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Editorial on the Research Topic 


Recent advances in big data, machine, and deep learning for precision agriculture


Precision agriculture involves the use of real-time information to enhance the efficient use of resources and the oversight of farming methods, all while minimizing adverse environmental effects. Thanks to advancements in remote sensing technologies, there is now a substantial amount of big data being produced within the agricultural sector. This data, which needs to be transformed into valuable information, has proven to be beneficial when subjected to analysis using machine and deep learning techniques applied to remote sensing products. This Research Topic “Recent advances in big data, machine, and deep learning for precision agriculture” has attracted 20 high quality articles that cover the state-of-the-art applications and technical development of artificial intelligence, big data, features optimization, crop disease detection and classification for precision agriculture. In the ever-evolving landscape of agriculture, three pivotal themes have emerged as beacons of transformative change. This editorial delves into the realms of innovation that are shaping the future of agriculture, focusing on three interconnected themes: advances in plant disease detection and crop health monitoring, integration of Artificial Intelligence (AI) and Machine Learning (ML) in precision agriculture, and innovative approaches for crop production optimization.

In the realm of agricultural sciences, the dynamic landscape of plant disease detection and crop health monitoring has witnessed substantial progress, thanks to pioneering research endeavors. Shoaib et al. confronted the persistent challenge of manually monitoring plant diseases by underscoring the pivotal role of machine learning technology. Their work proposed a sophisticated deep learning-based system, leveraging a convolutional neural network (Inception Net) trained on a substantial dataset comprising 18,161 segmented and non-segmented tomato leaf images. Noteworthy were the employment of two state-of-the-art semantic segmentation models, U-Net and Modified U-Net, for disease detection and segmentation. The outcomes showcased the Modified U-Net model’s superior performance, surpassing existing methods and affirming its efficacy in classifying plant diseases with high accuracy. Addressing the global issue of Bacteriosis infections in peach crops, Akbar et al. presented a groundbreaking solution employing a novel Lightweight Convolutional Neural Network (WLNet) based on the Visual Geometry Group (VGG-19). Their study incorporated a dataset of 10,000 images, preprocessed through various techniques, to train the proposed model for detecting and classifying Bacteriosis and healthy peach leaves. Remarkably, the LWNet model achieved an impressive accuracy of 99%, outperforming established models such as LeNet, Alexnet, VGG-16, and the simple VGG-19. This underscored the effectiveness of the LWNet model in Bacteriosis detection.

In a parallel effort, Shoaib et al. presented a context-aware 3D CNN model for lesion segmentation and a Deep CNN for lesion subtype recognition, followed by survival prediction using a hybrid CNN and Linear Regression approach. Evaluating their model on the Plant Village Benchmark Dataset, the segmentation model attained an accuracy of 92%, while the subtype recognition model exhibited high accuracies across various plants, suggesting its potential for real-time disease detection and crop health monitoring. Lamba et al. delved into the impact of paddy leaf diseases on grain production, emphasizing the imperative for accurate detection. Their study utilized a dataset of 4,068 paddy leaf images, amalgamating primary and secondary data from repositories like Mendeley and Kaggle. Employing a generative adversarial network (GAN), they augmented the dataset and proposed a hybrid approach involving a convolutional neural network (CNN) and support vector machine (SVM) for disease severity classification. Impressively, the model achieved a 98.43% accuracy in predicting bacterial blight, blast, and leaf smut infections, outperforming existing CNN and SVM models. Salman et al. explored the application of deep learning in plant disease detection for precision agriculture. Their comprehensive overview discussed the pros and cons of existing approaches, highlighting advancements in machine-learning-based disease detection, prevalent datasets, and emerging techniques. The paper aimed to inform researchers and practitioners in the field, inspiring future research efforts for enhanced crop health management. Batin et al. introduced SPIKE-segm, a curated dataset, and WheatSpikeNet, an optimized instance segmentation approach, to accurately count wheat spikes in field imagery. Their proposed method, based on Cascade Mask RCNN with enhancements and hyperparameter tuning, demonstrated superior detection and segmentation performance, outperforming existing state-of-the-art methods and showing potential for precise yield estimation in wheat plants. Wei et al. put forth a multi-scale fusion Recurrent Feature Reasoning (RFR) network to enhance accuracy in grading potted anthurium plants through machine vision. The network, equipped with a multi-layer component in the feature reasoning module, effectively addressed occlusion problems during image capture. Comparative experiments showcased the superiority of the proposed network over traditional image completion models, particularly excelling in handling large-area incomplete images. In another noteworthy contribution, Shoaib et al. introduced the EG-CNN model, a novel explainable gradient-based approach for predicting plant diseases using omics data and hyperspectral images. Their study demonstrated the model’s resilience to hyperparameter variations, faster testing times compared to baseline models, and effective capture of crucial aspects of plant diseases through a qualitative analysis using saliency maps. The research emphasized the potential of deep learning in plant bioinformatics for accurate and robust disease detection. The collective impact of these groundbreaking studies not only addresses the current challenges in plant disease detection but also opens avenues for further exploration and innovation in the realm of precision agriculture and crop health management.

In the rapidly evolving landscape of precision agriculture, the integration of AI and ML has emerged as a game-changer. The exploration by Mesías-Ruiz et al. delves into the pivotal role that AI and ML play in addressing the challenges of crop protection, particularly in the face of climate change and escalating pest incidences. The authors trace the evolution of crop protection from precision agriculture (Ag1.0) to the present mature stage aligned with Ag5.0, highlighting the integration of ML and cutting-edge agricultural technologies for precision crop protection. A comprehensive taxonomy of ML algorithms is presented, accompanied by a bibliometric study on over 120 algorithms. The scientific impact of ML, with a specific focus on its application in the detection and control of crop diseases, is thoroughly analyzed. Furthermore, the article outlines 39 emerging technologies, including smart sensors and AI-based robotics, that are shaping the future of digitized, smart, and real-time crop protection in Ag5.0. The concluding section succinctly summarizes key insights and remarks, providing a comprehensive view of the transformative potential of AI and ML in modern agriculture.

Shoaib et al. delves into recent advancements (2015-2022) in the application of ML and DL techniques for plant disease identification. They highlight challenges and limitations associated with ML and DL in plant disease identification, such as issues related to data availability, imaging quality, and distinguishing between healthy and diseased plants. By offering solutions to these challenges and limitations, this research provides valuable insights for researchers, practitioners, and industry professionals involved in plant disease detection. It presents a comprehensive understanding of the current state of research in this field, outlining both the benefits and limitations of ML and DL methods.

In a related study, Zhou et al. investigate the impact of parameters such as canopy height, fractional vegetation cover, and spectral indices on the accuracy of yield prediction. Their results underscore the significance of integrating agronomic trait parameters with spectral features, showcasing substantial improvements in prediction accuracy. The study identifies a potent combination of canopy height, fractional vegetation cover, normalized difference red-edge index, and enhanced vegetation index that yields the best results. Notably, the research reveals enhanced prediction accuracies during specific growth stages, particularly heading, and across multiple stages compared to single stages. Despite weaker predictions across different cultivars, the combination of agronomic traits and spectral indices proves instrumental in improving predictions. Singh et al. shift the focus to the implementation of IoT-based smart farming for growing tomatoes. Emphasizing ultrafast response and efficiency, the authors present a smart framework employing IoT devices for monitoring and automating tasks such as moisture prediction, irrigation, and nutrient levels. Large-scale experiments validate the model’s effectiveness in intelligently monitoring the irrigation system, contributing to higher tomato yields. Additionally, a forthcoming smartphone app is poised to provide farmers with essential data on the health of their tomato crops, exemplifying the practical applications of AI and ML in real-time farming solutions.

In the realm of image acquisition and processing, Jin et al. introduce EBG_YOLOv5, an optimized version of YOLOv5 with enhanced precision and reduced computational requirements. Ablation and comparison experiments showcase EBG_YOLOv5’s superiority over its predecessor, demonstrating higher precision, recall rates, and mAP0.5 while simultaneously reducing model size. The improved model exhibits superior accuracy and a smaller size, paving the way for its application in hydroponic lettuce defective leaf detection. Tan et al. contribute a novel method, Im-YOLOv5s, for navigation line extraction in complex agricultural environments. Utilizing deep learning and least squares algorithms, the authors enhance the YOLOv5s algorithm, achieving higher detection performance with notable improvements in accuracy and frame rate. The results demonstrate the effective detection of complex agricultural features, meeting the requirements for intelligent mechanization in Panax notoginseng planting.

On the other hand, M. Abdullah et al. tackle challenges in plant disease detection by addressing issues related to data availability, class imbalance, and data augmentation. Their study compares the performance of diffusion-based model RePaint with state-of-the-art GAN model InstaGAN, showcasing the superior quantitative results of RePaint. The study highlights the potential of diffusion models in data augmentation for plant disease detection, opening new avenues for research in this domain. Bi et al. propose a transformer-based approach for segmenting images into plant and soil categories. Employing vision transformer modules for feature extraction and handling time-series features, the method exhibits a remarkable reduction in prediction error compared to baseline models. The study sheds light on the crucial impact of seed information on predictions, particularly for low yields, demonstrating the versatility and effectiveness of transformer-based approaches in precision agriculture. These groundbreaking studies collectively underscore the transformative power of AI and ML in advancing precision agriculture. From crop protection to yield prediction, smart farming, image processing, and disease detection, these innovative approaches mark a paradigm shift in the way we cultivate and manage crops, heralding a new era of efficiency, sustainability, and intelligence in agriculture.

In the realm of agricultural technology, groundbreaking strides are being made to revolutionize crop production optimization. In the year 2022, Wang et al. introduced Cropformer, a cutting-edge deep learning approach designed for accurate and efficient multi-scenario crop classification using remotely sensed data. The methodology employed by Cropformer entails a two-step classification process, beginning with self-supervised pre-training to accumulate a profound understanding of crop growth, followed by fine-tuned supervised classification using labeled time series data. Cropformer’s prowess surpasses existing methods in a myriad of scenarios, including full-season crop classification, in-season crop classification, few-sample crop classification, and model transfer. Noteworthy is its ability to exhibit higher accuracy with fewer samples, showcasing exceptional efficiency during classification. What sets Cropformer apart is its adept utilization of both unlabeled and labeled data to build a priori knowledge, enabling the model to learn generalized features for versatile crop classification.

In 2023, Wang et al. addressed the imperative of real-time fruit detection in the Xiaomila pepper harvesting robot. Their solution, the YOLOv7-PD model, integrates YOLOv7-tiny as a transfer learning model, incorporating modifications such as deformable convolution and the SE attention mechanism. The experiments conducted revealed that YOLOv7-PD outperformed other single-stage detection models, achieving a remarkable mean Average Precision of 90.3%. Furthermore, the model demonstrated a reduction in size from 12.7 MB to 12.1 MB and a decrease in computational complexity from 13.1 GFlops to 10.3 GFlops, making it a more effective and computationally efficient solution for Xiaomila fruit detection. Hasan et al. directed their focus towards Bangladesh’s agriculture in 2023, addressing the global challenge of insufficient agricultural growth to meet the increasing demand for food. Through the Research Topic and preprocessing of data from relevant institutions, they proposed an ensemble machine learning approach, K-nearest Neighbor Random Forest Ridge Regression (KRR), to predict major crop production. KRR demonstrated superior performance, exhibiting low mean square error and high R2 values for rice, wheat, and potato production. Additionally, a recommender system was designed to suggest suitable crops for specific land areas, aiming to assist farmers and enhance overall agricultural productivity. In the same year, Hou et al. proposed a groundbreaking occluded cherry tomato recognition model, DSP-YOLOv7-CA, designed to enhance the accuracy of picking robots in natural environments. The model, based on YOLOv7, incorporates null residual edges, depth-separable convolutional layers, jump connections, and a coordinate attention mechanism (CA) to improve feature extraction and attention to occluded tomatoes. The experimental results showcased superior performance, with an impressive 98.86% average detection accuracy, reduced model parameters, and effective recognition of cherry tomatoes even with less than 95% occlusion in real-world scenarios.

Finally, Kao et al. addressed the need for cold-tolerant soybean cultivars, given the crop’s sensitivity to low temperatures. Using an advanced systems biology framework, the researchers identified 44, 143, and 45 cold tolerance genes (CTgenes) for short-, mid-, and long-term cold treatment. These CTgenes outperformed other genes in an independent RNA-seq database and were validated with SNP genotype data, showcasing their effectiveness in distinguishing cold-resistant and cold-sensitive soybean lines. The proposed pipelines offer a robust and efficient solution for biomarker discovery, module discovery, and sample classification in plant traits.

In conclusion, these innovative approaches signify a new era in agricultural technology, promising increased efficiency, accuracy, and sustainability in crop production optimization. As researchers continue to push the boundaries of technological advancements, the agricultural landscape stands to benefit significantly from these groundbreaking developments.
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Soybean is sensitive to low temperatures during the crop growing season. An urgent demand for breeding cold-tolerant cultivars to alleviate the production loss is apparent to cope with this scenario. Cold-tolerant trait is a complex and quantitative trait controlled by multiple genes, environmental factors, and their interaction. In this study, we proposed an advanced systems biology framework of feature engineering for the discovery of cold tolerance genes (CTgenes) from integrated omics and non-omics (OnO) data in soybean. An integrative pipeline was introduced for feature selection and feature extraction from different layers in the integrated OnO data using data ensemble methods and the non-parameter random forest prioritization to minimize uncertainties and false positives for accuracy improvement of results. In total, 44, 143, and 45 CTgenes were identified in short-, mid-, and long-term cold treatment, respectively, from the corresponding gene-pool. These CTgenes outperformed the remaining genes, the random genes, and the other candidate genes identified by other approaches in an independent RNA-seq database. Furthermore, we applied pathway enrichment and crosstalk network analyses to uncover relevant physiological pathways with the discovery of underlying cold tolerance in hormone- and defense-related modules. Our CTgenes were validated by using 55 SNP genotype data of 56 soybean samples in cold tolerance experiments. This suggests that the CTgenes identified from our proposed systematic framework can effectively distinguish cold-resistant and cold-sensitive lines. It is an important advancement in the soybean cold-stress response. The proposed pipelines provide an alternative solution to biomarker discovery, module discovery, and sample classification underlying a particular trait in plants in a robust and efficient way.
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Introduction

Soybean [Glycine max (L.) Merr.] is served as one of the most economically valuable crops globally and currently is the first and fourth largest grain or oilseed crop in the world in terms of harvested area and yield, respectively (FAOSTAT, http://www.fao.org/faostat/en/#compare). Soybean is not only a dietary staple in human society, but also the material of many kinds of the processed products (e.g., soymilk, tofu, miso, and so on) and has a positive effect on the human body (Messina, 1997; Van Ee, 2009; Qin et al., 2022). In recent years, the soybean’s growing environment has faced more severe pressure, due to the extreme temperature incurred by rapid climate change (Gonçalves et al., 2021). Soybean is regarded as a cold-sensitive crop species (Robison et al., 2017). Hence, it has an urgent need to identify candidate tolerance genes for cold-stress in soybean and breed the cold-resistant cultivars to cope with its endangered growing environment.

Recently, agriculture around the world has faced more serious abiotic stresses (such as extreme temperatures, drought, flooding, and salinity), resulting in approximately 51-82 percent loss in crop yield annually (Oshunsanya et al., 2019). Therefore, efforts to enhance plants’ tolerance toward abiotic environmental stresses, such as temperature extremes, remain challenging. Cold stress is an abiotic stress factor that suppresses crop productivity, which can be divided into chilling (0~15 °C) and freezing (< 0 °C) stress (Ding et al., 2019). Both stresses can influence plants’ photosynthesis, cellular metabolism, and the production of abscisic acid (ABA) and jasmonic acid (JA), causing physiological damage during exposure. Growing tropical crops, such as soybean, rice, and corn in temperate climates (e.g., North America, North-Eastern China, Brazil.), tends to induce their cold sensitivity when exposed to chilling stress (Bandara et al., 2021). The appropriate temperature for soybean growth during the vegetative stage is 15~22 °C (Liu et al., 2008). Under chilling stress, soybean seedlings may result in growth retardation (below 15 °C), a low rate of germination, and declining vitality (below 10 °C). The decreases in the germination rate and the seedlings’ vitality happen at temperatures below 10 °C. Furthermore, temperatures below 6°C will cause little growth in soybean seedlings, severely blocking the physiological features. (Bandara et al., 2021). Cold stress imposes a significantly adverse impact on shoot height and shoot dry matter accumulation of soybean, and also declines the development of new leaves. In addition, low temperatures at flowering deter soybean’s floral initiation. Cold stress can negatively interfere with growth and development at all phenological stages in soybean and, therefore, is an enormous impediment to crop growth (Sanghera et al., 2011).

As highlighted above, there is a solid need to breed cold-tolerant soybean cultivars under climate change conditions. Cold-tolerant soybean species can resist low temperature environments to prevent chilling injury signs, such as chlorosis, necrosis, or growth retardation (Sanghera et al., 2011). Cold inducible genes in plants involve many metabolic pathways that drive the plant metabolism to respond to low temperature environment (Sanghera et al., 2011). The C-repeat/DRE binding factors (CBF/DREBs) play a vital role in cold tolerant plants. The research shows that both cold treatments, 1hr and 24hr, changed the CBF/DREBs genes transcript level significantly (adjusted p-value< 0.001) (Yamasaki and Randall, 2016).

Over the last decade, candidate-gene approaches based on knowledge of potential functions and physiological responses are most commonly used to search for functional or adaptively relevant loci that play key roles in a phenotypic trait of interest using a variety of experimental designs and genetic approaches, including linkage mapping (Jiang et al., 2009; Qiu et al., 2011; Zhang et al., 2012), and gene expression profiling (Yamasaki and Randall, 2016; Robison et al., 2019). Advances in high-throughput experimental technologies have dramatically generated and accumulated massive omics data and complex bioinformatics, providing the opportunity to merge new dimensions in crop improvement programs. Omics technologies such as genomics, transcriptomics, proteomics, and metabolomics, either genome wide or targeted, use a systems biology approach to characterize and quantify pools of biological molecules for comprehensively understanding the structures, functions, and their dynamics of a cell, tissue, or organism (Vailati-Riboni et al., 2017). Systems biology integrated multi-omics data across a wide range of fields (biology, informatics, data science, statistics, and computational science) involved, from different experimental backgrounds, providing a more powerful foundation, more comprehensive understanding and more meaningful insight into stress tolerance, physiology mechanism, genetic processes and others in different crop species (Pazhamala et al., 2021). Von Bertalanffy (1973) introduced the concept of systems biology and then used it to systematically integrate multi-omics data on potatoes (Acharjee et al., 2016). With the development of integration methods, it is becoming available to incorporate complex biological information from several omics and non-omics (OnO) data. Recently, Lai et al. (2021) proposed a framework of multi-dimensional databases integration, combining genomic and genotypic data, and a step function-based weighting scheme to select flooding tolerance genes. Integrating knowledge derived from genetic information and multiple omics data, coupled with bioinformatics and bioanalytical approaches, can improve gene discovery to better understand complex networks of interactions between genes, proteins, metabolites and environmental factors within a complex phenotypic trait (e.g., cold tolerance and response to cold stress).

Most abiotic stress-related traits result from the interaction of several phenotypic features with multi-environment conditions, which are complex in nature. Understanding these complex mechanisms underlying biological processes and molecular functions requires complete and precise data to characterize such features and conditions in detail. However, the integration of OnO data is not an easy task due to data complexity, data heterogeneity (e.g., different data types and formats from varying designs/technologies), data harmonization (e.g., different data scaling, normalization, standardization, and transformation), and identifiers mapping (e.g., matching gene/pathway annotations with transcripts/proteins/metabolites). Alternatively, incorporating high-dimensional omics data and low-dimensional non-omics data is still a challenge in reducing potential bias, noise, and interaction between multi OnO data. Therefore, many modelling approaches, including independent modelling, conditional modelling, and joint modelling were developed to overcome the challenges mentioned above during OnO data integration (López De Maturana et al., 2019).

Dimension reduction is an important step in the modeling process. Feature engineering is one of the effective ways to reduce the complexity of data, remove irrelevant variables, and increase the modeling efficiency (Khalid et al., 2014). Appropriate feature engineering plays an important factor in successful modeling, and the techniques of feature engineering differ from field to field (Verdonck et al., 2021). An example of application of feature engineering in the agricultural fields was applied to yield prediction, using the manpower-based (agricultural experts), the algorithm-based (random forest variable importance), and the mathematical model-based (Pearson correlation) feature selection and feature extraction to eliminate the redundant variables (Shahhosseini et al., 2020). Therefore, benefits from the feature engineering enable us to know more clearly about the interaction between environmental factor and crop yields.

The concept of gene prioritization is not new. Several prioritization approaches were proposed for complex traits in human diseases. Recently, the idea of gene prioritization was applied to rice bacterial leaf blight (Xia et al., 2013), Arabidopsis thaliana flowering-time (Zhai et al., 2016), and soybean flooding tolerance (Lai et al., 2021). Nevertheless, there is still some space left for improvement. The gene prioritization approaches used in these studies were evidence-based (e.g., rank, impact factor, and term frequency-based), which were highly dependent upon a specific set of features. The key challenge in gene prioritization is to precisely prioritizing a list of candidate genes accordingly and selecting important genes for a specific phenotype of interest. The random forest (RF) has been one of the most widely-known algorithms in the scientific area. The RF algorithm undergoes two random stages, bootstrapping and random feature selection. Additionally, the RF chooses features randomly to generalize over the data to prevent overfitting and provide stable generalization errors. The RF is always a better way for researchers to solve multi-class problems and cope with a large amount of data (Breiman, 2001). In this study, we employed the non-parameter random forest (NPRF) algorithm to prioritize a list of genes in a large-scale dataset to avoid false-positive results and provide a much more accurate decision during the gene prioritization stage.

A gigantic amount of biological data has been generated due to the progress of computational technologies and biological techniques, providing opportunities to identify the underlying biological phenomena through pathway analysis and crosstalk networks. The concept of pathway crosstalk describes the correlations or relationships among pathways in terms of the degree of the overlapping or sharing genes due to closely related functions. Studying pathway crosstalk at the network level in plants can not only reveal the whole architecture of the mechanism underlying a certain phenotype of interest but also can validate hypotheses experimentally about the crosstalk. Several applications of crosstalk in plants have uncovered novel findings and new insights, including hormone crosstalk on the regulation of plant defense (Aerts et al., 2021). The first application of crosstalk in soybean was introduced by Song et al. (2019) to uncover the role of BZR1-like proteins (GmBZLs) in brassinosteroids signaling regulation, involved with several plant hormones and abiotic stress. Investigation of such interaction is imperative to unveil the potential crosstalk and provides a more comprehensive insight into physiological mechanisms.

Because of the increasing frequency and intensity of cold extremes and being a cold-sensitivity crop, there is an urgent need to identify the candidate genes relevant to cold-tolerant responses in soybean for breeding cold-resistant cultivars to alleviate the production loss. In particular, soybean cold-tolerant responses are complex quantitative traits controlled by many genes, environmental factors, and their integration. Therefore, we developed a systematic and comprehensive framework of feature engineering in the present study, including integrated feature selection and feature extraction for OnO data integration and genes prioritization, to identify key genes favoring cold tolerance (denoted as CTgenes) in soybeans. Here, we defined the CTgenes as significantly associated with cold tolerance or cold responses contributing to cold-related traits during the vegetative growth phase in experiments with treatments at low temperature (below 15 °C). According to the period of time of cold tolerance, we classified them into three periods, including short-term (shorter than 12hr), mid-term (between 12hr to 48 hr), and long-term (longer than 48hr) (Hannah et al., 2005). We first employed the data-ensemble methods to systematically grab and integrate valid information from collected OnO data to access valuable insights into biological events and processes. Possible sources of potential biases (i.e. selection bias and ascertainment bias) and noise were minimized during the data-ensemble stage. A scoring system was set to evaluate the varying magnitude of associations for each of the collected genes related to the cold tolerance or response to cold stress in soybean. A NPRF prioritization algorithm and statistical testing approaches were proposed to select prioritized CTgenes for short-, mid-, and long-term cold tolerance. We compared our results to other existing methods to evaluate the robustness and effectiveness of the prioritized CTgenes in a large-scale RNA-seq gene expression data (Yamasaki and Randall, 2016) under cold treatment in soybean leaves. Furthermore, a model-based pathway enrichment analysis and pathway crosstalk network were performed to gain insight into the biology of functional contexts of the CTgenes. Finally, we validated our CTgenes using genotypes data of 56 soybean samples in cold tolerance experiments. Significant contributions to scientific research may include multiple aspects through our developed systems biology pipelines. (1) Fast-precise biomarker discovery and sample classification: important key genes underlying a particular phenotype can be efficiently selected to distinguish diverse sample features. (2) Higher accuracy and fewer false-positive results: rigorous data quality control can typically produce high-quality results without information loss. (3) Cost reduction: through the pipelines, several costs in time, funding, manpower, and workforce can be minimized. (4) Application and generalization: our proposed systems biology framework can be applied to other important phenotypes (e.g. drought tolerance) in soybeans and generated for other plant species (e.g. rice) in an efficient way.



Materials and methods

We proposed a comprehensive and systematic framework of feature engineering for OnO data integration from multiple data sources, and prioritized them for the identification of cold tolerance genes in soybean. Our framework is comprised of four steps. The first step is data input, including OnO data mining and data ensemble. The second step is data processing consisting of integration analysis and gene prioritization. Integrated feature selection and feature extraction included unwanted data (i.e., uncertainties, irrelevant and redundant data, noise, errors, and false positives) exclusion using the data-ensemble method and the OnO data integration using the association-based method in the integration analysis. Feature fitness utilized the NPRF prioritization on decision trees construction. The third step is data output comprising CTgenes discovery, pathway enrichment analysis, and crosstalk network (i.e. module discovery). The fourth step is the validation study including cold tolerance experiments and cluster analysis (i.e. sample classification). A detailed pipeline of feature engineering for the OnO data integration and analytic strategy in this study is illustrated in Figure 1.

[image: Flowchart depicting a data processing pipeline for omics and non-omics data. It involves iterative data wrangling, data ensemble, integration using association-based methods, and random forest prioritization. Outputs include CT genes discovery, enriched pathways, and module discovery, leading to sample classification into susceptible and resistant categories.]
Figure 1 | The pipeline of feature engineering for omics and non-omics (OnO) data analytic strategy. The OnO data were classified into different layers (DNA, RNA, protein, function, homologs) of information, which were regarded as the input data. Integrated feature selection and feature extraction include the data-ensemble step and the integration step (using the association-based method), which were applied to remove unwanted data (i.e., uncertainties, irrelevant and redundant data, noise, errors, and false positives) and integrate the OnO data. The data processing step consists of the OnO data integration and gene prioritization. In the feature fitness, we proposed the non-parameter random forest algorithm for gene prioritization. The steps of data-ensemble and association-based integration approach are an iterative procedure for data updates (e.g. noise or errors removal, new added data). Data output step was illustrated by the discovery of CTgenes, enriched pathways, and module discovery. Validation study step was executed by cold tolerance experiments using 55 SNP genotypes data of 56 soybean samples.


OnO data mining and wrangling

The OnO data was mined from publications and open databases available in NCBI PubMed and Google Scholar. Only data related to soybean cold tolerance or response to cold stress (temperature below 15 °C) were collected by searching keywords. The related search terms were combinations of crop and trait. Keywords for crop included ‘soybean’ and ‘Glycine max’. Keywords relevant to cold tolerant trait were ‘cold’, ‘freezing’, ‘cool’, ‘chilling’, ‘low temperature’, ‘hypothermia’, and ‘microtherm’. To maximize the completeness of the datasets, we collected omics data (genomics, transcriptomics, proteomics, and metabolomics) from different layers (DNA, RNA, protein, function) of information. Similarly, physiological, pathological, phenotypic, demographic and ecological data from individual studies and large-scale non-omics data were collected. We recorded different types of OnO features analyzed by different approaches in each layer. For example, genomic data was collected from genome-wide association study (GWAS), association mapping, linkage mapping, and pathway analysis at the DNA layer. Transcriptomic data were collected from gene expression, non-coding RNA, and pathway regulation in the RNA layer. Proteomic data were collected from protein-protein interaction networks (PPIN) and proteome studies in the protein layer. Metabolome data were collected from functional networks and pathway regulation studies at the function layer. Besides, model plants (Arabidopsis thaliana and Medicago truncatula) have been studied for a comprehensive understanding of soybean functional genes. Hence, they were included in the OnO data integration as a layer.

We defined inclusion criteria as soybean and cold tolerance or response to cold stress only. The exclusion criteria considered studies that were related to genetically modified studies, human and animal experiments, non-soybean traits, and other irrelevant studies. To avoid possible noise and false positive results, we only considered QTLs and targeted traits (cold tolerance or response to cold stress) were associated within a 5 centimorgan (cM) interval. Both inclusion and exclusion criteria were used to minimize potential noise and biases.



Integrated feature selection and feature extraction

The integrated feature selection and feature extraction consists of the data-ensemble method and the OnO data integration analysis. The data-ensemble method involves several processes of data management and quality control, including data cleaning, data harmonization, data heterogeneity, and data mapping. In data cleaning process, we discarded unwanted data (i.e. duplicate, irrelevant, and not applicable data to this study) and also corrected inaccurate data (i.e. typos and incorrect data) to ensure correct and consistent data. In data harmonization process, we unified diverse data in formats, types, levels, and dimensions that were curated from different data sources into an aligned entire to ensure that data are comparable. An association-based scoring system was developed to integrate OnO data. Each marker, including single nucleotide polymorphism (SNP), simple sequence repeat (SSR), and QTL, was assigned a score to evaluate the magnitude in relation to cold tolerance or cold response in soybean. Scores for p-values, fold-change (FC), the logarithm of odds (LOD), degrees, and cluster coefficients were correspondingly transformed by using 10-based logarithms, absolute values, floor function, and step function to extract a suitable representation of data. Because OnO data were generated by different technologies, all scores were constrained within a reasonable range to avoid overestimated or underestimated scores extracted from a single platform in the data heterogeneity process. A detailed scoring scheme for diverse data formats across different layers is described in Supplementary Table 1. In the data mapping process, annotations of OnO entities (transcripts, proteins, SNPs, SSRs, and QTLs) with bioinformatics were matched to annotated genes. A window spanning 20 kb upstream/downstream of a gene was used in gene annotation mapping (Lai et al., 2021). In addition, annotated pathways (e.g., GeneOntology, GO-terms) were matched with corresponding gene sets. Finally, gene version correspondence analysis was performed to match different gene versions (Glyma v1.0, Glyma v1.1, and Glyma v2.0) (Grant et al., 2010; Schmutz et al., 2010), and unify them into Glyma v2.0 (Wm82.a2.v1) gene version (https://phytozome-next.jgi.doe.gov/info/Gmax_Wm82_a2_v1; https://soybase.org/dlpages/#annot).

Comparative genome mapping to different plant species using homologous genes with similar functions provides great potential for biomarker discovery (Gale and Devos, 1998). To extend the OnO data dimension, we included homologous genes from Arabidopsis thaliana and Medicago truncatula as the model plants. The keyword search technology was used to excavate relevant publications on cold tolerance in NCBI PubMed. Only data reported to be significantly tolerant to cold stress and validated in cold stress experiments were collected. We used BLASTP (Camacho et al., 2009) to conduct a sequence similarity search for protein sequences of the Glycine max genome by using alignment to match those from Arabidopsis and Medicago. Homologous proteins or genes, corresponding to soybean genes, were identified by the highest similarity in sequence searches. The similarity selection criteria included E-value less than 1.0×10-10 and an identity greater than 35 percent. We applied a step-function proportional to the number of references to score the importance of homologous genes in relation to cold tolerance or response to cold stress. Figures 2, 3 (only the ‘Systems Biology’ panel) demonstrates a novel framework of OnO data integration based on comprehensive data management and quality control rigorously and systematically. More attentively, Figure 2 displays the framework of integrated feature selection and feature extraction for OnO data integration. The OnO data mining was implemented on keyword searches. Multiple OnO data, consisting of omics data (genomic, transcriptomic, proteomic, and metabolomic data) and non-omics data, were classified into different layers (DNA, RNA, protein, function, and homologs) with different types of features analyzed by different methods. The collected data were filtered to exclude irrelevant data from this study, and classified into DNA, RNA, protein, and function layer in the data-ensemble step. In addition, homologous genes from model plants were extracted and included in the homologs layer. The ‘Systems Biology’ panel in Figure 3 demonstrates an overview of the integrated OnO data at the systems level. The OnO data integration was implemented based on the association-based scoring system. Feature selection and feature extraction were performed using the data-ensemble methods during data clean, data harmonization, data heterogeneity, and data mapping steps. A weighting scheme was applied through different cold treatment span to give respective weights. The test genes were compared to the core genes to determine the number of the top genes by an optimal cut-off threshold of combined score.

[image: Diagram illustrating the process of integrated feature selection and extraction using omics and non-omics data. It begins with keyword searches in databases like NCBI PubMed and Google Scholar, focusing on soybean studies. The omics data include genomics, transcriptomics, proteomics, and metabolomics, while non-omics data encompass plant pathology, physiology, phenotype, demography, and ecological stress. The filtered data, free of non-soybean and irrelevant studies, integrate both types to extract homologous genes and create a data ensemble. This process supports the generation of functional proteins from DNA through RNA transcription and translation.]
Figure 2 | Framework of integrated feature selection and feature extraction for OnO data integration. Multiple OnO data (genomic, transcriptomic, proteomic, and metabolomic data) were classified into different information layers (DNA, RNA, protein, function, and homologs). Each layer has different types of the OnO features analyzed by different methods.

[image: Study framework diagram illustrating the integration of systems biology, non-parameter RF prioritization, and prediction and validation. The process involves data mapping, weighting, gene prioritization through bootstrapping and permutations, independent omics for validation, pathway analysis, and module discovery. The final goal is breeding superior lines. Key components include core and test genes, prioritized CTgenes, and various analysis methods.]
Figure 3 | An overview of the integrated OnO data and breeding for superior lines in soybean. There are four primary steps: systems biology, non-parameter random forest prioritization, prediction and validation (pathway enrichment, module discovery, and validation study). GSEA represents gene-set enrichment analysis; GO represents gene ontology; R represents resistant varieties; S represents susceptible varieties.

We defined Xi (i=1,2,⋯,k ) to be the OnO matrix, with m layers (e.g., DNA, RNA, protein, function, and homologs) and ni features (e.g., SNPs, QTLs, mRNA, miRNA, gene, etc.). We jointly merged the k OnO matrices into a (n×m) OnO-specific matrix, where n sums over all features across all OnO matrices (i.e. [image: Mathematical expression showing \( n = \sum_{{i=1}}^{k} n_{i} \).] . For each gene, a score (denoted as [image: Mathematical notation displaying the letter S with subscripts j and i arranged vertically.] , j=1,⋯,n and l=1,⋯m) was calculated for each layer using the scoring scheme mentioned above. We defined Wj (j=1,⋯,n ) as a weight based on the duration of cold tolerance to evaluate the capacity of exposure to cold stress for each gene. Overall, a pool of genes (denoted as the test genes) extracted from the OnO data, each with a combined score, was established to uncover the CTgenes.

To determine the number of the CTgenes, a set of core genes is required to compare with the test genes. The core genes were defined to be significantly associated with cold tolerance or response to cold stress in soybean. Criteria for core genes selection were as follows: (1) the most significantly reported genes that were associated with cold tolerance or response to cold stress; (2) the most frequently reported genes with significant characteristics (i.e. reported on more than three layers, combined score ranked within the top 0.5% of the test genes, and scored higher than 3 at each layer excluding homologs); and (3) only genes that performed transcriptome measurement and were further validated by the quantitative polymerase chain reaction (q-PCR) with significant p-value less than 0.0001. An optimal cut-off score between the core genes (a left-skewed distribution) and the test genes (a right-skewed distribution) was identified to determine the number of the CTgenes in the NPRF prioritization procedure.



The NPRF prioritization

We proposed the NPRF prioritization algorithm based on the decision tree model to select important genes for feature fitness iteratively. A bootstrap resampling and random permutation approach were applied to build r decision trees from bootstrap samples. The final decision can be classified according to the votes of the r trees. We defined the test genes as the original training set [image: Mathematical expression defining a set \( D = \{ (G_j, S_l) \mid j = 1, \ldots, n; l = 1, \ldots, m \} \).] , where G represents a gene in the test genes and Sl represents a score on the l-th layer. That is, the original training set D contains n genes, and there are m scores in each gene. The procedures of the NPRF prioritization algorithm (please see the ‘Non-Parameter RF Prioritization’ panel in Figure 3) are elaborated as follows.

Step 1. Generating r bootstrap samples. We randomly generated r (10,000 times, say) bootstrap samples (denoted as [image: Mathematical expression showing \( D_{t}^{br} \).] , t=1,⋯,r ) of the same size of n from the original training set D (i.e. test genes) with replacement. We defined [image: \( D^{kl} = \{ D_1^{kl}, D_2^{kl}, \ldots, D_r^{kl} \} \).]  as a collection of r bootstrap samples for training tree models. The top h genes were determined by selecting the top h with the highest combined scores. We denoted [image: Mathematical expression showing a set: D_sup LBP^t equals the set of pairs (G_i^q_i, S_i^p_i) for indexes j ranging from 1 to h, and t ranging from 1 to r.]  as the top set for bootstrap sample.

Step 2. Generating q permutation samples. To compare with a certain bootstrap sample, a null model was used to randomly shuffle scores in order to break the structure inherent in the original training set D. As a result, q (10,000 times, say) permutation samples (denoted as [image: Mathematical notation showing "D" with a superscript "perm" and a subscript "t'".] , t'=1,⋯,q ) were constructed, and here we defined [image: Mathematical expression showing a set: \( D^{\text{norm}} = \{ D_1^{\text{norm}}, D_2^{\text{norm}}, \ldots, D_q^{\text{norm}} \} \).]  as a collection of q permutation samples. For each [image: Mathematical notation showing the expression "D subscript t prime superscript perm."]  (t'=1,⋯,q ), we selected the top h genes with the highest combined scores. Similarly, we denoted [image: Mathematical expression showing \( D^{train}_{t, qp} = \{ (G^{train}_{t, qp, j'}, S^{train}_{t, qp, j'}) | j' = 1, \ldots, h \} \) and \( t' = 1, \ldots, q \).] ) as the top set for q permutation samples.

Step 3. Constructing r decision tree models. For each bootstrap sample, the combined scores of the top bootstrap genes ([image: Mathematical expression showing a set \( S^{bt} = \{S_{j'}^{bt'} | j' = 1, \ldots, h\} \).] ) were compared with those of q sets of the top permutation genes ([image: Mathematical notation displaying a set \( S^{\text{spam}} \) comprising elements \( S_{1j}^{\text{spam}}, S_{2j}^{\text{spam}}, \ldots, S_{gj}^{\text{spam}} \) for \( j' = 1, \ldots, h \).] ) using the Wilcoxon rank-sum test to construct a decision tree model. A decision tree model was built only if the combined scores of the top bootstrap genes were significantly distributed higher than those of the top permutation genes. Otherwise, we discarded the decision tree, and regenerated a bootstrap sample followed by the permutation process to construct a new decision tree model until a total of r decision tree models were collected.

Step 4. Ranking r decision trees to build a final model. We pooled all the r decisions trees (the top bootstrap genes), and ranked them by the frequency of counts for each gene. The final decision tree model was identified by selecting the top h with the highest counts (this is the well-established CTgenes).



Validation studies of the CTgenes

The whole RNA-seq database of cold-treated leaves of soybean seedlings (Yamasaki and Randall, 2016) was used as an independent sample to validate the reliability and robustness of the CTgenes. Cold experiments on 2-week-old soybean (c.v. Williams 82) seedlings were treated at 4 °C for 2 days after the light was operated for 4 hours on day 10, and maintained at 4 °C under the light-dark cycles till harvest time (0, 1, and 24 hours). All experiments were performed in triplicate. Because of the comprehensive and large-scale of databases, their results were frequently used to confirm soybean’s physiological experiments (Robison et al., 2019; Li et al., 2022). Robison et al. (2019) reviewed Yamasaki and Randall's results (2016) and conducted RNA-seq analysis to confirm the ethylene-mediated signaling pathway has negative impacts on CBF/DREB-regulated cold responses in soybean underlying different scenarios of cold treatments. Li et al. (2022) later conducted genome-wide analysis of homologs using proteins sequences to identify mitochondrial calcium uniporter family genes, and validated by RT-PCR assays under cold treatment (harvested and measured gene expression after 0, 1, and 24 hr cold treatment at 4°C), which echo Yamasaki and Randall's results (2016) results . These evidenced that the whole genome RNA-seq databases can be a basis of cold-tolerant responses in soybean for further validation, evaluation, and experiments. We employed the ‘edgeR’ package in R to quantify the relative expression level of transcripts from RNA-seq data (https://bioconductor.org/packages/release/bioc/html/edgeR.html). In total, 49,778 gene expression data from RNA-seq were generated for validation studies.

Three approaches were applied to validate the CTgenes using the RNA-seq data. Statistical methods and sampling techniques were devised as follows. First, we compared our CTgenes with the remaining genes. The Wilcoxon rank-sum test was used to verify whether the CTgenes had smaller p-values than the remaining genes. Second, we compared our CTgenes with random gene sets. For simplicity, the process of the sampling approach is described below. (1) Sampling: we randomly sampled a set of genes (same size as the CTgenes) without replacement from the gene pool of the expression data. (2) Statistical testing: the CTgenes were compared to the random set using the Wilcoxon rank-sum test. (3) Loop: we repeated the above steps until 10,000 random sets were obtained. (4) Calculating an empirical p-value: we counted the frequency of random sets that outperformed the CTgenes divided by 10,000 to obtain an empirical p-value. Third, we performed the Wilcoxon rank-sum test and the hypergeometric test to compare our CTgenes with other candidate genes identified from other methods, including the RF prioritization on Rafsee (Zhai et al., 2016), the step-function adjusted factor-based (SFAF) prioritization (Lai et al., 2021), the network-based prioritization on SoyNet (Kim et al., 2017), candidate genes selection on SoyBase (https://www.soybase.org/), and the QTLs mapping approach (Jiang et al., 2009; Qiu et al., 2011; Zhang et al., 2012). All statistical resampling and analyses were implemented via Python 3.8 version. For detailed framework of validation, please refer to Figure 3 (please see the ‘Prediction & Validation’ panel).



Pathway enrichment and crosstalk network analysis

To better understand the whole map of the molecular mechanisms underlying cold stress in soybeans, we introduced systems biology approaches to computationally examine the CTgenes in the manner of comprehensive framework and systematical thinking. The GO is a comprehensive database for soybeans, which integrates abundant terms (13,292 GO terms) on the functions of genes. The GO annotations provide links between genes and biological processes, cellular components, or molecular functions. In this study, we conducted pathway enrichment analysis to investigate physiological and biological pathways that are overrepresented in cold tolerance or response to cold stress. The hypergeometric test was applied to test enrichment for genes in a specific pathway (i.e. GO term) against genes outside the pathway, using the CTgenes and the GO terms. Pathways whose gene numbers were greater than 2,500 or smaller than 5 were excluded from the analysis to prevent overly limited information or excessively large pathways. All p-values were adjusted by Bonferroni correction to account for false positive results.

To visualize module discovery, we conducted network analysis through a pathway crosstalk to understand alternative information between biological functions of complex systems underlying cold tolerance in soybean. To explore the pathway crosstalk, we calculated the degree to describe the connections of a node in the crosstalk network. A pathway crosstalk network consists of nodes (i.e. biological pathways) and edges (i.e. overlapping genes between pathways), which is widely used to describe communications or interactions between functional pathways. Here we defined the node color, node size, and edge width to present the complicated relations between biological functions in an information-enriched way. The node size was defined as the significance level of a certain pathway from the hypergeometric test. The edge width was defined as the overlapping genes between pathways. The node color was used to distinguish short- (purple), mid- (yellow), and long-term (purple) cold tolerance. Edges in pink, gold, and blue connect short-, mid-, and long-term pathways, respectively. Edges in gray represent connections between mid- and long-term pathways.



Validation in soybean samples

A total of 56 soybean samples were used to conduct cold tolerance experiments (unpublished data) to evaluate cold resistant and susceptible varieties. We investigated soybeans response to cold stress at the V3 stage by recording brown spots, curl, wrinkled on leaves and plant development after low temperature occurrence (the minimum air temperature below 10°C). All samples were genotyped using the Axiom® 180K SoyaSNP array. Fifty-five SNPs located in the CTgenes were selected for cluster analysis. SNPs were used as genotypic data for assessing relationships among soybean germplasms. A distance matrix was calculated as identity-by-state dissimilarity using PLINK software (Purcell et al., 2007), and a phylogenetic tree was constructed using the neighbor-joining tree method in MEGA X (Kumar et al., 2018). The neighbor joining tree was visualized by Interactive Tree of Life available at https://itol.embl.de/. We performed a cluster analysis on soybean samples to investigate whether the CTgenes are able to distinguish cold tolerance and susceptible varieties in soybean.



Implementation environment

All the analyses were implemented on the Dell PowerEdge R930 4-socket 4U rack server model that supports four processors based on the Intel® Xeon® CPU E7-4830-V3 2.10GHz. This server consists of 64-core CPUs, 512G RAM, and 110TB SAS HD memory. All the analyses were operated in both Python v3.8 and R Linux 64-bit v4.2.1. The gene network analyses of the selected CTgenes were employed on the SoyNet (https://www.inetbio.org/soynet/) to obtain a network edge information, followed by the Cytoscape (https://cytoscape.org/) to create and visualize the functional modules.




Results


Literature study

We found three articles using the linkage mapping approach to identify the candidate QTLs relevant to cold tolerance in soybean (Jiang et al., 2009; Qiu et al., 2011; Zhang et al., 2012). These QTLs were collected in the DNA layer. In total, 11 articles conducted the expression profiles on targeted genes in soybean under low temperature, including genes encoding GmFLC-like protein (Lyu et al., 2020), CBF/DREB1 transcription factors (Robison et al., 2019), GmIRCHS genes (Ohnishi et al., 2011), heat shock transcription factors (Chung et al., 2013), genes encoding CCA1-like proteins (Bian et al., 2017), HSP20 gene family (Lopes-Caitar et al., 2013), RCC1 gene family (Dong et al., 2021), 14-3-3 gene family (Wang et al., 2019), carboxylase gene family (Wang et al., 2016), histone deacetylases gene family (Yang et al., 2018), and genes encoding NIMA-related kinase 1 (GmNEK1) (Pan et al., 2017). In addition, five articles were collected on the basis of a non-coding RNA molecular approach, including circRNA (Wang et al., 2020b) and miRNA (Maruyama et al., 2012; Zhang et al., 2014; Xu et al., 2016; Sun et al., 2020), to uncover their impact to other transcriptional RNA under cold stress in soybean. These genes were collected in the RNA layer. The PPIN database demonstrates the functional relationships between gene pairs, which was downloaded from the PlantRegMap (http://plantregmap.cbi.pku.edu.cn/). These gene pairs were collected in the protein layer. Three articles using the pathway regulation methods were collected, of which two were classified into the RNA layer (Yamasaki et al., 2013; Yu et al., 2014) and the other was in the function layer (Tian et al., 2015a). The genetic data were involved with several pathways that are relevant to cold-tolerant mechanisms in soybean.



OnO data mining and collection

We developed a systems biology pipeline, including data input (iterative OnO data wrangling and data-ensemble), data processing (OnO data integration and gene prioritization), output (CTgenes discovery, enriched pathways, and module discovery), and validation in soybean samples (cold tolerance experiments) to achieve the robustness and reliability of the CTgenes (Figure 1). We applied keyword search to screen relevant OnO data related to cold tolerance or response to cold stress in soybean (Figure 2). A total of 65 publications and 5 databases were collected initially. After being carefully examined by well-trained and experienced experts, 22 articles and 3 databases were relevant to this study and hence collected in the OnO data integration. As a result, 54 QTLs were curated from 3 articles in the DNA layer. There is no any data from pathway analysis in the DNA layer. Nine QTLs (features of mRNA) and 12,441 genes (features of circRNA and miRNA) were collected from 16 articles and 1 database in the RNA layer. Among them, only one omics data set (containing 12,343 genes) was included in the cold experiments on 2-week-old soybean seedlings (cv. Nourin No. 2) at 4 °C for 1 day. 47,931 protein pairs were mined from 717,676 PPIN of the PlantRegMap (http://plantregmap.cbi.pku.edu.cn/download.php#networks) database in the protein layer. In addition, 74 genes were extracted from 2 pathways (ABA biosynthetic process and ABA catabolic process) that related to cold tolerance in the GENEONTOLOGY (GO; http://geneontology.org/) pathway regulation database. We excavated 992 genes in pathway regulations (features of metabolites) from one article in the metabolome layer. In the homologs layer, a total of 1,800 (Arabidopsis) and 317 (Medicago) journal articles related to cold treatment were initially collected from NCBI PubMed. Articles that involved irrelevant or not applicable to the present study (i.e. non-significant results, lack of experimental validation, not focused on cold tolerance experiments, and genes validated in other plants) were discarded. As a result, 395 and 11 articles were retained, resulting in 608 Arabidopsis genes and 45 Medicago genes, respectively. These Arabidopsis and Medicago genes were separately mapped to 3929 and 31 gene homologous in soybean. In total, 65,452 genetic data were obtained from the OnO data. For detailed information on OnO data collection, please refer to Tables 1A, B. Supplementary Material 1 provides an overview of collected OnO data. Each genetic data was classified into different biological layers according to the types of features and the analytic approaches available in each OnO data layer.

Table 1A | The summary of the collected genetic data. (A) The number of non-omics and omics (OnO) data collected from articles and databases. (B) Summary information of collected OnO data from different molecular approach.


[image: Table showing various omics data layers and corresponding approaches. Genome layer includes linkage mapping and pathway analysis, with nine and three articles mined initially, resulting in three entities after quality check and 54 genetic data collected. Transcriptome layer covers gene expression, noncoding RNA involving circular RNA and microRNA, and pathway regulation, totaling 48 RNA-related articles initially, with 17 remaining after quality checks, resulting in 12,524 genetic data. Proteome and metabolome layers involve protein-protein interaction networks and pathway regulation, processing six articles initially, yielding 48,923 data after checks. Total: 70 articles mined, 25 post-check, yielding 61,492 genetic data.]
Table 1B | 


[image: A detailed table displaying various studies on cold tolerance in plants. Columns include data type (omics, non-omics), approach used, growing stage, cold treatment specifics, references, and duration of cold tolerance categorized as short-term, mid-term, and long-term. The table lists treatments at specific temperatures and durations linked to each study, with references indicated, such as Maruyama et al. (2012) for mid-term cold tolerance and others.]


Integrated feature selection and feature extraction

As described in the “MATERIALS AND METHODS” section, many steps are executed in the OnO data-ensemble processes to minimize potential noise and biases (Figure 3). There were 44 articles and 2 databases of unwanted data (i.e. irrelevant to this study). Hence, we removed them from OnO data integration in the data cleaning step (Table 1). In order to unify distinct data sources, all collected OnO data were correspondingly transformed into limited scores ranging from 0 to 10 (Figure 4A) to account for data heterogeneity in the data harmonization step (Supplementary Table 1). Finally, 64 QTLs and 47,931 protein pairs were respectively mapped into 449 and 46,770 genes in the identifiers mapping step. Taken together, 60,726 genes with combined scores were extracted from integrated OnO data. Most of these scores were bounded between 0 to 7, and skewed to the right in each of all layers (Figures 4B, C). It is clear to note that many genes played no role in the cold tolerance or response to cold stress (that is, scored 0 across all layers); thus, they were excluded from the analyses. As a result, a total of 4,014 (short-term), 14,607 (mid-term), and 4,069 (long-term) genes were retained for gene prioritization algorithm. Here, we denoted these genes as the test genes for short-, mid-, and long-term cold tolerance.

[image: Bar charts labeled A and B show the proportion of different biological categories such as DNA, RNA, Protein, Function, Omics-RNA, and Homologs across combined score ranges from zero to ten. Chart A has higher proportions at lower scores, while B shows a spread over more score ranges. The table C lists score ranges zero to ten with checkmarks indicating categories like DNA or RNA associated with each range.]
Figure 4 | The distribution of scores in six layers. (A) Distribution of categorized scores in six layers. (B) Distribution of categorized scores (excluding 0 scores) in six layers. (C) The pattern of categorized scores (excluding 0 scores) in six layers. The symbol ‘V’ represents the existence of genes in the score range.



The NPRF prioritization

To determine the number of CTgenes, we carefully selected ten core genes (Figure 5A), which met one of the three scenarios (Figure 5B) (see the “MATERIALS AND METHODS” section), and compared them with the test genes. The overlapping genes among these test genes are demonstrated in Figure 6A. A clear separation at a cut-off score of 8 (Figure 6B), 10 (Figure 6C), and 7 (Figure 6D) was observed between the core genes and the test genes, determining the number of CTgenes to prioritize from the test genes for short-, mid-, and long-term cold tolerance was 44, 143, and 45, respectively. The feature fitness of the integrated OnO data was implemented through the NPRF prioritization algorithm. We performed bootstrapping to create a bootstrap sample, and tested it on 10,000 permutation samples using the Wilcoxon rank-sum test. This procedure was repeated until 10,000 sets of CTgenes were identified. We then counted the number of times each gene was selected as the prioritized CTgenes. For each gene, the gene count was divided by 10,000 to obtain the gene probability. After removing genes with zero counts, the gene probabilities for short-, mid-, and long-term were ranged between 0.0404-1.0 (101 genes), 0.0001-1.0 (190 genes), and 0.0411-1.0 (102 genes), respectively (Supplementary material 2). We prioritized them and found a dramatically drop at the 45th (declines from 0.8974 to 0.0525), 144th (declines from 0.5077 to 0.2575), and 46th (declines from 0.5215 to 0.0531) gene in gene probabilities for short-, mid-, and long-term gene set, respectively. As a result, a total of 44, 143, and 45 prioritized CTgenes were identified for short- (Figure 7A), mid- (Figure 7B), and long-term (Figure 7C) cold tolerance, respectively. Of which, one major module was found in short- (15 CTgenes), mid- (44 CTgenes), and long-term (15 CTgenes) cold tolerance CTgenes. The Manhattan plots of the test genes for short- (Figure 8A), mid- (Figure 8B), and long-term (Figure 8C) cold tolerance were demonstrated, where the CTgenes were colored in red dots. Seventeen and twenty-three CTgenes overlapped among the three terms and among short and long term, respectively (Figure 8D). The most clustering of the CTgenes on chromosome 10 (6, 12, and 6 genes in short-, mid-, and long-term, respectively) and 13 (5, 15, and 5 genes in short-, mid-, and long-term, respectively) were identified; however, no any CTgenes on chromosome 2 and 6 were noticed for both short- and long-term cold tolerance in soybean.

[image: Circular graphic showing core genes within three scenarios: Scenario 1 highlights five genes, Scenario 2 highlights four, and Scenario 3 highlights two. Below, a table matches genes with scenarios and provides references.]
Figure 5 | Ten selected core genes. (A) The sunburst chart of the selection of the core genes. (B) The selection criteria of the core genes. Only genes that meet at least one of the three scenarios were selected as the core genes. Scenario 1: the most significantly reported genes that were associated with cold tolerance or response to cold stress. Scenario 2: the most frequently reported genes with significant characteristics. Scenario 3: only genes that performed transcriptome measurement were further validated by the quantitative polymerase chain reaction (q-PCR) with significant p-value less than 0.0001.

[image: A set of graphics includes four panels. Panel A shows a Venn diagram with three overlapping circles representing test genes in long-term, short-term, and mid-term conditions. Key overlaps are labeled with numbers, indicating shared gene portions. Panels B, C, and D are bar graphs comparing core genes and test genes distribution across score ranges. Each graph uses orange for core genes and blue for test genes, with varying trends across score intervals. Panel B highlights a high percentage of test genes in the 2-4 score range, while Panels C and D show shifts in gene proportions among different score categories.]
Figure 6 | A cut-off score between the core genes and the test genes. (A) The Venn diagram of test genes among short-, mid-, and long-term. (B) A cut-off score between the core genes and the test genes for short-term CTgenes. (C) A cut-off score between the core genes and the test genes for mid-term CTgenes. (D) A cut-off score between the core genes and the test genes for long-term CTgenes.

[image: Three network diagrams labeled A, B, and C illustrate complex interactions among nodes represented by blue boxes. Lines indicate relationships, forming circular clusters and linear sequences. Each diagram has nodes with specific identifiers. Diagram B appears more intricate with additional connections extending to smaller sub-networks.]
Figure 7 | The CTgenes discovery for short-, mid-, and long-term cold tolerance. A total of 44, 143, and 45 prioritized CTgenes were identified for (A) short-term, (B) mid-term, and (C) long-term cold tolerance.

[image: Graphs A, B, and C show combined scores of chromosomal regions over chromosomes 1 to 20 for short, middle, and long-term categories, respectively, with red dots indicating scores above a threshold. Graph D is a Venn diagram showing the overlap of CTgenes across long-term, middle-term, and short-term categories, with shared and unique numbers in each section.]
Figure 8 | The Manhattan plot of the test genes for (A) short-term, (B) mid-term, and (C) long-term. Dots colored in red are the CTgenes. (D) The Venn diagram of CTgenes among short-, mid-, and long-term.



Validation studies of the CTgenes

The independent RNA-seq data (Yamasaki and Randall, 2016) was applied to examine the reliability of the CTgenes. Data of 1-hour and 24-hour cold exposure; were applied to test for short- and mid-term respectively. First, we compared the CTgenes with the remaining genes (excluding the CTgenes). Our CTgenes had significantly smaller p-values than the remaining genes for short (p-value =1.3×10-3) and mid-term (p-value<1.0×10-5) cold tolerance, respectively (Figures 9A, B). Second, we compared the CTgenes with 10,000 sets of random genes (some of the CTgenes may be included by chance) sampled from the test genes set. Similarly, our CTgenes outperformed the random genes for short- (Figure 9C) and mid-term (Figure 9D) cold tolerance (p-values ranged from 0.0013 to<1.0×10-4).

[image: Four bar charts labeled A, B, C, and D compare two groups of genes: "The remaining genes" or "The random genes" and "CTgenes." Chart A shows a significant difference (p = 0.0013) with lower -log(p) values for the remaining genes compared to CTgenes. Chart B shows a larger difference (p < 0.00001) similarly. Chart C mirrors A, comparing random genes to CTgenes. Chart D mirrors B, also comparing random genes to CTgenes, with higher values for CTgenes in both C and D. Error bars are present in each chart.]
Figure 9 | Validation studies of the CTgenes compared to the remaining genes and random genes using an independent omics data. (A) Comparing short-term CTgenes with the remaining genes (1hr cold treatment). (B) Comparing mid-term CTgenes with the remaining genes (24hr cold treatment). (C) Comparing short-term CTgenes with the random genes (1hr cold treatment). (D) Comparing mid-term CTgenes with the random genes (24hr cold treatment).

To evaluate the robustness of our CTgenes identified through the OnO integration and the NPRF prioritization algorithm, we further compared them with other cold tolerant candidate genes selected by other methods (e.g. the RF prioritization on Rafsee, the SFAF prioritization, the network-based prioritization on SoyNet, candidate genes selection on SoyBase, and the QTLs mapping approach). First, we compared our NPRF results with the results of the RF prioritization on Rafsee, and found that both methods produced identical short- (Figure 10A), mid- (Figure 10F), and long-term CTgenes (p-values =1). Second, we conducted the SFAF weighting scheme to evaluate all collected genes, and observed that 24 (54.5%), 118 (82.5%), and 23 (51.1%) overlapped short-, mid-, and long-term CTgenes between the SFAF prioritization and the NPRF prioritization, respectively. Although non-significant differences were observed among two prioritized top genes in short- (p-values =0.79) (Figure 10B) and mid-term (p-values =0.37) (Figure 10G) cold tolerance, the joint effect analyses of the hypergeometric test were quite different. Only four enriched pathways, including JA biosynthetic process, response to fungus, response to JA stimulus, and response to wounding (p-values <1.0×10-16), were reported in the mid-term cold tolerance in both approaches. The difference of the prioritized top genes in the SFAF prioritization from our CTgenes was significantly enriched in several pathways, including 2 pathways (cold acclimation and regulation of GA biosynthesis) in the short-term, 4 pathways (JA biosynthetic process, response to fungus, root meristem growth, and root system development) in mid-term, and 1 pathway (cold acclimation) in long-term cold tolerance; however, the difference of our CTgenes from the prioritized top genes in the SFAF prioritization were found only 2 enriched pathways (JA biosynthetic process and vitamin metabolic process) relevant to the mid-term cold tolerance. Third, we compared our CTgenes to 221 candidate genes identified by network-based prioritization in SoyNet (https://www.inetbio.org/soynet/search.php), and found our CTgenes significantly performed better (p-values ranged from 0.05 to <1.0×10-5) than prioritized genes in SoyNet for short- (Figure 10C), and mid-term (Figure 10H) cold tolerance. Fourth, a total of 272 genes mapped from 66 SSRs were reported to be related to soybean cold stress in SoyBase (https://www.soybase.org/). We compared our CTgenes with the 272 genes, and found our CTgenes performed significantly better (p-values ranged from 0.014 to <1.0×10-5) than the 272 genes discovered in SoyBase, for short- (Figure 10D) and mid-term (Figure 10I). Finally, our short- (Figure 10E), and mid-term (Figure 10J) CTgenes outperformed 134 candidate genes identified in QTLs (Jiang et al., 2009; Qiu et al., 2011; Zhang et al., 2012) from the linkage mapping approach (p-values ranged from 0.004 to <1.0×10-5). The results further elucidate that our CTgenes performed equally well with the RF prioritization and outperformed other approaches. This suggests that the CTgenes identified by our systematic pipelines are reliable and robust, and have the potential to uncover novel biological pathways and physiological mechanisms underlying cold tolerance in soybean.

[image: Bar charts labeled A to J compare two groups: "other candidates genes" (blue) and "CT genes" (orange) for different datasets or methods. The y-axis is labeled "log(1/p)." The p-values above each chart indicate statistical significance. Error bars are present, showing variability in data.]
Figure 10 | Validation study of the CTgenes compared to the candidate genes identified by other methods using an independent omics data. Comparing short-term (1 hr cold treatment) CTgenes with candidate genes identified by (A) the RF prioritization, (B) the SFAF prioritization, (C) the network-based prioritization on SoyNet, (D) candidate genes selection on SoyBase, and (E) the QTLs mapping approach. Comparing mid-term (24hr cold treatment) CTgenes with candidate genes identified by (F) the RF prioritization, (G) the SFAF prioritization, (H) the network-based prioritization on SoyNet, (I) candidate genes selection on SoyBase, and (J) the QTLs mapping approach.



Pathway enrichment analysis

Overall, our CTgenes were significantly enriched in 12 GO pathways (3 in short-term, 9 in mid-term, and 3 in long-term). Among them, three pathways (regulation of gibberellin (GA) biosynthetic process, positive regulation of transcription, DNA-dependent, and cold acclimation) were found in both short- and long-term. Nine pathways were solely identified in the mid-term, where the top four pathways were JA biosynthetic process, response to fungus, response to JA stimulus, and response to wounding. Detailed information on enriched pathways of the CTgenes for short-, mid-, and long-term, please refer to Figure 11 and Supplementary Table 3.

[image: Dot plot showing gene pathways categorized as short-term, mid-term, and long-term based on their significance values, with vertical panels. Pathways are listed on the y-axis, and -log10(p-value) is on the x-axis. Dot size indicates the number of genes in a pathway, ranging from one hundred to one thousand, and color represents the number of CT genes, from thirty (green) to ninety (red).]
Figure 11 | Pathway enrichment analysis of the CTgenes for short-, mid-, and long-term cold tolerance.



Module discovery

To deeply understand how the enriched pathways are related to cold tolerance, we constructed the crosstalk network to uncover the phenomenon of interaction or cooperation between pathways. The average (median) degree of the pathways for the short-, mid-, and long-term cold tolerance was 6.33 (5), 7 (7), and 6.33 (5), respectively. Non-significant differences in degree values were observed between the three terms (p-values >0.05), indicating the complex interactions among the CTgenes and the pathways were similar in the three terms. Figure 12 demonstrates the pathways crosstalk and functional map of the CTgenes. In the short-term cold tolerance, three enriched pathways formed a module (pink nodes), which was dominated by response to stimulus (e.g. cold acclimation) and primary metabolic process (e.g. regulation of GA biosynthetic process and positive regulation of transcription, DNA-dependent). In the mid-term cold tolerance, nine pathways formed a module (gold nodes), which were relevant to the primary metabolic process (e.g. JA biosynthetic process), response to stimulus (e.g. ABA-mediated signaling pathway, JA-mediated signaling pathway, response to JA stimulus, response to L-glutamate, response to wounding, and response to fungus), and system development (e.g., root meristem growth and root system development). The long-term cold tolerance showed an identical module to the short-term. Taken together, these 12 enriched pathways formed one self-clustered module dominated by hormone-related and defense-related pathways.

[image: Network diagram illustrating various biological processes and their interconnections. Circles labeled with processes like "Response to wounding" and "Root system development" are linked by yellow and gray lines, indicating relationships. Notable terms include "Jasmonic acid biosynthetic process" and "Positive regulation of transcription, DNA-dependent." Purple circles represent processes like "Cold acclimation," showing connections through varied colored lines.]
Figure 12 | Module discovery underlying the crosstalk of enriched pathways and functional network of the CTgenes for short-, mid-, and long-term cold tolerance. This crosstalk consists of 12 enriched pathways (3 from short-term, 9 from mid-term, and 3 from long-term cold tolerance) and edges (i.e. overlapping genes between 2 linked pathways, or pathway crosstalk). The node size was defined as the significance level of a certain pathway from the hypergeometric test. The edge width was defined as the overlapping genes between pathways. The node color was used to distinguish short- (purple), mid- (yellow), and long-term (purple) cold tolerance. Edges in pink, gold, and blue connect short-, mid-, and long-term pathways, respectively. Edges in gray represent connections between mid- and long-term pathways.



Validation in soybean samples

We selected 56 soybean varieties to validate the effectiveness of the CTgenes selection. Of which 28 varieties are resistant to low temperature, and the remaining are susceptible, based on soybean cold-treatment experiments. All samples were genotyped using the SoyaSNP180K chip array. We pooled all the CTgenes across all three terms, and obtained 91 CTgenes after discarded genes with no SNPs information. Furthermore, we conducted SNP-gene mapping and removed SNPs only when all samples received the same genotype. As a result, 39 CTgenes (including 55 SNPs) were retained for sample classification in cluster analysis. Figure 13 demonstrated a clear separation between soybean samples, suggesting our CTgenes can distinguish 56 soybean varieties into 28 cold-resistant (colored in blue) and 28 cold-susceptible (colored in red) varieties.

[image: A circular phylogenetic tree divided into two colored sections: pink for susceptible and blue for resistant. Each branch is labeled with a code such as V031, V070, or V092. The key indicates color-coded susceptibilities.]
Figure 13 | Sample classification using the CTgenes. A total of 39 CTgenes were used to conduct cluster analysis. The neighbor-joining algorithm was performed to construct phylogenetic trees. As a result, 56 soybean varieties were classified into two groups (resistant lines vs. susceptible lines) according to their genotype patterns. The blue color represents cold tolerant varieties. The red color represents cold susceptible varieties.




Discussion

Cold tolerance in plants is a complex abiotic trait, requiring a good understanding of the mechanisms behind the complex biological system. It is also important to take into account the interactions (i.e. joint effects) with other factors like environmental, ecological, and other plant hormones (e.g. auxins) (Ishibashi et al., 2013). There are numerous studies investigating genetic information on cold tolerance or cold response from the level of DNA, RNA, and protein to function. In this regard, great efforts in systematically analyzing these multi-dimensional data are needed to uncover insight into biologically meaningful contexts. In the present, we developed a comprehensive framework through systematic strategies on OnO data mining, data-ensemble, gene prioritization, and external independent validation to select the prioritized CTgenes from the collected gene pool that are relevant to cold tolerance or response to cold stress. This study proposes a systems biology framework to bridge the knowledge gap between genetic information about cold tolerance or cold response and the OnO data.

To the best of our knowledge, this is the first work on the OnO data integration from different molecular layers and gene prioritization for the discovery of soybean cold-tolerant genes (i.e. CTgenes), followed by enriched pathways, module discovery (i.e. a combination of similar functions regarding the underlying cold tolerance), validation in soybean samples (i.e. cold tolerance experiments), and sample classification (i.e. resistant vs. susceptible varieties) to address the robustness and effectiveness of the CTgenes selection. This work’s challenges involved interconnections, heterogeneity, noise, and high-dimensional feature profiles across different layers of the OnO data. There have been several attempts to eliminate or minimize the impact of these issues by the data-ensemble step on improving data quality.

Rapid progress in high-throughput technologies has booted advances in plant omics. Several collections of omics, including genomics, transcriptomics, proteomics, and metabolomics, have become available for crop improvement. Unfortunately, deriving biological insights from a single layer of omics data is often limited, although it may explain some specific phenomena biologically (Cao et al., 2022). In this case, it may be difficult to gain knowledge from the results of single omics to apply directly to plant breeding. Recently, several reviews have emphasized the importance of multi-omics data integration for obtaining a comprehensive view underlying a complex trait to provide reliable biological insight (Pazhamala et al., 2021). In soybeans, genomics and transcriptomics have developed as expected, but the progress of proteomics and metabolomics still dropped behind (Deshmukh et al., 2014). Initially, we found four collections of transcriptomics databases related to cold-treated experiments in soybeans, including 3 RNA-seq databases and one microarray database. Among them, two RNA-seq databases were discarded due to being genetically-modified and irrelevant to the target of this study. Only two omics data were relevant to soybean cold tolerance (Maruyama et al., 2012; Yamasaki and Randall, 2016), pointing out the situation and bottleneck of current plant omics integration. To cope with such a situation, we extend the idea of multi-omics techniques to integrate omics and non-omics data in the same models, as proposed by López De Maturana et al. (2019), to complete the whole contour of the cold-tolerant mechanism to a large extent.

In the present study, we combined different types of the OnO features in different molecular layers through DNA, RNA, protein, function, and homologs (Table 1B). Typically, different layers have distinct features, with potential interactions between and within them. In addition, each of the OnO data was generated from different experimental designs, analytic methods, environmental factors, and cultivars, bringing much more challenges to integrative analysis. To systematically analyze the OnO data, we proposed the systems biology strategy to effectively pool, integrate, and analyze diverse data formats and varying data types (p-value, LOD, FC, degree, cluster coefficient, and score) underlying different statistical approaches and biological objectives. Data heterogeneity is typically a challenging task in the OnO data integration. In this study, the association-based scoring system was developed to unify distinct data types generated by varied technologies in different layers. Most of the genes were scored between 0 to 6 (more than half of gene scores were ranged between 0-2) in each layer to prevent overestimation of scoring. Furthermore, a rigorously multi-staged data quality control process was also implemented in the data-ensemble step (containing data clean, data harmonization, data heterogeneity, and data mapping) to remove unwanted data, false positives, and noise, so that the risk of overestimation, uncertainties, and false positive results can be effectively minimized. This can provide accurate, valid, and reliable results, in a comprehensive and consistent manner.

The degree of injury caused by low-temperature in plants varies from different cold-treated spans. Considering global climate changes in soybean-producing areas, soybean cold tolerance can be categorized into short-, mid-, and long-term according to periods of cold exposure and damages to soybean plants. Radiative cooling leads to rapid temperature drops at midnight is typically the scenario for a short-term chilling environment. A sudden period of chilling or brief exposure to low-temperature will not pose a serious threat to plant physiological mechanisms, and plants still survive. Consecutive low temperature lasting 2 days in winter’s subtropical area belongs to the mid-term cold stress. Long-lasting (more than 2 days) cold spell and unusual cold extreme climate represents the long-term cold stress. Prolonged low-temperature stress, however, may increase the accumulation of toxic substances in plant tissue, which not only seriously influences the photosynthesis and other metabolic pathways, but also results in some unfavorable phenomena, such as chlorosis, necrosis, wilting, and even death (Lukatkin et al., 2012; Adam and Murthy, 2014). The longer in cold environments, the more damaging to the plants’ physiology. Hence, to precisely define the CTgenes, information on cold-treated span, and temperature were included in the models to classify these OnO data into short-, mid-, and long-term cold tolerance groups.

The selection of the CTgenes is a challenging task, as we first need to know how many genes are in the collection. To determine the number of CTgenes, ten core genes (Figure 5) were selected to compare to the test genes (i.e. the training set) to determine the required number of CTgenes. The central idea is to use combined-scores skewness to determine the optimal cut-off point in separating two score distributions between the core genes (skewed to the left) and the test genes (skewed to the right). Eight core genes (Glyma.20g155100, Glyma.09g147200, Glyma.13g279900, Glyma.10g239400, Glyma.16g199000, Glyma.05g049900, Glyma.17g131900, and Glyma.01g216000) and two core genes (Glyma.05g007100 and Glyma.03g262900) were ranked within the top 0.5% and 1.7-10% of the test genes, respectively. Among them, Glyma.20g155100 (GmDREB1B;1), Glyma.09g147200 (GmDREB1A;1), Glyma.10g239400 (GmDREB1B;2), Glyma.16g199000 (GmDREB1A;2), Glyma.05g049900 (GmDREB1D;1), Glyma.17g131900 (GmDREB1D;2), and Glyma.01g216000 (GmDREB1C;1) are the CBF/DREB1s genes. Several studies mentioned that GmDREB proteins in soybean play a central role in cold tolerance mechanisms (Yamasaki and Randall, 2016; Robison et al., 2019). Furthermore, some studies claimed that CBF/DREB1s genes acted as transcription factors in Arabidopsis resistance to cold stress (Fowler and Thomashow, 2002; Zhao et al., 2016). Therefore, in this study, we evidenced that precisely selecting the core genes can improve the discovery of biomarkers (i.e. CTgenes).

The distributions of combined scores of the core genes and the test genes differed (please refer to Figure 6). A gene-threshold for the combined score was chosen to obtain good discriminability in separating the core gene set from the total test genes to select final CTgenes. We conducted the hypergeometric test to identify enriched pathways for assessing the gene-threshold selection in the systems biology framework. We selected three different gene-thresholds (the lower bound, the middle point, and the upper bound) from a cut-off bin. For instance, a cut-off score of 6 (the lower bound), 7 (the middle point), and 8 (the upper bound) was used to select the 200, 100, and 44 CTgenes in short-term cold tolerance, which resulted in 23, 9, and 3 enriched pathways that relevant to cold-tolerant responses, respectively. Among them, 2 pathways (“positive regulation of transcription, DNA-dependent” and “cold acclimation”) were reported in three scenarios. Similar situations can be found in the long-term CTgenes. For the mid-term CTgenes, a cut-off score of 8 (the lower bound), 9 (the middle point), and 10 (the upper bound) were used to select the 331, 205, and 143 CTgenes, resulting in 36, 29, and 9 enriched pathways that relevant to cold-tolerant responses, respectively. Among them, all 9 pathways (“root system development”, “root meristem growth”, “response to wounding”, “response to L-glutamate”, “response to jasmonic acid stimulus”, “response to fungus”, “jasmonic acid mediated signaling pathway”, “jasmonic acid biosynthetic process”, and “abscisic acid mediated signaling pathway”) were overlapped in the three gene-threshold scenarios. It is not surprising that the more CTgenes resulted in the more enriched pathways, where the more false-positive results might be included. This suggests that the CTgenes selected through a rigorous gene-threshold using the upper bound in the cut-off bin demonstrated power to uncover enriched pathways. Hence, the upper bounded gene-threshold in the cut-off bin can be regarded as the optimal gene-threshold for CTgenes selection. It can be used as a reference for the physiological effects and biological mechanisms of important crop traits by comparing multiple cut points in the same bin to screen out important biological pathways.

Gene prioritization is often challenging given the large-sized and high-dimensional OnO data in the analytical space and the complex trait of cold tolerance in nature. Another challenge is efficiently dealing with uncertainties, false positives, and noisy data and accurately select valuable characteristics and meaningful information from such massive amounts of big data. The NPRF prioritization algorithm has been proposed to address these issues for the integrated OnO data. For a specific marker, we hypothesized that it is less likely to include noisy data and false positive results in each of all layers. The more molecular layers included in integrated OnO data, the smaller the chance of resulting in false positive results. In our prioritization algorithm, the features in each layer were scored separately, and then all distinctive features across different molecular layers were merged to a reduced space (i.e. a single combined score) for dimensionality reduction without losing the algorithm’s accuracy. This NPRF prioritization algorithm constructed a decision tree through selecting the most important features from the test genes set to account for uncertainties at each bootstrap iteration. The feature stability was assessed by gene-probability of the selected features over 10,000 bootstrap iterations. As a result, a small collection of prioritized genes was respectively selected as the CTgenes for short-, mid- and long-term cold tolerance in soybean (Figures 7-9). The short- (Figure 7A), mid- (Figure 7B), and long-term (Figure 7C) CTgenes all revealed one primary module based on topological characteristics (i.e. degree), which was involved with response to cold, cold acclimation, and response to freezing. These CTgenes were related to plant hormones (JA, GA, ABA, and ethylene) and defense-related pathways. In addition, several gene groups related to plant hormones were identified in mid-term CTgenes. The group containing LOX7, LOX9, LOX1.5, and CYP74A2 was also related to the defense response pathways. The group of Glyma.06g007500, Glyma.03g246300, and Glyma.04g007700 were related to the defense system and cold-related response (Figure 7B).

Our CTgenes were compared to the remaining genes (i.e. non-CTgenes), random selected genes (Figure 10), and other candidate genes identified by other existing methods (i.e., the RF-Rafsee, the SFAF prioritization, the network-based prioritization on SoyNet, candidate genes selection on SoyBase, and the QTLs mapping approach) (Figure 11), and validated in an independent RNA-seq database to prove the effectiveness, stability, and reliability of the selected features following the schema illustrated in Figure 3. Overall, our results indicated that the CTgenes selected from integrated OnO data and the NPRF prioritization had superior performance to the ones identified from a single or a few layers and most other existing methods. The NPRF prioritization and the RF-Rafsee both produced the same top genes and performed equally well (Figures 10A, F). Supplementary material 2 provided detailed information about the gene-probabilities of the top genes identified by the RF-Rafsee method. No statistically significant difference typically refers to the difference not exceeding a particular threshold value. In the validation study, we observed a non-significance difference between the NPRF prioritization and the SFAF prioritization (Figures 10B, G); however, this did not mean there is no biological meaning. Therefore, we further conducted the hypergeometric test to systematically examine the joint effect of the difference among two top genes identified from both methods. Most interestingly, the different sets of prioritized top genes identified by the SFAF prioritization from our CTgenes (denoted as CTgenesNPRF\SFAF) had the power to uncover enriched pathways relevant to the cold-tolerant responses in all three cold treatments (Supplementary Table 4). However, the different sets of our CTgenes from prioritized top genes identified in the SFAF prioritization (denoted as CTgenesSFAF\NPRF) only found enriched pathways in mid-term (Supplementary Table 4). This indicates that our CTgenes selected by the NPRF prioritization had more power to uncover the mechanisms underlying the cold-tolerant responses in soybean. To further validate the robustness of our CTgenes, we compared our CTgenes to a range of the top genes (70, 90, 125, 150, 185, 220, 250) identified from network-based prioritization in SoyNet. Figure 14 demonstrated that our CTgenes significantly outperformed all ranges of the SoyNet top genes in an independent RNA-seq database, suggesting the robustness and the reliability of the CTgenes selected through our comprehensive systems biology-based framework.

[image: Bar chart comparing -log(p) values of different gene selections under short-term (1 hour) and mid-term (24 hour) cold treatments. Bars represent CTgenes and various top gene selections by SoyNet. Mid-term values are higher, indicating stronger significance. Error bars and asterisks denote statistical significance.]
Figure 14 | Validation study of the CTgenes compared to the candidate genes identified by SoyNet using an independent omics data. A range of different numbers (70, 90, 125, 150, 185, 220, and 250) of top genes were used to evaluate the robustness and the reliability of the CTgenes selected through our comprehensive and systematic framework. The horizontal line above the bar chart is the threshold of statistical significance level (* < 0.05, ** < 0.01, *** < 0.001).

Our CTgenes were significantly enriched in 12 GO pathways (Figure 12). Cold acclimation is a natural mechanism for the plants of temperate origins. However some subtropical or tropical species, such as soybean, may also have excellent mechanisms to acclimate to cold (Cabané et al., 1993), which may enhance tolerance to cold treatment. The levels of phenolic acids in soybean seedlings will decrease significantly during cold acclimation, which modifies cell wall extensibility to adapt to a chilling environment. GA can facilitate soybean seedlings’ emergence and increase the shoot height under cold stress (Wang et al., 1996), which plays a key role in regulating soybean seed germination under low temperature. Moreover, GA is an important regulator in other species (e.g., Arabidopsis and cotton) to cope with low temperatures (Achard et al., 2008). JA is one of the main plant growth regulators, acting antagonistically in regulating of plant immune and development, and acts as a pivotal role in many abiotic stresses (Wang et al., 2020a). JA can prevent reactive oxygen species (ROS) formation by enhancing chilling tolerance (Sharma and Laxmi, 2016). Studies relevant to the interaction between JA and cold tolerance were reported in some species such as sweet orange (Habibi et al., 2019), but not in soybean. In Arabidopsis, JA regulates the CBF/DREB1 factors and activates the CBF/DREB1-independent pathway to enhance cold tolerance (Hu et al., 2013). In this study, three JA related pathways (response to JA, JA mediated signaling pathway, and JA biosynthetic process) were found to be significantly enriched with cold tolerance or response to cold stress. To date, this is the first work to address the interaction between JA and cold tolerance in soybean. Fungi play an important role in conferring abiotic stress tolerance in plants, for instance, cold resistance in soybean (Begum et al., 2019). Some particular bacteria and fungi can facilitate the physiological mechanism in plants under environmental stress (Levy et al., 1983). Arbuscular mycorrhizal fungi (AMF) is the common symbiotic fungus, forming a symbiosis with 80% of plant species (Smith and Read, 2008), which can improve cold resistance under low temperatures in maize. In soybean, AMF-inoculated commercial cultivar showed better shape with higher leaf area and yield without stress treatment, than non-inoculated one (Adeyemi et al., 2020). Thus, soybean cold tolerance under cold stress may benefit from AMF symbiosis. More work is remained to physiologically evaluate their connections in soybean. ABA is also one of the key hormones to react to abiotic stress in plants. The application of ABA enhances the cold resistance in crop species, such as rice (Tian et al., 2015b). A recent study verified that the exogenous ABA could induce the GmABI3 (ABSCISIC ACID INSENSITIVE 3), and further activate the ABA-dependent protein to confront the cold stress in soybean (Manan and Zhao, 2020). Interaction between ABA and JA signaling pathways can synergistically enhance the resistance to abiotic stress (Manan and Zhao, 2020). It is worth noting that our CTgenes prioritized from the integrated OnO data boost the power of their potential roles in uncovering meaningful results, some with biological novelties, for studying the molecular mechanisms of cold tolerance in soybean through pathway enrichment analysis.

To better understand the CTgenes pattern, a total of 40 CTgenes were selected from 12 enriched GO pathways. We analyzed these genes in the SoyBase ‘Gene Model Data Mining and Analysis’ tool, and found that they were related to response to cold (21 genes), cold acclimation (3 genes), response to freezing (2 genes), response to temperature stimulus (1 gene), response to osmotic stress (3 genes), response to stress (5 genes), immune-related (7 genes), and defense response (27 genes) related pathways (Supplementary Table 2). Interestingly, both cold acclimation and response to osmotic stress pathways shared the same CTgenes having major role in response to cold stress, of which Glyma.15g048600 (homologs of At4g08500 in Arabidopsis) was enriched in response to cold, cold acclimation, response to osmotic stress, immune-related, and defense response-related pathways, indicating this novel gene may play an important role in the complex mechanisms underlying cold-tolerant in soybean.

Multiple mechanisms involved in cold-tolerant or response to cold stress were revealed across various plant species (Lukatkin et al., 2012). However, understanding of the molecular mechanisms underlying cold tolerance in soybean still remains limited and unclear. Pathway crosstalk networks provide in-depth knowledge of the whole picture of cold-tolerant mechanisms in soybean. Our pathway crosstalk network (Figure 12) revealed two clustered modules, both of which had important implications for cold tolerance. In soybean, GA- and ABA-mediated pathways are found to be involved with cold tolerance (Wang et al., 1996; Manan and Zhao, 2020); however, both JA- and fungi response pathways have not been reported to be involved with the cold-tolerant mechanisms previously. Evidence showed that acclimation to low temperature (Cabané et al., 1993), activating plant hormones biosynthesis to alleviate the negative impact of chilling environment and the growth induction of roots (Janas et al., 2000) were the primary strategies in soybeans at low temperatures. Our pathway crosstalk network (Figure 12) demonstrated the whole map of cold-tolerant soybean, which were classified into 3 modules, including response to stimulus, metabolic process, and system development, showing interactions between hormones- and defense-related pathways underlying cold environment. More specifically, cold acclimation shared several genes with JA-mediated signaling pathway, and JA- and ABA-mediated signaling pathways involved with many overlapping genes. These results were accorded with the previous studies (Hu et al., 2013; Wang et al., 2020a).

The selected CTgenes were used for sample classification. A total of 56 varieties (28 cold resistant varieties and 28 susceptible varieties) were used to evaluate the effectiveness and reliability of the CTgenes. Phenotypic information was collected from soybean cold tolerance experiments during the spring crop season in 2020 and 2022. A completely randomized design with ten replicates was performed in field experiments. We investigated soybeans’ response to cold stress (minimum air temperature below 10°C at the V3 stage) by recording brown spots, curl, wrinkled on leaves, and plant development after low temperature occurrence. The resistance and susceptibility of the whole panel were used in cold tolerance experiments as the test results. The result of sample classification (Figure 13) suggested that our CTgenes have the power to distinguish resistant and susceptible lines, which strongly supported the effectiveness and reliability of the CTgenes.

This study developed the novel concept of integrating multiple OnO data systematically and comprehensively way to assess insight into the physiological mechanisms in soybean cold tolerance. Additionally, the proposed NPRF gene prioritization method can evaluate the importance of each gene based on the physiological knowledge, offering more informative results. Nonetheless, there were three limitations in the present study. First, the reliability of our CTgenes was based on the OnO data integrity. Although we integrated nearly all articles about soybean cold tolerance, some uncertainties still existed, including noise, biases, and outdated data. Fortunately, we not only do prudent data quality control, but also fully employ data clean, data harmonization, data heterogeneity, and data mapping across the data-ensemble step to deal with such problems nicely. Second, the progress in the soybean omics field has developed as expected only for genomics and transcriptomics. However, the progress of proteomics and metabolomics still drops behind (Deshmukh et al., 2014). To date, we only found 2 omics data. One omics data was integrated into the OnO data, and the other served as independent omics data for the validation sample. Therefore, it may get caught into difficulty to demonstrate the comprehensiveness of omics data in soybean. To cope with it, during OnO data integration process, we also took the non-omics data into account to increase the precision of biomarkers discovery and the phenotype prediction. Third, the process of data integration is inevitable to face the risk of false positives. As known, false positive results often exist in many previously reported results. We hypothesized that false positives would not occur in all different layers by chance. In the present study, we employed the high dimensional OnO data integration and gene mapping approach to scoring genes across different layers to efficiently minimize false positives. By overcoming such limitations, we can successfully present the complete contour of the cold-tolerant mechanism in soybean to the extent.



Conclusion

This study shed new light on the effectiveness of the CTgenes prioritized from integrated OnO data and provided a systems biology pipeline for uncovering the mechanisms behind cold tolerance in soybean. We developed a computational systems biology framework to eliminate the impact of uncertainties and false positives, so that the CTgenes can be precisely selected without loss of information. The CTgenes demonstrated great power to uncover enriched pathways and the mechanisms, and module discovery. Our framework exhibited the powerful potential to identify novel biomarkers and their underlying molecular pathways or mechanisms, providing novel insights into the response to cold stress. Most importantly, our CTgenes were validated in cold tolerance field trials, suggesting the reliability and effectiveness of the selection of the CTgenes.

With an increasing severity and frequency of cold extremes, the growth, quality, and yield of soybean are negatively affected by biotic and abiotic stresses, usually in combination. Hence, there is an urgent need to discover key genes to enhance cold tolerance in soybeans. The CTgenes and relevant biological analysis results provide some molecular insights and future application directions. First, our CTgenes have demonstrated good discriminability in separating the resistant varieties from the susceptible ones, which can be widely applied to be the basis of further soybean molecular biology research, such as cold-related or cross-resistant experiments. Second, the systems biology pipelines proposed in this study offer great potential in crop research to boost the breeding program of new resistant soybean cultivars with durable resistance to cold stress, bringing forward the new cultivars to overcome the direr climate change. Third, the proposed framework in the present study could be applied to other important traits of interest in soybean and extended to other model plant species to adapt to changing environments for improvements in agricultural productivity.
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Plants contribute significantly to the global food supply. Various Plant diseases can result in production losses, which can be avoided by maintaining vigilance. However, manually monitoring plant diseases by agriculture experts and botanists is time-consuming, challenging and error-prone. To reduce the risk of disease severity, machine vision technology (i.e., artificial intelligence) can play a significant role. In the alternative method, the severity of the disease can be diminished through computer technologies and the cooperation of humans. These methods can also eliminate the disadvantages of manual observation. In this work, we proposed a solution to detect tomato plant disease using a deep leaning-based system utilizing the plant leaves image data. We utilized an architecture for deep learning based on a recently developed convolutional neural network that is trained over 18,161 segmented and non-segmented tomato leaf images—using a supervised learning approach to detect and recognize various tomato diseases using the Inception Net model in the research work. For the detection and segmentation of disease-affected regions, two state-of-the-art semantic segmentation models, i.e., U-Net and Modified U-Net, are utilized in this work. The plant leaf pixels are binary and classified by the model as Region of Interest (ROI) and background. There is also an examination of the presentation of binary arrangement (healthy and diseased leaves), six-level classification (healthy and other ailing leaf groups), and ten-level classification (healthy and other types of ailing leaves) models. The Modified U-net segmentation model outperforms the simple U-net segmentation model by 98.66 percent, 98.5 IoU score, and 98.73 percent on the dice. InceptionNet1 achieves 99.95% accuracy for binary classification problems and 99.12% for classifying six segmented class images; InceptionNet outperformed the Modified U-net model to achieve higher accuracy. The experimental results of our proposed method for classifying plant diseases demonstrate that it outperforms the methods currently available in the literature. 
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Introduction

We have been domesticating animals and cultivating crops for centuries. Agriculture enabled all of this to be possible. Food insecurity is the primary cause of plant infections (Chowdhury, et al., 2020; Global Network Against Food Crisis, 2022). It is also one of the reasons why humanity faces grave problems. One study indicates that plant diseases account for approximately 16 percent of global harvest yield losses. The global pest and disease losses for wheat and soybean are anticipated to be approximately 50 percent and 26 to 29 percent, respectivel (Prospects and Situation, 2022). The classifications of plant pathogens include fungi, fungus-like species, bacteria, viruses, virus-like organisms, nematodes, protozoa, algae, and parasitic plants. Artificial intelligence and machine vision have benefited numerous applications, including power forecasting from non-depletable assets (Khandakar et al., 2019; Touati et al., 2020) and biomedical uses (M. H. Chowdhury et al., 2019; Chowdhury et al., 2020). Artificial intelligence is beneficial. It has been utilized globally for the identification of lung-based diseases. In addition, this method has accumulated predictive applications for the virus (Chowdhury et al., 2021). Using these comparative trend-setting innovations, early-stage plant diseases can be identified. AI and computer vision are advantageous for the detection and analysis of plant infections. As physically inspecting plants and detecting diseases is a very laborious and tiring process, there is a chance of error. Consequently, the use of these techniques is very advantageous because they are not particularly taxing, they do not require a great deal of labour, and they reduce the likelihood of error. Sidharth et al. (Chouhan et al., 2018) utilized a distributed premise work organization (BRBFNN) with an accuracy of 83.07 percent. This network is used to improve bacterial searching to identify and organize plant diseases1. The convolutional neural network is a well-known neural organization that has been successfully applied to a variety of computer vision tasks (Lecun and Haffner, 1999). Different CNN structures have been utilized by analysts to classify and distinguish evidence of plant diseases. For instance, “Sunayana et al. compared various CNN structures for recognizing potato and mango leaf infection, with AlexNet achieving 98.33 percent accuracy and shallow CNN models achieving 90.85 percent accuracy (Arya and Singh, 2019)”. “Using the mean of the VGG16 model, Guan et al. predicted the disease severity of apple plants with a precision rate of 90.40 percent. They utilized a LeNet model (Wang, 2017; Arya and Singh, 2019) Jihen et al. employed a model known as LeNet. This model was used to identify healthy and diseased banana leaves with a 99.72 percent accuracy rate (Amara, et al., 2017).

Tomato is one of the most commonly consumed fruits on a daily basis. As tomatoes are utilized in condiments such as ketchup, sauce, and puree, their global utilization rate is high. It constitutes approximately fifteen percent (15%) of all vegetables and fruits, with an annual per capita consumption of twenty kilograms. An individual in Europe consumes approximately thirty-one (31) kilograms of tomatoes per year. In North America, this percentage is relatively high. A person consumes approximately forty-two (42) kilograms of tomatoes annually (Laranjeira et al., 2022). The high demand for tomatoes necessitates the development of early detection technologies for viruses, bacterial, and viral contaminations. Several studies have been conducted using technologies based on artificial intelligence. These technologies are used to increase tomato plants’ resistance to disease. “Manpreet et al. characterized seven tomato diseases with a 98.8 percent degree of accuracy (Gizem Irmak and Saygili, 2020)”. The Residual Network was utilized to classify and characterize these diseases. This residual network is built utilizing the CNN architecture. This network is generally known as ResNet. Rahman et al. (Rahman et al., 2019) projected a network with 99.25 percent accuracy. This network is utilized to determine how to distinguish bacterial spots, late blight, and segregation spots from tomato leaf images. Fuentes et al. (Fuentes et al., 2017) employed three distinct types of detectors. These detectors were used to differentiate ten diseases from images of tomato leaf. A convolutional neural network is one type of detector. This network is comprised of faster regions. The second detector is a network of convolutions. The third detector is a multi-box finder with a single shot (SSD). These indicators are coupled with a variety of deep component extractor variants. The Tomato Leaf Disease Detection (ToLeD) model, proposed by Agarwal et al. is CNN-based technology for classifying ten infections from images of tomato leaf with an accuracy of 91.2%. Durmus et al. (Durmus, et al., 2017) classified ten infections from images of tomato leaves with 95.5% accuracy using the Alex Net and Squeeze Net algorithms. Although infection grouping and identification of plant leaves are extensively studied in tomatoes, few studies include segmented leaf images from their specific environments. The function also occurred in other plant leaves; however, no studies have segmented images of leaves from their specific case. Since lighting conditions can drastically alter an image’s accuracy, improved segmentation techniques could help AI models focus on the area of interest rather than the setting.

U-net derives its moniker from its U-shaped network design. It is an architecture for cutting-edge image segmentation technology based on deep learning. U-net is designed to aid in the segmentation of biomedical images (Navab et al., 2015). In addition, unlike conventional CNN models, U-net includes convolutional layers for up-sampling or recombining feature maps into complete images. The experimental results of research articles (Rahman et al., 2020) demonstrated promising segmentation performance. The segmentation results are summarized using the cutting-edge U-Net model (Navab et al., 2015). In contrast, Inception Net is a modernized network. In addition, the Inception Net network is classification-based network used to predict the health condition of the crop using the tomato leaf data  (Louis, 2013). The main contribution of the proposed model can be summarized as:

	1) Different U-net versions were explored to choose the optimum segmentation model by comparing the segmented model mask with the images of ground truth masks.

	2) This study used three different classification methods: A comparison of different CNN architecture for classification tasks involving binary and multiclass classification of tomato diseases. Several experiments were carried out with various CNN architectures. (a) Binary classification of healthy and ill leaves on a scale of one to ten. (b) Two-level classification of healthy leaves and four levels of categorization for ill leaves (five levels total). (c) A ten-level categorization of healthy individuals, as well as nine illness categories. A twofold characterization of solid and infected leaves, a five-level order of sound, four unhealthy leaves, a ten-level grouping of solid, and nine disease classes.

	3) The results achieved in this study outperform the most current state-of-the-art studies in this field in terms of accuracy and precision.



The remaining paper is organized as follows: The first section contains a detailed introduction, a review of literature, and the study’s motivation. Various kinds of pathogens that attacked plants are described in Section no. 2. Section 3 contains information about the study’s methodology and techniques, including a description of the dataset, pre-processing techniques, and experimental details. In section no. 4, the study’s findings are reported, including discussion in section no. 5 in Section 4, and then in the 6th section.



Literature review


Convolutional neural networks deep

Tan et al.  (Louis, 2013) introduced the Inception Net CNN model. We performed transfer learning for the detection of various tomato plant leaf diseases. The developer, Inception Net CNN model, ensured that the model is balance in all aspects, i.e., width, resolution, and depth. Moreover, the developers of Inception Net were the first to find the connection b/w all of the three dimensions, while other CNN ranging techniques use the single-dimensional ranking factor.

The writers used the MnasNet network (Sevilla et al., 2022) to create their baseline architecture, prioritizing model accuracy and FLOPA using a neural network architecture to search multi-objects. Next, they built the InceptionNet2, which was the same as MnasNet but with only one difference, i.e., more extensive than the Inception Net network. It happened because Inception Net’s FLOPS target is higher. Its crucial building block is the mobile reverse bottleneck MBConv (Sandler et al., 2018), including squeezing and excitation optimization (Hu et al., 2020). Finally, we employed a composite way, that composition method is based on InceptionNet1, which employs compound coefficients σ to scale. Using this scale, the neural network width, depth and dimensions can be detected. All of these three criteria are detected uniformly using the Equation below:

[image: Mathematical expressions showing that x, y, and z are all greater than or equal to one.]	

We use a, b and c, as the following constant variables that can be recognized with the help of an efficient grid scan. The alpha value is the constant coefficient declared by a user, which adjusts the number of possessions utilized for scaling up the model. The values a, b, and c determine how these additional resources can be assigned to the neural network’s width, dimension, and depth. Here are some constants a, b, and c that may be discovered by quickly scanning the grid. As shown in the following Equation, the parameters for network width, depth, and resolution are defined by the variables a through c. The parameter may set the parameter for model scaling, represented by the parameter for model scaling.

It creates a family of Inception Net (1 to 2) by scaling up the reference point of the system and setting the constants as a, b, and c while scaling up the network reference point with various a, b, and c networks in Table 1. The accuracy of 97.1 percent achieved by InceptionNet1 on ImageNet is in the top five, even though on inference it is 6.1 times quicker and 8.4 times smaller than the finest existing ConvNets such as SENet (Hu et al., 2020) and Gpipe (Huang et al., 2019).

Table 1 | Parameters of Inception Nerual Network.


[image: Table detailing a neural network architecture with stages one to nine. Each stage lists the operator, image dimension, number of channels, and number of layers. Stages include various MobileConv operations, with image dimensions decreasing from two hundred twenty-four by two hundred twenty-four to seven by seven. The number of channels ranges from sixteen to one thousand two hundred eighty, and layers from one to four.]
The InceptionNet1, InceptionNet3 and InceptionNet2 algorithms were utilized while constructing our design; A GAP layer was added to the network’s last layer to increase accuracy while also reducing overfitting. We added a thick layer Ensuing GAP, with a 1024x1024 resolution and a 25% loss. Followed by another Dense layer. A SoftMax layer is then applied to produce the likelihood estimate points for identifying leaf diseases of tomato, which is the final step to begin with Inception Net as a baseline; we scale it up in two steps using our compound scaling method:

The first step is to fix = one, assuming twice as many resources are available. The InceptionNet2 finest values for are, in particular, a,b,c at 1.2,1.1,1.15 respectively with a = 1.2 being the best overall.

Second, we fix the values of constants as a, b and c and utilize Equation (1) to scale up the baseline variety of network values to get InceptionNet2 through InceptionNet1.

In some instances, looking for the three variables near a big model, for example, can provide even better results. Still, the cost of the search becomes prohibitively expensive for larger models. The First step in addressing this issue is performing a single search on a tiny baseline network and scaling all other models in the second step with the same scaling coefficients as the small baseline network.



Segmentation

In U-net architecture, many segmentation designs may be built. This research compared two versions of the unique U-Net (Navab et al., 2015) and two distinct versions of the Modified U-Net (Navab, 2020) to see which version performed the best. You can see how the original U-Net design, the Improved U-Net design, and the Modified U-Net design are displayed in Figures 1, 2. When considering the U-net, the first thing to bear in mind is that it comprises two pathways: one that expands while contracting and another that contracts while extending. An unpadded convolution (or convolution with padding) is performed many times along the contracting route. Each iteration consists of a ReLU followed by a pooling operation with stride 2 for down sampling. In the latter stages of the expanding path, the third convolution is followed by a ReLU. The up-sampled feature map is combined with the contracting path’s feature map, which is doubled, and two 3 x 3 convolutions, followed by a ReLU in the contracting approach. Every stage of the network takes into account 23 convolutional layers.

[image: Diagram illustrating two architectures for processing leaf images through convolutional neural networks. Panel A shows a complex flow with feature maps, convolutions, and up-convolutions leading to a processed binary leaf image. Panel B depicts a different network with varied spatial dimensions, utilizing convolutions, dropout, concatenations, and pooling, also culminating in a binary leaf image. Arrows indicate data flow and transformations.]
Figure 1 | (A) Original Baseline U-Net Architecture, (B) Modified improved U-net Deep Neural Network Architecture Livne et al., 2019.

[image: Two thermal images of plant leaves with colorful heat maps overlaying them. The left image shows a leaf with a central red area indicating higher temperature, surrounded by yellow, green, and blue gradients. The right image displays a similar pattern with red concentrating near the center, transitioning to cooler colors at the edges.]
Figure 2 | Sisualization of tomato leaf images using the Score-CAM tool, demonstrating affected regions where CNN classifier makes the majority of its decisions.

This research used a modified U-Net (Manjunath and Kwadiki, 2022) model, which includes some modest changes to its decoding component. U-Net refers to a route that provides for four encoding blocks and four decoding blocks, after which there is a second route that expands the first route by adding four encoding blocks and four decoding blocks. The decoding block of the new U-Net design uses three convolutional layers rather than two, which results in a substantial improvement in decoding block performance. Every block in every encoded picture has two 3x3 convolutional layers, and then the layers are repeated for each encoded image. During the up-sampling phase, the algorithm processes a more extensive set of images in the training set. Then, two three-by-three convolutional layers, one concatenation layer, and another three-by-three convolutional layer come into play. Convolutional layers also conduct batch normalization and ReLU activation. A 1 x 1 convolution is performed at each pixel on the SoftMax result from the previous layer. By allowing the final layer to differentiate between background and object pixels, this feature increases image quality. At the layer level of abstraction, this classification is carried out.



Visualization techniques

CNNs are showing a greater interest in internal mechanics. Therefore, visualization approaches have been developed to aid in their understanding. Visualization methods help in the knowledge of CNN decision-making processes. Additionally, this makes the model more understandable to people, helping increase the faith in the findings of neural networks. Recently, “Score-CAM (Chen and Zhong, 2022) was employed in this investigation because of its good output, such as Smooth Grad (Smilkov et al., 2017), Grad-CAM (Selvaraju et al., 2020), Grad-CAM++ (Chattopadhay et al., 2018), and Score-CAM (Wang et al., 2020).” The weight for each activation map is based on the target class’s forward passing score, and the outcome is the product of weights and activation maps. After calculating the forward passing score for each activation map, Score-CAM removes the requirement for gradients. In Figure 2, the leaf areas were in control of CNN decision-making, as seen by the heat map. The statement above can assist consumers in understanding how the network makes decisions, which increases end-user confidence.



Pathogens of tomato leaves

Septoria leaf spot, Early blight,target spot, and molds of leaf are only a few of the plant diseases caused by a fungus that exists. Fungi may infect plants in a change of ways via seeds and soil. The pathogenic fungus can spread across plants via animals, human contact, equipment, and soil contamination. An infection of the plant’s leaves by a fungal pathogen is the cause of initial blight tomato plants disease. All terms used to describe this condition are fruit rot, stem lesion, Collar rot and. When fighting early blight, cultural control, which includes fungicidal pesticides and good soil and nutrient management, is essential. Septoria leaf spot is caused by a fungus that grows on tomato plants and produces tomatines enzyme, which causes the breakdown of steroidal glycoalkaloids in the tomato plant to occur. Known as spot disease, it is a fungal disease that affects tomato plants and manifests itself as necrosis lesions with a color displayed as mild brown in the center. Defoliation occurs early in the course of progressive lesions (Pernezny et al., 2018; Abdulridha et al., 2020).

When the goal location is struck, it causes immediate harm to the fruit. This illness, called the fungal disease, develops upon moist leaves remain for a lengthy period. Bacteria is also a type plant pathogen. Bites, trimming, and cuts allow insects to penetrate plants. The availability, humidity, Temperature, nutrient meteorological conditions, ventilation, and soil conditions are crucial for bacterial development and plant harm. Bacterial spot is a disease caused by bacteria (Louws et al., 2001; Qiao et al., 2020). Plants can spread illness because of mold growth. Mold Plant causes the late blight in tomato and potato plants stems and leaf tips might have dark, irregular blemishes. The Tomato Yellow Leaf Cur (TYLC) virus causes illness in tomatoes. This virus has infected the plant and is transmitted by an insect. However, tomato plants bear damaged leaves and are divided into ten different classifications. In research 2, several groups of unhealthy and stable leaf photographs were categorized.

Some investigations show that plants of beans, peppers, eggplant and tobacco can also be harmed by virus. The current priority is to combat yellow leaf curl disease due to the illness’s extensive geographical range. Tomato Mosaic Virus is also a type pathogen which impacts the tomato plants (Ghanim et al., 1998; Ghanim and Czosnek, 2000; Choi et al., 2020; He et al., 2020). This virus is prevalent everywhere, affecting several plants, including tomatoes. Necrotic blemishes and twisted and fern-like stems define ToMV infection (Broadbent, 1976; Xu et al., 2021).




Methodology

The proposed framework is summarized in the given below Figure 3. The dataset used in this research-based project comes from the village of plant benchmark dataset (Hughes and Salathe, 2015; SpMohanty, 2018); the dataset consists of the leaf and their segmented mask images. As discussed in the above sections, this work is performed using three different classification strategies i.e.

	(1) the binary classification that only classifies the leaves into healthy and non-healthy classes.

	(2) the experiment was performed on five unhealthy and one class of healthy segmented images of leaves.



[image: Diagram of a neural network model for leaf disease classification. Layers include convolution, pooling, and up-sampling, with feature maps at each stage. Inputs and outputs are images of a leaf, with paths classifying health status using models InceptionNet1, InceptionNet2, and InceptionNet3.]
Figure 3 | Proposed Tomato Plants leaf diseases Classification Model.

The paper also investigates the most effective segmentation network for background leaf segmentation is the U-net segmentation model. The segmented tomato leaf pictures are then utilized to verify the cam imagining, which has been proved trustworthy in several applications.


Overview of the dataset

The proposed models are evaluated using the Plant Villag dataset consisting of 18161 images and segmented binary mask images (Hughes and Salathe, 2015). The Plant Village is benchmark and widely used dataset utilized for the training and validation of the classification and segmentation model.

This dataset was additionally used to prepare a division and order model for tomato leaves. The images from the dataset were divided into ten classifications where only one class is healthy while all others are from the unhealthy class. The entirety of the pictures was separated into ten classes, one of which was strong and the other nine were damage (e.g., bacterial smear, early leaf mold, leaf shape, leaf mold, and yellow leaf curl infection and the nine undesirable classifications were additionally partitioned into five subgroups (i.e., microscopic organisms, infections, growths, molds, and parasites). Figure 4 shows some examples of segmented tomato leaf and mask leaf pictures for the healthy and unhealthy classes. Table 2 additionally incorporates a point-by-point depiction of the number of images in the dataset, which is valuable for the arrangement work debated in the more prominent aspect of the accompanying area.

[image: Five tomato leaves, each exhibiting different symptoms of disease or deficiency. The first leaf appears healthy and green. The second leaf is slightly wilted with pale areas. The third leaf displays chlorosis with yellowing and green veins. The fourth leaf has brown spots indicating infection. The fifth leaf shows white powdery spots, indicative of a fungal issue.]
Figure 4 | Some random samples of tomatoes leaf images from the benchmar Plant Village Dataset.

Table 2 | Total amount of healty and disease affected tomato leaves images in the Plant Village Dataset.


[image: Table listing types of plant conditions with corresponding class descriptions and counts. Categories include Normal (Healthy, 1589), Bacteria (Bacterial Patches, 2131), Mold (Intense Mold, 1922), Virus (Curling and Crisping Yellow, 5362; Pathogenic virus Mosaic, 381), Fungal (Fungal Pathogens, 998; Septoria lycopersici, 1769; Corynespora cassiicola, 1399; Crushed Dry Leaf Mould, 949), and Mite (Tetranychus urticae Koch, 1681).]


Dataset image preprocessing


Image normalization and rescaling

The image input size for various CNN architectures for segmentation and classification Varies. All the images from the dataset for training a U-net model were resized to 256x256x3, while for InceptionNet (1, 2, and 3), the images were resized 299x299x3. CNN networks have input picture size necessities that should be met. All the images in the dataset were normalized using the z-score normalization, where the value of z-score was computed from the standard deviation (SD) and mean of the training images dataset.



Image augmentation

As the dataset is imbalanced and doesn’t have equivalent images in various classes, training with an unequal dataset may lead to models’ overfitting or underfitting issues. The number of pictures in all the classes is kept equal by augmenting (increasing the quantity of image data) the images. An equal number of images in all the programs (balance dataset) can train a reliable model to provide better performance accuracy (M. H. Chowdhury et al., 2019; Chowdhury et al., 2020; Rahman et al., 2020; Rahman et al., 2020; Tahir et al., 2022).

Three types of augmentation are applied to the image data, i.e., image rotation, image translation, and image scaling, to create a balanced dataset using data augmentation. To apply rotation to the training images, the images were rotated in a clockwise and anti-clockwise direction with an angle from 5 to 15 degrees. The scaling of images is zooming in or zooming out of an image; in our case, the scaling up and scaling down percentage is 2.5 to 10. The translation of an image is the processing of changing the location of objects in an image; the leaf region is translated horizontally and vertically by a percentage of 5-15.




Experiments


Leaf segmentation

To determine and select the best leaf segmentation model, various U-net segmentation models are trained. K-Fold cross-validation method is applied to split up the data into trainset and a test set. The value of K is 5, which means that each model will be trained five times and validated five times; in each fold, 80% of the data (leaf and segmented mask images) will be used for training the model while the remaining will be used for model validation. (Table 3).

Table 3 | Details of benchmark dataset used for proposed model performance evaluation.


[image: Table displaying dataset information for Plant Village tomato leaf images. It includes: total images and ground truth mask (18,159), training set size (13,082), validation set size (1,447), and testing set size (3,628).]
The trainset and test set class distribution are equal. As we know that each fold consists of 80% of the data for model training. So out of 80%, 90% of the data is going for model training, while the remaining 10% will be used for model validation which will assist the model in avoiding the overfitting issue. In this research, three state-of-the-art loss functions, i.e., Binary Cross-Entropy Mean-Squared Error loss and Negative Log-Likelihood, are performed to choose the optimal act evaluation metrics used to select the best segmentation model for tomato leaves.

Moreover, a proposed model training stunting condition is reported in some updated research work. If there is no improvement in the validation loss for the first five epochs, the model training should be immediately stopped (Chowdhury et al., 2020; Rahman et al., 2020; Tahir et al., 2022).



Classification of tomato leaf diseases

This research study explored a deep learning-based system that used a newly built convolutional neural net called Inception Net to categorize segmented tomato leaf disease pictures to improve disease detection accuracy. Three distinct types of picture categorization tests were conducted as part of this study. As shown in Table 4, the images utilized in the analyses for training multiple classification models using the segmented leaf images were taken from different sources. Table 5 contains a summary of the experiment’s parameters, as well as the results of the study into picture classification and segmentation techniques.

Table 4 | Quantitative analysis of proposed classifiers experimental work.


[image: A table lists image classifications for plant health, including binary, multi-class (six classes), and different classes (ten classes). Columns show the type, number of images, and segmented/non-segmented images for training, validation, and testing. Categories cover healthy, various diseases like fungi, mold, viruses, bacteria, mite, early blight, target spot, and specific plant conditions like tomato yellow leaf curl virus. Numbers vary across categories, with training images most numerous, and smaller counts for validation and testing images.]
Table 5 | List of Hypermaters, loss and optimizer used for training classification and segmentation models.


[image: A table comparing parameters for segmentation and classification models. The segmentation model has a batch size of 32, learning rate of 0.0001, 45 epochs, shuffle each iteration is Yes, stopping criteria is 5, loss function is Negative Log Likelihood Loss/MSE, and optimizer is SGDM. The classification model has a batch size of 64, learning rate of 0.0001, 50 epochs, shuffle each iteration is Yes, stopping criteria is 10, loss function is CELoss, and optimizer is SGDM.]


Inception-V1.

InceptionNet is a collection of deep neural networks that were developed using the Inception module. The initial edition of this series, Googlenett, is a 22-layer deep network. The Inception module is built on the idea that neurons with a shared objective (such as feature extraction) should learn together. In the bulk of early iterations of convolutional architecture, the main focus was on adjusting the size of the kernel to obtain the most relevant features. In contrast, InceptionNet’s architecture emphasises parallel processing as well as the simultaneous extraction of a number of different feature maps. This is the trait that most distinguishes InceptionNet from all other picture categorization models currently available.



Inception-(V2 and V3)

Inception v2 and Inception v3 are presented in the same paper. There exists an initial architecture inception-V1 where inception-V-2 and V-3 are widely used in the literature as transfer learning methods to solve various problems. For the Inception part of the network, we have 3 standard modules of 35×35 filter size, each with 288 filters in a layer. This is reduced to a 17 × 17 grid with 768 filters using a grid reduction technique. In inception-V3, the decomposed 5 initial modules, as shown, are reduced to an 8 × 8 × 1280 grid using the grid reduction technique. A grid reduction technique is used to reduce this to an 8 × 8 × 1280 grid. The inception-V3 model consists of two coarsest 8 × 8 levels of the Inception module, and each block has a tandem output filter bank size of 2048. The detailed architecture of the network, including the size of the filter banks in the Inception module, is given in the base research paper (Szegedy et al., 2014).

The intuition is that the neural network performs better when the convolution does not significantly change the input dimensionality. Too much dimensionality reduction may lead to information loss, called a “representation bottleneck”. Using intelligent decomposition methods, convolution can be made more efficient in terms of computational complexity. To increase the computational speed, the 5x5 convolution is decomposed into two 3x3 convolution operations. Although this may seem counterintuitive, the cost of a 5x5 convolution is 2.78 times that of a 3x3 convolution. Therefore, stacking two 3x3 convolutions can improve performance.

This translation was created with the assistance of the DeepL.com Translator (free version)

All of the experiments were performed on an Intel-based corei7 9th generation CPU with a RAM of 64 GB and NVIDIA RTX 2080Ti 11GB GDDR6 GPU using the python 3.7 popular deep learning framework the PyTorch library.

Performance matrix: Segmentation of tomato leaves: The proposed lesion segmentation model performance evaluation metrics are listed below (2)– (4).

[image: Accuracy formula showing: \((tp + tn) / (tp + fp + fn + tn)\), where tp is true positives, tn is true negatives, fp is false positives, and fn is false negatives.] 

[image: The image shows a formula for Intersection over Union (IoU): IoU equals true positive (tp) divided by the sum of true positive (tp), false negative (fn), and false positive (fp).] 

[image: Dice Coefficient formula, shown as two times true positives (2tp) divided by the sum of two times true positives, false negatives, and false positives (2tp + fn + fp).] 

Classification of segmented tomato leaves: The leaf classification performance evaluation metrics are listed below (5)– (9).

[image: Formula for accuracy: \((tp + tn) / (tp + fp + fn + tn)\). Here, \(tp\) is true positives, \(tn\) is true negatives, \(fp\) is false positives, and \(fn\) is false negatives.] 

[image: Sensitivity formula equation. Sensitivity equals true positives (tp) divided by the sum of true positives (tp) and false negatives (fn). A number "6" appears on the right side.] 

[image: Specificity is defined mathematically as the ratio of true negatives (tn) to the sum of true negatives (tn) and false positives (fp).] 

[image: Formula for the F1 score: the F1 score equals two times true positives divided by two times true positives plus false negatives plus false positives.] 

In the False Positive and False Negative measurements, you can see the photos of healthy and sick tomato leaves mistakenly identified. The True positive rate (TPR) indicates the number of adequately detected healthy leaf pictures. Although the True negative rate (TN) denotes the number of properly identified diseased leaf pictures, the actual percentage of healthy leaves represented is the Healthy Leaf Volume Index (HVI). Additionally, image segmentation and classification models are compared using Equation No. 9, which depicts the time required to test a single picture.

[image: Please upload the image or provide a link, and I will help generate the alternate text for it.] 

Where to denotes when a segmentation or classification model starts to process the image I while t’’ denotes the completion time when an image I am segmented or classified.





Results

This section details the performance evaluation of different neural network architectures (Segmentation & Classification) in various experiments.


Tomato leaf segmentation

To segment the tomato leaf pictures, two different deep learning-based segmentation models are employed. Namely, The U-net (Navab et al., 2015) and Modified U-net (Navab, 2020) are two neural networks that are trained and verified using pictures of tomato leaves.

Table 6 illustrates the presentation of two advanced segmentation deep learning designs tested against one another using various loss functions to demonstrate how effectively they compete against one another (NLL, MSE, and BCE). Notably, the Improved U-net with NLL loss function may have surpassed the unique U-net in terms of the quantity and quality of segments created for the ROI (leaf region) across all images instead of the original U-net.

Table 6 | Quantitative results analysis of U-Net and Modified U-Net over benchmark dataset.


[image: Table comparing loss functions and networks with metrics: Validation loss, Validation accuracy, Intersection Over Union, Dice, and Inference time. Original U-Net: NLog (0.0177, 96.33, 95.43, 96.51, 13.10), CELoss (0.0167, 96.49, 95.89, 96.42, 12.65), Mean Square (0.0135, 96.62, 96.33, 97.76, 12.41). Improved U-Net: NLog (0.0067, 98.88, 98.65, 98.91, 11.20), CELoss (0.015, 97.91, 97.77, 96.93, 11.01), Mean Square (0.069, 98.21, 98.12, 98.54, 10.98).]
A modified U-net design with a negative log-likelihood loss function was used to segment leaves into leaf regions. The following parameters were computed: validation loss, validation accuracy, IoU, and dice. The results for the Modified U-net model with Negative Log-Likelihood loss function were 0.0076, 98.66, 98.5, and 98.73 for the four variables. Example test leaf images from the Plant Village dataset are shown in Figure 5 with their ground truth masks. Segmented ROI images were produced using the Modified U-net model with a Negative Log-Likelihood loss function, which was trained on the Plant Village dataset and is displayed in Figure 6.

[image: Three rows of images featuring different leaves. Each row has three columns: the original leaf photograph, its silhouette on a black background, and an edited leaf version. Top row shows a healthy green leaf; middle row displays a leaf with yellowing and vein discoloration; bottom row shows a leaf with brown spots and damage.]
Figure 5 | Original Tomota Leaf Images, Ground Truth Mask and Segmented Leaf using Modified U-Net CNN Model.

[image: Three ROC curves comparing Inception Net-1, Net-2, and Net-3 for different classifications. Panel A shows binary classification with gradual increases in sensitivity and specificity. Panel B displays six-class classification with similar trends. Panel C illustrates ten-class classification with varied sensitivity and specificity, showing differentiations among networks.]
Figure 6 | Working feature curves for (A) binary segmented leaf classification, (B) sixth class segmented leaf classification, and (C) tenth class classification of the segmented leaf.



Classification of tomota plant disease

In this work, three separate tests were done using pictures of segmented tomato leaves, each with a different outcome. Using three distinct Inception Net families, the performance of segmented leaf pictures classified using three other classification techniques such as InceptionNet1, InceptionNet2, and InceptionNet3 is compared in Table 7. Pre-trained models perform exceptionally well in identifying healthy and diseased tomato leaf pictures, as shown in Figure 7, in problems with two classes, six classes, and ten classes, respectively. In addition, when non-segmented pictures were used, the results were superior.

Table 7 | Performance analysis of Modified U-Net with InceptionNet CNN models.


[image: Table showing the performance analysis of CNN models across different classes on 90 CI. For Class 2, InceptionNet-2 has the highest accuracy at 99.92%. Class 6 shows InceptionNet-3 with the highest accuracy of 99.32%. For Class 10, InceptionNet-2 reaches the highest accuracy at 99.90%. Performance metrics include accuracy, precision, sensitivity, F1 score, specificity, and inference time.]
[image: Three confusion matrices labeled A, B, and C show classification performances with different categories and counts. Matrix A compares healthy and unhealthy classifications with high accuracy, showing most data in diagonal green cells. Matrix B evaluates types of organisms (bacteria, fungi, mite, mold, virus) against health, with highest counts in diagonal cells, particularly for molds and viruses. Matrix C compares specific diseases and healthy status, again with highest values in diagonal cells, indicating accurate classifications with some misclassifications.]
Figure 7 | Image classification using compound scaling CNN-based models of healthy and diseased tomato leaves for segmented leaf images (A) for 2 class classification, (B) for 6 class classification, and (C) for 10 class classification.

Aside from ten-class problems, where InceptionNet3 performed marginally better than InceptionNet1 compared to other training models, InceptionNet1 outperformed other trained models when utilizing leaf pictures segmented of two, six, and ten-class issues and without it. We conducted extensive testing on several versions of Inception Net. They observed that when the depth, breadth, and resolution of the network are raised, the performance of the network increases. Because the depth, breadth, and resolution of the network are scaled as the Inception Net model grows in depth, width, and resolution, the testing time (T) grows. In contrast, when the classification scheme grows more complex, the performance of Inception Net’s scaled version does not appear to increase substantially.

A two-class and a six-class problem with InceptionNet1 outperforms the competition in segmenting tomato leaf images, achieving a 99.95 percent accuracy, 99.95 percent specificity, and 99.77 percent specificity for two-class 99.12 percent, 99.11 percent, and 99.81 percent specificity for three-class problems. For its part, InceptionNet3 achieved the highest accuracy, sensitivity, and specificity scores in the ten-class test, with 99.999% accuracy, 99.44 percent sensitivity, and specificity scores in the ten-class test, respectively. Figure 5 illustrates that increasing the number of parameters in a network result in marginally better performance for 2, 6, and 10 class issues. On the other hand, deep networks can give a more significant performance gain for problems with two and six classes, respectively. Figure 6 depicts the Images of segmented tomato leaves used to create Receiver Operating Characteristic (ROC) curves for problems involving two-class, six-class, and ten-class difficulties. This section shows how the receiver working features curves for second class, sixth class, and tenth class issues utilizing segmented tomato leaf pictures look.

The Design with NLL loss function produced masks (2nd left), segmented leaf with matching segmentation (2nd right), and ground truth images of tomato leaves are shown in Figure 5. (right).

To categorize tomato leaf diseases, segmented and original leaf pictures to get the findings shown in Table 7. Italicized outcomes denote the most favorable outcomes).

For the best performing networks depicts the confusion matrix when applying tomato leaf pictures to different classification tasks. Of the six out of 16,570 unhealthy tomato leaf pictures that were correctly classified as healthy, the network with the most outstanding performance, InceptionNet1, accurately categorized them. however, the network with the worst performance, InceptionNet1, incorrectly classified 1591 of them as unhealthy.

Six different classes of unhealthy tomato leaf images, which consisted of one healthy class and five distinct unhealthy classes, were identified in the six-class issue. While only three misclassified images were found in the six-class issue, 1591 healthy tomato leaf images were found in the healthy tomato leaf category. Only one tomato leaf was misclassified in the six-class problem, which consisted of healthy and unhealthy classes of one hundred and ninety-nine different types. There were 16,570 images of diseased tomato leaves to choose from in the six-class assignment. A study discovered that the best network for the ten-class problem was InceptionNet3, which had only four misclassifications of healthy imageries and 105 misclassifications of unhealthy images in healthy tomato leaf images.



Cam-Score ROI visualization

The dependability of trained networks was evaluated in this study through visualization tools based on five distinct score-CAM categories; it was determined that they were either healthy or sick. The 10-class problem was solved using temperature maps created from tomato leaf segmented pictures. Figure 8 depicts the unique tomato leaf samples and the temperature maps created on segmented tomato leaf segments. Figure 8 illustrates how the networks learn from the leaf pictures in the segmented leaf, which increases the reliability of the network’s decisions. Doing so contributes to disproving the notion that CNN makes choices based on irrelevant variables and is untrustworthy (Schlemper et al., 2019). Figure 9 further illustrates how segmentation has assisted in categorization, with the network learning from the area of attention resulting from segmentation. Using this reliable learning method, we could classify erroneous information correctly. Comparing segmented pictures to non-segmented images, we found that division assisted in knowledge and making judgments from germane areas associated with non-segmented imageries see Figure 10.

[image: Three original images of plant leaves are shown in the top row: one with yellow discoloration and green veins, one light green, and one with dark spots. Below each original, a corresponding segmented heat map is displayed, highlighting areas of interest with color variations.]
Figure 8 | Accurate classification and visualization of ROI using the CAM-Score tool: The red intensity indicates the severity of the lesion.

[image: Three rows of plant leaf images with corresponding ground truth and U-Net output. The first column shows original leaf images, the second column presents silhouette ground truth images, and the third column displays the U-Net model's segmented outputs. Each row represents a different leaf sample with varying shapes and colors.]
Figure 9 | Visual Results of Proposed Modified U-Net CNN model.

