with 1 mL of methanol and 0.5 mL 2%
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(w/v) DMACA solution. The mixture was incubated for 20 min

at 25°C, and the absorbance was then measured at 643 nm.

Catechin was used as the master standard (Wang et al., 2017).
Results

Transcriptome sequencing analysis

To reveal the regulatory network underlying the blueberry

response to UV-B radiation, we performed an RNA-seq analysis

using total RNA extracted from blueberry calli exposed to UV-B

radiation for 1, 3, 6, 12, or 24 h. Table 1 summarizes the details of

all RNA-seq samples; we obtained 5.85–8.66 Gb of clean bases

for each sample, with a Q30 ranging from 93.70 to 94.97% and a

GC content ranging from 46.35 to 46.90%. We successfully

mapped approximately 90.88 to 91.90% of all clean reads per

sample to the blueberry reference genome.
Differential expression gene analysis

To investigate changes in gene expression under UV-B

radiation, we identified differentially expressed genes (DEGs)

between the control samples (0 h) and each time point of the

UV-B treatment, which returned a total of 16,899 DEGs (Table

S2). We detected 2,706 DEGs in 0h_vs_1h, of which 2,428 were

upregulated and only 278 were downregulated. The number of

DEGs increased gradually with longer UV-B exposure of up to 6

h, with downregulated DEGs remaining scarcer than
TABLE 1 Summary of sequencing data.

Samples Clean reads Clean bases GC Content ≥ Q30 Mapped reads

0h_1 2.78 × 107 8.26 × 109 46.4% 94.2% 91.1%

0h_2 2.70 × 107 8.06 × 109 46.6% 94.0% 91.2%

0h_3 2.23 × 107 6.64 × 109 46.5% 94.9% 91.3%

1h_1 2.76 × 107 8.19 × 109 46.8% 94.2% 90.9%

1h_2 1.99 × 107 5.92 × 109 46.8% 94.5% 90.9%

1h_3 2.60 × 107 7.75 × 109 46.9% 94.2% 91.0%

3h_1 2.60 × 107 7.76 × 109 46.9% 94.2% 91.1%

3h_2 2.65 × 107 7.90 × 109 46.9% 93.7% 91.1%

3h_3 2.69 × 107 8.04 × 109 46.8% 94.2% 91.3%

6h_1 2.90 × 107 8,66 × 109 46.6% 94.1% 91.6%

6h_2 2.43 × 107 7.22 × 109 46.9% 95.0% 91.7%

6h_3 2.15 × 107 6.39 × 109 46.8% 94.4% 91.5%

12h_1 2.48 × 107 7.38 × 109 46.9% 94.5% 91.7%

12h_2 2.09 × 107 6.21 × 109 46.9% 94.7% 91.3%

12h_3 1.96 × 107 5.85 × 109 46.5% 94.6% 91.6%

24h_1 2.52 × 107 7.52 × 109 46.65% 94.6% 91.9%

24h_2 2.06 × 107 6.10 × 109 46.7% 94.8% 91.8%

24h_3 2.59 × 107 7.71 × 109 46.8% 94.5% 91.9%
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upregulated DEGs. The number of DEGs further increased to

10,146 in 0h_vs_12h and to 10,718 in 0h_vs_24h, respectively,

but now with more downregulated DEGs than upregulated

DEGs (Figure 1A). A Venn diagram comparing all the lists of

DEGs shows that 806 DEGs are shared by all pairwise

comparisons (Figure 1B). These results indicate that the

number of DEGs increases with the duration of UV-B

radiation treatment.
Functional annotation and enrichment
analysis of DEGs

We annotated the function of DEGs in response to UV-B

radiation with the COG, GO, KEGG, KOG, NR, Pfam, Swiss-

Prot, and eggNOG databases (Table S3). During UV-B

treatment, the number of annotated DEGs increased, starting

at 2,596 annotated DEGs out of 2,706 after 1 h, and rising to

9,953 annotated DEGs out of 10,718 after 24 h. The number of

annotated DEGs also differed by database, with the highest

number obtained with the NR database and the lowest with

the COG database.

We then undertook a functional classification of DEGs that

were annotated in the COG, eggNOG, and KOG databases

(Table S4). We observed that DEGs are most enriched in

terms related to signal transduction mechanisms, secondary

metabolite biosynthesis, transport and catabolism, as well as

transcription, especially in the eggNOG and KOG functional

annotations. Furthermore, we performed a GO classification of

shared annotated DEGs for the three categories biological

process, cellular component, and molecular function (Figure

S1; Table S5). In the biological process category, cellular
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processes and metabolic processes were the most enriched; in

the cellular components category, cell and cell part were the

most enriched; and in the molecular functions category, binding

and catalytic activity were the most enriched.

To further elucidate the biological functions of the DEGs, we

carried out a KEGG pathway enrichment analysis. We identified

136 KEGG pathways whose encoded proteins are affected during

UV-B treatment in blueberry calli (Table S6). Using a Q-value <

0.01 as cutoff, we determined that the KEGG pathway circadian

rhythm-plant pathway was significantly affected at all time points

of UV-B treatment (Figure 2). Similarly, the plant hormone signal

transduction pathway was significantly enriched at almost all

stages, suggesting that plant hormones are involved in the

response to UV-B stress. We also established that many DEGs

are involved in the biosynthesis of phenylpropanoid-derived

compounds. Among them, genes participating in the

isoflavonoid biosynthetic pathway were induced after 1 and 3 h

UV-B treatment (Figures 2A, B). Likewise, genes from the

phenylpropanoid biosynthetic pathway began to be enriched

after 3 h of UV-B treatment (Figures 2B–E), followed by genes

from the anthocyanin and flavonoid biosynthetic pathways,

starting at 6 h of UV-B treatment (Figures 2C–E). We conclude

that genes involved in the biosynthesis of phenylpropanoid-

derived compounds exhibit a precise spatial pattern: the

expression of isoflavonoid biosynthetic genes is induced first,

followed by genes involved in the phenylpropanoid pathway,

and finally genes involved in the anthocyanin and flavonoid

biosynthetic pathways. In agreement with this result, the top 20

enriched pathways identified when comparing the control

samples (0 h) to any sample exposed to UV-B included

anthocyanin biosynthesis, phenylpropanoid biosynthesis, and

flavonoid biosynthesis (Figure 2F).
BA

FIGURE 1

Differentially expressed genes (DEGs) in response to UV-B treatment in blueberry revealed by transcriptome deep sequencing (RNA-seq). (A) Number of
DEGs in response to UV-B. DEGs_up, upregulated DEGs; DEGs_down, downregulated DEGs. (B) Venn diagrams showing the extent of overlaps
between DEGs across pairwise comparisons. Purple, DEGs for 0 h vs 1 h; blue, DEGs for 0 h vs 3 h; green, DEGs for 0 h vs 6 h; yellow, DEGs for 0 h vs
12 h; and pink, DEGs for 0 h vs 24 h Q-value < 0.01.
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UV-B radiation induces flavonoid
accumulation

To elucidate the effects of UV-B radiation on the

biosynthesis of flavonoid compounds, we measured the

flavonoid contents of blueberry calli treated by UV-B radiation

for 24 h (Figure 3A) . The contents of flavonols ,

proanthocyanidins, and anthocyanins increased 3.1-, 7.0-, and

2.1-fold, respectively, after 24 h of UV-B irradiation relative to

the control samples (Figures 3B–D). Thus, UV-B radiation

promotes the accumulation of flavonoid compounds.
The phenylpropanoid and flavonoid
biosynthetic KEGG pathways under
UV-B radiation

We screened for genes involved in the phenylpropanoid,

flavonoid, flavonol, and anthocyanin KEGG pathways among
Frontiers in Plant Science 06
43
the DEGs. We identified 73 genes encoding 32 types of enzymes,

based on Enzyme Commission (EC) annotated data (Table 2).

We then plotted the expression levels of these genes as a

heatmap. Again, the genes selected here clustered as a function

of the duration of UV-B exposure, with the 0, 1, and 3 h

treatments forming one group and the 6, 12, and 24 h

treatments forming another (Figure S2). Notably, the later

induction of these DEGs suggested that the accumulation of

phenylpropanoid metabolites mainly occurs after a longer UV-

B exposure.

We mapped the 73 DEGs identified above onto the KEGG

phenylpropanoid and flavonoid biosynthetic pathways

(Figure 4). Among them, only three genes were induced after

1 h of UV-B radiation, and many genes were induced after 3 h.

Most of the genes, including phenylalanine ammonia lyase

(PAL1), PAL3, 4-coumarate CoA ligase (4CL2), chalcone

synthase synthase (CHS), chalcone isomerase (CHI3), VcFLS,

and VcUFGT, were induced under UV-B radiation, and their

expression reached the highest levels at 24 h (Table 2). Most

genes involved in the phenylpropanoid biosynthetic pathway
B

C D

E F

A

FIGURE 2

Summary of KEGG pathway enrichment analysis. Analysis of significantly enriched DEGs after 1 h (A), 3 h (B), 6 h (C), 12 h (D), or 24 h (E) of UV-
B radiation compared to 0 h The number of DEGs is indicated by the size of the circle, and the solid upper triangle and inverted triangle
represent upregulated and downregulated DEGs, respectively. (F) Analysis of significantly enriched DEGs comparing the control samples (0 h) to
all samples exposed to UV-B.
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were rapidly upregulated, especially PAL1 and 4CL2 from 6 h of

UV-B radiation treatment onwards. By contrast, 4CL6 was

rapidly downregulated from 3 h of UV-B radiation onwards.

Most genes involved in the flavonoid biosynthetic pathway were

upregulated; CHS expression was induced from 3 h of UV-B

radiation treatment onwards, reaching a log2(FC) value of 6.33 at

24 h. The expression of F3’5’H, F3’H, and FLS, which are

involved in the flavonol biosynthetic pathway, was upregulated

under UV-B radiation. Among genes involved in the

anthocyanin biosynthetic pathway, VcUFGT expression was

induced from 1 h of UV-B exposure onwards, and then

rapidly upregulated from 3 h onwards, reaching the highest

level at 24 h (7.86 for log2(FC) value). VcLAR, which is involved

in the proanthocyanin biosynthesis pathway, was also

upregulated from 6 h onwards, reaching a log2(FC) value of

2.13 at 24 h (Table 2). These results indicate that the expression

of most genes involved in phenylpropanoid metabolite

biosynthesis is induced under UV-B radiation and that PAl1,

4CL2, CHS, VcFLS, VcUFGT, and VcLAR play important roles in

UV-B-induced flavonoid accumulation.
Weighted gene co-expression network
analysis identifies gene modules
associated with flavonoid metabolism
under UV radiation

To reveal the regulatory network underlying flavonoid

metabolism under UV radiation, we conducted a weighted

gene co-expression network analysis (WGCNA) using the

DEGs defined above. WGCNA clustered the DEGs into three

modules, namely, kMEblue, kMEbrown, and kMEturquoise,

which contained 2,174, 783, and 2,171 genes, respectively

(Figures 5A, B). KEGG enrichment analysis showed that the

kMEblue module comprises many of the genes involved in the
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phenylpropanoid, flavonoid, and anthocyanin metabolism

pathways (Figure S3). We thus characterized the connection

between these genes and those associated with plant hormone

signal transduction, or encoding transcription factors by looking

for their annotations in the KEGG, Swiss-Prot, and NR

databases (Table S7). We identified 37 genes fulfilling the

above criteria, and their expression levels fell into two groups,

as evidenced by a heatmap (Figure 5C). Genes from group I were

downregulated, whereas genes from group II were upregulated

under UV-B radiation; the latter group included all flavonoid

metabolism genes. We also identified ten MYB transcription

factor genes in the kMEblue module; these genes belonged to

subgroups 4 (VcMYB4a), 11 (MYB102), 8 (MYB20), 5

(MYBA2.1 and VcMYBPA), 2 (VcMYB14), 7 (MYBF), 6

(MYBA2 and VcMYB144), and 22 (MYB44) (Figure S4).

To investigate the functions of these MYB transcription

factor genes in the flavonoid pathway, we calculated the

Pearson’s correlation coefficients (r) between their expression

levels and those of genes involved in flavonoid biosynthesis

during UV-B radiation (Table 3). We observed that the

expression of MYBA2, MYBF, MYB102, MYBPA1, MYBPA2.1,

and MYB114 is positively correlated with that of most genes

involved in the flavonoid pathway. Conversely, the expression

levels of MYB20, VcMYB14, MYB44, and VcMYB4a were

negatively correlated with those of most flavonoid metabolism

genes. We also observed a positive correlation between the

expression levels of bHLH74, VcMYB20, and VcMYB44 and

between bHLH25 and VcMYB4a, and a negative correlation

between the expression levels of bHLH74 and MYB114, and

between the expression levels of bHLH25 and those of MYB114,

MYBA2, and MYBF. The expression of bHLH74 and bHLH25

was also negatively correlated with the expression levels of genes

involved in flavonoid metabolism.

To elucidate the roles of plant hormones in regulating the

flavonoid biosynthesis pathway, we calculated the correlation
B C DA

FIGURE 3

UV-B exposure induces flavonoid accumulation in blueberry calli. (A) Representative blueberry calli before (0 h) and after (24 h). (B-D) Contents
of flavonol (B), proanthocyanidin (C) and anthocyanin (D) after UV-B radiation for 0 h or 24 h Error bars indicate ± SD of the mean of three
independent biological replicates. Different letters indicate significant differences (p < 0.05) among samples by Tukey’s test.
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TABLE 2 The regulation of DEGs involved in flavonoid biosynthesis under UV-B radiation.

Enzymes Gene
orhomologue

name

Gene ID 0h_vs_1h 0h_vs_3h 0h_vs_6h 0h_vs_12 0h_vs_24h

log2
(FC)a

regulatedb log2
(FC)

regulated log2
(FC)

regulated log2
(FC)

regulated log2
(FC)

regulated

PAL
[EC:4.3.1.24]

PAL1 VaccDscaff24-
augustus-gene-
101.15

-0.69 normal -0.13 normal 2.04 up 2.28 up 2.87 up

PAL3 VaccDscaff10-
augustus-gene-
222.29

-0.49 normal 0.13 normal 1.76 up 1.75 up 1.82 up

C4H
[EC:1.14.14.91]

C4H VaccDscaff11-
augustus-gene-
343.38

0.57 normal 1.16 up 1.03 up 1.34 up 1.31 up

4CL
[EC:6.2.1.12]

4CL2 VaccDscaff34-
processed-gene-
57.9

-0.47 normal 0.03 normal 1.72 up 1.72 up 2.06 up

4CL2-like VaccDscaff28-
augustus-gene-
349.38

–c – – – – – 0.58 normal 1.28 up

4CL6 VaccDscaff47-
augustus-gene-
2.17

-0.23 normal -1.68 down -1.79 down -2.25 down -2.82 down

HCT
[EC:2.3.1.133]

HST VaccDscaff17-
processed-gene-
329.4

1.02 up 1.00 up 0.20 normal -0.10 normal 0.22 normal

SHT VaccDscaff38-
augustus-gene-
0.16

-0.15 normal 1.00 normal 1.89 up 0.99 normal 0.85 normal

C3’H
[EC:1.14.14.96]

C3’H VaccDscaff10-
snap-gene-65.38

– – – – 1.22 up 1.18 up 1.55 up

F5H [EC:1.14.-
.-]

F5H VaccDscaff123-
augustus-gene-
2.26

0.62 normal 1.80 up 1.09 normal 1.09 normal 0.85 normal

COMT
[EC:2.1.1.68]

COMT-like VaccDscaff19-
augustus-gene-
150.25

-0.44 normal -0.63 normal -0.88 normal -1.81 down -2.47 down

COMT1 VaccDscaff40-
augustus-gene-
215.28

-0.42 normal -0.55 normal -0.39 normal -1.56 down -1.51 down

CCoAOMT
[EC:2.1.1.104]

CCoAOMT VaccDscaff45-
snap-gene-
216.26

0.27 normal 0.58 normal -0.19 normal -0.86 normal -1.08 down

CCR
[EC:1.2.1.44]

VcCCR VaccDscaff4-
processed-gene-
398.7

-0.04 normal -0.18 normal 0.82 normal 0.24 normal 1.13 up

CCR1-like VaccDscaff6-
augustus-gene-
409.27

-0.88 normal -1.09 normal 0.50 normal 0.82 normal 1.52 up

CCR VaccDscaff12-
processed-gene-
15.8

0.44 normal 1.58 up 1.12 up 1.12 up 0.79 normal

CCR2-like VaccDscaff7-
processed-gene-
8.8

-0.17 normal -0.84 normal -0.06 normal -0.86 normal -1.04 down

CCR2 VaccDscaff23-
snap-gene-
364.44

0.62 normal 2.06 up 1.63 up 1.82 up 1.43 up

(Continued)
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TABLE 2 Continued

Enzymes Gene
orhomologue

name

Gene ID 0h_vs_1h 0h_vs_3h 0h_vs_6h 0h_vs_12 0h_vs_24h

log2
(FC)a

regulatedb log2
(FC)

regulated log2
(FC)

regulated log2
(FC)

regulated log2
(FC)

regulated

CCR-like VaccDscaff2-
augustus-gene-
63.19

-0.41 normal -0.88 normal 1.12 up 0.88 normal 1.93 up

CCR1 VaccDscaff3-
processed-gene-
55.9

-0.16 normal -0.77 normal -0.71 normal -1.04 down -1.03 down

CAD
[EC:1.1.1.195]

CAD1 VaccDscaff14-
snap-gene-
183.27

0.53 normal 2.52 up 2.72 up 2.73 up 2.38 up

CAD6 VaccDscaff12-
snap-gene-1.33

-0.54 normal -1.52 down -0.97 normal -1.66 down -1.66 down

CAD9 VaccDscaff13-
augustus-gene-
6.23

-0.72 normal 0.28 normal 0.62 normal 0.67 normal 1.03 up

CHS
[EC:2.3.1.74]

CHS VaccDscaff42-
augustus-gene-
14.30

-0.90 normal 1.40 up 5.28 up 5.35 up 6.33 up

CHS1 VaccDscaff3-
augustus-gene-
334.17

-0.70 normal -0.74 normal 0.98 normal 1.04 up 1.14 up

CHI
[EC:5.5.1.6]

CHI VaccDscaff21-
processed-gene-
199.1

-0.44 normal -0.29 normal 1.31 up 1.02 normal -0.02 normal

CHI3 VaccDscaff21-
augustus-gene-
108.29

-0.42 normal -0.68 normal 1.63 up 2.25 up 2.57 up

DFR
[EC:1.1.1.219
1.1.1.234]

VcDFR VaccDscaff13-
processed-gene-
166.8

-0.79 normal -0.64 normal 0.70 normal 1.00 up 1.27 up

DFR VaccDscaff1613-
processed-gene-
0.0

0.09 normal 1.02 up 1.19 up 0.61 normal 0.56 normal

F3H
[EC:1.14.11.9]

VcF3H2 VaccDscaff16-
augustus-gene-
381.32

-0.71 normal -0.63 normal 1.80 up 2.03 up 2.74 up

VcF3H1 VaccDscaff13-
augustus-gene-
41.36

-0.48 normal -0.67 normal 0.64 normal 1.16 up 1.33 up

F3’5’H
[EC:1.14.14.81]

F3’5’H2 VaccDscaff29-
augustus-gene-
305.28

-0.93 normal 0.03 normal 1.09 up 1.83 up 1.50 up

VcF3’5’H VaccDscaff10-
augustus-gene-
348.25

0.07 normal -0.96 normal 1.13 up 0.72 normal 2.67 up

F3’H
[EC:1.14.14.82]

F3’H1 VaccDscaff32-
augustus-gene-
159.26

-0.46 normal -0.88 normal 1.24 up 1.57 up 2.03 up

F3’H VaccDscaff43-
snap-gene-
241.31

0.09 normal -0.41 normal -1.02 down -0.98 normal -0.96 normal

FLS
[EC:1.14.20.6]

FLS1 VaccDscaff6-
augustus-gene-
163.26

-0.49 normal -0.74 normal -0.25 normal 0.70 normal 1.06 up
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TABLE 2 Continued

Enzymes Gene
orhomologue

name

Gene ID 0h_vs_1h 0h_vs_3h 0h_vs_6h 0h_vs_12 0h_vs_24h

log2
(FC)a

regulatedb log2
(FC)

regulated log2
(FC)

regulated log2
(FC)

regulated log2
(FC)

regulated

VcFLS VaccDscaff25-
augustus-gene-
225.24

– – 1.29 normal 2.99 up 4.08 up 4.53 up

LDOX
[EC:1.14.20.4]

VcLDOX VaccDscaff43-
augustus-gene-
236.29

-0.41 normal -0.79 normal 0.24 normal 0.63 normal 1.04 up

LDOX-like VaccDscaff33-
processed-gene-
213.10

0.31 normal 1.52 up 0.46 normal – – -0.50 normal

UFGT
[EC:2.4.1.115]

VcUFGT VaccDscaff20-
augustus-gene-
68.33

1.10 up 4.39 up 6.85 up 7.33 up 7.86 up

UGT75
[EC:2.4.1.298]

UGT75C1 VaccDscaff4-
processed-gene-
124.9

0.44 normal 1.30 up 1.26 up 1.11 up 1.43 up

LAR
[EC:1.17.1.3]

LAR-like VaccDscaff35-
augustus-gene-
247.32

-0.56 normal -1.52 down -0.96 normal -1.73 down -1.09 down

VcLAR VaccDscaff2-
augustus-gene-
298.20

-0.94 normal 0.55 normal 1.69 up 1.82 up 2.13 up

ANR
[EC:1.3.1.77]

ANR VaccDscaff15-
augustus-gene-
178.21

-0.55 normal -1.26 down -0.28 normal 0.20 normal 0.32 normal

ANR-like VaccDscaff44-
augustus-gene-
19.33

0.42 normal 1.24 up 1.09 up 0.81 normal 0.62 normal

F6H
[EC:1.14.11.61]

F6H1-2 VaccDscaff21-
augustus-gene-
269.37

-0.07 normal 1.18 up 0.52 normal 0.88 normal 0.47 normal

FGGT1
[EC:2.4.1.239
2.4.1.-]

GT1 VaccDscaff38-
processed-gene-
219.4

– – – – 3.86 up 2.81 up 3.28 up

POD
[EC:1.11.1.7]

PERP7 VaccDscaff8-
processed-gene-
129.6

0.87 normal 1.35 up -0.01 normal -1.09 down -2.42 down

PER15 VaccDscaff44-
augustus-gene-
228.32

-0.13 normal -0.74 normal -1.87 down -1.36 down 0.66 normal

PERP7-like VaccDscaff88-
snap-gene-4.29

0.52 normal 1.32 up -0.55 normal -0.29 normal -2.12 down

PS
[EC:2.4.1.357]

UGT88A1-like VaccDscaff21-
snap-gene-49.64

0.17 normal -1.82 down -1.28 down -1.52 down -1.05 down

UGT88B1-like VaccDscaff21-
processed-gene-
49.13

-0.85 normal -1.22 down -0.41 normal -0.55 normal -0.80 normal

SGT
[EC:2.4.1.128]

SGT VaccDscaff14-
processed-gene-
356.18

0.38 normal 2.80 up 2.87 up 3.10 up 1.27 up

UGT29
[EC:2.4.1.236]

UGT29-like1 VaccDscaff1-
processed-gene-
272.1

-0.62 normal -0.80 normal -1.10 down -1.92 down -2.48 down

UGT29 0.51 normal 2.28 up 0.95 normal 1.67 up 1.17 up
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TABLE 2 Continued

Enzymes Gene
orhomologue

name

Gene ID 0h_vs_1h 0h_vs_3h 0h_vs_6h 0h_vs_12 0h_vs_24h

log2
(FC)a

regulatedb log2
(FC)

regulated log2
(FC)

regulated log2
(FC)

regulated log2
(FC)

regulated

VaccDscaff29-
augustus-gene-
198.28

UGT94-like2 VaccDscaff21-
processed-gene-
210.10

– – 3.22 up 3.22 up 3.77 up 4.40 up

UGT94-like3 VaccDscaff28-
snap-gene-
281.34

-0.10 normal 1.29 up 1.67 up 1.25 up 1.41 up

UGT94-like4 VaccDscaff28-
augustus-gene-
280.39

0.39 normal 1.29 up 1.09 up 0.99 normal 1.19 up

UGT73
[EC:2.4.1.-]

UGT73C6 VaccDscaff33-
processed-gene-
116.6

0.25 normal 0.60 normal 1.21 up 1.27 up 1.78 up

ALDH2
[EC:1.2.1.68]

ALDH2C4 VaccDscaff69-
augustus-gene-
3.25

0.32 normal 0.61 normal -0.53 normal -0.69 normal -2.49 down

BGLU
[EC:3.2.1.21]

GH3BG3 VaccDscaff10-
snap-gene-
111.37

-0.41 normal -0.33 normal -0.49 normal -1.07 down -1.07 down

GH3B VaccDscaff21-
snap-gene-
299.24

0.49 normal 0.80 normal 0.40 normal -0.66 normal -1.00 down

GH3BG1 VaccDscaff33-
augustus-gene-
101.21

0.26 normal 0.79 normal -0.53 normal -1.49 down -1.93 down

GH3BG5 VaccDscaff15-
augustus-gene-
315.29

0.57 normal 1.61 up 1.49 up 1.33 up 1.04 up

BGLU41 VaccDscaff1-
snap-gene-
432.37

1.14 up 0.60 normal 0.77 normal 0.87 normal 0.72 normal

BGLU11-like VaccDscaff46-
snap-gene-
198.38

0.07 normal -0.60 normal -0.17 normal -0.97 normal -1.17 down

BGLU40-like VaccDscaff35-
processed-gene-
230.7

0.13 normal -0.83 normal -1.09 down -2.11 down -1.21 down

BGLU42 VaccDscaff17-
snap-gene-
224.18

-0.21 normal -0.78 normal -0.90 normal -1.07 down -0.87 normal

BGLU42-like VaccDscaff27-
augustus-gene-
205.16

-0.19 normal -0.56 normal -0.67 normal -1.27 down -0.67 normal

BGLU44 VaccDscaff27-
processed-gene-
4.10

0.50 normal 0.61 normal 0.57 normal 0.69 normal 1.80 up

GH3BG5 VaccDscaff221-
processed-gene-
1.6

0.55 normal -0.51 normal -0.48 normal -0.28 normal -1.24 down
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between MYB expression levels and the expression of plant-

hormone-related genes (Table 3). In the auxin biosynthetic

pathway, the expression levels of indole-3-acetic acid inducible

14 (IAA14) and auxin-response factor 18 (ARF18) were

negatively correlated with those of MYB114 and positively

correlated with those of MYB20 and MYB44. In the gibberellic

acid biosynthetic pathway, chitin-inducible gibberellin-

responsive protein 1 (CIGR1) expression was positively

correlated with that of MYB20 and MYB44 and negatively

correlated with that of MYB114. Scarecrow-like transcription

factor (PAT1) expression was positively correlated with that of

MYB20, MYB44, and VcMYB14 and negatively correlated with

that of VcMYBPA1. The expression level of Ga insensitive dwarf
Frontiers in Plant Science 12
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2 (GID2) was positively correlated with those of CIGR1 and

PAT1. However, among genes involved in the brassinosteroid

biosynthetic pathway, only brassinosteroid-signaling kinase

KINASE 7 (BSK7) expression levels appeared to be positively

correlated with MYB20 and MYB44 expression and negatively

correlated with MYB114 expression (Table 3). Figure 6

summarizes the regulatory network of UV-B-induced

flavonoid biosynthetic pathway through hormone signal

transduction and transcriptional regulation pathways based on

DEGs identified from the WGCNA kMEblue module in

this study.

To validate the accuracy and reliability of the RNA-seq data,

we selected ten genes of interest involved in flavonoid
TABLE 2 Continued

Enzymes Gene
orhomologue

name

Gene ID 0h_vs_1h 0h_vs_3h 0h_vs_6h 0h_vs_12 0h_vs_24h

log2
(FC)a

regulatedb log2
(FC)

regulated log2
(FC)

regulated log2
(FC)

regulated log2
(FC)

regulated

CSE
[EC:3.1.1.-]

CSE VaccDscaff42-
augustus-gene-
210.23

0.76 normal 1.01 up 0.11 normal 0.44 normal 0.25 normal

CSE-like VaccDscaff27-
augustus-gene-
309.30

0.51 normal 0.49 normal 1.05 up 0.89 normal 1.15 up
fro
alog2(fold change).
bupregulation or downregulation.
cNo expression.
FIGURE 4

Phenylpropanoid and flavonoid KEGG biosynthetic pathways in blueberry calli under UV-B radiation. Red and green boxes represent
upregulated and downregulated DEGs, respectively.
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biosynthesis from the WGCNA kMEblue module for RT-qPCR

analysis (Figure S5). A linear regression analysis showed a

positive correlation between the RNA-seq and RT-qPCR

results, with correlation coefficients (R2) of 0.8926 (0 h vs 1 h),

0.8338 (0 h vs 3 h), 0.8849 (0 h vs 6 h), 0.8856 (0 h vs 12 h), and

0.8336 (0 h vs 24 h). This observation confirmed that the RNA-

seq data in this study are accurate and reliable.
Discussion

UV-B radiation is a major abiotic stress that triggers a

variety of plant responses with consequences for plant growth,

development, and accumulation of secondary metabolites that

involve the actions of many genes (Dotto and Casati, 2017;

Gupta et al., 2018; González-Villagra et al., 2020; Ding et al.,

2021). For example, transcriptome profiling and DEG analysis

have shown that UV-B radiation influences secondary

metabolite biosynthesis, plant–pathogen interaction, and plant

hormone signal transduction pathways in lettuce (Lactuca

sativa) (Zhang et al., 2019) and plant hormone signal

transduction pathways in horseweed (Conyza lini) (Zhan et al.,

2021). In our study, functional annotation showed that genes

from plant hormone signal transduction pathways and

secondary metabolism biosynthetic pathways (including

phenylpropanoid, flavonoid, and anthocyanin) were the most

enriched among DEGs (Table S4; Figure 2). The timing of DEG

appearance is important, as DEGs involved in plant hormone

signal transduction pathways were significantly enriched after 1
Frontiers in Plant Science 13
50
h of UV-B exposure, followed by genes involved in the

phenylpropanoid biosynthetic pathway after 3 h, and by genes

involved in the flavonoid and anthocyanin biosynthetic

pathways after 6 h of UV-B treatment. These results indicated

that phytohormone-related genes may constitute the first

response to UV-B radiation.

UV-B radiation affects the phenylpropanoid biosynthetic

pathway and influences the accumulation of flavonoid

compounds, especially flavonols, proanthocyanidins, and

anthocyanins (Berli et al., 2011; Henry-Kirk et al., 2018). In

this study, we showed that the flavonol, proanthocyanidin, and

anthocyanin contents of blueberry calli significantly increased

after 24 h of UV-B radiation, indicating that UV-B radiation

promotes the accumulation of flavonoid compounds (Figure 3).

In grapevine berries, the expression of FLS1 and UFGT is

induced by UV-B, leading to increased flavonol and

anthocyanin concentration (González-Villagra et al., 2020). In

lettuce, transcriptome analysis showed that the transcriptional

upregulation of C4H, 4CL, CHS, FLS, and DFR promoted

anthocyanin biosynthesis in response to UV-B radiation

(Zhang et al., 2019). Our study demonstrated that the

expression of most genes involved in flavonoid biosynthesis

was upregulated, especially PAl1, 4CL2, CHS, VcFLS, VcUFGT,

and VcLAR genes (Figure 4; Table 2). These genes are involved

in the biosynthesis of flavonol, proanthocyanidin, or

anthocyanin and may be the key genes for UV-B-induced

flavonoid biosynthesis.

WGCNA has been widely used to identify gene regulatory

networks from different KEGG pathways (Zhu et al., 2019; Li
B

CA

FIGURE 5

Weighted gene co-expression network analysis (WGCNA) of DEGs obtained from all pairwise comparisons. (A) Hierarchical clustering tree
showing the co-expression modules identified by WGCNA. Different modules are marked with different colors. Each leaf of the cluster tree
represents a gene. (B) Number of assigned DEGs to the different modules. (C) Heatmap representation of hierarchical clustering analysis of
identified genes involved in the phenylpropanoid, flavonoid, and anthocyanin metabolic pathways, in the plant hormone signal transduction
pathway, and encoding transcription factors in the kMEblue module. Blue, low expression; red, high expression, based on log2(FPKM).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1079087
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Song et al. 10.3389/fpls.2022.1079087

Frontiers in Plant Science
 14
51
et al., 2022). The biosynthesis of flavonoid compounds is co-

regulated by multiple genes (e.g., PAL, 4CL, CHI, and FLS)

during half-high blueberry fruit development (Yang et al.,

2022b). In the current study, we assembled the regulatory

network of the phenylpropanoid biosynthesis pathway under

UV radiation using WGCNA. The transcriptome analysis

showed that 19 genes encoding flavonoid biosynthetic

enzymes are co-regulated to promote the accumulation of

flavonols, proanthocyanidins, and anthocyanins (Figure 6).

R2R3-MYB transcription factors control the transcriptional

regulation of flavonoid structural genes in various horticultural

plants including blueberry (Zifkin et al., 2012; Plunkett et al.,

2018). In this study, we systematically compared the expression

levels of ten MYB transcription factor genes against those of

structural genes from the flavonoid biosynthetic pathway.

Among the encoded transcription factors, VcMYBPA1 and

MYBPA2.1 (subgroup 5), MYB114 and MYBA2 (subgroup 6),

and MYBF (subgroup 7) promoted the expression of genes

involved in flavonoid biosynthesis. Subgroups 5, 6, and 7

positively regulate anthocyanin, proanthocyanidin, or flavonol

biosynthesis (Bogs et al., 2007; Czemmel et al., 2009; Zifkin et al.,

2012; An et al., 2015; Plunkett et al., 2018; Karppinen et al., 2021;

Zhang et al., 2021). Thus, these MYBs may activate UV-B-

induced flavonoid biosynthesis. MYB102 belongs to subgroup

11, which contributes to plant resistance against stress

(Denekamp and Smeekens, 2003; Xu et al., 2015). The co-

expression analysis showed that VcMYB102 expression was

positively correlated with that of genes involved in flavonoid

biosynthesis. VcMYBPA1, MYBPA2.1, MYB114, MYBA2,

MYBF, and MYB102 may activate the UV-B-induced

flavonoid pathway.

VcMYB4a belongs to subgroup 4 and inhibits lignin

biosynthesis (Yang et al., 2022a). In this study, VcMYB4a

expression was also negatively correlated with that of genes

from the flavonoid biosynthetic pathway and VcMYB4a likely

encodes an inhibitor. Subgroups 22, 8, and 2 play important

roles in plant responses to abiotic stresses. For example,

AtMYB73 from subgroup 22 negatively regulates responses to

salt stress, AtMYB20 from subgroup 8 negatively regulates plant

response to drought stress; and AtMYB15 from subgroup 2

decreases tolerance to freezing stress (Agarwal et al., 2006; Kim

et al., 2013; Gao et al., 2014). Thus, some MYB transcription

factors from these subgroups function as negative regulators of

abiotic stresses. Transcriptome analysis showed that the

expression of MYB44 (subgroup 22), MYB20 (subgroup 8),

and VcMYB14 (subgroup 2) was negatively correlated with the

expression of genes involved in flavonoid biosynthesis under

UV-B radiation in blueberry calli (Table 3). Furthermore,

MYB44, MYB20, and VcMYB14 inhibit the flavonoid pathway

in response to UV-B radiation.

Basic helix-loop-helix (bHLH) family members also regulate

flavonoid biosynthesis (Matus et al., 2010; Zhu et al., 2020).

bHLH proteins directly regulate the expression of structural
T
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genes or interact with MYB proteins to regulate flavonoid

accumulation (Hartmann et al., 2005; An et al., 2012). In

Arabidopsis, bHLH74 regulates root growth and bHLH25

influences cyst nematode parasitism (Jin et al., 2011; Bao et al.,

2014). In this study, the expression of bHLHL74 homologs was

positively correlated with that of MYB20 and MYB44, while the

expression of a bHLH25 homolog was also positively correlated

with that of VcMYB4a in blueberry calli under UV-B radiation.

Importantly, bHLHL74 and bHLH25 expression levels were

negatively correlated with those of genes involved in flavonoid

biosynthesis (Figure 6; Table 3). Thus, the bHLHL74 and

bHLH25 transcription factors may negatively regulate

flavonoid biosynthesis by repressing the expression of genes

involved in the flavonoid biosynthetic pathway or by interacting

with MYB proteins under UV-B irradiation.

Plant hormones, including auxin, gibberellins, and

brassinosteroids, play important roles in flavonoid biosynthesis

(Jeong et al., 2004; Loreti et al., 2008; Peng et al., 2011). In

Arabidopsis, gibberellins negatively regulate low temperature- or

sucrose-induced anthocyanin accumulation and inhibit flavonol

biosynthesis (Loreti et al., 2008; Zhang et al., 2011; Tan et al.,

2019). The F-box protein, GID2 (also named SLEEPY1)

positively regulates gibberellin signaling by promoting the
Frontiers in Plant Science 15
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polyubiquitination of DELLA proteins, subsequently leading to

their degradation by the 26S proteasome. (Sasaki et al., 2003;

McGinnis et al., 2003). DELLA, PAT1, and CIGR1 all belong to

the GRAS family of transcriptional regulators. PAT1 is involved

in phytochrome A signal transduction in Arabidopsis, while

OsCIGR1 expression is induced by exogenous gibberellins in rice

(Oryza sativa) (Bolle et al., 2000; Day et al., 2004). DELLA

proteins are repressors of gibberellin signaling. In the absence of

GA, DELLA proteins accumulate and interact with MYB

proteins to promote flavonol biosynthesis. In the presence of

GA, the GA-dependent complex GA-GID1-DELLA promotes

DELLA degradation via the 26S proteasome and then reduces

the transcriptional activity of MYBs to inhibit flavonol

biosynthesis (Tan et al., 2019). DELLA proteins also positively

regulate nitrogen-deficiency-induced anthocyanin accumulation

by directly interacting with PAP1 (Zhang Y. et al., 2017). Our

study showed that the expression of GID2, PAT1, and CIGR1 is

downregulated under UV-B radiation; moreover, correlation

analysis showed that GID2 expression is positively correlated

with those of PAT1 and CIGR1, which are themselves positively

correlated with the expression of MYB20 and MYB44 (Figure 6;

Table 3). UV-B results in a decrease in endogenous gibberellin

concentration (Roro et al., 2017), such that in the absence of
FIGURE 6

Model of the integration of UV-B-induced flavonoid accumulation with plant hormone signal transduction pathways. Black solid lines represent
the flavonoid metabolic pathway and colored dashed lines represent regulatory pathways emanating from each transcription factor gene. In
particular, green solid lines represent plant hormone signal transduction pathways and black dashed lines indicate MYB transcription factor
genes that are regulated by a phytohormone. Arrows indicate activation; short lines indicate inhibition.
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gibberellin under UV-B exposure, the GA-GID2-PAT1 and GA-

GID2-CIGR1 complexes are less abundant and can no longer

repress MYB114 and VcMYBPA1 function, leading to the

induction of MYB20, MYB44, and VcMYB14 expression, and

thus to flavonoid accumulation.

The phytohormone auxin inhibits anthocyanin biosynthesis

and controls UV-mediated accumulation of flavonoids (Hectors

et al., 2012; Ji et al., 2015). In apple, auxin regulates anthocyanin

biosynthesis through the Aux/IAA-ARF signaling pathway.

MdARF13 interacts with MdIAA121 and directly binds to the

promoter of MdDRF to inhibit anthocyanin biosynthesis.

MdARF13 also interacts with MdMYB10 to repress

anthocyanin accumulation by downregulating MdMYB10

expression (Wang et al., 2018). In Arabidopsis, ARF17 directly

binds to the MYB108 promoter to regulate anther dehiscence

(Xu et al., 2019). In this study, ARF18 and IAA14 expression

were repressed by UV-B radiation; we observed that ARF18

expression was positively correlated with that of IAA14,MYB20,

and MYB44 and negatively correlated with that of MYB114

under UV-B irradiation (Figure 6; Table 3). Thus, it is possible

that UV-B radiation reduces endogenous auxin concentrations

and diminishes the expression levels of ARF18 and IAA,

resulting in higher MYB114 expression or lower MYB20 and

MYB44 expression to induce flavonoid biosynthesis.

Brassinosteroids negatively affect plant tolerance of UV-B

stress. BRI1-EMS-Suppressor 1 (BES1) acts downstream of

brassinosteroid-insensitive 1 (BRI1) to promote UV-B-induced

flavonol biosynthesis by binding to the promoters of MYB11,

MYB12, andMYB111 (Liang et al., 2020). BSK is a critical family

of receptor-like cytoplasmic kinases acting in BR signal

transduction, of which BSK3, BSK4, BSK7, and BSK8 belong

to the same clade and functionally overlap (Tang et al., 2008;

Sreeramulu et al., 2013). AtBSK3 interacts with BRI1, the

phosphatase BRI1 suppressor 1 (BSU1), and the kinase

brassinosteroid-insensitive 2 (BIN2) to regulate the BR

signaling pathway; BSK8 interacts with the Kelch-type

phosphatase BSL2 to regulate the activity of sucrose-phosphate

synthase enzyme (Wu et al., 2014; Ren et al., 2019). However, the

function of BSKs in the regulation UV-B-induced flavonoid

biosynthesis is unclear. We used the WGCNA method to

determine the role of BSK7 . BSK7 express ion was

downregulated and showed a significant association with the

expression levels of genes encoding MYB proteins involved in

flavonoid biosynthesis under UV-B radiation (Figure 6; Table 3).