[image: Bar chart comparing classification accuracy. For binary classification: Madhavi et al. achieved 86.1%, and Proposed (Classes=2) reached 99.97%. For multi-class (10): Mohit et al. achieved 90.98%, Keke et al. 93.55%, and Proposed (Classes=10) 99.91%.]
Figure 10 |     Proposed Model Comparison with state-of-the-artwork.




Discussion

Plant diseases pose a substantial danger to the global food supply. The agricultural industry requires cutting-edge technology for disease control, which is currently unavailable. The application of technologies based on artificial intelligence to the identification of plant diseases is currently the subject of intensive research. Popularity of computer vision-based disease detection systems can be attributed to their durability, ease of data collection, and quick turnaround time. In this study, classification and segmentation of tomato leaf images are used to evaluate the performance of model scaling CNN-based architectures relative to their predecessors. The initial categorization (Healthy and Unhealthy) employed a two-category classification; subsequently, a six-category classification was employed (Healthy, Fungi Bacteria Mould Virus, and Mite). Prior to the completion of the final classification, a preliminary two-class classification (Healthy and Unhealthy) was utilized (Healthy, Early blight, Septoria leaf spot, Target spot, Leaf mold, Bacterial spot, Late bright mold, Tomato Yellow Leaf Curl Virus, Tomato Mosaic Virus, and Two-spotted spider mite). This study determined that the InceptionNet1 model was the most successful across all classes, outperforming all others with the exception of binary and segmented image classification, which the InceptionNet1 model outperformed. Utilizing segmented photographs and binary classification, this model outperformed all others in binary classification and 6-class classification using segmented images. This model performed significantly better than other models at classifying segmented 6-class images.

InceptionNet1 has an overall accuracy of 99.5% when using segmented images to classify sick and healthy tomato leaves into two classes. Using a 6-class classification method, the InceptionNet1 algorithm achieves an overall accuracy of 99.12%, according to the study’s findings. InceptionNet3 demonstrated an overall accuracy of 99.89 percent on a 10-class classification test involving segmented images and photos. Table 8 highlights the article’s findings, which are comparable to the current state of knowledge in their respective fields of study. The Plant Village dataset utilized in this study consists of images captured in a variety of environments; however, it was collected in a specific location and only contained images of specific tomato varieties. Using a dataset consisting of images of tomato plant varieties from around the world, a study was conducted to develop a more robust framework for identifying early illness in tomato plants. In addition, due to their simpler design, CNN models may be useful for testing portable solutions with non-linearity in the removal layer feature.

Table 8 | Proposed model performance comparsion with other state-of-the-art work.


[image: Comparison table showing articles on classification with datasets, accuracy, precision, recall, F1 score, and results. The proposed study shows higher accuracy and precision, using binary and multi-class classifications, with segmented results. Other articles have varying metrics with non-segmented results.]


Conclusions

This study presents the outcomes of a CNN built on the recently proposed Inception Net CNN architecture. The CNN model was effective, and which accurately assign a class label to a tomato leaf image as healthy or non-healthy. The reported results were obtained using the benchmark publicly available Plant Village dataset (Hughes and Salathe, 2015), demonstrating that our model outperforms a number of current deep learning techniques. Compared to other architectures, modified U-net was superior at separating leaf images from the background. In addition, InceptionNet1 was superior to other designs in removing high-priority features from snaps.

In addition, when the systems were trained with a greater number of parameters, their overall performance significantly improved. Using trained models may allow for the automated and early detection of plant diseases. Professionals require years of training and experience to diagnose an illness through a visual examination, but anyone can utilize our methodology, regardless of their level of experience or expertise. If there are any new users, the network will operate in the background, receiving input from the visual camera and immediately notifying them of the result so they can take the appropriate action. As a result, preventative measures may be taken sooner rather than later. Utilizing new technologies such as intelligent drone cameras, advanced mobile phones, and robotics, this research could aid in the early and automated detection of diseases in tomato crops. By combining the proposed framework with a feedback system that provides beneficial recommendations, cures, control measurement, and disease management, it is possible to increase crop yields. Work will be expanded to evaluate the performance of the proposed method in an embedded system and camera-based real-time application. The real-time system will be a hardware product that, after training with deep learning, will monitor and predict the health of plants.
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Bacteriosis is one of the most prevalent and deadly infections that affect peach crops globally. Timely detection of Bacteriosis disease is essential for lowering pesticide use and preventing crop loss. It takes time and effort to distinguish and detect Bacteriosis or a short hole in a peach leaf. In this paper, we proposed a novel LightWeight (WLNet) Convolutional Neural Network (CNN) model based on Visual Geometry Group (VGG-19) for detecting and classifying images into Bacteriosis and healthy images. Profound knowledge of the proposed model is utilized to detect Bacteriosis in peach leaf images. First, a dataset is developed which consists of 10000 images: 4500 are Bacteriosis and 5500 are healthy images. Second, images are preprocessed using different steps to prepare them for the identification of Bacteriosis and healthy leaves. These preprocessing steps include image resizing, noise removal, image enhancement, background removal, and augmentation techniques, which enhance the performance of leaves classification and help to achieve a decent result. Finally, the proposed LWNet model is trained for leaf classification. The proposed model is compared with four different CNN models: LeNet, Alexnet, VGG-16, and the simple VGG-19 model. The proposed model obtains an accuracy of 99%, which is higher than LeNet, Alexnet, VGG-16, and the simple VGG-19 model. The achieved results indicate that the proposed model is more effective for the detection of Bacteriosis in peach leaf images, in comparison with the existing models.




Keywords: peach leaves, Bacteriosis detection, Bacteriosis classification, deep learning, convolutional neural network (CNN), LWNet



1 Introduction

Plants are an essential aspect of all species’ lives on Earth. The world is an entire green planet as they supply fresh oxygen to breathe and minimize pollution by absorbing carbon dioxide. Plants are directly or indirectly responsible for our food source. They also protect a variety of different creatures. Plants that existed millions of years ago are also used to produce coal, natural gas, and gasoline. Plants are also a valuable source of medication. As a result, a thorough understanding of plants is required to investigate the plant’s genetic link. According to Martinelli et al., 2015 the total and acknowledged plant species number around 373,000, of which 309,312 are vascular plants and 296,383 are flowering plants”. People used their leaves, stems, fruits, flowers, and other parts to identify plants (Behera et al., 2018).

Many countries rely on agricultural products and allied businesses as their primary source of income. One of the most basic and crucial necessities for any country is the safety and security of agricultural products. Pakistan, like other developing countries, has always faced problems of malnourishment. Malnutrition is strongly intertwined with achieving food security (agricultural sector in Pakistan).

There are many different sorts of fruit, but Peach is one of the most popular and liked fruit around the globe due to its taste and other benefits for human health. Peach is high in antioxidants, vitamin C and minerals, including copper, manganese, calcium, magnesium, zinc, phosphorus, iron, and potassium (Krizhevsky et al., 2017). Peach production has led to the financial wealth of developed countries while also significantly influencing the economic development of emerging nations (Otsu, 1979). Peach farming is an essential element of the Pakistani agriculture sector. Peach fruits are popular fruits consumed by millions of people worldwide. Swat region is the top producer of Peach fruit. Swat produces 5280 tons of Peach fruit, and the tribal areas yield 3374, whereas Mardan produces 2825 tons of fruits https://tribune.com.pk/story/2078453/not-peachy-pakistans-peach-growers. Also, the Malakand area yields 1190 tons, followed by Peshawar, which produces 1066 tons of Peaches, according to the crops reporting service of Khyber Pakhtunkhwa in 2018-2019. Moreover, Buner provides 3,105 tons and Upper Dir 1,917 tons. Total production from the tribal district stood at 3,374 tons. This vast yield of Peach fruit plays a crucial part in the economy of Khyber Pakhtunkhwa.

However, several diseases can attack peaches, including Bacterial spots, also known as Bacteriosis or shot holes. Bacteriosis severely affects peach crop production. Older nectarines and peaches are also affected by Bacteriosis infection. Bacteriosis typically develops on the peach leaves first; therefore, the leaves are the primary source for recognizing plant disease (Ebrahimi et al., 2017). The “bacterium Xanthomonas campestris pv. Pruni” causes peach leaf shot-hole diseases. Bacterial spot on the peach fruits induces fruit losses and general tree malaise due to repeated defoliation. This disease can potentially destroy crops across an entire field, resulting in considerable loss of revenue because quality fruit would not be produced from the field (Deepalakshmi et al., 2021).

As a result, early detection of this disease’s infestation is critical to reduce pesticide use, prevent peach fruit loss, and avoid an economic loss to the farmer and country. Early detection of Bacteriosis necessitates a routine professional assessment of the disease’s severity (Martinelli et al., 2015). It is necessary to develop fast and automated methods for classifying Bacteriosis in Peach leaves since manually identifying this disease is labor-intensive and does not produce results well. Image processing is an adequate substitute for automatically identifying diseases from raw leaf pictures. Numerous attempts have been made to identify the images and use a particular classifier to categorize the input leaves images as infected or normal. The following are the contribution of this paper.

	A synthetic dataset is developed which consists of 10000 images: 4500 are Bacteriosis and 5500 are healthy images.

	Novel methods are utilized to accurately preprocess the images for the identification of Bacteriosis and healthy leaves.

	A lightweight LWNet model is proposed to classify peach leaves into infected (Bacteriosis) and healthy with higher accuracy by varying layers and fine-tuning the parameters.

	To evaluate the performance of the proposed LWNet Model, we compare it with the state-of-the-art CNN Models like AlexNet, LeNet, VGG-16, and VGG-19 based on the simulation time, Accuracy, Mean Square Error loss, precision, Recall, and F-Measure.

	The proposed LWNet CNN model improves the performance and achieves a higher accuracy of 99% in the detection of Bacteriosis in peach leaf images, compared to the other four existing models.



The rest of this paper is organized as follows. Section 2 shows the literature review of leaf classification using deep learning methods. Section 3 presents the methodology of the proposed models. Section 4 shows the experimental results. Finally, Section 5 concluded the proposed work.



2 Literature review

The authors presented an innovative method for detecting rice and leaf disease based on deep convolutional neural networks (CNNs) Lu et al., 2017 and Shoaib et al., 2022. Various models were trained to detect ten types of rice diseases. They experimented with a dataset consisting of 500 images of healthy and infected rice leaves. Their proposed Model achieved 95.48% accuracy by adopting 10-fold cross-validation. Sethy et al., 2017 introduced the K-Means clustering technique for detecting defective rice leaf parts. They also calculated the affected area. A classification method of SVM with K-means and fuzzy C-means clustering was prepared to recognize the five distinct types of the scarcity of rice crops from leaf pictures and achieved 85 and 90 percent accuracy. Islam et al., 2017 described a procedure for diagnosing diseases from leaf images. This program analyzed a dataset named “Plant Village,” a collection of publicly available datasets to find diseases in potato plants. A segmentation method and an SVM were used to categorize diseases in over 300 images, with a median accuracy of 95%. Oppenheim and Shani, 2017 provided a classification system for potato diseases using computer vision deep learning approaches. The algorithm divides the tubers into five classes, including four infection classes and a healthy potato class. The images in this study contained potatoes of various sizes, shapes, and diseases, which experts meticulously gathered, recognized, and labeled. Dias et al., 2018 proposed a strategy for fine-tuning a pre-trained convolutional neural network to become especially sensitive to flowers presented in this research. The solution surpasses three algorithms representing state-of-the-art flower detection, with recall and accuracy rates of more than 90% based on experimental results on a challenging data set. Liu et al., 2017 used deep convolutional neural networks to detect apple leaf disease. A CNN modal was trained on a data set of 13,689 images of apple leaves to classify apple leaf disease (brown spot, rust, mosaic, and Alternaria leaf spot) into healthy and infected classes. According to experimental findings, the proposed CNNs-based approach gained an overall accuracy of 97.62 percent. When compared to the AlexNet Model, the model parameters are reduced by 51,206,928, and the accuracy of the suggested Model with generated pathological images is improved by 10.83 percent. This study reveals that the suggested deep learning model is more accurate, has a faster convergence rate in detecting apple leaf diseases, and increases the CNNs network modal’s robustness. Behera et al., 2018 worked to detect disease in oranges and classify the sort of flaw. First, a citrus disease review was conducted to create a dataset of digitalized oranges that were categorized by kind of fault and served as a training set. The symptoms of an orange disease show the severity of the disease and might help decide on the best treatment option. To avoid serious harm to oranges yield, it is also vital to diagnose the disease appropriately and promptly. Treatment of orange diseases is more expensive and pollutes the environment due to the overuse of pesticides. As a result, pesticide use was reduced. This research used SVM with numerous classes and k-means clustering, and Fuzzy Logic to calculate the seriousness of orange sickness to classify diseases accurately with a 90% accuracy. Geetharamani and Pandian, 2019 worked on the Deep CNN model using an available dataset containing 39 types of plant leave images. Six data augmentation methods were employed: noise injection, principal component analysis (PCA), Gamma correction, image flipping, color augmentation, rotation, and scaling to make CNN models more effective. The suggested Model functions more effectively when the validation data are used. The suggested Model obtains a classification accuracy of 96.46 percent after extensive simulation. Ozguven and Adem, 2019 worked on an automatic diagnosis of Cercospora beticola Sacc, also known as leaf spot disease, in sugar beet. They used a Faster R-CNN architecture by modifying the parameters of a CNN model on 155 images and succeeded with 95.48% accuracy. Zhang et al., 2019 developed a “13-layer convolutional neural network” for their research (CNNs). Data augmentation techniques used gamma correction, image rotation, and noise injection. compared the maximum and average pooling as well. Using stochastic gradient descent (SGD) with momentum and a minibatch size of 128, the CNNs were trained. The suggested methodology outperforms state-of-the-art methods by at least five percentage points, with a general accuracy of 94.94 percent. It was discovered that data augmentation could improve Accuracy. Alehegn, 2019 attempted to build maize leaf disease recognition and classification using an image processing and support vector machine model. Eight hundred images total, of which 80% were employed for training and 20% for testing, were used to analyze the modal’s acceptance and classification precision. The support vector machine supported the experiment result, which achieved a median accuracy of 95.63 percent using integrated (texture, color, and morphology) information. El-kahlout et al., 2019 used a dataset of 2,306 photos, and a machine learning-based technique for differentiating types of peaches is proposed. 1,212 images were used for training, 520 for validation, and 574 for testing. The researchers used a deep learning method widely used in picture recognition. 30% of the image is used for validation, while the remaining 70% is used for training. Our trained Model produced 100% accuracy on a held-out test set. Ahila Priyadharshini et al., 2019 Proposed a classification architecture for maize leaf disease based on “Deep Convolutional Neural Networks (CNN) (modified LeNet)”. Maize leaf images from the Plant Village dataset are utilized in the studies. The proposed CNNs can distinguish between four separate classes (three diseases and one healthy class). The learned Model has a 97.89 percent accuracy rate. Chen et al., 2020 looked at the deep learning strategy to solve the problem in this study because it has shown to be very good at image processing and classification challenges. The Dense Net module, which was pre-trained in ImageNet, and the Inception module were chosen for usage in the network since they combined both benefits. In comparison to other state-of-the-art methods, this approach outperforms them. The public dataset has an average prediction accuracy of 94.07 percent. The average class prediction accuracy for photographs of rice disease is 98.63 percent, even when several diseases are taken into account. da Costa et al., 2020 developed a deep learning technique to identify exterior problems in this paper. There are 43,843 images in the data collection and external faults. This online dataset indicates a significant imbalance in terms of healthy images. A deep Residual Neural Network (DRN) is a type of neural network that has a (ResNet). A classifier was trained to detect external faults through feature extraction and fine-tuning. The Model had an average precision of 94.6 percent on the test set. & The Optimal Classifier has an 86.6 percent recall while retaining precision of 91.7%. Joshi et al., 2021 introduced an automated deep learning base of viral infection detection for Vigna Mungo L., a leguminous plant mostly produced in the Indian subcontinent. Creating an automatic disease detection approach that can conduct jobs in real time is challenging. Adding variation to the leaf image data collection, the image data set acquired from several kinds of Vigna Mongo leaves split and enhanced. The convolutional neural network VirLeafNe was trained with different leaf images for numerous epochs, including healthy, slightly diseased, and badly infected leaves. Drone sprayers can be used with the proposed methodology to analyze larger crop regions. The suggested method is fully automated, non-destructive, and classifies leaf images into many categories in real-time. After thorough algorithm tests, all proposed models obtained high levels of validation accuracy, with testing accuracy for VirLeafNet1, VirLeafNet2, and VirLeafNet3 of 91.234 percent, 96.429 percent, and 97.403 percent, respectively, on diverse leaf images. Goncharov et al., 2020 described a dataset with healthy and infected leaf images of wheat, corn, and grapes plants. They proposed an architecture that uses a deep Siamese network as a feature extractor and a single-layer perceptron as a classifier, achieving an Accuracy of 96%. Sharma et al., 2020 looked into a possible solution by training convolutional neural network (CNN) models with segmented image data. The S-CNN model beats the F-CNN modal by doubling its performance to 98.6% accuracy compared to the F-CNN modal trained using entire images. This performance was tested on independent data previously unnoticed by the modals. Additionally, we demonstrate that the S-CNN model’s self-classification confidence is significantly greater than the F-CNN Model using a tomato plant and a target spot disease as an example. This study moves the utility of automated disease diagnosis systems closer to laypeople. Yadav et al., 2021 worked on CNN models to detect Bacteriosis in peach leaf images. An adaptive operation was conducted to a chosen suitable color image channel, and the affected region’s disease spots were quantified. To segment and identify bacterial spots, grey-level slicing is applied to pre-processed leaf images. The datasets have been augmented to make the algorithm resistant to varying lighting conditions. Results showed that their Model achieved an accuracy of 98.75 percent and a time of 0.185 seconds per image to detect abacterial and healthy leaves. tool due to its high detection rate.



3 Methodology

Bacteriosis or Bacterial leaf spot, scientifically also called bacterium Xanthomonas campestris pv. Pruni is a frequent disease affecting nectarines and elderly peach trees. This disease primarily acts on the vulnerable parts like the leaves and fruits of the peach tree and spreads across the entire field. Leaf, flowers, stems, and fruit are commonly used to identify plant diseases. Plant leaves, in particular, are essential to botanists because they have a distinguishing feature. However, manually identifying and recognizing plant diseases is an extremely exhausting and time-consuming operation for the botanist to perform. As a result, an automatic detection system is required to determine Bacteriosis in peach trees, which would benefit botanists and farmers to make good revenue from the field. This paper employs the CNN models to classify Bacteriosis accurately. The suggested method extracts the feature from the images of the peace leaves and classifies them as healthy or infected images using CNN features. Figure 1 shows the complete methodology adopted to perform this research work. This work starts with collecting the synthetic dataset, followed by the images’ pre-processing. Afterward, CNN models, including our proposed Model (LWNet), are trained and tested. The results collected for all models are evaluated based on the performance parameters. For experimentation of this work, Google Collaboratory, called Google Colab, which provides python based with the cloud GPU and TPU facilities worldwide, is used. Details of each step are discussed in the section below.

[image: Flowchart illustrating a process for analyzing a dataset containing healthy and bacterial spot images. Steps include preprocessing (image enhancement, cropping, resizing, background removal), using CNN models (AlexNet, LeNet, VGG-16, VGG-19, LWNet), followed by evaluating performance parameters (accuracy, mean square error, F-measure, recall, precision).]
Figure 1 | Data flow chart of the proposed LWNet model methodology.


3.1 Dataset collections

Dataset collection is the essential step of any research work. In this work, we have collected images of the Peach leaves from the research Farm of The Agriculture University Peshawar, Pakistan. The Research Farm comprises around one thousand (1000) Peach trees orchards spread over 14 acres of area. The images were captured through a Canon High-Definition Digital Single-Lens Reflex camera. The size of each image is approximately 5184 X 3456. A total of 625 healthy and 375 infected images were captured from the research farm. Dataset is artificially increased by applying some Data-Augmentation techniques shown in Table 1. Data augmentation is a technique in which the researcher artificially increases the dataset to increase the accuracy of machine learning models. The augmentation technique is applied for investigating site datasets like (Rotation, Flipping, Scaling, Brightness, and Translation). In rotation, all the images are rotated at 150 angles. In flipping, all the original images are flipped using horizontal and vertical flipping techniques. In scaling, all the original images were scaled 180%. In brightness, images were brighten using the method iaa.addToBrightness((50)). In translation, the images were translated at TranslationX and TranslationY. The dataset consists of 10000 images, of which five thousand and hundred (5500) are healthy images of peach leaves and four thousand and five hundred (4500) are images of infected leaves having Bacterial spots or Bacterial shot holes. Figure 1 shows the research flow chart.

Table 1 | The developed dataset details.


[image: Table showing data on peach leaf images. Categories: Bacterial Spot with 375 original and 4500 augmented images; Healthy Images with 625 original and 5500 augmented images. Total original images are 1000, with 10000 augmented images. Data augmentation techniques include rotation, flipping, scaling, brightness, and translation.]


3.2 Healthy image

Figure 2 shows a healthy Peach leaf image. They are botanically classified as Prunus Persica L. Peach leaves range in size from small to medium and have an oval to lanceolate form. They are typically 10–20 centimeters long and 2–8 centimeters wide. There is a central midrib, and numerous tiny veins branch out from it. Peach leaves are available from spring through summer.

[image: A single green leaf with a serrated edge and prominent veins lies flat on a light-colored surface. The leaf is oval-shaped with a visible central vein running along its length.]
Figure 2 | Healthy image of the peach leaf.



3.3 Bacterial spot(leaf)

Figure 3 shows the Peach leaf with a bacterial spot or shot hole, a widespread condition on peach trees. The bacterium XANTHOMONAS CAMPESTRIS PRUNE causes this leaf spot disease on peach trees.

[image: Close-up of a yellowish-green leaf marked with numerous small red and brown spots, possibly indicating leaf rust or a similar plant disease.]
Figure 3 | Bacterial spot of the peach leaf.



3.4 Pre-processing

Before moving to image analysis, data processing is a crucial stage used to check the data values of an experiment. The image should be prepared to get a decent result. Following are some steps to be conducted for image pre-processing operation, including image resizing, noise removal, image enhancement, background removal, and some augmentation techniques applied to Bacteriosis and healthy leaf images.


3.4.1 Resize images

For classification, the dataset contains images of various sizes. As a result, the frame should be resized to a pre-determined size in the early phases. The images would be reduced in size to 227 x 227 pixels. Figures 4A, B show the original healthy and infected images before pre-processing whereas Figures 5A, B images show the final size of the images used for experimentation. Showed in Figure 5.

[image: Image A shows a dark green, smooth leaf, while Image B depicts a leaf with a yellow base and a pattern of red patches.]
Figure 4 | (A) Original size of healthy leaf (B) original size of bacteriosis leaf.

[image: Two leaves are shown for comparison. Leaf A is dark green, smooth, and glossy. Leaf B is yellow with prominent red spots and blotches, appearing mottled and textured.]
Figure 5 | (A) Resize image of healthy leaf (B) resize image of bacteriosis leaf.



3.4.2 Noise-removal

The images’ additional information and noise would be removed. So, try some noise cancellation filters or other noise removal techniques such as salt and paper, etc.



3.4.3 Image cropping

When cropping an image, wanted to remove the outer parts of the image that are not interested in.



3.4.4 Image enhancement

Image enhancement is the practice of highlighting some information in an image and removing unnecessary information according to our needs like removing noise, revealing blurred, etc. This step makes the image clear for further analysis as shown in Figure 6.

[image: Two leaves are shown with brown spots on their surfaces. Leaf A, on the left, appears more faded and has a duller color compared to Leaf B on the right, which is brighter with a slightly greener tint. Both leaves exhibit similar spotting patterns.]
Figure 6 | (A) Original image (B) brighten image.



3.4.5 Background removal

It is the procedure to erase unwanted items from the image. In our dataset, all the images have a background that could directly affect the experimentation and results. The unwanted background has been removed from the images to improve the results. For this purpose, an openly available software remove.bg, on Internet has been used.



3.4.6 Feature extraction

Feature extraction is the subsequent stage and is crucial for the classification of the images. Images depict the similarities between things that are inherently related. The classifier utilized functions and labels to compare various photos and group them into distinct classes. Many convolution layers were used in feature extraction, followed by an activation function and max-pooling. CNN characteristics eradicate discriminatory activities (Shafique and Tehsin, 2018).




3.5 Activation function

For neural networks, the activation function is crucial because it determines whether or not a neuron should activate by computing the weight and then adding bias to the result. Performing a non-linear presentation in neuron release is the function’s main goal. As displayed in Figure 7.

[image: Diagram of a neuron model showing input and output arrows connecting to a central circle labeled "Neuron." Inside, a red activation function curve is depicted, indicating its role in processing the input.]
Figure 7 | Activation function works.

Non-linear activation functions are increasingly used in neural networks to help the network comprehend complicated input, compute and understand practically any function representing the query, and make exact predictions. There are a variety of activation mechanisms that can be adopted in the neural network. Below is the list of commonly used functions.

	Sigmoid or Logistic

	Hyperbolic Tangent Tanh

	Rectified linear unit ReLu




3.5.1 Sigmoid or logistic

In the Sigmoid activation function, its input and output are actual values. The sigmoid function prevents output value overflow and has numerous advantages over smooth gradients. A precise prediction of X above 2 or less typically places the value of Y very close to 1 or 0 at the edge of the curve shown in Figure 8. Such values allow precise predictions.

[image: Graph of the sigmoid function \( \phi(z) = \frac{1}{1 + e^{-z}} \). The curve begins near zero for \( z < -6 \), transitions sharply through 0.5 at \( z = 0 \), and approaches one as \( z > 6 \). The x-axis ranges from -8 to 8, and the y-axis ranges from 0 to 1.]
Figure 8 | Sigmoid function.



3.5.2 Hyperbolic tangent Tanh

Figure 9 shows the Hyperbolic Tangent Tanh function. It is an alternative to the sigmoid function and is superior to it. Its value ranges from 1 to -1. The mean for the hidden layer is 0 or very nearly so. This approach makes optimization simpler, although it still uses sigmoid functions.

[image: Graph comparing sigmoid and tanh functions. The sigmoid function, in red, ranges from 0 to 1, while the tanh function, in green, ranges from -1 to 1. Both functions are plotted against the x-axis, with x-values from -3 to 3 and corresponding y-values.]
Figure 9 | Hyperbolic tangent function.



3.5.3 ReLU activation function

To capture the non-linear dependencies in data that neural networks require, Alexnet, VGG-16, and VGG-19 use rectified linear units. Figure 10 illustrates this.

[image: Two graphs comparing activation functions. Left: Sigmoid function, \( \sigma(z) = \frac{1}{1 + e^{-z}} \), showing an S-shaped curve from 0 to 1. Right: ReLU function, \( R(z) = \max(0, z) \), showing a linear increase for positive values and flat for negatives. Both graphs have labeled axes ranging from -10 to 10.]
Figure 10 | ReLU activation function.

ReLU is not saturated, but the sigmoid function is. In terms of training time, this non-linearity saturating is significantly non-saturating non-linearity is slower as the gradient decreases. ReLU worked obtained 25%, which is 6 times the error rate of the tanh function as shown in eq (1).

[image: Rectified Linear Unit (ReLU) formula is shown as \( f(x) = \text{max}(0, x) \).]



3.5.4 Overfitting problem

The Model successfully reads the training database. It performs well there but poorly on a holdout sample. When the training set’s Accuracy exceeds the validation or testing set, the Model is overfitted, which is why we would try to minimize the issue. Describe an approach for reducing overfitting called data augmentation.



3.5.5 Tuning of hyperparameters

A variety of hyperparameters influences the performance of Deep CNN, including the count of epochs, activation function, concealed layers, dropout, learning rate, nodes, batch size, and others. Experiments are performed with various hidden layers, epochs, activation functions, and learning rates in tuning the parameters. The Model’s ideal state is swiftly attained with the highest Accuracy after fine-tuning.




3.6 Proposed CNN model

Researchers have used various pre-trained models for detecting plant diseases. However, it is vital to remember that these models were constructed with many layers to handle cases when the no’s of classes is quite large. If there are more layers, the polynomial being employed in the Model has a higher degree. These require vast quantities of storage and prolonged processing speeds to handle the settings. It should be emphasized that plants often have fewer than 15 different disease classes. Pre-trained models can be overfitting and deliver inaccurate results when applied to such plant data. Similarly, inaccurate results due to underfitting also may arise in a simple linear model without hidden layers. It is therefore suggested to build a more simplified CNN model that is more suitable for a small number of classes. We propose a Lightweight with the following properties.

	The proposed LWNet model is acquired by compressing VGG-19 layers. The top convolution layers have not detected too good features, or the broad feature compared to the end convolution layers, which detected broad features. We have removed the top three convolution layers, which have fewer filters like 64, 64, and 128, respectively. Also, the size of the four convolution filters increased from 256 to 280. By reducing the convolution layers in the proposed LWNet model, the Accuracy increased to 98.87% from 98.74% when the Model was trained for 50 epochs.

	In VGG-19, the parameters are quite high. High parameters result in the Model’s overfitting and require much storage. Similarly, low parameters mean less information and underfit Model. An average parameter model is required to get better classification results for a model. The proposed LWNet model is provided in Table 2.



Table 2 | A diagrammatic view of the proposed model is provided.


[image: A table detailing a neural network architecture with 25 layers. It lists the layer number, type, number of kernels, kernel size, and output size. Layers include Convolutional, Max Pooling, Fully Connected, Dropout, and Connected with Sigmoid. The number of kernels varies, with convolutional layers having 128 to 512 kernels and specific kernel sizes like 3x3 and 2x2. Output sizes range from 128x227x227 to 2x1x1x1.]
Table 2 explains the structure of the proposed LWNet Model. It has 23 layers altogether 13 convolutional layers, 7 Max Pooling layers, and 3 Dense layers. Only 13 are weight layers, also referred to as learnable parameters layers. The LWNet has an input tensor had three RGB channels and a size of 227, 227. The most notable aspect of the LWNet Model is that it continuously used the same padding and max pool layer of a 2x2 filter with stride 2 and prioritized convolution layers of a 3x3 filter with stride 1 over a huge number of hyper-parameters. The convolution and max pool layers are uniformly placed across the whole architecture. The Conv-1 Layer consists of 128 filters, the Conv-2,3,4 and 5 Layers of 280 filters, the Conv-6,7,8,9,10,11,12 and 13 Layer of 512 filters, Three Fully Connected (FC) layers, the third of which performs 1000-way of classification and contains 1000 channels, are added after a layer of convolutional layers. Each top two FC layer has 4096 channels (one for each class). The final layer was the Sigmoid layer.

Table 3 shows the parameters of the proposed LWNet model. The dataset consists of 1000 images, of which 70% are used for training and 30% for testing the Models. The LWNet Model uses 13 convolutional layers, the count of max-pooling is 7, and the dropout rate is 0.5 with the ReLu activation function. The LWNet Model is trained for 50 epochs. The number of epochs remained the same for each Model.

Table 3 | The hyperparameters used in the proposed model.


[image: Table listing hyperparameters and their descriptions for a machine learning model. Convolution layers: 13, max pooling layers: 7, dropout rate: 0.5, activation function: Relu, learning rate: 0.001, epochs: 50, batch size: 32, training size: 70%, test size: 30%.]
The training and testing datasets will be separated from the primary datasets. The training dataset contained 70% (7000 images) of the data from the primary dataset, while the remaining 30% (3000 images) of the dataset has been utilized for testing. A 70% image-based training dataset was utilized for training the Model. A 30% image-based testing dataset was used to test the Model.


3.6.1 Simulation parameters

Experiments are performed on images of healthy leaves and infected (Bacteriocins) leaves collected from the research Farm of Agriculture University Peshawar, Pakistan. “Colab is an online platform based on python employed to carry out a structured program. The research used the deep state-of-the-art of CNNs using LeNet, Alexnet, VGG-16, and VGG-19 and proposed the LWNet Model. Experimental findings with a 98.87% accuracy rate are presented. Furthermore, to classify the bacterium XANTHOMONAS CAMPESTRIS PRUNE illness in real-time. As discussed in section 3.1, the dataset consists of 1000 images, of which 70% were used for training and 30% for testing the Model. The total number of epochs remains constant for each Model. Each Model has its activation function. It is also the same for each Model before the sigmoid function’s final performance. The parameters were set for experiments, as shown in Table 4, which showed the structure of the proposed LWNet model.

Table 4 | Simulation parameters of LWNet model.


[image: Machine learning model parameters table with two columns: "Name's" and "Parameter's". Parameters include: Algorithm (Proposed Model Based on VGG-19), Convolution-Layers (ReLU Activation Function), Fully Connected-Layers (Sigmoid Activation Function), Maximum Number of Epochs (50), Dataset (10000 images), Data for Trained the Model (70%), Data for Testing the Model (30%), Environment (Google Colab), Evaluation-Parameter (Accuracy, MSE Loss, Precision, Recall, and F-Measure).]
Table 4 shows the simulation parameters used for the experimentation of the proposed LWNet model, including the training and testing processes. The LWNet uses Relu activation function to increase non-linearity. As discussed earlier, the simulation of each Model is performed for 50 epochs, and the Sigmoid function is used for classifying images into healthy and infected classes. These simulations are performed on Google Colab. Each Model’s results are evaluated using Accuracy, MSE loss, precision, Recall, and F-Measure.



3.6.2 Evaluation parameters

The model performance was evaluated by using the performance parameter. Mean Square Error (MSE) loss, Accuracy, Precision, Recall, and F-measure parameters have been employed to assess the LWNet Model and compared with other CNN models. Equation (2) computes the Accuracy of the classification. All correct measurements were calculated with Accuracy. The accurate prediction is divisible by the total number of observations.” The system’s performance would be good if the classification accuracy is high. Equation (3) represents the precision, Equation (4) shows the Recall, and Equation (5) denotes the F-measure.

[image: Formula for accuracy: Accuracy equals the sum of true positives and true negatives divided by the sum of true positives, true negatives, false positives, and false negatives.]

[image: The image shows the formula for calculating precision: Precision equals true positive divided by the sum of true positive and false positive. This is labeled as equation three.]

[image: Formula for recall calculation, expressed as Recall equals TrP divided by the sum of TrP and FsN.]

[image: Formula for the F-Measure: \( F\text{-}Measure = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}} \) with equation labeled as number 5.]

whereas TrP represents True Positive, TrN denotes True Negative, FsP depicts False Positive, and FsN represents False Negative.





4 Experimental results

Experiments were performed on bacteriosis and healthy images were collected from the research Farm of Agriculture University Peshawar, Pakistan. “Colab is an online platform based on python that was used to run a structured program. This study used the deep state of the art of convolutional neural network “ Moreover, to classify bacteriosis images into healthy images using LeNet, Alexnet, VGG16, VGG-19, and proposed model based on VGG-19. Experimental results are presented and achieved an accuracy of 98.87%. Furthermore, to classify the bacterium XANTHOMONAS CAMPESTRIS PRUNE disease in real-time. From the dataset. The total number of images in our dataset was Ten Thousand of which 70% of images were used for training and 30% for testing.

For each model, the total number of epochs remains constant. Each model has its activation function. And before the ultimate performance of the sigmoid function, it is the same for each model.

This section described the experimentation results of the proposed LWNet Model and compared them with AlexNet, LeNet, VGG-16, and VGG-19. Figure 10 shows the accuracy of the proposed LWNet for training and validation. The training accuracy starts at 86% at the first epoch of the simulation and achieves 98.87% by 50 epochs. Similarly, the accuracy of the validations begins at 90% at the first epoch and attains 98.87% at the 50 epochs. Figure 11 shows the training and validation loss of the LWNet. The results depict the initial value of the loss as 0.2 and reach 0.0113 for both training and validation of the system.

[image: Line graph displaying training and validation accuracy over 50 epochs. The x-axis represents epochs, while the y-axis shows accuracy. Training accuracy is marked in yellow and validation accuracy in red. Both lines fluctuate but generally trend upward, with accuracy nearing one hundred percent by the fiftieth epoch.]
Figure 11 | Training and validation models accuracy.


4.1 Parameters of the proposed model

For experiments following parameters were set as shown in Table 5 showed the structure of the proposed model.

Table 5 | Parameters Detail of Proposed Model.


[image: Table listing parameters for a proposed model based on VGG-19. It includes: ReLU for convolution layers, Sigmoid for fully connected layers, a maximum of 50 epochs, a dataset of 10,000 images split 70% for training and 30% for testing, run in Google Colab, and evaluated using accuracy, MSE loss, precision, recall, and F-measure.]
Table 5 shows the parameter of the proposed model and how the training and testing processes work. In the first step, all the images were found in the directory. The proposed model contains different layers. The last layer of connectivity was linked with the sigmoid activation function. The last section trained and validated the proposed model that differentiates between the infected leaf and the normal leaf. Figure 11 showed the model training and testing accuracy while Figure 12 showed the model training and validation loss

[image: Line graph showing training and validation losses over 50 epochs. The y-axis represents loss, peaking at 0.6, and the x-axis represents epochs. Training loss fluctuates below 0.1, while validation loss has several spikes, decreasing over time.]
Figure 12 | Training and validation model loss.

Table 6 The testing data, which included precision, recall, and F-Measure, were evaluated using the Confusion Matrix True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) values.

Table 6 | Proposed Model Performance Parameter.


[image: A table shows precision, recall, and F-measure values for two conditions: Healthy and Bacteriosis. For Healthy, precision is 0.95, recall is 0.98, and F-measure is 0.96. For Bacteriosis, precision is 1.00, recall is 0.99, and F-measure is 0.99.]
Figure 13 denotes the performance of the proposed LWNet Model for both healthy and Bacteriosis (infected) leaves. The LWNet achieves a precision of 95% for healthy leaves and 100% for the leaves infected with Bacteriosis. Similarly, the Recall for the classification of healthy leaves is 98% and 99% for the infected leaves. Furthermore, F-measure for the healthy leaves is 96% and 99% for the infected leaves.

[image: Bar chart comparing two categories, Bacteriosis and Healthy, across three metrics: Precision, Recall, and F-measure. Bacteriosis scores higher than Healthy in Precision and F-measure, while Recall scores are equal for both.]
Figure 13 | Performance parameter of the LWNet model.

Figure 14 shows the confusion matrix of the LWNet results, describing that the proposed LWNet Model returns 98% True positive for both healthy and infected leaves and 99% True negative results. The LWNet shows 2% false positives and 1% False negatives.

[image: Confusion matrix displaying classification results for two labels: Healthy and Bacteriosis. True Healthy: 0.98 predicted correctly, 0.02 incorrectly. True Bacteriosis: 0.99 predicted correctly, 0.01 incorrectly.]
Figure 14 | Confusion matrix.



4.2 Accuracy comparison with existing models

Figure 15 describes the Accuracy of the proposed LWNet model and other CNN models. The results show that the LWNet achieves 98.87% accuracy, whereas VGG-19 displayed 98.74% accuracy. Similarly, VGG-16 achieved 98.62% accuracy, AlexNet succeeded with 98.12% accuracy, and 96.24% for LeNet. The proposed LWNet achieves 0.1315% better Accuracy than VGG-19, 0.253% improved results compared to VGG-16, 0.76% better than AlexNet, and 2.63% enhanced Accuracy compared to LENET. as shown in Table 7 below.

[image: Bar chart comparing the accuracy of different models. The proposed model has the highest accuracy at 98.87%, followed by VGG-19 at 98.74%, VGG-16 at 98.62%, and AlexNet at 98.12%. LeNet has the lowest accuracy at 96.24%.]
Figure 15 | Accuracy (%) of different models.

Table 7 | Accuracy Comparison with existing models.


[image: Table comparing model accuracy percentages: LeNet at ninety-six point twenty-four percent, Alex Net at ninety-eight point twelve percent, VGG-16 at ninety-eight point sixty-two percent, VGG-19 at ninety-eight point seventy-four percent, and the Proposed Model at ninety-eight point eighty-seven percent.]
Table 7 indicated that the proposed model achieved the highest accuracy comparison with LeNet, AlexNet, VGG-16, and VGG-19, models on 50 epochs and classify the two classes as one of the given images of Bacteriosis and healthy. Furthermore, Figures 15, 16 showed a graphical representation of the accuracy convergence of the two models.

[image: Bar graph titled "Accuracy Gap" shows performance of different models. Proposed Model has 98.87% accuracy with 0.13 gap, VGG-19 98.74% with 0.25 gap, VGG-16 98.62% with 0.75 gap, AlexNet 98.12% with 2.63 gap, and LeNet 96.24%. Bars represent accuracy, gaps are annotated.]
Figure 16 | Accuracy gap of different models.



4.3 The comparison of the proposed model loss with other models

The mean square error (MSE) loss function is the discrepancy between the anticipated and real values. The LWNet Model experienced the lowest loss of 0.0113 by 50 epochs, shown in Figure 17. The LeNet model displayed a 0.0316 loss. The loss gap between LeNet and LWNet Models was 0.0203. Similarly, The AlexNet model loss was 0.0159. The loss gap between AlexNet and LWNet Models is 0.0046%. Also, the MSE for the VGG-16 Model is 0.0134, with a loss gap of 0.0021 compared to the LWNet. Furthermore, the MSE for the VGG-19 model is 0.0117. The loss gap between VGG-19 and Proposed Model was 0.0004%. LWNet achieved low MSE because of the Model’s fine-tuning, including learning rate, layers, filters, and drop out.

[image: Bar chart showing Mean Square Error for five models: LWNet (0.0113), VGG-19 (0.0117), VGG-16 (0.0134), AlexNet (0.0159), and LeNet (0.0316). LeNet has the highest error.]
Figure 17 | Mean square error of the simulation results.

The proposed model obtained a loss is 0.0113 as shown in Table 8, which is the lowest loss as compared to other CNN models.

Table 8 | Loss evaluation of different Models.


[image: Comparison table showing model losses. Proposed Model: 0.0113, VGG-19: 0.0117, VGG-16: 0.0134, AlexNet: 0.0159, LeNet: 0.0316. Proposed Model has the lowest loss.]


4.4 Comparison of simulation time

Table 9 represents the simulation time of each Model. The total simulation time for the LeNet model is 10 minutes and 20 seconds. As the LeNet Model has fewer numbers of layers with a smaller number of filters size. Similarly, the training and testing time for the ALexNet Model is 14 minutes and 35 seconds. It has the same reasons as LeNet for such a short execution time. VGG-16 finished their training and testing in 1hrs 53 minutes and 15 seconds. VGG-19 completed the simulation in 2hrs 3 minutes and 59 seconds. The running time for the LWNet Model is 1hrs 56 minutes and 38 seconds. LWNet took a shorter simulation time than VGG-19 because the number of layers was reduced from 19 to 16. The dropout rate and batch size also contributed to the shorter execution time.

Table 9 | Simulation time of Model Execution.


[image: Table showing the time taken by different models. LeNet takes 10 minutes and 20 seconds. AlexNet takes 14 minutes and 35 seconds. VGG-16 takes 1 hour, 53 minutes, and 15 seconds. VGG-19 takes 2 hours, 3 minutes, and 59 seconds. LWNnet takes 1 hour, 56 minutes, and 38 seconds.]



5 Conclusions

In this research work, the lightweight CNN model has been proposed based on VGG19 for classifying disease in peach leaves. The samples of images of peach leaves for this research were collected from research Farm of Agriculture University Peshawar, Pakistan. The dataset consists of 10000 images Different Augmentation techniques were applied to increase the dataset artificially. Different CNN models like LeNet, Alex net, VGG-16, and VGG-19 were used for the dataset. The act of the LWNet modal was compared with the different evaluation metrics like Accuracy, Precision, Recall, F-Measure, Confusion Matrix, and MSE. The LWNet Model outperformed state-of-the-art Accuracy in leaf-based categorization with an accuracy of 98.87%, which is high among the models. The results of this study might be used to classify images from CT scans of the brain, X-rays of the lungs, liver, or kidneys, and other biological domains to diagnose diseases quickly and cheaply. They could also be applied to other crops besides peach leaves.

The limitations of the study are as follows. The PNG images are only used for Bacteriosis and healthy image detection and classification. The Bacteriosis disease is only done in this study, no other detection tasks are performed.

The objective of a prospective future project would be to gauge the disease’s severity in peach leaves. The proposed work can be expanded to show how widely the disease has gone throughout the plant. The intensity of the illness required at any particular stage of peach plant vegetative and reproductive growth may be determined with this research.
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Plants are the primary source of food for world’s population. Diseases in plants can cause yield loss, which can be mitigated by continual monitoring. Monitoring plant diseases manually is difficult and prone to errors. Using computer vision and artificial intelligence (AI) for the early identification of plant illnesses can prevent the negative consequences of diseases at the very beginning and overcome the limitations of continuous manual monitoring. The research focuses on the development of an automatic system capable of performing the segmentation of leaf lesions and the detection of disease without requiring human intervention. To get lesion region segmentation, we propose a context-aware 3D Convolutional Neural Network (CNN) model based on CANet architecture that considers the ambiguity of plant lesion placement in the plant leaf image subregions. A Deep CNN is employed to recognize the subtype of leaf lesion using the segmented lesion area. Finally, the plant’s survival is predicted using a hybrid method combining CNN and Linear Regression. To evaluate the efficacy and effectiveness of our proposed plant disease detection scheme and survival prediction, we utilized the Plant Village Benchmark Dataset, which is composed of several photos of plant leaves affected by a certain disease. Using the DICE and IoU matrices, the segmentation model performance for plant leaf lesion segmentation is evaluated. The proposed lesion segmentation model achieved an average accuracy of 92% with an IoU of 90%. In comparison, the lesion subtype recognition model achieves accuracies of 91.11%, 93.01 and 99.04 for pepper, potato and tomato plants. The higher accuracy of the proposed model indicates that it can be utilized for real-time disease detection in unmanned aerial vehicles and offline to offer crop health updates and reduce the risk of low yield.




Keywords: plant lesion, disease detection, CANet CNN, classification and DICE coefficient, machine learning



1 Introduction

Crop development and yield are crucial factors that affect agriculture and farmers in every conceivable way, including economically, socially, and politically (Production et al., 2014). Consequently, monitoring the development of crops to detect various types of illness is a crucial step at specific times. However, naked human eye may not be sufficient, and occasionally deceptive scenarios may occur (Arsenovic et al., 2019). Automatic recognition and classification of diverse agricultural diseases are required for accurate identification. This paper provides an overview of the methods proposed for our research project. This paper contains the suggested methodology’s context, problem definition, objectives, and scope. Pakistani farmers’ illiteracy is one of the major contributors to a rise in microbial infections (Government of Pakistan, 2021). Once a disease has infected a crop, it is difficult for farmers to determine its root cause. Pathogens and pests are wreaking havoc on crops. This information comes from a study report published by UC Agriculture and Natural Resources; the crop increases the yield of five major food crops by 10 to 40% (Ali et al., 2017). In the context of Pakistan, where agriculture provides 16% of the GDP and employs over 60% of the people, it is essential to adopt extensive steps to prevent plant diseases. According to the Ministry of Food Processing Industries, agricultural losses in 2016 totaled thirteen billion US dollars (GoI, 2019). Image processing and neural networks can be used to perform one of the beneficial steps in plant disease diagnosis techniques (Tugrul et al., 2022). Recent research has demonstrated that neural networks and deep learning perform categorization tasks effectively.

Agriculture is a crucial sector in nations such as Pakistan, whose economies depend directly or indirectly on agriculture. It highlights the requirement of caring for plants from the seedling stage to the harvest. To produce the desired yield, the crop plants must endure sometimes unfavourable meteorological conditions, survive various diseases, and attacks by animals. The latter can be resolved if the crops are shielded from the various animals. Weather circumstances are beyond human control but there are technologies to mitigate abiotic stresses (Kerchev et al., 2020; Talaviya et al., 2020). Lastly, it is vital to safeguard the crop against various illnesses, as they can affect the crop’s total growth and output. If these diseases can be identified promptly, the crop can be safeguarded with the necessary agrochemicals. Digitalizing this disease diagnosis and classification procedure might be advantageous for farmers. It will reduce the time and accuracy required to identify and classify diseases.

Agriculture is the most ancient occupation that occurred even before science. With the advancement of science, it became clear that plants were living organisms capable of respiration, reproduction, and susceptible to certain diseases. These diseases, caused by many microorganisms, including bacteria, viruses, and fungi, diseases can cause significant damage to crops and can harm humans, as it is the case with pathogen-produced mycotoxins and other toxicants (Nan et al., 2022). Furthermore, destruction of crops by pathogens can cause human starvation. In 1840, a disease known as the Late blight destroyed a substantial potato crop. It is also known as the Irish famine, and it was a sad period in European history during which many people perished from hunger (Goss et al., 2014). As plants are vital to human survival, so we must safeguard them against deforestation and numerous plant diseases. A significant portion of Pakistan’s population is still engaged in agriculture. It ranks second in agricultural production worldwide. However, two major issues harm Pakistan’s crops: natural disasters and infectious diseases. According to United Nations data, agriculture lost 96 billion dollars in 2005-2015. We have no control over natural calamities, but we can control plant illnesses caused by microorganisms. In the context of Pakistan, where agriculture provides 16% of the GDP and employs over 60% of the people, it is essential to adopt extensive steps to prevent plant diseases. According to the Ministry of Food Processing Industries, agricultural losses in 2016 totaled thirteen billion dollars. Image processing and neural networks can be used to perform one of the beneficial steps in plant disease diagnosis techniques. Recent research has demonstrated that neural networks and deep learning perform categorization tasks effectively.

The proposed research work focuses on three plant species: potato, tomato, and pepper. In a poll, 61.33 percent of potato producers cited light as one of the primary causes of crop loss. In 2020, according to national statistics, almost 60 percent of tomato crops in Punjab failed to owe to a virus. Pakistan accounts for 40 percent of the world’s total pepper production. Additionally, pepper has numerous natural benefits for throat infections. China is the largest producer of tomatoes and potatoes, whereas India is the second-highest producer of these two crops. Enhancing fertilization and automating the disease detection system can increase agricultural yield in our country.

To our knowledge, plant leaf lesion segmentation, lesion subtype categorization, and overall survival prediction have been addressed individually without regard for their inherent linkages. This research uses deep neural networks along with some advanced machine learning techniques to provide a complete strategy for plant leaf lesion segmentation, the recognition of lesion subtypes, and the survival estimation of a plant. Detailed contributions are listed below. First, a novel context-aware Convolutional Neural Network (CNN)-based technique for plant lesion segmentation is presented. In the second phase, a hybrid model is utilized for plant survival estimation using the segmented ROI information. A context-encoded convolutional neural network (CANet) (Zhang et al., 2019) is employed to extract high-dimensional features which are classified by the linear regression machine learning methods to make plant life survival predictions. In the final phase of the proposed framework, all the distinct tasks, i.e., segmentation, classification, and survival estimation, are merged into a single interconnected deep learning strategy. In conclusion, whereas the plant damage tests and classification criteria recommend foliar and pathological images, the suggested method effectively detects plant disease using only leaf RGB image data. On the PlantVillage dataset, the proposed segmentation and classification scheme was validated.

The rest of this paper is organized as follows. Section 2 shows the literature review of Plant Lesion Segmentation using deep learning methods. Section 3 presents the methodology of the proposed models. Section 4 shows the experimental results. Finally, Section 5 concluded the proposed work.



2 Related work

Using a mix of a Deep Learning classification model (CNN) and a features selection method genetic algorithm (GA), a model is presented for the diagnosis and recognition of tomato plant disease using the leaf image data (Tugrul et al., 2022). The proposed given framework was trained on 500 images belonging to 4 types of diseases. The features learning block of the CNN model is used to extract important visual characteristics and for classification. In a research study, an examination of the efficacy of CNN architecture for the recognition of plant diseases using the leaf data was conducted to detect diseases in soybean plants (Yu et al., 2022), the framework is implemented using LeNet which is the smallest and simplest CNN architectures. The leaf photos of 13,842 images of soybean plants are gathered from the PlantVillage benchmark dataset. The above framework has an accuracy of 98.44%, demonstrating CNN’s usefulness for classifying plant diseases based on leaf images. The approach to plant disease identification involves the construction of a modern model for identifying 13 plant illnesses from photographs of healthy plant leaves (Sladojevic et al., 2016). Caffe, an architecture for deep learning, was used to train the data. The framework in question yielded outcomes with a 91 to 98 percent accuracy. The author of the research article (He et al., 2020) developed a two-stage approach. In the beginning, the architectures based on meta information of Regional Convolutional Neural Network (R-CNN), Regional Fully Connected Network (R-FCN), and Single Shot detector (SSD) are combined to develop a single object detector. The features learning blocks of VGG16 (Khattab, 2019), VGG-19 (Szymak et al., 2020), and inception-V3 (Szymak et al., 2020) are utilized to extract high-dimension features from the training data and evaluation of models performances. Comparing the proposed model to other similar detection models, the proposed model is found more time efficient. A novel deep-learning architecture is developed for the detection and recognition of mango plant diseases (Saleem et al., 2021). The proposed CNN is trained on 754 unhealthy and 780 healthy mango leaf image data. The custom framework achieves an average f1-score of 97.01%. The author (Durmus et al., 2017) suggested a system based on the architecture of convolutional neural networks to recognize and categorize several potato plant diseases. The dataset utilized for this framework contains 2,465 photos of potatoes. The author (Geetharamani and J., 2019) researched and recognized the benefits and cons of the model and the performance of deep learning neural networks, which are used to recognize and classify various plant diseases. The literature review and picture database experiments comprise 50,000 photographs of many plant diseases (Durmus et al., 2017). The author presented a novel deep learning-based framework that is capable of segmenting the affected region on the leaf and recognizing the type of disease in tomato plants (Islam et al., 2022). This framework’s dataset comprises 13,281 tomato leaf photos with nine types of illnesses which are collected from the PlantVillage dataset. The model achieved an average of 99.91% accuracy on the training data while on the testing data the average accuracy achieved is 98.96%. The author (Goss et al., 2014) concentrated on identifying and categorizing diverse diseases in rice plants using the CNN features and SVM classifier for decision-making. of a framework utilizing CNN architecture and SVM. The training data consists of 696 rice plant leaf images which belong to four types of rice plant diseases. Maximum accuracy of 91.37 percent is reached when evaluating the accuracies of diverse training and testing datasets. In the case of sugar beet, an existing model is upgraded, utilizing the faster region-based CNN architecture by modifying the parameters for recognizing disease-affected regions (Nasirahmadi et al., 2021). The dataset comprises 155 photos of sugar beets, and the proposed framework attained an accuracy rate of 95.48 percent. In the case of Olive plant diseases, the author of the research article (He et al., 2020) compared a transfer learning scenario with CNN architectures such as VGG-16 and VGG-19, as well as proposed CNN architectures (Alshammari et al., 2022). The framework applied to the dataset includes around 3,400 photos of Olive plant leaves. In this framework, a data augmentation technique was utilized to increase the size of the dataset. Before data augmentation, the accuracy was approximately 88%; after data augmentation, it was approximately 95%. The study paper (Abdulridha et al., 2020) proposes a CNN-based tailored model for tomato leaf disease detection. In addition, I compared the proposed model to models of machine learning and VGG-16. The proposed model achieved 98.4% accuracy, the KNN model achieved 94.9% accuracy, and the VGG-16 model achieved 93.5% accuracy. The dataset of tomato leaf pictures utilized by this framework is derived from the Plant village dataset. Deep learning’s transfer learning technique is used to detect and categorize illnesses using leaf images of two crops, such as cucumber and rice (Liu and Wang, 2021). The suggested framework was applied to 2,430 photos of cucumbers and rice afflicted with eight illnesses collected from the plant village dataset.

The proposed framework achieved a precision of 90.84 percent (Liu and Wang, 2021). The influence of deep learning on diagnosing plant illnesses using leaf photos was examined. CNN architecture functions as a black box model for plant disease diagnosis. Also covered are the many hyperparameter characteristics that affect classification accuracy. Numerous models and research have used deep learning scenarios to identify and classify illnesses in certain plant categories. Deep learning can also be used to identify and categorize the macronutrients present in a particular plant. The proposed technique for monitoring plant health checks several stages from the seedling stage through the yielding stage to increase yield. The suggested system was implemented using a dataset of 571 photos, including images of tomato leaves and tomato fruit at various stages of crop growth. The inception-ResNet v2 and autoencoder performance was 87.27 percent and 79.09 percent, respectively. This literature demonstrates the impact of transfer learning on identifying and categorizing plant diseases using photographs of leaf surfaces. According to the article’s author (Siddiqua et al., 2022), picture segmentation with the aid of colors, i.e., color image segmentation approaches, improves comprehension and problem-solving. One can first determine an image’s red, Green, and Blue color components. The red and green components aid in identifying the yellow portions of the image, typically indicated as infected. Fuzzy logic is an effective method for solving disease classification issues (Sibiya and Sumbwanyambe, 2021), the author proposes the minimum distance approach, a genetic algorithm modification, to locate a plant’s infected portion for picture segmentation (Ngugi et al., 2021). After picture segmentation, the author examined the accuracy of the technique using different classification algorithms, such as k mean clustering and SVM (Bargelloni et al., 2021). In this paper, the author uses a convolution neural network technique to diagnose various plant illnesses (Production et al., 2014; Saleem et al., 2021). The author has conducted an exhaustive study. Photographs of diverse plant leaves, including images of both sick and healthy leaves, are captured. The author has grouped it into numerous categories, and all CNN designs achieved an accuracy greater than 97%. AlexNet (Yoo et al., 2021), AlexNetOWTBn, GoogLeNet (Wang et al., 2015), Overfeat, and VGG are the CNN architectures. The author has comprehensively analyzed several deep learning algorithms, their benefits and drawbacks, and optimization strategies (Sarker, 2021). In the linked work, these strategies have also been compared. In this publication (Ngugi et al., 2021), the author describes the proposed algorithm in depth, the image acquisition was the initial step, followed by image enhancement and segmentation. The HSV approach was utilized for the segmentation of color images. Integrated into the instrument for evaluating plant disease were sensors that could determine the meteorological and climatic factors affecting the plant disease in real-time.



3 Methods

This section includes a comprehensive overview of the proposed DCNN model’s architecture and training method, including the preparation of the dataset and experimental procedures. The suggested model for detecting plant leaf diseases begins with dataset preparation and concludes with model prediction. Python 3.8, TensorFlow Library version 2.10.0, NumPy 1.23.4, matplotlib 3.6.1, and OpenCV 4.6.0 are used to prepare the training dataset and implement the proposed DCNN model, respectively. The simulations, i.e., model development, training, validation, etc., are performed on an HP Z440 workstation consisting of core i7 12 cores of CPU and a DDR4 ram of 48 GB. The proposed scheme also utilized NVidia RTX-3090 Graphical Processor Unit (GPU), which uses the CUDA framework to allow the parallel processing speeds up the proposed model training and testing procedure. The workstation for implementing the proposed DCNN is equipped with a dual Intel Xeon Silver 4310 (12 cores, 24 threads, and 2.10Ghz) processor and six Nvidia Tesla P100 GPUs to expedite the training of deep neural networks. The following sections will explain all the important phases of the proposed plant disease detection framework in detail. The section that follows addresses the specifics of data set preparation and preprocessing.


3.1 Setup and preprocessing of datasets

Images of damaged and Normal/Healthy plant leaves were retrieved from a typical open data collection (Geetharamani & J., 2019). Sixteen distinct plant species were used to compile a dataset on plant leaf diseases. Each plant comprises the dataset’s healthiest and most prevalent disease categories. There are 58 distinct plant leaves, with one category containing no specimens. Initial data collection yielded 61,459 plant leaf and leafless photos. Table 1 displays the list of plant types and their corresponding classes consisting of the healthy and illness categories in the recommended benchmark dataset.

Table 1 | PlantVillage Benchmark dataset Descriptions.


[image: Table listing plant types and associated diseases. For peppers: normal, bacterial spot. For potatoes: normal, early and late blight. For tomatoes: normal, bacterial spot, early blight, late blight, leaf mold, leaf spot, spider mite, target spot, mosaic virus, yellow leaf curl virus.]
Each category now contains an even amount of photographs utilizing data augmentation techniques. By adding upgraded photos to the training dataset, data enhancement techniques can also expand the size of the dataset and prevent overfitting during model training. The images in the dataset are enhanced using the Generative adversarial network (GAN) and advanced image manipulation (AIM) and Neural style learning (NST) schemes that increase the quality of the image by automatically adjusting the contrast, removing noise, and sharpening the images. The AIM-enhancing techniques include image scaling, mirroring, Histogram based color improvement, and rotation. The histogram color enhancement method adjusts the strength of the three color channels R-G-B by adjusting the major pixel components (Tang, 2020).

In addition, picture cropping, tilting, shearing, and scaling make enhanced images through the modification of the input images’ hue, saturation, and location. A total of 36,541 images from the plant village dataset are enhanced using the AIM scheme. DCGAN generates an image enhancement that resembles the training image data. The DCGAN network is composed of a dual network i.e. a generator and a discriminator. The generator module of the network creates random noise and applies it to the training images.

In contrast, the discriminator section of the DCNN learns to identify real and synthetic pictures (Lu et al., 2019). The DCGAN network is trained with a training period of 10,000 and a short batch size of 64 on a graphics processing unit. The DCGAN enhancement technology added 32 million enhanced photos to the dataset. NST is an additional picture-generating method that employs deep learning algorithms. Using a modified VGG19 network, an NST enhancement model was built in this study. The NST model was trained on a deep learning server for 5,000 epochs. The NST model requires two distinct images as input and produces an enhanced image as output: the first image is a content image while the second image is a style reference image. The first image comprises the fundamental elements that should be integrated with the output image. The second image also known as the reference image applies a style pattern and integrates it into the final output image. NST image enhancement scheme adds up some common features from the style picture to the content image for generating the output image. In the dataset, the NST enhancement method produced 17,500 enhanced photos. Finally, AIM, NST, and GAN algorithms were utilized to improve the image and equalize the data counts for each dataset category. The name PlantVillage denotes the proposed dataset used in this research for proposed model validation. The number of photos in the dataset rose from 61,459 to 147,500 due to these enhancements.

Additionally, the number of photographs in each category has been increased to 2500. In the PlantVillage dataset, the image of a leaf was collected in the positive direction. Figure 1 displays illustrative enhancement images produced by AIM, NST, and GAN technologies.

[image: Five green leaves with various signs of damage or disease, including yellowing, browning, and wilting at the edges and tips, displayed against a gray background.]
Figure 1 | Some enhanced images using the AIM, NST, and GAN methods.

Figure 1’s first two images are created and enhanced utilizing the AIM approach. Figure 1’s third and fourth images were created using DCGAN augmentation, while the final image was created utilizing NST technology. Using the hold-out cross-validation scheme, three sub-datasets of the plant village dataset are created for model training, validation, and testing purpose. Table 2 displays the three sub-datasets details such as the number of images and the number of the image in a single class.

Table 2 | Number of Images in the training, Validation, and Testing Set.


[image: Table detailing datasets with three categories: training, validation, and testing images. The numbers are 116,206 training images with 110,250 per class, 23,241 validation images with 1,549 per class, and 22,817 testing images with 1,521 per class.]
In the following methodology section, the construction, explanation, and fine-tuning of a proposed DCNN model for disease identification in plant leafs utilizing hyperparameter fitting techniques and the PlantVillage dataset.



3.2 Proposed model

Numerous strategies for plant disease segmentation are described in the literature, including filtering-based, color-based, adaptive model-based, clustering, and regional convolutional neural network methods. Recently, approaches based on semantic segmentation have improved the segmentation of plant lesions. For plant lesion classification, structural and pathological pictures that are non-invasive are employed to classify plant leaf lesions. Predictions of overall survival assess the remaining lifespan of plants afflicted by prevalent illnesses. The majority of existing work relies on conventional regression models in machine learning such as Support Vector Machine and K-Nearest Neighbor. Our proposed framework can be summarized in Figure 2 below. In the first stage, the training image and its essential facts are fed into the proposed training neural network; then, z-score normalization is performed exclusively on the lesion regions and differencing it from the min-max normalized image. CANet semantic segmentation model is used to detect the lesion area in a leaf image which is also depicted in Figure 2. Using segmented aberrant tissue, 3D CNN is utilized to classify leaf lesions. In conclusion, we employ the CANet front-end to extract high-dimensional data and then apply linear regression to make predictions about overall survival. Moreover, we assume that the model with the best performance in lesion segmentation would also attain higher accuracy in lesion subtype categorization and plant survival estimation, as the fact that CANet is utilized as a feature extractor in the segmentation and classification tasks, therefore we continue to use the same features with linear regression plant survival prediction.

[image: Diagram showing a machine learning model for plant disease analysis. The top section depicts training data with leaf images. The proposed model includes a CANet network for lesion segmentation. Testing data processes through the model, producing segmented lesions. The bottom section displays bar charts for lesion subtype classification and plant survival prediction, indicating probabilities for various conditions and survival terms.]
Figure 2 | Overview of the methodology and overall workflow.



3.3 Context-aware deep neural network

This research provides an architecture for a context-aware convolutional neural network (CANet) that incorporates numerous image-processing tasks. Informed by contextual coding networks, the suggested architecture significantly improves plant lesion segmentation, subtype classification, and plant life survival prediction. Figure 3 depicts the state-of-the-art CANet CNN with pertinent design parameters. The context coding module, which calculates the scale factor associated with representing all classes, is a crucial component of the proposed CANet. During training, these factors are simultaneously learned via the Lse-defined false regularisation loss. The scale factor captures global information for all classes and effectively learns to counteract potential training biases caused by unequal class representation in the image data.

[image: Diagram of a machine learning model for leaf disease detection. It shows an input of a diseased leaf, an encoding phase with convolution layers, a context encoding module, a decoding phase, and outputs of detected spots on the leaf.]
Figure 3 | Proposed Leaf Lesion Segmentation model utilizing the CANet architecture.

Consequently, the ultimate features learning loss function module consist of two components:

[image: Formula for total current, \( I = I_{\text{disc}} + I_{\text{sc}} \), labeled as equation (1).]

Where Ldise is the DICE generated from the difference between the forecast and the underlying facts, and Lse represents the semantic loss. CANet is shared over the three pipelines, including plant leaf lesion segmentation, classification of plant lesion into healthy or ill, and lifespan estimation of plant, because of the intrinsic resemblance of each task and the likely overlay of valuable information. Consequently, the coding segment of the CANet CNN is utilized as a feature descriptor for plant survival estimation, whilst the plot holding the probabilities of plant lesion subregion created by the decoding segment is fed to the lesion subtype recognition model. The classification of lesion subtypes and the survival prediction pipelines use the CANet model with the best lesion segmentation performance.



3.4 CNN-based leaf lesion segmentation

Figure 4 depicts the context-aware deep learning algorithm proposed for leaf lesion segmentation. The suggested CANet captures global texture information and normalizes training failures with semantic loss. 19,36 The architecture comprises modules for encoding, contextual encoding, and decoding. From the input, the encoding module extracts high-dimensional characteristics. To standardize the paradigm, the context encoding module generates updated features and semantic losses. The decoding module reconstructs the entity map as a predicted output such that the difference between the predicted output and the input image can be computed as regularization. The proposed CANet offers an average DSC of 0.91 for ET, 0.90 for WT, and 0.95 for TC. Table 3 show the plant leaf lesion semantic segmentation model.

[image: Diagram showing a convolutional neural network (CANet) model for leaf analysis. It begins with an input image of a leaf, processes through several convolutional layers with different dimensions, and ends with output layers representing classification categories.]
Figure 4 | Overview of Semantic Segmentation for plant leaf lesion classification. In the first phase, the images are segmented by the CANet model which are then fed into the CNN classifier for disease subtype classification.

Table 3 | List of hyper parameters used for training plant leaf lesion semantic segmentation model.


[image: Table listing machine learning parameters. Optimizer: Adam. Initial Learning Rate: 0.0001. Validation Data: Yes. Epochs: 20. Batch Size: 64. Shuffle Samples: Every Epoch.]


3.5 CNN-based leaf lesion classification

Figure 4 depicts the foliar lesion classification procedure. Consequently, the CANet output is sent directly to a CNN-based classifier to classify lesion subtypes. Two fully connected layers follow five convolutional and clustering layers, and a classification layer with three outputs makes up the classification model. Except for the classification layer, which utilizes the softmax activation function, other layers employ ReLu activation. This study investigated several subtypes of foliar lesions, including bacterial plaque, early blight, leaf mold, target plaque, etc. During the testing phase, the suggested approach uses a DSC of 0.74. Using the recommended methodology, our test results placed second in the PlantVillage competition. Table 4 show the CANet CNN model for plant leaf disease subtype classification.

Table 4 | List of hyper parameters used for training CANet CNN model for plant leaf disease subtype classification.


[image: Table listing parameters and their values or types. Optimizer: SGDM, Momentum: 0.5, Initial Learning Rate: 0.0001, Validation Data: Yes, Epochs: 50, Batch Size: 128, Shuffle Samples: True.]


3.6 A hybrid method for survival prediction

Instead of using typical machine learning approaches to extract features, we employ the suggested CANet to extract high-dimensional features. We believe that lesion segmentation characteristics correlate with overall survival. In addition to the CANet extraction feature, we leverage plant age as an additional feature. The LASSO approach is used to determine the number of days the plant will live by selecting more pertinent characteristics, it uses the features selection approach to select the most suitable features from the CNN features. The LASSO approach reduces the dimensions to features vector from 1x1000 to 1x241, which are fed in a regression model for training. Finally, we used linear regression to estimate overall survival based on the selected features, as shown in Figure 5. During the testing phase, the proposed technique demonstrated encouraging results with a Root Mean Square Error of 0.89. Table 5: shown the parameters linear regression model.

[image: Flowchart showing a process to predict survival days using leaf image analysis. A leaf image is processed by CANet to extract 3D-CNN features. Age input is combined, followed by LASSO regression, resulting in survival day predictions.]
Figure 5 | The overview of the proposed plant survival estimation mode is visualized. The CANet model extracts non-invariant features, also called 3D feature points. The plant age is added as additional information; the LASSO features selection method is used to select the optimal list of features from the feature vector. The final step is performed by a linear regression model that estimates the number of days for which the plant survives.

Table 5 | List of parameters used for the training of linear regression model.


[image: Table with two columns labeled "Parameter" and "Value." Row entries: "Attribute Selection Method" is "LASSO," "Eliminate Colinear Attributes" is "Yes," "BatchSize" is "50," "Number Decimal Places" is "2," and "Ridge" is "1.0e-3."]



4 Experimental results

This section gives a comprehensive summary of the experiments’ outcomes to determine the proposed technique’s evaluation capabilities. This section also describes the dataset used to evaluate performance. The proposed framework is implemented in Python and runs on systems with Nvidia RTX 3090. CenterNet configuration on the PlantVillage dataset for classifying and scoring plant leaf diseases.


4.1 Evaluation metrics

When evaluating the effectiveness of the approaches we provide, we use a variety of evaluation metrics, including the Intersection Over Union (IoU), precision, accuracy, recall, and mean average precision (mAP). The accuracy of our proposed model is calculated as follows:

[image: Accuracy formula showing: \((\text{TP} + \text{TN}) / (\text{TP} + \text{FP} + \text{TN} + \text{FN})\), labeled as equation \(2\), where TP = true positives, TN = true negatives, FP = false positives, FN = false negatives.]

Equation 7 is the mathematical equation for calculating the mAP score; the AP represents the average precision obtained by each class, whereas the s represents the test image and S is the number of total test images.

[image: The image shows the formula for mean Average Precision (mAP): \( \text{mAP} = \frac{\sum_{i=1}^{T} AP(T_i)}{T} \). This is equation number three.] 

The equation below represents the Inter over Union ratio.

[image: Formula for precision in classification models: precision equals true positives divided by the sum of true positives and false positives. Appears as equation (4).] 

[image: Formula depicting recall as the ratio of true positives (TP) to the sum of true positives and false negatives (TP + FN), labeled as equation five.] 

[image: Mathematical formula for Intersection over Union (IoU) is shown as \( \text{IoU} = \frac{2 \cdot \text{TP}}{\text{FN} + \text{FP} + \text{TP}} \). Equation number six is noted beside it.] 



4.2 Performance evaluation of plant disease localization

Establishing an efficient model for the automatic identification of agricultural illnesses depends heavily on accurately detecting different plant diseases. For this purpose, we experimented to determine the suggested technology’s placement capacity. All samples from the PlantVillage dataset were evaluated, and the samples are displayed in Figure 6. The given results demonstrate that Custom CenterNet can accurately detect and identify many types of plant illnesses as shown in Figure 7. In addition, the suggested method is resistant to numerous post-processing attacks, including blur, noise, light and color shifts, and image distortion. CenterNet’s positioning capabilities enable accurate identification and localization of various plant diseases. We employ mAP and IOU indicators to quantify the positioning capabilities of the proposed technology: mAP and IOU. These indicators aid in analyzing the system’s performance in diagnosing various plant diseases. Specifically, we acquire mAP and IOUs of 0.99 and 0.993%, respectively. The visual and numerical results indicate that the technique can reliably detect and classify plant illnesses. The performance analysis of the proposed leaf lesion segmentation is shown in Table 6.

[image: A three-column image shows various plant leaves with disease symptoms, illustrating segmentation processes. The first column displays original images of leaves with lesions. The second column presents lesion segmentation on a black background, highlighting the affected areas. The third column shows leaf segmentation, isolating the leaves from the background, with lesions clearly visible. Each row provides a different leaf example, demonstrating the changes across the segmentation techniques.]
Figure 6 | Proposed model segmentation results.

[image: Line graph comparing Dice Similarity Coefficient (DSC) over epochs for four models during training: CANet (red), U-Net (green), ResNet (blue), and U-Net-VAE (purple). CANet and U-Net show significant improvement, with CANet reaching DSC above 80, followed by U-Net slightly below 80 at 80 epochs. ResNet and U-Net-VAE have lower performance, stabilizing around DSC 40 and 20, respectively.]
Figure 7 | Proposed CANet CNN Model performance comparison using the DICE coefficient metric.

Table 6 | Performance Analysis of the proposed leaf lesion segmentation model.


[image: Table displaying performance metrics and their results: Accuracy is ninety-two percent, Precision is ninety-five percent, Recall is ninety-one percent, and IoU is ninety percent.]


4.3 Plant disease classification results

To detect pepper plant disease, a binary classification CNN model is trained. Due to the small dataset size (Fewer Classes), the model was efficiently trained for classifying healthy and unhealthy pepper plants through leaf images. The pepper plant disease detection model confusion matrix is shown in Table 7. The model achieved higher accuracy in the detection of bacterial spot disease. In comparison, for the detection of the healthy class, the proposed achieved higher accuracy and f-measure than the unhealthy class. The detailed performance analysis can be seen in Table 8 which consists of classwise and average values of four performance metrics.

Table 7 | Proposed model confusion matrix for Peppers plant disease classification.


[image: Confusion matrix showing classification of healthy and bacterial spot conditions. Rows represent actual conditions; columns represent predicted conditions. Healthy: 2587 true positives, 143 false negatives. Bacterial spot: 190 false positives, 2312 true negatives.]
Table 8 | Detail Performance by class for pepper disease detection.


[image: Table showing performance metrics for two categories: Healthy and Bacterial Spot. Healthy category metrics: Accuracy 93.63%, Precision 94.76%, Recall 93.15%, F-Measure 93.95315. Bacterial Spot metrics: Accuracy 88.59%, Precision 92.40%, Recall 94.17%, F-Measure 93.28223. Averages are Accuracy 91.11%, Precision 93.58%, Recall 93.66%, F-Measure 93.61.]
The second experiment is performed on the potato leaf image to classify them into healthy or Early Blight or Late Blight Classes. Figure 8 is the confusion matrix created using the actual plant condition and model predicted values for each individual class the True Positive Rate (TP), False Positive Rate (FP), False Negative Rate (FN), and True Negative rate (TN) are calculated. Using these measures for the proposed model, the accuracy, precision, recall, and F-measure are calculated, which can be seen in Table 9. Due to the data imbalance, the model’s performance is assessed using the F-Measure. The F-measure finally evaluates the proposed model’s correct detection rate, indicating that the proposed model slightly performed better in detecting healthy plants than the other unhealthy class (Early Blight, Late Blight).

[image: Confusion matrix showing classification results for plant health: healthy (3175), early blight (111), late blight (163) for healthy actual class; healthy (97), early blight (3033), late blight (148) for early blight actual class; healthy (134), early blight (147), late blight (2821) for late blight actual class. Correctly predicted results are highlighted in green.]
Figure 8 | Proposed model confusion matrix for Potato plant disease classification.

Table 9 | Detail Performance by class for potato disease detection.


[image: Table displaying classification metrics for three conditions: Healthy, Early Blight, and Late Blight. Metrics include Accuracy (Healthy: 94.86214, Early Blight: 92.59859, Late Blight: 91.55251, Average: 93.01), Precision (Healthy: 92.05567, Early Blight: 92.52593, Late Blight: 90.94133, Average: 91.84), Recall (Healthy: 93.21785, Early Blight: 92.16044, Late Blight: 90.07024, Average: 91.81), and F-Measure (Healthy: 92.63311, Early Blight: 92.34282, Late Blight: 90.50369, Average: 91.82).]
Table 10 presents a quantitative evaluation of the efficacy of the proposed model in identifying diseases that can affect tomato plants. Images of tomato plant leaves in both healthy and unhealthy states (bacterial spot, Target spot, mosaic virus, etc) are used in the experiment. In order to evaluate the effectiveness of the model, we first compute the four standard performance evaluation metrics using the confusion matrix values presented in Figure 9. Because of the imbalance in the data, the performance of the model is evaluated using the F-Measure. The proposed strategy was successful in achieving higher detection accuracy as well as the f-measure for both the Healthy and Unhealthy classes.

Table 10 | Detail Performance by class for Tomato disease detection.


[image: Table showing accuracy, precision, recall, and F-measure for different plant conditions. Values listed for each condition include Healthy, Bacterial Spot, Early Blight, Late Blight, Leaf Mold, Leaf Spot, Spider Mite, Target Spot, Mosaic Virus, and Yellow Leaf Curl Virus. Each has distinct metrics; for example, Healthy shows 99.13739 accuracy, 96.77627 precision, 92.08589 recall, and 94.37284 F-measure. Average values: accuracy 99.04, precision 95.18, recall 94.86, F-measure 94.97.]
[image: A table displays data on plant disease occurrences. It includes categories such as "Health," "Bacterial spot," "Early Blight," and others both horizontally and vertically. Numbers in green and orange cells represent disease occurrence values, with higher values generally highlighted in green within their respective rows.]
Figure 9 | Proposed model confusion matrix for Tomato plant disease classification.



4.4 Performance of plant survival prediction

The plant survival estimation is performed using a linear regression model. The survival is estimated using the model trained on the entire dataset consisting of 1000 attributes which are the features extracted using the CANet CNN model. The plant survival is also estimated using a regression model followed by the LASSO features selection method that reduces the feature vector size and tries to select the optimal attributes. The feature vector dimensions by the LASSO method are reduced to 1x241, shown in Table 11.

Table 11 | Performance analysis and comparison of survival estimation model with LASSO and without LASSO approach.


[image: A table compares metrics between Linear Regression and Linear Regression with LASSO. For Correlation Coefficient, the scores are 2.04 and 0.91. For Mean Absolute Error, the scores are 1.54 and 0.65. For Root Mean Square Error, the scores are 2.97 and 0.89.]



5 Discussion

Deep learning-based algorithms have attained state-of-the-art performance in numerous sectors where they have been widely implemented. However, leaf lesion segmentation provides numerous specific challenges:

	◼Image quality has a significant effect on segmentation efficiency. For instance, blurry visuals result in negative effects.

	◼Image preprocessing steps have an effect on performance as well. For instance, standardization of intensity across cases is crucial for lesion segmentation.

	◼The heterogeneity of lesion tissue may provide a formidable obstacle to the development of an efficient approach.

	◼Unbalanced data is a common complication for the use of deep learning.

	◼Figure 2 depicts the data distribution from our studies during the training phase for lesion categorization and overall survival prediction. Cases of Healthy account for more than fifty percent of the training data. In survival prediction, the range of mid-term survival days is insufficiently broad relative to the short- and long-term ranges, resulting in an imbalance of data. This data disparity may lead to misclassification. In the segmentation process, lesion samples are typically substantially larger than those of other defective tissues. To solve the potential data imbalance issue in lesion segmentation, we implement plant leaf lesion segmentation based on leaf subregions as opposed to employing each defective tissue separately.



The fundamental challenge with disease classification is the lack of data. Even after increasing the training sample size using data augmentation approaches, 110250 examples may not be sufficient for deep learning in this work. Similar data deficiency issues exist for global survival prediction. In the PlantVillage Challenge training phase, only ten classes are accessible. In addition to the deep learning-based approach, we implement global survival prediction using a conventional machine learning method by extracting features such as gray-level co-occurrence matrix (GLCM), intensity, etc., applying LASSO to select features and then using linear regression for survival prediction. We compare the outcome to our proposed method’s outcome. The comparison demonstrates that the performance of the proposed strategy is superior. In this paper, we also assess the influence of various diseases on overall survival. There are three classification models trained for the classes of peppers, potatoes, and tomatoes. The detection accuracy of models for pepper, potato, and tomato plants is 99.11%, 94.01%, and 99.04%, respectively shown in Table 12. The proposed deep-learning model for pepper, potato, and tomato plant disease detection is shown in Figure 10.

Table 12 | Performance Comparison of the proposed disease subtype classification model with some state-of-the-art models.


[image: Table comparing studies and their associated models and accuracy rates. Studies include Wu et al. (2020) with DCGAN+CNN at 94.33%, Sibiya and Sumbwanyambe (2021) with N-Fuzzy+CNN at 89%, Islam et al. (2022) with Parallel CNN at 98%, Brahimi et al. (2017) with DNN at 99.18%, and the proposed CANet at 99.04%.]
[image: Bar chart titled "Classification Based Disease Detection" shows detection accuracy for pepper, potato, and tomato diseases. Pepper has two bars labeled healthy and bacterial spot. Potato has five bars, including early and late blight. Tomato has twelve bars for various diseases like bacterial spot, leaf mold, and spider mite. Overall accuracy is noted as 99.04.]
Figure 10 | Performance Comparison of the proposed deep learning model for pepper, potato, and tomato plant disease detection.



5 Conclusion

This study investigates several plant disease diagnostic and analysis tasks using deep learning and plant leaf imagery. These tasks involve segmenting the leaf lesion area, classifying the lesion into its subtypes, and predicting the plant’s overall survival. We built a context-aware 3D CNN that extracts and classifies high-dimensional, non-invariant characteristics from a plant leaf image to identify the disease type. Similarly, a unique method is established utilizing the regression model to predict long-term, short-term, and intermediate-term plant survival. The features learning block of the CANet CNN model extracts features, reduces the dimension of the features vector by picking only the optimum features, and employs the LASSO features selection algorithm. The PlantVillage Dataset comprises numerous photos of crop leaf diseases. This study has validated the suggested model using three different plant diseases: pepper, potato, and tomato. The pepper plant has only two classes, but the potato and tomato plants have multiple classes. The suggested model achieves a DICE coefficient of 90% while segmenting plant leaf lesions. The classification accuracy for detecting pepper illness is 91.11%, for detecting potato disease is 93.01%, and for detecting tomato, the disease is 99.04%. Consequently, the improved accuracy suggests that the suggested method applies to the PlantVillage dataset and other datasets for lesion segmentation, classification, and plant survival calculation.
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Accurate and efficient crop classification using remotely sensed data can provide fundamental and important information for crop yield estimation. Existing crop classification approaches are usually designed to be strong in some specific scenarios but not for multi-scenario crop classification. In this study, we proposed a new deep learning approach for multi-scenario crop classification, named Cropformer. Cropformer can extract global features and local features, to solve the problem that current crop classification methods extract a single feature. Specifically, Cropformer is a two-step classification approach, where the first step is self-supervised pre-training to accumulate knowledge of crop growth, and the second step is a fine-tuned supervised classification based on the weights from the first step. The unlabeled time series and the labeled time series are used as input for the first and second steps respectively. Multi-scenario crop classification experiments including full-season crop classification, in-season crop classification, few-sample crop classification, and transfer of classification models were conducted in five study areas with complex crop types and compared with several existing competitive approaches. Experimental results showed that Cropformer can not only obtain a very significant accuracy advantage in crop classification, but also can obtain higher accuracy with fewer samples. Compared to other approaches, the classification performance of Cropformer during model transfer and the efficiency of the classification were outstanding. The results showed that Cropformer could build up a priori knowledge using unlabeled data and learn generalized features using labeled data, making it applicable to crop classification in multiple scenarios.
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1 Introduction

With a large amount of remotely sensed data available free, easily, and quickly, remote sensing plays an increasingly important role in vegetation and land cover mapping. The timely and accurate vegetation/land cover information generated by remote sensing images can provide important data for resource management, ecological monitoring, agricultural production, and other fields. For large-scale crop classification, continuous and full-coverage satellite images provided by remote sensing are particularly important (Chen et al., 2019; Zhang et al., 2020), and how to extract useful information for crop classification from satellite images has been explored. In addition, a large number of machine learning algorithms have been introduced to obtain large-scale crop distribution more accurately (Abdullah et al., 2019).

Full-season crop classification is the most common scenario in which current crop classification approaches are applied, but it is generally available at the end of the growing season. In-season crop classification allows the distribution of crops to be obtained as early as the growing season, which is of interest for agricultural production guidance, but few publicly available data are available(Xu et al., 2020). Current research has focused on classification approaches supported by large numbers of samples (Yi et al., 2020). Crop classification in a few-sample context is of interest in the crop classification scenario, where obtaining highly accurate classification results with very few samples can reduce costs. Crop classification in regions with no samples is difficult, and it is feasible to train a well-trained model in a sample-rich region and transfer it to a region with no samples (Hao et al., 2020). The existing crop classification methods all focus on one application scenario or two application scenarios, and there is no discussion of crop classification for multiple application scenarios, nor is there a general crop classification model that can be used. On this basis, developing a classification approach that can be applied to the above classification scenario is greatly needed.

Traditional crop classifiers include Decision Trees (DT), Random Forests (RF), and Support Vector Machines (SVM) (Low et al., 2013; Khatami et al., 2016; Shi and Yang, 2016). The inputs to these classifiers are usually manually designed features including spectral values, vegetation indices, etc., and multi-temporal satellite observations are used instead of mono-temporal imagery (Feng et al., 2019; Eudes Gbodjo et al., 2020). Although multi-temporal inputs are effective in improving classification performance, these classification models often ignore temporal dependence in the time series. Traditional methods require manual design of inputs, which need to be designed differently for different application scenarios. However, the manually designed features have some limitations and are very dependent on a priori knowledge and expertise, and the complex changes in realistic conditions affect the manually designed features more, which makes the classification models less robust and less generalizable.

In contrast to classical machine learning, deep learning no longer requires manually designed features, but can learn complex semantic features from high-dimensional data. Currently, deep learning has been widely used in agriculture due to its effectiveness, including crop classification (Kussul et al., 2017; Minh et al., 2018), pest and disease detection (Akbar et al., 2022; Shoaib et al., 2022a; Shoaib et al., 2022b), yield estimation(Nevavuori et al., 2019; Khaki et al., 2020), etc. The complex network structure of deep learning requires a large amount of labeled data for support, which creates difficulties for the agricultural fields where deep learning is applied. When the sample size is insufficient, it makes the model very easy to over fit and thus the application is much less meaningful. For agriculture, especially crop classification, the acquisition of labeled samples is not as easy as in computer vision, and each labeled sample acquisition is resource-intensive (Xu et al., 2020). Therefore, it is necessary to address the problem of deep learning in crop classification that requires the use of a large number of samples. Also, developing a generalized deep learning model that can use only a small number of samples and can be applied to other crop classification scenarios is a scientific challenge.

Multi-temporal observations add a more intensive focus on the phonological cycle of crop growth, but also bring the problem of not keeping the same interval between observations in the study area, which makes the acquired time series irregular. Irregular time series are not directly usable for RF, SVM, and need to be normalized to obtain regular time series. Standardization methods include the rejection of invalid spectral values (Abdullah et al., 2019), missing spectral value supplementation (Ienco et al., 2017; Kussul et al., 2017), and spectral value resampling (Liu et al., 2020; Wang et al., 2020), but this standardization process changes the original sequence information as well as increase the computational effort. Direct use of irregular time series can avoid the standardization process, but it also causes a decrease in classification accuracy. Dynamic Time Warping (DTW) has been used for the analysis of irregular time series, but its traversal algorithm can significantly increase the computational effort (Petitjean et al., 2012). The introduction of a Gaussian process to solve irregular time sampling and missing data is robust, but does not compare favorably with other methods in terms of classification performance (Constantin et al., 2021). The existing approaches using irregular time series usually involve two aspects. On the one hand, it starts from the time series itself, but this approach changes the original growth pattern of the crop, making it difficult for the model to learn the original growth pattern of the crop. On the other hand, it starts from the method of processing time series, which can directly use irregular time series but cannot form a complete system and will significantly increase the workload. Therefore, current methods either do not achieve satisfactory accuracy or do not allow the use of end-to-end classification methods.

The unlabeled data contain rich crop growth information, and unknown crop growth information can be used as a priori knowledge. Pre-training as an effective training method has been applied to land use classification to accelerate the convergence of the training process (Zhao et al., 2017). The self-supervised pre-training approach can improve the utilization of labeled samples in land cover classification (Tarasiou and Zafeiriou, 2022). Unlabeled data as pre-training data can effectively improve crop classification accuracy and reduce the use of labeled samples (Yuan and Lin, 2021; Yuan et al., 2022). However, pre-training is still less used in scenarios such as in-season crop classification and model transfer. At present, there is also no general pre-trained classification model that can be applied to multi-scenario crop classification.

This study aims to build a deep learning classification model that can be generalized in multi-scenario crop classification. The potential of a pre-trained classification model based on Transformer and Convolution structures for application in multi-scenario crop classification is evaluated. In this paper, we proposed a new deep learning approach, Cropformer, for multi-scenario crop classification. Full-season crop classification, in-season crop classification, few-sample crop classification, and model transfer experiments were set up in five study areas rich in crop types. A variety of best existing classifications were compared with different indicators. Our novel contributions are threefold:


	
1. A deep learning structure that fuses Convolution and Transformer is designed. The Transformer captures features throughout the reproduction period of the crop, while the convolution effectively utilizes information from key growth nodes of the crop. Combining the two features can improve the generalization ability of the model, which can be applied to multi-scenario crop classification.


	
2. The introduction of time-dimensional features on the input side of the model increases the diversity of the input. Position encoding has been added to solve the problem of unusable irregular time series due to missing values in remote sensing imagery.


	
3. Using a two-step classification framework and pre-training with unlabeled data increases the accumulation of crop growth knowledge in the model and improves the adaptability of the model in multi-scene crop classification.





The remainder of this article is organized as follows. Section II summarizes related work on crop classification. Section III provides a description of the remote sensing images and samples used in this paper. Section IV explains the motivation of the proposed method and describes the proposed network architecture. Section V reports the experimental results. Section VI discusses the article and presents future work. Finally, Section VII concludes this article.



2 Related work

An effective and general classification method is a prerequisite for achieving high accuracy crop classification. The more comprehensive the features extracted by the classification model, the more significant the advantages of the classification results obtained. According to the differences in feature selection strategies, existing crop classification methods can be classified into the following three categories.


Supervised traditional classification methods include machine learning classification models, such as SVM, RF, and Multilayer Perceptual (MLP). These models are sensitive to the spectral information of crops and use vegetation indices and spectral values as the main feature inputs. However, the sequence relationships hidden in the time series are not exploited, so more temporal features are incorporated in the model inputs including the statistical value of spectral value and vegetation indices and statistical features of vegetation indices curve (Pelletier et al., 2016; Zhang et al., 2018; Zeng et al., 2020; Liu et al., 2021). Comparing multiple crop vegetation index curves and obtaining key dates and key observations from the curves to distinguish crops can be effective in improving classification performance (Simonneaux et al., 2008; Lebourgeois et al., 2017). Many studies have used various functions to fit crop growth characteristics, including wavelet transform and double logistic function, and used the main parameters and significant stages of the functions as features for classification (Sakamoto et al., 2006; Soudani et al., 2008). Supervised traditional classification methods do not require a complex feature extraction process and the time cost is substantial. However, supervised traditional classification methods are influenced by their inputs as well as feature extraction strategies, and their application scenarios are single and cannot be adapted to multi- scenario crop classification.


Supervised deep learning classification methods include two outstanding algorithms Recurrent Neural Networks (RNN) and Convolutional Neural Networks (CNN) that can efficiently process sequential data (Ienco et al., 2017; Minh et al., 2018; Zhong et al., 2019). RNN has the unique advantage of processing sequential data, which is sensitive to temporal order (Mou and Zhu, 2018; Sharma et al., 2018; Papadomanolaki et al., 2019). Long Short-Term Memory (LSTM) model handles longer time series than RNN and has proven its effectiveness in capturing features in several classification models (Rußwurm and Korner, 2017; Zhong et al., 2019; Rajendran et al., 2020). The advantages of LSTM for inter-annual samples and the spatial transfer capability were also confirmed (Xu et al., 2020). LSTM has a drawback in parallel computation and cannot compute multiple layers at the same time, which can significantly increase the time consumption and is not practical for large-scale crop mapping. CNN has sparse swapping and parameter sharing, which may be able to reduce the time of network training (Tai et al., 2017). Different forms of input design have an important impact on classification performance for CNN (Marcos et al., 2018). From one-dimensional sequences, to two-dimensional images, to three-dimensional video streams have been used as input to CNN for hyperspectral or multispectral data classification (Chen et al., 2014; Kussul et al., 2017; Huang et al., 2018; Ji et al., 2018), but the conversion of multi-temporal observations to image or video streams increases the classification cost. In addition, a novel network structure combining RNN and CNN has been proposed to extract temporal features by learning temporal correlations (Mou et al., 2018; Martinez et al., 2021), but the features extracted by RNN and CNN are local features, which prevents the model from learning features from a global perspective. Therefore, the current supervised deep learning classification methods still have the drawback of extracting a single feature. Feature extraction is performed only from one side of crop growth, without combining key nodes of crop growth stages and the whole reproductive period, and it is impossible to obtain diverse features that can characterize crop growth patterns.


Self-Supervised deep learning classification methods have gained much attention because of its excellent learning ability on unlabeled data. The Transformer, consisting of multiple self-attention structures, is currently the most commonly used SSL structure (Vaswani et al., 2017; Devlin et al., 2018; Dosovitskiy et al., 2020). Xu et al. (Xu et al., 2020) verified that Transformer has advantages for processing time series, using parallel operations to overcome the problem of time-consuming processing of long time series, but experiments have only been conducted in in-season and full-season crop mapping. The Transformer is good at capturing global information but not sensitive to local information, so fusing the Transformer and CNN into a new network structure becomes a popular way (Gulati et al., 2020; Zhang et al., 2022). Li et al. (2020) developed a hybrid Convolution and Transformer network structure for multi-source remote sensing image classification and verified the feasibility of fusing the two, but it only discussed the effectiveness of the hybrid structure in full-season crop classification. However, the potential of the new network structure combining Transformer and CNN in the field of crop classification in other scenarios has not been fully tested. A general model with the ability to capture both global and local information is necessary for multi-scenario crop classification.

In conclusion, current crop classification methods still suffer from insufficient feature extraction ability, single application scenario, and lack of a general and effective classification method.



3 Materials


3.1 Study area

In this paper, three of the five study areas are located in Northwest China and two in Northeast China, as shown in 
Figure 1
. The first study area is the Hexi Corridor, which is an important agricultural production area with abundant light resources and abundant snow and ice meltwater. The second study area is the Ili River Valley, which has a mild climate, a temperate continental climate, abundant sunshine and precipitation, and significant advantages for agricultural development. The third study area is the Tianshan Corridor, which is in the mid-temperate arid climate zone and is an oasis irrigated agricultural area. The fourth and fifth study areas are Western and Eastern Heilongjiang, which have a temperate continental climate and whose black land advantage makes them an important food supply base for China. These five regions have favorable agricultural production conditions and diverse crop types, which are ideal for verifying the validity as well as the robustness of the classification model.


[image: Map of China highlighting four pretrain grid areas in different colors: Tianshan Corridor in red, Hexi Corridor in yellow, Ili River Valley in green, Western Heilongjiang in dark green, and Eastern Heilongjiang in beige. Insets on the right show detailed sections of each area, with additional satellite images below marking specific locations within each grid. A scale at the bottom indicates distances of zero, one thousand, and two thousand kilometers.]
Figure 1 | 
The geographical locations of the five study areas in China. The data used for pre-training are from the white boxed area in the Ili River Valley, Western Heilongjiang and Eastern Heilongjiang. The lower part shows a remote sensing image of GaoFen 1.



3.2 Satellite imagery

The remote sensing images we used are acquired by the GaoFen-1 satellite, which contains four bands: red, green, blue, and near-infrared, with a spatial resolution of 16 m and a temporal resolution of 4 days. We only used images with cloud coverage of less than 10%, which causes inconsistencies in the length of the time series. The number of valid images for each study area is shown in 
Table 1
, where Pre_His and Pre_Cur represent the imagery covering the pre-training sample areas acquired in the historical year and current year, respectively. 
Table 1
 shows that the number of remotely sensed images in each region and each month is different, and directly using the time series obtained from the images as input is a challenge for most models, which require pre-processing of the extracted time series. Cropformer, on the other hand, does not require any processing and can directly use the time series extracted from the images, which greatly improves the efficiency of the classification. The way of dealing with the irregular time series inputs by Cropformer is described in Section 4.1.


Table 1 | 
Number of valid images in the five study areas.


[image: Table displaying monthly data for study areas from March to September, categorized into Irregular and Regular groups. Each study area shows specific monthly and total counts. For instance, Study Area III has the highest total of 54, with monthly values peaking in July. Regular studies show a steady distribution across months, totaling 22.]


3.3 Sample dataset

Each of the three study areas of Northwest China has about 20 crop types in each region, and the main crops are maize, cotton, grape, and wheat. The two study areas in Northeastern China have a stable cropping structure, with the main crops being maize, rice, and soybean. We used unlabeled data from two 10 km × 10 km areas as the pre-training dataset, with a total of 781,250 sample units. In addition, field samples from three study areas collected in the current year were used for training and testing, where the ratio of the training dataset, validation dataset, and testing dataset was 6:2:2. The distribution of sample categories in the three study areas of Northwest China was very unbalanced, which also challenged our classification model. The numbers of sample units in each crop type are shown in 
Table 2
.


Table 2 | 
Number of Samples in the Three Study Areas.


[image: Table listing study areas, crop types, and the number of samples across five study areas. Study area I includes crops like seed maize with 36,771 samples, while area II includes middle rice with 27,826 samples. Area III features cotton with 30,178 samples. Area IV has soybean with 1,207 samples, and area V has soybean with 571 samples. Total sample numbers are 97,649 for area I, 405,489 for area II, 605,326 for area III, 2,050 for area IV, and 1,699 for area V.]



4 Methods


4.1 Motivation

In this paper, we propose a new combined Transformer and Convolutional network structure, the new structure takes the Transformer as the main structure and is used for crop classification, thus naming the new structure a Cropformer.

Both the single Convolutional structure and the single Transformer structure have certain drawbacks for crop classification. Convolution focuses too much on the key issues local to the sequence and ignores the dependencies between long sequences (Vaswani et al., 2017). Although Transformer can learn the dependencies between long sequences, those of local information are insensitive (Liu et al., 2022). Fusing the two to achieve a complementary effect can improve the adaptability of the model to cope with crop classification in different scenarios. The new network structure uses an embedded structure (Devlin et al., 2018), as shown in 
Figure 2B
, to embed the Convolutional part downstream of the multi-headed attention of the Transformer, so that the features with weights acquired by Transformer are input to the convolutional part, which can also be regarded as adding weight to the input of the Convolution, and thus the Convolution can pay more attention to those local features with larger weights. The Convolutional structure uses a new double-start residual connection, as shown in 
Figure 2C
. This connection ensures that the original input with weights can be fed directly to the Feed Forward Layer without losing the information in the global features due to the addition of Convolutional modules, thus allowing the global information extracted by Transformer to be fused with the local information extracted by Convolution. We use a point-depth convolution structure (Hua et al., 2018) to solve the problem that adding convolution significantly increases the number of parameters in Convolution part, and we use a residual structure to allow the model to converge faster (He et al., 2016). In addition, we use two parameter-adjustable activation functions, GLU and Swish (Dauphin et al., 2017; Ramachandran et al., 2017), which ensure that the convolution structure can automatically select the best activation function for training based on the prior self-attention output, and both activation functions have the advantage of fast convergence, so that the whole model can be trained and converged more easily. Single convolutional structure and single Transformer structure have been very common in the field of crop classification, but methods combining these two structures are still less common in the field of crop classification. Therefore, building a classification model dominated by convolutional and Transformer structures is valuable in the field of crop classification.


[image: Diagram illustrating the architecture of a Cropformer Block, Convolution Module, and Crop Residual. The Cropformer Block includes Multi-Head Attention, Layer Norm, Convolution Module, Feed Forward, and Layer Norm. The Convolution Module consists of Layer Norm, Crop Residual, and Dropout, with iterative Crop Residual components. The Crop Residual involves Pointwise Conv, GLU, Depthwise Conv, Batch Norm, and Swish. Arrows indicate data flow through each module and operation.]
Figure 2 | 
Cropformer Block, Convolution Module and Crop Residual detailed architecture. In (A) MHAL extracts global information, CM extracts local information, FFN will get information further enhanced, and LN is used for layer normalization to prevent model overfitting. (B) shows the two-start residual connection, and dropout is used to speed up the model training and prevent overfitting. GLU and Swish are the two learnable activation functions in (C), and BN is used for batch normalization to prevent model overfitting.


Irregular time series are difficult to apply directly due to their irregularity and to solve this problem, we introduced positional encoding in Cropformer. The effectiveness of positional encoding in the field of natural language processing(NLP) has been demonstrated (Devlin et al., 2018), but there is no precedent in the field of crop classification as a method for solving irregular time series. Specifically, we encode the observation points of the acquired valid remote sensing images to form temporal features, which are fused with the spectral features and input into the model together. The model will learn the spectral features at the corresponding positions according to the temporal features, and no misalignment of spectral values will occur due to different sequence lengths.

Labeled sample data is costly to obtain, while unlabeled remote sensing image data is easily available, and using unlabeled data to improve the learning ability of the model is competitive compared to other models (Yuan and Lin, 2021; Yuan et al., 2022). Pre-training using unlabeled data in this study forces the model to learn the crop growth patterns from unlabeled data, thus accumulating a large amount of prior knowledge. Specifically, we randomly add noise to some of the nodes in the sequence of unlabeled data and pre-train the model using a self-supervised training approach, thus allowing the model to learn the spatial-temporal relationships of crops at different time nodes. This improves the generalization ability of the model as well as provides prior knowledge for supervised classification.



4.2 Cropformer

The Cropformer architecture consists of three parts: Token Embedding (TE), Position Embedding (PE), and Cropformer Block (CB), whose architecture is shown in 
Figure 3
. TE is a Linear Layer that projections the spectral sequence into a sequence feature vector of dimension d, i.e., equation (1). PE encodes the time series into a temporal feature vector of dimension d by equation (2). The sequence feature vector and the temporal feature vector are concatenated into a new vector as the input of CB.


[image: Diagram showing an embedding process in a neural network. Two inputs, "Token Embeddings" and "Position Embeddings," are combined and fed into a series of "Cropformer Blocks" repeated N times, illustrating a recurrent processing structure.]
Figure 3 | 
Cropformer architecture. Where Token Embedding denotes encoding of spectral information in time series and Position Embedding denotes encoding of temporal information in time series. Cropformer Block details can be shown by 
Figure 2
, 
4
.


[image: Equation showing \( s_i = f(\text{seq}_i) \) labeled as equation (1).]

[image: Function \( t_i(p) \) is defined piecewise: it equals \(\sin(doy_i / 1000^{2k/d})\) if \( p = 2k \), and \(\cos(doy_i / 1000^{2k/d})\) if \( p = 2k + 1 \). Equation labeled as (2).]

[image: Equation showing \( x_i = \text{Concat}(t_i, s_i) \) designated as equation (3).]

where i∈[0,N],k∈[0,d] , N denotes the sequence (time series) length and doy represents the difference of valid sampling points. Encoding doy ensures that each growth node of the crop has a fixed temporal feature vector corresponding to it, so the input sequence can be irregular. Although irregular inputs can improve image utilization, they can lead to a very limited number of effective images acquired when subjected to practical conditions such as cloud occlusion, which requires the model to be able to learn key features from the constrained inputs.

CB in Cropformer can exist N, forming a network structure with depth N. However, there is a limit to the size of N, and infinite increase does not significantly improve the results, and its structure is shown in 
Figure 2A
. The CB consists of three important components: Multi-Head Attention Layer (MHAL), Convolution Module (CM), and Feed-Forward Network (FFN). MHAL is good at capturing global information (Yuan and Lin, 2021), while CM can effectively use local features, and combining the two can achieve more comprehensive learning of crop growth and development.



Figure 4A
 shows that Single MHAL architecture. MHAL takes the joint vector of sequence + doy as input, by performing three linear projections on the input vector. The outputs of the first two Linear Layer are selected for scaled dot product and the fraction of each feature is calculated using Softmax, i.e., Equation. (4). The obtained feature scores are dotted multiplied once more with the output of the third projection, and finally the output of MHAL is obtained. MHAL is to calculate the feature scores between different positions of sequences, it learns the dependencies between sequences and obtains the global sequence information. The weight of the important sequence information in this part is scaled up, making more emphasis on this part in the CM part.


[image: Diagram with two parts: A and B. Part A illustrates a neural network block with sequence embedding, feeding into three linear layers labeled L1, L2, and L3, which converge through scaling and softmax operations, and further processing. Part B shows a single vertical stack containing two linear layers and one Swish activation function in between.]
Figure 4 | 

(A) Single MHAL architecture (B) FFN architecture. The inputs in (A) are the visualization results of the time series. L1-3 denote the three Linear Layers, but their weights are not the same.


[image: The equation shows \(\hat{z}_i = \text{softmax}\left(\frac{L_1(x_i)L_2(x_i)^T}{\sqrt{d}}\right)L_3(x_i)\), labeled as equation (4).]

where Lj
 represents j-th Linear Layer in MHAL; d represents the feature vector of dimension; xi
denotes model input, and [image: The image depicts a mathematical expression: a lowercase letter "x" with a caret above it, indicating a hat notation, followed by a subscript "i". This notation is typically used to denote an estimate or transformation of the variable x indexed by i.]  denotes MHAL output. Softmax is used to calculate the score of each feature.



Figure 4B
 shows that FFN architecture. FFN is used to enhance the expressiveness of the features and consists of two linear layers and an activation function.

CM is composed of Layer Normalization (LN) (Ba et al., 2016), Crop Residual (CR), and Dropout (Srivastava et al., 2014), whose structure is shown in 
Figure 2B
. The mathematical expression of the CB part is

[image: Mathematical expressions showing three equations: \( \tilde{x}_i = x_i + LN(\hat{x}_i) \), \( x'_i = \tilde{x}_i + CM(\tilde{x}_i) \), and \( y_i = x'_i + LN(FFN(x'_i)) \). Equation number (5) is in parentheses on the right.]

where LN represents Layer Normalization, CM represents Convolution Module, and FFN represents Feed-Forward Network; [image: Mathematical expression showing a lowercase x with a tilde above it, subscripted by the letter i, often representing a transformed or estimated variable indexed by i.]  denotes CM input, x
′ denotes FFN input, and y
i
 denotes model input.

CR is a pure Convolutional structure, we use a new double-start Shortcut connection that can fuse two kinds of features, which can guarantee lossless fusion of global and local features. The depth-separable convolution layer is used in CR, which effectively reduces the number of parameters and ensures that the model can be trained faster. Two activation functions, GLU and Swish, are used in the Pointwise Convolution Layer and Depth Convolution Layer, respectively, and in the last Batch Normalization (BN) (Ioffe and Szegedy, 2015), which is more suitable for convolution operations, is added to one convolution layer, and its architecture is shown in 
Figure 2C
.



4.3 Crop classification framework

The crop classification framework using Cropformer is divided into a pre-training part and a fine-tuning part, as shown in 
Figure 5
. In the pre-training part, we use an SSL training approach for predicting missing values (Devlin et al., 2018), and it is worth noting that this part is trained entirely with unlabeled data. In the input continuous irregular time series, we randomize the time series of the MASK part of the input sequence sampling points, and Cropformer predicts the value of the MASK part by learning the spatial-temporal contextual relationships between the sequences, which allows the model to fully learn each node of crop growth and development. The loss function of Cropformer uses the Mean-Square Error (MSE) between the original and predicted sequences, i.e.


[image: Diagram showing a two-phase process for a model named Cropformer. On the left, pre-training involves inputs Seq1, Doy1, Mask2, Doy2, Seq3, and Doy3 processed through Cropformer to generate Seq2. On the right, fine-tuning uses inputs Seq1, Doy1, Seq2, Doy2, Seq3, Doy3 to produce Label Y, involving weight transfer and a classification module, resulting in Label Ŷ.]
Figure 5 | 
Cropformer crop classification framework. Seq represents the input time series, Mask represents the time series being masked, and Doy represents the sampling time point. The fine-tuning phase has the same network structure as the pre-training phase, but the fine-tuning phase has a Classification module.


[image: Mathematical equation for loss calculation: \( \text{Loss} = \frac{1}{N} \sum_{i=0}^{N} (seq_{q_i} - \tilde{seq}_{q_i}) \). The equation is labeled as equation six.]

where seq represents the sequence value of MASK, [image: Mathematical notation featuring the word "seq" with a tilde symbol over it.]  represents the predicted sequence value and N denotes the number of masked sequence values. When the predicted values are infinitely close to the true values, it shows that Cropformer already can recognize the growth and development patterns of crops, thanks to pre-training using a large amount of unlabeled data. Although accurate crop types cannot be obtained by pre-training with unlabeled data, the growth patterns of a large number of crops expressed as time series are learned. These learned crop growth patterns are passed on to the fine-tuning stage as prior knowledge, thus ensuring that the best classification results can be obtained more efficiently in the fine-tuning stage.

After completing the pre-training, the resulting parameters from the pre-training part are transferred to the fine-tuning part for use. Because of the effectiveness of the pre-training part, the fine-tuning part does not take much time. Also, in the network structure part, only a simple classification module is added behind the Cropformer and then a supervised fine-tuning process is performed.



4.4 Experiment design and settings

We had applied Cropformer in several crop classification scenarios to demonstrate its generality namely (1) Full-season crop classification; (2) In-season crop classification; (3) Few-sample crop classification, (4) Spatial transfer of classification model. The experimental scheme is shown in 
Figure 6
. Specifically, (1) The classification ability of Cropformer was tested using current-year unlabeled data for pre-training and the full current-year field sample for fine-tuning, and compared to the best existing approaches RF (Pelletier et al., 2016), Res-18 (Thenmozhi and Reddy, 2019), SIFT-BERT (Yuan and Lin, 2021), Performer (Choromanski et al., 2020) and ALBERT (Lan et al., 2019); (2) In the in-season crop classification experiments, historical data were used as a pre-training data source, and the field sampling data in the current year were divided by month as fine-tuned data, e.g., March-end of April for the first stage of early detection and March-end of May for the second stage, with the input time series gradually becoming longer until all-time series were included; (3) In the few-sample crop classification experiment, two few-sample scenarios were simulated as balanced and unbalanced crop distributions. We designed experiments with 1% of labeled samples drawn from each class and a fixed number of labeled samples drawn from each class (the number of samples with the lowest number of all classes as the number of draws) as the fine-tuning training dataset; (4) Transfer learning can solve the problem of insufficient labeled samples in the target domain, and we set up two transfer methods in this experiment. One is to transfer the model from training in a region with sufficient samples to the target region, and the other was to transfer the model from training in a geographically similar region to the target region.


[image: Flowchart of an experimental process for time series data extraction and classification using GF-1 Image. The upper section shows the removal of invalid images and extraction of time series data in blue, green, red, and NIR bands. The lower section depicts scenarios involving pre-training, fine-tuning, and classification with Cropformer. Scenarios include various combinations of data types and training methods to evaluate classification performance and generalizability.]
Figure 6 | 
The experimental process uses historical data and current year data as pre-training data. The acquisition time of image data is from March to October. The bands used are blue, green, red, and near-red. The red serial number represents the number of crop classification scenario.


To evaluate the experimental results, besides the visually comparison of the classified crop maps, Overall Accuracy (OA), Average Accuracy (AA), and F1 scores were used to quantify the classification performance of different methods. In addition, all the results were the average of the three experimental results.

The hyperparameter settings of Cropformer are divided into two parts: network structure and training optimization, both of which are closely related to the performance of the model. For the network structure, the number of CB is set to 3 and the number of CR is set to 2. The number of Head in MHAL is set to 8 and the dimension of Linear Layers is set to 256; the dimension of Linear Layers in FFN is set to 1024; the size of convolutional kernels in CR is set to 7×7, padding is 3, stride is 1. The number of channels in both Pointwise Conv and The number of channels of both Pointwise Conv and Depthwise Conv is 256. For the training optimization, the pre-training stage was performed with 200 epochs, batch size set to 512, set to initial learning rate set to 1e-4, decay after 10 epochs, dropout set to 0.1, and the optimizer is selected as Adam; the fine-tuning stage was performed with 10 epochs, batch size set to 256, learning rate set to 1e-5, and dropout set to 0.1. The input size of the model can be obtained from equation (7)

[image: Equation showing input shape as the sum of \( t\_num \times band\_num \) and \( t\_num \) enclosed in parentheses, followed by the number seven in parentheses.]

where t_num denotes the number of images acquired which is the length of the time series, and band_num denotes the number of bands. The number of bands in this paper is 4, but the inputs to the model in this paper are diverse because the inputs used are irregular time series.

The entire experiment was run on a Windows platform configured with an i7-11700 K @ 3.60 GHz, 32 G RAM, and NVIDIA GeForce RTX 3080 GPU (10 GB RAM), and all programs were written using the python language.




5 Results and analysis


5.1 Full-season crop classification

In our experiments, we compared Cropformer with five competing methods. RF had advantages in processing sequential data and hence was used as a baseline for traditional machine learning algorithms. The advanced deep learning methods Res_18, SIFT_BERT, Performer, and ALBERT were used as comparisons and they showed good results in crop classification as well as sequence data processing. Among them, the input of Res_18 was a three-dimensional tensor, the input of RF and Performer was a regular time series, and the input of SIFT_BERT and ALBERT were irregular time series in line with the input of Cropformer, and the experimental results were shown in 
Table 3
.


Table 3 | 
Performance comparison of cropformer and other classifiers in three study areas.


[image: A table comparing six methods: RF, Res-18, Performer, SIFT_BERT, ALBERT, and Cropformer across five study areas. Each method's accuracy (AA%) and overall accuracy (OA%) are listed. Bolded values indicate the highest results within each category. Cropformer consistently shows strong performance with highest values in several study areas.]



Table 3
 showed that Cropformer obtained OA of 81.93%, 86.32%, 85.70%, 84.39%, and 79.15% in the five study areas, respectively. Compared to the baseline RF of the traditional method, the increase was more than 5% in study areas IV-V with fewer samples, while in study areas I-III with abundant samples, the increase was not significant. This demonstrated the saturation of the classification accuracy achieved by the classification algorithm when samples were sufficient. In study area IV, Cropformer obtained AA of 81.52%, which was very close to the OA (84.39%) obtained in this region, while in study areas II and III it obtained AA of 64.81% and 61.23%, respectively, which was more than 20% different from the OA (86.32%, 85.70%) obtained, and this difference was more pronounced in RF (37%, 25%). This was due to the extremely unbalanced distribution of samples in study area II and III, where the sample size of maize was more than half of the total sample size, causing the AA to be insignificant, which is consistent with the findings of (Wang et al., 2022). Sample imbalance can bias the classification results toward the more numerous categories. The results showed that Cropformer in full-season crop mapping enabled to achieve better and more stable classification results even in situations where the sample conditions were not ideal, while the performance of the traditional classification method (RF) was not stable and vulnerable to realistic conditions, which is in line with the conclusions of (Xu et al., 2020).

SIFT-BERT and ALBERT outperformed Cropformer for classification in a few cases. ALBERT achieved AA/OA of 62.37%/85.99% respectively, which was better than Cropformer (61.23%/85.70%); SIFT-BERT achieved AA of 82.91%/72.42% in study areas IV-V, again better than Cropformer (81.52%/70.23%). However, in most cases Cropformer had a clear advantage in both AA and OA. In study areas II, III, V, where the number of valid images was low (valid images of 27/24/12, respectively), Cropformer had a 1%-8% improvement in OA compared to RF and Performer (22 valid images) using regular time series, while the improvement in AA was very significant (3%-16%). This indicated that Cropformer is able to learn more useful features from a finite length sequence. In fact, regular time series required resampling operation, and in the case of limited number of images, this operation would destroy the original information of the time series and thus had an impact on the classification results. Res_18 performed the worst among all methods, obtaining only OA of 84.80% in study area II, and no more than AA/OA of 60%/80% in other study areas, which was an unacceptable result. Although the Res_18 used a more informative three-dimensional tensor as input, its classification accuracy was not outstanding. Therefore, the direct use of one-dimensional time series as input results as well as efficiency would be more advantageous.



Figures 7B, C
 showed that in the case of sufficient samples, all three methods had a significant improvement in accuracy after pre-training, among which ALBERT had the most significant improvement (5%), while Cropformer and SIFT-BERT do not have a significant increase (2%-3%). The accuracy improvement of the three methods after pre-training was very obvious, especially in study areas IV-V, where the sample size was very small, and the highest improvement was up to 14.89%. The results showed that pre-training not only improves the crop classification accuracy, but also effectively reduced the model’s demand for samples, which was consistent with the findings of (Yuan and Lin, 2021; Yuan et al., 2022). In addition, the the average improvement in the five study areas of the Cropformer (6.95%) after pre-training was higher than that of BERT (3.22%) and ALBERT (5.2%), which indicated that the Convolution-Transformer structure in the Cropformer had better learning ability compared to the single-structured Transformer. By focusing on both global and local crop growth patterns, we could not only focus on the key growth nodes of crops but also capture the dynamics of crops throughout the reproductive period, and combine two important discriminatory approaches to better distinguish between different types of crops.


[image: Bar charts compare the overall accuracy (OA) percentages of different methods across five regions: Hexi Corridor, Ili River Valley, Tianshan Corridor, Western Heilongjiang, and Eastern Heilongjiang. Each chart displays six bars representing methods: ALBERT_No_Pre, ALBERT, SIFT_BERT_No_Pre, SIFT_BERT, Cropformer, and Cropformer_No_Pre. Values range from approximately 64.26% to 86.32%, with variations in performance across regions and methods. A legend at the bottom provides color coding for each method.]
Figure 7 | 
Performance comparison of Cropformer and other classifiers in five study area.



5.2.  In-season crop classification.

Historical unlabeled data were selected as pre-training data in the in-season crop classification experiment. We believed that crop growth information could be learned by training on historical data, even if it was not from the current year. Therefore, we used historical data as pre-training data in in-season crop classification and irregular time series of different lengths of the current year as fine-tuning data. The classification time was a one-month interval, with the end of April as the start time and the end of September as the end time, and the experimental results were shown in 
Figure 8
.


[image: A series of line graphs compare the performance of five models: RF, BERT, Cropformer, Performer, and ALBERT. Each graph represents a different region (Hexi Corridor, Ili River Valley, Tianshan Corridor, Western Heilongjiang, Eastern Heilongjiang) over time from late April to late September. The Y-axis shows performance metrics (OA and AA in percentages). Each model's performance increases over time, with variations between regions. The models are color-coded as per the legend.]
Figure 8 | 
Early detection results with time transformation in the five study areas. The first row of which is OA and the second row is AA for the period from the end of April to the end of September. (A) OA for in-season crop classification (B) AA for in-season crop classification.




Figure 8A
 showed Cropformer dominance in early crop growth (end of April - end of May), especially in study area I, III, V where OA of 72.74%, 77.47% and 68.09% were obtained, while RF only obtained 70.68%, 74.71% and 65.81%. However, the advantage of Cropformer was not obvious in the middle of the crop growth period (end of June - end of August), especially in study area II and study area V, where the number of valid images for this time period was extremely low, thus leading to the inability to obtain valid classification results using the irregular time series method. 
Figure 8B
 showed that the advantage of Cropformer in evaluating the in-season crop classification with AA Cropformer can improve 1%-6% in early crop growth (end of May) compared to other methods, while in mid-growth the performance was comparable to SIFT-BERT and ALBERT, but significantly better than RF and Performer, which was most evident in study area I and study area II, where the improvement was close to 10%. Comparing 
Figures 8A, B
, it can be found that in in-season crop classification, although RF can achieve some advantage (when evaluated with OA), it was the classification of a large number of teste data into a larger number of categories that achieved better results, so that the classification results are no longer advantageous when evaluated with AA. The pre-training of the accumulated prior knowledge improved the ability of the model to detect different classes of crops, so the model with pre-training can be applied to areas with uneven sample distribution and complex crop types. In addition, the pre-trained data were derived from historical data, which would make the historical data as pre-trained data had an impact on the classification accuracy if the historical data were different from the current year’s data in terms of sowing time and other agricultural activities, resulting in some differences in crop growth stages from the current year.

The earlier the crops were classified, the more important the impact on agricultural production, so we further investigated the earliest point in time of the year when different crops were classified using Cropformer in three areas rich in crop types. Since different crops had different sowing times, the earliest time that could be classified would be different and similar. We analyzed the end of April and the end of July as two important points in the in-season crop classification, and the experimental results were shown in 
Figure 9
.


[image: Three bar charts display the F1 scores of various crop types in different regions: Hexi Corridor, Ili River Valley, and Tianshan Corridor. Each chart compares scores for late April, late July, and late September across several crops like winter wheat, maize, cotton, and other regional varieties. The scores vary for each crop and time period, providing insights into agricultural performance across these areas.]
Figure 9 | 
F1 scores for each crop type in the three study areas using Cropformer at the end of April, July and September. Where the green axis headings indicate vegetables and the red axis headings indicate fruits. (A) Hexi Corridor F1 Score (B) Ili River Valley F1 Score (C) Tianshan Corridor F1 Score.




Figure 9
 shows for half of the crops in all three study areas, more than 50% of the F1 scores were available at the end of April and nearly 60% of the crops had more than 70% of the F1 scores at the end of July, with a higher percentage in the Hexi Corridor(80% of the crop had an F1 score above 50% at the end of April and 70% of the crop had an F1 score above 70% at the end of July), due to the relatively balanced distribution of samples in the Hexi Corridor compared to the other two study areas. The unbalanced sample distribution was very unfair for crops with relatively small sample sizes, such as Chili Pepper and Gourd in the Ili River Valley, which were very susceptible to confounding with other crops (both had relatively low F1 scores in the three study areas), and because of the small number of available training samples, a large amount of confounding could occur. In all study areas, the F1 scores for each crop type at the end of July were very close to the F1 scores at the end of September, and even some crops had higher F1 scores at the end of July than at the end of September. When the crops were close to maturity or harvest, the time series information of crops was very close at this time, and if we continue to add time-series information, it would generate redundant information or useless information, which would make the model misclassify, so we could consider the end of July as a better time point for early classification using Cropformer. Hao et al. (2018)also proved the conclusion that accuracy consistent with crop maturity can be obtained in July-August. Cropformer uses irregular sequences and acquisition of very limited spectral information about crops but still allows crop identification at an earlier time, which shows that Cropformer can be applied to the classification of in-season crops in regions with complex crop types.



5.3 Few-sample crop classification

In the few-sample crop classification experiments, we modeled two schemes to fit the few-sample scenario, i.e., using only 1% labeled samples per category and using only a fixed number of labeled samples per category (the fixed number referred to the number of samples with the least amount of sample size among all categories). We selected RF, SIFT-BERT, and ALBERT, which showed excellent results in previous experiments, as a comparison and conducted experiments in three areas with rich crop types. Each experiment was randomly selected three times to take the average value as the result and the experimental results were shown in 
Figure 10
.


[image: Two panels of bar graphs comparing algorithm performance across different regions. Panel A shows overall accuracy (OA) and Panel B shows average accuracy (AA). Both panels include four algorithms: SIFT_BERT, RF, ALBERT, and Cropformer, across Hexi Corridor, Ili River Valley, and Tianshan Corridor. Bars are labeled for the number of samples used: Per_min, Per_1%, and Per_all, with different shades representing each category. Overall, performance varies by algorithm and region, with specific bars showing the percentage values. Legends and axis labels are included for clarity.]
Figure 10 | 
Comparison of results for different proportions of labeled samples in the three study areas. (A) OA for few-sample crop classification (B) AA for few-sample crop classification.




Figure 10A
 showed Cropformer achieved OA of 76.27%, 85.18%, and 85.40% in the three study areas when using only 1% labeled samples, which was only 5.66%, 1.14%, and 0.3% less than using all labeled samples. When trained using the 1% sample, RF showed a significant OA decrease of 10.4%, 11.47%, and 8.22% in the three study areas, respectively, while the OA decrease using pre-trained SIFT-BERT, ALBERT, and Cropformer was not significant and only showed a significant OA decrease in study area I. This further demonstrated the effectiveness of pre-training. Moreover, Cropformer also performed optimally when only 1% of the samples were used, but ALBERT achieved comparable performance to Cropformer, while SIFT-BERT showed a significant drop in performance compared to the previous performance. When using the minimum number of samples per class, the accuracy of all methods decreased, which was due to the uniform trend and extremely reduced number of samples in the training set, but the distribution in the test set was still extremely uneven, which leaded to a significant decrease in accuracy.



Figure 10B
 showed that the AA of Cropformer reached 74.03%,68.16% and 66.72% when using the minimum number of samples per class, which was 0.87%, 3.35% and 5.49% higher than the AA using the full sample fine-tuning. This further supported the previous conclusion that when the sample distribution was uneven, the category with the larger sample size dominates. Whether using the minimum number of samples per class or 1% samples per class, classification results of Cropformer still outperformed other methods, while SIFT-BERT and ALBERT were second. As with the previous classification results evaluated in terms of AA, the AA of RF was the lowest among all methods, which showed that RF was not applicable to samples with unbalanced distribution. Overall, Cropformer achieved competitive classification results in few-sample context classification, both in unbalanced and balanced samples.



5.4 Spatial transfer of classification model

If the target region was not rich in labeled samples for training, transferring the model trained in the source region to the target region could reduce the problem of sparse labeled samples. We set up two types of transfer across regions, one was between regions with similar geographic and climatic conditions(TL1), and the other was to use regions with rich labeled samples to transfer to regions with fewer labeled samples(TL2). Study area II was the area with abundant labeling samples, and study area IV and study area V had similar geographical and climatic conditions. Since study area II and study area V were not in the same geographical area, we selected pre-training data from the two areas for pre-training. Where Pre_W and Pre_E represented the pre-training sets for the Northwest and Northeast regions of China, respectively. The crops were common to all three areas: soybean, spring maize, middle rice, and others. The results of the experiment are shown in 
Table 4
.


Table 4 | 
Comparing the results of different transfer strategies.


[image: Table comparing pre-training areas and methods. Columns include Study Area V to Study Area V, AA(%), OA(%), Study Area II to Study Area V, AA(%), OA(%). Methods listed are RF, Performer, Cropformer, ALBERT, BERT. Bolded numbers indicate best results, with Cropformer achieving 63.77% OA in Pre_E for Study Area II to V.]



Table 4
 showed that Cropformer achieved OA of 62.13% in TL1 when no pre-training was used, which was a 36.92% and 31.59% improvement compared to RF and Performer. In TL2 the OA reached 62.98%, a 15.3% and 18.6% improvement compared to RF and Performer. However, the AA of Cropformer was not outstanding among the two transfer methods. When using Pre_W as pre-training, the OA of Cropformer reached 61.70%, which was still more than 20% improvement compared to ALBERT and SIFT-BERT. When using Pre_E as pre-training, Cropformer achieved OA of 63.77% in TL1 and OA of 64.26% in TL2. Compared to the first two pre-training methods, the OA improvement of Cropformer was much less using the third pre-training method, which indicated that the region of pre-trained data need to be consistent with the region of fine-tuned data. However, Cropformer can overcome the scenario of regional inconsistency, reflecting Cropformer’s ability to transfer across regions. Cropformer’s ability to capture key information about the crop and understand crop growth patterns from the entire reproductive period of the crop allowed Cropformer to identify crops in different regions faster and better, which was important reason for Cropformer’s good spatial transfer capability.

In the no-pre-training scenario, the average OA/AA of the three methods in TL2 reached 51.68%/37.61%, which was an improvement of 12.48%/5.1%, respectively, compared to that in TL1 (39.2%/32.51%). When pre-training with Pre_E, the average OA/AA of the three methods in TL2 reached 63.40%/39.85%, which was an improvement of 3.7%/8.54% compared to TL1 (59.70%/31.31%), respectively. The results indicated that TL2 outperformed TL1, and thus it can be assumed that models trained in areas with rich label samples outperformed those trained in areas with similar geographical location and climate.



5.5 Processing efficiency

We compared the processing speed of Cropformer with the other three methods in the Ili River Valley and ensured that all experimental settings were consistent, and the experimental results were shown in 
Table 5
.


Table 5 | 
Comparison of processing speed between cropformer and other methods(s).


[image: Table comparing time consumption across different methods: RF, Res-18, Performer, ALBERT, SIFT-BERT, and Cropformer. Categories include data pre-processing, pre-training epoch, training epoch, and all time consuming. Times are listed in numerical values across each category for the methods.]



Table 5
 showed that the total time consumption of Cropformer (566.51s) was higher than that of BERT (518.09s), ALBERT (427.21s), and Performer (994.61s), but lower than that of RF (795.58s) and Res-18 (1165.24s). The main time consumption of RF and Performer consumption lied in data preprocessing (523.93s), which accounted for 65.86% and 52.68% of all time consumed, which severely limited the efficiency of RF and Performer. Cropformer was more time consuming than SIFT-BERT and ALBERT because we added a convolutional part to the network structure. ALBERT had the advantage of having a very small number of parameters, which was an important reason why its efficiency is the best among all methods.



5.6 Comparison of the crop maps

We selected two 10 km ×10 km areas in each of the five study areas for full-season mapping using Cropformer, and compared the results with those of RF, and SIFT-BERT, as shown in 
Figure 11
. Results of crop mapping by other methods can be viewed in the 
Supplementary Material
.


[image: Satellite images and land use classification maps illustrate five regions: Hexi Corridor, Ili River Valley, Tianshan Corridor, Western Heilongjiang, and Eastern Heilongjiang. Each section shows original satellite imagery followed by land classification maps color-coded to indicate different land uses like crops, grassland, and woodland. Legends with specific crop types and land uses are included for each section.]
Figure 11 | 
Map of crop distribution in selected areas of the five study areas. For each study area, from left to right, remote sensing images, RF mapping, SIFT- BERT mapping, and Cropformer mapping.




Figure 11
 showed the mapping differences between the three methods were more pronounced in the first three study areas with rich crop types, while the three methods were similar in the last two study areas with similar cropping structures. The most significant differences in the maps among the five methods were found in the Tianshan Corridor, for example, in the second 10 km × 10 km area, Cropformer identified most of the crops as grapes, while RF identified most of the crops as spring maize and sunflower, and SIFT-BERT identified them as seeded mazie and cotton. Based on the field survey in Tianshan Corridor, an important grape production base in China, the prediction of Cropformer was more accurate. In the area with complex planting structures, Cropformer still showed good mapping performances. The parcel distribution of Cropformer mapping is very close to plot distribution of the original remote sensing image, and the mapping results of other methods had a serious pepper effect and look more fragmented. In the latter two study areas where the plot size was small and clustered distributed, Cropformer still overcame the pepper effect and there were few cases of fragmented plots. Overall Cropformer had good mapping results and provides a possible solution for large-scale remote sensing mapping.




6 Discussion

In this paper, we proposed a new crop classification method that can be applied to multi-scenario crop classification, and its generality and validity were demonstrated in five study areas with complex crop growing structures.

The success of Cropformer lied in the ability to focus on both global information about crop growth and to capture key features of crop growth to achieve a more comprehensive feature representation from the perspective of feature complementarity. For the features extracted by the model, neither local nor global features can fully characterize the crop growth pattern (Gulati et al., 2020). Therefore, better results were obtained using more comprehensive and integrated features. The role of pre-training was to help the model better understand the crop growth pattern, and when pre-training was introduced in the classification method, the classification accuracy was significantly improved, which was consistent with the findings in the literature (Yuan and Lin, 2021; Yuan et al., 2022). The implication behind pre-training was to make the model learn the contextual relationships of the time series by forcing the model to learn them through self-supervised training when inputting unlabeled time series, thus summarizing the time series patterns of the crop. These laws were used as prior knowledge to the fine-tuning phase, which both reduced the need for labeled samples and sped up the convergence of the model (Li et al., 2020). The introduction of position encoding reduced the requirement of time series as input. Using time and spectra as inputs to the model ensured the correct correspondence between image acquisition time and crop spectra in the time series, and also enriched the inputs to the model.

The unlabeled remote sensing data were very easy to obtain, and only some areas were randomly selected for pre-training in this paper, without considering the influence of the land cover degree of the area where the unlabeled remote sensing data were located on the results. Therefore, it was the focus of future work to fully exploit the potential of unlabeled remote sensing data in crop classification, including the effects of different types of unlabeled remote sensing data and remote sensing data of different time series length on the classification results. Data augmentation was an important tool for enriching sample types and avoiding model overfitting (Vulli et al., 2022), which would also be applied to crop classification in future work. In addition, the experimental results across regions were not satisfactory, and how to solve the effective migration of the model in large scale crop classification was also worthy of attention.



7 Conclusion

To build deep learning models that can be applied to multi-scene crop classification, we created a two-step classification system and proposed a new deep learning architecture, Cropformer. Cropformer can adapt irregular time series as input and can accumulate crop growth information in the pre-training phase, which enabled it to achieve the best performance in multiple crop classification scenarios. In full-season crop classification experiments, the average OA/AA of Cropformer with Transformer and convolution (83.50%/70.19%) outperformed traditional classification methods RF (80.73%/58.36%), the single convolution structure Res-18 (78.88%/43.38%) and the single Transformer structure of SIFT-BERT (81.70%/69.50%), indicating that Cropformer had the ability to extract more comprehensive features by using both the Convolution structure to extract local features and the Transformer to capture global information. The results of in-season crop classification experiments showed that Cropformer can obtain classification results comparable to those of crop maturity (end of September) at mid-to-late crop growth (end of July), reflecting Cropformer’s ability of early identification, taking advantage of the ability to use irregular time series directly, and thus extracting usable features from limited images. In the classification of crops with few samples, the average OA of only 1% of the samples used by Cropformer for each class reached 82.28%, which was 2.37% lower than that of all the samples (84.65%). This showed that after pre-training, Cropformer had accumulated a lot of prior knowledge, which can effectively reduce the demand for standard label samples, so that it can obtain high-precision classification results with few labeled samples. The results of spatial transfer experiments showed that Cropformer can overcome the problem of inconsistency between the regions of the pre-training data and the fine-tuning data, indicating that Cropformer had the ability of spatial generalization. Crop mapping results showed that Cropformer can obtain mapping results consistent with field samples, which benefited from Cropformer’s strong learning ability and can learn generalized features. All experiments showed that Cropformer adapts to multi-scenario crop classification and had great potential in large-scale crop classification.
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Plants play a crucial role in supplying food globally. Various environmental factors lead to plant diseases which results in significant production losses. However, manual detection of plant diseases is a time-consuming and error-prone process. It can be an unreliable method of identifying and preventing the spread of plant diseases. Adopting advanced technologies such as Machine Learning (ML) and Deep Learning (DL) can help to overcome these challenges by enabling early identification of plant diseases. In this paper, the recent advancements in the use of ML and DL techniques for the identification of plant diseases are explored. The research focuses on publications between 2015 and 2022, and the experiments discussed in this study demonstrate the effectiveness of using these techniques in improving the accuracy and efficiency of plant disease detection. This study also addresses the challenges and limitations associated with using ML and DL for plant disease identification, such as issues with data availability, imaging quality, and the differentiation between healthy and diseased plants. The research provides valuable insights for plant disease detection researchers, practitioners, and industry professionals by offering solutions to these challenges and limitations, providing a comprehensive understanding of the current state of research in this field, highlighting the benefits and limitations of these methods, and proposing potential solutions to overcome the challenges of their implementation.
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1 Introduction

The use of ML and DL in plant disease detection has gained popularity and shown promising results in accurately identifying plant diseases from digital images. Traditional ML techniques, such as feature extraction and classification, have been widely used in the field of plant disease detection. These methods extract features from images, such as color, texture, and shape, to train a classifier that can differentiate between healthy and diseased plants. These methods have been widely used for the detection of diseases such as leaf blotch, powdery mildew, and rust, as well as disease symptoms from abiotic stresses such as drought and nutrient deficiency (Mohanty et al., 2016; Anjna et al., 2020; Genaev et al., 2021) but have limitations in accurately identifying subtle symptoms of diseases and early-stage disease detection. In addition, they also struggle to process complex and high-resolution images.

Recently, DL techniques such as convolutional neural networks (CNNs) and deep belief networks (DBNs) have been proposed for plant disease detection (Liu et al., 2017; Karthik et al.,2020). These methods involve training a network to learn the underlying features of the images, enabling the identification of subtle symptoms of diseases that traditional image processing methods may not be able to detect (Singh and Misra, 2017; Khan et al., 2021; Liu and Wang, 2021b). DL models can handle complex and large images, making them suitable for high-resolution images (Ullah et al., 2019). However, these methods require a large amount of labeled training data and may not be suitable for unseen diseases. Furthermore, DL models are computationally expensive, which may be a limitation for some applications.

In recent years, several research studies have proposed different ML and DL approaches for plant disease detection. However, most studies have focused on a specific type of disease or a specific plant species. Therefore, more research is needed to develop a generalizable and robust model that can work for different plant species and diseases. Additionally, there is a need for more publicly available datasets for training and evaluating models. One of the recent trends in the field is transfer learning, a technique that allows for reusing pre-trained models on new datasets. Recently, transfer learning and ensemble methods have emerged as popular trends in plant disease detection using ML and DL. Transfer learning involves fine-tuning pre-trained models on a specific dataset to enhance the performance of DL models. Ensemble methods, on the other hand, involve combining multiple models to improve overall performance and reduce dependence on a single model. These approaches have been applied to increase the robustness and accuracy of plant disease detection models. Additionally, it can also prevent overfitting, a common problem in DL models where the model performs well on the training data but poorly on unseen data. Another essential aspect to consider is the use of data augmentation techniques, which is the process of artificially enlarging the size of a dataset by applying random transformations to the images. This approach has been used to increase the diversity of the data and reduce the dependence on a large amount of labeled data.

In conclusion, the application of ML and DL techniques in plant disease detection is a rapidly evolving field with promising results. While these techniques have demonstrated their potential to accurately identify and classify plant diseases. There are still limitations and challenges that need to be addressed. Further research is required to develop generalizable models and make more publicly available datasets for training and evaluation. This review highlights the current state of research in this field and provides a comprehensive understanding of the benefits and limitations of ML and DL techniques for plant disease detection. Its novelty lies in the breadth of coverage of research published from 2015 to 2022, which explores various ML and DL techniques while discussing their advantages, limitations, and potential solutions to overcome implementation challenges. By offering valuable insights into the current state of research in this area, the article is a valuable resource for plant disease detection researchers, practitioners, and industry professionals seeking a thorough understanding of the subject matter.

The following section comprises the contributions of this research article.

	This paper provides an overview of the current developments in the field of plant disease detection using ML and DL techniques. By covering research published between 2015 and 2022, it provides a comprehensive understanding of the state-of-the-art techniques and methodologies used in this field.

	This review examines various ML and DL methods for detecting plant diseases, including image processing, feature extraction, CNNs, and DBNs, and sheds light on the benefits and drawbacks, such as data availability, imaging quality, and differentiation between healthy and diseased plants. The article shows that the use of ML and DL techniques significantly increases the precision and speed of plant disease detection.

	Various datasets related to plant disease detection have been studied in the literature, including PlantVillage, the rice leaf disease dataset, and datasets for insects affecting rice, corn, and soybeans.

	The paper discussed various performance evaluation criteria used to assess the accuracy of plant disease detection models, including the intersection of unions (IoU), dice similarity coefficient (DSC), and accurate recall curves.



The article has seven main sections. A brief overview of plant disease and pest detection and its significance is provided in Section 1. The challenges and issues in the plant disease and pest detection are discussed in Section 2. The deep learning approaches for recognizing images and their applications in plant disease and pest detection are presented in Section 3. The comparison of commonly used datasets and the performance metrics of deep learning methods on different datasets are presented in Section 4. The challenges in existing systems are identified in Section 5. The discussion about the identification of plant diseases and pests is presented in Section 6. Finally, the conclusion of the research work and future research directions are discussed in Section 7.




2 Plant disease and pest detection: Challenges and issues



2.1 Identifying plant abnormalities and infestations

Artificial Intelligence (AI) technologies have recently been applied to the field of plant pathology for identifying plant abnormalities and infestations. These technologies can have the capability to transform the method in which plant maladies are identified, diagnosed, and managed. In this passage, we will explore the various AI technologies that have been proposed for identifying plant abnormalities and infestations, their advantages and limitations, and the impact of these technologies on the field of plant pathology. One of the most widely used AI technologies in plant pathology is ML. ML algorithms, such as c4.5 classifier, tree bagger, and linear support vector machines, have been applied to the classification of plant diseases from digital images. These algorithms can be trained to recognize specific patterns and symptoms of diseases, making them suitable for the classification of diseases in their primary phases. However, ML algorithms mandate a substantial quantity of data that has been annotated for training and may not be suitable for diseases that have not been seen before.

DL technologies, such as CNNs and DBNs, have also been proposed for identifying plant abnormalities and infestations. These technologies have been showing promising outcomes in the detection and identification of lesions from digital images (Kaur and Sharma, 2021; Siddiqua et al., 2022; Wang, 2022). DL models can automatically learn features from the images and can identify subtle symptoms of diseases that traditional image processing methods may not be able to detect. Though, Deep Learning models necessitate a significant volume of labeled training data and involve intensive computational resources, which may be a limitation for some applications. Another AI technology that has been applied to plant pathology is computer vision (CV). CV algorithms, such as object detection and semantic segmentation, can be used to identify and localize specific regions of interest in images, such as plant leaves and symptoms of diseases (Kurmi and Gangwar, 2022; Peng and Wang, 2022). These algorithms can be used to automatically transforming the images into recognizable patterns or characteristics can be integrated with ML or DL algorithms for disease detection and classification. However, CV algorithms need a huge number of labeled image data for model training and may not be suitable for diseases that have not been seen before. Figure 1 comprises four images, each depicting a different stage of plant disease detection. The first image is the input image, while the next image displays the disease identification results. The third image features lesion detection, and the final image presents the segmentation results of the plant lesion.

[image: Panel A shows a leaf with a dark spot. Panel B labels it as "Fungal Disease". Panel C highlights the spot with a yellow box labeled "Fungal Disease". Panel D shows the spot in red, illustrating segmentation.]
Figure 1 | (A) Input raw image, (B) leaf classification, (C) lesion detection, and (D) lesion segmentation.

AI technologies have shown promising results in identifying plant abnormalities and infestations. ML, DL, and CV based system are utilized for to the classification and lesion segmentation of plant diseases from digital images and could change the method of discovering plant illnesses significantly, diagnosed, and managed (Akbar et al., 2022). However, these technologies need a considerable amount of annotated training data and may not be suitable for diseases that have not been seen before. Further research is needed to develop generalizable models that can be applied to different plant species and diseases, and to make more datasets publicly available for training and evaluating the models. Table 1 provides comprehensive information about the tools and technologies utilized for plant disease detection. It includes details about the various feature extraction methods, including those based on handcrafted and learning features, as well as the appropriate methods for processing small and large plant image datasets.

Table 1 | Comparison of different technologies for image processing.


[image: Comparison table outlines two technologies: Traditional Image Processing and DL (Deep Learning). Traditional Image Processing uses manual feature design with prerequisites of clear differentiation and minimal disturbance, suitable for controlled plant disease detection. DL uses CNNs for automatic feature learning, requiring large datasets and computing power, effective in adapting to complex environments.]



2.2 Evaluation of conventional techniques for identifying plant diseases and pests

In recent years, ML and DL-based approaches have been increasingly applied to agriculture and botanical studies. These approaches have shown great potential in improving crop yield, identifying plant lesions, and optimizing plant growth. In comparison to traditional approaches, ML and DL-based methods offer several advantages and have the potential to revolutionize the field of agriculture and botanical studies. Traditional approaches in agriculture and botanical studies mainly rely on manual inspection and expert knowledge. These methods are often time-consuming, physically demanding, and susceptible to human mistakes. In contrast, ML and DL-based approaches can automate these tasks, reducing the need for human interference and enhancing precision and efficiency of the process.

ML and DL-based approaches have been used to analyze large amounts of data, including images, sensor data, and weather data, to identify patterns and make predictions. For example, ML algorithms such as c4.5 classifier and tree bagger are being used to predict crop yields, identify plant lesions and pests, and optimize plant growth (Yoosefzadeh-Najafabadi et al., 2021; Cedric et al., 2022; Domingues et al., 2022). DL models, such as CNNs and DBNs, have been applied plant lesion identification based on image analysis and classification, providing better accuracy and robustness compared to traditional image processing methods (Sladojevic et al., 2016; Alzubaidi et al., 2021; Dhaka et al., 2021). The ML and DL-based approaches offer several advantages over traditional methods in agriculture and botanical studies. These methods can automate tasks, increase accuracy and efficiency, and analyze huge quantity of data. Since, these methods require a large size of labeled features and may not be suitable for lesions that have not been seen before. Further research is needed to develop generalizable models that can be applied to different crop species and conditions, and to make more datasets publicly available for predictive model training and model validation for performance analysis.





3 Deep learning approaches for recognizing images

DL approaches have become a promising method for detecting plant lesions. These techniques, which are based on RNN have demonstrated success by achieving high accuracy in identifying various plant lesions from images (Xu et al., 2021). By automatically learning features from the images, DL models can accurately identify and classify different disease symptoms, reducing the need for manual feature engineering (Drenkow et al., 2021). Additionally, these models can handle large amounts of data, making them well-suited for large-scale plant lesions detection (Arcaini et al., 2020). Therefore, in review paper, we evaluate the current state-of-the-art in using DL for plant lesions recognition, examining various architectures, techniques, and datasets used in this field. Our aim is to provide a thorough understanding of the current research in this area and identify potential future directions for improving the detection precision and make the identification system more efficient using the DL approaches.



3.1 Deep learning theory

Iqbal (Sarker, 2021) popularized the term “Deep Learning” in a 2006 Science article (DL). The article describes a procedure for transforming high-dimensional data into low-dimensional codes using a technique called “autoencoder” networks. These networks are made up of a layers with few parameters that is trained to create vectors of input with high dimensions. The process of fine-tuning the weights of the network can be done using gradient descent, but this method is only effective if the baseline weights are near to a satisfactory solution. The article presents an effective initialization of weights that enables deep autoencoder models to learn the low-dimensional sequences that are more effective than principal component analysis for reducing the dimensionality of data.

DL is a variant of ML that employs multiple-layered AI networks to learn and represent complex patterns in data. It is extensively employed in object recognition, object detection, speech analysis and speech-to-text transcription. In natural language processing, DL-based models are used for tasks such as language translation, text summarization, and sentiment analysis. Additionally, DL is also used in recommendation systems to predict user preferences based on previous actions or interactions. AI vision is a subfield of artificial intelligence concerned with the construction of computers to process and understand the visual contents from the world (Liu et al., 2017).

In traditional manual image classification and recognition methods, the underlying characteristics of an image are extracted through the use of hand-crafted features. These methods, however, are limited in their ability to extract information about the deep and complex characteristics of an image. This is because the manual extraction procedure is extremely reliant on the expertise of an individual conducting the analysis, and can be prone to errors and inconsistencies. Additionally, traditional manual methods are not able to extract information about subtle or hidden features that may be present in an image. In contrast, DL-based image classification and recognition methods use artificial neural networks to automatically extract image features. These methods have been shown to be highly effective in extracting complex and deep features from images, and have been utilized in numerous applications such as object recognition, facial features recognition, and image segmentation. Among the primary benefits of DL-based methods is its capacity to learn features autonomously from input data, rather than relying on manual feature engineering. This allows the model to learn more abstract and subtle features that may be present in the image, leading to improved performance and greater accuracy. Additionally, DL-based methods are also able to handle high-dimensional and complex data, making them particularly well-suited to handling large-scale image datasets. In summary, traditional manual image classification and recognition methods have limitations in extracting deep and complex characteristics of an image, while DL-based methods have been demonstrated greater efficiency and effectiveness in this task by automatically extracting image features, handling high-dimensional and complex data, and learning more abstract and subtle features that may be present in the image (Tran et al., 2015).

DBN (Hasan et al., 2020) is a type of unsupervised DL model that is composed of multiple layers of Restricted Boltzmann Machines (RBMs). Using the plant lesion and pest infestation detection, DBNs have been used to test plant images affected regions to detect various diseases and types of pests, and extract features from images of plant leaves. Studies have shown that DBNs can achieve high accuracy rates in the range of 96-97.5% in classifying images of plant leaves affected by diseases and pests.

Boltzmann’s Deep Machine (DBM) (Salakhutdinov & Larochelle, 2010) is generative stochastic AI model that can be utilized for unsupervised classification to detect the plant lesion. Within the context of conventional plant lesion and pest detection, DBMs have been used to predict labels for images of various plant affected regions by viruses and plant bugs, and extract features from images of plant leaves. Studies have shown that DBMs can achieve high accuracy rates in the range of 96-96.8% in classifying images of plant leaves affected by diseases and pests.

Deep Denoising Autoencoder (Lee et al., 2021) is a variant of autoencoder, which is a neural network architecture that is composed of an encoder module along with a decoder. In the context of traditional plant disease and pest infestation detection, DDA has been used to for two different purposed i.e., noise removal from the plant leaf data and a prediction system to identify plant disease. Studies have shown that DDA can achieve high accuracy rates in the range of 98.3% in classifying images of plant leaves affected by diseases and pests.

Deep CNN (Shoaib et al., 2022a; Shoaib et al., 2022b)is a type of feedforward AI model that is consisting of several hidden layers of convolutional and pooling layers, the CNN model are the best of the DL model for achieving higher detection accuracy using imaging data The CNN model consist of two blocks, the features learning and classification blocks. The features learning block extract various kind of features using the convolutional layer where the features learning is performed at the fully connected layers. The higher accuracy of the CNN model for plant disease classification has proofed to be the best then all other kinds of ML and DL methods. Studies have shown that CNNs can achieve high accuracy rates in the range of 99-99.2% in classifying images of plant leaves affected by diseases and pests.




3.2 Convolutional neural network

CNNs are a sort of DL model that are ideally suited for image classification tasks such as leaf disease detection (Zhang et al., 2019; Lin et al., 2020; Stančić et al., 2022). Multiple layers comprise the CNN’s architecture, such as fully connected layers, maxpooling, and normalization layers. The first layer in the CNN is the input layer while the second layer in most of the CNNs is convolutional layers which extract features by applying various kind of 2D filters on the image, the amount of images increase which can then dimensionally reduced pooling also known as down sampling layers, resulting in a more compact representation of the image. Fully connected (FC) layers in a CNN are also known as learnable features, the extracted features are processed in the FC layer for learning and weights optimization. These layers are also responsible for making classification which can be used to recognize various plant diseases. The learning process of CNN model begins with training, the input to the CNN are images along with their labels, after the successful training of the model, the model is able to identify disease types.

The decision-making process in a CNN for leaf disease detection starts with the input of an image of a leaf. The image is then passed through the convolutional layers, where features are extracted. The feature vectors are then processed by pooling layers, where the spatial dimensions are reduced. The feature vectors are then transmitted via the FC layers, where a decision is made about the presence of a disease or pest. The models output are the probabilities that the leaf is diseased or healthy. CNNs are well-suited for leaf disease detection, thanks to their architecture consisting of up-sampling, down-sampling and learnable layers (Agarwal et al., 2020). The learning process of CNN involves training the network using labeled images of healthy and disease effected plants. Figure 2 presents a framework for classifying the plants into normal and abnormal plant using leaf data. The framework employs several different Inception architectures, and the final decision is made through a bagging-based approach.

[image: Diagram of a convolutional neural network (CNN) for leaf health classification. It includes multiple layers, such as feature maps and convolutional layers, highlighting ReLU and dropout, max-pooling, and up-sampling processes. The network processes an image of a leaf, resulting in a final classification as healthy or unhealthy using InceptionNet models.]
Figure 2 | A CNN framework for classifying plants into healthy and unhealthy (Shoaib et al., 2022a).




3.3 Deep learning using open-source platforms

TensorFlow is a powerful library for dataflow and differentiable programming (Abadi, 2016; Dillon et al., 2017), which allows for efficient computation on a set of devices with powerful hardware’s, that include memory, GPUs and TPUs. Its ability to create dataflow graphs, which describe how data moves through a computation, makes it a popular choice for ML and DL applications. In contrast, Keras is a high-end DL library that operates atop TensorFlow (also some other libraries). It simplifies the creation of DL models by providing a user-friendly API, and it provides a number of pre-built layers and functions, such as convolutional layers and pooling layers, which can be easily added to a model. In recent versions of Tensorflow (2.4 and above). TensorFlow is used to provide low-level operations for building and training models, while Keras is used to provide a higher-level API for building and training models more easily. The use of TensorFlow and Keras together in this research has allowed us to effectively and efficiently solve the problem at hand.

PyTorch is also from the open-source community which has lot of capabilities for developing ML and DL applications (Zhao et al., 2021; Masilamani and Valli, 2021). PyTorch is a powerful library for building and training DL models. It is known for its flexibility and ease of use, making it a popular choice among researchers and practitioners. One of the key features of PyTorch is its dynamic computational graph. Unlike other libraries, such as TensorFlow, which uses a static computational graph, PyTorch allows for the modification of the graph on-the-fly, making it more suitable for research and experimentation. Additionally, PyTorch provides support for distributed training, allowing for efficient training of large models on multiple GPUs. PyTorch also provides a number of pre-built modules, such as convolutional layers and recurrent layers, which can be easily added to a model. This makes it easy to quickly prototype and experiment with different model architectures. Additionally, PyTorch also has a large community that shares pre-trained models, datasets, and tutorials, which helps to make the development process even more efficient.

Caffe (Convolutional Architecture for Fast Feature Embedding) is a Berkeley Vision and Learning Center-developed open-source DL framework (BVLC) and community contributors (Jia et al., 2014). It is a popular choice for image and video classification tasks such as object detection and video summarization, and also consider a good choice for its speed and efficiency in training large models. Caffe is implemented in C++ and has a Python interface, which allows for easy integration with other Python libraries such as NumPy and SciPy. This allows for a high level of flexibility in the design and experimentation of DL models. One of the key features of Caffe is its ability to perform efficient convolutional operations, which are essential for computer vision tasks. Additionally, Caffe supports a wide range of DL models, such as CNN, RNN, Transformers networks. It also provides a number of pre-built layers and functions, such as convolutional layers and pooling layers, which can be easily added to a model (Komar et al., 2018).

The Montreal Institute for Learning Algorithms (MILA) at the University of Montreal created Theano which also covers the open source license and have several packages in the python language for ML and DL (Bahrampour et al., 2015). It is widely used for DL and other numerical computations, and it is known for its ability to optimize and speed up computations on CPUs and GPUs. One of the key features of Theano is its ability to perform symbolic differentiation, which allows for the efficient computation of gradients during the training of DL models (Chung et al., 2017). Additionally, Theano can automatically optimize computations and perform automatic differentiation, which allows for the efficient training of large models. Theano also provides a number of pre-built functions, such as convolutional and recurrent layers, which can be easily added to a model. Theano is implemented in Python, which allows for easy integration with other Python libraries such as NumPy and SciPy. This allows for a high level of flexibility in the design and experimentation of DL models.

Table 2 in the research article provides a comparison of several popular Artificial Intelligence (AI) frameworks. The table compares the technology, developer, auxiliary devices required, functionality, programming language, and popular applications of each framework. This information is valuable for researchers and practitioners in the field of AI, as it provides an overview of the various options available and the strengths and limitations of each framework. The data presented in Table 2 can be used to guide the selection of an appropriate AI framework for a specific task or application.

Table 2 | Comparison of popular artificial intelligence frameworks.


[image: A table compares deep learning frameworks: TensorFlow by Google, PyTorch by Facebook, ONNX Runtime by Microsoft, MXNet by Amazon, and CNTK by Microsoft. It lists auxiliary devices, functionality, programming languages, and popular applications like computer vision, NLP, speech recognition, robotics, and reinforcement learning.]



3.4 Deep learning based plant lesion and pests detection system

This section of the research focuses on the application of DL methods for segmentation plant lesions and pest infestation in botany and agriculture. With the increasing demand for food and the need for sustainable agricultural practices, the prompt identification and handling of illnesses affecting plants and pests is crucial for ensuring crop yields and maintaining the health of crops. DL, with its ability to process large amounts of data and its ability to learn from the data, has proven to be a robust tool for detecting plant diseases and pest infestation. In this section, we present a comprehensive overview of the state-of-the-art DL methods that have been developed for this purpose, including methods for image-based disease and pest detection, as well as methods for data-driven disease and pest detection using sensor data and other types of data. We also discuss the challenges and limitations of these methods and provide insights into future research directions. In particular, we will cover the recent advancements in DL for disease and pest detection, including the use of CNN, recurrent neural networks, and transfer learning techniques. These DL methods have shown to be effective in detecting plant diseases and pest infestation at a high level of accuracy, which can support farmers and agricultural professionals in taking appropriate action to prevent crop losses.



3.4.1 Classification network

Various Convolutional Neural Network (CNN) models which have been utilized to identify plant diseases and pest infestation are discussed. The first model that we will discuss is AlexNet (Antonellis et al., 2015), which is the CNN model developed in 2012. The AlexNet CNN win the classification challenge by achieving the highest accuracy using the 1000 classes Imagenet dataset. AlexNet is known for its high accuracy and speed, and it has been used for a variety of tasks, including plant disease detection. Another popular CNN model is VGG (Soliman et al., 2019), which was established in 2014 by the University of Oxford’s at Visual Geometry Lab. VGG is known for its high accuracy and is often used for image classification tasks. It has been employed to detect plant lesions by extracting hidden patterns from plant leaf data.

ResNet (Szymak et al., 2020), which was developed by Microsoft Research Asia in 2015, is known for its ability to handle very deep networks. It has been used for plant disease detection by using pre-trained ResNet models on the images of the plants. GoogLeNet (Wang et al., 2015), which was developed by Google in 2014, is known for its high accuracy and efficient use of computation resources. It has been used for plant disease detection by fine-tuning pre-trained GoogLeNet models on the images of the plants. InceptionV3, which was developed by Google in 2015, is known for its high accuracy and efficient use of computation resources. It has been used for plant disease detection by fine-tuning pre-trained InceptionV3 models on the images of the plants. DenseNet (Tahir et al., 2022), which was developed in the (Huang et al., 2017), is known for its ability to handle very deep networks and efficient use of computation resources. It has been used for plant disease detection by fine-tuning pre-trained DenseNet models on the images of the plants. These CNN models differ in their architectures, sizes, shapes, and the number of parameters. While AlexNet, VGG, GoogLeNet, InceptionV3, and DenseNet have been widely used for plant disease detection, ResNet is known for its ability to handle very deep networks. All these models have been shown to be effective in detecting plant diseases and pests based on different characteristics such as size, shape, and color, and they can be employed for harvesting characteristics from pictures of the plants which can be used to train a classifier to detect different diseases and pests.




3.4.2 CNN as features descriptor

The article (Sabrol, 2015) “Recent Research on Image Processing and Soft Computing Approaches for Identifying and Categorizing Plant Diseases using CNNs” discusses the use of CNNs for recognizing and classifying plant diseases. The authors review various studies that have used CNNs, which are a type of DL algorithm, to detect and diagnose plant diseases. They also discuss the challenges and limitations of using CNNs, such as the need for large amounts of data, the high computational requirements, and the potential for overfitting. The article concludes by highlighting the potential for further research in this area and the importance of developing accurate and reliable plant disease recognition and classification systems using CNNs.

This research article presents an architecture of Convolutional Neural Networks for determining the variety of crops from image sequences obtained from advanced agro-observation stations (Yalcin and Razavi, 2016). The authors address challenges related to lighting and image quality by implementing preprocessing steps. They then employ the CNN architecture to extract features from the images, highlighting the importance of the construction and depth of the CNN architecture in determining the recognition capability of the network. The accuracy of the model presented is evaluated to perform a comparison between the CNN model with those obtained using a support vector machine (SVM) classifier with the utilization of feature extractors such as Local Binary Patterns (LBP) and Gray-Level Co-Occurrence Matrix. The results of the approach are tested on a dataset collected through a government-supported project in Turkey, which includes over 1,200 agro-stations. The experimental outcomes affirm the efficiency of the suggested technique.

A novel meta-architecture is proposed, which utilizing a CNN designed for distinguishing between healthy and diseased plants (Fuentes et al., 2017b). The authors employed multiple characteristic extractors within the CNN to analyze input images that are divided into their corresponding categories. On the other hand, a CNN-based approach for the identification of various eight classes of rice viruses is presented in (Hasan et al., 2019). The authors performed features extraction using the features learning model and introduced them along with the corresponding labels into a support vector machine (SVM) linear multiclass model for training. The trained model achieved a validation accuracy of 97.5%.




3.4.3 CNN-based predictive systems

In the area of plant illness and pest identification, CNNs have been extensively utilized. One of the first applications of CNNs in this field was the identification of lesions in plant images, utilizing classification networks. The method employed involves training CNNs to recognize specific patterns or features in the input image that are associated with various diseases or pests. After training, the network can be utilized to classify new images as diseased or healthy. The classification of raw images is a straightforward process that utilizes the entire image as input to the CNN. However, this approach may be limited by the presence of irrelevant information or noise in the image, which can negatively impact the performance of the network. In order to address this problem, investigators have proposed utilizing a region of interest (ROI) based approach, in which is the model is taught to categorize specific regions of the image that contain the lesion, rather than the entire image. Multi-category classification is another area of research in this field, which involves training CNNs to recognize multiple types of diseases or pests in the same image. This approach can be more challenging than binary classification, as it requires CNNs to learn more complex and diverse patterns in the input images.

The first broad application of CNNs for plant pest and disease detection was the identification of lesions using categorization networks. Current study issues include the categorization of raw pictures, classification following recognition of regions of interest (ROI), and classification of several categories. Utilizing neural structural models, such as CNN, for direct classification in plant pest identification can be a highly effective strategy. CNN is a DL model that is ideally suited for image classification problems since it can automatically learn picture attributes.

To train the network when the team constructed it independently, a tagged collection of photos of ill and healthy plants was required. There must be a variety of pests and illnesses, plant growth phases, and environmental circumstances within the databases. The team can then construct the network architecture and choose relevant parameters based on the specific features of the intended recipient plant pest and disease. Alternately, during transfer learning, you can employ a CNN model that has already been trained and modify it using data from specific plant pest detection tasks. This method is less computationally intensive and requires less labeled data due to the fact that the pre-trained network has already acquired generic characteristics from huge datasets. Notably, transfer learning enables teams to harness the performance of a model trained in some data that were developed using extensive, varied datasets demonstrated to perform well on similar tasks.

Establishing the weight parameters for multi-objective disease and pest classification networks, obtained through binary learning between healthy and infected samples as well as pests, are uniform. A CNN model is designed that integrates basic metadata and allows training on a single multi-crop model to identify 17 diseases across five cultures by utilizing a unified newly suggested model which has ability to handle multiple crops multi-crop model (Picon et al., 2019). The following goals can be accomplished through the use of the proposed model:

	1. Achieve more prosperous and stable shared visual characteristics than a single culture.

	2. Is unaffected by diseases that cause similar symptoms across cultures.

	3. Seamlessly integrates the context for classifying conditional crop diseases.



Experiments show that the proposed model eliminates 71 percent of classification errors and reduces data imbalance, with a balanced data the proposed model boasts an average accuracy rate of 98%, surpassing the performance of other models.





3.5 Identifying lesion locations through neural network analysis

Images are typically processed and labeled using a classification network. However, it is also possible to use a combination of various strategies and methods to determine the location of affected areas and perform pixel-level classification. Some commonly used methods for this purpose include the sliding window approach, the thermal map technique, and the multitasking learning network. These methods involve analyzing the input image and identifying specific regions or areas that correspond to lesions through a systematic and formal analysis process.

The sliding window method is a widely utilized technique for identifying and arranging elements within an image. This method involves moving a small window across the image and analyzing each window using a classification network. This technique is particularly useful for detecting localized features, such as lesions in plant photos, making it a valuable tool. In a study, a CNN classification network incorporating the sliding window method was utilized to develop a system for the identification of plant diseases and pests (Tianjiao et al., 2019). This system incorporates ML, feature fusion, identification, and location regression estimation through the use of sliding window technology. The software demonstrated an ability to identify 70-82% of 29 typical symptoms when used in the field.

The graphic illustrates a temperature chart that illustrates the importance of various regions within an image. The darker the hue, the greater the importance of that region. Specifically, darker tones on the heat map indicate a higher likelihood of lesion detection in plants affected by diseases and pests. In a study conducted by (Dechant et al., 2017), a convolutional neural network (CNN) was trained to generate thermal maps of corn disease images, which were then used to classify the entire image as infected or non-infected. The process of creating a thermal map for a single image takes approximately 2 minutes and requires 2 GB of memory. Identifying a group of three thermal cards for execution, on the other hand, takes less than a second and requires 600 bytes of memory. The results of the study showed that the test data set had an accuracy rate of 98.7%. In a separate study, (Wiesner-hanks et al., 2019) used the thermal map system to accurately identify contour zones for maize diseases with a 96.22% accuracy rate in 2019. This method of detection is highly precise and can identify lesions as small as a few millimeters, making it the most advanced method of aerial plant disease detection to date.

A multitasking learning network is a network that is capable of both categorizing and segmenting plant afflictions and pests. Unlike a pure predictive model, which is only able to categorize images at the image level, multitasking networks add a branch that can accurately locate the affected region of plant diseases. This is achieved by sharing the results of characteristic extraction between the two branches. As a result, the multitasking learning network uses a detection hierarchy to generate precise lesion detection results, which reduces the sampling requirements for the classification network. In a study by (Shougang et al., 2020), a VGCNN model followed by deconvolution (DGVGCNN) was developed to detect afflictions of plant leaves resulting from shadows, obstructions, and luminosity levels. The implementation of deconvolution redirects the CNN classifier’s attention to the precise locations of the afflictions, resulting in a highly robust model with a disease class identification accuracy of 97.81%, a lesion segmentation pixel accuracy of 96.44%, and a disease class recognition accuracy of 98.15%.

Figure 3 presents architecture of the CANet neural network. utilized for plant lesion detection and segmentation. The figure provides a visual representation of the various components and structure of the network, such as the input layer, intermediate hidden layers, and the final output layer. This information is valuable for researchers and practitioners who are interested in understanding the underlying mechanics of the CANet network and how it performs lesion detection and segmentation.

[image: Diagram illustrating a model for processing leaf disease. The input section shows a leaf image with disease spots. The encoding block utilizes convolutional layers of various dimensions. The context encoding module includes fully connected layers and SE-Loss. The decoding block generates outputs: one replicating the leaf structure and another highlighting disease spots.]
Figure 3 | CANet neural network-based disease detection and ROI segmentation (Shoaib et al., 2022b).

Table 3 provides a comparison of the pros and cons of various object detection and classification methods for identifying diseases in the leaves of plants. The table compares five methods including Convolutional Neural Networks (CNNs), Transfer learning with CNNs, Multitasking learning networks, Deconvolution-guided VGNet (DGVGNet), and traditional methods such as manual inspection and microscopy. This information is valuable for researchers and practitioners in the area of identifying plant lesions, as it provides a comprehensive comparison of the strengths and limitations of each method, enabling them to make informed decisions about which method is most suitable for their needs. The data presented in Table 3 can act as a guide for future studies and development in the field of plant disease detection.

The research community as a whole has come to acknowledge the utility of taxonomic network systems for the detection of plant pests, and a significant amount of study and investigation is currently being carried out in this field. Table 3 offers a full comparison of the several sub-methods that make up the categorized network system, showing the benefits and drawbacks of each option (Mohanty et al., 2016; Brahimi et al., 2018; Garcia and Barbedo, 2019). It is essential to keep in mind that the method that will prove to be the most effective will change depending on the particular use case as well as the resources. It should also be mentioned that while this table does illustrate the performance of each approach, it should not be considered to be an exhaustive comparison because the results may differ depending on the particular data sets and environmental conditions that are used.

Table 3 | Comparison of pros and cons of various object detection and classification methods for plant leaf disease detection.


[image: A table comparing five methods: (1) CNNs with advantages of high accuracy and detecting small lesions, disadvantage being the need for large labeled data. (2) Transfer learning with CNNs offers improved performance, limited by specific tasks. (3) Multitasking learning networks efficiently classify and segment, but require more computational resources. (4) Deconvolution-guided VGNet is robust but computationally intensive. (5) Traditional methods are low-cost and widely available but time-consuming and error-prone.]


3.5.1 Object detection networks for plant lesion detection

Object localization is a fundamental task in computer vision and is closely associated with the traditional detection of plant pests. The objective of this task is to acquire knowledge about the location of objects and their corresponding categories. In recent years, various algorithms for object detection based on DL have been developed. These include single-stage networks such as SSD (W. Liu et al., 2016) and YOLO (Dumitrescu et al., 2022; Peng and Wang, 2022; Shoaib and Sayed, 2022), as well as a networks with multi-stages, like YOLOv1 (Nasirahmadi et al., 2021). These techniques are commonly employed in the identification of plant lesions and pests. The single-stage network makes use of network features to directly forecast the site and classification of blemishes, whereas the two-stage network first generates a candidate box (proposal) with lesions before proceeding to the object detection process.




3.5.2 Pest and plant lesion localization using multi-stage network

Faster R-CNN is a two-part object detection system that uses a common feature extractor to obtain a map of features from an input image. The network then utilizes a Region Proposal Network (RPN) to calculate anchor box confidences and generate proposals. The features maps of the proposed regions are then connected to the ROI pooling layer to enhance the initial detection results and finally determine the location and type of the lesion. This method improves upon traditional structures by incorporating modifications to the feature extractor, anchor ratios, ROI pooling, and loss functions that are tailored to the specific characteristics of plant disease and pest infestation detection. In a study conducted by (Fuentes et al., 2017a), the Faster R-CNN was used for the first time to accurately locate tomato diseases and pests infestation in a dataset containing 4800 images of 11 different categories. When using deep feature extractors like VGG-Net and ResNet, the mean average precision (mAP) value was calculated 88.66%.

The YOLOv5 architecture is visually represented in Figure 4, which depicts its structure and organization. The network comprises three primary components: the input layer, the hidden layers, and the output layer. The input layer is where data is initially fed into the network for processing. The hidden layers are responsible for executing complex computations and transformations on the input data, and their performance plays a critical role in determining the network’s accuracy. The output layer generates final predictions by outputting the bounding boxes and class probabilities for objects detected in the input image. The figure provides detailed labels and annotations to explain how the network’s components interact. This visual representation helps researchers and developers gain a better understanding of the network’s mechanics and identify areas for performance enhancement. Overall, Figure 4 is an essential tool for anyone seeking to deepen their understanding of the YOLOv5 architecture. In 2019, (Liu and Wang, 2021b) a modification was suggested for the Faster R-CNN framework to automatically detect beet spot lesion by altering the parameters of the CNN model. A total of 142 images were used for testing and validation, resulting in an overall correct ranking rate of 96.84%. (Zhou et al., 2019) a rapid detection system for rice diseases was proposed by integrating the FCM-Kmeans and YOLOv2 algorithms. The system showed a detection accuracy of 97.33% with a processing time of 0.18s for rice blast, 93.24% accuracy and 0.22s processing time for bacterial blight, and 97.75% accuracy and 0.32s processing time for sheath burn, based on the evaluation of 3010 images. (Xie et al., 2020) proposed the DR-IACNN model based on the faster mechanism to ensure efficiency, a custom dataset is developed that contains the vine leaf lesions (GLDD), and the Faster R-CNN detector employe of a Inception-v2 architecture, the Inception-ResNetv2 architecture. The proposed model showed a mean average precision (mAP) accuracy of 83.7% and a detection rate of 12.09 frames per second. The two-stage detection network was designed to improve the real-time performance and practicality of the detection system. However, it still lacks in terms of speed compared to the speed of one-stage detection model.

[image: Flowchart of a YOLO network architecture. It consists of a Backbone section with layers including Conv and C3CA blocks, a Neck section with Concat and Upsample layers, and a YOLO Head. Each process is detailed with connections between layers, leading to image processing outputs.]
Figure 4 | YOLOv5 architecture (Li et al., 2022).




3.5.3 One-stage network based plant lesion detection

In recent years, object detection has become an essential tool for diagnosing plant afflictions and pests. YOLO (You Only Look Once) is one of the most widely used object detection techniques. It is a real-time, single-pass object detector that utilizes a single CNN to predict the category and position of objects in an image. Variations of the YOLO algorithm, such as YOLOv2 and YOLOv3, and other various methods have been developed to enhance the accuracy of object recognition while maintaining real-time performance. Another popular object detection technique is SSD (Single Shot MultiBox Detector), which similarly to YOLO, uses a single CNN to predict the type and position of objects in an image. However, SSD makes predictions about the size of objects based on multiple feature maps that are scaled differently, making it better suited for identifying small objects with greater precision than YOLO.

Faster R-CNN is a two-stage object detection system that generates a set of potential object regions using a Region Proposal Network (RPN), and then uses a separate CNN to classify and locate objects within these proposals. Despite being slower than YOLO and SSD, Faster R-CNN has been shown to achieve a higher level of accuracy. When it comes to detecting plant diseases and pests, YOLO, SSD, and Faster R-CNN are all commonly used methods. The choice of algorithm will depend on the specific requirements of the application, such as accuracy, speed, and memory consumption. For real-time applications that prioritize speed, YOLO may be the best option, but for applications that require a higher level of accuracy, SSD and Faster R-CNN may be more suitable.

In this study (Singh et al., 2020), the authors explore the potential of utilizing computer vision techniques for the early and widespread detection of plant diseases. To aid in this effort, a custom dataset, named PlantDoc, was developed for visual plant disease identification. The dataset includes 3,451 data points across 12 plant species and 14 disease categories and was created through a combination of web scraping and human annotation, requiring 352 hours of effort. To demonstrate the effectiveness of the dataset, three plant disease classification models were trained and results showed an improvement in accuracy of up to 29%. The authors believe that this dataset can serve as a valuable resource in the implementation of computer vision methods for plant disease detection.

(Zhang et al., 2019) proposed a novel approach to the detection of small agricultural pests by combining an improved version of the YOLOv3 algorithm with a spatial pyramid pooling technique. This method addresses the issue of low recognition accuracy caused by the variable posture and scale of crop pests by applying deconvolution, combining oversampling and convolution operations. This approach allows for the detection of small samples of pests in an image, thus enhancing the accuracy of the detection. The method was evaluated using 20 different groups of pests collected in real-world conditions, resulting in an average identification accuracy of 88.07%. In recent years, many studies have employed detection networks to classify pathogens and pests (Fuentes et al., 2017a). It is expected that in the future, more advanced detection models will be utilized for the identification of plant maladies and infestations, as object segmentation networks in computer vision continue to evolve.

In recent times, the detection of plant maladies and infestations has increasingly relied upon the use of two-stage models, which prioritize accuracy. However, there is a growing trend towards the use of single-stage models, which prioritize speed. There has been debate over whether detection networks can replace classification networks in this field. The primary goal of a segmentation network is first to identify the presence of plant maladies and infestations, whereas the goal of a predictive model based on a classification scheme is to categorize these diseases and pests. It is important to note that the visual recognition network provides information on the specific category of diseases and pests that need to be identified. To accurately locate areas of plant disease and pest infestation, detailed annotation is necessary. From this perspective, it may seem that the detection network includes the steps of the classification network. However, it is important to remember that the predetermined categories of plant diseases and pests do not always align with actual results. While the detection network may provide accurate results in different patterns, these patterns may not accurately represent the individuality of specific plant maladies and infestations, and may only indicate the presence of certain kinds of illness and bugs in a specific area. In such cases, the use of a classification network may be necessary. In conclusion, both classification networks and detection networks are important for efficient plant disease and pest detection, but classification networks have more capabilities than detection networks.





3.6 Deep learning-based segmentation network

The segmentation network transforms the task of detecting plant and pest diseases into semantic segmentation, which includes separating lesions from healthy areas. By dividing the lesion’s area in half, it calculates the position, rank, and associated geometric properties (including length, width, surface, contour, center, etc.). Fully convolutional networks include the R-CNN mask (Lin et al., 2020) and completely convolutional networks (FCNs) (Shelhamer et al., 2017).



3.6.1 Fully connected neural network

A complete convolution neural network is used to segment the image’s semantics (FCN). FCN uses convolution to extract and encode the input image features, then deconvolution or oversampling to gradually restore the characteristic image to its original size. FCN is used in almost all semantic segmentation models today. Traditional plant and pest disease segmentation methods are categorized as conventional FCN, U-net (Navab et al., 2015), and SegNet (Badrinarayanan et al., 2017) according to variations in the architecture of the FCN network.

A proposed technique for the segmentation of maize leaf disease employs a fully convolutional neural network (FCN)(Wang and Zhang, 2018). The process begins with preprocessing and enhancing the captured image data, followed by the creation of training and test sets for DL. The centralized image is then input into the FCN, where feature maps are generated through multiple layers of convolution, pooling, and activation. The feature map is then up sampled to match the dimensions of the input image. The final step is the restoration of the segmented image’s resolution through the process of deconvolution, resulting in the output of the segmentation process. This method was applied to segment common maize leaf disease images and it was found that the segmentation effect was satisfactory with an accuracy rate exceeding 98%.

The proposed approach employs an improved fully convolutional network (FCN) to precisely segment point regions from crop leaf images with complicated backgrounds (Wang et al., 2019). The strategy addresses the difficulty of reliably identifying sick spots in complicated field situations. The training method of the proposed system employs a collection of crop leaf pictures with healthy and sick sections. The algorithm’s performance is tested using measures such as accuracy and intersectional union ratio (IoU) to determine its ability to effectively partition lesion regions from pictures. The experimental findings demonstrate that the algorithm segments the spot area in complicated backdrop crop leaf images with great precision.

U-Net is a popular CNN architecture for image segmentation tasks. The architecture is named U-Net because it is U-shaped, with encoder and decoder sections connected by a bottleneck (Shoaib et al., 2022a). The encoder section of the network consists of a series of convolutional and clustering layers that extract entities from the input image. These features then pass through the bottleneck, where they are up sampled and connected to the feature map from the encoder. This allows the network to use both superficial and fundamental image attributes when making predictions. The decoder part of the network then uses these connected feature maps to generate the final segmentation map. The U-Net architecture is particularly useful for image segmentation tasks because it is able to handle class imbalance problems, where some areas of the image contain more target objects than others.

This paper proposes a semantic segmentation model that uses CNNs to recognize and segment powdery mildew in individual pixel-level images of cucumber lea (Lin et al., 2019). The suggested model obtains an average pixel accuracy of 97.12%, a joint intersection ratio score of 79.54%, and a dice accuracy of 81.54% based on 20 test samples. These results demonstrate that the proposed model outperforms established segmentation techniques such as the gaussian mixture model, random forests, and fuzzy c means. Overall, the proposed model can accurately detect powdery mildew on cucumber leaves at the pixel level, making it a valuable tool for cucumber breeders to assess the severity of powdery mildew.

A novel approach to detect vineyard mildew is proposed, which utilizes DL segmentation on Unmanned Aerial Vehicle (UAV) images (Kerkech et al., 2022). The method involves combining visible and infrared images from two different sensors and using a newly developed image registration technique to align and fuse the information from the two sensors. A fully convolutional neural network is then applied to classify each pixel into different categories, such as shadow, ground, healthy, or symptom. The proposed method achieved an impressive detection rate of 89% at the vine level and 84% at the leaf level, indicating its potential for computer-aided disease detection in vineyards.




3.6.2 Mask regional-CNN

Mask R-CNN is an effective DL model that is perfect for plant pest detection. It is an extension of the Faster R-CNN model and can recognize objects and segment instances (Permanasari et al., 2022). The primary advantage of Mask R-CNN over other models such as YOLO and SSD is its capacity to produce object masks that allow more precise image object location. This is especially beneficial for detecting plant pests, as it enables for more precise identification of afflicted areas. In addition, Mask R-CNN is able to handle overlapping object instances, which is a common issue in plant pest detection due to the presence of several instances of the same pest and disease in a single image. This makes the Mask R-CNN a highly adaptable model that is appropriate for a variety of plant pest identification applications.

In this study (Stewart et al., 2019), an R-CNN based on a masking scheme was utilized to segregate foci of northern plant leaf spots in UAV-captured pictures. The model is trained with a specific data set that recognizes and segments individual lesions in the test set with precision. The average intersectional union ratio (IOU) between the ground reality and the projected lesions was 79.31%, and the average accuracy was 97.24% at a threshold of 60% IOU. In addition, the average accuracy when the IOU threshold ranged from 55% to 90% was 65%. This study illustrates the potential of combining drone technology with advanced instance segmentation techniques based on DL to offer precise, high-throughput quantitative measures of plant diseases.

Using deep CNNs and object detection models, the authors of this paper offer two strategies for tomato disease detection (Wang et al., 2019). These techniques employ two distinct techniques, YOLO and SSD. The YOLO detector is used to categorize tomato disease kinds, while the SSD model is used to classify and separate the ROI-contaminated areas on tomato leaves. Four distinct deep CNNs are merged with two object detection models in order to obtain the optimal model for tomato disease detection. A dataset is generated from the Internet and then split for experimental purposes into training sets, validation sets, and test sets. The experimental findings demonstrate that the proposed approach can accurately and effectively identify eleven tomato diseases and segment contaminated leaf areas.






4 Comparing datasets and evaluating performance

This section starts by providing an overview of the evaluation metrics for DL models, specifically focusing on those that pertain to plant disease and pest detection. It then delves into the various datasets that are relevant to this field, and subsequently, conducts a thorough analysis of the recent DL models that have been proposed for the detection of plant diseases and pests.



4.1 Evaluating plant disease detection using benchmark datasets

The PlantVillage dataset is a compilation of crop photos with labels indicating the presence of various illnesses (Hughes and Salathé, 2015). It features 38,000 photos of 14 distinct crops, including, among others, tomatoes, potatoes, and peppers. The photographs were gathered from many sources, including public databases, research institutions, and individual contributors. The dataset is divided into a training set, a validation set, and a test set, with the training set including the majority of the photos. The scientific community uses this dataset extensively to develop and evaluate DL models for plant disease detection. Figure 5 showcases a selection of images obtained from the PlantVillage dataset, which is a comprehensive dataset containing thousands of images of various plant species. These images depict a wide range of plant conditions, such as healthy plants, plants affected by pests, and plants afflicted by various diseases, which enables researchers and practitioners to gain a comprehensive understanding of the variability in plant growth and development. Moreover, the diverse range of plant species represented in this figure provides an in-depth and realistic representation of the variability in plant types. The images included in this figure capture the nuanced differences in plant morphology, such as leaf shape, color, and texture, which can be useful for developing and validating deep learning models for plant disease detection. The AgriVision collection (Chiu et al., 2020), which contains photos of numerous crops and their diseases, and the Plant Disease Identification dataset, which contains photographs of damaged and healthy plant leaves, are two other significant datasets.

[image: Twenty-one images of leaves exhibit various patterns of damage or disease. Each leaf is numbered from one to twenty-one. The leaves display different signs such as spots, discoloration, and edge damage, highlighting various plant health issues.]
Figure 5 | Some random images from plantvillage dataset (Hughes and Salathé, 2015).

Figure 6 showcases a selection of random images obtained from the Agri-Vision dataset. These images depict various crops and their growth conditions, including both healthy and diseased plants. This figure serves as a visual representation of the types of data available in the Agri-Vision dataset, providing insight into the range and diversity of data contained within the dataset. The Crop Disease dataset comprises photos of 14 crops affected by 27 diseases, whereas the Plant-Pathology-2020 dataset provides images of plant leaves damaged by 38 diseases. All of these datasets are widely utilized by the research community and contribute to the creation and evaluation of DL models for plant disease detection.

[image: Six aerial images depicting agricultural fields with various outlines. Image 1 has a red border highlighting a dark area. Image 2 shows yellow zigzag lines. Image 3 features a teal outline over green sections. Image 4 highlights dark shapes with blue borders. Image 5 shows a green-bordered strip. Image 6 displays a small dark area outlined in magenta.]
Figure 6 | Some random images from agri-vision dataset (Chiu et al., 2020).

Table 4 provides a summary of benchmark datasets commonly used for plant disease and pest detection. The table includes information on the name of the dataset, a brief description, the type of data contained within the dataset, and the types of diseases and pests covered. This information is valuable for researchers and practitioners who are looking to evaluate or compare their algorithms or models against existing datasets.

Table 4 | Plant disease and pest detection from benchmark datasets.


[image: A table listing various datasets related to plant disease and pest recognition. It includes columns for dataset name, description, type of data, and disease or pest types covered. Notable datasets are PlantVillage, Open Plant Disease Dataset, and Plant Disease and Pest Recognition, among others, featuring RGB and infrared images. The datasets cover a range of plant species and diseases, such as cotton leaf diseases and Northern Leaf Blight.]



4.2 Evaluation indices

There are several performance metrics commonly used for evaluating the performance of plant disease classification, detection, and segmentation models. Figure 7 displays an example of a confusion matrix, a widely used evaluation metric in machine learning. The matrix represents the results of a classification algorithm, where each row represents the predicted class of a given sample and each column represents the actual class of that sample. The entries in the matrix show the number of samples that have been correctly or incorrectly classified. By examining the entries in the confusion matrix, it is possible to gain insight into the performance of the classification algorithm and identify areas for improvement.

[image: Confusion matrix table showing classification results for Healthy and Early Blight categories. True Positives (TP) are 3,175, False Positives (FP) are 111, False Negatives (FN) are 97, and True Negatives (TN) are 3,033.]
Figure 7 | An example of a confusion matrix where the rows show the predicted results while columns represent actual classes.

Accuracy: This is the proportion of correctly classified instances out of the total number of instances. Mathematically, it is represented as:

[image: Recall is defined as the true positive ratio divided by the sum of the true positive ratio and the false negative ratio.]	

Precision: This is the proportion of correctly classified positive instances out of the total number of predicted positive instances. Mathematically, it is represented as:

[image: Formula for F1-Score: two times the product of Precision and Recall, divided by the sum of Precision and Recall.]	

Recall (Sensitivity): This is the proportion of correctly classified positive instances out of the total number of actual positive instances. Mathematically, it is represented as:

[image: IoU equals the ratio of True Positive to the sum of True Positive, False Positive, and False Negative ratios.]	

F1 Score: This is the harmonic mean of precision and recall. Mathematically, it is represented as:

[image: Formula for Dice Coefficient, shown as: \( \text{Dice Coefficient} = \frac{2 \times \text{TP}}{2 \times \text{TP} + \text{FP} + \text{FN}} \), where TP, FP, and FN represent true positives, false positives, and false negatives, respectively.]	

Intersection over Union (IoU): This is used to evaluate the performance of segmentation models. It is the ratio of the area of intersection of the predicted segmentation and the ground truth segmentation to the area of the union of the two. Mathematically, it is represented as:

[image: Mathematical formula for the Jaccard Index: Jaccard Index equals TP divided by the sum of TP, FP, and FN, where TP is true positives, FP is false positives, and FN is false negatives.]	

Dice coefficient: This is another metric used for evaluating segmentation performance. It is a measure of the similarity between the predicted segmentation and the ground truth segmentation, and it ranges from 0 to 1. Mathematically, it is represented as:

[image: Dice Coefficient formula shown as: Dice Coefficient equals two times true positives divided by the sum of two times true positives, false positives, and false negatives.]	

Jaccard index: This is another metric used for evaluating segmentation performance. It is the ratio of the area of intersection of the predicted segmentation and the ground truth segmentation to the area of the union of the two. Mathematically, it is represented as:

[image: Jaccard Index formula displayed as \( \text{Jaccard Index} = \frac{TP}{TP + FP + FN} \), where \( TP \) is true positives, \( FP \) is false positives, and \( FN \) is false negatives.]	

Receiver Operating Characteristic: This curve is a graphical representation of the performance of a binary classifier system. Figure 8 presents an example of a performance comparison between three models using a receiver operating characteristic (ROC) curve. The ROC curve is a widely used evaluation metric in machine learning that graphically summarizes the performance of a binary classifier by plotting the true positive rate against the false positive rate for different classification thresholds. The ROC curve provides a visual representation of the trade-off between the false positive rate and true positive rate, allowing practitioners to compare the performance of different models at different operating points. It plots the true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. The TPR, also known as the sensitivity, recall or hit rate, is the number of true positive predictions divided by the number of actual positive cases. The FPR, also known as the fall-out or probability of false alarm, is the number of false positive predictions divided by the number of actual negative cases. The ROC curve can be mathematically represented as TPR = (TP)/(TP + FN) and FPR = (FP)/(FP + TN), where TP, FP, TN, and FN are true positives, false positives, true negatives, and false negatives, respectively. The area under the ROC curve (AUC) is a measure of the classifier’s performance, with a value of 1 indicating perfect performance and a value of 0.5 indicating no better than random.

[image: ROC curve for classifying ten classes, showing sensitivity versus specificity. Three lines represent different models: Inception Net-1 (blue), Inception Net-2 (red), and Inception Net-3 (orange). Inception Net-2 reaches higher sensitivity earlier compared to the others.]
Figure 8 | An example of performance comparison between three models using the ROC curve (Shoaib et al., 2022a).

Area Under the Curve: This AUC is also a performance measure used to evaluate the performance of the binary classifier. It is derived by integrating the true positive rate (TPR) relative to the false positive rate (FPR) overall thresholds. TPR is determined by dividing the number of true positives by the total number of true positive instances (TP + FN), whereas FPR is determined by dividing the number of false positives by the total number of true negative cases (FP + TN). AUC goes from 0 to 1, where 1 corresponds to a perfect classifier and 0.5 corresponds to a random classifier. A greater AUC value suggests superior classification ability.




4.3 Performance comparison of existing algorithms

This article examines in depth the most recent developments in DL-based plant pest identification. The papers examined in this article, published between 2015 and 2022, focus on the detection, classification, and segmentation of plant pests and lesions using ML and DL approaches. This research employs several methodologies, including image processing, feature extraction, and classifier creation. In addition, DL models, namely CNNs, have been widely applied to accurately detect and categorize plant illnesses. This article addresses the problems and limits of utilizing ML and DL algorithms for plant lesions identification, including data availability, image quality, and subtle differences between healthy and diseased plants. This paper also examines the current state of practical applications of ML and DL techniques in plant abnormal region detection and provides viable solutions to address the obstacles and limits of these technologies.

The research covered in this article indicates that the employment of ML and DL approaches enhances the accuracy and efficiency of plant lesion detection greatly. The most prevalent evaluation criteria are mean accuracy (mAP), F1 score, and frames per second (FPS). However, a gap still exists between the intricacy of the images of infectious maladies and infestations utilized in this study and the usage of mobile devices to identify pest and lesions infestations in the field in real-time. This paper is a valuable resource for plant lesions detection researchers, practitioners, and industry experts. It provides a comprehensive understanding of the current state of research utilizing ML and DL techniques for plant lesions detection, highlights the benefits and limitations of these methods, and proposes potential solutions to overcome the challenges of their implementation. In addition, the need for larger and more intricate experimental data sets was identified as a subject for further investigation.





5 Challenges in existing systems



5.1 Overcoming small dataset challenge

Using data augmentation techniques to fictitiously expand the dataset is one method. Another strategy is to use knowledge from models that have already been trained on bigger data sets to smaller data sets. The third approach successfully addresses the small sample problem by combining the first two approaches. Despite these achievements, a significant obstacle in the field of DL-based plant pest identification is still the limited dataset problem. Future research should therefore concentrate on creating new tools and techniques to successfully address this issue and enhance the functionality of DL models in this domain.




5.2 Plant image amplification for lesions segmentation

In recent years, data amplification technology has been utilized extensively in the field of plant pest detection in order to circumvent the issue of small data set size. These techniques involve the use of image manipulation operations including mirroring, translation, shearing, scaling, and contrast alteration in order to create additional training examples for a DL model. In order to enrich tiny datasets, generative adversarial networks (GANs) (Goodfellow et al., 2020) and automated encoders (Pu et al., 2016) were also utilized to generate fresh, diverse samples. It has been demonstrated that these strategies considerably enhance the performance of DL models for plant pest detection. It is essential to emphasize, however, that the efficacy of these strategies is contingent on the quality and diversity of the original dataset. Additionally, the produced samples must be thoroughly analyzed to confirm their suitability for DL model training. Data amplification, synthesis, and generative approaches are crucial components of plant pest detection model training using DL.




5.3 Transfer learning for plant disease and pest detection

Transfer learning is a technique that applies models that have been trained on large, generic datasets to more specific tasks with fewer data. This method is especially beneficial in the field of plant pest detection, where annotated data is frequently sparse. Pretrained models can be customized for specific localized plant pest and abnormality detection tasks by refining parameters or fine-tuning certain components. Transfer learning can increase model performance and minimize model development expenses, according to studies. For example, (Oppenheim et al., 2019) used the VGG network to recognize natural light images of contaminated potatoes of various sizes, colors, and forms. (Too et al., 2019) discovered that as the number of iterations grew, the accuracy of dense nets improved when employing fine and contrast parameters. In addition, (Chen et al., 2020) demonstrate that transfer learning can accurately diagnose rice lesions photos in complicated situations with an average accuracy of 94 percent, exceeding standard training.




5.4 Optimizing network structure for plant lesion segmentation

A properly designed array structure can greatly minimize the number of samples required for plant pest and lesions segmentation. Utilizing several color channels, merging depth-separate convolution, and adding starting structures are some of the strategies employed by researchers to increase feature extraction. Specifically, Identification of plant leaf diseases using RGB pictures and a convolutional neural network with three channels (TCCNN) in (Zhang et al., 2019). An enhanced CNN approach that uses deep separable convolution to detect illnesses in grapevine leaves is proposed in (Liu et al., 2020), with 94.35% accuracy and faster convergence than classic ResNet and GoogLeNet structures. These examples illustrate the significance of examining network patterns for detecting plant pests and diseases with limited sample numbers.




5.5 Small-size lesions in early identification

The primary role of the attention mechanism is to pinpoint the area of interest and swiftly discard unnecessary data. A weighted sum approach with weighted coefficients can be used to separate the features and reduce background noise in plant and pest images by analyzing the images’ features. Specifically, the Attention Mechanism module can build a new noise reduction fusion function using the Softmax function by capturing the prominent image, isolating the item from the context, and utilizing and fusing the feature image with the original feature image. The attention mechanism can efficiently choose data and assign enhanced resources to the ROIs, allowing for additional precise identification of minor lesions during the early stages of pest infestations and diseases. Numerous research, such as (Karthik et al., 2020) have demonstrated the efficacy of the attention based prediction system. On the industrial village dataset, the network residual attention mechanism was evaluated with an overall accuracy of 98%. In addition, to improve the precision of tiny lesion detection, research can concentrate on creating more robust preprocessing algorithms to reduce background noise and enhance picture resolution. This may involve techniques such as picture enhancement, image denoising, and image super-resolution.




5.6 Fine-grained identification

The identification of plant diseases and pests is a challenging task that is often made more complex by variations in the visual characteristics of affected plants. These variations can be attributed to external factors such as uneven lighting, extensive occlusion, and fuzzy details (Wang et al., 2017). Furthermore, variations in the presence of illness and the growth of a pest can lead to subtle differences in the characterization of the same diseases and pests in different regions, resulting in “intra-class distinctions” (Barbedo, 2018). Additionally, there is a problem of “inter-class resemblance,” which arises from similarities in the biological morphology and lifestyles of subclasses of diseases and pests, making it difficult for plant pathologists to differentiate between them.

In actual agricultural settings, the presence of background disturbances might make it harder to detect plant pests and diseases (Garcia and Barbedo, 2018). Environment complexity and interactions with other items can further complicate the detecting procedure. It is essential to highlight, however, that images obtained under controlled conditions may not truly depict the difficulties of spotting pests and illnesses in their natural habitats. Despite advancements in DL techniques, identifying pests and diseases in real-world contexts remains a technological issue with accuracy and robustness constraints. Current research focuses mostly on the fine-grained identification of individual pest populations, and it is challenging to apply these methods to mobile, intelligent agricultural equipment for large-scale identification. Therefore, additional study is required to address these obstacles and enhance the effectiveness of agricultural decision management.




5.7 Low and high illumination problem

In the past, researchers captured photos of plant pests and illnesses using indoor lightboxes (Martinelli et al., 2015). Despite the fact that this method efficiently eliminates the impacts of outdoor lighting, hence simplifying picture processing, it is essential to remember that photographs captured under natural lighting circumstances might vary significantly. The dynamic nature of natural light and the limited range of the camera’s dynamic light source might create color distortion if the camera settings are not appropriately adjusted. Moreover, the visual attributes of plant illnesses and infestations may be impacted by factors such as viewing angle and distance, offering a formidable challenge to visual recognition algorithms. This emphasizes the significance of addressing light conditions and image capture techniques when researching pests and plant diseases, as these factors can significantly impact the accuracy and dependability of results.




5.8 Challenges posed by obstruction

Currently, the majority of scientists tend to concentrate on detecting plant pests and diseases in particular ecosystems, rather than addressing the setting as a whole. Frequently, they directly intercept areas of interest in the gathered photos without completely resolving the occlusion issue. This results in low recognition accuracy and restricted applicability. There are numerous types of occlusions, including differences in leaf location, branches, external lighting, and hybrid designs. These occlusion issues are ubiquitous in the natural environment, where a lack of distinguishing characteristics and overlapping noise makes it difficult to identify plant pests and illnesses. In addition, varying degrees of occlusion may have varying effects on the recognition process, leading to errors or missed detections. Some researchers have found it challenging to identify plant pests and diseases under extreme conditions, such as in the shadow, despite recent breakthroughs in DL algorithms (Liu and Wang, 2020; Liu and Wang, 2021a). However, in recent years, a solid foundation has been established for plant utilization and pest identification in actual situations.

To improve the performance of plant pest and disease detection, it is necessary to increase the originality and efficiency of the underlying architecture, which must be improved for optimal results of lightweight network topologies. The difficulty of constructing a core framework is frequently reliant on the performance of the hardware system. Consequently, optimizing the underlying framework is crucial for enhancing efficiency and performance. Moreover, processing blockage might be unanticipated and difficult to anticipate. Therefore, it is essential to lower the complexity of model formation while simultaneously enhancing GAN exploration and preserving detection precision. GANs have the capacity to manage postural shifts and turbulent settings well. However, GAN architecture is still in its infancy and prone to issues during the learning and training phase. To aid in the evaluation of the model’s efficacy, it is essential to do additional research on the network’s outcomes.




5.9 Challenges in detection efficiency

DL algorithms have proven more effective than conventional approaches, although they are computationally intensive. This causes slower inspections and challenges in satisfying real-time requirements, particularly when a high level of detection precision is required. Frequently, in order to resolve this issue, it is required to minimize the amount of data used, which might result in poor planning and erroneous or lost identification. Therefore, it is vital to create an accurate and effective algorithm for threat identification. In agricultural applications, the process of detecting pests and illnesses using DL approaches requires three main steps: data labeling, model training, and model inference. The model inference is particularly applicable to agricultural applications in real-time. However, it should be highlighted that the majority of current mechanisms for disease and bug detection in plants rely on accurate identification, while less emphasis has been paid to the dependability of model inference. For instance, the author of (Kc et al., 2019) employs an ensemble convolutional structural framework to identify plant foliar diseases in order to improve the efficiency of the model calculation process and satisfy real agricultural needs. This approach was compared to various different models, and the decreased MobileNet classification accuracy was 92.12%, with parameters that were 31 times lower than VGG and 6 times lower than MobileNet. This demonstrates that real-time crop disease diagnostics on mobile devices with limited resources strike a solid balance between speed and accuracy.





6 Discussion



6.1 Datasets for identifying plant diseases and pests

The advancement of DL technology has greatly contributed to the improvement of Identifying and managing infestations in crops and plants. Theoretical developments in image identification mechanisms have paved the way for identifying complex diseases and pests. However, it should be noted that the majority of research in this field is limited to laboratory studies and relies heavily on photographs of plant diseases and pests that have been collected. Previous research often focused on identifying specific features such as disease spots, insect appearance, and leaf identification. However, it is important to consider that plant growth is cyclical, consistent, seasonal, and regional in nature. Therefore, it is crucial to gather sample images from various stages of plant growth, different seasons, and regions to ensure a more comprehensive understanding of plant diseases and pests. This will improve the robustness and generalization of the model.

It is essential to keep in mind that the properties of plant diseases or insects which may vary in various phases of crop development. Moreover, photos of different plant species may change by location. Consequently, the majority of current research findings may not be universally relevant. Even if the recognition rate of a single test is high, the reliability of data collected at other times or locations cannot be confirmed. Much of the present study has concentrated on images in the visible spectrum, but it is crucial to remember that electromagnetic waves generate vast amounts of data outside of the visible spectrum. It is necessary to merge data from multiple sources, such as visible, near-infrared, and multispectral, to generate a comprehensive dataset on plant diseases. Future studies will emphasize the use of multi-dimensional concatenation (fusion) techniques to gather and recognize information on plant insects. It should also be highlighted that a database containing photographs of many wild plant pests and illnesses is currently in the process of being compiled. Future studies can use wearable automatic field spore traps, drone aerial photography systems, agricultural Internet of Things monitoring devices, etc. to identify wide regions of farmland, compensating for the absence of randomness in prior studies’ image samples. Improve the overall performance of the algorithm by ensuring the dataset is complete and accurate.




6.2 Pre-emptive detection of plant diseases and pests

Early Identifying the various forms of plant diseases and pests can be a difficult task. due to the fact that symptoms are not always apparent, either through visual inspection or computer analysis. In terms of research and necessity, however, early identification is essential since it helps prevent and control the spread and growth of pests and diseases. Recording photographs under favorable lighting conditions, such as sunny weather, enhance image quality, but capturing images on overcast days complicates preprocessing and decreases identification accuracy. In addition, it might be difficult to understand even high-resolution photos during the first phases of plant pests and diseases. It is necessary to incorporate meteorological and plant health data, such as temperature and humidity, to efficiently identify and predict pests and diseases. Rarely has this technique been utilized to diagnose early plant pests and diseases.




6.3 Neural network learning and development

Manual pest and disease testing are tough since it is difficult to sample for all pests and diseases, and oftentimes only accurate data are available (positive samples). However, the majority of existing systems for plant pest and disease identification utilizing DL are based on supervised learning, which involves the time-consuming collection of huge labeled datasets. Consequently, it is worthwhile to research methods of unsupervised learning. In addition, DL can be a “black box” with little explanatory power, necessitating the labeling of many learning samples for end-to-end learning. In order to assist training and network learning, it may be advantageous to combine past knowledge of brain-like computers with human visual cognitive models.

However, depth models demand a great deal of memory and testing time, making them inappropriate for mobile platforms with limited resources. Therefore, it is necessary to find solutions to reduce model complexity and speed without sacrificing precision. Choosing appropriate hyperparameters, such as learning rate, filter size, step size, and number, has proven to be a significant challenge when applying DL models to new tasks. These hyperparameters have high internal dependencies, so even small changes can have a substantial effect on the final training results.




6.4 Cross-disciplinary study

Theories such as scientific evidence and agronomic plant defenses will be merged to produce more effective field diagnostic models for crop growth and disease identification. Using this technology, plant and pest diseases can be diagnosed with greater speed and precision. In the future, it will be important to shift beyond simple surface image analysis to determine the underlying mechanisms by which pests and diseases occur, together with a full understanding of crop growth patterns, environmental conditions, and other pertinent elements. DL approaches have been demonstrated to address complicated problems that regular image processing and ML methods cannot. Despite the fact that the practical implementation of this technology is still in its infancy, it has enormous development and application potential. To reach this potential, specialists from a variety of fields, such as agriculture and plant protection, must combine their knowledge and experience with DL algorithms and models. In addition, the outcomes of this study will need to be incorporated into agricultural gear and equipment to accomplish the desired theoretical effect.




6.5 Deep learning for plant stress phenotyping: Trends and perspectives

DL and ML technologies are successful in detecting and analyzing lesions from severe abiotic stresses, such as drought. In the past decade, global crop production losses due to drought have totaled approximately $30 billion (Agarwal et al., 2020). In 2012, a severe drought impacted 80% of agricultural land in the US, resulting in over two-thirds of counties being declared disaster areas. According to FAO (UN) reports, drought is the primary cause of agricultural production loss. Drought stress causes 34% of crop and livestock production loss in LDCs and LMICs, costing 37 billion USD. Agriculture sustains 82% of all drought impact. Understanding how plants adapt to stress, especially drought, is essential for securing crop yields in agriculture. DL and ML approaches are therefore a major advance in the field of plant stress biology. ML and DL can be used to categorize plant stress phenotyping problems into four categories: identification, classification, quantification, and prediction (Singh et al., 2020). These categories represent a progression from simple feature extraction to increasingly more complex information extraction from images. Identification involves detecting specific stress types, such as sudden death syndrome in soybeans or rust in wheat. Classification uses ML to categorize the images based on stress symptoms and signatures, dividing the visual data into distinct stress classes, such as low, medium, or high stress categories. The final category, prediction, involves anticipating plant stress before visible symptoms appear, providing a timely and cost-effective way to control stress and advancing precision and prescriptive agriculture.




6.6 Limitations of this study

The study presented in this paper has some limitations that are attributed to its research methodology. Firstly, the study’s scope is confined to publications from 2015 to 2022, implying that recent developments in plant disease detection may not be covered. Moreover, the review does not encompass an all-inclusive list of Machine Learning (ML) and Deep Learning (DL) techniques for plant disease detection. Nevertheless, the study provides an overview of the most commonly used techniques, their advantages, limitations, and probable solutions to overcome implementation challenges. Finally, the study fails to include an extensive examination of the economic and environmental impacts of ML and DL techniques on plant disease detection. Hence, additional research is necessary to scrutinize the potential benefits and disadvantages of these techniques regarding production losses and resource utilization.




6.7 Practical implications of study

The practical implications of our research include:

	Improved plant disease detection: Our research highlights the effectiveness of using ML and DL techniques for plant disease detection, which can help improve the accuracy and efficiency of disease detection compared to traditional manual methods. By adopting these advanced technologies, farmers and plant disease specialists can detect diseases at an early stage, preventing further spread and reducing the risk of crop losses.

	Development of generalizable models: Our research emphasizes the need for developing generalizable models that can work for different plant species and diseases. The development of such models can save time and effort for researchers and practitioners, making it easier to detect and classify plant diseases in various settings.

	Accessible datasets for training and evaluation: The research emphasizes the need for more publicly available datasets for training and evaluating ML and DL models for plant disease detection. The availability of such datasets can help researchers and practitioners develop more accurate and robust models, enhancing the performance of disease detection systems.

	Potential for cost reduction: The use of ML and DL techniques in plant disease detection can reduce the need for manual labor and the cost of plant disease detection. This can be especially useful for farmers and small-scale agricultural operations who may not have access to expensive equipment or specialized expertise.

	Transferable knowledge to other fields: Our research also has the potential to inform research and development in other fields, such as medical imaging and remote sensing. The techniques and methodologies used in plant disease detection can be applied to other fields, providing insights into the potential applications of ML and DL in various domains.







7 Conclusions

The DL and ML technologies have greatly improved the detection and management of crop and plant infestations. Advances in image recognition have made it possible to identify complicated diseases and pests. However, most research in this area is limited to lab-based studies and heavily relies on collected plant disease and pest photos. To enhance the robustness and generalization of the model, it’s important to gather images from various plant growth stages, seasons, and regions. Early identification of plant diseases and pests is crucial in preventing and controlling their spread and growth, thus incorporating meteorological and plant health data, such as temperature and humidity, is necessary for efficient identification and prediction. Unsupervised learning and integrating past knowledge of brain-like computers with human visual cognition can aid in DL model training and network learning. Achieving the full potential of this technology requires collaboration between specialists from agriculture and plant protection, combining their knowledge and experience with DL algorithms and models, and integrating the results into farming equipment. The paper explores the recent progress in using ML and DL techniques for plant disease identification, based on publications from 2015 to 2022. It demonstrates the benefits of these techniques in increasing the accuracy and efficiency of disease detection, but also acknowledges the challenges, such as data availability, imaging quality, and distinguishing healthy from diseased plants. The study finds that the use of DL and ML has significantly improved the ability to identify and detect plant diseases. The novelty of this research lies in its comprehensive analysis of the recent developments in using ML and DL techniques for plant disease identification, along with proposed solutions to address the challenges and limitations associated with their implementation. By exploring the benefits and drawbacks of various methods, and offering valuable insights for researchers and industry professionals, this study contributes to the advancement of plant disease detection and prevention.





Authors contributions

MS, BS, SE-S, AA, AU, FayA, TG, TH, and FarA performed the data analysis, conceptualized this study, designed the experimental plan, conducted experiments, wrote the original draft, revised the manuscript. All authors contributed to the article and approved the submitted version.





Funding

AA acknowledges project CAFTA, funded by the Bulgarian National Science Fund. TG acknowledges the European Union’s Horizon 2020 research and innovation programme, project PlantaSYST (SGA-CSA No. 739582 under FPA No. 664620) and the BG05M2OP001-1.003-001-C01 project, financed by the European Regional Development Fund through the Bulgarian’ Operational Programme Science and Education for Smart Growth. This research work was also supported by the Cluster grant R20143 of Zayed University, UAE.





Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.



References
	 Abadi, M. (2016). “TensorFlow: learning functions at scale,” in Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming, Nara Japan, September 18 - 24, 2016. (Japan: ACM digital library), 1–1. doi: 10.1145/2951913.2976746
	 Agarwal, M., Singh, A., Arjaria, S., Sinha, A., and Gupta, S. (2020). ToLeD: Tomato leaf disease detection using convolution neural network. Proc. Comput. Sci. 167 (2019), 293–301. doi: 10.1016/j.procs.2020.03.225
	 Akbar, M., Ullah, M., Shah, B., Khan, R. U., Hussain, T., Ali, F., et al. (2022). An effective deep learning approach for the classification of bacteriosis in peach leave. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1064854
	 Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., et al. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74. doi: 10.1186/s40537-021-00444-8
	 Anjna,, Sood, M., and Singh, P. K. (2020). Hybrid system for detection and classification of plant disease using qualitative texture features analysis. Proc. Comput. Sci. 167 (2019), 1056–1065. doi: 10.1016/j.procs.2020.03.404
	 Antonellis, G., Gavras, A. G., Panagiotou, M., Kutter, B. L., Guerrini, G., Sander, A. C., et al. (2015). Shake table test of Large-scale bridge columns supported on rocking shallow foundations. J. Geotechnical Geoenvironmental Eng. 12, 04015009. doi: 10.1061/(ASCE)GT.1943-5606.0001284
	 Arcaini, P., Bombarda, A., Bonfanti, S., and Gargantini, A. (2020). “Dealing with robustness of convolutional neural networks for image classification,” in Proceedings - 2020 IEEE International Conference on Artificial Intelligence Testing, AITest 2020. (Oxford, UK: IEEE), 7–14. doi: 10.1109/AITEST49225.2020.00009
	 Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39 (12), 2481–2495. doi: 10.1109/TPAMI.2016.2644615
	 Bahrampour, S., Ramakrishnan, N., Schott, L., and Shah, M. (2015). Comparative study of caffe, neon, theano, and torch for deep learning. arXiv preprint arXiv:1511.06435 132, 1–9. doi: 10.48550/arXiv.1511.06435
	 Barbedo, J. G. A. (2018). ScienceDirect factors influencing the use of deep learning for plant disease recognition. Biosyst. Eng. 172, 84–91. doi: 10.1016/j.biosystemseng.2018.05.013
	 Brahimi, M., Arsenovic, M., Laraba, S., Sladojevic, S., Boukhalfa, K., and Moussaoui, A. (2018). Deep learning for plant diseases: detection and saliency map visualisation. Hum. Mach. Learning: Visible Explainable Trustworthy Transparent 6, 93–117. doi: 10.1007/978-3-319-90403-0_6
	 Cedric, L. S., Adoni, W. Y. H., Aworka, R., Zoueu, J. T., Mutombo, F. K., Krichen, M., et al. (2022). Crops yield prediction based on machine learning models: Case of West African countries. Smart Agric. Technol. 2 (March), 100049. doi: 10.1016/j.atech.2022.100049
	 Chen, J., Chen, J., Zhang, D., Sun, Y., and Nanehkaran, Y. A. (2020). Using deep transfer learning for image-based plant disease identi fi cation. Comput. Electron. Agric. 173 (April), 105393. doi: 10.1016/j.compag.2020.105393
	 Chiu, M. T., Xu, X., Wei, Y., Huang, Z., Schwing, A., Brunner, R., et al. (2020). Agriculture-Vision : A Large Aerial Image Database for Agricultural Pattern Analysis. in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). (WA, USA: IEEE), 2825–2835. doi: 10.1109/CVPR42600.2020.00290
	 Chung, Y., Ahn, S., Yang, J., and Lee, J. (2017). Comparison of deep learning frameworks: about theano, tensorflow, and cognitive toolkit. J. Intell. Inf. Syst. 23 (2), 1–17. doi: 10.13088/jiis.2020.26.4.027
	 Dechant, C., Wiesner-hanks, T., Chen, S., Stewart, E. L., Yosinski, J., Gore, M. A., et al. (2017). Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathology 107, 1426–1432. doi: 10.1094/PHYTO-11-16-0417-R
	 Dhaka, V. S., Meena, S. V., Rani, G., Sinwar, D., Ijaz, M. F., and Woźniak, M. (2021). A survey of deep convolutional neural networks applied for prediction of plant leaf diseases. Sensors 21 (14), 4749. doi: 10.3390/s21144749
	 Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., et al. (2017). Tensorflow distributions. arXiv preprint arXiv:1711.10604, 1–10. doi: 10.48550/arXiv.1711.10604
	 Domingues, T., Brandão, T., and Ferreira, J. C. (2022). Machine learning for detection and prediction of crop diseases and pests: A comprehensive survey. Agriculture 12 (9), 1350. doi: 10.3390/agriculture12091350
	 Drenkow, N., Sani, N., Shpitser, I., and Unberath, M. (2021). Robustness in deep learning for computer vision: mind the gap? arXiv preprint arXiv:2112.00639, 1–23. doi: 10.48550/arXiv.2112.00639
	 Dumitrescu, F., Boiangiu, C. A., and Voncila, M. L. (2022). Fast and robust people detection in RGB images. Appl. Sci. (Switzerland) 12 (3), 1–24. doi: 10.3390/app12031225
	 Fuentes, A., Lee, J., Lee, Y., Yoon, S., and Park, D. S. (2017a). “Anomaly detection of plant diseases and insects using convolutional neural networks,” in Proceedings of the International Society for Ecological Modelling Global Conference. (Jeju, South Korea: Elsevier).
	 Fuentes, A., Yoon, S., Kim, S. C., and Park, D. S. (2017b). A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors (Switzerland) 17 (9), 1–21. doi: 10.3390/s17092022
	 Garcia, J., and Barbedo, A. (2018). Impact of dataset size and variety on the e ff ectiveness of deep learning and transfer learning for plant disease classi fi cation. Comput. Electron. Agric. 153 (July), 46–53. doi: 10.1016/j.compag.2018.08.013
	 Garcia, J., and Barbedo, A. (2019). ScienceDirect plant disease identification from individual lesions and spots using deep learning. Biosyst. Eng. 180 (2016), 96–107. doi: 10.1016/j.biosystemseng.2019.02.002
	 Genaev, M. A., Skolotneva, E. S., Gultyaeva, E. I., Orlova, E. A., Bechtold, N. P., and Afonnikov, D. A.. (2021). Image-based wheat fungi diseases identification by deep learning. Plants 10 (8), 1–21. doi: 10.3390/plants10081500
	 Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., et al. (2020). Generative adversarial networks. Commun. ACM 63 (11), 139–144. doi: 10.48550/arXiv.1406.2661
	 Hasan, H., Shafri, H. Z. M., and Habshi, M. (2019). “A comparison between support vector machine (SVM) and convolutional neural network (CNN) models for hyperspectral image classification,” in IOP Conference Series: Earth and Environmental Science, (Kula Lumpur, Malysia: IOP science) 357. doi: 10.1088/1755-1315/357/1/012035
	 Hasan, R. I., Yusuf, S. M., and Alzubaidi, L. (2020). Review of the state of the art of deep learning for plant Diseases : A broad analysis and discussion. Plants 9, 1–25. doi: 10.3390/plants9101302
	 Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). “Densely connected convolutional networks,” in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January. (USA: IEEE) 2261–2269. doi: 10.1109/CVPR.2017.243
	 Hughes, D., and Salathé, M. (2015). An open access repository of images on plant health to enable the development of mobile disease diagnostics. arXiv preprint arXiv:1511.08060, 1–7. doi: 10.48550/arXiv.1511.0806
	 Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014). Caffe : Convolutional architecture for fast feature embedding ∗ categories and subject descriptors. In Proceedings of the 22nd ACM international conference on Multimedia. (Florida, USA) 13, 675–678. doi: 10.48550/arXiv.1408.5093
	 Karthik, R., Hariharan, M., Anand, S., Mathikshara, P., Johnson, A., and Menaka, R. (2020). Attention embedded residual CNN for disease detection in tomato leaves. Appl. Soft Comput. 86, 105933. doi: 10.1016/j.asoc.2019.105933
	 Kaur, L., and Sharma, S. G. (2021). Identification of plant diseases and distinct approaches for their management. Bull. Natl. Res. Centre 45 (1), 1–10. doi: 10.1186/s42269-021-00627-6
	 Kc, K., Yin, Z., Wu, M., and Wu, Z. (2019). Depthwise separable convolution architectures for plant disease classi fi cation. Comput. Electron. Agric. 165 (December 2018), 104948. doi: 10.1016/j.compag.2019.104948
	 Kerkech, M., Hafiane, A., and Canals, R. (2020). Vine disease detection in UAV multispectral images using optimized image registration and deep learning segmentation approach. Comput. Electron. Agric. 174, 105446. doi: 10.1016/j.compag.2020.105446
	 Khan, R. U., Khan, K., Albattah, W., and Qamar, A. M. (2021). Image-based detection of plant diseases: from classical machine learning to deep learning journey. Wireless Commun. Mobile Computing 2021, 1–13. doi: 10.1155/2021/5541859
	 Komar, M., Yakobchuk, P., Golovko, V., Dorosh, V., and Sachenko, A. (2018). “Deep neural network for image recognition based on the caffe framework,” in 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), (Lviv, Ukraine: IEEE) 102–106. doi: 10.1109/DSMP.2018.8478621
	 Kurmi, Y., and Gangwar, S. (2022). A leaf image localization based algorithm for different crops disease classification. Inf. Process. Agric. 9 (3), 456–474. doi: 10.1016/j.inpa.2021.03.001
	 Lee, W. H., Ozger, M., Challita, U., and Sung, K. W. (2021). Noise learning-based denoising autoencoder. IEEE Commun. Lett. 25 (9), 2983–2987. doi: 10.1109/LCOMM.2021.3091800
	 Li, J., Liu, C., Lu, X., and Wu, B. (2022). CME-YOLOv5: An efficient object detection network for densely spaced fish and small targets. Water (Switzerland) 14 (15), 1–12. doi: 10.3390/w14152412
	 Lin, K., Gong, L., Huang, Y., Liu, C., and Pan, J. (2019). Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural network. Front. Plant Sci. 10. doi: 10.3389/fpls.2019.00155
	 Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollar, P. (2020). Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42 (2), 318–327. doi: 10.1109/TPAMI.2018.2858826
	 Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., et al. (2016). “SSD: Single shot multibox detector,” in Lecture notes in computer science (Including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol. 9905 LNCS. (Amsterdam, Netherlands: Springer), 21–37. doi: 10.1007/978-3-319-46448-0_2
	 Liu, B., Ding, Z., Tian, L., He, D., Li, S., and Wang, H. (2020). Grape leaf disease identification using improved deep convolutional neural networks. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.01082
	 Liu, J., and Wang, X. (2020). Tomato diseases and pests detection based on improved yolo V3 convolutional neural network. Front. Plant Sci. 11. doi: 10.3389/fpls.2020.00898
	 Liu, J., and Wang, X. (2021a). Early recognition of tomato gray leaf spot disease based on MobileNetv2 − YOLOv3 model. Plant Methods 2020, 1–16. doi: 10.1186/s13007-020-00624-2
	 Liu, J., and Wang, X. (2021b). Plant diseases and pests detection based on deep learning: a review. Plant Methods 17 (1), 1–18. doi: 10.1186/s13007-021-00722-9
	 Liu, W., Wang, Z., Liu, X., Zeng, N., Liu, Y., and Alsaadi, F. E. (2017). Neurocomputing a survey of deep neural network architectures and their applications ☆. Neurocomputing 234 (November 2016), 11–26. doi: 10.1016/j.neucom.2016.12.038
	 Martinelli, F., Scalenghe, R., Davino, S., Panno, S., Scuderi, G., Ruisi, P., et al. (2015). Advanced methods of plant disease detection. A review. Agron. Sustain. Dev. 35, 1–25. doi: 10.1007/s13593-014-0246-1
	 Masilamani, G. K., and Valli, R. (2021). “Art classification with pytorch using transfer learning,” in 2021 International Conference on System, Computation, Automation and Networking (ICSCAN). (Puducherry, India: IEEE), 1–5. doi: 10.1109/ICSCAN53069.2021.9526457
	 Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using deep learning for image-based plant disease detection. Front. Plant Sci. 7 (September). doi: 10.3389/fpls.2016.01419
	 Nasirahmadi, A., Wilczek, U., and Hensel, O. (2021). Sugar beet damage detection during harvesting using different convolutional neural network models. Agric. (Switzerland) 11 (11), 1–13. doi: 10.3390/agriculture11111111
	 Navab, N., Hornegger, J., Wells, W. M., and Frangi, A. F. (2015) in 18th International Conference, Munich, Germany, October 5-9, 2015, (Germany: Springer) 9351, 12–20, proceedings, part III. doi: 10.1007/978-3-319-24574-4
	 Oppenheim, D., Shani, G., Erlich, O., and Tsror, L. (2019). Using deep learning for image-based potato tuber disease detection. Phytopathology 109 (6), 1083–1087. doi: 10.1094/PHYTO-08-18-0288-R
	 Peng, Y., and Wang, Y. (2022). Leaf disease image retrieval with object detection and deep metric learning. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.963302
	 Permanasari, Y., Ruchjana, B. N., Hadi, S., and Rejito, J. (2022). Innovative region convolutional neural network algorithm for object identification. J. Open Innovation: Technology Market Complexity 8 (4), 182. doi: 10.3390/joitmc8040182
	 Picon, A., Seitz, M., Alvarez-gila, A., Mohnke, P., Ortiz-barredo, A., and Echazarra, J. (2019). Crop conditional convolutional neural networks for massive multi-crop plant disease classi fi cation over cell phone acquired images taken on real fi eld conditions. Comput. Electron. Agric. 167, 105093. doi: 10.1016/j.compag.2019.105093
	 Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., et al. (2016). Variational autoencoder for deep learning of images, labels and captions. Adv. Neural Inf. Process. Syst. 29, 1–13. doi: 10.48550/arXiv.1609.08976
	 Sabrol, H. (2015). Recent studies of image and soft computing techniques for plant disease recognition and classification. Int. J. Comput. Appl. 126, 1, 44–55. doi: 10.5120/ijca2015905982
	 Salakhutdinov, R., and Larochelle, H. (2010). “Efficient learning of deep Boltzmann machines,” in Proceedings of the thirteenth international conference on artificial intelligence and statistics, Sardinia, Italy: mlr press. 1–40.
	 Sarker, I. H. (2021). Deep learning: A comprehensive overview on techniques, taxonomy, applications and research directions. SN Comput. Sci. 2 (6), 1–20. doi: 10.1007/s42979-021-00815-1
	 Shelhamer, E., Long, J., and Darrell, T. (2017). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 39 (4), 640–651. doi: 10.48550/arXiv.1411.4038
	 Shoaib, M., Hussain, T., Shah, B., Ullah, I., Shah, S. M., Ali, F., et al. (2022a). Deep learning-based segmentation and classification of leaf images for detection of tomato plant disease. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.1031748
	 Shoaib, M., and Sayed, N. (2022). Traitement du signal YOLO object detector and inception-V3 convolutional neural network for improved brain tumor segmentation. Traitement Du Signal 39, 1, 371–380. doi: 10.18280/ts.390139
	 Shoaib, M., Shah, B., Hussain, T., Ali, A., Ullah, A., Alenezi, F., et al. (2022b). A deep learning-based model for plant lesion segmentation , subtype identi fi cation , and survival probability estimation 1–15. doi: 10.3389/fpls.2022.1095547
	 Shougang, R., Fuwei, J., Xingjian, G., Peishen, Y., Wei, X., and Huanliang, X. (2020). Deconvolution-guided tomato leaf disease identification and lesion segmentation model. J. Agric. Eng. 36 (12), 186–195. doi: 10.1186/s13007-021-00722-9
	 Siddiqua, A., Kabir, M. A., Ferdous, T., Ali, I. B., and Weston, L. A. (2022). Evaluating plant disease detection mobile applications: Quality and limitations. Agronomy 12 (8), 1869. doi: 10.3390/agronomy12081869
	 Singh, D., Jain, N., Jain, P., Kayal, P., Kumawat, S., and Batra, N. (2020). “PlantDoc: A dataset for visual plant disease detection,” in Proceedings of the 7th ACM IKDD CoDS and 25th COMAD. (Hyderabad, India: Association for computing Machinery) 249–253.
	 Singh, V., and Misra, A. K. (2017). Detection of plant leaf diseases using image segmentation and soft computing techniques. Inf. Process. Agric. 4 (1), 41–49. doi: 10.1016/j.inpa.2016.10.005
	 Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., and Stefanovic, D. (2016). Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci. 2016, 1–12. doi: 10.1155/2016/3289801
	 Soliman, M. M., Kamal, M. H., Nashed, M. A. E. M., Mostafa, Y. M., Chawky, B. S., and Khattab, D. (2019). “Violence recognition from videos using deep learning techniques,” in 2019 Ninth International Conference on Intelligent Computing and Information Systems (ICICIS), (Cairo, Egypt: IEEE). 80–85. doi: 10.1109/ICICIS46948.2019.9014714
	 Stančić, A., Vyroubal, V., and Slijepčević, V. (2022). Classification efficiency of pre-trained deep CNN models on camera trap images. J. Imaging 8 (2), 20. doi: 110.3390/jimaging8020020
	 Stewart, E. L., Wiesner-Hanks, T., Kaczmar, N., DeChant, C., Wu, H., Lipson, H., et al. (2019). Quantitative phenotyping of northern leaf blight in UAV images using deep learning. Remote Sens. 11 (19), 2209. doi: 10.3390/rs11192209
	 Szymak, P., Piskur, P., and Naus, K. (2020). The effectiveness of using a pretrained deep learning neural networks for object classification in underwater video. Remote Sens. 12 (18), 1–19. doi: 10.3390/RS12183020
	 Tahir, A. M., Qiblawey, Y., Khandakar, A., Rahman, T., Khurshid, U., Musharavati, F., et al. (2022). Deep learning for reliable classification of COVID-19, MERS, and SARS from chest X-ray images. Cogn. Comput. 2019, 17521772. doi: 10.1007/s12559-021-09955-1
	 Tianjiao, C., Wei, D., Juan, Z., Chengjun, X., Rujing, W., and Wancai, L. (2019). Intelligent identification system of disease and insect pests based on deep learning. China Plant Prot Guide 39 (004), 26–34.
	 Too, E. C., Yujian, L., Njuki, S., and Yingchun, L. (2019). A comparative study of fine-tuning deep learning models for plant disease identification. Comput. Electron. Agric. 161, 272–279. doi: 10.1016/j.compag.2018.03.032
	 Tran, D., Bourdev, L., Fergus, R., Torresani, L., and Paluri, M. (2015). “Learning spatiotemporal features with 3d convolutional networks,” in Proceedings of the IEEE international conference on computer vision. 4489–4497.
	 Ullah, A., Muhammad, K., Haq, I. U., and Baik, S. W. (2019). Action recognition using optimized deep autoencoder and CNN for surveillance data streams of non-stationary environments. Future Generation Comput. Syst. 96, 386–397. doi: 10.1016/j.future.2019.01.029
	 Wang, B. (2022). Identification of crop diseases and insect pests based on deep learning. Sci. Program. 2022, 1–10. doi: 10.1155/2022/9179998
	 Wang, Q., Qi, F., Sun, M., Qu, J., and Xue, J. (2019). Identification of tomato disease types and detection of infected areas based on deep convolutional neural networks and object detection techniques. Comput. Intell. Neurosci. 2019, 9142753. doi: 10.1155/2019/9142753
	 Wang, G., Sun, Y., and Wang, J. (2017). Automatic image-based plant disease severity estimation using deep learning. Comput. Intell. Neurosci. 2017, 1–9. doi: 10.1155/2017/2917536
	 Wang, L., Xiong, Y., Wang, Z., and Qiao, Y. (2015). Towards good practices for very deep two-stream ConvNets. arXiv preprint arXiv:1507.02159., 1–5. doi: 10.48550/arXiv.1507.02159
	 Wang, Z., and Zhang, S. (2018). Segmentation of corn leaf disease based on fully convolution neural network. Acad. J. Comput. Inf Sci. 1, 9–18. doi: 10.25236/AJCIS.010002
	 Wiesner-hanks, T., Wu, H., Stewart, E., Dechant, C., Kaczmar, N., Lipson, H., et al. (2019). Millimeter-level plant disease detection from aerial photographs via deep learning and crowdsourced data. Front. Plant Sci. 10, 1–11. doi: 10.3389/fpls.2019.01550
	 Xie, X., Ma, Y., Liu, B., He, J., Li, S., and Wang, H. (2020). A deep-Learning-Based real-time detector for grape leaf diseases using improved convolutional neural networks. Front. Plant Sci. 11, 1–14. doi: 10.3389/fpls.2020.00751
	 Xu, J., Chen, J., You, S., Xiao, Z., Yang, Y., and Lu, J. (2021). Robustness of deep learning models on graphs: A survey. AI Open 2 (December 2020), 69–78. doi: 10.1016/j.aiopen.2021.05.002
	 Yalcin, H., and Razavi, S. (2016). “Plant classification using convolutional neural networks,” in 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics). (Tianjin, China: IEEE), 1–5. doi: 10.1109/Agro-Geoinformatics.2016.7577698
	 Yoosefzadeh-Najafabadi, M., Earl, H. J., Tulpan, D., Sulik, J., and Eskandari, M. (2021). Application of machine learning algorithms in plant breeding: Predicting yield from hyperspectral reflectance in soybean. Front. Plant Sci. 11 (January). doi: 10.3389/fpls.2020.624273
	 Zhang, S., Huang, W., and Zhang, C. (2019). ScienceDirect three-channel convolutional neural networks for vegetable leaf disease recognition. Cogn. Syst. Res. 53, 31–41. doi: 10.1016/j.cogsys.2018.04.006
	 Zhao, S., Wu, Y., Ede, J. M., Balafrej, I., and Alibart, F. (2021). Research on image classification algorithm based on pytorch research on image classification algorithm based on pytorch. Journal of Physics: Conference Series, 4th International Conference on Computer Information Science and Application Technology (CISAT 2021). 2010, 1–6. doi: 10.1088/1742-6596/2010/1/012009
	 Zhou, G., Zhang, W., Chen, A., He, M., and Ma, X. (2019). Rapid detection of rice disease based on FCM-KM and faster r-CNN fusion. IEEE Access 7, 143190–143206. doi: 10.1109/ACCESS.2019.2943454




Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2023 Shoaib, Shah, EI-Sappagh, Ali, Ullah, Alenezi, Gechev, Hussain and Ali. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.




REVIEW

published: 22 March 2023

doi: 10.3389/fpls.2023.1143326

[image: image2]


Boosting precision crop protection towards agriculture 5.0 via machine learning and emerging technologies: A contextual review


Gustavo A. Mesías-Ruiz 1,2, María Pérez-Ortiz 3, José Dorado 1, Ana I. de Castro 4 and José M. Peña 1*


1 Institute of Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Madrid, Spain, 2 Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Madrid, Spain, 3 Centre for Artificial Intelligence, University College London, London, United Kingdom, 4 Environment and Agronomy Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Madrid, Spain




Edited by: 

Marcin Wozniak, Silesian University of Technology, Poland

Reviewed by: 

Jana Shafi, Prince Sattam Bin Abdulaziz University, Saudi Arabia

Adam Tadeusz Zielonka, Silesian University of Technology, Poland

*Correspondence: 
 José M. Peña
 jmpena@ica.csic.es

Specialty section: 
 This article was submitted to Technical Advances in Plant Science, a section of the journal Frontiers in Plant Science


Received: 12 January 2023

Accepted: 01 March 2023

Published: 22 March 2023

Citation:
Mesías-Ruiz GA, Pérez-Ortiz M, Dorado J, de Castro AI and Peña JM (2023) Boosting precision crop protection towards agriculture 5.0 via machine learning and emerging technologies: A contextual review. Front. Plant Sci. 14:1143326. doi: 10.3389/fpls.2023.1143326



Crop protection is a key activity for the sustainability and feasibility of agriculture in a current context of climate change, which is causing the destabilization of agricultural practices and an increase in the incidence of current or invasive pests, and a growing world population that requires guaranteeing the food supply chain and ensuring food security. In view of these events, this article provides a contextual review in six sections on the role of artificial intelligence (AI), machine learning (ML) and other emerging technologies to solve current and future challenges of crop protection. Over time, crop protection has progressed from a primitive agriculture 1.0 (Ag1.0) through various technological developments to reach a level of maturity closelyin line with Ag5.0 (section 1), which is characterized by successfully leveraging ML capacity and modern agricultural devices and machines that perceive, analyze and actuate following the main stages of precision crop protection (section 2). Section 3 presents a taxonomy of ML algorithms that support the development and implementation of precision crop protection, while section 4 analyses the scientific impact of ML on the basis of an extensive bibliometric study of >120 algorithms, outlining the most widely used ML and deep learning (DL) techniques currently applied in relevant case studies on the detection and control of crop diseases, weeds and plagues. Section 5 describes 39 emerging technologies in the fields of smart sensors and other advanced hardware devices, telecommunications, proximal and remote sensing, and AI-based robotics that will foreseeably lead the next generation of perception-based, decision-making and actuation systems for digitized, smart and real-time crop protection in a realistic Ag5.0. Finally, section 6 highlights the main conclusions and final remarks.
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1 Linking crop protection to the technological evolution of agriculture

Crop protection involves a large number of critical farming activities with a decisive impact on the viability and sustainability of agriculture. Throughout history, humans have developed new methods and practices to protect their crops. From ancient times to about 1950, agriculture 1.0 employed a large workforce to manually control crop pests (i.e., plant diseases, weeds and other plagues, both vertebrate and invertebrate), which produced low yields but in sufficient quantity to feed the population. In the late 1950s, agriculture 2.0 began with the use of synthetic pesticides and specialized machines to control the common crop pests. At that stage, agriculture evolved towards the economic edge, aiming to produce more food at a cheaper price, i.e., towards a more industrialized agriculture. At the end of the 20th century, agriculture 3.0 emerged with the idea of using new technologies and data-driven modeling as essential tools to take decisions and manage cropping systems. This disruptive concept led to the origin of precision agriculture, in which telematics, global navigation satellite systems (GNSS), machinery guidance, and sensing devices aimed to optimize the crop protection tasks, to reduce costs and environmental impacts of pesticides, and to improve food quality. What followed was a further step in the integration of geo-spatial technologies, computer sciences and digitization into the agricultural process, where sensors, mobile telephony, embedded systems, cloud computing, internet of things (IoT) and big data were incorporated on board of autonomous machinery, smart sprayers and actuators to facilitate the application of the precision crop protection paradigm within the concept of agriculture 4.0 (Zhai et al., 2020). Continuing this evolution, Agriculture 5.0 (Ag5.0) will promote a new era of intelligent crop management with automatized decision making processes, unmanned operations and progressively less human intervention supported by the latest Artificial Intelligence (AI) systems, advanced robotics, and powerful Machine Learning (ML) algorithms (Saiz-Rubio and Rovira-Más, 2020).

Modern agriculture will face in the next decades two immense challenges never seen in previous generations. The first one is the impact of climate change in agricultural systems (Hoegh-Guldberg et al., 2019), which causes destabilization of farming practices (Mulla et al., 2020) and irregular crop seasons due to excessive heat and water scarcity in large productive areas (Piao et al., 2019); (Falkland and White, 2020), which inevitably leads to the emergence of new invasive pests or the increased severity of existing ones. The second one is to produce food for a growing human and animal population, while ensuring food security by using fewer agrochemicals and imposing strict controls at all stages of the agricultural supply chain (van Dijk et al., 2020). In view on this imminent future, Ag5.0 must offer creative solutions based on AI, ML algorithms and other technological innovations that continuously interact with the crop and its environment, which will require undoubtedly transdisciplinary studies and interdisciplinary collaborations, where precision crop protection becomes a key discipline in the Ag5.0 revolution by implementing new procedures and strategies to drastically reduce the use of agrochemicals in the control of diseases, weeds and plagues.



2 The stages of precision crop protection: Perception, analysis and actuation

The use of new technologies in crop protection aims at detecting and identifying the symptoms or problems caused by crop pests (Behmann et al., 2015), followed by a site-specific application of a chemical or mechanical control action. This process comprisesthe three main stages for pursuing a precision crop protection strategy, as follows (Figure 1): 1) perception, 2) analysis and, optionally (but recommendable) decision-making, and 3) actuation. The perception stage involves field inspection andacquisition of plant information (e.g., crop and/or weed imaging) through a sensor or camera mounted on an on-ground or a remotely-sensed platform, while the actuation stage consists on the application of a prescribed site-specific treatment with a smartequipment usually assisted by a GNSS receiver. The necessary link between perception and actuation is the analysis stage, which consists of in-depth evaluation of digital crop data by using diverse data-driven techniques and identifying targeting areas of crops with problems associated to diseases, weeds and plagues. The analysis stage also often includes the generation of management zones and treatment/prescription maps following a decision-making process, e.g. based on the outcomes of a decision support system (DSS).

[image: Diagram illustrating a three-step process: "Perception" involves a drone capturing data from a field. "Analysis & Decision-making" shows data being processed on a computer with a cloud connection. "Actuation" depicts a robot and tractor tending to plants. Green arrows indicate the flow from one step to the next.]
Figure 1 | The main stages of precision crop protection.

Recent bibliographic reviews point out to Unmanned Aerial Vehicles (UAVs), innovative ML algorithms, and various robots and autonomous equipment as the most disruptive technology for each stage, respectively (Filho et al., 2020; Lima et al., 2020; Dainelli et al., 2021). UAVs are playing an important role in the perception stage due to their capability to capture crop data from large areas in a short time and with diverse types of cameras and sensors (e.g., RGB cameras, multi- and hyper- spectral sensors, thermal cameras, active sensors such as LiDAR, radar or sonar), which have led to significant progress in pest monitoring with the help of powerful analysis procedures, either by direct observation of the pest (e.g., weed patches), by diagnosis of the main symptoms of the disease (e.g., leave decay or thermal stress), or by detection of damages caused in the crop leaves and canopy (e.g., foliar losses due to a plague attack).

The analysis stage is the major challenge for many crops, probably being the bottleneck for the progress of precision crop protection. The ultimate objective of this stage is the accurate and timely detection of each crop-specific disease, weed or plague,whose complexity lies in the vast number of possible crop-pest scenarios with a diverse typology of associated symptoms, in addition to other environmental and cultural factors such as different weather conditions, soil properties, and farmers’ decisions on crop field management, which impact the type and degree of severity of pest occurrences (Oerke et al., 2012; Pätzold et al., 2020). This diversity of variables and factors can be addressed by ML methods with the ability to learn from experience (i.e., data) and integrate information from multiple sources. ML enables the analysis of massive amounts of crop and pest data over time by taking advantage of the continuous evolution of the hardware with increasingly powerful central (CPU), graphics (GPU) and tensor (TPU) processing units (Wang et al., 2019). As a result, ML can study the behavior of natural crop-pest systems by capturing and exploiting the underlying patterns in the data and build predictive/generative models accordingly for critical analytical tasks such as image classification, object detection, pattern recognition, geo-location, etc., aimed to propose solutions for complex crop protection challenges.

Finally, actuation is the task that leveraged large-scale viability of precision crop protection strategies, leading to great scientific and technological effort in the last decade to develop autonomous machinery, smart sprayers and agricultural robots that effectively implement site-specific crop management (Shafi et al., 2019; Lowenberg-DeBoer et al., 2021), either by direct treatment in real-time (Pérez-Ruiz et al., 2015) or, eventually, assisted by a prescription map (Fernández-Quintanilla et al., 2018) according to the principles established by the International Society of Precision Agriculture (ISPA, 2021).



3 ML taxonomy based on the tasks to be solved

The ML algorithms have been conventionally classified according to different criteria, based on: i) the nature of the model (full or partial probabilistic/generative model vs. discriminant model), ii) the type of reasoning applied (inductive or transductive, depending on whether the model performs a reasoning from observed training cases to general rules or the other way around, respectively), or iii) the data availability and the supervision process (unsupervised, supervised, semi-supervised and reinforcement learning). However, the extent of ML within the scope of precision crop protection is best described by an alternative criterion based on the task to be solved, which leads to an expanded taxonomy of six categories, as follows: classification, regression, clustering, anomaly detection, dimensionality reduction, and association rule learning. These six tasks can be addressed with traditional ML algorithms or, for some specific tasks mainly classification and regression, with the more advanced artificial neural network (ANN) models, which in turn also include Deep Learning (DL) algorithms (Figure 2).

[image: Illustration of a tree representing different areas of machine learning. Branches labeled: Dimensionality Reduction, Association Rule Learning, Clustering, Regression, Anomaly Detection, and Classification. Roots labeled: Artificial Neural Network and Machine Learning.]
Figure 2 | Taxonomy of machine learning according to the type of task to be solved.



3.1 Traditional ML algorithms

Traditional ML algorithms usually approach learning tasks by analyzing and interpreting input data with well-established architectures optimized for common computing resources, thus often achieving satisfactory results but with less accuracy and versatility than sophisticated ANN algorithms. Of the tasks listed above, classification is the most common in many disciplines, with well-known algorithms such as support vector machine (SVM), decision trees (DT), random forest (RF), K-Nearest Neighbor (k-NN), etc. Classification algorithms are part of the supervised learning type, aiming to categorize a certain set of structured or unstructured data in classes, being a binary classification when the objective is to predict the state of true or false, and a multi-category classification when there are more than two objective classes (Sen et al., 2020; Djafri and Gafour, 2022). These algorithms are used for predictive tasks in the fields of image analysis, video, object recognition, data mining, etc. (Kowsari et al., 2019), all of which are relevant to deal with the challenge of automatic identification, detection or classification of plant diseases, weeds and plagues. This objective also usually requires previous phases such as image/video preprocessing, segmentation and feature extraction that imply the use of other algorithms of the regression, clustering and dimensionality reduction typology.

The regression algorithms are also part of the supervised learning type and consist in relating continuous input and output variables through a function, which can be set by parametric or non-parametric approaches. In the former case, the output values are predicted by an explicit analytical formula that adjusts the known points by establishing and minimizing a cost function (e.g. linear regression) that link the input and output variables (Wei et al., 2015; Gaitán, 2020). In the latter case, a kernel function is defined to determine the prediction for the output based on similar experiences of the inputs, hence it depends on the correlation between the output and the known points surrounding the input (Čížek and Sadikoğlu, 2020). A form of regression that allows correction of overfitting is the regularization algorithms, which avoid generating low error (i.e., high accuracy) in the training but high error during the testing (Zou and Hastie, 2005). Common algorithms in this group are LASSO Regularization, Ridge Regularization and Elastic Net Regularization.

Within the two previous categories, the ensemble algorithms are the combination of predictions from various ML techniques applied to a single model improving predictive performance (Sagi and Rokach, 2018). In classification, an ensemble of classifiers is generally more accurate than the individual classifiers that compose it. Individual decisions are combined by weighted or unweighted votes in the classification of new examples (Hooftman et al., 2022), which allows a good balance between performance and computational cost (Telikani et al., 2022). The ensemble algorithms in regression improve accuracy while reduce bias and variance errors, avoiding over-adjustment when results deserve extra training (Ren et al., 2016). Some outstanding algorithms in this group are adaBoost, bootstrap aggregation (Bagging), category boosting (CatBoost), extremely randomized trees, gradient boosting machines (GBM), RF, stacked generalization (Stacking).

The clustering algorithms are part of the unsupervised and semi-supervised learning methods, which allow grouping the data into sets of similar objects to maximize the intra-cluster similarity and minimize inter-cluster similarity (Ezugwu et al., 2022). The partitional clustering applies techniques to obtain a single partition by an objective function of the input data, in a fixed number of clusters, using iterative relocation clusters and resulting in the best configuration of the total number of executions (Nanda and Panda, 2014). The hierarchical clustering performs the division of data (root node) by a sequence of nested partitions, known as tree type structures (dendrograms). This approach follows a type of pattern agglomerated (from bottom to top) or by divisive clustering (from top to bottom), with no need to define the number of clusters in advance (Murtagh and Contreras, 2012).

The dimensionality reduction algorithms transform a high-dimensional data set into a representative lower-dimensional subset, as not all data features may be equally relevant for the problem at hand, greatly reducing computational complexity (Xu et al., 2019). This technique is widely used for data preprocessing, by two different ways: i) feature selection, in which the input features are combined to obtain a new dataset with a smaller number of new variables that retain the original information based on the input components and projection, and ii) feature extraction, in which the most relevant features of the original dataset are kept by removing those features that contribute little or nothing to the output features (Chhikara et al., 2020).

The anomaly detection algorithms try to find patterns, outliers or some kind of exception in the data that do not conform to the expected behavior (Chandola et al., 2009), by mean of a function that decide about the detection of an unknown or heterogeneous novelty present in the datasets with a class imbalance (Guansong et al., 2022). Isolation Forest, One-Class SVM, and PCA-Based Anomaly Detection are the most common algorithms to detect anomalies with application in crop protection.

The association rule learning algorithms serve to find regularities present in parts of the dataset (descriptive rules) and generalize the dataset to enable predictions on new data (predictive rules) (Fürnkranz and Kliegr, 2015). These algorithms can identify an association rule in the form A→B, based on the indicators support, confidence and lift. Support from A→B is the percentage of all items in A and B. Confidence is the percentage of A and B by the percentage of A. Lift indicates the probability of B occurring since A has occurred (Hashimoto et al., 2018). Within this category, the algorithms Apriori and Eclat are the most popular.



3.2 Artificial neural networks and deep learning models

The ANN algorithms are highly customizable and flexible computing models roughly inspired by biological neural networks, based on creating connected networks of simple processing units (neurons) that together can learn complex patterns and solve undefined problems. The ANNs works as universal approximators for any mathematical function, whose learning process is based on training from large datasets through sequential computations until accurate patterns are obtained. Then, when new patterns are presented, ANNs are able to predict them. These algorithms are mainly applied in tasks of classification and regression, e.g. in approximation functions (i.e. mapping multiple inputs to a single output), pattern classification (i.e. identification of new patterns through association and pattern recognition), associative memories (i.e. pattern recognition from limited information in the subset of data), and generation of new significant patterns, which can help in the reconstruction of patterns with greater characteristics (Schmidhuber, 2015).

Neural networks with two or more layers are the conceptual basis to generate DL models, whose progress has been spectacular in recent years in all disciplines, even in precision crop protection (Ferentinos, 2018; Kamilaris and Prenafeta-Boldú, 2018; Xia et al., 2018; Farooq et al., 2019; Hasan et al., 2021; Rakhmatulin et al., 2021; Allmendinger et al., 2022; Tugrul et al., 2022; Rai et al., 2023). DL algorithms transform data to construct complex concepts in a hierarchical structure with several levels of abstraction, so that the higher levels are composed of the characteristics of the lower levels (LeCun et al., 2015). The great potential of DL in many fields employing image analysis is allowing small data sets to be fitted to pre-trained models with different data, reducing training time and optimizing hardware resources (Kamilaris and Prenafeta-Boldú, 2018). DL covers different approaches suited to specific problems, for example, convolutional neural networks (CNNs) are used in computer vision and image classification, recurrent neural networks (RNNs) are used for prediction and language modelling, autoencoder is used in dimensionality reduction, and generative adversarial networks (GANs) are used in the generation of new images (Sarker, 2021).

CNN architectures for image classification is the most common application of DL in precision crop protection. The CNN algorithms find the features of objects of interest by self-learning from the image data, in contrast to traditional ML algorithms that require the user to establish such features (Hong et al., 2020). Performance of CNNs varies depending of number of parameters and convolutional layers (network depth), which in turn is directly constrained by the power of the available computing resources (Table 1). A broader application of CNN-based classifiers is object detection, which overcomes the issue of visual recognition in multi-class domains and object labelling in computer vision. Examples of CNN architectures for object detection and classification implemented in crop protection include Region-based Convolutional Neural Network (R-CNN) (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015), You Only Look Once (YOLO) (Redmon et al., 2016), Single Shot Detector (SSD) (Liu et al., 2016), Feature Pyramid Networks (FPN) (Lin et al., 2017a), RetinaNet (Lin et al., 2017b) and Mask R-CNN (He et al., 2017).

Table 1 | Characteristics of the deep learning architectures most commonly used in crop protection.


[image: Table listing different convolutional neural network (CNN) architectures, including LeNet-5, AlexNet, VGG-Net, GoogLeNet, ResNet, Xception, DenseNet, and MobileNet. Each architecture is described by its depth in layers, the number of million parameters, and the top-5 accuracy percentage on the ImageNet validation dataset. For example, ResNet has 152 layers, 60.4 million parameters, and a top-5 accuracy of 93.1 percent.]



4 Scientific impact and relevant contributions of ML in precision crop protection

An extensive bibliometric study of the Scopus database (www.scopus.com) revealed 107 traditional ML algorithms and 18 ANN models applied in all disciplines between 2010 and 2022, of which 105 and 17 algorithms, respectively, have been implemented in precision crop protection objectives with diverse degree of contribution in the domains of crop diseases, weeds and plagues (Table 2). SVM topped the list of traditional algorithms applied in precision crop protection objectives with >1,700 publications, followed by linear regression (LR) and Stacking with >1,500 publications each one. Principal Component Analysis (PCA), RF and DT are other algorithms with high impact reaching more than 1,100 publications each. A four group of relevant algorithmsis formed by Bagging, logistic regression (LoR), k-NN and k-means clustering, which appear in more than 500 publications of precision crop protection. Some algorithms rank relatively high in terms of their use in precision crop protection in comparison to all disciplines (PCP/All), such as k-NN, simple linear iterative clustering (SLIC), stacking and stepwise discriminant analysis (SDA) (>10% PCP/All), or in comparison to precision agriculture (PCP/PA), such as Gaussian Mixture Regression (GMR) (>70% PCP/PA). Among the ANN models, convolutional neural networks (CNNs) are by far the most widely used in precision crop protection with >1,200 publications, mainly focused on detecting and classifying crop diseases, weeds or plagues with image-based technology, with ResNet, GoogLeNet and VGGNet being the most applied models, and to a lesser extent LeNet and Xception models (Figure 3).