Therefore, BSK7 may negatively regulate UV-B-induced

flavonoid biosynthesis; however, it is unclear whether BSKs

regulate flavonoid biosynthesis by regulating MYB

transcription factors or other pathways.
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The D1-pyrroline-5-carboxylate
synthetase family performs
diverse physiological functions
in stress responses in pear
(Pyrus betulifolia)

Changqing Ma1,2†, Mengqi Wang1,2†, Mingrui Zhao1,2,
Mengyuan Yu1,2, Xiaodong Zheng1,2, Yike Tian1,2, Zhijuan Sun3,
Xiaoli Liu1,2 and Caihong Wang1,2*

1College of Horticulture, Qingdao Agricultural University, Qingdao, China, 2Qingdao Key Laboratory
of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China, 3College of Life
Science, Qingdao Agricultural University, Qingdao, China
D1-Pyrroline-5-carboxylate synthetase (P5CS) acts as the rate-limiting enzyme

in the biosynthesis of proline in plants. Although P5CS plays an essential role in

plant responses to environmental stresses, its biological functions remain

largely unclear in pear (Pyrus betulifolia). In the present study, 11 putative

pear P5CSs (PbP5CSs) were identified by comprehensive bioinformatics

analysis and classified into five subfamilies. Segmental and tandem

duplications contributed to the expansion and evolution of the PbP5CS gene

family. Various cis-acting elements associated with plant development,

hormone responses, and/or stress responses were identified in the

promoters of PbP5CS genes. To investigate the regulatory roles of PbP5CS

genes in response to abiotic and biotic stresses, gene expression patterns in

publicly available data were explored. The tissue-specific expressional

dynamics of PbP5CS genes indicate potentially important roles in pear

growth and development. Their spatiotemporal expression patterns suggest

key functions in multiple environmental stress responses. Transcriptome and

real-time quantitative PCR analyses revealed that most PbP5CS genes

exhibited distinct expression patterns in response to drought, waterlogging,

salinity-alkalinity, heat, cold, and infection by Alternaria alternate and

Gymnosporangium haraeanum. The results provide insight into the versatile

functions of the PbP5CS gene family in stress responses. The findings may

assist further exploration of the physiological functions of PbP5CS genes for

the development and enhancement of stress tolerance in pear and other fruits.

KEYWORDS

P5CS, Pyrus betulifolia, transcriptome, stress response, biotic stress
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Introduction

It is well known that abiotic stresses impose severe

restrictions on plant growth. These environmental constraints

restrict cultivation sites, and diminish agricultural productivity

worldwide (Zhu, 2001). To cope with different stresses, plants

have evolved multiple mechanisms from physiological,

morphological, and molecular perspectives (Tan et al., 2013).

Proline plays an essential role in plant growth, development, and

stress responses (Anton et al., 2020). It is a compatible solute and

a scavenger of reactive oxygen species that provides protection

against oxidative damage in plants (Szabados and Savouré,

2010). Free proline is rapidly accumulated in plant cells for

adaptation to drought, cold and salinity (Hayat et al., 2012).

Proline biosynthesis involves evolutionarily conserved

metabolic pathways in bacteria and higher organisms (Rai and

Penna, 2013). Proline biosynthesis uses ornithine or glutamic

acid as the substrate, with glutamic acid being preferred under

stress conditions (Delauney and Verma, 1993). D1-Pyrroline-5-
carboxylate synthetase (P5CS) is a key enzyme in the

biosynthesis of proline in plants, and it regulates proline

content by catalyzing the rate-limiting step in the glutamate

pathway (Chen et al., 2013). An increase in P5CS activity can

stimulate accumulation of proline to improve osmotic

adjustment in plants under environmental stresses (Guan

et al., 2014; Anton et al., 2020). P5CS can control proline

biosynthesis by transcriptional regulation (Yoshiba et al.,

1995). There are two isoforms of P5CS in Arabidopsis

thaliana, P5CS1 and P5CS2 (Turchetto-Zolet et al., 2009;

Funck et al., 2020). Both P5CS isoforms are mainly present in

the cytosol, but may be localized in plastids under stress

conditions (Székely et al., 2008). However, other P5CS

homologues should exist in the plant genome, some of which

may be h i gh l y s t r e s s - induced and e s s en t i a l f o r

proline accumulation.

Since P5CS plays a crucial role in proline biosynthesis, many

attempts have been made to enhance proline accumulation by

manipulating the P5CS gene in order to improve plant stress

tolerance. Studies have shown that an increase in P5CS enzyme

can induce the accumulation of proline in plants, favoring

osmotic adjustment under environmental stresses (Peng et al.,

1996; Anton et al., 2020). Over-expression of P5CS increased

proline content and oxidative stress tolerance in several plants,

such as rice (Oryza sativa), A. thaliana, switchgrass (Panicum

virgatum), and Stipa purpurea under salt and drought stresses

(Kumar et al., 2010; Chen et al., 2013; Guan et al., 2020; Yang D.

et al., 2021). Moreover, in oriental hybrid lily (Lilium spp.),

LhSorP5CS expression was up-regulated by mannitol and

abscisic acid treatments, accompanied by increased proline

accumulation (Wang et al., 2017). In addition to abiotic stress,

biotic stress also leads to alterations in proline metabolism. For

example, P5CS2 expression was up-regulated in response to
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infection by Pseudomonas syringae in A. thaliana (Fabro

et al., 2004).

Pear (Pyrus spp.) fruits have high nutritional value and are

popular among consumers. Pears are reproduced primarily

through grafting, with Pyrus betulifolia as one of the major

rootstocks used in China. Although P5CS genes have been

identified in Eugenia uniflora, S. purpurea, rice, and lily

(Kumar et al., 2010; Wang et al., 2017; Anton et al., 2020;

Yang D. et al., 2021), no comprehensive study of the pear P5CS

(PbP5CS) gene family has been reported. Following the release of

the pear genome (Dong et al., 2020), we can now systematically

analyze the putative functions of PbP5CS genes. In the present

study, 11 members of the PbP5CS gene family were identified.

The PbP5CS genes were characterized in terms of gene structures

and phylogenetic relationships. Their tissue expression profiles

and the expression patterns under different stress conditions

were analyzed. The results of PbP5CS gene analysis provide

insight into the functional role of this gene family in pear.
Materials and methods

Identification of P5CS genes in the
pear genome

Amino acid sequences of the model plant A. thaliana P5CS

were obtained from the Arabidopsis Information Resource

database (https://www.arabidopsis.org/). Using these sequences

as queries, the pear genome database was screened by BLASTp

(E-value <1e-5). The complete genome assembly of pear (Pyrus

betulifolia Bunge.) and the complete proteome sequence file

were obtained from the Genome Database for Rosaceae (https://

www.rosaceae.org/). Putative P5CS genes were confirmed by

BLASTp searches of the National Center for Biotechnology

Information database (https://www.ncbi.nlm.nih.gov/). Other

information obtained from this database included

chromosome number, gene accession numbers, predicted

masses of proteins encoded by P5CS genes, and genomic

information. The isoelectric point, grand average of

hydropathicity (GRAVY), and molecular weight of P5CS

proteins were calculated via the ExPasy website (Duvaud et al.,

2021). Subcellular locations of pear P5CS proteins were

predicted using WoLF PSORT II (Horton et al., 2007).
Construction of P5CS phylogenetic trees

P5CS amino acid sequences from apple (Malus domestica),

peach (Prunus persica), poplar (Populus trichocarpa), and A.

thaliana were downloaded from Ensembl (https://plants.

ensembl.org/index.html). ClustalW v1.83 (Hung et al., 2015)

was used for multiple sequence alignments of P5CS proteins.
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The Muscle module within MEGA 7.0 (Kumar et al., 2016) was

used to align the sequences of full-length proteins. Construction

of phylogenetic trees based on PbP5CS protein sequences was

performed using the neighbor-joining approach with Poisson

model, pairwise deletion, and 1000 bootstrap replicates.
Analysis of conserved motifs, conserved
domains, and gene structure

Conserved motifs of all P5CS proteins were identified using

the online MEME analysis tool (Bailey et al., 2015) with the

maximum number of motifs set at 10, and default values for all

other parameters. The NCBI CDD database (https://www.ncbi.

nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi/) was used to analyze

the conserved domains of 11 PbP5CS protein sequences, and

P5CS genes’ domain information data were retained. The

information of exon (coding sequence), intron, and

untranslated region for 11 PbP5CS genes was determined

according to the alignments of their sequences in the P.

betulifolia genome database (https://www.rosaceae.org/species/

pyrus_betulifolia/genome_v1.0/). To compare conserved motifs,

conserved domains, and gene structures of different groups,

TBtools software (Chen et al., 2020) was used for clustering,

drawing phylogenetic trees, and mapping conserved motifs of

PbP5CS. Exon-intron structures were visualized using Gene

Structure Display Server 2.0 (Hu et al., 2014).
Chromosomal localization and
duplication analysis

The chromosomal localization of each PbP5CS gene was

determined based on physical location information obtained

from the pear genome database (https://www.rosaceae.org/

species/pyrus_betulifolia/genome_v1.0/). Then, a gene

localization and distribution map was drawn using TBtools.

Pear genome proteins data were self-compared by BLASTp, and

fragment replication type and tandem repeat replication type of

PbP5CSs were analyzed by MCScanX (Wang et al., 2012).

Tandem duplicated genes were identified by analyzing physical

locations on specific chromosomes. MCScanX was used to assess

syntenic blocks for PbP5CS genes, as well as those between pear

and A. thaliana, between pear and apple, between pear and

peach, and between pear and poplar
Cis-element analysis of PbP5CS
gene promoters

The promoter sequences of 2000 bp regions upstream of each

PbP5CS gene-coding region were retrieved from the pear genome

database. PlantCARE (Lescot et al., 2002) was then used to annotate
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elements, and elements related to hormones, stress, growth, and

development were selected for location distribution mapping.
Expression profiles of PbP5CSs in
various tissues

Expression patterns of PbP5CS genes in various tissues were

acquired from RNA sequencing (RNA-seq) data available in the

NCBI database (https://www.ncbi.nlm.nih.gov/sra/?term=

SRP230672/; SRA accession no.: SRP230672). Fragments per

kilobase of exon per million mapped reads (FPKM) values were

used to estimate gene expression levels. Multi Experiment

Viewer (Saeed et al., 2006) was used to evaluate and

graphically characterize means of expression values for each

gene in all tissues. A heatmap of PbP5CS genes was generated

using the OmicShare Tool (https://www.omicshare.com/tools/).
Plant growth conditions and different
stress treatments

Pear seeds after vernalization were sown in nutritive soil (65%

fertile garden soil, 25% burning soil, 10% fine sand, 0.4% calcium-

magnesium-phosphate fertilizer). All materials were kept in a plant

incubator. When seedlings grew to the five-leaf stage, they were

transplanted into wet vermiculite in pots (7 cm × 7 cm × 10 cm) and

kept in an artificial climate room. Pear seedlings received Hoagland

solution every 3 days and were grown at 23 ± 2°C with a light

intensity of 800 µmol m-2·s-1. Two-month-old seedlings were used to

measure mRNA expression levels of PbP5CSs under biotic and

abiotic stress conditions. Drought stress of potted pear plants was

inflicted by withholding water for 20 days (Yang S. et al., 2021);

waterlogging stress was inflicted by submerging plants in water (Yu

et al., 2019); salinity-alkalinity stress was performed at a ratio of 1:1.4

NaCl and NaHCO3 (Zhang et al., 2020); cold stress was simulated at

4°C (Xi et al., 2011); heat stress was simulated at 40°C (Liu et al.,

2013). Pear rust was applied by infecting leaves with

Gymnosporangium haraeanum Syd. (Li et al., 2006). Pear leaves

were taken at 0, 1, 3, and 6 days after abiotic stresses, and at 0, 6, 12,

and 24 hours after biotic stress. The samples (with three independent

biological replications) were immediately frozen in liquid nitrogen

and stored at -80°C until analysis. To explore the gene expression

profiles of PbP5CSs in response to salt, cold, drought, and Alternaria

alternate infection, pear RNA-seq datasets were retrieved from

published supplemental datasets (SRA accession nos.: SRP077703,

SRP287704, SRP148620, and SRP276846).
Measurements of P5CS enzyme activities

P5CS enzyme activities were measured using a commercial

kit (Suzhou Geruisi Biotechnology, Suzhou, China) following the
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manufacturer ’s instruct ions . Each experiment was

independently repeated three times.
Real-time quantitative PCR analysis

Total RNA extraction from leaf samples was performed

using the method of Ma et al. (2022). First-strand cDNA was

prepared using PrimeScript RTase (TaKaRa Biotechnology,

Dalian, China). Primers for qPCR were designed using Primer

Premier 5.0 (Premier Biosoft International, Silicon Valley, CA,

USA). Primer sequences are detailed in Supplementary Table S1.

A LightCycler R 480 SYBR Green Master (Roche, Mannheim,

Germany) was used for qPCR assays with a LightCycler R 480 II

system (Roche, Rotkreuz, Switzerland). Relative expression

levels of the target genes were calculated using the 2–DDCT

method (Livak and Schmittgen, 2001) and normalized against

the Actin gene (GenBank: AB190176).
Results

Identification of P5CS genes in pear

Based on the conserved domains of protein sequences, 11

P5CS protein sequences were screened and named PbP5CS1

−PbP5CS11 according to their chromosomal sequences and

positions. Detailed physical and chemical characterizations of

PbP5CS proteins are listed in Table 1. The 11 PbP5CS proteins

have different numbers of amino acids; PbP5CS7 is the shortest

(276 amino acids), while PbP5CS4 is the longest (755 amino

acids). The molecular weight of PbP5CSs ranged from 31.16 kDa

(PbP5CS7) to 82.67 kDa (PbP5CS4). The isoelectric point values

of PbP5CS proteins ranged from 6.06 (PbP5CS9) to 8.95

(PbP5CS2). Except for PbP5CS9 and PbP5CS11, the GRAVY
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values of other PbP5CSs were less than zero. The predicted

subcellular localizations were cytoplasm for PbP5CS2, PbP5CS5,

and PbP5CS9, endoplasmic reticulum for PbP5CS1 and

PbP5CS4, chloroplast for PbP5CS3 and PbP5CS11, and

nucleus for the other PbP5CSs.
Phylogenetic relationships of
PbP5CS members

To explore the evolutionary relationships of PbP5CS

members, a phylogenetic tree was built using 50 conserved

domain sequences of P5CS proteins from pear (11), apple (8),

peach (14), poplar (13), and A. thaliana (4; Figure 1). In the

tree, PbP5CS, MdP5CS, PpP5CS, PtP5CS, and AtP5CS were

classified into five groups (Groups I, II, III, IV, and V). Notably,

P5CS genes of woody plants (pear, apple, peach, and poplar)

clustered together. Most of the pear P5CSs also clustered

together with proteins from A. thaliana, consistent with the

closer relationship of pear to eudicots. The distribution of pear

P5CSs was uneven in these groups. Group I was the largest with

24 members, including nearly half of all pear P5CSs (PbP5CS1,

PbP5CS3, PbP5CS4, PbP5CS5, and PbP5CS8). PbP5CS9 and

PbP5CS11 were in both Groups II and IV, PbP5CS6 and

PbP5CS7 were in Group III, and PbP5CS2 and PbP5CS10

were in Group V.
Conserved protein motifs and exon-
intron structures of PbP5CS genes

A total of 10 conserved motifs were predicted in PbP5CSs

(Figure 2B; Supplementary Table S2), ranging from 21 to 100

amino acids in length. Interestingly, we observed that Motifs 1, 2,
TABLE 1 General information on Pyrus betulifolia P5CS genes.

Gene
Name

Gene ID
Number1

Chr Start
Site

Termination
Site

Length
(aa)

MW
(Da)

PI GRAVY Subcellular
Localization2

PbP5CS1 GWHGAAYT001370 1 12601277 12607167 717 77547.02 6.61 -0.052 Endoplasmic reticulum lumen

PbP5CS2 GWHGAAYT033428 2 20298570 20301019 338 35870.92 8.95 -0.093 Cytoplasmic

PbP5CS3 GWHGAAYT039316 4 20355850 20361403 727 78451.63 6.11 -0.085 Chloroplast

PbP5CS4 GWHGAAYT049560 7 21713305 21719297 755 82665.04 6.74 -0.095 Endoplasmic reticulum lumen

PbP5CS5 GWHGAAYT011709 12 19348694 19354150 733 79442.93 6.26 -0.051 Cytoplasmic

PbP5CS6 GWHGAAYT011728 12 19492870 19502013 450 50284.14 6.72 -0.356 Nuclear

PbP5CS7 GWHGAAYT011735 12 19539554 19546307 276 31162.25 6.62 -0.496 Nuclear

PbP5CS8 GWHGAAYT011744 12 19602037 19605102 280 31803.65 8.82 -0.329 Nuclear

PbP5CS9 GWHGAAYT013594 13 3796252 3799633 338 35712.85 6.06 0.095 Cytoplasmic

PbP5CS10 GWHGAAYT017700 14 11096882 11101455 521 56854.74 6.57 -0.493 Nuclear

PbP5CS11 GWHGAAYT022995 15 28622901 28626996 335 35632.72 8.83 0.001 Chloroplast
1From Pyrus betulifolia Genome Sequence Consortium database. 2Predicted using WoLFPSORT (https://www.genscript.com/psort/wolf_psort.).
MW, molecular weight; pI, theoretical isoelectric point; GRAVY, Grand Average of Hydropathicity.
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3, 6, 7, 9, and 10 were present only in Group I members, which

might contribute to the functional divergence of P5CS genes.

Motif 5 was found not only in all members of Group I, but also

in PbP5CS6 and PbP5CS7 in Group III, this suggests that

PbP5CS6 and PbP5CS7 may have evolved from Group I.
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Group II only comprised Motif 4, Group IV only contained

Motif 8. As Motifs 4 and 8 were found in PbP5CS2 and

PbP5CS10 in Group V, PbP5CS2 and PbP5CS10 may have

evolved from Groups II and IV (Figures 2A, B). We also

found that four genes in Group I (PbP5CS1, PbP5CS3,
B CA

FIGURE 2

Schematic representation of protein and gene structures of pear P5CS (PbP5Cs) genes. (A) Phylogenetic relationships. (B) Motif composition.
(C) Gene structure. Motifs 1−8 identified using the MEME search tool are marked on protein sequences in each clade (I−V). The length and order
of each motif corresponds to the actual length and position in the protein sequences. Coding sequence and untranslated regions are
represented by filled orange and dark blue boxes, respectively.
FIGURE 1

Phylogenetic tree of P5CS proteins constructed using the neighbor-joining method with P5CS domains from pear Pyrus betulifolia (red circles),
Malus domestica (yellow triangles), Populus trichocarpa (pink pentagons), Prunus persica (brown circles), and Arabidopsis thaliana (green
squares). Members are divided into Groups I, II, III, IV, and V.
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PbP5CS4, and PbP5CS5) had more than 20 exons, while all

others carried between six and 11 exons (Figure 2C).
Chromosomal locations and
homologous genotypes of PbP5CS genes

According to their annotated genomic locations, we found

that the 11 PbP5CSs were widely distributed among the pear

chromosomes. Chromosome 12 contained four PbP5CS genes,

whereas Chromosomes 1, 2, 4, 7, 13, 14, and 15 had only one

gene (Figure 3). PbP5CS1, PbP5CS3, PbP5CS4, and PbP5CS5

(six pairs) were segmental (Figure 4A). In order to further

explore the homologous gene relationships of PbP5CSs, we

compared the physical locations of P5CS genes among the

genomes of pear, apple, peach, poplar, and A. thaliana

(Figure 4B). P5CS genes showed intimate collinear

relationships in these five species. P5CSs in pear and apple

showed the closest collinear relationship, with seven P5CS

genes in apple sharing a close evolutionary relationship with

PbP5CS genes. Moreover, six P5CS genes in each of peach and

poplar, as well as two P5CS genes in A. thaliana, shared close

evolutionary relationships with PbP5CS genes (Supplementary

Table S3).
Promoter cis-regulatory elements of
PbP5CS genes

To better understand the gene functions and transcriptional

regulation of PbP5CSs, we analyzed cis-elements in the promoter

regions of PbP5CSs (Figure 5). The conventional promoter

element CAAT-box was found in all PbP5CS promoters.

Various cis-elements related to plant growth, development,

and responses to stresses and phytohormones were also
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identified (Supplementary Table S4). Additionally, the

conventional promoter element GC-motif was present in

PbP5CS2, the seed-specific regulation element (RY-element)

was found in the promoter of PbP5CS7, and the endosperm

expression regulation element (GCN4_motif) was observed in

the promoters of PbP5CS1 and PbP5CS8. The zein metabolism

regulation element (O2-site) was identified in the promoters of

seven PbP5CS genes.

Among the cis-elements that respond to plant hormones, the

abscisic acid responsive element (ABRE) was present in the

promoter of all PbP5CS genes, methyl jasmonate responsive

elements (TGACG-motif and CGTCA-motif) were observed in

the promoters of all PbP5CS genes excluding PbP5CS8, and

salicylic acid-responsive element (TCA-element) was found in

eight PbP5CS genes. Gibberellin responsive elements (GARE-

motif, P-box, and TATC-box) and auxin responsive elements

(AUXRR-core and TGA) were identified in six PbP5CS genes.

We also found the stress-related cis-acting element (ARE)

involved in anaerobic induction in all PbP5CS genes.

Furthermore, defense and stress response element (TC-rich

repeat), drought-inducible response element (MBS), low

temperature responsiveness (LTR), and circadian features were

identified in the promoters of PbP5CS genes (Figure 5;

Supplementary Table S4).
Tissue-specific expression patterns of
PbP5CS genes

To investigate the putative roles of the PbP5CS genes in pear

development, we analyzed organic-specific expression patterns

of PbP5CSs. Expression patterns of PbP5CS genes in five

different tissues (petal, stigma, leaf, ovary, and shoot) were

analyzed using publicly available gene expression data

(SRP230672). Some PbP5CSs were expressed at considerably

high levels in specific tissues (Figure 6). For example, three
FIGURE 3

Chromosomal distribution of PbP5CS genes. Chromosomal mapping was based on the physical position (Mb) in 17 pear chromosomes. The
scale on the left is in megabases (Mb). Chromosome numbers are indicated at the top of each bar.
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PbP5CSs (PbP5CS1, PbP5CS5, and PbP5CS8) displayed higher

expression levels in the petal than other tissues, implying that

they play important roles in pear petal growth and development.

PbP5CS1, PbP5CS2, and PbP5CS4 exhibited high levels of

expression in the stigma, which suggests that they may play roles

in stigma growth and development. PbP5CS4, PbP5CS6, and

PbP5CS9 were preferentially expressed in the ovary, which

suggests that they may take part in in ovary growth and
Frontiers in Plant Science 07
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development. PbP5CS3, PbP5CS5, PbP5CS10, and PbP5CS11

showed relatively high expression levels in the leaf, which

means that they could participate in leaf development.

PbP5CS7 showed higher expression in the shoot than other

tissues, which reflects its possible role in shoot growth

(Supplementary Table S5). These results suggest that PbP5CS

genes have different expression patterns, and may play diverse

roles in pear during growth and development of different tissues.
B

A

FIGURE 4

Synteny analysis of P5CS genes. (A) Synteny analysis of PbP5CS genes in pear. Gray lines indicate collinear blocks in the whole Pyrus betulifolia
genome, and red lines indicate duplicated PbP5CS gene pairs. (B) Synteny analysis of P5CS genes in the P. betulifolia, Populus trichocarpa,
Arabidopsis thaliana, Malus domestica, and Prunus persica genomes. Red lines highlight syntenic P5CS gene pairs.
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FIGURE 5

Promoter cis-regulatory element analysis of PbP5CS genes. Different colors indicate various promoter elements in PbP5CS genes.
FIGURE 6

Expression patterns of PbP5CS genes in different tissues of pear. Microarray analysis results of PbP5CS genes in Pyrus bretschneideri ‘Yali’ were
downloaded from NCBI GEO DataSets (SRP230672). Red and blue boxes indicate high and low expression levels, respectively, for each gene.
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Expression patterns of PbP5CS genes
under abiotic and biotic stresses

To explore whether the P5CS enzyme plays an essential role

under biotic and abiotic stresses, we measured the enzyme

activities of P5CS under drought, waterlogging, salinity-

alkalinity, cold, heat , and G. haraeanum infection

(Supplementary Figure S1). The enzyme activities of P5CS

gradually increased under the different stresses. We then

investigated expression patterns of PbP5CS genes in response

to different stresses. With regard to abiotic stresses, RNA-seq

datasets for pear subjected to drought (SRP148620), salt

(SRP077703), and cold (SRP287704) were explored. In general,

expression levels of PbP5CS1, PbP5CS3, PbP5CS4, PbP5CS5,

PbP5CS6, and PbP5CS11 were up-regulated by all abiotic stress

treatments, indicating potential roles of these PbP5CSs in abiotic

stress responses (Figure 7; Supplementary Table S6). Under

drought treatment, PbP5CS1, PbP5CS2, PbP5CS3, PbP5CS4,

PbP5CS5, PbP5CS6, PbP5CS7, PbP5CS9, and PbP5CS11 were

up-regulated, but PbP5CS8 and PbP5CS10 were repressed in

response to short-term drought stress (Figure 7A). Furthermore,

PbP5CS2, PbP5CS3, PbP5CS5, and PbP5CS8 were significantly

up-regulated at 72 hours of NaCl treatment (Figure 7B).

PbP5CS6 and PbP5CS9 were significantly induced at 50 days

of cold treatment (Figure 7C). These results indicate that the

responsive PbP5CSs may be involved in plant defense

mechanisms under both short- and long-term abiotic stress.

To explore the potential roles of PbP5CS genes in responses to

biotic stresses, we investigated RNA-seq datasets from the infection

experiment of pear with A. alternate (SRP276846). PbP5CS1 and
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PbP5CS2 were significantly up-regulated at 24 and 8 hours post-

infection, respectively. PbP5CS3, PbP5CS9, and PbP5CS11 showed

significant up-regulation at 16 hours post-infection. PbP5CS4,

PbP5CS5, and PbP5CS8 were markedly induced at 48 hours post-

infection. However, PbP5CS6 and PbP5CS10 were distinctively

repressed following A. alternate infection, whereas PbP5CS7 did

not respond to infection (Figure 7D).

To validate previous RNA-seq data and reveal more details

of PbP5CSs in stress responses, we investigated the transcription

levels of PbP5CS genes under different environmental stresses,

including drought, waterlogging, salinity-alkalinity, cold, heat,

and G. haraeanum infection. Under drought stress, nine

(PbP5CS1, PbP5CS2, PbP5CS3, PbP5CS4, PbP5CS5, PbP5CS6,

PbP5CS7, PbP5CS9, and PbP5CS11) and two (PbP5CS8 and

PbP5CS10) PbP5CSs were up-regulated and down-regulated,

respectively (Figure 8A). Moreover, seven (PbP5CS2, PbP5CS3,

PbP5CS4, PbP5CS5, PbP5CS7, PbP5CS9, and PbP5CS11) and

four (PbP5CS3, PbP5CS8, PbP5CS9, and PbP5CS10) PbP5CS

genes were respectively up-regulated and down-regulated under

waterlogging treatment (Figure 8B). Similarly, eight PbP5CS

genes (PbP5CS1, PbP5CS2, PbP5CS3, PbP5CS4, PbP5CS7,

PbP5CS9, PbP5CS10, and PbP5CS11) showed increased

expression levels and three PbP5CSs (PbP5CS5, PbP5CS6, and

PbP5CS8) were down-regulated by salinity-alkalinity treatment

(Figure 8C). Additionally, the transcription levels of seven

PbP5CS genes (PbP5CS1, PbP5CS3, PbP5CS4, PbP5CS5,

PbP5CS9, PbP5CS10, and PbP5CS11) were increased under

cold stress (Figure 8D). Under heat stress, seven PbP5CS genes

(PbP5CS1, PbP5CS2, PbP5CS4, PbP5CS5, PbP5CS6, PbP5CS7,

and PbP5CS11) were up-regulated, and the remaining four
B C DA

FIGURE 7

Expression patterns of PbP5CS genes in response to abiotic and biotic stresses. (A) Gene expression patterns in Pyrus bretschneideri at 1, 3, and
6 hours of drought treatment (GEO series SRP148620). (B) Gene expression patterns in Pyrus betulifolia at 72 hours of salt stress treatment
(GEO series SRP077703). CK, control; SS, salt stress treatment. (C) Gene expression patterns in Pyrus bretschneideri ‘Suli’ at 0, 10, 20, 30, 40, 45,
and 50 days of cold treatment (GEO series SRP287704). (D) Gene expression patterns in Pyrus pyrifolia ‘Deshengxiang’ (DSX) and Pyrus pyrifolia
‘Guiguan’ (GG) at 0, 8, 12,16, 24, and 48 hours post-infection by Alternaria alternate (GEO series SRP276846). Data are expressed as fragments
per kilobase of exon per million mapped reads. Blue and red blocks indicate decreased and increased transcription levels, respectively.
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PbP5CSs (PbP5CS3, PbP5CS8, PbP5CS9, and PbP5CS10) were

down-regulated (Figure 8E).

Pear rust caused by G. haraeanum is one of the main

diseases affecting pear production. To understand the potential

functions of PbP5CS genes in response to biotic stress, transcript

levels of 11 PbP5CSs were measured by qPCR in pear subjected

to G. haraeanum infection. Seven (PbP5CS1, PbP5CS2,

PbP5CS3, PbP5CS6, PbP5CS7, PbP5CS9, and PbP5CS11) and

four (PbP5CS4, PbP5CS5, PbP5CS8, and PbP5CS10) PbP5CS

genes were up-regulated and down-regulated, respectively

(Figure 8F). Interestingly, PbP5CS4 and PbP5CS11 were also

strongly induced by drought, waterlogging, salinity-alkalinity,

cold, and heat, suggesting that these two genes might be

candidate genes for mitigating abiotic stresses. In particular,
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PbP5CS11 was induced dramatically by various abiotic and

biotic stresses (Figure 8).
Discussion

P5CS genes play key roles in biochemical and physiological

processes in response to various stressors in plants (Chen et al.,

2013; Yang D. et al., 2021). Therefore, studying the functions of

P5CS gene families in inhospitable environments can provide

valuable information on the mechanisms underlying plant

adaptation. In the current work, we performed a genome-wide

analysis of P5CSs in pear by considering their gene structures,

phylogenetic relationships, cis-acting elements, linkage group
B

C
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FIGURE 8

Real-time quantitative PCR (qPCR) analysis of pear P5CS genes in response to (A) drought, (B) waterlogging, (C) salinity-alkalinity, (D) cold,
(E) heat, and (F) Gymnosporangium haraeanum infection stresses. Data were normalized against expression levels of the Actin gene. Mean
values were calculated from three independent replicates. Vertical bars indicate standard error of the mean. Different lowercase letters indicate
significant differences between treatments according to Fisher’s least significant difference (P < 0.05).
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organization, and duplication events. We also explored their

possible roles in plant tissues and responses to stress. The

genome-wide results for PbP5CS genes not only provides novel

insights into their physiological functions, but also a foundation

for functional research on these genes during pear growth

and development.

The expansion of gene family members is driven by gene

duplication events, either segmental or tandem duplications,

during plant evolution (Guo et al., 2014; Wang et al., 2022). Most

plants have two P5CS isoforms, as demonstrated for Phaseolus

vulgaris, Lotus japonicus, and Brassica napus (Xue et al., 2009;

Chen et al., 2013; Signorelli and Monza, 2017). In the present

work, 11 P5CS genes were identified in the pear genome

(Table 1; Figure 1), more than apple (8) and A. thaliana (4),

but fewer than poplar (13) and peach (14). The variation might

be due to gene duplication differences, considered a fundamental

driving force in the evolution of genomes (Kong et al., 2007).

Gene duplications can provide raw materials for new genes,

leading to the emergence of new functions.

Our phylogenetic analysis of P5CS proteins among pear,

apple, peach, poplar, and A. thaliana showed that the proteins

formed species-specific clusters (Figure 1). This result indicates

that P5CS proteins have been highly conserved during evolution.

Furthermore, there were six segmental duplication pairs

(PbP5CS1/PbP5CS3, PbP5CS1/PbP5CS4, PbP5CS1/PbP5CS5,

PbP5CS3/PbP5CS4 , PbP5CS3/PbP5CS5 , and PbP5CS4/

PbP5CS5) in pear (Figure 4A). These results demonstrate that

segmental duplication plays a vital role in driving the expansion

of the pear PbP5CS gene family. The synteny analysis of P5CS

genes in pear, apple, peach, poplar, and A. thaliana showed that

PbP5CS genes shared higher homology with P5CS genes in apple

than in peach, poplar, and A. thaliana (Figure 4B;

Supplementary Table S3). However, PbP5CS1 and PbP5CS4

were collinear with the P5CS genes of the other four species

(Supplementary Table S3), indicating that PbP5CS1 and

PbP5CS4 in different plants may have evolved from a

common ancestor.

Variation in introns and exons plays is essential for the

evolution of different genes (Mustafin and Khusnutdinova,

2015; Rogers, 1990). Introns play major roles in gene

evolution (Rose, 2008). Our analysis of P5CS gene structure

revealed that all PbP5CS genes contained different numbers of

exons and introns (Figure 2C), indicating functional diversity

among PbP5CS genes. In addition, cis-regulatory element

analysis revealed the presence of a series of abiotic/biotic

stress responsive cis-acting elements, such as ARE, ABRE,

MBS, LTR, and AuxRR-core, in the promoter regions of

PbP5CS genes (Figure 5; Supplementary Table S4). This

implies that the PbP5CS genes perform potential functions in

response to abiotic and biotic stresses. The different cis-

regulatory elements in P5CS genes presumably allows them

to exert diverse effects on plant growth and development,

including under different stress conditions.
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Proline has been shown to be critically involved in a number

of plant developmental processes, such as pollen fertility, root

elongation, embryo development, and floral transition (Trovato

et al., 2018). P5CS1 predominantly contributes to stress-induced

proline accumulation, and P5CS2 is mainly involved in plant

growth and development (Funck et al., 2020). For example, an

increase in proline content was accompanied by markedly high

expression of BnP5CS in flowers of B. napus, suggesting possible

contribution of proline to flower development (Xue et al., 2009).

In pear, eight PbP5CS genes (PbP5CS1, PbP5CS4, PbP5CS5,

PbP5CS6, PbP5CS7, PbP5CS8, PbP5CS9, and PbP5CS11)

displayed high expression levels in the petal (Figure 6), which

further indicates that proline is a key factor in floral development

(Trovato et al., 2018). Furthermore, PbP5CS1, PbP5CS2, and

PbP5CS4 were highly expressed in the stigma, PbP5CS4,

PbP5CS6, and PbP5CS9 showed relatively high expression

levels in the ovary, and PbP5CS3, PbP5CS10, and PbP5CS11

were predominantly expressed in the leaf (Figure 6). All these

PbP5CS members likely function in the particular pear tissues.

Proline accumulation is mainly regulated by the P5CS

enzyme in plant cells under stress conditions (Yang D. et al.,

2021). Increasing evidence demonstrates that P5CS genes

participate in plant development, biological regulation, and

stress responses, and they play an essential role in plant

resistance to different abiotic stresses (Zhang et al., 1995;

Parida et al., 2008; Bandurska et al., 2017). P5CS is a key

enzyme enhancing oxidative stress tolerance in plants under

salt and drought stresses (Kumar et al., 2010; Rai and Penna,

2013). P5CS activity and expression levels were up-regulated

in barley (Hordeum vulgare), cotton (Gossypium hirsutum),

and S. purpurea under drought stress conditions (Parida et al.,

2008; Bandurska et al., 2017; Yang D. et al., 2021). In pear,

P5CS enzyme activity was induced under six different stresses

(Supplementary Figure S1). The expression of PbP5CS1,

PbP5CS2, PbP5CS3, PbP5CS4, PbP5CS5, PbP5CS6, and

PbP5CS11 was significantly induced in response to drought

stress according to RNA-seq and qPCR data (Figures 7, 8),

indicating roles for these genes in drought stress tolerance by

regulating P5CS enzyme activities. Moreover, most pear

P5CSs (PbP5CS1, PbP5CS2, PbP5CS3, PbP5CS4, PbP5CS5,

PbP5CS6, PbP5CS8, PbP5CS10, and PbP5CS11) clustered

together with proteins from A. thaliana (Figure 1). The

AtP5CS gene was induced by high salt treatment in A.

thaliana (Yoshiba et al. , 1995). Similarly, PbP5CS2 ,

PbP5CS4 , and PbP5CS10 expression was induced in

response to salt and salinity-alkalinity stresses, according to

RNA-seq and qPCR data (Figures 7, 8C), indicating putative

functions for these genes in pear salt or salinity-alkalinity

stress tolerance. Furthermore, AmP5CS was rapidly initiated

by heat stress in grey mangrove (Avicennia marina) (Liu and

Wang, 2020). PvP5CS was prominently up-regulated in

common bean (Phaseolus vulgaris), which enhanced

tolerance under cold stress (Atienza et al., 2004; Chen et al.,
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2009; Chen et al., 2013). CpP5CS can be induced by both heat

and cold stress in papaya (Carica papaya) (Zhu et al., 2012).

In the current work, P5CS enzyme activity was gradually

increased, and the expression of PbP5CS1 , PbP5CS4 ,

PbP5CS5, and PbP5CS11 was significantly induced by heat

and cold. Additionally, the enzyme activity of P5CS was

induced, and PbP5CS2, PbP5CS3, PbP5CS4, PbP5CS5 ,

PbP5CS7, PbP5CS9, and PbP5CS11 were up-regulated by

waterlogging stress (Supplementary Figure S1; Figure 8).

The collective results indicate that these PbP5CS genes also

regulate P5CS enzyme activities to mitigate various

abiotic stresses.

Regarding biotic stresses, AtP5CS2 participates in the A.

thaliana hypersensitive response induced by avirulent

Pseudomonas spp. (Fabro et al., 2004). Herein, PbP5CS1,

PbP5CS2, PbP5CS3, PbP5CS6, PbP5CS7, PbP5CS9, and

PbP5CS11 were up-regulated in response to G. haraeanum

infection (Figure 8). Accordingly, these PbP5CSs might

participate in the pathogen response pathway. However,

PbP5CS4, PbP5CS5, PbP5CS8, and PbP5CS10 were down-

regulated in response to G. haraeanum infection, suggesting

that the four genes may function through different mechanisms

to protect against biotic stimuli. All identified PbP5CS

members were differentially regulated by both biotic and

abiotic stresses, indicating that these genes are likely to

mediate plant defense mechanisms in pear. Currently, the

biological functions of most PbP5CS genes in plant

developmental and defense processes remain unknown. The

present bioinformatic and expression analyses of PbP5CS genes

provide valuable information for screening candidate genes,

and the results are helpful to further investigate the functions

of this gene family in pear.
Conclusions

Eleven PbP5CS genes were identified in pear, and a

systematic study of the PbP5CS gene family was carried out.

The comprehensive analyses encompassed conserved domains,

gene structures, and phylogenetic relationships, in addition to

gene duplications, chromosome locations, cis-acting elements,

and expression patterns. There were various cis-acting

elements in the PbP5CS promoter sequences, suggesting that

PbP5CSs act in complex networks regulating plant

development and responses to stresses. Transcriptome and

qPCR analyses revealed that PbP5CS genes are likely to take

part in plant response to biotic and abiotic stresses. Our

genome-wide analysis of PbP5CSs provides evidence for the

functions of this gene family in pear. Further studies on

PbP5CS genes are underway to verify their functions in

stressed environments.
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Arbuscular mycorrhiza induces
low oxidative burst in drought-
stressed walnut through
activating antioxidant defense
systems and heat shock
transcription factor expression

Wen-Ya Ma1, Qiu-Yun Qin1, Ying-Ning Zou1, Kamil Kuča2,
Bhoopander Giri3, Qiang-Sheng Wu1,2*, Abeer Hashem4,
Al-Bandari Fahad Al-Arjani4, Khalid F. Almutairi5,
Elsayed Fathi Abd_Allah5 and Yong-Jie Xu6,7*

1Tibet Plateau Walnut Industry Research Institute/College of Horticulture and Gardening, Yangtze
University, Jingzhou, Hubei, China, 2Department of Chemistry, Faculty of Science, University of
Hradec Kralove, Hradec Kralove, Czechia, 3Department of Botany, Swami Shraddhanand College,
University of Delhi, New Delhi, India, 4Botany and Microbiology Department, College of Science,
King Saud University, Riyadh, Saudi Arabia, 5Plant Production Department, College of Food and
Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia, 6Hubei Key Laboratory of
Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei
Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains,
Huanggang Normal University, Huanggang, China, 7Hubei Academy of Forestry, Wuhan, China
Arbuscular mycorrhizal fungi (AMF) have important roles in enhancing drought

tolerance of host plants, but it is not clear whether and how AMF increase

drought tolerance in walnut (Juglans regia). We hypothesized that AMF could

activate antioxidant defense systems and heat shock transcription factors (Hsfs)

transcription levels to alleviate oxidative damage caused by drought. The

walnut variety ‘Liaohe No. 1’ was inoculated with Diversispora spurca and

exposed to well-watered (WW, 75% of the maximum soil water capacity) and

drought stress (DS, 50% of the maximum soil water capacity) for 6 weeks. Plant

growth, antioxidant defense systems, and expressions of five JrHsfs in leaves

were studied. Such drought treatment inhibited root mycorrhizal colonization,

while plant growth performance was still improved by AMF inoculation.