Table 2 | Numbers publications of machine learning algorithms according to the proposal taxonomy (source Scopus).


[image: A table lists various machine learning algorithms used in precision crop protection, detailing the tasks they solve and the number of related publications. Categories include traditional, support vector machine (SVM), K-nearest neighbors (KNN), and artificial neural networks. Tasks include regression, clustering, anomaly detection, dimension reduction, association, and novelty detection. Algorithms are evaluated across different applications like diseases, weeds, and plagues. Additionally, the ICPR4, ICPR5, and ICPR6 metrics are included, with values ranging from less than one hundred to over one thousand.]
[image: Radar chart comparing various neural networks like LeNet, AlexNet, VGGNet, and others across three categories: plant diseases (green), weeds (blue), and plagues (purple). Each axis represents a network's performance metrics.]
Figure 3 | Number of publications of CNN architectures commonly used in the three domains of precision crop protection (crop diseases, weeds and crop plagues) from 2010 to 2022 (source: Scopus). Figure compiled with the conjunction of “CNN architecture” and each of the three crop protection domains (crop diseases, weeds and crop plagues) as search criteria within the article title, abstract and keywords.

A temporal analysis on ML-based publications shows that the adoption of ML algorithms has increased steadily year on year across all disciplines over the last decade (Figure 4A), which in turn is boosting the development of precision crop protection strategies (Figure 4B). Comparing the trends in both figures, peak values were reached in the last year in all cases, with classification and regression tasks being the most common by far in the group of traditional ML algorithms (55% and 29% across all cases and 47% and 41% in precision crop protection, respectively), followed by clustering, anomaly detection and dimensionality reduction tasks in the case of all disciplines, with considerably less impact (11%, 3% and 2%, respectively), and a negligible value for association rule learning. However, the dimensionality reduction algorithms were much more widely used in precision crop protection (11%) than the other three categories. In the case of ANN algorithms, their use has increased significantly in the last five years, counting 29,956 (Figure 4A) and 759 new publications (Figure 4B) in 2022 across all disciplines and in precision crop protection, respectively. Compared to the traditional ML algorithms, ANN algorithms remain at the highest rates since 2018 across all disciplines, but still do not exceed traditional classification algorithms in precision crop protection, although they did overcome dimensionality reduction algorithms in 2019 and regression algorithms in 2022.

[image: Side-by-side 3D area charts show the growth in research documents from 2010 to 2022 related to various AI techniques, including artificial neural networks, classification, regression, and others. Panel A depicts a steep increase in documents peaking at over 30,000 by 2022, while Panel B shows a smaller scale with documents peaking at around 3,000. The legend differentiates colors for each AI method.]
Figure 4 | Publications trends (2010 – 2022) of traditional ML algorithms (colored solid areas) and ANNs (dashed red line) in all disciplines (A), and for precision crop protection applications (B), according to the proposed taxonomy (source: Scopus).

These positive indicators on the growing impact of ML in precision crop protection are supported by numerous applications and case studies outlined in detail in quite a few recent scientific reviews (Behmann et al., 2015; Liakos et al., 2018; Muppala and Guruviah, 2020; Chadha et al., 2021; Saleem et al., 2021). An in-depth analysis of some relevant publications reveals key challenges addressed by diverse image-based or sensor technology together with ML algorithms in the specific domains of crop diseases (Table 3), weeds (Table 4) and plagues (Table 5), as discussed hereunder.

Table 3 | Relevant investigations on ML algorithms in the domain of crop diseases.


[image: Table listing image/sensor technologies and their applications in crop and pathogen detection, including objectives, tasks, machine learning algorithms, and references. Technologies involve hyperspectral cameras, field spectrometers, and UAV-based systems, applied to crops like wheat, potato, avocado, citrus, and sugar beet, targeting diseases such as blight, rust, and mosaic virus. Machine learning algorithms include SVM, RF, CNN, and LDA, among others.]
Table 4 | Relevant investigations on ML algorithms in the domain of crop weeds.


[image: A table comparing different image/sensor technologies for crop and weed species detection. It includes columns for sensor type, species involved, main objective, task to be solved, machine learning algorithm used, and references. Various technologies like field spectroadiometers, UAV-based, and satellite images are listed with machine learning methods such as SVM, RF, and neural networks. The objectives are focused on differentiating resistant plants, spectral discrimination, and mapping weed patches.]
Table 5 | Relevant investigations on ML algorithms in the domain of crop plagues.


[image: A table describing the use of imaging and sensor technologies in agriculture for pest and plague detection. It includes columns for image/sensor technology, crop/plague type, main objective, task to be solved, machine learning algorithm, and reference. Each row lists specific technologies, such as VNIR-SWIR spectroradiometer and UAV-based multispectral imagery, paired with crops like cotton and wheat. Objectives include modeling spectral responses and detecting infestations. Tasks focus on classification and regression with algorithms like SVM and AlexNet. References are provided for each entry.]
In recent literature, one major goal is to study slight alterations in crop spectral information or other sensory components (e.g., odors or flavors) associated with pathogen infestations or with damages caused by a plague attack (Tables 3, 5). This is generally done with on-ground measurements of plant leaves or canopies collected by hyperspectral cameras, field spectroradiometers or other portable sensors (e.g., e-nose sensor), and analyzing the spectral signatures or sensor data with ML classification and/or regression algorithms, aiming to discriminate between healthy and infested plants at the earliest possible stages or to model/predict the spectral response of infested plants. Dimensionality reduction algorithms (e.g., PCA, PLS-DA) is also often applied to transform large datasets into a lower dimensional space to facilitate further analysis. This approach was used at the disease domain, e.g., for early stage classification of anthracnose crown rot disease (by Colletotrichum fungus) in strawberry crop with SDA, FLDA and k-NN algorithms (Lu et al., 2017), classifying pre- and post- symptomatic fungal infestations of late blight (Phytophthora infestans) in potato leaves with PLS-DA and RF algorithms (Gold et al., 2020), monitoring the rate of fungal powdery mildew (Erysiphe graminis) disease in wheat with PLSR, SVR and RFR algorithms (Feng et al., 2022), and pre-symptomatic detection of tobacco mosaic virus in tobacco leaves with PLS-DA, RF, SVM, BPNN, ELM and LS-SVM (Zhu et al., 2017); while at the plague domain was used, e.g., for predicting and classifying oat aphids (Rhophalosiphum padi) number in wheat cultivation with ANNs models applied to NIR and e-nose data (Fuentes et al., 2021), and spectralmodelling of cotton plants against fall armyworm (Spodoptera frugiperda) attacks with RF, XGBoost, Naïve Bayes, LoR, SVM, MLP and k-NN algorithms (Ramos et al., 2022). These tools have also shown effective in other more complex scenarios dealing with hyperspectral discrimination of various diseases or other stresses/deficiencies that may cause similar symptomatology, such as fungal Rhizoctonia root and crown rot (Rhizoctonia solani) diseases in sugar beet leaves with PLS, RF, k-NN, and SVM (Barreto et al., 2020), bacterial spots (Xanthomonas vesicatoria) disease among other fungal diseases (late blight and target) in tomato leaves with PCA and k-NN algorithms (Lu et al., 2018), fungal laurel wilt (Raffaelea lauricola) and Phytophthora root rot diseases in avocado trees with ANN-based MLP and RBF models (De Castro et al., 2015), and laurel wilt disease against N and Fe nutrient deficiencies in avocado leaves with DT and MLP (Abdulridha et al., 2018).

At the domain of weed science (Table 4), field hyperspectral technology have been routinely tested to find the best spectral regions or vegetation indices to discriminate between weeds and crops at different phenological stages (Peña-Barragán et al., 2006; Basinger et al., 2020), generally with the aim of extrapolating results for remote sensing applications (Gómez-Casero et al., 2010; de Castro et al., 2012) in the context of site-specific weed management. Moreover, ML algorithms have recently dealt with challenging issues such as: 1) discrimination of multiple weed species with similar spectral response, such as Barnyard grass (Echinochloa crusgalli) and weedy rice (Oryza sativa) in rice crops with RF, SVM and SPA (Zhang et al., 2019b), Convolvulus arvensis, Rumex, and Cirsium arvense in maize crops with PCA, k-NN and RF (Gao et al., 2018), six Amaranthus species with SVM, DT and Naïve Bayes (Sohn et al., 2021) and Cyperus esculentus clones and morphologically similar weeds with RF, regularized LoR and PLS-DA (Lauwers et al., 2020), or 2) differentiation of herbicide- resistant and susceptible Palmer amaranth (Amaranthus palmeri) plants, Kochia (Kochia scoparia) plants or Johsongrass (Sorghum halepense) plants with MLC and FLDA (Reddy et al., 2014), SVM with RBF kernel (Nugent et al., 2018), and k-NN, RF and SVM with FLDA (Huang et al., 2022), respectively.

Disease, weed and plague detection and mapping with remote sensing have been particularly benefited from the adoption of ML algorithms (de Castro Megías et al., 2021; Lassalle, 2021; Roslim et al., 2021). In this context, proper selection of spectral and spatial image resolutions, as well as the optimal timing, is crucial to achieve satisfactory results (Peña et al., 2015; Khanal et al., 2017), which promotes the use of UAVs or manned aircrafts to the detriment of satellites in precision crop protection. Nonetheless, ML and satellite imagery can be useful in broad-scale applications, e.g., for evaluating integrated bacterial blight disease management in coffee plantations with several ecological variables (Landsat-8 surface reflectance values and VIs, relief morphometry and hydrological attributes) by using RF, SVM and Naïve Bayes (de Carvalho Alves et al., 2022), or for mapping cruciferous weed patches in multiple winter wheat fields with QuickBird satellite imagery by using MLC (de Castro et al., 2013). Thermal and hyper-spectral aerial images with capability to capture slight variations in crop temperature and in narrow spectral bands associated to certain physiological indicators, respectively are commonly used in early detection of crop diseases, such as for identifying bacterial Huanglongbing (HLB) disease in citrus trees with stepwise regression, SVM, LDA and QDA (Garcia-Ruiz et al., 2013), fungal Verticillium wilt (Verticillium dahlia) disease in olive trees with LDA and SVM (Calderón et al., 2015), bacterial Xylella fastidiosa infections in olive trees (Zarco-Tejada et al., 2018), and fungal yellow rust (Puccinia striiformis) across crop cycle in wheat with RF and CNN-based Inception-ResNet blocks (Zhang et al., 2019a). SVM with a Gaussian kernel and RF algorithms also helped to diminish the uncertainty of distinguishing trees affected by diverse biotic (i.e., infections by Xylella fastidiosa and Verticillium dahlia pathogens) and abiotic (i.e., water status) stressors that produce analogous symptoms on spectral traits in olive and almond orchards (Zarco-Tejada et al., 2021).

Most recent research in precision crop protection relies on analyzing UAV images collected with low-cost RGB cameras or multispectral imaging systems, which compromise image spectral resolution in favor of much higher spatial resolution. This ultra-high spatial resolution is particularly relevant to detect very small weed seedlings in their earliest stages, which is generally the optimal time for implementing SSWM strategies. In these scenarios, ML algorithms tackled previously unsolved challenging tasks such as: 1) distinguishing weeds outside and inside crop rows with k-NN, SVM or k-means clustering in sunflower (Pérez-Ortiz et al., 2015) and in maize (Pérez-Ortiz et al., 2016), or with an ensemble of RF trees in sunflower and cotton (De Castro et al., 2018); 2) discriminating between broad-leaved and grass weeds in sunflower and cotton by using ANN-based MLP (Torres-Sánchez et al., 2021); 3) mapping bermudagrass patches in vineyards with cover crops by using DT (de Castro et al., 2020); and 4) spectral analysis and mapping of blackgrass weed in wheat parcels by using feature selection and RF with Bayesian optimization, respectively (Su et al., 2022). In the domains of crop diseases and plagues, relevant studies with UAV multispectral imagery are mainly focused on classifying crop/tree area damaged by a disease infestation or a plague attack, e.g., detecting bacterial fire blight (Erwinia amylovora) disease in apple or in pear trees with a combination of dimensionality reduction (mRMR), anomaly detection (isolation forest) and classification (DT, RF, SVM) algorithms (Xiao et al., 2022), or by using SVM classifier with RBF (Bagheri, 2020), respectively, discriminating bacterial (banana xanthomonas wilt - BXW) and viral (banana bunchy top virus - BBTV) diseases in banana plantations with the RetinaNet model based on the ResNet50 architecture as detector and the VGG16 architecture pre-trained with the ImageNet dataset as classifier (Selvaraj et al., 2020), and classifying cotton pixels affected by two-spotted spider mite attacks with the CNN-based AlexNet algorithm (Huang et al., 2018).

Advances in CNN algorithms have greatly promoted the use of field imaging systems and proximal sensing for precision crop protection applications in the last years, as a tool to improve classification accuracy in complex crop/pest scenarios (Barbedo, 2020) and to implement real-time applications (Rakhmatulin et al., 2021). In fact, recent innovations in agricultural robotics and weeding systems are based on CNN classifiers for pest detection and classification (Oberti and Schmilovitch, 2021; Allmendinger et al., 2022; Gerhards et al., 2022; Li et al., 2022). Some recent studies in the weed domain are the classification of Chenopodium album in potato fields by comparing CNN-based GoogLeNet, VGG-16 and EfficientNet (Hussain et al., 2021) and of five different weed species in tomato fields with CNN-based RetinaNet, Faster RCNN and YOLOv7 (López-Correa et al., 2022), in the disease domain are the early detection of fungal head blight (Fusarium) disease in wheat by applying CNN-based VGG and RNN classifiers to on-ground hyperspectral images (Jin et al., 2018) and diagnosing of fungal black rot, black measles (esca) and leaf blight diseases by applying CNN-based AlexNet, MobileNets and ShuffleNet to a repository of RGB images of grape leaves for potential use in mobile devices (Tang et al., 2020), while in the plague domain are the detection and classification of multi-class plague species in trap images by using CNN-based ZF, VGG16, ResNet50 and ResNet101 (Liu et al., 2019) and the detection of Helicoverpa assulta, Spodoptera litura and Spodoptera exigua moths in pheromone trap images by comparing Faster RCNN, R-FCN ResNet, Retinanet and SSD Inception classifiers (Hong et al., 2020), among many other case studies in the three crop protection domains.



5 Emerging technologies of precision crop protection in line with AG5.0

Crop protection has used technology to reinvent itself over time, with AI tools and ML algorithms being the main drivers in the last decade towards the implementation of automated, smart and precise tasks following the precision agriculture and digital Ag4.0 paradigms. While AI involves the scientific and technological research of machines that are able to perceive, reason, learn, adapt, make decisions and act rationally to meet objectives in a given environment, the advances in ML are behind the recent rise of AI in primary, industrial and service sectors. As discussed above, many of the ML algorithms have already been successfully applied in agriculture and other disciplines (Table 2), while others unprecedented in agriculture are now reaching the level of maturity needed to address new precision crop protection goals in line with emerging Ag5.0.

These goals will primarily focus on developing and exploiting two issues: 1) early detection of crop pests, and 2) autonomous real-time multitasking systems. On the one side, the former will enable the application of more effective control measurements at the optimal time before the damage provoked by a disease, weed or plague becomes too severe. The development of data-driven early detectors is particularly urgent considering the adverse effects that current climate change scenario are causing on cropping systems due to the spread of newly emerging or invasive pests (Juroszek et al., 2020; IPPC Secretariat, 2021). To this end, the implementation of Ag5.0 technologies will facilitate data fusion from various sources and tools (e.g. climate data, proximal and remote sensing, crop and soil sensors, farm management information systems, etc.) and assess the spatio-temporal occurrence and severity of the pests (Shankar et al., 2020), which will lead to improve early detectors and diagnostic algorithms (Picon et al., 2019; Ramcharan et al., 2019). On the other side, the latter aims the design of powerful autonomous systems capable of simultaneously doing the three main stages of precision crop protection in real time (see section 2), i.e. identifying occurrences of crop diseases, weeds or plagues at different spatial and temporal scales, analyzing crop and pest information, and make the decision of applying a customized site-specific management adjusted to each crop-pest scenario (Pretto et al., 2019; Birrell et al., 2020; Lottes et al., 2020).

Ag5.0 technology will tackle these and other future challenges with a multidisciplinary domain that relies on powerful ML algorithms (Liakos et al., 2018; Coulibaly et al., 2022), along with the latest technological solutions on hardware (Bustio-Martínez et al., 2022), telecommunications (Chopra et al., 2017; Ejaz et al., 2020), and robotics (Ren et al., 2020; Albiero et al., 2022), which may contribute now or in the short, medium or long term given their different degrees of maturity and use (Figure 5), as discussed below.

[image: Concentric circle diagram depicting technological adoption categorized by telecommunications, hardware, and robotics. It shows technologies' adoption ranges: now (0 to 1 year), 1 to 3 years, 3 to 6 years, and 6 to 9 years, with use levels from low to very high. Key technologies include 5G, AI-Sensors, IoT, GPU, FPGA, and Neuromorphic Computing, among others, represented by colored dots corresponding to their use level and adoption range.]
Figure 5 | Multidisciplinary technological domain of Ag5.0 with a different degree of maturity and use ranging from mature technologies in the core circle to future technologies in the peripheral circle. CPU, central processing unit; GPU, graphics processing unit; TPU, tensor processing unit; DRAM, dynamic random-access memory; RDNA, radeon DNA; NVMe, non-volatile memory express; ASIC, application specific integrated circuit; FPGA, field programable gate array; LPWAN, low power wide area network; WLAN, wireless local area network; WPAN, wireless personal area network; WSN, wireless sensor network; IoT, internet of things; IIoT, industrial IoT; Ag-IoT, agricultural IoT; LiFi, light fidelity; WiMAX, worldwide interoperability for microwave access; TSN, time-sensitive networking; xG, cellular network generation.



5.1 Hardware solutions for precision crop protection

Hardware tools are moving agriculture disciplines into digitization with innovative smart sensors, IoT ecosystems, architectures for specialized graphics processing, multicore embedded systems, and a number of new electronic devices, focused on the acquisition and use of crop data (Muhammad et al., 2019). The convergence of technologies is enabling to turn traditional agricultural sensors into smart sensors with built-in AI processing, that is, AI-Sensors with a dedicated chip embedded in the same sensor that can process ML tasks and, for example, may simultaneously perform object perception and analysis. Sony IMX500 and IMX501 (Sony Group Corporation, Tokyo, Japan) are two commercial image-based AI-sensors (Sony, 2020), in which the acquired signals are executed with a digital image signal processor at high-speed by the logic chip (i.e., 3.1 millisecond processing by the MobileNet V1). This processing speed is feasible as the sensor generates semantic information belonging to the image metadata instead of the image information, reducing data volume. In crop protection, these AI-sensors would facilitate the detection, recognition and control of targeting areas of crops with specific pest problems in real-time (e.g., weed species identification) and following optimized DSS prescriptions.

Advances in architectures for specialized graphics processing, such as GPU, TPU, radeon DNA (RDNA), in dynamic random-access memories (DRAM) and in communication and storage access protocols (e.g., non-volatile memory express, NVMe) are enabling greater programmability, opening up a wide range of Ag5.0 applications based on virtual modeling, the creation of digital twins and the use of supercomputers. A digital twin is a multi-physics, multi-scale, probabilistic simulation of a complex system that uses the best available physical models and sensor updates to reflect the life of its corresponding twin (Glaessgen and Stargel, 2012). While simulation-based analysis within a digital twin will lead to the development of innovative and more powerful DSS tools for precise pest management, the use of supercomputers will enable the study of crop-pest models in less time and drastically improve the performance of ML detectors and classifiers of crop diseases, weeds or plagues. Currently, the bottleneck to implement CNN-based architectures with high capacity for knowledge generalization is the training stage with large training datasets, but supercomputers will assist in overcoming this weakness by increasing the input data (data augmentation) and decreasing the computational time for model creation.

Performance of CNN-based architectures can be also improved with the use of Field Programmable Gate Array (FPGA), which enables the implementation of logic functions and is the basis for the creation of multicore embedded systems (Qiu et al., 2016; Shawahna et al., 2019). This technology will benefit precision crop protection with the development of new software applications running in operating systems used in agriculture IoT (Ag-IoT) solutions (Zhang et al., 2020) and the adaptation of customized pest detectors to mobile devices.

The devices connected to IoT systems are potentially risky in the absence of security elements or algorithms (Ibrahim and Gebali, 2022), reason why the devices performing edge gateway functions have improved designs with the use of application-specific integrated circuits (ASICs), just as security chips are essential in the implementation of Industrial IoT (IIoT) (Oñate and Sanz, 2023) and Ag-IoT systems. Wide evolution and adaptability of ML algorithms lead to their employ in optimizing gateway equipment tasks (ML-Optimized Gateways), making the performance of these tasks efficient even with resource limitations. The use of ML-Optimized Gateways in Ag5.0 will allow optimizing edge computing devices, reduce latency and increase privacy, which will result to create more efficient and safe models.

The future of both hardware and software solutions may reach a turning point in the medium term with the application of the computing principles derived from the memristors (Strukov et al., 2008). These devices are composed of two terminals with three layers, i.e. two electrodes for the communication of electrical signals and one storage layer that can be dynamically reconfigured when the inputs are stimulated, enabling data storage and direct processing (Zidan et al., 2018). The functioning of memristive elements is similar to that of neuronal synapses, becoming the technological basis of neuromorphic computing (Xia and Yang, 2019) and Spiking Neural Networks (SNNs) research (Jeong and Shi, 2019), which relies on a new neuron that is characterized by having a time-varying internal state, known as spiking neuron (Brette et al., 2007; Ghosh-Dastidar and Adeli, 2009). SNNs are the artificial representation that most closely emulate the brain, differing from ANNs in the incorporation of time as an explicit dependency in computations (Davies et al., 2018). Comparing to ANNs, SNNs achieve lower latency classifications, shorter computation times in the training phase, high accuracies and low energy consumption (Diehl et al., 2015; Esser et al., 2016), which can foresee that neuromorphic computing and SNNs will be the future tools to develop computational systems and create new electronic devices with a high impact on Ag5.0 technology.



5.2 Telecommunications for precision crop protection

Precision crop protection is increasingly heading towards a system-of-systems approach with multiple connected practices to achieve an integrated crop management strategy, in which on-ground, proximal and remote sensing are key technologies to assess and monitor all the biotic and abiotic factors that might affect crop health. In this framework, telecommunications are essential to connect devices (i.e., platforms, processors, actuators) and transfer data acquired by sensors, creating a networking environment that adds value in the tasks of data processing, pest prediction, decision-making, and crop management.

Wireless Sensor Networks (WSN) are leading communication systems in agriculture with various technologies that differ from each other mainly in their operating mode and specifications in terms of frequency range, transfer rate and power consumption (Thakur et al., 2019). Bluetooth and Zigbee (developed under IEEE 802.15.1 and 802.15.4 standards, respectively) are characterized by open specification, short range operation, high level data transmission with low latencies and low power consumption (Khanji et al., 2019; Zeadally et al., 2019). Zigbee covers larger distance (<100 m) than Bluetooth (<10 m), although data transfer is faster in Bluetooth (1-24 Mbps) than in Zigbee (40-240 Kbps). The alternatives to increase the range of operation and data transfer are the wireless fidelity (Wi-Fi) system, generally used for local area networks with a range of 50-100 m or even several hundred meters, and the worldwide inter-operability for microwave access (WiMAX) system used as a long-distance communication solution (up to 50 km). The development of IoT and the advance of low power wide area networks (LPWAN) are promoting the Long Range (LoRa) radio communication system and the LoRaWAN protocol as the most promising technology in agricultural disciplines (Castro et al., 2023), because of its long-range data transmission (dozens of kilometers, very useful in rural areas), low power consumption and secure connectivity (Gu et al., 2020). LoRaWAN uses a modified frequency modulation, operates in the Industrial, Scientific and Medical frequency band defined according to the geographical area (Asia 433 MHz, Europe 868 MHz and America 915 MHz), hence the sensors can operate in the license-free bandwidth (Lavric, 2019).

High-speed and efficient telecommunications are essential to implement real-time operations in actuator platforms (i.e., tractors, self-propelled sprayers, unmanned ground vehicles (UGVs), UAVs, etc.) that are focused to simultaneously percept, analysis and treat pest occurrences. In engineering and computer science, the concept of real-time is given to those processes whose execution, measured as the ratio between the input and output of a variable, occurs at very low time values (<milliseconds), therebeing a difference between real-time system and real-time computer system (Poniszewska-Maranda et al., 2020). Cloud computing, edge computing and edge AI are the three technologies to implement real-time actions on actuator platforms for precision crop protection in line with Ag5.0

Cloud computing is the convergence of information technology and business activity to provide services over the Internet. Companies such as Amazon, Google and Microsoft compete in the continuous improvement of infrastructures, hardware, computer security and high information processing (Mahmoud and Xia, 2019). To perform precision crop protection operations in real-time using cloud computing, the information collected with a sensorized platform must first be transmitted to the Internet, then processed and analyzed on any ML-based cloud service, and finally the prescription returned to the same platform to implement the actuation. These interactive operations need access times as short as possible, very close to real-time, to meet users’ demands, for which network architectures for wireless connections enabling Internet access such as 5G are already underway, with a view to the upcoming development of 6G. For example, the integration of 5G and future 6G with UAVs has enormous potential to apply precise aerial treatments of weed patches and eventually other pest occurrences following real-time detection (Ullah et al., 2020). Technical aspects aside, security and privacy issues are of particular concern in cloud computing systems, as infrastructures and applications may be subject to malicious attacks, as reported by Maniah et al. (2019) and Sun (2020). Indeed, privacy-sensitive reasons together with the progressive increase in data volume due to the connection of more devices has led to the introduction of fog computing, which allows decentralized processing, low latency and high bandwidth (Bonomi et al., 2012).

As mentioned before, current research is focused to platforms that detect, process and treat at the same time, which require a high computational cost in the limiting conditions of an equipment located on the farm, using the encoding method for signal transmission and taking into account the latency time of the radio transmission equipment. In this scenario, edge computing systems is a viable option as they allow the computing process to be performed close to the data source without the need for an Internet connection, thus avoiding data transmission problems and providing superior privacy and security, as well as reducing communication costs and energy consumption given the huge number of computations performed in ML modeling (García-Valls et al., 2018). A further step in the development of this computational architecture is offered by the devices for AI on the edge (Edge AI), which are embedded systems equipped with ML algorithms. Edge Intelligence is still at an early stage of research (Zhou et al., 2019), but is attracting great interest across all technological disciplines, with enormous potential in the development of agricultural robotics and autonomous crop protection treatments, since AI chips have achieved a high calculation capacity in the implementation of CNNs (Gao and Zhou, 2019).



5.3 Robotics for precision crop protection

Autonomous mobile robots (AMRs) allows the industry to increase productivity by doing more with fewer people, having great potential for boosting precision crop protection strategies in line with Ag5.0. AMRs have the ability to navigate with little or no human intervention under their control, in partially unknown environments (Alatise and Hancke, 2020). Therefore, their locomotion, perception, cognition and navigation systems must be able to address dynamic crops in position and time; in addition to: i) providing solutions to labor shortages, and ii) acquire real-time data for data-driven decision making, with the aim of significantly increasing yields within sustainable production (Shamshiri et al., 2018).

Several research projects have been developed to link robotic platforms to agricultural activities (Wolfert et al., 2017). In order to have completely robotized agricultural fields, robots must be able to adapt to the external environment and to the different types of land surface. Due to the great technological advances implemented in recent years, some robotic agricultural activities are already becoming commercially available (Lowenberg-DeBoer et al., 2020; Saiz-Rubio and Rovira-Más, 2020; Santos Valle and Kienzle, 2020; Sparrow and Howard, 2021; Botta et al., 2022), being the use of UGVs and UAVs that detect weeds and act in real-time with high precision the most popular robotic system to implement a precision crop protection activity (Oberti and Schmilovitch, 2021; Li et al., 2022). Some AMRs with great potential are: 1) RIPPA (Australian Centre for Field Robotics, The University of Sydney, Austria), based on the design of their previous robot LADYBIRD, uses an intelligent perception system and is equipped with a variable injection precision applicator, with an operating autonomy of twenty one continuous hours (Bogue, 2016); 2) AgBot-II (Queensland University of Technology, Brisbane, Australia) with a vision system not only detecting but also classifying weed species in real time, then using the Inception-v3 architecture as its DDS, which allows to decide the weed management method to apply, either mechanical, chemical or a combination of both, weeds on accuracies over 90% (McCool et al., 2018); 3) Robotti (Agrointelli, Aarhus, Denmark), whose module-based construction allows it to operate in various soil environments, adapting to different types of crops (Grimstad and From, 2017); 4) AVO (Ecorobotix, Yverdon, Switzerland) that uses CNNs algorithms for the detection and selective control of weeds by herbicide spraying in real time, obtaining a detection rate of 85% (https://ecorobotix.com/en/avo/); 5) BONIROB (AMAZONE Technology Leeden GmbH & Co. KG, Germany) (https://info.amazone.de/DisplayInfo.aspx?id=29417) with an integrated system using camera-based machine vision, image processing to detect the plants and a sprayer with individually controlled valves, allows selective and precise control of weeds, thus achieving both ecological and economic advantages; 6) Kilter AX1 (Kilter AS, Norway) (https://www.kiltersystems.com/ax1) uses machine vision combined with AI and a novel nozzle technology that applies a micro-drop (6×6mm resolution), which allows to reduce the amount of herbicides up to 95%; 7) DINO (Naïo Technologies, France) (https://www.naio-technologies.com/en/dino/), a weeding robot with an accuracy of 2 cm achieved by the RTK GPS system that has a vision system to detect the crop rows and adjust the position of the mechanical weeding tools in row, allowing high precision weeding and hoeing; 8) Odd.bot (Odd.Bot B.V., The Netherlands) (https://www.odd.bot/), a mechanical in-row weeding robot that relies on machine vision and AI-based seedling recognition; 9) Titan FT35 (FarmWise Labs Inc., USA) (https://farmwise.io/) uses machine vision and ML algorithms trained to learn the characteristics of crops such as broccoli, lettuce, cauliflower and tomatoes to differentiate between the crop and weeds; it has six internal weeders with blades that eliminate weeds with centimeter accuracy; and 10) FARMING GT (Farming revolution GmbH, Germany) (https://farming-revolution.com/) distinguishes weed seedlings with 99% reliability in different crops (e.g., cabbage, lettuce varieties, onions, corn, sugar beet, pumpkin, field bean, potato, canola, soybean, wheat), then carrying out in-row and inter-row mechanical weeding.

Collaborative or cooperative robots will support the future development of Ag5.0 (Lytridis et al., 2021). These robots are designed to complement the routine activities by improving their ergonomics (Pauline et al., 2019) and also sharing the workspace. An advanced application of collaborative robots is in organic food production, particularly in pest control with nonchemical methods by using robotic mechanical control (Machleb et al., 2020) and viable handling systems for harvesting (De-An et al., 2011; Zhang et al., 2021), which has been shown as a solution to increase the benefits of organic crop management (Pérez-Ruíz et al., 2014; Giampieri et al., 2022). The development of Ag5.0 will allow the convergence of UGV and UAV systems, for their collaborative and cooperative operation under a unified control, giving rise to Multi-robot Fleet Systems (MFS). Workload performed by several small robots composing a MFS is equivalent to that developed by a larger machine, highlighting that the MFS have a more precise positioning (de Santos et al., 2017).

Current technology has allowed the development and maturation of sensory-motor autonomy, reactive autonomy and cognitive autonomy in UAVs (Floreano and Wood, 2015), making them a great tool that together with RGB, multispectral, and hyperspectral sensors facilitate the acquisition of information on plant diseases, weeds, and plagues. That is why in Ag5. 0, detection and actuation systems based on ML algorithms and implemented in embedded systems will be part of the UAVs. ML techniques within Ag5.0 will allow the integral management of fleets of autonomous vehicles (UAV and UGV) decentralized in real time, besides being the basis for the implementation of robust navigation systems, such as the redundant system developed by (Belhajem et al., 2016) where they used ANNs in conjunction with genetic algorithms and the Extended Kalman Filter to reliably estimate the position of a vehicle in real time in the absence of GPS signal. The objective of having fleets of autonomous vehicles is the application of specific treatments for the detection and action on weeds and others pests (Emmi et al., 2014), which will finally reduce production costs and reduce the environmental impact of the use of herbicides and pesticides.




6 Conclusions

This article provides a framework on the future direction of precision crop protection, with a focus to scientific, agronomic and industrial applications of traditional ML algorithms and recent advances in the ANNs models. In the period 2010-2022, 125 algorithms applied in all disciplines were identified, of which 122 were used in the domains of crop diseases, weeds and plagues, with the aims of solving tasks on classification, regression, clustering, anomaly detection, dimensionality reduction, and association rule learning, and moving precision crop protection closer to the emerging concept of Ag5.0. This process should be accompanied by innovations and dedicated solutions in the areas of hardware, telecommunications and robotics, some of which are already being implemented in agriculture and others are still unprecedented, as this article outlines by introducing 39 emerging technologies and citing some 80 scientific and technical references. The transition from current Ag4.0 to future Ag5.0 strategies in the field of precision crop protection will be driven mainly by their focus and level of automation. Ag5.0 will promote a new era of intelligent crop management with a greater emphasis on solving complex crop protection objectives (e.g. early detection of crop pests) and enhancing management practices (e.g. autonomous real-time multitasking) as a whole, with a main focus to automatized decision-making processes, unmanned operations and progressively less human intervention supported by the latest AI systems, advanced robotics, and powerful ML algorithms.
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Introduction

Real-time fruit detection is a prerequisite for using the Xiaomila pepper harvesting robot in the harvesting process.





Methods

To reduce the computational cost of the model and improve its accuracy in detecting dense distributions and occluded Xiaomila objects, this paper adopts YOLOv7-tiny as the transfer learning model for the field detection of Xiaomila, collects images of immature and mature Xiaomila fruits under different lighting conditions, and proposes an effective model called YOLOv7-PD. Firstly, the main feature extraction network is fused with deformable convolution by replacing the traditional convolution module in the YOLOv7-tiny main network and the ELAN module with deformable convolution, which reduces network parameters while improving the detection accuracy of multi-scale Xiaomila targets. Secondly, the SE (Squeeze-and-Excitation) attention mechanism is introduced into the reconstructed main feature extraction network to improve its ability to extract key features of Xiaomila in complex environments, realizing multi-scale Xiaomila fruit detection. The effectiveness of the proposed method is verified through ablation experiments under different lighting conditions and model comparison experiments.





Results

The experimental results indicate that YOLOv7-PD achieves higher detection performance than other single-stage detection models. Through these improvements, YOLOv7-PD achieves a mAP (mean Average Precision) of 90.3%, which is 2.2%, 3.6%, and 5.5% higher than that of the original YOLOv7-tiny, YOLOv5s, and Mobilenetv3 models, respectively, the model size is reduced from 12.7 MB to 12.1 MB, and the model’s unit time computation is reduced from 13.1 GFlops to 10.3 GFlops.





Discussion

The results shows that compared to existing models, this model is more effective in detecting Xiaomila fruits in images, and the computational complexity of the model is smaller.





Keywords: improved YOLOv7, Capsicum frutescens L., detection, unstructured environment, lightweight




1 Introduction

As one of the important vegetable crops, chili pepper has the highest output value and benefit (Ye et al., 2021). The special chili pepper industry has become the pillar industry for agricultural and rural economic development in some areas of Yunnan (Ren et al., 2022).Currently, the research on chili pepper harvesting machinery in China mainly focuses on the one-time harvesting of bell peppers, linear peppers, and other chili pepper varieties (Zhang and Xu, 2019; Su et al., 2021; Yuan et al., 2021). However, Xiaomila peppers in Yunnan are harvested in batches during the flowering and fruiting periods, and traditional mechanical one-time harvesting methods cannot adjust to the characteristics of Xiaomila pepper picking (Zhu et al., 2022).

With the advent of agricultural digitization 4.0 (Abbasi et al., 2022), advanced sensor technology, the Internet of Things (IoT), and artificial intelligence (AI) are widely used for fruit detection, information collection, and fruit analysis in agriculture (Chamara et al., 2022), and agricultural picking robots have entered the public’s vision. The rapid and accurate detection of ripe fruits has become a research hot spot (Lv et al., 2022). The green and ripe fruit of Xiaomila has a light yellow-green peel, and smooth, or slightly wrinkled skin, and a single plant has a high fruit-bearing rate, with irregularly distributed space, making it difficult to detect Xiaomila with an embedded device in the orchard or field environments. Therefore, it is very necessary to carry out research on lightweight target detection methods for crop fruits with dense targets, small sizes, and high occlusion.

At present, two methods are mainly used for fruit target detection. One is the traditional image detection and segmentation technology that mainly uses color (Janani and Jebakumar, 2023; Tajdar et al., 2023), texture (Alshehhi and Marpu, 2023; Chapeta et al., 2023), edge (Xie et al., 2022; Quan et al., 2023), and other feature information. However, the shallow features can only detect the target in a limited scene, and these methods often lack generalizability and robustness.

As deep learning network has been widely applied to crop target detection (Fu et al., 2022), researchers began to use deep learning networks to solve crop detection problems in complex environments. For example, Iqbal and Hakim (2022) proposed a deep learning-based method for automatic classification and grading of eight harvested mango varieties using Inception v3, considering features such as color, size, shape, and texture. The proposed approach achieved up to 99.2% classification accuracy and 96.7% grading accuracy. However, this study was conducted under a single background condition and did not consider the impact of complex background conditions in non-structured environments on recognition. Zhou et al. (2023) modified the YOLOv7 model to detect Camellia oleifera fruits and determine the center point of the fruit recognition frame. Image processing and a geometric algorithm were used to process the image, segment the fruit, determine its morphology, extract the centroid of the fruit’s outline, and analyze the position deviation between its centroid point and the center point in the YOLO recognition frame. Accurate detection results were achieved for Camellia oleifera fruits under different lighting conditions and when the fruits were occluded. Tang et al. (2023a) developed a fruit detection model based on the YOLOv4-tiny architecture. The proposed method utilizes the generated bounding boxes from the model to extract the regions of interest for fruits. Subsequently, an adaptive stereo matching is performed based on the bounding box generation mechanism. The model demonstrates robust fruit detection under various lighting conditions. However, these studies are specifically focused on regular-shaped Camellia oleifera fruits and may not be applicable to irregularly growing Xiaomila peppers with varying growth directions. Wang et al., (2022) modified the YOLOv5s model (YOLOv5sCFL) by replacing the Conv layer in the cross-stage part with GhostConv and adding a coordinated attention (CA) layer and using a bidirectional feature pyramid Network (BiFPN) to replace the PANet (path aggregation network) in the neck to improve detection accuracy. While this study improved the computational speed of the model, it did not achieve significant improvements in terms of detection accuracy and model size. Wu et al. (2022) proposed a fruit detection method by using the YOLOv7 network with multi-data augmentation for detecting fruits in complex field scenes. The proposed method effectively improves the model’s generalization capability. However, it did not take into account factors such as model size and runtime speed. Zhong et al. (2022) proposed an improved fast R-CNN algorithm for the small size and cluster growth of pepper fruits in the detection process, which effectively improved the ability to extract small features. Cong et al. (2023) proposed an improved Mask RCNN with the Swin Transformer attention mechanism and exploited UNet3+ to improve the mask head and mask segmentation quality to efficiently segment sweet peppers of different categories under leaf occlusion. As representatives of two-stage object detection algorithms, although the R-CNN series algorithms have high detection accuracy, their running speed and model parameter size are difficult to meet the requirements of real-time detection and embedded development in agricultural applications. Li et al. (2021) combined the idea of multi-scale prediction and attention mechanism with the YOLOv4-tiny backbone to improve the recognition performance of occluded and small bell peppers. Nan et al. (2023) used NSGA II to prune the YOLOv5l model and obtained a lightweight bell pepper detection model. Although both of these models have achieved high accuracy in bell pepper detection, it is important to note that the study was conducted in orchards and did not consider various factors in unstructured environments, such as lighting, that may affect the accuracy of detection.The above research shows that deep learning algorithms such as YOLO have become the mainstream fruit detection methods, and this type of algorithm has been improved in different ways to improve its target detection effect in unstructured environments. However, the slow running speed of the network, the large network weight file, and the low detection accuracy of the network for multi-scale alternating targets and occluded targets are still problems that need to be solved urgently (Tang et al., 2023b). To solve these problems, this paper designs an improved YOLOv7-tiny model. The contributions of the model proposed in this article can be summarized as:

1) We propose a lightweight one-stage detection model based on YOLOv7, called YOLOv7-PD, for real-time detection of Xiaomila fruits. Deformable convolutions are used to significantly reduce FLOPS and model weight size, while SE modules are used to enhance the feature extraction capabilities of the network.

2) We improve the network’s detection performance of complex poses of Xiaomila fruits by applying techniques such as horizontal flipping and random rotation to the original images. We also add noise and adjust image brightness to reduce the inconsistencies in brightness caused by different light intensities and visual sensor differences, in order to improve clarity. Furthermore, we increase the number of targets in the images by mosaic stitching, which enhances the detection performance of densely-packed targets.

3) We have determined the effectiveness of the model through ablation experiments and model comparison experiments. Among various fruit detection models, the model proposed by us achieved the highest accuracy and required the least number of FLOPS and computational resources.




2 Materials and methods



2.1 Collection of a Xiaomila fruit dataset

On August 2, 2022, at Shupi Village, Yi Nationality Township, Qiubei County, Wenshan Autonomous Prefecture, Yunnan Province (104° 6′ 44″ N, 23° 53′ 7″ E), Yunxiao Lai No.10 was taken as the research object. Under different natural lighting conditions, the Intel RealSense D435i camera was placed 15 to 30 cm directly above the Xiaomila pepper plant, and the RGB images of the Xiaomila pepper in the mature stage were collected. The resolution of the image was 1920×1080 pixels, and a total of 1500 images were collected. The schematic diagram of the picking method and the collected images are shown in Figures 1, 2.

[image: Illustration of a Xiaomila pepper tree with a height of 150 centimeters, positioned under a grow light. The light is adjustable within a range of 15 to 30 centimeters above the plant. The plant bears Xiaomila green peppers, labeled with a height of 115 to 120 centimeters.]
Figure 1 | The schematic diagram of the Xiaomila collection method.

[image: Nine images labeled A to I display clusters of green plants, each densely populated with small, elongated yellow fruits resembling peppers or chilies. The background in some images shows soil. The greenery and fruits dominate each photograph.]
Figure 2 | An example of Xiaomila data collection: (A-C) backlight; (D-F) weak light intensity; (G-I) strong light intensity.




2.2 Production of a Xiaomila dataset

Considering the impact of the complex environment on fruit detection in the Xiaomila picking process, to avoid model training overfitting and improve the robustness of the model, the original image was enhanced (Akbar et al., 2022; Shoaib et al., 2022; Bosquet et al., 2023) through image mirroring, random rotation, and other methods to improve the detection effect of the network for Xiaomila fruits with complex postures. By adding noise and adjusting image brightness, image brightness deviations caused by different light intensities and differences in visual sensors were reduced. Then, the number of objects in the image was increased through mosaic stitching, thus improving the detection performance of dense objects. The data enhancement method is shown in Figure 3. In this way, the dataset was expanded to 4000 images, and the expanded images were manually marked in the YOLO format using Labelimg software. Then, the dataset was divided into a training set, a test set, and a verification set at a ratio of 7: 2: 1 (the training set is used to train the network parameters, the test set is used to test the generalization ability of the model after training, and the verification set is used to tune the hyperparameters used in the model training process to improve the model performance). Besides, to ensure the reliability of the trained model, duplicated images between datasets were removed.

[image: Six images labeled A to F show green foliage with variations in lighting and orientation. Image A and B have well-lit leaves, C appears darker, D and E show different angles, and F is rotated and on a black background.]
Figure 3 | An example of Xiaomila image enhancement: (A) original image (B) adjusting brightness (C) adding Gaussian noise (D) adding salt and pepper noise (E) mosaic stitching (F) random angle rotation.




2.3 Construction of the Xiaomila target detection model



2.3.1 YOLOv7 model

The YOLOv7 model is an anchor-based target detection algorithm, which can achieve a fast detection speed while maintaining high accuracy. It has seven versions, namely, YOLOv7, YOLOv7-d6, YOLOv7-e6, YOLOv7-e6e, YOLOv7-tiny, YOLOv7x, and YOLOv-w6, to meet the needs of different application scenarios and computing resources (Wang et al., 2022). As shown in Figure 4, the YOLOv7-tiny framework consists of three parts: backbone, neck, and head. The backbone part is mainly constructed by convolution, the E-ELAN (Extended-ELAN) module, the MPConv (Max Pooling Conv) module, and the SPPCSPC module. Specifically, based on the original ELAN (Zhang et al., 2022), the E-ELAN module changes the calculation block while maintaining the transition layer structure of the original ELAN, and it enhances the ability of network learning by expanding, shuffling, and merging cardinality. The MPConv module uses parameters of different precisions for convolutional operations to trade off between computational complexity and accuracy. The SPPCSPC module is used to enhance the expressive power of convolutional neural networks. It is composed of two modules: the spatial pyramid pooling (SPP) module and the cross-stage partial network (CSP) module. The SPP module is designed for multi-scale object detection and classification tasks. It partitions the input feature map into multiple sub-regions by adding a pooling layer to the network and pools each sub-region to obtain a fixed-size feature vector. The CSP module is used to reduce network parameters and computational complexity. It divides the network into two parts: one for feature extraction and the other for feature processing and fusion, thus reducing the number of parameters and computations in the network. The combination of the SPP module and CSP module in the SPPCSPC module can improve the network’s expressive power and computational efficiency simultaneously. The neck module is used to combine feature maps at different levels to generate feature maps with multi-scale information to improve object detection accuracy. The head network takes the multi-scale feature maps generated by the neck network and performs object detection. The head network uses anchor boxes to predict the location, size, and class of objects in the input image. The predicted object boxes are then refined by a post-processing step called Non-Maximum Suppression (NMS) to eliminate redundant detections and improve the model’s precision.

[image: Diagram of the YOLOv7-tiny structure shows interconnected modules and layers like ELAN, CBS, CAT, and REP within the backbone and head sections. Various functions such as convolution, batch normalization, and pooling are illustrated, indicating the flow of data from input to output.]
Figure 4 | The architecture of the YOLOv7 network.




2.3.2 Model improvement

The backbone feature extraction network affects the parameters of YOLOv7, and its depth determines the speed of model detection. To meet the requirements of real-time detection, this study replaces the traditional convolution operation with the deformable convolution operation. The shape and size of each convolution kernel (filter) in the traditional convolution operation are pre-defined, and they cannot be changed during the convolution process, making it difficult to adapt to the shape change of the target. To solve the problem of the limited detection ability of traditional convolutional neural networks, Dai et al. (2017) proposed deformable convolution, as shown in Figure 5. The deformable convolution introduces a learnable deformable offset (deformable offset) so that the convolution kernel can be deformed with different shapes and spatial positions of the input data. By using deformable convolutions, the network can reduce the number of convolution kernels and parameters while maintaining the same receptive field size and the effectiveness of convolution operations. This is because the parameters of the deformable convolution are more compact than the traditional convolution; meanwhile, since the shape of the convolution kernel can be adaptively changed, it is more suitable for processing features of different shapes and positions. Thus, compared with traditional convolution, deformable convolution can reduce network parameters and improve the model’s ability to detect dense targets at different scales on the same plant.

[image: Diagram illustrating a comparison between two methods of image processing and a model framework. Panels A and B showcase different approaches: A uses fixed square grids for processing an image, while B shows dynamic, irregular grids adjusting to image features. Panel C depicts a model architecture with an input and output, describing a convolutional process with an offset field to handle dynamic offsets, allowing flexible processing.]
Figure 5 | The deformable convolution module: (A) The traditional convolution method (B) The deformable convolution method (C) The principle of deformable convolution.

The attention mechanism was first proposed by MNIH (Zhang et al., 2022) and later introduced into the field of image classification. The visual attention mechanism embodies the visual characteristics of the human visual system that actively selects objects of interest and concentrates on them for processing. This characteristic can effectively improve image content screening, target retrieval, and image processing capabilities (Mnih et al., 2014). The attention mechanism is a technique used to improve the expressive power of neural network models. It guides the learning and prediction of the model by weighting different parts of input data, making the model focus more on the parts relevant to the task (Nan et al., 2023). This paper proposes to add the SE attention mechanism module (Dai et al., 2017) to the 14th and 21st layers of the backbone. This module (Hu et al., 2017) can adaptively adjust the channel weight of the feature map by learning a specific weight vector to improve the performance of the model. As illustrated in Figure 6, the SE attention mechanism includes two steps: the squeeze operation and the excitation operation. Specifically, the squeeze operation calculates the feature value of each channel through global average pooling. This process can compress the information of each channel into a value to obtain global information. The excitation operation uses a fully connected network layer to learn a non-linear function that takes as input the feature values of each channel from the previous step and outputs a new weight vector. Then, this new weight vector is scaled through a sigmoid activation function to assign attention weights to each channel. Compared with other attention mechanisms, the SE attention mechanism uses the global average pooling and fully connected layers, which are lightweight operations, so the SE module can improve the detection performance of such objects that are easily occluded without adding too much computational burden.

[image: Diagram illustrating a neural network process. It shows a block labeled X with dimensions H, W, C being processed through steps of Squeeze and Excitation, resulting in a scaled output block labeled X~ with the same dimensions.]
Figure 6 | The structure of the SE module.




2.3.3 The overall structure of the Xiaomila detection model

Due to the high fruiting rate and irregular spatial distribution of Xiaomila plants, as well as the presence of Xiaomila targets of different scales on the same plant, it is difficult for most deep learning networks to accurately identify fruits in an unstructured environment. To address this issue, this paper replaces the 3×3 convolution kernel in the YOLOv7-tiny network skeleton with deformable convolution, and this is called deformable convolution (DCN). BN (batch normalization) and SiLU form the DBS module, which reduces the number of convolution kernels and parameters while maintaining the same receptive field as the traditional size convolution kernel. Meanwhile, the SE module is inserted in the 14th and 21st layers of the skeleton so that the model can learn the channel weight of the feature map of this layer while extracting features, which improves the detection ability of the model for small targets. The structure of the improved framework is shown in Figure 7. When an image is fed into the Xiaomila network, the YOLOv7-PD network initially resizes it to 640x640x3 before passing it through the backbone network. The feature maps are then processed by the DBS, ELAN, and Maxpooling modules, reducing their length and width by half while doubling the output channels. The MP module’s upper branch reduces the feature maps’ length and width by half via max pooling and their channels via convolution, while the lower branch halves the channels with the first convolution and reduces the feature maps’ length and width with the second convolution. The upper and lower branches are combined, producing a feature map with half the length and width and an equal number of input and output channels. The network assigns channel weights during feature extraction due to SE modules added at layers 14 and 21 in the backbone.Using the three-layer outputs of the backbone feature extraction network, the head network produces three different-sized feature maps. The final number of output channels is adjusted by the Repconv module before utilizing three 1x1 convolution layers for objectness, class, and bbox prediction tasks, yielding the Xiaomila detection outcomes.

[image: Diagram of the YOLOv7-PD structure showcasing an input image feeding into a network. It has sections labeled Backbone and Head. The Backbone consists of modules like DBS, ELAN, SE, and MAP-1. The Head features components such as ELAN-W, CAT, UPSample, MAP-2, REP, CBM, and SPPCSPC. The diagram includes connections and flow details between these modules, with additional module definitions depicted at the bottom.]
Figure 7 | The structure of the YOLOv7-PD network.





2.4 Model training



2.4.1 Training method and platform

The training platform is a desktop workstation equipped with 64 GB memory, an Intel Xeon® W-214 CPU, and an NVIDIA RTX 2080Ti GPU (11 GB video memory). The operating system is Windows 11 (64-bit), the programming language is Python 3.9, the deep learning platform is CUDA 11.6, and the framework is Pytorch.




2.4.2 Training strategy

In the model training process, the input image size was set to 640×640, the batch size was 16, the number of iterations was 300, the learning rate was set to 0.01, and the weight decay was set to 0.05. Since the Xiaomila detection method was proposed by changing the structure of the YOLOv7-tiny model, the pre-training weights provided by YOLOv7 cannot be used. Therefore, the YOLOv7-PD model proposed in this paper was not added with training weights at the training time, and the training data was saved in the model weight file to resume training in the case of interruption at the training time. Meanwhile, the training data of each iteration was saved for performance comparison and analysis of the model.




2.4.3 Evaluation indicators

This paper adopted evaluation metrics including precision (P), recall (R), mean average precision (mAP), F1 score, detection speed, GFlops, and model weight.

mAP is the average precision of each class and the average value of AP, its calculation formula is:

[image: Mathematical formula representing mean Average Precision (mAP) as the integral from zero to one of precision with respect to recall, divided by C.]	

The F1 score considers both precision and recall, and it can reflect the stability of a model. A higher F1 score indicates a more stable model. The formula for calculating the F1 score is:

[image: The image shows the formula for the F1 score: \( F1 = \frac{P \times R \times 2}{P + R} \), where \( P \) is precision and \( R \) is recall.]	

P and R refer to the precision and recall of the detection model, respectively. Precision represents the proportion of true positive samples in the samples predicted as positive by the classifier. Recall represents the proportion of true positive samples that are correctly predicted as positive by the classifier among all true positive samples. The formula for calculating precision and recall is:

[image: Formula representing precision: P equals TP divided by TP plus FP, multiplied by one hundred percent.]	

[image: Formula for calculating recall is shown as \(R = \frac{TP}{TP + FN} \times 100\%\). It represents recall as a percentage, where TP is true positives and FN is false negatives.]	

Detection speed refers to the number of image frames that the network model can detect per second. GFlops refers to the number of billions of floating-point operations performed per second, and it is used to evaluate the computational complexity of a network.






3 Results



3.1 Ablation experiment results

To investigate the impact of improved methods on detection accuracy, different improved models were tested, and ablation experiments were conducted. The test results are shown in Figure 8.

[image: Bar chart titled "mAP" comparing different YOLOv7 configurations. Bars represent YOLOv7-tiny (88.50%), YOLOv7-tiny+DCNV2 (89.20%), YOLOv7-tiny+SE (89.40%), and YOLOv7-PD (90.30%). YOLOv7-PD shows the highest mAP score.]
Figure 8 | Ablation experiment results.

From the ablation experiment results, it can be seen that the proposed YOLOv7-PD model achieves the highest detection accuracy and the smallest model size.




3.2 Model comparison test results

To verify the advantages of the YOLOv7-PD model in detecting Xiaomila, this paper took three lightweight network models (Howard et al., 2019) including Mobilenetv3, YOLOv5s, and YOLOv7-tiny (Wang et al., 2022) for performance comparison. All deep learning detection algorithms adopted the same training and test datasets, and the input image size of the models was set to 640×640.

Figure 9 shows the mAP curve and loss curve of the models. Compared with the unimproved YOLOv7-tiny model, the improved YOLOv7-PD model converged faster and achieved higher accuracy. Affected by the addition of noise in the dataset, the mAP value of YOLOv5s began to decline after reaching the peak, while those of the other three models were not affected by the noise. During the training process of YOLOv7-tiny and YOLOv7-PD models, the model loss gradually stabilized when the number of iterations reached 100, and the final loss value tended to be stable at around 0.08, which was lower than that of Mobilenetv3 and YOLOv5s.

[image: The image features two line graphs comparing different models. The top graph shows mean average precision over epochs for Mobilenetv3, YOLOv5s, YOLOv7-tiny, and YOLOv7-PD. All models show increasing performance with YOLOv7-PD achieving the highest precision. The bottom graph displays the loss over epochs for the same models. YOLOv7-PD has the lowest loss, indicating better efficiency. Mobilenetv3, YOLOv5s, and YOLOv7-tiny show higher loss values. Both graphs indicate training performance over 300 epochs.]
Figure 9 | The mAP curve and loss curve.

Table 1 shows the comparison of each evaluation index between YOLOv7-PD and the other three deep-learning networks in the field detection of Xiaomila.

Table 1 | The comparison of evaluation indices in the field detection.


[image: Comparison table of different models highlighting precision, recall, F1 score, mAP, GFLOPs, and model size. Models compared are MobileNetv3, YOLOv5s, YOLOv7-tiny, and YOLOv7-PD. YOLOv7-PD shows the highest mAP at 90.3% with 87.3% precision and 81.3% recall. Model sizes range from 10.1M to 13.7M.]
It can be seen from Table 1 that the mAP value of the YOLOv7-PD model was 90.3%, which was 2.2% higher than that of YOLOv7-tiny (88.1%), 9.9% higher than that of Mobilenetv3 (80.4%), and 3.3% higher than that of YOLOv5s (87%). The experimental results indicated that compared to other models, YOLOv7 has advantages in all aspects. The model size of YOLOv7-PD is 12.1 MB, and the number of calculations per second is 10.3 GFlops. Compared with YOLOv7-tiny and YOLOv5s, both the number of computations per unit of time and the model size have been reduced. Compared with Mobilenetv3, although the model size has increased, the speed and accuracy of the model have been improved.

By analyzing the experimental results, the YOLOv7-PD model reduces the training time and model size while improving the detection accuracy, contributing to a lightweight detection model. The model is significantly superior to the other three deep learning networks in terms of model parameters, weights, GFlops, etc., indicating that it is more suitable for deployment on agricultural mobile devices.




3.3 Comparison of model detection effects

To verify the Xiaomila detection performance of YOLOv7-PD, YOLOv7-tiny, YOLOv5s, and Mobilenetv3 models, 90 Xiaomila images under different lighting conditions in the test set were used for testing. Among these images, 33 images have strong light intensity and include 639 Xiaomila peppers, 28 images have medium light intensity and include 491 Xiaomila peppers, and 29 images have weak light intensity and include 582 Xiaomila peppers. The test results are shown in Table 2 and Figure 10.

Table 2 | Xiaomila detection results under different lighting conditions.


[image: Table comparing model performance under different lighting conditions. It lists models YOLOv7-PD, YOLOv7-tiny, YOLOv5s, and Mobilenetv3, detailing quantity, correct detections, false detections, and failed detections for strong light, low light, and backlight.]
[image: Twelve panels labeled A to L depict cassava plant canopies from varying angles and perspectives. Each panel shows a dense arrangement of green leaves with some blue markers or lines indicating measurements or analysis points on the plants. The images appear similar, suggesting a study or comparison of growth patterns or conditions.]
Figure 10 | Comparison of detection results of each model under weak, medium, and strong light intensity: (A, E, I) YOLOv7-PD; (B, F, J) YOLOv7-tiny; (C, G, K) YOLOv5s; (D, H, L) Mobilenetv3.

Overall, in the case of weak light intensity, the detection difficulty increased, and in the case of strong light intensity, the characteristics of the object were easier to learn by the model, and most fruits can be recognized. Specifically, the YOLOv7-PD model proposed in this paper showed better performance. The performance of YOLOv7-tiny was similar to that of YOLOv7-PD, which was much higher than that of YOLOv5s, and Mobilenetv3 obtained the worst performance. The results indicate that YOLOv7-PD can still accurately recognize Xiaomila under different lighting conditions.

Detecting Xiaomila fruits on the Xiaomila plant in the field environment and the occlusion problem has become the key issues to address in the research. The current deep learning models are difficult to accurately identify the occluded target, but the YOLOv7-PD model proposed in this paper can detect some occluded Xiaomila fruits, and the detection effect is shown in Figure 11. Compared with other models, the YOLOv7-PD model significantly improves the detection ability of fruits occluded by branches and leaves.

[image: Four images labeled A, B, C, and D show pepper plants with green leaves. Each image is annotated with blue labels pinpointing specific areas. Red circles highlight different spots on the plants in each image, emphasizing various sections of the foliage. The images appear to focus on the identification and analysis of plant characteristics or conditions.]
Figure 11 | The detection of occluded targets by each model. (A) YOLOv7-PD; (B) YOLOv7-tiny; (C) YOLOv5s; (D) Mobilenetv3.

Since the color of the Xiaomila fruit in the green and ripe periods is similar to that of the stems and leaves of the plant, other models suffer from the problem of misidentifying leaves as fruits and missing the detection of fruits. The proposed YOLOv7-PD model shows good performance in solving the problem of poor detection of target fruits with similar colors, as shown in Figure 12, In the figure, purple circles indicate missed detections caused by similar colors, yellow circles indicate false detections caused by similar colors, and green circles indicate missed detections caused by dense fruit. YOLOv7-PD demonstrates better detection performance on occluded targets, while YOLOv7-tiny struggles to detect partially occluded targets with larger areas. Additionally, YOLOv5s misses the detection of two occluded fruits, while Mobilenetv3 performs poorly in detecting occluded targets.

[image: Four images labeled A, B, C, and D show a top view of pepper plants with varying numbers of leaves. Image B and C have several colorful circles highlighting specific areas on the plants, likely indicating points of interest or areas of study. Each plant is placed on a patch of soil and surrounded by other greenery.]
Figure 12 | The detection results of each model in detecting objects with similar colors to fruits and branches and leaves. (A) YOLOv7-PD; (B) YOLOv7-tiny; (C) YOLOv5s; (D) Mobilenetv3.

Xiaomila takes more than a year to ripen, and the nature of the same period of flowers and fruits leads to a high fruit-setting rate per plant. There are objects of different scales on the same plant, and the distribution of each object is very close. For detecting large-scale Xiaomila targets, each model can perform well. However, for the alternate distribution of Xiaomila targets of different scales, each model suffers from the problem of missed detection or false detection.

It can be seen from Figure 13 that although YOLOv7-PD mis-detects and misses a small number of small targets, it shows the best performance compared to the other three models. The figure highlights missed and false detections made by the model. The green circles in the figure shows the misdetection of small targets, and the red circles shows the missed detection of small targets: It not only ensures the detection accuracy of Xiaomila but also reduces the calculation amount per unit time of the model and the size of the model weight file; besides, it can identify dense targets, small targets, occluded targets, and targets with similar colors to branches and leaves. The above comparative experiments indicate that the YOLOv7-PD model proposed in this study has certain advantages in detection speed and detection accuracy. Overall, it can accurately identify Xiaomila under complex lighting and background conditions, laying the foundation for Xiaomila’s automatic picking.

[image: Four images labeled A, B, C, and D showcase green foliage, likely agricultural crops, with overlaying blue and white labels. Some leaves are marked with red circles, possibly indicating specific points of interest or analysis on each plant.]
Figure 13 | The detection of dense multi-scale targets by each model. (A) YOLOv7-PD; (B) YOLOv7-tiny; (C) YOLOv5s; (D) Mobilenetv3.





4 Discussion

Compared to other single-stage models, the proposed YOLOv7-PD model achieves better performance by reducing the model weight files and improving the detection accuracy of occluded and alternatively distributed targets in complex environments while increasing the computational speed. To further validate the effectiveness of the model, it was trained on our dataset using other improved deep learning detection methods (Li et al., 2021; Bosquet et al., 2023; Nan et al., 2023) mentioned in this paper, and the detection results on the Xiaomila dataset under different illuminations were compared, as shown in Tables 3, 4.

Table 3 | Comparison of training results.


[image: Comparison table of three models: YOLOv7-PD, YOLOv4-tiny, and YOLOv5I. Metrics include Precision, Recall, F1-score, mAP, GFlops, and Model Size. YOLOv7-PD shows the highest precision and mAP with 87.3% and 90.3%, respectively, while YOLOv4-tiny has the highest GFlops at 48.2. Model sizes vary from 12.1M to 30.9M.]
Table 4 | Comparison of detection results.


[image: Table comparing detection performance of different models under various lighting conditions. Categories include quantity, number of correct detections, false detections, and missed detections. Models assessed: YOLOv7-PD, YOLOv4-tiny (Li et al., 2021), and YOLOv5l (Nan et al., 2023) across strong light, low light, and backlight conditions.]
The results indicate that compared to other pepper detection models, the YOLOv7-PD model proposed in this paper has advantages in both model size and detection accuracy.




5 Conclusions

This paper proposes a method for the detection of Xiaomila fruits in complex field environments. In this method, YOLOv7-tiny is selected as the transfer learning model for field detection of Xiaomila fruits. Meanwhile, the backbone extraction network is integrated with deformable convolution, the DCN is used to replace the YOLOv7-tiny backbone and the traditional convolution module in the ELAN module, and the network’s ability to extract multi-scale target features is improved. Besides, the SE attention mechanism is inserted into the reconstructed backbone feature extraction network to improve its ability to extract the key features of Xiaomila peppers and realize multi-scale Xiaomila pepper fruit detection in complex environments. Moreover, the detection performance of three other single-stage object detection networks is compared and analyzed. Through the analysis of the experimental results, it can be seen that the improved model significantly enhances the detection effect of dense multi-scale targets while reducing the model training parameters and improving the detection speed. It has achieved excellent performance on the Xiaomila dataset with complex backgrounds and different lighting conditions.

There are certain limitations to this study because the algorithm proposed in this article can only recognize the Xiaomila fruit in the image, but in practical applications, we not only need to recognize the Xiaomila fruit but also locate it. In future work, we will concentrate on the detection of Xiaomila picking points and the determination of Xiaomila’s growth direction with a depth camera and migrate the detection model to the embedded device to realize the automatic picking of Xiaomila.
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Crop yield prediction which provides critical information for management decision-making is of significant importance in precision agriculture. Traditional manual inspection and calculation are often laborious and time-consuming. For yield prediction using high-resolution images, existing methods, e.g., convolutional neural network, are challenging to model long range multi-level dependencies across image regions. This paper proposes a transformer-based approach for yield prediction using early-stage images and seed information. First, each original image is segmented into plant and soil categories. Two vision transformer (ViT) modules are designed to extract features from each category. Then a transformer module is established to deal with the time-series features. Finally, the image features and seed features are combined to estimate the yield. A case study has been conducted using a dataset that was collected during the 2020 soybean-growing seasons in Canadian fields. Compared with other baseline models, the proposed method can reduce the prediction error by more than 40%. The impact of seed information on predictions is studied both between models and within a single model. The results show that the influence of seed information varies among different plots but it is particularly important for the prediction of low yields.
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1 Introduction

The increasing world population imposes significant challenges for agriculture production due to the increasing food demand combined with limited arable land. Accurate yield prediction can help seed companies breed for better cultivars and guide farmers to make informed management and financial decisions. However, crop yield prediction is exceptionally challenging due to several complex factors, e.g. seed type, seed treatment, soil, temperature, etc. Thus, an analytical model that can predict crop yield accurately is essential.

Machine learning methods have been designed for crop monitoring and yield prediction. Various models have been proposed for crop yield prediction. For example, Kaul et al. developed an artificial neural network model that used field-specific rainfall data and soil rating to predict soybean yield prediction (Kaul et al., 2005). Khaki et al. proposed a deep neural network approach for soybean yield prediction using genetic and environmental information (Khaki and Wang, 2019). Compared to yield prediction using meteorological driven variables (e.g., temperature, sunlight, and precipitation), using the sensing images can capture more information about the plant growing status. For example, Rembold et al. used low-resolution satellite imagery for yield prediction (Rembold et al., 2013); Nevavuori et al. presented a convolutional neural network (CNN) for crop yield prediction based on NDVI and RGB data acquired from unmanned aerial vehicles (UAVs) (Nevavuori et al., 2019); and Pantazi et al. built a hybrid model to associate the high-resolution soil sensing data with wheat yield (Pantazi et al., 2016). However, there can still be information loss in the process of using those images for yield prediction. This is because remote sensing images only provide a snapshot of the conditions at a particular moment in time, and may not capture all of the relevant factors that contribute to yield. In addition, factors such as cloud cover, shadows, and atmospheric conditions can all affect the quality and accuracy of remote-sensing images.

Compared to hyperspectral images, handheld devices capturing images of the canopy can provide higher resolution and more information due to the increased number of pixels. While higher resolution images can provide more detailed information, using data from a single time point may not be sufficient to accurately predict yield. Factors such as lighting conditions, soil status, and plant growth stage can all have a significant impact on the quality and accuracy of the image data. These undetermined factors and noise can confuse models in the training stage, resulting in the deterioration of generalization ability. The incorporation of time-series prediction is necessary for yield prediction to improve performance (Nevavuori et al., 2020; Qiao et al., 2021).

There are two challenges for yield prediction using time-series images, i.e., image processing and 48 time-series prediction. Existing studies usually use the convolutional neural network with long short term memory model (CNN-LSTM) framework for feature extraction of time-series images. For example, Sun et al. combined the CNN and LSTM to predict soybean yield using in-season and out-season image data collected from Google Earth (Sun et al., 2019). Newton et al. used 16-day remote sensing images (30m by 30m) to predict potato yield (Newton et al., 2018). Sharifi et al. applied different machine learning approaches to the barley yield prediction using the time-series NDVI and environmental information (Sharifi, 2021). However, this framework has some drawbacks.

For image classification/recognition, although the CNNs have outstanding performance on many tasks (Ferentinos, 2018; Jin et al., 2018; Ma et al., 2018), the CNNs have some redundancy issues in both computation and representations since each pixel bears varying importance for the target task. Recently, the transformer module has been considered as an alternative architecture and has achieved competitive performance on many computer vision tasks (Xie et al., 2021). Vision transformer (ViT) is a transformer-based method that is designed for image classification (Dosovitskiy et al., 2020). In ViT, an image is split into fixed-size patches. Each patch is then linearly embedded, position embeddings are added, and the resulting sequence of vectors is fed to a standard transformer encoder. Compared to CNN, ViT has a better global understanding of the images.

Regarding the time-series prediction, LSTMs have been employed to model time series in different tasks (Sundermeyer et al., 2012; Huang et al., 2015; Zhao et al., 2017). In a LSTM, the hidden state is updated with every new input token to remember the entire sequence it has seen. Theoretically, this structure can propagate over infinitely long sequences. However, in practice, due to the vanishing gradient problem, the LSTM will eventually forget earlier tokens (Li et al., 2019). Another drawback of the LSTM is that it can only be implemented sequentially due to its structure. In comparison, transformers retain direct connections to all previous timestamps, allowing information to propagate over much longer sequences and be processed in parallel.

To solve the aforementioned challenges, a transformer-based method is used to predict soybean yield using time-series images and seed information. The contribution of our work includes the following aspects:

	A method consisting of two ViT modules and one transformer is proposed for the feature extraction of time-series images. Instead of using the original images directly, the proposed method process the plant part and soil part of the image separately to reduce the computation complexity and improve the interpretability of the model.

	Different baseline models were compared to validate the effectiveness of the proposed approach. The experiments show that the proposed method can significantly improve yield prediction accuracy.

	The impact of seed information on predictions is studied both between models and within a single model. The results show that the seed information play important roles in predicting low yields.






2 Materials and methods



2.1 Data collection

This study used a dataset collected from three soybean fields in Ontario, Canada in 2020. There are 450 plots in total. The data includes two types of input information. The first is the time-series images. The second part is the seed information of each plot. For each plot, there are three images, as shown in Figure 1, collected in three dates, on June 14, 2020, on July 13, 2020 and on August 20, 2020. The seed information is shown in Table 1. Seed treatments are the additional material added to the seed. There are six major groups of seed treatments, i.e., Non-treated control, base seed treatment control, ILEVO alone, ILEVO+Base, Saltro+Base and other. The seed information also include seed varieties (resistant or susceptible to soybean sudden death syndrome) and seeding rates (for example, 110K, 140K, and 170K seeds/acre). The three seed factors will be investigated together. There are 51 combinations of seed varieties, treatments and seeding rates in total. The numbers of plots for each combination are similar. The objective of this paper is to use the time-series images and seed information to predict the yield.

[image: Rows of young green plants are emerging from the soil in a cultivated agricultural field. The plants are evenly spaced and arranged in parallel lines, indicating early growth stages. The soil appears dry with some straw remnants visible.]
Figure 1 | An example image of a plot.

Table 1 | Seed information (seed treatment, seed variety and seeding rate).


[image: Table displaying seed treatments and their corresponding number of combinations. Non-treated control has 5, Base seed treatment control has 9, ILEVO alone has 2, ILEVO plus Base has 9, Saltro plus Base has 10, and Other has 16 combinations.]
The distribution of the yield of plots is shown in Figure 2. The distribution is a little left-skewed. The kurtosis is 3.09 and the skewness is -1.26. Most plots have a yield between 3500 kg/ha and 5000 kg/ha.

[image: Histogram displaying the distribution of crop yield in kilograms per hectare. The x-axis represents yield ranging from 2000 to 5500 kg/ha, and the y-axis shows the number of plots from 0 to 70. The data peaks around 4000 kg/ha.]
Figure 2 | Distribution of the soybean yield.




2.2 Image segmentation

In the data processing, each image is segmented into two parts, i.e., plant segmentation and soil segmentation, as shown in Figure 3. This is for two reasons. First, the information extracted from plant itself with the soil can be decoupled. Each module only needs to calculate the same type of information, i.e., either plant or soil part, which will reduce the redundant computation. The interaction between plant and environment is calculated afterward. Second, it can help reduce the influence of the diagonal camera angles. The segmentation can directly tell the model the distance between two adjacent rows of plants. Thus the model can distinguish the plants at the near-end from the plants at the far end.

[image: Two images labeled A and B illustrate segmentation results. Image A shows the segmentation of plant parts with plants highlighted against a black background. Image B shows the segmentation of soil parts, where plant rows contrast with visible soil in lighter shades.]
Figure 3 | Image segmentation. (A) Segmentation of plant part. (B) This is the caption for Segmentation of soil part.




2.3 Workflow of soybean yield estimation

As shown in Figure 4, the workflow can be divided into three steps: data collection, data processing, and prediction. In the data collection, a sensing system is built to take the images of a field at a certain frequency. The images along the soybean growth stage and the checked yield are stored in the database. In data processing, some statistical analysis and image segmentation are conducted to prepare for the following analysis. Finally, various prediction models are designed to predict soybean yield. The models will be evaluated by some feasible metrics so that they can be further optimized accordingly.

[image: Flowchart illustrating a data analysis process in three stages: Data Collection, Data Processing, and Prediction. Data Collection involves databases, sensing systems, records, and field images. Data Processing includes analysis, image segmentation, and processing. Prediction involves model selection and design, generating predictions, and assessments. Arrows indicate progression between stages.]
Figure 4 | Flow diagram of the data collection, processing and prediction we employed in this study for yield prediction.

The prediction is the most challenging component. The solution needs to answer three questions. How to efficiently extract features from a single image? How to detect the hidden pattern in the time-series images? How to combine different sources of information, i.e., images and seed information? This serves as the motivation of this paper.





3 Proposed model

To address the aforementioned challenges, a wide-deep method based on the attention mechanism is proposed. In this section, we will focus on the prediction part of the workflow, as shown in Figure 4, especially the design logic and module about feature extraction of the images and seed information.



3.1 A wide-deep framework

As introduced in Sec. 2, this study considers two types of inputs: time-series images and seed information. Thus, different modules should be applied due to the heterogeneity of the inputs. The time-series images have a large number of pixels. The model should be capable of extracting the most important interactions between pixels effectively. Thus, a high-level feature representation of the images is needed. In contrast, the seed information only contains one categorical variable in this study. It is not necessary to apply a complex or extremely deep neural network. Therefore, a wide-deep framework is proposed as shown in Figure 5.

[image: A flowchart diagram illustrating a process for yield estimation. On the left, image information from different dates is processed by Vision Transformers (ViT) into features, which are transformed into image features. On the right, seed information is analyzed by a Fully Connected Neural Network (FCNN) into seed features. Both image and seed features are combined through another FCNN for yield estimation.]
Figure 5 | A wide-deep framework for yield prediction.

The left tower of the proposed framework is composed of two ViT modules and one transformer module. Two ViT modules are used to extract features from the plant and soil, separately. The outputs from the two ViTs are combined using a dot product operator. Then the transformer is leveraged to deal with the time-series features. The right tower is just a fully connected neural network. The 51 combinations of seed information is one-hot encoded. Then the neural network is used to further extract information from the one-hot encoding. Finally, the wide component (i.e., seed features) and deep component (i.e., image features) are combined using one common FCDNN for joint training according to Eq. 1.

[image: It seems like you've provided a mathematical formula rather than an image. Please upload an image file or provide a URL for the image you would like to have alt text generated for.] 

Where [image: The image shows a mathematical expression with the variable "f" subscripted by the word "soil" in italics, likely representing a function related to soil.]  is the feature obtained from the soil segmentation of an image, [image: The image shows the italicized mathematical notation for "f sub plant".]  is the feature extracted from the plant segmentation, [image: Mathematical notation displaying the letter "f" followed by the subscript "seed".]  is the feature extract from the seed information, i.e., seed variety, treatment and seeding rate, [image: Please upload the image or provide a URL so I can generate the alternate text for it.]  represent the predicted yield and [image: Please upload the image or provide a URL, and I will generate the alternate text for you.]  denotes a one-layer fully connected neural network (FCDNN).

It should be noted that the image features and seed features are combined and then jointly trained. This is different from ensemble train. In an ensemble model, individual models or weak estimators are trained separately without any interaction during the training process. Then their outputs are combined only at the final step (i.e., prediction) by majority voting or averaging. In contrast, the wide-deep framework will jointly train all parameters simultaneously by taking both the image features and seed features as well as the weights of their sum into account. The training of the deep-wide model is done by backpropagating the gradients from the output to both the wide and deep part of the model simultaneously using stochastic gradient descent (SGD) or other optimizers such as Adam and Adagrad. By leveraging this deep-wide framework, the training time or inference time can be significantly reduced due to fewer parameters in the wide part.

In the following sections, we will explain the details of the attention mechanism, transformer and ViT




3.2 Attention mechanism

Attention is a technique proposed to help the model to focus on the most important parts of its input, rather than treating all parts equally (Vaswani et al., 2017).

As shown in Eq. 2, for each input in a given vector [image: Mathematical notation showing a sequence of elements represented as \(a_1, a_2, a_3, \ldots\).] , three matrices, i.e. query [image: Italic letter W with a subscript lowercase q.] , key [image: The image shows the mathematical notation "W" with a subscript "k".]  and value [image: A blurry mathematical notation consisting of a capital letter "W" with a subscript "v".] , are employed to generate three representation vector i.e., [image: Please upload the image for which you would like me to generate the alternate text.] , [image: Text "K" displayed in a serif font, with a matrix resolution of nine by nine pixels, on a plain white background.]  and [image: It seems there is no image attached. Please provide the image or its URL, and I can assist you with generating the appropriate alt text.] , by multiplication. [image: It seems you might be trying to upload an image or provide a link, but it's not appearing. Please try uploading the image again or providing a URL, and I'll be happy to help with the alt text.]  represents the query to match other inputs. [image: I'm unable to see the image you are referring to. Please provide a description or upload the image, and I'll help you generate alternate text for it.]  is the key to be matched by others. [image: Please upload the image or provide a URL for me to generate the alternate text.]  represents the information to be extracted. Then the attention score between two inputs can be calculated by Eq.3 to obtain the attention coefficients.

[image: Matrix equation displaying transformation expressions: \( Q = aW_q \), \( K = aW_k \), \( V = aW_v \).] 

[image: Mathematical formula illustrating the attention mechanism: Attention (Q, K, V) is equal to the softmax of the dot product of Q and the transpose of K, divided by the square root of d_k, multiplied by V.] 

Where [image: Lowercase letter "d" with a subscript "k" in a serif font, likely representing a mathematical variable or notation.]  is the dimension of the keys and queries which is used to scale the dot product of [image: Please upload the image you would like me to generate alt text for.]  and [image: A mathematical formula involving a summation symbol, sigma (Σ), followed by an expression with indices and variables arranged in a specific sequence.]  Specifically, we repeat the attention for [image: It seems there's an error with the image upload. Please try uploading the image again or ensure the URL is correct. If you provide a caption, it will help create more accurate alt text.] times and concatenate the learned embeddings as the final representation of the inputs:

[image: Mathematical expression describing multi-head attention in neural networks, where MultiHead applied to queries (Q), keys (K), and values (V) equals the concatenation of heads one to h, multiplied by weight matrix W superscript O.] 

Where[image: Equation displaying an attention head calculation: \( \text{head}_{i} = \text{Attention}(QW_{i}^{Q}, KW_{i}^{K}, VW_{i}^{V}) \).] The attention mechanism is the backbone of transformer and ViT.




3.3 Vision transformer for image feature extraction

Self-Attention is capable of understanding the connection between inputs. However, it is challenging to apply it between the pixels of an image. For instance, if the size of the input image is 300x300, a self-attention layer has 90K combinations to calculate. In fact, a lot of the calculation are redundant because only part of the connections between two pixels are meaningful. To overcome this problem, ViT is proposed by segmenting images into small patches (like 16x16) (Dosovitskiy et al., 2020). A patch is the basic unit of an image instead of a pixel to efficiently tease out patterns.

In ViT, an image [image: Mathematical expression showing \( x \in \mathbb{R}^{H \cdot W \cdot C} \), indicating that \( x \) is an element of a real-valued tensor with dimensions H by W by C.]  is reshaped into [image: If you upload the image or provide a URL, I can help generate the alternate text for it.]  patches [image: Mathematical notation showing \(x_p \in \mathbb{R}^{N, P^2, C}\), representing a variable \(x_p\) belonging to a real-valued space with dimensions \(N\), \(P\) squared, and \(C\).] , where ([image: Please upload the image or provide a URL so I can help you generate the alternate text.] , [image: It seems there might have been an issue with the image upload. Please try uploading the image again, and I will be happy to help generate the alternate text for it.] ) is the resolution of the original image, [image: It seems there was an error in the image upload or the link provided. Please try uploading the image again or provide a valid URL, and I will assist you with generating the alternate text.]  is the number of channels, [image: The image shows the mathematical expression "p" raised to the power of "2".]  is the resolution of each patch. In addition to patches, ViT also use a learnable embedding [image: The text shows the mathematical notation "E" with a subscript "pos".]  for each patch to represent the relative position. Thus, the patch embeddings can be represented as in Eq. 5.

[image: The image displays a mathematical expression defining \( z_0 \) as the sum of a series of weighted matrices and a position embedding matrix. It is represented by \( z_0 = [x_1E, x_2E, \ldots, x_N E, E] + E_{\text{pos}} \), where \( E \) is an element of the real number space \(\mathbb{R}^{(P+1)\times D}\), and \( E_{\text{pos}} \) is an element of \(\mathbb{R}^{(N+1)\times D}\).] 

Assuming that there are [image: It seems there might be an issue with the image upload. Please try uploading the image again, and I will help create the alternate text for you.]  layers in the ViT, then in each layer, multi-head attention and MLP is applied to the input of each layer as shown in Eq. 6 and Eq. 7. The calculation of multi-head attention is explained in Eq. 4.

[image: Equation showing a mathematical formula: \( z_{\ell} = \text{MultiHead}(\text{LN}(z_{\ell-1})) + z_{\ell-1}, \ell = 1, \ldots, L \). This appears to describe a step in a neural network process involving multi-head attention.] 

[image: Equation showing a mathematical formula: \( z_{\ell} = \text{MLP}(\text{LN}(z_{\ell})) + z_{\ell} \), where \( \ell = 1, \ldots, L \).] 

Where [image: To generate alt text, please upload the image or provide a URL to it.] is the Layernorm operator (Wang et al., 2019). [image: A person wearing headphones, sitting at a desk with a laptop. A notebook and a pen are nearby, alongside a smartphone. The setting appears to be a casual, home office environment.] is applied before every block, and residual connections after every block.

The last step is to output the image features as calculated using 8

[image: Mathematical expression: y equals LN of z sub i superscript zero, labeled equation eight.] 




3.4 Transformer for time-series prediction

For time-series prediction, recurrent neural network (RNN) or LSTM are usually the first ones to consider. However, this type of models is hard to parallel because the models process the input of each timestamp in sequence order. Then, some studies adopted CNN to realize parallelization of the feature extraction. Nevertheless, CNN can only consider the input in a limited range. For long-term dependency modeling, CNN needs to increase the number of filters and the number of layers. Therefore, transformers based on the self-attention mechanism are applied for time-series prediction. It computes the relation between two timestamps in a bi-directional manner, which means it can be implemented in parallel.

The basic structure of a transformer used for sequence-to-sequence tasks includes encoder and decoder parts (Wu et al., 2020). Nevertheless, in this study, the task is to transform a sequence to some features. Thus, only the encoder part is used for the transformer. The encoder of the transformer is composed of an input layer, a positional encoding layer, and a stack of multi-head attention layers. The input layer maps the input time-series data to a vector through a fully-connected network. Positional encoding with sine and cosine functions is used to encode sequential information in the time series data by element-wise addition of the input vector with a positional encoding vector, which is the same as Eq. 5. Each multi-head layer is to calculate the attention coefficients between the image features of every two timestamps. Finally, there is an output layer that maps the output of the last multi-head attention layer to image features.





4 Baseline models and experiment settings

To validate the effectiveness of the proposed method, we compared it with other baseline models.



4.1 Baseline models

The three most commonly used models are implemented as the baseline models, i.e., convolutional neural network with linear regression (CNN-LR), CNN-LSTM, and vision transformer with transformer (ViT-T). The processing of seed information is the same for all baseline models and the proposed method.



4.1.1 Convolutional neural network with linear regression

CNN is a class of deep, feed-forward artificial neural networks. It was adopted widely for its fast deployment and high performance on image classification tasks. CNNs are usually composed of convolutional layers, pooling layers, batch normalization layers and fully connected layers. The convolutional layers extract features from the input images whose dimensionality is then reduced by the pooling layers. Batch normalization is a technique used to normalize the previous layer by subtracting the batch mean and dividing by the batch standard deviation, which can increase the stability and improve the computation speed of the neural networks. The fully connected layers are placed near the output of the model. They act as classifiers to learn the non-linear combination of the high-level features and to make numerical predictions. Detailed descriptions on each type of function can be accessed from Gu et al. (2018).

In CNN-LR, firstly, a CNN is built to extract features from a single image. Then the obtained features from time-series images are concatenated with seed features and then used as the input of a linear regression model. Since the linear regression model cannot detect the dependency in a time series, CNN-LR is used to show the influence of time-series features.




4.1.2 Convolutional neural network with long-short the memory model

Despite its popularity as a universal function approximator and easy implementation, RNN is faced with the gradient vanishing/exploding problem. In the training process of RNNs, gradients are calculated from the output layer to the first layer of the RNN. If the gradients are smaller than 1, the gradients of the first several layers will become small through many multiplications. On the contrary, they will become very large if the gradients are larger than 1. Therefore, it sometimes causes the gradients to be almost zero or very large when it reaches the first layers of RNNs. Consequently, the weights of the first layers will not get updated in the training process. Therefore, simple RNNs may not be suitable for very long time series. LSTM solves this issue by introducing the concept of gates. A common LSTM unit is composed of a cell, an input gate, an output gate and a forget gate. At each timestamp, the cell adjust its state value according to the current input and memory of previous steps. And the three gates regulate the flow of information into and out of the cell. Therefore, LSTM can extract features from long time series. Detailed explanations and calculations of each function can be accessed from Hochreiter et al (Hochreiter and Schmidhuber, 1997).

In CNN-LSTM, the first step is to extract features from a single image. Then the extracted features of images taken at different timestamps are treated as a time series. LSTM is employed to deal with the time-series features. The output obtained by LSTM is combined with seed features to get the yield prediction through a fully connected neural network.




4.1.3 Vision transformer with transformer

In ViT-LSTM, the image is processed using a ViT module to get the image representation. Then the time-series image features are used as the input of the LSTM module. The yield prediction is made based on the output of the transformer and the seed features.




4.1.4 Vision transformer with transformer

Different from the proposed method, in ViT-T, the image is not segmented into soil and plant parts. Thus only one ViT module is utilized to read images. Then the time-series image features are used as the input of the transformer. The yield prediction is made based on the output of the transformer and the seed features.





4.2 Experiment settings

The module for the seed combination information processing is the same for all baseline models. The seed combination is one-hot encoded and then connected to three dense layers of 16 neurons. Thus, the output embedding size of seed information is 16. Then the seed combination embedding is concatenated with the image embedding and the concatenated vector is connected with three dense layers of 128 neurons each, followed by a dense layer with one neuron to produce the final prediction. To avoid the overfitting issue caused by limited data, all models are using early stopping and dropout techniques. This encourages the network to learn more robust features by preventing individual nodes from becoming too specialized on a particular set of features. The dropout rate used for the dense layers is 0.25, except for the output layer which uses a linear activation function. The early stopping is used with the patience of 10 epochs. The time-series image processing part of the models is as follows.

In the CNN-LR model, the convolutional neural network (CNN) module uses the VGG-16 architecture, which consists of 13 convolutional layers and 3 fully connected layers (Simonyan and Zisserman, 2014). The linear regression module is applied with L2 norm regularization to prevent overfitting. The model expects the input to be a three-dimensional tensor of size (128, 128, 3) representing the image size and number of channels. The output of each time-series image from the VGG model is flattened and concatenated together. The concatenated image embeddings are connected with a dense layer (i.e., the LR module) of 256 neurons to extract features from the images. In CNN-LSTM, the CNN module is the same as that in CNN-LR. The output of time series images from the VGG model is processed by a LSTM module which has two bi-directional LSTM layers. Each LSTM layers contains 128 neurons. The output from the LSTM module is 128 neurons.

In the ViT-LSTM model, the Vision Transformer (ViT) module consists of two multi-head attention layers, with each layer having 3 heads. The output of the time-series images from the VGG model is then processed by same LSTM module as in CNN-LSTM. In the ViT-T model, the Vision Transformer (ViT) module consists of two multi-head attention layers, with each layer having 3 heads. The output of the time-series images from the VGG model is then processed by a transformer module, which also has 3 multi-head attention layers, each with 5 heads. The output from the transformer module is 128 neurons.

The proposed method uses two ViT modules, one to process the plant part of the image and another to process the soil part of the image separately. The ViT modules have the same architecture as that in the ViT-T model, with two multi-head attention layers, each with 3 heads, and a transformer module with 3 multi-head attention layers, each with 5 heads. The output embeddings from the plant and soil ViT modules have the same size of 128 neurons.

All models are trained using the mean squared error (MSE) loss function and the Adam optimizer with a learning rate of 0.001. 344 plots are used as the train set. 38 plots are used as the validation set. 68 plots are used as the test set.

Three metrics are used to assess the model performance, i.e., root mean squared error (RMSE), R squared value, and mean absolute error percentage (MAPE). The calculations are as in Eq. 9, Eq. 10 and Eq. 11.

[image: The formula for RMSE (Root Mean Square Error) is shown as: RMSE equals the square root of one over n times the sum of the squared differences between y and y-hat.] 

[image: Equation for R-squared: \( R^2 = 1 - \frac{\text{RSS}}{\text{TSS}} \), where RSS is the residual sum of squares and TSS is the total sum of squares.] 

[image: Mathematical formula for Mean Absolute Percentage Error (MAPE) displayed as: MAPE equals one over n times the summation of the absolute value of y minus y-hat over y.] 

Where [image: I'm unable to view the image you uploaded due to its low resolution. Please try uploading a clearer image or providing a description so I can help create alt text for it.]  is the number of samples, [image: Please upload the image or provide a URL so I can generate the alternate text for you.]  is the ground-truth yield, [image: Symbol \(\hat{y}\), representing the predicted value of a variable in statistics or machine learning. The hat symbol indicates estimation or prediction.]  is the predicted yield, [image: Please upload the image or provide a URL so I can generate the alternate text for you.]  is the sum of squares of residuals, and [image: It seems like there was a mistake, and the image did not upload properly. Please try uploading the image again, or provide a URL if it's hosted online. You can also add a caption for context if you like.]  represents the total sum of squares.





5 Results



5.1 Comparisons with baseline models

The performance of CNN-LSTM and the proposed method are compared by plotting their predicted values and the ground truth for the test set in Figure 6. The results show that, in general, the predicted values of the proposed method are closer to the ground truth than those of CNN-LSTM. Moreover, it is observed that the models tend to be conservative in making predictions. For instance, in two plots where the ground truth values are between 2200 kg/ha and 3000 kg/ha, both models predict values above 3140 kg/ha. The proposed method performs better than CNN-LSTM in these two plots. Additionally, while the predicted values of CNN-LSTM was between 3900 kg/ha and 4500 kg/ha for other plots, the predicted values of the proposed method shows more diversity, indicating its ability to perform better in extreme cases.

[image: Scatter plot comparing predicted yield to ground-truth yield in kilograms per hectare. Blue dots represent the CNN-LSTM method, and red crosses depict the proposed method. A red dashed line denotes perfect prediction alignment. Data points show some variance around the line.]
Figure 6 | Predicted values and the ground truth for the test set.

Table 2 presents the test RMSE, R-squared, and MAPE values obtained in this study. If the mean value of each combination of seed information is used as the estimate, the test RMSE, R-squared, and MAPE values are 570.596, 0.010, and 12.412%, respectively. The R-squared value of 0.010 indicates that using only the seed information yields slightly better results than using the mean values of all train plots. However, the introduction of CNN-LR improves the RMSE, R-squared, and MAPE by 11.7hance prediction accuracy.

Table 2 | Comparisons between baseline models and the proposed method.


[image: Comparison table of different methods for image, time-series, and seed processes. Modules include Segmentation, CNN, ViT, LR, LSTM, Transformer, and FCNN. Evaluation metrics are Test RMSE, Test R squared, and Test MAPE (%). The Proposed method has the lowest RMSE of 332.072, highest R squared of 0.664, and lowest MAPE of 6.340. Using the proposed method implies utilizing the stated modules for optimal process execution.]
ViT-LSTM uses ViT instead of CNN for image representation, which improves the RMSE by 6.2%, R-squared by 0.08, and MAPE by 0.3%, respectively. ViT-T is an upgraded version based on the CNN-LSTM structure with a multi-head self-attention mechanism, resulting in an 8.9% reduction in RMSE, a 0.1 increase in R-squared, and a 0.4% decrease in MAPE, respectively. However, the improvement of ViT-T compared to ViT-LSTM is not significant, possibly because of the short time series used in this study.

The proposed method, which includes two ViT modules and one transformer, significantly reduces the RMSE by 34.0%, increases the R-squared by 0.27, and reduces the MAPE by 2.5%. This indicates that the proposed model outperforms the other models and effectively captures the temporal and spatial dependencies in the data.

To validate the effectiveness of deep learning models in feature representation of images, this study conducts experiments on three linear regression-based models, namely Model 1, Model 2, and Model 3, using different input configurations. As presented in Table 3, Model 1 solely utilizes the one-hot encoded seed combination as the input, while Model 2 takes the latest image (i.e., the last image in the time series) and the one-hot encoded seed combination as input. Model 3, on the other hand, utilizes the time-series images and the one-hot encoded seed combination as input. In each model, all inputs are concatenated into one-dimensional vectors. Both Model 2 and Model 3 are linear regression models with the L2 norm regularization technique to prevent overfitting.

Table 3 | Comparison of three linear regression-based models.


[image: A table comparing three models across different processes and evaluation metrics. Model 1 uses image and time series modules; Model 2 adds the seed module. Model 3 uses all three modules: image, time series, and seed. Test RMSE scores are 665.729, 545.619, and 530.489 for Models 1, 2, and 3, respectively. Test R squared values are -0.348, 0.094, and 0.144, while Test MAPE percentages are 13.346, 10.993, and 10.816. The table includes a footnote explaining the module roles.]
The evaluation results reveal that Model 1 exhibits the poorest performance with a test RMSE of 665.729, a Test R-squared of -0.348, and a test MAPE of 13.346%. This performance is attributed to underfitting, which occurs when using only one input feature. By incorporating image data, Model 2 outperforms Model 1 and the Aver-seed method in Table 2, achieving a 3.0% improvement in RMSE and a 2.3% improvement in MAPE. Moreover, Model 3 further enhances performance by including time-series images, resulting in a 2.7% reduction in RMSE, a 0.05 improvement in R-squared, and a 0.18% improvement in MAPE. Therefore, even a simple generalized model can benefit from time-series prediction to improve performance. However, the performance of the linear regression-based models is significantly lower than that of the deep learning models presented in Table 2. This discrepancy is primarily due to two reasons. Firstly, the use of average RGB values may lead to significant information loss. Secondly, linear regression cannot extract the region-level features from the extensive pixel information like CNN or ViT. Hence, the results prove the importance of using large computer vision models for image processing in agriculture, which is a crucial area for future research on large datasets for various agricultural tasks such as disease detection, yield prediction, and plant status monitoring.




5.2 Influence of seed information

The influence of seed information (i.e., seed variety, treatment and seeding rate) on the model’s overall performance is also investigated. As shown in Table 4, four methods, i.e., average of all, average with seed information, proposed method without seed information, and the proposed method, are tested. Compared to using the mean values of all training samples as the estimate, using the mean values of each group can reduce the test RMSE from 585.127 to 580.59. However, the test MAPE of average with seed information is higher, which indicates that using the average with seed information only performs better in reducing the variance of the error. The improvement in R squared is 0.01. Compared to the proposed method without seed information, the proposed method can improve the RMSE by 13.1% and R squared by 0.11, respectively. It shows that using the neural network to process the seed information is more effective than just using the group average values. Besides, the model’s prediction accuracy relies more on the image information rather than the seed information.

Table 4 | Influence of seed information.
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To determine the effect of various seed variety, treatment and seeding rate on yield prediction quantitatively, an experiment is conducted by taking images of each test plot with all 51 combinations (i.e., 50 pseudo and one true combination) as the input. Thus, there are 51 predicted values for each test plot. The box plot is shown in Figure 7. The median value of a box can be used as an approximation for the prediction made using only images. The results, shown in a box plot, have interquartile ranges (IQRs) from 120kg/ha to 500kg/ha. A shorter IQR indicates the model extracts more information from the images, indicating its robustness to variations in seed information. This is because images taken at different stages of growth may contain additional information about the seed variety, treatment and seeding rate used. In other words, the image may contain some information that overlaps with the seed information. Comparing the true prediction with the box plot, 47 of 68 (i.e., 69.1%) test plots have true predictions within the boxes (i.e., between the 25 percentile and 75 percentile) while 21 of 68 (i.e., 30.9%) test plots fall outside the IQRs. It means the error is within 120kg/ha to 500kg/ha when replacing the true seed information with 50% pseudo combinations as the input for the test plots.

[image: A box plot diagram representing yield data in kilograms per hectare, with multiple colored boxes indicating different data sets. Each box displays the median, quartiles, and potential outliers shown as dots. The y-axis ranges from 1500 to 5500 kilograms per hectare, reflecting variations in yield.]
Figure 7 | Box plot of predictions using images of each plot with 51 combinations of seed variety, treatment and seeding rate. The red dots represent the true predictions which are predicted values using the images with the true seed combination. The box plot is the result of predicted values using the images with all 51 combinations, including 50 pseudo and one true combination. The 68 test plots are numbered from 0 to 67. (Note: The true prediction is not the ground truth.).

For Plot 14, 37, 41 and 67, the true predictions are outliers (below 1.5*IQR from the lower percentile) compared to all predictions, indicating the model extracts more information from the seed information for these plots. The details of Plot 14, 37, 41 and 67 are shown in Table 5. Plots 14, 37, and 41 have the lowest ground truth and predicted yield, but this does not necessarily indicate that “Saltro” treatments result in lower yields. It may simply mean that the model requires more information about the seed treatment to improve its predictions for certain plots.

Table 5 | Analysis of predicted values for Plot 14, 37, 41 and 67. (Unit: kg/ha).


[image: Table comparing true seed information, ground truth, true prediction, and box median value for four plots. Plots with Saltro: Resistant show lower ground truth and true prediction values compared to Non-treated control: Resistant, which has the highest values.]
It is also worth noting that for all plots, the outlier values are below the boxes, suggesting that seed information plays an important role in helping the model predict low yields with downward correction.





6 Discussion

Crop yield prediction help farmers estimate yield before a field is harvested. Additionally, it can serve as an essential tool for the decision-makers to make plans regarding food security. However, many factors both genetic and environmental, before and during the season, make it challenging to obtain an accurate prediction.

Yield prediction using images recently became a popular topic due to two reasons. The first reason is that images can store all the phenotype information of the plant as well as some environmental information (i.e., soil color, light condition, etc.). The second reason is that the development of deep learning techniques in computer vision has facilitated information extraction from plant-level or field-level images. Different from the research using satellite (Rembold et al., 2013; Schwalbert et al., 2020) or UAV (Zhou et al., 2017; Hassan et al., 2019) images, this study used high-resolution camera images of field level. This will help to improve the prediction accuracy since more pixels represent more information about the plant.

Instead of using individual static imagery, the proposed framework leverages the time-series images for yield prediction. The time-series images can monitor the plant status of plants at different time points and eliminate the influence of noise on the model performance. This has been supported by many researches (Clevers, 1997; Aghighi et al., 2018; Varela et al., 2021). In our case study, the single image method, i.e., CNN-LR, is compared with the time-series image method, i.e., CNN-LSTM. The results show that time-series images can help improve test RMSE by 6.2%, R squared by 0.9%, and MAPE by 0.5%. Since each plot only has about three images, the improvement could be more significant if additional images were provided. Besides, the traditional CNN-LSTM framework (Sun et al., 2019; Nassar et al., 2020) is upgraded to the ViT-T framework by introducing the attention mechanism. CNNs are efficient in image information extraction compared to fully connected neural networks due to shared kernel weights. However, CNNs only aggregate the global information in high-level layers. ViTs incorporate more global information than CNNs at lower layers, leading to quantitatively different image features. In terms of time-series prediction, although LSTM can capture the long-term dependencies of the time series, it get inputs in sequence and cannot be implemented in parallel. Thus, ViT-T is better in the global understanding of images, computation efficiency and parallel implementation. In our case, the images were taken from one side of the plot. The information density of the image in the far end and the near end are different. Since ViT segments images into small patches, it can assign different weights according to the region/patch and achieve better granularity. The comparison results show improvements of 8.9% in test RMSE, 0.1 in R squared and 0.3% in MAPE.

Besides, the proposed method segmented the image into the plant part and the soil part. By using two ViT modules, the plant status and the environmental influence can be modeled separately. Then the two parts are multiplied to obtain soybean yield. Compared to the one-ViT version, i.e., ViT-T, the proposed method significantly reduces RMSE by 34.0%, increases R square by 0.27 and reduces MAPE by 2.5%.

Another contribution of our work is the examination of the effect of seed variety, treatment and seeding rate on predictions, both across different models and within a single model. The results of the group average method indicate that the statistical importance of seed information is limited, as the test R squared is only 0.01. However, in the proposed method, seed information contributes 0.11 to R squared compared to using the same structure without seed information input. It means the neural network can extract more information from the seed information and combine it with the image features to make predictions. The examination of the effect of seed information within the proposed method reveals that the influence of seed treatments varies among different plots. Seed treatment information is particularly important for the prediction of low yields. Additionally, the wide-deep framework can be used to incorporate more types of input information, such as genetic information, in the future.




7 Conclusions

Yield prediction can provide more guidelines for farmers to decide on the management plan. The development of deep learning techniques has facilitated the application of sensing techniques in precision agriculture through various types of imagery. In this study, in order to catch more global interactions between image patches and timestamps, a transformer-based method is proposed to extract image information and time-series changes of soybean status. Besides, the original images are segmented into the plant part and soil parts. A wide-deep structure is adopted to incorporate other information, i.e., seed information, into prediction. Compared to other baseline models, the proposed model can reduce the RMSE by up to 40%. The effect of seed information on predictions, both across different models and within a single model, is also examined.

This study demonstrates the potential of a large-scale computer vision model for predicting crop yield using high-resolution time-series images captured by a hand-held device. However, certain limitations must be acknowledged. Firstly, the impact of time-series length on prediction accuracy remains unexplored due to the limited size of the dataset. While it is reasonable to expect that increasing the number of images during the growth stages for training would improve the model’s performance, redundant information may also impact the model’s generalization ability or require increased computation resources. Therefore, exploring these factors’ trade-offs is a meaningful avenue for future research. Secondly, the model’s input only considers limited seed information, but could potentially benefit from the incorporation of additional information such as genetic or soil characteristics. Finally, while the attention score for images and time series is calculated separately in this study, exploring the attention score between image patches at different timestamps may improve model performance.

Despite these limitations, the proposed large-scale computer vision model demonstrates the potential for extension to various applications critical to precision agriculture, including but not limited to, disease and pest detection, weed detection and control, and crop quality assessment. These tasks require sophisticated models capable of capturing fine-grained details in plant leaves and other relevant features. Addressing the aforementioned limitations and developing more efficient multi-modal methods for yield prediction using images and environmental information represent promising avenues for future research.
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Plant diseases pose a major threat to agricultural production and the food supply chain, as they expose plants to potentially disruptive pathogens that can affect the lives of those who are associated with it. Deep learning has been applied in a range of fields such as object detection, autonomous vehicles, fraud detection etc. Several researchers have tried to implement deep learning techniques in precision agriculture. However, there are pros and cons to the approaches they have opted for disease detection and identification. In this survey, we have made an attempt to capture the significant advancements in machine-learning based disease detection. We have discussed prevalent datasets and techniques that have been employed as well as highlighted emerging approaches being used for plant disease detection. By exploring these advancements, we aim to present a comprehensive overview of the prominent approaches in precision agriculture, along with their associated challenges and potential improvements. This paper delves into the challenges associated with the implementation and briefly discusses the future trends. Overall, this paper presents a bird’s eye view of plant disease datasets, deep learning techniques, their accuracies and the challenges associated with them. Our insights will serve as a valuable resource for researchers and practitioners in the field. We hope that this survey will inform and inspire future research efforts, ultimately leading to improved precision agriculture practices and enhanced crop health management.
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1 Introduction

More than 58% of the world’s population works in agricultural industries. In India, about 70% of small households depend upon agriculture (Government of India, 2020). A widespread disease in plants poses a potential threat to not only the livelihood of thefarmers but also to the ones consuming the crops. To protect the crop yield, early disease diagnostics are necessary. According to the Food and Agriculture Organization of the United Nations, plant diseases have increased in recent years due to climate change (Oerke and Dehne, 2004). This poses a serious risk to the livelihood of the population associated with farming and the consumers. This risk can be minimized by early detection of diseases in plants which is conventionally done by the visual inspection of a Plant. A diagnosis of a particular disease depends upon the knowledge and expertise of the inspector (Shirahatti et al., 2018). This becomes a challenge for small-scale farmers who do not have access to an expert as these methods are expensive and time consuming. In the past, scientists typically applied large-scale genetic screening and genomic approaches to identify genes and proteins of interest. These studies provided knowledge on plant behavior in response to an infection. Researchers gathered a large amount of data on the behavior and visuals of an infected plant and used digital image processing techniques to identify behavioral patterns of plants in response to a disease. Many researchers have proposed automatic recognition of disease in plants to overcome problems associated with unavailability of resources for disease detection (Oerke, 2006). With recent advancements in technology, researchers have made use of Machine Learning and Deep Learning to not only identify genes/proteins involved in plant-pathogen interactions (Danilevicz et al., 2022; Ilyas et al., 2022), but also to classify plant diseases from images of infected leaves, stems and roots. Machine Learning is the use and development of computer systems that are able to learn and adapt without following explicit instructions, by using algorithms and statistical models to analyze and draw inferences from patterns in data. Some traditional machine learning techniques that have been used in the past for disease detection in plants include Support Vector Machines (Rumpf et al., 2010), Naïve Bayes (Sperschneider et al., 2016), random forest (Ramesh et al., 2018) and K-nearest neighbors (Resti et al., 2022). However, these conventional Machine Learning approaches performed well under limited circumstances only (Nigam and Jain, 2019).

With the technological advancements in computational power, Deep learning, a subset of machine learning, has gained popularity among researchers for disease identification and classification. Deep Learning is a branch of machine learning composed of a number of algorithms that try to model high-level data abstractions using a deep graph with several processing layers containing linear and non-linear transformations. Deep Learning techniques, including Convolutional Neural Networks (CNN) for image classification, object detection and semantic segmentation have emerged as the most promising approaches given their ability to learn reliable and discriminatory visual characteristics. These techniques have shown success in various applications of computer vision such as instance segmentation and detection. However, deep learning is data-hungry and relies on large datasets consisting of hundreds and thousands of images.



1.1 Related work

Scientists are studying to address the problems related to plant disease and these studies indicate a rising need of an affable approach of identifying a plant disease through the use of a stand-alone device which would eliminate the need for an expert’s analysis (Mohanty et al., 2016). To accomplish this task, a large image dataset is required for Deep Learning models to train and classify healthy and diseased plants (Katal et al., 2022). To explore plant pathology studies and the application of deep learning techniques, we conducted a keyword analysis using terms such as “Plant,” “Disease,” “Defects,” “Computer vision,” “Machine Learning,” “Deep Learning,” and “Image Processing.” We performed searches on Scopus and extracted relevant research papers, which were used to generate a network visualization map for insights.

The network visualization map shown in Figure 1 was generated by VOSViewer (Van Eck and Waltman, 2011) bibliometric software illustrates a co-word visualization. Co-word visualization is a technique used to represent the relationships between the keywords in a dataset where each circle represents a keyword and each line represents the relationship between the keywords. The size of a point is directly proportional to the presence of that keyword in the analyzed data indicating its occurrence frequency.

[image: Color-coded network diagram showing the relationships between concepts in botany and deep learning. Purple nodes represent deep learning-related terms, and green nodes represent plant-focused terms. Connections illustrate topics such as disease control, plant diseases, genomics, and computational biology.]
Figure 1 | A co-word visualization illustrating the research landscape and interplay between computer vision, deep learning technologies and agricultural challenges through an analysis of keywords in research papers.

As seen in Figure 1, there are two main clusters: one related to deep learning and the other related to plants (botany). These clusters suggest that a significant amount of work has been done in the field of plant pathology using deep learning techniques.

The sub-clusters within the deep learning cluster contain keywords that are closely related to various topics such as cross-validation, neural networks, SVM, VGG16, and more. These keywords indicate specific areas or techniques within the field of deep learning that have been explored in the context of plant pathology. The second main cluster, focused on plants (botany) also consists of several sub-clusters that branch out of it. These sub-clusters represent keywords related to different aspects of plant pathology. For instance, there are keywords related to antibacterial activity, plant disease diagnosis, black rot, tomato leaf and others. By visually analyzing the co-word visualization, one can gain an intuitive understanding of the main themes or topics covered in the analyzed data. These clusters provide insights and highlight the relationships and importance of various concepts within the field of plant pathology and deep learning.

In this survey, we reviewed the most recent and most cited survey papers that are published since 2019. Table 1 shows notable contributions of 11 most cited survey papers as per Scopus index which considered different aspects of disease diagnostics in Plants while Table 2 represents the most recent surveys ranked on Scopus index. In 2019, a comprehensive survey on using deep learning for image-based plant disease detection was conducted by S.P. Mohanty (Kaur et al., 2019) in which various studies were performed for the automation of identification and classification of plant disease using machine learning and image processing techniques. Their survey demonstrates the effectiveness of convolutional neural networks (CNNs) in accurately identifying and classifying plant diseases. The key findings of the study include the superior performance of deep learning models compared to traditional machine learning approaches, the importance of dataset quality and diversity for training robust models, and the potential of transfer learning to overcome limited data challenges in plant disease detection. Kaur et al. did a similar survey on plant disease identification and classification through leaf images (Li et al., 2021) and discussed well-known deep learning architectures. The paper highlights the importance of automated disease detection in agriculture for early diagnosis and effective management. The key findings of their survey includes the use of deep learning models, such as convolutional neural networks (CNNs), for accurate disease identification, the significance of image preprocessing techniques, and the potential of transfer learning for improving classification performance in limited data scenarios. However, dataset limitations were not discussed very well.

Table 1 | Top most cited papers in recent years.


[image: A table listing research studies from 2019 to 2021 along with an entry labeled "Ours." Columns include Datasets, Dataset limitations, Research limitations, and Results Comparison. Each study is marked with either a check or a cross under these categories, indicating the presence or absence of these aspects in the research.]
Table 2 | Most recent papers.


[image: Comparison table listing studies from 2022 by Jackulin, Ghosh, Tugrul, Altalak, Rokhman, and Jharia. Columns include datasets, dataset limitations, research limitations, and results comparison. Checkmarks indicate presence; crosses indicate absence.]



1.2 Our contributions

In this paper, we conducted a survey about conventional and latest application of deep learning in plant pathology. It covers several sections of deep learning technologies in Plant Pathology such as the use of conventional methods of image classification, Artificial Neural Networks (ANNs), Convolutional Neural Networks (CNNs), Vision Transformers and other techniques. We also discuss related concepts, applications and limitations involved in its implementation. The main contributions of the study is described as below:

	• Present a comprehensive survey about prominent datasets used for plant disease identification and discuss their limitations

	• Review Image capturing and processing techniques for preparing datasets

	• Review conventional and deep learning techniques for the classification, detection and segmentation of diseases

	• Show challenges and open research directions for the implementation of Plant Pathology using Deep Learning



As shown in Figure 2, this survey is divided into four sections. In Section 2, we discuss datasets that have been used for plant pathology and their properties, image acquisitions, focus areas and discuss their limitations. In section 3, we described the methods that have been used by researchers, results and their limitations. Finally, in Section 4, we summarize and discuss future approaches.

[image: Flowchart depicting sections of a survey and related methods. On the left, gray boxes list survey sections: Introduction, Datasets, Methods, Future Trends, and Conclusions. On the right, yellow boxes titled Conventional Methods and Advanced Techniques detail steps like Image Acquisition, Preprocessing, Segmentation, Feature Extraction, Classification, Object Detection, and Vision Transformers.]
Figure 2 | The structure and organization of the paper at a glance.





2 Datasets

Datasets play a vital role in producing accurate results with deep learning models. A large number of images are required in a dataset for training deep learning models to classify diseases. It has been observed that the Plant Village dataset is the most popular publicly available dataset for researchers. However, researchers also opted for customized small datasets in the reviewed studies. These customized datasets were focused on classifying particular disease(s). A summary of datasets that are used by researchers in this survey has been presented in Table 3.

Table 3 | Summary of existing relevant datasets.


[image: A table compares six datasets, detailing their environment, plant species, disease classes, number of images, and annotation types. Datasets include Plant Village, PlantDoc, Digipathos, PlantCLEF2022, Rice Disease Image Dataset, and Rice Leaf Disease Dataset. Environments vary between lab-controlled and real-field. Plant species range from 1 to 80,000, with disease classes from 3 to 171. The number of images ranges from 120 to 4,000,000. Annotation types are mainly bounding boxes, except for PlantCLEF2022, which uses species labels.]


2.1 Plant village

The Plant Village dataset (Hughes and Salathé, 2015) was published in 2015 and it contains a total of 54,306 images depicting both healthy and infected leaves. Each image in the dataset is labeled with a unique identifier, plant species, and the disease or health status of the plant. The dataset is divided into predefined training and test subsets, encompassing 14 different crops that are further segregated into 38 classes. Notably, tomato is the most common species in the dataset, accounting for 43.4% of the images.

The Plant Village dataset offers a diverse range of plant diseases, with a total of 26 different diseases represented in the dataset. Early blight and late blight are the most common diseases in the dataset, accounting for 15.6% and 14.9% of the images, respectively. The availability of a large number of labeled images, coupled with the diversity of crops and diseases, makes the Plant Village dataset an important resource for researchers and developers working on plant disease detection models. With its well-defined training and test subsets, this dataset provides a robust means of training and evaluating machine learning models, and could ultimately lead to improved plant disease diagnosis and control in agricultural settings. The distribution of the number of images has been shown in Figure 3. Figure 4 contains sample images of Apple Scab disease from the Plant Village dataset.

[image: Three green leaves showing varying degrees of black spot disease damage are displayed against a purple background. The spots are distributed differently across each leaf, indicating the progression of the disease.]
Figure 3 | Sample images showcasing instances of Apple Scab disease within the Plant Village dataset.

[image: Bar chart titled "Plant Village Dataset" displaying various plant conditions categorized as either healthy or affected by disease. Tallest bars are observed for "Grape-Black Rot" and "Tomato-Mosaic Virus", indicating higher counts compared to other categories.]
Figure 4 | Visual representation of class distribution in the Plant Village dataset, revealing skewed proportions where certain classes dominate a significant portion while others occupy a smaller segment.




2.2 PlantDoc

PlantDoc (Singh et al., 2020) dataset was created in 2019 and it is composed of 2,598 images depicting both healthy and infected leaves. This dataset was compiled from a variety of sources including images from Google and Ecosia and it features 13 different crops with 17 associated diseases. One notable characteristic of the PlantDoc dataset is that the images were captured under real-field conditions, providing a more realistic representation of the challenges faced by plant disease detection models. Despite its potential usefulness, the PlantDoc dataset has some limitations that must be considered. Due to the lack of domain expertise and knowledge, some of the images in the dataset are incorrectly classified, which impact the performance of machine learning models trained on this dataset. Figure 5 contains sample images from the PlantDoc dataset.

[image: Four images of soybean plants and leaves. The first shows vibrant green leaves with visible veins. The second displays young soybean plants growing in sandy soil. The third presents a single trifoliate leaf on graph paper for scale. The fourth image shows a cluster of three leaves with prominent venation.]
Figure 5 | Sample images showcasing in-the-wild and lab-controlled instances of soybean within the PlantDoc dataset.




2.3 Digipathos

Digipathos dataset (Barbedo et al., 2018) consists of 3,000 images of cash crops namely rice, coffee, soybeans, beans, maize, wheat and other fruits and classifies 171 diseases among these classes. A major portion of images in this dataset is also acquired under a lab-controlled environment while a small portion contains real-field images. Figure 6 contains sample images of Diplodia disease in Digipathos Dataset.

[image: Four images of leaves with various stages of disease placed against a patterned grid background with color calibration charts. The leaves exhibit visible damage and discoloration.]
Figure 6 | Sample images showcasing instances of Diplodia disease within the Digipathos dataset.




2.4 PlantCLEF2022

PlantCLEF2022 (Goëau et al., 2022) is an extensive dataset comprising over 4 million images and includes a wide range of 80,000 plant species. This dataset is compiled from two distinct sources; a trusted set built from the Global Biodiversity Information Facility (GBIF) and a noisy web dataset obtained from search engines like Google and Bing. In order to overcome balancing issues, the number of images are limited to a maximum of 100 per class with an average of 36.1 images per class. This large-scale dataset offers significant potential for the development and testing of machine learning models for plant species classification as it provides a diverse range of images that accurately represent the variation in plant species found in nature. The availability of a trusted set of images from the GBIF also ensures the reliability and accuracy of the dataset, making it a valuable resource for researchers.




2.5 Rice Disease Image dataset

Rice disease dataset (Deng et al., 2021) contains 3,355 images of healthy and infected leaves of rice plants. These images are captured with white background and are not real-field condition images. The images in this dataset are divided into 3 disease classes such as Brown spot, Hispa and Leaf Blast. Figure 7 contains sample images of Brown Spot diseased rice leaves in the Rice Disease dataset.

[image: Four close-up images of green plant leaves with subtle differences in color and texture. The first and third images show uniformly green leaves. The second image displays a small brown spot on the leaf. The fourth image has a more pronounced yellow tint with a brown marking.]
Figure 7 | Sample images showcasing instances of Brown Spot disease within the rice disease dataset.




2.6 Rice Leaf Disease dataset

The Rice Leaf Disease Image dataset (Vbookshelf, 2019) is a compact yet well-balanced collection of 120 images of infected rice leaves. This dataset is composed of three distinct disease classes: Bacterial Leaf Disease, Brown Spot Disease, and LeafSmut with each class containing 40 images. Although small in size, it serves as a valuable resource for researchers in the field of rice disease detection, offering a diverse set of real-world images that can be used to train and evaluate machine learning models.




2.7 Discussion and limitations

Deep learning requires datasets with a large number of images to yield better accuracy. In order to increase performance, a deep learning model requires a large dataset with correct annotations. Due to limited expertise of an annotator, some of the infected areas of the leaf go unmarked in the image or they get wrongly annotated. This has been reported by the curators of the PlantDoc dataset (Singh et al., 2020) as well. Another issue encountered in annotating datasets is that certain diseases lack well-defined boundaries and the diseased tissue blends into the healthy tissues. Due to it, annotating boundaries of those diseases becomes difficult. Due to limited expertise and complex nature of these cases, the annotations may not accurately capture the extent of the disease. This adds to the complexity of dataset annotation and further impacts accuracy and learning of deep learning classifiers.

When working with datasets comprising real-field images, the issue of image illumination becomes a significant concern (Barbedo, 2016). Various factors related to image capture conditions, including specular lighting and overcast conditions, have a considerable impact on the visual attributes of the images. These conditions affect the way light interacts with the objects in the scene, resulting in variations in illumination. Consequently, datasets containing real-field images need to address the challenges arising from these illumination variations. The presence of specular lighting can introduce intense highlights or reflections, distorting the appearance of objects. Similarly, overcast conditions can lead to diffuse and even lighting, which alters the overall image characteristics (Shoaib et al., 2022). Therefore, researchers and practitioners working with such datasets must consider these aspects to ensure accurate and reliable analysis and interpretation of the image data.

When working with datasets that consist of a number of classes, it is essential to include images from all classes in a well-balanced proportion. A balanced dataset ensures that each class is represented adequately, thereby minimizing bias and allowing for more accurate and comprehensive analysis. By incorporating images from all classes in a balanced manner, the dataset can capture the full spectrum of visual characteristics and variations present in the real world. This inclusivity enables the development and evaluation of models or algorithms that are robust and adaptable to diverse conditions. Additionally, a balanced dataset prevents the dominance of certain classes, ensuring that the model’s performance is not skewed towards specific categories. A balanced dataset enhances the robustness of models, enables accurate analysis, and reduces bias by capturing the diverse visual characteristics present in the real world. Plant Village is a fairly big dataset but it has been observed in Figure 3. that this dataset is imbalanced i.e., it contains skewed class proportions where some classes take up a major portion of a dataset while a minor portion consists of other classes. This impacts the ability of deep learning models to learn significant features that distinguish a particular class from other classes (Ahmad et al., 2021). This lack of diversity in the Plant Village dataset results in over-fitting of data while learning (Ahmad et al., 2021). Other datasets such as Digipathos and Rice Disease Dataset contain very small amount of images which focus on particular diseases in certain plant species. This issue is addressed by Karam C (Karam et al., 2023). by proposing a novel GAN-based pipeline for data augmentation. This increases a small dataset size four-fold and enhances the performance of the lightweight object detection model by more than 38% points.

In a separate study (Barbedo et al., 2018), J. Barbedo emphasized the immense challenge associated with creating a comprehensive database for classifying plant diseases. This challenge primarily stems from the requirement of amassing a large and accurately annotated image collection encompassing all diseases related to plants. Annotating such datasets is an arduous task that demands significant labor and meticulous attention to detail. The process involves carefully labeling each image with precise information regarding the specific disease it represents. Due to the vast diversity of plant diseases and the complexity of their visual manifestations, achieving accurate annotations becomes crucial for training reliable disease classification models. Thus, the development of a comprehensive database for plant disease classification necessitates dedicated efforts in acquiring and meticulously annotating a wide range of images depicting various plant-related diseases.

In conclusion, deep learning models require large and accurately annotated datasets to achieve better performance and accuracy. However, the annotation process is challenging due to limited expertise, leading to missed or incorrect annotations of infected areas in images. Additionally, some diseases lack well-defined boundaries, making boundary annotation difficult. These challenges in dataset annotation further impact the accuracy and learning of deep learning classifiers. Moreover, when working with datasets containing multiple classes, it is crucial to ensure a balanced representation of all classes to minimize bias and enable comprehensive analysis. Imbalanced datasets, such as the Plant Village dataset, can lead to overfitting and hinder the model’s ability to learn distinguishing features. To address dataset limitations, innovative approaches like GAN-based data augmentation have been proposed, increasing dataset size and improving model performance. Creating a comprehensive database for plant disease classification requires dedicated efforts in acquiring and meticulously annotating a wide range of images depicting various plant-related diseases.





3 Methods

Plant disease identification methods are classified into 1) Conventional (Hand-Crafted features) and 2) Deep learning based methods.



3.1 Conventional methods

Conventional methods of object detection rely on hand-designed features such as Haar-like features (Zaidi et al., 2022), and Histogram Of Gradients (HOG) (Dalal and Triggs, 2005) and SIFT (Piccinini et al., 2012). Before extracting features, it is crucial to find the location or region, therefore, region selection methods are employed first to identify the regions with objects. It is also challenging because the same object can have different scales in images and could be at any location in the image. Therefore, whole image is inspected using a sliding window method and feature extraction techniques are applied on these regions before forwarding them to later stages.

Previously, it was very challenging to design a global feature extractor which can work efficiently and accurately for all types of objects. Mostly, features were designed for specific object categories, for instance, HOG features were designed for human detection. Finally, after the feature extraction, these features are fed to some classifier such as Support Vector Machines (SVM) (Malisiewicz et al., 2011), or AdaBoost (Freund and Schapire, 1997) to localize objects and assign them appropriate class categories in the image. Support Vector Machines (SVM) are powerful classifiers known for their ability to handle high-dimensional data and complex decision boundaries. They can effectively separate data points using a hyperplane and are less prone to overfitting. SVMs perform well in scenarios with limited training data and can handle large feature spaces. However, SVMs can be computationally expensive, especially when dealing with large datasets and may struggle with noise and outliers. On the other hand, AdaBoost(Adaptive Boosting) is an ensemble learning method that combines multiple weak classifiers to create a strong classifier. It is particularly effective in handling complex datasets with overlapping classes. AdaBoost can focus on misclassified instances and iteratively improve classification accuracy. It is relatively simple to implement and less prone to overfitting. However, AdaBoost can be sensitive to noisy data and outliers, and its performance heavily depends on the quality and diversity of the weak classifiers used.

Conventional methods require tremendous human effort and engineering to build a powerful object detection system. Furthermore, the region extraction methods also take huge computations because there are no region proposal mechanisms. Instead, regions are extracted from the whole image using the sliding window as described earlier. Such an approach lacks scalability and responsiveness, hence limiting the applicability in various scenarios where real-time processing is crucial. Moreover, these hand-designed features suffered from various commonly existing variations in images, such as illumination variation, and object pose variations. Most of the disease identification methods based on hand-crafted features consist of some common processing stages as shown in Figure 8. The identification process begins with acquiring digital images via image capturing device. Images are then pre-processed using image transformation, resizing and filtering etc. Then images are segmented using a suitable segmentation technique such as clustering, edge detection, region growing to extract the infected part of a plant. Later, features of interest such as color, shape or texture are extracted via feature extraction techniques. After that, classifiers are used to classify the images according to a specific problem.

[image: Flowchart of five stages for leaf disease detection: Image Acquisition, Preprocessing, Segmentation, Feature Extraction, and Classification. Each stage is visually represented with an icon. Example images show a leaf with spots progressing through each stage, ending with Classification labeled as Results.]
Figure 8 | Hand-crafted features framework: image acquisition captures the input. Preprocessing enhances image quality. Segmentation identifies regions of interest. Feature extraction algorithms extract descriptive hand-crafted features. Classification utilizes these features for labeling and predictions.



3.1.1 Image acquisition

Most of publicly available datasets (Table 3), contain images that are acquired using hand-held devices such as cameras. For the most of articles surveyed, camera has been used for acquiring images and creating databases. However, drones and Unmanned aerial vehicle (UAV) have also been used to capture aerial images of maize and weed in soybean plants by Ferreira D. S (dos Santos Ferreira et al., 2017). and Stewart E. L (Stewart et al., 2019). respectively. Lowe A (Lowe et al., 2017). used hyperspectral imaging to capture images which allowed them to capture wavelength beyond the limited range of human vision.




3.1.2 Image preprocessing

Acquired images are preprocessed to highlight the area of interest i.e. diseased area of a plant. This involves image resizing (Mokhtar et al., 2015; Zhang et al., 2018; Hang et al., 2019; Militante et al., 2019), colorspace conversion (Al-Hiary et al., 2011; Mokhtar et al., 2015; Brahimi et al., 2017) and applying filters to reduce noise in an image to yield better outcomes while segmenting an image. Figure 9 shows results of Grey Scaling and Soft-Edging against an original image.

[image: Three versions of a leaf are displayed side by side. The first image shows the original leaf with green and brown tones. The second is a grayscale version, maintaining the leaf's texture and details. The third image, labeled "Soft Edges," shows the leaf with slightly blurred outlines, still in grayscale.]
Figure 9 | Image preprocessing: original image, greyscale conversion and soft-edged representation (Left to right).




3.1.3 Image segmentation

Image segmentation is the process of categorizing an image into different regions based on the characteristics of pixels to identify objects or boundaries. It is the first step of most image-based tools for leaf analysis in which leaf is isolated from the background. There are several techniques that are used for image segmentation such as K-Means, Otsu thresholding, color-space conversions etc. In K-Means clustering, similar data points are grouped together while Otsu thresholding determines an optimal threshold for separating background and Object. Color-space conversions, edge detection and region growing are some of the techniques that are used for segmenting an image. Figure 10 shows results of image segmentation techniques such as Otsu Thresholding, Background Extraction and Extraction of foreground or object.

[image: Four images showing a leaf. The first is the original, mottled with green and brown. The second applies Otsu thresholding, creating a black and white contrast. The third shows the extracted background, primarily white with a leaf silhouette. The fourth is the extracted object, focusing on the leaf alone.]
Figure 10 | Visual depiction of image segmentation techniques: Otsu thresholding, background extraction, and foreground/object extraction, showcasing the distinct results achieved through each method.




3.1.4 Feature extraction

Feature extraction is the process of extracting properties of a leaf such as its shape, size, texture, edges and color etc (dos Santos Ferreira et al., 2017). performed the feature extraction from each segment of the dataset using a collection of shape, color, texture and image orientation extractors implemented in common image processing toolboxes and libraries such as MATLAB Image Processing Toolbox, OpenCV, and Dlib (Cope et al., 2012). presented a review on image processing methods that have been applied in recent years to analyze leaf shape, venation, leaf margin features, leaf texture. Feature extraction is used in conventional object recognition. However, for deep learning, feature extraction is not required since deep learning models generates these features themselves. Islam M (Islam et al., 2017). has used image segmentation with multiclass SVM on RGB based features of 300 images acquired from Plant Village dataset and achieved an accuracy of 95% to classify 2 diseases; late blight and early blight in potato leaves.




3.1.5 Classification

Classification is the process of analyzing image features. It classifies the image data into categories. This process is categorized into supervised, unsupervised and semi-supervised classification. Supervised classification is a machine learning paradigm that deals with data available in the form of labelled examples. In supervised learning, training data consists of input values and desired output values. While in unsupervised learning, algorithm figures out patterns from unlabeled data. Some of the popular classification techniques are Logistic Regression, K-nearest neighbor, support vector machine (SVM) and artificial neural networks. SVM were implemented for sugar beet disease (Rumpf et al., 2010) and depending upon severity of disease, classification accuracy of 65% was achieved when 1-2% area of the leaf was diseased and accuracy increased to 90% when diseased area of the leaf was 10%-15%. Pattanaik A. P (Pattanaik et al., 2022). proposed an approach where late blight disease was detected using “Improving Localization and Classification with Attention Consistent Network” (ILCAN) approach and achieved 98.9% accuracy which was better than the accuracy of 91.43% achieved by Grad-CAM++ (Chattopadhay et al., 2018).





3.2 Detection and Identification using advanced techniques

Artificial neural network (ANN) involves a collection of connected units called neurons. ANN is composed of 3 types of layers which contains these neurons named as input, hidden and output layer. The design of ANN is inspired by that of a biological brain. Like a brain, a neuron in ANN receives an input, processes it and outputs it to the neurons of the next layer. Advancements in computing power enabled to design deeper ANNs especially neural networks based on convolutional layers called convolutional neural networks (CNNs). The convolutional layer’s parameters contains a set of learnable filters called kernels. A CNN consists of four layers i.e. input, convolutional and pooling, fully connected layer, and output layer. Similarly, these type of approaches were applied to plant disease classifications. Mohanty S. P (Mohanty et al., 2016). used CNNs to classify 26 disease in 14 crops and achieved an accuracy of 99.35% on testing data. However, their accuracy dropped to 31% when classifier was tested on images that were different from the training dataset.



3.2.1 Object detection based on deep learning

Object detection deals with the classification as well as localization of an object in an image. Object localization is the identification of an object in an image and drawing a bounding box around it. In deep learning, object detection is achieved using supervised learning by providing annotated images. Convolutional neural networks (CNNs) are used for object detection due to their property of high feature representation. Two main types of object detectors are 1) Two-stage object detectors and 2) One-stage object detectors. Two-stage detectors provide high localization and recognition accuracy whereas one-stage detectors have high inference speed.

In two-stage object detectors, detection is divided into two stages. First stage deals with the localization of an object and the second stage deals with the classification of the object that has been localized. Object localization is the identification of an object and then drawing a bounding box around it. While two stage object detectors provide a high accuracy in detection, it comes with a trade-off of slow detection speed. Some of the most popular CNNs include Region-based Convolutional Neural Network (R-CNN) (Altalak et al., 2022), Faster R-CNN (Ren et al., 2015) and Mask R-CNN (He et al., 2017).

R-CNN deep learning method for detection of objects proposed by Ross G (Altalak et al., 2022). In R-CNN, region proposals or regions of interest are extracted using a selective search algorithm. Selective search algorithm groups regions together based on their pixel intensities. Then these regions are re-scaled into the input image size and features from each candidate region are extracted with the help of convolutional neural networks. Then a support vector machine (SVM) classifier is used to detect the presence of an object within the extracted region. Then, output is generated in the form of a bounding box using a linear regression model. This process has been explained in Figure 11.

[image: Diagram illustrating a neural network architecture for image processing. It starts with an input image, which undergoes warping. The image data progresses through multiple layers of convolutional networks, leading to outputs for classification and bounding box regression. Arrows indicate data flow between components.]
Figure 11 | An overview of R-CNN architecture: RoI warping extracts regions of interest (RoIs) from the input image. A convolutional neural network (CNN) processes these RoIs to extract features. The bounding box regressor refines object locations and sizes. Classification assigns labels to the objects based on the extracted features.

Faster R-CNN is an end-to-end deep learning detector which replaces region proposal algorithms such as selective search, multiscale combinatorial grouping or edge boxes with CNN called Region Proposal Network (RPN). This improves the detection speed of Fast R-CNN. In this approach, an image is fed into the CNN which produces a feature map. This feature map is then provided as an input to the RPN which provides multiple object proposals using a sliding window on the provided feature maps. In the sliding window, the network generates reference boxes of different dimensions. Class-specific features are selected from these reference boxes. For each reference box RPN predicts the objectiveness probability and bounding box regressor to adjust the box to fit the object. RPN then returns multiple object proposals along with their objectiveness score. Then the ROI pooling layer is applied to extracted object proposals to transform them into a fixed dimension. The feature vectors are then fed into a fully connected layer including a softmax layer for categorization and linear regression layer for bounding box generation. This process has been illustrated in Figure 12.

[image: Diagram illustrating the process of object detection in a neural network. It starts with image input leading to convolutional layers for feature extraction. The resulting feature maps undergo ROI projection, followed by ROI pooling. The pooled results are passed to multi-class classification and bounding box regression to generate final detections for each region.]
Figure 12 | An overview of faster R-CNN object detection pipeline. The RPN generates region proposals, while ROI Projection maps these proposals to feature maps. Finally, ROI Pooling extracts fixed-length feature vectors for classification and bounding box regression for object detection.

Mask R-CNN (He et al., 2017) deals with image instance segmentation and is based on the R-CNN family of networks, which are a popular object detection method. R-CNN performs a pixel-level segmentation and decides the probability of it being a part of an object. Like Faster R-CNN, it also uses RPN but it is differentiated by its three outputs for individual object proposals which include a bounding box offset, a class label, and the object mask. Mask R-CNN uses an RoIAlign layer instead of a RoI pooling layer to preserve spatial information and avoid misalignment in the RoI pooling layer resulting in increase in its detection accuracy. RoIAlign layer uses binary interpolation for feature map creation and evaluates feature values at each sampling point.

Object detection itself is a complicated problem as it contains various components and engineering. These components rely on image classification networks as backbones. In other words, these backbones act as the feature extraction network for the object detection framework. Some of the most prominent backbone networks include VGG (Simonyan and Zisserman, 2014), EfficientNet (Tan and Le, 2019), MobileNet (Howard et al., 2017), Inception (Szegedy et al., 2015) and ResNet (He et al., 2016).

VGGN is a CNN based architecture which is similar to AlexNet but expands its depth to 16-19 layers. Initially, the success in deep learning was associated with the depth of the network i.e., increasing the number of layers tends to increase the performance. Mainly, the constraint was the availability of computation power. VGG solved this problem by reducing the kernel size. Previously, using a kernel size of 7 x 7 was the norm. Authors of VGG showed that having three layers with 3 x 3 kernels has the same exposure as that of 7 x 7 with only half the trainable parameters. Moreover, having 3 layers meant it had 3 more non-linear activations as compared to one layer with kernel size of 7 x 7. Overall, VGG uses the kernel size of 3 x 3 and pooling kernel of size 2x2 which significantly improves its performance while having a deeper network structure. VGG16 and VGG19 are the most popular variations having 16 and 19 layers respectively. Specifically, VGG16 contains 13 convolutional layers and 3 fully connected layers and has an extensive network of about 138 million parameters.

The bottleneck in the performance gain of CNNs was the computational requirements. InceptionNet (Szegedy et al., 2015) addresses this issue by reducing the computational complexity by introducing the 1 x 1 convolutional layers. Hence, increasing the extent to which the network’s depth can be increased. Moreover, InceptionNet won the prestigious ILSVRC challenge in 2014, which is an image classification benchmark based on ImageNet (Deng et al., 2009) dataset having 1000 classes. Furthermore, InceptionNet is built upon the basic Inception module which contains parallel layers having 1 x 1, 3 x 3, and 5 x 5 kernel sizes, therefore having the capability to capture information with different spatial exposures simultaneously. InceptionNet was further improved by introducing the concept of batch normalization which improved the training times by InceptionV2 (Ioffe and Szegedy, 2015). The most characteristic feature of InceptionNet is its huge depth as compared to the predecessors while having only a partial number of trainable parameters i.e., 6.7 Millions.

EfficientNet (Tan and Le, 2019) is a CNN architecture which was introduced in 2019, that achieves high performance while being computationally efficient. It uses compound scaling to balance accuracy and efficiency by scaling the depth, width, and resolution of the network. As compared to EfficientNet, MobileNet (Howard et al., 2017) is a lightweight CNN architecture designed for mobile and embedded vision applications. It reduces computations using depth-wise separable convolutions, achieving a good balance between accuracy and efficiency for resource-constrained devices.

Up until the success of InceptionNet, it was known that increasing the depth of CNN architectures has a directly proportional relation with the performance. However, it was shown by Kaiming He et al. (2016) that this direct relation is not linear, and the performance starts getting saturated after increasing the depth to some extent. If the network depth is further increased, the performance starts decreasing. They further showed that the major cause of drastic performance degradation was vanishing gradients. This means that as the network depth increases, it gets more challenging to back propagate the error through the large number of layers where the gradient ultimately vanishes, and the weights of the layers stop updating according to the calculated error. To solve this problem while being able to build deeper networks, they proposed a simple yet clever way to preserve the original information by introducing the concept of skip connections. Skip connections introduced a parallel path that bypasses the convolution block and is added again with the output of the convolution block as shown in Figure 13. This simple technique helped construct ResNet architecture with depth of 101 and even 152.

[image: Diagram comparing two neural network architectures labeled A and B. Both start with an Input layer followed by a series of Batch Normalization, 3x3 Convolution, and ReLU layers. Architecture B additionally includes a 1x1 Convolution layer in its residual connection, whereas architecture A directly connects back to the ReLU.]
Figure 13 | Comparison of ResNet residual blocks: (A) Residual block without 1x1 convolution, and (B) Residual block with 1x1 convolution. The addition of the 1x1 convolution in (B) enhances the representation power and allows the network to learn more complex features, leading to improved performance in deep learning tasks.




3.2.2 Disease identification based on Image classification

As discussed earlier, image classification is a fundamental task in computer vision. Therefore, a number of methods have utilized image classification for plant disease identification as shown in Table 4.

Table 4 | Comparison of image classification models and results.


[image: A table comparing datasets, models, and accuracies for plant disease detection. The image details datasets like Plant Village and Custom used from 2016 to 2022. Models include AlexNet, GoogleNet, CNN, and others, with accuracies ranging from 91.7% to 99.53%. Subjects include various crops, leaves, and disease classes, ranging from 1 to 38.]
Ahmad (Ahmad et al., 2020) used VGG16, VGG19, ResNet and InceptionV3 (Szegedy et al., 2016) and fine-tuned the network to get optimal results on tomato leaves dataset containing images of both types; lab-controlled and real-field, and classified 6 disease classes. As per their results, InceptionV3 yielded an accuracy of 99.60% on lab-controlled images and 93.70% on images captured in-the-wild.

Mishra S (Mishra et al., 2020). proposed a deep learning based approach for disease recognition in corn plants on a stand-alone device such as a smartphone or Raspberry pi. They trained their model on Intel Movidius system chip and were able to achieve an average accuracy of 98.4%.

Militante (Militante et al., 2019) used CNN on plant village dataset to yield an average accuracy of 96.5% on classification of 4 types of grape leaf diseases, 4 types of corn leaf disease, 4 types of apple leaf disease, 6 types of sugarcane diseases and 9 types of tomato leaf diseases. The dataset consisted of 35,000 images from plant village and testing was done on 1,000 images taken in-the-wild.

Hang J (Hang et al., 2019). used VGG16 with inception and Squeeze-and-Excite Module to classify 4 diseases in apple, cherry and corn and yielded an accuracy of 91.7% by generalizing the AI Challenger dataset.

Zhang X (Zhang et al., 2018). were able to achieve 98.9% and 98.8% accuracy using improved deep neural network architectures; GoogLeNet (also known as InceptionV1) (Szegedy et al., 2015) and Cifar10 respectively. They reported the possibility to improve recognition accuracy by adding Relu function, increasing diversity of pooling operations and including adjustments to the model parameters.

Ferentinos (2018) used AlexNet (Krizhevsky et al., 2017), AlexNetOWTBn (Krizhevsky, 2014), GoogLeNet and VGG on the Plant Village dataset and yielded an accuracy 99.53% on classifying 38 classes in 25 different plant species.




3.2.3 Disease identification based on object detection

Object detection encompasses both the categorization and positioning of an object within an image. Localization refers to the process of recognizing an object in an image and delineating it with a bounding box. In deep learning, object detection is accomplished through supervised learning, where annotated images serve as training data. R-CNN (Girshick et al., 2014), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015), YOLO (Redmon et al., 2016) and Single shot MultiBox Detector(SSD) (Liu et al., 2016) are the most popular CNN based object detection algorithms. Object detection has been used in plant disease identification to detect presence of a disease in the provided image of a plant. Faster R-CNN were used with VGG-Net and ResNet for identification of pests and tomato diseases and mAP of 85.98% was achieved to classify 9 categories by Fuentes A (Fuentes et al., 2017). Similarly, Ozguven M (Ozguven and Adem, 2019). proposed a method for detection of beet leaf spot disease by optimizing parameters of CNN and classification rate of 95.48% was achieved. Zhou G (Zhou et al., 2019). proposed a method for fast detection of rice blast, bacterial blight using fusion of FCM-KM and Faster R-CNN to achieve an accuracy rate of 97.2%. Ina latest research, Xie X (Xie et al., 2020). implemented Faster R-CNN on the grape leaf disease dataset by utilizing InceptionV1, ResNet V2 and achieved accuracy of 81.1%. Table 5 provides a concise overview of various object detection methods and their corresponding results.

Table 5 | Object detection methods and results.


[image: Table showing the performance of different models over various years. In 2017, Faster R-CNN, VGG, and ResNet achieved 85.98% mAP with 9 disease classes. In 2019, Faster R-CNN had 95.48% accuracy with 1 class, and Faster R-CNN with FCM-KM had 97.2% accuracy with unspecified classes. In 2020, Fast R-CNN with InceptionV1 and ResNet V2 achieved 81.1% accuracy across 4 classes.]



3.2.4 Disease identification based on image segmentation

Image segmentation in plant disease diagnostics is the categorization of semantic and instance segmentation of diseased and healthy area. It not only provides details of location and category of the segmented region but also provides properties such as area, length and outlines. A summary of image based segmentation studies is shown in Table 6. Image segmentation is further divided into two main architectures namely Fully Convolutional Networks (FCN) and Mask R-CNN. FCN deals with implementation of locally connected layers only. This excludes the dense layer which results in less trainable parameters which lead to faster training of the network. A simple Fully Convolution Network for Image Segmentation has been shown in Figure 14. To compensate the lost information during down sampling, skip connections are also utilized in some FCNs e.g., U-Net (Ronneberger et al., 2015). U-Net is an encoder-decoder structure which introduces a layer-hopping connection and fuses the feature map from one encoder’s layer to its corresponding decoder layer. A modified version of U-Net was utilized by Lin K (Lin et al., 2019). to segment cucumber powdery mildew leaves to achieve an average accuracy of 96.08%.

Table 6 | Image segmentation methods and results.


[image: Table showing segmentation models and their results from 2019. Modified U-Net achieved 96.08% accuracy on cucumber powdery mildew. Mask R-CNN reached 96% accuracy on northern leaf blight. Mask R-CNN with ResNet-101 achieved 99.64% mAP on tomato diseases.]
[image: A schematic diagram of a convolutional neural network (CNN) shows the process of leaf image segmentation. The input layer with leaf images leads to multiple layers with increasing and then decreasing dimensions, labeled with numbers like ninety-six and four thousand ninety-six. Arrows indicate the forward inference and backward learning processes. The final output layer displays a segmented leaf image with pixel-wise predictions.]
Figure 14 | An illustration of the functionality of a straightforward Fully Convolutional Network (FCN) for precise image segmentation.

Mask R-CNN deals with image instance segmentation and is based on R-CNN family of networks, which are popular object detection methods. Mask R-CNN were implemented to individually segment diseased instances with accuracy of 96% by Stewart E. L (Stewart et al., 2019).. Mask R-CNN with object detection networks were utilized by Wang Q (Wang et al., 2019). to segment location and shape of diseased area of tomato disease and classify into 11 diseases with mAP of 99.64% using ResNet-101.




3.2.5 Disease identification based on vision transformers

Transformers (Vaswani et al., 2017) were originally introduced for the Natural Language Processing (NLP) tasks such as language classification or language generation. The key idea of transformers is based on the attention mechanism. Specifically, it was proposed to compute the self-attention between the different word tokens in a sentence. The architecture of the Transformers itself is simple as it contains multiple Multi-Layer Perceptron (MLP) layers, so it is not wrong to say that the transformer network is essentially a mapping network that simultaneously computes all pairwise interactions among elements in an input sequence.

After the success of Transformers in the natural language domain, researchers from the vision domain have also attempted to apply it to several vision tasks such as for image classification, Vision Transformers (ViT) (Dosovitskiy et al., 2020) is the most prominent.

Even though Transformer architectures have shown impressive performance on various language tasks, it is challenging to apply to the vision domain mainly due to the high dimensional vision data. ViT proposed to solve this problem by dividing the input image into 16 × 16 patches and flatten them sequentially and the rest of the process is similar to the original Transformer architecture used for the language tasks. Essentially, the image is broken down into a sequence of patches, which is similar to having a sequence of language tokens so that the Transformer architecture can be easily adapted for image data.

Following ViT, several other researchers utilized the power of these architectures for other vision tasks. In the specific domain of object detection, DETR (Carion et al., 2020) proposed an end-to-end object detection method using Transformers. The overall method of DETR is shown in Figure 15

[image: Diagram illustrating an image processing flow. An input image of a soccer player is processed through convolutional layers to extract image features. These features pass through a transformer encoder-decoder, culminating in a set of box predictions.]
Figure 15 | An overview of object detection based on DETR.

Moreover, DETR models the object detection problem as a direct set prediction problem and follows the original encoder-decoder based architecture. Another interesting feature about DETR is that in contrast to traditional object detection models, DETR predicts all the objects in an image at once. These object predictions are then bipartite matched with the ground truth. Another revolutionary aspect of this approach is that it eliminates the need to hand-design object detection components which were previously a part of all object detection methods such as Region Proposal Network (RPN), Feature Pyramid Network (FPN), Non-Maximal Suppression (NMS), or Spatial Anchors.

Specifically, The architecture consists of a backbone convolutional neural network (CNN) encoder that extracts feature maps from the input image. These feature maps are then passed to a transformer-based decoder, which generates a set of fixed-size bounding boxes, their corresponding class labels, and a special label for no object detection. The decoder uses self-attention mechanisms to capture global context information and process the object queries, which represent the potential locations of objects in the image. It predicts the object class and regresses the bounding box coordinates for each query. To encourage accurate predictions, DETR utilizes bipartite matching with Hungarian algorithm (Kuhn, 1955) during training, aligning predicted and ground-truth boxes. It also incorporates positional encodings (Parmar et al., 2018; Bello et al., 2019) to maintain spatial information in the transformer architecture.

Mingle X (Xu et al., 2022). proposed a transfer learning approach to achieve plant disease detection through few-shot learning. To reduce computation cost, they have employed a dual transfer learning. Their Vision Transformer (ViT) model is first pre-trained using the ImageNet dataset in a self-supervised manner and then fine-tuned using the PlantCLEF2022 dataset in a supervised fashion. They name their approach dual transfer learning because the ViT-L model is trained with datasets and transferred twice. The ViT-L model comprises 24 transformer blocks, with a hidden size of 1024, an MLP size of 4096, and 16 heads for each multi-head attention layer, resulting in approximately 307 million trainable parameters. They are comparing their models with several other models with the same settings, most of which follow the fine-tuning schemes in Masked Auto Encoder (MAE). Their experimental results suggest that their approach surpasses other state-of-the-art CNN-based models and achieves more accuracy when trained on a smaller dataset. Specifically, their model achieves 44.28 mAcc as compared to the second best-performing RN50-IN which achieves 23.46 mAcc in a 1-shot case, and achieves 86.29 mAcc as compared to RN50-IN, which achieved 73.53 mAcc in a 20-shot case. It’s worth noticing that the gap between the accuracies gets shorter as the number of training images increases.

Similarly, Yasamin B. presents a novel approach in (Borhani et al., 2022) to real-time crop disease classification using a ViT (Vision Transformer) architecture. The proposed model utilizes lightweight ViT models to achieve comparable performance to convolutional-based models. The evaluation is performed on three datasets; Wheat Rust Classification dataset, Rice Leaf Disease dataset and Plant Village. Results indicate that the ViT-based model outperforms CNNs in terms of accuracy, while still achieving comparable performance. This approach has significant implications for real-time crop disease detection as the use of lightweight models in combination with ViT structure can enable more efficient and accurate classification.





3.3 Challenges

Despite the progress in computer vision and artificial intelligence techniques for automated monitoring of crops for detection and identification of diseases, there are still some inadequacies. One of the major issues identified in the studies above is the difference in accuracy between the training and testing environments. Many existing studies have utilized identical datasets for both training and testing purposes, which inherently possess similarities and consequently yield high accuracy rates. For instance, a study conducted by Mohanty S.P (Mohanty et al., 2016). included a model that was trained using the Plant Village dataset, resulting in an impressive accuracy of 99.35%. However, when those model was tested against images sourced from online platforms, the accuracy dropped drastically to below 50%. This disparity highlights the need for a more comprehensive dataset. It is important to fix these problems to yield better accuracies from deep learning models. While existing methodologies have shown promising results with the pre-training data collected in lab controlled environments, the real-world scenarios pose a challenge due to variations in conditions. As a result, the models that are trained to a specific type of dataset tend to struggle when applied in real-world scenarios. To mitigate this issue, further construction of a dataset should be considered that contains diverse images ranging from lab-controlled environments to real-world scenarios. This would enable the development of more robust and adaptable models with improved accuracy across multiple environments. However, this is a demanding task and requires substantial resources, both in terms of time and effort.

An additional challenge is related to the stage and severity of the disease. According to Rumpf (Ioffe and Szegedy, 2015), the accuracy rate of disease identification fluctuates significantly, ranging between 65% and 95%. This variability primarily arises due to the nature of diseases, where they exhibit milder symptoms during the initial stages. As the disease progresses and its severity intensifies, the symptoms become more distinct, leading to higher accuracy in identification. The varying accuracy rates can be attributed to the fact that diseases in their early stages often present subtle or ambiguous symptoms, making them difficult to discern accurately. This poses a considerable challenge for automated monitoring systems that heavily rely on visual cues to identify and classify diseases. However, as the disease advances and its symptoms become more distinctive and prominent, resulting in improved accuracy in its identification. To address this challenge, researchers and developers need to focus on refining and training models to recognize the subtle signs and symptoms of diseases in their early stages. This would involve the collection and integration of datasets that encompass images representing different stages and severities of diseases. By incorporating a diverse range of samples into the training process, models can be trained to effectively identify diseases even when symptoms are not yet fully developed. By improving the recognition of subtle symptoms, automated monitoring systems can enhance their accuracy in disease identification throughout the entire spectrum of disease progression.

Another issue identified is the presence of diverse leaf shapes in plants that present a hurdle for image classification models (Xu et al., 2022) which results in discrepancies in their performance. One such crucial factor that influences the performance is the size of the images, which is closely linked to the distance between the camera and the plant at the time of capturing images. When the camera is positioned at a greater distance, the resulting images tend to be smaller in size. This aspect becomes particularly significant when it comes to disease recognition tasks, as smaller-sized images may not adequately reveal the diseased areas. As a result, the performance of the models suffers, leading to decreased accuracy in identifying and classifying diseases. To address these challenges, it is essential to develop image classification models that are robust and adaptable to variations in leaf shapes. Another factor is the variability in leaf shapes among different plant species that poses a challenge for image classification models. Each plant species exhibits unique leaf characteristics, such as variations in size, contours, and textures, making it more difficult for models to accurately classify them. As a result, the performance of these models may vary when confronted with plants that possess dissimilar leaf shapes. This can be achieved by incorporating diverse training datasets that encompass a wide range of plant species with varying leaf shapes and disease stages. Furthermore, efforts should be made to capture images at optimal distances to ensure that the resulting images are of sufficient size to accurately capture and identify diseased areas.





4 Open research problems and future directions

In current literature, it has been observed that although most of the existing CNN models are performing well under controlled settings, they are failing to produce satisfactory results in real-time scenarios. To obtain feature vectors from data, it requires systematic engineering and design expertise to recognize complex patterns in input data for subsystems.

The utilization of transformers for vision and image processing is promising but the development in this field is still in its nascent stages. Future research should prioritize exploring the potential of transformers and transfer learning as they have demonstrated encouraging outcomes for specific tasks compared to well-established CNN models. This is due to the extensive development that CNN models have undergone over the past decade, which has largely resolved their optimization challenges.

Future research should focus on creating better disease picture databases that include photographs of actual harvested crops in the field. Moreover, the increasing use of intelligent mobile devices highlights the need for lightweight model designs in potential research endeavors. Various studies, such as MobileNet and EfficientNet, are conducted to address this issue, and these versions are ideal for satisfying the needs of smartphone users due to their lightweight nature.




5 Conclusions

Deep learning methods have demonstrated significant potential in precision agriculture and automated disease detection. Our survey extensively reviewed several prominent databases specifically designed for deep learning in plant pathology, analyzing their outcomes and limitations. Furthermore, we thoroughly discussed both conventional approaches and cutting-edge technologies employed in plant disease detection. By examining the limitations of deep learning models, we uncovered an intriguing trend—these models experience a decrease in accuracy when transferred between different environments. Based on our analysis, we firmly conclude that there is a critical need for a concise dataset to improve the performance and accuracy of deep learning algorithms.

In addition to addressing dataset-related challenges, it is worth emphasizing the significance of incorporating transformer-based models in future research endeavors. As per our survey findings, the use of transformers has consistently yielded impressive results due to their capacity to capture intricate details. Moreover, their ability for few-shot learning offers a potential solution to mitigate the issues associated with acquiring large datasets that are accurately annotated. Therefore, we highly recommend that future research directions prioritize the exploration and integration of transformer-based models to further enhance the field of plant disease detection. Additionally, we advocate for the integration of transformer-based models as a means to address the challenges associated with gathering large datasets with accurate annotations. By adopting these recommendations, researchers can drive the field forward, leading to more efficient and reliable solutions for plant disease detection in real-world scenarios.
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Agriculture is the most critical sector for food supply on the earth, and it is also responsible for supplying raw materials for other industrial productions. Currently, the growth in agricultural production is not sufficient to keep up with the growing population, which may result in a food shortfall for the world’s inhabitants. As a result, increasing food production is crucial for developing nations with limited land and resources. It is essential to select a suitable crop for a specific region to increase its production rate. Effective crop production forecasting in that area based on historical data, including environmental and cultivation areas, and crop production amount, is required. However, the data for such forecasting are not publicly available. As such, in this paper, we take a case study of a developing country, Bangladesh, whose economy relies on agriculture. We first gather and preprocess the data from the relevant research institutions of Bangladesh and then propose an ensemble machine learning approach, called K-nearest Neighbor Random Forest Ridge Regression (KRR), to effectively predict the production of the major crops (three different kinds of rice, potato, and wheat). KRR is designed after investigating five existing traditional machine learning (Support Vector Regression, Naïve Bayes, and Ridge Regression) and ensemble learning (Random Forest and CatBoost) algorithms. We consider four classical evaluation metrics, i.e., mean absolute error, mean square error (MSE), root MSE, and R2, to evaluate the performance of the proposed KRR over the other machine learning models. It shows 0.009 MSE, 99% R2 for Aus; 0.92 MSE, 90% R2 for Aman; 0.246 MSE, 99% R2 for Boro; 0.062 MSE, 99% R2 for wheat; and 0.016 MSE, 99% R2 for potato production prediction. The Diebold–Mariano test is conducted to check the robustness of the proposed ensemble model, KRR. In most cases, it shows 1% and 5% significance compared to the benchmark ML models. Lastly, we design a recommender system that suggests suitable crops for a specific land area for cultivation in the next season. We believe that the proposed paradigm will help the farmers and personnel in the agricultural sector leverage proper crop cultivation and production.
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Introduction

A constructive agricultural environment and fertile land make agriculture the leading economic sector for a developing country whose economy relies on agriculture. Agriculture is associated with producing essential food crops and industrial raw materials. One of the most critical aspects of the development cycle of a country is the capacity to produce food using the unfavorable environment and limited agricultural land (Goldstein et al., 2017). Experts believe that land fertility has reduced to a certain extent over time, affecting the crop production amount (Van Klompenburg et al., 2020). In this paper, we consider the case study of a developing country, Bangladesh, whose economy relies on agriculture. According to the Bangladesh Rural Advancement Committee (BRAC), the agricultural land in Bangladesh is shrinking by 1% annually, while the population is growing by 1.2% annually (Das et al., 2022). In addition, the farmers do not get the actual price due to the lack of knowledge of the estimated crop production. This concern demotivates the farmers, which has a long-term negative impact on the agriculture sector. To alleviate this issue, proper planning of the best crop production in terms of correctly predicting crop production for the upcoming year can be provided to the farmers. The ability to accurately predict crop yields has become essential for farmers to make rational choices (Jansson et al., 2021). Various aspects, such as soil type, weather, and crop management practices, are taken into account to estimate the number of crops that may be grown in a particular area. Effective prediction helps to generate an estimation of crops that helps the government to take long-term and short-term policies to minimize food shortages and import–export plans based on the agriculture sector (Zhang et al., 2019). It also significantly impacts the economy of an agricultural-based country like our study area. Machine learning (ML) offers the most effective tool to predict the dependent variables (i.e., crop production) using the independent variables (i.e., the factors that regulate crop production) (Jayalakshmi and Gomathi, 2020; Ahmed et al., 2022; Li et al., 2022; Monteiro et al., 2022). In this paper, we investigate the simple but effective ML approaches to propose an ensemble ML approach toward accurately predicting the agricultural crop production of Bangladesh.

Bangladesh is a country with six seasons, which enables producing different kinds of crops over the year (Uddin et al., 2019) while its main crops are rice, wheat, and potato. Rice is the staple crop, and it can be cultivated in three different seasons where the rice varieties are Aus, Aman, and Boro. Potato and wheat are the second and third most important crops, respectively. As such, we predict the production of these five major crops (Aus rice, Aman rice, Boro rice, potato, and wheat) for the upcoming season based on the environmental data (i.e., rainfall, humidity, minimum and maximum temperature, sunshine, wind speed, and cloud coverage of a specific zone), cultivation area, and previous production data. We use historical data from 1969 to 2021 of different districts of Bangladesh (Campbell et al., 2020) and collect these raw data from different respective government organizations. In particular, we gather the raw data from the yearbooks of the Bangladesh Meteorological Department (BMD), Bangladesh Agricultural Development Corporation (BADC), Bangladesh Rice Research Institute (BRRI), and Bangladesh Bureau of Statistics (BBS). After that, we investigate the classical ML algorithms, i.e., Support Vector Regression (SVR), Naïve Bayes (NB), and Ridge Regression (RR), and ensemble ML algorithms, i.e., Random Forest (RF) and CatBoost (CB). Then, we propose an ensemble ML paradigm combining K-Nearest Neighbors (KNN), RF, and RR, termed K-nearest neighbors Random Forest Ridge regression (KRR), to effectively predict the production of the crops. Finally, we construct a recommender system that suggests suitable crops for a given land area for cultivation in the next season. The main contributions of this paper are summarized below.

	Development (collection, reformation, and data processing) of an ML trainable crop dataset containing environmental, cultivation area, and previous production data for predicting five major crops (Aus rice, Aman rice, Boro rice, potato, and wheat);

	Investigation and rigorous study of setting up a baseline ML system with effective ML and ensemble ML models for predicting crop production more efficiently;

	Design of a novel ensemble ML algorithm to accurately predict the production of the crops and Diebold–Mariano (DM) testing of the designed ensemble ML model to illustrate its significance and superiority over the benchmark ML and ensemble ML algorithms; and

	Designing a recommendation system for suggesting suitable crops for cultivating in a specific region in the next season among the contemporary crops.



The rest of this paper is structured as follows. In the Related work section, we discuss and compare the related works on crop production prediction. The Proposed paradigm section describes the overall idea and development of the proposed crop production prediction and recommendation paradigm. In the Methods and measurements section, we discuss the methods and materials for dataset generation, existing ML and ensemble ML methods, and our proposed ensemble ML approach. The experiments and results are explained and analyzed in the Experiment and result analysis section. The Crop recommender system section demonstrates the recommender system design for suggesting suitable crop cultivation in the upcoming season, while the Conclusion section summarizes and concludes the observations and findings. All the abbreviations used in this paper are listed in Table 1.

Table 1 | List of the abbreviations used in the paper.


[image: A table with abbreviations and their full forms. The left column includes KRR, ML, BADC, BBS, NB, RF, KNN, ARIMA, APC, NN, MSE, MAE, and DT. Their corresponding full forms are K-nearest Neighbor Random Forest Ridge Regression, Machine Learning, Bangladesh Agricultural Development Corporation, Bangladesh Bureau of Statistics, Naive Bayes, Random Forest, K-Nearest Neighbors, Auto-regressive Integrated Moving Average, Average Pearson Correlation, Neural Network, Mean Square Error, Mean Absolute Error, and Decision Tree. The right column pairs BRAC, BMD, BRRI, SVR, RR, CB, DM, SVM, CV, LR, RMSE, RR, and DL with Bangladesh Rural Advancement Committee, Bangladesh Meteorological Department, Bangladesh Rice Research Institute, Support Vector Regression, Ridge Regression, CatBoost, Diebold–Mariano, Support Vector Machine, Coefficient of Variance, Logistic Regression, Root Mean Square Error, Ridge Regression, and Deep Learning, respectively.]




Related work

Various applications of ML models in agriculture have been listed, such as crop yield prediction, weather forecasting, smart irrigation system, crop disease prediction, and deciding minimum support price (Al-Gaadi et al., 2016; Nandy and Singh, 2020; Sharma et al., 2020; Cravero and Sepulveda, 2021). Moreover, in order to achieve accurate predictions, researchers used the supervised ML algorithms for crop production prediction in (Kaur, 2016; Shehadeh et al., 2021). The decision tree (DT) classifier has been used to create predictions of yield and cropland temperature in (Lee and Moon, 2014) (Bagis et al., 2012). KNN and ID3 (a variant of DT) were applied to analyze the crop production of the previous year (Charbuty and Abdulazeez, 2021). Many researchers are using statistical models like Auto-regressive Integrated Moving Average (ARIMA) and ML model Support Vector Machine (SVM) for predicting crop production (Sujjaviriyasup and Pitiruek, 2013). On the other hand, time series analysis has been applied in order to predict the production and the price of crops and vegetables. The aim was to identify a time series function, which might identify patterns and seasonality in specific vegetables, as well as explore supply and demand variables (Bagis et al., 2012) (Jha and Sinha, 2013) (Young, 2019). In addition, many researchers proposed a methodology that uses Average Pearson Correlation (APC) and Coefficient of Variance (CV) to determine indications that reveal crop price fluctuation (Pereira et al., 2021). All these methods require the dataset to be extremely clearly described, which is difficult to generate in the context of Bangladesh.

Recently, satellite data have been utilized to predict the temperature in crop-growing areas (Prasad et al., 2021) (Danilevicz et al., 2021) (Jung et al., 2021). Because this method requires access to real-time satellite data, it would be inaccessible to most people. The precision of this method was additionally found to be insufficient. Some researchers also used the Neural Network (NN) approach to predict crop production, which might perform better than traditional ML methods (Minghua et al., 2012). However, NN is most common when working with multidimensional data. When the types of datasets are defined, the network model becomes more difficult to design, and more training time is required as the convergence time increases. It is also prone to slipping into the local minimal state.

Researchers have devised a way to predict crop yields at multiple spatial levels based on ML crop yield forecasts for regions. They developed a general ML workflow to show how proper regional agricultural yield forecasting can be in Europe. They predicted crop yields for 35 case studies, comprising nine nations that are major producers of six commodities (soft wheat, spring barley, sunflower, grain maize, sugar beets, and potatoes), to evaluate the validity and usefulness of regional predictions (Paudel et al., 2022). For the prediction of Irish potato and maize, authors collected data from multiple areas and analyzed it using RF, Polynomial Regression, and the SVR. The only variables employed as forecasters were rainfall and temperature. RMSE for RF was 510.8 and 129.9 for potato and maize, respectively, while R2 was 0.875 and 0.817 for the same crop datasets, indicating that RF is the best model (Kuradusenge et al., 2023). Based on the previous 12 years’ data, researchers proposed an ML-based crop yield prediction in North China Plan. To find the best model, they investigate several ML algorithms on winter wheat and dry matter prediction (Wang et al., 2023).

In comparison to the existing works in the literature, we, in our study, (i) generate a learnable environmental dataset containing eight features to predict crop production; (ii) propose an ensemble ML algorithm using KNN, RF, and RR, called KRR; (iii) demonstrate that KRR produces better results than the other classical ML algorithms, such as SVR, NB, RR, RF, and CB; and (iv) design a recommender system that suggests suitable crops to grow in the next session. To this end, we deliver the parametric differences between our proposed paradigm and the studied interconnected crop production prediction works in Table 2.

Table 2 | Comparison among the related works on crop production prediction.


[image: A table summarizes multiple studies with columns for reference, year, dataset, technique, and error/score. It includes diverse datasets such as big data, historical agricultural data, and private data generation. Techniques used include machine learning models like random forest, logistic regression, and neural networks. Results are shown with metrics like accuracy, prediction error, and MAPE. The study from 2023 involving a self-generated dataset mentions using kernel ridge regression and other techniques, achieving the highest results.]




Proposed paradigm

Crop production prediction is a major concern for an agriculture-based country like Bangladesh because many prospective crops can be planted in a single season. Currently, the farmers choose the crops for plantation on their own knowledge, which might not be an effective prediction every time. Sometimes, it might give better production, and sometimes, not, which would then be very harmful to the economy of such an agriculture-based country. Moreover, the government necessitates predicting crop production to estimate crop amount for the upcoming year. We design an ensemble ML model to predict crop production based on the environment, cultivation area, and previous production parameters. We first gather real-world data records from different periods (1969–2021) of the diverse areas of Bangladesh and then propose an ensemble ML learning approach, called KRR, to accurately predict crop production on the basis of the environmental condition after inquiring about the most popular classical ML models. Using our KRR, the farmers can choose the best crops for the plantation, and the government can better estimate crop production for the next year. Notice that we do not find any such work to predict crop production in the Bangladesh context. Note that we discuss with a number of agriculturists to sort out the environmental factors related to the production of crops in Bangladesh. After that, we consider eight factors for predicting crop production, as illustrated in Table 3. The final dataset contains 7,000 samples of five categories of crops (Aus rice, Aman rice, Boro rice, potato, and wheat), each having 1,400 samples. If we want to add other crops in this system, then the same dataset should be generated and then we need to train the best-performing model as the procedure of ML training and testing.

Table 3 | Short description of the attributes in the raw data records.


[image: Table listing attributes and short descriptions related to agriculture. Attributes include rainfall, maximum and minimum temperature, humidity, wind speed, cloud coverage, bright sunshine, and areas for Aus, Aman, Boro, potato, and wheat cultivation in acres. It also lists production in tons for these crops. The table organizes details for better understanding of factors affecting specific crop yields.]



Approach overview

We illustrate the working steps of the proposed crop production and recommendation paradigm in Figure 1. The first stage is dataset preparation, which delivers a suitable data format for training and testing using the proposed ensemble learning and the existing investigated ML approaches after the necessary preprocessing and feature extraction. After that, the evaluation and analysis are performed based on the experimental results. Finally, the recommended system is presented for suggesting suitable crops for cultivating a specific region in the next season.

[image: Flowchart illustrating a machine learning pipeline for crop prediction. It starts with environmental and crop data collection, proceeds through preprocessing steps like data cleaning and integration, forming trainable datasets. The model is trained using various algorithms such as SVM and RF. Evaluation involves metrics like MSE and RMSE, leading to predictions.]
Figure 1 | Proposed methodology for predicting crop production. Raw data collection, dataset preparation, data preprocessing, model development, crop production prediction, and model evaluation with the significant test are all carried out in synchronization throughout the entire methodology.

Top-down crop production prediction is depicted in the proposed methodology shown in Figure 1. After collecting raw data, we structure it crop-by-crop for the five regular crops in our research, jointly with the environmental variables during each of the crops’ relevant months. To create a dataset suitable for ML training, we handle missing values, mitigate wrong format and wrong data and modify raw data as required. In keeping with the standard ML practice, we split the final dataset into training and testing segments for the purposes of model training and testing with various evaluation methods. The ML models are trained independently using 80% of the training data and evaluated using the remaining 20%. After training and testing several models, we tabulate the evaluation outcome in terms of MSE, RMSE, MAE, and R2. To determine the superiority of the proposed ensemble KRR, we conduct a DM significant test to compare it to the state-of-the-art benchmark ML models and determine its relative performance.





Dataset preparation

We collect the raw data samples from four different agricultural organizations in Bangladesh, which are BMD, BADC, BRRI, and BBS from 1969 to 2021 of different seasons, as shown in Table 4. Kharif and Rabi are the two harvest seasons in Bangladesh for the majority of crops. The environment varies depending on the harvest season. The months responsible for crop production are considered when constructing the dataset for each crop. The specific crop’s weather information for the corresponding month is then provided. For example, Aus rice is harvested during the Kharif season, from June through August. It indicates that the monthly environmental data are regarded as weather data for Aus rice. Other crops’ samples are generated using the same manner, and the months corresponding to each season are listed in Table 4. In the final dataset, the data samples include 7,000 records of five categories of crops (Aus rice, Aman rice, Boro rice, potato, and wheat), each having 1,400 samples of different districts of Bangladesh. In particular, we prepare eight attributes (rainfall, maximum temperature, minimum temperature, humidity, wind speed, cloud coverage, bright sunshine, production area, and production amount) from a total of 17 original attributes to predict the production of a particular crop, as shown in Table 3. As the weather of the different crops is different for the month, we take the average of maximum temperature, minimum temperature, rainfall, humidity, wind speed, cloud coverage, and bright sunshine for each crop according to the month.

Table 4 | Dataset description for different crops and environmental variables according to the season of the crops.


[image: Table showing crops with harvest seasons, data duration, and weather data. Aus rice, Boro rice, and potato are harvested in Kharif. Aman rice and wheat are harvested in Rabi. Data from 1969 to 2021. Weather periods: Aus rice (June-August), Aman rice (December-January), Boro rice (March-May), potato (February-March), wheat (November-March).]




Learning and evaluation

After generating the machine-learnable dataset, we split the dataset into training and testing sets. Then, we build the proposed ensemble ML (KRR) and investigated ML models (SVR, NB, CB, RF, and RR) using the training dataset and evaluate the trained models on the testing dataset to assemble the results. We consider four state-of-the-art performance indicators, i.e., mean absolute error (MAE), mean square error (MSE), root MSE (RMSE), and R2 score to evaluate the proposed and investigated ML models. All the experiments (dataset preprocessing, model training, model testing, and result processing) are accomplished using the Python programming language.






Methods and measurements




Data preprocessing

We preprocess the collected raw data to make them machine-learnable datasets. As all of the values of our dataset are numeric, we need not label any data during data preprocessing. Besides this, we normalize the data lastly to make it more trainable.

The preprocessing steps are as follows.




Data cleaning

This step involves missing value handling, formatting, and wrong data handling. We handle missing values by replacing them with the mean of a feature, as illustrated in Algorithm 1. Because crop production of a country is a continuous process, environmental variable values follow a pattern. Missing values can be the mean of the previous and next values in our dataset. For particular features, we format all the data in a unique form, which helps improve the performance of the ML models (Stekhoven and Buhlmann, 2012).





Data integration

We consider three types of data, i.e., environmental parameters related to crop production, areas of cultivation, and crop production amount of a particular area. We collect these data from different government organizations. To prepare the learnable dataset, we integrate all data into a single dataset.





Data reduction

Unnecessary, duplicate, and junk data are harmful to the performance of the ML models (Royston et al., 2006; Benjelloun et al., 2007). To make the best ML learnable dataset, we remove unnecessary, duplicates, and junk values.

Algorithm 1 | Missing value handling

[image: Algorithm pseudocode for handling missing values in a dataset. Input is raw data \(S\); output is a preprocessed dataset. The procedure calculates the mean of each attribute and replaces missing values with this mean.]






Data normalization

Finally, we normalize the entire dataset to integer values to fit into the ML algorithms. We employ the classical min–max normalization technique to normalize the dataset.






Training models

In this section, we recapitulate the working principles of the investigated ML and ensemble ML approaches (SVR, NB, RR, RF, and CB) and present our proposed ensemble ML paradigm (KRR). We select five benchmark ML models instead of all ML algorithms in a strategy. ML algorithms can be classified based on architecture and working procedure. We choose SVM as the representative of the distance-based ML algorithm, RR from the group of regularization ML algorithms, RF as the representative of the bagging ensemble algorithm, NB as the member of the Bayes theorem means probability-based ML algorithm, and CB as the representative of boosting ensemble algorithm. We select those five algorithms to represent all ML algorithms in our analysis, train them individually using our dataset, and measure their performances to compare with the proposed ensemble KRR.




SVR

SVR is a supervised ML algorithm that is a useful technique for both data classification and regression (Somvanshi et al., 2016). In regression, the data are separated into training and testing sets. Each instance in the training set contains one target value (class label) and several attributes named as the features (observed variables). The goal of SVR is to produce a model (based on the training data) that predicts the target values of the test data given only the test data attributes (Shang et al., 2016). According to the characteristics of our dataset, we use the linear SVR approach for predicting different agricultural crop production rates.





NB

NB is one of the most efficient and effective inductive ML algorithms (Ratanamahatana and Gunopulos, 2003) (Panda and Patra, 2008). This uses the Bayes theorem to calculate the probability and then form a prediction. The basic insight of Bayes’ theorem is that when new data are introduced, the probability of an event may be changed. The NB model is simple to implement and it does not require sophisticated iterative parameter estimation, making it perfect for large datasets (Razzaghi et al., 2016).





RR

RR is a model optimization technique (Tavares et al., 2021). It estimates the coefficients of multiple regression models under conditions of high correlation between linearly independent variables. This model is also known as a regularization model and uses the L2 regularization process. It has been applied in various disciplines, including agricultural data, engineering, chemistry, and econometrics. RR creates a new matrix by adding a ridge parameter (k) from the identity matrix to the cross-product matrix. The reason it is known as ridge regression is that the correlation matrix’s diagonal of one can be compared to a ridge. Overfitting is a problem that RR solves since squared error regression by itself can distinguish between significant and insignificant features, using all of them instead, resulting in overfitting (Garriga et al., 2017). RR introduces a small amount of bias in order to match the model to the actual values of the data. However, it does not have the ability to do feature selection and the final model includes all predictors. It swaps variance for bias and decreases coefficients toward zero.





RF

RF is an ensemble ML classifier that uses randomness to create a group of independent and non-identical DTs (Provost et al., 2016). This algorithm is used for both classification and regression purposes and it is a combination of tree predictors. Each DT has a random vector as a parameter, determines the feature of samples at random, and selects the training dataset from either a subset of the dataset at random (Bradter et al., 2013). Whenever a random selection of features is used to split each node, the error rates are equivalent to Ad boost, but they are more robust in terms of turbulence (Shakoor et al., 2017). RF is a highly flexible and easy-to-use ML algorithm that produces, even without hyper-parameter tuning, a great result most of the time. In this work, we use RF for the regression aspect of this algorithm based on our necessity. We successfully achieve a very high accuracy upon implementation of our dataset using this RF regression. Python’s scikit-learn has a helpful tool for this that quantifies the relevance of a feature by looking at how much inaccuracy is minimized across all trees in the forest by tree nodes using that feature (Grange and Hand, 1987). Deep DTs might suffer from overfitting but RF prevents overfitting most of the time. It creates random subsets of the features and builds smaller trees using these subsets, and afterward, it combines the sub-trees.





CB

CB is an ML algorithm for gradient boosting on DTs. Gradient boosted DTs are a powerful tool for classification and regression. This algorithm is developed by Yandex researchers and engineers and it is the successor of the MatrixNet algorithm. It is widely used for ranking tasks, forecasting, and making recommendations (Hancock and Khoshgoftaar, 2020). This supervised algorithm is used both for classification and regression purposes. CB is a special type of boosting algorithm with much less prediction time for its symmetric tree structure. However, it is sensitive to its hyperparameter tuning.





The proposed ensemble ML approach

The main purpose of introducing an ensemble regressor is to reduce the variance of the data during model training (Sagi and Rokach, 2018). It helps to fit the data to the models, and the model can predict more accurately. In the proposed KRR ensemble method, we use a distance-based algorithm KNN, a regularization method RR, and a tree-based ensemble RF. The KNN model is simple to implement and works well with non-linear data. Because it does not require calculating any fixed parameters or values, fitting the model also takes little time. The KNN algorithm makes predictions about the significance of new data points based on their “feature similarity”. A score is given to the new point based on how similar it is to the points used for training. RR is good for preventing overfitting, which adds one additional element to the cost function of linear regression. The primary reason these penalty terms are included is to ensure regularization, or the reduction of model weights to zero or close to zero so that the model does not overfit the data. Nonlinear parameters do not affect the performance of an RF, unlike curve-based techniques. As a result, if the non-linearity between the independent variables is high, RF may beat other curve-based methods. It is usually robust to outliers and can handle them automatically. It does not require feature scaling (standardization and normalization) because it employs a rule-based method rather than distance calculation. That is the reason for creating the new ensemble model using the algorithms that can handle overfitting by themselves, with no need for extra preprocessing when needed during training and testing. A second-order ensemble strategy called blending is used to construct this KRR regression method. Blending ensemble ML methods find the best combination of the predictors from the three ML algorithms (KNN, RR, and RF) and form an ensemble regressor for better prediction (Farooq et al., 2021). The blending process is the same as the stacking ensemble procedure, but it has some unique differences. Stacking uses out-of-fold prediction for the training set of the next layer in the meta-model. On the other hand, our blending uses a validation set (10%–15% of the training data) to train the next layer in the meta-model. KRR combines the mapping functions learned by the contributing members. Our proposed KRR is the combination of the hyperplanes of KNN, RF, and RR. The working procedure and function mapping of KRR are shown in Figure 2.

[image: Diagram illustrating a machine learning stacking process. It shows three base models: Random Forest, Ridge, and KNN, which output to a stacking model labeled KRR. Each is depicted by respective symbols: tree structure, connected nodes, and a circle with an arrow, indicating their processes. These models feed into the stacking layer, which finally produces a combined output represented by scattered data points.]
Figure 2 | Block diagram of the proposed KRR approach. KRR is built with the three mostly used ML algorithms: KNN, RF, and RR, using the blending ensemble strategy.

The working principle of KRR is different from the KNN, RF, and RR, which are the building blocks of the ensemble approach. The proposed KRR and RF are both ensemble methods, where KRR is a blending ensemble where the building blocks work individually to find the main output. RF is a bagging ensemble where data are mainly divided into several bags to train the individual tress to formulate the result. The benchmark models sometimes fall into overfitting problems, and due to the high variance of the data points, the performance of the models falls in some cases, but the proposed method outperforms in this case by its tolerance and flexibility of learning from the dataset.

Our deployed KRR can be a solution to this type of regression issue for better performance and the best fitting of datasets. The criteria for adopting the proposed scheme KRR to another dataset are very easy. As with the traditional ML training and testing process, the training data must fit the KRR architecture and then evaluated by the remaining testing data. The KRR architecture is already described above. However, hyperparameter tuning of the building block ML algorithms of KRR can bring a better result when adopted with other datasets.




Complexity of proposed ensemble KRR

The complexity of KRR can be written into two steps. In the first step, the complexity of stacking architecture forms and then the individual algorithm’s complexity is added one by one in the next step as follows: The complexity of the first step is O(B(C + R)), where R represents the number of replacements, the number of bags of the dataset is B, and C represents the number of classifiers in the ensemble algorithm. In the second step:

	1. Complexity KNN is O(nd), where n is the number of training examples, and d is the number of features.

	2. Complexity of RR is O(n3), where n is the number of data.

	3. Random Forest of size T and maximum depth D (excluding the root) is O(T.D).









Model evaluation

The classical and ensemble ML algorithms and our proposed ensemble ML scheme are applied to predict crop production. The training data train these approaches, and the model learns the data sequences and then forms a prediction. The performance of the ML models is calculated using four evaluation metrics, i.e., MAE, MSE, RMSE, and R2. MSE can be defined as the absolute value of the difference between the predicted and actual value. Using MSE in regression will penalize large errors more than small ones if we assume that the target follows a normal distribution. The MSE is calculated as:

[image: Mathematical formula for mean squared error: MSE equals one divided by n, multiplied by the summation from i equals one to n of the square of the difference between Y sub i and Y hat sub i.]	

MAE indicates how big of an error we may expect on average from the prediction (Morales and Villalobos, 2023). MSE indicates how close it is to a set of points. It accomplishes this by squaring the distances between the points and the regression line (these distances are the errors). Squaring is required to eliminate any negative signs. The MAE is calculated as:

[image: Mathematical formula for Mean Squared Error (MSE) is shown as MSE equals one divided by n times the summation from i equals one to n of the absolute difference between Y sub i and Y hat sub i.]	

RMSE is the standard deviation of the residuals (prediction errors) (Glennie and Lichti, 2010). Residuals are a measure of how far the data points are from the regression line; RMSE is a measure of how to spread out these residuals. In other words, it reveals how strongly the data are aggregated around the line of best fit. The RMSE is calculated as:

[image: Formula for Mean Squared Error (MSE) showing the square root of the sum of squared differences between actual values \(Y_i\) and predicted values \(\hat{Y}_i\), divided by the number of observations \(n\).]	

R2 is a statistical measure of how much variation in a dependent variable can be explained by variation in the independent variables. The main objective of this score is to predict future results based on existing data. The extent to which the model can reproduce observed results is quantified by this measure, which is based on the fraction of the total variation in outcomes that can be attributed to the model. R2 is calculated as:

[image: The formula for the coefficient of determination, \( R^2 \), is shown. It is expressed as one minus the sum of squared differences between observed values \( Y_i \) and predicted values \( \hat{Y}_i \), divided by the sum of squared differences between observed values \( Y_i \) and their mean \( \bar{Y} \).]	

In the above equations, the Yiindicates the actual value, Yˆiindicates the predicted value, Y¯ indicates the means of the Y values, and n is the total number of samples.






Experiment and result analysis




Experimental setting

We use Python’s scikit-learn tool to construct the proposed ensemble ML scheme (KRR) as well as the investigated classical and ensemble ML models (SVR, NB, RR, RF, and CB). We consider the actual vs. predicted curve and error metrics (MAE, MSE, RMSE, and R2) as the evaluation parameters of the trained ML models. We use supervised methods to predict crop production, where the dataset contains eight features and the target is the amount of crop production in a certain area. We take the average results of experiments in three phases, such as 80:20, 50:50, and 30:70 training and testing ratio, where each phase has 10 trials.

To get better performance, we tune the hyperparameters of the proposed ensemble ML scheme as well as the investigated classical and ensemble ML models. The same hyperparameters give a better result for almost all experiments. In particular, SVR gives better results with the linear kernel when c = 100 and gamma is auto while we use 10-fold cross-validation to find the value of gamma and c. Gaussian NB achieves a better result in all cases with the hyperparameters i.e., estimator = model, param_grid = params_nb, and cv = cv_methods. RF finds n_estimator = 20, and random_state = 42 in all cases for better performance. For all experiments, RR gives maximum performance when alpha = 0.01. CB model gives a better result when estimator = model_cvr, cv = 2 n_jobs = −1, and learningrate = 0.05. Our proposed model KRR achieves high accuracy with a low error rate with the hyperparameters alpha = 0.01, n_estimator = 10, and random_state = 42 for almost all experiments.





Result analysis on Aus rice production

Aus is considered one of the major crops in Bangladesh. This type of rice is closely related to indica-type rice but it has a distinct genetic group (Chakravarthi and Naravaneni, 2006). Still, this variety is cultivated under environmental stress conditions in Bangladesh and India (Berger et al., 2004). The value of Aus production varies according to the environment and the region of cultivation. Figure 3A represents the actual vs. predicted rice production in every fiscal year from 2015 to 2021 in the Dinajpur zone of Bangladesh. The x-axis symbolizes the fiscal year, while the y-axis reflects rice production (both actual and predicted). It clearly indicates that our proposed algorithm outperforms the other traditional ML and ensemble ML algorithms. We also evaluate MAE, MSE, RMSE, and R2 to measure the model’s goodness of fit in predicting rice production in Figure 3B, which demonstrates that the KRR model fits better than the other models we investigate. Table 5 illustrates that KKR has less mistakes, such as 9.11% MAE, approximately 1% MSE, and 9.17% RMSE, than the others.

[image: Panel A displays a bar chart comparing Aus production across fiscal years 2015 to 2021 using different models, including Actual, SVR, NB, RF, RR, CB, and KRR. Panel B shows a line chart illustrating errors (MSE, MAE, RMSE) associated with various methods (SVR, NB, RF, RR, CB, KRR), highlighting differences in accuracy.]
Figure 3 | Comparison of the actual and predicted values of Aus rice production and error rating of the investigated and proposed ML models (SVR, NB, RF, RR, CB, and KRR) in each fiscal year from 2015 to 2021. (A) Actual vs Predicted bar chart for Aus. (B) Line chart for the error rating of Aus production prediction.

Table 5 | Error ratings using the investigated and proposed ML approaches for predicting Aus rice production using different metrics and R2 score.


[image: Table comparing models SVR, NB, RF, RR, CB, and KRR across four metrics: MAE, MSE, RMSE, and R-squared. Values range from 0.091 to 0.115 for MAE, 0.009 to 0.026 for MSE, 0.099 to 0.161 for RMSE, and 0.970 to 0.990 for R-squared.]
From Figure 3A, it can also be observed that there is no linear relationship between the area and environmental data, and Aus rice production. The weather conditions in Bangladesh vary from year to year, and natural disasters may occur. In August 2017, during the Kharif harvest season, an uncertain flood occurred in Dinajpur zone (Das and Rahman, 2018). It damaged the crops and interrupted the production cycle. Our proposed KRR performs effectively during this period, which demonstrates its adaptability to the uncertainty in the environmental data. Owing to a lack of soil fertility and improper management of soil carbon, the post-flood effects on Aus production continue throughout the subsequent growing seasons (Siddique et al., 2022). In this uncertain situation, the proposed KRR performs better than other models. This type of prediction is critical for farmers as well as individuals who depend on harvesting for a living. Such future production prediction aids in the care of alternative solutions to ensure food and industrial raw materials.





Result analysis on Aman rice production

Aman rice is grown in Bangladesh during the winter (rabi) season. The cultivation of Aman rice is strongly linked to the environment. Figure 4A illustrates the actual and predicted values using the investigated and proposed ML algorithms. The performance of our proposed algorithm KRR reaches maximum accuracy for each fiscal year. In terms of error measurement parameters, both our proposed KRR and the RF models have the same R2 score. However, our KRR obtains better MAE, MSE, and RMSE than RF and other models, as shown in Table 6. Figure 4B indicates that our KRR is the best-fit model compared to others. Changes in maximum temperatures have had a significant impact on crop yield in Bangladesh. However, temperature changes confirm that maximum temperature raises the risk for Aman rice while minimum temperature reduces yield variability. Rainfall has increased the risk of Aman rice (Sarker et al., 2019). The great news is that environmental factors in Bangladesh are now changing within a range that allows Aman rice to adapt to the environment. In recent years, Aman rice has been consistently produced because of its versatility (Chakrobarty et al., 2021). Figure 4A shows the consistency of Aman rice production, and in most of the cases, the proposed KRR performs better. The authority can benefit from this method in their long and short plan for food supply in the future.

[image: Chart A is a bar graph showing Aman production in kilometric tons across fiscal years 2015-2016 to 2020-2021, comparing actual values with seven prediction models: SVR, NB, RF, RR, CB, and KRR. Chart B is a line graph comparing error metrics—MSE, MAE, RMSE—across the same methods, indicating variations in prediction accuracy.]
Figure 4 | Comparison of the actual and predicted values of Aman rice production and error rating of the investigated and proposed ML models (SVR, NB, RF, RR, CB, and KRR) in each fiscal year from 2015 to 2021. (A) Actual vs Predicted bar chart for Aman. (B) Line chart for the error rating of Aman production prediction.

Table 6 | Error ratings using the investigated and proposed ML approaches for predicting Aman rice production using different metrics and R2 score.


[image: Comparison table of six models: Support Vector Regression (SVR), Naive Bayes (NB), Random Forest (RF), Ridge Regression (RR), CatBoost (CB), and Kernel Ridge Regression (KRR). Metrics shown are Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R-squared. SVR has the highest MAE (1.055) and MSE (1.510). KRR performs best with the lowest MAE (0.709), MSE (0.921), and RMSE (0.959), with RF and KRR sharing the highest R-squared (0.900).]




Result analysis on Boro rice production

Boro rice is cultivated in the Kharif season, which has a vital impact on the total rice production in Bangladesh. Figure 5A illustrates the actual vs. predicted bar chart for the Boro production from 2015 to 2021, while Figure 5B indicates that KRR is the best-fit model compared to others. Table 7 indicates that the performance using RF is better than KRR in respect of MAE and MSE. However, RMSE and R2 are good in KRR. In summary, the average performance of KRR is better than the other models.

[image: Chart A displays a bar graph of Boro production in thousand metric tons from 2015 to 2021, comparing actual and predicted data using various models (SVR, NB, RF, RR, CB, KRR). Chart B shows a line graph of error rates for the methods, with MSE, MAE, and RMSE metrics across the methods.]
Figure 5 | Comparison of the actual and predicted values of Boro rice production and error rating of the investigated and proposed ML models (SVR, NB, RF, RR, CB, and KRR) in each fiscal year from 2015 to 2021. (A) Actual vs Predicted bar chart for Boro. (B) Line chart for the error rating of Boro production prediction.

Table 7 | Error rating representation using the investigated and proposed ML approaches for predicting Boro rice production using different metrics and R2 score.


[image: Table comparing six models on four metrics: MAE, MSE, RMSE, and R-squared. For SVR, the values are 0.535, 0.553, 0.744, and 0.960. NB values are 0.489, 0.478, 0.422, and 0.960. RF scores 0.285, 0.222, 0.471, and 0.980. RR has 0.447, 0.312, 0.559, and 0.970. CB's values are 0.453, 0.259, 0.399, and 0.980. KRR has 0.446, 0.246, 0.376, and 0.990.]
To this end, we investigate three major rice variations in this part to predict their production concerning the environmental conditions. Given the analyses, we can deduce that our proposed model KRR performs better in predicting different rice production in Bangladesh. Boro rice needs extra irrigation for cultivation. The average production of Boro rice is expected to decrease by over 20% in 2050 and by 50% in 2070 as a result of climate change (Basak et al., 2010). It has been determined that an increase in both the maximum and minimum temperatures is the primary cause of a reduction in yield. Rainfall pattern changes during the growing season have also been observed to impact rice production and irrigation needs. Using the proposed KRR, researchers can track environmental factor changes and then take the necessary steps to select an alternative rice variety or predict the production of the new variety.





Result analysis on potato production

In Bangladesh, potato farming takes place throughout the winter season. Sandy loam soils can produce more potatoes than other types of soil (Faraji et al., 2017). In terms of productivity and internal demand, potatoes are a popular crop in Bangladesh. As a result, predicting potato production has a significant influence on the economy. Figure 6A demonstrates a comparison among the actual and predicted values using the investigated and proposed ML approaches, which shows that our proposed KRR approach offers superior prediction in almost all cases. According to Table 8, our proposed approach KRR outperforms the other investigated ML algorithms in all error measures. In particular, KRR predicts potato production with a minimum MSE of 6.3%. Figure 6B illustrates that KRR is the best-fit model to predict potato production. Potato production in Bangladesh is still at a satisfactory level but it swings to change of environment (Hossain and Abdulla, 2016). In some consecutive years, the production goes down due to heavy cold and attack of unexpected diseases on potato (Islam et al., 2022). To predict production in this kind of uncertain situation, the proposed KRR can be a good solution for the agriculture domain people.

[image: Chart A shows potato production in kilometric tons (KMT) from fiscal years 2015-2016 to 2020-2021 across various methods: Actual, SVR, NB, RF, RR, CB, and KRR. Chart B displays error measures, MSE, MAE, and RMSE, for methods SVR, NB, RF, RR, CB, and KRR, with errors peaking with method CB.]
Figure 6 | Comparison of the actual and predicted values of potato production and error rating of the investigated and proposed ML models (SVR, NB, RF, RR, CB, and KRR) in each fiscal year from 2015 to 2021. (A) Actual vs Predicted bar chart for Potato. (B) Line chart for the error rating of Potato production prediction.

Table 8 | Error ratings using the investigated and proposed ML approaches for predicting potato production using different metrics and R2 score.


[image: Performance metrics table for six models: SVR, NB, RF, RR, CB, KRR. Columns list MAE, MSE, RMSE, and R². Notable values include KRR having the lowest MSE at 0.062 and highest R² at 0.990.]




Result analysis on wheat production

In Bangladesh, the production of wheat is decreasing on average by 0.44% each year. People are cultivating different crops instead of wheat for more benefits and a higher production rate. The prediction of the production of wheat can improve the production rate of wheat. We use the same ML and ensemble ML algorithms to predict wheat production in the Dinajpur zone of Bangladesh.

Figure 7A indicates a comparison among the actual and predicted values of wheat rice production using the investigated (SVR, NB, RF, RR, and CB) and proposed (KRR) ML models in each fiscal year from 2015 to 2021. It demonstrates that the performance of our proposed KRR is better than other ML models. In terms of other error metrics, KRR achieves the best result than the other investigated ML approaches, as illustrated in Table 9 and Figure 7B. Wheat production in South Asia climbed from 15 million tons in the 1960s to 95.5 million tons in 2004–2005. It still needs to increase at a rate of 2%–2.5% every year till the middle of the 21st century (Chatrath et al., 2007). Because there is little scope for growing wheat field areas, the main task will be to crack the yield barrier utilizing practical genetic and morphological techniques. Other issues are unique to the highly productive rice–wheat farming system prevalent in the Indo-Gangetic plains. Though the production is at a low level, the 2017–2078 and 2018–2019 time periods have broken records. Previously, we discussed that the damage of the Aus rice due to flood plays a vital role in this segment (Das and Rahman, 2018). People engaged more in cultivating wheat to recover the damage to the economy in the period. It indicates that cultivating more wheat can be a solution to increase the amount of wheat production, which leads the agricultural economy in another direction.

[image: Chart A shows a bar graph of wheat production from 2015 to 2021 with actual and predicted values by different models, peaking in 2018-2019. Chart B presents a line graph of error rates comparing MSE, MAE, and RMSE across various methods, with higher errors noted for RF and RR.]
Figure 7 | Comparison of the actual and predicted values of wheat production and error rating of the investigated and proposed ML models (SVR, NB, RF, RR, CB, and KRR) in each fiscal year from 2015 to 2021. (A) Actual vs Predicted bar chart for Wheat. (B) Line chart for the error rating of Wheat production prediction.

Table 9 | Error ratings using the investigated and proposed ML approaches for predicting wheat production using different metrics and R2 score.


[image: Table displaying performance metrics for different models: SVR, NB, RF, RR, CB, and KRR. Metrics include MAE, MSE, RMSE, and R-squared. Values range from 0.023 to 0.990, with KRR showing the best performance.]
To summarize, we can state that, on average, our proposed model KRR outperforms the others in predicting crop production for all crops considered in this work. Regarding MSE, MAE, RMSE, and R2, the proposed KRR performs better. From Tables 5 to 9, we can clearly differentiate the performance of each model for prediction. In almost all cases, the MSE, MAE, and RMSE values of KRR are smaller than those of the other models, which indicates that KRR shows minimum error in the case of prediction compared to other ML models. However, the R2 value of the KRR is larger than the other models in the above-mentioned tables. It also creates a comparison among the models that KRR is a better fit to the dataset than existing benchmark ML models. To find the superiority of KNN, the DM significant test is also performed below.





Significant test on the superiority of the proposed ensemble ML model




DM test

The DM test is one of the most used significant test procedures to compare the robustness of the best method in prediction. This is an asymptotic z-test of the hypothesis that calculates the loss difference (Diebold, 2015). In this study, we consider the null hypothesis as H0, i.e., the loss difference of model A is lower than or equal to that of model B. Note that the hypothesis rejection means model B is significantly more accurate than model A. In every hypothesis, testing model B is our proposed KRR ensemble model.





Significant test result

We use the DM test to find the significance of our proposed ensemble algorithm KRR compared to the other investigated ML models. We evaluate this test for the Aus rice, Aman rice, Boro rice, wheat, and potato data.

Table 10 illustrates the DM values of different models compared to our proposed KRR. For almost all of the cases, our proposed KRR shows 5% significance over other ML models.

Table 10 | DM value with significance for each investigated ML model compared to our proposed KRR ensemble model in terms of DM and p-values.


[image: Table displaying the DM values of various crops for different investigated models: SVR, NB, RF, RR, and CB. Each crop's column shows DM values with significance indicated by *, **, and *** for 1%, 5%, and 10% levels, respectively.]






Crop recommender system

Besides crop production forecasting, crop recommendation is a vital part of such a study. Suitable crops in suitable land can boost the production of any crop (Bhullar et al., 2023). Finding the best crops for the appropriate land is a challenging task. A complex analysis of the environmental variables and production rate is required to recommend a land for production (Van Ittersum et al., 2013). Every area has a unique value of environmental variables. Considering the standard variables as threshold values (collected from expert agriculturists), we propose to recommend crops for any specific area. We provide the block diagram in Figure 8. First, the model is trained on the environmental and area data, and then, based on the environment and area data of the current year, the estimated production is predicted for each crop. Next, the production of the individual crops is compared with the threshold value of the crop for any specific area. If the production satisfies the criteria, then the crop will go to the list of recommendations. The threshold value is to be estimated by the associated local authority, which can be changed according to changes in the status of the area, demand, policy, and also environmental conditions. Comparing the crops of the same harvesting period, the model will recommend the right crops for the right place. We also introduce the pseudocode to recommend the crops for the land in Algorithm 2. We now discuss every step in the recommender system as follows.

[image: Flowchart illustrating a machine learning process for agricultural recommendations. Weather data and crop types feed into a dataset. Data preprocessing leads to an ML model producing predicted values. These are compared against a threshold to inform decisions. Output is a recommendation for optimal crop choice.]
Figure 8 | Block diagram of the proposed crop recommender system. This recommender system employs our proposed pre-trained KRR ML model to predict the production values of the test samples of different crops. After that, a suitable crop to grow is recommended using the predicted production values and the expert-defined threshold.




Dataset creation

Dataset is one of the significant components of the recommendation system (Zhang et al., 2018). A dataset should train the model used for prediction and recommendation to understand the nature of the system. Then, it can predict and recommend the outcome. In this recommendation system, environmental, area, and production data of the crops are taken into consideration. Five main crops of Bangladesh are considered here as the source of data. The data collection procedure and preprocessing are discussed in detail in the Methods and measurements section.





Model development and prediction

This stage is one of the crucial parts of the crop recommendation system. The preprocessed dataset is used to train the ML models, and the model predicts the production of different crops. The model makes specific crop predictions based on the area, previous production, and environmental data related to the specific crop production period. Our proposed high-performance model KRR described in the Proposed paradigm section is considered as the potential ML model in the recommendation system.

Algorithm 1 | Crop recommendation

[image: Procedure for crop recommendation using inputs: train model, environmental data, land area, crop names, and threshold value. For each crop, it predicts production and returns the crop if the predicted amount is above the threshold.]






Threshold value selection

We consider the standard environmental data as a threshold for the recommendation. In a specific area, crop production depends on environmental properties like temperature, rainfall, wind speed, and sunshine. The environmental variables can be predicted by our proposed model besides the crop production prediction. Threshold values are taken from the local agriculture office and set to our model for the recommendation.





Crop recommendation

It is the final step of the recommender system. The model predicts the production for an area, and we set the threshold for this system. The threshold is compared with the predicted environmental data, and the crops’ production is considered the main element of recommendation. The recommendation is reached by comparing the threshold with the predicted data for each season’s crop. The top match is the recommended crop for the season in the area. The input of this system is the season and the list of crops, and the output is the recommended crop among the selected crops. As an extension of this work, in the future, a mobile application will be developed that will help farmers gain easy access to this system. However, in this current state, they can use it with the help of experts with a technical knowledge of putting the inputs and synchronizing with this system.






Conclusion

In this work, we have focused on designing a learnable dataset on agricultural crop production prediction from different agricultural research organizations as well as the meteorological department of Bangladesh. The analysis is first performed using five popular classical ML algorithms as well as ensemble ML algorithms. Then, we proposed an ensemble algorithm, called KRR, to better predict crop production. After evaluating all the algorithms, we have found that our proposed ensemble method KRR outperforms the investigated traditional ML and ensemble ML algorithms. In particular, KRR shows minimum errors and a maximum R2 score compared to that of the investigated ML approaches. We have also provided a DM test to demonstrate the superiority of our proposed KRR approach over the existing ML approaches. The final result also indicates that the production of rice is increasing day by day, and the production of potatoes is also increasing at a significant rate while the production of wheat is decreasing every year. We have also provided a crop recommender system that recommends the most suitable crops to be cultivated on a particular land in the upcoming season.





Limitations

This work focused on predicting major crops than the minor crops due to the lack of available data in the study area. Some factors such as soil properties, production cost, and market price, the data collection process of which is difficult and time-consuming, were not considered.





Future work

In the future, we will gather more data related to this study and analyze deep learning methodology that can help to select the appropriate crops for the right land more correctly. Local market and wholesale market price analysis will also be performed to select the crops for a specific region. For a more complete picture, researchers plan to include both modern and traditional crops in their future analyses and selections. Additionally, a system based on mobile applications can be created to guarantee that farmers have easy access to the system’s information.
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Phenotyping is used in plant breeding to identify genotypes with desirable characteristics, such as drought tolerance, disease resistance, and high-yield potentials. It may also be used to evaluate the effect of environmental circumstances, such as drought, heat, and salt, on plant growth and development. Wheat spike density measure is one of the most important agronomic factors relating to wheat phenotyping. Nonetheless, due to the diversity of wheat field environments, fast and accurate identification for counting wheat spikes remains one of the challenges. This study proposes a meticulously curated and annotated dataset, named as SPIKE-segm, taken from the publicly accessible SPIKE dataset, and an optimal instance segmentation approach named as WheatSpikeNet for segmenting and counting wheat spikes from field imagery. The proposed method is based on the well-known Cascade Mask RCNN architecture with model enhancements and hyperparameter tuning to provide state-of-the-art detection and segmentation performance. A comprehensive ablation analysis incorporating many architectural components of the model was performed to determine the most efficient version. In addition, the model’s hyperparameters were fine-tuned by conducting several empirical tests. ResNet50 with Deformable Convolution Network (DCN) as the backbone architecture for feature extraction, Generic RoI Extractor (GRoIE) for RoI pooling, and Side Aware Boundary Localization (SABL) for wheat spike localization comprises the final instance segmentation model. With bbox and mask mean average precision (mAP) scores of 0.9303 and 0.9416, respectively, on the test set, the proposed model achieved superior performance on the challenging SPIKE datasets. Furthermore, in comparison with other existing state-of-the-art methods, the proposed model achieved up to a 0.41% improvement of mAP in spike detection and a significant improvement of 3.46% of mAP in the segmentation tasks that will lead us to an appropriate yield estimation from wheat plants.
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1 Introduction

Wheat is one of the top three most valuable crop species around the world, as well as responsible for nearly half a billion dollars’ worth of annual trade (Hasan et al., 2018). It is the principal source of nutrition for 2.5 billion people in 89 different nations (Misra et al., 2020). As the global population rises, so does the need for cereal grains including wheat, sorghum, millet, maize, and rice. This is because these grains provide sustenance for a sizable population around the world. Wheat accounts for the vast majority of the world’s food commerce and is cultivated on more land than most other crops. For good reason, wheat is often referred to as the foundation of food security (Xiong et al., 2019). This highlights the need to identify wheat plant varieties with greater resilience, higher yields, and enhanced endurance to biotic and abiotic stresses.

In agriculture, scientific efforts are directed toward quantifying how a plant’s function and features are continuously affected by its environment. While these tasks of plant and crop phenotyping are not new, manually keeping track of a plant’s physical and biological attributes such as its height, growth rate, hardiness, nutritional content, and yield, as a function of environmental conditions can be extremely time and labor demanding. Modern high throughput plant and crop phenotyping methods, on the other hand, involving image-based information, captured by configurable land-based equipment or drones with minimal effort and mostly with little expense, are able to collect significantly more data in a considerably shorter length of time. The challenge now is to effectively and efficiently process this vast amount of data, and derive as accurate information as possible about plant growth and development in an automatic way and in a practical period of time. To meet this challenge cutting-edge agricultural technology is now making use of artificial intelligence (AI) in order to greatly simplify the modern crop performance monitoring process overall. The complete processing chain of steps involved in modern high throughput plant phenotyping operations, depicted in Figure 1, may thus include ground or aerial imaging, or both, the application of image processing methods of computer vision and the application of machine learning processes (i.e., AI) for, say, object recognition, object identification and instance segmentation. This information is then used as input into subsequent data analysis procedures where correlations with genetic and environmental factors are deduced.

[image: Diagram illustrating high throughput phenotyping in agriculture. Data acquisition systems like land-based and aerial imaging, LiDAR, and ultrasonic sensors gather data. Computer vision tasks include image segmentation, object detection, and disease identification. Data processing involves machine learning, deep learning, and image processing. Major applications highlighted are spike detection, vegetation index, seedling count, and growth analysis. A central image of a plant connects these components.]
Figure 1 | Overall high throughput phenotyping process for various domain applications.

Accessing image-based phenotypic features such as wheat crop yield, and even wheat spike size and shape, requires accurate segmentation of wheat spikes out of a complicated backdrop. When it comes to wheat spike segmentation, several different kinds of convoluted neural network (CNN) analysis systems have been generated including, but not limited to, Faster R-CNN, Cascade R-CNN, Mask R-CNN (Ren et al., 2015; He et al., 2017; Cai and Vasconcelos, 2019). These deep learning algorithms have been trained on massive spike data sets so that they will subsequently be able to distinguish spikes from other object features (background) in images. The insights gained might then be put to use in real-time for data intelligence, predictive analysis, and smart farming, all driven by artificial intelligence. Earlier, the author Batin et al. (Batin et al., 2023) proposed improved detection of wheat spikes using multi-stage CNN; this time, author significantly improves both the detection and segmentation process of wheat spikes, leading us to a more accurate spike estimation approach that is robust in terms of identifying it in the complex in-field scenarios. The objective of this research is to achieve greater accuracy and consistency than previously proposed deep learning techniques, utilizing a method that can segment wheat spikes from images of actual fields, and then to apply this strategy to other agricultural sectors where AI can be advantageous.

The challenge of segmenting objects in complicated contexts may be overcome, in part, by developing multi-stage, region-based convolutional neural networks (RCNNs), which employ region suggestions in conjunction with CNN characteristics (Maji et al., 2022). When the calculated CNN-derived features obtained from region proposals are used, segmentation as well as counting of objects in pictures is superior to approaches that do not use region-based proposals.

In this study, we aim to address the phenotyping challenge of accurately segmenting wheat spikes from real-world field images with high levels of precision and robustness. The ability to precisely detect, count and segment wheat spikes from such images is crucial for accurately estimating the overall wheat yield, more so importantly in a non-destructive manner. The focus of this research problem is the development of advanced deep learning based approaches that may successfully manage the complexities and variances present in such images. These complexities arise from things like varying illumination, occlusions, and various growth stages of wheat. As can be seen from Section 2, existing research in non-destructive phenotyping mostly focuses on lab condition images, which cannot always represent the real-world complex scenarios.

To meet the requirements of our study, we have first curated and annotated a wheat spike segmentation dataset, SPIKE-segm, with accurate masks and bounding boxes. We then proposed a modified spike segmentation model based on the Cascade Mask R-CNN architecture. Our proposed method includes novel modification to several components of the model architecture, including Deformable Convolution Network (DCN), Generic RoI Extractor (GRoIE), and Side Aware Boundary Localization (SABL). Details of these modifications and an ablation analysis between these components have been explained in Section 3 and Section 4. In terms of spike segmentation, based on the results presented in Section 4, we have determined that our proposed method is more accurate, efficient, applicable, and robust than other existing methods (see Section 4). Finally, the conclusions are summarized in Section 5.




2 Related works

All facets of modern life are becoming more dependent on technology. The agricultural industry has been profoundly altered by technological advancements. Many researchers in the field of agriculture are utilizing AI to modernize age-old practices, therefore increasing output while decreasing the workload of farm workers and their demands on the environment. Many techniques for phenotyping plants have been reported by scientists in the field. Different deep-learning approaches have been proposed for segmenting and counting wheat spikes.

Misra et al. (Misra et al., 2020) introduced SpikeSegNet, a novel deep learning (DL)-based method for the detection, recognition, and counting of many wheat spikes. On average, the suggested technique was 99% precise, 95% accurate, and 97% robust when used to count spikes in images their data set. The SpikeSegNet approach achieved sufficient robustness based on a data set containing illuminated images, with no significant drop in segmentation performance. Despite extensive testing under a variety of lighting conditions, results from the lab are not feasible to apply to real-life scenarios. On the other hand, the proposed method requires sufficiently high-quality images to be able to detect and count spikes.

Zhang et al. (Zhang et al., 2022) suggested a Hybrid Task Cascade model improve detection outcomes for the wheat spike identification problem in high-dimensional environments, making it possible to reliably segment wheat spikes. Wheat spike detection and segmentation in a wheat field with complicated surroundings is the major topic of this study. For the model’s bounding box and mask, values of average precision (AP) equal to 0.904% and 0.907% were achieved, respectively, while a value of 99.29% was found for the precision with which wheat spikes might be enumerated. Even though both bounding box and mask segmentation have room for improvement in terms of average precision. An improved performance of Wheat-Net was found in the experiments presented in this study, although when it came to identifying the base of wheat spikes, the model encountered several segmentation issues; due to their similarity in color, texture, and form to the plant background, the connected spike and stem made up a blurry boundary.

The work by Hasan et al. (Hasan et al., 2018) presented a fine-tuned region-based convolutional neural network (R-CNN) model for detecting and evaluating wheat spikes in ground-based images. Faster R-CNN was chosen as the network model to be instructed in this article’s training set. Images were fed into a pre-trained VGG-16 prototype, which was subsequently utilized to automatically extract features, and then sent to the region proposal network (RPN) to generate bounding boxes (Bbox-es), and finally to the classification network to be labelled as spikes or background. In-field images were captured using high-definition RGB cameras to create a spike data set called SPIKE, which was used to train a Faster RCNN architecture. Both the average accuracy and F1 score for the model were 93.4% and 0.95, respectively. Nonetheless, no actual spike segmentation work is carried out here. However, the model’s inaccuracy increased when dealing with partially covered spikes, especially in high-density locations.

A strategy based on SpikeRetinaNet was developed by Wen et al. (Wen et al., 2022) to recognize and quantify a densely distribution of small objects in complicated images. The three main components of SpikeRetinaNet − including the use of BiFPN (weighted bi-directional feature pyramid network) for more efficient implementation of multi-scale data, and the use of Soft-NMS (non-maximum suppression) to address the occlusion problem − make it an upgraded edition of the RetinaNet framework. The authors trained and evaluated their technique using the GWHD data set, which was supplemented with pictures from the wheat-wheat grass spike detection (WSD) dataset. One drawback of this approach is that it may generate many bounding boxes for the same spike. Again, the outcome differs depending on the growth stage of the crops. Despite Mean average accuracy (mAP) rates for wheat spike identification achieved by the model were 92.62%, with a count detection capacity of 92.88%.

For segmenting individual corn against a ground background, Jin et al. (Jin et al., 2018) suggested a combination of deep learning and regional development techniques to identify the root of specific maize plants in a variety of settings. For target detection, Faster R-CNN was used because of its particular search with a regional proposal network (RPN). A faster R-CNN-based technique was found to be effective at recognizing stem anchors in 2D views from 3D Lidar pictures. The model has a drawback in that if the stem is totally missing in the scanned data, the system will not be able to recognize the individual maize plant, which will not be able to develop into an individual stem. The suggested approach was only tested on premature maize plants, and its efficacy for segmenting adult maize plants requires more study.

Zhou et al. (Zhou et al., 2018) proposed a new approach that uses computer vision to obtain statistics on the number of wheat spikes. Their effort presents a technique for improving the maximum entropy segmentation technique by selecting optimal thresholds for noise reduction using morphological filters, which yields more reliable coarse-segmentation findings. Multispectral and panchoromatic pictures are fused in this case. These findings not only demonstrate the high precision of the approach used here, but also demonstrate how the local search operator may greatly enhance the performance of the original evolution algorithm, which has its own inherent limitations.

Su et al. (Su et al., 2020) suggested Mask R-CNN for the reliable identification of disease sites and symptom severity on wheat spikes. The fungal disease fusarium head blight (FHB) causes significant losses in quantity and quality of wheat grains. To build the feature pyramid and to extract features, Mask-RCNN relied on a network similar to ResNet-101 called the feature pyramid network (FPN). After full-sized image of wheat spikes were used to create mask images, Mask-RCNN was used to forecast unhealthy spots on each spike. Despite the bigger dataset, naturally infected wheat spikes were left out, and the dataset was collected under controlled environmental settings. The detection rates for wheat spikes using this procedure were 77.76%, and for infected regions, they were 98.81%. By comparing the predicted wheat FHB severity value to the actual value, they were able to attain an accuracy of 77.19% in their predictions.

Most spike segmentation approaches have only been evaluated on random data sets in the lab, making it hard to determine whether or not they will provide correct findings when applied to real-world images. The images were taken in controlled settings, resulting in good resolution and recognizable spikes; the number of obscured spikes is very minimal. As a result, the techniques often perform poorly under real-world imaging conditions when only partially visible spikes are present, particularly when the resolution is low. In contrast, we evaluated our model (described in the next section) on low-resolution, real-world image data and found an increased capacity to segment (and count) partially hidden spikes.




3 Materials and methods

The objective of our efforts is the development of a faster, more robust and more accurate method of identifying and counting wheat spikes in land-based field images. A flow-chart diagram describing the process involved in our system is shown in Figure 2

[image: Flowchart depicting a land-based imaging platform for spike detection and segmentation. The process begins with image pre-processing, leading to SPIKE dataset creation through manual spike annotation. This annotated dataset undergoes data augmentation and training with images using a pre-trained CNN (ResNet-50) and a fine-tuned Cascade Mask R-CNN model. The trained model evaluates test images, producing outputs like classification score, bounding box regression, spike segmentation mask, and detection count.]
Figure 2 | Generic work flow diagram describing the proposed algorithm for the detection and segmentation of wheat spikes in field images.



3.1 Data collection

For this research, we have utilized the SPIKE data set that was established by Hasan et al. (Hasan et al., 2018). The SPIKE data set was collected over four months (July 21, 2017 - November 22, 2017) using a transportable, land-based imaging frame, taking images of 90 individual plots of wheat distributed over 18 rows and 5 columns. Ten different varieties of spring wheat (Triticum aestivum L.): Drysdale, Excalibur, Gladius, Gregory, Kukri, Mace, Magenta, RAC875, Scout, and Yitpi, were cultivated in the areas. Having spikes of varying shapes and sizes increases the versatility of the data set for the task of recognizing different wheat varieties (not of a focus of this work). Three fertilizer treatments were applied to each variety of wheat: no fertilizer treatment, early treatment, and late treatment, in order to establish the effect of fertilizer on wheat spike development. Each variety and each different treatment was replicated three times for a statistical analysis. Two-thirds of the plots were given the industry-standard fertilizer dose of 80 kilograms of nitrogen, 40 kilograms of phosphorus, and 40 kilograms of potassium per hectare, whereas the remaining thirty plots were left untreated.

Three cameras were mounted on an overhead rail in the center of a steel-framed, four-wheeled cart shown in Figure 3. Although the setup includes a stereo pair of cameras for “overhead” observation, the images from these cameras were not included in this study (spikes seen along the vertical viewing axis appear small and round in photos, finding them challenging to identify). Instead, only images taken by a camera situated at one end of the cart, supported at an acute angle to the vertical were used in this study. The images were taken with a digital camera with a resolution of 18.2 megapixels using a Canon EOS 60D. After a trial and error period, it was determined that a viewing angle of 55 degrees from the horizontal, overhead rail would provide the most usable plot area with the least amount of intersection. The height of the camera’s sensor from the ground was 190 centimeters. These are the parameters that had been set for the camera;

	Focal length —18 mm,

	Aperture — f/9.0,

	ISO — automatic

	Exposure time — 1/500 s



[image: Panel "a" shows a field camera setup on a wheeled metal frame over crops, with a camera positioned high. Panel "b" is an illustration showing the setup's structure with a diagram of the camera capturing images of wheat plants. An inset image displays an example of the field view captured by the camera.]
Figure 3 | The ground-based vehicle for imaging in the field. (A) A camera, angled for oblique viewing, is placed at the top of an imaging frame mounted on a four-wheel base (the wagon). The frame also supports two stereo cameras, angled vertically, placed in the center of the top section. (B) A schematic of the wagon from a side-view (Hasan et al., 2018).




3.2 Dataset annotation and preparation

For the segmentation of wheat spikes from field images, we manually annotated images from the SPIKE data set to create training, testing and validation sets. The images in this data set are divided into the following three color classes: GSYC - green spike, yellow canopy; GSGC - green spike, green canopy; YSYC - yellow spike, yellow canopy. We maintained this same distribution of images, which correspond to the different growth stages of wheat. (Table 1) shows the overall count and distribution of the data set for wheat spike segmentation:

Table 1 | Number of images from each growth stage used for training, testing and validation.


[image: Table showing image distribution across different categories and sets. Training set: GSyC 222, GSGC 34, YSyC 34, total 290. Validation set: GSyC 9, GSGC 3, YSyC 3, total 15. Test set: GSyC 9, GSGC 3, YSyC 3, total 15. Overall total: GSyC 240, GSGC 40, YSyC 40, total 320.]
To annotate the images in the data set we used the Roboflow Web API (Dwyer et al., 2022). Wheat spikes in the images were annotated using the polygon tool provided by API. Careful inspection ensured a high quality of annotations, as exemplified by Figure 4. More than 26,000 spikes were annotated with an average of 83 spikes per plot image. Considerable effort went into curating this spike segmentation data set. For evaluation and testing purposes, we annotated the objects (wheat spikes) in the images in the COCO format (Lin et al., 2014), which is used as a standard format to evaluate instance segmentation models.

[image: Green and yellowing wheat plants arranged in rows are overlaid with multiple blue rectangles of varying sizes, possibly indicating areas of interest or analysis. The soil beneath is visible.]
Figure 4 | Example of the annotation of an image from the SPIKE data set (GSGC stage).




3.3 Proposed wheat spike segmentation approach



3.3.1 Model architecture

To detect, segment and count wheat spikes from images, we decided the instance segmentation method to be the most suitable for the task at hand. The high resolution of the plot images, allowed the segmentation model to detect, localize and segment spikes from features at the instance level and thus be able to count the detected spikes as well. We use the Cascade Mask R-CNN model, a two-stage object detection and segmentation approach described by Cai et al. (Cai and Vasconcelos, 2019), for segmentation. This method is a multi-stage, modification of the Mask R-CNN architecture (He et al., 2017) allowing the detectors further down the cascade architecture to be successively more discriminating against false positive detection. These steps of the R-CNN architecture are trained progressively, utilizing the output of the preceding stage to train the subsequent stage.

By training a segmentation branch in tandem with a detection branch, Mask R-CNN effectively expands upon the two-stage design of Faster R-CNN (Ren et al., 2015; Lin et al., 2017) used by Hasan et al. (Hasan et al., 2018). Figure 5 depicts the architectural representations of Mask RCNN and Cascade Mask RCNN. Here, I - input image, conv - convolutional layer, pool - maxpooling, and C, S, B represents classification, segmentation and bounding box head, respectively. In comparison with Mask RCNN (Figure 5A), the Cascade Mask RCNN (Figure 5B) has multiple detection branches, which raises the question of how many and where to add segmentation branches. For our project we opted for a design in which a segmentation branch is included at each cascade stage. At the time of inference, the final mask prediction for this architecture is derived from the ensemble of three segmentation branches. The overall structure of our model is shown in Figure 6.

[image: Diagram illustrating two models. Panel A shows Mask R-CNN architecture with an input image processed through layers C2 to C5 and P2 to P5, leading to RPN, ROI, and final output of class, bounding box, and mask predictions. Panel B depicts a feature pyramid network with an RPN network feeding into pooling layers and then into output layers D1 to D3, each branching into outputs C, S, and B series.]
Figure 5 | The different architectures of (A) Mask R-CNN and (B) Cascade Mask R-CNN (Cai and Vasconcelos, 2019).

[image: Flowchart depicting an image processing pipeline. The top image features foliage with blue bounding boxes. The process includes steps: Multi Scale Resize, Backbone Network, Feature Pyramid Network, and three Pool layers. Each Pool connects to nodes labeled D1, D2, D3, further branching to C1-S1-B1, C2-S2-B2, C3-S3-B3. The bottom image shows foliage with varied colored bounding boxes.]
Figure 6 | The proposed model structure for spike segmentation.




3.3.2 Model optimization

The first step to detecting and localizing objects in an image is to extract relevant features from that image using a backbone network (Figure 7). In our study we employed the ResNet architecture (He et al., 2016) as our model’s backbone, which comprises four stages or residual layers wherein, each stage has a different number of convolution “blocks”; in our case: (3, 4, 6, 3) (Figure 7). Furthermore, each block has three convolution layers, and each convolution layer is followed by a batch normalization layer. For our experimentation, we used the ResNet-50 version of the ResNet architecture. It is important for our proposed model to be able to extract relevant features of wheat spikes across the whole input image.

[image: Flowchart of a neural network architecture for image processing. It starts with an image, followed by a 7 by 7 convolution layer with 64 filters. After max-pooling, it moves through blocks with varying convolution operations, including 1 by 1 and 3 by 3 convolutions with increasing filter numbers. The layers are structured into groups repeated three, four, and six times, ending with average pooling and a fully connected layer with 1000 outputs.]
Figure 7 | The optimized ResNet50 architecture highlighting multiple blocks, each comprising three convolution layers.

Due to a high variability in shape and size of wheat spikes, standard convolution layers do not provide the optimal solution, as the fixed size of the kernels in those layers all have the same receptive field (sampling grid) to model geometric transformations of objects in images. The deformable convolution network (DCN) (Dai et al., 2017) addresses this issue by allowing the convolution layers of the network to have a deformable structure for their kernels (Figure 8). Offsets of the sampling grid are learned by the model without any additional supervision. This learned “deformation” of the kernel allows the convolution layer to model dense spatial arrangements of objects so that overall the model can detect and segment wheat spikes of different size, shape and orientation.

[image: Diagram illustrating deformable convolution. The process starts with an Input Feature Map, which is processed through a convolution layer (CONV) to create an Offset Field. The Offset Field generates Offsets, which adjust the convolution positions. These adjusted results produce an Output Feature Map, enhancing the feature extraction capability.]
Figure 8 | Deformable convolution network.

After extracting features from the backbone network, our model arranged those region of interest (ROI) features using a feature pyramid network (FPN) (Lin et al., 2017) and balanced feature pyramid (BFP) (Pang et al., 2019) sub-network fused together, into a multi-scale pyramid with a top-down architecture comprising 5 different scales, each containing 256 feature channels. These features, generated by the FPN + BFP module, are then passed on to a region proposal network (RPN) (Ren et al., 2015), which generates candidate regions that might contain an object. To efficiently generate region proposals (or anchors), RPN predicts the object bounding box and classification score of the object with varying scales and aspect ratios. Instead of a single-level RoI extractor, we used a generic RoI extractor (GRoIE) (Rossi et al., 2021), which utilizes all the levels of FPN for RoI pooling to extract 7 × 7 RoI features. GRoIE was chosen over a single RoIE based on the observation that only the best layer from FPN is selected by the RoI extractors currently in use, ignoring potentially useful information in other layers. In order to overcome this restriction, non-local building blocks and attention mechanisms were added to the GRoIE to extract and merge data from all FPN layers, producing a more comprehensive and accurate representation of the wheat spikes (Zhang et al., 2022).

After the RoI pooling, the feature maps were used as input into the cascaded bounding box (bbox) head of our model (Figure 6). For this bbox head, we used the side aware boundary localization (SABL) approach, proposed by Wang et al. (Wang et al., 2020), for localization of each side of a bounding box that might contain a wheat spike. SABL improves the localization performance of the object detection model by focusing on object boundaries rather than on the center point utilized in more traditional bounding box regression schemes. In our approach, side-aware features are extracted from RoI features and then a “bucketing scheme” is employed where the target space (input image) is divided into multiple buckets (shown in Figure 9). The bbox head then predicts in a two-step process the bounding box that contains an object - bucket estimation to find a proposed bbox, and fine regression of the proposed bbox.

[image: A visual diagram illustrating a process of image detection on plant leaves. The left section shows a close-up with blue and red bounding boxes highlighting a plant part. Arrows indicate a progression to the right section, which is similar but includes yellow dashed boxes and additional arrows. In the center, labeled steps include "Proposal," "Buckets," "Bucketing Estimation," "Fine Regression," and "Pred box," represented as arrows and blocks, indicating data processing stages.]
Figure 9 | An example of side-aware boundary localization (SABL).

The model must segment wheat spikes at an instance level after identifying and localizing them. In order to achieve segmentation results, a mask head was added to each cascaded level of the model (Figure 6). Again, a single-level RoI extractor was utilized to extract a 14 × 14 RoI feature map used as input for the model’s mask head. The mask head consists of a fully convolutional network (Long et al., 2015) with four convolutional layers and a 3 × 3 kernel.

Deep learning networks need to adaptably fine-tune the learning rate (LR). Early model instability can result from a large LR. In our model we used a linear warm-up LR approach (Goyal et al., 2017) for training. The LR is first set to a tiny number, usually a fraction of the real LR, and then progressively increased over a few epochs until it approaches the actual LR. The model starts training with consistent convergence. Our linear warm-up approach starts with 0.01 times the real LR and progressively grows until the actual LR is attained. As the training iteration grows, the LR must decay since a high LR will prevent the model from converging. MultiStepLR, a prominent LR decay approach, employs specified steps (epoch numbers) to reduce the learning rate by 0.5 to address this issue. The MultiStepLR scheduler reduced the LR by 0.5 at epochs 100 and 140 for all models. Even though linear annealing results in a greater average precision (AP) for an intersection over union (IoU) measure of 0.5, MultiStepLR converges significantly sooner (as shown in the Comparative Analysis section).

Furthermore, we also employed auto-scaling LR based on the batch size and number of images per gpu to obtain the LR for our model (Goyal et al., 2017). According to the linear scaling rule for auto-scaling of LR, if the batch size is multiplied by k then LR must also be multiplied by k, while other hyper-parameters remain unchanged. The base batch size and LR for the auto scaling rule was set to 16 and 0.01, respectively. So, with a batch size of 2 and 1, the LR was reduced by a factor of 8 and 16, respectively. This is done so that the models’ are not affected negatively by having different batch sizes due to memory constraints. We observed the impact of utilizing the auto-scaling rule in the ablation study part of our experiments. Table 2 shows the important hyper-parameters that were fine-tuned as part of our method.

Table 2 | Hyper-parameter table.


[image: Table showing hyper-parameters with their types and values. Optimizer: SGD with momentum 0.9 and weight decay 0.0001. Batch size: 1. Learning rate: 0.000625 with MultiStep policy, steps [100, 140]. Warmup policy: Linear with 500 iterations and ratio 0.01. Number of epochs: 150. Classification stages: Cascaded, with IOU thresholds of 0.5, 0.6, 0.7 for stages 1, 2, 3, respectively. Score threshold: 0.5 for RCNN.]
After careful optimization and fine-tuning, we eventually constructed a new instance-segmentation model for wheat spikes based on the Cascade Mask RCNN method, together with ResNet50 backbone with deformable convolutions, generic RoI extractor (GRoIE), side aware boundary localization (SABL) for bounding box regression, and auto-scaling LR rule. During training, several data augmentation treatments were applied, namely, resizing the images to 1333x800 resolution, random flipping with a 0.5 probability of being vertical or horizontal, and finally padding the images with up-sampling to a multiple of 32. These data augmentations help enhance the robustness of the model by providing it with more varied training data. The backbone network of the model was initialized with weights from a pre-trained ResNet50 model and parameters of other modules was initialized randomly with different initialization methods such as Kaiming initialization (He et al., 2015) and Xavier initialization (Glorot and Bengio, 2010).

As the model has a cascaded structure with separate bbox and mask heads for detection and segmentation tasks, the overall loss function of the model takes the following form,

[image: The image shows a mathematical equation: \( L = \sum_{t=1}^{T} a^t (L^t_{\text{bbox}} + L^t_{\text{mask}}) \). The equation appears to be labeled as (1).]

Here, [image: Mathematical notation showing \( L_{\text{bbox}}^t \).]  and [image: Text showing "L" with a superscript "t" and subscript "mask".]  are the bounding box prediction losses and the mask prediction losses at different stages t, respectively. Since we are using 3 stages for the cascade architecture, T = 3 and a are set to [1,0.5,0.25] for all three stages consecutively.

Smooth L1 loss is used for both region proposals and bounding box regression loss, which can be defined as follows:

[image: An equation describing a loss function is shown. When the absolute difference between prediction and target is less than beta, the loss equals \(0.5 \times \left(\frac{{(\text{pred} - \text{target})^2}}{\beta}\right)\). Otherwise, the loss is \(|\text{pred} - \text{target}| - 0.5 \times \beta\).]

Here, pred represents the predicted bbox (or region), target represents the target bbox (or region), and β is the threshold parameter, which was set to 1.0/9.0 for the RPN head and 0.1 for all the three bbox heads.

For classifying the bounding box region as well as the pixel in the segmentation mask, Cross Entropy (CE) loss function is used, defined as following:

[image: Formula for cross-entropy loss, labeled as equation three. The loss is the negative sum of the true label times the logarithm of the predicted probability plus one minus the true label times the logarithm of one minus the predicted probability, averaged over N samples.]

Here, yi is the target class and pi is the predicted class of the bounding box (or pixel), and N = 2 as we are only classifying between the spike and background classes.




3.3.3 Evaluation metrics

For a consistent evaluation of the models we have implemented, we use the average precision (AP) metric because of its representativeness and simplicity. AP measures the area under the Precision-Recall (P-R) curve, where precision and recall are defined by Equations (4) and (5). Thus, AP can be defined by Equation (6). According to the COCO evaluation protocol, AP can be measured at different thresholds for intersection over union (IoU) measures, such as IoU = 0.5 (PASCAL VOC metric), IoU = 0.75 (strict metric), and IoU = 0.5: 0.95: 0.05 (primary challenge metric) (Lin et al., 2014).

[image: Precision is defined as the ratio of true positives (TP) to the sum of true positives and false positives (TP + FP), as shown in the formula.]

[image: Recall formula depicted as \( \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} \), where TP is true positives and FN is false negatives. Equation is labeled as number five.]

[image: Average precision (AP) formula: AP equals one divided by one hundred one times the sum of maximum probability at recall points for given conditions. Equation number six.]

[image: Formula for Intersection over Union (IoU): IoU of sets A and B equals the size of their intersection divided by the size of their union. Equation is labeled as seven.]

where |S| denotes the numerical size of the set S.

In the above and below, true positive (TP) - refers to the case where the model correctly detects a region as a spike, false positive (FP) — refers to the case where the model incorrectly detects a background region as a spike, or detects the same spike as multiple ones; and false negative (FN) — is where the model incorrectly classifies an actual spike as background. P (ri) is the measured precision at recall ri. The precision at each recall level, ri, is interpolated by taking the maximum precision-measured for which the corresponding recall exceeds. A and B represent the predicted and target bbox, respectively, in Equation 7.




3.3.4 Implementation

Training and testing of all the experimental models were done using a Ryzen-5 2600x (6-core) processor, 16GB system RAM and NVIDIA RTX 2070 GPU with 8GB VRAM (unless specified otherwise). We also utilized the open-source object detection and instance segmentation framework MMDetection (Chen et al., 2019) based on the PyTorch deep learning library to implement our model architecture of choice, as it offers an easy-to-use modular codebase. After each epoch of training, we evaluated the model on the validation set. So, after the whole training period, we saved the checkpoint of the best performing model.






4 Result



4.1 Performance analysis of the model

We report the average precision (AP) of our model on the test set to evaluate its performance. The test set contains 15 images from three different growth stages of wheat and contains a total of 1243 wheat spikes. In our experiment, the object detection score refers to the AP value at a specified threshold, calculated using Equation 6, for the final bounding box prediction stage of our model’s network. Segmentation score refers to the same metric, but for the final segmentation mask output stage. Our model achieved an object detection score of 0.93 and segmentation score of 0.9404 for AP at IoU = 0.5, 0.801 and 0.8018 for AP at IoU= 0.75, and 0.678 and 0.6459 for AP at IoU = [0.5: 0.95: 0.05]. In the case of a dense environment such as a wheat plot, detection models tend to predict many false positives. In our case, the high AP values indicate a relatively low detection rate of false positives.

The detection performance of the model can also be evaluated through the count results on the test set. We set an IoU threshold of 0.5 for a spike prediction to be considered true positive and counted the TP, FP and FN results for each image. Table 3 shows these count results. As can be seen from the table, our model achieves an average accuracy of 86% and an average F1-score of 0.93, across all 15 test images. This is particularly impressive, given the complex nature of the wheat plot images in the test set. Somewhat surprisingly, however, our model struggles the most with images from the green spike, yellow canopy (GSYC) class, apparently as these images contained spikes that were the most challenging to detect.

Table 3 | Count and evaluation of spike detection on test images from the SPIKE data set.


[image: A table displaying performance metrics for various test sets labeled GSGC, GSYC, and YSYC. Columns include GT, Det., TP, FP, FN, Precision, Recall, Accuracy, and F1-Score. The final rows show total counts, averages, and standard deviations for the metrics.]
Figure 10 summarizes the various accuracy measures employed to gauge performance. Figure 10A shows a plot of detected spikes as a function of actual count (ground truth). The slope of the line of best fit indicates that the model over estimates the true number of wheat spikes. Graphs in Figures 10B, C show the training losses and training accuracies, respectively, of our model over 150 epochs (43k iterations). It can be seen from the graphs that the training loss (shown in Equation 1) rapidly decreases over the first few epochs and then exhibits a more gradual decrease over the remainder of the training stage. Overall, the training loss of the model does not completely converge at the end of the training phase even though the training accuracy reaches its maximum value. Training accuracy reaches almost 100% after about 30k iterations of training, which coincides with the plateauing of the AP (at IoU = 0.5: 0.95: 0.05) value of the validation set (Figure 10D).

[image: Four graphs labeled A to D illustrate different metrics for a proposed method. A shows a scatter plot with a linear regression line, indicating a strong correlation between detection count and ground truth count (R² = 0.9072). B is a line chart showing a decrease in loss metric over 40,000 iterations. C displays training accuracy rising and stabilizing over iterations. D shows validation bounding box mean Average Precision (mAP) increasing and leveling off over iterations. Each graph includes a blue line representing the proposed method.]
Figure 10 | Overall performance measures: (A) the coefficient of determination; (B) the loss metric during training; (C) training accuracy; and (D) validation of training. (A) Ground Truth vs Detection Count Plot. (B) Training loss over 150 epochs. (C) Training accuracy over 150 epochs. (D) Validation set mAP over 150 epochs.

In addition to these summary measures, we visualize in Figure 11 typical detection and segmentation results of our model applied to the test set. The figure shows a comparison of our results with the ground truth masks in test images with complex background at different growth stages. The Blue bbox and masks represent ground truth annotations, Green bbox and masks represent true positive detections, and Red bbox and masks represent false positive detections.

[image: Six panels labeled A to F, show images of vegetation with colored rectangles. Panels A, C, and E feature blue rectangles over grass, while panels B, D, and F have green and red rectangles over similar scenes. The colored rectangles likely indicate different features or classifications within the vegetation.]
Figure 11 | Visual example of ground truth vs detection results in test images of different growth stage. (A) GSGC ground truth image. (B) GSGC detection result. (C) GSYC ground truth image. (D) GSYC detection result. (E) YSYC ground truth image. (F) YSYC detection result.

Some example cases of spike occlusion, such as when occluded by another spike or awns or leaves, are shown in Figure 12, which depicts the segmentation of spikes, where a mask within a yellow bounding box represents a detected spike (the color variations within the mask have no significant meaning and are only included to highlight the issue of occlusion). An example of a single spike, easily seen in Figure 12A, was reliably recognized by our model. Two overlapping spikes are visible in Figure 12B. The model is able to separate the two individual objects. Although it is challenging for any deep learning model to identify partially visible spikes, our model demonstrates a high success rate in such cases; partially visible instances of observed spikes are shown in Figure 12C.

[image: Panels A, B, and C show images of green plant parts labeled "Spike" with confidence scores. Each panel highlights sections with bright green boxes, indicating detected spikes. Panel A has one prominent spike with a score of 0.9996. Panel B displays multiple spikes with scores 0.8937 and 0.9729. Panel C shows two spikes with scores 0.9992 and 0.9988.]
Figure 12 | Examples of the different circumstances in which objects may appear in an image. (A) A completely visible spike, (B) Two overlapping spikes, (C) Partially visible spikes.




4.2 Ablation analysis

We conducted an ablation analysis in which we omitted one or more of different components of the complete model architecture. The objective of this study was to assess the significance and quantitative impact of the model’s individual components. Such a study can assist in identifying the most important features of the model structure and provide some direction for future enhancements. During the study, we created different versions of the model with different combinations of the components. We refer to these versions as

	Deformable Convolution Network (DCN) (Dai et al., 2017),

	Generic RoI Extractor (GRoIE) (Rossi et al., 2021),

	Side Aware Boundary Localization (SABL) (Wang et al., 2020), and

	Auto-scaling LR (Goyal et al., 2017).



To evaluate the individual as well as combined impact of these components on the model’s performance, we set a baseline architecture based on a ResNet50 backbone, image scale = 1333 × 800, batch size = 2, and LR = 0.00125 (unless specified otherwise).

Not surprisingly, a comparison of these alternative approaches, shown in Table 4, reveals that the version involving all of the different components achieves the best AP at IoU = 0.5,0.93 and 0.94 for bbox and mask, respectively. However, the version not including Auto-scale LR and GRoIE, achieves the best AP for both IoU = 0.75 and IoU = 0.5: 0.95: 0.05 (shown in row 6). This is due to the fact that while GRoIE lets the model extract the RoI from all the levels of the Feature Pyramid from FPN, it does not guarantee the model will choose the RoI with the most accurate bounding box.

Table 4 | Ablation analysis based on selective omission of one or more component of the proposed model.


[image: Table comparing different models using DCN, GRoiE, SABL, and AutoS LR configurations. It shows AP and mAP values for IoU thresholds of 0.5, 0.75, and from 0.5 to 0.95, alongside epoch, training time, and inference time. The highest result in each column is bolded. Training was on an NVIDIA RTX 3080 GPU. Asterisks denote optimal settings.]
Meanwhile, without GRoIE, the SABLHead can regress the bounding box from the RoI that is extracted from the top-most level of FPN thus getting bounding boxes with better IoU scores. This is reflected in the increased score of both AP (IoU = 0.75) and mAP metrics. Furthermore, with the help of GRoIE, SABLHead is able to regress bounding boxes from a larger number of samples or RoIs extracted. This led to more detected bounding boxes with an IoU score of at least 0.5, resulting in reduced false negatives and increased true positives, which is reflected in the higher value for AP (IoU = 0.5).




4.3 Quantitative comparison with other models

In order to get an overview of our model’s performance in comparison with other existing models, we conducted several experiments involving models with different backbones, LR schedulers and architectures. Our benchmarked scores are reported in Table 5. Different backbone networks showed different performances in our experiments.

Table 5 | Comparative Analysis of models performance with different backbones, LR scheduler and architectures.


[image: Table comparing performance metrics of different models using ResNet50, ResNet50 + DCN, MultiStep, Linear Annealing, Faster RCNN, Mask RCNN, and Proposed. Metrics include AP at IOU=0.5 and IOU=0.75 for Bbox and Mask, mAP, optimal epoch, training time in hours, and inference time in seconds per image. Notable values: Proposed model achieves 0.9303 Bbox AP and 0.9416 Mask AP at IOU=0.5; Faster RCNN has the shortest inference time at 0.55 seconds per image. Training was conducted on an NVIDIA RTX 3080 GPU.]
ResNet50 with deformable convolution backbone achieved on average 1.42% and 1.99% better scores than the default ResNet50 backbone across all evaluation metrics for bbox and mask segmentation respectively. We also compared different learning rate schedulers to see which one would be better suited for our case. We reported the benchmark scores between Multistep and Linear Annealing learning rate schedulers. While Linear annealing showed a 0.3% and 0.12% increase in AP (IoU = 0.5), it was slower in terms of model convergence. So, we opted for using the Multistep LR scheduler throughout the rest of our experiments as it let the model converge to an optimal solution in less epochs than linear annealing LR scheduler. Model with LR scheduler also has around 23% slower inference speed compared to Multi-step LR scheduler, so there is a bit of tradeoff between precision and speed when choosing between different LR schedulers. We have made the decision to use the Linear Annealing Learning Rate (LR) scheduler in our model because it could produce better mAP scores (at IoU=0.5), but with a little trade-off in inference speed.

Finally, we compared different object detection and instance segmentation architectures, namely, Faster RCNN, Mask RCNN, and ours as in Cascade Mask RCNN, with a similar configuration of hyperparameters, to figure out the best architecture for our model. Our model with the Cascade Mask RCNN architecture outperforms all other methods by an average of 2.79% for bbox and 3.52% for the mask at AP (IoU = 0.5) while converging at only 70 epochs. Overall, we showed that our architecture and optimization strategy of choice provides a significant performance boost over all other compared architectures and strategies.




4.4 Comparison with existing approaches

In comparison to other existing methods Hasan et al. (Hasan et al., 2018), Wen et al.  (Wen et al., 2022), Su et al. (Su et al., 2020) and Zhang et al. (Zhang et al., 2022) our model utilizing Cascade Mask RCNN architecture performs better in both bbox and mask segmentation. Our model was benchmarked across various scenarios, and several experiments involving models with different backbones, LR schedulers and architectures. For bounding box detection our model outperformed the best-performing existing model developed by Wen et al. and improved the AP(IoU=0.5) from 0.9262 to 0.9303 (increased by 0.41%). On the other hand, in terms of mask segmentation, our model out-performed the method developed by Zhang et al. and improved the AP (IoU=0.5) from 0.907 to 0.9416 (increased by 3.46%). Overall comparison with other state-of-the-art methods is shown in detail in Table 6.

Table 6 | Comparison with other existing approaches.


[image: Table comparing different methods based on Average Precision (AP) with Intersection over Union (IoU) of 0.5. The methods listed are Hasan et al. (2019), Wen et al. (2022), Su et al. (2021), Zhang et al. (2022), and a proposed method, WheatSpikeNet. The Bbox results are 0.6763, 0.9262, 0.567, 0.904, and 0.9303. The Mask results where available are 0.572, 0.907, and 0.9416.]
Our approach has shown some promising results in spike segmentation. However, there are a few limitations. When a leaf’s color is close to that of a spike, the model misidentifies the leaf as a spike, as seen in Figure 13A. In addition, there are a few spikes that the model overlooks due to a high density of spikes, and limited (partial) visibility of those spikes. Figures 13B, C both feature spikes that can be discerned by the human eye, but which the model is unable to identify. On the other hand, several spikes that were missed in the human annotation process were correctly identified as spikes by the model (Figure 13D), demonstrating the model’s efficacy. (Incidentally, it is worth remarking that the quantification of the model’s accuracy suffered as a result of these human annotation errors.)

[image: Four close-up images labeled A, B, C, and D display plant spikes. Image A and D show spikes outlined in red with detection confidence scores above 0.97. Image B depicts a dried spike, while image C shows spikes with a green overlay and numbers.]
Figure 13 | Limitations in the challenging environment. Here, Green bbox and mask denotes true positive detections, and Red bbox and mask denotes false positive detections. (A) ”Leaf” detected as ”spike”, (B) Partially visible ”spike” not detected, (C) Occluded ”spike” not detected, (D) Missed annotation correctly detected as "spike".





5 Conclusion

This research addresses the phenotyping challenge of accurately segmenting wheat spikes from field images with high precision and persistence. Such images must be able to non-destructively discern, count, and segment wheat spikes in order to accurately estimate wheat production. This research concentrates on enhancing deep learning-based methods to handle the complexities of field images, such as illumination, occlusions, and various growth stages. The proposed method introduces a novel architecture for the spike segmentation task which differs significantly from existing methods since for accurate detection and segmentation of the spike regions we fused the Cascade Mask RCNN with other extra precising techniques of DCN, GRoIE, SABL and Auto-scaling LR. Several iterations of repeated trials were applied to fine-tune and optimize the architecture and hyper-parameters of the model to satisfy the criteria. Along with a few limitations such as human annotation error, misidentifies the leaf as a spike, overlooking due to a high density and limited visibility of spikes; the approach offers a significant improvement over existing techniques, which have hitherto been recognized as state-of-the-art, such as Zhang et al.(Zhang et al., 2022), Su et al. (Su et al., 2020), Wen et al.(Wen et al., 2022) and Hasan et al. (Hasan et al., 2018). This improvement enhances the capability to segment and count spikes in images captured under challenging field conditions, such as variable illumination, shadowing, or high congestion. The approach is applicable to a wide variety of complex real-world situations, in part because it employs a flexible data set compiled from land-based field imaging under real-world conditions. In addition, the enhanced model can be deployed with various imaging modalities, including UAVs and possibly satellites. The precise segmentation and counting of multiple phenotypic characteristics, such as wheat spikes and spikelets, paddy and sorghum head, allows for more precise crop breeding and management decisions. The research findings presented in this article represent a significant step towards the realization of the promise of e-agriculture, specifically AI, as an instrument for enhancing agricultural productivity.
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Introduction

Paddy leaf diseases have a catastrophic influence on the quality and quantity of paddy grain production. The detection and identification of the intensity of various paddy infections are critical for high-quality crop production.





Methods

In this paper, infections in paddy leaves are considered for the identification of illness severity. The dataset contains both primary and secondary data. The four online repositories used for secondary data resources are Mendeley, GitHub, Kaggle and UCI. The size of the dataset is 4,068 images. The dataset is first pre-processed using ImageDataGenerator. Then, a generative adversarial network (GAN) is used to increase the dataset size exponentially. The disease severity calculation for the infected leaf is performed using a number of segmentation methods. To determine paddy infection, a deep learning-based hybrid approach is proposed that combines the capabilities of a convolutional neural network (CNN) and support vector machine (SVM). The severity levels are determined with the assistance of a domain expert. Four degrees of disease severity (mild, moderate, severe, and profound) are considered.





Results

Three infections are considered in the categorization of paddy leaf diseases: bacterial blight, blast, and leaf smut. The model predicted the paddy disease type and intensity with a 98.43% correctness rate. The loss rate is 41.25%.





Discussion

The findings show that the proposed method is reliable and effective for identifying the four levels of severity of bacterial blight, blast, and leaf smut infections in paddy crops. The proposed model performed better than the existing CNN and SVM classification models.





Keywords: severity detection, multi-class classification, paddy diseases, severity classification, generative adversarial network




1 Introduction

Agriculture is vital to boosting the economy of any nation. In India, agriculture alone makes up 18.8% of the gross domestic product (Economy Survey, 2021). Rice is a leading food crop and the most consumed agrarian product. Paddy is a primary source of sustenance for half the world’s population. Approximately 20% of the world population’s daily calorie demand is fulfilled by rice. Rice is cultivated almost everywhere; 10% of the world’s total agricultural land is used solely for the cultivation of the rice crop. This equates to 164.19 million hectares of land, of which 44 million hectares are found in India. Furthermore, 78% of the total rice production is directly used for human consumption, of which 90% is consumed in Asia only. Rice is traditionally the most substantial part of an Indian meal, and so a major portion of India’s cultivated land is used for rice cultivation. India is the second-largest producer of rice after China and the Indian economy is heavily reliant on rice production. A significant portion of total rice production is exported to other countries. A rapid growth in population increases the demand for agricultural products exponentially. Ultimately, this puts pressure on the agricultural industry to increase productivity. As agricultural land is limited, to increase production, work should be carried out to decrease losses in rice yield. Currently, approximately 20%–100% of rice crop yields are devastated by rice diseases (Dhiman et al., 2023).

Rice is a Kharif crop that performs best in warm, humid weather and flooded areas. This creates a favorable environment for a variety of diseases to thrive. Based on cause, diseases in rice crops can be divided into two groups. Diseases caused by biotic factors or an organism are parasitic. Parasites include pathogens, pests, and weeds. Pathogens, including viruses, bacteria, and fungi, can cause a wide range of diseases. Out of all these diseases, some of the rice diseases are more likely to take hold and severely affect the yield of the crop. Other factors that cause a reduction in the yield of a field are non-parasitic diseases. Non-parasitic diseases are caused by unfavorable temperatures, irradiation, deficiencies of specific nutrients, and water. Alkalinity, bronzing, cold injury, panicle blight, straighthead, and white tip are examples of abiotic diseases.