Mycorrhizal fungal inoculation triggered the increase in soluble protein,

glutathione (GSH), ascorbic acid (ASC), and total ASC contents and ascorbic

peroxidase and glutathione reductase activities, along with lower hydrogen

peroxide (H2O2), superoxide anion radical (O2
•−), and malondialdehyde (MDA)

levels, compared with non-inoculation under drought. Mycorrhizal plants also

recorded higher peroxidase, catalase, and superoxide dismutase activities than

non-mycorrhizal plants under drought. The expression of JrHsf03, JrHsf05,

JrHsf20, JrHsf22, and JrHsf24 was up-regulated under WW by AMF, while the
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expression of JrHsf03, JrHsf22, and JrHsf24 were up-regulated only under

drought by AMF. It is concluded that D. spurca induced low oxidative burst in

drought-stressed walnut through activating antioxidant defense systems and

part Hsfs expressions.
KEYWORDS

arbuscular mycorrhiza, heat shock transcription factor, reactive oxygen species, symbiosis,
water stress
Introduction

Walnuts (Juglans regia L.) are an important nut crop in the

world, with the second highest yield of nut crops (Behrooz et al.,

2019). Walnut kernels can not only be consumed directly, but

also include a large amount of unsaturated fatty acids and a

variety of active ingredients (Luca et al., 2018). Among them, the

high content of polyphenols in walnuts makes them effective as

antioxidants and free radical scavengers (Ebrahimzadeh et al.,

2013). Walnut trees are influenced by soil drought stress (DS)

because of their high water demand (Vahdati et al., 2009).

Arbuscular mycorrhizal fungi (AMF) establish symbiotic

associations with various plants (Wu et al., 2013). AMF can

help the host to acquire nutrients from the soil, especially

difficult-to-move elements, and thus increase plant growth

(Ho-Plágaro et al., 2021). Studies indicated that AMF

inoculation enhanced drought tolerance of host plants through

various underlying mechanisms, as outlined by Cheng et al.

(2021). One important mechanism is the ability of AMF to

mitigate oxidative burst by enhancing antioxidant defense

systems of the host (Zou et al., 2021). The population of AMF

has been observed in rhizosphere of walnuts (Ma et al., 2021),

and AMF inoculation contributed to walnut growth (Wang,

2015; Huang et al., 2020). Combining AMF (Glomus

fasciculatus) inoculation with foliar fertilization would increase

plant growth as well as the survival of walnuts (Ponder, 1984). In

addition, AMF (Diversispora spurca) inoculation accelerated

nutrient uptake of walnuts such as P and K (Huang et al.,

2020; Thioye et al., 2022). Potted studies had shown the role of

AMF in drought tolerance of walnut plants. Behrooz et al. (2019)

reported that AMF (G. mosseae and G. etunicatum) significantly

increased contents of some metabolites (e.g., total phenols and

proline) in walnut plants under DS. Moreover, AMF also

promoted plant growth and nutrient acquisition in walnut

plants (Thioye et al., 2022), and thereby improved the

adaption of walnut plants in response to DS. The study of Liu

et al. (2021) showed the an endophytic fungus (Serendipita

indica) triggered the enhancement in superoxide dismutase

(SOD), catalase (CAT), and peroxidase (POD) activities in
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walnut plants under soil water deficit, accompanied by the

reduction of superoxide anion free radical (O2
•−) and

hydrogen peroxide (H2O2) levels, thus alleviating drought-

induced oxidative burst. These results suggested that symbiotic

fungi can alleviate oxidative burst in walnut under drought by

activating antioxidant defense systems. However, it is unclear

whether the dominant AMF strain, D. spurca (Huang et al.,

2020), has similar functions in response to drought as S. indica.

Heat shock transcription factors (Hsfs) are key components

of signal transduction and also regulate the response of genes to

stress (Si et al., 2021). Moreover, Hsfs members such as SPL7,

HsfA1b, HsfA4a, and HsfA8 are involved in the homeostasis of

reactive oxygen species (ROS) under DS conditions (Hoang

et al., 2019). In addition, Hsfs can sense ROS in plant cells,

and Hsfs are an important regulator to control oxidative burst

under stress (Miller et al., 2008).

Although AMF has been shown to enhance drought

tolerance in many plants, it is not clear whether and how a

dominant strain, D. spurca, enhances drought tolerance in

walnuts. We hypothesized that AMF could activate antioxidant

defense systems and Hsfs transcription levels to alleviate

oxidative damage caused by drought. Hence, the present study

was performed to analyze effects of D. spurca on plant growth,

antioxidant enzyme activities, antioxidant concentrations,

transcription levels of Hsfs, ROS levels, and degree of

membrane lipid peroxidation in leaves of walnuts subjected

to DS.
Materials and methods

Plant culture, mycorrhizal inoculation,
and soil water regimes

Walnut seeds of ‘Liaohe No. 1’ variety were pre-disinfected

with 75% ethanol and germinated in autoclaved sands at room

temperature. Subsequently, the seedlings having four leaves were

transplanted into 2.4-L plastic pots containing 2.05 kg

autoclaved mixture of sand and soil in the volume ratio of 1:
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3. Mycorrhizal fungal inoculums were applied to the rhizosphere

of walnut seedlings at the time of plant transplanting. The AMF-

inoculated treatment (+AMF) received 150 g inoculum (23

spores/g) of D. spurca per pot, and the non-AMF-inoculated

treatment (-AMF) received both 2 mL of 25 mm of inoculum

filtrates and 150 g of autoclaved mycorrhizal inoculum per pot.

The origin and propagation of the D. spurca strain were

described in detail by Huang et al. (2020).

After plant transplanting, two soil moisture regimes (75%

and 50% of the maximum soil water capacity) were performed

according to the result of Li et al. (2020). The water content of

potted soil was controlled at 75% of the maximum soil water

capacity (well-watered, WW). After 7 weeks, half of the treated

plants continued to maintain under WW conditions, and the

other half of the treated plants was adjusted to 50% of the

maximum soil water capacity (DS). The soil moisture was

monitored by daily weighing, and the reduced water was

supplemented immediately, so as to maintain the designed soil

moisture condition. Such DS treatment was maintained for 6

weeks, and the seedlings were harvested. All the plants were

grown in a greenhouse with a light density of 1360 lux, a relative

air humidity of 66%, and a temperature of 28°C/22°C

(day/night).
Experimental design

The experiment was a completely randomized block design

consisting of two factors: (i) D. spurca inoculation (+AMF) and

non-inoculation (-AMF); and (ii) soil moisture regimes with

WW and DS. A total of four treatments in the experiment were

arranged, coupled with five replicates (two pots as a replicate)

per treatment.
Measurements of mycorrhizal
development and plant growth

Stem diameter, plant height, and leaf number per plant were

measured before harvesting. Shoot and root biomass was weighed

after the harvest. Root mycorrhizas were stained using the trypan

blue described by Phillips and Hayman (1970). Mycorrhizal

fungal colonization degree (%) = (mycorrhizal colonized root

length/total length of root segments examined) × 100. Hyphal

length in the soil was determined as per the method of

Bethlenfalvay and Ames (1987).
Measurements of ROS levels and degree
of membrane lipid peroxidation in leaves

Malondialdehyde (MDA, an indicator of the degree of

membrane lipid peroxidation) concentrations in leaves were
Frontiers in Plant Science 03
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assayed by the thiobarbituric acid colorimetry (Sudhakar et al.,

2001). H2O2 and O2
•─ levels were assayed by the 1 mol/L KI

colorimetric method and the hydroxylamine reaction,

respectively (Li et al., 2022).
Measurements of non-enzymatic
antioxidant concentrations in leaves

Soluble protein concentrations in leaves were measured as

per the protocol described by Bradford (1976). Ascorbic acid

(ASC) and glutathione (GSH) in leaves were extracted by

grinding 0.15 g of leaf samples with 6 mL of 5%

trichloroacetic acid into a homogenate and centrifuging at

15,000×g for 10 min (Wu et al., 2006). ASC and GSH

concentrations in the supernatant were measured according to

the method described by Li (2009). In addition, the 1 mL

supernatant was incubated with 0.5 mL of 60 mmol/L

dithiothreitol for 10 min to reduce the dehydroascorbic acid

(DHA). The reaction solution was then incubated with 5%

tr ich loroace t i c ac id , 0 .4% phosphor ic ac id , 0 .5%

bathophenanthroline, and 0.03% FeCl3, and the absorbance at

534 nm was measured for total ascorbic acid (TASC)

concentrations. The DHA content was obtained by subtracting

ASC from TASC.
Measurements of antioxidant enzyme
activities in leaves

Extraction and activity of CAT were carried out by UV

spectrophotometry (Li et al., 2022). POD activity was

determined using the guaiacol (0.05 mol/L) method (Li et al.,

2022). Ascorbate peroxidase (APX) and glutathione reductase

(GR) activities were assayed by the protocol outlined byWu et al.

(2006). Fe-SOD, Mn-SOD, and Cu/Zn-SOD activities were

measured by the Enzyme-Linked Immunosorbent assay using

the corresponding kit (ml902210, mll614100, and ml201168)

(Shanghai Enzyme-link Biotechnology Co., Ltd., Shanghai,

China), on the basis of the user manual.
Measurements of expression levels of
JrHsfs in leaves

Based on the identification of Hsfs in walnuts by Liu et al.

(2020), the sequence of walnut Hsfs genes (JrHsf03, JrHsf05,

JrHsf20, JrHsf22, and JrHsf24) was extracted from the walnut

genome (https://www.ncbi.nlm.nih.gov/genome/?term=

txid2249226 [orgn]). Primer sequences (Table 1) were

designed using Primer premier 5.0. The TaKaRa MiniBEST

plant RNA kits (9769; Takara, Dalian, China) were used to

extract leaf total RNA according to the user manual. After
frontiersin.org
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checking the integrity and concentration, the RNA was reversely

transcribed into cDNA using the PrimeScript™ RT reagent kits

with gDNA Eraser (RR047A; Takara, Dalian, China). The cDNA

was used as a template for qRT-PCR amplification using 18S-

rRNA as a house-keeping gene. Prior to performing qRT-PCR,

the selected primers and melting curves had been checked to

determine the reliability of the relative quantification results.

Real-time fluorescence quantitative expression analysis was

performed using a fluorescent dye method with three

biological replicates of each treatment, and relative expression

of genes was calculated using the 2-DDCt method (Livak and

Schmittgen, 2001).
Data analysis

Statistical analysis was performed with two-factor analysis of

variance, based on the SAS software 8.1v (SAS Institute Inc.,

Cary, NC, USA). The Duncan’s multiple range test at the 0.05%
Frontiers in Plant Science 04
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level was used to compare the significant difference

among treatments.
Results

Root mycorrhizal colonization

No mycorrhiza was observed in the roots of walnut

inoculated without D. spurca, and the degree of mycorrhizal

colonization on the roots of walnut inoculated with D. spurca

ranged from 62.9% to 73.5% (Table 2). Soil water deficit

significantly inhibited the degree of root mycorrhizal

colonization by 14.4%, compared to WW treatment. Soil

drought treatment and AMF inoculation significantly

interacted on root mycorrhizal colonization.
Plant growth responses

Drought treatment obviously inhibited the growth of walnut

seedlings, while mycorrhizal introduction improved plant

growth (Table 2). D. spurca inoculation only significantly

increased plant height under WW by 29.3%, whereas it

increased plant height, stem diameter, and leaf number per

plant under DS significantly by 36.1%, 47.2%, and 14.4%,

respectively. AMF-inoculated seedlings exhibited 25.2%

significantly higher biomass under WW and 29.4% higher

biomass under DS, compared with non-inoculated seedlings. A

significant interaction between drought treatment and

mycorrhizal inoculation occurred on biomass production.
ROS levels

Drought treatment significantly induced an increase in leaf

H2O2 and O2
•─ concentrations by 20.3% and 152.6% in
TABLE 1 Specific primer sequences of genes used for qRT-PCR.

Gene
name

Gene ID Primer sequences (5’!3’)

JrHsf03 LOC109009449 F: TGCTTATGATGTCATGGCAGAGA

R: TCCTCCTCTAAATCCACCCAAA

JrHsf05 LOC108997276 F: AGACTCCCCAATCAAGAGGAAAG

R: CCGCAGCAAGGTTTTAGCA

JrHsf20 LOC108992254 F: AGGTTGTTCTTGAGCTTTCGATG

R: GGTAGGTTTTGGTGAGGAATGG

JrHsf22 LOC109011524 F: GAACGGGGTTTGTAGTATGGTCTC

R: GACACTTGGCTCGCACTTCTT

JrHsf24 LOC108989320 F: GAAGACGTACATGCTGGTGGAG

R:
TATGCTTGAAAAGTGTAGGGAGGAG

18S-rRNA LIHL01052714.1_7 F: GGTCAATCTTCTCGTTCCCTT

R: TCGCATTTCGCTACGTTCTT
TABLE 2 Effects of AMF (Diversispora spurca) on root mycorrhizal colonization and plant growth performance of walnut under well-watered
(WW) and drought stress (DS).

Treatments Root mycorrhizal colonization (%) Plant height(cm) Stem diameter(mm) Leaf number per plant Biomass
(g/plant)

WW+AMF 73.5 ± 3.8a 47.2 ± 4.8a 6.7 ± 0.4a 36.6 ± 3.2a 34.8 ± 1.6a

WW-AMF 0.0 ± 0.0c 36.5 ± 5.6b 6.0 ± 0.9ab 34.6 ± 3.0a 27.8 ± 2.0b

DS+AMF 62.9 ± 4.1b 36.2 ± 2.2b 5.3 ± 0.4b 33.4 ± 2.8a 27.7 ± 4.3b

DS-AMF 0.0 ± 0.0c 26.6 ± 7.8c 3.6 ± 0.8c 29.2 ± 2.6b 21.4 ± 1.7c

Significance

DS ** ** ** ** **

AMF ** ** ** * **

DS×AMF ** NS NS NS *
fro
Data (means ± SD, n = 4) followed by different letters among treatments indicate significant differences at the 5% level. * P < 0.05; ** P < 0.01; NS, not significant at the 0.05 level.
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uninoculated plants and by 32.2% and 98.7% in inoculated

plants (Figures 1A, B). However, the inoculated plants with D.

spurca recorded significantly lower leaf H2O2 and O2
•─

concentrations by 44. 5% and 41.7% under WW and by 27.7%

and 80.2% under DS, respectively, compared with the

uninoculated plants. A significant interaction between

drought treatment and AMF inoculation occurred on O2
•─

concentrations (Table 3).
Degree of membrane lipid peroxidation

The DS treatment significantly promoted MDA levels in

both inoculated and uninoculated plants by 29.7% and 157.6%,

respectively, relative to the WW (Figure 2). On the other hand,

inoculated walnut plants showed significantly lower MDA levels

by 13.8% under WW and 126.1% under DS. There was a

significant interaction between drought treatment and AMF

inoculation for MDA levels (Table 3).
Frontiers in Plant Science 05
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Non-enzymatic antioxidant
concentrations

Compared to the WW treatment, the DS treatment triggered

a distinct decrease in soluble protein and DHA concentrations in

inoculated and uninoculated plants, but induced an increase in

GSH, ASC and TASC concentrations in inoculated and

uninoculated plants (Figures 3A–E). Under WW conditions,

soluble protein, ASC and TASC concentrations were increased

by 40.54%, 141.57% and 3.79% in inoculated plants, compared

to uninoculated plants (Figures 3A, C, E). Under DS conditions,

soluble protein, GSH, ASC and TASC concentrations of

inoculated plants were increased by 112.50%, 9.52%, 91.89%

and 4.17%, compared to that of uninoculated plants (Figures 3A,

B, C, E). AMF inoculation caused the decrease in DHA

concentrations by 52.46% and 110.78% under WW and DS,

respectively, compared with non-AMF inoculation (Figure 3D).

No significant interaction between drought treatment and AMF

inoculation occurred on non-enzymatic antioxidants (Table 3).
A B

FIGURE 1

Effect of AMF (Diversispora spurca) on leaf H2O2 (A) and O2
•─ (B) concentrations of walnut under well-watered (WW) and drought stress (DS).

Data (means ± SD, n = 4) are significantly different (P < 0.05) if followed by different letters above the bars.
TABLE 3 Significance of variables between AMF and non-AMF colonized walnut seedlings grown in well-watered (WW) and drought stress (DS).

Variables DS AMF DS×AMF Variables DS AMF DS×AMF

H2O2 ** ** NS Cu/Zn-SOD ** ** NS

O2
•− ** ** ** CAT ** ** **

MDA ** **f ** POD ** ** NS

Soluble protein ** ** NS APX ** ** *

GSH ** ** NS GR ** ** NS

ASC ** ** NS JrHsf03 ** ** NS

DHA ** ** NS JrHsf05 NS ** **

TASC ** ** NS JrHsf20 ** ** NS

Mn-SOD ** ** NS JrHsf22 ** ** **

Fe-SOD ** ** ** JrHsf24 ** ** NS
fro
NS, not significant at the 0.05 level. *, P <0.05; **, P <0.01.
ntiersin.org

https://doi.org/10.3389/fpls.2022.1089420
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ma et al. 10.3389/fpls.2022.1089420
Antioxidant enzyme activities

The DS treatment significantly increased various antioxidant

enzyme activities compared to WW treatment, independent of

AMF inoculation or not (Figures 4A–E). In addition, under

WW, Mn-SOD, Fe-SOD, CAT, POD, APX and GR activities

were increased by 8.8%, 8.9%, 570.2%, 142.3%, 98.7% and 76.0%
Frontiers in Plant Science 06
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in inoculated plants compared to uninoculated plants,

respectively; under DS, Mn-SOD, Cu/Zn-SOD, CAT, POD,

APX and GR activities were increased by 13.8%, 1.7%, 340.4%,

80.5%, 106.3% and 77.2% in inoculated plants compared to

uninoculated plants, respectively. A significant interaction

between DS and AMF treatment occurred on Fe-SOD, CAT,

and APX activities (Table 3).
FIGURE 2

Effect of AMF (Diversispora spurca) on leaf malondialdehyde (MDA) concentrations of walnut under well-watered (WW) and drought stress (DS).
Data (means ± SD, n = 4) are significantly different (P < 0.05), if followed by different letters above the bars.
A B

D E

C

FIGURE 3

Effect of AMF (Diversispora spurca) on leaf soluble protein (A), GSH (B), ASC (C), DHA (D), and TASC (E) concentrations of walnut under well-watered
(WW) and drought stress (DS). Data (means ± SD, n = 4) are significantly different (P < 0.05), if followed by different letters above the bars.
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Hsfs expression levels in leaves

Drought treatment up-regulated expressions of JrHsf03,

JrHsf20, Jrhsf22 and JrHsf24 in inoculated and uninoculated

walnut plants, compared to WW treatment (Figure 5). However,

DS also induced JrHsf05 expressions in uninoculated plants, but
Frontiers in Plant Science 07
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down-regulated JrHsf05 expressions in inoculated plants. AMF

inoculation significantly up-regulated expressions of JrHsf03,

JrHsf05, JrHsf20, JrHsf22, and JrHsf24 under WW by 4.42-fold,

2.57-fold, 3.15-fold, 2.60-fold, and 1.95-fold, respectively,

compared to non-AMF treatment; under DS, AMF up-

regulated expressions of JrHsf03, Jrhsf22, and JrHsf24 by 1.32-
A B

D E

C

FIGURE 4

Effect of AMF (Diversispora spurca) on leaf superoxide dismutase (SOD) (A), catalase (CAT) (B), peroxidase (POD) (C), ascorbate peroxidase (APX)
(D), and glutathione reductase (GR) (E) activities of walnut under well-watered (WW) and drought stress (DS). Data (means ± SD, n = 4) are
significantly different (P < 0.05), if followed by different letters above the bars.
FIGURE 5

Effect of AMF (Diversispora spurca) on Hsfs gene expression levels in leaves of walnut under well-watered (WW) and drought stress (DS). Data
(means ± SD, n = 3) are significantly different (P < 0.05), if followed by different letters above the bars.
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fold, 1.96-fold, and 1.39-fold, respectively, compared to non-

AMF inoculation, with no effect on the expression of JrHsf05 and

JrHsf20. A significant interaction between drought treatment

and AMF inoculation occurred on JrHsf05 and JrHsf22

expression (Table 3).
Discussion

Soil drought inhibited mycorrhizal
colonization, while AMF still promoted
walnut growth under drought

Our study indicated that the DS treatment reduced the

degree of root colonization by D. spurca in walnut seedlings.

Similar result was reported in trifoliate orange (Liang et al.,

2021) and peanut (Bi et al., 2021). Such reduction of mycorrhizal

colonization under DS is due to the decrease in roots, host’s

carbohydrates, and root exudates by DS, thus inhibiting spore

germination and mycorrhizal colonization (Tyagi et al., 2017).

Inoculation with D. spurca significantly promoted plant growth

performance of walnut seedlings, which is attributed to the fact

that AMF enhanced the uptake of mineral nutrients such as P,

Zn and Cu, along with water absorption by mycorrhizal

extraradical hyphae (Cheng et al., 2021).
AMF activated enzymatic and
non-enzymatic antioxidant
defense systems to mitigate
oxidative burst under drought

Under stress, plants produce electron overflow in

chloroplasts, mitochondria, peroxisomes, and plasma

membranes, and thus lead to excess accumulation of ROS

such as H2O2 and O2
•─, which thus triggers oxidative damage

(Cao et al., 2022). This study showed that the soil drought

triggered oxidative burst (H2O2 and O2
•─) in leaves of

mycorrhizal and non-mycorrhizal walnut plants, thus

increasing the degree of membrane lipid peroxidation, in

accordance with increased MDA levels. However, D. spurca-

inoculated walnut plants presented significantly lower ROS and

MDA levels than uninoculated plants, suggesting that inoculated

plants suffered relatively lower oxidative damage than

uninoculated plants (Abd_Allah et al., 2015). This finding is

consistent with that on trifoliate orange (Zhang et al., 2020) and

lettuce (Kohler et al., 2009).

Soil drought causes oxidative damage to plants, while plants

also have enzymatic (e.g., SOD, POD, and CAT) and non-

enzymatic (e.g., soluble protein, ASC, and GSH) antioxidant

defense systems to reduce ROS levels (Verma et al., 2019).
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Soluble proteins are involved in the metabolic process and are

related to the water holding capacity of cells and the protective

role in cell membranes (Lu et al., 2012). Our study showed that

soil drought treatment inhibited soluble protein concentrations

in walnut leaves, while AMF inoculation promoted soluble

protein concentrations, suggesting that the inoculated plants

had stronger water retention of cells and protective effect on cell

membranes than uninoculated plants. Cao et al. (2022) found

that Piriformospora indica, but not G. versiforme, also

significantly increased leaf and root soluble protein

concentrations in Satsuma mandarin, under cold temperature,

but not favorable temperature conditions, implying that AMF-

mediated changes in soluble protein depend on AMF species,

host genotypes, and environmental stresses.

ASC-GSH cycle regulates the balance of redox state of plant

cells and is an important pathway for ROS removal (Miller et al.,

2010). Meanwhile, GSH maintains cell function and regulates

the state of sulfhydryl groups, and ASC as an electron donor

participates in substance transformation (Noctor, 2006). In this

cycle, ASC is first oxidized to monohydroascorbic acid

(MDHA), in which APX utilizes ASC as an electron donor to

remove H2O2 (Wang et al., 2012). In our study, inoculated

walnut plants under two soil moisture conditions showed

significantly higher ASC and TASC concentrations and

stronger APX activities than uninoculated plants, implying

that AMF activates ASC to scavenge more H2O2 of the host

caused by drought. In addition, AMF inoculation also increased

GSH concentrations of walnut plants while decreased DHA

concentrations under DS. It is known that MDHA can

undergo disproportionation reaction to produce ASC and

DHA (Qadir et al., 2022). DHA uses GSH as the substrate to

generate GSSG and ASC under the action of dehydroascorbate

reductase, and GSSG further combines with NAD(P)H as an

electron donor to generate GSH under the action of GR (Li et al.,

2010). Lower DHA levels and higher GSH levels and GR activity

in mycorrhizal plants under DS mean that mycorrhizal plants

convert more DHA to ASC and modulate more accumulation of

GSH under the action of GR, as compared with non-mycorrhizal

plants. Al-Arjani et al. (2020) also reported the elevation in GR

and APX activities in Ephedra foliata plants after inoculated with

AMF under DS. Saroy and Garg (2021) also observed that

Rhizoglomus intraradices distinctly increased APX and GR

activities and GSH, TASC, ASC, and GSSH concentrations in

two pigeon pea genotypes under Ni stress. Glomus viscosum-

inoculated Cynara scolymus plants also exhibited higher ASC

and GSH concentrations than non-inoculated plants, along with

elevated APX activities, for resisting the fungal pathogen

Verticillium dahliae (Villani et al., 2021). These results indicate

that mycorrhizal plants have a stronger ASC-GSH cycle to

remove more H2O2 induced by stresses than non-mycorrhizal

plants, thus maintaining lower oxidative damage.
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In ROS scavenging enzymes, SOD catalyzes O2
•─ to H2O2;

generated H2O2 is then removed by POD and CAT (Qadir et al.,

2022). In our study, three SODs, CAT, and POD activities were

enhanced by DS, indicating that the enzymatic antioxidant

defense system in walnut plants was activated in response to

drought. Additionally, mycorrhizal walnut plants recorded

higher POD, CAT, Mn-SOD, and Zn-SOD activities than non-

mycorrhizal plants under two soil moisture regime conditions.

Similar results were reported in Citrus sinensis inoculated with

three different AMF species (Li et al., 2022). He et al. (2020)

further found the induced expression of PtMn-SOD, PtCAT1,

and PtPOD genes in trifoliate orange by F. mosseae under DS.

These results suggest that AMF enhanced enzymatic antioxidant

defense system to mitigate oxidative burst in response to DS.
AMF activated expressions of some Hsfs
members such as JrHsf03, JrHsf22, and
JrHsf24 under drought

Our study revealed that soil drought induced transcriptional

levels of JrHsf03, JrHsf20, Jrhsf22, and JrHsf24 in walnut plants,

independent on mycorrhizal presence. It suggests that Hsfs of

walnut can respond to DS, not limited to heat stress, which is

consistent with the results of Liu et al. (2020) in Hsfs of walnut

under DS, heat stress, and salt stress. Similar responses of Hsfs to

DS were also observed in mulberry (Zhai and Zhu, 2021) and

arabidopsis (Tan et al., 2015). Moreover, We also firstly observed

that JrHsf03, JrHsf05, JrHsf20, JrHsf22, and JrHsf24 were up-

regulated by AMF inoculation under WW, while only JrHsf03,

JrHsf22, and JrHsf24 were induced by AMF inoculation under

DS, indicating that AMF-mediated response of JrHsfs depends

on Hsfs types. It is not clear whether JrHsf03, JrHsf22, and

JrHsf24 are specifically induced by AMF, which needs to be

confirmed by additional studies. However, Gaude et al. (2012)

reported the inhibited expression of HsfB3 in arbuscule-

containing cortical cells of mycorrhizal roots versus cortical

cells of non-mycorrhizal roots with 3.2-fold after three weeks

of inoculation in roots ofMedicago truncatula plants. These heat

shock factors were suppressed during the initial mycorrhizal

colonization (Gaude et al., 2012). Nevertheless, our study was

performed for 13 weeks along with soil drought, mycorrhizal

colonization had already been established, and thus this

suppression may be relieved. In addition, Hsfs members are

redox-sensitive transcription factors sensing ROS, transducing

and amplifying the ROS signal by various proteins and

transcription factors (e.g., WRKY) (Miller et al., 2008). In

walnut plants, Hsfs may be associated with the signaling

pathways of abscisic acid and Ca2+ that regulate ROS

production (Mohanta et al., 2018; Liu et al., 2020). Hence, it is
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concluded that AMF activated some Hsfs members such as

JrHsf03, JrHsf22, and JrHsf24 to regulate ROS production, but

additional evidence needs to be presented. In addition, most of

Hsfs members are expressed highly in roots than other tissues

(Dossa et al., 2016), and mycorrhizal colonization firstly occurs

in roots. More work needs to focus on the responsive pattern of

root Hsfs to AMF colonization under drought, how AMF-

initiated Hsfs trigger the antioxidant defense system, and

whether AMF’s Hsfs are also involved in this response.
Conclusion

In short, our study confirmed that an arbuscular mycorrhizal

fungus, D. spurca, could promote growth performance of walnut

plants exposed to DS. In the meantime, D. spurca activated

antioxidant defense systems (e.g., enzymatic defense system and

ASC-GSH cycle) and transcription levels of three Hsfs to

alleviate oxidative burst. This study firstly provides insights

into the role of AMF-regulated responses of Hsfs in possibly

mitigating ROS burst. However, future work needs to focus on

how mycorrhizal fungi initiate host or fungal Hsfs to mitigate

oxidative burst under drought.
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modulate root polyamine metabolism to enhance drought tolerance of trifoliate
orange. Environ. Exp. Bot. 171, 103962. doi: 10.1016/j.envexpbot.2019.103926
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The TIR1/AFB family of proteins is a group of functionally diverse auxin

receptors that are only found in plants. TIR1/AFB family members are

characterized by a conserved N-terminal F-box domain followed by 18

leucine-rich repeats. In the past few decades, extensive research has been

conducted on the role of these proteins in regulating plant development,

metabolism, and responses to abiotic and biotic stress. In this review, we focus

on TIR1/AFB proteins that play crucial roles in plant responses to diverse abiotic

and biotic stress. We highlight studies that have shed light on the mechanisms

by which TIR1/AFB proteins are regulated at the transcriptional and post-

transcriptional as well as the downstream in abiotic or biotic stress pathways

regulated by the TIR1/AFB family.

KEYWORDS

TIR1/AFB, abiotic stress, biotic stress, structural and functional specialization, transcription
Introduction

Transport Inhibitor Response 1 and Auxin-Signaling F-box (TIR1/AFB) proteins are

plant-specific receptors that mediate diverse responses to the plant hormone auxin

(Dharmasiri et al., 2005; Parry et al., 2009). Upon binding indole-3-acetic acid (IAA), or

other hormones in the auxin class, TIR1/AFB proteins form a co-receptor complex with

Auxin/IAA (Aux/IAA) proteins (Salehin et al., 2015). Formation of this co-receptor

complex results in ubiquitination and degradation of Aux/IAA proteins via the 26S

proteasome (Pan et al., 2009; Salehin et al., 2015; Todd et al., 2020). Degradation of Aux/

IAA proteins releases their inhibition of auxin response factors (ARFs), which are

transcriptional regulators of auxin-responsive genes such as Aux/IAA (Strader and Zhao,

2016; Yu et al., 2022). In this way, TIR1/AFB proteins serve as positive regulators of

downstream auxin-responsive pathways upon the perception of auxin (Quint and Gray,

2006; Dezfulian et al., 2016; Takato et al., 2017).
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The first TIR1/AFB gene identified and shown to play an

important role in auxin-regulated processes, such as hypocotyl

elongation and lateral root formation, was TIR1 in Arabidopsis

(Ruegger et al., 1998). Subsequent studies identified TIR1/AFB

family members encoded in the genomes of algae, mosses, and

spermatophytes in addition to all land plants (Parry et al., 2009).

The large number of TIR1/AFB genes encoded in plant genomes

has allowed for functional redundancy and neofunctionalization

to evolve (Prigge et al., 2020). It is now clear that TIR1/AFB

proteins contribute to biological processes including regulation

of primary and secondary metabolism (Gomes and Scortecci,

2021), seed and root development (Pan et al., 2009; Ozga et al.,

2022), cell proliferation (Rast-Somssich et al., 2017), immunity

and stress responses in plants (Iglesias et al., 2010). In this

review, we highlight our current understanding of the structure

and function of TIR1/AFB family members with an emphasis on

possible mechanisms by which these proteins regulate abiotic

and biotic stress responses.
Structural and functional
specialization of TIR1/AFB family
members in Arabidopsis

Based on comparisons of land plant genomes sequenced to-

date, TIR1/AFB proteins can be divided into four phylogenetic

clades: TIR1/AFB1, AFB2/3, AFB4/5, and AFB6. Arabidopsis

contains six TIR1/AFB proteins from three out of the four

clades: TIR1, AFB1, AFB2, AFB3, AFB4, and AFB5 (Shimizu-

Mitao and Kakimoto, 2014). AFB6 orthologs are noticeably absent

in the core Brassicales species such as Arabidopsis as well as

Poaceae species such as rice and maize (Prigge et al., 2020).

The specific functions of TIR1/AFB family members vary

considerably across and within clades. For instance, AFB4 and
Frontiers in Plant Science 02
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AFB5 are in the same clade yet exhibit distinct specificities for

auxin (Prigge et al., 2016). Yeast two-hybrid and immunoblot

assays demonstrated that IAA3 binds TIR1, AFB1, and AFB2 with

different affinities but binds AFB5 very poorly at 0.1 mM IAA.

Distinct motifs are necessary for the assembly of TIR1/AFB-IAA

coreceptor complexes (Villalobos et al., 2012). Here, we generated

a phylogenetic tree containing all TIR1/AFB family members

from Arabidopsis and used Motif ENRichment Analysis

(MEME) to identify conserved protein motifs (Figure 1). We

believe the unique motifs present in TIR1/AFB proteins may

explain their preferential binding of certain IAA proteins

over others.

Our analysis showed that Arabidopsis TIR1/AFB proteins

contain different conserved motifs. These proteins consist of a

single F-box domain and eighteen LRR repeats (Prigge et al.,

2020). F-box domains are critical for the regulated degradation

of cellular proteins (Jain et al., 2007) while LRRs belong to an

archaic procaryal protein architecture that is widely involved in

protein-protein interactions (Martin et al., 2020). We found that

different TIR1/AFB family members contain unique motifs.

Motifs 1 and 12 are only present in AFB4 and AFB5, motifs

11 and 20 are only present in AFB2 and AFB3, motif 14 is only

present in AFB3, and motif 9 is only found in AFB4. The

presence and absence of certain motifs indicates that TIR1/

AFBs may have different functions.

Synthetic auxin herbicides are one of the most potent man-

made abiotic stresses that plants are subjected to (Gorina et al.,

2022). Picloram, 2,4-dichlorophenoxy acetic acid (2,4-D), and

dicamba are three of the most widely used chemical classes of

auxin. These herbicides function by binding to a hydrophobic

pocket within TIR1/AFB proteins (Meng et al., 2008; Guo et al.,

2021). Auxin binding TIR1 by filling in the bottom of TIR1 pocket,

which floor is made up of several key residues containing His 78,

Arg 403, Ser 438, Ser 462, and Glu 487 as shown in (Figure 2) (Guo

et al., 2021). Distinct amino acid residues exist in the AFB4/5 clade
FIGURE 1

Neighbor-joining phylogenetic tree (left) and conserved motif (right) analysis of TIR1/AFBs in Arabidopsis.
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compared with the TIR1/AFB1 and AFB2/3 clades at His 78 and

Ser 438: histidine is replaced by arginine and serine is replaced by

alanine. These differences demonstrate the diversity of TIR1/AFB

members and suggest a structural reason for their specialized

responses to different synthetic auxin herbicides.

Studies on Arabidopsismutants have demonstrated that some

members of the TIR1/AFB family are responsible for the

recognition of specific auxin herbicides (Grossmann et al.,

1996). For instance, the Arabidopsis afb4/5 mutant is resistant

to picloram whereas other tir1/afb mutants are still susceptible

(Walsh et al., 2006). The AFB4 protein itself was shown to be a

target of picloram based on in vitro binding assays (Prigge et al.,

2016). TIR1 has been shown to be a receptor for 2,4-D and

induces changes in gene expression when plants are treated with

low concentrations of 2,4-D (Sheedy et al., 2006; Walsh et al.,

2006). As anticipated, the Arabidopsis tir1 mutant is resistant to

2,4-D whereas AFB1, a member of the same clade as TIR1, has not

been implicated in 2,4-D resistance (Gleason et al., 2011).

In vitro assays demonstrated that TIR1 and AFB5 can bind to

dicamba (de Figueiredo et al., 2022). Of all the TIR1/AFB family

members in Arabidopsis, only the tir1-1 and afb5 mutants were

shown to be resistant to dicamba (Gleason et al., 2011). No studies

have yet implicated the AFB2/3 subgroup in auxin herbicide

sensitivity, which further demonstrates the structural and

functional specialization that exists in the TIR1/AFB family.

However, studies on the rice mutants Osabf2 and Osabf3

showed OsAFB2/3 genes are involved in the response to 2,4-D

resistance (Guo et al., 2021). These results suggest that more

studies should focus on the function of the AFB2/3 subgroup in

herbicide susceptibility.
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The role of TIR1/AFB family
members in abiotic and
biotic stress responses

Plants are sessile organisms challenged by a variety of abiotic

and biotic stresses from which they cannot escape. Abiotic stresses

are caused by environmental conditions such as drought, high

salinity, heat, and cold whereas biotic stresses are caused by living

organisms such as bacteria, fungi, viruses, nematodes, and insects

(Verma et al., 2016; Burns et al., 2018). Both abiotic and biotic

stress induce reactive oxygen species (ROS) production in the

form of hydroxyl radicals, hydrogen peroxide, and superoxide

anions (Singh et al., 2020). At low concentrations, many ROS

species function as signaling molecules in stress tolerance

pathways. However, elevated and sustained levels of ROS can

become toxic and lead to nutrient loss, resulting in metabolic

disruption, abnormal hormone metabolism (Rejeb et al., 2014;

Muchate et al., 2016), and growth inhibition (Gimenez et al.,

2018). Auxin plays an indispensable role in how plants rapidly

adapt to abiotic and biotic stress. As key auxin receptors in plants,

the TIR1/AFB family has been shown to be essential for abiotic

and biotic stress responses mediated by auxin.
Drought stress

Drought is an important abiotic stress that negatively

impacts plant development and results in reduced crop yield

and quality. The expression of many TIR1/AFB genes is
FIGURE 2

Multiple alignment of TIR1/AFB proteins in Arabidopsis adapted from Fu Guo et al. (Guo et al., 2021). Residues highlighted in gray are present in
more than 50% of aligned sequences. The key residues making up the active site of the TIR1 pocket are highlighted by red boxes. Accession
numbers of the genes encoding the proteins for the sequence alignment are as follows: TIR1 (At3g62980), AFB1 (At4g03190), AFB2 (At3g26810),
AFB3 (At1g12820), AFB4 (At4g24390), and AFB5 (At5g49980).
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influenced by drought stress, which suggests the TIR1/AFB

family may function in the drought tolerance pathway (Shu

et al., 2015; Sharma et al., 2018; Benny et al., 2019). Over-

expression and transcriptomic studies in Populus trichocarpa,

Arabidopsis thaliana, Oryza sativa, Zea mays, Solanum

tuberosum, Triticum aestivum, and Agrostis stolonifera have

demonstrated that many TIR1/AFB genes are responsive to

drought (Chen et al., 2012; Shu et al., 2015; Dalal et al., 2018;

Sharma et al., 2018; Benny et al., 2019; Zhao et al., 2019). Relative

water content (RWC) is used as a measure of plant water status

and is a meaningful index of water stress tolerance (Lo Gullo and

Salleo, 1988). PtrFBL1 is a TIR1 homolog in Populus trichocarpa.

Overexpression of PtrFBL1 in P. trichocarpa resulted in higher

plant RWC values upon drought stress compared with non-

transgenic plants (Shu et al., 2015).

Gene expression analyses suggest that some TIR1/AFB family

members participate in drought responses in Arabidopsis. For

example, TIR1 and AFB2 are required for the inhibition of lateral

root growth by ABA or osmotic stress under drought stress (Chen

et al., 2012). In seedling studies, TIR1 was up-regulated under

drought stress as determined by RNA-Seq (Benny et al., 2019). In

addition to the well-studied Arabidopsis TIR1/AFB family, several

TIR1/AFB proteins have also been implicated in drought

responses in other species by transcriptional analysis. In rice,

TIR1 andAFB2 expression levels were significantly downregulated

in spikelets upon drought stress (Sharma et al., 2018). In maize

and the Solanaceous crops tomato and potato, RNA-Seq results

demonstrated that TIR1 expression increased in seedlings exposed

to drought stress (Benny et al., 2019). Drought-stressed roots of

the wheat genotype viz. Raj3765 had increased expression of

AFB2, suggesting AFB2 may play a key role in response to

drought (Dalal et al., 2018). Creeping bentgrass (Agrostis

stolonifera L.) overexpressing the rice pri-miR393a exhibited

improved tolerance to drought stress due to targeting and

suppression of AsAFB2 and AsTIR1 expression (Zhao et al., 2019).
Salt stress

Salt stress is a major environmental factor limiting plant

growth and productivity. Salt stress can lead to ionic stress,

osmotic stress, and secondary stresses such as oxidative stress

(Yang and Guo, 2018). Mutant, overexpression, and ectopic

expression studies of TIR1/AFB genes in Arabidopsis have

uncovered a key role for some of these genes in salt stress

tolerance. Expression of AtNAC2, which is typically induced by

salt stress, is unresponsive to salt stress in the tir1-1 mutant (He

et al., 2005). An Arabidopsis tir1afb2 double mutant exhibited

enhanced tolerance against salt stress compared with wild-type

plants as determined by a higher germination rate, greater root

elongation, and higher chlorophyll content (Iglesias et al., 2010).