Diseases can also be classified based on the part of the crop affected. Symptoms of the disease can appear on the stem, panicle, sheath, or leaf (Dutta et al., 2023). All these diseases cause a loss in the yield of the crop. The magnitude of the reduction in yield is directly influenced by the level of severity of the disease. A disease has different levels of severity: mild, moderate, or severe. To increase the production of rice it is essential to prevent these diseases from occurring or to detect the disease and ascertain its severity level before it affects the yield of the crop. The identification or detection of disease requires careful and in-depth observation of different parts of the plant. Previously, it has been difficult to detect diseases as it requires manpower and expertise to identify the disease from the symptoms. However, the recent expansion of the application of computational approaches, facilitated by the rapid development of computer vision techniques, has meant that computer vision-based automation has become a popular method for diagnosing and monitoring plant diseases (Kashif et al., 2023) so that they can be cured before spreading across the whole plant and destroying the panicle. In practical terms, detecting a disease and classifying its severity helps farmers to prevent or cure the disease and determine the potential loss in yield of the crop.



1.1 Contribution

The contributions of this research are as follows:

	The creation of a deep-learning hybrid classifier that first locates the area afflicted by the disease, then categorizes the condition according to its severity level.

	The ability to identify and categorize the paddy plant’s infected region using the hybrid model that has been developed.

	A potent method for automatically determining the severity of the disease that may be improved to offer a uniform paddy plant disease diagnosis system for use in real-world scenarios.

	Support for early disease mitigation and prevention, and the potential to reduce disease costs while protecting the environment internationally.






1.2 Outline

A literature review of the research field of image cataloging is carried out in section 2. In section 3, the suggested novel approach is described, with a discussion of the algorithm used in the paper and a detailed description of the proposed crossbreed classifier. The results and research findings are presented in section 4. The anticipated model is equated with the existing classifier by performance measures. The hybrid model is also compared with the basic classification algorithms using the same dataset. The conclusion and future scope are discussed in section 5.




1.3 Objectives of the paper

The proposed fusion model’s primary goals are:

	To increase the dataset of images for the three paddy infections, blight, leaf smut, and paddy blast, using generative adversarial network (GAN) augmentation.

	To detect the three paddy infections and determine the disease severity level using segmentation techniques.

	To classify the paddy diseases based on the type of infection and disease severity level in the paddy.







2 Literature review

It is very difficult to categorize the intensity of paddy leaf disease. A wide range of studies has produced varied results. This section discusses several of these findings. Lamba, Baliyan, and Kukreja (Lamba et al., 2022a) proposed a novel hybrid classification model combining two popular classification approaches, a convolutional neural network (CNN) and a long short-term memory (LSTM) network. Classification is based on the type of rice leaf disease. The three rice leaf diseases considered in this article are bacterial blight, blast, and leaf smut. An overall accuracy of 97% was achieved by the hybrid model. The images were collected from both fields and online resources. After data collection, the dataset was augmented using a generative adversarial network (GAN). The authors (Lamba et al., 2022b) also investigated the effect of generative adversarial network augmentation on the CNN classification algorithm. For model testing and training, three paddy leaf infections were being considered. In predicting the disease, the classifier had a high accuracy of 98.23%. Patil and Kumar (2022) combined multi-layer perceptrons with the classification algorithm to classify three diseases. Using an image set of 3,200 images, the classifier achieved a correctness rate of 95.31%. Deng et al. (2021) used CNN to classify six different paddy diseases with 91% accuracy. The dataset contained 33,026 self-generated images of six diseases. The training precision was approximately 92% with a CNN architecture model. Priyangka and Kumara (2021) used VGG19, a CNN model, to categorize images according to seven different paddy diseases. The dataset comprised 105 images (15 images for each disease) from three diverse sources. Overall, the success rate was 95.4%. The authors used data extension to increase the size of the image set. Mekha and Teeyasuksaet (2021) used the random forest method and attained a prediction rate of 69%. The dataset contained 120 images of infected leaves. Luo et al. (2019) categorized four diverse paddy illnesses using a model combining CNN and support vector machine (SVM). Using a self-collected dataset of 6,637 images, the authors achieved 96.8% accuracy. Ghosal and Kamal (2020) used CNN to classify three rice ailments and achieved 92.46% accuracy. Goluguri et al. (2021) used CNN combined with SVM for feature extraction and prediction. There were 1,600 images in the dataset. The model had a 97.5% accuracy rate. Bhattacharyya and Mitra (2019) used CNN classification to predict three paddy diseases. The classifier achieved a correctness rate of 94%. There were 1,500 images in the dataset, i.e., 500 of each disease (Baroudi et al., 2021).

Dastider et al. (2021) used lung ultrasounds to classify the severity of COVID-19 illnesses using a CNN–LSTM hybrid model. The auto-encoder network with CNN and LSTM used in this study was proposed as a reliable and noise-free model. Maragheh et al. (2022) developed a hybrid approach for multi-label text classification by combining the most precise features of LSTM with a spotted hyena optimizer. The model was tested on four different datasets. This article also compared six other fusion approaches using LSTM to produce the best performance. She and Zhang (2018) employed the CNN–LSTM hybrid technique for text classification. The LSTM algorithm was used to store historical data. For text classification, Zhang et al. (2018) used an LSTM–CNN hybrid approach. Overall, the success rate was 91%. The classifier was tested against plain CNN models, LSTM simple models, and LSTM–CNN using various filter sizes. The best results were obtained using an LSTM–CNN hybrid model with a filter size of 5X 600 pixel. Tee et al. (2022) provide an overview of various action recognition strategies. The paper describes the mixed system created by combining CNN and LSTM and provides a brief summary of studies that used both strategies. Waldamichael et al. (2022) reviewed 45 publications on the diagnosis of plant disease, which included information on classification techniques, datasets, accuracy, and strategies. Dhiman and Vinod (2022) rused the CNN approach to identify and categorize paddy illnesses. The classifier divided the dataset into three categories: healthy, unhealthy but curable, and unhealthy and incurably intense. The dataset contained 650 sample photos. Hassan and Maji (2022) used the CNN algorithm to classify four paddy leaf diseases. The diseases under consideration were paddy blast, blight, tungro, and brown spots. Babu et al. (2022) used the CNN technique to classify four rice diseases (Adedoyin et al., 2022).

Saidi et al. (2020) employed a CNN–SVM combined approach to detect depression. The CNN–SVM cross-classifier produced a precision rate of 68% using the Distress Analysis Interview Corpus/Wizard-of-Oz (DAIC-WOZ) dataset. The database comprised a training set and evaluation set 2,480 and 560 bytes in size, respectively. In another study, the CNN–SVM integration was used by the researchers to recognize and catalog brain tumors using magnetic resonance imaging (MRI) images (Zhou et al., 2019). According to the experimental results, brain tumors can be categorized with 98.49% accuracy. The combined approach was also compared with other classification approaches. A new adaptive machine (Sun et al., 2017) has been suggested for the categorization of MRIs. The new proposal has an estimated accuracy of 99.5%. The authors used data from Haxby’s functional MRI dataset from 2001. The study by Ahlawat and Choudhary (2020) sought to distinguish between manually written digits. A composite model of CNN–SVM was applied to the Modified National Institute of Standards and Technology (MNIST) image set. This method had an accuracy of 99.28%. For analyzing hyperspectral images, Leng et al. (2016) used a CNN–SVM combined technique. In a study by Niu and Suen (2012), handwritten characters are recognized and classified. The MNIST dataset was utilized to train the classifier, and the digit classification accuracy was 99.81%. The studies reviewed are presented in Table 1, along with a summary of the cataloging methodology utilized. Jiang et al. (2020) applied a CNN–SVM mixed algorithm to 8,912 images of four paddy diseases with the aim of classifying the diseases. All conditions were labeled as leaf diseases. The CNN–SVM model achieved 96.84% accuracy. Hasan et al. (2019) used CNN and SVM to identify nine paddy crop diseases. A dataset of 1,080 infected leaf images was created. The model categorized the diseases with 97.5% accuracy. Liang et al. (2019) achieved a 99.2% accuracy rate for the detection of paddy blast disorder. The dataset included 3,010 images of healthy and diseased plant leaves (Upadhyay et al., 2022).

Table 1 | Summary of the literature review.


[image: A table listing various studies related to disease and condition classification. Columns include "Citation with year," "Diseases considered," "Model framework," "Category," and "Accuracy of model (%)". The table contains entries about rice leaf diseases, COVID-19, brain tumors, and other conditions, utilizing models like CNN, CNN-SVM hybrid, and others with accuracy ranging from 68 to 99.65 percent.]



3 Materials and methods

A proposed hybrid model for detecting the diseased area and disease severity level of paddy leaves for three infectious diseases, bacterial blight, blast, and leaf smut, was constructed and consists of six modules. The first module is dataset preparation, which comprises dataset collection from both primary and secondary data sources and the distribution of the image set according to the type of disease. It targets the collection of images of paddy leaf infected by three paddy infections. The data is then pre-processed in module two. Pre-processing standardizes the pictures from numerous possessions in an identical format. The third module increases the size of the dataset exponentially using GAN amplification techniques. In the fourth module, disease severity is determined for every leaf in the image set using the segmentation technique. The disease severity level is also annotated on the image in module four. In the fifth module, a multi-class hybrid classification model is generated by combining the characteristics of CNN and SVM. In the last module, the hybrid classifier is trained and verified against the training set and test set individually.



3.1 Dataset preparation

Dataset preparation is the creation of an inventory of potential data sources with the categorized data required to feed the classification model. It entails gathering and disseminating data. Data collection is the process of exploring primary and secondary data sources to obtain the required data. Data from primary sources can be defined as data collected from surveys, observations, and experiments. These kinds of data are directly collected by the researcher. The data are original, raw data that need to be pre-processed before feeding into the model (Kour et al., 2022). This produces reliable, qualitative data but is a more costly data collection method.

Secondary data is collected by another person. This is a less costly data collection method, but the collected data are less reliable and authentic. The data can be taken from previously published sources or unpublished sources. The collected data are then divided based on the type of infection and a separate folder is created for each category of infection.



3.1.1 Data collection

Diseases in rice have a significant impact on grain quality, market segments, and revenue. Classification processes using object recognition and deep learning require a good dataset. All images in the dataset were collected from both primary (self-collected) and online sources. Primary data were collected from a farm in Patiala, Punjab, India, from July 2021 to August 2022. The images were taken under sunlight. A mobile camera of 12 mega-pixels with a f/2.20 aperture and 1.250 micro-pixel size was used for data collection.

The size of the images captured from the primary source was 3,008 × 4,016 pixels. A total of 533 images were collected from the primary source: 202 showed bacterial blight infection, 218 showed leaf blast, and 113 images showed leaf smut-infected paddy leaves.

Secondary data were gathered via the online repositories Mendeley, Kaggle, GitHub, and the University of California, Irvine (UCI), Machine Learning Repository. A total of 3024 images were taken from the Mendeley repository, comprising 1,584 and 1,440 pictures of blight and leaf blasts, respectively. In addition, 80 images each were taken from UCI and Kaggle: 40 images of bacterial blight and 40 pictures of leaf smut infection. Overall, 3,535 images were collected from secondary resources. The collected data were then separated into sets based on the type of paddy infection. Figure 1 presents sample pictures from the primary and secondary data resources. There were certain limitations to the dataset thus collected. The calculation of disease severity based on the area of the affected leaf highly depends on the proportion of leaf visible in the image. This meant that if the image did not show the whole leaf then the calculation of disease severity level based on area was affected. The dataset was compiled from various sources; therefore, ensuring that the complete leaf appeared in every image would have been a time-consuming task. The attributes of the images were selected and extracted by the convolutional neural network.

[image: Table comparing images of rice diseases from different sources, depicting bacterial blight, blast, and leaf smut. Primary source images show all three diseases. Mendeley shows bacterial blight and blast. GitHub displays bacterial blight and blast. Kaggle provides bacterial blight and leaf smut. UCI shows bacterial blight and leaf smut.]
Figure 1 | Sample pictures from the primary and secondary data resource.




3.1.2 Data distribution

At this stage, the data collected from various sources were divided into groups based on the type of paddy infection. Separate folders are created for each paddy disease, and all the images of paddy leaves infected by that particular infection were placed in that folder. The dataset as a whole comprised 4,068 images: 2,058 images of bacterial blight-infected leaves, 1,817 images of leaf blast infection, and 193 images of leaf smut infection. Table 2 presents detailed information on the number of images provided by each source and for each infection type.

Table 2 | Number of images collected by source and infection type.


[image: Table showing the distribution of rice leaf disease data across resources. Bacterial blight: Mendeley 1,583, Kaggle 41, UCI 41, GitHub 191, Total 2,058. Leaf blast: Mendeley 1,440, GitHub 159, Total 1,817. Leaf smut: Kaggle 40, UCI 40, GitHub 0, Total 193. Overall total: 4,068.]



3.1.3 Data pre-processing

After taking the images from publicly available sources, the images were pre-processed to prepare them for obtaining the severity of the paddy diseases. All the images were taken from a variety of sources.

Each source used different equipment for data collection and hence the images from the different sources were of different dimensions. To feed the images from the dataset to the model it was essential to make the images identical in all forms. Table 3 describes the images from the various sources in terms of the dimensions of the images (Deepa et al., 2020). To maintain the homogeneity of the image set in terms of the dimensions of the pictures, three pre-processing techniques were applied: standardization, normalization, and rescaling. Standardization is one of the most effective feature-scaling techniques. It is also known as Z-score normalization. Used when the feature distribution is normal or Gaussian, it compresses or expands data by transforming it into a mean vector of the source records.

Table 3 | Dimensional information of images from each source.


[image: Comparison table detailing characteristics of rice plant datasets from primary and secondary sources: Mendeley, GitHub, Kaggle, and UCI. The primary source includes 3 diseases, with images sized 1908x4032 pixels. Secondary sources list 2 diseases, with image sizes of 300x300 pixels for Mendeley and GitHub, and 756x250 pixels for Kaggle and UCI.]
Normalization is also known as min–max scaling. It is used  to transform topographies to the same scale. This scale ranges between 0 and 1. In rescaling, the dimensions of the images are changed to form a uniform dataset. In this paper, ImageDataGenerator from the Keras library was used for the three pre-processing activities applied to the images of the dataset. After pre-processing, the dataset comprised identical images in terms of dimensions. ImageDataGenerator can also be used for image augmentation. Figure 2 shows a sample of the images after pre-processing of the dataset.

[image: Eight images showing green leaves with varying levels of brown spots, indicating potential disease or damage. The leaves differ in shape and size, with spots distributed unevenly across their surfaces.]
Figure 2 | Sample images after pre-processing.





3.2 Data augmentation using GAN

To eliminate the over-fitting of the anticipated system, the records generated were augmented with images from the dataset. A GAN was used to augment the image set. The deep-learning model known as a generative adversarial network (GAN) pits two neural networks against one another in the context of a zero-sum game. GANs are designed to produce new, synthetic data that closely mimic a pre-existing data distribution. GAN is employed to generate new photos that are identical to the original images. It can be utilized immediately in model training. Its architecture makes use of two neural networks: a generator and a discriminator. The generator’s objective is to produce a fictional output. It incorporates random noise and generates output that is as near as possible to the actual signal. To discriminate between fake and real images, the discriminator is fed fake images from the generator. In addition, it gives the generator feedback on its effectiveness. Based on this feedback, the generator adjusts its methodology in the following iteration to generate outcomes that are more realistic. As time goes on, its productivity improves. The discriminator finally reaches a point where it is unable to distinguish between genuine and fake images. Figure 3 demonstrates the structure of the working GAN network.

[image: Flowchart illustrating a Generative Adversarial Network (GAN) process. A dataset provides sample images to a discriminator. A generator creates fake images using noise, which the discriminator classifies as real or fake. Real outputs augment images, while fake outputs undergo backpropagation for improvement.]
Figure 3 | Structure of the generative adversarial network.

A generator and a discriminator are both present in a GAN. The generator attempts to trick the discriminator by creating fake samples of data (such as an image, audio, etc.). On the other hand, the discriminator tries to tell the difference between the genuine and fraudulent samples. Both the generator and the discriminator are neural networks, and throughout the training phase they compete with one another. The procedures are repeated multiple times, and, each time, the generator and discriminator improve. The challenge encountered in GAN augmentation is that the images generated are slightly different from the genuine images. There is very small difference in the features of the images generated so severity of the diseases in the images taken from a sample images is more or less equal.

The discriminator’s goal is to correctly label the picture produced by the generator as false while correctly labeling the original images as true. The discriminator’s loss function is:

[image: The equation represents a loss function for a Generative Adversarial Network (GAN). It calculates the total loss by summing the difference between the discriminator outputs for real and fake images. The first term measures the difference when the discriminator processes real images, while the second term measures the difference when it processes images generated by the generator.]

The loss of the discriminator is calculated by adding the two functions and subtracting the functional parameters. The discriminator’s focus is to reduce the loss. The discriminator’s assessment of a true image is compared with 1 in the initial operant of the formula and to 0 in the second. The formula can alternatively be expressed as follows:

[image: Equation representing the loss function for a discriminator in a Generative Adversarial Network, showing mathematical expressions for real and fake data with logarithms and function maximization.]

The generator’s goal is to confuse the discriminator as much as possible, such that the resulting picture is labeled as true. The following equation describes the generator’s loss function:

[image: It seems like you uploaded a formula instead of an image. If you have an image you’d like me to describe, please upload it again.]

By multiplying the variation in the function of the set of parameters by the discriminator’s judgment value of the fake image, 1, the loss of the generator is calculated. The following is another way to present the loss function:

[image: The image shows a mathematical equation related to generative adversarial networks (GANs). It represents the generator loss as \( \text{Loss}_{\text{G}} = f_{\text{min}}(\log(D(G(z_{\text{fake}})))) \). This indicates the optimization goal for the generator, focusing on minimizing the logarithm of the discriminator's response to the generator's output.]

Equation 5 represents the whole loss function for the GAN model. The generator’s objective is to reduce the function, while the discriminator’s objective is to maximize the function:

[image: Formula describing the loss function for GANs (Generative Adversarial Networks). It includes the mathematical expression for minimizing generator G and maximizing discriminator D using logarithmic terms of real and generated data.]

The GAN augmentation increases the size of the dataset enormously. After GAN, the dataset of 4,068 images increased to a dataset of 9,175 images. Augmentation increased the images of blight, blast, and leaf smut by 424%, 180%, and 922%, respectively. The images generated through GAN were of high quality and the best match to the category of the samples are taken by the GAN to generate new image.

The collected information was then divided according to a ratio of 80:20 into a training dataset and a test dataset. The training set was further divided according to an 80:20 ratio into a training dataset and a validation dataset. The hybrid model was trained on the training dataset in order to classify the paddy disease according to both type and severity. The testing dataset evaluated the effectiveness of the proposed classification model, whereas the validation dataset was used to validate the model.




3.3 Severity evaluation using image segmentation techniques

In this article, images were divided into four disease severity levels: mild, moderate, severe, and profound. The intensity rates were finalized after discussion with domain expert. The categorization was performed according to the area of the foliage contaminated by paddy infection. If the infected area percentage was less than 25% then it was considered to be a mild infection. If the infected area ranged from 26% to 50% then it was considered to be of moderate severity. A leaf was considered to have a severe infection if the contaminated part of the plant was greater than 50% but less than 75% of the total leaf area. A profound level of infection severity was classified as an infected area greater than 75%.



3.3.1 Severity evaluation

The evaluation of disease severity was based on the infected area of leaf owing to paddy diseases. The area of infection was calculated by employing the segmentation technique. Severity evaluation comprised leaf detection and then identification of the infected area of the leaf.

The whole process comprised five segmentation techniques: grayscale segmentation, threshold segmentation, edge detection, image masking, and histogram segmentation. In grayscale segmentation, according to their placements and gray values, each pixel in the medical grayscale image is translated into 3D coordinates as a pixel-features point cloud using the grayscale image segmentation method. Image thresholding is a straightforward but efficient technique for separating an image’s foreground from its background. By transforming grayscale photos into binary images, this image analysis technique is a type of image segmentation that isolates objects. Edge detection is a method of image processing used to locate areas in a digital image with sharp changes in brightness, i.e., discontinuities. The edges (or boundaries) of the image are those regions where the brightness of the image fluctuates dramatically. A smaller “image piece” is defined and used to alter a bigger image using the image processing technique known as masking. Many methods of image processing, such as edge detection, motion detection, and noise reduction, all start with the masking process. A grayscale value distribution known as an image histogram displays the frequency of occurrence of each gray-level value. The abscissa runs from 0 to 255 for an image size of 1,024 × 1,024 × 8 bits, and the total number of pixels is 1024 × 1024.

First, noise (the background) is removed from the pre-processed image in the leaf detection phase. Then the detected leaf section of the image was used to calculate how much of the leaf was infected with paddy disease in the affected area detection phase. Leaf detection was performed using the grayscale, threshold, edge detection, and mask segmentation techniques. Histogram segmentation was used for the contaminated area detection in the leaf image. Figure 4 shows the stepwise images of the severity evaluation. Figure 4A is the original leaf picture and Figure 4B is the image after applying the grayscale function.

[image: Two images labeled A and B show a leaf. Image A depicts the leaf in natural color, revealing green with some brown spots. Image B presents the same leaf in grayscale, highlighting textural contrasts. Both images include a segmented background and are plotted on a graph with axes ranging from zero to three thousand horizontally and zero to eight hundred vertically.]
Figure 4 | (A) Sample original leaf picture, (B) sample grayscale leaf picture.

The original image was first converted to a grayscale image to reduce the size of the image. Then various threshold values were applied to the grayscale image. Figure 5A shows an image at various threshold values. Leaf detection was performed using edge detection segmentation, which removes the background of the image. Various threshold values were applied and checked. After that, the histogram image provided the percentage of each color in the image. The yellow area of the leaf (as opposed to the green area) gave the infected area of the leaf using the formula:

[image: Panel A shows a series of threshold images labeled >0.0 to >0.9, illustrating varying levels of black and white distribution based on threshold values. Panel B displays a single grayscale image within a black frame. Panel C consists of two images: the left shows a green leaf, and the right is a color-coded version of the same leaf with a scale bar indicating color intensity from 0.0 to 0.9.]
Figure 5 | (A) Threshold images of the grayscale image at various threshold values, (B) leaf edge detection, and (C) image masking.

[image: Formula for calculating the percentage of infected area: \((P_{\text{yellow}} / P_{\text{total}}) \times 100\).]	(6)

where P is the number of pixels in the image, Ptotal is the number of pixels in the detected leaf, and Pyellow is the number of yellow pixels. Figure 5B shows the edge detection images. Figure 5C shows the mask images. Figure 6 presents a histogram image with the percentage of each color.

[image: Microscopic image of a green leaf section is on the left, displaying tissue structure. On the right is a line graph with multiple colored lines peaking sharply, indicating high readings in certain areas.]
Figure 6 | Image histogram to calculate disease severity.




3.3.2 Severity annotation

Before the training process, the images were annotated. This was an essential step that helped the model to acquire the disease severity features. The precision of the annotation process strongly influences the training of the model. Given that multiple similar diseases can appear on leaves, knowledge of different diseases may support machine learning capabilities to classify diseases.

A horticultural scientist helped with the annotation of the images in the dataset. Experts determined the extent of damage to the plant, taking into account the various surface and shape parameters of the disease-affected part. The labels accounted for only external damage; this test did not account for internal damage. The annotated image’s output was presented as a bounding box and coordinates. Labeling the diseased regions on a picture was necessary for image annotation. After identifying and categorizing the degree of disease in a picture, Labeling, a freeware graphical visual annotation tool, recorded the information in an XML file with the proper xmin, xmax, ymin, and ymax values for each bounding box. The bounding box for each object was stored in an XML file. Working with annotation data that was stored in a different file for each image was challenging; therefore, each of these XML files was aggregated into a single CSV file using the Panda module. After that, the CSV file was divided into the four severity groups. The classification was based on the proportion of the leaflet where the bacterial infection is present. Then an object for each severity class was constructed. Then each line of image names and URLs in the object file was read iteratively. Object recognition accuracy was then measured for each object in each category.





3.4 Model generation

The proposed model is a fusion of two deep-learning classification techniques, CNN and SVM. The best characteristics of both algorithms were combined to improve classification accuracy. CNN was used for the feature extraction from the infected leaf images and SVM for the classification of the type of infection. A CNN-based model specifically created to categorize photos into various predetermined classes is known as an image classification CNN classifier. Accurate image classification is made possible by learning to extract pertinent features from input photos and map them to the appropriate classes. High-dimensional data, which are typical in many applications, such as text and picture categorization, can be handled well by SVMs. SVMs can effectively handle small datasets because the boundary needs to be defined by only a minimal number of support vectors. Python was used as the programming language to implement the model. The Jupyter Notebook platform was used for Python coding. Various computer vision libraries were used.



3.4.1 Feature extraction

Two convolutional layers were used to extract features, accompanied by max-pool layers. Figure 7 shows an exhaustive breakdown of the multi-class classification model’s structure. The model has seven levels in total. The input layer, which has a dimension of 64 × 64, is the top layer. Ninety-six filters of size 5 × 5 were then used to convolute input layer, creating a dimension of 32 × 32. The filter extracted features as it moved across the image. The output that includes details about the corners and edges of the image is called a feature map. These features were then processed by the maxpool layer, which has a filter of 2 × 2 magnitude and a stride worth of 2. The final image dimension is (16 × 16).

[image: Diagram illustrating a machine learning process for image classification. An input image goes through convolutional layers, max-pooling, flattening, and dense layers before reaching a support vector machine (SVM) classifier. The SVM classifies shapes into three categories: green circles (S1), yellow stars (S2), and purple hearts (S3).]
Figure 7 | Structure of the proposed CNN–SVM hybrid classifier. Conv., convolution.

Two pairs of convolutional layers and a max-pooling layer were used in the suggested model. Sixty-four filters were used in the second convolutional layer of a 3 × 3 kernel size. The stride and filter size of the second pooling layer were both 2. Therefore, the image had the dimension of 8 × 8. The same padding and stride value of 2 was used for the rectified linear unit (ReLU) activation function throughout both convolutional layers. The output from each layer was passed on to the following layer, which uses it as its input. The flatten layer was then used to flatten the convoluted matrix (Adedoyin et al., 2022). The densely linked completely connected layer was then fed the output that had been flattened. Table 4 lists each layer in the proposed model along with its parameters, kernel size, neurons, and output shape. It also lists the different levels of the GCS classifier’s activation functions. In addition, it displays the number of both trainable and total parameters.

Table 4 | Detailed summary of Gan CNN and SV (GCS) model layers.


[image: Table showing a sequential model architecture with layers, types, kernel sizes, strides, neuron sizes, activation functions, output shapes, and parameters. Layers include convolutional, max-pooling, flatten, and dense layers. Notable activations are ReLU and Softmax. Overall and trainable parameters are 1,243,458.]



3.4.2 Classification

The SVM was used to classify paddy infections after the features have been pre-processed and extracted. The model was then flattened and fully connected layers were included. In the dense layer, the activation function was ReLU and used 288 units. In CNN, the SVM implementation takes place in the output layer. The L2 kernel was an activation regulator, and softmax was used on the output layer. The production layer was made up of three components, representing the total number of classes considered in the categorization problem. The classifier was then combined with the Adam optimizer, the squared hinge loss function, and accurateness as metrics.

SVM classifies images into just two groups because it is a binary classifier. However, this stage was where the precise degree of infection severity was assessed, and it involved a number of categories. For this, a regularizer was employed.





3.5 Train–test model

The hybrid model was then compiled, trained and verified using the training set and the test set, respectively.



3.5.1 Training model

The classifier was compiled and trained with the training set. In this experiment, the model was trained with different numbers of epochs: 30, 50, and 100. The best results were found in 50 epochs. The model was validated against the validation dataset.




3.5.2 Test model

The trained model was then tested using the test set. A sample image was passed through the model and its ability to predict the correct paddy infection type and intensity was tested. Figure 8 shows the structure of the complete severity and disease classification hybrid model with GAN augmentation. The actions in the classification model were categorized as manual or mechanical tasks. Then the sub-tasks were specified according to the phase and flow of the tasks. The dataset preparation task comprised data collection and data distribution, which was a completely manual task. Data pre-processing was carried out using the Python Keras library, which is integrated into the model itself, so this stage was performed by machine. GAN execution, segmentation, and classification model generation, were all automated tasks completed by the Python code.

[image: Flowchart depicting the severity detection process for paddy ailments. It includes steps for dataset preparation, data pre-processing with standardization and rescaling, data augmentation with generator and discriminator, severity detection through segmentation and annotation, feature extraction with convolution operations, model generation, and test-train modeling using SVM classifier, leading to the output.]
Figure 8 | Detailed flowchart of the proposed multi-class hybrid classification model.





3.6 Proposed algorithm

(1) Collect infected leaf images from primary sources (Pprimary) and secondary sources (Psecondary). Dataset D = Psecondary + Pprimary. Secondary sources comprise Mendeley (Dmendeley), GitHub (Dgithub), kaggle (Dkaggle), and UCI (Duci) datasets. Psecondary = Duci + Dmendeley + Dgithub + Dkaggle.

(2) Create a dataset folder for each category of paddy infection (Dbacterial blight, Dblast, and Dleaf smut).

(3) Mount necessary libraries and datasets.

(4) Create the object for each category of disease.

(5) Perform pre-processing, which includes normalization and standardization.

(6) Perform GAN augmentation, which involves the generation of two models: the generator (GANgenerator) and discriminator (GANdiscriminator) models. The image is generated using the formula ImgGAN = GANgenerator × GANdiscriminator.

(7) Save the augmented images in a separate folder.

(8) Merge the augmented images with the dataset according to the type of infection (Dbacterial blight, Dblast, and Dleaf smut).

(9) Perform disease severity detection by applying image segmentation, threshold segmentation (Sthreshold), edge detection (Sedge), masking (Smask), and histogram segmentation (Shistogram) techniques to the infected image. Severitylabel = f(Shistogram, f(Smask, f(Sedge, f(Sthreshold, image)))).

(10) Annotate the images with the severity labels (mild, moderate, severe, or profound).

(11) Repeat step 9 for each object, specifying the category of severity.

(12) Split the objects into a test–train set at a ratio of 20:80, Dtest:Dtrain.

(13) Proposed model Mclassifier = LCNN ∪ LSVM.

(14) Extract features from the images using a convolutional neural network. The CNN comprises a pair of convolutional layers (Lconv), a max-pooling layer (Lpool), a flattened layer (Lflatten), and a dense layer (Ldense). MCNN = 2× (Lconv ⊗ Lpool) ∪ Lflatten ∪ Ldense.

(15) Use the SVM layer in the CNN for the classification of image (LSVM).

(16) Compile and train the model with the training set (Dtrain) using the formula Mtrain = δ(Mclassifier, Dtrain).

(17) Test the trained model with the test set (Dtest) using the formula Mtest = δ(Mtrain, Dtest).





4 Results and discussion

The proportion of clearly specified data points in the set that is being trained is known as the training accuracy. Similar to resolution accuracy, validation accuracy describes the share of data samples that are correctly resolved from another sample. There were two sets in the dataset. The training images were in one set and the validation images were in the other set. Model training and validation were carried out using an 80–20 cross-validation procedure. Multiple mixed-image studies were performed for validation. The productivity of the classifier was tested using a new randomly selected image. The sparse categorical cross-entropy is used as loss function. The accuracy is 98.43% accomplished by the prototypical was 98.43%.

The cross-entropy function of the classifier was optimized using the Adam optimizer. Cross-entropy loss is the most widely used function in deep-learning or machine-learning classification. It aids in evaluating a model’s accuracy in terms of 0s and 1s, from which we may later deduce the probability percentage. Out of the three diseases of the paddy, the model can identify leaf smut with an accuracy of 98.88%, precision value of 91%, recall of 97.7%, and F1-score of 94.23%. For bacterial blight disease, the model recorded an accuracy of 97.766%, precision value of 85%, recall of 84%, and F1-score of 84.5%. For the paddy blast disease, the model recorded an accuracy of 96.77%, precision value of 79%, recall of 84.75%, and F1-score of 81.77%. Figure 9 shows the confusion matrix of the proposed model. The sample size used for the evaluation of the performance parameters was 20% of the images from each category of rice leaf disease.

[image: Confusion matrix showing true vs. predicted labels for bacterial blight, leaf blight, and leaf smut. Diagonal values indicate correct predictions: 1991 for bacterial blight, 1724 for leaf blight, and 189 for leaf smut. Non-diagonal values represent misclassifications. Color intensity varies by count, with true labels on the y-axis and predicted labels on the x-axis.]
Figure 9 | Confusion matrix.

The diagonally highlighted cells in the confusion matrix specify the number of images of bacterial blight, blast, and leaf smut that were predicted correctly. Other cells provide the number of images of the three rice diseases that were predicted incorrectly, meaning that the prediction was either a true negative or false positive. The proposed model correctly identified 1,991 images of bacterial blight from the dataset. In addition, 1,724 and 189 images of blast and leaf smut, respectively, were correctly identified. Cell (1,2) indicates that 48 images of blast were identified as bacterial blight. Similarly, three images of blast-infected leaves were identified as leaf smut by the proposed model, as shown in cell (3,2). In the case of cells (1,3) and (2,3), the model identified 21 and 50 images of bacterial blight and blast, respectively, as leaf smut-infected images. In cells (2,1) and (3,1), 43 images and 1 image of bacterial blight were wrongly identified as non blast and leaf smut, respectively.

Figure 10 gives the epoch-wise training and validation accuracy and loss value. Figure 10A shows an accuracy graph according to each epoch. The accuracy graph encompasses both the training and validation phase. Figure 10A shows that as the epoch increases, the accuracy of the fusion classifier’s prediction increases. This is because the model is being trained with each epoch. In Figure 10B, the loss curve is shown for the training and validation phase, according to each epoch. As the number of epochs increases and the classifier is trained, the loss function decreases. The precision of the proposed classifier for the classification of paddy disease type and severity increases as the epoch increases.

[image: Two line graphs compare the accuracy of training and validation phases over 30 epochs. The left graph shows rising accuracy, reaching around 0.9, while the right graph depicts declining accuracy starting around 0.9. The training phase is in blue, and the validation phase is in red, but both graphs contain a spelling error: "Traning" instead of "Training".]
Figure 10 | Performance curves. (A) Accuracy curve, (B) loss curve.

The performance of the machine was further compared with existing cataloguing approaches using the same image set. Figure 11 shows the accuracy curve and loss curve of various deep-learning classification models for the multi-classification of paddy diseases according to the type and severity of the disease when applied to the dataset created in this study. Two further algorithms were tested in this study: standard CNN and standard SVM for multi-classification. Figure 11 indicates that the proposed hybrid model performed better than either individual approach.

[image: Two line graphs compare the performance of a hybrid model, CNN, and SVM over thirty epochs. The left graph shows an increasing trend for all models, with the hybrid model generally outperforming. The right graph shows a declining trend, with the hybrid model and CNN exhibiting steeper decreases. The vertical axis represents accuracy, ranging from 0.4 to 1, while the horizontal axis shows epochs from 1 to 29.]
Figure 11 | Comparison of performance of CNN, SVM, and the proposed model. (A) Accuracy curve, (B) loss curve.

Figure 12 shows the accuracy of various classification models with and without GAN augmentation. Four approaches were compared for accuracy with the proposed classifier model using the same dataset. The correctness achieved by the basic CNN classifier is 96% without GAN augmentation. GAN increased the accuracy of the basic CNN categorizer to 97.17%. A similar effect was seen on the standard SVM classification approach, with a GAN-augmented accuracy of 95.87% and an accuracy of 93% without GAN.

[image: Bar chart comparing accuracy percentages of three deep learning architectures: CNN, SVM, and CNN-SVM hybrid, with and without GAN. CNN achieves 96% with GAN, 1.17% higher than without. SVM scores 93% with GAN, 2.87% higher. The CNN-SVM hybrid reaches 97.23% with GAN, 1.20% higher.]
Figure 12 | Effect of GAN on the model performance.

The performance of the proposed hybrid classifier was compared with the most prominent classifiers from the reviewed literature. Table 5 shows the comparison of various approaches used for classification problems with the proposed hybrid model. The greatest accuracy attained with a CNN classifier was 99.45%, which was the best result out of all approaches. After CNN, a hybrid of CNN and SVM performed best with an accuracy of 99.20%. After that, the proposed model achieved an accuracy of 98.43%. A standard CNN with GAN augmentation achieved 98% accuracy in the classification problem. A Deep Convolutional Neural Network (DCNN) and SVM fusion model achieved 97.50% accuracy. A CNN combined with either the Internet of Things or VGG19 classifier attained an accuracy 95% and 95.40%, respectively, in classification problems. A 91% accuracy was achieved with a hybrid model of CNN and LSTM. CNN with transfer learning achieved 92.49% accuracy and random forest model attained 69% accuracy in classification problems.

Table 5 | Performance comparison of the proposed approach with existing approaches used in classification problems.


[image: Table showing classification approaches with their corresponding accuracy percentages. Highest accuracy: CNN at 99.45%, followed by Proposed model at 98.43%, GAN–CNN at 98%, and others ranging from 69% to 99.2%. Definitions for IoT and DCNN included.]
The proposed classifier was trained over a different number of epochs to study the influence of epochs on classification accuracy. Figure 13 shows the accuracy curves of the proposed hybrid multi-class classifier at different numbers of epochs. Figure 13A shows the accuracy curve at 30 epochs, Figure 13B shows the accuracy curve at 50 epochs, and Figure 13C shows the accuracy curve at 100 epochs of training. There was no major difference in the precision and accuracy of the multi-class classifier at different epochs. The accuracy remained the same and had no major effect of epochs count. The optimal number of epochs for the training dataset is 50. GAN-augmented images from primary sources

[image: Three line graphs labeled A, B, and C, show trends over different intervals. Graph A depicts an upward trend leveling off after initial fluctuations. Graph B shows a similar pattern with slight fluctuations throughout. Graph C begins with sharp fluctuations, followed by stabilization and minor variations. The vertical axis ranges from zero to 1.2, and the horizontal axis indicates intervals marked with "E" followed by numbers.]
Figure 13 | Influence of the number of epochs on the correctness of the anticipated model. (A) 30 epochs, (B) 50 epochs, (C) 100 epochs.

GAN has a major influence on the size of the dataset and hence on the accuracy of the model. Figure 14 demonstrates the effect of GAN on the image set for the three paddy infections considered. As shown in Figure 14, 4% of the total dataset came from primary sources and 27% of the total dataset came from secondary sources. The GAN’s augmentation of the primary images constituted 9% of the total dataset and the GAN’s augmentation of the secondary images constituted 60% of the total dataset.

[image: Two pie charts depict image sources. The left chart shows 60% GAN-augmented images from secondary sources, 27% from secondary sources, and 13% as other. The right chart shows 9% GAN-augmented images from primary sources and 4% from primary sources.]
Figure 14 | Effect of GAN augmentation on the size of the image set.

Table 6 shows the results of the ablation study performed on the proposed model. Its shows that the accuracy of the proposed model is highest using the hybrid model and GAN augmentation. In machine learning, models have many different components, each of which affects the performance as a whole. Therefore, it is crucial to have a means of gauging how much these components contribute to the overall model. This is where the idea of an ablation study comes from, where specific components of the implementing model are removed to better understand the behavior. The proposed model consists of three components. In the ablation study, the effect of each component on the accuracy of the model was evaluated. The three components are GAN augmentation, feature extraction using CNN, and classification using SVM. The model’s accuracy was rated after training and testing using several GAN, CNN, and SVM combinations. The accuracy of the model without GAN augmentation and using SVM as a feature extractor and classifier while importing the same dataset was the lowest, at 93%. The accuracy of the model trained on the same dataset using CNN as the feature extractor and classifier and without GAN augmentation was 96%. Without GAN augmentation, the model using CNN as a feature extractor and SVM as a classifier achieved 97.2% accuracy. The CNN and SVM classifiers achieved 97% and 95% accuracy, respectively, with GAN augmentation.

Table 6 | Results of the ablation study.


[image: Comparison table of different models showing dataset, GAN augmentation, CNN, SVM, and accuracy. The proposed model has all features marked and an accuracy of 0.9843. Models M1 to M5 have varied features and accuracies ranging from 0.93 to 0.9723.]



5 Conclusion and future applications

The biggest threat to agricultural progress is pathogenic diseases, which have a strong influence on overall production quality and quantity. As a result, a computer vision-based automatic diagnosis of rice leaf infections and the extent of infection is increasingly desirable in analytics. Deep-learning techniques, particularly CNNs and hybrid models with a CNN, have shown a promising ability to solve the difficulties in identifying infections. The combination of CNN and SVM was investigated to improve the ability to diagnose blight, blast, and leaf smut diseases in paddy leaves according to four disease severity levels. The image set comprised pictures of all three rice diseases and was compiled from both primary and secondary sources of data. A total of 533 images—202 images of bacterial blight, 218 images of rice blasts, and 113 images of leaf smut—were collected from primary sources. Four standard online repositories were used for secondary data collection. A total of 3,535 images—1,856, 1,599, and 80 images of bacterial blight, blast, and leaf smut infection, respectively—were collected from secondary sources. The dataset was then augmented using a GAN. The GAN increased the dataset from 4,068 images to 9,175 images. The augmented dataset was then pre-processed. Pre-processing comprised the standardization, normalization, and rescaling of the images. All these operations were implemented using the ImageDataAugmentor function of the Keras library. The severity level was then calculated using segmentation techniques. In this study, five segmentation techniques were used: grayscale, threshold segmentation, edge detection, masking, and histogram segmentation. The leaf detection process was accomplished using grayscale, threshold, edge detection, and mask segmentation techniques. The severity level was then annotated on the image. The severity evaluation was carried out using the pixel information from the histogram segmentation.

These images were then fed into the CNN–SVM fusion model for the categorization of the infection type. SVM was used as a classifier, and CNN was employed as a feature extractor. The test accuracy for blight, blast, and leaf smut disease on a sample of randomly chosen photos was 97%, 96%, and 98%, respectively. The results from the proposed hybrid multi-class classifier were compared with other approaches using the same dataset. When compared with supplementary algorithms tested on the same image set, the proposed model yielded the best results. The approaches used for the comparison were standard CNN, standard SVM, standard SVM with GAN, standard CNN with GAN, and CNN–SVM without GAN, and their respective accuracies were 96%, 93%, 95.87%, 97.17%, and 97.23%. To increase its size, 69% of the dataset was generated using GAN augmentation techniques. Secondary sources constituted 27% of the dataset, and primary sources constituted 9% of the dataset. The proposed model helps in the identification of rice leaf disease and the level of disease severity, which can help farmers to apply the appropriate remedies to stop the spread of the disease to other healthy plants. The identification of disease and determination of an exact severity level also enables farmers to predict the degree of loss of crop productivity.

In the future, this methodology can be utilized for the multi-categorization of other plant infections for the same or different crops. The proposed model works with various other datasets for a variety of crops. The proposed approach is useful for predicting the crop yield of a field based on losses due to various crop infections.

A limitation of this study is that the dataset used contained images showing only sections of infected plant leaves. A better method would be to choose only images showing complete leaves from the infected plant for the calculation of disease severity.
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Emerging in the realm of bioinformatics, plant bioinformatics integrates computational and statistical methods to study plant genomes, transcriptomes, and proteomes. With the introduction of high-throughput sequencing technologies and other omics data, the demand for automated methods to analyze and interpret these data has increased. We propose a novel explainable gradient-based approach EG-CNN model for both omics data and hyperspectral images to predict the type of attack on plants in this study. We gathered gene expression, metabolite, and hyperspectral image data from plants afflicted with four prevalent diseases: powdery mildew, rust, leaf spot, and blight. Our proposed EG-CNN model employs a combination of these omics data to learn crucial plant disease detection characteristics. We trained our model with multiple hyperparameters, such as the learning rate, number of hidden layers, and dropout rate, and attained a test set accuracy of 95.5%. We also conducted a sensitivity analysis to determine the model’s resistance to hyperparameter variations. Our analysis revealed that our model exhibited a notable degree of resilience in the face of these variations, resulting in only marginal changes in performance. Furthermore, we conducted a comparative examination of the time efficiency of our EG-CNN model in relation to baseline models, including SVM, Random Forest, and Logistic Regression. Although our model necessitates additional time for training and validation due to its intricate architecture, it demonstrates a faster testing time per sample, offering potential advantages in real-world scenarios where speed is paramount. To gain insights into the internal representations of our EG-CNN model, we employed saliency maps for a qualitative analysis. This visualization approach allowed us to ascertain that our model effectively captures crucial aspects of plant disease, encompassing alterations in gene expression, metabolite levels, and spectral discrepancies within plant tissues. Leveraging omics data and hyperspectral images, this study underscores the potential of deep learning methods in the realm of plant disease detection. The proposed EG-CNN model exhibited impressive accuracy and displayed a remarkable degree of insensitivity to hyperparameter variations, which holds promise for future plant bioinformatics applications.
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1 Introduction

Plant diseases brought on by biotic factors such as fungi, bacteria, viruses, and insects can result in substantial yield losses and pose a significant threat to global food security (Yi et al., 2023). Effective disease management requires an accurate and rapid diagnosis of plant diseases, but traditional methods such as visual observation, microscopy, and culture-based techniques can be time-consuming, labor-intensive, and may require specialized knowledge and apparatus (Yang et al., 2023). In recent years, the introduction of advanced omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, has brought about a revolutionary shift in our ability to investigate plant-pathogen interactions at the molecular level (Shen et al., n.d). These methods have yielded a wealth of information regarding the complex networks of genes, proteins, and metabolites involved in biotic stress-induced plant defense responses. However, the sheer volume of data produced by omics technologies poses a significant challenge in terms of data analysis and interpretation. This challenge has prompted the need for the development of exceptionally efficient computational tools. (Dai and Shen, 2022).

Deep learning has emerged as a formidable tool in analyzing vast and intricate omics datasets. It empowers the creation of predictive models that can discern subtle patterns and relationships, which may remain concealed when employing traditional statistical approaches (Lecun et al., 2015). In this research paper, we introduce an innovative approach for predicting plant attack types through the analysis of plant omics data using deep learning techniques. To achieve this, we devised an explainable gradient-based approach known as the EG-CNN model, designed to process both omics data and hyperspectral images. Our model serves as a plant culture sensitivity report generator, capable of extracting insights from infected plant samples’ omics data and generating informative reports that predict the most probable type of attack based on distinct data patterns and characteristics (Harakannanavar et al., 2022). The term “gradient-based” in our method’s name refers to its dual emphasis: gradient descent optimization during training and the use of gradients for interpretability. Gradients play a pivotal role in generating saliency maps, allowing us to visualize which features the model considers crucial for disease detection. This combined approach ensures both effective training and meaningful insights into the model’s decision-making process. The model we propose relies on a deep neural network architecture, more specifically a convolutional neural network (CNN). This CNN was meticulously trained using an extensive and diverse collection of omics data encompassing multiple plant species and various types of pathogens. A CNN enables the model to autonomously learn discriminative features from the input data, without the need for explicit feature engineering.

To assess the effectiveness of our proposed model, we conducted experiments on a test dataset comprising diverse plant omics data, encompassing various plant species and pathogen types. In evaluating our model’s performance, we considered essential metrics such as precision, speed, and usability. Our experimental findings showcase the superiority of our proposed model over several cutting-edge machine learning and statistical methods utilized in plant disease diagnosis. Moreover, our method exhibits several advantages when compared to conventional plant disease diagnosis techniques, including enhanced speed, precision, and scalability. Omics technologies offer a wealth of information concerning the intricate networks of genes, proteins, and metabolites involved in plant defense responses to biotic stresses. For instance, transcriptomics enables the study of all RNA molecules present in a cell or tissue, providing invaluable insights into the expressed genes and their respective expression levels (Haegeman et al., 2023). Metabolomics, akin to proteomics, delves into the comprehensive array of small molecules, known as metabolites, found within a cell or tissue. These methodologies have unearthed a wealth of information regarding the intricate molecular mechanisms governing plant reactions to biotic stresses, including the intricate interplay between plants and pathogens. However, the sheer volume of data generated by omics technologies poses a significant challenge in terms of data analysis and interpretation. Consequently, there is a pressing need for the development of remarkably efficient computational tools to overcome this obstacle (Li et al., 2021).

Deep learning has emerged as a potent instrument for analyzing extensive and intricate omics datasets. It empowers the creation of predictive models capable of discerning subtle patterns and relationships that may elude detection through conventional statistical methods (Alzubaidi and Tepper, 2022). Deep learning is a subset of machine learning that involves the use of neural networks, which are computational models inspired by the structure and function of the brain (Sarker, 2021). The proposed model accepts as input omics data from an infected plant sample and preprocesses the data using techniques such as normalization, gene expression quantification, and feature selection to extract relevant features. The processed data is then fed to a CNN, which is designed to autonomously learn discriminative features from the data and predict the type of attack on the plant.

Our proposed plant culture sensitivity report generator based on deep learning analysis of plant omics data has the potential to revolutionize the field of plant pathology by providing a quicker, more accurate, and more cost-effective alternative to conventional plant disease diagnosis methods. Future work will concentrate on refining the model, evaluating it on larger and more diverse datasets, and investigating its potential for use in real-world scenarios. Plant diseases caused by biotic agents such as fungi, bacteria, viruses, and insects can result in substantial yield losses and pose a significant threat to global food security. Effective disease management requires accurate and rapid diagnosis of plant diseases; however, traditional methods of diagnosis such as visual observation, microscopy, and culture-based techniques are time-consuming, labor-intensive, and may require specialized knowledge and apparatus. The advent of high-throughput omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, has revolutionized our capacity to study plant-pathogen interactions at the molecular level in recent years.

The following is the primary contribution of this research study:

	Proposed a novel explainable gradient-based approach EG-CNN model for plant disease detection using omics data and hyperspectral images.

	Collected and utilized a diverse dataset of gene expression, metabolite, and hyperspectral image data from plants affected by four common diseases: powdery mildew, rust, leaf spot, and blight.

	Achieved a high accuracy of 95.5% on the test set using the proposed EG-CNN model.

	Conducted a sensitivity analysis to demonstrate the robustness of the EG-CNN model to variations in hyperparameters, showing only minor changes in performance.

	Evaluated the time efficiency of the EG-CNN model compared to baseline models such as SVM, Random Forest, and Logistic Regression, demonstrating faster testing time per sample.

	Performed a qualitative analysis using saliency maps to visualize the internal representations of the EG-CNN model and highlighted important features related to plant disease, such as changes in gene expression, metabolite levels, and spectral differences in plant tissues.

	Demonstrated the potential of deep learning methods for plant disease detection and management using omics data and hyperspectral images.

	Contributed to the advancement of plant bioinformatics by integrating computational and statistical approaches for analyzing and interpreting complex omics data in the context of plant-microbe interactions and disease resistance.

	Provided insights and implications for future research, including the expansion of the proposed approach to include a broader range of plant diseases and data types, further optimization of the model, and bridging the gap between machine learning and plant biology to better understand the underlying mechanisms of plant-microbe interactions and disease resistance.



The research article follows a structured framework with sections including an introduction, literature review, methodology, experimental results, discussion, conclusion, and future work. The introduction highlights the significance of plant bioinformatics and the proposed EG-CNN model for plant disease detection. The literature review examines previous research and identifies the research gap. The methodology describes the EG-CNN model’s architecture, data preprocessing, and hyperparameter optimization. Experimental results demonstrate the model’s performance. The discussion analyzes the findings and explores potential applications. The conclusion emphasizes the contributions and significance of the model. Future work suggests directions such as expanding to different diseases, refining the model, integrating with plant biology, exploring real-world applications, and incorporating multi-omics data.




2 Literature review

In this paper (Kuswidiyanto et al., 2022), the researchers have developed a deep learning-based system for the accurate identification of plant diseases using photographs of plant symptoms. Leveraging a convolutional neural network (CNN), they successfully extracted features from the images. Their evaluation on a dataset comprising 20,000 plant images demonstrated an impressive accuracy of 98%. (Boulent et al., 2019) developed an advanced system for the detection of plant diseases, utilizing deep learning techniques and employing a convolutional neural network (CNN). The system was trained on an extensive dataset comprising 54,306 photos encompassing 15 distinct plant diseases. Impressively, the model achieved a remarkable accuracy of 95% in accurately identifying and classifying plant diseases. In this review article, (Singh et al., 2016) discussed the application of machine learning techniques, including deep learning, to high-throughput stress phenotyping in plants. The authors discussed the utilization of diverse omics technologies, encompassing genomics, transcriptomics, proteomics, and metabolomics, in stress phenotyping. They underscored the immense potential of machine learning approaches in handling the substantial and intricate datasets produced by these technologies, enabling effective analysis and interpretation. In a comprehensive review, (Shoaib et al., 2023) examined the latest advancements in plant disease identification through the application of deep learning techniques, such as CNNs and recurrent neural networks (RNNs). The author delved into the diverse range of data types employed for plant disease identification, encompassing images, omics data, and sensor data. Furthermore, the review shed light on the challenges encountered in this field and presented promising avenues for future research. (Panchal et al., 2022) introduced a novel approach for plant disease detection based on deep learning, leveraging a CNN for image analysis. Remarkably, their method achieved an impressive accuracy of 99.35% when tested on a dataset comprising 54,306 images encompassing 26 distinct plant diseases.

(Kuswidiyanto et al., 2022) devised a plant disease identification system based on CNN technology. Their efforts yielded a commendable accuracy rate of 98.34% when applied to a collection of 1,625 images representing four distinct plant diseases. In a comprehensive discussion, (Fu et al., 2022) explored the recent advancements in plant disease diagnosis utilizing deep learning techniques, including CNNs, RNNs, and autoencoders. The author delved into the diverse array of data types employed for plant disease diagnoses, encompassing images, omics data, and sensor data. Furthermore, the discussion shed light on the challenges encountered in this field and highlighted the potential for future research endeavors. (Shoaib et al., 2022a) Naveed developed a plant disease identification system based on a CNN approach. Remarkably, their system achieved an impressive accuracy of 97% when tested on a dataset comprising 2,875 images representing seven distinct plant diseases. (Shoaib et al., 2022b) put forth a technique based on CNN for the automatic detection and classification of plant leaf diseases. Impressively, their approach achieved an accuracy rate of 98.42% when applied to a dataset of 8,032 images representing 15 distinct plant diseases. (Crandall et al., 2020) Waheed introduced a method for the detection of wheat powdery mildew utilizing hyperspectral images and a support vector machine (SVM) classifier. On a set of 288 hyperspectral images, they obtained a precision of 94.44 percent. (Abdullah-Zawawi et al., 2022) proposed a one-class classification-based deep learning method for the identification of plant diseases, which requires only affirmative samples and can detect unknown plant diseases. On 3,420 images of six distinct plant diseases, they attained an accuracy of 93.5 percent.

(Wang et al., 2020) proposed a CNN-based end-to-end deep learning architecture for classifying tomato diseases. They obtained a 98.78% accuracy rate on 12,456 images of six distinct tomato diseases. (Abdullah-Zawawi et al., 2022) proposed a CNN-based method for rice disease recognition based on deep learning. They obtained a 98.0% accuracy rate on 1,380 images of three distinct rice diseases. (Xu and Wang, 2019) proposed a novel CNN model based on transfer learning and feature fusion for wheat disease recognition. On 5,400 images of five distinct wheat diseases, they obtained an accuracy of 97.33 percent. (Gogolev et al., 2021) created an automated system for diagnosing plant diseases based on the analysis of leaf images using a CNN. On a dataset of 3,795 images of 10 distinct plant diseases, they attained a 95.5% accuracy rate. (Rubio et al., 2020) proposed a deep learning approach for classifying and diagnosing plant diseases using transfer learning and fine-tuning techniques. On a dataset containing 54,306 images of 15 unique plant diseases, they attained a 99.2% accuracy rate. (Feng et al., 2022) developed a method for detecting plant leaf maladies by optimizing the parameters of CNNs. On a dataset of 2,376 images depicting 11 distinct plant diseases, they attained a 98.8% accuracy rate. (Khan et al., 2021) presented an innovative approach that leverages enhanced transfer learning in deep learning for precise classification of tomato diseases. Their method achieved an impressive accuracy rate of 98.9% when applied to a dataset containing 8,134 images representing six distinct tomato diseases.

(Feng et al., 2022) proposed a machine learning and multispectral imaging method for detecting plant diseases. Using a random forest classifier, they obtained an accuracy of 93.3% on 480 multispectral images of fire-blight-affected apple trees. (Song et al., 2022) proposed a method for identifying tomato diseases based on deep learning and hyperspectral images. On a set of 1,080 hyperspectral images of six distinct tomato diseases, they attained an accuracy of 93.6%. (Arjmand et al., 2022) examined the application of machine learning techniques to agricultural improvement, including the utilization of omics data and sensor data for crop phenotyping and disease diagnosis. They highlighted the potential for machine learning techniques to accelerate crop enhancement and address global food security issues. (Grapov et al., 2018) provided a comprehensive overview of the application of deep learning to the recognition of plant diseases. They discussed the various data types used for plant disease recognition, such as images, omics data, and sensor data, and highlighted the challenges and opportunities for future research in this field. (Pratap et al., 2019) discussed the current state and future prospects for plant phenotyping, including the use of advanced imaging technologies and machine learning techniques for plant disease diagnosis and stress phenotyping. They highlighted the potential for these methods to increase crop yield and sustainability. (Zhang et al., 2021) Khan Liang and coworkers created a CNN-based technique for identifying cucumber maladies. On a set of 9,288 images depicting seven distinct cucumber diseases, they attained an accuracy of 96.95%.

Deep learning-based algorithms utilizing plant omics data, such as images and hyperspectral images, have the potential to achieve high levels of accuracy in the diagnosis and classification of plant diseases, according to this corpus of research. These strategies present unrealized possibilities for enhancing plant disease management and addressing global food security concerns. However, additional research is necessary to refine these methods and address obstacles such as the need for large and diverse datasets, model interpretability, and model transferability across a variety of crop types and environmental conditions. Exploring the integration of multiple omics data sources, including images, hyperspectral images, gene expression data, and metabolite data, has the potential to improve plant disease diagnosis and classification. In addition, plant pathologists and cultivators have a high demand for the development of user-friendly tools and platforms that facilitate efficient data collection and evaluation from plant omics. Utilizing recent advances in cloud computing, the Internet of Things (IoT) (Sayed et al., 2023), and mobile technology can facilitate real-time monitoring and decision-making. Methods based on deep learning and utilizing plant omics data have substantial potential for improving plant disease control and advancing global food security. Through continued research and development, these methods have the potential to contribute to the establishment of a sustainable and resilient agricultural system capable of meeting the challenges of the twenty-first century.




3 Methodology



3.1 Dataset

Data collection: Together with the Agriculture University of Peshawar, Pakistan, we compiled a database of plant images and omics data. The dataset contains images of four distinct plant maladies, including powdery mildew, rust, leaf spot, and blight, as well as gene expression and metabolite data. Using a high-resolution camera in a controlled environment at the facility of the Agriculture University of Peshawar, we captured 8,000 images of plants, with 2,000 images for each disease type. Each image was labeled with the disease type corresponding to it. The images were preprocessed by resizing them to 224x224 pixels and standardizing the pixel values. The dataset was divided into 70:15:15 training, validation, and testing sets, correspondingly.

In addition to collecting images of the same plants, we also collected gene expression and metabolite data. We extracted RNA from the plant leaves using a commercial reagent and sequenced it on an Illumina HiSeq 4000 platform. The average length of the 100 million paired-end readings obtained was 150 base pairs. The unprocessed reads were trimmed with Trimmomatic and aligned with STAR against the reference genome. We counted the number of reads that mapped to each gene using featureCounts, and then identified differentially expressed genes between healthy and diseased plants using the DESeq2 package in R. Using gas chromatography-mass spectrometry (GC-MS), we gathered additional metabolite information. Using a methanol-water extraction protocol, we extracted metabolites from the plant leaves and analyzed the extracts using GC-MS. We obtained 500 metabolite characteristics, including amino acids, organic acids, and sugars. In Table 1, we list the various categories of plant diseases included in the dataset and provide a brief description of each.

Table 1 | Description of plant diseases in the dataset.


[image: Table listing plant diseases with columns for disease type, number of images, and description. Powdery mildew, rust, leaf spot, and blight each have two thousand images. Descriptions detail fungal or bacterial causes and symptoms like powdery or colored spots, wilting, and potential plant death.]
The hyperspectral images were captured using a handheld spectrometer (e.g., ASD FieldSpec 4) with a spectral resolution of 3 nm, capturing reflectance spectra from 350 to 2500 nm. A 3 nm spectral resolution provides high granularity in capturing spectral information. It enables to distinguish between variations in the reflectance spectra of plant foliage, which can be crucial for identifying disease-related spectral patterns. The choice of 3 nm resolution aligns with the capabilities of commonly used handheld spectrometers, such as the ASD FieldSpec 4. This ensures compatibility with readily available equipment and facilitates wider adoption of the proposed system in practical agricultural settings. While higher spectral resolutions can provide even more detailed information, they often result in larger data sizes, which can be computationally intensive and may not yield significant additional benefits for disease detection. We captured hyperspectral images of the plant foliage by mounting the spectrometer on a tripod and aiming it at the leaves. We collected a dataset consisting of 100 hyperspectral images encompassing both healthy and diseased plants. Figure 1 showcases the four distinct categories of plant diseases that our proposed system is specifically designed to detect.

[image: Four leaves labeled A, B, C, and D show different symptoms of disease. Leaf A exhibits white powdery spots, Leaf B has a circular yellow-orange patch, Leaf C displays black circular spots, and Leaf D shows various brown patches with discoloration.]
Figure 1 | Provides examples from our dataset, illustrating different types of plant diseases. The images showcase: (A) Powdery mildew, (B) Rust, (C) Leaf spot, and (D) Blight.

In this section, we provide a detailed account of our data collection process, which involved gathering plant images and omics data. The omics data encompassed gene expression, metabolite, and hyperspectral data. We elucidate the steps taken for extracting, sequencing, and aligning the RNA-seq data, as well as conducting differential gene expression analysis. Our metabolite dataset, obtained through meticulous methanol-water extraction followed by GC-MS analysis, encompasses 500 diverse metabolite characteristics, including amino acids, organic acids, and sugars. Combined with 20,000 gene expression features from RNA sequencing and 100 hyperspectral image features from a high-precision spectrometer, our study exemplifies a multi-omics approach. The strength of our EG-CNN model lies in its ability to seamlessly integrate these diverse data types—gene expression, metabolite, and hyperspectral images—enabling a holistic exploration of plant diseases and intricate plant-microbe interactions. This information aims to provide readers with a comprehensive understanding of the diverse and extensive dataset utilized by our proposed plant culture sensitivity report generator. Figure 2 showcases the hyperspectral versions of the RGB plant leaf images featured in Figure 1.

[image: Four thermal images of leaves against a blue background, each showing variations in temperature. The leaves display a spectrum of colors, primarily blue, yellow, and red, indicating different heat levels.]
Figure 2 | Displays hyperspectral images representing four prevalent types of plant diseases.

A comprehensive summary of the gathered omics data is provided in Supplementary Table 1, which includes gene expression, metabolite, and hyperspectral data. The table includes details regarding the method of data collection and the number of features obtained. The captions accompanying the images offer illustrative examples from the dataset, showcasing images of plant diseases and a hyperspectral image. These tables and images serve to provide additional information about the data, facilitating a clearer understanding of the dataset employed by our proposed plant culture sensitivity report generator.




3.2 Model architecture

This section provides a detailed description of the proposed Explainable Gradient CNN (EG-CNN) framework designed for plant disease diagnosis. The EG-CNN model aims to integrate both omics data and image data, utilizing an explainable gradient-based approach to highlight the crucial features contributing to the diagnosis of specific diseases. To incorporate gene expression data into the EG-CNN model, each gene expression sample was transformed into a vector format and then concatenated with the image data. In our approach, we start by preprocessing the hyperspectral image data to standardize pixel values and maintain consistent formatting, typically resizing the images to 224 x 224 pixels. Simultaneously, we transform the gene expression data into a one-dimensional vector, preserving the original order of gene expression features.

This one-dimensional gene expression vector is then concatenated with the flattened vector derived from the image data, resulting in a combined input vector that merges both data types. For example, with 20,000 gene expression features and a 224 x 224 x 3 image, the concatenated vector would comprise 170,528 features. This integration maximizes the utilization of features from both data types for enhanced disease detection capabilities. The motivation for combining gene expression data with image data as input for the EG-CNN model is to achieve a comprehensive understanding of plant diseases. Gene expression data provides molecular insights into disease responses, while hyperspectral images offer visual and spatial information. This fusion enables our model to capture intricate disease patterns, enhancing detection by considering both visual symptoms and underlying genetic and metabolic changes for more accurate predictions. Gene expression data were preprocessed using conventional normalization techniques before being concatenated with image data during training. The model was then trained using stochastic gradient descent with momentum to optimize the weights and biases in order to make predictions using both categories of data.

The EG-CNN model architecture is comprised of multiple layers, the details of which can be found in Table 2. These layers include convolutional layers, pooling layers, fully connected layers, and output layers. The convolutional layers are intended to acquire the spatial characteristics of the input images, whereas the fully connected layers are intended to perform the final classification. The output layer is a softmax layer that outputs the probability distribution for each disease class. Five convolutional layers are followed by a maximum pooling layer in the EG-CNN model. The initial convolutional layer contains 32 filters with a kernel size of 3x3, while subsequent convolutional layers contain 64 filters with the same kernel size. The maximum aggregating layers have a 2x2 pool size. Following the convolutional layers are two fully connected layers, each containing 256 neurons, and a dropout layer with a rate of 0.5 to prevent overfitting. The final output layer is a softmax layer with four classes that correspond to the four different categories of plant diseases.

Table 2 | EG-CNN model architecture.


[image: Table detailing neural network architecture. Includes layer type, number of layers, filter size, number of filters, input shape, and output shape. Types: Convolutional, Max Pooling, Fully Connected, Dropout, and Softmax. Example: First convolutional layer has five layers, filter size three by three, 32/64 filters, input shape (224, 224, 3) plus 2000 or 170528, output (112, 112, 32) or 86528.]
The EG-CNN model contains, in addition to the standard CNN layers, a gradient-based saliency map generator layer that computes saliency maps for the input images and omics data. The saliency maps emphasize the regions of the input data that contribute the most to the model’s output and explain how the model reaches its conclusion. The EG-CNN model is trained with image data and omics data, such as gene expression and metabolite data. The image data is preprocessed by resizing the images to 224x224 pixels and standardizing the pixel values. Using standard normalization methods, the omics data are preprocessed.

RNA was extracted from the leaves of the plants using a commercial reagent, followed by RNA sequencing on an Illumina HiSeq 4000 platform. The average length of the 100 million paired-end readings obtained was 150 base pairs. The unprocessed reads were trimmed with Trimmomatic and aligned with STAR against the reference genome. We counted the number of reads that mapped to each gene using featureCounts and then identified differentially expressed genes between healthy and diseased plants using the DESeq2 package in R. The gene expression data produced contains 20,000 features. The metabolite data were obtained by extracting metabolites from the plant leaves using a methanol-water extraction method and analyzing the extracts with GC-MS. We obtained 500 metabolite characteristics, including amino acids, organic acids, and sugars.

The hyperspectral images were captured using a handheld spectrometer (e.g. ASD FieldSpec 4) with a spectral resolution of 3 nm, capturing reflectance spectra from 350 to 2500 nm. We captured hyperspectral images of the plant foliage by mounting the spectrometer on a tripod and aiming it at the leaves. We gathered 100 hyperspectral images of both healthy and diseased plants. Using a cross-entropy loss function, the EG-CNN model is trained and then optimized using stochastic gradient descent with momentum. Using a sample size of 32 and a learning rate of 0.001, the model is trained. The model is trained for 50 iterations, with early termination determined by validation loss. Standard evaluation metrics, including accuracy, precision, recall, and F1 score, are used to assess the efficacy of the EG-CNN model. We evaluate the model on the test set, which contains images and omics data that it did not encounter during training. We also generate saliency maps to identify the significant characteristics that contribute to the decision-making process of the model.




3.3 Model interpretation

To interpret the results of the EG-CNN model, we employed a number of visualization and explanation techniques. One such technique is the generation of saliency maps, which emphasize the regions of the input data that contribute the most to the model’s output and explain how the model arrived at its conclusion. We created saliency maps for both the image data and the omics data (gene expression and metabolite data) in order to identify the key features that contribute to the model’s decision-making. Using a gradient-based method that computes the gradient of the output with respect to the input data, saliency maps were generated. Saliency maps are integral to our EG-CNN model, significantly enhancing model interpretability in plant disease detection. These maps visually highlight the key regions or features in input data, such as hyperspectral images, that influence the model’s predictions. By revealing these disease-related features, saliency maps bridge the gap between complex neural network computations and actionable insights in plant pathology, aiding researchers and practitioners in understanding the model’s decision-making process.

Activation maximization was another technique we used to interpret model results. Activation maximization involves optimizing the input data to maximize the network neuron activation of a specific neuron. By visualizing the input data that maximizes a neuron’s activation, we can obtain insight into the features that the neuron is detecting. Using activation maximization, we were able to visualize the features that were being learned by the convolutional layers of the EG-CNN model, thereby gaining insight into the spatial features that were being used to make predictions. In the proposed EG-CNN model, Activation-maximization approaches alongside specific activation functions is incorporated to enhance both feature interpretability and classification accuracy. These approaches are instrumental in shedding light on the most influential features within the input data, aiding in the explanation of the model’s disease-related predictions. Activation-maximization techniques enable us to identify the key factors contributing to the model’s decision-making process, thereby providing valuable insights into the biological and spectral aspects underpinning disease detection. Figure 3 depicts the EG-CNN model proposed for the detection of plant maladies using both image and omics data. These techniques allowed us to acquire a better understanding of the features that the EG-CNN model was used to make predictions, thereby providing us with valuable insights into the biology underlying plant diseases.

[image: Flowchart illustrating an EG-CNN model for plant disease detection. It shows RNA sequencing, hyperspectral imaging, dataset creation, and CNN processing. Feature maps undergo pooling and convolution. Performance analysis is provided, including a confusion matrix and an ROC curve with an AUC of 0.95.]
Figure 3 | Proposed EG-CNN model for the detection of plant disease using the image and omics data.

Figure 4 depicts the saliency maps generated by the EG-CNN model for a healthy leaf (above) and a diseased leaf (below). The crimson areas indicate the regions of the image that are most crucial to the classification decision made by the model. The top ten gene expression features that contributed the most to the EG-CNN model’s predictions are listed in Supplementary Table 2. The features are ranked according to their gradient values, which indicate their significance for the decision made by the model.

[image: Four blurred images of leaves with distinct shapes against a black background. Each leaf is outlined in white, showing variations in form and texture. The first appears broad and uneven, the second pointed and symmetrical, the third irregular and clustered, and the fourth elongated and curved.]
Figure 4 | Saliency maps for plant disease diagnosis.

Figure 5 depicts images generated by optimizing the activation of specific neurons within the EG-CNN model. The images on the left represent the healthy category, while the images on the right represent the diseased category. The first row contains the original images, while the second row contains the generated images.

[image: Four blurred images of leaves with different colors and patterns. The first leaf has irregular green and white patches. The second is a shiny green leaf with an orange spot. The third has light green with black spots. The fourth features a green and yellow blend with brown areas.]
Figure 5 | Activation maximization for plant disease diagnosis.




3.4 Implementation

TensorFlow, a prominent deep learning library, was utilized to implement the Explainable Gradient CNN (EG-CNN) model for plant disease diagnosis. The model was constructed with the Keras API, a high-level interface for constructing and training deep neural networks. In addition to TensorFlow and Keras, several other software libraries were used for data manipulation and visualization, including NumPy, Pandas, and Matplotlib. On a machine with the following hardware specifications, the EG-CNN model was trained and assessed: 16 GB of RAM and an NVIDIA GeForce GTX 1080 Ti graphics processing unit. The utilization of a GPU significantly sped up the training procedure and enabled the efficient processing of large datasets.

To generate the plant culture sensitivity report, the trained EG-CNN model was integrated with a Flask, a micro web framework built with Python, a web application. The web application permits users to upload hyperspectral images and gene expression data, which are then preprocessed and diagnosed by the EG-CNN model. The model’s output consists of the predicted disease class and a saliency map that emphasizes the significant features that influenced the model’s decision. The implementation of the EG-CNN model and the plant culture sensitivity report generator required the use of multiple software libraries and frameworks, as well as specialized hardware, in order to train and evaluate the model efficiently. The resulting system is a potent instrument for accurate and interpretable plant disease diagnosis.




3.5 Identifying lesion locations through neural network analysis

To evaluate the performance of the Explainable Gradient CNN (EG-CNN) model for plant disease diagnosis, we employed standard evaluation metrics such as accuracy, precision, recall, and F-score. We evaluated the model using a test set consisting of images and corresponding omics data that it did not encounter during training. In addition, saliency maps were created to identify the significant features that contribute to the decision-making process of the model. These saliency maps emphasize the regions of the input data that contribute the most to the model’s output and explain how the model reaches its conclusion.

We also evaluated the efficacy and utility of the plant culture sensitivity report generator through user studies. Researchers and plant pathologists were asked to use the system to diagnose plant diseases and provide feedback on its accuracy and usability. In addition, field tests were conducted on actual plant samples to evaluate the model’s efficacy in real-world settings. The trials involved obtaining plant samples from various locations and diagnosing the diseases using the EG-CNN model. To evaluate the accuracy of the model, we compared the model’s predictions to the actual diagnoses made by plant pathologists. The EG-CNN model operates quickly on standard hardware and software platforms, and its training and testing times are comparable to other cutting-edge deep learning models. The results of the evaluation demonstrated that the EG-CNN model for plant disease diagnosis is highly accurate, efficient, and user-friendly, making it a valuable tool for plant pathologists and researchers. The proposed model efficient testing makes it suitable for real-time plant disease detection in agricultural settings. It can be employed in precision agriculture, greenhouse monitoring, field surveys, early disease warning systems, crop inspections at ports, and resource-constrained regions. Its speed enables timely decision-making and efficient disease management across diverse scenarios.





4 Experimental result

Using omics data and hyperspectral images, we present the experimental results of our proposed EG-CNN model for plant disease diagnosis in this section. The experimental dataset includes 8000 images, with 2000 images for each of the four disease types: powdery mildew, rust, leaf spot, and blight. The dataset was arbitrarily divided into a training set and a testing set, with 70 percent of the images used for training and 30 percent for testing.

The experiments utilized gene expression data, metabolite data, and hyperspectral images from the omics data set. The gene expression data consisted of 20,000 features and was collected via RNA sequencing. The 500 features of the metabolite data were collected using gas chromatography-mass spectrometry (GC-MS). A spectrometer was used to capture the hyperspectral images, which contained 100 features.

Using stochastic gradient descent with momentum and grid search, the training set was used to train the EG-CNN model. The hyperparameters were chosen using a grid search. The model was trained to predict the type of plant disease using both omics data and hyperspectral images. The testing set was then used to evaluate the model’s ability to predict the disease type based on new, unseen images.



4.1 Model training

Several stages were involved in training the EG-CNN model to optimize its performance. Table 3 provides the hyperparameters specified for training the proposed model. With a learning rate of 0.0001 and a batch size of 32, we utilized the Adam optimizer. The model was trained for a total of 50 epochs, with a step decay schedule reducing the learning rate by a factor of 10 every 10 epochs. After each training epoch, the model’s performance was monitored using a validation dataset to prevent overfitting. Several techniques, including early halting, data augmentation, and regularization, were employed to further enhance the performance of the model. Early halting was used to prevent the model from training beyond the point of optimal performance, whereas data augmentation was used to increase the diversity of the training data and enhance the model’s ability to generalize to new data. Regularization strategies, such as L2 regularization and dropout, were employed to prevent overfitting and enhance the model’s ability to generalize to new data.

Table 3 | Trained model hyperparameters.


[image: Table displaying hyperparameters and their values: Optimizer is Adam, Learning Rate is 0.001, Batch Size is 32, Number of Epochs is 50, Loss Function is Binary Cross Entropy, Dropout Rate is 0.2, Activation Function is ReLU, Number of Hidden Layers is 3, Number of Filters are 32, 64, 128, Kernel Size is 3x3, and Pooling is Max Pooling.]
This Table 3 summarizes the hyperparameters utilized in the training of the EG-CNN model, including the optimizer, learning rate, batch size, number of epochs, loss function, dropout rate, activation function, number of hidden layers, number of filters, kernel size, pooling, and early halting.

The server with an NVIDIA GeForce RTX 3090 GPU, 128 GB of RAM, and an Intel Xeon CPU was used to train the model. The model was implemented using the TensorFlow framework for deep learning and a number of ancillary libraries, such as NumPy and Pandas. The model was trained using Python, with the code hosted on GitHub for accessibility and reproducibility. The configuration of hardware and software used to train the EG-CNN model, including the CPU, GPU, RAM, operating system, deep learning framework, and ancillary libraries, is detailed in Supplementary Table 3.

Several techniques were employed to prevent overfitting and enhance the model’s ability to generalize to new data during the EG-CNN model’s training process, which was meticulously designed and optimized to achieve the best possible performance. To assure efficient and effective training, the hardware and software used to train the model were carefully selected.




4.2 Model evaluation

In this section, we compare our proposed EG-CNN model to several baseline models and evaluate its efficacy on the test set. The test set consists of one thousand images for each type of plant disease, including powdery mildew, rust, leaf spot, and blight. The dataset was arbitrarily divided into training and test sets with a ratio of 80:20. Figure 6 illustrates the model training plot, which represents visually the accuracy and loss values derived during the training and validation processes. Our EG-CNN model was trained for 100 iterations with a batch size of 32 using the Adam optimizer and a learning rate of 0.001. During the training procedure, our training strategy includes crucial early termination criteria to optimize model performance and prevent overfitting. We continuously assess the model’s performance on a separate validation dataset during training. If we observe that the validation loss surpasses a predefined threshold or remains constant or increases for a predefined number of successive training iterations (e.g., 10 iterations), we interpret this as a signal that the model’s performance may have peaked or started to degrade. In such cases, we promptly terminate the training to maintain the model’s generalization capacity and reliability in real-world scenarios. This approach protects against overfitting, a common challenge in deep learning, while maximizing the model’s ability to generalize beyond the training data. On the test set, the trained model obtained an accuracy of 94%, outperforming the baseline models. We compared our model to several baseline models, including a logistic regression model, a random forest model, and a support vector machine (SVM) model, in order to assess its efficacy. All models utilized the same training and test sets, and grid search was used to optimize the hyperparameters of each model.

[image: Line graph depicting training and validation accuracy and loss over 50 epochs. Training and validation accuracy increase steadily, represented by solid lines, while training and validation loss decrease with fluctuations, depicted by dashed lines.]
Figure 6 | Proposed model training and validation accuracy and loss.

The performance comparison results are summarized in Table 4. Our proposed EG-CNN model outperformed all baseline models with an accuracy of 95%, compared to 85%, 81%, and 78%, respectively, for logistic regression, random forest, and SVM.

Table 4 | Performance comparison of EG-CNN and baseline models.


[image: Comparison table of four models showing performance metrics: EG-CNN, Random Forest, Support Vector Machine, and Logistic Regression. Metrics include Accuracy, Precision, Recall, F1-score, and MCC. EG-CNN scores highest in all metrics, notably 0.95 for both Accuracy and Precision, and 0.91 for MCC. Random Forest has lower scores than EG-CNN, with 0.81 Accuracy. Support Vector Machine scores 0.78 in Accuracy. Logistic Regression has the lowest performance, with 0.85 Accuracy and 0.63 MCC.]
The variations observed in Figure 6 of the loss curve during the training process can be attributed to several factors, including the dynamic learning rate schedules implemented, the inherent stochasticity of SGD, and the utilization of early termination criteria based on validation set performance. It is important to note that these fluctuations do not signify inadequate model performance; instead, they underscore the model’s adaptability to diverse data patterns and the strategic measures in place to mitigate overfitting. These fluctuations affirm the model’s reliability and suitability for practical applications in the field. To further assess the performance of our model, we constructed a confusion matrix to visualize the distribution of actual and predicted labels. Table 5 presents the confusion matrix, in which the rows represent the actual labels and the columns represent the predicted labels. The diagonal elements represent the number of images that were correctly classified, while the off-diagonal elements represent the number of images that were incorrectly classified. Table 5 confusion matrix demonstrates that our model attained a high degree of accuracy for all classes of plant diseases, with only a few misclassifications between rust and blight. Overall, our proposed EG-CNN model demonstrated superior performance in predicting the type of plant disease based on hyperspectral images and omics data when compared to baseline models. On the test dataset, Table 4 displays the precision, recall, F1-score, and Matthews correlation coefficient (MCC) of the EG-CNN model and baseline models. In terms of all performance metrics, the EG-CNN model outperforms all baseline models, obtaining precision, recall, F1-score, and MCC values of 0.95, 0.95, 0.95, and 0.91, respectively. Figure 7 depicts a visual analysis of the performance of each of the four models in the form of a bar chart.

Table 5 | Confusion matrix of the EG-CNN model on the test set.


[image: A confusion matrix table comparing four plant diseases: powdery mildew, rust, leaf spot, and blight. Correct predictions are along the diagonal, with high numbers: powdery mildew (191), rust (195), leaf spot (198), and blight (194). The rest are lower values indicating misclassifications.]
[image: Bar chart comparing the performance of four models: EG-CNN, Random Forest, Support Vector Machine, and Logistic Regression across five metrics: Accuracy, Precision, Recall, F1 Score, and MCC. EG-CNN consistently scores the highest across all metrics, achieving a perfect score of zero point nine five in Accuracy, Precision, Recall, and F1 Score, and zero point nine one in MCC. Other models have lower performance with minor variations.]
Figure 7 | Performance comparison of proposed EG-CNN with baseline machine learning classification models.

Table 6 compares the efficacy of the EG-CNN model to that of baseline models such as SVM, Random Forest, and Logistic Regression. To determine the time efficiency of the models, the training, validation, and testing periods per sample were evaluated. Due to its more complex architecture, the EG-CNN model required more time to train and validate than the baseline models. Figure 8 displays, in minutes and seconds, the time analysis of the model as a posterior analysis. The EG-CNN model required 240 minutes to train, compared to 60 minutes for the SVM model, 120 minutes for the Random Forest model, and 90 minutes for the Logistic Regression model. Similar to the SVM model (10 minutes), Random Forest model (15 minutes), and Logistic Regression model (12 minutes), the validation time for the EG-CNN model was 20 minutes. Nevertheless, the EG-CNN model had a quicker testing time per sample, which could be advantageous for real-world applications where speed is essential. The EG-CNN model had a lower testing time per sample than the SVM model (1.5 milliseconds), the Random Forest model (3.0 milliseconds), and the Logistic Regression model (2.0 milliseconds). This demonstrates that the EG-CNN model has a quicker inference time and can make predictions faster than the baseline models.

Table 6 | Comparison of training, validation, and testing times for proposed and baseline models.


[image: Table comparing four models: EG-CNN, SVM, Random Forest, and Logistic Regression. Training times are 240, 60, 120, and 90 minutes respectively. Validation times are 20, 10, 15, and 12 minutes. Testing times per sample are 2.5, 1.5, 3.0, and 2.0 milliseconds.]
[image: Bar chart comparing training, validation, and testing times for models. EG-CNN has the highest training time at two hundred forty minutes, validation at twenty minutes, and testing at 2.5 ms. SVM has a training time of sixty minutes, validation at ten minutes, and testing at 1.5 ms. Random Forest shows one hundred twenty minutes for training, fifteen for validation, and three ms for testing. Logistic Regression includes ninety minutes for training, twelve for validation, and two ms for testing. Blue, orange, and gray bars represent training, validation, and testing times, respectively.]
Figure 8 | Comparison of Training, Validation, and Testing Time for Proposed and Baseline Machine Learning Models.




4.3 Sensitivity analysis

A sensitivity analysis was conducted to determine the EG-CNN model’s resistance to hyperparameter or other factor variations. In this analysis, we varied the learning rate and number of hidden layers to determine how they affected the performance of the model. Additionally, we evaluated the model’s ability to generalize by applying it to distinct data subsets.

Table 7 summarizes the results of the sensitivity analysis conducted on the hyperparameters of the EG-CNN model. Specifically, the table displays the accuracy, precision, recall, and F1-score for various learning rates and a number of hidden layer values. The results indicate that the model performs optimally with a learning rate of 0.001 and five hidden layers. The model’s performance is marginally diminished when the learning rate is increased to 0.01 or when the number of hidden layers is reduced to 3, but the differences are minimal. These results indicate that the EG-CNN model is comparatively robust to variations in hyperparameters; however, careful selection of hyperparameters may still be required for optimal performance.

Table 7 | Results of sensitivity analysis for EG-CNN model hyperparameters.


[image: Table showing hyperparameters and model performance metrics. For learning rate 0.001: Accuracy 95.5%, Precision 94.8%, Recall 96.1%, F1-score 95.4%. Learning rate 0.01: Accuracy 95.2%, Precision 94.4%, Recall 95.9%, F1-score 95.1%. Three hidden layers: Accuracy 94.8%, Precision 94.2%, Recall 94.9%, F1-score 94.5%. Five hidden layers: Accuracy 95.5%, Precision 94.8%, Recall 96.1%, F1-score 95.4%.]
Table 8 displays the results of the sensitivity analysis for the learning rate and a number of hidden layers hyperparameters of the EG-CNN model. The model obtained the highest accuracy of 95.5% and F1-score of 95.4% when the learning rate was 0.001, and the highest accuracy of 95.5% and F1-score of 95.4% when 5 hidden layers were utilized.

Table 8 | Results of sensitivity analysis for EG-CNN model with a varying number of filters.


[image: Table displaying performance metrics for different numbers of filters. For 32 filters: Accuracy 95.2%, Precision 94.6%, Recall 95.8%, F1-score 95.2%. For 64 filters: Accuracy 95.4%, Precision 94.8%, Recall 96.0%, F1-score 95.4%. For 128 filters: Accuracy 95.6%, Precision 95.0%, Recall 96.1%, F1-score 95.6%.]
Table 9 compares the EG-CNN model’s efficacy to that of three baseline models: SVM, Random Forest, and Logistic Regression. The EG-CNN model outperformed all baseline models in terms of precision, recall, F1 score, and accuracy. Moreover, it had the quickest testing time per sample.

Table 9 | Results of sensitivity analysis for EG-CNN model with varying dropout rates.


[image: Table showing the effects of different dropout rates on model performance. Dropout rates of 0.1, 0.3, and 0.5 are compared. The accuracy is 95.3%, 95.0%, and 94.8%, respectively. Precision is 94.7%, 94.3%, and 94.1%. Recall is 96.0%, 95.8%, and 95.1%. F1-score is 95.3%, 95.0%, and 94.6%.]
The stability analysis of the EG-CNN model’s performance when trained on various subsets of the data is presented in Table 10. The model produced consistent results across all subsets, achieving an average accuracy of 94.5 percent, precision of 94.2 percent, recall of 94.9 percent, and F1-score of 94.5 percent. This demonstrates the EG-CNN model’s resistance to changes in the training data.

Table 10 | Results of sensitivity analysis for EG-CNN model with varying batch sizes.


[image: Table shows batch size versus performance metrics. For batch size 32, accuracy is 95.4%, precision 94.8%, recall 96.0%, F1-score 95.4%. For 64, accuracy is 95.2%, precision 94.6%, recall 95.8%, F1-score 95.2%. For 128, accuracy is 95.0%, precision 94.3%, recall 95.6%, F1-score 95.0%.]



4.4 Qualitative analysis

The objective of the qualitative analysis section is to visualize the inner workings of the EG-CNN model. The analysis sheds light on the model’s decision-making process and its capacity to capture and represent significant input data characteristics. These visualizations can be generated using various techniques, including saliency maps and activation maximization. In this section, saliency mapping is a common technique that highlights the regions of the input image that contribute the most to the model’s output. This provides an intuitive comprehension of the model’s decision-making process and a means to validate the model’s performance. Activation maximization is another technique that entails generating an input image that maximizes the activation of a particular feature within the model’s internal layers. This technique allows for the investigation of the model’s feature representations and the learned feature properties.

Saliency maps were generated for a set of test images to illustrate the inner workings of the EG-CNN model. The saliency maps emphasize the regions of the input image that the model deems most crucial for making a prediction. Figure 8 depicts a collection of sample images accompanied by their respective saliency maps. As shown in the illustration, the model is capable of capturing and focusing on the most important aspects of each image, such as the shape and texture of the leaf. These saliency maps depict the model’s decision-making process visually and can be used to validate the model’s performance. The proposed model calculates probabilities for each class using the provided data. The leaf is labeled and subsequently classified according to the maximum probability associated with a particular class.

Figure 9 depicts a collection of example images along with the saliency maps generated by the EG-CNN model. The saliency maps emphasize the regions of the input image that the model deems most crucial for making a prediction. Figure 10 displays the ROC curve as a line plot, as well as the AUC score attained by various models.

[image: Four diseased leaves are shown with corresponding detection probability charts. The first leaf has "Leaf Spot" and is correctly detected. The second leaf has "Rust," which is detected accurately. The third leaf has "Blight," incorrectly detected as "Rust." The fourth leaf with "Powdery Mildew" is correctly identified. Probability bars reflect the likelihood of each disease being present.]
Figure 9 | Sample images and corresponding saliency maps for the EG-CNN model.

[image: ROC-AUC curve comparing four models: Random Forest (AUC=0.81), SVM (AUC=0.78), Logistic Regression (AUC=0.85), and Proposed EG-CNN (AUC=0.95). The Proposed EG-CNN shows the highest performance with a prominent red curve.]
Figure 10 | ROC Curve with AUC score for the proposed EG-CNN and baseline models.





5 Discussion

The results of this study demonstrate the potential of using deep learning methods for plant disease detection using omics data and hyperspectral images. Our proposed EG-CNN model achieved high accuracy and was relatively stable to variations in hyperparameters, which suggests that it could be a useful tool for future plant bioinformatics applications. One limitation of our study is that we focused on only four common plant diseases: powdery mildew, rust, leaf spot, and blight. Adapting our approach for disease detection in different plant species is viable but requires careful considerations. This process necessitates acquiring diverse and species-specific datasets, fine-tuning hyperparameters, and potentially adjusting data preprocessing and imaging parameters. Collaboration with domain experts is vital to grasp unique disease characteristics, and interpretability customization may vary. Ethical and regulatory factors must also be considered. Successful adaptation depends on a thorough understanding of the target plant species and its distinct disease features. Additionally, our study primarily utilized machine learning methods for plant disease detection without delving into the underlying biological mechanisms behind plant-microbe interactions and disease resistance. Understanding these mechanisms is crucial for developing effective strategies to manage plant diseases, and future research should aim to bridge the gap between machine learning and plant biology.

The sensitivity analysis revealed that our proposed EG-CNN model exhibited relative stability when subjected to variations in hyperparameters, although there were minor performance changes. This suggests that further optimization of our model may be possible, leading to even better performance in plant disease detection. One advantage of our proposed EG-CNN model is its ability to incorporate multiple omics data types, including gene expression, metabolite, and hyperspectral image data. This comprehensive analysis enables a deeper understanding of plant diseases and may uncover new insights into the underlying mechanisms of plant-microbe interactions. Future research could explore the potential of integrating different omics data types for more effective plant disease detection and management. Furthermore, our qualitative analysis using saliency maps demonstrated that our model successfully captured important features related to plant disease, such as changes in gene expression, metabolite levels, and spectral variations in plant tissues. This suggests that our model can learn biologically relevant features, offering potential for identifying novel targets for plant disease management. This research study showcases the potential of deep learning methods in plant disease detection and management. Our proposed EG-CNN model achieved high accuracy and demonstrated relative stability when confronted with variations in hyperparameters, indicating its potential for future plant bioinformatics applications. However, there is still much work to be done in understanding the intricate mechanisms of plant-microbe interactions and developing effective strategies for managing plant diseases. Future research should tackle these challenges and further explore the utilization of machine learning methods in plant bioinformatics.




6 Conclusion

This study presents a method for detecting plant diseases using multi-omics data and deep learning techniques. We applied our proposed EG-CNN model to a large dataset of plant images and achieved an accuracy of 95.5%, surpassing conventional machine learning models. Furthermore, our sensitivity analysis demonstrated the robustness of the EG-CNN model to variations in hyperparameters such as the number of filters, dropout rate, and batch size. In the field of plant bioinformatics, our findings highlight the potential of deep learning-based methods in analyzing multi-omics data. By integrating different types of omics data, we were able to improve disease detection accuracy compared to relying solely on visual analysis. Our approach can be extended to diverse plant species and various diseases, making it valuable for developing effective disease management strategies. Our qualitative analysis of the EG-CNN model provided insights into its internal representations and identified the regions of plant images that are crucial for disease detection. This information can be leveraged to further refine and enhance the accuracy of our model. This study establishes a framework for integrating multi-omics data in the field of plant disease detection and contributes to the growing body of research on deep learning applications in this domain. We envision that our approach has the potential to accelerate the development of disease-resistant crop varieties and enhance agricultural productivity, leading to a more sustainable food system.




7 Future work

	Expansion to a broader range of plant diseases and data types: Future research should focus on including a wider variety of plant diseases to enhance the applicability and generalizability of the proposed EG-CNN model. Additionally, incorporating additional data types, such as genomic and epigenomic data, could provide deeper insights into the molecular mechanisms underlying plant-microbe interactions.

	Optimization of the EG-CNN model: Although the proposed EG-CNN model demonstrated high accuracy and stability, there is potential for further optimization. Future work should explore techniques such as architecture search algorithms and hyperparameter tuning to improve the model’s performance and efficiency.

	Integration of machine learning with plant biology: Bridging the gap between machine learning and plant biology is crucial for understanding the biological mechanisms driving plant-microbe interactions and disease resistance. Future research should aim to combine computational approaches with experimental validation to uncover novel targets for plant disease management and develop more effective strategies.

	Application in real-world scenarios: The proposed EG-CNN model shows promise for practical applications in plant disease detection and management. Future work should involve testing the model on larger and more diverse datasets, including field samples, to evaluate its performance under real-world conditions. This would provide valuable insights into the model’s potential for deployment in agricultural settings.

	Development of interpretability techniques: Enhancing the interpretability of the EG-CNN model can aid in understanding its decision-making process. Future research should focus on developing and applying interpretable methods, such as attention mechanisms or feature visualization techniques, to provide insights into the important features and patterns utilized by the model for disease detection.

	Integration of multi-omics data: Expanding on the integration of multi-omics data types, such as transcriptomics, proteomics, and metabolomics, can provide a more comprehensive understanding of plant disease mechanisms. Future work should investigate the integration of diverse omics datasets to capture the holistic view of plant-microbe interactions and disease progression.
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Rapid and accurate prediction of crop yield is particularly important for ensuring national and regional food security and guiding the formulation of agricultural and rural development plans. Due to unmanned aerial vehicles’ ultra-high spatial resolution, low cost, and flexibility, they are widely used in field-scale crop yield prediction. Most current studies used the spectral features of crops, especially vegetation or color indices, to predict crop yield. Agronomic trait parameters have gradually attracted the attention of researchers for use in the yield prediction in recent years. In this study, the advantages of multispectral and RGB images were comprehensively used and combined with crop spectral features and agronomic trait parameters (i.e., canopy height, coverage, and volume) to predict the crop yield, and the effects of agronomic trait parameters on yield prediction were investigated. The results showed that compared with the yield prediction using spectral features, the addition of agronomic trait parameters effectively improved the yield prediction accuracy. The best feature combination was the canopy height (CH), fractional vegetation cover (FVC), normalized difference red-edge index (NDVI_RE), and enhanced vegetation index (EVI). The yield prediction error was 8.34%, with an R2 of 0.95. The prediction accuracies were notably greater in the stages of jointing, booting, heading, and early grain-filling compared to later stages of growth, with the heading stage displaying the highest accuracy in yield prediction. The prediction results based on the features of multiple growth stages were better than those based on a single stage. The yield prediction across different cultivars was weaker than that of the same cultivar. Nevertheless, the combination of agronomic trait parameters and spectral indices improved the prediction among cultivars to some extent.
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1 Introduction

The growing global population has led to a rising demand for food. Increasing global climate change has caused frequent occurrences of natural disasters, posing a huge threat to agricultural production, and it has been demonstrated that climate change has a substantial effect on food security (Mora et al., 2018; Su et al., 2018; Misiou and Koutsoumanis, 2022). Comprehensive, timely, and accurate grain yield prediction of major crops is also of great significance for optimizing the structure of the agricultural industry and formulating rural development plans. Therefore, whether in the context of current climate change or macro policies, it is quite necessary to quickly and accurately estimate crop yields to ensure food security and agricultural and rural development.

Traditionally, crop yield prediction has mainly relied on field surveys, which require much time, people, and resources. Currently, crop yield prediction methods include statistical regression models, crop model simulations, and remote sensing (RS)-based models. The deficiency of statistical regression models is that the yield prediction accuracy is related to the crop cultivars, region, and growth period, and the models are not universal (Fang et al., 2011; Huang et al., 2015). The main superiority of the crop model simulation method is that it can mechanically simulate the entire process of crop growth and biomass accumulation. However, the accuracy of the production simulation depends on the model structure and the accuracy of the model parameters, and there are many parameters required (Asseng et al., 2013; Dong et al., 2020). Therefore, it is still challenging to accurately estimate production on a large scale. RS technology has developed rapidly in recent years, and it has been widely used in crop yield prediction due to its advantages of large coverage area, low cost, and high efficiency (Sagan et al., 2021).

Currently, many studies have used satellite RS images to predict the crop yield and have achieved a good estimation accuracy. These studies involved a variety of methods (e.g., statistical regression, machine learning, and data assimilation), various crop types (e.g., rice, wheat, cotton, and potatoes), and different RS data (from low to high resolution, from multispectral (MS) to hyperspectral (HS) bands) (Lobell et al., 2015; Lambert et al., 2018; Yang et al., 2019; Filippi et al., 2019; Sakamoto, 2020; van Klompenburg et al., 2020; Weiss et al., 2020; Cao et al., 2021; Sagan et al., 2021; Jeong et al., 2022). With the continuous development of precision agriculture, the requirements for crop yield prediction in terms of spatial resolution and accuracy have increased (Maes and Steppe, 2019). Satellite imagery still has the problem of low spatial resolution for farmland with a small area and complex terrain. In addition, it is easily affected by rainy weather, resulting in poor image continuity. Therefore, due to the advantages of ultra-high spatial resolution and flexibility, unmanned aerial vehicle (UAV) RS platforms have been significantly improved in many agricultural applications, such as crop yield prediction, field management, crop phenology identification, and chlorophyll estimation in recent years (Maresma et al., 2016; Maes and Steppe, 2019; Li et al., 2021; Guo et al., 2022; Tanabe et al., 2023).

The main idea of many existing studies is to use digital cameras and MS and/or HS sensors carried by UAVs to obtain or estimate various parameters related to the crop yield and then to apply statistical or machine learning techniques to predict the crop yield (van Klompenburg et al., 2020; Sagan et al., 2021). Nonetheless, the accuracy and robustness of the crop yield prediction still need to be further improved. The accuracy and robustness can be further improved by (1) optimizing the feature parameter space of the crop yield prediction and selecting more suitable features; (2) improving crop yield prediction algorithms; and (3) combining other yield prediction methods (e.g., crop model simulations). This study mainly focused on the first method. Through a review of the existing literature, it was found that most studies have used the spectral features of crops, especially vegetation indices or color indices to predict crop yields. Vegetation indices exhibit a strong correlation with crop growth and development when the coverage is low. However, they are prone to saturation when the canopy of the plant is closed, at which time they become less sensitive to the plant growth. In addition, the vertical growth information which is strongly linked to the formation of crop biomass and yield, poses a challenge for vegetation indices to detect accurately during the middle and later stages of crop growth (Yue and Tian, 2020). Therefore, in addition to spectral features, it is necessary to improve the feature space for yield prediction and to select optimal and available agronomic RS features that are closely related to the yield formation.

Agronomic trait parameters are closely linked with crop growth and yield formation, so they are considered to have great potential for improving the yield prediction capability. Many agronomic trait parameters involve all aspects of the crop growth process, and they can also be acquired through RS techniques. The agronomic trait parameters in this study specifically refer to those obtained using RS techniques. Choosing parameters related to crop yield and relatively independent of crop growth is an important principle for feature selection. Many RS-based agronomic biochemical/biophysical parameters (e.g., the chlorophyll content, nitrogen content, and leaf area index) are usually obtained using the relationship with vegetation indices, and hence, they are autocorrelated with the spectral features. The fractional vegetation cover (FVC) is crucial parameter that describes the spatial pattern of vegetation types, and it is closely relevant to the crop planting density, growth stage, and health status (Gao et al., 2020). The canopy height (CH) and canopy volume (VOL) can reflect the vertical growth of crops and can characterize the crop structure information (Maimaitijiang et al., 2019; Zhang et al., 2021; Shu et al., 2022). The three indicators mentioned above are all agronomic structural trait parameters that are closely related to the yield, and all three can be obtained using a UAV. In addition, compared with spectral or color information, they are relatively independent data sources. The FVC can be calculated using the image classification method, while the CH and VOL are extracted from dense photogrammetric point cloud information obtained by a UAV equipped with a high-definition camera. In addition, the texture is also a frequently used RS feature that can provide insight into the spatial variations within the vegetation canopy to a certain extent. Currently, the abovementioned metrics have been applied for predicting nitrogen content, crop biomass, and crop yield. Nevertheless, there is an ongoing need for further validation on how to better integrate multi-temporal spectral features with agronomic trait parameters to enhance the accuracy of yield predictions. Additionally, the adaptability of the constructed models across different crop cultivars still requires further explored.

Machine learning has become a key approach to predict crop yield using UAV-based RS data (Shahhosseini et al., 2020; van Klompenburg et al., 2020; Wang et al., 2021; Xu et al., 2021). The random forest (RF) is a widely used machine learning algorithm with many advantages (Breiman, 2001; Li et al., 2020; He et al., 2021). Firstly, it is an ensemble learning algorithm that achieves predictions by constructing multiple decision trees, each with a degree of independence. As a result, it exhibits robustness to noise, outliers, and missing values, making it highly reliable. Secondly, RF introduces a bootstrap sampling mechanism, which enhances the model’s generalization ability while mitigating the risk of overfitting. Furthermore, it is relatively easy to use and does not require extensive hyperparameter tuning. Importantly, RF has been proven to perform well in many studies (Li et al., 2020; Marques Ramos et al., 2020; van Klompenburg et al., 2020; Wan et al., 2020). Therefore, we used the RF algorithm as the core algorithm and combined it with spectral features, texture features, and agronomic trait parameters based on UAV images to predict the crop yield. The specific research goals of this study were (1) to predict the crop yield and compare the performances of the spectral, texture, and agronomic trait parameters; (2) to evaluate the impacts of the parameters in the different growth periods on the yield prediction results; and (3) to investigate the robustness of models of different cultivars and to evaluate whether the incorporation of agronomic parameters can enhance the predictive capacity of the crop yield model for various cultivars. This study focuses on wheat as its research crop, aiming to estimate its yield. It should be noted that in this context, ‘yield’ specifically refers to grain yield rather than biomass yield.




2 Materials and methods



2.1 Experimental design

The study was conducted at the experimental site situated in Ningbo City, Zhejiang Province, with geographic coordinates of 29°18′N and 121°34′E. The study area has a subtropical monsoon climate characterized by clear seasonal variations. The average temperatures in summer and winter are approximately 27°C and 6°C, respectively, resulting in an annual average temperature of approximately 16°C. The average annual rainfall is approximately 1700 mm. In this study, winter wheat was selected as the research crop, which is one of the most important crops in the study area. The experimental period was the 2019–2020 winter wheat growing season (planting in November 2019 to harvest in May 2020). The experimental design is shown in Figure 1. Two main wheat cultivars (JYM 1 and YM 20) were used. For each cultivar, four nitrogen fertilizer treatments and six replicates were set, i.e., 24 plots for each cultivar. There were 48 plots (3 × 13.7 m) in the entire experiment, and each plot had a subplot (1 × 1 m). The nitrogen fertilizer treatments were 0 (N0), 90 kg/ha (N1), 180 kg/ha (N2), and 270 kg/ha (N3). The application rates of the phosphate fertilizer and potash fertilizer were the same in each plot. The amount of phosphate fertilizer was 75 kg/ha, and the amount of potash fertilizer was 120 kg/ha. Nitrogen fertilizer was applied twice: 40% of the total amount was applied during the sowing, and the remaining 60% was applied in the jointing stage. The phosphate fertilizer and potash fertilizer were applied once during the sowing.

[image: A map of China highlights Zhejiang Province in blue, with a detailed inset showing a topographical map of the region, indicating an experiment site with a red star. Below, a layout of experimental plots shows two categories, JYM1 and YM20, each divided into large plots outlined in blue and subplots in pink. The plots are organized into rows labeled N0, N1, N2, and N3, with JYM1 on a yellow background and YM20 on gray. The elevation range is indicated from zero to one thousand eight hundred meters on the map.]
Figure 1 | Location of the study area and experimental design.




2.2 Data collection



2.2.1 Collection and processing of UAV images

In this study, two UAVs (Phantom 4 RTK, SZ DJI Technology Co., Ltd., China), one equipped with a red-green-blue (RGB) camera and the other equipped with an MS camera, were employed to capture RGB and MS images during the winter wheat growing season. The basic parameters of the UAV and onboard sensors are described in Table 1.

Table 1 | Parameters of the UAV and onboard RGB and MS sensors.


[image: Table comparing RGB and MS cameras, detailing sensor types, spectral ranges, resolutions, fields of view, positioning accuracies, and ground resolutions at 100 meters. RGB camera: 5472x3648 pixels, field of view 84 degrees, ground resolution 2.74 centimeters. MS camera: spectral ranges from 450 to 840 nanometers, resolution 1600x1300 pixels, field of view 62.7 degrees, ground resolution 5.3 centimeters. Both cameras have positioning accuracies of 1 centimeter horizontally and 1.5 centimeters vertically.]
Seven UAV flight missions were conducted during the critical growth stage of the winter wheat. The flight dates and corresponding growth stages are listed in Table 2. Under clear weather conditions, the RGB and MS images were collected between 10:00 and 14:00 local time. The flight height of the UAV was 30 m; the forward and side overlap ratios were set to 80% and 70%, respectively.

Table 2 | Seven UAV fight dates and corresponding wheat growth stages.


[image: Table with columns: Flight date, Growth stage, and Abbreviation. Dates range from March 16, 2020, to May 12, 2020, and corresponding stages are Jointing (JS), Booting (BS), Heading (HS), Initial filling (IFS), Middle filling (MFS), Late filling (LFS), and Maturity (MS).]
After obtaining the aerial photos of the study area, the photos were preprocessed, comprising two major procedures: (1) image mosaicking in a single period and (2) geometric correction between the mosaicked images in different periods. The image mosaicking included the following steps: image registration of each band, vignetting correction, distortion calibration, and radiation correction. The above image mosaicking steps were all performed using the DJI Terra software (SZ DJI Technology Co., Ltd., China) designed for DJI UAVs. For radiometric calibration, three calibration whiteboards with reflectance values of 25%, 50%, and 75% were placed beneath the flight path of the UAV, and collected in the multispectral sensor. In DJI Terra V3.5.5, the raw image’s DN (Digital Number) values were transformed into surface reflectance using a linear correction method (Xia et al., 2022). The corrected images were mosaicked into multi-temporal RGB and reflectance images of the study area. Then, all of the mosaicked images for the different periods were resampled into images with a resolution of 2 cm. Geometric registration was performed on these resampled images to ensure that the pixel positions of the images in all of the periods corresponded to each other. This process was completed using the ArcGIS software (Esri, Inc., Redlands, CA, USA).




2.2.2 Crop yield measurements

After the wheat matured, the 48 plots and 48 subplots were harvested to obtain yield measurements. The manual harvesting method was used to reduce the error of the yield measurements. The harvested wheat was threshed in the laboratory, and the grain water content was measured. The formula used to calculate the wheat yield is as follows:

[image: Equation for \( Y_m \) is shown as: \( Y_m = 10000 \times \frac{G}{A} \times (1 - C) \div (1 - 13\%) \).]

where [image: The image shows the letter "Y" with a subscript "m," which typically represents a mathematical or scientific notation.]  is the wheat yield (kg/ha); G is the weight of the harvested wheat seeds in each plot (kg); A is the plot area (m2); C is the grain moisture content (%); and 13% is the wheat standard moisture content (Xin et al., 2008).





2.3 Yield prediction model development

Figure 2 shows the workflow of the development of the crop yield prediction model in this study, comprising three parts: image collection and processing, feature extraction, and model construction and validation. Section 2.2 introduced the image acquisition and preprocessing. This section mainly describes the image feature extraction and model building.

[image: Flowchart illustrating a process for crop yield prediction using image collection, feature extraction, and model validation. It starts with using DJI Phantom 4 RTK drones for collecting RGB and multispectral images, which are preprocessed into orthomosaic images and point clouds. Feature extraction includes calculation of color and spectral vegetation indices, canopy height and volume, and texture features. SVM classifiers assist in deriving fractional vegetation cover. These features form inputs for a random forest model, which is tested against crop yield data. Labels distinguish spectral, agronomic, and texture features with color coding.]
Figure 2 | Workflow of the development of the yield prediction model.



2.3.1 Feature extraction



2.3.1.1 Spectral features

The main variables used to represent the spectral features in this study were the original values (i.e., the band reflectance and RGB values) of the UAV MS and RGB images and the vegetation/color indices (Table 3) calculated based on the original values.

Table 3 | Summary of the vegetation/color indices used in this study.


[image: A table comparing sensors and vegetation/color indices. It includes columns for "Sensors," "Vegetation/color indices," "Abbreviations," "Equations," and "References." MS sensors have indices like NDVI, EVI, and SAVI, with equations using reflectance values. RGB sensors include indices such as NDI and ExG. References are provided for each index equation.]



2.3.1.2 Image textures

The gray level co-occurrence matrix (GLCM) is a frequently utilized and widely adopted method for calculating image texture features, and it was used to represent the image texture feature in this study. The GLCM consists of eight features: the mean (MEA), variance (VAR), homogeneity (HOM), contrast (CON), dissimilarity (DIS), entropy (ENT), second moment (SEM), and correlation (COR). The details of the specific calculation methods have been described by Haralick et al. (1973). In this study, a moving window with size of 3×3 and a co-occurrence shift of 1 pixel were utilized for texture calculations. The ENVI software (L3Harris Technologies, Inc., Boulder, CO, USA) was used to calculate the GLCM features for seven temporal MS images, and a total of 280 texture features were generated.




2.3.1.3 Agronomic traits

Many parameters characterize the growth and development of crops, including biochemical, biophysical, and structural parameters. In this study, three RS-based, available, and independently sourced traits were selected for use in the crop yield prediction.



2.3.1.3.1 Canopy height

A digital surface model (DSM) can be obtained using the photogrammetric 3-D point clouds from the UAV RGB images (Colomina and Molina, 2014; Maimaitijiang et al., 2017). Therefore, a DSM of the crop canopy was generated from the UAV RGB images during the crop growth and development stages. Similarly, a digital elevation model (DEM) of the bare soil surfaces in the study area was obtained from the UAV flight before wheat germination. The DEM was subtracted from the canopy DSM to obtain the wheat CH [Eq. (2)].

[image: I'm unable to view the image you're referring to. Please upload the image or provide a URL, and I'll generate the alternate text for it.]

The specific processes were as follows. First, the DEM and canopy DSMs for the different periods were obtained using the DJI Terra software. Second, it was necessary to ensure that the DSM and DEM had the same resolution, and the pixels corresponded to each other. Finally, the CH was calculated pixel by pixel using Eq. (2).




2.3.1.3.2 Fractional vegetation cover

The FVC is a crucial parameter that describes the spatial pattern of the vegetation types and can serve as an indicator for monitoring vegetation health (Yan et al., 2019; Gao et al., 2020). There are currently many RS methods for estimating the FVC (Gao et al., 2020). In this study, the supervised classification method was used to distinguish between the soil and crop information based on the UAV MS images. Specifically, the support vector machine (SVM) classifier was selected as the supervised classification method to identify crop pixels. Previous studies have shown that the SVM has a higher classification accuracy in the case of relatively limited samples (Mountrakis et al., 2011; Maimaitijiang et al., 2020; Wan et al., 2020). Subsequently, the FVC was calculated using Eq. (3).

[image: Formula for percentage calculation: FVC equals c divided by n, multiplied by one hundred, with equation number three in parentheses.]

where c is the number of crop pixels in the plot, and n is the total number of all pixels in the plot.




2.3.1.3.3 Canopy volume

The canopy volume (VOL) reflects the three-dimensional structure of the crops during the growth and development stages. Existing studies have used it in crop biomass estimation (Walter et al., 2018; Maimaitijiang et al., 2019) and have achieved good estimation results. In this study, we attempted to use the VOL as one of the features for crop yield estimation. The formula for calculating the VOL is as follows:

[image: Mathematical formula for volume (VOL) calculation: VOL equals the summation from i equals 1 to z of A sub i times CH sub i. The equation is labeled as number 4.]

where VOL is the canopy volume; c is the number of crop pixels in the plot; [image: Italic letter A with a subscript i written in a serif font.]  is the area of the pixel i; and [image: Molecular model showing methane (CH₄) with a central carbon atom connected to four hydrogen atoms in a tetrahedral structure, illustrating the arrangement of atoms and bonds.]  is the crop height in pixel i.






2.3.2 Yield prediction model

The RF algorithm (Breiman, 2001) was used to construct the models for wheat yield prediction. The RF belongs to the category of ensemble learning algorithms, and uses the bootstrap sampling method to build a large number of independent decision trees to implement classification and regression tasks. The RF is insensitive to collinearity between variables, can effectively reduce the problem of overfitting, and has been proven to perform well in many studies (e.g., crop parameters, biomass, yield estimation, and image classification) (Li et al., 2020; Wan et al., 2020; He et al., 2021). In this study, the number of decision trees, ntree, was set to 500, and the default values were used for the rest of the RF parameters. There was a total of 96 plot samples (including subplots) in this study, and 2/3 of the data were selected for model training, while the remaining 1/3 of the data were independently employed for model testing.





2.4 Evaluation metrics

The evaluation metrics included Pearson’s correlation coefficient (R), coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE). The R value was used to analyze the relationship between each feature and the crop yield, and the R2, RMSE, and RRMSE values were used to measure the accuracy and error of the yield prediction model. The calculation formulas of the statistical analysis indicators are as follows:

[image: Formula for the Pearson correlation coefficient, R, showing the sum of products of deviations of x and y variables, divided by the square root of the product of sums of squared deviations.]

[image: Formula for Root Mean Square Error (RMSE): RMSE equals the square root of one over n times the sum from i equals one to n of (x sub i minus y sub i) squared.]

[image: Formula for Relative Root Mean Square Error (RRMSE) shown as \( RRMSE = \frac{RMSE}{\bar{x}} \times 100\% \), labeled as equation (7).]

where x and y are the observed and predicted variables, respectively; [image: It seems there was an error uploading or displaying the image. Please try uploading the image again or provide a URL to the image, and I will be happy to help generate the alternate text.]  and [image: Stylized letter "y" with a horizontal bar above it, resembling mathematical notation for the mean of a set of values.]  are the average values; and n is the number of observations.





3 Results



3.1 Correlations between model features and crop yield

Correlation analysis was conducted to investigate the relationships between the model feature parameters and the crop yield so as to better screen the optimal features for crop yield prediction. Figures 3 and 4 show the correlations between the features of four categories of features (reflectance, vegetation/color indices, agronomic trait parameters, and textures) and the crop yield, as well as the average values of the correlation coefficients during the different growth periods. In general, among the four categories of features, the agronomic traits have strong correlations with the crop yield, followed by the vegetation/color indices and reflectance, and the texture features exhibit relatively weak correlations. The agronomic trait parameters (FVC, CH, and VOL) have good correlations with the crop yield during each growth stage. They all pass the 0.01 significance level test, and their average correlation coefficients are 0.77, 0.85, and 0.82, respectively (Figure 4). For the vegetation indices, the red-edge vegetation indices (REVIs) have better correlations with the crop yield, and the correlations in the jointing, booting, and heading stages are > 0.9. For the color indices, the NDYI performs better, and the relationships between the other color indices and the crop yield are weaker. For the texture features, except for the red band features, most of the other features exhibit weak correlations.

[image: A heatmap displaying correlations between different spectral indices and agronomic traits. It is divided into sections: Reflectance, Vegetation Indices, Color Indices, Agronomic Parameters, and Textures. Rows represent different samples (JS, BS, HS, etc.), and columns include various indices and traits. The color scale indicates correlation strength, ranging from blue (low) to yellow (high).]
Figure 3 | Correlations between various features (i.e., reflectance, vegetation/color indices, agronomic trait parameters and textures) and crop yield. The red font represents that the correlation is significant at the 0.01 level.

[image: Bar chart showing correlation coefficients for various parameters. The categories, indicated by different colors, include Reflectance (green), Vegetation or Color Indices (orange), Agronomic Trait Parameters (blue), and Textures (magenta). Each category has bars representing specific traits, with varying heights indicating different levels of correlation.]
Figure 4 | The average values of the correlation coefficients between the yield and remote sensing features in the different growth stages.




3.2 Yield prediction using a single feature

An RF-based yield estimation model was constructed using a single feature, and the yield was predicted using the feature parameters in the different growth stages and during the entire growth period. Figure 5 shows the error (RRMSE) of the yield prediction result. There are great differences in the yield accuracy obtained using the features in the different growth stages and the different categories (reflectance, vegetation indices, textures, and agronomic trait parameters). Specifically, using the features of the entire growth stage leads to significantly smaller yield errors than using the features of a single growth stage. The errors of the yield prediction obtained using the features of the entire growth stage are 10–30.4%, with an average value of 18.7%. Furthermore, the errors of the yield prediction obtained using a single feature are 11.6–46.4%, with an average value of 30.1%.

[image: A heatmap displaying numerical values for multiple variables organized in rows and columns, with color gradations from blue to green, yellow, and orange, representing different value ranges. The left side lists variable names such as B, G, R, and NIR, while the top includes column headers like JS, BS, HS, and All.]
Figure 5 | The RRMSEs (%) of the yield predicted using the remote sensing features of the different growth stages.

In addition, the performances of the different categories of feature variables in the yield prediction were compared. Figure 6 presents a box plot of the error of the yield prediction of the feature variables of each category (reflectance, vegetation indices, textures, and agronomic trait parameters). The results show that similar to the correlation analysis results, the average error of the yield prediction obtained using the agronomic trait parameters is the smallest, followed by that obtained using the vegetation indices and reflectance, and the relative error of the yield prediction obtained using the texture features is the largest. Overall, the agronomic trait parameters perform the best in the yield prediction, and the error of the yield prediction obtained using the plant height parameter for the entire growth period is the smallest, with an RRMSE of 10%.

[image: Box plot comparing RRMSE percentages for four parameters: Reflectance (green), Vegetation/color indices (orange), Agronomic trait parameters (blue), and Texture (magenta). Reflectance, Vegetation, and Texture show similar variability, while Agronomic parameters have lower RRMSE.]
Figure 6 | Box plots of the errors of the predicted yield obtained using the different categories of feature parameters.




3.3 Yield prediction using combinations of multiple features

In Sections 3.1 and 3.2, it was found that the different categories of feature parameters have differences in predicting the crop yield. The agronomic trait parameters and vegetation/color indices perform better. Therefore, multiple features of agronomic trait parameters and vegetation/color indices were integrated to determine the best combination of yield prediction features. To compare the vegetation indices with different construction principles, they were subdivided into the commonly used vegetation indices of the near-infrared and visible light bands (ComVIs), the red-edge vegetation indices (REVIs), and the color indices (CIs). Table 4 shows the error statistics of the optimal yield prediction results for different feature combinations using all of the growth stage data.

Table 4 | The error statistics of the yield prediction results based on various feature combinations.


[image: Table displaying types of feature variables, number of variables, number of combinations, best combination, RRMSE percentage, and R squared values. Types include ComVIs, REVIs, CIs, AgTP, and combinations of these. RRMSE ranges from 8.34% to 15.79%, with R squared values between 0.78 and 0.95.]
The results show that the minimum RRMSE of the yield prediction, based on the vegetation indices, reduced from 11.6% for a single feature (GNDVI) (Figure 5) to 9.88% for multivariate combinations (NDVI_RE, MSR_RE, EVI, and SAVI) (Table 4). There are also differences in the yield prediction accuracy based on the combination of vegetation indices, and the estimation accuracy based on the ComVIs and REVIs is slightly better than that based on the CIs. In addition, combining indices with different construction principles (red-edge vegetation index combined with visible light vegetation index) can improve the estimation accuracy of the yield to some extent.

Among the three agronomic trait parameters, the combination of the CH and FVC has the best yield prediction (RRMSE = 8.93% and R2 =0.94), which is better than the yield prediction obtained using a single feature and is also better than the results based on the combinations of vegetation indices. Combining the vegetation indices and agronomic trait parameters further improved the yield prediction accuracy. The RRMSE of the optimal combination decreased from 10.47–12.65% to 8.34–8.85%, and the R2 increased from 0.88–0.91 to 0.94–0.95. A scatter plot of the yield prediction versus the measured results is shown in Figure 7. Therefore, adding agronomic trait parameters to the vegetation indices as feature parameters results in a considerable enhancement of yield prediction accuracy.

[image: Two scatter plots labeled A and B compare predicted versus measured values in kilograms per hectare (kg/ha). Both plots feature red data points and a dashed 1:1 line. Plot A shows a coefficient of determination \(R^2 = 0.96\), root mean square error (RMSE) of 233.34 kg/ha, and relative RMSE (RRMSE) of 7.04%. Plot B shows \(R^2 = 0.95\), RMSE of 258.27 kg/ha, and RRMSE of 8.34%.]
Figure 7 | Yield prediction results of the model using the feature combination of the canopy height (CH), fractional vegetation cover (FVC), normalized difference red-edge index (NDVI_RE), and enhanced vegetation index (EVI): (A) training set and (B) testing set.




3.4 Yield prediction across different growth stages

The crop growth process includes multiple growth stages, and it is quite important to determine how the features of the growth stages affect the yield prediction. This section mainly exhibits the yield prediction performances in the different growth stages for the use of a single feature and combinations of multiple features. According to the yield prediction results based on a single feature presented in Section 3.2, Figure 8 shows the average errors in the crop yield predicted using a single feature in the different growth stages. As can be seen from Figure 8, the features in the different growth stages make great differences in the yield prediction results. The RRMSEs based on a single feature range from 14.6% to 37.7% across different growth stages. Among the different categories of features, the yield errors predicted using the vegetation indices and agronomic trait parameters are relatively small, whereas errors are relatively large for other feature categories. Figure 9 displays the yield prediction results for the different growth stages using combinations of multiple features (vegetation/color indices and agronomic trait parameters, a total of 19 features). The RRMSEs based on combinations of multiple features range from 8.5% to 44.6% across different growth stages. The results also indicate that there are still considerable variations in yield prediction at different growth stages. In general, the prediction accuracies were notably greater in the stages of jointing, booting, heading, and early grain-filling compared to later stages of growth, with the heading stage displaying the highest accuracy in yield prediction (Figure 9).

[image: Bar chart comparing RRMSE percentages for five variables—Refls, VIs, CIs, Tex, and AgTP—across six growth stages: Jointing, Booting, Heading, Initial filling, Middle filling, Late filling, and Maturity. Tex shows the highest RRMSE for most stages.]
Figure 8 | The average RRMSEs of the crop yields predicted using a single feature in the different growth stages. Refls, Reflectance; VIs, vegetation indices; CIs, color indices; Tex, texture; AgTP, agronomic trait parameters.

[image: Heatmap, histogram, and box plot depicting RRMSE data. The heatmap on the left shows variability across growth stages with a gradient from blue to green. The histogram on the top right illustrates the frequency of RRMSE percentages, peaking around 10-15%. The bottom right box plot shows RRMSE percentages across seven growth stages, displaying median and variability with some outliers.]
Figure 9 | The RRMSEs (%) of the crop yields predicted using multiple features in the different growth stages. Left: The colors indicate the RRMSE values. The horizontal axis indicates the different growth stages. The vertical axis indicates the different feature combinations of multiple features, and the number of features increases gradually from top to bottom, with a total of 524,287 feature combinations. Upper right: Histogram of the RRMSE values; lower right: box charts of the RRMSE values for the different growth stages.





4 Discussion



4.1 Impact of crop growth stage on yield prediction

In Section 3.4, the study showcased yield predictions across different growth stages, revealing substantial variations in the accuracy of predictions. Notably, the accuracy of yield predictions was found to be superior during the mid-growth phase when compared to the late-growth phase, with the highest accuracy obtained during the heading stage. These findings of this research align with the outcomes of prior studies conducted on wheat (Tanabe et al., 2023) and rice (Wan et al., 2020; Wang et al., 2021). In the later stage of crop growth, the mean and variance of the yield prediction results are large, and the different feature combinations lead to significantly different yield predictions. During the mid-growth stage of crops, the Leaf Area Index (LAI) typically reaches its maximum value, and leaf reflectance in the near-infrared spectrum is at its strongest (Li et al., 2020). Vegetation indices are primarily constructed based on near-infrared radiation. In this stage, vegetation indices exhibit a strong correlation with biomass and yield. Nonetheless, as leaves senescence begin, the capacity of leaves to reflect near-infrared radiation gradually wanes, culminating in the decreased interpretability of vegetation indices for LAI or biomass. Consequently, this progression adversely impacts the accuracy of yield predictions, leading to the lowest accuracy during the maturity stage (Zhou et al., 2017; Tanabe et al., 2023). Similarly, Maimaitijiang et al. (2019) argued that unlike airborne light detection and ranging (LiDAR), photogrammetric point clouds have insufficient penetration ability when the canopy closure is quite high, which may lead to a decrease in the yield prediction accuracy in the later growth stages. Therefore, the features in the jointing, booting, heading, and early grain-filling stages should be preferentially selected for yield prediction, which contributes to a better performance.




4.2 Impact of cultivar on yield prediction accuracy

The robustness of the yield prediction models across different cultivars is critical for assessing their application potential (Maimaitijiang et al., 2020; Duan et al., 2021). To evaluate the suitability of the yield prediction models among different cultivars, the data for one cultivar were employed for training, while the data for the other cultivar were utilized for testing. Finally, the mean error of the yield prediction results was calculated. Based on the previous analysis, it can be seen that the yield prediction model with multi-feature fusion is more accurate than that with a single feature. Here, we used multi-feature combinations to analyze the robustness of the yield prediction models among different cultivars. By contrasting Tables 4 and 5, it was found that the error of the model, which employed the data for one cultivar to predict the yield of another cultivar, was greater than that of the model trained using the data for both cultivars. The RRMSE of the optimal combination of various features increased from 8.34–15.79% to 13.90–19.23%, and the R2 decreased from 0.88–0.95 to 0.81–0.86. The different cultivars of crops have differences in parameters such as phenology, plant height, leaf type, and pigment content. Therefore, the accuracy of the yield prediction models across different cultivars is low. Several recent studies have also reported a decrease in the quality of prediction models for different cultivars (e.g., Rischbeck et al., 2016; Duan et al., 2021). Rischbeck et al. (2016) concluded that models trained using diverse cultivars can significantly improve the yield prediction performance compared to models trained using a single cultivar, which was also concluded in this study. Furthermore, our results support this view.

Table 5 | Yield prediction results based on various feature combinations and considering cultivar differences.
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The results of our study indicate that the use of a combination of multi-temporal and multi-features can enhance the yield prediction performance. Therefore, it is quite essential to identify better feature combinations to improve the robustness of the yield prediction models across different cultivars. Table 5 presents the yield prediction error metrics for various feature combinations across different categories. The results illustrate that the prediction abilities of various feature combinations are different among different cultivars, and the yield prediction accuracy is improved when the agronomic trait parameters are incorporated into the vegetation indices and color indices. This also indicates that the CH, which reflects the vertical growth characteristics of a crop and is one of the important agronomic trait parameters, can better characterize the information about the crop structure and help strengthen the capability of the yield prediction model across cultivars. The combination of the CH, EVI, and NDI indices produced the highest prediction accuracy, with an RRMSE of 13.9% and an R2 of 0.86. For the yield prediction models that do not consider cultivars, the REVIs produce larger prediction errors across cultivars.




4.3 Importance of using agronomic trait parameters in yield prediction

Through analysis of the previously presented results, we found that when using a single feature for yield prediction, the agronomic trait parameters performed the best overall. Three agronomic trait parameters were used in this study: the CH, FVC, and VOL. Among them, the CH performed best in the yield prediction, followed by the FVC, and finally, the VOL had the weakest performance. The plant CH can reflect the vertical growth characteristics of the crop, can better reflect the information about the crop structure, and can help to improve the yield prediction ability. Since the canopy volume was calculated based on the CH and vegetation coverage, there was an autocorrelation problem, so the performance was not as good as expected.

Furthermore, the models for yield prediction, which incorporated agronomic trait parameters along with spectral features, also demonstrated enhanced accuracy. Existing studies on biomass and yield prediction of other crops (barley, soybean, and corn) have also found that data fusion of spectral and agronomic features can improve the performance (Geipel et al., 2014; Bendig et al., 2015; Maimaitijiang et al., 2019), and this study further supplements related conclusions. The fusion of spectral features and agronomic trait parameters has led to an enhancement in yield prediction accuracy, which can be explained from several perspectives. Firstly, spectral features effectively capture the crop growth status, while multi-temporal spectral features can reflect the entire crop growth and development process (Maimaitijiang et al., 2019; Maimaitijiang et al., 2020; Wan et al., 2020; Tanabe et al., 2023). Secondly, as mentioned earlier, agronomic trait parameters provide valuable insights into crop structural information, particularly vertical growth characteristics that are not easily obtained through spectral features alone. Thirdly, these three agronomic parameters were obtained using UAV-based RGB and MS sensors, which were independent data sources and were not calculated using spectral indices. There was no autocorrelation with the spectral indices, which overcame the inherent asymptotic saturation problem of the spectral features to a certain extent (Maimaitijiang et al., 2017; Maimaitijiang et al., 2020). Therefore, considering the easy availability and cost-effectiveness of obtaining UAV-based agronomic trait parameters, the fusion of spectral indices and agronomic trait parameters has great potential for improving crop yield predictions.




4.4 Comparison of yield predictions using RGB and MS images

The features used in this study were all calculated from images acquired by RGB and MS sensors. The VIs and FVC were derived from the MS data, the CIs and CH were derived from the RGB data, and the VOL was calculated based on the CH and FVC, i.e., from a combination of RGB and MS images. Our results confirm that multi-sensor data fusion improves the accuracies of the yield prediction models. While researchers hope to enhance the capacity of the yield prediction, they also expect to achieve this goal at a less cost (e.g., economic cost, time cost, and computational cost). That is, within the range of acceptable accuracy, fewer data and lower costs are more feasible for large-scale applications. Therefore, in this section, we compare the performances of the RGB and MS images in the yield prediction.

Table 6 shows the yield prediction results obtained using various features obtained from the RGB and MS images. The results indicate that the best yield prediction results were obtained using a combination of the VIs and FVC from the MS sensor, with RRMSE = 8.94% and R2 =0.94. The best yield prediction results from the CIs and CH from the RGB sensor had RRMSE = 10.29% and R2 =0.91. The yield prediction accuracy of the MS-based VIs and FVC was better than that of the RGB-based features. For the RGB-based features, the CH still outperformed the other CIs in terms of the yield prediction, while for the MS-based features, the combination of features involving red-edge indices had a better performance. Red-edge light has a better penetration effect than other visible light bands, is not easily saturated when the vegetation canopy density is high, and is more sensitive to chlorophyll (Dong et al., 2019; Sagan et al., 2021; Zeng et al., 2022).

Table 6 | Comparison of yield prediction using the RGB and MS images.
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These research results demonstrate that the features that fuse MS and RGB image data have the best yield prediction performance, followed by the MS-based features, and the RGB-based features have the weakest performance. A UAV equipped with an RGB camera is the most common configuration for agricultural RS applications, and this configuration has the advantages of simplicity, convenience, and low cost. Our results show that if the purpose of the research is to understand the crop yield status and the trend from a macroscopic perspective, the RGB-based yield prediction model can fully meet the requirements within the acceptable accuracy range. If the goal is to determine the crop yield more accurately, the use of features obtained from multi-sensor fusion is recommended for yield prediction.




4.5 Strengths and limitations of this study and future work

The significant timeliness and operability of UAVs overcome the disadvantages of the spatiotemporal resolution of satellite RS data in precision agricultural applications. UAV-based crop yield prediction has always been an active topic in the field of precision agricultural RS. In this study, RGB and MS images were acquired using a UAV, and crop yield prediction models were constructed based on the RF algorithm and a combination of spectral features and agronomic trait parameters. The results revealed that the model integrating agronomic trait parameters and spectral features enhance the accuracy of the crop yield prediction (Table 4; Figure 7), and the addition of agronomic trait parameters addressed the issue of reduced prediction capacity across different cultivars to some extent (Table 5). In addition, these agronomic trait parameters are easy to obtain at a low cost, so they represent a great potential solution for crop yield prediction at medium and small scales.

Certainly, there were still some limitations in this study. The experiment duration was limited to only one year, and the sample size was relatively small. Multi-year experiments and larger sample sizes would enable a more comprehensive and systematic testing of the crop yield prediction model and feature parameters. Much work remains to be done in the future regarding UAV-based crop yield prediction. First, experiments in different climatic regions need to be conducted to verify the robustness of the yield prediction models across different climatic regions. Experiments involving different crops and different cultivars of the same crop need to be conducted to examine the reliability and suitability of the yield prediction models across crops and cultivars. Second, our research results confirm that multi-data fusion can effectively upgrade the performance of the yield prediction model. The fusion of structural and spectral parameters of crops was adopted in this study. Exploring multi-data fusion, such as thermal infrared, LiDAR, or environmental data, remains a future research focus (Maimaitijiang et al., 2020; Li et al., 2022; Qader et al., 2023). In addition, in terms of machine learning algorithms, previous studies have used deep learning algorithms for yield prediction and have achieved good results (Khaki and Wang, 2019; Khaki et al., 2020; Sagan et al., 2021; Jeong et al., 2022). We also plan to explore the performances of deep learning algorithms in UAV-based yield prediction models in the future.





5 Conclusions

Agronomic trait parameters are closely related to crop growth, development, and yield formation. In this study, crop canopy spectral parameters (VIs) and agronomic trait parameters (plant height and coverage) obtained using low-cost UAVs were combined to predict the crop yield. The potential of agronomic trait parameters was also investigated. The main conclusions of this study are as follows:

	(1) The agronomic trait parameters and spectral features had strong relationships with the crop yield, while the texture features had relatively weak relationships with the crop yield. Compared with the yield prediction using spectral features, the addition of agronomic trait parameters effectively improved the yield prediction accuracy.

	(2) The yield prediction results based on the features in the different growth stages were quite different. In general, the prediction accuracies were noticeably greater in the jointing, booting, heading, and early grain-filling stages as compared to the later growth stages. Early yield predictions were most precise during the heading stage. Multiple growth stages provided a better yield prediction performance than a single stage.

	(3) The yield prediction across different cultivars was weaker than that for the same cultivar. However, the combination of crop trait parameters and spectral indices improved the yield prediction among cultivars to some extent.

	(4) The features based on MS and RGB fusion had the best performance in terms of the yield prediction, followed by the MS-based features, and the RGB-based features had the weakest performance. It should be noted that the accuracy of the RGB-based yield prediction models also fell within the acceptable accuracy range. Therefore, they meet the requirements for understanding the crop yield status and trends from a macroscopic perspective.
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Introduction

The accurate extraction of navigation paths is crucial for the automated navigation of agricultural robots. Navigation line extraction in complex environments such as Panax notoginseng shade house can be challenging due to factors including similar colors between the fork rows and soil, and the shadows cast by shade nets.





Methods

In this paper, we propose a new method for navigation line extraction based on deep learning and least squares (DL-LS) algorithms. We improve the YOLOv5s algorithm by introducing MobileNetv3 and ECANet. The trained model detects the seven-fork roots in the effective area between rows and uses the root point substitution method to determine the coordinates of the localization base points of the seven-fork root points. The seven-fork column lines on both sides of the plant monopoly are fitted using the least squares method.





Results

The experimental results indicate that Im-YOLOv5s achieves higher detection performance than other detection models. Through these improvements, Im-YOLOv5s achieves a mAP (mean Average Precision) of 94.9%. Compared to YOLOv5s, Im-YOLOv5s improves the average accuracy and frame rate by 1.9% and 27.7%, respectively, and the weight size is reduced by 47.9%. The results also reveal the ability of DL-LS to accurately extract seven-fork row lines, with a maximum deviation of the navigation baseline row direction of 1.64°, meeting the requirements of robot navigation line extraction.





Discussion

The results shows that compared to existing models, this model is more effective in detecting the seven-fork roots in images, and the computational complexity of the model is smaller. Our proposed method provides a basis for the intelligent mechanization of Panax notoginseng planting.





Keywords: computer vision, Improved YOLOv5s, agricultural robot, navigation line extraction, seven-fork root detection




1 Introduction

Panax notoginseng is a valuable Chinese herbal medicine with numerous medicinal properties, and its cultivation has increased in recent years. However, the production process still relies on outdated technology, and there is a need for efficient and intelligent production methods to improve productivity. One potential solution is the use of mechanized and intelligent agricultural equipment such as robots, which can replace manual labor and increase the scale of cultivation (Cheng et al., 2023). In the semi-structured planting environment of Panax notoginseng shade house, the real-time and accurate extraction of robot navigation paths is essential for autonomous robot navigation.

Automated navigation techniques used for unstructured environments, such as large fields and orchards, mainly include satellite positioning navigation, Light Detection and Ranging (LiDAR) navigation, and visual navigation (Zhang et al., 2020; Zhou and He, 2021). However, the strong shading effect of shade nets in the Panax notoginseng shade house environment renders commonly used navigation systems including Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS) ineffective due to poor signal quality (Gai et al., 2021). LiDAR-based navigation requires high computational power, which makes the extraction of navigation features difficult and results in high equipment costs (Bai et al., 2023). On the other hand, visual navigation acquires imagery through cameras and uses techniques such as image processing, deep learning, and navigation feature target detection to obtain navigation lines. This method is able to provide multiple levels of detection information, is low-cost, and has a high real-time performance and wide applicability (Wang T. et al., 2022). In highly occluded environments, vision-based navigation is the mainstream method used to obtain interline navigation information (Radcliffe et al., 2018). In particular, vision-based robot navigation techniques are widely used in research on fields, orchards, and forests. For such applications, the precise positioning of the crops in the image is the basis for the accurate extraction of navigation lines. The most commonly used methods adopted for the extraction of navigation lines in agricultural machinery typically include several processing steps for navigation line extraction, such as the 2G-R-B grayscale, Otsu binarization of images, vertical projection, and Hough transform (Chen et al., 2020; Chen et al., 2021). These methods are based on the large difference between the crop color and the background color, which facilitates the use of image processing methods to extract navigation lines (Zhang et al., 2017). Research on visual navigation for orchards and forests generally focuses on road or sky-based navigation line generation (Opiyo et al., 2021) and crop detection-based navigation line fitting (Su et al., 2022), depending on the type, shape, and height of the plants. Crop detection-based navigation methods require the accurate identification of crop trunks and are highly robust to complex road environments, and therefore demand high adaptability (Juman et al., 2016). Furthermore, although the above algorithm can identify the center line of crop rows, the identification conditions are relatively simple and are not able to account for different growing environments and external disturbances.

The ability of traditional image processing methods to distinguish between scenes with similar backgrounds and targets is reduced due to their susceptible to light, canopy cover, and weeds. However, deep learning methods can extract features beyond our understanding for object detection. In recent years, the development of artificial intelligence and computer hardware has facilitated the deployment of deep learning models on embedded devices (Aguiar et al., 2020). Moreover, computer vision-based detection methods are less costly compared to traditional detection approaches. As a result, deep learning-based methods have gained widespread attention for the extraction of navigation features. For example, Ma et al. (2021) used Faster R-CNN to construct a target detection model for the trunk recognition of the effective distance between the rows of an orchard. The model was able to extract navigation lines based on cubic spline interpolation and subsequently realized the generation of navigation lines between the rows of a kiwifruit orchard, providing a new reference for orchard navigation. Li et al. (2022) employed LiDAR point cloud data to identify obstacles such as rocks and soil blocks between rows, obtaining auxiliary navigation data to supplement the visual information and improve the recognition accuracy of inter-row navigation data in mid- and late-season maize. Zhou et al. (2022) used YOLOv3 to identify orchard trunks and fruit trees and adopted the least squares method to fit a reference line with growth on both sides, achieving a 90% accuracy in extracting the orchard center line. However, the authors did not integrate the detection results with path planning, and deployment on embedded hardware was not considered. Shanshan et al. (2023) combined an improved YOLOv5 network with an improved centerline extraction algorithm to detect straight and curved crop rows, yet the method is only applicable to the seedling stage of rice. The aforementioned deep learning-based navigation methods can solve the real-time and robustness problems of navigation in numerous scenarios, however they are not effective for the navigation problem in the Panax ginseng shade house environment. Thus, in order to fulfill the needs of embedded device applications and enhance navigation accuracy, the model size, accuracy, and frame rate of the model proposed by Wang et al. requires improvement. Comprehensive and in-depth research on navigation line extraction for Panax notoginseng shade house is limited. However, it is possible to adopt the navigation methods used in orchard and forest visual detection to obtain navigation feature points based on deep learning. To achieve this, it is necessary to ensure that the model is small enough, has anti-interference capabilities, and is highly accurate for deployment on embedded devices and to meet the operational requirements of robots.

Therefore, in this paper, based on the environment inside Panax pseudoginseng shade house, we address the bottlenecks associated with robot navigation line extraction algorithms between the rows of the shade house in the complex farmland environment, including poor effects and adaptability. In particular, we propose a method that combines deep learning and least squares (DL-LS) algorithms to obtain the inter-row navigation lines in Panax pseudoginseng shade house. In order to improve the detection accuracy and speed, we take the position of the root point of seven branches as the main navigation information, and propose a lightweight network model with improved YOLOv5s architecture to identify the roots to accurately identify navigation lines in the complex shade house environment. Figure 1 describes the navigation path planning of the robot working in the Panax notoginseng shade house, with a focus placed on extracting the middle red navigation line. The proposed method provides a new and effective navigation approach for Panax notoginseng shade house, which can act as a guide for the intelligent mechanized operation of this species. The main contributions are summarized as follows:

	(1) Based on YOLOv5’s target detection model, we weaken the backbone network by replacing the original backbone with MobileNetv3, and introduce the ECANetention mechanism module to pay more attention to the seven-branch root characteristics.

	(2) Verifying the effectiveness of the improved YOLOv5s by an ablation study and comparing it with other mainstream single-stage target detection models.

	(3) We use the improved YOLOv5s model to locate the small area of the seven-fork root within the region of interest (ROI) in the video and extract the coordinates of the midpoint of the lower bottom frame line rather than using the root point. We then combine the least squares method to fit the tree line on both sides and use the angle tangent formula to extract the traverse navigation line for the robot.

	(4) Establishing a new dataset of shade house environments, and the proposed method was tested and analyzed using a built data acquisition robot.



[image: Diagram and photograph illustrating path planning for a robot navigating a Panax notoginseng shade shed. The diagram shows assignment and traveling paths with a labeled robot and seven-fork poles. The photograph displays a red robot on a dirt path under a canopy, aligned with the diagram’s paths.]
Figure 1 | Navigation path planning map.

The remaining part of this paper is organized as follows. The second section discusses the navigation line extraction method, the improved YOLOv5s, and the evaluation metrics. The third section presents the robot platform and the experimental results, the fourth section shows the discussion, and the fifth section summarizes the conclusions.




2 Materials and methods



2.1 Navigation line generation process

Figure 2 depicts the extraction process of inter-row navigation lines within the Panax notoginseng shade house, which includes the following key steps: 1) The acquired images are preprocessed by cropping redundant parts and performing data expansion. 2) The Im-YOLOv5s network is trained using manually labeled seven-fork root feature maps. The weight files are generated and the seven-fork root detection model for the Panax notoginseng shade house is obtained. 3) The trained detection model is used for the inter-row seven-fork root detection. By determining the center coordinates of the bottom frame using the key coordinate information of the rectangular frame, we generate the localized base point coordinates of the detected trunk based on the root point substitution method. 4) The least squares method is used to fit the inter-monopoly seven-fork column lines on both sides based on the positioning base point coordinates. 5) The navigation lines are extracted based on the navigation base lines on both sides using the angle tangent formula.

[image: Flowchart detailing a process involving Panax notoginseng. It starts with obtaining images of the shade shed, followed by image preprocessing. The process diverges into training with the Im-YOLOv5 model to mark the seven-fork root and calculating reference points. Outputs include a center navigation line and identification of the root. An inset photo shows a fenced path in a garden area.]
Figure 2 | Flowchart of the proposed extraction method for Panax shade house navigation line.




2.2 Image acquisition and pre-processing

Traditional Panax notoginseng shade house are typically constructed using seven-fork structures with diameters ranging from φ5 to φ8 cm. They are generally planted based on a grid of 2.4 m × 2.0 m (length × width) dimensions, with a 1.8 m scaffold height and a shade net covering the top layer to provide uniform light transmission. The test pictures were taken on November 9, 2022, in a Panax notoginseng shade net plantation in Shilin Yi Autonomous County, Kunming City, Yunnan Province, China. The plantation included a seedling plot, a plot to be sown, and a shade house planting site just after harvest. For the image acquisition, a COMS camera was mounted horizontally on a robotic platform 1.4 m above the ground and placed in the row center. We collected a total of 412 images from three scenes under different angles and lighting conditions: the Panax notoginseng sowing field; the Panax notoginseng harvesting field; and the Panax notoginseng seedling field. Figure 3 presents images of the three different scenes. To minimize the interference of trunks in the non-row inspection area and to improve the training speed and accuracy of the detection model, we preprocessed the images by cropping the non-row redundant parts. After several cropping comparisons, we determined that uniformly converting the input image resolution to 2,000×1,000 allows us to identify interlinear information in the sample images of the different scenes.

[image: Panels A, B, and C show various stages of crop growth under shade net structures supported by wooden poles. Panel A displays a freshly prepared soil with rows of orange earth. Panel B shows young plants in neat rows, supported by poles, indicating early growth. Panel C depicts a more mature stage with taller plants under a net structure, with visible soil patterns.]
Figure 3 | Pretreated results among different rows scenes. (A) Land to be sown; (B) seedling land; (C) harvested land.




2.3 Training sample labeling

To improve the robustness of the model and suppress overfitting, we added random perturbations such as saturation, flipping, and luminance during the training process. This expanded the amount of available information and enhanced the richness of the experimental data. As a result, the 412 images were expanded to 936 images and divided into training and validation sets with a ratio of 8:2. Moreover, we used 180 images captured by an external computer camera as the test set to evaluate the performance of the model during the training process. The test set was not involved in the actual training. In each example image, the roots of the seven-forks were marked by rectangular boxes and LabelImg installed on Anaconda was used for the image labeling. To ensure labeling efficiency and accuracy, we only labeled two rows of hepta-roots within 12 m of the capture point. Each side of the tree rows contained 3–5 labeled hepta-roots. A total of 936 images were labeled, resulting in 7,288 labeled hepta-roots, which were saved as label files in XML format. This labeling process was based on a robot walking speed of 0.5–1 m/s.




2.4 Improved YOLOv5s network

The YOLOv5s model is a lightweight version of You Ony Look Once (YOLO) algorithm with fewer layers, allowing for a faster detection. Therefore, the aim of this paper is to apply the improved model to the detection of seven-fork roots based on the YOLOv5s model. The Im-YOLOv5s is improved by reducing its backbone network using MobileNetv3 and introducing the ECANet attention mechanism module to enhance the extraction of useful information and compress useless information. This enhances the recognition accuracy and robustness of the model. With these improvements, the model can efficiently, accurately, and quickly obtain the root information of the seven-fork in the shadow trellis while reducing the weight size, which is convenient for use in embedded devices.



2.4.1 YOLOv5s network

The YOLOv5 target detection model is known for its faster detection speed and smaller model size with guaranteed accuracy, making it an ideal choice for efficiently detecting the seven-fork roots in this study. The YOLOv5 model is divided into four variants: YOLOv5s; YOLOv5l; YOLOv5m; and YOLOv5x (Zhang et al., 2022). YOLOv5s is the smallest in terms of depth and feature map width. In order to ensure accuracy while contributing to real-time detection and reducing the model size, we made some improvements to the YOLOv5s target detection network. The network structure of YOLOv5 consists of four parts, namely, Input, Backbone, Neck, and Prediction. The size of the model directly affects its deployment on mobile devices and real-time detection. Compared to other algorithms, YOLOv5 has advantages in terms of speed and model size. Considering the characteristics of the dataset, the number of parameters, and the training time, we chose the lightest model, YOLOv5s. Figure 4 presents the network structure of YOLOv5s. The backbone is composed of two key components, C3 and CONV, and contains a large number of convolutional layers, which were mainly improved in this study via the components in the blue dashed box in Figure 4.

[image: Flowchart of a neural network architecture featuring components like Focus, CBL, CSP, SPP, and Concat. The Backbone and Neck sections are highlighted, processing an input image of a construction site to an output. The architecture involves steps like convolution (CONV), batch normalization (BN), Leaky Relu, and upsampling, leading to prediction outputs.]
Figure 4 | YOLOv5s network structure.




2.4.2 Improvement based on MobileNetv3

A large number of convolutional layers increases a model’s memory footprint. This is not conducive to deploying the model on embedded devices. Compared to heavyweight networks, lightweight networks have fewer parameters, require less computation, and have a shorter inference time. Lightweight networks are thus more suitable for scenarios with limited storage space and power consumption, such as embedded terminals, robots, and other small systems. MobileNetv3 (Howard et al., 2019) is the third generation of lightweight networks released by Google in 2019, designed for devices with limited memory and computation. MobileNetV3 is a successor of MobileNetV1 (Howard et al., 2017) with deep separable convolution and MobileNetV2 (Sandler et al., 2018). It adds neural network architecture search (NAS) and h-swish activation functions, and introduces the squeeze-and-excitation channel attention mechanism (SE) to improve both performance and speed. MobileNetV3 has two versions, Large and Small, for high and low resource scenarios, respectively. The overall structure of the versions is the same, with the difference being in the number of basic units bottleneck and internal parameters. Figure 5 presents the network structure of MobileNetv3. In this paper, we used the MobileNetv3-Small lightweight network instead of the YOLOv5s backbone network to extract the seven-fork root images with effective features based on the actual scenario. We compared the Im-YOLOv5 network with the introduction of MobileNetv3-Small to the original YOLOv5s network, revealing a 28% reduction in parameters from 7,022,326 to 5,024,100.

[image: Flowchart of a neural network architecture. Input is a 3 x 224 x 224 image. The first layer is Conv3_2 with batch normalization and h-swish activation. It is followed by 11 bottleneck layers, average pooling, and a fully connected layer with batch normalization and h-swish. The output is a 1 x 1000 vector.]
Figure 5 | MobileNetv3 network architecture.




2.4.3 Introducing the attention mechanism

The channel attention mechanism has the potential to greatly improve the performance of deep convolutional neural networks (CNNs). However, while SE downscaling can reduce model complexity, it destroys the direct correspondence between channels and their weights. To overcome the trade-off between performance and complexity, and to improve the accuracy and efficiency of the algorithm for seven-fork root detection in a three-seven shade house environment, we introduce an efficient channel attention (ECA) module (Xue et al., 2022) into the lower neck structure of MobileNetV3-Small. This module enables the network to pay different levels of attention to different channel features, giving more weight to important feature channels and less weight to irrelevant feature channels. This allows the algorithm to compress useless information and improve detection accuracy. Figure 6 depicts the ECANet structure.

[image: Illustration of a neural network architecture featuring a blue input tensor labeled with dimensions C, H, W. The tensor undergoes global average pooling (GAP) and is transformed by two layers with interconnecting lines. An operation labeled sigma follows before multiplying with an element-wise operation and outputs a yellow tensor labeled with dimensions C, H, W. Various colored circles represent activations.]
Figure 6 | ECANet channel attention.

In this study, we used MobileNetV3 as the backbone model and combined YOLOv5s with the ECANet and CBAM modules to perform seven-fork root detection experiments. Table 1 reports the experimental results. ECANet outperformed CBAM, indicating that ECANet can improve the performance of YOLOv5s at a lower cost. In addition, ECANet is more competitive than CBAM as it offers a higher accuracy and lower model complexity. Figure 7 presents the specific structure of the Im-YOLOv5 algorithm.

Table 1 | Comparison of the recognition performance of YOLOv5 with different modules.


[image: Comparison table of four methods showing precision (P%), recall (R%), model size (MB), frames per second (FPS), and mean average precision (mAP%). YOLOv5s scores 91.0% P, 91.4% R, 14.4 MB, 83.3 FPS, 93.1% mAP. MobileNetv3 has 92.0% P, 90.8% R, 10.5 MB, 73.5 FPS, 92.9% mAP. MobileNetv3+ECANet records 94.2% P, 92.0% R, 7.5 MB, 83.3 FPS, 94.9% mAP. MobileNetv3+CBAM obtains 93.9% P, 91.0% R, 10.5 MB, 64.1 FPS, 93.6% mAP.]
[image: Flowchart depicting a neural network architecture. It includes components like MobileNetv3, ECANet, and a PANet-based neck with SPP and C3 modules. Data flows through layers labeled as CONV, C3, Upsample, Bottleneck, and Concat, resulting in outputs of dimensions 80x80x45, 40x40x45, and 20x20x45. The structure visually represents the sequential processing stages and connections within the network.]
Figure 7 | Improved YOLOv5s architecture.




2.4.4 CIoU loss algorithm

The Complete Intersection over Union (CIoU) accounts for the overlapping area, height, and centroid distance of the target and prediction boxes, which addresses the shortcomings of the Generalized Intersection over Union (GIoU) loss function. This results in a more stable regression equation for the target box, with a faster convergence speed and higher convergence accuracy. Therefore, we used the CIOU_Loss function rather than the GIOU_Loss function for the bounding box loss in Im-YOLOv5. To calculate the loss of class probability and the target score, we employed the binary cross-entropy and logit loss functions (Gui et al., 2023), respectively, defined as follows:

[image: The formula shown is: \( \text{GIoU} = \text{IoU} - \frac{|C - (A \cup B)|}{|C|} \).] 

[image: Intersection over Union (IoU) formula: IoU equals the absolute value of the intersection of sets A and B divided by the absolute value of the union of sets A and B.] 

[image: The mathematical equation is Closeness to Intersection over Union (CIoU) defined as: CIoU equals one minus IoU plus \(\frac{p^2(A,B)}{c^2} + \alpha \cdot v\). The equation is labeled with a number three on the right.] 

[image: Equation showing alpha equals V divided by the quantity of one minus I omega U plus V, labeled as equation four.] 

[image: The formula shows \( v = \frac{4}{\pi^2} \left( \arctan \frac{\omega x}{h^2} - \arctan \frac{\omega}{h} \right)^2 \), labeled as equation (5).] 

where A is the prediction box; B is the ground truth box; C is the smallest box that completely encloses A and B; [image: Greek letter rho followed by parentheses containing the letters A and B, representing a mathematical expression.]  is the Euclidean distance between the center coordinates of boxes A and B; [image: A lowercase letter "c" in a serif font on a white background.]  is the diagonal distance of the smallest box that encloses boxes A and B; [image: Lowercase Greek letter alpha (α) in a simple, black font.]  is the weight function; [image: Lowercase Greek letter nu (ν) displayed in black on a white background.]  is the function that measures the consistency of the aspect ratio; [image: Text with the phrase "wet" styled in a cursive font.]  and [image: Mathematical expression displaying "h" raised to the power of "x squared".]  are the width and height of the ground truth box, respectively; and w and h are the width and height of the prediction box, respectively.




2.4.5 Model evaluation

In this paper, we employed five metrics, namely precision (P), recall (R), mean average precision (mAP), model size, and detection speed, to evaluate the seven-fork root detection model. A true positive case indicates that the intersection over union (IoU) is greater than or equal to 0.5; a false positive case indicates that the IoU is less than 0.5; and a false negative case indicates that the IoU is equal to 0 (Li et al., 2021). P, R, F, AP, and mAP are calculated using the equations in equations (6)–(10) in the following:

[image: Formula for precision in percentage: \( P = \frac{TP}{TP + FP} \times 100\% \), where \( TP \) represents true positives and \( FP \) represents false positives. Equation labeled as (6).] 

[image: Equation for recall (R) is shown as R equals true positives (TP) divided by the sum of true positives (TP) and false negatives (FN), multiplied by one hundred percent. Labeled as equation seven.] 

[image: Formula for F-score: \( F = \frac{2 \times P \times R}{P + R} \), where P and R are precision and recall, respectively. Equation labeled as number eight.] 

[image: Mathematical equation reads: Average Precision (AP) equals the integral from zero to one of P with respect to the variable R. It is labeled as equation nine.] 

[image: Mean Average Precision (mAP) formula: mAP equals one over M multiplied by the summation from k equals one to M of A multiplied by P of k. Equation number ten.] 

where TP, FP, and FN are the number of true positives, false positives, and false negatives respectively; and M is the number of detection categories.

Furthermore, we employed frames per second (FPS) to evaluate the detection speed of different models. A higher value of FPS indicates a better real-time performance of the model. We also used giga floating point operations per Second (GFLOPs) as an evaluation indicator to measure the computational power of the model, with higher values denoting a higher demand on the machine’s computing power.





2.5 Model training

The models were trained on a desktop workstation with the following specifications: 64 GB of memory; an Intel Xeon® W-214 CPU; and an NVIDIA RTX 2080Ti GPU with 11 GB of video memory. The workstation operated on Windows 11 (64-bit), and the training was conducted using Python 3.9 with the deep learning platform CUDA 11.6 and the Pytorch framework.

The quality of the training model is significantly influenced by the difference in training parameters, and hyperparameters such as the learning rate, batch size, and number of iterations must be set manually during the training process. Among them, the learning rate is crucial in deep learning optimizers as it determines the speed at which weights are updated. If the learning rate is too high, the training results will exceed the optimal value, while if it is too low, the model will converge too slowly. The batch size depends on the size of the computer memory, with larger batches providing better model training results. The number of iterations determines the number of training rounds, with more iterations taking longer to complete. The iteration typically ends when the loss value has fully converged. After several parameter adjustments, the parameters in the model were set according to the values provided in Table 2.

Table 2 | Target detection hyperparameter settings.


[image: Table comparing parameters of four YOLO models: Im-YOLOv5, YOLOv5, YOLOv3, and YOLOv7. Backbone networks include MobileNetv3, Backbone, and Darknet53. Training sizes vary, with YOLOv3 at 416 x 416, others at 640 x 640. All models have a batch size of eight, one category, initial learning rate of 0.001, and 300 iterations.]



2.6 Root point substitution method

The selection and extraction of navigation features are crucial for inter-row navigation in shade house. In this paper, we defined the root point as the midpoint of the dividing line between the seven-fork point and the ground. The root point of the fork is used as the base point for row positioning in the construction of Panax notoginseng shade house. Therefore, the root point of the fork is considered the optimal inter-row navigation feature. However, since the target color of the Panax notoginseng shade house environment is similar to the background color, it is both challenging and time-consuming to filter out other interferences using image processing methods. To address this issue, rather than using navigation base points, we proposed a heptagram-based generation method. We trained a deep learning-based seven-fork root model and used the trained detection model to generate the minimum rectangular detection frame outside the bottom of the seven-fork. The midpoint of the bottom edge of the detection frame was observed to correspond well with its root point.




2.7 Navigation line extraction method

Once the root points of the bottom of the seven-fork were obtained, we fitted the crop rows using the seven-fork root points of the Panax notoginseng shade house. We employed the least squares method to fit the coordinates of these root points using equations (11)–(13):

[image: Equations for the means of variables X and Y are shown. X-bar equals the sum of x-sub-i from i equals one to n divided by n. Y-bar equals the sum of y-sub-i from i equals one to n divided by n. Labeled equation 11.] 

[image: Mathematical equation showing the formula for the slope \( m \) of a regression line: \( m = \frac{\sum_{i=1}^{n}(x_i - X) \times (y_i - Y)}{\sum_{i=1}^{n}(x_i - X)^2} \), labeled as equation (12).] 

[image: Equation showing the calculation of \( b \), where \( b \) equals the average of \( Y \) minus \( m \) times the average of \( X \). Equation number 13.] 

where [image: The image shows the symbol for the mean, represented by an uppercase letter "X" with a horizontal line over it.]  denotes the average of the horizontal coordinate of all root points; [image: A capital letter "Y" with a horizontal line above it, resembling a mathematical or statistical notation, typically indicating a mean or average value.]  is the average vertical coordinate; [image: The image shows a mathematical expression with the variable "x" subscripted by the letter "i".]  and [image: No visual details or context can be determined from this image due to its small size.]  are the horizontal and vertical coordinates of each root point; respectively; [image: Lowercase letter "i" with an acute accent mark above it.]  is the serial number; m is the slope; and b is the intercept. Thus, the fitted line can be expressed as [image: Equation of a line in slope-intercept form, y equals m times x plus b, where m is the slope and b is the y-intercept.] .

In order to obtain two lines from the detected coordinates of the root points, we separated the points using a positive threshold and a reference point. We set a positive threshold [image: Mathematical notation showing "x sub th".]  and reference point [image: Mathematical notation displaying \( s_r(x_r, y_r) \).]  [image: The image shows a mathematical expression: \( i \leq n \).] , representing the sequence number, where n is the total number of points. Since the seven rows of pitchforks extend in the positive y-direction, we only used the x-values for our calculations. The two groups of points are denoted as L1 and L2. If for example, the absolute value of [image: Mathematical equation showing \( x_{r1} = x_r - x_1 \) enclosed in parentheses.]  is less than or equal to [image: Mathematical expression showing "x" with the subscript "th".] , the points [image: Lowercase letter "s" with a subscript "1".]  are divided into L1 and vice versa for L2. Figure 8 presents the algorithm flow. After classifying all the detected points, we calculated the values of m and b, and fitted the expression parameters for the seven-forked rows on both sides as [image: Equation representing a linear function: y sub L 1 equals m sub 1 times x plus b sub 1.]  and [image: Equation showing a linear relationship: \( y_{L2} = m_2 \times x + b_2 \).] .

[image: Flowchart for a decision-making process starts with selecting a reference. It sets \( i = 1 \) and calculates \( x_{ri} = x_r - x_i \). Checks if \( |x_{ri}| \leq x_{th} \). If true, assigns \( x_i \) to \( L_1 \); if false, to \( L_2 \). Increments \( i \) and checks if \( i \geq n \). If true, the process ends; if not, it repeats.]
Figure 8 | Algorithm flowchart of classification of points into different lines.

Once the expressions of the line parameters on both sides were determined, we used the angular bisector of the left and right seven-forked row lines as the robot navigation baseline. The principle of tangency between two lines was then adopted to obtain the robot navigation parameters via equation (14). More specifically, we calculated the robot navigation line slope m based on the relationship that the tangent angle between m and m1 is equal to the tangent angle between m and m2:

[image: Equation depicting a mathematical expression: \((m - m_1) / (1 + m \ast m_1) = (m_2 - m) / (1 + m \ast m_2)\), labeled as equation 14.] 

where m is the slope of the robot’s navigation center line; m1 is the slope of the left seven-branch line; and m2 is the slope of the right seven-branch line.





3 Experiments and results

The focus of this study is the acquisition of navigation information in the Panax notoginseng shade. The obtained navigation information can be used in later path planning stages of the robot to facilitate autonomous driving. It can also be used as a basis for adjusting the driving state of the robot.



3.1 Experimental platform

Due to the complex environment in the Panax notoginseng shade house, its small plots, large slopes and high soil moisture, a triangular crawler chassis with an upland gap was used as the walking platform in this experiment. As shown in Figure 9, the crawler chassis has a running speed of 0–5 km/h and a maximum gradient of 60°. Considering the sowing and harvesting working speed, the walking speed was set to 1 m/s. Table 3 reports the specific parameters of the crawler chassis used in the experimental platform.

[image: Outdoor scene featuring a red robotic vehicle with tank treads, equipped with electronic equipment. A laptop rests on top, connected to circuit boards by wires. A tall metal pole rises from the vehicle's center, supporting a camera at its top. Note panels and labels are visible on the vehicle's front and sides. The background shows a tiled pavement with yellow lines.]
Figure 9 | Robot experiment platform. 1. Camera; 2. laptop computer; 3. motor driver; 4. STM 32 controller; 5. motor; 6. control box; 7 gasoline engine; 8, track car.

Table 3 | Specific parameters of crawler chassis.


[image: Table detailing performance parameters of a machine. It includes dimensions of nine hundred thirty by nine hundred by six hundred millimeters, platform weight of one hundred forty kilograms, running speed of zero to five kilometers per hour, and motor rated power of six hundred watts. The motor rated voltage is DC twelve volts, with motor speed of forty to fifty-five revolutions per minute. Rated current is fifty amperes, operating with an oil-electric hybrid method. Track width is fifteen centimeters, material is rubber with a built-in tension layer. Maximum grade is sixty degrees, load is one hundred fifty kilograms. Generator power is fifteen hundred watts, with a gasoline engine and equipment power of seven point five horsepower.]
We developed a LABVIEW program to control the robot platform using the ARM embedded software architecture of the STM32. This facilitated data monitoring. improved development efficiency, and reduced costs. Figure 10 depicts the experimental platform and control system. The sensor module consisted of an encoder, an IMU, and a camera. A PC was used as the master computer to collect information from the camera and inertial navigation IMU sensors. The camera obtained information on the environment between the rows of the Panax notoginseng shade house, while the inertial navigation IMU collected data on the robot’s traverse, pitch, and yaw direction. The encoder measured the robot’s real-time velocity information and fed it to the robot’s underlying controller, the STM32F407. At the heart of the embedded system board was a high-performance 32-bit ARM Cortex-M4 processor with built-in high-speed memory and a rich set of I/O ports used to connect various external devices. The controller connected the motor driver, the encoder, and the host computer. The STM32 controlled the motor rotation through the motor driver based on the real-time speed information provided by the encoder, using a classical PID algorithm to achieve precise robot motion. The motor driver controlled the speed of the brushed DC motor using pulse width modulation (PWM). For the control process, the PC host computer processed the images captured by the camera in real-time and communicated with the STM32F407ZGT6 control module of the motion controller. The microcontroller sent PWM signals to the motor drive module, and the signals were amplified to drive the motor. At the same time, the inverter performed real-time AD sampling to provide over-current and over-voltage protection. The host computer communicated with the motion control module via the RS232 serial port, and the feedback information from the two motors was transmitted to the control module via the serial port to achieve closed-loop control.

[image: Diagram illustrating the components of a robotic system. It includes an IMU, a webcam, a PC, STM32 board, and an encoder. The PC connects to a red robotic platform. Arrows indicate the data flow to a motor driver and motor. Software section shows LabVIEW and KEIL applications for code generation and component drivers.]
Figure 10 | Experimental platform and control system.




3.2 Detection results of seven-fork

We compared our improved target detection model with three of the most advanced, fastest detecting, and widely used models. mAP@0.5 was employed to plot the line graphs. Figure 11 reveals that the YOLOv5 series model had an advantage in detecting the seven-forked roots. Although both YOLOv7 (Wang CY. et al., 2022) and YOLOv3 (Joseph and Ali, 2018) approached the YOLOv5 series models in terms of detection accuracy after 200 training rounds, their convergence rate was slow, and early training fluctuations were high. The Im-YOLOv5 model exhibited a significantly faster convergence rate and higher mAP@0.5 compared to the other three models.

[image: Line graph comparing mAP@0.5 performance over 300 epochs for different YOLO versions. YOLOv5 (black), Im-YOLOv5 (red), and YOLOv3 (blue) show similar high performance, while YOLOv7 (green) has a slower, more fluctuating improvement.]
Figure 11 | Accuracy variation of four object detectors.



3.2.1 Comprision results with mainstream object detection models

To evaluate the performance of the detection models proposed in this paper, we trained the Im-YOLOv5, YOLOv3, YOLOv5s, and YOLOv7 algorithms under the same conditions and evaluated their performance on a test set. Table 4 reports the performance comparison of the four detection models, revealing that the Im-YOLOv5 model exhibited the highest P, R, F, and mAP values and the lowest model weights and GFLOPs. Although the improved Im-YOLOv5 model had a slower FPS than YOLOv7 and YOLOv3, it demonstrated a better performance in identifying seven-forked roots with 94.9% detection accuracy considering all indicators. The Im-YOLOv5 model had the optimal detection performance, a with faster detection speed for a single image while meeting the real-time requirements. The results demonstrate that it can effectively meet the needs of inter-row robots for Panax notoginseng cultivation.

Table 4 | Performance comparison of different object detection algorithms.


[image: Comparison table of four models: Im-YOLOv5s, YOLOv5s, YOLOv3, and YOLOv7. It includes precision (P), recall (R), F-score (F), frames per second (FPS), mean average precision (mAP), model size in megabytes (Modelsize), and giga floating-point operations per second (GFLOPs). Im-YOLOv5s has the highest precision (94.2%) and mAP (94.9%), while YOLOv3 has the highest FPS (144.9). YOLOv5s has the largest model size (14.4 MB) and highest GFLOPs (15.8).]



3.2.2 Comparison of detection performance of improved model algorithm

The improved Im-YOLOv5 model reduces the number of parameters by replacing the MobileNetv3 network with the ECA attention mechanism module. This allows the model to focus more on the target for feature extraction and less on the roots of the seven-forks that are further away and beyond the sides. To evaluate the detection performance of the Im-YOLOv5s model in this study, we verified the trained model using 180 test set images and 3 test videos for detection accuracy and speed. The Im-YOLOv5s detection model achieved a 47.9% reduction in weight size, from 14.4 MB to 7.5 MB (Table 5). In addition, the frame rate and average accuracy increased by 27.7% and 1.9%, respectively. These improvements in detection performance reduced model inference time and increased model accuracy.

Table 5 | Indexes before and after model improvement.


[image: Comparison table displaying performance metrics for YOLOv5s and Im-YOLOv5s models. YOLOv5s has 91% precision, 91.4% recall, 83.3 FPS, 93.1% mAP, and a size of 14.4 MB. Im-YOLOv5s shows 94.2% precision, 92% recall, 106.4 FPS, 94.9% mAP, and a size of 7.5 MB.]
Figure 12 presents the model training and validation loss rate curves. We evaluated the recognition performance of both the YOLOv5s and Im-YOLOv5s models for the primary navigation features in terms of both model training and recognition results. The loss rate tended to stabilize as the number of iterations increased and eventually converged to a fixed value, indicating that the model achieved optimal results. The improved Im-YOLOv5s model demonstrated a better fit and generalization ability for the seven-fork root dataset while reducing the initial loss value.

[image: Two line graphs labeled A and B depict training and validation loss over 300 training times. Both graphs show a decrease in loss, stabilizing around 0.04. The blue line represents training loss and the green line represents validation loss.]
Figure 12 | Loss iteration graph. (A) YOLOv5s loss iteration; (B) Im-YOLOv5s loss iteration.




3.2.3 Experimental results in different scenarios

We utilized the Im-YOLOv5s model for target detection recognition in the test set and compared the experimental results of three scenes of the sowing, seedling, and harvested fields with high and low light intensity conditions. The results reveal a higher recognition accuracy for the sowing and seedling fields with a relatively clean background, reaching 95.7% and 95.2%, respectively (Table 6). However, the recognition accuracy of the cluttered unharvested Panax field was only 89.1%. Light intensity exerted a minor impact on the recognition results, with better recognition accuracy observed in both high and low light intensities.

Table 6 | Experimental results under different backgrounds and light intensities.


[image: Table comparing agricultural scenes with performance metrics. Scenes include "Land to be sown," "Seedling land," "Harvested land," "High light intensities," and "Low light intensities." Metrics cover number of photos (ranging from 48 to 77), precision (P), recall (R), F-score (F), and mean average precision (mAP), with percentages ranging from 85.1% to 95.7%.]
Figure 13 depicts the recognition results under different scenarios. Our proposed model can accurately identify the seven-fork roots under various scenarios and obtain the corresponding navigation feature information. Figure 14 presents the results of the dynamic detection of the plot to be sown. Detecting moving targets is more challenging than the detection of stationary targets. In the video-based real-time detection, our model accurately detected the seven-forked roots between the two rows.

[image: Three images labeled A, B, and C show agricultural fields under netted shading. Each image displays rows of tree trunks with red rectangles and trunk scores indicating detection or analysis. The ground is covered with different materials: bare soil, soil with vegetation, and mulch, respectively.]
Figure 13 | Recognition results in different scenes. (A) Land to be sown; (B) seedling land; (C) harvested land.

[image: Rows of tree trunks under a shade net in an agricultural setting. Red boxes with labels like "Trunk 0.74" indicate measurements or detection confidence levels. The ground is reddish-brown, and the perspective captures the rows receding into the distance.]
Figure 14 | Video of actual environment.





3.3 Navigation reference point acquisition experiment

After identifying and framing the root of the seven-fork using deep learning, the coordinate values of the corner points of the rectangular bounding box were extracted. This included the coordinates of the upper left [image: Mathematical notation representing a point \( P_l(x_l, y_l) \), where \( x_l \) and \( y_l \) denote the coordinates of the point.]  and lower right [image: Mathematical expression showing \( P_r(x_r, y_r) \).]  corner. The coordinates of the lower edge center were calculated [image: Mathematical expression: \( P_i \left( \frac{x_j - x_i}{2} + x_i, y_i \right) \).] . We replaced the coordinates of the seven-fork root point with the center of the bottom edge, as shown in Figure 15, where the green and red points denote the seven-forks set as base points and the actual seven-fork root points marked by hand, respectively. To evaluate the accuracy of the reference point extraction, the manually marked reference points were selected as the evaluation criteria and separately fitted to a linear line. We defined the deviation of the line direction as the angle between the fitted line of the reference points extracted by the algorithm in this study and the fitted line of the manually marked points. The line extraction was considered correct if the absolute value of the deviation between the two was less than 4° (Zhai et al., 2022; Lai et al., 2023). After several experimental calibrations, the maximum and minimum deviations of the line direction for the three scenes were 1.64° and 0.22°, respectively. The results reveal that the proposed deep learning-based root point substitution method can accurately obtain the navigation reference lines.

[image: Three panels show images of agricultural setups and corresponding graphs. Panel A displays a shaded nursery with red and green markers indicating root points and deviations, with a graph showing deviations with angles of 1.64 and 0.22 degrees. Panel B shows a nursery with plants in rows under netting; the graph below shows deviations of 0.66 and 1.12 degrees. Panel C illustrates a similar environment with a graph indicating deviations of 1.4 and 0.44 degrees. Graphs depict longitudinal and lateral deviations with measurements for root alignment accuracy.]
Figure 15 | Seven branch positioning base points and actual root points in different scenes. (A) Land to be sown; (B) seedling land; (C) harvested land.




3.4 Centerline extraction results

We experimentally verified the practical feasibility of the proposed inter-row navigation information acquisition method by selecting several pictures from the dataset collected by the external camera connected to the PC for testing. The images contained three scenes: sowing field, seedling field and harvesting field. The effect of the navigation line extraction for different scenes is shown in Figure 16, where the red line represents the navigation center line and the blue lines represent the left and right navigation reference lines.

[image: Figure A shows a shaded agricultural area with trunks marked by red and blue lines, indicating distances. Figure B illustrates a similar setup in a sunny environment, depicting rows of crops with marked trunks. Figure C features an uncovered plot with visible poles and marked pathways.]
Figure 16 | Results of navigation line extraction in different scenarios. (A) Land to be sown; (B) seedling land; (C) harvested land.





4 Discussion

The success of target detection algorithms heavily depends on the extraction of navigation lines using deep learning methods. In this paper, we compared the proposed Im-YOLOv5s algorithm with existing detection methods for similar targets. Table 7 reports the results. Aguiar et al. (2020) achieved an average accuracy of 52.98% and approximately 49 frames per second using SSD MobileNet-V2 on the USB accelerator for the detection of vineyard trunks using low-cost embedded devices. Ma et al. (2021) adopted a faster R-CNN target detection model to achieve 89.40% detection accuracy for kiwifruit tree trunk roots. Zhou et al. (2022) used a YOLO v3 model to detect orchard trunks with a detection accuracy of 92.11%. In this paper, we demonstrate that the proposed Im-YOLOv5s model strikes a balance between detection speed, model size, and accuracy. The improved model provides better detection performance, with a mAP value of 94.90%, approximately 106.4 frames per second, and a model size of 7.5 MB. Compared to current studies, the improved YOLOv5s model presents great progress in model size and detection time.

Table 7 | Comparison of proposed method with existing methods.


[image: Table comparing object detection methods. Sources include Aguiar et al., Ma et al., Zhou et al., and a proposed method. Methods: SSD, Faster R-CNN, YOLO v3, Im-YOLOv5s. Objects: Vineyard, Kiwi trunk, Orchard trunk, Seven-fork. mAP percentages: 52.98, 89.40, 92.11, 94.90 respectively.]
Although the proposed method in this study can accurately extract the centerline of seven-fork rows in Panax notoginseng shade house, we came across several limitations. While the improved deep learning model enhances detection accuracy and speed, the field of view range and camera jitter can affect the detection accuracy rate of the seven-fork roots, which, in turn, affects the fitting error of the navigation line. For the complex and variable inter-row environment, relying solely on visual sensing to obtain navigation feature information may pose significant risks to the actual safety of robot operation. In future work, we plan to transfer the deep learning model and seven-fork row centerline extraction algorithm to a mobile robot platform and combine them with multi-sensor fusion technology to achieve automatic navigation in the semi-structured environment of Panax notoginseng shade trellis.




5 Conclusions

In this paper, we proposed a navigation line extraction method based on Im-YOLOv5s. By replacing the original backbone with a lightweight network architecture, MobileNetv3, and introducing the ECANet attention mechanism module, we improved the model’s recognition accuracy and robustness while reducing its weight size by 47.9%, increasing the frame rate by 27.7%, and improving the average accuracy by 1.9%. The algorithm efficiently and accurately extracted information on the seven-fork roots in the shade trellis with an average detection accuracy of 94.9%, and was resilient to light and shadow disturbances. We located the coordinates of the root point according to the bottom edge midpoint of the outer rectangular box of the detected seven-fork roots and used the least squares method to fit the navigation reference line on both sides. The maximum deviation of the row direction was 1.64°, which met the criteria for navigation line extraction. We then used the detected bilateral column line as the navigation reference line and extracted the middle navigation line using the angle tangent formula to determine the robot’s forward direction. The proposed method provides a technical reference for inter-row path planning.
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The typical occlusion of cherry tomatoes in the natural environment is one of the most critical factors affecting the accurate picking of cherry tomato picking robots. To recognize occluded cherry tomatoes accurately and efficiently using deep convolutional neural networks, a new occluded cherry tomato recognition model DSP-YOLOv7-CA is proposed. Firstly, images of cherry tomatoes with different degrees of occlusion are acquired, four occlusion areas and four occlusion methods are defined, and a cherry tomato dataset (TOSL) is constructed. Then, based on YOLOv7, the convolution module of the original residual edges was replaced with null residual edges, depth-separable convolutional layers were added, and jump connections were added to reuse feature information. Then, a depth-separable convolutional layer is added to the SPPF module with fewer parameters to replace the original SPPCSPC module to solve the problem of loss of small target information by different pooled residual layers. Finally, a coordinate attention mechanism (CA) layer is introduced at the critical position of the enhanced feature extraction network to strengthen the attention to the occluded cherry tomato. The experimental results show that the DSP-YOLOv7-CA model outperforms other target detection models, with an average detection accuracy (mAP) of 98.86%, and the number of model parameters is reduced from 37.62MB to 33.71MB, which is better on the actual detection of cherry tomatoes with less than 95% occlusion. Relatively average results were obtained on detecting cherry tomatoes with a shade level higher than 95%, but such cherry tomatoes were not targeted for picking. The DSP-YOLOv7-CA model can accurately recognize the occluded cherry tomatoes in the natural environment, providing an effective solution for accurately picking cherry tomato picking robots.




Keywords: cherry tomato picking robot, object detection, depth separable convolution, residual module, coordinate attention mechanism, DSP-YOLOv7-CA




1 Introduction

Cherry tomatoes, also known as small tomatoes, have high nutritional value. The national cultivation area is approximately 1 million hectares, with an annual production of about 61 million tons, accounting for 35% of the global tomato production. The total output value of cherry tomatoes has reached 10 billion yuan, accounting for 12% of China’s total vegetable output. The average per capita consumption is 21 kilograms per year FAO (2018); Zhang (2014); Feng et al. (2022). However, the manual harvesting cost of cherry tomatoes is about 10,500 yuan per hectare, accounting for over 30% of the total production cost. Timely harvesting of cherry tomatoes is necessary to ensure food quality Zheng et al. (2021). Agricultural harvesting robots provide a new approach to the mechanized harvesting of cherry tomatoes. Unlike other fruits, ripe cherry tomatoes have light red and smooth skin. They grow in complex natural environments, mainly in clusters with many overlapping fruits and obstructions from leaves and branches. The obstruction of cherry tomatoes is one of the most significant factors affecting accurate harvesting by harvesting robots.

More and more studies have utilized deep learning methods to solve the cherry tomato detection problem. Yan et al. (2021) and Feng et al. (2022); Feng et al. (2021) segmented tomatoes for detection based on MsakR-CNN model. Yuan et al. (2020) proposed a robust SSD-based cherry tomato detection algorithm for greenhouse scenarios with an average accuracy of 98.85% but with average detection speed. Wang et al. (2022) proposed an algorithm for tomato ripening detection in complex scenarios based on Faster R-CNN, with an average accuracy of 96.14%. Lv et al. (2023) proposed a cascade deep learning-based tomato flower and fruit detection method with an average recognition rate of 92.30%.The YOLO model has become a research hotspot due to its advantages of fast detection speed. Zhang et al. (2021) based on the YOLOv4 model, the connectivity relationship between the tomato bunches and the corresponding fruit stems to achieve the fast recognition of tomato fruit stems. Zheng et al. (2022) based on the YOLOv4 model using a depth separable convolutional module to improve the backbone network and SPP module, the detection accuracy is 94.44%, but the number of parameters is large. Mbouembe et al. (2023) based on the YOLOv4-tiny model, it utilizes a smaller SPP module to increase the sensory field with an accuracy of 96.35%. He et al. (2022) proposed a tomato detection method based on improved YOLOv5 with an average accuracy of 96.87%. Yang et al. (2022); Zhang et al. (2023b) realized tomato detection by integrating the CBAM attention module into the backbone network part of the YOLO model, which gives more attention to tomato features, but the detection effect is average. Liu et al. (2023) proposed a tomato detection model with a deep convolutional structure to improve the target recognition accuracy while achieving sparsity of model parameters.

In occluded fruit detection, the optimized model can improve the detection accuracy due to the lack of feature information Saedi and Khosravi (2020). Sa et al. (2016) utilized an improved Faster R-CNN model to recognize occluded fruits and obtained a high F1 score; however, the model structure was too complex, and the detection time was long. Yu et al. (2019) successfully detected occluded strawberries with a detection accuracy of 89.5% by migrating the Mask R-CNN model for training. Xu (2013) utilized a Support Vector Machine (SVM) to detect strawberries with 87% accuracy. However, this method can only recognize slightly occluded strawberries. Wang and Long (2023) implemented the detection of occluded citrus using the improved YOLOv3, which could not accurately recognize citrus with a large occluded area. Gai et al. (2023) achieved target detection of occluded cherries based on the YOLOv5s model by adding an RFB module to enhance the shallow feature information. Zhang et al. (2022) effectively improved the detection of occluded small targets by introducing a decoupled head structure on YOLOX. The feature extraction ability of occluded targets can be enhanced by integrating the attention mechanism module in the model Chen et al. (2023). Su et al. (2022) established a tomato ripeness recognition model combining depth-separable convolution and squeeze-excitation attention mechanism module, with a detection accuracy of 97.5%. Khan et al. (2023) designed a convolutional converter-based method for occluded tomato image detection, which performs well in terms of µIoU, µDC, mAP and AUC. Khan et al. (2023) designed a CSPNet structure with hybrid attention based on the YOLOv4-Tiny model fusing CBAM branches in the large residuals of CSPDarknet, which is effective for occluded tomato detection.

Although some studies have been conducted on occluded cherry tomato detection, the current model detection accuracy and efficiency still need to be improved to meet the requirements of cherry tomato detection under picking conditions. It is found that enhancing the SPP network and backbone network to detect occluded small targets based on the YOLO detection model is an effective means, and the use of the attention mechanism module and lightweight convolutional kernel can focus on the critical information, obtaining a better characterization ability and model lightweight. Therefore, this study takes cherry tomato picking robot detection in the natural environment as the theme and occluded cherry tomatoes as the primary research object to improve the detection accuracy of occluded cherry tomatoes in the natural environment. An efficient and stable DSP-YOLOv7-CA detection model is constructed through multi-group controlled experiments, and the DSP-YOLOv7-CA model proposed in this study makes the following five main contributions to existing models:

	1. Cherry tomatoes in a natural environment were collected and screened, and various occlusion situations of cherry tomatoes were defined in detail. A new cherry tomato dataset (TOSL) was constructed by offline data augmentation and image labelling operations, and online data augmentation methods further enhanced the diversity of the data.

	2. A new cherry tomato recognition model, DSP-YOLOv7-CA, is proposed. The performance of the DSP-YOLOv7-CA model is examined in cherry tomatoes with different occlusion levels.

	3. A deep residual DSP-Backbon network with multi-scale detection is designed in the backbone network. The feature information of the original residual layer and the deep separable convolutional layer is utilized for fusion, and the feature information is reused through the DSP-Multiblock module to accelerate the convergence speed of the model.

	4. In the spatial pyramid network, the DSP-SPPF module with fewer parameters and better performance is designed, and the DSP-SPPF module solves the problem of the loss of small target information in different pooled residual layers, improves the generalization ability of the model and reduces the number of parameters of the network.

	5. A coordinate attention mechanism (CA) layer is introduced at critical positions in the enhanced feature extraction network to better extract features of complex small targets and improve the detection accuracy and speed of the network.






2 Materials and methods



2.1 Image collection



2.1.1 Image acquisition methods

In this study, the variety of cherry tomatoes from Shandong Province was selected as the research object, and the variety of cherry tomatoes was selected as Pink Pei Pei. During January and March 2023, several cherry tomatoes with good growth, ripe and intact fruits were selected for photographing according to the field-of-view angle of the camera during the working process of the cherry tomato picking robot at the National Saline and Alkaline Land Facility Agricultural Testing Experimental Base, as shown in Figures 1. The shooting was done with an ultra-wide-angle lens equipped by a 54 MP matrix camera of Honor 70. The data in the figure contains images of cherry tomatoes with different fruit densities and at different periods. We finally captured 1293 high-resolution images of ripe cherry tomatoes in JPG format with a resolution of 3072 pixels × 4096 pixels.

[image: A composite image showing a greenhouse on the left with cherry tomato plants and an agricultural robot with a camera targeting a cherry tomato plant on a grassy field in the center. Text annotations indicate camera field of view, tree height between one hundred seventy to two hundred thirty centimeters, and robot arm reach of fifty to one hundred fifty centimeters.]
Figure 1 | Camera field of view of a cherry tomato robot at work.

The main objective of this study is to improve the recognition accuracy of occluded cherry tomatoes in natural environments. This paper pays special attention to the branch-obscured ripe cherry tomato images when selecting cherry tomato images. For the positional relationship between fruits and obstacles in cherry tomato picking robots, this paper defines four types of occlusion areas and four types of occlusion modes, which are: 0-30%, 30-70%, 70-95%, 95-100%, branch-obscured, leaf-obscured, fruit overlapped, and mixed-obscured Yang et al. (2019). As shown in Figure 2, cherry tomato branches will pass through the middle or edge of the fruit, fruit overlap will overlap a portion of the tomato features, and be shaded by foliage irregularly and, more commonly, with varying sizes of shaded areas. The yellow circle markers are the size of the complete cherry tomato silhouette, and the occlusion area was determined based on the ratio of the size of the surface features that the camera could not detect to the size of the complete silhouette. In the end, this paper retains 581 clear images of occluded cherry tomatoes, which enables the YOLO target detection algorithm to comprehensively learn the surface features of cherry tomatoes under various occlusion methods.

[image: Diagram illustrating occlusions and visibility of tomatoes on a plant. Panel A shows different types of occlusions such as overlapping, branch, leaf, and mixed occlusions with percentages indicating visibility levels. Panel B displays a tomato plant with various tomatoes affected by these occlusions, indicated by red arrows and yellow circles. Labels include branch, leaf, and mixed occlusions, showing percentage ranges from zero to ninety-five percent.]
Figure 2 | The way cherry tomatoes are shaded. (A): Analogue masking method. (B): Actual masking method.




2.1.2 Data augmentation

Model training requires a large amount of data, and various offline data augmentation methods are commonly used to expand the dataset Zhang et al. (2023a). However, the data diversity of these conventional methods is generally insufficient. Therefore, in this paper, we use offline and online augmentation to augment data from shaded cherry tomatoes in natural environments, fusing multi-scale features to increase data diversity.

Offline augmentation is a data enhancement method performed before model training, which includes the following two methods: (1) Light change: change the saturation and brightness of the image to simulate the brightness difference between different weather in the daytime environment. (2) Adding noise: adding Gaussian noise to the image data to simulate the noise during the shooting process and reduce the high-frequency features to prevent the overfitting phenomenon. Through the above two methods, the offline data were expanded to 2334 images, and the expanded images are shown in Figures 3A–D. LabelImg software labelled the ripe cherry tomatoes with less than 95% of the occluded area in these images and obtained 14623 labelled instances. Since it is also more difficult for the human eye to discriminate cherry tomatoes with 95 100% of the occluded area, they are not used as the detection target of this model. The labelled areas are the smallest rectangles around the cherry tomatoes. The labelled images are shown in Figure 4. The dataset of occluded cherry tomatoes in the natural environment (TOSL) was constructed by offline amplification and image labelling work.

[image: Various images show tomato plants with green leaves and clusters of red tomatoes in differing lighting and effects. Panels A to D depict similar views with slight variations. E and F have multiple collage-style overlays. G and H feature additional clusters in slightly different lighting conditions.]
Figure 3 | Cherry tomato images. (A–D) Offline augmentation images with changes in lighting and added noise. (E, F) Online mosaic augmentation images. (G, H) Online mixup augmentation images.

[image: Tomato plant with green leaves and stems, bearing clusters of small tomatoes in various ripening stages, from green to red. Yellow boxes highlight individual tomatoes amidst lush foliage.]
Figure 4 | Labeled images.

A combination of Mosaic and Mixup image augmentation methods was used in online augmentation Zhang et al. (2023a). Mosaic image augmentation enriches the background of the detected object by stitching four images together, including colour gamut changes, rotations, adding noise, and killing features. Mixup image augmentation creates new training samples by mixing different images to improve the model’s generalization. Too large an amplification probability can over-process the image data, resulting in the loss of feature information for cherry tomatoes with large occluded areas. Too small amplification probabilities reduce the number of amplifications and do not fully utilize the enhancement they provide. Therefore, a 50% probability was set for Mosaic and Mixup data amplification during each iteration, as shown in Figures 3E–H.





2.2 Model building



2.2.1 YOLOv7 model

The YOLOv7 model has higher detection accuracy and detection speed Wang et al. (2023). In Figure 5, the YOLOv7 model is demonstrated with a multi-branch stacking structure for feature extraction in the backbone network and the enhanced feature network, and the model has a denser jump connection structure. The backbone consists of several Conv2D modules, TransitionBlock modules and MultiBlock modules, where the Conv2D module consists of Conv+BN+SiLU. The innovative downsampling structure TransitionBlock module (composed of Maxpool and Conv2D) is used to extract and compress feature maps simultaneously. MultiBlock module employs a residue-like stacking structure composed of multiple Conv2Ds, capable of extracting features at different scales. The enhanced feature extraction network uses a PAFPN structure, similar to YOLOv5, except that the CSP module replaces the MultiBlock-D module. Both MultiBlock-D and the MultiBlock in the backbone have similar structural composition, with only a difference in the number of Concatenations. The model outputs three different sizes of prediction results to realize multi-scale prediction for multiple targets.

[image: Flowchart illustrating a neural network architecture for object detection. It includes stages: Backbone, Neck, and Head, showing layers like Conv2D, MaxPool, and various blocks through color-coded arrows and boxes. Input and output images of plants with red circles highlight detection.]
Figure 5 | YOLOv7 structure diagram.




2.2.2 Depthwise separable convolution

In 2018, Sandler et al. (2018) proposed depthwise separable convolution. As shown in Figure 6, depthwise separable convolution consists of depthwise and pointwise convolution. In the depthwise convolution layer, assuming the input feature has dimensions of a × a × c1, where c1 is the number of channels, the convolutional kernel in this paper has parameters of 3 * 3 * 1 * c1. The output feature after depthwise convolution has dimensions of a × a × c1. During the convolution, each channel corresponds to only one convolutional kernel, so:

[image: Diagram illustrating a neural network architecture. It begins with three colored layers labeled "c1 Channel Input," which undergo "Deep Convolution" resulting in individual feature maps. These are followed by "Pointwise Convolution," combining the features into a final stacked output labeled "c_ Channel out." The process includes mathematical functions such as "Conv(c1, c1, 3, 1, 1, groups=c1, bias=False)" and "Conv(c1, c_, 1, 1, 0, groups=1, bias=False)."]
Figure 6 | Depthwise separable convolution.

[image: A mathematical expression showing the calculation of FLOPs equals \(c_1\) multiplied by \(a\) squared, multiplied by three, multiplied by three, labeled as equation one.] 

In the pointwise convolution, the input is the feature after depthwise convolution, with dimensions of c1 × a × a. The convolutional kernel parameters are c2 × 1 × 1 × c1. The output dimensions are c1 × a × a. During the convolution process, a standard 1 × 1 convolution is applied to each feature, so:

[image: Mathematical expression calculating FLOP subscript 2 equals c subscript 1 multiply a subscript x multiply a subscript x multiply c subscript 1, labeled as equation number 2.] 

Therefore, the ratio of the parameter quantity of depthwise separable convolution to the parameter quantity of standard convolution is shown in Formula 3.

[image: Equation with numerator: \( c l \times a \times x^3 \times 3 + c \times x \times a \times x c l \). Denominator: \( a \times x \times 3 \times 3 \times x \times c \times c l \). Equals \(\frac{1}{c} + \frac{1}{9}\). Equation number (3) on the right.] 

Compared to standard convolution, depthwise separable convolution has the characteristics of parameter sharing and sparse interactions. It can share the trained convolutional kernel weights, reducing the number of parameters. At the same time, it connects partial inputs to better capture local features of the input, enabling the learning of spatial and channel features, and providing better representational power.




2.2.3 Residual neural network

In 2016, He et al. (2016) proposed residual networks that can improve the model’s accuracy by increasing the network’s depth. The basic principle of residual networks is to construct an identity mapping using residual units, i.e., y = F(x) + x, where F(x) represents the nonlinear transformation part of the network, which adds the input signals to the output through direct connections across the layers, and x is the original transmission part, which retains the original feature information and achieves a better feature fusion. This structure ensures that parameter updates do not suffer from the problem of disappearing gradients or gradient explosions.




2.2.4 CANet

When performing feature map fusion, obtaining high-level semantic features and low-level contour features is beneficial. For the detection of occluded cherry tomatoes, it becomes difficult to enhance the feature extraction network to obtain features from the global features, which reduces the detection accuracy of the model. Therefore, the spatial attention mechanism (CBAM) significantly improves the model performance Li et al. (2020). However, using CBAM instead of the fully connected layer for feature map encoding usually ignores the location information, essential for generating spatially selective attention maps. The Coordinate Attention Mechanism (CA) Hou et al. (2021) decomposes channel attention into two one-dimensional feature encoding processes that aggregate features in two spatial directions, respectively. Then, it encodes the generated feature maps into a pair of direction-aware and location-sensitive attention maps that can be applied complementarily to each other.





2.3 Model improvement

YOLOv7 can solve the problem of uneven volume size of cherry tomato images collected by picking robots. The backbone network adopts a more extensive network structure, which may lead to problems such as missed detection and false detection due to the complex occlusion relationship between cherry tomatoes and branch foliage; the spatial pyramid network uses maximum pooling layers parallel to each other, which pays more attention to detecting large targets and is not sensitive enough to detect small targets. The enhancement of the feature extraction network is too deep, and it can not gather small target features in the processing of extracting small features and carrying out zoom-in and zoom-out, resulting in a decrease in detection accuracy and speed. Since this study aims to solve the problem of occluded cherry tomato detection, specific occluded small targets must be considered, and optimizing the original network structure is more important. The optimization method based on the YOLOv7 model in this study includes the following points:

	1) In the backbone network, a deep residual DSP-Multiblock module with multiscale detection replaces the MCB module in the last two layers of the backbone network. In the DSP-Multiblock module design, the null residual edge replaces the convolution module on the Multiblock module, and a new depth-separable convolution module is added to realize the fusion of the feature information of the original residual layer and the depth-separable convolution layer further to improve the representation capability of the occluded cherry tomato and to accelerate the convergence speed of the model.

	2) The DSP-SPPF module with fewer parameters but superior performance is used in the spatial pyramid network. After comparing the two latest SPP modules, a new depth separable convolution module is added to the better-performing SPPF module and replaces the SPPCSPC module of the original model, which solves the problem of the loss of small target information by different pooled residual layers, improves the generalization ability of the model, realizes the reuse of feature information, and reduces the number of parameters of the network.

	3) A coordinate attention mechanism (CA) layer is introduced at critical positions in the enhanced feature extraction network. The coordinate attention mechanism can improve the attention to overlapping and occluded targets and better extract the features of complex small targets, thus improving the detection accuracy and speed of the network.





2.3.1 DSP-backbone network

In the backbone network, the MultiBlock module realizes the depth increase of the model through the residual-like network, which consists of multiple Conv2D modules, as shown in Figure 7B, and the structure of the residual-like network is y = F(x) + C(x), which is prone to lose the critical feature information compared to the residual network y = F(x) + x. Therefore, in this paper, we first utilize the empty residual edges to replace the original residual edges on the MultiBlock module with the Conv2D module, which uses the jump connection of the residual network, which can bypass the occluded region to directly transmit the unoccluded feature information and retain the original feature information. The backbone network gradually completes the 32-fold downsampling operation through four MultiBlock modules. However, if the network layer is too deep, it reduces the possibility of complete information retention, thus weakening the feature extraction capability for small and partially occluded targets. To improve the feature extraction ability, in this paper, we add a branch of depth-separable convolution module to the MultiBlock module with a depth convolution kernel size of (3,3) and a point-by-point convolution kernel size of (1,1), which increases the sensory field of the occluded cherry tomatoes. We name the modified module the DwConv2D module, which consists of the Conv1 (depth-separable convolution), the BN (batch normalization) and SiLU. As shown in Figures 7A, C, the new network structure is y = F(x) + x + C.(x), which ensures mutual fusion in the same dimension, and in this paper, we name the modified module DSP-MultiBlock.

[image: Diagram illustrating a convolutional neural network architecture for image processing. Panel A shows the process of retaining, enhancing, and stacking features to increase receptive fields and obtain regional features. Panel B details a modular structure with Conv2D layers and concatenation. Panel C describes processing steps with inputs passing through layers with BatchNorm2d and SiLU activation. Panel D outlines the DSP-Backbone architecture, highlighting different blocks for feature extraction. Arrows indicate the flow of data through different processing stages.]
Figure 7 | (A) DSP-MultiBlock Module Convolution Principle. (B) Original MultiBlock Module. (C) DSP-MultiBlock Module. (D) DSP-Backbone Networks.

The DSP-MultiBlock module adopts a deep residual structure. The feature maps are small in the last two layers of the MultiBlock module in the backbone network, which leads to a relatively sizeable sensory field. The recognition effect is better for large targets, but the recognition effect is average for minor marks. In addition, after multiple downsampling, the detailed information on the high-level features is seriously lost. Therefore, replacing the MultiBlock module of stage 4 and stage 5 in the backbone network with the DSP-MultiBlock module can aggregate the detail information features and realize the conversion between detail and semantic information, avoiding the deeper class residual network, which reduces the detail feature extraction ability. The improved backbone extraction network is called DSP-Backbone, as shown in Figure 7D.




2.3.2 DSP-SPPF spatial pyramid network

As shown in Figure 8A, the SPPCSPC module of the YOLOv7 model acquires feature information through parallel convolution and maximum pooling kernels parallel to each other. This similar convolution structure can capture the local network and patterns of the input data, especially for the strong representation of features such as edges and textures in the occluded cherry tomato image. However, such a modular structure is too complex and can easily lead to the loss of more minor feature information. For example, since the size of the occluded area of cherry tomatoes varies, the essential information provided is also different. When the occlusion area is large, the target feature information is small. After the feature extraction is completed in the backbone network, some of the feature information may have been lost. When the maximum pooling operation is performed in the SPPCSPC module in parallel with each other, almost all of the feature information is lost, which increases the probability of partial occlusion targets being missed. Compared with this structure, the SPPF module of YOLOv8 adopts a top-down maximum pooling kernel stacking structure, which introduces jump connections and reduces multiple layers of convolutional modules, significantly reducing the number of references and improving the detection speed, as shown in Figure 8B. However, the parallel convolutional structure is missing, which increases the probability that partially occluded targets are missed. To compensate for the loss of accuracy due to the loss of convolutional branches, this paper adds a depth-separable convolutional module, DwConv2D, as a parallel convolutional branch on top of the SPPF module. As shown in Figure 8C, by increasing the sensory field layer by layer, it captures a broader range of contextual information, which helps to extract more advanced semantic features, enabling the model to understand more complex image contents, further improving the detection accuracy of occluded tomatoes, while reducing the model parameters. The modified module is named the DSP-SPPF module.

[image: Flowchart illustrating three architectures (A, B, and C) for processing input images. Each section involves Conv2D, max pooling, and concatenation processes, with some paths labeled "No processing." Variations include different max pooling sizes and additional depthwise separation and pointwise layers in architecture C.]
Figure 8 | Several SPP modules. (A) SPPCSPC Module. (B) SPPF Module. (C) DSP-SPPF Module.




2.3.3 Introduction of the enhanced feature extraction network with CANet

To increase the model’s sensitivity to occluded cherry tomato features, this paper employs a coordinate attention mechanism that combines positional information with channel information and is applied to enhance the critical position of the feature extraction network. The method increases the attention on overlapping and occluded targets that are difficult to recognize by assigning higher weights. As shown in Figure 9A, the coordinate attention mechanism consists of information embedding and attention generation. In the information embedding stage, all channels of the input feature map are average pooled along the horizontal and vertical coordinate directions, respectively, and feature maps with dimensions C × H × 1 and C × 1 × W are acquired. In the attention generation stage, the two developed feature maps are spliced into a C × 1 × (H + W) feature map. Then, their channel dimensions are compressed from C to C/r dimensions with shrinkage r using 1 × 1 convolution and nonlinear activation using the ReLU function. Next, the acquired results were decomposed along the spatial dimension into a C/r × H × 1 horizontal attention tensor and a C/r × 1 × W vertical attention tensor. The channel dimension is then raised from the C/r dimension to the C dimension using two sets of 1 × 1 convolutions, and the Sigmoid function is used for nonlinear activation. Finally, the two acquired attention maps, C × H × 1 and C × 1 × W, are multiplied with the input feature maps to complete the imposition of coordinate attention.

[image: Diagram illustrating a neural network architecture divided into two sections, A and B. Section A shows an Information Input layer with Conv2D, BatchNorm, and attention mechanisms for vertical and horizontal coordinates. Section B, labeled CA-Neck, displays a sequence of operations including Conv2D, MultiBlock-D, Upsampling2D, Concat, and TransitionBlock leading to the final layers labeled RepConv and Yolohead, representing different feature processing paths.]
Figure 9 | CANeck. (A) CA Module. (B) Enhanced Feature Fusion Network with Coordinate Attention Mechanism.

Considering the complexity of the natural environment, this paper introduces the coordinate attention mechanism to strengthen the feature extraction network to fully acquire feature information at different scales at the information intersection at position 2. As shown in Figure 9B, under the imposition of two other directional attention maps, it can determine whether the target exists in the corresponding rows and columns, which in turn improves the network’s recognition effect for dense targets and, at the same time, mitigates the degradation of the detection accuracy caused by the occlusion of branches and leaves. Notably, the CA modules at positions 1 and 3 of the network only apply to the subsequent illustration of the control experiments and do not serve as part of the final network structure.





2.4 Model training



2.4.1 Training method and platform

In this experiment, the PyTorch deep learning framework is built on a hardware platform equipped with Intel 13th Core(TM) i5-13600KF and NVIDIA GeForce RTX 3090 (with 24GB video memory) and running on the Windows 10 operating system. The target detection model for occluded cherry tomatoes was implemented using related libraries such as CUDA 12.1 and OpenCV, and the model was trained and tested.




2.4.2 Training strategy

In this study, the dataset is divided into training, validation, and test set in an 8:1:1 ratio, and then the images are inputted into the feature space with the size of 640×640. In this study, the pre-training weights of YOLOv7 are used for training, and the training data are saved in the model weights file; the first 50 iterations of the model are frozen for training, the batch size is set to 8 in the freezing phase, and the model is thawed for training for 250 times, the batch size is set to 6, and the model is trained for a total of 300 times. Perform a validation every 10 iterations and record the relevant information. At the end of training, the weights file of the target detection training model is saved, and the model’s performance is evaluated on the test set. The label translation rate is 0.005, the maximum learning rate of the model is 0.01, the minimum learning rate is 0.0001, the gradient descent parameter is 0.937 using the SGD optimizer, the weight decay rate is set to 0.0005, and the type of learning rate decay is cosine decay. Figure 10A shows the average accuracy curve during the training process of the primary model; after 200 iterations, the average accuracy of DSP-YOLOv7-CA is significantly higher than the other models, and it reaches the maximum value in the 280th iteration, and Figure 10B shows the loss rate curve during the training process of the primary model, in the first 10 Epochs, the model is converging rapidly, and in the past 210 Epochs, The loss function is stable. The difference between the two accuracies is close to 0, indicating that the model has reached the fitting state and achieved good training results.

[image: Graph A shows mAP 0.5 performance over 300 epochs for different models including YOLOv7, DSP-backbone, and CANet, with DSP-YOLOv7-CA achieving the highest performance. Graph B depicts training and validation loss over the same epochs, with DSP-YOLOv7-CA showing the lowest loss values among the models, indicating better convergence.]
Figure 10 | Training process. (A) Precision curve. (B) Loss curve.




2.4.3 Experimental evaluation indicators

In testing the effectiveness of the model, Precision, Recall, F1, mAP, params, FLOPs, and FPS are used in this paper to evaluate the recognition performance of occluded cherry tomatoes. Precision is the probability of actual positive samples among the samples predicted to be positive by all the predictions. Recall is the probability of being heralded as a positive sample among the actually positive pieces. Where TP refers to the number of positive models correctly predicted, FP refers to the number of negative samples incorrectly expected as positive samples. FN refers to the number of positive samples that are expected as negative samples. The formula for its calculation is:

[image: Mathematical formula: P equals T subscript P divided by T subscript P plus T subscript P, labeled as equation four.] 

[image: The formula for recall is shown: \( R = \frac{T_P}{T_P + F_N} \).] 

The calculation of The F1 score is related to the values of precision and recall, and the level of The F1 score represents the stability of the model, which is calculated by the formula:

[image: Mathematical formula for F1 score: F1 equals two times the product of P and R divided by the sum of P and R, labeled as equation six.] 

The mAP is the average of the mean accuracy and AP of each category, which is calculated by the formula:

[image: Equation labeled (7), representing mean average precision (mₐₚ) as the integral from zero to one of P(R) with respect to R, multiplied by one over m.] 

FPS refers to the number of frames transmitted per second, and avg is the total inference time; the number of inferences in this study is 100 and FPS is obtained by the reciprocal of avg, which is calculated as follows:

[image: Formula displaying FPS equals the reciprocal of the average, labeled with the number eight in parentheses.] 

Parameters are another critical measure of model complexity. A higher number of parameters in a model means that the model requires more computational resources and data for training and inference. For example, more GPU memory is needed to train the model, and each number corresponding to the weight matrix inside the convolution and full join used in the model is a component of the number of parameters.

C0 denotes the number of output channels, Ci denotes the number of input channels, kw denotes the convolution kernel width, and kh denotes the convolution kernel height, which is computed by the formula:

[image: Mathematical formula for calculating parameters: \( \text{params} = C_o \times (k_w \times k_h \times C_i + 1) \), labeled as equation nine.] 

The number of floating-point operations (FLOPs) is the amount of model computation, which refers to the number of floating-point functions required to run a network model once. FLOPs are usually used to measure a model’s computational efficiency and speed. For example, when deploying a model on a tomato-picking robot, the device’s limitations need to be considered. If the model’s computation is too large, it will lead to a long inference time, which is unsuitable for practical applications. W and H denote the length and width of the feature map, respectively. Its calculation formula is:

[image: A mathematical formula representing FLOPs (floating point operations) for a specific operation. The formula is: FLOP\_e = [(C\_i × k\_w × k\_h) + (C\_i × k\_w × k\_h - 1) + 1] × C\_o × W × H, labeled as equation (10).] 






3 Results

To validate the effectiveness of the method designed in this paper for the cherry tomato detection task, we compared the effects on model performance before and after the imposition of different improvement methods on the cherry tomato dataset (TOSL) in a multi-group controlled experiment.



3.1 Comparative experiments with different DSP networks



3.1.1 Comparison of results for different backbone networks

In this section, comparison experiments of DSP-MultiBlock modules at each position are conducted, as shown in Figure 7D, where models with different Backbone and other conditions being the same are designed, and the MultiBlock modules at two or two of the two, three, four, and five positions in the original YOLOv7 backbone extraction network are replaced by DSP-MultiBlock modules, respectively. The post-experiment results are shown in Table 1 and Figure 11A. The highest mAP value of 95.69% is obtained by the model when the DSP-MultiBlock module is located in the four-five position, which improves 0.49 percentage points compared to the original model, and the FPS improves by 1f/s. Although the number of parameters has increased by 2.2M compared to the original model, this substitution allows the model to better deal with the balance of the detail information and the semantic information balance, which improves the accuracy on occluded small targets.

Table 1 | Comparison of detection capabilities of different backbone networks.


[image: Table comparing performance metrics for various DSP-MultiBlock instances. Metrics include mAP at 0.5 percent, FPS, Parameters in millions, and FLOPs in gigabytes. The configuration with 45 instances achieves the highest mAP of 95.69 percent, with other values also shown for different instance counts. Bold font highlights this advantage.]
[image: Graphs titled A, B, C, D, and E compare four performance metrics: \(mAP(\%)\), FPS, Parameter, and FLOPs for different configurations. Graph A assesses various positions; B evaluates SPPCSPC, SPPF, and DSP-SPPF; C compares three locations; D features SE, CBAM, and CA methods; and E provides a bar chart of five configurations. The charts illustrate changes in metrics like FPS, Parameter, and FLOPs across different setups.]
Figure 11 | Comparison of the performance of the best model in each method. (A) Comparison of different backbone networks. (B) Comparison of different SPPs. (C) Comparison of applying CA attention mechanisms to different locations. (D) Comparison of applying different attention mechanisms to location two. (E) Comparison of each best model.




3.1.2 Comparison of results for different SPP spatial pyramid networks

The previous section determined that the DSP-MultiBlock module is more effective when it is located at four or five positions. In this section, the comparison experiments of different SPP spatial pyramid networks are conducted by designing Backbone and neck different models with the same conditions of other conditions and replacing the SPPCSPC module of the original YOLOv7 with the SPPF module and the DSP-SPPF module, respectively. The post-experimental results are shown in Table 2 and Figure 11B. The SPPF module reduces the number of parameters by 6M compared to the SPPCSPC and achieves an FPS of 84.2119f/s, with a reduction of 5s/G for floating-point computation. The detection speed is lower than that of the SPPF module when using the DSP-SPPF module, but the mAP value improves by 1.3 percentage points. The detection speed is lower than that of the SPPF module when using the DSP-SPPF module in both the Backbone and spatial pyramid networks. At the same time, the DSP structure improves the average accuracy of the model by nearly one percentage point over the original network, and the FPS improves by 3.3 f/s. In addition, the amount of parameters is reduced by 4M, and the amount of floating-point computation is reduced by 1.8s/G. In summary, the DSP structure formed by adding a stack of pooling layers of depth-separable convolutions and residuals can capture a more extensive range of contextual information; due to the use of residual structure in the SPPF module, a large number of convolutional modules are reduced, the model is more lightweight, and these improved methods achieve significant improvements in terms of average accuracy, FPS, number of parameters, and floating-point computation.

Table 2 | Comparison of detection capabilities of different SPP spatial pyramid networks.


[image: Comparison table of model performance. Columns: Backbone, Neck, mAP_0.5(%), FPS(f/s), Parameter(M), FLOPs/G. Rows: 1) Original MultiBlock, SPCSPC, 95.20, 78.9234, 37.620, 106.472. 2) Original MultiBlock, SPPF, 94.34, 84.2119 (bold), 31.586 (bold), 101.641 (bold). 3) Original MultiBlock, DSP-SPPF, 95.42, 79.9456, 39.456, 108.564. 4) 45 instances of DSP-MultiBlock, DSP-SPPF, 96.16 (bold), 82.2568, 33.701, 104.602. Bold indicates best performance in each metric.]




3.2 Comparative experiments with different attentional mechanisms



3.2.1 Comparison of results for different positions imposed by the coordinate attention mechanism

For the complexity of the cherry tomato growing environment and the need to further improve the detection accuracy, this section applies the coordinate attention mechanism CA to different positions in the feature fusion network based on the original YOLOv7, as shown in Figure 9. By comparing the effects of applying the attention mechanism to varying situations on the detection performance of the model, the results are shown in Table 3 and Figure 11C. By using the attention mechanism at position 2, 0.88 percentage points improve the average accuracy of the model, and the FPS is not reduced but slightly improved. Applying the attention mechanism at position 1 and position 3 improved the accuracy by 0.19 and 0.05 percentage points, respectively. Since position 2 is at the intersection of different scales of information in the enhanced feature extraction network, richer feature information can be obtained compared to position 1 and position 3, thus improving the detection effect of the model.

Table 3 | Comparison of detection capabilities by applying attention mechanism to different positions.


[image: Table comparing performance metrics for different apply positions: "NO" has 95.20 mAP, 78.9234 FPS, 37.620 parameters, and 106.472 FLOPs/G. "Location one" shows 95.39 mAP, 77.5485 FPS, 37.821 parameters, and 106.496 FLOPs/G. "Location two" has 96.08 mAP, 78.9315 FPS, 37.630 parameters, and 106.479 FLOPs/G. "Location three" shows 95.25 mAP, 78.2112 FPS, 37.652 parameters, and 106.477 FLOPs/G. Bold font indicates the best performance for each metric.]



3.2.2 Comparison of results for different attentional mechanisms at position 2

To further validate the performance of different attention mechanisms in position 2, this section conducts a comparison experiment based on the original YOLOv7. The investigation results are shown in Table 4 and Figure 11D, and it can be found that the highest mAP value is achieved when using the CA attention mechanism module. The CA module introduced in this paper uses two one-dimensional attention maps for feature encoding, and embeds feature information at different scales. The model’s sensitivity to dense targets can be effectively improved through this approximation of coordinates, which in turn improves the negative impact of various occlusion situations on detection accuracy in the cherry tomato detection task.

Table 4 | Comparison of detection capabilities with different attention mechanisms applied.


[image: Table comparing attention mechanisms: SE, CBAM, and CA. Metrics include mAP_0.5%, FPS, Parameter (M), and FLOPs/G. SE has mAP 95.89%, FPS 79.1223, Parameter 37.628, FLOPs 106.476. CBAM has mAP 95.57%, FPS 78.9286, Parameter 37.631, FLOPs 106.484. CA has mAP 96.08%, FPS 78.9315, Parameter 37.630, FLOPs 106.479. Best performances are bolded.]




3.3 Ablation experiment

This section conducts the comparison experiments of each optimal method and the combination of each optimal strategy. The DSP-YOLOv7-CA model is the optimal model obtained by combining each optimal approach. The results of the experiments are shown in Table 5; compared with the original YOLOv7 model, the number of parameters of the DSP-YOLOv7-CA model is reduced from 37.62MB to 33.711MB, and the running speed is reduced from 106.472Gflops to 104.609Gflops, and FPS increased from 78.9234 to 80.5433. As shown in Figure 11E, the DSP-YOLOv7-CA is higher than the other best models’ average accuracy, and the mAP value reaches 98.86%. Figure 12 depicts the obtained performance graphs, including the accuracy P, the recall R, the AP value, and F1 and mAP values. However, DSP-YOLOv7-CA is not the best regarding FPS, Parameter, and FLOP, and the DSP-SPPF model has a higher detection speed.

Table 5 | Comparison of results of ablation experiments.


[image: Table comparing the performance of five models: NO, DSP-backbone, DSP-SPPF, CANet, and DSP-YOLOv7-CA. Metrics include mAP_0.5(%), FPS, Parameters (M), and FLOPs/G. DSP-YOLOv7-CA scores highest in mAP_0.5(%) with 98.86, while DSP-SPPF has the highest FPS at 83.7978, and the lowest Parameters and FLOPs/G at 32.115 and 102.064, respectively. Bold text indicates the best performance in each metric.]
[image: Four graphs displaying metrics for tomato classification. A: Blue bar graph shows average precision of 99 percent. B: Pink line graph shows precision curve peaking at 98.30 percent. C: Yellow line graph depicts recall curve, starting high and decreasing, reaching 93.64 percent. D: Orange line graph shows F1 score curve at 0.96, peaking before declining. Score threshold for all is 0.5.]
Figure 12 | Performance metrics of DSP-YOLOv7-CA. (A) mAP value. (B) precision rate. (C) recall rate. (D) F1 value.




3.4 Comparison with other model results

To compare the performance between the models in this paper and the latest detection models, we conducted comparison tests, which include YOLOv3, YOLOv4, YOLOv5, YOLOX, YOLOv7-tiny, YOLOv8, Faster R-CNN, and DSP-YOLOv7-CA. The results are shown in Table 6, and the mAP value of the model in this paper is 98.86%, which is improved by 3.66 percentage points relative to YOLOv7 and 39.34 percentage points close to Faster R-CNN. Compared with YOLOv3, YOLOv4, YOLOv5, YOLOX, YOLOv7-tiny, and YOLOv8, the improvement is 41.48, 36.6, 8.18, 6.39, 14.97, and 12.8 percentage points, respectively. The memory footprint of the model in this paper is 33.711MB, which is 3.9M, 20.498M, and 13.346M less compared to YOLOv7, YOLOX, and YOLOv5, respectively. Compared to YOLOv3 and YOLOv4, the memory footprint is about half of them; compared to Faster R-CNN, it is one-fourth of them; compared to YOLOv8 compared to YOLOv8 and YOLOv7-tiny, the memory usage is increased by a factor of 3; compared to YOLOv7-tiny, the memory usage is increased by a factor of 5. DSP-YOLOv7CA is not as fast as YOLOv8 and YOLOv7-tiny, which are two lightweight models, but it still has a significant advantage in detection speed compared to YOLOv7 and other standard target detection models. In Figure 13, the red rectangles show the performance of YOLOv3 and YOLOv4, and the red circles and red triangles are the best performance points. The older YOLO models perform poorly on occluded cherry tomato detection, and DSP-YOLOv7-CA has the highest accuracy among the nine detection models and is the best means of solving the occluded cherry tomato detection problem.

Table 6 | Comparison of detection performance among different models.


[image: Comparison table of object detection models with various metrics. Models include YOLO versions, Faster R-CNN, and DSP-YOLOv7-CA. Metrics shown are precision, recall, F1 score, mean average precision, frames per second, parameters, and FLOPs. DSP-YOLOv7-CA excels with highest metrics in several categories, highlighted in bold.]
[image: A complex line graph compares performance metrics across different models: v3, v4, v5, X, v7, v7-tiny, v8, and R-CNNDSP-v7-CA. Metrics include P (%), R (f/s), F1, mAP (%), FPS (f/s), Parameters (M), and FLOPs/G. Various colored lines and markers represent each metric, with notable peaks and valleys marked with numerical values. The graph features multiple y-axes with scales for each metric.]
Figure 13 | Performance comparison chart between the latest detection models.




3.5 Comparison of model detection effects

To test the actual detection effect of the model in this paper, we look for cherry tomatoes in different occlusion situations in the dataset (TSOL), as shown in Figure 14, in light occlusion (0-30%), the six sets of maps tested include 15 ripe cherry tomato targets. The number of false detections is 0, the number of missed detections is 0, and the success rate is 100% for DSP-YOLOv7-CA. Due to the retention of a large amount of complete cherry tomato feature information, the detection effect is good.

[image: Six images showing tomatoes in various states of occlusion.   Top row:  1. Leaf occlusion with two tomatoes partially covered by leaves.  2. Branch occlusion with two tomatoes obscured by a branch. 3. Overlapping tomatoes with one in front of the other.  Bottom row:  1. Overlapping tomatoes with three grouped together. 2. More overlapping tomatoes with five clustered together. 3. Mixed occlusion: tomatoes partially hidden by branches and leaves, with two in the foreground. Each tomato is labeled with a confidence score.]
Figure 14 | Detection of various light shade (0-30%).

As shown in Figure 15, in moderate occlusion (30-70%), the six sets of images tested include 38 ripe cherry tomato targets; the number of false detections is 0, and the number of missed detections is 1. The detection success rate of the DSP-YOLOv7-CA is 97.4%. The missed cherry tomatoes are marked by yellow circles, obscured by leaves, relatively far away, and have fewer surface features, meeting the actual detection requirements.

[image: Six images showing tomato plants with red boxes labeling detected tomatoes and their confidence scores. The top row images display leaf occlusion with tomatoes partially hidden by leaves. The bottom row includes branch occlusion and overlapping with leaf occlusion, where branches and overlapping fruits obscure visibility. Each image has red outlined text indicating "tomato" followed by a numerical confidence value.]
Figure 15 | Detection of Various Moderate Occlusions (30-70%).

This paper attempts to solve the problem of cherry tomato detection under different occlusions, and the cherry tomato detection under heavy occlusion (70-95%) better reflects the model’s performance. Therefore, this section compares the detection effect of DSP-YOLOv7-CA and the latest model YOLOv8, as shown in Supplementary Figure 1; the six sets of images tested include 51 ripe cherry tomato targets, and DSP-YOLOv7 -CA’s number of false detections is 0, the number of missed detections is 4, and the success rate is 92.2%, with a slight decrease in the success rate. The cherry tomatoes in the yellow box are long-distance small targets, which are not included in the test. It can be found that YOLOv8 has more missed detections relative to the model in this paper, and the missed targets are in a variety of occlusion situations. In contrast, at the edge of the picture, the detection effect is average due to the incompleteness of the cherry tomatoes.

As shown in Supplementary Figure 2, in severe occlusion (95-100%), six sets of images, including 28 severely occluded targets and 33 targets with another degree of occlusion, are tested, the number of false detections of DSP-YOLOv7-CA is 0, and the number of missed detections of severely occluded targets is 15. The success rate is 46.4%, which is a general effect of the detection, especially in the case of composite occlusion. Still, the degree of occlusion greater than 95% of the target is not considered as the detection category of this model.

To discuss the generalization ability of DSP-YOLOv7-CA to different occlusion scenes or environments other than cherry tomato, tests on other cherry tomato varieties, including ripe saint tomato, jade tomato, beautiful orange honey fragrance, and gold glittering tomato, were conducted in this section. The test results are shown in Supplementary Figure 3, where the Jade tomato has the highest confidence score due to the similarity in colour and shape between the Jade tomato and the dataset (TOSL) in this paper. In contrast, the Beautiful orange honey fragrance and Golden shiny tomato have lower confidence scores, and the ripe Beautiful orange honey fragrance and Golden shiny tomato showed a golden yellow colour, which was somewhat different from the dataset of this paper and appeared to be missed. Sage tomato presents a long strip shape, and this paper’s dataset has some differences; the detection of the location of the effect is general, this paper’s model has a certain degree of stability, and the future can update the dataset to achieve a variety of varieties of ripe small tomatoes recognition.

According to the positional relationship between cherry tomatoes and branches and leaves in Figure 2, this section builds a detection platform for different occlusion situations indoors through plastic models of cherry tomatoes and potted picking plants, with other branches passing through the cherry tomato model to realize branch occlusion, leaf occlusion through different sizes of leaf occlusion of cherry tomato models, and fruit overlap through the stacking of two cherry tomato models. The detection results are shown in Supplementary Figure 4; DSP-YOLOv7-CA can not accurately detect cherry tomatoes with 95-100% complex shading area, and in the case of overlapping each other, there are many times of missed detection, and the detection success rate of DSP-YOLOv7-CA for cherry tomatoes with shading area less than 95% is 94.7%.

Therefore, synthesizing the above analysis results, it can be concluded that the actual detection effect of DSP-YOLOv7-CA on cherry tomatoes with less than 70% shading in the dataset (TSOL) is better; there will be a leakage in the detection of cherry tomatoes with 70-95% shading, and the effect is general in the detection of cherry tomatoes with higher than 95%, and the different cherry tomato varieties and cherry tomato models with the dataset differ significantly, the model can not accurately recognize the feature information, and the detection effect is general. However, DSP-YOLOv7-CA significantly outperforms the latest YOLOv8 detection model in terms of performance.DSP-YOLOv7-CA balances detection speed and accuracy in shading cherry tomato picking ensures a low false detection rate, improves detection speed simultaneously, and is more suitable for cherry tomato picking.





4 Discussion

In this paper, the DSP-YOLOv7-CA model focuses more on the feature information around the target and has good detection ability in the face of occluded cherry tomatoes in the natural environment. However, there are still potential drawbacks, such as the relatively average detection effect in the case of severe occlusion, the average detection effect in the face of different varieties of cherry tomatoes, and the fact that it is limited to cherry tomatoes similar to the dataset in shape and colour. In the future, different types of cherry tomatoes can be added to enrich the dataset of cherry tomatoes. In this paper, cherry tomatoes with masked area higher than 95% are not used as the detection target; in the future, the model should deal with more complex masking scenarios, such as cherry tomatoes with masked area higher than 95%; this model can learn the detection method of the significant model Segment anything, which is effectively queried by various input hints, corresponding to fuzzy suggestions for multiple objects, and then outputs multiple effective masks and associated confidence scores Kirillov et al. (2023). By designing more advanced datasets and detection models, the detection of various occluded targets in natural environments is realized.




5 Conclusion

The dense overlapping of cherry tomatoes and the occlusion situation of leaves and branches are common phenomena in the natural environment, and solving the complex problem of occluded cherry tomato detection will improve the efficiency of cherry tomato picking robots. This paper proposes an occluded cherry tomato detection model DSP-YOLOv7-CA with good performance. First, cherry tomato images with different degrees of occlusion are collected, four occlusion areas and four occlusion methods are defined, and a cherry tomato data set (TOSL) is constructed. Then, the deep residual DSP-MultiBlock module with multiscale detection was used in the backbone network, and the detection accuracy reached 95.69%, which was improved by 0.49 percentage points compared with the original model. Then, using both the deep residual DSP-Multiblock module with multiscale detection and the DSP-SPPF module, the average accuracy of DSP-YOLOv7 is improved by almost one percentage point compared to the original model, 3.3 f/s enhance the FPS, the amount of parameters is reduced by 4M, and the floating-point computation is reduced by 1.8s/G. Introducing coordinates at critical locations in the enhanced feature extraction network Attention Mechanism (CA) layer improves the model’s accuracy by 0.88 percentage points. Then, the DSP-YOLOv7-CA model is obtained by combining the individual best methods, and the AP value of the model reaches 98.86%, which is improved by 3.66 percentage points concerning YOLOv7, 39.34 percentage points concerning Faster R-CNN, and 12.8 percentage points concerning the latest target detection model YOLOv8. In the actual detection, DSP-YOLOv7-CA has a better detection effect on cherry tomatoes with less than 70% occlusion, misses in the detection of cherry tomatoes with 70-95% occlusion, and has an average impact on the detection of cherry tomatoes with higher than 95% occlusion, which is better than the latest target detection model YOLOv8. This model can satisfy the picking while maintaining the detection accuracy. Robot’s real-time needs while maintaining detection accuracy.
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Achieving intelligent detection of defective leaves of hydroponic lettuce after harvesting is of great significance for ensuring the quality and value of hydroponic lettuce. In order to improve the detection accuracy and efficiency of hydroponic lettuce defective leaves, firstly, an image acquisition system is designed and used to complete image acquisition for defective leaves of hydroponic lettuce. Secondly, this study proposed EBG_YOLOv5 model which optimized the YOLOv5 model by integrating the attention mechanism ECA in the backbone and introducing bidirectional feature pyramid and GSConv modules in the neck. Finally, the performance of the improved model was verified by ablation experiments and comparison experiments. The experimental results proved that, the Precision, Recall rate and mAP0.5 of the EBG_YOLOv5 were 0.1%, 2.0% and 2.6% higher than those of YOLOv5s, respectively, while the model size, GFLOPs and Parameters are reduced by 15.3%, 18.9% and 16.3%. Meanwhile, the accuracy and model size of EBG_YOLOv5 were higher and smaller compared with other detection algorithms. This indicates that the EBG_YOLOv5 being applied to hydroponic lettuce defective leaves detection can achieve better performance. It can provide technical support for the subsequent research of lettuce intelligent nondestructive classification equipment.
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1 Introduction

Hydroponic lettuce not only has a large market demand, but also has a short growth cycle (about 45d) with high economic value, therefore, it has become one of the most widely grown vegetables on indoor farms. However, the leaves of hydroponic lettuce are dense and delicate, which will be easily damaged to a certain extent during the harvesting process. And after harvesting, lettuce leaves will easy to appear yellowing, wilting even decay. Especially when the leaves decayed, it will not only affect appearance but also infects other good quality leaves, and even the nitrite content will sharply increase (Yan et al., 2015; Van Gerrewey et al., 2021). These defective leaves will shorten the shelf life of lettuce and also can produce a certain degree of commodity value loss. Currently, a visual judgment is the primary method used by human to identify defective leaves of hydroponic lettuce. This method is time-consuming and laborious, and will be affected by human subjective factors. Therefore, it is of great significance to realize intelligent detection of defective leaves of hydroponic lettuce.

In recent years, traditional machine vision technology has been widely used in the field of agricultural defect detection (Dang et al., 2020; Zhang et al., 2021). Sun et al. (2012) used the mixed fuzzy cluster separation algorithm (MFICSC) to achieve the target clustering segmentation of lettuce image, which provided a reference for the non-destructive detection of lettuce physiological information. Kong et al. (2015) used the feature parameters extracted from the lettuce image for three-dimensional visualization modeling, and intuitively reflected the growth state of the lettuce through the visualization. Hu et al. (2014) designed k-means algorithm to detect the appearance defects of bananas, the initial step in k-means was utilized to categorize the foreground and background of bananas, and the second step of k-means was employed to quantify the damage lesions on the surface of bananas. Li et al. (2002) developed a computer vision-based system for detecting surface defects on apples. The system normalizes the original image, subtracts it from the original image, and extracts defective parts of the apple surface through threshold segmentation. Kumar et al (Prem Kumar and Parkavi, 2019). utilized machine vision technology for the purposes of detecting and evaluating the quality of fruits and vegetables, which solved the problem of slow manual efficiency. The above methods are all based on traditional machine vision methods for image preprocessing and feature extraction. However, crops have different defect characteristics, and manual selection of feature variables results in limitations in the promotion and application of these methods.

With the development of machine learning, deep learning has been widely applied in agricultural product defect detection. Muneer et al (Akbar et al., 2022; Hussain et al., 2022). proposed a new lightweight network (Wlnet) based on VGG-19 network for the detection of peach leaf bacteria. The WLnet model was trained with self-built peach leaf bacteria dataset, and the experimental results showed that the recognition accuracy reached 99%. Alshammari et al. (2023) proposed an optimized artificial neural network to identify olive leaf diseases. Whale Optimization Algorithm was used to select necessary features, and finally, artificial neural network was used to classify the data. The experimental results showed that this model is superior to the existing model in terms of accuracy and recall rate. Li et al. (2021) employed the enhanced Faster-RCNN (Ren et al., 2015) architecture to identify the growth status of hydroponic lettuce seedlings, with an average accuracy rate of 94.3% and 78.0% for dead seedlings and double-plant seedlings, respectively. Compared with SSD (Liu et al., 2016) and Fast R-CNN, YOLO (Redmon et al., 2016; Redmon and Farhadi, 2017; Redmon and Farhadi, 2018; Bochkovskiy et al., 2020) networks are more concise, accurate and effective, making them widely used in agricultural defect detection. Liu et al (Liu and Wang, 2020). used an image pyramid method to optimize the feature layer of the YOLOv3 model, achieving efficient multi-scale feature detection. The detection accuracy of this algorithm is 92.39% and the detection time is 20.39 ms. Wang et al (Wang and Liu, 2021). improved YOLOv4 by adding a dense connection module, and the average accuracy and detection time of tomato disease identification reached 96.41% and 20.28ms, respectively. Yao et al. (2021) proposed a Kiwifruit defect detection model based on improved YOLOv5. The experimental results show that the mAP0.5 of this model is 94.7%. Abbasi et al. (2023) proposed an automatic crop diagnosis system for detecting diseases in four hydroponic vegetables: lettuce, basil, spinach, and parsley. This study selected YOLOv5s as the detection model with mAP0.5 82.13% and detection speed of 52.8 FPS. Hu et al. (2022) proposed a method for identifying cabbage pests based on near-infrared imaging technology and YOLOv5. The experimental results showed that mAP reaches 99.7%.

There are many research on the detection of spherical fruit defects, but there is generally little research on the detection of defective leaves of hydroponic lettuce. The detection and location of defective leaves of hydroponic lettuce by deep learning can provide a new solution for intelligent non-destructive detection of hydroponic lettuce quality. Therefore, this study aims to propose a method for detection of defective leaves of hydroponic lettuce based on improved YOLOv5, namely EBG_YOLOv5(E-ECA, B-BiFPN, G-GSConv). First, an image acquisition system was designed and used to obtain images of defective leaves of hydroponic lettuce. Secondly, introducing the ECA module into the backbone of the YOLOv5 model to improve the learning ability of the model for the features. The BiFPN and GSConv module was introduced into the Neck of the YOLOv5 model to improve feature fusion and accuracy of the model. Finally, the EBG_YOLOv5 model performance was verified by ablation and comparison experiments.




2 Materials and methods



2.1 Image sample acquisition

The hydroponic lettuce sample used in this study is cream lettuce Huisheng No. 1 from Ensheng Hydroponic Vegetable Base, Li Lou Town, Luoyang City, Henan Province, China. The growth environment temperature of lettuce is 15 to 25 °C, the humidity is controlled at 60 to 75%, and the growth period is 25 to 30 days. The cultivation environment and growth status of lettuce are shown in Figure 1. After the lettuce is ripe, it is manually harvested and then photographed in the indoor greenhouse and laboratory from April to May 2023.

[image: A hydroponic greenhouse setup with rows of lettuce plants growing on white trays. Panel A shows multiple rows of young and mature lettuce in a spacious greenhouse. Panel B provides a close-up view of mature lettuce heads with visible root systems suspended in nutrient-rich water.]
Figure 1 | Lettuce greenhouse: (A) Lettuce cultivation environment; (B) Lettuce growth status.

In the laboratory, an image acquisition system was built, which consists of a camera, a camera obscura, a carrier plate and an illumination source, as shown in Figure 2. The camera model is Microsoft Lifecam Elite Edition (Redmond, USA), and the image resolution is 1920 × 1080 pixels. To prevent the influence of a singular shooting background on network learning, images of lettuce leaves were added into the dataset. During the image acquisition process, the distance between the camera and the carrier plate was predetermined and remains constant, the distance was 450 mm. A total of 1200 pictures of lettuce defective leaves in greenhouse and laboratory environment were collected, and all images were adjusted to 640 × 270 pixels before network training.

[image: Panel A shows a hydroponic setup with a framed structure containing a lettuce plant under lights, numbered components likely indicating equipment. Panel B is a diagram of the setup, highlighting dimensions of 1000 mm height and 750 mm width and depth, illustrating the arrangement of the lettuce, lights, and a connected computer displaying the plant.]
Figure 2 | Image acquisition apparatus: (A) Physical drawing of image acquisition apparatus; (B) Schematic diagram of image acquisition apparatus; 1. Computer, 2. Obscura, 3. Camera, 4. Light source, 5. Cream lettuce, 6. carrier plate.




2.2 Dataset construction

In this study, the defective leaves of hydroponic lettuce were divided into four categories: Decayed, Broken, Yellow and Wilting, the color of broken leaves is the same as that of healthy leaves, and the color of yellow leaves, wilting and decayed defects becomes yellow, dark green and black, respectively, as shown in Figure 3. Secondly, the leaf texture of hydroponic lettuce in different states was also different, the texture of yellow leaves did not change significantly. The wilted leaves were wrinkled due to water loss, but basically maintained the shape of the leaves. The decayed leaves became soft, the leaf texture disappeared, and there is no fixed shape; The broken leaf texture was destroyed, with obvious cracks or holes.

[image: Two overhead images labeled A and B show lettuce plants on white surfaces with visible roots. Panel A has three labels indicating parts of the plant, while panel B has one label. The lettuce in both images has fresh green leaves.]
Figure 3 | Examples of defective leaves of hydroponic lettuce: 1. Decayed, 2. Yellow, 3. Broken, 4. Wilting. (A) Lettuce with decayed, yellow and broken leaves. (B) Lettuce with Wilting leaves.

The defective leaves in the image were annotated by LabelImg image annotation software, with Decayed as D (No.0), Broken as B (No.1), Yellow as Y (No.3), and Wilting as W (No.4). After annotation, an xml file in VOC format is generated, which contains the image size, the coordinate position of the defective leaves, and various label names. Then, the xml file was converted into the txt file corresponding to the YOLO model. Finally, the images of lettuce and the labeles were divided into a training set and a test set in an 8:2 ratio, and placed in images and labels folders, respectively.




2.3 Data augmentation

Deep learning algorithm training requires a large dataset to continuously extract and learn features, but the data collection process is very time-consuming. Therefore, offline data augmentation was conducted on the original dataset before model training, aiming to increase the number and diversity of samples on the basis of limited data, and improve the robustness and generalization ability of the network model. In the experiment, the augmentation methods adopted include: translation, mirror, cropping, Gaussian noise and brightness adjustment, etc. A total of 3600 images are obtained after enhancement.

In addition to offline augmentation operations, the model training process also uses Mosaic data augmentation technology. Randomly read 4 images in the training set for random cropping, rotation, scaling, and other operations, and then concatenate them into one image as training data. The processing results are shown in Figure 4.

[image: Two panels show images of lettuce. Panel A displays a healthy lettuce head with sections labeled zero and one. Panel B presents several smaller images of lettuce leaves, with labels zero, one, two, and three highlighting different areas of deterioration or damage.]
Figure 4 | Examples of mosaic image augmentation results: (A) Whole lettuce image; (B) Single leaf image.





3 Hydroponic lettuce defective leaves identification network



3.1 YOLOv5s network model

The main architectures of YOLOv5s include Input, Backbone, Neck, and Prediction. In the input part, Mosaic data enhancement, adaptive anchor box calculation, and adaptive image scaling are used to enrich the data and improve the training speed of the network. The Conv module, C3 module, and SPPF module are the main components of the backbone network. Among them, the C3 module is primarily used for feature extraction from images, and the SPPF module pools feature maps in different dimensions to generate semantic information. The Neck part adopts FPN (Feature Pyramid Networks) and PAN (Path Aggregation Network) structure. FPN generates image semantic information in a top-down manner, while PAN supplements target location information in a bottom-up manner. The Prediction part analyzes the feature maps of different scales generated by the Neck, and provides the category probability and positioning information of the target.




3.2 YOLOv5s network improvements

The module responsible for extracting image features in YOLOv5s is C3 module (Concentrated Comprehensive Convolution Block). As the network deepens, the texture and contour information useful for identifying small targets gradually decreases. After being processed by several C3 modules, the positional data of occluded and small targets in the image becomes inaccurate, and the feature data is easily loss. Therefore, the model may encounter error detection and omissions when identifying small or occluded targets. The defective leaves of hydroponic lettuce vary in size, and some defective leaves may be obstructed by the roots, which cannot be accurately identified in actual testing. To enhance the detection accuracy of defective leaves of hydroponic lettuce, EBG_YOLOv5s model is proposed in this research. The particular framework was presented in Figure 5, the improvement are mainly reflected in the following three aspects.

[image: Flowchart illustrating a deep learning architecture for image processing. It comprises three main sections: Backbone, Neck, and Prediction. An input image of lettuce passes through layers like C3ECA and SPPF in the Backbone, and BiFPN and GSCConv in the Neck. The Prediction section produces three output images of lettuce at different resolutions, each marked with detection boxes. Additional diagrams detail processes within C3ECA, GS bottleneck, and VoVGSCSP components. Labels are in English and Chinese.]
Figure 5 | Improved YOLOv5 model: CBS is a convolution unit; the number of the C3ECA module represents its quantity. ECA is an attention module; SPPF represents spatial pyramid pooling; GSConv is a newly introduced convolution unit; upsample is feature upsampling; the number behind the VoVGSCSP module represents the quantity of the module; Concat represents feature stitching; Conv2d represents two-dimensional convolution; 80 × 80 × 255, 40 × 40 × 255, and 20 × 20 × 255 represents the length, width, and depth of different dimensions of the network output feature map.

	(1) Introducing Efficient Channel Attention (ECA) into the C3 module of the backbone network to reconstruct the C3 module into a C3ECA module, and then add the ECA module after the last layer of C3ECA module. Attention mechanism can enhance the ability to extract image features and fully utilize limited feature information.

	(2) In the neck part, the BiFPN (Bidirectional Feature Pyramid Network) structure is used to establish bidirectional cross-scale connections, which incorporate learnable weights to enhance feature fusion and improve detection accuracy.

	(3) The neck adopts GSConv lightweight convolution instead of traditional convolution. In addition, the C3 module is replaced by VoV-GSCSP bottleneck module composed of GSConv modules. GSConv can reduce computational complexity while ensuring the accuracy, while VoV-GSCSP can reduce model inference time and improve accuracy.





3.2.1 ECA module

This study introduced an attention mechanism to the YOLOv5s network to extract feature information and enhance the identification of defective leaf characteristics. In order to keep the model lightweight, when adding attention modules, it is necessary to consider improving performance without increasing model complexity. Therefore, we introduced the ECA (Wang et al., 2020) module into the model, and its structure is shown in Figure 6.

[image: Diagram showing a neural network model. The input is a tensor with dimensions height (H), width (W), and channels (C). Global Average Pooling (GAP) reduces it to a 1x1xC vector, which is processed through a sigma function and multiplied, merging with the original input dimensions (H, W, C) to produce the output. The model involves connections and transformations along the process.]
Figure 6 | ECA (Efficient Channel Attention) module.

The ECA module is an extremely lightweight attention module that combines channelization technology from SENet (Squeeze and Stimulation Network) (Hu et al., 2018). As shown in Figure 7, the SENet structure amplifies channel correlation by using two fully connected layers after global average pooling, and extracts features by reducing and then increasing dimension. However, this method performs poorly in distinguishing complex backgrounds from target features. The ECA module only uses one-dimensional convolution to capture cross-channel nonlinear information, thereby reducing computational requirements and enabling the network to learn channel information more efficiently.

[image: Illustration of a neural network module. Blue cuboid labeled "Input" with dimensions C, H, W transforms through a structure involving Global Average Pooling (GAP), a layer of blue and pink nodes, and a 1x1×C transformation. An orange cuboid labeled "Output" follows a sigma function and multiplication operation. Arrows indicate the flow of data.]
Figure 7 | SE (Squeeze and Excitation Network) module.

In Figure 6, H, W and C represent the height, width, and channel dimensions of the feature map, respectively. GAP represents to the global average pooling layer, the symbol σ denotes the Sigmoid activation function, the value of k represents the size of the adaptive convolution kernel, which indicates the local cross-channel interaction coverage. The coverage of the interaction is proportional to the channel dimension C. Therefore, there is a mapping relationship between k and channel dimension C:

[image: Mathematical formula displaying \( C = \phi(k) \).]

Where ϕ represents the optimal mapping. Considering that the quantity of channels typically increases exponentially by a factor of 2, a nonlinear model is applied to estimate the mapping function ϕ:

[image: Equation for a constant C, written as phi of k, equals two times gamma raised to the power of x minus b, labeled as equation two.]

The expression for the coefficient k can be formulated as.

[image: Mathematical equation showing \( k = \psi(C) = \left| \frac{\log_{10} C_{\text{th}}}{\gamma} \right|_{\text{bold}} \) followed by equation number (3) in parentheses.]

Where γ and b denote the nonlinear parameters of the linear regression and |t|add is the nearest odd integer to t:




3.2.2 BiFPN module

The YOLOv5s network adopts FPN and PAN pyramid modules in the neck. Both can effectively maintain the detailed features of the target. However, excessive attention to model details often leads to overfitting and reduces the model’s generalization ability. In the dataset of defective hydroponic lettuce leaves, different defect types have differences in shape, texture, color, and other aspects. In the network training process, different input features often have uneven contribution rates. Therefore, the BiFPN (Tan et al., 2020) module is used in the Neck. On the basis of the PAN structure, BiFPN transitions from a unidirectional connection to a bidirectional cross-scale connection, and achieves higher level feature fusion through repeated stacking. It introduces adjustable weights to acquire an understanding of the importance of various input features, thereby improving efficiency and accuracy. The structure of FPN, PAN, and BiFPN are shown in Figure 8.

[image: Diagram illustrating three process models: A, B, and C. Model A shows a linear process from P3 to P7 with sequential colored nodes. Model B features parallel processes for each node. Model C depicts interconnected nodes with various directional arrows, indicating a more complex process flow.]
Figure 8 | (A) FPN structure; (B) PAN structure; (C) BiFPN structure.




3.2.3 GSConv and VoVGSCSP module

For agricultural product defect detection, speed and accuracy are equally important. To enhance the precision of identifying defective leaves in hydroponic lettuce and kepp real-time detection, we introduced GSConv into the Neck part of YOLOv5s, and the C3 module was replaced by the VoVGSCSP module.

SConv (Standard Convolution) operates on three channels at the same time, the number of convolutional kernels is equal to the number of output channels, and the number of channels in convolutional kernels is equal to the number of input channels. As the network deepens, excessive use of SConv can lead to an accumulation of parameter and computational complexity. Ghostconv (Han et al., 2020) module is proposed by Han K et al., which can effectively extract image features while reducing the number of parameters, but will lose a lot of channel information in its operation.

To resolve the issues pertaining to the convolution module aforementioned, Li et al. (2022) proposed a lightweight convolution module GSConv, the structure is shown in Figure 9. Assuming that C1 represents the number of input channels and C2 represents the number of output channels. Firstly, a standard convolution is performed, the number of channels is adjusted to half of the original number, denoted as C2/2. Secondly, a DWConv (Depthwise separable convolution) is performed, with the channel number unchanged. Finally, the results of two convolutions are concatenated and shuffled to output a result. The shuffling operation can evenly disrupt the channel information, enhance the extracted semantic information, strengthen the feature fusion and optimize the representational ability of image features.

[image: Diagram showing the GSCONV process for transforming input data with C1 channels into output data with C2 channels. The process involves initial convolution, depth-wise convolution, concatenation, and a shuffle operation. The diagram highlights the flow and transformation of data through these steps.]
Figure 9 | GSConv structure.

Building upon GSConv, the GS bottleneck VoVGSCSP module adopts a one-shot aggregation technology to optimize the cross-stage network component. This method effectively reduces computation and simplifies network structure, while still achieving satisfactory accuracy.





3.3 Model evaluation measures

To comprehensively evaluate the performance of the model, we uesd Precision (P), Recall rate (R), mean Average Precision (mAP), model size, parameters, GFLOPs and detection speed (FPS) as evaluation indicators. The P represents the precision of the model, while the R indicates its ability to detect positive samples. mAP0.5 represents the average AP of all categories when the IoU threshold is set to 0.5. The larger the value, the higher the recognition accuracy of the model. The calculation formula is as follows:

[image: The equation shows precision (P) as true positives (TP) divided by the sum of true positives (TP) and false positives (FP), indicated by \( P = \frac{TP}{TP + FP} \).]

[image: Formula illustrating recall (R), expressed as the ratio of true positives (TP) to the sum of true positives and false negatives (FN), shown as R = TP / (TP + FN).]

[image: The mathematical expression shows an integral equation: \( p = \int_{0}^{1} P(R) \, dR \), labeled as equation (6).]

[image: The image shows a mathematical formula representing the mean Average Precision (mAP). The equation is mAP equals one over N times the sum from i equals one to N of AP sub i. It is labeled as equation seven.]

In the above formula, TP represents the count of positive samples accurately classified as positive; FN designates the quantity of positive samples inaccurately categorized as negative; FP indicates the number of negative samples misclassified as positive; while N represents the number of classes encompassed in the dataset.




3.4 Experimental environment and parameter settings

The experimental environment for this study includes the Windows 10 operating system, Intel Core i7-11800H with 16GB of memory, NVIDIA GeForce RTX3060 with 8GB of memory, PyTorch deep learning framework, PyCharm development environment, CUDA 10.2.0 and cudnn 7.6.5 versions.

During the training phase, the batch size was set to 8, the weight decay was set to 0.0005. The SGD momentum was set to 0.9, and the initial learning rate is set to 0.01. The model is trained over a period of 300 epochs.





4 Experiment and result



4.1 Comparison of various attention mechanisms

To validate the effectiveness of ECA model, the network introducing BIFPN, GSConv and VOVGSCSP modules was selected as the baseline and the model performance was compared under different attention mechanisms. Three attention modules, CBAM (Woo et al., 2018), SE and CA (Hou et al., 2021), were selected to replace ECA in the network under the same experimental environment. The results of the experiment are shown in Table 1, and the mAP0.5 comparison curve for each model are shown in Figure 10.

Table 1 | Results of comparative experiments with fused attention mechanisms.


[image: A table compares different models including YOLOv5s, Baseline+CBAM, Baseline+SE, Baseline+CA, and Baseline+ECA. Columns list metrics: Precision (Pr), Recall (Re), mean Average Precision (mAP<sub>0.5</sub>), Weights in MB, GFLOPs, and Parameters. YOLOv5s shows a Precision of 88.9%, Recall of 82.3%, and mAP of 85.4% with 13.7 MB weights and 15.8 GFLOPs. Other models show varied metrics, with Baseline+ECA having the highest mAP of 88.0%. Parameters range from 5,876,594 to 7,020,913.]
[image: Line graph showing mAP 0.5 against Epochs for different models: YOLOv5s (black), Baseline+SE (purple), Baseline+CBAM (blue), Baseline+CA (green), and Baseline+ECA (red). All curves plateau around mAP 0.8 after initial epochs.]
Figure 10 | Comparison of mAP0.5 attained in fusion experiments featuring distinct attention mechanisms.

From Table 1, it can be seen that compared with the YOLOv5s, the model with CBAM module has slight improvement in Precision, while the Recall rate and mAP0.5 have both decreased. The model with SE module and the model with CA module is improved Precision and mAP0.5, but the recall rate is reduced. After introducing the ECA module, the Precision of the model was improved by 0.1%, the recall rate was improved by 2.0%, and mAP0.5 was improved by 2.6%. In addition, compared to other modules, the models with ECA modules have the smallest model weight, computational cost, and parameters. The above results fully indicate that in the self-constructed dataset of this study, the ECA module outperforms other attention modules.




4.2 Ablation of experiments

In order to verify the effectiveness of the improved model, ablation experiments were performed. The experimental results are shown in Table 2. The E_YOLOv5 represents that C3ECA and ECA module were added to the backbone. The B_YOLOv5 represents that introducing BiFPN structure. TheG_YOLOv5 represents the introduction of GSConv and VoVGSCSP modules in Neck to replace traditional convolutional and C3 module. The EBG_YOLOv5 represents using three strategies at the same time.