The cucumber (Cucumis sativus L.) CsTIR1 and CsAFB1

proteins share 78% and 76% amino acid identity with their
Frontiers in Plant Science 04
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Arabidopsis homologs, respectively. However, ectopic

overexpression of CsTIR1 and CsAFB1 in Arabidopsis led to

higher germination and plant survival rates under salt stress

(Chen et al., 2017). Over-expression of the Arabidopsis AFB3 in

Arabidopsis resulted in better primary and lateral root

development and higher germination rates upon salt stress

compared with the wild type (Garrido-Vargas et al., 2020).

It certainly seems contradictory that a tir1afb2 double mutant

and overexpression of AFB3 or CsTIR1/CsAFB1 both enhance salt

stress resistance in Arabidopsis. This may be explained by increased

activity of antioxidant enzymes in the tir1afb2 mutant under salt

stress. Higher levels of ABA are also detected in tir1afb2 compared

with wild-type plants (Iglesias et al., 2010) while more lateral roots

are found in Arabidopsis transgenic lines overexpressing AFB3,

CsTIR1, or CsAFB1 (Chen et al., 2017; Garrido-Vargas et al., 2020).

This may contribute to differential participation of TIR1/AFB

family members and their tissue-specific functions (Iglesias et al.,

2010; Garrido-Vargas et al., 2020).

In addition to numerous studies in Arabidopsis, TIR1/AFB

proteins have also been implicated in salt stress responses in

other plant species. Overexpression of maize ZmAFB2 in

tobacco led to enhanced salt tolerance (Yang et al., 2013).

Eighteen TIR1/AFB genes have been identified in Brassica

juncea var. tumida with qPCR analysis, which showed that

some BjuTIR1/AFB genes are repressed by salt treatment (Cai

et al., 2019). Degradome and miRNA sequencing analysis

between salt-tolerant and salt-sensitive Fraxinus velutina Torr.

tree cuttings demonstrated that reduced expression of TIR1 by

miR393a explains the enhanced salt stress tolerance of this tree

species (Liu JN et al., 2022). Interestingly, AsAFB2 and AsTIR1

from creeping bentgrass may serve as a link between drought

and salt stress response pathways, both pathways rely on ionic

and osmotic homeostasis signaling (Zhu, 2002; Zhao et al.,

2019), and AsAFB2 and AsTIR1 have been implicated

involving in this process (Zhao et al., 2019). It is thus plausible

that some TIR1/AFB family members may serve as key

regulators of plant responses to multiple abiotic stresses.
Temperature stress

Temperature is one of the most important environmental

signals for plants. High and low temperatures have a variety of

effects that affect plant growth and development profoundly

(Sakamoto and Kimura, 2018). Expression data from different

plant species indicates that members of the TIR1/AFB family

participate in plant responses to temperature stress. For example,

the Arabidopsis tir1-1 mutant displays defective hypocotyl

elongation at elevated temperatures (Gray et al., 2003).

Expression of TIR1/AFB2 in rice spikelets was significantly

downregulated by heat stress, and the rice protein OsAFB6 can

suppress flowering, which is thought to be a temperature sensor

(He et al., 2018; Sharma et al., 2018). Finally, repression of TIR1
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expression in wheat impairs pollen exine formation in male

sterility under cold stress (Liu YJ et al., 2022).
Phosphorus and nitrate stress

Phosphorus (Pi) and nitrate (a main source of inorganic

nitrogen) are crucial nutrients for crop growth and development

that are mainly absorbed from soil by roots. Phosphorous deficiency

and excessive nitrate result in retardation of plant growth,

development, and productivity (Koide et al., 1999; Zhang et al.,

2017). The first TIR1/AFB protein found to be involved in Pi and

nitrate availability is TIR1 fromArabidopsis, which was shown to be

involved in pattern alterations of lateral root formation and

emergence in response to phosphate availability (Perez-Torres

et al., 2008). The expression level of TIR1 is also induced under

low Pi conditions (Mayzlish-Gat et al., 2012).

Regulation of root system architecture by external nitrate is

mediated by AFB3 in Arabidopsis as demonstrated by afb3

insertional mutants (Vidal et al., 2010). Integrated genomics,

bioinformatics, and molecular genetics revealed that the

expression of genes downstream of AFB3 are influenced by

external nitrate with the NAC4 transcription factor serving as

a key regulator of this network (Vidal et al., 2013). AFB3-

mediated activation of the two independent pathways in

response to nitrate suggests that AFB3 is a unique nitrate

response factor in Arabidopsis (Vidal et al., 2010). TIR1/AFB

family members were also found to be key players in response to

nitrate in other plant species. In Lotus japonicus, expression of

LjAFB6 is induced in response to exogenous nitrate (Rogato

et al., 2021). These studies indicate that AFB3 in Arabidopsis and

LjAFB6 in L. japonicus are potentially involved in plant

responses to stress caused by excessive nitrate.
Herbicide stress

Herbicides are small molecules that inhibit specific

molecular target sites within plant biochemical pathways to

affect physiological processes. Inhibition of these sites often

has catastrophic consequences that are lethal to the plant

(Dayan et al. , 2010). Synthetic auxin, triazine, and

organophosphorus herbicides are commonly used in

agriculture to control weeds (Todd et al., 2020; Bigner et al.,

2021; Striegel et al., 2021). Multiple members of the TIR1/AFB

family are involved in susceptibility to synthetic auxin

herbicides. Studies on Arabidopsis TIR1/AFB mutants have

revealed a role for these genes in response to classical auxin

herbicides. Recently, the afb5mutant was found to be resistant to

a new auxin herbicide, halauxifen-methyl, which preferentially

binds to AFB5 (Xu et al., 2022).

TIR1/AFB proteins also play a key role in the response to

auxin herbicides in other plant species. In rice, CRISPR/Cas9
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genome editing was used to generate Ostir1/Osafb2/Osafb3/

Osafb4/Osafb5 mutants that was resistant to 2,4-D. Osafb4

mutants are highly resistant to the herbicide picloram (Guo

et al., 2021). Expression of TIR1 in wheat is clearly higher in

Triticum aestivum than in Aegilops tauschii, resulting in less

sensitive to the herbicide 2,4-D (Yu et al., 2021).
Emerging evidence implicates TIR1/AFB
proteins in metal stress tolerance and
boron deficiency

In addition to the stresses described above, emerging

evidence suggests that TIR1/AFB proteins may be involved in

plant responses to metal, and boron deficiency. Aluminum

toxicity inhibits plant growth and development (Liu HB et al.,

2022). Inhibition of root morphogenesis under aluminum stress

decreased in Arabidopsis tir1 single and tir1 afb2 afb3 triple

mutants. Other genes in the auxin signaling pathway, such as

ARFs, were also shown to be involved in aluminum sensitivity

(Ruiz-Herrera and Lopez-Bucio, 2013). MicroRNAs targeting

and mediating the cleavage of TIR1/AFB transcripts were shown

to be essential for the aluminum stress response in Arabidopsis

(Mendoza-Soto et al., 2012). These results suggest TIR1, AFB2,

AFB3, and downstream auxin-responsive genes play an

important role in aluminum sensitivity in Arabidopsis.

Boron is an abundant and essential micronutrient required

by plants with deficiencies causing impaired plant growth (Park

et al., 2005; Duran et al., 2018). Boron deficiency is positively

correlated with the expression of many miRNAs. Gene

expression analysis indicates that a subgroup of miRNAs

regulate TIR1/AFB expression in Arabidopsis when boron is

limited. This leads to decreased expression of TIR1, AFB1, and

AFB2 but increased expression of AFB3 (Lu et al., 2015). Other

reports have demonstrated that application of a-(phenylethyl-2-
oxo)-indole-3-acetic acid (PEO-IAA), a synthetic antagonist of

TIR1, could partially or fully restore cell elongation in boron

deficient roots (Camacho-Cristobal et al., 2015).

Biotic stress from pathogenic
bacteria, fungi, viruses, nematodes,
and phytophagous insects

Biotic stresses are mainly caused by pathogenic species of

bacteria, fungi, viruses, nematodes, and insects that seek to

acquire nutrients from their plant hosts (Jagdale and Joshi, 2019;

Bhar et al., 2022). Damages caused by diseases and herbivory reduce

crop yield and quality by affecting photosynthesis and secondary

metabolite production in the host plant (Vo et al., 2021). Plants

have evolved numerous strategies to defend themselves against

these pathogens. These strategies rely on coordinated gene, protein,

and hormone regulation to allow plants to sense and adapt to biotic
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stresses (Atkinson and Urwin, 2012). Auxin is a critical signaling

component of the plant response to biotic stress, which suggests

that TIR1/AFB proteins have a role to play as well (Ghanashyam

and Jain, 2009; Bouzroud et al., 2018; Gidhi et al., 2022).

Plant pathogenic bacteria cause symptoms such as spots with

yellow halos or mucus-like materials, which negatively impact

agricultural production in many important crops (Zimaro et al.,

2011). The tomato bacterial pathogen Pseudomonas syringae

DC3000 (PtoDC3000) produces IAA to promote PtoDC3000

growth in plant tissues through suppression of SA-mediated host

defenses (Wildermuth et al., 2001; McClerklin et al., 2018;

Djami-Tchatchou et al., 2020). An Arabidopsis tir1afb1 afb4

afb5 quadruple-mutant exhibited elevated IAA levels and

reduced SA levels compared with WT (Djami-Tchatchou

et al., 2020). An analysis of a tir1 single mutant and tir1 afb2

afb3 triple mutant revealed that these TIR1/AFB family

members are targeted by diketopiperazines derived from

Pseudomonas aeruginosa during colonization of Arabidopsis

(Ortiz-Castro et al. , 2011). The planar structure of

diketopiperazines likely fits into the same pocket of TIR1 that

synthetic auxins bind (Ortiz-Castro et al., 2011).

Fungal plant pathogens are ubiquitous, highly diverse, and can

cause severe damage to many important crops (Termorshuizen,

2016). The Arabidopsis afb1 and afb3mutants are partially resistant

to the soilborne root pathogen Verticillium dahlia. Up-regulation of

pathogen-related gene 1 (PR1) in afb1 and pathogen defense factor

1.2 (PDF1.2) in afb3 may be responsible for afb1- and afb3-

mediated resistance, respectively (Fousia et al., 2018). Fusarium

head blight (FHB) of wheat, caused by Fusarium graminearum

Schwabe, results in large annual yield losses in wheat production

regions. RNAi-mediated knockdown of the TaTIR1 gene led to

increased FHB resistance (Su et al., 2021). Gene expression studies

also revealed that TaTIR1 expression is highest at 24 and 48 h post-

inoculation with the leaf rust pathogen Puccinia triticina Eriks

(Gidhi et al., 2022). A maize TIR1-like gene is involved in the Zma-

miR393b-mediated response to Rhizoctonia solani infection of leaf

sheaths (Luo et al., 2014). Eighteen TIR1/AFB genes have been

identified in Brassica juncea var. tumida using genome-wide

analysis. qPCR analysis demonstrated that the expression of some

BjuTIR1/AFB genes is influenced by Plasmodiophora brassicae

infection (Cai et al., 2019).

Although no involvement in biotic stress has been reported

for soybean TIR1/AFB proteins, TIR1/AFB proteins have been

implicated in root nodulation induced by the nitrogen-fixing

bacterium Bradyrhizobium japonicum (Cai et al., 2017).

Overexpression of GmTIR1 in soybean significantly increased

the number of inflection foci and nodules while GmAFB3A may

also play a minor role in this process (Cai et al., 2017).

Few studies to-date have implicated the TIR1/AFB family in

plant defense responses against viruses. However, one study has

shown that the rice dwarf virus (RDV) capsid protein P2 binds

OsIAA10 and blocks the interaction between OsIAA10 and

OsTIR1. This prevents 26S proteasome-mediated degradation of
Frontiers in Plant Science 06
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OsIAA10, resulting in plant dwarfism, increased tiller number,

and short crown roots in infected plants (Jin et al., 2016).

Nematodes are pathogens of Arabidopsis (Moradi et al.,

2021), apple (Fallahi et al., 1998), tomato (Khan and Khan,

1995), and wheat (Cortese et al., 2003), these species could move

through roots and be vector of some virus, caused root damage,

yield loss. The tomato Mi-1 gene confers isolate-specific

resistance against root-knot nematodes (Seah et al., 2007). Co-

localization of TIR1-like proteins with the Mi-1 protein was

observed (Seifi et al., 2011). TIR1-like transcript abundance in

roots and leaves of nematode-resistant tomato lines was lower

than in susceptible tomato lines, suggesting a possible role for

TIR1-like genes in nematode resistance (Seifi et al., 2011).

Feeding by phytophagous insects such as aphids leads to

reduced plant growth, reduced yield, water stress, dwarfism,

wilting, and transmission of economically important plant

viruses. In melon, genes like TIR1 and AFB2 are down-

regulated in response to aphid herbivory. Application of the

TIR1 inhibitor PEO-IAA to leaf discs resulted in significantly

decreased feeding by aphids, providing in vivo support for TIR1/

AFB in response to aphids (Sattar et al., 2016), suggested that

TIR1 may play a role in aphid resistance.
TIR1/AFB-regulated gene networks
in abiotic and biotic stress responses

In addition to the regulation of Aux/IAA genes, many other

proteins and genes regulated by TIR1/AFB family members have

been identified that act downstream of auxin perception. These studies

have contributed to our understanding of the mechanisms underlying

the function of TIR1/AFB proteins in abiotic and biotic stress. These

downstream genes and proteins include nascent polypeptide-associated

complex (NAC) family members, SA synthesis proteins, PR proteins,

PDF proteins and phosphorus transporters,

Auxin/indoleacetic acid (Aux/IAA) proteins play an

important regulatory role in plant development and stress

responses. TIR1/AFB proteins are essential regulators of the

expression of a large number of Aux/IAA genes (Gray, 2003).

For example, the rice Aux/IAA protein OsIAA20 mediates

abiotic stress tolerance in rice through the ABA pathway

(Zhang et al., 2021). Constitutive expression of OsIAA18 in

Arabidopsis led to improved salt and osmotic tolerance through

enhanced ABA biosynthesis and ROS scavenging (Wang et al.,

2021). The homeostatic expression of Aux/IAA is thought to be

one of the most important resistance mechanisms to auxin

herbicides mediated by TIR1/AFB proteins (Todd et al., 2020).

Aux/IAA proteins also play essential roles in response to

biotic stress. Silencing of GhIAA43 in cotton enhanced wilt

resistance and activated the expression of SA-related defense

genes (Su et al., 2022). Tobacco mosaic virus (TMV) replicase

proteins negatively regulate IAA26 through a ubiquitin-

mediated destabilization process to reduce TMV infection
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(Padmanabhan et al., 2005). The RDV capsid protein P2 can

bind OsIAA10 directly, which implicates OsIAA10 in the

defense response against RDV (Jin et al., 2016).

In addition to the Aux/IAA genes, many other stress-related

genes are also regulated by TIR1/AFB proteins in response to

abiotic and biotic stress. For example, the transcription factor

NAC4 is an important positive regulator downstream of the

AFB3 regulatory network, which plays an important role in the

regulation of nitrate uptake in Arabidopsis (Vidal et al., 2013). The

presence of a functional copy of NAC1 is required by the fungal

pathogen Alternaria alternata for full virulence in Arabidopsis

(Wang et al., 2020). NAC1 overexpression can restore lateral root

formation in the Arabidopsis tir1 mutant, whereas TIR1

overexpression results in increased NAC1 expression. These

results demonstrate that NAC1 acts downstream of and can be

positively regulated by TIR1 in Arabidopsis (Xie et al., 2000).

The SA-related genes PR1 and PDF1.2 are positive regulators of

plant disease resistance that are negatively regulated by TIR1/AFB.

A transcriptomic study in cotton demonstrated that knockdown of

GhTIR1 leads to a significant increase in the expression of SA-

related genes in response to Verticillium dahliae infection (Shi et al.,

2022). The Arabidopsis mutants afb1 and afb3 exhibit significantly

higher expression of both PR1 and PDF1.2 in response to

Verticillium dahliae infection (Fousia et al., 2018).

TIR1/AFB proteins act as mediators of low Pi uptake in

Arabidopsis (Perez-Torres et al., 2008; Perez Torres et al., 2009).

Pi deprivation increases the expression of TIR1 in Arabidopsis

seedlings (Perez-Torres et al., 2008). ARFwas regulated by TIR1/

AFB as described above. Knockout of OsARF12 enhanced the

expression of PHOSPHATE TRANSPORTER1(PHT1) genes

such as OsPHR2 in rice, suggesting that OsARF negatively

regulates the PHT1 gene family in rice (Wang et al., 2014).
Regulation of TIR1/AFB expression
and protein activity in response to
abiotic and biotic stress

Many TIR1/AFB genes are differentially expressed in response

to diverse abiotic or biotic stresses. Yet the underlying mechanism

of TIR1/AFB gene regulation remains unknown.

TIR1 expression is up-regulated or down-regulated in

Arabidopsis upon infection by plant pathogens such as

Verticillium dahlia and Botrytis cinerea (Llorente et al., 2008;

Fousia et al., 2018). Many plant pathogens manipulate host auxin

biosynthesis, inducing the degradation of AUX/IAA proteins

through TIR1-mediated ubiquitination to enable greater

infection (Wang et al., 2007). The Arabidopsis mutants afb1 and

afb3 have enhanced plant resistance against Verticillium dahlia.

However, the tir1-1mutant exhibits no increase in susceptibility to

Botrytis cinerea compared to wild-type Arabidopsis. These studies

indicate that TIR1/AFBs may be targeted by some pathogens.
Frontiers in Plant Science 07
87
Plant-produced small molecules are key systemic

modulators of numerous biological pathways. Nitric oxide

(NO) is an important signaling molecule involved in

establishing resistance to plant stress. External NO represses

TIR1 expression and decreases Arabidopsis susceptibility to

Pseudomonas. syringae pv. tomato: a process believed to be

mediated by SA (Vitor et al., 2013). Hydrogen sulfide (H2S) is

a gaseous molecule involved in various responses to stress. H2S

negatively regulates the expression of TIR1, AFB1, AFB2, and

AFB3 in antibacterial resistance in Arabidopsis through a

miR393a/b-regulated mechanism (Shi et al., 2015).

While most abiotic and biotic stresses suppress the expression

of TIR1/AFB family members, some stresses can induce their

expression. In L. japonicus, LjAFB6 expression increased by 2.5-

fold after nitrate treatment (Rogato et al., 2021).Arabidopsis AFB3

was also found to be positively regulated by nitrate addition (Vidal

et al., 2010; Vidal et al., 2013). Infections of Plasmodiophora

brassicae in Brassica juncea var. tumida also induce the expression

of BjuTIR1/AFB and BjuTIR1 (Cai et al., 2019), but the

mechanism by which this process occurs is not yet clear.

Some members of the TIR1/AFB family involved in abiotic or

biotic stress responses are known targets of small RNAs. One of the

most well-studied small RNAs shown to target and repress TIR1/

AFB transcripts is MicroRNA393 (miR393) (Navarro et al., 2006).

In Arabidopsis, miR393 directly targets TIR1, AFB1, AFB2, and

AFB2 transcripts in response to abiotic stress (Vidal et al., 2010;

Chen et al., 2012; Iglesias et al., 2014). Regulation of AFB3 by

miR393 represents a unique nitrate-responsive module that is

induced by nitrate and repressed by nitrogen metabolites in

Arabidopsis (Vidal et al., 2010). Studies also indicate that miR393

negatively regulates TIR1, AFB2, and AFB3 in response to pathogen

challenge in several plant species (Navarro et al., 2006; Zhang et al.,

2019; Shi et al., 2022). Though studies indicate that miR393

negatively regulates TIR1 expression at the posttranscriptional

level (Parry et al., 2009), the relationship between miR393 and

TIR1/AFB transcripts needs to be investigated further.

In addition to regulated gene expression or posttranscriptional

level, TIR1/AFB proteins are also regulated post-translationally by

other proteins. The Arabidopsis TIR1 protein is stabilized by a

complex consisting of heat shock protein 90 (HSP90) and

Suppressor of G2 allele of skp1 (SGT1b), which itself is an HSP90

co‐chaperone, co-immunoprecipitation analyses further validated

that HSP90 interacted with TIR1 (Watanabe et al., 2016; Munoz

et al., 2022). So far, no other factors were found to positively or

negatively regulate TIR1/AFB proteins at post-translational level

under stress. Therefore, future study should explore factors that

regulate or interact with TIR1/AFB proteins.
Conclusions and perspectives

Phylogenetic, structural, and functional studies have

revealed that there are many homologs of TIR1/AFB proteins
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TABLE 1 TIR1/AFB proteins involved in abiotic and biotic stress in plants.

Plant species Name Subfamily stress reference

Arabidopsis (Arabidopsis thaliana) AtTIR1 TIR1/AFB1 salt (Chen et al., 2015)

AtAFB2 AFB2/3 Salt (Iglesias et al., 2010)

AtAFB3 AFB2/3 Salt (Iglesias et al., 2010)

AtTIR1 TIR1/AFB1 Temperature (Wang et al., 2016)

AtTIR1 TIR1/AFB1 Drought (Chen et al., 2012)

AtAFB2 AFB2/3 Drought (Benny et al., 2019)

AtTIR1 TIR1/AFB1 Low Pi (Perez-Torres et al., 2008; Mayzlish-Gat et al., 2012)

AtAFB3 AFB2/3 Nitrate (Vidal et al., 2010; Vidal et al., 2013)

AtTIR1 TIR1/AFB1 Herbicide (Sheedy et al., 2006; Walsh et al., 2006; Gleason et al.,
2011)

AtAFB4 AFB4/5 Herbicide (Gleason et al., 2011)

AtAFB5 AFB4/5 Herbicide (Gleason et al., 2011; Xu et al., 2022)

AtTIR1 TIR1/AFB1 Aluminum (Ruiz-Herrera and Lopez-Bucio, 2013)

AtAFB2 AFB2/3 Aluminum (Ruiz-Herrera and Lopez-Bucio, 2013)

AtAFB3 AFB2/3 Aluminum (Ruiz-Herrera and Lopez-Bucio, 2013)

At TIR1 TIR1/AFB1 Boron
deficiency

(Camacho-Cristobal et al., 2015; Lu et al., 2015)

AtTIR1/AFB1/AFB4/
AFB5

TIR1/AFB1, AFB4/
5

bacterium (Djami-Tchatchou et al., 2020)

AtAFB1 TIR1/AFB1 Fungi (Fousia et al., 2018)

AtAFB3 AFB2/3 Fungi (Fousia et al., 2018)

AtTIR1 TIR1/AFB1 Fungi (Ortiz-Castro et al., 2011)

AtTIR1/AFB2/AFB3 TIR1/AFB Fungi (Ortiz-Castro et al., 2011)

Rice (Oryza sativa) OsTIR1 TIR1/AFB1 Salt (Xia et al., 2012)

OsAFB2 AFB2/3 Salt (Xia et al., 2012)

OsAFB2 AFB2/3 Drought (Xia et al., 2012; Sharma et al., 2018)

OsTIR1 TIR1/AFB1 Drought (Xia et al., 2012; Sharma et al., 2018)

OsTIR1 TIR1/AFB1 Temperature (Sharma et al., 2018)

OsAFB2 AFB2/3 Temperature (Sharma et al., 2018)

OsAFB6 AFB6 Temperature (He et al., 2018)

OsTIR1 TIR1/AFB1 Herbicide (Guo et al., 2021)

OsAFB2 AFB2/3 Herbicide (Guo et al., 2021)

OsAFB3 AFB2/3 Herbicide (Guo et al., 2021)

OsAFB4 AFB4/5 Herbicide (Guo et al., 2021)

OsAFB5 AFB4/5 Herbicide (Guo et al., 2021)

OsTIR1 TIR1/AFB1 Virus (Jin et al., 2016)

Wheat (Triticum aestivum) TaAFB2 AFB2/3 Drought (Dalal et al., 2018)

TaTIR1 TIR1/AFB1 Temperature (Liu Y. J. et al., 2022)

TaTIR1 TIR1/AFB1 Herbicide (Yu et al., 2021)

TaTIR1 TIR1/AFB1 Fungi (Su et al., 2021)

TaTIR1 TIR1/AFB1 Fungi (Gidhi et al., 2022)

Maize (Zea mays) ZmAFB2 AFB2/3 Salt (Yang et al., 2013)

ZmTIR1 TIR1/AFB1 Drought (Benny et al., 2019)

ZmTIR-like TIR1/AFB1 Fungi (Luo et al., 2014)

Soybean (Glycine max L.) GmTIR1 TIR1/AFB1 Fungi (Cai et al., 2017)

GmAFB3 AFB2/3 Fungi (Cai et al., 2017)

Melon (Cucumis melo L.) CmTIR1 TIR1/AFB1 Aphid (Sattar et al., 2016)

CmAFB2 AFB2/3 Aphid (Sattar et al., 2016)

Cucumber (Cucumis sativus L.) CSTIR1 TIR1/AFB1 Salt (Chen et al., 2017)

(Continued)
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TABLE 1 Continued

Plant species Name Subfamily stress reference

CsAFB2 AFB2/3 Salt (Chen et al., 2017)

Tomato (Solanum lycopersicum) SlTIR1 TIR1/AFB1 Drought (Benny et al., 2019)

SlTIR1 TIR1/AFB1 Nematode (Seah et al., 2007; Seifi et al., 2011)

Potato (Solanum tuberosum) StTIR1 TIR1/AFB1 Drought (Benny et al., 2019)

Mustard (Brassica juncea var. tumida) BjuTIR1 TIR1/AFB1 Salt (Cai et al., 2019)

BjuAFB3 Salt (Cai et al., 2019)

BjuTIR1 TIR1/AFB1 Fungi (Cai et al., 2019)

Crowtoe (Lotus corniculatus L.) LjAFB6 AFB6 nitrate (Rogato et al., 2021)

Creeping bentgrass (Agrostis stolonifera L.) AsTIR1 TIR1/AFB1 Salt (Zhao et al., 2019)

AsAFB2 AFB2/3 Salt (Zhao et al., 2019)

Fraxinus tomentosa (Fraxinus velutina
Torr.)

FvTIR1 TIR1/AFB1 Salt (Liu J. N. et al., 2022)
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FIGURE 3

TIR1/AFB regulatory network in response to abiotic and biotic stress. TIR1/AFBs response to abiotic or biotic factors in different signal
transduction pathways.
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with conserved domains. Many TIR1/AFB genes are

differentially expressed in response to diverse abiotic and

biotic stress (Table 1). Small molecules such as NO and H2S

regulate TIR1/AFB gene expression, MicroRNAs, such as

miR393, are some of the most well-studied regulators of TIR1/

AFB transcripts. The regulation of some TIR1/AFB family

members through protein-protein interactions and small

molecules is also indispensable (Figure 3). Future studies

should focus on identifying more factors that can regulate

TIR1/AFB family members at the transcriptional, post-

transcriptional, and protein levels. These studies will shed light

on the evolution of the TIR1/AFB family and identify new roles

for these proteins in plant abiotic and biotic stress responses.

TIR1/AFB proteins are known regulators of numerous stress-

related genes. The most well-studied examples of gene regulation by

TIR1/AFB proteins are theAux/IAA genes. Expression ofmanyAux/

IAA genes in response to abiotic and biotic stress is both directly and

indirectly controlled by TIR1/AFB proteins. Expression of NAC4 is

also regulated by TIR1/AFB proteins in response to nitrate uptake.

The general mechanism by which TIR1/AFB proteins

enhance abiotic stress tolerance is by reducing ABA

accumulation, increasing the abundance of ROS scavengers, and

affecting the activity of other factors such as Pi transporters. In

response to biotic stress, TIR1/AFB proteins promote the

expression of SA biosynthesis genes, PR genes, and PDF genes.

However, more studies need to be performed to determine the

role of specific TIR1/AFBmembers in the signaling and metabolic

pathways that modulate disease resistance. As the studies

highlighted in this review demonstrate, much knowledge about

the role of TIR1/AFB proteins in abiotic and biotic stress

responses has been generated. The next challenge for the field

will be deciphering the upstream and downstream events to draw

a more complete picture of TIR1/AFB-mediated regulation of

plant abiotic and biotic stress responses.
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Melatonin and arbuscular
mycorrhizal fungi synergistically
improve drought toleration in
kiwifruit seedlings by increasing
mycorrhizal colonization and
nutrient uptake

Hui Xia1†, Chunguo Yang1†, Yan Liang1, Zunzhen He1,
Yuqi Guo1, Yuxuan Lang1, Jie Wei2, Xinbo Tian1, Lijin Lin1,
Honghong Deng1, Jin Wang1, Xiulan Lv1 and Dong Liang1*

1College of Horticulture, Sichuan Agricultural University, Chengdu, China, 2College of Life Sciences,
Inner Mongolia University, Hohhot, China
Kiwifruit is a vine fruit tree that is vulnerable to water deficiency due to its

shallow root system and large leaves. Although mycorrhizal inoculation and

melatonin application has been proved to improve plants drought tolerance,

their interaction effects are still unclear. In this study, arbuscular mycorrhizal

(AM) fungi incubation and melatonin (MT) irrigation were applied to kiwifruit

seedlings alone or in combination to investigate their effect on drought

tolerance. The results revealed that AM had more effect on promoting root

biomass, water use efficiency, and uptake of nitrogen, phosphorus and iron.

While MT was more effective in promoting shoot biomass and antioxidant

enzyme activities to remove reactive oxygen species accumulation. Moreover,

MT supplementary significantly increased the AM colonization, spore density

and hyphal length density in roots. Therefore, combined application of AM

fungi and MT had additive effects on improvement biomass accumulation,

increasing chlorophyll content, photosynthetic efficiency, catalase activity, and

decreasing malondialdehyde accumulation under drought stress, thus

promoting plant growth and alleviating the drought damage to plant. These

results provide guidance for AM and MT combined application to improve

abiotic resistance in plants.

KEYWORDS

arbuscular mycorrhizal fungi, melatonin, kiwifruit, drought tolerance, biomass,
nutrient uptake
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Introduction

Water scarcity caused by global warming is becoming more

common, posing a huge challenge to agricultural production, and

resulting in large-scale crop losses and food shortages for mankind

(Zhang et al., 2018; Rivero et al., 2022). Plants have evolved a series

of mechanisms to cope with drought stress, such as prolonged root

growth, regulating stomata movement, and maintaining the

osmotic balance of cells (Mathur and Roy, 2021). In addition,

plants also use a variety of enzymatic and non-enzymatic

antioxidants to efficiently and rapidly remove reactive oxygen

species (ROS) (Fang and Xiong, 2015; Khan et al., 2021).

Plant growth-promoting rhizobacteria, such as arbuscular

mycorrhizal (AM) fungi, play an important role in alleviating

drought stress in plants (Vurukonda et al., 2016; Porter et al.,

2020; Abdelaal et al., 2021). AM, act as an extension of the plant

root system, provide their host plants with access to soil water and

nutrients through far-reaching extra radical hyphae, while fungi are

provided with carbon from host plants (Gutjahr and Paszkowski,

2013; Frew et al., 2022). Most importantly, this symbiosis

relationship creates a functionally active ecosystem that influence

nutrient cycling, decomposition, soil aggregation, belowground

biodiversity, and plant community ecology (Kaushal, 2019; Zhang

et al., 2020). Under drought stress, AM reduced the damage of free

radicals by promoting nutrient absorption capacity, improving root

function, maintaining leaf photosynthetic efficiency (Lenoir et al.,

2016). In addition, extrapular-root mycelium formed a huge

mycelium network in the soil, increasing root xylem conductance

and improving the adaptability of water transport (Abdelaal et al.,

2021; Sun et al., 2022). Meanwhile, the polysaccharides produced by

fungi also have the ability to increase mineral strength and retain

water (Hooker et al., 2007).

Melatonin (N-acetyl-5-methoxy-tryptamine), as a master

regulator, participant in plant development and protects plant

against almost all abiotic stresses, such as drought, salt damage,

heavy metals, UV radiation, high temperature, cold damage, etc.

(Arnao and Hernández-Ruiz, 2019; Sun et al., 2021). Melatonin

ameliorates the adverse effects of drought by regulating

morphological, physiological and redox regulatory processes,

and a variety of regulatory mechanisms have been explored in

recent years (Tiwari et al., 2021). Most fundamentally, melatonin

has the strong antioxidant activity to remove ROS and free

radicals caused by stress, by improving antioxidant enzymes

activities, such as ascorbic acid, ascorbate peroxidase, superoxide

dismutase (SOD), catalase (CAT) and peroxidase (POD), and

the content of antioxidants such as flavonoids (Huang et al.,

2019). Melatonin also affects the nutrients absorption from soil

by regulating the activity and expression of nutrient transporters

(Xia et al., 2021; Arnao et al., 2022; Du et al., 2022; Sun et al.,

2022). Melatonin was also found can solve the replant problem

by altering the composition of bacterial and fungal communities

(Li et al., 2018), and promoted the primary root growth in

Arabidopsis (Yang et al., 2021).
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Kiwifruit (Actinidia chinensis Planch.) is an emerging fruit

tree grown worldwide, but it is more vulnerable to drought than

other fruit trees because of its shallow, fleshy root system and

large, hairy leaves (Liang et al., 2019). It has been confirmed that

melatonin pretreatment can increase the biomass of kiwifruit

seedlings by improving leaf photosynthetic capacity and carbon

fixation, and improve the drought tolerance of kiwifruit

seedlings by promoting root elongation and growth and

increasing antioxidant content (Liang et al., 2019; Xia et al.,

2020). However, whether melatonin and AM have synergistic

effects on drought resistance in plants is still unknown. In this

study, AM fungi and melatonin were applied to kiwifruit

seedlings alone or in combination to investigate the effect on

plant growth, photosynthesis, antioxidant enzyme activity,

nutrient absorption, in order to further find a better scheme to

improve the drought tolerance of kiwifruit for field cultivation.
Materials and methods

Plant materials preparation
and treatment

Kiwifruit seeds (Actinidia chinensis) were planted in a tray

containing mixed matrix and grown in a light incubator after

germination treatment according to the method of Liang et al.

(2019). When grow to 6-true leaves, the seedlings were then

transformed into pots (18*20*20 cm) containing 1.5 kg mixed

soil (garden soil: peat soil: perlite = 2:1:1, V/V/V), and placed in

a greenhouse at Chengdu Campus of Sichuan Agricultural

University (103°51′ E, 30°42′ N) under natural light and

temperature conditions. Each pot planted 2 seedlings. After

two weeks of cultivation for adaption, 96 pots of uniform

seedlings were selected and evenly divided into two groups for

normal watering treatment and drought treatment, and each

contained four treatments, including 1) the control (CK), treated

with water; 2) inoculated AM fungi in soil (AM); 3) root

irrigation with melatonin solution (MT); and 4) combination

treatment with melatonin and AM (AM+MT) under drought or

normal watering condition. First, 10.0 g sterilized or non-

sterilized mycorrhizal (Rhizophagus intraradices), purchased

from Nanjing Cuijingyuan Biotechnology Co., Ltd. was

inoculated in the soil for 4 weeks to form mycorrhizas. Then

seedings were irrigated with 200 mL water or 100 mMmelatonin

solution for twice at three-day intervals at nightfall, followed by

water control treatment. The melatonin concentration was

chosen based on our previous study (Xia et al., 2020). Soil

moisture content was maintained at 50~55% of maximum

water holding capacity for drought treatment using soil

weighing method, while 80~85% of maximum water holding

capacity for watering treatment. Each treatment included 12 pots

(24 seedlings), seedlings in two pots were collected as a repeat

and, repeated 6 times. Samples were collected at 12 d of drought
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treatment. The mature leaves (from 3rd to 5th) were sampled

and frozen with liquid nitrogen and stored at -80°C for

physiological index determination. Then the whole plants were

removed from the soil and cleaned for biomass determination.
The arbuscular mycorrhizal fungi tested

The harvested fresh seedling roots were cleaned and stained

with 0.05% trypan blue, followed by washing and decolorization

with lactic acid glycerol solution (lactic acid, glycerol, distilled

water = 1:1:1 (v/v/v), and then the roots were observed under a

microscope (50 per plant, 5 per treatment). AM colonization was

calculated according to the method of Biermann and Linderman

(1981). The grid line intersection method of Yang et al. (2020)

was used to determine spore density and hyphal length density.
Plant growth parameters determination

After being removed from the soil and cleaned, the plant

height, root length, and stem diameter were determined with a

meter ruler or vernier caliper. The dry weight of the shoot and

root were weighed after drying in an oven at 105°C, then baked

at 80°C until constant weight. all data contained three

biological repeats.
Pigment content determination

The determination of chlorophyll content was improved

according to the method of Liang et al. (2019). The 0.1 g fresh

leaves were cut into pieces and put into a centrifuge tube

containing 8 mL 80% acetone, and kept in dark for 48 h,

shacked 3-4 times. The absorbance values of the supernatant

at 663, 645 and 470 nm were determined by UV/V

spectrophotometer (UV-2550). The content of total

chlorophyll, chlorophyll a, and chlorophyll b was calculated.
Determination of gas exchange
parameters

A portable gas exchange system (LI-6400, Li-Cor Inc., USA)

was used to determine photosynthetic gas exchange parameters

between 9:00 am and 11:00 am, including net photosynthetic

rate (Pn), transpiration rate (Tr), intercellular CO2

concentration (Ci), stomatal conductance (Gs) and water use

efficiency (WUE). A red/blue LED light source, a constant flow

rate of 500 mL·min-1 and CO2 concentration of ca. 400

mmol·mol-1 under a PAR of 1000 mmol·m-2s-1 were used. At

least 3 seedlings were measured in each treatment.
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Determination of physiological indexes

The relative electrical conductivity (REL) and the content of

malondialdehyde (MDA), proline, soluble protein and soluble

sugar were determined according to the methods of Liu et al.

(2020). Regards to antioxidant enzyme activity, the frozen leaf

samples were homogenized in liquid nitrogen and extracted with

an extraction buffer composed of 100 mM potassium phosphate

buffer (pH 7.8), 0.1 mM EDTA and 10 mM ascorbic acid. The

supernatant after centrifugation was used to determine the

activities of superoxide dismutase (SOD), catalase (CAT) and

peroxidase (POD) (Cakmak and Marschner, 1992).
Determination of nutrients content

0.2 g of dry leaves were digested with 10 mL nitric acid and 2

mL perchloric acid, and boiled until white crystal appeared in

graphite digestion machine (Xiyang Instrument Co., Ltd.,

Shanghai, China) (about 2 h). After cooling, the volume was

fixed to 25 mL with ultrapure water for the determination of the

content of each element. The content of nitrogen (N),

phosphorus (P) and potassium (K) was determined by

Kjeldahl nitrogen analyzer (KDN-04C Tuopuyunnong

Technology Co., Ltd., Zhejiang, China), molybdenum-

antimony resistance colorimetry, and flame photometer

(INESA Scientific Instrument Co., Ltd, Shanghai, China),

respectively. The content of iron (Fe), manganese (Mn),

copper (Cu) and zinc (Zn) were determined by atomic

absorption spectrophotometry using inductively coupled

plasma emission spectrometry (ICP-OES, Optima 8000,

PerkinElmer, USA).
Gene expression assay

Total RNA was extracted using the Mini RNA Isolation I Kit

(Beijing Tianmo Sci & Tech Development Co., Ltd, China)

according to the manufacturer’s instructions. The first strand

cDNA was obtained by reverse transcribing RNA with

PrimeScript™ RT reagent Kit with gDNA eraser (Perfect Real

Time) (Takara, Japan). The gene-specific primers were designed

using Primer Premier5 and synthesized by Tsingke

Biotechnology Co., Ltd (Beijing, China). Actin was used as the

reference (Xia et al., 2020). Quantitative Realtime PCR was

performed on the CFX96 Real-Time System C1000 Thermal

Cycler (Bio-RAD, Hercules, CA, USA) using an SYBR® Premix

Ex Taq™ II (Tli RnaseH Plus) kit (TaKaRa, Japan). The reaction

conditions were as follows: 95 °C for 30 s, followed by 40 cycles

of 95 °C for 5 s, and at 52 °C to 55 °C for 30 s. Each sample was

subjected to three replicates. The 2- DDCT method was used to

calculate the relative mRNA expression level.
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Statistical analysis

Data were expressed as mean ± standard deviation (SD). One-

way analysis of variance (ANOVA) and Tukey’s Post Hoc test (p <

0.05) was used to test the difference between the treatments

using SPSS.
Results

AM fungal growth and mycorrhizal
colonization

The infection of AM fungi with or without MT on the root

system of kiwifruit seedlings was observed by trypan blue

staining (Figure 1) The results showed that the roots of

uninoculated seedlings were not infected by AM fungi, while

the roots of seedlings inoculated with AM fungi for 50 d showed

plenty of mycelia, vesicles and typical arbuscule structures after

inoculation with AM fungi. This indicated that AM fungi and

kiwifruit seedling roots established a good symbiotic relationship.

Encouragingly, melatonin treatment effectively increased

root infection by inoculating AM fungi. The infection rate

increased by 14.6% under normal watering condition and

37.4% under drought condition. In addition, the spore density

and hyphal length density increased by 40.6% and 40.7% under

drought, respectively (Table 1). The results suggest that
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melatonin played a role to promote the colonization of R.

intraradices in the root, thus forming a symbiotic relationship.
Effect of treatments on plant growth
and biomass

After 12 d of drought treatment, the seedling leaves were

seriously dehydrated and wilted, and roots, especially lateral roots,

were significantly reduced and shortened (Figures 2A, B). AM, MT

and AM+MT treatments apparently alleviated the morphological

damage caused by drought, exhibited reduced leaf wilting and

increased root length and abundance compared with CK.

Accordingly, the application of AM and MT improved

seedling growth under drought stress. AM and AM+MT

treatments significantly increased shoot length, stem diameter,

leaf area, root length, and shoot and root dry mass under well-

watering condition, while MT alone application only increased

the leaf area and shoot dry mass (Figure 3). AM+MT treatment

had best effect in increase shoot and root dry mass by 25% and

41.18%, respectively, compared with CK (Figures 3E, F).
Effect of treatments on photosynthetic
pigments and gas exchange parameters

Under drought stress, the content of chlorophyll a, b and

total chlorophyll decreased greatly (Figures 4A-C). Application
FIGURE 1

Mycorrhizal phenotype of seedling roots inoculated with R. intraradices after 12 d of drought treatment. (A) Roots of seedlings not inoculated
with AM fungi; (B–D) Hyphae, vesicles and arbuscules in roots after mycorrhizal infection; (E, F): Mycorrhizal infection of roots without external
melatonin treatment; (G, H) Mycorrhizal infection of roots treated with external melatonin.
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TABLE 1 Effects melatonin application on AM colonization, spore density and hyphal length density in seedling roots inoculated
with R. intraradices.

Treatments AM fungal status

MC (%) SPD (number/g) HLD (m/g)

WW -MT 65.7 ± 0.76b 6.27 ± 0.27c 2.34 ± 0.08b

+MT 75.3 ± 2.33a 7.58 ± 0.09b 3.77 ± 0.17a

DR -MT 52.9 ± 1.66c 6.50 ± 0.13c 1.62 ± 0.03c

+MT 72.7 ± 2.99a 9.14 ± 0.16a 2.28 ± 0.04b
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The values (means ± SD, n = 6) followed by different letters in the same column reprensent significant difference at p < 0.05 assayed by Tukey’s Post Hoc test. MC, AM colonization; SPD,
spore density; HLD, hyphal length density; WW, well-watering; DR, drought stress; -MT, non-melatonin application; +MT, melatonin application.
A

B

FIGURE 2

Effect of treatment on plant growth of above-ground (A) and under-ground (B) parts under well watering and drought condition. Treatments
included CK (the control), AM (inoculated with arbuscular mycorrhiza), MT (irrigated with 100 mM melatonin), and AM+MT (treated with
melatonin and arbuscular mycorrhiza).
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of AM fungi, MT alone or combined significantly increased the

content of chlorophyll a, b and total chlorophyll by 25.93%,

11.11% and 35.19%, respectively, compared with CK. Results

suggested that AM+MT had the best effect on the enhancement

of chlorophyll content under drought condition.

Gas exchange parameters, Pn, Gs, Tr, Ci, and WUE were

determined. Values of all parameters were significantly lower

under drought stress than under well watering. Application of

AM and MT alone didn’t have significant effect on Pn, Gs, Tr

and Ci. While when combined AM and MT applied together,

values of Pn, Gs, Ci and Tr were increased by 180.96%, 168.72%,

38.55% and 218.99% compared with CK, respectively (Figure 5).

AM treatment significantly improved the WUE value compared

with other treatments.
Effect of treatments on MDA, REL and
osmotic substances

MDA and REL are important indexes to reflect the damage

degree of plant cell membrane caused by stress. Under well-

watering condition, inoculation of AM fungi, MT application

and their combination decreased MDA content, while

maintained the relative electronic leakage (REL) in leaves.

Water deficit dramatically increased MDA content and REL in

leaves, suggestion seedlings were seriously stressed. Pretreatment

of AM fungus, MT and their combined significantly reduced the

increase of MDA content and REL value compared with the
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control. In addition, combined application of AM and MT had

the best alleviating effect on drought stress than alone

(Figures 6A, B).

The contents of proline, soluble sugar and soluble protein in

leaves decreased due to drought stress (Figure 6C). After

treatment with AM, MT and AM+MT, they all increased.

Soluble sugar content increased most with more 9%, especially

in treatment with MT, and proline content increased most in

AM+MT groups by 28.8% (Figures 6D, E).
Effect of treatments on antioxidant
enzyme activities and gene expression

Treatments of AM, MT and AM+MT significantly increased

the activities of SOD and POD in kiwifruit seedling leaves under

well-watering condition. Drought stress increased the activity of

antioxidant enzymes. Under drought stress, AM, MT and AM

+MT treatments increased SOD activity by 12.91%, 12.03% and

19.53%, and improved POD activity by 7.96%, 8.13% and

11.41% compared with CK. AM and MT alone had little effect

on CAT activity, while AM+MT increased CAT activity by

13.18%. The results showed that the combined application of

AM and MT had the strongest effect on improving the activities

of SOD, POD and CAT (Figures 7A-C).

After 12 d of drought stress, the expression of all antioxidant

enzyme genes (SOD, SOD[Cu-Zn], POD12, POD42, CAT1 and

CAT6) in mycorrhizal plants was higher than that in non-
A B

D E F

C

FIGURE 3

Effect of treatments on plant growth, including stem diameter (A), leaf area (B), shoot length (C), root length (D), root dry mass (E), shoot dry
mass (F). Data are presented as meant ± SD (n = 6), different letters indicate significant differences between treatments at p < 0.05 by Tukey’s
Post Hoc test. Treatments included CK (the control), AM (inoculated with arbuscular mycorrhiza), MT (irrigated with 100 mM melatonin), and AM
+MT (treated with melatonin and arbuscular mycorrhiza).
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A B

D EC

FIGURE 5

Effect of treatments on gas exchange parameters in kiwifruit seedlings under well-watering or drought stress, including net photosynthetic rate
(A), stomatal conductance (B), intercellular CO2 concentration (C), transpiration rate (D) and water use efficiency (E). Data are presented as
meant ± SD (n = 6), different letters indicate significant differences between treatments at p < 0.05 (Tukey’s Post Hoc test). Treatments included
CK (the control), AM (inoculated with arbuscular mycorrhiza), MT (irrigated with 100 mM melatonin), and AM+MT (treated with melatonin and
arbuscular mycorrhiza).
A B

DC

FIGURE 4

The content of chlorophyll a (A), chlorophyll b (B), total chlorophyll (C), and chlorophyll a/b (D) in kiwifruit seedlings under well-watering or
drought condition. Data are presented as meant ± SD (n = 6), different letters indicate significant differences between treatments at p < 0.05 by
Tukey’s Post Hoc test. Treatments included CK (the control), AM (inoculated with arbuscular mycorrhiza), MT (irrigated with 100 mM melatonin),
and AM+MT (treated with melatonin and arbuscular mycorrhiza).
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mycorrhizal plants. AM+MT treatments significantly affected

the expression of SOD and POD12 in leaves, while had no

significant effect on the expression of Cu/Zn-SOD and CAT1 in

leaves (Figures 7D-I).
Effect of treatments on nutrient
absorption

Under watering condition, AM and AM+MT treatments

significantly increased the content of N and P in kiwifruit

seedling leaves, while the content of K was not significantly

changed (Figures 8A-C). Under drought stress, the content of N

and P in CK decreased significantly, AM and AM+MT

treatments significantly increased the contents of N and P.

The effect of AM on N content is greater than that of MT, and

MT on P content is greater than that of AM.

For mineral nutrients, AM increased the content of Cu, but

decreased the absorption of Mn and Zn, while MT increased the

content of Zn under well-watering condition. Under drought

stress, AM and MT treatment alone increased the content of Fe

and Zn, but decreased Cu content (Figures 8D-G).
Effect of treatments on expression of
PHT1 genes

Phosphorous transporter class 1 (PHT1) serves as the

primary transporters involved in phosphorous uptake from the
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rhizosphere (Sun et al., 2012). A total of 11 PHT1 genes were

identified in Actindia using transcriptome data previously

obtained by our team. Six PHT1s were detected expression

during drought treatment. MT and AMF inoculation

significantly induced the expression of the predicted six

PHT1s under drought conditions. Both AMF and MT

treatments up-regulated the expression of AcPHT1;1,

AcPHT1;2, and AcPHT1;6. Furthermore, the combined

treatment of MT and AMF significantly up-regulated the

expression of all six genes, and the effect was significant than

that of treatment alone (Figures 9A-F).
Discussion

Improving crop drought resistance and reducing yield loss

have always been the focus of global agricultural production

(Zhang et al., 2021). In addition to breeding resistant varieties

and mining resistance genes afford by scientists, improving plant

water use efficiency and resistance by use of exogenous

stimulants or bacterial agents seems to be more effective way

to conquer abiotic stresses brought about by climate change and

thus is favored by farmers (Farooq et al., 2019).

Increasing evidence studies have demonstrated that MT

application and AM fungi inoculation have positive effects on

plant growth under drought conditions (Liu et al., 2020; Bolin

et al., 2022). AM fungi alleviate drought stress through several

mechanisms (Abdel-Salam et al., 2017). One most important is

that AM fungi induce changes in plant root structure, especially
A B

D EC

FIGURE 6

Changes of MDA (A), REL (B), proline (C), soluble protein (D), and soluble sugar (E) in kiwifruit seedlings under well watering and drought stress.
Data are presented as meant ± SD (n = 6), different letters indicate significant differences between treatments at p < 0.05 by Tukey’s Post Hoc
test. Treatments included CK (the control), AM (inoculated with arbuscular mycorrhiza), MT (irrigated with 100 mM melatonin), and AM+MT
(treated with melatonin and arbuscular mycorrhiza).
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the increase of root length, root surface area, root volume and

root tip number. Improvements in the root structure of

mycorrhizal plants allows extraparal hyphae to extend beyond

the barren areas of the plant rhizosphere, thus more efficiently

absorbing water and low-mobility mineral nutrients under water

scarcity conditions (Müller, 2021; Persi and Maherali, 2021).

Melatonin, on the other hand, promotes the growth of lateral

root (Bian et al., 2021). In this study, both melatonin and AM

application alone reduced the decline of dry biomass (Figure 2).

However, inoculation with AM fungi had a greater effect on

increasing root biomass than melatonin, melatonin increased

shoot biomass significantly, and their combination had the

strongest effect, which was consistent with previous study (Liu

et al., 2020). These results indicated that AM fungi and

melatonin may drive different mechanisms to alleviate drought

stress (Yang et al., 2020).

Plants rely on chlorophyll for photosynthesis to accumulate

biomass (Nozue et al., 2016). Under drought stress, their cells

undergo plasmid lysis, chloroplast membrane rupture,

ultrastructural damage, and chlorophyll synthesis decreases

and degradation accelerates, leading to the reduction of its

content and photosynthetic capacity, which further affects
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plant growth and yield (Tambussi et al., 2000; Munné-Bosch

et al., 2001). In this study, melatonin treatment and AM fungi

inoculation increased the content of chlorophyll a, and b in

kiwifruit seedlings under drought stress (Figure 4), which was

inconsistent with previous studies (Liang et al., 2019; Xia

et al., 2020).

Under drought stress, plants increase water use efficiency

mainly by closing stomata to reduce transpiration, but

preventing carbon dioxide from entering mesophyll cells leads

to a decrease in photosynthetic rate Pn, which is known as a

stomatal limiting strategy (Du et al., 2018). Our results also

confirmed a synchronously decline of Pn, Gs, Tr, and Ci under

drought stress. However, the application of melatonin and AM

did not significantly promote Pn, Gs, Tr, and Ci under drought

stress, which was different from previous results (Liang et al.,

2019), possibly because the weakened effect due to prolonged

treatment time. Interestingly, the combined application of MT

and AM had a greater effect on increasing Pn, Gs, Tr, and Ci,

indicating an obvious superposition effect, as in study of tobacco

(Liu et al., 2020).

Recent studies have found that melatonin enhances plant

uptake of nutrients. For example, the concentrations of nitrogen,
A B C

D E F

G H I

FIGURE 7

Changes of antioxidant activity of SOD (A), CAT (B), and POD (C), and gene expression (D–I) in kiwifruit seedlings under well watering and
drought stress. Data are presented as meant ± SD (n = 3), different letters indicate significant differences between treatments at p < 0.05 by
Tukey’s Post Hoc test. Treatments included CK (the control), AM (inoculated with arbuscular mycorrhiza), MT (irrigated with 100 mM melatonin),
and AM+MT (treated with melatonin and arbuscular mycorrhiza).
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potassium, copper, iron, and zinc in grape fruits were improved

by MT supplemental (Xia et al., 2021). Mycorrhiza can obviously

promote the absorption of N, P and Fe, make the seedlings more

conducive to nutrient growth and alleviate the damage caused by

stress to plants (Chandrasekaran, 2022). In this study MT and

AM both increased significantly the concentration of P in

seedling leaves under watering and drought condition,

importantly, which contributed to drought tolerance

enhancement (Begum et al., 2020; Bechtaoui et al., 2021).

PHT1 (phosphate transporter 1) family genes play an

important role in regulating plant growth and coping with

stress (Cao et al., 2020). Our results showed that the

expression of all six PHT1 genes significantly increased after

MT and AM induction. It was speculated that MT and AMF

treatment can alleviate drought damage by inducing high

expression of PHT1s to improve P uptake.

In addition to promoting plant uptake of nutrients in

plants, melatonin supplementation also altered the

composition of bacterial and fungal communities in the

soil, alleviating the effect of apple diseases (Li et al., 2018).

Herein, we further confirmed that melatonin could not only

promote the uptake of soil nutrients by itself, but also expand
Frontiers in Plant Science 10
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plant uptake of distal soil nutrients by strengthening the

symbiosis between arbuscular mycorrhizal fungi and roots

and increasing colonization. However, different from the

previous study on tobacco (Liu et al., 2020), melatonin and

mycorrhizal seem to have no additive effect on nutrient

absorption, especially in the mineral elements Fe, Zn and

Cu, whose contents in the mixed treatment group decreased

instead. It is speculated that they may have some competitive

or antagonistic mechanism in their nutrient absorption to

avoid metal poisoning.

In our study, melatonin and mycorrhiza have additive

effect on improving plant growth under drought, and

increasing antioxidant enzyme activity, chlorophyll content,

osmotic regulating substance, photosynthetic capacity, and

reducing MDA and REL. This is largely due to their different

mechanisms for performing functions. As a broad-spectrum

antioxidant, melatonin itself has the ability to remove ROS and

prevent its accumulation in cells (Yu et al., 2018; Arnao and

Hernández-Ruiz, 2019). At the same time, it can improve the

activity of antioxidant enzymes and the content of antioxidant

substances under adversity conditions, thus greatly reducing

the damage caused by drought stress (Xia et al., 2020). On the
A B

D E
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C

FIGURE 8

Content of N (A), P (B), K (C), Fe (D), Mn (E), Zn (F), and Cu (G) in leaves of kiwifruit seedling under well-watering or drought stress. Data are
presented as meant ± SD (n = 6), different letters indicate significant differences between treatments at p < 0.05 by Tukey’s Post Hoc test.
Treatments included CK (the control), AM (inoculated with arbuscular mycorrhiza), MT (irrigated with 100 mM melatonin), and AM+MT (treated
with melatonin and arbuscular mycorrhiza).
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other hand, melatonin, as an auxin precursor, has a similar

function of promoting plant growth (Hernandez-Ruiz et al.,

2005; Szafrańska et al., 2013). While mycorrhiza reduced the

stress damage mainly by promoting nutrient absorption

capacity, improving root function (Lenoir et al., 2016).

Because extrapular-root mycelium formed a huge mycelium

network in the soil, increasing root xylem conductance and

improving the adaptability of water transport (Abdalla and

Ahmed, 2021; Sun et al., 2022). Most important, in this study,

melatonin was found to promote the establishment of a

symbiotic relationship between arbuscular mycorrhizal fungi

and roots.
Conclusion

Under drought conditions, AM inoculation was more

effective than MT in promoting root biomass, soluble sugar

content, and absorption of N and Fe nutrients. MT has a better

effect in improving shoot biomass and the activity of

antioxidant enzymes to remove ROS accumulation.

Moreover, combination of mycorrhizal and MT promotes the

root systems to form a symbiotic relationship. In addition, the

combination of AM and MT treatment had an additive effect

on improving plant growth, antioxidant enzyme activity,

chlorophyll content, osmotic regulat ing substance,

photosynthetic capacity, and reducing MDA and REL. Our

results indicated that MT and AM fungi have a synergistic

effect on improving drought tolerance, which provides a new
Frontiers in Plant Science 11
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strategy for the widespread application of biological

modulators to improve crop drought tolerance.
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Exogenous treatment with
melatonin enhances
waterlogging tolerance of
kiwifruit plants

Liuqing Huo*†, Hujing Wang †, Qi Wang, Yongbin Gao,
Kai Xu* and Xuepeng Sun

Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous
Areas of Zhejiang Province, Key Laboratory of Quality and Safety Control for Subtropical Fruit and
Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F
University, Hangzhou, Zhejiang, China
Waterlogging stress has an enormous negative impact on the kiwifruit yield and

quality. The protective role of exogenous melatonin on water stress has been

widely studied, especially in drought stress. However, the research on

melatonin-induced waterlogging tolerance is scarce. Here, we found that

treatment with exogenous melatonin could effectively alleviate the damage

on kiwifruit plants in response to waterlogging treatment. This was

accompanied by higher antioxidant activity and lower ROS accumulation in

kiwifruit roots during stress period. The detection of changes in amino acid

levels of kiwifruit roots during waterlogging stress showed a possible

interaction between melatonin and amino acid metabolism, which promoted

the tolerance of kiwifruit plants to waterlogging. The higher levels of GABA and

Pro in the roots of melatonin-treated kiwifruit plants partly contributed to their

improved waterlogging tolerance. In addition, some plant hormones were also

involved in the melatonin-mediated waterlogging tolerance, such as the

enhancement of ACC accumulation. This study discussed the melatonin-

mediated water stress tolerance of plants from the perspective of amino acid

metabolism for the first time.

KEYWORDS

waterlogging, kiwifruit, melatonin, amino acid, GABA
Introduction

Water stress (waterlogging and drought) is becoming one of the most common

abiotic stresses in the agriculture system, mainly due to the frequent occurrence of global

warming, rainfall disparity, and poor drainage (Stuart et al., 2011; Hussain et al., 2018).

Waterlogging stress often takes place in tropical and subtropical regions, especially
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during the rain seasons (Phukan et al., 2016). It was estimated

that over 10% of the agricultural land is under the threat of

waterlogging stress, and in severe cases waterlogging can result

in nearly 40-80% of the crop yield losses (Kreuzwieser and

Rennenberg, 2014; Shabala et al., 2014). With the increased

duration and intensity of extreme precipitation, waterlogging

stress may be more severe in the future, which seriously

threatens global food security (Li et al., 2022).

The excessive waterlogging blocked air exchange between

soil and atmosphere, resulting in restricted oxygen availability

for plant roots, thereby suppressing roots respiration, decreasing

root activity, and causing root damage (Pan et al., 2021; van

Veen et al., 2014). Another key impact of waterlogging stress is

the excessive generation of reactive oxygen species (ROS), which

directly and indirectly damages the cell membrane, proteins, and

macromolecules (Zhang et al., 2017). These unproperly disposed

ROS finally cause oxidative damage to roots and leaves,

impairing the water uptake of plants, accompanied by leaf

chlorosis and wilting (Hossain et al., 2009). In addition, during

waterlogging stress, the leaf stomata closure is generally observed

in plants, whereas chlorophyll degradation and leaf senescence

adversely affect gas exchange and photosynthetic rate, which

ultimately lead to a decline in the quantity and quality of crops

(Arbona et al., 2010; Nguyen et al., 2012).

Indeed, plants have evolved various strategies to defend

themselves against waterlogging stress. Some plants showed

adaptive responses such as altering their morphologies, including

aerenchyma formation, stem elongation, and the formation of

adventitious roots, which is known as the low oxygen escape

syndrome (Kuroh et al., 2018; Qi et al., 2020). Moreover, some

plants use the quiescence strategy to alleviate the adverse effect of

waterlogging stress, including the down-regulation of a suite of

metabolic pathways, low growth rate, and protection against

oxidative stress (Geigenberger, 2003; Garssen et al., 2015). A

series of antioxidant mechanisms are activated to help plants to

maintain proper cellular ROS levels under waterlogging stress.

These include antioxidant enzymes, such as superoxide dismutase

(SOD) and peroxidase (POD), and small molecule antioxidants

(Mittler et al., 2011). In particular, as a unique antioxidant,

melatonin (N-acetyl-5-methoxytryptamine) is proved to be a

potent free radical scavenger and regulate various plant

responses to environmental disorders (Back et al., 2016; Arnao

and Hernández-Ruiz, 2019). Melatonin has been widely proved to

be protective in diverse plant species under a variety of abiotic and

biotic stresses (Gao et al., 2022), such as cold stress (Bajwa et al.,

2014), oxidative stress (Wang et al., 2015), drought stress (Liang

et al., 2019) and et al. However, studies on the roles of melatonin in

waterlogging tolerance of plants are rare (Moustafa-Farag

et al., 2020).

The metabolic acclimation to waterlogging stress has also

been widely studied on whole seedlings or roots of plants, in

which the primary nitrogen metabolism is proved to be one of

the important adaptive responses in plants (Bailey-Serres et al.,
Frontiers in Plant Science 02
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2012; Oliveira and Sodek, 2013). As the important basis for

synthesis of nitrogenous substances, amino acid metabolism is

an important adjustment strategy of plants in responding to

waterlogging stress (Batista-Silva et al., 2019). For example, an

increase in the accumulation of g-aminobutyrate (GABA) and

alanine (Ala) was always observed in plants under waterlogging

stress (Drew, 1997). Recent research found that roots responded

more strongly to waterlogging stress while high amounts of

GABA and lactate accumulation were detected in roots other

than shoots; Moreover, the Ala accumulation was detected in

both organs (Mustroph et al., 2014). Change in the level of plant

hormones is another important strategy for plants to adapt to

waterlogging stress (Dat et al., 2004). For example, previous

researches found that waterlogging stress induced a significant

depletion in the endogenous ABA levels in submerged tissues of

various plant species, such as the model plant Arabidopsis

thaliana (Liu et al., 2005) and the important perennial fruit

tree citrus (Arbona et al., 2017). In addition, a fast cellular

accumulation of the gaseous plant hormone ethylene has been

reported in submerged plants, which act as a reliable component

of the waterlogging sensing mechanism and crosstalk with other

hormones for surviving (Kreuzwieser and Rennenberg, 2014).

Particularly, endogenous ethylene production is at the basis of

the induction and formation of aerenchyma cells (Fukao and

Bailey-Serres, 2008).

Kiwifruits are popular for its unique flavor and high vitamin C

content; however, the waterlogging problem severely decreased the

annual yield of kiwifruit plants in their main planting areas (Fukao

and Bailey-Serres, 2008). The use of melatonin in various field trials

has validated that as an eco-friendly agrochemical, it has great

potential for applying in horticultural industry to solve agricultural

challenges (Gao et al., 2022). To date, the application of melatonin

in agriculture systems to deal with waterlogging problems has been

understudied. Here, we found that the pre-irrigation of 100 mM
melatonin in kiwifruit plants could effectively alleviate the

waterlogging damage on them. In addition to the antioxidant

system, the amino acid metabolic pathways are also involved in the

melatonin-mediated waterlogging tolerance of kiwifruit plants.

Particularly, the GABA and proline (Pro) synthesis in kiwifruit

roots was enhanced by melatonin treatment to encounter

waterlogging stress. The 1-aminocyclopropane-1-carboxylate

(ACC) accumulation in kiwifruit roots might also participate in

the melatonin-mediated waterlogging tolerance. This study

provides the evidence for the links between melatonin and

amino acid metabolic systems in the stress tolerance of plants.
Materials and methods

Plant materials and treatments

Tissue-cultured plants of Actinidia chinensis var. deliciosa

cv. Qinmei were initially grown on MS agar media containing
frontiersin.org
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2.0 mg/L ZT and 0.1 mg/L IBA. They were cultured under

conditions of 25°C, 60 mmol/m2/s and a 14-h photoperiod. After

rooting on 1/2 MS agar media containing 0.5 mg/L IBA for 40

days, the plantlets were transferred to black plastic pots (8 ×

8 cm) containing a mixture of loam/perlite (1:1, v:v). After 40 d

of adaptation in the growth chamber, the plants were moved to

larger plastic pots (30 × 18 cm) filled with a mixture of soil/sand/

organic matter (5:1:1, v:v:v) and grown in the glasshouse. They

were watered with tap water or 1/2 Hoagland nutrient solution

(Huo et al., 2021) alternately every three days.

After two months of growth under above conditions, healthy

and uniformly sized plants were chosen for screening the

optimal concentration of melatonin treatment: plants were

fully irrigated with 300 ml 0, 10, 50, 100, 200, or 300 mM
melatonin solution to the roots for 2 times in a three-day interval

and then were waterlogged. After 9 days of waterlogging

treatment, the plant roots were collected to measure root

activity. Finally, we selected 100 mM as the melatonin

concentration for downstream experiments.

The treatments were subdivided into four groups as follows:

(1) control (CK), plants were well-watered during the whole

experimental time; (2) melatonin treatment (MT): plants were

treated with 100 µM melatonin solution for 2 times in a three-

day interval, then been well-watered for 9 days; (3) waterlogging

treatment (WL): plants were well-watered for 6 days, and

subsequently been waterlogged for 9 days; and (4) melatonin

and waterlogging treatment (MT+WL): plants were treated with

100 µM melatonin solution for 2 times in a three-day interval,

and then been waterlogged for 9 days. Each treatment included

20 pots of plants and was repeated three times. To apply

waterlogging treatments, three potted plants were placed in a

plastic container (100 × 35 × 30 cm) filled with tap water, and the

water level was continuously maintained at 4-5 cm above the soil

surface. The day before waterlogging was designed as 0 day, and

the third through fifth fully matured leaves from the base of the

stems and the roots were sampled from all groups at 0, 3, 6, and 9

days of the experiment. For samples mentioned above, three

biological replicates were prepared with each collected from

three plants. The samples were stored at −80°C after being frozen

quickly in liquid nitrogen until use.
Evaluation of stress tolerance

The relative electrolyte leakage of the leaves and roots was

determined and calculated according to a previously described

method with a minor modification (Dionisio-Sese and Tobita,

1998). Briefly, 100 mg fresh plant tissue samples were cut into

5 mm length and placed in test tubes containing 10 ml distilled

deionized water. The tubes were covered with plastic caps and

placed in a water bath maintained at the constant temperature of

25 °C. 4 h later, the initial electrical conductivity of the distilled

deionized water and the medium in test tubes was measured
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using an electrical conductivity meter (CM-115, Kyoto

Electronics, Kyoto, Japan). Then, the samples were autoclaved

at 100°C for 15 min to completely kill the tissues and release all

electrolytes. Afterwards, they were cooled for 4 h to 25°C and the

final electrical conductivity was measured.

Levels of malondialdehyde (MDA), H2O2, and superoxide

radical (O2
−) and the activities of superoxide dismutase (SOD)

and peroxidase (POD) were determined using detection kits

(Suzhou Comin Biotechnology Co., Ltd, Suzhou, China)

following the manufacturer’s instructions. The triphenyl

tetrazolium chloride method was applied to monitor root

activity, which was defined as the reductive intensity.
Evaluation of photosynthetic
characteristics

The net photosynthesis rate (Pn), intercellular CO2

concentration (Ci), and stomatal conductance (Gs) were

monitored by a LI-6400XT portable photosynthesis system

(LI-COR, Huntington Beach, CA, USA). All measurements

were taken between 9:00 and 11:00 a.m. at 1000 mmol photons

m−2 s−1 and a constant airflow rate of 500 mmol s−1. The

concentration of cuvette CO2 was set at 400 ± 5 cm3 m−3, and

the temperature was 28 ± 2°C. Data were collected from the fully

expanded, fully light-exposed leaves at the same position of

three plants.
Measurement of amino acids

Amino acids (AAs), such as GABA and Pro, were extracted

and measured as described previously (Huo et al., 2020), with a

minor modification. Briefly, 100 mg of frozen root sample was

extracted in 1 ml 50% ethanol (including 0.1 M HCl). After

centrifuging at 13,000 g for 10 min, the liquid supernatant was

filtered through a 0.22-mm filter and the filtered supernatant was

diluted 20 times using methanol to analyze the metabolites. The

liquid chromatography-mass spectrometry system (LC-MS, LC:

AC, ExionLC; MS: Q-trap5500, AB Sciex Pret. Ltd., Washington,

USA) equipped with an Inertsil ODS-4 C18 column (4.6 ×

250 mm, 5 mm) was used at a flow rate of 0.3 ml/min, and 10 mL
was used as sample injection volume. The solvent system

consisted of water containing 0.1% (v/v) formic acid (A) and

acetonitrile (B). Data were quantified by comparing the peak

surface areas with those obtained using standard AAs (Sigma, St.

Louis, MO, USA).
Measurement of phytohormones

ABA, ACC and SA were extracted as described previously

(Huo et al., 2020) and measured using the LC-MS system.
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Briefly, 200 mg of frozen root sample was extracted in 1 ml

solvent (methanol: isopropanol: acetic acid= 20: 79: 1; v: v: v).

After shaking for 1 h at 4°C and centrifugation, the supernatant

was filtered through a 0.22-mm filter for analysis using the same

system described above but equipped with the InertSustain AQ-

C18 column (4.6 × 150 mm, 5 mm) at a flow rate of 0.5 ml/min.

The solvent system consisted of methanol (A) and water

containing 0.1% (v/v) formic acid (B).

Melatonin was quantified as described by Zhou et al. (2022),

with some modifications. Briefly, 500 mg of frozen root sample

was suspended in 5 ml methanol. After shaking overnight at

−20°C and centrifugation, the supernatants were collected for

drying under nitrogen gas. Then, the dried extracts were

dissolved in 200 µl 80% methanol and filtered through a 0.22-

µm filter membrane. The analysis system was the same as

described above.
Statistical analysis

SPSS 22.0 software was used for statistical data analysis. All

experimental data were subjected to one-way analysis of

variance, and the statistical differences were calculated by

Tukey’s multiple range test (p < 0.05). Values were presented

as means ± SEs (standard errors) of at least three

biological replicates.
Results

Exogenous melatonin improves the
waterlogging tolerance of kiwifruit plants

To investigate the possible effect of exogenous melatonin on

kiwifruit plants in response to waterlogging stress, we first

pretreated the plants with different concentrations of

melatonin, and then measured their root activity after

waterlogging treatment. The results showed that melatonin

treatment effectively alleviated waterlogging damage on root

activity of kiwifruit plants (Table 1). According to our

evaluation, the 100 mM melatonin pretreatment performed

better than 10 or 50 mM, meanwhile it was more economical

than 200 or 300 mM on the basis of similar effect on waterlogging

tolerance of kiwifruit plants. Then we applied 100 mMmelatonin

solution to irrigate designated plants before inducing

waterlogging stress. Under normal-watered conditions, the

root morphology did not differ apparently between kiwifruit

plants treated with (MT) or without (CK) melatonin. After

waterlogging stress (WL), the leaves of kiwifruit plants in both

WL and MT+WL groups wilted severely and brown patches

were observed. Moreover, while the lower leaves of plants in the

WL group appeared serious shedding due to waterlogging stress,

plants received melatonin pretreatment showed lighter stress
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symptoms and many mature leaves remained green and

vigorous (Figure 1A).

The relative electrolyte leakage and malondialdehyde

(MDA) content are typical parameters for assessing stress

tolerance of plants (Dionisio-Sese and Tobita, 1998; Huo et al.,

2020). The electrolyte leakage of plant cell is a basic indicator of

cell membrane permeability, for the value positively correlates

with the severity of membrane destruction. There was no

significant difference between the electrolyte leakage of CK

and MT plants under normal-watered condition. After

waterlogging treatment, while the electrolyte leakage being

significantly increased by 4.3 times in WL plants compared to

CK plants, the increment was only 2.9 times in MT+WL plants

when compared with MT plants (Figure 1B). Moreover, the

levels of MDA in plant cells can reflect the extent of lipid

peroxidation, which is an indicator of cell damage. The data

showed that while the MDA content was increased in

waterlogging-stressed leaves when compared with the control,

exogenous melatonin alleviated that increment (Figure 1C).

These data demonstrated that exogenous melatonin alleviated

the waterlogging damage on kiwifruit plants.
Effects of exogenous melatonin on the
photosynthetic capacity of kiwifruit
plants under waterlogging stress

Under waterlogging stress, the efficiency of photosynthetic

system was seriously inhibited due to leaf necrosis and stomatal

behavior. To examine the effect of melatonin on photosynthesis, we

detected the gas exchange parameters after 6 days of waterlogging

treatment. As shown in Figure 2A, Pn decreased in both WL and

MT + WL group, which indicates the suppressed assimilation

efficiency of CO2, but the rates were significantly higher in

melatonin-pretreated plants than in non-pretreated plants. The

Gs of kiwifruit plants also decreased under waterlogging stress,

and it was marginally but not significantly higher in melatonin-

pretreated plants on the 6th day (Figure 2B). Moreover, there was a
TABLE 1 Effects of melatonin pretreatment (10~300 mM) on root
activity of waterlogged kiwifruit plants.

Treatment group TTC reductive intensity (mg g-1 FW h-1)

CK 153.08 ± 8.85 a

WL 86.05 ± 12.05 d

WL + 10 mM 100.30 ± 6.45 cd

WL + 50 mM 101.98 ± 8.34 cd

WL + 100 mM 120.81 ± 7.70 b

WL + 200 mM 115.34 ± 6.10 bc

WL + 300 mM 114.49 ± 7.84 bc
All data are means ± SE of three replicates. Values not followed by the same letter indicate
significant differences between treatments, according to one-way ANOVA followed by
Tukey’s multiple range test (P <0.05).
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substantial increase in the Ci value of non-pretreated plants after 6 d

of waterlogging stress, but that increment was not presented in the

melatonin-pretreated plants (Figure 2C). These results

demonstrated that while the photosynthetic ability of kiwifruit

plants was damaged by waterlogging stress, exogenous melatonin

effectively alleviated that pressure.
Exogenous melatonin decreased ROS
damage on the roots of kiwifruit plants
under waterlogging stress

As showninFigure3A, thewaterloggingdamageon the roots of

kiwifruit plants was remarkably relieved by melatonin treatment,

represented by more vigorous and white roots on the plants in
Frontiers in Plant Science 05
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melatonin-treated groups than in non-pretreated plants after

waterlogging stress. These results were further demonstrated by

the relative electrolyte leakage and MDA measurements of plant

roots,whichwere increased significantlydue to the injury causedby

waterlogging stress, but they were still much lower in MT+WL

plants compared with that in WL plants (Figures 3B, C).

The stress-induced ROS accumulation leads to oxidative stress

by disrupting cytomembranes and cell components, ultimately

affecting plant growth. Here, the measurements of H2O2 and O2
−

levels showed that they were both increased in plant roots during

the treatment (Figures 4A, B). The H2O2 content reached the peak

after 6dof treatment and thendeclined at 9d,while theO2
− content

still showed an upward trend after 9 d of treatment. Moreover, the

H2O2 levelswere significantly higher in the roots ofWLplants than

in MT+WL plants from day 3 of treatment, and this difference of
A

B C

FIGURE 1

Exogenous melatonin alleviated the waterlogging damage on kiwifruit plants. (A) Phenotypes of kiwifruit plants in control (CK), melatonin
treatment (MT), waterlogging treatment (WL), and melatonin and waterlogging treatment (MT+WL) groups, and the plants in WL and MT+WL
groups were being waterlogged for 9 days. Bars: 5 cm. (B) Relative electrolyte leakage (REL) and (C) malondialdehyde (MDA) concentration of
plants in CK, MT, WL, and MT+WL groups. Data are shown as the means of three replicates with SEs. Different letters indicate significant
differences between treatments, according to one-way ANOVA and Tukey’s multiple range test (P < 0.05).
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O2
− contents between the two groups became obviously clear after

6 d of treatment. We measured the activity of SOD and POD

enzymes throughout the treatment, since SODconverts destructive

O2
− into H2O2 and POD can break H2O2 down immediately into

water (Figures 4C, D). The results showed that both SODand POD
Frontiers in Plant Science 06
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activitieswere inducedbywaterlogging stress inkiwifruit roots.The

SOD activity in the roots of MT+WL plants were 1.6-times that of

WL plants on day 3 and day 6 of treatment. Moreover, the POD

activity in the roots ofMT+WLplantswas rapidly increased on day

6 of treatment, where it was 1.82-times that of WL plants. These

results suggested thatmelatonin treatment promoted the SOD and

POD activity in the roots of kiwifruit plants and thus alleviated the

ROS damage under waterlogging stress.
Ala, GABA, Pro metabolism in the
roots of kiwifruit plants under
waterlogging stress

Previous studies have reported the accumulation of Alanine

(Ala) and g-aminobutyrate (GABA) in plant roots in response to

waterlogging stress (Lothier et al., 2020), and Ala accumulation

is thought to be a hypoxic biomarker in plants (Planchet et al.,

2017). Here, we detected a pronounced increment in Ala and

GABA concentration in the roots of kiwifruit plants in both WL

and MT+WL groups under waterlogging treatment (Figures 5A,

B). The Ala content was increased by 13.3 times in WL plants at

3 d of treatment compared to 0 d, and it was gradually declined

afterwards, but still consistently higher than samples without

waterlogging treatment. Moreover, it was lower in melatonin-

treated plants than in non-pretreated plants from the day 3 of

treatment (Figure 5A). The GABA content in kiwifruit roots was

elevated under waterlogging stress throughout the treatments,

and it was significantly higher in melatonin-treated plants than

in non-pretreated plants from the day 3 (Figure 5B). The Pro

content followed the same trend as GABA under waterlogging

stress. More specifically, in non-pretreated plants, it was 2.54-,

3.58- and 4.01-times that of 0 d on 3, 6 and 9 d of waterlogging

treatment, while it was 4.45-, 4.82- and 6.32-times that of 0 d on

3, 6 and 9 d in melatonin-treated plants (Figure 5C). These

results suggested that melatonin treatment altered the Ala,

GABA and Pro metabolism in the roots of kiwifruit plants in

response to waterlogging stress.
Asp, Glu, Arg metabolism in the roots of
kiwifruit plants under waterlogging stress

Aspartate (Asp), glutamate (Glu), and arginine (Arg) are

commonly used as nitrogen storage and transport compounds

in plants (Hildebrandt, 2018). Here, we analyzed the level of

these three amino acids in the roots of kiwifruit plants under

waterlogging stress (Figures 6A–C). At 3 d of the treatment,

there was an obvious decrease of Asp concentration in kiwifruit

roots, and the Asp content remained almost unchanged after

3 d. Interestingly, the Asp content was always lower in
A

B

C

FIGURE 2

Exogenous melatonin alleviated the waterlogging damage on the
photosynthetic ability of kiwifruit plants. Changes in the (A) net
photosynthesis rate (Pn), (B) stomatal conductance (Gs) and (C)
intercellular CO2 concentration (Ci) were determined after 6
days of waterlogging treatment. Data are shown as the means of
three replicates with SEs. Different letters indicate significant
differences between treatments, according to one-way ANOVA
and Tukey’s multiple range test (P < 0.05).
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melatonin-treated plants than in non-pretreated plants from

3 d of treatment (Figure 6A). The Glu concentration was

gradually declined in the roots during the stress treatments,

and it was lower in melatonin-treated plants than in non-

pretreated plants from the 6 d of treatment (Figure 6B). The

Arg content in the roots of WL plants was first increased at 3 d

of the treatment, and then declined on 6 d and 9 d, but it was

always showing a downward trend in the MT+WL group from

the 3 d of the treatment (Figure 6C). These results showed that

the Asp, Glu and Arg metabolism in the roots of kiwifruit

plants was altered by melatonin treatment to encounter

waterlogging stress.
Frontiers in Plant Science 07
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The branched-chain amino acids
metabolism in the roots of kiwifruit
plants under waterlogging stress

The branched-chain amino acids (BCAAs), including

leucine (Leu), isoleucine (Ile), and valine (Val) often show a

higher level of accumulation in Arabidopsis thaliana and other

plant species in response to stress conditions (Sanchez et al.,

2010; Huang and Jander, 2017). Here, we detected a pronounced

accumulation of these three amino acids in the roots of kiwifruit

plants in response to waterlogging stress (Figures 7A–C). In

non-pretreated plants, the Leu concentration was 8.56-, 9.40-
A

B C

FIGURE 3

Exogenous melatonin alleviated the waterlogging damage on the roots of kiwifruit plants. (A) Phenotypes of the roots of kiwifruit plants in CK,
MT, WL, and MT+WL groups, and the plants in WL and MT+WL groups were being waterlogged for 9 days. Bars: 5 cm. (B) Relative electrolyte
leakage (REL) and (C) malondialdehyde (MDA) concentration in the roots of CK, MT, WL, and MT+WL plants. Data are shown as the means of
three replicates with SEs. Different letters indicate significant differences between treatments, according to one-way ANOVA and Tukey’s
multiple range test (P < 0.05).
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and 14.15-times that of 0 d on 3, 6 and 9 d of waterlogging

treatment, while it was 6.60-, 10.53- and 16.17-times respectively

in melatonin-treated plants (Figure 7A). The levels of Ile

followed the same trend, which was a bit higher in melatonin-

treated plants than in non-pretreated plants from day 6

(Figure 7B). Moreover, the Val concentration was 6.60-, 6.39-

and 12.00-times that of 0 d on 3, 6 and 9 d of waterlogging

treatment in WL plants, while it was 6.18-, 9.71- and 19.12-times

respectively in MT+WL plants (Figure 7C). These results

showed that waterlogging stress caused a multiple-fold

increase in the levels of BCAAs in the roots of kiwifruit plants,

and melatonin treatment promoted it in the later stages of stress.
Plant hormones metabolism in the
roots of kiwifruit plants under
waterlogging stress

Plant hormones are involved in the regulation of waterlogging

stress response via complex signalling pathways in plants

(Benschop et al., 2006; Pan et al., 2021). Here, we analyzed the

concentrations of melatonin, ACC (1-aminocyclopropane-1-

carboxylate), ABA (abscisic acid), and SA (salicylic acid) in the

roots of kiwifruit plants in response to waterlogging stress
Frontiers in Plant Science 08
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(Figures 8A–D). The measurements of melatonin contents

showed that melatonin-treatment promoted it concentrations

from 0.4 ng g-1 FW to 11 ng g-1 FW in kiwifruit roots. The

melatonin concentrations in kiwifruit roots were induced by

waterlogging stress, which peaked at 6 d of treatment reaching

2.21-times that of 0 d in non-pretreated plants. Interestingly,

although there was already sufficiently high concentration of

melatonin detected in melatonin-treated groups on 0 d, it was

still induced by waterlogging stress in kiwifruit roots, which

followed the same trend as in non-pretreated plants, showing

2.39-times that of 0 d at 6 d of treatment (Figure 8A). The ACC

concentration in kiwifruit roots was enhanced by waterlogging

stress throughout the treatment, and it was significantly higher in

melatonin-treated plants than in non-pretreated plants from day 3

(Figure 8B). The ABA content in kiwifruit roots was down-

regulated by waterlogging treatment, and it was lower in

melatonin-treated plants than in non-pretreated plants from 0 d

to 3 d.Moreover, it showed a certain degree of recovery inMT+WL

plants from the day 6, but still reducing in WL group (Figure 8C).

The SA content in kiwifruit roots was falling down due to the

waterloggingstress, but itwasalwayshigher inMT+WLplants than

in WL plants during the treatments (Figure 8D). These results

suggested that the balance of plant hormones was changed in

kiwifruit roots to encounter waterlogging stress.
D
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C

FIGURE 4

Exogenous melatonin alleviated the ROS damage in the roots of kiwifruit plants under waterlogging stress. (A) H2O2 and (B) O2
− concentrations

in the roots of CK, MT, WL, and MT+WL plants. Activities of (C) superoxide dismutase (SOD) and (D) peroxisome (POD) in the roots of CK, MT,
WL, and MT+WL plants. Data are shown as the means of three replicates with SEs. Different letters indicate significant differences between
treatments, according to one-way ANOVA and Tukey’s multiple range test (P < 0.05).
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Discussion

As sessile organisms, plants cannot escape from harsh

environmental disorders, such as continuous oxygen shortage

induced by waterlogging or submergence conditions. Despite

this obvious weakness, plants are more tolerant to hypoxia stress

than animals, even in species not adapted to submersed soil,
Frontiers in Plant Science 09
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which suggest that plants have evolved particular strategies to

cope with waterlogging stress (Planchet et al., 2017). Recent

studies found that the appropriate metabolism changes are

important for plant waterlogging tolerance (Fukao and Bailey-

Serres, 2004; Zheng et al., 2017). For example, after a period of

waterlogging stress, the plant seedlings changed their
A

B

C

FIGURE 5

The concentrations of Ala, GABA, and Pro in the roots of kiwifruit
plants under waterlogging stress, as measured by LC-MS. (A) Ala.
(B) GABA. (C) Pro. Data are shown as the means of three
replicates with SEs. Different letters indicate significant
differences between treatments, according to one-way ANOVA
and Tukey’s multiple range test (P < 0.05).
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FIGURE 6

The concentrations of Asp, Glu, and Arg in the roots of kiwifruit
plants under waterlogging stress, as measured by LC-MS. (A)
Asp. (B) Glu. (C) Arg. Data are shown as the means of three
replicates with SEs. Different letters indicate significant
differences between treatments, according to one-way ANOVA
and Tukey’s multiple range test (P < 0.05).
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metabolism from aerobic to anaerobic respiration, which led to a

burst of reactive oxygen species (ROS) generation and resulted

in oxidative damages of plant organelles (Xu et al., 2013;

Takahashi et al., 2015). The excessive production of ROS in

plant roots would disturb their growth and impair the uptake of

water and nutrient from soil, therefore disturbing plant gas
Frontiers in Plant Science 10
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exchange and photosynthesis (Hossain et al., 2009). The proper

ROS scavenging systems and the maintenance of photosynthetic

ability are important for plants in response to waterlogging

stress. Melatonin has been generally reported to be an effective

antioxidant, with important functions in scavenging ROS and

regulating plant responses to various environmental stresses (Li

et al., 2018; Wu et al., 2020). However, the effects of melatonin in

plant physiological and metabolic responses to waterlogging

stress have yet to be elucidated (Moustafa-Farag et al., 2020).

The kiwifruit plants are always intolerant to waterlogging

stress as the root system is fleshy and shallow. In many kiwifruit

planting regions, especially in Southeast China, excessive rainfall

in summer rainy season generally causes huge damage to

kiwifruit gross yield (Liu et al., 2022). Therefore, studying the

waterlogging response mechanisms of kiwifruit is urgent and has

important implications for horticultural industry. Previous

studies have found that exogenous melatonin could induce the

tolerance of kiwifruits to drought stress and alleviate the heat-

related damage, mainly through the antioxidant pathways (Liang

et al., 2018; Xia et al., 2020). Here, we pre-irrigated the kiwifruit

plants with melatonin solution to the roots, and found that

exogenous melatonin pretreatment effectively alleviated the

decline in the root activity of kiwifruit plants caused by

waterlogging stress. We selected 100 mM melatonin as the

exogenous concentration to investigate the potential metabolic

role of exogenous melatonin on kiwifruit plants under

waterlogging stress. The exogenous melatonin pretreatment

did not apparently change the phenotypes of kiwifruit plants

under control condition. While the waterlogging treatment

resulted in visible leaf damage on kiwifruit plants in both WL

and MT+WL groups, the melatonin pretreatment definitely

alleviated the stress symptoms, which was indicated by

decreased electrolyte leakage and MDA levels. Previous studies

have reported that melatonin application could improve the

photosynthesis rate and PSII efficiency in apple (Zheng et al.,

2017) and alfalfa (Zhang et al., 2019) to alleviate the stress

damage during waterlogging treatment. Here, the decrease in Pn

of kiwifruit plants caused by waterlogging stress was also

effectively lightened by melatonin pretreatment. The

substantial increase in the Ci value of WL plants also indicated

substantial disorders in the leaf photosynthetic structure of non-

pretreated plants under waterlogging stress.

Since the plant root is the front line to continuously sense

waterlogging signal, we performed further researches on

kiwifruit roots. In addition to the root activity mentioned

earlier in the concentration screening test, the detected relative

electronic leakage and MDA concentration of the roots also

showed milder increment in the kiwifruit plants with exogenous

melatonin pretreatment, which indicated that exogenous

melatonin could protect the integrity and vitality of the root

system under waterlogging stress, thereby reducing waterlogging

damage to the kiwifruit plants. Moreover, the measurements

showed that both the ROS generation and antioxidant enzymes
A
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FIGURE 7

Change to "The concentrations of Leu, Ile, and Val in the roots
of kiwifruit plants under waterlogging stress, as measured by LC-
MS. (A) Leu. (B) Ile. (C) Val. Data are shown as the means of
three replicates with SEs. Different letters indicate significant
differences between treatments, according to one-way ANOVA
and Tukey’s multiple range test (P < 0.05).
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activity were induced by waterlogging stress in kiwifruit root,

and the melatonin-treated plants possessed a higher antioxidant

ability and lower ROS accumulation. As these results were

consistent with previous researches, which reported that

melatonin has important functions in scavenging ROS in

different plant species in response to various biotic and abiotic

stresses (Li et al., 2018; Liang et al., 2019), we believed that the

melatonin treatment enhanced the waterlogging tolerance of

kiwifruit plants through regulating the ROS pathway in roots.

The re-orchestration of plant primary metabolism, including

the amino acid biosynthesis, plays a major role in the metabolic

adjustment of plants under waterlogging stress (Batista-Silva

et al., 2019; Behr et al., 2021). Moreover, previous studies have

found that compared with the stronger responses of plant roots

to waterlogging conditions, the hypoxic symptoms of shoots

seem to be less, which probably due to the oxygen generated by

leaf photosynthesis (Mustroph et al., 2014). Here, we also paid

more attention on the changes in the amino acid metabolism of

kiwifruit roots during waterlogging treatment. The detection

showed a large increment of Ala and GABA concentrations in

kiwifruit roots during waterlogging period, which were reported

as a marker of hypoxic symptoms in other plant species (Rocha

et al., 2010; Oliveira and Sodek, 2013), and the melatonin

treatment promoted the increase of GABA while reduced the
Frontiers in Plant Science 11
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accumulation of Ala. Furthermore, we also detected a significant

decrease in Asp and Glu concentrations in kiwifruit roots during

waterlogging treatment, which was enhanced by melatonin

treatment. The decrease in Asp and Glu levels caused by

hypoxia has been reported in Arabidopsis and other plant

species (Gibon et al., 2002; Mustroph et al., 2014), consistent

with the role of these two amino acids as precursors for the

synthesis of Ala and GABA. Since the reaction from Glu to

GABA consumes protons, previous studies proposed the buffer

role of GABA to counterbalance the detrimental effects of

cellular acidification during hypoxia (Carroll et al., 1994).

Here, our results showed that melatonin treatment facilitated

the utilization of Asp and Glu in kiwifruit roots under

waterlogging stress, and promoted the transition to GABA

than to Ala. Combined with previous research which reported

that the submergence intolerant variety of rice showed a higher

elevation of Ala levels than tolerant variety under submerged

condition (Barding et al., 2013), we believed that melatonin

enhanced the waterlogging tolerance of kiwifruit plants partly

through altering the Ala and GABA metabolism.

Synthesis of Pro and BCAAs and degradation of Arg in

kiwifruit roots was enhanced by melatonin treatment during

waterlogging stress. The Pro has been widely suggested to be

indispensable for plant response to environmental stresses
D
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FIGURE 8

The concentrations of melatonin, ACC, ABA, and SA in the roots of kiwifruit plants under waterlogging stress, as measured by LC-MS. Data are
shown as the means of three replicates with SEs. Different letters indicate significant differences between treatments, according to one-way
ANOVA and Tukey’s multiple range test (P < 0.05).
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(Antoniou et al., 2017; Huo et al., 2022), and it was reported to

be involved in the redox buffering system of the plant cells

during hypoxia (Behr et al., 2017). The high-level induction of

BCAAs was reported in plants in response to various stress

conditions (Huang and Jander, 2017). Here, we found that the

metabolism of Pro and BCAAs in kiwifruit roots was enhanced

by melatonin treatment to encounter waterlogging stress. As Arg

serves as a substrate for polyamines (PAs) and nitric oxide,

which was proved to be favorable in plant waterlogging tolerance

(Pucciariello and Perata, 2017; Rauf et al., 2021), melatonin

might promote the waterlogging resistance of kiwifruit plants by

regulating the Arg transformation. Previous researches in alfalfa

have reported that melatonin could modulate the nitro-oxidative

homeostasis and proline metabolism to ameliorate drought

damage (Antoniou et al., 2017), but the detailed interaction

mechanisms between melatonin, PAs and nitric oxide in plants

in response to waterlogging stress require further study. Besides

the amino acid levels, we also analyzed the changes in the ACC,

ABA, and SA levels in kiwifruit roots under waterlogging stress.

Previous researches reported that the concentration of ABA and

SA changed in soybean hypocotyls under waterlogging stress,

which might contribute to the secondary aeration tissues

appearing (Shimamura et al., 2014; Kim et al., 2015).

Moreover, Qi et al. (2019) found that treating cucumber

seedlings with exogenous ACC promoted the formation of

adventitious roots under waterlogging stress. However, the

relationship among melatonin and them when plants

encountered waterlogging stress were rarely reported. Here,

the detection showed that while the ACC concentration in

kiwifruit roots was induced markedly by waterlogging stress,

the ABA and SA concentrations decreased. Apparently, the

melatonin treatment enhanced the ACC increment in kiwifruit

roots under waterlogging stress. ACC is the direct precursor in

the biosynthesis of ethylene, and the ethylene accumulation and

perception are necessary for aerenchyma cells formation and

adventitious root primordium generation (Yamauchi et al., 2014;

Yamauchi et al., 2016). The enhanced ACC levels in kiwifruit

roots under waterlogging stress might contribute, to a certain

extent, in melatonin-mediated waterlogging tolerance.
Conclusion

In conclusion, our results demonstrated that pre-irrigating

kiwifruit plants with 100 mM melatonin could partially alleviate

the waterlogging damage on whole plant. First, the kiwifruit

plants in MT+WL group maintained a better photosynthetic

activity during the treatment, and they showed a less ROS

accumulation in roots after waterlogging stress. Further study

on kiwifruit roots showed that the levels of Ala, GABA, and Pro

were increased markedly due to waterlogging stress, and

melatonin treatment promoted the increment of GABA and
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Pro while reduced the accumulation of Ala. These responses

suggested that melatonin-mediated waterlogging tolerance of

kiwifruit plants was related to Ala, GABA, and Pro metabolism.

Moreover, melatonin pretreatment altered the level of other

plant hormones in kiwifruit roots to encounter waterlogging

stress, which included the enhancement of ACC accumulation.

The present study provided novel insights into the melatonin-

induced waterlogging tolerance of kiwifruit plants, as well as the

new and initial evidence for the effect of exogenous melatonin on

plant amino acid metabolism. The specific and detailed

interaction mechanisms between melatonin and metabolic

pathways in the plant-water interactive system require

further study.
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Poncirus trifoliata and its
expression in response to soil
water deficit and arbuscular
mycorrhizal fungi
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Abeer Hashem3, Al-Bandari Fahad Al-Arjani3,
Khalid F. Almutairi4, Elsayed Fathi Abd_Allah4,
Qiang-Sheng Wu1,2 and Ying-Ning Zou1*

1College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China, 2Department
of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czechia, 3Botany
and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia,
4Plant Production Department, College of Food and Agricultural Sciences, King Saud University,
Riyadh, Saudi Arabia
Flavonoids are secondary metabolites widely found in plants with antioxidants,

of which chalcone synthase (CHS) is a key enzyme required in flavonoid

synthesis pathways. The objective of this study was to clone a CHS gene

from trifoliate orange (Poncirus trifoliata) and analyze its biological information

and partial functions. A PtCHS gene (NCBI accession: MZ350874) was cloned

from the genome-wide of trifoliate orange, which has 1156 bp in length,

encoding 391 amino acids, with a predicted protein relative molecular mass

of 42640.19, a theoretical isoelectric point of 6.28, and a lipid coefficient of

89.82. The protein is stable, hydrophilic, and high sequence conservation

(92.49% sequence homology with CHS gene of other species). PtCHS was

highly expressed in stems, leaves and flowers, but very low expression in roots

and seeds. Soil water deficit could up-regulate expressions of PtCHS in leaves.

An arbuscular mycorrhizal fungus, Funneliformis mosseae, significantly

increased plant biomass production, CHS activity, expressions of PtCHS, and

total flavonoid content in leaves and roots, independent of soil water status.

Total flavonoids were significantly positively correlated with PtCHS expression

in leaves only and also positively with root mycorrhizal colonization. Such

results provide insight into the important functions of PtCHS in

trifoliate orange.
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Introduction

Flavonoids are important secondary metabolites of

horticultural plants, which have antioxidant, antibacterial, and

anti-inflammatory properties (Shen et al., 2022). In addition,

flavonoids have some applications in the food industry,

cosmetics, and pharmaceutical industries (Dias et al., 2021).

The synthesis of flavonoids is accomplished with the joint

participation of various enzymes, among which chalone

synthase (CHS) is the first key enzyme in the flavonoid

biosynthesis pathway (Yonekura et al., 2019). CHS is to

catalyze the synthesis of naringenin chalcone from p-

coumaroyl CoA and malonyl CoA, which is further derived

and transformed into various flavonoid compounds under the

catalysis of chalcone isomerase (CHI) (Han et al., 2016, Yahyaa

et al., 2017). CHS is widely found in higher plants, and the

expression of its gene family members is tissue-specific and

time-specific (Chen et al., 2017; Sepiol et al., 2017).

Environmental stress such as temperature stress and drought

stress induces CHS expressions to promote the accumulation of

flavonoids (Dao et al., 2011; Li et al., 2020; Yin et al., 2020).

Hence, the gene plays an important role in plant response to

stress and regulation of flavonoid synthesis (Dixon and Paiva,

1995; Gläßgen et al., 1998). CHS gene has been cloned in many

crops, such as rice (Han et al., 2017), mulberry (Wang et al.,

2017), and citrus (Wang et al., 2018), but there is no report in

trifoliate orange (Poncirus trifoliata). Hu et al. (2019) reported

that overexpression of a CHS gene from tobacco (Nicotiana

tabacum) could mitigate drought-induced oxidative damage and

thus enhanced drought tolerance. Nakabayashi et al. (2014) also

observed in Arabidopsis thaliana that excessive accumulation of

flavonoids was the key to enhance drought tolerance of plants.

Therefore, up-regulated expression of flavonoid biosynthetic

genes and accumulation of flavonoids are important

mechanisms for drought tolerance in plants (Ma et al., 2014).

Trifoliate orange, belonging to the genus Poncirus in the

Rutaceae family, has the advantages of resistance to root rot,

tristeza virus, cold, and drought tolerance, and is the most widely

used rootstock in citrus production (Wu et al., 2010). In

addition, trifoliate orange is a citrus relative with abundant

bioactive substances, such as flavonoids, carotenoids, and

terpenoids (Gao et al., 2018; Sharma et al., 2019). All citrus

plants can produce flavonoids (Ghasemi et al., 2009), such as

sweet orange, pomelo, and lemon. At present, more than 60

flavonoids have been identified in citrus (Tripoli et al., 2007).

Flavonoids of citrus not only have antioxidant, anti-

inflammatory, anti-tumor, and other functions (Song et al.,

2017; Mahato et al., 2018), but also play an important role in

the coloring of flowers, fruits and leaves, abiotic and biotic

tolerance, auxin transport, nutritional value, and fruit flavor

(Ferreyra et al., 2012; Flamini et al., 2013; Gabriele et al., 2017).

Soil water deficit (SWD) is one of abiotic stress restricting

crop growth, which can lead to reduced crop growth and yield,
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and even crop death in severe cases (Kunert et al., 2016).

Arbuscular mycorrhizal fungi (AMF) in soil form a reciprocal

symbiosis with plant roots (He et al., 2019), which can absorb

water and nutrients from the soil to host plants for their growth

and enhance SWD tolerance, along with high utilization value in

agricultural production (Wu et al., 2013; Zou et al., 2017).

Studies have shown that appropriate SWD promoted flavonoid

accumulation in plants (Ma et al., 2014), and AMF promoted

photosynthesis, nutrient absorption, and various secondary

metabolite levels in plants under SWD (Cheng et al., 2022).

We hypothesized that AMF up-regulates the expression level of

CHS in trifoliate orange under drought and thus promotes the

level of flavonoids, which is beneficial for mycorrhizal plants to

tolerate SWD.

In order to confirm the above hypothesis, we cloned a CHS

gene from P. trifoliata, analyzed the physicochemical properties

of the protein, constructed an evolutionary tree, and analyzed

the relative expression of PtCHS gene in leaves and roots under

SWD and AMF inoculation.
Materials and methods

Cloning of PtCHS gene

Total RNA was extracted from leaves, stems, roots, flowers,

fruits, and seeds of trifoliate orange grown in a citrus orchard of

Yangtze University using the TaKaRa MiniBEST Universal RNA

Extraction Kit. After checking the concentration and purity of

the extracted RNA, the PrimeScript™ RT Reagent Kit with

gDNA eraser was used to reverse-transcribe RNA into cDNA

using a Bio Photometer Plus PCR (6132, Eppendorf, Germany).

The Arabidopsis CHS gene (NCBI accession number:

AT5G13930) was used as the reference sequence, and the

BLASTP of the trifoliate orange genome database was used to

search CHS gene. A pair of primers (F: 5’-CCAAGCACGAG

CCTCAAAAC-3’; R: 5’-ACAGCACACCCCAATCTAGC-3’)

was designed using Primer premier 5.0 software to amplify the

full-length sequence of the gene, in which planta max super-

fidelity DNA polymerase kit (Vazyme Biotech Co., Ltd,

Nangjing, China) was used under the condition of 95°C for 3

min, 95°C for 15 s, 56°C for 15 s, and 72°C for 3 min with

35 cycles.

After the PCR reaction, the product fragments were

recovered and the target fragments were ligated and

transformed using the pEASY®-Blunt Zero Cloning Kit

(Beijing TransGene Biotech Co., Ltd, Beijing, China). Positive

clones were screened on LB plates coated with ampicillin, and

then sequenced by Department of Qingke Biotechnology Co.,

LTD. (Wuhan, China). The sequencing results were spliced by

DNAMAN 6.0, and the full-length sequences of the cloned

genes were obtained by analysis and comparison using BLAS

of NCBI.
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Bioinformatics analysis of PtCHS

Multiple alignments of amino acid sequences were

performed using the DNAMAN (V6.0). The amino acid

sequence of PtCHS gene was constructed by Mega-X, and the

neighbor-joining (NJ) method was used to generate the

evolutionary tree. Bootstrap was used to validate the

phylogenetic tree, and the number of replicates was defined as

1000. According to the online tool (https://swissmodel.expasy.

org/) the gene structure was predicted. SOPMA (http://npsa-

pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)

and Swiss-Model (http://swissmodel.expasy.org/interactive)

were used for secondary and tertiary structure prediction of

the protein, respectively. The protein subcellular localization was

predicted using the online WoLF PSORT (https://wolfpsort.hgc.

jp/) to predict.
Plant culture and AMF inoculation

Four-leaf-old trifoliate orange seedlings grown in sterilized

river sand were transplanted into a plastic pot containing 2.5 kg

of autoclaved soil and sand mixture (3 : 1, v/v). At the same time,

the 120 g inoculums of Funneliformis mosseae (BGC XZ02A) (22

spore/g) were applied near the rhizosphere. Uninoculated

(-AMF) plants were treated with 120 g of autoclaved

inoculums and a filtrate (25 µm filter) of 2 mL of mycorrhizal

inoculums to maintain similar microbial community

composition except for the F. mosseae. After transplantation,

all treated plants maintained the soil moisture at well-watered

(WW) (75% of the maximum field water capacity) for their

growth. After 8 weeks, half of the inoculated and uninoculated

plants were subjected to SWD (55% of the maximum field water

capacity) for 10 weeks, and the other half continued to grow in

the soil with WW status for another 10 weeks. Soil moisture was

monitored daily by weighing method, and the loss of soil water

was replenished in time. The plants were grown in a greenhouse,

where the environmental conditions have been described by

Zhang et al. (2020). Therefore, this experiment consisted of four

treatments: the seedlings inoculated with AMF and grown in

WW (WW+AMF); the seedlings inoculated without AMF and

grown in WW (WW-AMF); the seedlings inoculated with AMF

and grown in SWD (SWD+AMF); the seedlings inoculated

without AMF and grown in SWD (SWD-AMF). Each

treatment was repeated six times.
Determination of plant biomass production
and root mycorrhizal colonization

At plant harvest, the biomass of the whole plant was

weighted, frozen with liquid nitrogen, and immediately stored
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at -80°C for RNA extraction. Root mycorrhizae were stained

according to the method described by Phillips and Hayman

(1970). About 1-cm-long root segments were incubated in 10%

KOH solution at 95°C for 100 min, rinsed with distilled water,

bleached with 10% hydrogen peroxide solution for 15 min,

acidified with 0.2 mol/L hydrochloric acid for 10 min, and

stained with 0.05% trypan blue in lactate phenol for 1 min.

The mycorrhizal colonization was observed under a microscope

and calculated as the percentage of length of AMF-colonized

root segments versus total length of observed root segments.
Determination of CHS activity

The 0.5 g of fresh leaf and root samples were ground in 5 mL

of 0.1 mol/L phosphate buffer (pH 7.6) in an ice bath and then

centrifuged at 10,000×g for 10 min at 4°C. The supernatant was

used as the crude extract for CHS activity determination. CHS

activity was determined by the Enzyme-Linked Immunosorbent

Assay (ELISA) according to the user manual, where the plant

CHS kit (ml036296) was provided by Shanghai Enzyme Linked

Biotechnology Co., Ltd (Shanghai, China).
Relative expressions of PtCHS

Total RNA extraction from leaves and roots was performed

according to the above procedure. The primer sequence of the

gene was designed in Primer Premier 5.0 Software according to

the full-length gene sequences obtained by sequencing, where

the sequences were 5’-GTCTAAACTCGGCCTCAAAGA-3’

(forward primer) and 5’-TCTCGTCAAGGATGAACAGAAC-3’

(reversed primer). After reverse transcription of RNA into cDNA,

the b-actin was used as the reference gene for qRT-PCR, based on

the 2 × AceQ qPCR SYBR Green Master Mix (Aidlab, Beijing,

China). There were three biological replicates for each treatment.

The 2-DDCt method was used to calculate the relative expression of

PtCHS, with the WW-AMF treatment as the control.
Determination of total flavonoid content
of leaves and roots

Plant total flavonoid content was assayed with the protocol

of Liu et al. (2022). The 0.2 powdered samples of leaves and roots

were extracted with 8 mL of 70% ethanol under ultrasonic

conditions for 60 min, and centrifuged at 10,000×g for 10 min

at 4°C. The extraction was repeated twice, and the supernatant

was concentrated, evaporated to remove the ethanol, and added

with methanol. A total of 10 mL reaction solution consisted of

distilled water, 5% NaNO2, 10% AlCl3, 1 mol/L NaOH, and 0.5

mL of the tested solution, and their absorbance was measured at

510 nm, where the rutin was used as the standard.
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Data analysis

The data obtained were statistically analyzed under SAS software,

where ANOVA as well as Duncan’ new multiple range test at 0.05

levels were performed for significance between treatments.
Results

Physicochemical properties of
PtCHS protein

Sequencing results showed that theproteinhad1156bp in length

(Figure 1), contained a complete open reading frame, and encoded

391 amino acids, along with NCBI accession number MZ350874.

The information of the protein predicted by ProtParam

online tool (https://www.expasy.org/resources/protscale)

showed that the relative molecular mass of this protein is

42640.19, the theoretical isoelectric point is 6.28, the molecular

formula is C1898H3037N507O567S19, and the protein is not stability

index of 35.00, indicating that the protein is stable. In addition,

the protein had a relatively high aliphatic index of 89.82, which

allows the protein to have good stability in different

environments and facilitates its normal function, and a grand

average hydrophilicity of -0.105. PortScale online tools (https://

www.expasy.org/resources/protscale) in the prediction of

protein hydrophilic/hydrophobic properties showed that

amino acid sequence in the 119th and 324th position had the

minimum score (-2.489) and the maximum score (2.422)

(Figure 2B). Moreover, more scores fell below zero, indicating

that the protein is mainly hydrophilic.

Based on the prediction of SOPMA, random coil in the

secondary structure of PtCHS protein accounted for 33.25%, a-
helix 44.25%, extended strand 15.6%, and b-turn 6.91%, along

with irregular coils and extended chains scattered in the whole

protein structure (Figure 2A). The a-helix was the main

structural component of the secondary structure of PtCHS

protein. The tertiary structure prediction of PtCHS protein

further showed that the protein was dominated by a-helices
and random coils (Figure 2C), which was consistent with our

secondary structure prediction. Based on the analysis of WoLF

PSORT, the sub-cellular localization of the protein was in

chloroplast, cytoplasm, and nucleus.
Phylogenetic analysis of PtCHS

The alignment of the amino acid sequences of PtCHS and

CHS of eight other plant species of NCBI showed that the

sequence homology of PtCHS and CHS of other species was

92.49%, indicating that PtCHS gene has high sequence
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conservation. The phylogenetic tree showed that the closest

homology of PtCHS wasMsCHS2 inMedicago sativa (Figure 3).
Tissue-specific expression of
PtCHS gene

The qRT-PCR results showed that the expression of PtCHS

gene in trifoliate orange was tissue-specific (Figure 4). PtCHS

was expressed in the leaf, flower, stem, root, and seed. The

highest expression of the gene was found in the stem, and the

lowest in the root and seed, where the gene expression level of

leaf was 53.2-fold higher than that of root.
Root mycorrhizal colonization and total
biomass in response to soil water deficit
and AMF inoculation

F.mosseae could colonize the roots of trifoliate orange seedlings,

and the root mycorrhizal colonization was 38.5%−58.7%,

accompanied by higher mycorrhizal colonization appearing under

WW versus SWD conditions (Figure 5B). In addition, SWD

significantly inhibited the growth performance of trifoliate orange

seedlings, while F. mosseae inoculation improved plant growth

response (Figure 5A). SWD treatment significantly reduced total

biomass production of non-mycorrhizal and mycorrhizal plants by

18.58% and 24.48%, respectively, compared with WW treatment

(Figure 5C). Nevertheless, the total biomass was increased by F.

mosseae inoculation by 117.98% under WW and 107.64% under

SWD, respectively.
Relative expressions of PtCHS in
response to soil water deficit and
AMF inoculation

SWD and AMF (F. mosseae) inoculation affected relative

expressions of PtCHS in leaves and roots (Figures 6A, B).

Compared with the WW treatment, the SWD only up-regulated

expressions of PtCHS in leaves of non-AMF-inoculated plants

(Figure 6A). Compared with non-AMF inoculation, AMF

inoculation up-regulated expressions of PtCHS under both WW

and SWD: 1.62- and 0.81-fold higher in leaf and 0.53- and 2.14-fold

higher in root, respectively (Figures 6A, B).
CHS activity in response to soil water
deficit and AMF inoculation

SWD and AMF inoculation significantly altered CHS

activity in leaves and roots of trifoliate orange seedlings
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(Figures 7A, B). SWD reduced CHS activity in leaves of

mycorrhizal plants by 17.76%, along with no significant effect

on roots. Nevertheless, SWD reduced CHS activity in leaves and

roots of non-mycorrhizal plants by 26.67% and 37.60%,

respectively, compared with WW treatment. Compared with

non-inoculated treatment, AMF inoculation significantly

increased the CHS activity of leaves and roots by 37.69% and

45.75% under WW conditions and by 54.42% and 156.47%

under SWD conditions, respectively.
Frontiers in Plant Science 05
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Total flavonoid content and its
correlation with PtCHS expressions

SWD did not significantly affect total flavonoid content in

leaves and roots of plants inoculated without F. mosseae, but

significantly reduced total flavonoid content in leaves and roots

of F. mosseae-inoculated plants by 0.39- and 0.43-fold,

respectively, compared with WW treatment (Figures 8A, B).

On the other hand, inoculation with F.mosseae also significantly
FIGURE 1

Sequence of PtCHS and its alignment with CHS gene of other plants. AtCHS, Arabidopsis thaliana; CsCHS, Camellia sinensis; MsCHS2, Medicago
sativa; OsCHS, Oryza sativ; PhCHS, Petunia × hybrida; PmCHS, Picea mariana; PsCHS, Pisum sativum; PtCHS, Poncirus trifoliata; RiCHS,
Rubus idaeus.
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increased total flavonoid content of plants under both WW and

SWD conditions, where it increased by 3.20- and 1.50-fold in

leaves and 1.90- and 1.09-fold in roots, respectively. Correlation

analysis showed that total flavonoid content was a significantly

positive correlation with PtCHS expression in leaves (Figure 8C),

along with no significant correlation in roots (Figure 8D).
Discussion

Hahlbrock and Kreuzaler (1972) firstly extracted the CHS

from suspension cells of parsley. Subsequently, many scholars

have carried out studies on cloning CHS gene of various plants

(Liu et al., 2011; Vadivel et al., 2018). In this study, a PtCHS gene
Frontiers in Plant Science 06
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was cloned from trifoliate orange, with a full length of 1156 bp,

encoding 391 amino acids. This gene was highly homologous to

CHS of other plants with 92.49%, showing a high degree of

conservative property and further indicating that this gene is

stable, consistent with earlier results (Pang et al., 2005; Wang

et al., 2017).

Earlier studies showed that most of the CHS genes were

located in the cytoplasm at the sub-cellular level (Wang et al.,

2017; Vadivel et al., 2018). This study also predicted that PtCHS

protein may be located in chloroplasts, cytoplasm, and nucleus,

indicating that CHS protein widely presents in cell organelles. In

addition, PtCHS gene expression was highest in stem, followed

by flower and leaf, and very low in root and seed, indicating that

PtCHS expression is tissue-specific. Pang et al. (2005) also found
A

B C

FIGURE 2

Hydrophilic and hydrophobic properties (A), secondary structure (B), and tertiary structure (C) of PtCHS protein.
FIGURE 3

The phylogenetic tree analysis of PtCHS and CHS genes of other plants.
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CHS expression in stem and leaf of ginkgo, and no expression

was detected in roots. In addition, CHS expressions in plants

vary in developmental periods: in early stages of plants, CHS

expressions appear in leaves, whereas in mature plants CHS gene

is mainly expressed in flowers, indicating that CHS expression in

plants is mainly in aboveground parts (Knogge et al., 1986).
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It has been shown that expression of CHS genes could be

induced by external environments (Koes et al., 1994; Cushnie

and Lamb, 2011; Singh and Kumaria, 2020). In the present

study, SWD treatment increased the expression of PtCHS in

leaves of non-mycorrhizal plants. Ahmed et al. (2021) also

reported the up-regulated expression of CHS in leaves of

poplar after SWD, and the up-regulated magnitude of the gene

was increased with the extension of SWD. In addition, our study

also indicated that F. mosseae inoculation increased expressions

of PtCHS and CHS activity in leaves and roots regardless of soil

water regimes. Moreover, the up-regulated magnitude of PtCHS

by mycorrhization was higher under WW than under SWD,

which may be due to the inhibition of root fungal colonization in

SWD (Ding et al., 2022), thus reducing the efficiency of

mycorrhizal fungi. Meanwhile, PtCHS expressions were
significantly positively correlated with leaf total flavonoid

content. Wang et al. (2010) also found a significantly positive

correlation between CHS and total flavonoid concentration in

fruits of Guoqing No. 4 satsuma mandarin. In tomato, Aseel

et al. (2019) reported the increase in total flavonoids in leaves

after AMF inoculation and/or infection with Tomato Mosaic
FIGURE 4

Tissue-specific expressions of PtCHS in trifoliate orange. Data
(means ± SD, n = 4) followed by different letters above the bars
indicate significant (P < 0.05) differences.
A

B C

FIGURE 5

Changes in plant growth performance (A), root mycorrhizal colonization (B), and total biomass (C) of trifoliate orange in response to soil water
deficit and Funneliformis mosseae inoculation. Abbreviations: WW+AMF, plants inoculated with F mosseae under well-watered; WW-AMF,
plants inoculated without F mosseae under well-watered; SWD+AMF, plants inoculated with F mosseae under soil water deficit; SWD-AMF,
plants inoculated without F mosseae under soil water deficit. Data (means ± SD, n = 4) followed by different letters above the bars indicate
significant (P < 0.05) differences between treatments.
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Virus. They also found that inoculation with AMF decreased the

expression of CHS, but Tomato Mosaic Virus infection did not

change CHS expression, along with induced expression of CHS

after double inoculation of AMF and Tomato Mosaic Virus.

The present study also observed that SWD did not alter leaf

and root total flavonoid content of non-AMF-treated plants,

while it significantly reduced leaf and root total flavonoid

content of AMF-treated plants. Earlier studies on alfalfa also

showed that total flavonoids increased first and then decreased

with the increase of PEG concentration (Li et al., 2020). In the

Chuanqiao 1 variety of Tartary buckwheat, total flavonoids in

leaves and grains were not changed after 7 days of drought stress,

but leaf total flavonoids were decreased after 14 days of drought

(Ouyang et al., 2020). This indicated that the variation of total

flavonoids under SWD was affected by stress intensity, stress
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time, plant variety, and AMF. It is necessary to further use the

targeted metabolome to determine which flavonoids in the total

flavonoids can be responded to SWD in trifoliate orange. In

addition, total flavonoid content was reduced in AMF-

inoculated plants under SWD versus WW conditions, which

may be because plants consume certain flavonoids to maintain

mycorrhizal activity under SWD (Tian et al., 2021). A

significantly positive correlation (r = 0.95, P < 0.01) was found

between root mycorrhizal colonization and root total flavonoid

content, suggesting the important role of flavonoids

in mycorrhizae.

In our study, mycorrhiza-inoculated plants recorded

dramatically higher total flavonoid content than mycorrhiza-

uninoculated plants under both WW and SWD conditions.

Similar result was observed in Pistacia vera inoculated with
A B

FIGURE 6

PtCHS gene expressions in leaf (A) and root (B) of trifoliate orange seedlings in response to soil water deficit and Funneliformis mosseae
inoculation. Data (means ± SD, n = 4) followed by different letters above the bars indicate significant (P < 0.05) differences between treatments.
See Figure 5 for the abbreviations.
A B

FIGURE 7

CHS activity in leaf (A) and root (B) of trifoliate orange seedlings in response to soil water deficit and Funneliformis mosseae inoculation. Data
(means ± SD, n = 4) followed by different letters above the bars indicate significant (P < 0.05) differences between treatments. See Figure 5 for
the abbreviations.
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Glomus etunicatum and Nicotiana tabacum colonized by G.

versiforme under SWD (Abbaspour et al., 2012; Begum et al.,

2019). Higher total flavonoids in mycorrhizal versus non-

mycorrhizal plants suggested that mycorrhizal plants under SWD

have greater capacity to remove reactive oxygen species than non-

mycorrhizal plants (Liu et al., 2022). Nevertheless, Amiri et al.

(2017) reported a significant increase in total flavonoid levels in

leaves of Pelargonium graveolens by F.mosseae underWW, but not

SWD. On the other hand, the present study also showed a

significantly positive correlation between total flavonoid content

and PtCHS expression only in leaves, but not in roots, suggesting

that there may be different mechanisms for mycorrhiza-induced

changes in total flavonoids between leaves and roots. In addition,

the up-regulated magnitude of root PtCHS expression levels

triggered by AMF inoculation was higher under SWD conditions

than under WW conditions, while the elevated magnitude of total

flavonoid content in roots caused by AMF inoculation was higher

under WW conditions than under SWD conditions. Therefore,

CHSwas not the most critical factor for mycorrhizal enhancement

of total flavonoids under SWD conditions. Of course, the

production of flavonoids depends on a number of enzymes in

biological pathways offlavonoids, such as phenylalanine ammonia-

lyase, 4-coumarateCoA ligase, and chalcone synthase, besides CHS
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(Ma et al., 2014). Inwheat,CHS andCHI can be jointly regulated in

response to SWD (Ma et al., 2014). Therefore, responsive patterns

of more flavonoid biosynthesis genes need to be analyzed under

SWDandmycorrhization conditions. It is concluded thatAMFup-

regulates the expression ofCHS in the host, especially under abiotic

and biotic stress conditions, thus showing the important

characteristics of mycorrhizal tolerance to stress.
Conclusions

In this study, a CHS gene, named PtCHS, was cloned from

the genome-wide of trifoliate orange, with 92.49% homology

with other species. This gene had tissue-specific expression,

along with high expression in aboveground parts such as leaf,

flower, and stems. PtCHS was regulated by SWD and AMF

inoculation, where F.mosseae up-regulated PtCHS expressions

in leaves and roots, independent on soil water status,

providing the support for total flavonoid production in

plants, especially leaves. However, more work is needed around

which flavonoid components are modulated by mycorrhizal fungi

and which flavonoid synthesis genes are affected by SWD

and mycorrhization.
A B

C D

FIGURE 8

Changes in total flavonoid content in leaf (A) and root (B) of trifoliate orange in response to soil water deficit and Funneliformis mosseae
inoculation and their correlation with PtCHS expressions in leaf (C) and root (D). Data (means ± SD, n = 4) followed by different letters above
the bars indicate significant (P < 0.05) differences between treatments. See Figure 5 for the abbreviations.
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The functional analysis of sugar
transporter proteins in sugar
accumulation and pollen tube
growth in pummelo
(Citrus grandis)

Weiwei Xu1, Ziyan Liu1, Zeqi Zhao1, Shuhang Zhang1,
Mengdi Li1, Dayong Guo1, Ji-Hong Liu1 and Chunlong Li1,2*

1Key Laboratory of Horticultural Plant Biology Ministry of Education (MOE), College of Horticulture
and Forestry Science, Huazhong Agricultural University, Wuhan, China, 2Hubei Hongshan
Laboratory, Wuhan, China
Sugar transporter proteins (STPs) play vital roles in sugar transport and allocation of

carbon sources in plants. However, the evolutionary dynamics of this important

gene family and their functions are still largely unknown in citrus, which is the

largest fruit crop in the world. In this study, fourteen non−redundant CgSTP family

members were identified in pummelo (Citrus grandis). A comprehensive analysis

based on the biochemical characteristics, the chromosomal location, the exon–

intron structures and the evolutionary relationships demonstrated the

conservation and the divergence of CgSTPs. Moreover, CgSTP4, 11, 13, 14 were

proofed to be localized in plasmamembrane and have glucose transport activity in

yeast. The hexose content were significantly increased with the transient

overexpression of CgSTP11 and CgSTP14. In addition, antisense repression of

CgSTP4 induced the shorter pollen tube length in vitro, implying the potential role

of CgSTP4 in pummelo pollen tube growth. Taken together, this work explored a

framework for understanding the physiological role of CgSTPs and laid a

foundation for future functional studies of these members in citrus species.

KEYWORDS

Citrus grandis, sugar transporter protein, gene expression, sugar accumulation, pollen
tube growth
Introduction

Soluble sugars such as sucrose, glucose and fructose are the main carbohydrates from

photosynthesis of most plants (Rolland et al., 2002). These sugars are the key components

of carbon and energy metabolism in plants, providing the skeleton for large molecules

such as proteins and nucleic acids (Smeekens and Hellmann, 2014). Besides, sugars can
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be used as signal transduction molecules regulating various

metabolic pathways, biotic and abiotic stress responses, plant

growth and development, and regulating the osmotic pressure of

plant cells and solutions, thus affecting stomatal opening and

closing and other activities (Rolland et al., 2002; Koch, 2004;

Rolland et al., 2006; Radchuk et al., 2010; Smeekens and

Hellmann, 2014; Huai et al., 2022). In plants, sugars need to

pass through membrane several times on its way from the source

cells to the sink organs. The cross boundary membrane uptake of

sugars is a major event for nutrition in all eukaryotic cells (Tao

et al., 2015). The carrier proteins mediating the transmembrane

transport of sugars are called sugar transporters. Currently, the

vast majority of identified sugar transporters belong to the major

facilitator superfamily (MFS), which is usually composed of 12

transmembrane domains known as H+/sugar or Na+/sugar

cotransporters (Yan, 2013). According to the different

transport substrates, the MFS in plants is mainly divided into

disaccharide transporter and monosaccharide transporters

(MSTs). Among them, the main disaccharide transporter is

sucrose transporters (SUTs) (Chiou and Bush, 1996), also

known as sucrose carriers (SUCs), which mediate the

transport of sucrose and maltose (Riesmeier et al., 1994; Kuhn

and Grof, 2010). The MSTs are composed of a large gene family,

which contain seven subfamilies named sugar transporters

(STPs) (also known as Hexose transporters, HTs), tonoplast

monosaccharide transporters (TMTs), vacuolar glucose

transporters (VGTs), plastid glucose transporters (pGlcTs),

early response to drought 6-like transporters (ERD6Ls),

polyol/monosaccharide transporters (PMTs) and insitol

transporters (INTs) (Buttner, 2007; Li et al., 2015a; Fang et al.,

2020; Liu et al., 2020). In addition, there is a new class of sugar

transporter, which is named as the Sugars Will Eventually be

Exported Transporters (SWEETs) (Chen et al., 2010). SWEETs

belong to the MtN3-Like membrane protein and have a

completely different structure from the MFS sugar transporters

(Gautam et al., 2022). These sugar transporters mentioned above

have been reported localized in various subcellular locations

such as plasma membrane, vacuolar membrane, golgi apparatus

membrane, and plastid membrane (Jiu et al., 2018; Fang et al.,

2020; Li et al., 2020). The diversity subcellular localization

patterns confers a variety of functions for sugar transport

proteins. At present, the family of sugar transporters located

on the plasma membrane and vacuolar membrane are

more studied.

Among the numerous sugar transporter families, the STPs

are the most studied monosaccharides transporters, indicating

the vital role of STPs in plant development or stress response.

STPs are complete membrane proteins with 12 transmembrane

domains and are considered to be H+/sugar transporters located

on the plasma membrane. So far, the STPs have been identified

and studied in many plants, including Arabidopsis thaliana

(Buttner, 2010), Manihot esculenta (Liu et al., 2018), Brassica
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oleracea var. capitata L. (Zhang et al., 2019), Oryza sativa

(Toyofuku et al., 2000; Deng et al., 2019), Solanum

lycopersicum (Reuscher et al., 2014), Vitis vinifera (Afoufa-

Bastien et al., 2010), Fragaria vesca (Jiu et al., 2018; Liu et al.,

2020), Pyrus bretschneideri Rehd (Li et al., 2015a), Malus

domestica (Wei et al., 2014), Dimocarpus longan Lour (Fang

et al., 2020). Based on previous reports, STP members are

expressed in different tissues and participate in various

metabolic pathways for specific physiological functions. The

expression of STPs are also response to hormones, biotic and

abiotic stresses, which further significantly affect plant

development and stress resistance (Truernit et al., 1996;

Buttner et al., 2000; Sade et al., 2013; Murcia et al., 2016;

Murcia et al., 2018; Deng et al., 2019; Otori et al., 2019;

Paulsen et al., 2019). A total of 14 AtSTPs have been reported

in A. thaliana (Buttner, 2010), all of which are localized at the

plasma membrane and are responsible for the transport of

monosaccharides from the apoplastic space to the cytosol. For

example, AtSTP1 is capable of transporting other hexose in

addition to fructose, and is involved in the transport of

monosaccharides in guard cells (Stadler et al., 2003). AtSTP2

is primarily responsible for absorbing glucose produced by

callose degradation during the early stages of pollen

maturation (Truernit et al., 1999). AtSTP4, AtSTP6, AtSTP8,

AtSTP9, AtSTP10 and AtSTP11 are mainly responsible for the

uptake of glucose into the pollen tube of A. thaliana and play a

role in the supply of monosaccharides during the growth of the

pollen tube (Rottmann et al., 2018). Heterologous expression of

the apple hexose transporter geneMdHT2.2 in tomato promotes

sucrose, fructose, and glucose accumulation (Wang et al., 2020b)

in response to tomato salt tolerance mechanism by balancing

cytoplasmic to intercellular ion concentrations and scavenging

reactive oxygen species (ROS) (Wang et al., 2020a). In wheat,

TaSTP3 is transcriptionally activated by the transcription factor

TaWRKY19/61/82 during stripe rust, thereby increasing the

sucrose concentration of host cells to guarantee carbon source

supply for the fungus (Huai et al., 2022). In apple, MdSTP13a is

found to absorb hexose and sucrose simultaneously in the

process of sorbitol regulating pollen tube growth to promote

the growth of apple pollen tubes (Li et al., 2020). These findings

highlight the importance of STPs in plant growth, development,

and stress tolerance via sugar transport and carbon

source allocation.

The citrus is the largest fruit industry over the world. Studies

have shown that the genus citrus originated from three ancestral

species: Citrus maxima, Citrus medica, and Citrus reticulate (Wu

et al., 2018). It has been suggested that domestication of citrus

may have begun with the identification and asexual

reproduction of selected, possibly hybrid or mixed individuals.

For instance, the cultivation of pummelo (Citrus grandis) is

cultivated from the ancestral C. maxima with the introgressions

of the other citrus species (Xu et al., 2013; Wu et al., 2014). The
frontiersin.org
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fruit quality of citrus is affected by flavor substances, which

mainly include soluble sugars, organic acids and volatile

compounds, among which the composition and content of

soluble sugars is the key factor affecting taste and thus

determining fruit flavor quality (Li et al., 2012; Aslam et al.,

2019). There are also some reports to support that the

relat ionship between sugar transporters and sugar

accumulation in citrus (Zheng et al., 2014). For instance, the

soluble sugar-related genes in ‘Rongan’ (RA) and its mutant

‘Huapi’ (HP) kumquat were analyzed, and it was found that high

sugar accumulation in HP fruit was associated with up-

regulation of SUS, SPS, TST, STP and ERD6L genes (Wei et al.,

2021). In addition, artificial thinning can increase the size and

sugar content of citrus fruits, affect hormone synthesis and sugar

transporter activity, and significantly improve fruit quality (Liu

et al., 2022a). However, these studies have only pointed out the

potential role of sugar transporters in citrus, but the

characteristics and functions of sugar transporters in citrus

species are still confused so far.

In this study, the genes encoding STPs in C. grandis genome

were identified. The phylogenetic relationships, characteristics,

structure, conserved motifs, cis-acting elements and collinearity

of CgSTP members were analyzed, revealing the conserved and

correlation between homologous and near-homologous genes.

Based on the expression pattern and subcellular localization

assay, CgSTP4, CgSTP11, CgSTP13 and CgSTP14 were further

selected and proofed to have the hexose sugar transport

activity. In addition, the function of pollen-specific

expression CgSTP4 was explored to be involved in pummelo

pol l en tube growth v ia ant i sense ol igonuc leot ide

transformation. Taken together, we identified key candidate

CgSTP genes in sugar accumulation, which will be a great

scientific significance and potential application for further

investigation of the physiological functions of CgSTPs in

pummelo or other citrus species.
Materials and methods

Plant materials and growth conditions

The ‘Shatian pummelo’ (Citrus grandis) fruits, leaves,

flowers and other tissues were harvested from the Centre of

Citrus Plant at Huazhong Agricultural University (Wuhan,

China). The pummelo trees were maintained under standard

horticultural management and prevention of plant diseases and

insect pests. At the popcorn stage, flowers were picked for anther

collection, and the anthers were dried in a 28°C oven. The dried

anthers and released pollen were collected into 1.5 or 2.0 ml

centrifuge tubes sealed with silica gel and stored in -20°C

refrigerator for further use. Tobacco plants (Nicotiana
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benthamiana) were grown in the growth chamber at 23-25°C

with 12h light/12 h darkness.
Database searches and identification of
STPs in Citrus grandis

In order to identify the STP genes in C. grandis, the whole-

genome data of pummelo (Citrus grandis (L.) Osbeck.cv.

‘Wanbaiyou’ v1.0) was downloaded from the Citrus Pan-

genome to Breeding Database website (http://citrus.hzau.edu.

cn/index.php), which was used to obtain the gene sequences and

gene annotations. The Hidden Markov Model (HMM) of the

Sugar_tr domain (PF00083) from HMMER (https://www.ebi.ac.

uk/Tools/hmmer/search/hmmscan) was used to search the

pummelo protein database at a standard E-value < 1.0 × 10−5

(Finn et al., 2011; Chen et al., 2020; Mistry et al., 2021). A total of

53 hypothetical CgSTP proteins were identified. Furthermore,

the conserved domain composition of 14 AtSTP protein

sequences were analyzed by CD-search. Then, all the 53

putative protein sequences filtered to submit to the National

Center for Biotechnology Information (NCBI, https://www.ncbi.

nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi). Finally, 14 STP

family members of C. grandis were screened out. They were

named CgSTP1 to CgSTP14 based on their relationship with

members of the STP family in A. thaliana.
Phylogenetic tree construction and
synteny correlation analysis

To explore the evolutionary relationship of CgSTPs between

C. grandis and A. thaliana, a phylogenetic tree was constructed

by maximum likelihood (ML) method using MEGAX64

software based on the protein sequences of 14 CgSTPs from

pummelo and 14 AtSTPs from A. thaliana. The final tree is then

beautified through the ITOL website. Among them, the AtSTP

protein sequences were downloaded from the The Arabidopsis

Information Resource website (https://www.arabidopsis.org/).

In order to better understand the conservation of STP genes in

evolution, the collinear correlation analysis between species was

carried through the MCScanX (Wang et al., 2012) of TBtools

software by offering gene annotation and the whole genome

sequence of A. thaliana and C. grandis.
Amino acid characteristic and gene
structure prediction

The physicochemical properties of the proteins, which

included amino acid number (AA), molecular weight (MW),
frontiersin.org
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theoretical isoelectric point (PI), and grand average of

hydropathy (GRAVY), were obtained in the ExpasyProtParam

server (https://web.expasy.org/compute_pi/) (Wilkins et al.,

1999). The number of transmembrane domains was predicted

by the NovoPro url (https://www.novopro.cn/tools/tmhmm.

html). The WoLF PSORT server (https://wolfpsort.hgc.jp/) was

applied to predict protein subcellular localization. The gene

structure annotation and CDS files of C. grandis were

downloaded from the Citrus Pan-genome to Breeding

Database website, and the STP genes information was

extracted by TBtools using accession number, followed by the

Gene Structure Display Server 2.0(http://gsds.gao-lab.org/)to

visualize the exon–intron structure of these genes (Hu

et al., 2015).
Protein motif and cis-acting
elements analysis

To further explore the gene structure of CgSTPs, the MEME

Suite web server (https://meme-suite.org/meme/tools/meme)

(Bailey and Elkan, 1994; Bailey et al., 2009) was used to

predict their protein sequences with a maximum number of

motif groups of 12 for conserved motifs, any number of repeats,

and an optimal width of the motif ranging from 15 to 60 amino

acids. The promoter sequences (2 kb of genomic DNA sequence

upstream of the translation initiation codon) of the CgSTP genes

were obtained from C. grandis genome files and submitted to the

PlantCARE database (http://bioinformatics.psb.ugent.be/

webtools/plantcare/html/) to predict cis-elements in the

promoter (Rombauts et al., 1999; Lescot et al., 2002).
RNA extraction, cDNA synthesis and
quantitative real-time analysis

Each 0.2g pummelo tissues, including leaves, flowers and

juice sac were snap frozen and ground into fine powder in liquid

nitrogen with three independent repetitions. RNA from

common tissues was extracted using the Ominplant RNA Kit

(Cwbio. Jiangsu, China). And for polyphenol polysaccharide

containing tissues, RNA was extracted using the RNAprep Pure

Plant Plus Kit (TIANGEN, Wuhan, China) according to the

instructions. The concentration and quality of the extracted

RNA were confirmed via spectrophotometer and agar gel

electrophoresis. Then the EasyScript One-Step gDNA Removal

and cDNA Synthesis SuperMix (TransGen Biotech, Beijing,

China) reverse transcribed RNA into cDNA. Finally, three

technical replicates of qRT-PCR were performed using SYBR

Green Supermix kit according to the manual via the Applied

biosystem®QuantStudio™ 7 Flex Real-Time PCR System (ABI,

Los Angeles, CA, USA), and 2-DDCT method (Udvardi et al.,

2008) was used to calculate and analyze the obtained data.
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Subcellular localization of CgSTPs

The CDSs of the CgSTP genes were amplified using gene-

specific primers without stop codons (Supplementary Table 1).

The homologous recombination approach (Rozwadowski et al.,

2008) was used to concatenate these target genes with the

YFP101 vector, which contained a C-terminal yellow

fluorescent protein (YFP) driven by 35S promoter. After the

correct comparison between the sequencing results of Tsingke

Biological Company (Wuhan, China) and the CDS of the

genome through DNAMAN software, the recombinant

plasmid was transferred into Agrobacterium tumefaciens

GV3101 (Krenek et al., 2015) (Weidi, Wuhan, China). Then,

A. tumefaciens containing the recombinant plasmid was injected

into tobacco leaves for transient expression (Kato et al., 2002).

Finally, the scanning confocal microscope (Leica TCS-SP8,

Wetzlar, Germany) was used to image YFP fluorescence with

an excitation wavelength of 514 nm and emission at 520-

551 nm.
Functional characterization of CgSTPs by
heterologous expression in yeast

The CDSs of the target gene were cloned with gene-specific

primers containing stop codons (Supplementary Table 1). The

yeast expression vector pDR196 was ligated with the gene of

interest by homologous recombination, followed by

transformation of the recombinant plasmids into the hexose

transport deficient yeast strain EBY.VW4000 by lithium acetate

method (Soni et al., 1993). The empty vector pDR196 was used

as negative control, and the recombinant vector pDR196-

AtSTP13 was served as a positive control (Riesmeier et al.,

1992; Rottmann et al., 2016; Li et al., 2020). The transformed

cells in EBY.VW4000 were pre-incubated in liquid Synthesis

Defect (SD)-Ura medium supplemented with 2% maltose (w/v)

as the sole carbon source until the OD600 value reached 0.6-0.8

(Wieczorke et al., 1999). Four serial dilutions (10×) of yeast cells

were then plated on solid SD-Ura medium containing 2%

maltose or glucose as the sole carbon source. The samples

were cultured at 30°C for 3 days and then observed

and photographed.
Transient expression in tobacco leaves
and sugars content analysis

The CDS(s) of CgSTP genes were cloned with gene-specific

primers without termination codons (Supplementary Table 1)

and inserted into the overexpression vector pK7WG2D with the

35S promoter (Pi et al., 2022). After that, the final recombinant

plasmid was transformed into Agrobacterium tumefaciens

GV3101, which was further used for injection of tobacco
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leaves for transient overexpression. The control with empty

vector and the recombinant plasmid carrying the target genes

(CgSTP(s)-2D) were transformed into the same leaf, as control in

the left and CgSTP(s)-2D in the right part of the leaf. Samples

were taken on the third day after transformation. The relative

gene expression level was determined by RT-PCR assay (the

primers were listed in Supplementary Table 1). Then, the

content of monosaccharides was measured by GC method as

described previously (Liu et al., 2022b). Soluble sugars were

extracted in 75% methanol with ribitol (0.12 mg per sample)

added as an internal standard and then derivatized sequentially

with methoxyamine hydrochloride and N-methyl-N-

(trimethyls i ly l) tr ifluoroacetamide (MSTFA). After

derivatization, the metabolites were analyzed using a GC

equipment (Fuli GC-9720 Pluse, Zhejiang, China) with a HP-

FFAP column (30.00 m * 0.32 mm * 0.25 mm) and a 5 m

Duraguard column (Agilent Technologies, Palo Alto, CA, USA).

Sugar content was quantified based on standard curves

generated for each sugar (glucose and fructose) and an

internal standard. All results were determined at least three

biological replicates.
In vitro pollen tube growth experiments
and antisense oligonucleotide
transfection

The pollen grains were cultured in liquid germination media

(0.02%[w/v]MgSO4, 0.01%[w/v]KNO3, 0.03%[w/v]Ca(NO3)2,

0.01%[w/v]H3B03, 15%[w/v]PEG-4000, 10%[w/v]Sucrose, and

liquid NaOH to pH 6.0) (Liang et al., 2017) for pollen tube

length assay. Only 1 ml of transfection agent (Biosharp, China)

and 1 ml of transfection agent plus 1 ml of oligonucleotide

primers (ODN concentration of 100 mM) were added as the

control group, and 1 ml of transfection agent plus 1 ml of

antisense oligonucleotide primers were added as the

experimental group (Meng et al., 2014). Three independent

experiments were performed for each treatment, and the same

amount of pollen grains were added for germination culture at

25°C in a constant temperature and dark environment. At the

4 h, 6 h and 8 h of culture, the germinated pollen grains were

observed and photographed by a type microscope, and then each

biological replicate at least 100 germinated pollen grains were

measured via image software. Supplementary Table 1 lists the

oligonucleotide primer sequences used in this study. For gene

expression assay, individual duplicate pollen tubes were

collected into a 10 ml centrifuge tube and centrifuged under

12000g at 4°C for 10 min. The samples could be re-suspended

once in pure water and centrifuged again to remove the

supernatant under the same conditions, after that the samples

were snap frozen in liquid nitrogen for RNA extraction and gene

expression assay by qRT-PCR.
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Result

Genome-wide identification and basic
information analysis of STP family genes
in C. grandis

Using the Hidden Markov Model (HMM) and the conserved

domains of MSF_STP (cd17361) and Sugar_tr (pfam00083) in

STPs, a total of 14 STP family members were screened in the C.

grandis genome database via the HMMER and Batch CD-Search

websites (Table 1; Figure 1 and Supplementary File 1). Following

the distant genetic relationship with Arabidopsis STP family

genes, the 14 pummelo CgSTPs were named as CgSTP1 -

CgSTP14 (Table 1). Furthermore, the phylogenetic tree was

constructed based on the protein sequences encoded by CgSTP

genes in C. grandis and AtSTP genes in A. thaliana via

MEGAX64 (Figure 1B). The results showed that the STP

proteins could be classified into four groups (Figure 1B).

Among them, tow CgSTPs (CgSTP7 and CgSTP14) together

with two AtSTPs from Arabidopsis were attributed to Group I.

Group II consisted of four CgSTPs (CgSTP2, CgSTP6, CgSTP8

and CgSTP13), and four AtSTPs. Four CgSTPs (CgSTP3,

CgSTP5, CgSTP9 and CgSTP10) clustered with two AtSTPs in

Group III. Group IV contained four CgSTPs (CgSTP1, CgSTP4,

CgSTP11 and CgSTP12) and six AtSTPs. Furthermore, a total of

two sister pairs of CgSTPs were observed in the phylogenetic

tree, including CgSTP5 - CgSTP9 and CgSTP1- CgSTP12

(Figure 1B). The result indicated that the STP family members

are closely related, which is also a good reference for renaming.

Moreover, the position and evolutionary relationships of CgSTP

members at the chromosomal level were visualized by TBtools

based on the gene structure annotation file (Supplemental

Figure 1). Interspecific co-linearity analysis of STP genes

revealed that eight pairs of genes are orthologous in two

species between C. grandis and A. thaliana, indicating that the

STP family was widespread in higher plants and strongly

conserved during the evolutionary process.

According to the genomic information of C. grandis

chromosomes, the distribution of 14 STP genes on the

chromosome was analyzed. It was found that all CgSTP

members were unevenly distributed on seven chromosomes,

with the most abundantly distributed 7 genes on chromosome 9

(Table 1 and Supplemental Figure 1). Protein sequence

characteristics, including number of amino acids (AA),

molecular weight (Mw), theoretical isoelectric point, grand

average of hydropathicity (GRAVY), transmembrane domain

(TMD) and subcellular localization prediction, were also

analyzed. As shown in Table 1, the average STP protein length

was 504 aa, with the longest 524 aa from CgSTP13 and the

shortest 353 aa from CgSTP8. Accordingly, the molecular weight

of these proteins ranged from 38.7 kDa (CgSTP8) to 57.9 kDa

(CgSTP11). The theoretical isoelectric points ranged from 8.86
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TABLE 1 The information of CgSTP genes.

Gene name Accession number 1 Chr 2 AA 3 Mw (Da) 4 pI 5 GRAVY 6 TMD 7 Prediction Location(s) 8

CgSTPl Cglg019290.l 1 522 57205.98 9.16 0.458 12 plas: 9, vacu: 3

CgSTP2 Cg8g023770. l 8 518 57190.81 9.15 0.509 11 plas: 9, vacu: 3

CgSTP3 Cg9g023330. l 9 512 55444.33 9.51 0.537 10 vacu: 8, plas: 4

CgSTP4 Cg7g013990.l 7 516 56327.43 8.89 0.596 12 plas: 6, vacu: 4

CgSTP5 Cg9g023340. l 9 511 55553.25 9.29 0.525 12 vacu: 9, plas: 4

CgSTP6 Cg9g005200. l 9 515 56567.06 8.9 0.687 12 plas: 7, vacu: 5

CgSTP7 Cg4g024730.2 4 512 55864.82 9.38 0.484 12 plas: 9, vacu: 3

CgSTP8 Cg9g0052 l 0.1 9 353 38734.75 9.33 0.567 8 vacu: 6, plas: 5

CgSTP9 Cg9g023350.2 9 511 55543.56 9.56 0.527 12 plas: 8, vacu: 3

CgSTPl0 Cg9g023370. l 9 511 55472.2 9.52 0.496 10 vacu: 10, plas: 3

CgSTPll Cg2g041230. l 2 522 57887.94 8.86 0.472 12 plas: 6, vacu: 4

CgSTP12 Cg6g019080. l 6 522 57502.33 8.94 0.493 12 plas: 10, vacu: 2

CgSTP13 Cg9g005230. l 9 524 57802.91 9.11 0.469 12 plas: 11, vacu: 2

CgSTP14 Cglg012330. l 1 511 56065.11 9.03 0.543 12 plas: 9, vacu: 3

1 Accession number consisted of the CPBD
2 Chromosome location.
3 Number of amino acids of the deduced amino acid sequence.
4 Mw(Da) was the molecular weight.
5 The pl was the theoretical isoelectric point.
6 GRAVY was the grand average of hydropathicity.
7 TMD was the number of transmembrane domains, as predicted by the NovoPro.
8 The prediction of protein localization in cells via WoLF PSORT 11; Plas, plasma membrane; Vacu, vacuolar membrane.
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FIGURE 1

Phylogenetic analysis of STP members from C grandis and A thaliana, and conserved domain analysis of CgSTPs. (A) The conserved domain
analysis was performed through the NCBI Batch CD-search tool. (B) A total of 14 STP protein sequences from C grandis and 14 STP protein
sequences from A thaliana were aligned by ClustalW method. The MEGAX program was applied to construct the phylogenetic tree by the ML
method in the default parameters. The beautification of the tree was carried out on the iTOL website.
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(CgSTP11) to 9.56 (CgSTP9), which were all weakly basic.

According to the relevant principle of grand average of

hydropathicity (GRAVY), CgSTP1, CgSTP7, CgSTP10,

CgSTP11, CgSTP12 and CgSTP13 were defined as amphoteric

proteins with the value between -0.5 to 0.5, while the other

proteins were hydrophobic proteins with more positive value

(Table 1). More importantly, the number of CgSTPs

transmembrane domains was presented from 8 to 12 based on

the prediction by the NovoPro website. The vast majority of

CgSTP members had 12 transmembrane domains, which was

consistent with the characteristics of the MFS superfamily (Yan,

2013). In addition, the subcellular localization prediction of the

protein sequences of CgSTP genes was performed via the WoLF

PSORT (Table 1). Most of the CgSTP proteins are predicted to

be plasma membrane proteins, but some are vacuolar membrane

proteins, including CgSTP3, CgSTP5, CgSTP8 and CgSTP10,

which are different from the localization of STP proteins in other

species. These results indicate that CgSTP proteins may play

different roles in sugar transport relying on their protein

characterization and subcellular localization.
Gene structure, conserved motifs and
promoter cis-acting elements analysis of
the CgSTPs

To understand the structure of CgSTP genes, exons, introns,

and untranslated regions were analyzed via GSDS2.0 and

TBtools. It was found that CgSTP1, CgSTP2, CgSTP3, CgSTP4,

CgSTP6, CgSTP8, and CgSTP12 didn’t have upstream and

downstream UTRs. While CgSTP5 didn’t have upstream UTR,

and the other six members all contained upstream and
Frontiers in Plant Science 07
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downstream UTRs (Figure 2B). Besides, all members

contained exons and introns, but differed in specific numbers

and locations. The exon number of the CgSTP genes ranged

from 2 to 5 (Figure 2B). CgSTP13 gene had five exons, whereas

CgSTP12 only had two exons. The different of gene structures

might contribute to the functional diversity of closely related

STP genes. Moreover, 12 putative conserved motifs were

predicted through MEME analysis in most CgSTP proteins,

and all these motifs were arranged in a stable order in the

protein sequence (motif 2, motif 4, motif 10, motif 3, motif 7,

motif 5, motif 6, motif 9, motif 12, motif 1, motif 8, and motif 11)

(Figure 2A). The length of the conserved motifs ranges from 16

to 50 amino acids, and these 12 motifs are contained in all

CgSTP proteins, except for CgSTP8 only has 8 motifs

(Figure 2A; Supplementary Table 2). The high uniformity of

these conserved motifs fully reflected the relatively conserved

function of CgSTP proteins in the evolutionary process.

Cis-elements are important molecular switches involved in

the regulation of gene transcription during plant growth and

development or abiotic stress response. To detect regulatory

factors and predict cis-elements of CgSTPs, each of the 2 kb

promoter region (upstream of the start codon of the gene) of 13

CgSTP genes was retrieved from the C. grandis genome

sequence. But for the CgSTP2 gene, the identified sequence

was shorter than 2 kb (1047bp), since the presence of another

gene located less than 2 kb upstream of CgSTP2 start codon site

(Supplementary File 2). Finally, 14 cis-elements in the promoter

region of CgSTP genes were predicted by PlantCARE database

(Supplementary Figure 2A). A heat map was further constructed

to show the frequency of different cis-elements (Supplementary

Figure 2B). These predicted cis-elements respond to different

phytohormones (Gibberellin, Abscisic acid, Auxin, Methyl
A B

FIGURE 2

Motif, gene structure and phylogenetic relationship analysis of CgSTP genes. (A) The motif analysis was performed on the MEME. Twelve motifs
were identified. The detail of motif sequence information was presented in Supplemental Table 2. (B) The gene exon–intron structure analysis.
The blue color was the untranslated region, while the orange was the coding sequence. The line without color referred to introns. The
neighbor-joining phylogenetic tree of the CgSTP genes sequences was constructed using 1000 bootstrap replicates by MEGAX64.
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jasmonate, Salicylic acid) and various environmental factors, as

well as abiotic and biotic stresses. Among them, hormone-

related elements were widely presented in the promoter region

of CgSTPs, so it was suspected that hormones play a potential

role in regulating the expression of CgSTP genes. Besides, the

anaerobic induction regulator is presented in the promoters of

all genes except CgSTP2, which suggested that these genes might

be induced by anaerobic conditions, such as waterlogging stress.

In addition, some the other gene-specific cis-elements were also

identified in the promoter region of the CgSTP genes, like the

MYB binding site involved in drought-inducibility, low-

temperature responsiveness, and the cis-acting element

involved in defense and stress responsiveness, which provided

the possibility to regulate gene expression and respond to

various conditions of CgSTPS. Overall, cis-acting element

analysis will provide a good reference for further studies on

transcriptional regulation of CgSTP members.
Expression profiles of CgSTP Genes in
different tissues

The spatiotemporal expression is a critical aspect in

determining gene function. Accordingly, three different tissues

of leaf, flower and juice sac of ‘Shatian pummelo’ were collected

to perform the tissue expression pattern analysis of STP family

members via qRT-PCR assay (Figure 3). The results showed that

CgSTPs were widely expressed in leaf, flower and juice sac.

Among them, CgSTP7, CgSTP9, CgSTP11, CgSTP13 and

CgSTP14 had a higher expression level in two or three

different tissues (Figure 3). For instance, CgSTP13 was highly

expressed in leaf and flower tissues (Figures 3A, B), while

CgSTP7 was highly expressed in leaf and juice sac tissues

(Figures 3A, C). CgSTP9, CgSTP11 and CgSTP14 were highly

expressed in leaf, flower and juice sac (Figure 3), implying that

these members should have a universal functions in different
Frontiers in Plant Science 08
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tissues. What’s more, the tissue-limited expression pattern was

also presented that CgSTP4 and CgSTP6 were specifically

expressed in flower (Figure 3B). For some other members were

expressed at relatively low levels in all three tissue, such as

CgSTP1, CgSTP2, CgSTP8 and CgSTP10, which might be

expressed at specific developmental stage or in response to

certain stimuli such as abiotic and biotic stresses. Taken

together, these expression patterns in different tissues

suggested that CgSTPs should have distinct physiology

functions throughout the plant.
Functional characterization of CgSTPs by
heterologous expression in yeast

To investigate the transport function of CgSTPs, the

subcellular localization was first identified. According to the

expression level, the 6 higher expressed genes (CgSTP4, CgSTP7,

CgSTP9, CgSTP11, CgSTP13, CgSTP14) were selected for further

analysis. The cell membrane subcellular localization of CgSTPs

were observed by co-expressing the YFP fusion proteins and the

plasma membrane marker (PM marker) in tobacco leaves

(Figure 4), which is consistent with the prediction results of

the WoLF PSORT (Table 1). Based on previous reports, STPs

had hexose sugar (like glucose and fructose) transport activity

(Buttner et al., 2000; McCurdy et al., 2010; Liu et al., 2018; Kong

et al., 2022). To characterize the transport properties of the

CgSTP proteins, the monosaccharide uptake incompetent yeast

mutant strain EBY.VW4000 (only grow on maltose medium)

was applied for sugar uptake assay (Wieczorke et al., 1999). For

that, the yeast expression vector pDR196 containing CgSTP4,

CgSTP7, CgSTP9, CgSTP11, CgSTP13, CgSTP14 were

respectively transformed into the EBY.VW4000, and the empty

vector and AtSTP13 were used as negative and hexose-uptake

positive control in yeast growth assay. Glucose was added as sole

carbon source to detect the sugar transport activity of CgSTPs.
A B C

FIGURE 3

Relative expression patterns of CgSTPs in different tissues. (A) Leaf. (B) Flower. (C) Juice sac. The relative expression of all CgSTP members was
determined by qRT-PCR assay. The CgActin was defined as the reference and the CgSTP1’s expression level was normalized as 1. Data are mean
± SE (n=3).
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All yeast cells grew well on the synthesis deficient (SD-Ura)

medium containing 2% maltose (Figure 5), indicating the

successfully expression of vector in yeast. As expected,

negative control yeast cells transformed with empty vector

pDR196 did not grow on glucose medium, while positive

control yeast cells transformed with CgSTP13-pDR196 grew

normally on glucose medium (Figure 5). For yeast cells carrying

CgSTP4, CgSTP11, CgSTP13, and CgSTP14 could be grown on

SD medium containing glucose, suggesting that these four

CgSTP proteins could have glucose transport activity. In

addition, the other two CgSTP members (CgSTP7 and

CgSTP9) were unable to recovery yeast growth on glucose

medium (Figure 5), implying that these two CgSTP members

didn’t have or had a weak hexose transport activity. The

subcellular localization and the verification of the
Frontiers in Plant Science 09
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monosaccharide transport activity of CgSTPs would provide a

foundation for further physiological function research.
Validation of sugar accumulation by
transient overexpression of CgSTPs

To verify and analyze the sugar accumulation function of

CgSTPs, the genes that have been confirmed to have transport

activity and highly expression level in fruit or leaf tissues were

selected. The overexpression vectors of pK7WG2D-CgSTP11,

CgSTP13, CgSTP14 were constructed under the 35S promoter.

After that, the final expression vectors containing CgSTP11/13/

14, and the empty vector control were transformed into tobacco

leaves for transient overexpression (Supplementary Figure 3). In
FIGURE 4

Subcellular Localization of CgSTPs. Tobacco leaves expressing 35S:YFP or 35S:CgSTP(s)-YFP, in colocalization with plasma membrane Deep Red
marker, were visualized with a confocal laser microscope. Scale bars = 25 mm.
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consideration of the hexose transport activity, the main

monosaccharides’ (glucose and fructose) content were

determined by GC-FID method (Li et al., 2015b). As shown in

Figure 6, the glucose and fructose contents with the

overexpression of target CgSTPs were increased in comparison

with the control. For CgSTP11 and CgSTP14-OE samples, both

glucose and fructose had a significantly higher level, implying

that they did have the funct ion of accumulat ing

monosacchar ides in p lant . Overa l l , the trans ient

overexpression assay provide the important clues for further

more detail research of CgSTPs in citrus species.
Frontiers in Plant Science 10
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Antisense repression of CgSTP4 reduces
pollen tube growth

According to the previous report, sugar transport proteins

were essential for pollen tube fast growth (Cheng et al., 2015;

Rottmann et al., 2018; Li et al., 2020). In this study, it was found

that CgSTP4 had the specifically high expression level in flower

(Figure 3). Therefore, the expression profile of CgSTP4 in flower

and various tissues of flower, including pollen, pollen tube,

receptor, style, filament and petal of C. grandis, were further

detected by qRT-PCR. The results revealed that CgSTP4 was
FIGURE 5

The sugar uptake assay of CgSTPs in Yeast (S. cerevisiae) Strain EBY.VW4000. Yeast growth assay of EBY.VW4000 transformed with pDR196
empty vector, AtSTP13-pDR196 or CgSTPs-pDR196 alone on 2% (w/v) maltose or glucose SD-Ura medium.
A B C

FIGURE 6

Determination of monosaccharide content in CgSTPs transient overexpression samples. The content of glucose and fructose in CgSTP11 (A),
CgSTP13 (B), CgSTP14 (C) transient overexpression tobacco leaves. Data are mean ± SE (n=3).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1106219
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Xu et al. 10.3389/fpls.2022.1106219
highly expressed in pollen grains and pollen tubes (Figure 7A).

Given the importance of sugar absorption for pollen tube

growth, we explored the potential role of CgSTP4 in pollen

tubes via the antisense oligonucleotide transfection assay (Meng

et al., 2014; Meng et al., 2018). Compared with control and sense

oligonucleotide transfection, the expression of CgSTP4 can be

significantly inhibited by as-ODN treatment during the

germination of pollen in ‘Shatian pummelo’ (Figure 7B). As

expected, the pollen tube length was shorter with the lower

expression of CgSTP4 (Figure 7C), indicating that CgSTP4 plays

an important potential role in the sugar uptake for the growth of

pollen tubes in C. grandis.
Discussion

Sugar transport proteins (STPs or HTs) are mainly involved

in the absorption and transport of hexose in plants. They have

been reported to play a key role in plant response to biotic or
Frontiers in Plant Science 11
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abiotic stresses, growth and development (Fotopoulos et al.,

2003; Buttner, 2010; Slewinski, 2011). Moreover, the sugar

accumulation in plant, especially in fruit tissues, is closely

related to STPs. So far, there has been no systematic study on

the STPs, including their expression profile, localization,

physiological functions in citrus, which is the most productive

fruit in the world. The acquisition of genome sequence of citrus

species provides a good opportunity to identify STP family

members. Here, a total of 14 CgSTPs were identified by

BLAST search and HMMER analysis of C. grandis genome.

All selected STP proteins contained MSF_STP (cd17361) and

Sugar_tr (pfam00083) conserved domains (Figure 1), which

belong to the STP family of the MFS (Yan, 2013). The amino

acid number of CgSTPs is between 353 aa (CgSTP8) and 524 aa

(CgSTP13) (Table 1), which is similar to the other reported STP

families in Arabidopsis (Buttner, 2010), tomato (Reuscher et al.,

2014), strawberry (Jiu et al., 2018; Liu et al., 2020) and pear (Li

et al., 2015a), indicating the relatively stable of STPs during the

whole evolutionary process. Besides, this study was the first to
A B

C

FIGURE 7

The pollen tube growth was inhibited with the lower expression of CgSTP4. (A) The expression of CgSTP4 in different tissues of flower was
determined by qRT-PCR. The CgActin was defined as the reference and the CgSTP4’s expression level in flower tissue was normalized as 1. (B)
Expression levels of CgSTP4 in pollen tubes transfected with antisense or sense oligonucleotide of CgSTP4 (s-CgSTP4, as-CgSTP4), or transfection
agent alone (Control). The CgActin was defined as the reference and the CgSTP4’s expression level in control condition was normalized as 1. Data
are mean ± SE (n=3). * Represents significant difference in comparison with control using Student’s t test at p < 0.05. (C) Pollen tube growth assay
after transfection with as-CgSTP4, s-CgSTP4, or transfection agent alone (Control). Scale bar = 50 mm. Data are mean ± SE (n=3). Letters (A–B)
indicate significant differences at each sampling point (p < 0.05) using Duncan’s multiple range test (MRT) after ANOVA.
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comprehensively analyze the gene structure, conserved motifs

and cis-acting elements of CgSTP family. The expression pattern

and function analysis of CgSTP gene were further studied.

Phylogenetic analysis presented that CgSTP proteins were

classified into four groups in combination with AtSTPs in each

group (Figure 1). The result of collinear correlation revealed

eight pairs of homologous genes between pummelo and

Arabidopsis (Figure S1), indicating potential similarities in

evolutionary relationship and functions between the two

plants. This will provide a useful reference for the future

functional research of CgSTPs. It has been reported that most

STP proteins have 12 transmembrane domains (TMD1-

TMD12), including N-domain (TMD1-TMD6) and C-domain

(TMD7-TMD12) (Hirai et al., 2002; Yan, 2013). In this study, 10

of the 14 CgSTP proteins contained the all of 12 TMDs, while

CgSTP2 had 11 TMDs and 2 CgSTP had 10 TMDs (Table 1).

However, CgSTP8 carries only 8 TMDs (Table 1), alone with a

missing sequence in the middle of the protein. These results

suggested that loss of N-terminal or C-terminal regions may

have occurred in some CgSTP members during evolution.

Consistent with this, similar STP protein structures have been

observed in cassava (Liu et al., 2018), tomato (Reuscher et al.,

2014), and grapevine (Afoufa-Bastien et al., 2010). As the

transmembrane transports, most of the CgSTP were predicted

to be localized in the plasma membrane, while a few be localized

the vacuolar membrane based on the WoLF PSORT database

(Table 1). Subcellular localization assay indicated that CgSTP4,

CgSTP7, CgSTP9, CgSTP11, CgSTP13 and CgSTP14 were

located to the plasma membrane (Figure 4), which was

consistent with the predicted results. Accordingly, the most

plasma membrane-localized members were proofed to have

hexose sugar transport activity via the yeast mutant recovery

growth assay (Figure 5).

In addition, the conserved motif analysis was carried out to

further reveal the relationship between the various members and

the potential roles of CgSTPs. Interestingly, the result

demonstrated that CgSTPs contained all motif sequences

except CgSTP8 (Figure 2A). This is similar to the

characterization in Arabidopsis (Buttner, 2010) and cassava

(Liu et al., 2018). The conservation and divergence of motifs

in STP proteins may lead to functional similarities or differences

among members of different STP families. We also analyzed the

gene structure of CgSTPs and found that most CgSTP genes had

three exons and two introns (Figure 2B). The variation in the

number of exons and introns of the STP gene ranged from two to

five, consistent with the other plant species, such as Arabidopsis

(Buttner, 2010), cabbage (Zhang et al., 2019), grapevine (Afoufa-

Bastien et al., 2010) and pear (Li et al., 2015a). The diversity of

STP gene structures may be due to the structural differentiation

formed by the insertion or deletion of exons and introns (Xu

et al., 2012). Moreover, cis-acting element analysis was

performed on the promoter sequence of CgSTPs (Figure S2).

The predicted results indicated that CgSTPs may be involved in
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plant hormone (GA, ABA, IAA, MeJA and SA) or abiotic

stress responses.

During plant growth and development, sugar accumulation

and distribution has proved to be closely linked to the STP

members. The most physiological functions also depend on gene

expression pattern. In this study, the expression of CgSTPs was

investigated by qRT-PCR, and it was found that CgSTPs had a

various expression level in different pummelo tissues (Figure 3),

which was consistent with the AtSTPs in Arabidopsis (Buttner,

2010). For example, AtSTP1 is mainly expressed in the root for

the hexose absorption from the extracellular (Otori et al., 2019).

AtSTP4, AtSTP6, AtSTP8, AtSTP9, AtSTP10 and AtSTP11 are

highly expressed in pollen and are mainly responsible for pollen

tube growth via regulating glucose uptake (Rottmann et al.,

2018). In here, CgSTPs also showed tissue-specific expression,

such as CgSTP4 was specifically expressed in pollen and pollen

tubes (Figure 7). The further pollen tube growth experiment

proofed that CgSTP4 was involved in regulating the pummelo

pollen tube length in vitro (Figure 7). Given the important of

sugar content for the fruit flavor quality, the CgSTP11 and

CgSTP14, which were highly expressed in juice sac tissue, were

selected for sugar accumulation assay. The results shown that the

hexose was dramatically increased with the overexpression of

these two genes, implying the potential functions in

improvement of the citrus fruit sweet quality. Except for these

members, there are some other CgSTP genes that had lower

expression level in detected tissues, like CgSTP1, CgSTP2, or

CgSTP8. The more work was required in future to decipher the

speculation if they were induced by special development stage or

environmental conditions based on cis-element assay in their

promoter sequence. In summary, the identification, expression

pattern analysis, biological and physiological function assays of

CgSTPs explored the functional CgSTP members in sugar

accumulation and pollen tube growth, and also paved a way

for further elucidating the more functions and regulatory

mechanisms of sugar transport proteins in citrus species.
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Transcriptional and metabolic
responses of apple to different
potassium environments

Tingting Sun1,2, Junke Zhang1, Qiang Zhang1, Xingliang Li1,
Minji Li1, Yuzhang Yang1, Jia Zhou1, Qinping Wei1*

and Beibei Zhou1*

1Beijing Academy of Agriculture and Forestry Sciences, Beijing Academy of Forestry and Pomology
Sciences, Beijing Engineering Research Center for Deciduous Fruit Trees, Key Laboratory of Biology
and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs,
Beijing, China, 2College of Horticulture, China Agricultural University, Beijing, China
Potassium (K) is one of the most important macronutrients for plant

development and growth. The influence mechanism of different potassium

stresses on the molecular regulation and metabolites of apple remains largely

unknown. In this research, physiological, transcriptome, and metabolite analyses

were compared under different K conditions in apple seedlings. The results

showed that K deficiency and excess conditions influenced apple phenotypic

characteristics, soil plant analytical development (SPAD) values, and

photosynthesis. Hydrogen peroxide (H2O2) content, peroxidase (POD) activity,

catalase (CAT) activity, abscisic acid (ABA) content, and indoleacetic acid (IAA)

content were regulated by different K stresses. Transcriptome analysis indicated

that there were 2,409 and 778 differentially expressed genes (DEGs) in apple

leaves and roots under K deficiency conditions in addition to 1,393 and 1,205

DEGs in apple leaves and roots under potassium excess conditions, respectively.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

showed that the DEGs were involved in flavonoid biosynthesis, photosynthesis,

and plant hormone signal transduction metabolite biosynthetic processes in

response to different K conditions. There were 527 and 166 differential

metabolites (DMAs) in leaves and roots under low-K stress as well as 228 and

150 DMAs in apple leaves and roots under high-K stress, respectively. Apple

plants regulate carbon metabolism and the flavonoid pathway to respond to

low-K and high-K stresses. This study provides a basis for understanding the

metabolic processes underlying different K responses and provides a foundation

to improve the utilization efficiency of K in apples.

KEYWORDS

apple, potassium deficiency, potassium excess, transcriptome analysis,
metabolome analysis
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Introduction

Potassium (K) is one of the most essential macronutrients for

plant growth and development, and it has essential physiological

functions, such as plant osmoregulation, photosynthesis, protein

synthesis, ion homeostasis, and enzyme activation (Kanai et al.,

2011; Hafsi et al., 2014). Four forms of K exist in the soil, namely,

exchangeable K, soluble K, lattice K, and fixed K. Only soluble K can

be taken up by plants from the soil. The K concentration in the soil

ranges from 0.1 to 6.0 mmol L−1 (Zeng et al., 2015). Too high or too

low K concentrations in soil affect plant growth; in many regions, K

concentrations are lower than 0.3 mmol L−1, and K deficiency limits

plant growth (Schroeder et al., 1994). Under low-K conditions, the

most common phenomena include stunted growth of plants,

yellowing of leaf margins, and yield reduction (Hasanuzzaman

et al., 2018). Excessive use of potassium fertilizer causes high-K

stress, and excessive application of potassium fertilizer in soil causes

soil and water pollution, reducing the productivity of crops.

However, plants initiate a series of physiological processes as well

as molecular and metabolite mechanisms to adapt to different levels

of K stress. K deficiency and excess conditions are typical abiotic

stress forms that induce a series of biological responses. Under

different K stress conditions, reactive oxygen species (ROS) and

phytohormones are affected (Ashley et al., 2006; Amtmann et al.,

2008). Plant responses to different K conditions are also due to

various complex gene regulatory networks that cause widespread

changes in gene expression and metabolite contents (Liang

et al., 2013).

Transcriptomes comprehensively and efficiently reveal gene

expression, thereby allowing elucidation of the plant molecular

mechanism response to different K stresses. In plants, many studies

have focused on K uptake, loading, and transport mechanisms. Some

related genes have been studied, such as the high-affinity K transporter/

uptake transporter (HAK/KUP/KT) family, including AtHAK1/5,

PpHAK2, AtHAK5, HvHAK1, OsHAK1, AtKUP3, AtKUP1, and

OsHKT2, as well as shaker-like K channels (AKT), including

OsAKT1 and AtAKT1/5 (Kim et al., 1998; Banuelos et al., 2002; Xu

et al., 2006; Fulgenzi et al., 2008; Jung et al., 2009; Pyo et al., 2010; Kim

et al., 2012; Oomen et al., 2012; Wu et al., 2019; Wang et al., 2021).

These genes play a vital role in plants’ responses to different K

conditions. Transcriptomic analysis of the response of Arabidopsis,

rice, maize, soybean, sugarcane, and wild barley to K deficiency

conditions has indicated that genes involved in metabolism, signal

transduction, and ion transport are altered at the transcript level

(Armengaud et al., 2004; Ma et al., 2012; Wang et al., 2012a; Zeng

et al., 2014).

Metabolomics, known as qualitative and quantitative analysis of

cellular metabolites, has become an important complementary tool for

the study of plant functional genomics and systems biology

(Weckwerth, 2003). Metabonomic analysis reflects the synthesis,

decomposition, or transformation rules of some objects, all

metabolites, or some metabolites in the tissue or cell (Hall, 2011).

Abiotic stress causes changes in the expression of metabolic products,

resulting in metabolite disorders in vivo (Meena et al., 2017). Many

studies have reported the changes in small-molecule compounds in
Frontiers in Plant Science 02148
response to mineral nutritional stress. Sung et al. (2015) reported

metabolic responses to deficiencies in nitrogen (N), phosphorus (P),

and K, and they demonstrated that the lack of these elements decreases

energy production and amino acid metabolism in tomato leaves and

roots. Low-K stress increases monosaccharide, disaccharide,

polysaccharide, and putrescine contents in barley (Zhao et al., 2021).

The contents of putrescine, aconitate, citrate, malate, and fumarate

increased in sunflower under low-K stress (Cui et al., 2019). Citric acid,

arginine, and asparagine contents are upregulated under K deficiency

in rapeseed leaves (Hu et al., 2021). The levels of glutamic acid and

aspartic acid are decreased in peanut under low-K conditions, whereas

the levels of histidine, lysine, and arginine are increased in peanut

under low-K conditions (Patel et al., 2022). The amino acid contents

are increased in both K-sensitive and K-tolerant genotypes of wheat

roots under K starvation (Zhao et al., 2020).

Apple (Malus domestica) is one of the most important fruits in the

world, and apple production and consumption are the highest in

China. K fertilizer plays a key role in apple growth and ripening. When

K deficiency occurs in apple trees, the middle and lower leaves of new

shoots turn yellow. In severe cases, the leaves gradually show brown

withered spots, resulting in a curly scorched appearance, and new

shoots stop growing early, forming small flower buds and small fruits

with a color difference and a decline in quality (Chang et al., 2014).

High-K stress causes the occurrence of apple bitter pox, which reduces

the absorption of cations, such as calcium and magnesium, by plants,

thus affecting the yield of plants. Excessive application of potassium

fertilizer causes soil environmental pollution and water pollution.

Many studies have investigated the molecular mechanisms that occur

under K deficiency in model plants, such as Arabidopsis, rice, and

maize (Armengaud et al., 2004; Ma et al., 2012; Wang et al., 2012a).

However, these mechanisms have rarely been reported in apple,

especially under high-potassium stress. In the present study, we

investigated the molecular response mechanism and metabolite

changes of apple to low-potassium and high-potassium stresses, and

we provided a theoretical basis for further study on the response

mechanism of apple to potassium.
Materials and methods

Plant growth conditions

The experimental materials, namely, “CG-935” apple seedlings,

were tissue cultured, after rooting, seeding, and transplantation, and

the apple plants were then transported to the experimental field as

previously reported by Sun et al. (2021).
Different potassium treatments

After 90 days, healthy apple seedlings of similar size (with 16–20

leaves) were transferred to a hydroponic slot (60 × 37 × 35 cm)

containing 60 L of a 1/2-strength Hoagland nutrient solution

(Hoagland and Arnon, 1950). Stress treatments were initiated after

10 days of precultivation. Apple seedlings were randomly divided into 3
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groups with 54 plants per treatment, and there were three biological

replicates for each stress treatment with 18 plants per replicate. The

treatments were as follows: (1) control (CK), 1/2-strength Hoagland

nutrient solution supplemented with 3 mM K2SO4; (2) low-K

treatment (LK), 1/2-strength Hoagland nutrient solution with 50 mM
K2SO4; and (3) high-K treatment (HK), 1/2-strength Hoagland

nutrient solution with 15 mM K2SO4 (Chang et al., 2014). The

solution was continuously aerated and refreshed every 3 days, and

the experimental treatment lasted for 15 days. Plant roots and leaves

were harvested for physiological, transcriptomic, and metabolomic

analyses. The samples were designated as follows: the apple leaves

and roots in the control condition were named CKL and CKR,

respectively; the apple leaves and roots in the low-K condition were

named LKL and LKR, respectively; and the apple leaves and roots in

the high-K condition were named HKL and HKR, respectively.
Growth indices, photosynthetic indices,
and nutrient concentration measurements

After 15 days of treatment, the plant heights, stem diameters, and

dry weights (DWs) of the whole apple as well as the ratio of

underground DW to aboveground DW (R/S) of the apple

were calculated.

The net photosynthetic rate (Pn), transpiration rate (Tr), water

use efficiency indicator (WUEi), stomatal conductance (Gs), and

intercellular CO2 concentration (Ci) values of the apple leaves were

measured by an LI-6800 portable photosynthesis system (LI-COR

Inc., Lincoln, NE, USA) on sunny days.

The measurements of soil plant analytical development (SPAD)

of apple leaves and the concentrations of N, P, and K in apple roots,

apple stems, apple leaves, and whole apple were measured

according to the method of Sun et al. (2021).
Determination of H2O2, enzyme activities,
and phytohormones

For the determination of H2O2, enzyme activity, and

phytohormones, nine apple seedlings were selected for each

experimental replicate (n = 3) to provide an adequate amount of

root and leaf tissue. The levels of hydrogen peroxide (H2O2, SO1300),

and the activities of peroxidase (POD, KT5058), catalase (CAT,

KT4957), abscisic acid (ABA, KT4924), and indoleacetic acid (IAA,

NR, KT4992) were determined using commercial test kits purchased

from Jiangsu Kete Biotechnology Co., Ltd. (Jiangsu, China). H2O2 was

recorded on a UV-1750 spectrometer (Shimadzu, Japan). The enzyme

activities were analyzed using an ELISA reader (Multiskan MS,

Labsystems 325, Helsinki, Finland).
RNA isolation, qRT-PCR analysis, and
transcriptome sequencing

Total RNA of apple leaves and roots was isolated using TRIzol

Reagent (Invitrogen, Carlsbad, CA, USA) for quantitative real-
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time PCR (qRT-PCR) analysis and RNA sequencing (RNA-seq)

analysis, and three biological replicates of each sample were

sequenced. Quantitative real-time PCR (qRT-PCR) analysis was

conducted according to Sun et al. (2021), and the primers used for

qRT-PCR are listed in Table S1. Transcriptome analysis was

performed by Wuhan MetWare Biotechnology Co., Ltd.

(www.metware.cn, Wuhan, China). After rapid filtering (version

0.18.0) (Chen et al., 2018), the HISAT2.2.4 and Bowtie2 tools were

used to compare clean reads with the apple genome (https://

iris.angers.inra.fr/gddh13/index.html) (Langmead et al., 2009;

Kim et al., 2015). The RESM software was used to calculate the

values of fragment per kilobase of transcript per million mapped

reads (FPKM) (Li and Dewey, 2011). Differentially expressed

genes (DEGs) were determined according to cutoffs of log2(fold

change) ≥ 1 and p ≤ 0.05. Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) tools were used to

analyze the DEGs.
Metabolite analysis

Metabolites were extracted and analyzed at Wuhan MetWare

Biotechnology Co., Ltd., Wuhan, China (www.metware.cn) (Zhang

et al., 2019). The metabolite analysis was performed using a liquid

chromatography–electrospray ionization–tandem mass

spectrometry (LC-ESI-MS/MS) system (HPLC, Shim-pack UFLC

SHIMADZU CBM30A system; MS, Applied Biosystems 6500 Q

TRAP). Metabolite quantification was performed using multiple

reaction monitoring (MRM) in triple quadrupole mass

spectrometry (Chen et al., 2013). Metabolomic data analysis was

performed according to previous methods (Zhu et al., 2018).
Statistical analysis

The statistical analysis of different plant treatments in triplicate

(n = 3) was performed by one-way analysis of variance (ANOVA)

using SPSS 20.0 software. A probability value of p < 0.05 was

considered statistically significant. The data are presented as the

mean ± standard deviation (SD) of three replicates.
Results

Potassium affects plant growth and
mineral nutrients

After 15 days of treatment with 50 mM (LK treatment), 3 mM

(CK treatment), or 15 mM (HK treatment) K2SO4 in hydroponic

culture, the plant height, stem diameter, DW, and root/shoot ratio

decreased under K stress. The plant height decreased more in LK

(82.49%) than in HK (82.73%), and the stem diameter also showed a

similar trend. The DW of LK-treated apple plants was 72.94% of

that of CK plants, and the DW of HK-treated seedlings was 75.69%

of that of CK seedlings. The root/shoot ratio significantly increased

by 111.76% in LK but decreased by 65.5% in HK (Table 1).
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The value of SPDA is a reliable indicator that can represent the

content of chlorophyll (Tan et al., 2021). The SPDA values and

photosynthetic characteristics were different under LK and HK

stresses. The SPAD significantly decreased under LK, but there was

no difference under HK. The Pn, Tr, WUEi, and Gs were

significantly reduced under LK and HK, especially under K

deficiency conditions (Table 2).

Differences in K fertilization conditions were reflected in the

apple root, stem, and leaf elemental N, P, and K mineral nutrients.

The concentrations of K in apple trees were lower under LK stress

but higher when more K was available, and the P and K

concentrations were much higher in CK compared to HK and LK

(Table S2).
H2O2 content, enzyme activities,
and phytohormones

Plant biomass decreased under K stress, while root growth

increased under LK stress (Figure 1A). The H2O2 content,

superoxide dismutase (SOD) activity, and POD activity were

affected by different K stresses. The H2O2 content increased in

apple leaves and roots under the LK and HK treatments with greater

increases under LK stress. Under different K conditions, the enzyme

activities increased in both apple leaves and roots, but the range

of increase varied. The activities of SOD and POD significantly

increased under different K conditions. The ABA content increased

by 1.13- and 1.29-fold in apple leaves under LK, and it increased by

1.14- and 1.25-fold in roots under HK (Figure 1E). The IAA content

exhibited a similar trend (Figure 1F).
Differential gene expression analysis

To obtain a global overview of the transcriptome responses to

different K treatments in apple roots and leaves, four RNA-seq

libraries were prepared, namely, HKL/CKL, HKL/CKL, LKR/CKR,

and HKR/CKR, according to different K stress conditions in apple

roots and leaves. The transcriptome data of the 18 samples

described in the study have been deposited into the National

Center for Biotechnology Information (NCBI) databases, and the

bioproject accession number is PRJNA895870. The sequencing data

are summarized in Table S3. The average for each sample of clean

reads was approximately 4.5 × 107, and the sequence alignment
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efficiency ranged from 82.59% to 90.04%. The FPKM of HK was

higher than those of CK and LK, and FPKM > 1 was used as the

threshold to determine gene expression (Figure S1A). The Pearson

correlations among the LK, HK, and CK replicates ranged from 0.97

to 1 in leaves and from 0.98 to l in roots (Figure S1B). Principal

component analysis (PCA) indicated that the roots and leaves of

LK, HK, and CK were clustered together, indicating significant

differences in gene expression profiles. The LK, HK, and CK in leaf

and root replicates were not tightly clustered, showing that

inoculation occurred within the replicates (Figure S1C).

According to DESeq2 analysis using cutoffs of |log 2-fold

change| ≥ 1 and false discovery rate (FDR) < 0.05, a total of 2,409

transcripts were differentially expressed in apple leaves under LK

with 1,412 upregulated genes and 997 downregulated genes (Figure

S2A). A total of 1,393 DEGs were detected under HK conditions

with 829 upregulated DEGs and 564 downregulated DEGs in apple

leaves under HK (Figure S2B). These observations suggested that

under different K conditions, more DEGs were found under LK

conditions than under HK conditions in apple leaves. A total of 778

DEGs were differentially expressed in apple roots under LK stress

with 442 upregulated genes and 336 downregulated genes (Figure

S2C), and a total of 1,205 DEGs were differentially expressed in

apple roots under HK with 819 upregulated DEGs and 386

downregulated DEGs (Figure S2D). In terms of fold change gene

expression values, the following maximum upregulation and

maximum downregulation values were observed: 8.19 log2 FC

and −8.38 log2 FC in leaves under LK, respectively; 7.92 and

−7.42 log2 FC in leaves under HK, respectively; 7.59 and −13.15

log2 FC in roots under LK, respectively; and 8.24 and −4.64 log2 FC

in roots under HK stresses, respectively (Figure S2E).

GO annotation analysis showed enrichment classifications

according to biological processes (BPs), molecular functions

(MFs), and cellular components (CCs) (Figure S3). Figure 2

shows the top 20 significantly enriched pathways under different

K stresses in apple leaves and roots. KEGG pathway enrichment

revealed that the vital biological pathways in response to different K

conditions were involved in flavonoid biosynthesis, photosynthesis,

plant hormone signal transduction, and biosynthesis of various

plant secondary metabolite biosynthetic processes.

The DEGs involved in potassium metabolism were then

thoroughly analyzed. The DEGs associated with potassium

uptake, loading, and transport processes were detected in four

pairs of libraries (Table 3). Most of the potassium transporter

gene family members were increased in the apple seedlings.
TABLE 1 The growth indexes in apple under control (CK), low-potassium (LK), and high-potassium (HK) conditions.

Treatment Plant height
(cm)

Stem diameter
(mm)

Dry weight
(g/plant) Root/Shoot

CK 18.67 ± 0.89 a 3.92 ± 0.23 a 2.18 ± 0.31 a (100) 0.34 ± 0.02 b

LK 15.40 ± 1.10 b 3.31 ± 0.16 b 1.59 ± 0.21 b (72.94) 0.38 ± 0.01 a

HK 17.50 ± 0.68 a 3.72 ± 0.15 a 1.65 ± 0.19 b (75.69) 0.28 ± 0.03 c
Data indicate means ± SE (n = 3). Different letters beside the values in the same column indicate significant difference between the treatments.
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qRT-PCR validation of the DEGs

Ten apple genes were detected by qRT-PCR for expression analysis

to validate the RNA-seq results. The RT-qPCR analysis results were not

significantly different from the RNA-Seq data, and similar trends were

found in the up- and downregulated genes (Figure S4).
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Metabolomic response to different K
treatments in apple

The metabolome of apple seedlings was analyzed using four

different pairs of libraries, namely, LKL/CKL, HKL/CKL, LKR/CKR,

and HKR/CKR. Overall, 527 DAMs were quantified and identified in
A
B

D

E F

C

FIGURE 1

Measurement of H2O2, enzyme activities, and phytohormones in apple under different K treatments. (A) The phenotypic characteristics of apple.
(B) The content of H2O2. The activities of CAT (C) and POD (D). The contents of ABA (E) and IAA (F). Different letters indicate significant differences
according to Tukey’s multiple-range tests (p < 0.05).
TABLE 2 The photosynthetic characteristics in apple under control (CK), low-potassium (LK), and high-potassium (HK) conditions.

Treatment SPAD Pn
(µmol CO2/m

2/s)
Tr

(mmol H2O/m
2/s) WUEi (µmol/mmol) Gs

(mol H2O/m
2/s)

Ci
(µmol CO2/mol)

CK 49.07 ± 2.74 a 12.73 ± 0.59 a 2.80 ± 0.09 a 4.55 ± 0.22 a 0.36 ± 0.01 a 282.88 ± 8.83 a

LK 43.98 ± 2.12 b 8.00 ± 0.56 c 2.24 ± 0.12 c 2.59 ± 0.25 b 0.17 ± 0.02 c 281.48 ± 12.02 a

HK 49.59 ± 2.76 a 9.75 ± 0.84 b 2.61 ± 0.07 b 2.26 ± 0.23 b 0.29 ± 0.01 b 285.44 ± 14.18 a
Data indicate means ± SE (n = 3). Different letters beside the values in the same column indicate significant difference between the treatments.
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A B
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FIGURE 2

Statistics of KEGG enrichment under different K conditions in apple leaves and roots. (A) Statistics of KEGG enrichment under low-K conditions in
apple leaves. (B) Statistics of KEGG enrichment under high K conditions in apple leaves. (C) Statistics of KEGG enrichment under low-K conditions in
apple roots. (D) Statistics of KEGG enrichment under high K conditions in apple roots.
TABLE 3 Genes encoding transporters showed differential expression in response to different K stresses.

Gene Seq ID LKL HKL LKR HKR

AKT MD15G1178200 1.13

KAT MD05G1284400 1.18

KUP MD16G1089900 −1.18

MD01G1165900 1.04

MD07G1232700 1.04

HAK MD03G1283600 2.89

MD10G1204500 3.37

MD11G1302600 1.71 1.18

MD11G1303100 1.91 1.40

MD11G1302900 2.29

MD13G1133200 1.32

MD16G1143900 1.34
F
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LKL/CKLwith 246 upregulated DAMs and 122 downregulated DAMs.

For HKL/CKL, 228 DAMs were significantly upregulated, and 129

DAMs were downregulated. For LKR/CKR, 166 DAMs were identified

with 74 upregulated DAMs and 92 downregulated DAMs. For HKR/

CKR, 150 DAMs were identified with 92 upregulated DAMs and 74

downregulated DAMs (Table S4). The heatmaps of the differences in

metabolites among the four combinations show the above

trends (Figure 3).

Under different K stresses, the contents of amino acids, amino

acid derivatives, organic acids, carbohydrates, flavonoids, and lipids

changed. Under LK conditions, most lipids, flavonoids, and

phenolic acids increased in apple roots. The metabolites of apple

leaves and roots under different potassium stress conditions are

presented in Figure 3. In apple leaves, the content of amino acids,

amino acid derivatives, phenolic acids, terpenoids, and flavonoids

increased under different K stresses, while nucleotides and

nucleotide derivatives decreased. Under LK conditions, the

content of lipids was upregulated in apple roots.

The co-joint KEGG enrichment analysis determined the co-

mapped pathways in apple leaves and roots under K deficiency and

excess conditions (Figures 4A, D, G, J). Of the metabolic pathways, the

co-mapped pathways, namely, flavonoid biosynthesis, carbon

metabolism, biosynthesis of secondary metabolites, glycerolipid

biosynthesis, and phenylpropanoid biosynthesis, were the

significantly enriched pathways under different K stresses. The

Pearson correlation coefficients for the nine quadrants are shown in

Figures 4B, E, H, K. In the third and seventh quadrants, the gene and

metabolite differential expression patterns were consistent; the genes
Frontiers in Plant Science 07153
were positively correlated with the regulation of metabolites, and the

changes in metabolites were positively regulated by the genes. The

DEGs and DAMs with Pearson correlation coefficients (PCCs) higher

than 0.8 were further selected and represented by heatmaps

(Figures 4C, F, I, L).
Responses of carbon metabolite and
flavonoid metabolites in apple to different
potassium conditions

The concentrations of glucose, glycerate-3P, and succinate,

which are involved in carbon metabolism, particularly glycolysis

and the tricarboxylic acid (TCA) cycle, were increased in apple

leaves under LK. The glucose content was upregulated in LKR/CKR

and HKL/CKL, whereas glycerate-3P was increased in HKR/CKR

(Figure 5). Under LK stress, the following changes were observed:

the expression of PFK (MD05G13633600), CS (MD13G1111200),

FUM (MD03G1292300), and IDH (MD09G1029200) was decreased

in leaves; the expression of PFK (MD01G107500 and

MD07G1144100) and CS (MD13G1153500) was increased in

leaves; and the expression of PFK (MD 05G1363600) and PPDK

(MD16G1179400) was decreased in roots. Under HP conditions,

the expression of PFK (MD 05G1363600) and PPDK

(MD16G1179400) was downregulated in leaves; the expression of

PFK (MD05G1363600) was increased in roots; and the expression

of AD (MD11G1038900) and PPCK (MD01G1046200) was

decreased in roots (Figure 5).
A B D

E F G H

C

FIGURE 3

Differentially accumulated metabolites among different potassium treatments in apple. (A, E) Major classes of detected metabolites and heatmaps of
differential metabolites between LKL/CKL. (B, F) Major classes of detected metabolites and heatmaps of differential metabolites between HKL/CKL. (C, G)
Major classes of detected metabolites and heatmaps of differential metabolites between LKR/CKR. (D, H) Major classes of detected metabolites and
heatmaps of differential metabolites between HKR/CKR. Three independent replicates of each stage are also displayed in the heatmap.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1131708
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2023.1131708
The level of naringenin chalcone, which is involved in flavonoid

metabolites, was increased under LK conditions in apple leaves and

roots. The phenylalanine content was decreased in apple leaves

under different K conditions. The gene expression of PAL in leaves

was increased under LK stress but decreased under HK conditions.
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The C4H, 4CL, CHS, F3H, ANS, CHI, and DFR genes were

upregulated under LK stress, whereas the UGT gene was

decreased under LK stress. Under HK conditions, the PAL, UGT,

CHI (MD01G1118300), and DFR (MD11G1229100) genes were

downregulated in leaves (Figure 6).
A B

D E F

G

C

IH

J K L

FIGURE 4

(A, D, G, J) Histograms of joint KEGG enrichment p-values, and (B, E, H, K) the associations of transcriptomic and metabolomic variation quadrant
diagrams in LKL/CKL, HKL/CKL, LKR/CKR, and HKR/CKR; the black dotted lines indicate the differential thresholds. Outside the threshold lines, there
were significant differences in the gene/metabolites, and within the threshold lines are shown the unchanged gene/metabolites. Each point
represents a gene/metabolite. Black dots, green dots, red dots, and blue dots indicate unchanged genes/metabolites, differentially accumulated
metabolites with unchanged genes, differentially expressed genes with unchanged metabolites, and both differentially expressed genes and
differentially accumulated metabolites, respectively. (C, F, I, L) Heatmaps of the correlation coefficient clusters (>0.8), p-values < 0.05.
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Discussion

K plays essential roles in many physiological and biochemical

processes in the plants, such as ion homeostasis, enzyme activation,

osmoregulation, and protein synthesis (Kanai et al., 2007; Ma et al.,

2020). K stress affects the normal growth of plants; the scarcity of K

slows plant growth, reduces plant height, reduces stem diameter (Tester

and Blatt, 1989), and decreases photosynthesis (Kanai et al., 2011). The

plant height, stem diameter, plant DW, and photosynthesis were

decreased under different LK and HK stresses in apple (Tables 1, 2).

Trankner et al. (2018) revealed that K deficiency also reduces

photosynthetic CO2 fixation, as well as the transportation and

consumption of photoassimilates, thus damaging plant membranes

and chlorophyll under low-K conditions. In the present research, the

SPDA value and photosynthetic characteristics decreased under LK

stress in apple (Table 2). Xu et al. (2020) reported that an adequate

supply of K increased the photoassimilate transportation rate from

apple leaves to roots as well as increased nutrient use efficiency by

influencing photosynthesis. The SPAD value of apple plants was

slightly increased under HK stress, while the photosynthetic index

decreased to a lesser extent under HK stress compared to LK stress

(Table 2); it means that apple seedlings under low-potassium stress are

more damaged than those under high-potassium stress. In the present
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study, RNA-Seq and KEGG enrichment analysis indicated that a

different potassium environment had an effect on plant

photosynthesis. Combined transcriptome metabolome analysis

showed that the DEGs and DAMs were associated with biological

processes, such as carbohydrate metabolism and photosynthesis. Hafsi

et al. (2014) revealed that K stress limits plant leaf growth, which may

be due to sugar starvation in stems and leaves. In the present study,

genes involved in the TCA cycle, such as CS, IDH, and TCA, were

downregulated in apple leaves under LK (Figure 5), which may induce

apple plant growth restriction.

Plants under K stress conditions increase ROS production,

resulting in oxidative stress (Hernandez et al., 2012). The

accumulation of higher K in plant cells restores oxidative stress by

increasing the activity of antioxidant enzymes, such as glutathione

reductase (GPX), dehydroascorbate reductase (DHAR), ascorbate

peroxidase (APX), CAT, SOD, and POD (Garcıá-Martı ́ et al., 2019).
The H2O2 content, SOD activity, and POD activity were affected by

different K stresses in apple seedlings. The SOD and POD activities

were significantly increased to combat different K conditions

(Figures 1B–D). Under HK stress, the enzyme activities increased

more significantly than under LK stress, which indicated that LK had a

greater effect on apple plants. A previously metabolome analysis has

revealed that the glutathione content is increased in roots in low-K-
FIGURE 5

Carbon metabolites in apple leaves and roots under different K stresses. The boxes in the pathway represent DEGs or DAMs. Red and green
represent upregulated and downregulated genes, respectively. Yellow and blue represent upregulated and downregulated metabolites, respectively.
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tolerant KN9204 wheat but not in low-K-sensitive BN207 wheat (Zhao

et al., 2020). Under low potassium, the content of S-(methyl)

glutathione in apple leaves and roots was significantly increased in

the present study (Table S4). Thus, these findings indicated that

glutathione is an important metabolite for plant adaptation to

K deficiency.

Phytohormones are active substances that widely exist in plants to

regulate their physiological metabolism, affect plant development, affect

plant growth, and play a regulatory role in stress conditions. Different

potassium environments influence phytohormones in plants, such as

brassinosteroids, IAA, ABA, and jasmonic acid (JA) (Ahanger et al.,

2018; Ahanger et al., 2020; Yang et al., 2020). After 15 days of different

K stress treatments, ABA and IAA contents increased in both apple

leaves and roots (Figures 1E, F). The concentration of ABA in peanut

leaves also increases under low-K stress (Patel et al., 2022). Therefore,

considering the importance of phytohormones in plant growth, these

findings indicated that ABA, JA, SA, and other phytohormones are

important molecules in plant resistance to K stress.

Potassium uptake and absorption are mainly accomplished

through potassium transporters and potassium channels in the

plasma membrane (Ashley et al., 2006). K transporters and channels

play vital roles in translocation and cell growth in various plants (Wang

and Wu, 2013). Under the condition of K deficiency, the expression

levels of HAK1 and HAK5 in maize are upregulated, and AtHAK5,

OsHAK1, and HvHAK1 are also induced by K-limited conditions

(Santa-Marıá et al., 1997; Banuelos et al., 2002; Ahn et al., 2004; Gierth
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et al., 2005; Fulgenzi et al., 2008; Qin et al., 2019). In addition,

transcriptome analysis of rice roots under LK stress has revealed that

the OsHAK1, OsHAK7, OsHAK11, and OsHKT2;1 genes are

upregulated; in addition, potassium channel genes, such as OsAKT1,

OsAKT2/3, and OsKCO1, are also increased in response to low-K

conditions (Ma et al., 2012). In tobacco seedlings, the KUP3 K

transporter and the SKOR K channel are increased under LK stress

(Lu et al., 2015). In apple seedlings, the AKT (MD15G1178200) and

HAK (MD11G1302600, MD11G1303100, MD11G1302900,

MD13G1133200, and MD16G1143900) genes were upregulated in

roots under KL. Moreover, the KAT (MD05G1284400) and KUP

(MD01G1165900 and MD07G1232700) genes were upregulated in

apple leaves, whereas HAK (MD03G1283600, MD10G1204500,

MD11G1302600, and MD11G1303100) was increased in apple roots

(Table 3). These results were consistent with previous studies, showing

that a common regulatory mechanism exists across plant species

whereby the transcription of genes encoding K transporters and

channels increases, which may be an efficient strategy to increase

potassium uptake in plants under a K-deficient environment.

Therefore, these findings suggested that apple AKT, HAK, KUP, and

HAK are key genes involved in potassium channels and transporters,

which play an important role in coping with low- and high-potassium

stresses in apple seedlings.

Under potassium-deficient conditions, the amino acid content

increases in cotton (Wang et al., 2012b) and in roots of the K-

tolerant genotype of wheat (Zhao et al., 2020), and lysine, histidine,
FIGURE 6

Flavonoid metabolites in apple leaves and roots under different K stresses. The boxes in the pathway represent DEGs or DAMs. Red and green
represent upregulated and downregulated genes, respectively. Yellow and blue represent upregulated and downregulated metabolites, respectively.
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and arginine accumulated in peanut leaves and roots (Patel et al., 2022).

In addition, the citric acid, arginine, and asparagine contents increase

under LK in rapeseed (Hu et al., 2021), and most amino acids increase

in tomato roots under LK (Sung et al., 2015). Armengaud et al. (2009)

found that the selective reduction of acidic amino acids contributes to

maintaining charge balance in response to potassium-deficient

conditions. Under high-N conditions, most amino acids decreased in

apple leaves, and under HK conditions, most amino acids decrease in

apple (Sun et al., 2021). In plants, the accumulation of free amino acids

has been reported under N and P deficiency conditions (Hernández

et al., 2007; Pant et al., 2015; Mo et al., 2019; Ding et al., 2021). In this

study, we found that the synthesis of most amino acids was increased in

apple leaves under LK stress, especially in ornithine and arginine

(Figure 5; Table S4). These results show that the deficiency of

macronutrients affects the accumulation of amino acids in plants.

Carbohydrate metabolism plays core roles in plant metabolism,

providing energy for plant growth and development, and it acts as a

bridge in the communication of proteins, lipids, and metabolism

(Rolland et al., 2006). The increased content of soluble sugars,

including glucose, sucrose, and fructose, in plants is a typical

response to different stresses (Armengaud et al., 2004; Rosa et al.,

2009; Carvalhais et al., 2011; Wang et al., 2012b; Tang et al., 2015).

Zeng et al. (2018) found that most sugars are significantly

upregulated under a K-deficient environment in barley roots and

leaves. Under LK and HK stresses, the glucose and glycerate-3P

contents also increased in apple, suggesting that increased

accumulation of sugar may be one of the physiological

characteristics for different K stress adaptations in plants. Sugar

and potassium have a common function in regulating osmotic

potential. We also identified DEGs involved in carbohydrate

metabolism, especially those related to glycolysis and the TCA

cycle, which were differentially expressed in response to different K

stresses. Glycolysis is a process of glucose breakdown to form

pyruvate (Fernie et al., 2004). Changes in the levels of gene

transcripts in the glycolytic pathway, such as phosphofruckinase-1

(PFK), aldolase (AD), pyruvate-phosphate kinase (PPDK), and

phosphoenolpyruvate carboxylase kinase (PPCK), were found

under LK and HK conditions in apple. PFK catalyzes a reversible

reaction in glycolysis and regulates the glycolysis pathway (Schaeffer

et al., 1996; Mustroph et al., 2013). It has been reported that the PFK

gene is upregulated in barley under LK (Ye et al., 2022). In this study,

the expression of PFK (MD01G107500 and MD07G1144100) was

increased in apple leaves, which may have induced an increase the

glycerate-3P content in apple leaves under LK (Figure 5). Li et al.

(2018) revealed that the TCA cycle of two soybean genotypes is

inhibited in leaves and roots under low-N stress. We have previously

reported that the TCA cycle is also decreased under N-deficient stress

in apple leaves (Sun et al., 2021). The DEGs involved in the TCA

cycle, namely, fumarase (FUM), isocitrate dehydrogenase (IDH), and

citrate synthase (CS), were also downregulated in apple leaves under

LK (Figure 5), indicating that LK stress caused greater damage to
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apple leaves. Carbohydrate metabolism enzymes, particularly those

involved in glycolysis and the TCA cycle, may be indispensable for

plant survival under low nutrient conditions (Zeng et al., 2015).

Combined KEGG enrichment analysis of these pathways showed

that the biosynthesis offlavonoids was a significantly enriched pathway

under different K stresses (Figure 6). Flavonoids are secondary

metabolites with low molecular weights, and they are widely found

in plant communities and are closely related to the UV protection,

flower color formation, plant growth regulation, and pathogen

resistance. Many studies have found that flavonoids are related to

macronutrients in plants, such as N, P, and K. In rapeseed, nitrogen

deficiency enhances ANS and DFR gene expression (Koeslin-Findeklee

et al., 2015). The expression of the PAL5, CHS2, F3’H, and F3’5’H genes

is significantly increased in tomato leaves under N deficiency stress

(Løvdal et al., 2010). Luo et al. (2019) reported that flavonoids are

significantly decreased under low P in maize. In the present study, the

DEGs and DAMs involved in the flavonoid pathway also changed in

apple under different K conditions (Figure 6). The level of naringenin

chalcone in apple leaves and roots was increased under LK conditions.

Moreover, the phenylalanine content decreased in apple leaves under

different K conditions. The PAL gene in apple leaves was upregulated

under LK stress but downregulated under HK conditions. The C4H,

4CL, CHS, F3H, ANS, CHI, andDFR genes were upregulated under LK

stress, but the UGT gene was downregulated under LK stress. Under

HK conditions, the PAL, UGT, CHI (MD01G1118300), and DFR

(MD11G1229100) genes were downregulated in leaves. Together,

these results indicated that the flavonoid pathway plays an important

role in the apple response to different potassium stresses.
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