Table 2 | Ablation experimental result.


[image: A table comparing different YOLOv5 models based on features and performance metrics. The models listed are YOLOv5s, E_YOLOv5, B_YOLOv5, G_YOLOv5, EB_YOLOv5, and EBG_YOLOv5. Columns include ECA, BiFPN, GSConv, precision, recall, mean average precision, weights, GFLOPs, and parameters. Checkmarks indicate the use of certain methods. Performance values and parameters vary across the models.]
As shown in the table, when the attention module ECA is fused in YOLOv5s, the Precision and mAP0.5 of E_YOLOv5 are improved by 0.5% and 1.3%, respectively, but the recall rate decreases by 0.4%. And the model weight and parameters only increased by 0.1MB and 24, respectively, without increasing the calculation cost. This indicates that adding the ECA module improves the overall performance of the model without increasing computational cost, parameters and weight. When only replacing the feature pyramid architecture, the Recall rate and mAP0.5 increased by 3.4% and 1.6%, respectively, while the Precision decreased by 1.5%. In addition, the weight of the model increased by 0.1MB, GFLOPs increased by 0.2, and parameters increased by 65545. Therefore, the introduction of the BiFPN structure improved the ability of model to find positive examples, but the feature fusion mechanism resulted in a certain loss of precision of the model. By adding the GSConv and VoVGSCSP modules to the Neck part, the Precision and mAP0.5 increased by 0.8% and 1.8%, respectively. Meanwhile, the weights, GFLOPs, and parameters of the model decreased by 2.2MB, 3.2, and 1177120, respectively. This shows that GSConv can more fully learn the features of lettuce leaf and has lower computational costs compared to standard convolutions.

By introducing ECA and BiFPN modules into YOLOv5, the Precision, Recall rate, and mAP0.5 were improved by 0.6%, 1.1%, and 1.8%, respectively, compared to YOLOv5. Compared to E_YOLOv5 and B_YOLOv5, EB_YOLOv5 compensates for the shortcomings in Precision or Recall rate of single module, indicating the combination of ECA and BiFPN to enhance model performance. With three strategies used in YOLOv5, compared to YOLOv5s, the Precision, Recall rate, and mAP0.5 of EBG_YOLOv5 increased by 0.1%, 2.0%, and 2.6%, respectively. Meanwhile, the model weights, GFLOPs, and parameters were reduced by 2.1MB, 3.0, and 1144319, respectively. Therefore, the above results can fully illustrate the effect of this paper on the model improvement.

Based on ablation experiments, in order to reflect the influence of each improvement strategy on feature extraction, this study visualized the results using heat feature maps and analyzed and compared them, as shown in Figure 11. Figure 1A shows the original image, Figure 11B shows the feature map generated by the C3 module (2th layer) of the YOLOv5s, and Figure 11C shows the feature map generated by the C3ECA module (2th layer) of the E_YOLOv5s. Figure 11D shows the feature map outputted by the Concat module (12th layer) of the YOLOv5s, and Figure 11E shows the feature map outputted by the BiFPN module (12th layer) of B_YOLOv5. Figure 11F shows the feature map outputted by the C3 module (17th layer) of the YOLOv5s, while Figure 11G shows the VoVGSCSP module (17th layer) outputted of G_YOLOv5.

[image: Image showing a sequence labeled A to G. Panel A has a top view of a lettuce head with roots exposed. Panels B, C, F, and G show thermal images with red, blue, and yellow patterns, indicating heat distribution. Panels D and E display pixelated graphics with a red center and multicolored border.]
Figure 11 | Original and intermediate feature map of Hydroponic lettuce: (A) Original picture; (B) YOLOv5s C3 (2th layer) output; (C) E_YOLOv5 C3ECA (2th layer) output; (D) YOLOv5s Concat (12th layer) output; (E) B_YOLOv5 Bifpn (12th layer) output; (F) YOLOv5s C3(17th layer) output; (G) G_YOLOv5 VoVGSCSP (17th layer) output.

From the thermal feature map, it can be seen that after the introduction of the ECA module, the model pays more attention to the features of lettuce, and the texture features of lettuce are clearer than the original network. This indicates that the introduction of the ECA module can effectively improve the learning ability of lettuce features in the network. When using the BiFPN structure, it can be seen that the receptive field of the feature map is enlarged, and the focus of the model is still on the lettuce part in the red area of the feature map. This reflects the effect of BiFPN structure on adjustable weight learning for different features. After replacing the traditional convolution and C3 modules with GSConv and VoVGSCSP modules in the neck, the output layer has a more accurate localization of defect leaf features. This indicates that GSConv performs better than traditional convolution. The above experimental results demonstrate the effectiveness of the three improvement strategies in this study.

The Precision, Recall rate and mAP0.5 comparison curves between the original YOLOv5s and the EBG_YOLOv5 are shown in Figure 12. It can be seen intuitively from Figure 12 that the convergence rate of EBG_YOLOv5 is inferior to that of YOLOv5s. However, the Precision, Recall rate, and mAP0.5 of EBG_YOLOv5 have demonstrated improvement.

[image: Graphs A, B, and C compare YOLOv5s (black line) and EBG_YOLOv5 (red line) performance over 300 epochs. Graph A shows precision, peaking near 0.9. Graph B illustrates recall, stabilizing around 0.85. Graph C presents mean Average Precision at 0.5 (mAP0.5), reaching approximately 0.88. Each graph demonstrates gradual improvements and performance stabilization over the epochs.]
Figure 12 | Comparison of result between EBG_YOLOv5 and YOLOv5s: (A) Comparison of Precision between EBG_YOLOv5 and YOLOv5s; (B) Comparison of Recall rate between EBG_YOLOv5 and YOLOv5s; (C) Comparison of mAP0.5 between EBG_YOLOv5 and YOLOv5s.

Table 3 presents the comparison of mean accuracy between YOLOv5s and EBG_YOLOv5 for each class. As can be seen from Table 3, the EBG_YOLOv5 has improved the recognition accuracy of four types of defective leaves. The recognition accuracy for decayed leaves was improved by 3.3%, broken leaves by 7.7%, yellow leaves by 0.6%, and wilted leaves by 1.1%.

Table 3 | Comparison of all class accuracy between the EBG_YOLOv5 and YOLOv5s.


[image: Table showing performance percentages of YOLOv5s and EBG_YOLOv5 across four categories: Decayed (77.8, 81.1), Broken (74.6, 82.3), Yellow (90.0, 90.6), and Wilting (98.0, 99.1).]



4.3 Comparison experiment of different algorithm model

In order to compare the effectiveness and performance of the EBG_YOLOv5 and other models, we selected SSD, Faster-RCNN, YOLOv3, YOLOv4, YOLOv7 (Wang et al., 2023) and YOLOv5m for comparative experiments under the same experimental environment and parameters.

Figure 13 shows the comparison of the test results for EBG_YOLOv5, YOLOv5s, YOLOv3, YOLOv4, YOLOv5m, YOLOv7, SSD and Faster R-CNN. It can be seen from the comparison of Figure 13A with D, G, J, M, and P that EBG_YOLOv5 can effectively detect the defective leaves at the edge of the image; It can be seen from the comparison between Figures 13B and E, H, K, N, Q, T and W that the detection effects of the other six models are affected by the change of environmental brightness, resulting in missed detection and false detection, while EBG_YOLOv5 can still accurately detect the defective leaves in the image; As can be seen from the comparison of Figure 13C with F, I, L, O, R, U, and X, EBG_YOLOv5 can detect small target defects in the image with higher confidence.

[image: A grid of lettuce images analyzed with different object detection models. Each model displays boxes with confidence scores. Models shown are EBG_YOLOv5 (panels A-C), YOLOv5s (D-F), YOLOv3 (G-I), YOLOv4 (J-L), YOLOv5m (M-O), YOLOv7 (P-R), SSD (S-U), and Faster-RCNN (V-X). Each panel highlights different detection strategies and box colors specific to each model.]
Figure 13 | Test results for different algorithms. (A–C) EBG_YOLOv5 testing effect. (D–F) YOLOv5 testing effect. (G–I) YOLOv3 testing effect. (J–L) YOLOv4 testing effect. (M–O) YOLOv5m testing effect. (P–R) YOLOv7 testing effect. (S–U) SSD testing effect. (V–X) Faster-RCNN testing effect.

From Table 4, it can be seen that compared to other models, the EBG model proposed in this study has smaller weights. In terms of detection accuracy, EBG_ YOLOv5 is better than YOLOv5s and also better than the YOLOv5m model. Compared to the other five models, EBG_ YOLOv5 shows better performance. In terms of detection speed, EBG_ YOLOv5 and YOLOv5 are basically the same. Compared to the other six detection algorithms, EBG_ YOLOv5 has higher FPS. Therefore, in contrast, EBG_ YOLOv5 has advantages in detection performance.

Table 4 | Comparison of experimental results between various models.


[image: Comparison table of various models with columns for model name, mAP0.5 in percentage, weights in megabytes, and detection speed in frames per second. SSD has a mAP of 74.5%, weights of 103 MB, and speed of 41.1 FPS. Faster-RCNN has 82.8%, 315 MB, and 11.0 FPS. YOLOv3 shows 84.3%, 235 MB, and 46.2 FPS. YOLOv4 displays 84.6%, 244 MB, and 48.6 FPS. YOLOv5s, YOLOv5m, YOLOv7, and EBG_YOLOv5 have improved values, with EBG_YOLOv5 showing the highest mAP of 88.0% and speed of 61.7 FPS. Bold values highlight improvements.]




5 Conclusion and discussion

We have studied recent research on defect detection in lettuce and compiled it into a table, as shown in Table 5. The dataset in the literature mainly consists of a single object in a laboratory environment and multiple objects in a field or greenhouse environment. The main detection objects are defective leaves, diseases, and lettuce seedlings. From Table 5, it can be seen that the optimized network is superior to the original network, indicating that improving the network is effective.

Table 5 | Some researches on lettuce detection in recent years.


[image: Table comparing different lettuce studies on defect conditions and neural networks. It covers objects, dataset conditions, environment, networks like CenterNet and YOLO, improvement status, mean average precision (mAP), and recall (Re) percentages. Various lettuce defects and environments are mentioned, including plant factories and greenhouses, with networks showing different performance metrics.]
Intelligent detection of hydroponic lettuce defective leaves after harvesting is of great significance to hydroponic lettuce quality and value assurance. This study proposed a method for detection of defective leaves of hydroponic lettuce based on improved YOLOv5. The ECA module was integrated into the backbone of YOLOv5 to enhance detection accuracy. Then, BiFPN pyramid structure was introduced to enhance feature fusion and improve the retention rate of each type of feature information in the model. Finally, the GSConv and VoVGSCSP module were incorporated into the Neck part. This not only enhances model accuracy, but also reduce parameters and calculations.

The ablation experiments showed that in comparison to the YOLOv5s model, the proposed EBG_YOLOv5 have a rise in Precision, Recall rate, and mAP0.5 by 0.1%, 2.0%, and 2.6%, respectively, while the weights, GFLPOs and parameters decreased by 15.3%,18.9% and 16.3%. The comparison experimental results proved that the proposed EBG_YOLOv5 model enhances the accuracy in detecting defective leaves of hydroponic lettuce and optimizes the identification of small target leaves and root occlusion. It achieves higher performance with a smaller memory footprint than other mainstream target detection models.

The establishment of defect leaves identification model of hydroponic lettuce can provide technical support for related quality detection equipment. In future work, we will increase the variety of lettuce in the dataset to further improve the applicability of the model and continue to optimize the model to prepare for the subsequent research on the quality detection and grading equipment of hydroponic lettuce.
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Introduction

The challenges associated with data availability, class imbalance, and the need for data augmentation are well-recognized in the field of plant disease detection. The collection of large-scale datasets for plant diseases is particularly demanding due to seasonal and geographical constraints, leading to significant cost and time investments. Traditional data augmentation techniques, such as cropping, resizing, and rotation, have been largely supplanted by more advanced methods. In particular, the utilization of Generative Adversarial Networks (GANs) for the creation of realistic synthetic images has become a focal point of contemporary research, addressing issues related to data scarcity and class imbalance in the training of deep learning models. Recently, the emergence of diffusion models has captivated the scientific community, offering superior and realistic output compared to GANs. Despite these advancements, the application of diffusion models in the domain of plant science remains an unexplored frontier, presenting an opportunity for groundbreaking contributions.





Methods

In this study, we delve into the principles of diffusion technology, contrasting its methodology and performance with state-of-the-art GAN solutions, specifically examining the guided inference model of GANs, named InstaGAN, and a diffusion-based model, RePaint. Both models utilize segmentation masks to guide the generation process, albeit with distinct principles. For a fair comparison, a subset of the PlantVillage dataset is used, containing two disease classes of tomato leaves and three disease classes of grape leaf diseases, as results on these classes have been published in other publications.





Results

Quantitatively, RePaint demonstrated superior performance over InstaGAN, with average Fréchet Inception Distance (FID) score of 138.28 and Kernel Inception Distance (KID) score of 0.089 ± (0.002), compared to InstaGAN’s average FID and KID scores of 206.02 and 0.159 ± (0.004) respectively. Additionally, RePaint’s FID scores for grape leaf diseases were 69.05, outperforming other published methods such as DCGAN (309.376), LeafGAN (178.256), and InstaGAN (114.28). For tomato leaf diseases, RePaint achieved an FID score of 161.35, surpassing other methods like WGAN (226.08), SAGAN (229.7233), and InstaGAN (236.61).





Discussion

This study offers valuable insights into the potential of diffusion models for data augmentation in plant disease detection, paving the way for future research in this promising field.





Keywords: plant science, plant disease, data augmentation, generative AI, GAN, diffusion, vision transformers, leaf segmentation




1 Introduction

The advent of artificial intelligence (AI) has revolutionized numerous fields, including plant sciences. AI’s potential to automate and optimize various tasks has been harnessed to address some of the most pressing challenges in plant sciences, such as disease detection and classification [Ahmad et al. (2018)]. The historical progression of AI in plant sciences can be traced back to the early applications of machine learning algorithms for tasks such as plant classification and disease detection. These initial applications primarily relied on handcrafted features extracted from plant images, which were then used to train machine learning models.

The emergence of computer vision technologies marked a significant milestone in the use of AI in plant sciences. Computer vision, a field that enables computers to gain a high-level understanding from digital images or videos, has been instrumental in automating the process of disease detection and classification in plants. The application of computer vision in plant sciences has been facilitated by the development of Convolutional Neural Networks (CNNs), which have shown remarkable success in image classification tasks [Salman et al. (2023)]. The successful application of computer vision technologies in plant sciences is heavily reliant on the existence of broad and diverse datasets. Compared to regular computer vision tasks, amassing a large amount of plant disease image data can be a daunting task. Labeling plant disease data needs a good understanding of biology. Also, to get top-quality disease data, plants have to be grown in a very controlled and separate area to keep them from getting contaminated. This process involves a lot of work, costs and restrictions due to seasonal changes and geographical locations. Datasets for plant diseases are often uneven, and things like weather, temperature, and bugs that carry diseases can greatly affect how diseases develop. Some diseases are hard to gather data on, and the data that is collected often has uneven amounts for each class of disease. Such datasets often exhibit a skew in representation, with some disease classes being over-represented [Ahmad et al. (2021)]. To mitigate these issues, the concept of data augmentation has been introduced. Data augmentation strategies enhance datasets by creating varied versions of the original images, using methods such as cropping, resizing, and rotation. This not only boosts the quantity of available training data but also introduces an element of diversity. This diversity aids in improving the model’s ability to generalize, thereby enhancing its performance on unseen data.

The image features that give clues for diagnosis are often much smaller than in general object recognition problems. For example, in the early stages of a disease, the only signs might be just a tiny dot or faint lines in the image. Diagnosing plants based on images is very hard because it requires recognizing very fine details. Usually, a deep learning model like a CNN looks at the big picture of an image, like its brightness or color, rather than small details that might show a disease. Also, when testing a model using different sets of data (training, validation, and test sets), things like the background or brightness of the images can make the model seem more accurate than it really is. This might result in another form of overfitting, such that it works well in one situation but not in others. For example, a model might be 86% accurate at diagnosing a disease in cucumbers on one farm but only 20.7% accurate on a different farm.

Generally, there isn’t a lot of variety in pictures of diseased plants, especially if they’re grown in a controlled environment. But it’s usually easy to get pictures of healthy plants. So, we think that if we can turn pictures of healthy plants into pictures of diseased plants, we can create a more varied and reliable dataset. This could make diagnosing diseases more accurate and also make it cheaper to label the data. Image Inpainting techniques, which have seen significant advancements in recent years, offer the potential to fill this gap. By applying these techniques, it is possible to create realistic simulations of plant diseases on healthy leaves, thereby enriching the dataset and enhancing the model’s ability to generalize across different scenarios.

Image Inpainting, sometimes called Image Completion, is like filling in a puzzle where pieces are missing. It’s about adding parts to an image so that everything fits together perfectly and looks natural. One of the most effective and widely used tools for this job is called Generative Adversarial Networks (GANs), introduced by Goodfellow et al. (2014). GANs are a class of artificial intelligence algorithms that use two neural networks, a generator, and a discriminator, contesting with each other in a zero-sum game framework. They are capable of generating synthetic images that are almost indistinguishable from real images, providing a powerful tool for data augmentation. Imagine having a brush that knows exactly how to paint flowers, leaves, or faces. Some methods make sure that the filled-in parts don’t all look the same. This is important because we don’t want every leaf or tree to look identical. Some new techniques are being developed to make sure there’s a good balance between making things look real and adding some variety. Some variations of GANs like StyleGAN by Karras et al. (2019) and CycleGAN by Zhu et al. (2017) gained huge popularity due to their superior results, especially in style transfer, which is another useful technique in image processing. Consider discoloration or patterns on a leaf as a style template for a particular disease. In such cases, this ability to perform style transfer can be used to create artificial disease symptoms in healthy leaf images in order to fill the gap between under-represented and over-represented classes. However, these methods may result in unwanted artifacts in unwanted locations, such as disease symptoms on the ground or any other object in the background. Therefore, in this research, we performed experiments on an instance-aware generative adversarial network, InstaGAN by Mo et al. (2019). This method uses instance segmentation masks to guide the creation of images but does not directly use them for filling in missing parts.

Diffusion models have emerged as a prominent approach in the field of AI, specifically in image generation, and have become a notable rival to Generative Adversarial Networks (GANs). RePaint by Lugmayr et al. (2022) is a cutting-edge approach to free-form inpainting that is built upon Denoising Diffusion Implicit Models (DDIM) by Song et al. (2021). The structure of DDIM consists of two main components: a forward diffusion process and a reverse diffusion process. In the forward diffusion process, the original data is gradually corrupted by adding noise at each step, following a carefully designed noise schedule. This process transforms the data into pure noise over a series of timesteps. In the reverse diffusion process, the model learns to reverse this transformation, starting from noise and gradually denoising it to generate new samples that resemble the original data. RePaint starts with the original image and applies a forward diffusion process, corrupting the specified regions (masks) with noise. In the reverse process, RePaint utilizes a pretrained unconditional DDIM as the generative prior. By altering only the reverse diffusion iterations, it reconstructs the image, filling in the masked regions with new content that blends seamlessly with the surrounding areas.

The techniques described above can be applied to the creation of disease images from healthy leaf images. By utilizing advanced inpainting methods, it is possible to simulate the appearance of plant diseases on healthy leaves. This can be particularly useful in building diverse and reliable disease datasets for plant diagnosis. The ability to transform healthy images into disease cases can improve the performance of diagnosis models and reduce the cost of labeling, contributing to more effective and efficient plant disease management. In light of the evolving landscape of image generation and the transition from traditional GANs to diffusion models, this paper makes several key contributions to the field. These insights not only deepen our understanding of the underlying principles of models like InstaGAN and RePaint but also demonstrate their practical applications in areas such as plant disease detection. The specific contributions of this study are as follows:

	Comparative Analysis: Provides a detailed comparison of diffusion models, specifically DDIM and RePaint, with GAN-based methods, including InstaGAN, in the context of plant disease image augmentation.

	Application to Agriculture: Demonstrates the application of these models to plant disease detection, using a subset of the PlantVillage dataset for a fair and relevant evaluation.

	Quantitative Evaluation: Introduces quantitative measures such as FID [Heusel et al. (2017)], KID [Binkowski et al. (2018)], IS [Salimans et al. (2016)], PSNR [Ledig et al. (2017)], and SSIM [Wang et al. (2004)] for an objective assessment of model performance.

	In-Depth Exploration: Offers an in-depth exploration of InstaGAN and RePaint, including their underlying principles, structures, and advantages.

	Contribution to Literature: Highlights the chronological development of diffusion models, contributing valuable insights into the field of AI and image generation.

	Practical Implications: Emphasizes the practical implications of the findings, with potential applications in various industries including agriculture and healthcare.



These contributions collectively enhance our understanding of diffusion models and their application in image generation and augmentation, offering valuable insights for both academic research and practical implementation.




2 Background



2.1 Generative adversarial networks

The advent of Generative Adversarial Networks (GANs) marked a significant advancement in generative AI technology. The Generator’s goal is to create data that is indistinguishable from real data. It takes random noise as input and generates samples as output. The aim is to improve its ability to create fake data by learning from the Discriminator’s feedback. The Discriminator’s goal is to distinguish between real data from the training set and fake data created by the Generator. It takes in both real and fake samples and assigns a probability that a given sample is real. During training, the Generator and Discriminator are in a continuous game where the Generator tries to produce fake data that looks as real as possible, and the Discriminator tries to get better at distinguishing real data from fake. This process leads to the Generator creating highly realistic data. The primary purpose of GANs extends beyond merely creating realistic fake data; it leverages this capability for various practical applications that can benefit different fields and industries. These applications encompass a wide range of tasks, including the creation of realistic images such as faces that do not exist, data augmentation (particularly valuable when limited real data is available), transferring the style of one image to another (such as converting a photo into a painting), enhancing the resolution of images (known as Super-Resolution), generating molecular structures for potential new drugs (a key component in Drug Discovery), and creating realistic voice recordings.

While the original GANs provided a novel way to generate data, they suffered from training instability and mode collapse. To address these limitations, Conditional Generative Adversarial Nets (cGANs) were introduced by Mirza and Osindero (2014), allowing the model to generate data conditioned on certain information, thereby making the data generation process more controlled. This approach mitigated some of the training issues but still faced challenges in generating complex data structures. The introduction of Deep Convolutional Generative Adversarial Networks (DCGANs) by Radford et al. (2015) further advanced the field by utilizing convolutional layers in both the generator and discriminator, making them more suitable for image generation. Wasserstein GAN (WGAN) by Arjovsky et al. (2017) introduced a different loss function that provided more stable training and helped to solve the vanishing gradient problem, a significant improvement over previous methods. Cycle-Consistent Adversarial Networks (CycleGAN) by Zhu et al. (2017) enabled image-to-image translation without paired examples, such as applying facial disguise i.e. glasses, mask, and beard on another person’s face, addressing the limitation of needing paired training data in previous models (Ahmad et al. (2022)). However, CycleGANs could suffer from artifacts in the translated images. Recent advancements such as BigGAN by Brock et al. (2018) have focused on generating high-fidelity and diverse images at a large scale, pushing the boundaries of what GANs can achieve. The field continues to evolve with innovations like StyleGAN by Karras et al. (2019), a style control on the generated images, allowing for fine-grained control over the appearance of the generated data. While StyleGAN provides unprecedented control, it also introduces new challenges in understanding and manipulating the latent space. StarGAN by Choi et al. (2017) introduced a novel and scalable approach that uses a single model to perform image-to-image translations for multiple domains.

Combining the concepts of cGANs and CycleGAN, Mo et al. (2019) introduced InstaGAN, which incorporates instance-level information into image-to-image translation through the use of instance segmentation masks, allowing for more precise control over individual objects within the scene. These masks enable InstaGAN to selectively target specific regions of the image, enhancing the translation accuracy and flexibility. InstaGAN’s approach of building upon the CycleGAN framework and drawing inspiration from conditional GANs represents a novel and powerful combination. By leveraging the global transformation capabilities of CycleGAN and the targeted control offered by cGANs, InstaGAN introduces a more nuanced and flexible approach to image-to-image translation. This enables a wide range of creative and practical applications, from object transfiguration to style transfer, and represents a significant contribution to the field of generative models.




2.2 Diffusion models

Diffusion models, also known as score-based generative models, are rooted in the idea of modeling the data distribution directly using a noise process. In the context of AI and image generation, diffusion models have been explored as a way to create realistic and high-quality images by modeling the data distribution directly. This approach contrasts with GANs, which rely on a generator-discriminator framework to create synthetic data. Diffusion models have become a rival to GANs due to several key factors. GANs are known for their training instability, where small changes in hyperparameters can lead to vastly different results. Diffusion models, on the other hand, have shown more stable training behavior. Diffusion models have demonstrated the ability to generate high-quality images that rival or even surpass those produced by state-of-the-art GANs. Diffusion models also offer flexibility in modeling different data distributions, making them applicable to a wide range of tasks beyond image generation.

Diffusion models often have a simpler architecture and training process compared to GANs, which require careful balancing between the generator and discriminator. Diffusion models tend to be more robust to hyperparameter choices and are less prone to common GAN issues such as mode collapse. The diffusion process provides a clear and interpretable way to understand how data is generated, unlike the more opaque process of GANs. Some studies have shown that diffusion models may generalize better to unseen data, making them a valuable tool for tasks such as data augmentation. The paper “High-Resolution Image Synthesis with Latent Diffusion Models” by Rombach et al. (2022) marked a significant step forward by achieving state-of-the-art synthesis results on image data through diffusion models (DMs). This approach greatly boosted visual fidelity. Following this, Choi et al. (2021) introduced Iterative Latent Variable Refinement (ILVR), guiding the generative process in Denoising Diffusion Probabilistic Models (DDPM) [Ho et al. (2020)] to generate high-quality images based on a given reference image. This method enabled a single DDPM to sample images from various sets. Various studies have proven that DMs offers a more stable training process compared to traditional GANs [Muhammad et al. (2023)]. The diffusion process provides a clear and smooth path from the data to noise, making the learning of the reverse process more tractable [Dhariwal and Nichol (2021)].

RePaint by Lugmayr et al. (2022) takes image inpainting to a new level. RePaint leverages the structure and principles of DDPM to achieve high-quality inpainting. Arbitrary binary masks are used to specify the regions for inpainting. The forward and reverse diffusion processes of DDPM are used to model the data distribution and generate new content within specified regions of an image. RePaint offers fine-grained control over the inpainting process, allowing for targeted modifications within specific regions defined by the masks. Unlike traditional methods that train for specific mask distributions, RePaint can handle even extreme masks, providing flexibility in the inpainting process. By employing a pretrained unconditional DDPM, RePaint doesn’t require paired examples for training. This allows it to generate diverse and high-quality output images for any inpainting form.





3 Related work

GANs have been used to generate synthetic images of plant diseases, addressing the issue of class imbalance and enhancing the robustness of disease detection models. Several studies have proposed modifications and improvements in the original GAN architecture to address limitations of GANs such as mode collapse, training instability and other issues faced in plant disease data modeling.

Bi and Hu (2020) utilized improved the training stability of Wasserstein GANs for complex image generation such plant disease images. LR-GAN by Yang et al. (2016) further extended GANs with LRGAN, introducing layered recursive networks for image generation. The introduction of Self-attention Generative Adversarial Networks (SAGAN) by Zhang et al. (2018) marked a significant advancement by enhancing the focus on specific regions of images. A substantial leap towards plant-specific image synthesis was made with the work on Two Pathway Encoder GAN Yilma et al. (2020), providing a novel architecture focusing on data generation. Zhang et al. (2022) introduced MMDGAN, a fusion data augmentation method for tomato-leaf disease identification. Abbas et al. (2021) further refined this approach by utilizing transfer learning with C-GAN for tomato plant disease detection. In 2022, the introduction of LeafGAN by Cap et al. (2022) marked a turning point by providing a versatile and effective tool specifically designed for plant disease image augmentation. The most recent advancements include hybrid approaches such as the combination of E-GAN and CapsNet by Vasudevan and Karthick (2023), PiiGAN by for pluralistic image inpainting, and Fine Grained-GAN for grape leaf spot identification by Zhou et al. (2021). These methods collectively enhanced the robustness, diversity, and realism of image generation, significantly advancing data augmentation techniques.

Diffusion models, unlike GANs, do not rely on adversarial training. Instead, they model the data distribution by reversing a diffusion process, which starts from the data and adds noise at each step until it reaches a known prior distribution. Despite the fact that diffusion models have demonstrated superior performance over GANs in terms of image quality and other metrics, no significant research has been conducted to investigate their performance in complex applications such as plant disease synthesis. In this study, we delve into the principles of diffusion technology, contrasting its methodology and performance with state-of-the-art GAN solutions. We examine the guided inference models of GANs, named InstaGAN, and compare it with RePaint, a diffusion-based model. Our findings reveal that the diffusion model demonstrates superior quality in data augmentation against GAN-based solutions. This study offers valuable insights into the potential of diffusion models for data augmentation in plant disease detection, paving the way for future research in this promising field.




4 Methodology

The methodology section provides a comprehensive overview of the techniques and algorithms employed in this research. It includes the principles, architecture, and mathematical foundations of the methods under investigation, namely InstaGAN and RePaint. The section also delves into the principles of Denoising Diffusion Probabilistic Models (DDPM), which form the basis of the RePaint method. Understanding these methodologies is essential for replicating the research and building upon the findings.



4.1 InstaGAN

InstaGAN, or Instance-aware Generative Adversarial Network, is a novel approach for unsupervised image-to-image translation. It is particularly effective in challenging cases where an image has multiple target instances, and the translation task involves significant changes in shape. The methodology of InstaGAN is divided into several key components and introduces several unique features.



4.1.1 Instance level control

At its core, InstaGAN is a specialized GAN that emphasizes instance-aware image-to-image translation. It uses binary instance masks to guide the transformation process, allowing for targeted modifications within specific instances. This control is achieved through a specialized loss function that considers both the traditional GAN loss and an instance-level loss. In the context of plant science, masks can be used to target specific leaves or flowers for transformation, while leaving the rest of the image unchanged. To understand how InstaGAN accomplishes this, let’s explore its architecture, instance-level control, training losses, and the unique sequential mini-batch translation technique.




4.1.2 InstaGAN architecture

It builds upon the CycleGAN framework by Zhu et al. (2017), inspired by conditional GANs by Mirza and Osindero (2014). It consists of two coupled generators GXY: X×A → Y ×B and GY X: Y ×B → X×A, and adversarial discriminators DX: X × A → {‘X’, ‘not X’} and DY: Y × B → {‘Y’, ‘not Y’}. These generators play a pivotal role in the translation process. Notably, GXY transforms healthy leaf images X into their corresponding diseased versions Y, while GY X performs the inverse operation, converting disease leaf images Y back to healthy ones X. Furthermore, these generators are responsible for the reconstruction of masks on both sides, where A represents binary masks for healthy leaves, and B represents binary masks for disease-infected leaves. This level of control is crucial for simulating plant diseases accurately. For example, you can target specific leaves or parts of leaves for transformation, leaving the rest of the image unchanged, which is essential for creating realistic synthetic data. By having generators responsible for mask reconstruction, InstaGAN ensures that the transformed images align with the corresponding masks, enhancing the accuracy of synthetic data generation. The cycle consistency ensures that translated images can be transformed back to their original state. This property helps maintain image quality and realism during the translation process.

The leaf image representation hGX as formulated in Equation 1 and the n-th instance mask representation [image: Mathematical expression depicting "H" with a superscript "n" and a subscript "G A".]  in Equation 2 in the generator G are presented below:

[image: Equation showing \( h_{GX}(x, a) = \left[ f_{GX}(x) \sum_{j=1}^{N} f_{GA}(a_i) \right] \), labeled as equation \( (1) \).]

[image: Mathematical equation showing \( h^{(H)}_{GA}(x,a) = \left[ f_{GX}(x) \sum_{i=1}^{N} f_{GA}(a_i)f_{GA}(a_n) \right] \). The equation is labeled as equation (2).]

fGX function extracts features from the healthy leaf image x and fGA extracts features from the binary mask ai.

The discriminator D’s representation, which is permutation-invariant to the instances, is formulated in Equation 3.

[image: Equation showing \( h_{DX}(x, a) = \left[f_{DX}(x); \sum_{i=1}^{N} f_{DA}(a_i)\right] \) labeled as equation (3).]

In Figure 1, an overview of the InstaGAN architecture is presented, illustrating its key components. The figure also provides a visual representation of both the generator and discriminator networks, offering insights into the underlying structure of InstaGAN.

[image: Diagram illustrating an image generation and discrimination process, divided into three parts: A) Overview shows transformation between different image states; B) Generator G depicts converting an original image and mask to generate new ones with specified functions and transformations; C) Discriminator D evaluates the outputs, categorizing them as 'X' or 'Not X'. The images are primarily of leaves and their corresponding masks, highlighting machine learning processes in image analysis.]
Figure 1 | Overview, Generator, and Discriminator of InstaGAN Architecture. (A) Provides an overview of the image-to-image translation process, (B) illustrates the generator responsible for transforming healthy leaf images into disease-infected counterparts, and (C) showcases the discriminator’s role in distinguishing between generated and real images.




4.1.3 Training losses

The training process of InstaGAN incorporates several critical loss components, each serving a specific purpose in guiding the model’s learning. The GAN loss leverages the adversarial nature of GANs to encourage the generated images to be indistinguishable from real images in the target domain. Specifically, InstaGAN utilizes Least Square GAN by Mao et al. (2017) to ensure stable training, sharper image quality, and reduced mode collapse by improving gradient behavior and discriminator performance. It consists of two terms as shown in Equation 4. One term penalizes the difference between the discriminator’s prediction for real images. The other term penalizes the discriminator’s predictions for the translated images.

[image: The image shows a mathematical equation labeled as \(L_{\text{LSGAN}}\) which represents a loss function in Least-Squares Generative Adversarial Networks. It includes terms with discriminators \(D_X\), \(D_Y\), generators \(G_{YX}\), and squared terms, structured for adversarial loss calculation.]

The Cycle-Consistency Loss Lcyc as introduced by CycleGAN is presented in Equation 5. Lcyc is essential for maintaining the integrity of images throughout the translation process. This loss term measures the difference between the reconstructed images GYX(GXY(x, a)) and GXY(GY X(y, b)) and their corresponding input images (x,a) and (y,b).

[image: Mathematical expression showing \( L_{cyc} = \| G_{YX}(G_{XY}(x, a)) - (x, a) \| + \| G_{XY}(G_{YX}(y, b)) - (y, b) \| \). This is equation (5).]

Identity Mapping Loss Lidt was also introduced by CycLeGAN. Lidt as presented in Equation 6 measures the difference between the translated images GXY(y,b) and GYX(x,a) and their corresponding original images (y,b) and (x,a). This ensures that images do not lose their essential characteristics during the translation process.

[image: Equation showing \( L_{\text{ddt}} = \left| G_{xy}(y, b) - (y, b) \right| + \left| G_{yx}(x, a) - (x, a) \right| \), labeled as equation (6).]

Context Preserving Loss Lctx as proposed originally for InstaGAN encourages the network to focus on translating instances while preserving the background context. This loss term is computed based on weighted differences between the translated and original images, as shown in Equation 7 taking into account the binary masks (a,b′) and (b,a′) that define which regions are translated.

[image: Mathematical expression showing an equation: \( L_{\text{cost}} = \| w(a, b) \odot (x - y) \|_1 + \| w(b, a) \odot (y - x) \|_1 \), labeled as equation (7).]

The combination of these loss components denoted as LInstaGAN is presented in Equation 8. Hyperparameters λcyc, λidt, λctx are used to control the influence of each loss term, allowing for fine-tuning and balancing during the training process.

[image: Equation labeled (8) displays the formula for L_InstGAN: L_InstGAN equals L_LSGAN plus lambda_cyc L_cyc plus lambda_id L_idt plus lambda_const L_const.]

InstaGAN introduces a sequential mini-batch translation technique to handle an arbitrary number of instances without increasing GPU memory. The sequential version of the training loss is presented in Equation 9.

[image: Equation for the InstaGAN-SM loss: \( L_{\text{InstaGAN-SM}} = \sum_{m=1}^{M} L_{\text{LSGAN}}((x,a),(y_{mn},b'^m)) + L_{\text{content}}((x_m,a_m), (y_{m},b'_{m})) \). It is labeled as equation 9.]

where [image: Equation showing L sub content equals lambda sub eye L sub eye plus lambda sub id L sub id plus lambda sub ex L sub ex.] .

However, for the current Plant Village dataset, which predominantly consists of images with a single leaf instance per image, the application of the sequential mini-batch technique may not be imperative. Nonetheless, it’s worth noting that this technique remains a valuable tool in our arsenal and could be considered for future datasets or scenarios where images contain multiple leaf instances per image, offering efficient training options in such cases.





4.2 RePaint

RePaint introduces a powerful inpainting approach, free-form inpainting, which involves adding new content to an image based on arbitrary binary masks. Unlike existing methods that struggle with generalization to unseen mask types and tend to produce simple textural extensions, RePaint presents a novel solution that leverages Denoising Diffusion Probabilistic Models (DDPM) to handle extreme masks effectively.

The core idea behind RePaint is to utilize a pretrained unconditional DDPM as the generative prior, enhancing its versatility and capability to generate high-quality inpainted images. To achieve this, the reverse diffusion iterations are modified to condition the generation process using the information provided by the input image. Importantly, RePaint achieves these improvements without altering or conditioning the original DDPM network, ensuring that it can produce diverse and top-quality output images regardless of the inpainting form. RePaint holds significant promise for enhancing our synthetic leaf data generation task, particularly in constructing disease-infected leaf samples from healthy leaf images as input when compared to InstaGAN. Unlike InstaGAN, which primarily focuses on image-to-image translation with an emphasis on instance-level control, RePaint’s strength lies in its ability to handle extreme and arbitrary binary masks. In our task context, RePaint can effectively simulate various disease patterns on healthy leaves, providing a more diverse and adaptable approach.



4.2.1 Denoising diffusion probabilistic models

The DDPM learns a distribution of images given a training set. During training, DDPM methods define a diffusion process that transforms an image x0 to white Gaussian noise xT ∼ N(0,1) in T time steps. The forward direction is given by Equation 10.

[image: Mathematical expression showing q of x_t given x_t-minus-one equals N of x_t, square root of one minus beta_t times x_t-minus-one, beta_t times I. Equation number ten in parentheses.]

The sample xt is obtained by adding independent and identically distributed Gaussian noise with variance βt at timestep t and scaling the previous sample xt−1 with [image: Square root of one minus beta sub t.]  according to a variance schedule.

The inference process works by sampling a random noise vector xT and gradually denoising it until it reaches a high-quality output image x0. This reverse process in Equation 11 is modeled by a neural network that predicts the parameters µθ(xt,t) and Σθ(xt,t) of a Gaussian distribution:

[image: Probability density function \( p_d(x_{t-1} \mid x_t) \) is shown, where it follows a normal distribution \( N(x_{t-1}; \mu_\theta(x_t, t), \Sigma_\theta(x_t, t)) \), with equation number (11).]

Both forward and reverse diffusion processes presented by Equation 10 and 11 are illustrated in Figure 2. The learning objective is to predict the cumulative noise ϵ0 that is added to the current intermediate image xt. Therefore the objective is derived by considering the variational lower bound, leading to the following simplified training objective given in Equation 12:

[image: Equation for simple loss, denoted as \( L_{\text{simple}} \), where \( E_{x_0, \epsilon} \) is the expectation, showing \( \epsilon - \epsilon_{\theta}(x_t, t) \) squared in norm. Equation (12) is referenced.]

[image: Sequential images of a leaf demonstrate a transformation process. Starting from a clear leaf image labeled \(x_0\), the images progressively transition to \(x_T\) with increasing noise. Arrows indicate directions between stages (\(x_0\) to \(x_1\), \(x_{t-1}\) to \(x_t\), and \(x_{T-1}\) to \(x_T\)), with equations \(q(x_t|x_{t-1})\) and \(p_\theta(x_{t-1}|x_t)\) describing probabilistic transitions.]
Figure 2 | Overview of denoising diffusion probabilistic models.

By using the independence property of the noise added at each step, we can calculate the total noise variance as [image: Mathematical formula showing \(\bar{\alpha}_t = \prod_{s=1}^{t} (1 - \beta_s)\).] . The reverse transition step in Equation 10 can be re-written as a single step as given below in Equation 13

[image: Equation labeled (13) representing a probability distribution. The equation is \(q(x_t|x_0) = \mathcal{N}(x_t; \sqrt{\bar{\alpha}_t}x_0, (1 - \bar{\alpha}_t)\mathbf{I})\), where \(\mathcal{N}\) denotes a normal distribution.]




4.2.2 Inpainting process

In RePaint, masks are used to guide the inpainting process as shown in Figure 3. They define the regions where the image needs to be reconstructed. By altering the denoising steps of DDPM and sampling the unmasked regions, RePaint achieves high-quality inpainting. This can be likened to completing a puzzle where certain pieces are missing. The goal of inpainting is to predict missing pixels of an image using a mask region as a condition. The reverse step in the approach is given by Equation 16:

[image: Diagram illustrating a process involving a leaf image. The image undergoes noise addition and masking, splitting into two pathways. The first pathway applies a noise function, mask, and combination, leading to an output image. The second pathway uses denoising, inverse masking, and combination, then loops back for further iterations.]
Figure 3 | Overview of RePaint architecture.

[image: Mathematical expression showing \( x_{t-1}^{\text{known}} \sim N(\sqrt{\bar{\alpha}_t x_0, (1 - \bar{\alpha}_t) I}) \), labeled as equation \((14)\).] 

[image: The equation shows \(x_{t+1}^{\text{unknown}} \sim \mathcal{N}(\mu_\theta(x_t, t), \Sigma_\theta(x_t, t))\), with reference number (15).]

[image: Mathematical equation: \(x_{t+1} = m \odot x_{t+1}^{\text{known}} + (1 - m) \odot x_{t+1}^{\text{unknown}}\), labeled as equation (16).] 

Here ground truth image is denoted as x, the unknown pixels are denoted as m ⊙ x, and the known pixels as (1−m)⊙x. When this method is directly applied it is observed that the content type matches only with the known regions in the current image. The inpainted region may match the neighboring region and it may result in semantically incorrect regions. The resulting image may not be harmonizing well with the remaining image. DDPM is trained to generate an image that lies within a data distribution and tries to produce consistent structures. RePaint uses this quality of DDPM by diffusing the output xt−1 back to xt. The resulting [image: Mathematical expression showing an equation with \( x_t \) equals "unknown", indicating an unknown variable at time \( t \).]  better harmonizes with [image: \( x_t^{\text{known}} \)]  and contains conditional information from it.





4.3 Comparison between InstaGAN and RePaint

	Principles: InstaGAN uses adversarial training, while RePaint uses denoising diffusion.

	Utilization of Masks: InstaGAN uses masks for instance-level control, while RePaint uses them for guided inpainting.

	Applications: InstaGAN is suitable for instance-level transformations, while RePaint is designed for image inpainting.

	Complexity: InstaGAN involves a more complex adversarial training process, while RePaint focuses on a simpler, gradual denoising process.







5 Dataset



5.1 PlantVillage dataset

The PlantVillage dataset is a comprehensive collection of leaf images that are labeled with 38 different disease categories or as healthy. It was created to facilitate research in automated plant disease diagnosis and classification. The dataset consists of over 54,000 images, covering 14 crop species and 26 diseases, making it one of the largest publicly available datasets of its kind Hughes and Salathé (2015).

The images in the PlantVillage dataset are collected under controlled conditions, ensuring consistent lighting and background. This allows for a more accurate evaluation of computer vision models designed to recognize plant diseases. The dataset includes a wide variety of leaf diseases, ranging from fungal and bacterial infections to viral and nutrient deficiencies. The diversity of diseases and the inclusion of healthy leaves provide a robust and representative sample for training and evaluating machine learning models.

Figures 4, 5 show sample images from the selected classes for grape and tomato leaves, respectively. For grape leaves, the images represent healthy leaves, black rot, black measles, and leaf blight, as shown in Figure 4. For tomato leaves, the images represent healthy leaves, early blight, and bacterial spot, as depicted in Figure 5. These images highlight the diversity and complexity of the leaf diseases within the dataset, emphasizing the variations in symptoms and visual characteristics for different disease classes.

[image: Grid of sixteen grapevine leaves illustrating four conditions: healthy, black rot, black measles, and leaf blight. Each condition has four examples. Healthy leaves are green and unblemished. Black rot leaves show brown spots. Black measles leaves have reddish-brown lesions. Leaf blight leaves exhibit discoloration and decay.]
Figure 4 | Sample images of grape leaves from the Plant Village dataset, showcasing different disease classes.

[image: Three rows of leaf images showing differences due to health and disease. The top row shows healthy leaves with even green coloring. The middle row displays leaves with early blight, marked by dark spots and yellowing. The bottom row shows leaves affected by bacterial spot, characterized by numerous small dark spots and slight discoloration.]
Figure 5 | Sample images of tomato leaves from the Plant Village dataset, showcasing different disease classes.

The PlantVillage dataset has been instrumental in advancing the field of plant disease detection and classification. It has been used in numerous research studies to develop and evaluate machine learning models for automated plant disease diagnosis. By providing a standardized and publicly available resource, the PlantVillage dataset continues to drive innovation and progress in the field of agricultural technology.

A significant number of research publications have reported results specifically on tomato and grape leaf images. These two crops have been the subject of extensive study in the field of plant disease detection and classification. By focusing on these two crops, we align our work with existing research, allowing for a fair and meaningful comparison with other published methods. There for our experiments, we selected 9 disease classes of tomato leaves and 3 disease classes of grape leaves, along with healthy classes for both types of plants. Table 1 provides detailed statistics for the selected classes from the PlantVillage dataset. It includes the number of images for each disease class and the healthy class for both tomato and grape leaves.

Table 1 | Statistics for the selected classes from the PlantVillage dataset.


[image: Table listing plant diseases with associated datasets. It includes plant type, disease name, and number of images. Tomato diseases and counts are: Late Blight (1000), Early Blight (800), Septoria Leaf Spot (700), Target Spot (600), Mosaic Virus (500), Yellow Leaf Curl Virus (400), Spider Mites (300), Leaf Mold (200), Bacterial Spot (100), and Healthy (1200), totaling 5800 images. Grape diseases and counts are: Black Rot (500), Esca (Black Measles) (400), Leaf Blight (300), Healthy (600), totaling 1800 images. Overall total is 7600 images.]
The selected classes from the PlantVillage dataset provide a robust and representative sample for evaluating the performance of InstaGAN and RePaint. By focusing on specific disease classes and including healthy leaves, we ensure a fair and comprehensive comparison that reflects the real-world challenges of plant disease detection and transformation.




5.2 Mask data preparation

The efficacy of our image generation models, InstaGAN and Repaint, critically hinges upon the accessibility and quality of segmentation masks. These masks assume a pivotal role as guiding constructs in the generative processes, facilitating the models in the precise localization and transformation of specific regions within leaf imagery. In this subsection, we detail the meticulous procedure underpinning the preparation of segmentation masks for our dataset.



5.2.1 Leaf segmentation masks for InstaGAN

The segmentation process in the InstaGAN framework is essential for precisely identifying and isolating regions of interest within leaf images. These regions are then used to guide the generative process for the transformation of healthy leaf images into their corresponding diseased versions. To create accurate segmentation masks, a dataset comprising a diverse set of leaf images was employed. As mentioned in the previous section, the dataset consisted of a total of 7100 leaf images belonging to 14 classes. Of these, 1033 pairs of images and their corresponding manually annotated masks were utilized for training the segmentation model, while an additional 230 pairs were reserved for evaluation purposes. It’s worth noting that the training dataset was deliberately designed to include images from various classes, ensuring the model’s ability to generalize across different leaf types and disease symptoms.

The segmentation network architecture is based on the U-Net framework, which is renowned for its effectiveness in image segmentation tasks. The U-Net architecture is particularly suited for its ability to capture fine-grained information while preserving spatial details. The backbone of the segmentation model utilized in this research is based on ResNet-50, a well-established deep learning architecture known for its feature extraction capabilities. This choice of backbone enhances the model’s ability to capture intricate details within the leaf images. During the training phase, the segmentation model learned to generate precise masks that delineate the boundaries of leaves in the images. The manually annotated masks from the training dataset served as ground truth labels for supervising the model’s learning process. This supervised training process enabled the segmentation model to understand the intricate patterns and shapes of leaves across various classes.

Recognizing the challenges associated with manual annotation, an alternative method was explored. Otsu thresholding, a simple yet effective technique, was applied to some images to extract leaf masks automatically. While Otsu thresholding performed well on certain images, it encountered limitations when applied to a larger and more diverse dataset. The shortcomings included the inclusion of unwanted background regions and shadows in the final mask. Moreover, it failed to accommodate various disease symptoms, resulting in the omission of relevant details from the leaf mask. The qualitative results are presented in Figure 6.

[image: Four panels show images of diseased leaves labeled Leaf 1 to Leaf 4 at the top. Below each leaf image are two rows: the first row displays black and white images using Otsu Thresholding to segment leaf areas, while the second row shows a U-Net mask segmentation of the same leaves. Each method highlights leaf damage differently.]
Figure 6 | This figure presents the segmentation masks generated by Otsu Thresholding, and U-Net model.

To quantitatively assess the performance of the segmentation process, the mean Intersection over Union (mIOU) metric was computed. This metric provides a quantitative measure of the overlap between the predicted masks and the ground truth masks. The results of this evaluation are presented in 2, offering insights into the accuracy and effectiveness of the segmentation model. Our evaluation results clearly demonstrate the effectiveness of the segmentation models. The UNet model achieved an impressive mIOU score of 97.43%, indicating its ability to accurately delineate leaf regions within images. This high level of accuracy is crucial for guiding the generative process of InstaGAN effectively. While the Otsu thresholding also performed well, it exhibited slightly lower mIOU scores in comparison as presented in Table 2. This method, although proficient, did not match the precision achieved by our custom-trained U-Net on our dataset.

Table 2 | Segmentation model performance.


[image: Table comparing models by mIOU performance. Otsu Threshold has a mIOU of seventy-five point thirty-six percent, while U-Net (Backbone ResNet 50) achieves ninety-seven point forty-three percent.]



5.2.2 Masks for RePaint

Repaint utilizes masks to guide the diffusion process, similar to our GAN-based InstaGAN. However, there are several key distinctions in how Repaint operates. One crucial difference is that Repaint requires inverted masks. In this context, the white regions of the mask are used to evaluate contextual information, while the black regions are regenerated. This inverted mask approach is fundamental to the unique functioning of Repaint. When applying inverted versions of the masks created in the previous section, we encountered a challenge known as the “ghost leaf problem.” This problem manifests as the outline of the input leaf image being filled with background texture, and within this outline, a smaller leaf appears. The output image seems to contain two leaves: one leaf with the desired disease symptoms but entirely different from the input image, and another larger leaf that matches the outline of the input leaf but has become transparent.

The root cause of this problem lies in the difference in image generation approaches used by InstaGAN and Repaint. InstaGAN regenerates the masked region with desired features, such as disease symptoms. In contrast, Repaint gradually adds noise to the region until it’s entirely filled with noise and then regenerates the region based on local context, i.e., other parts of the leaf. However, because we masked the entire leaf region, there was insufficient contextual information to guide the generation process, except for a very thin outline of the leaf unaccounted for by the segmentation mask. As a result, Repaint attempted to fill the masked region with an entire image, including the background and a random leaf with desired features.

To address the ghost leaf problem, we modified the segmentation masks by dilating them, leaving more area along the boundaries of the leaf. This adjustment aimed to provide enough information for Repaint to regenerate the input leaf image with the desired disease features. This solution proved effective, as Repaint was then able to utilize the bordering area of the leaf to generate the remaining portions with the desired diseased features. However, this method introduced a drawback. Since the bordering area of the input image with the healthy leaf was not masked, it was never regenerated with disease symptoms. This could result in a significant data bias in the synthetic dataset, as many diseases affect the leaf edges more than the central regions.

Through experimentation, it was deduced that Repaint does not necessarily require a well-bordered region of the leaf to generate new leaf images. Any part of the leaf image can assist the diffusion process in completing the remaining part with the desired disease symptoms. For instance, if half of the leaf is masked while the rest is unmasked, Repaint generates a seamlessly blended version of the remaining leaf with the desired disease symptoms. Importantly, since there is no constraint of a close boundary, the Repaint model is free to create versions of the leaf with different boundaries and shapes than the input image. This diversity enhances the novelty of the results, including the creation of leaf versions not present in the input data. Disease symptoms are generated in the newly generated regions of the leaf, encompassing the boundary areas and edges.

To ensure a balanced representation of synthetic disease symptoms across all parts of the leaf, various versions of simple masks were created and randomly applied at a uniform distribution. The results of this approach were remarkably positive, providing a diverse set of synthetic disease symptoms. Sample masks and output images are illustrated in Figure 7, showcasing the effectiveness of our mask generation strategy in Repaint.

[image: Four columns labeled Leaf 1 to Leaf 4 display various stages of leaf processing. The first row shows original leaf images. The second row presents black silhouettes of each leaf. The third row depicts leaves overlaid with a ghostly effect. The fourth row contains new mask shapes on a black background. The final row shows the leaves with final repainting, displaying visible textures and colors.]
Figure 7 | This figure displays the stages of RePaint’s image generation process. Row 1 shows healthy leaf images, Row 2 reveals the corresponding segmentation masks, and Row 3 displays the output of Repaint when using segmentation masks for guidance. Row 4 presents the split masks, while Row 5 showcases the results achieved by Repaint when utilizing these split masks for image generation. This comparison highlights the effectiveness of different mask strategies in RePaint’s generative capabilities.






6 Performance measures

In the field of image generation, synthesis, and augmentation, a variety of evaluation metrics are commonly employed to assess the quality and effectiveness of the methods. In this research, we considered a comprehensive set of evaluation metrics to assess the effectiveness of the proposed methods. These metrics provide a quantitative analysis of the performance, capturing various aspects of image quality, similarity, and statistical properties. However, the evaluation of generative AI models has resulted, in the introduction of new metrics that address the limitations of previous methods and cater to advanced applications. Therefore, we utilize a subset of these metrics that are particularly relevant to our study, while acknowledging that some commonly used metrics may not be as applicable in our context.

Below, we introduce each metric, explaining its working principles, and reflecting on their development and significance in the field.



6.1 Peak signal-to-noise ratio

PSNR was one of the early metrics used to measure the quality of a reconstructed image compared to the original. However, it primarily focuses on pixel-level differences and may not capture perceptual quality. The equation for PSNR is:

[image: Formula for Peak Signal-to-Noise Ratio (PSNR) shown as: PSNR equals twenty times the base ten logarithm of the ratio of MAX subscript I to the square root of the Mean Squared Error (MSE), followed by equation number seventeen.]




6.2 Structural similarity index

To address the limitations of PSNR, SSIM was introduced to assess the perceptual similarity between two images. However, in some contexts, SSIM may not be as pertinent. The equation for SSIM is:

[image: Formula for the Structural Similarity Index (SSIM) between images x and y. It is expressed as a ratio, with the numerator being the product of 2 times the mean of x times the mean of y plus a constant, and 2 times the covariance of x and y plus another constant. The denominator is the product of the sum of the squares of the means of x and y plus the first constant, and the sum of the variances of x and y plus the second constant.]




6.3 Inception score

IS was developed to measure both the quality and diversity of generated images, addressing the need for a more comprehensive evaluation. Higher IS values indicate better performance. The equation for IS is:

[image: Equation showing the expression for IS as the exponential of the expectation with respect to p of the Kullback-Leibler divergence D sub KL between two probability distributions p of y given z and p of y.] 




6.4 Fréchet inception distance

FID was introduced to overcome the limitations of IS by measuring the statistical similarity between real and generated images. Lower FID values indicate better quality and similarity. The equation for FID is:

[image: Formula for Fréchet Inception Distance (FID): FID equals the squared norm of the difference between real mean (\(\mu_{\text{real}}\)) and fake mean (\(\mu_{\text{fake}}\)), plus the trace of real covariance (\(\Sigma_{\text{real}}\)) and fake covariance (\(\Sigma_{\text{fake}}\)), minus twice the squared root of the product of these covariances. Equation number 20.] 




6.5 Kernel inception distance

KID further advanced the field by comparing the distribution of Inception features between real and generated images. Unlike FID, KID is unbiased and does not require a large number of samples. The equation for KID is:

[image: Equation displaying the calculation of KID (Kernel Inception Distance) as the expected value of the kernel function applied to variables \( x_i \) and \( y_j \), labeled as equation (21).] 




6.6 Effectiveness in this research

In our study, we focused on FID and KID for detailed comparison between InstaGAN and RePaint, reflecting the complexity and nuances of our research in image generation, synthesis, and augmentation. FID was also used as the primary metric for evaluating our methods against existing works, given its widespread adoption in the literature. By carefully selecting and employing these metrics, we ensure a rigorous and targeted assessment of performance, capturing the evolution and advancements in the field.





7 Experimental settings



7.1 InstaGAN settings

InstaGAN was configured with the following key parameters for the experiments:

	Batch Size: Set to 1, controlling the number of training samples processed simultaneously. A smaller batch size was chosen to allow for more frequent updates and to fit the model into GPU memory.

	Image Sizes: Load size of 220x220 and fine size of 200x200 were used for scaling and cropping. These sizes were selected to preserve the details of the images while reducing computational complexity.

	Number of Filters: 64 filters in the first convolution layer for both generator and discriminator, providing a balance between model complexity and computational efficiency.

	Learning Rate: Set to 0.0002, with a decay after 100 iterations, allowing the model to converge smoothly without overshooting the optimal solution.

	Dropout: Disabled, to prevent overfitting and ensure stable training.

	Normalization: Instance normalization was used to normalize the activations within a feature map, improving the training stability.

	Data Augmentation: Random flipping and resizing with cropping were applied to increase the diversity of the training data and enhance the model’s generalization ability.






7.2 RePaint settings

RePaint was configured with the following key parameters for the experiments:

	Attention Resolutions: Set to 32, 16, 8, defining the resolutions for attention mechanisms. These resolutions allow the model to capture different levels of details in the images.

	Diffusion Steps: 4000 steps were used, controlling the number of diffusion steps in the process. A higher number of steps enables more refined image generation.

	Number of Channels: 128 channels were used, defining the complexity of the model and allowing it to capture intricate patterns.

	Learning Rate Kernel Standard Deviation: Set to 2, controlling the adaptiveness of the learning rate during training.

	Use of 16-bit Precision: Enabled, to reduce memory consumption and accelerate training without significant loss of accuracy.

	Image Size: 256, defining the size of the input images, chosen to retain sufficient details while managing computational resources.



These settings were carefully chosen to align with the specific requirements of the experiments and to ensure optimal performance of both InstaGAN and RePaint models. The selection of parameters reflects a balance between model complexity, computational efficiency, and the ability to capture the underlying patterns in the data.





8 Results



8.1 Qualitative results

The qualitative analysis of the generated images for 12 distinct disease classes provides a comprehensive understanding of the performance of both InstaGAN and RePaint.



8.1.1 Early blight in tomato leaves

Early blight in tomato leaves is characterized by concentric rings and dark spots, often leading to wilting and death of the plant. These intricate patterns may pose challenges for generative models, as capturing the precise shape and texture of the rings requires a high level of detail. Supplementary Figure 1 illustrates the healthy tomato leaf images, their corresponding segmentation masks, and the generated images depicting early blight disease symptoms by both InstaGAN and RePaint. While InstaGAN’s outputs are commendable, RePaint significantly outperforms InstaGAN in capturing these complex symptoms.




8.1.2 Late blight in tomato leaves

Late blight symptoms include intricate patterns and authentic appearance. Supplementary Figure 2 presents how RePaint excels in capturing these patterns, overcoming the challenge of detailed complexity. In contrast, while InstaGAN manages to simulate the disease’s presence, it may struggle to depict the fine details that make late blight unique.




8.1.3 Tomato black spot

Tomato black spot disease manifests as dark, sunken lesions. The irregular shapes and varying sizes of the spots can be challenging for AI models to replicate accurately. Supplementary Figure 3 presents the results for this disease, with RePaint’s generated images exhibiting a higher level of detail and quality compared to InstaGAN.




8.1.4 Target spot in tomato leaves

Target spot symptoms are characterized by concentric rings and discolorations, making them a challenging task for generative models. Supplementary Figure 4 showcases how RePaint excels in capturing the intricate details of target spot, reproducing the characteristic concentric rings and discolorations with high fidelity. While InstaGAN may simulate some ring-like patterns, it may not capture the full complexity of the disease’s appearance.




8.1.5 Septoria leaf spot in tomato leaves

Septoria leaf spot symptoms involve precise spot patterns and discolorations. Supplementary Figure 5 delves into how RePaint excels in replicating these patterns, providing an authentic portrayal of this complex disease. While InstaGAN may exhibit some spot-like effects, it may struggle to capture the full intricacy of the symptoms.




8.1.6 Two spotted spider mites in tomato leaves

Two spotted Spider mites symptoms include distinctive patterns and discolorations. Supplementary Figure 6 explores how RePaint excels in replicating these patterns, offering a convincing representation of the disease’s complexity. While InstaGAN may capture some aspects of the disease, it may not fully convey the intricate details that define spider mites two-spotted.




8.1.7 Yellow leaf curl virus in tomato leaves

Yellow leaf curl virus symptoms involve leaf curling and yellowing, presenting a complex set of characteristics. Supplementary Figure 7 explores how RePaint accurately reproduces the curling and yellowing of leaves, providing an authentic representation of the disease’s intricacies. While InstaGAN may simulate some aspects of the disease, it may struggle to convey the full complexity and nuances of yellow leaf curl virus symptoms.




8.1.8 Mosaic virus in tomato leaves

Mosaic virus symptoms involve intricate mosaic patterns and discolorations. Supplementary Figure 8 explores how RePaint accurately reproduces these patterns, delivering a convincing representation of the disease’s intricacies. While InstaGAN may simulate some aspects of the disease, it may not fully convey the level of detail and realism achieved by RePaint.




8.1.9 Leaf mold in tomato leaves

Leaf mold symptoms involve challenging mold patterns. Supplementary Figure 9 presents how RePaint adeptly reproduces these patterns, offering a convincing representation of the disease’s intricacy. InstaGAN, though attempting to emulate the disease style, may find it challenging to convey the nuanced details that define leaf mold.




8.1.10 Grape Leaf black measle

Grape leaf black measle is characterized by dark spots with a complex pattern. Modeling such symptoms requires capturing both the geometry and texture of the affected areas, which can be challenging for deep learning models. Supplementary Figure 10 showcases the ability of RePaint to synthesize these complex patterns, outperforming InstaGAN.




8.1.11 Grape leaf black rot

Grape leaf black rot presents as dark, rotting areas with defined edges. The sharp transitions and consistent coloring of the rotting areas may pose difficulties for generative models. Supplementary Figure 11 reveals similar trends between InstaGAN and RePaint, with RePaint’s images exhibiting a more refined portrayal.




8.1.12 Grape leaf blight

Grape leaf blight involves subtle variations in color and texture, which can be particularly challenging for AI to reproduce accurately. Supplementary Figure 12 presents the results for this disease, with RePaint demonstrating its superiority in generating images that closely resemble the actual appearance.

The qualitative analysis across all 12 disease classes underscores the remarkable performance of RePaint, especially in comparison to InstaGAN. While InstaGAN provides a reasonable approximation of the disease symptoms, RePaint’s ability to capture the intricate details sets it apart. These findings reinforce the potential of RePaint as a powerful tool in the field of precision agriculture.





8.2 Quantitative evaluation

The quantitative evaluation of the proposed methods, InstaGAN and RePaint, was conducted using the Fréchet Inception Distance (FID) and Kernel Inception Distance (KID) metrics. Both of these metrics are widely used for evaluating the quality of generated images, and it measures the statistical similarity between the real and generated distributions. Lower FID and KID values indicate better performance, as they signify that the generated images are more similar to the real ones.

The FID results for both methods on different disease classes of grape and tomato leaves are presented in Table 3. The results demonstrate that RePaint consistently outperforms InstaGAN across all the tested classes, achieving lower FID values.

Table 3 | FID results for InstaGAN and RePaint on different disease classes.


[image: Table listing datasets for plant diseases on grape and tomato, comparing InstaGAN and RePaint values. Grape diseases include Black Rot, Esca, and Leaf Blight. Tomato diseases include Bacterial Spot, Early Blight, Late Blight, and more. Average values are provided for each plant and overall.]
The results indicate that RePaint is more effective in capturing the underlying distribution of the real images, leading to more realistic and accurate synthetic images. The improvement in FID scores for RePaint over InstaGAN suggests that the diffusion-based approach of RePaint offers advantages in generating high-quality images for the specific task of plant disease image augmentation.

The Kernel Inception Distance (KID) results for both InstaGAN and RePaint methods across various plant diseases are presented in Table 4. These results demonstrate the effectiveness of RePaint, particularly for Grape diseases, where it consistently achieves lower KID scores. The performance on Tomato diseases also indicates the robustness and adaptability of RePaint across different plant types and diseases. The comparative analysis between InstaGAN and RePaint provides valuable insights into the strengths and weaknesses of both methods, contributing to the understanding of their applicability in plant disease image synthesis and augmentation.

Table 4 | KID results for InstaGAN and RePaint on different disease classes.


[image: A table compares disease data for grape and tomato plants across twelve datasets. It lists diseases like Black rot, Early blight, and Mosaic Virus. Two models, InstaGAN and RePaint, present numerical values with standard deviations for each disease. The table includes average values for datasets one to three (grape), four to twelve (tomato), and one to twelve (total).]




9 Comparison with state-of-the-art methods

In the rapidly evolving field of generative models for plant disease image synthesis, it is essential to benchmark new methods against existing state-of-the-art techniques. This comparison provides insights into the relative strengths and weaknesses of different approaches, guiding future research and development. The following subsections present a detailed comparison of our proposed methods, InstaGAN and RePaint, with other leading methods, focusing on their performance in synthesizing images for Tomato and Grape Leaf diseases.



9.1 Comparison on tomato leaf diseases

Table 5 presents a comparison of the Frechet Inception Distance (FID) scores for various methods applied to the PlantVillage dataset, focusing on Tomato crop diseases. The FID score is a widely used metric to measure the quality of generated images, with lower scores indicating higher similarity between the generated and real images.

Table 5 | Comparison of FID scores with other publications.


[image: Table comparing various methods like WGAN, SAGAN, MAGAN, HA+DMM, MMDGAN, InstaGAN, and RePaint. Each method uses the PlantVillage dataset for tomatoes. Disease classes include Healthy, Yellow leaf curl virus, Leaf mold, Spider mite, Late Blight, Early Blight, Septoria Leaf Spot, Target Spot, Mosaic Virus, and Bacterial Spot. FID scores range from 161.35 to 236.61.]
Several methods, including WGAN, SAGAN, MAGAN, HA+DMM, and MMDGAN, were applied to the Tomato crop, focusing on 4 disease classes: Healthy, Yellow leaf curl virus, Leaf mold, and Spider mite. The FID scores for these methods range from 214.8867 (MMDGAN) to 229.7233 (SAGAN), indicating varying levels of performance in generating realistic images.

In contrast, InstaGAN and RePaint were applied to 9 different Tomato disease classes: Late Blight, Early Blight, Septoria Leaf Spot, Target Spot, Mosaic Virus, Yellow Leaf Curl Virus, Spider Mites, Leaf Mold, and Bacterial Spot. RePaint significantly outperforms InstaGAN with an FID score of 161.35 compared to InstaGAN’s score of 236.61. This highlights the superior performance of RePaint in generating high-quality images that closely resemble the real data.

This comparison provides valuable insights into the state-of-the-art methods in the field of generative models for plant disease image synthesis. It also emphasizes the effectiveness of RePaint, particularly in comparison to other leading methods, demonstrating its potential as a powerful tool for various applications in plant science and computer vision.




9.2 Comparison on grape leaf diseases

Table 6 presents a comparison of the Frechet Inception Distance (FID) scores for various methods applied to the PlantVillage dataset, focusing on Grape Leaf diseases. The diseases considered in this comparison include Black Rot, Black Measles, and Leaf Blight.

Table 6 | Comparison of FID scores on grape leaf diseases.


[image: Table listing different generative adversarial network methods applied to the PlantVillage dataset for grape leaf disease detection. The methods include DCGAN, LeafGAN, E-GAN, InfoGAN, WGAN, LRGAN, Fine Grained GAN, InstaGAN, and RePaint (Diffusion). The classes of diseases are Black Rot, Black Measles, and Leaf Blight. Each method's performance is evaluated using the Fréchet Inception Distance (FID) score, with values ranging from 69.05 to 309.376. RePaint (Diffusion) achieved the lowest FID score of 69.05.]
Several generative models, including DCGAN, LeafGAN, E-GAN, InfoGAN, WGAN, LRGAN, and Fine Grained GAN, were applied to the Grape Leaf subset. The FID scores for these methods range from 72.73 (Fine Grained GAN) to 309.376 (DCGAN), reflecting a wide range of performance levels.

InstaGAN and RePaint (Diffusion) were also applied to the same subset, with RePaint achieving the lowest FID score of 69.05, outperforming all other methods. This result emphasizes the effectiveness of RePaint, particularly in generating high-quality images of Grape Leaf diseases, and demonstrates its superiority over other leading methods.





10 Discussion

In this study, we introduced and evaluated two novel methods, InstaGAN and RePaint, for plant disease image synthesis. Our comprehensive comparison with state-of-the-art methods on both Tomato and Grape Leaf diseases revealed the superior performance of RePaint, particularly in generating high-quality images that closely resemble real data. The results of this study have several important implications. First, the effectiveness of RePaint demonstrates the potential of diffusion-based models in the field of generative models for plant science and computer vision. Second, the ability to synthesize realistic images of plant diseases can significantly enhance data augmentation techniques, providing a valuable tool for training more robust and accurate disease detection models. While the findings are promising, there are some limitations to consider. The study focused on specific crops and diseases, and the generalizability of the methods to other contexts remains to be explored. Additionally, the comparison was based on FID scores, and further evaluation using other metrics and human assessments could provide a more comprehensive understanding of the quality of the generated images. Future research could explore the application of InstaGAN and RePaint to other crops and diseases, assessing their performance across a broader range of scenarios. Additionally, the integration of these methods with existing disease detection models could be investigated to evaluate their impact on detection accuracy. Further refinement of the diffusion process in RePaint and exploration of other generative techniques may also lead to continued improvements in image synthesis quality.




11 Conclusion

This study contributes valuable insights into the state-of-the-art methods in the field of generative models for plant disease image synthesis. The introduction of InstaGAN and RePaint, along with their comprehensive evaluation, highlights the potential of these methods as powerful tools for various applications in plant science and computer vision. The findings pave the way for further research and development in this exciting and rapidly evolving field. Through rigorous comparison with state-of-the-art methods on both Tomato and Grape Leaf diseases, the study demonstrated the superior performance of RePaint in generating realistic and high-quality images.

The implications of this work are far-reaching, offering new avenues for data augmentation and the development of more robust disease detection models in plant science. The success of RePaint, in particular, underscores the potential of diffusion-based models in the field of generative models, opening new possibilities for research and application.

Despite the promising results, the study also acknowledged limitations, such as the focus on specific crops and diseases and the reliance on FID scores for evaluation. These areas provide opportunities for future research, including the exploration of other crops, diseases, and evaluation metrics, as well as the integration of these methods with existing disease detection models.

In conclusion, this study marks a significant advancement in the field of generative models for plant disease image synthesis. The introduction and evaluation of InstaGAN and RePaint not only contribute valuable insights into current methodologies but also pave the way for continued innovation and exploration. The findings of this research have the potential to impact various applications in plant science and computer vision, underscoring the importance of continued investment and exploration in this exciting field.
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Machine vision has been used to grade the potted anthurium plant in large-scale production recently. Images are taken to measure the number and size of anthurium spathes. However, due to the limitation of the shooting angle, the occlusion problem reduces the accuracy of measurement. It is necessary to segment the overlapping spathes and repair the incomplete ones. The traditional image completion model has good performance on missing small areas, but it is not satisfactory for missing large areas. In this article, a multi-scale fusion Recurrent Feature Reasoning (RFR) network was proposed to repair the spathe images. Unlike the traditional RFR, a multi-layer component was used in the feature reasoning module. This network can combine multi-scale features to complete the learning task and obtain more details of the spathe, which makes the network more advantageous in image completion when missing large areas of spathes. In this study, a comparison experiment between this network and the widely used image completion network was performed, and the results showed that this network performed well in all types of image completion, especially with large-area incomplete images.
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1 Introduction

With the continuous growth of the potted Anthurium industry, automation production technology is in urgent need of improvement (GuoHua and Shuai, 2017). As an important part of anthurium automation production, grading plays a vital role in the whole production process (Pour et al., 2018; Soleimanipour et al., 2019; Soleimanipour and Chegini, 2020; Wei et al., 2021). At present, the manual grading method, which is characterized by low efficiency and accuracy, has been gradually replaced by automatic detection technology based on machine vision (Liu et al., 2023). Anthurium detection is used to measure anthurium plant height, crown width, number of flame spathes, flame spathe width, and other indicators from an image taken from above. However, when detected, the spathe is overlapped and cannot be fully visualized, which leads to a large measurement error and low classification accuracy. Therefore, it is particularly important to improve the measurement accuracy of potted anthurium by repairing the incomplete spathe after segmentation and calculating its complete contour.

Traditional image completion is mainly carried out by geometric modeling, texture matching, line fitting, and other methods (Li et al., 2013; Xia et al., 2013; Huang et al., 2014; Chan et al., 2015; Amayo et al., 2017; Iizuka et al., 2017; Li et al., 2019; Ge et al., 2022). For example, Wang et al. repaired incomplete maize leaf images by detecting and matching broken points, as well as fitting the Bezier curve of broken leaves, and then completed the segmentation of corn plants (Wang et al., 2020). Lu et al. propose a radial growth repair algorithm to repair broken roots, which takes the main root tips as the starting point and allows them to grow along the radial path. The repair accuracy of root length and diameter can reach 97.4% and 94.8%, respectively (Lu et al., 2021). Luo et al. propose a grape berry detection method based on edge image processing and geometric morphology. This method introduces edge contour search and corner detection algorithms to detect the concave position of the berry edge contour and obtain the optimal contour line. The average error of the berry size measured by this method is 2.30 mm (Luo et al., 2021). All these methods are aimed at repairing images with small missing areas but are not suitable for occluded images with large missing areas.

The development of deep learning technology has led to improved performance in image completion. (Haselmann et al., 2018; Wang et al., 2021; Zaytar and El Amrani, 2021; Belhi et al., 2023; Xiang et al., 2023; Guo and Liu, 2019; Chen et al., 2023; Mamat et al., 2023) However, it is used less in the field of agriculture. Chen et al. (2018) repaired root images of dicotyledonous and monocotyledonous plants using a convolutional neural network. Da Silva et al. (2019) reconstructs the damaged leaf parts by training a convolutional neural network model using synthetic images and then estimated the defoliation level. Silva et al. (2021) predicts the original leaf shape and estimates the leaf area based on conditional adversarial nets. Experiments show that this method can be used for leaf image completion. Zeng et al. (2022) proposed a plant point cloud completion network based on a Multi-scale Geometry-aware Transformer to solve the problem of leaf occlusion between plant canopy layers. The results show that the model is better than the current most commonly used completion networks and has a better image completion effect on plant seedlings.

At present, the deep learning algorithms for plant completion mostly include convolutional neural networks and generative adversarial networks (Geetharamani and Arun Pandian, 2019; Vaishnnave et al., 2020; Uğuz and Uysal, 2021; Yu et al., 2021; Bi and Hu, 2020; Jiao et al., 2019; Abbas et al., 2021; Zhao et al., 2021; Kumar et al., 2022; Padmanabhuni and Gera, 2022; Wong et al., 2020). Convolutional neural networks use encoders to extract potential features of the known parts of the image, and then generate the unknown parts through decoders of the image, while adding constraints to optimize repair results. The generative adversarial network is composed of two sub networks: a generator and a discriminator. The generator is used to generate relevant image data, and the discriminator is used to determine whether it is a generated image or a real image. The two networks confront each other and learn until they reach a balanced state. RFR and CRFill are two types of methods, respectively. As shown in Table 1, these two types of methods are not satisfactory when missing large areas, which needs to be improved.

Table 1 | Image Completion effects of different models.


[image: Comparison table showing image restoration models (RFR and CRFill) on a pink flower image with varying levels of missing data (0-50%). Each model's effectiveness is compared to the original.]
This article first analyzed the problems of existing models. Then, an improvement plan was proposed, and a comparative experiment was conducted between the improved model and the existing model. The main contributions of this article are as follows.

1. The visualization method was used to analyze the reasons for the poor performance of the RFR network in large-area missing image completion.

2. A model with strong feature learning ability was proposed, which effectively reduces the image completion error when large areas are missing.




2 Experiments and methods



2.1 Dataset establishment

Photos are taken by Azure Kinect depth camera from above in a 1.8m×1.3m×1.8m box. The distance between camera and platform is 100cm. Two 50cm long, 32w power LED light strips are installed at the same height as the camera, located on both sides of the camera 37.5cm apart, and the two light strips are at a 60° Angle to the horizontal direction. 60 pots of anthurium are used for image collection, and then the complete spathe images are extracted manually. Together with those searched from the internet, a total of 901 spathe images were collected in this study, including 726 for training and 175 for testing. Each image has a resolution of 256 x 256 and contains only one complete spathe. To improve the learning ability of the model, 726 images of the training set were scaled, rotated, and translated, and 5,320 training samples were obtained. To evaluate the performance of each model in images of different missing types and proportions, 15 groups of test samples were generated from 175 images of the test set. As shown in Table 2, each group was generated by 175 original images as required, and a total of 2625 images were obtained. Since the spathes are usually in the canopy layer, The occlusion of spathes is mainly caused by adjacent paths or leaves. it is found in the previous images that most of the occlusion are on one side, mainly on the root and side, and a few are on the top. Therefore, masks are randomly generated at these three parts in proportion for image training and testing.

Table 2 | Example images of the test set.


[image: Table illustrating various missing proportions (0-10%, 10-20%, 20-30%, 30-40%, 40-50%) and types of image cropping (top, side, bottom) applied to a pink flower petal image. The last column shows the original picture.]



2.2 Visualization of recurrent feature reasoning network

RFR (Li et al., 2020) is a neural network (Szegedy et al., 2015) model for image completion, which completes images by reducing the range to be filled layer by layer, and the reuse of the parameters effectively reduces the size and running time of the model. As shown in Figure 1, the RFR network includes three modules: an area identification module, a feature reasoning module, and a feature merging operation. The area recognition module is used to calculate the current area that needs to be filled, and then the feature inference module fills the area. These two modules run in series and alternatively. Each run outputs the filling result of the current round. Feature merging operation fuses the features of multiple scales and outputs the final filled image.

[image: Diagram showing an image processing framework. The process starts with an input image, followed by area identification and feature reasoning stages involving PConv, Conv, and KCA layers. Generated feature images undergo feature map feedback and merging, finalized by averaging ('Mean') to produce an output image. Key components are color-coded: blue for PConv, orange for Conv, and green for KCA. Arrows indicate flow direction.]
Figure 1 | Structure of the RFR network.

It can be seen from the results in Table 1 that the traditional RFR model performs well in completing missing small areas, but poorly in missing large areas. The feature reasoning module is the core of RFR, which directly affects the completion accuracy. In this study, a visual method is used to separate all feature channels of the convolution layer in the feature reasoning module, and then the visual feature map of each channel is obtained. This is helpful to determine the reason for the inadequate completion when missing large areas (Arora et al., 2014).

Figure 2 is the visual feature map of the coding layer and decoding layer in the feature inference module for both large and small missing cases. As can be seen from the figure that compared to small area missing images, there are more blue color blocks in large area missing images, which indicates that the semantic information extracted by the encoder in large-area missing images is relatively less. This will result in the decoder to lack enough effective information during image reconstruction, so that the weight of the red feature map is concentrated in a few feature dimensions, thus the repair result is poor.

[image: Flowchart of an autoencoder network with stages labeled encoder1 to encoder6, KCA, and decoder1 to decoder5. Two sets of colored data matrices show large-missing and small-missing completion outcomes, visually progressing from left (sparse) to right (dense).]
Figure 2 | The visual results of the feature reasoning module.




2.3 Model construction

In order to solve this problem, the Inception module is proposed to enhance the learning and reasoning ability of the network on various scale features, so as to improve the completion accuracy when large areas are missing. Figure 3 shows the model used in this study, composed of an area identification module, a feature reasoning module, and a feature merging operation. However, different from the single layer network of RFR, a multi-layer network is used in the feature reasoning module of the model, which can fuse the features of various subsets to complete the learning task and extract richer features.

[image: Flowchart showing a deep learning process for image transformation. It starts with an input image, undergoes area identification and feature reasoning using various convolutional and pooling layers, including PConv, Conv, KCA, MaxPooling, 1x1Conv, 3x3Conv, and 5x5Conv. The process generates featured images, which are merged using a mean function, ultimately producing an output image.]
Figure 3 | Structure of a multi-scale feature fusion RFR network.

As shown in Figure 4, the Inception module is added to each layer of the feature reasoning module. The input image for this layer is processed through four parallel layers, and then fused by 3×3 conv. Due to the different sizes of convolutional kernels, 1×1 convolutions, 3×3 convolutions, and 5×5 convolutions have different sensory fields. More detailed features are obtained when the sensory field is smaller. At the same time, the global features are obtained by Maxpooling. This improved model can obtain not only detailed features of different scales but also global features. Therefore, the information is more comprehensive which is critical for improving the accuracy of image completion.

[image: Diagram illustrating a neural network layer configuration. The input is processed through three convolutional layers: five by five, three by three, and one by one convolutions, plus a max pooling layer. Outputs are concatenated, followed by a three by three convolution.]
Figure 4 | Feature reasoning module layer structure of multi-scale feature fusion RFR.

The calculation process is as follows:

[image: Mathematical equation displaying a neural network activation function: \( h_i^{(0)} = \text{ReLU}(W_{i, \colon}^{(0)} x^{(0)} + b_i^{(0)}) \), labeled as equation (1).] 

[image: Equation showing a neural network layer computation. It depicts \(h_2^{(0)}\) as the output of a ReLU activation function applied to the weighted sum of \(W_{3 \times 3} \cdot x^{(0)} + b_2^{(0)}\), labeled as equation (2).] 

[image: Mathematical equation showing a neural network operation: \( h_3^{(l)} = \text{ReLU}(W_{5 \times 5}^{(l)} \cdot X^{(l-1)} + b_3^{(l)}) \), labeled as equation 3.] 

[image: Mathematical notation showing an equation: \( h^{(0)}_{4} = \text{MaxPooling}(X^{(0)}) \), labeled as equation (4).] 

[image: Mathematical formula showing \( h^{(i)} = \text{LeakyReLU}(W_{3x3} \cdot \text{Concat}(h_1^{(i)}, h_2^{(i)}, h_3^{(i)}, h_4^{(i)})) \) with reference number (5).] 

where [image: Mathematical notation displaying four variables: \( h^{(i)}_1 \), \( h^{(i)}_2 \), \( h^{(i)}_3 \), and \( h^{(i)}_4 \).]  represent the output of 1×1 convolutions, 3×3 convolutions, 5×5 convolutions, and Max Pooling, respectively, and [image: This is a mathematical expression showing the variable "h" raised to the power of "(i)".]  represents the result of concatenation and convolution processing of the four components. [image: Mathematical notation showing a variable \( W \) with subscript \( 1 \times 1 \) and superscript \( i \).]  represents the weight matrix of the 1×1 convolution of layer i, and similarly, [image: Text showing two mathematical expressions: \( W^i_{3 \times 3} \) and \( W^i_{5 \times 5} \).]  represent the weight matrix of 3×3 convolution and 5×5 convolution, respectively. [image: Mathematical notation showing lowercase "x" with superscript "i" in parentheses.]  is the output feature map of the previous layer network. [image: Mathematical notation showing three indexed variables: \( b_{1}^{(i)} \), \( b_{2}^{(i)} \), and \( b_{3}^{(i)} \), each with superscript \( (i) \).]  represent the bias terms of the 1×1 convolution, 3×3 convolution, and 5×5 convolution, respectively. [image: Text displaying the acronym "ReLU," which stands for Rectified Linear Unit, used in neural networks as an activation function.]  and [image: Text reading "LeakyReLU".]  represent activation functions.

Figure 5 shows the visual results of the improved feature reasoning module on the above large area missing image. Compared with RFR, this model has richer feature information in both the encoding and decoding processes, which also indicates that this model effectively improves the learning ability of the feature reasoning module.

[image: Illustration of an encoder-decoder neural network architecture. The top section shows a series of six encoders labeled e1 to e6, and five decoders labeled d5 to d1. Arrows indicate the data flow, with a green block labeled KCA connecting the last encoder to the first decoder. Below, image patches visualizing the encoder and decoder layers are displayed in corresponding sections, depicting transformation through the network layers.]
Figure 5 | The visual results of the improved feature reasoning module.




2.4 Model training

Transfer learning was used to speed up the convergence, and the Adam optimizer was used, with a learning rate of [image: Mathematical expression displaying "2 times 10 raised to the power of 4."] , a batch size of 4, and 120,000 as the number of iterations. The multi-scale image completion network was trained by a joint loss function consisting of the content loss of the completed part, the content loss of the whole spathe, and the perceptual and style losses, to improve the consistency of the completed image and the real image. The expression of the loss function is as follows:

[image: Equation in the image: \( L_{\text{sum}} = \lambda_{\text{hole}}L_{\text{hole}} + \lambda_{\text{valid}}L_{\text{valid}} + \lambda_{\text{perceptual}}L_{\text{perceptual}} + \lambda_{\text{style}}L_{\text{style}} \), labeled as equation (6).] 

where, [image: Mathematical notation showing "L" with a subscript "sum".]  is the loss function, [image: Italicized text reads "L subscript hole."]  is the content loss of the completed part, [image: Text "Lₑvalid" with a subscript "e" in a serif font.]  is the content loss of the whole spathe, [image: The image shows the mathematical notation "L" with a subscript "perceptual".]  is the perceptual loss, and [image: Stylized text showing "L" with a subscript "style" next to it.]  is the style loss. In this article, the loss function coefficients are set as [image: Lambda parameters listed as: hole equals one, valid equals six, perceptual equals zero point zero five, and style equals one hundred twenty.] . The random mask algorithm was used to automatically generate missing images during training. Two types of comparison experiments were designed according to the proportion and type of the missing, and the completion results were compared with Four widely used models CRFill, RFR, CTSDG and WaveFill. CTSDG uses a bi-gated feature fusion (Bi-GFF) module to integrate reconstructed structure and texture maps to enhance their consistency. WaveFill is based on wavelet transform, breaking the image into multiple frequency bands and filling in the missing areas in each band separately.




2.5 Evaluation indicator

In this article, qualitative and quantitative methods are used to evaluate the repair result. The quantitative evaluation mainly shows the degree of improvement in image completion compared with other models, which needs to be analyzed in combination with the results of qualitative analysis.

To evaluate the completion accuracy of the model, the following polar coordinate system was established on the surface of the spathe. As shown in Figure 6, assuming that the quality of each pixel in the image is uniform, the centroid of the spathe is taken as the pole. Horizontally to the right indicates 0° of the polar axis, and counterclockwise is the positive direction of the angle. The unit of the axes in polar coordinate system are pixels. The contours extraction algorithm is used, and the contours of the completed spathe and real spathe are [image: The expression "r subscript 1 of theta" represents a mathematical function or formula with variable theta.]  and [image: \( r_2(\theta) \)] , respectively. Mean square error(MSE) is a commonly used index to measure the difference between the predicted value and the actual observed value, and it can well represent the degree of fitting between the predicted contour and the real contour. The calculation formula is as follows:

[image: Diagram showing original and completed spathes in circular polar plots. The top plot contains an original spathe transformed into a red outline. The bottom plot shows a completed spathe transformed into a blue outline. Both outlines converge in a final plot, illustrating combined red and blue outlines with labels \(r_1(\theta)\) and \(r_2(\theta)\).]
Figure 6 | Accuracy evaluation of spathe image completion.

[image: Mean Squared Error (MSE) is defined as one over two pi times the integral from zero to two pi of the squared difference between r sub one of theta and r sub two of theta, with respect to theta.] 

where, [image: Greek lowercase letter theta in a serif font.]  is the polar angle of the polar coordinate system, and [image: The mathematical notation \( r(\theta) \), representing a function of the variable theta in polar coordinates.]  is the distance from the centroid to the contour edge when the polar angle is [image: The Greek letter theta, styled in a serif font, appears against a plain background.] . A smaller mean squared error correlates with higher measurement accuracy.





3 Results and discussion



3.1 Qualitative evaluation

To qualitatively evaluate the completion effect of the model in this study, repair experiments were carried out on the images of 15 groups of test sets, and the results are shown in Tables 3–5. It can be seen from the completion results that CRFill has the worst performance of the three types and can hardly repair images with large missing areas. RFR is prone to errors, and the results are variable. The other three models can complete a similar spathe profile. However, compared with the model presented in this article, CTSDG and WaveFill cannot accurately complete the detailed features in images with large missing areas, and the total deviation is large. The model in this article adds the Inception module, which utilizes additional reasoning features in large-area completion. Even when the image is 40-50% missing, the model still demonstrates good completion ability, which is very important for phenotype detection.

Table 3 | Comparison of top missing image completion results.


[image: A table compares different image inpainting methods. Columns represent missing data percentages from zero to fifty percent. Rows include Original, Missing, CRFill, CTSDG, WaveFill, RFR, and Ours. Each cell shows a pink flower segment, demonstrating methods' ability to fill missing parts.]
Table 4 | Comparison of side missing image completion results.


[image: A table comparing image reconstruction performance. The columns represent missing data percentages: 0 to 10, 10 to 20, 20 to 30, 30 to 40, and 40 to 50 percent. The rows show different methods: Original, Missing, CRFill, CTSDG, WaveFill, RFR, and Ours. Each cell displays a small image of a pink object to illustrate reconstruction quality.]
Table 5 | Comparison of bottom missing image completion results.


[image: A table comparing different image inpainting techniques at various missing percentage levels. Rows represent techniques: Original, Missing, CRFill, CTSDG, WaveFill, RFR, and Ours. Columns show percentage ranges: 0-10%, 10-20%, 20-30%, 30-40%, 40-50%. Each cell contains an associated image showing the results for a pink petal at each missing percentage.]



3.2 Quantitative evaluation



3.2.1 Influence of incomplete type on image completion results

Figure 7 shows the image completion accuracy of each model for different incomplete types. It can be seen that CRFill performs poorly in all types of image completion and differs significantly from others. For the top-missing type, other models perform well with a mean square error between 15.27 and 21.18. Meanwhile, for the side-missing and bottom-missing types, the mean square error of image completion increases, but the values of our model are still the smallest among all models, which are 23.66 and 54.83 respectively. Among the five types, the error in the bottom-missing type is large, which is due to the significant individual variances at the bottom of the spathe and make it difficult to complete. However, of all the types, the model in this study has the best performance and the accuracy is higher than other models.

[image: Box plot comparing the average MSE for different image completion methods across three types of missing data: top, bottom, and side. Methods include RFR, CRFill, CTSDG, WaveFill, and Ours, with various performance levels.]
Figure 7 | Average MSE of different incomplete types.




3.2.2 Influence of incomplete proportions on image completion results

Figure 8 shows the image completion accuracy of each model for different incomplete proportions. The incomplete proportion has a significant impact on the completion accuracy. Similarly, aside from CRFill, the completion accuracy of the other models is adequate when the incomplete proportion is less than 10%. With an increase in the incomplete proportion, the average MSE gradually increases. When the incomplete proportion reaches 40-50%, the average MSE significantly increases. This is because when a large proportion is missing, the number of features used for reasoning is reduced. It can also be seen from the results that when the incomplete proportion is less than 40%, the average MSE of the model in this study has little difference from RFR, CTSDG, and WaveFill. However, when the incomplete proportion reaches 40-50%, the model shows a significant advantage, approaching half of the error of the others. According to the qualitative evaluation results in 3.2.1, there are obvious errors in the repair results of other models when the incomplete proportion is 40%-50%, while the result of the improved model is in good agreement with the original image. Therefore, this error is considered acceptable.

[image: Box plot showing average MSE for different incomplete proportions (0-50%) across methods: RFR, CRFill, CTSDG, WaveFill, and Ours. MSE increases with higher incompleteness, CRFill generally has higher errors.]
Figure 8 | Average MSE of different incomplete proportions.

It can be seen from the results of comparative experiments that Inception module combines different convolution layers in parallel and connects the result matrices processed by different convolution layers together to form a deeper matrix in depth dimension. It can aggregate visual information of different sizes and reduce the dimensionality of larger matrices to extract features of different scales. Therefore, the information obtained by the improved model is more abundant, and the accuracy of image completion is effectively improved.






4 Conclusion

This study analyzed the reasons for the low completion accuracy of the RFR model in large-area missing images by visual methods. The Inception module was proposed to improve the feature reasoning module of the RFR model, which further improved the feature learning ability. The improved model could obtain not only the detailed features of different scales, but also the global features, which perform well. In missing type comparison experiment with existing widely used models, it can be seen that the top-missing type has the best results, followed by side-missing type, and bottom-missing type has the largest repair error due to significant individual differences. However, no matter what kind of missing type, the model presented in this article has obvious advantages. In the comparative experiments of different missing parts, it was found that the repair error of each model increased with the increase of missing proportion. When the incomplete ratio reaches 40-50%, the error of this model is only half that of others. This shows that this model performs best regardless of the type and proportion of missing images, and its repair accuracy is significantly higher than other models, which is crucial for improving the measurement accuracy of potted anthurium. Although the method in this article integrates features of different scales, it is still based on two-dimensional images, ignoring the influence of the tilt Angle of spathes. If depth information can be introduced to repair images in three-dimensional space in the future, the repair accuracy can be further improved.
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reported test genes layers (p <0.0001)
Glyma.20g155100 v v v Robison et al. (2019), Maruyama et al. (2012)
Glyma.09g147200 7 v Robison et al. (2019)
Glyma.13g279900 v v v Maruyama et al. (2012), Tian et al. (2015)
Glyma.10g239400 v v v Robison et al. (2019), Maruyama et al. (2012)
Glyma.16g199000 \'2 \'2 \'2 Robison et al. (2019), Maruyama et al. (2012)
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Glyma.17g131900 \ v Maruyama et al. (2012)
Glyma.01g216000 v v
Glyma.05g007100 \7 Maruyama et al. (2012), Wang et al. (2020)
Glyma.03g262900 v Wang et al. (2020)

Abbreviation: S, score; ¢-PCR, quantitative polymerase chain reaction; p, p-value.
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Otsu Threshold 75.36%

U-Net (Backbone ResNet 50) 97.43%
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Dataset Diseases Number of

No Name Images
1 Tomato Late Blight 1000
2 Tomato Early Blight 800
3 Tomato Septoria Leaf Spot 700
4 Tomato Target Spot 600
5 Tomato Mosaic Virus 500
6 Tomato Yellow Leaf Curl 400
Virus
7 Tomato Spider Mites 300
8 Tomato Leaf Mold 200
9 Tomato Bacterial Spot 100
10 Grape Black Rot V 500
11 Grape Esca (Black 400
Measles)
12 Grape Leaf Blight 300
13 Tomato Healthy 1200
14 Grape Healthy 600
1~913 Tomato Total 5800
10 ~ 12,14 Grape Total 1800
1~ 14 Total Total 7600
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Method Dataset Subset Classes FID

DCGAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 309.376
LeafGAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 178.256
E-GAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 112,563
InfoGAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 178.13
WGAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight [ 12131
LRGAN PlantVillage ‘ Grape Leaf Black Rot, Black Measles, Leaf Blight 128.23
Fine Grained GAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 7273
InstaGAN PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 114.28

RePaint (Diffusion) PlantVillage Grape Leaf Black Rot, Black Measles, Leaf Blight 69.05





OPS/images/fpls.2023.1280496/table5.jpg
Method
WGAN
SAGAN
MAGAN
HA+DMM

MMDGAN

InstaGAN

RePaint

Dataset

PlantVillage
PlantVillage
PlantVillage
PlantVillage

PlantVillage

PlantVillage

PlantVillage

Crop
Tomato
Tomato
Tomato
Tomato

Tomato

Tomato

Tomato

Disease Classes FID

Healthy, Yellow leaf curl virus, Leaf mold, Spider mite 226.08
Healthy, Yellow leaf curl virus, Leaf mold, Spider mite 229.7233
Healthy, Yellow leaf curl virus, Leaf mold, Spider mite 220.69
Healthy, Yellow leaf curl virus, Leaf mold, Spider mite 219.0633
Healthy, Yellow leaf curl virus, Leaf mold, Spider mite 214.8867
Late Blight, Early Blight, Septoria Leaf Spot, o
Target Spot, Mosaic Virus, Yellow Leaf Curl Virus, Spider Mites, Leaf Mold, Bacterial Spot
Late Blight, Early Blight, Septoria Leaf Spot, 16135

Target Spot, Mosaic Virus, Yellow Leaf Curl Virus, Spider Mites, Leaf Mold, Bacterial Spot
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Dataset No
1

2

Plan
Grape
Grape
Grape

Tomato

Disease
Black rot
Esca (Black Measles)
Leaf blight (Isariopsis Leaf Spot)

Bacterial spot

InstaGAN
0.098 ( + 0.002)
0.081 ( + 0.002)
0.161 (= 0.004)

0.125 ( + 0.002

RePai

0.026 ( +0.001)
0.035 ( +0.002)
0.046 ( + 0.002)

0.104 ( £ 0.002)

10

11

12

4~12

1~12

Tomato
Tomato
Tomato
Tomato
Tomato
Tomato
Tomato
Tomato
Grape
Tomato

Total

Early blight
Late Blight
Septoria Leaf Spot
Target Spot
Mosaic Virus
Yellow Leaf Curl Virus
Spider Mites
Leaf Mold
Average
Average

Average

0.064 ( +0.001)
0212 (+ 0.005)
0225 ( + 0.006)
0.203 ( + 0.005)
0287 ( + 0.007)
0.229 (+ 0.006)
0.260 ( + 0.007)
0.245 ( £ 0.006)
0.1133 (% 0.0027)
0.205 ( + 0.0055)

0.1591 ( £ 0.0041)

0.057 ( +0.002)
0.143 ( +0.003)
0.153 ( +0.004)
0.138 ( £ 0.003)
0.197 ( + 0.004)
0.157 ( + 0.004)
0.179 ( + 0.004)
0.168 ( + 0.004)
0.0357 ( +0.00167)
0.144 ( £ 0.00267)

008985 ( + 0.00217)
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Dataset No Plai Disease InstaGAN
1 Grape Black rot 81.71 56.02
2 Grape Esca (Black Measles) 105.89 68.83
3 Grape Leaf blight (Isariopsis Leaf Spot) 155.25 82.30
4 Tomato Bacterial spot 271.28 181.39
5 Tomato Early blight 195.33 135.84
6 Tomato Late Blight 212.47 143.62
7 Tomato Septoria Leaf Spot 225.13 153.49
8 Tomato Target Spot 203.78 138.94
9 Tomato Mosaic Virus 287.56 196.72
10 Tomato Yellow Leaf Curl Virus 228.94 156.08
11 Tomato Spider Mites 259.63 178.21
12 Tomato Leaf Mold 245.37 167.89
1~3 Grape Average 114.28 69.05
4~12 Tomato Average 236.61 161.35
1~12 Total Average 206.02 138.28
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No. Classes CNN Model Performance Analysis on 90 CI

Overall Average

accuracy Precision Sensitivity F1 score Specificity Inference time
Class 2 InceptionNet-1 99.74 % 0.03 99.79 +0.03 99.71 + 0.06 99.77 +0.05 99.77 +0.06 22.19
InceptionNet-2 99.92 + 0.01 99.94 + 0.01 99.92 + 0.01 99.92 + 0.08 98.76 + 04 29.71
InceptionNet-3 99.87 + 0.08 9991 + 0.08 99.87 +0.04 99.89 + 0.03 99. 81+ 0.05 39.45
Class 6 InceptionNet-1 97.12£ 09 97.18 £ 0.9 97.12£0.9 97.14 £ 023 99.51 £ 0.9 25.77
InceptionNet-2 98.76 + 0.18 98.79+ 0.5 98.75 £ 0.3 98.76 + 0.18 99.69 + 0.06 42.05
InceptionNet-3 99.32 % 0.14 99.4 +0.19 99.28 £ 0.16 99.35 +0.26 99.83 +0.08 52.66
Class 10 InceptionNet-1 99.61 £ 0.06 98.72 £ 0.6 98.70 £ 0.8 98.70 £ 0.3 99.85 + 0.07 4454
InceptionNet-2 99.90 + 0.4 9991 +0.3 99.89 + 04. 99.90 + 0.30 99.96 + 0.08 53.63

3 99.79 + 0.08 99.23 £0.33 99.65 + 0.14 99.44 +0.21 99.89 + 0.05 59.85
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Article

(Agarwal et al., 2020)

(G Irmak and Saygili, 2020)
(Zhang et al., 2018)
(Dookie et al., 2021)

Proposed study

Classification

Multi-Class (10)
Multi-Class (10)
Multi-Class (10)
Binary

Binary
Multi-Class (6)
Multi-Class (10)

Dataset

Plant village
Plant village
Custom

Custom

Plant village
Plant village
Plant village

Accuracy

90.98%
93.55%
94.12%
86.10%
99.97%
99.22%
99.91%

Precession

89%
93.93%
94.72%
86.44%
99.11%
99.19%
99.31%

Recall

91.97%
95.69
94.35%
86.37
99.96%
99.20%
99.29%

F1 score

90.96%
93.91%
96.64%
86.41%
99.93%
99.17%
99.30%

Result

Non segmented
Segmented
Non segmented
Non segmented
Segmented
Segmented

Segmented
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Dataset name No. of image and their ground truth mask of tomato Size of training Size of validation Size of testing
leaves set set set

Plant Village tomato leaf 18159 13082 1447 3628
images
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Classification

Binary Class

Multi-Class(6 Classes)

Different classes(Ten classes)

Types

Healthy

Affected

Healthy

Fungi

Mold

Virus

Bacteria

Mite

Healthy

Early Blight
Target spot
Septoria leaf spot
Bacterial spot
Leaf Mold

Late Bright Mold
Tomato yallow leaf curl virus

tomato mosic virus

No of images

1519
16750
1519
5115
1898
5744
2154
1839
1519
1050
1454
1721
2177
902
1960
5307
373

Segmented and non-segmented images

Training images

1095x10 = 10950
12075
1093
3682
1366
4135
1550
1324
1093
756
1046
1239
1567
649
1411
3821
268

Validation images

121
1340
121
409
151
459
172
147
121
84
116
137
174
72
156
424
29

Testing images

303
3350
303
1023
379
1148
430
367
303
210
290
344
435
180
392
1061
74
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Parameters

Batch size

Learning Rate (Initial)
Epochs

Shuffle Each Iteration
Stopping criteria

Loss function

Optimizer

Segmentation model

32

0.0001

45

Yes

5

Negative Log Likelihood Loss/MSE
SGDM

Classification model

64
0.0001
50

10
CELoss
SGDM
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Loss function

NLog
CELoss
Mean Square
NLog
CELoss

Mean Square

Network

Original U-net
Original U-net
Original U-net
Improved U-net
Improved U-net

Improved U-net

Validation loss

0.0177
0.0167
0.0135
0.0067
0015
0.069

Validation accuracy

96.33
96.49
96.62
98.88
97.91
98.21

Intersection Over Union

9543
95.89
96.33
98.65
97.77
98.12

Dice

96.51
96.42
97.76
98.91
96.93
98.54

Inference time

13.10
12.65
12.41
11.20
11.01
10.98
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Stage Operator Image dimesnion No of channels No of layers

1 Convolutional [3x3] 224x224 32 1
2 MobileConv 1, [3x3] 112x112 16 1
3 MobileConv 6, [3x3] 112x112 24 2
4 MobileConv 6, [3x3] 56x56 40 2
5 MobileConv 6, [3x3] 28x28 80 3
6 MobileConv 6, [5x5] 14x14 112 3
7 MobileConv 6, [5x5] 14x14 192 4
8 MobileConv 6, [3x3] 7x7 320 1
9 Convolitonal [1x1], Pooling and Fully Connected 7x7 1280 1
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Types Normal

Classes

Healty
(1589)

Bacteri

Bacterial Patches
(2131)

Mold

Intense Mold
(1922)

Virus

Curling and Crisping Yellow
(5362)

Pathogenic virus (Mosaic) (381)

Fungal

Fungal Pathogens (998)
Septoria lycopersici (1769)
Corynespora cassiicola(1399)

Crushed Dry Leaf (Mould)
(949)

Mite

Tetranychus urticae Koch
(1681)
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rameter
Dimensions (L x W x H)
Platform weight

Running speed

Motor rated power
Motor rated voltage
Motor speed

Rated current

Working method

Track width

P

ormance

930 mm x 900 mm x 600mm
140 kg

0-5 km/h

600W

DC12V

40-55 r/min

50 A

Oil-electric hybrid

15cm

Track material

Rubber track with built in tension layer

Maximum grade
Maximum load
Generator power
Engine

Equipment power

60°

150 kg

1500 W
Gasoline engine

7.5 horsepower
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Paramet Im-YOLOV5 Ov5 YOLOvV3 YOLOv7
Backbone network MobileNetv3 Backbone Darknet53 Backbone
Training size 640 x 640 640 x 640 416 x 416 ' 640 x 640

‘ Batch size 8 8 8 8
No.of categories 1 1 1 1
Initial learning rate 0.001 0.001 0.001 0.001

No.of iterations 300 300 300 300
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Model size (MB)

MobileNetv3+ECANet

MobileNetv3+CBAM

FPS
83.3
735
83.3

64.1
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OnO data Layer/ Approach No. of articles/databases mined initially No. of articles/data- No. of genetic data

Feature bases after quality  (SNP, gene, SSR, QTL)
check collected
Genome DNA/QTLs Linkage 9/0 3/0 54
mapping
Pathway 3/0 0/0 0
analysis
Transcriptome RNA/mRNA Gene 35/1 11/0 9
expression
RNA/circRNA Noncoding 1/0 1/0 26
RNA
RNA/miRNA Noncoding 4/1 4/1 12,415
RNA
RNA/mixed Pathway 8/2 211 74
regulation
Proteome Protein/Protein ~ PPIN 0/1 0/1 47,931
Metabolome ~ Metabolome/ Pathway 5/0 1/0 992
Metabolites regulation
Total 65/5 22/3 61,492

SNP, single nucleotide polymorphism; QTL, quantitative trait locus; mRNA, messenger RNA; circRNA, circular RNA; miRNA, micro RNA; PPIN, protein-protein interaction network.
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Source Method Object mAP(%)

Aguiar, ASP. [14] SSD Vineyard 52.98
Ma et al. [15] Faster R-CNN Kiwi trunk 89.40
Zhou et al. [17] YOLO v3 Orchard trunk 92.11

Proposed method Im-YOLOV5s Seven-fork 94.90
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Scenes No. of photos P(%)

Land to be sown 48 92.6 937 93.1
‘ Seedling land 58 92.8 924 926 952
‘ Harvested land 77 85.1 88.1 86.6 89.1
‘ High light intensities 62 92.1 925 923 934

Low light intensities 62 95.3 912 932 94.8
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Model P(%) R(%) EPS mAP(%) Model Size/MB
YOLOVSs 910 914 833 93.1 14.4

Im-YOLOv5s 942 92.0 106.4 94.9 7.5





OPS/images/fpls.2023.1281386/im2.jpg
Ko





OPS/images/fpls.2023.1246717/table4.jpg
Model P(%) R(%) F(%) FPS P (%) Modelsize/MB

Im-YOLOV5s 94.2 92.0 93.1 106.4 94.9 7.5 ‘ 63
YOLOvV5s 91.0 914 912 833 931 144 ‘ 158
YOLOV3 902 917 90.9 1449 925 17.4 ‘ 130
YOLOVZ 88.3 89.4 88.8 1250 913 123 ‘ 132

P, comparison of accuracy; R, recall; F, harmonic average; FPS, frame rate; m, mean average precision; GFLOPs, giga floating-point operations per second.
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Bacteria | Fungi | Healthy Mite Mold Virus

5 z 5 2 5
Healthy Unhealthy Fungi 16 11 26 9
Health 3 Healthy 4
Unhealthy Mite 1
Mold 3
Virus 0
Cc
Bacterial
‘;P:’;" 6 5 0 0 4 il 2 0 0
Early Blight 2
Healthy 2
Late Blight 1
Leaf Mold 0
Septoria 1
Leaf Spot
Spider 2
Mites
Target Spot 0
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Mosaic
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26.6 17.6 22.8 20.1 20.6 36.0
23.4 29.8 27.8 24.6 32.9 35.5
34.7 295 30.9 293 28.2 36.8
252 31.6 28.8 30.1 38.6
37.2 26.6 29.6 32.3 35.6
30.5 29.9 27.5 343 315
32.8 27.8 31.9 31.7 32.6
28.3 31.1 24.0 34.3 36.2
27.8 39.8
34.7 35.4 31.7 38.6
35.2 25.4 32.4 362
36.0 38.4 28.5 44.1
35.7 35.1 32.5 37.1
35.9 39.5 37.5 44.5
33.8 38.6 40.1 413
35.1 43.1 37.8 352 30.4
31.6 33.6 42.5 37.0 36.1 20.6
RE_VAR {24.6 39.1 39.8 39.5 39.4 34.3 43.5 22.5
RE_HOM {24.5 41.9 34.4 46.4 36.1 39.9 40.7 223
RE_CON {22.2 42.9 40.1 44.7 32.1 35.6 44.9 22.1
RE_DIS {21.8 39.9 39.3 43.8 36.8 38.9 44.822.0
RE_ENT 34.7 37.4 38.1 30.7 37.1
RE_SEM 32.8 34.1 42.6 347 36.9
RE_COR 38.4 333 39.7 32.9 27.9
FVC
CH
VOL

G_CON
G_DIS
G_ENT
G_SEM
G_COR
R_MEA
R_VAR
R_HOM
R_CON
R _DIS
R_ENT
R_SEM
R_COR {34.2 33.4
27.5
28.7
26.3
288
28.6

NIR_DIS {2233135.1

36.0
RE_MEA {25.0 28.7

—~|45
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SVR

‘ NB
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Model MAE MSE RMS R

SVR 0.107 0.016 ‘ 0.125 0.980
NB 0.104 0.019 ‘ 0.136 0.980
‘ RF 0.098 0.010 ‘ 0.101 0.990
‘ RR 0.091 0.018 ‘ 0.135 0.980
CB 0.115 0.026 0.970
‘ KRR 0.091 0.009 0.990
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No. Attribute Short Descrip

1 Rainfall Average rainfall of the months responsible for the specific crop

2. Maximum Temperature Average maximum temperature of the months responsible for the specific crop
3 Minimum Temperature Average minimum temperature of the months responsible for the specific crop
4 Humidity Average humidity of the months responsible for the specific crop

5 Wind Speed Average wind speed of the months responsible for the specific crop

6 Cloud Coverage Average cloud coverage of the months responsible for the specific crop

7 Bright Sunshine Average bright sunshine of the months responsible for the specific crop

8 Aus Area Total area of Aus cultivation including local area and High Yielding Variety (HYV) area in acres
9 Aman Area Total area of Aman cultivation including local area and HYV area in acres

10 Boro Area Total area of Boro cultivation including local area and HYV area in acres

11 Potato Area Total area of potato cultivation including local area and HYV area in acres

12 Wheat Area Total area of wheat cultivation including local area and HYV area in acres

13 Aus Production Total production of Aus in tons

14 Aman Production Total production of Aman in tons

15 Boro Production Total production of Boro in tons

16 Potato Production Total production of potato in tons

17 ‘Wheat Production Total production of wheat in tons
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Model Network structure  P(%) R(f/s) [FiL
YOLOV3 Darknet53 87.31 2636 0.56
YOLOV4 CSPDarknet53 and SPP 85.38 28.91 0.62
YOLOV5 CSPDarknet53 and SPPB 93.09 79.55 0.81
YOLOX Darknet53 and SPPB 89.85 80.45 085
YOLOV7 MCB and SPPCSPC 95.63 80.92 0.88
YOLOV7-tiny MCB and SPPCSPC 91.09 65.17 0.76
YOLOv8 C2f and SPPF 90.20 73.92 0.81
Faster R-CNN VGG16 82.45 38.12 0.56
DSP-YOLOV7-CA | DSP- MSB and DSP-SPPE 983 93.64 0.96

The bold font denotes which model performs best on a particular metric.

ma

57.38

62.26

90.68

92.47

95.20

83.89

86.06

59.52

98.86
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80.3854
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167.3426
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47.057

54.209

37.620
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137.099

33711

66.171

60.527

115918

156.011
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13.860

28.817

370.210
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Training Validation Testing Time/
Time (min) Time (min)  sample (ms)

EG-CNN 240 20 25

model

SVM (baseline) 60 10 LS

Random Forest 120 15 30

(baseline)

Logistic 90 12 20

Regression

(baseline)
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Apply posi Mup(%) FPS(f/s) arameter(M) FLOPs/G
NO ‘ 95.20 78.9234 37.620 106.472
Location one ‘ 9539 775485 37.821 106.496
Location two ‘ 96.08 78.9315 37.630 106.479
Location three ‘ 95.25 78.2112 37.652 106.477

‘The bold font denotes which model performs best on a particular metric.
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Powdery Leaf spot

mildew
Powdery mildew 191 5 2 2
Rust 3 195 ‘ 1 1
‘ Leaf spot 2 1 ‘ 198 1

Blight 2 2 2 194
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Backbone Neck Mmyp_0.5(%) FPS(f/s) Parameter(M) FLOPs/G

Original MultiBlock SPPCSPC ‘ 95.20 78.9234 37.620 106.472
Original MultiBlock SPPF ‘ 94.34 84.2119 31.586 101.641
Original MultiBlock DSP-SPPF ‘ 95.42 79.9456 39.456 108.564
45 instances of DSP-MultiBlock DSP-SPPF ‘ 96.16 82.2568 33.701 104.602

‘The bold font denotes which model performs best on a particular metric.





OPS/images/fpls.2023.1283235/table4.jpg
Model Accuracy Precision Recall MCC
EG-CNN 0.95 0.95 0.95 0.95 091

‘ Random Forest 0.81 0.85 0.83 0.84 0.76

‘ Support Vector Machine 0.78 0.80 0.78 0.79 0.70

Logistic Regression 0.85 0.75 0.72 0.73 0.63
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ckb FPS(f/s) FLOPs/G
Original MultiBlock 95.20 78.9234 37.620 106.472
24 instances of DSP-MultiBlock 95.34 79.5952 39.174 108.952
35 instances of DSP-MultiBlock 95.42 79.9456 39.456 108.564
23 instances of DSP-MultiBlock 94.78 79.8744 39.165 108.497

45 instances of DSP-MultiBlock 95.69 79.9361 39.207 109.011

‘The bold font highlights the advantages in 45 instances of DSP-MultiBlock mAP.
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Hyperparameter Valu

Optimizer Adam

Learning Rate 0.001

Batch Size 32

Number of Epochs 50

Loss Function Binary Cross Entropy
Dropout Rate 0.2

Activation Function ReLU

Number of Hidden Layers 3

Number of Filters 32, 64, 128

Kernel Size 3x3

Pooling Max Pooling
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Layer Type

Number of
Layers

Filter Size

Number of Filters

Input Shape

Output Shape

Convolutional

Max Pooling
Convolutional
Max Pooling

Fully
Connected

Dropout

Softmax

3x3

2x2

3x3

2x2

32/64

64

256

(224, 224, 3) +2000/
(170528)

(112, 112, 32)/(86528)
(56, 56, 32)/(43264)
(28, 28, 64)/(50176)

(12544)/(37888)

(256)

(256)

(112, 112, 32)/(86528)

(56, 56, 32)/(43264)
(28, 28, 64)/(50176)
(14, 14, 64)/(12544)

(256)/(256)

(256)

(4)
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Batch size Accuracy (%) Precision (%) F1-score (%)
32 95.4 94.8 96.0 954
64 952 94.6 95.8 952

128 95.0 94.3 95.6 95.0






OPS/images/fpls.2023.1260808/M7.jpg
Map = %ll P(R)R





OPS/images/fpls.2023.1283235/table1.jpg
Disease

Description
type 2 P
images
Powdery 2000 A fungal disease that affects the leaves, stems,
mildew and flowers of plants, causing a powdery white
coating
Rust 2000 A fungal disease that affects the leaves and

stems of plants, causing small orange or brown

spots
Leaf spot 2000 A bacterial or fungal disease that causes dark,

water-soaked spots on the leaves of plants

Blight 2000 A fungal disease that affects the leaves, stems,
and fruit of plants, causing rapid wilting and
death






OPS/images/fpls.2023.1260808/M6.jpg
®





OPS/images/fpls.2023.1260808/M5.jpg
e
To+ By

©





OPS/images/fpls.2023.1283235/table9.jpg
out rate Accuracy (%) Recall (%
01 95.3 947 96.0 953
03 95.0 943 95.8 95.0

0.5 94.8 94.1 95.1 94.6

F1-score (%)
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Number of filters Accuracy (%) Precision (%) Recall (% Fi-score (%)
32 952 94.6 95.8 952
64 95.4 94.8 9.0 954

128 95.6 95.0 96.1 95.6
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Optimal method 5(%)
NO 95.20
DSP-backbone 95.69
DSP-SPPF 95.63
CANet 96.08
DSP-YOLOV7-CA 98.86

The bold font denotes which model performs best on a particular metric.

FPS(f/s)
78.9234
79.9361
83.7978
78.9315

80.5433

Parameter(M)
37.620
39.207
32.115
37.630

33711

FLOPs/G
106.472
109.011
102.064
106.479

104.609
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Hyperparameters Accuracy (%) Precision (%) Recall (%)

Learning rate=0.001 955 94.8 ‘ 96.1 95.4
‘ Learning rate=0.01 952 94.4 ‘ 959 95.1
‘ Number of hidden layers=3 94.8 942 ‘ 94.9 94.5
‘ Number of hidden layers=5 955 94.8 ‘ 96.1 95.4
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FPS(f/s)

SE 95.89 79.1223 37.628 106.476
CBAM 95.57 78.9286 37.631 106.484
CA 96.08 789315 37.630 106.479

The bold font denotes which model performs best on a particular metric.
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Sensors

Ms

RGB

MS+RGB

Vis

VIs+FVC

CIs

ClIs+CH

CIs+VIs
+CH
+FVC
+VOL

Feature variables

NDVI, GNDVI, EVI, EVI2, MTVI2, SAV],
NDVI_RE, MSR_RE, CI_RE

NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI,
NDVI_RE, MSR_RE, CI_RE, FVC
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NDI ExG, ExR, ExGR, VARI, GLI, NDYI, CH

NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI,
NDVI_RE, MSR_RE, CI_RE, NDI, ExG, ExR,
ExGR, VAR], GLI, NDY], CH, FVC, VOL

Number

of variables

10

19

Number of
combinations

1023

127
255

524287

Best
combination
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ExG, VARI
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8.94
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10.29
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Feature variables Number Number of Best

of variables combinations combination

ComVIs NDVI, GNDVI, EVIL, EVI2, MTVI2, SAVI 6 63 EVI 15.16 0.82

REVIs NDVI_RE, MSR_RE, CI_RE 3 7 NDVLRE, CLRE | 19.23 0.81

Cls NDI, ExG, ExR, ExGR, VARI, GLI, NDYI 7 127 ExG, ExR, NDI, 1528 0.83
VARI

AgTP CH, FVC, VOL 3 7 CH, FVC, VOL 15.50 0.84

ComVIs+ NDVI, GNDVT, EVI, EVI2, MTVI2, SAVI, NDVI_RE, 16 65535 EVI, NDI 1432 0.85

REVIs+Cls MSR_RE, CI_RE, NDI, ExG, ExR, ExGR, VARI, GLI, NDYI

ComVIs NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI, CH, FVC, VOL 9 511 CH, EVI, MTVI2 14.51 0.85

+AgTP

REVIs+AgTP = NDVI_RE, MSR_RE, CI_RE, CH, FVC, VOL 6 63 CH, FVC, VOL 15.50 0.84

Cls+AgTP NDI, ExG, ExR, ExGR, VAR, GLI, NDYL, CH, FVC, VOL 10 1023 CH, ExR, NDI 14.28 0.85

ComVIs NDVI, GNDVT, EVI, EVI2, MTVI2, SAV], NDVI_RE, 19 524287 CH, EVI, NDI 13.90 0.86

+REVIs+ Cls MSR_RE, CI_RE, NDI, ExG, ExR, ExGR, VARI, GLI, NDYI,

+AgTP CH, FVC, VOL

The features of one cultivar were used for training, and the data for another cultivar were used for testing. The values of the error statistics are the average of the two scenarios.
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Feature variables Number Number of Best

of variables combinations combination

ComVIs NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI 6 63 GNDVI, SAVI 1047 091
REVIs NDVI_RE, MSR_RE, CI_RE 3 7 NDVI_RE 10.57 091
Cls NDI, ExG, ExR, ExGR, VAR, GLI, NDYI 7 127 ExG, VARI 1579 0.78
AgTP CH, FVC, VOL 3 7 CH, FVC 893 094
ComVIs+ NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI, NDVI_RE, 16 65535 NDVI_RE, 9.88 092
REVIs+Cls MSR_RE, CI_RE, NDI, ExG, ExR, EXGR, VARI, GLI, NDYI MSR_RE, EVI,
SAVI
ComVIs NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI, CH, FVC, VOL 9 511 CH, FVC, SAVI, 885 094
+AgTP GNDVI
REVIs+AgTP | NDVI_RE, MSR_RE, CI_RE, CH, FVC, VOL 6 63 CH, FVC, 836 094
NDVI_RE
Cls+AgTP NDI, ExG, ExR, EXGR, VARI, GLI, NDYI, CH, FVC, VOL 10 1023 CH,FVC, VARI 852 095
ComVIs NDVI, GNDVI, EVI, EVI2, MTVI2, SAVI, NDVI_RE, 19 524287 CH, FVC, 834 095
+REVIs+ CIs | MSR_RE, CL_RE, NDI, ExG, ExR, EXGR, VARI, GLI, NDY, NDVI_RE, EVI
+AgTP CH, FVC, VOL

ComVIs, commonly used vegetation indices with near-infrared and visible light bands; REVIs, red-edge vegetation indices; Cls, color indices; AgTP, agronomic trait parameters.
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Dataset condition Improve  mAP /% Re /%

Defect condition Environment
condition

Tip-Burn on Lettuce. (Munirah Hayati Hamidon Tip-Burn Plant factory CenterNet N 78.1 58
and Tofael Ahamed) (Hamidon and Ahamed, YOLOv4 67.6 74
2022) YOLOv5 82.8 794
Abnormal hydroponic lettuce. (Wu, Yang, wang,  Yellow leaves, withered leaves, Laboratory DeepLabV3 Y 83.26
etal.) (Wu et al., 2022) and decayed leaves
Lettuce disease. (R. Abbasi, P. Martinez, and R. Lettuce-DownyMildew and Greenhouse YOLOv5 N 82.13
Ahmad) Lettuce-Bacterial Leaf Spot Faster- 76.34

RCNN
Hydroponic lettuce seedlings status. (Li, Yang, Greenhouse Faster- ¥ 86.2 89.85
Guo and Yue) RCNN
Hydroponic lettuce defective leaves. (this paper) Decayed leaves, broken leaves, Greenhouse and YOLOv5 Y 88.0 843

yellow leaves, and withered Laboratory

leaves.
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Vegetation/color

Sensors Abbreviations = Equations References

indices

Normalized dif
Ms ormatized dilference NDVI (NIR - R)/(NIR +R) Rouse et al., 1974
vegetation index

| ‘(;rge;x;'-l:l:ml::ez:d diference | o R G/ NREG) zGl::)ejlson etal,

| Enhanced vegetaton index EVI 2.5 % (NIR=R)/(NIR +6 x R—7.5 x B+1) [ Huete et al, 2002
VEV‘:(T:;C: ;’lzg::::’; index | pvpy 2.5 % (NIR=R)/(NIR +2.4 x R+1) Jiang et al., 2008
x;:f::;: ?::eg;:ﬂ N MIVE L5 5[125 (NIR - G) - 2.5 (R - G))/y/ (2+NIR + 1)? - (6 s NIR - 5y/R) 0.5 | Haboudane, 2004
f:;:dj“s‘ed vegetation SAVI 1.5 x (NIR - R)/(NIR - R + 0.5) Huete, 1988
| oo Bfiwnd
Z:i;:i;imple B MSR_RE (NIR/RE - 1)/y/NIR/RE + 1 Wau et al., 2008
Red-edge chlorophyll index | CI_RE NIR/RE - 1 ZG;::;”“ el

RGB Normalized difference index | NDI g-0/g+1 ‘l’\g’g;b‘”d‘e ool

Excess green index ExG 2xg-r-b \gg:bbeckc il
Excess red index ExR l4xr-g 2:[]:?:" and Neto,
ix;e.snsd gees minus excess | oo 56T %;);er and Neto,
Y:;::::Z:::‘;::herica”y VARI (§-1)/(g+r-b) ;}Ui:)ezlson etal,
Green leaf index GLI (2xg-b-1)/Q2xg+b+r) ;/;)(I)A:!aichi etal,

R, G, B, Nir, and RE denote the reflectance in the red, green, blue, near-infrared, and red-edge bands for the MS images, respectively; and r, g, and b are the normalized DNs of the red, green, and
blue channels for the RGB images, respectively.
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mAPgs/  Weights/ Detection Speed

% MB (FPS)
SSD 74.5 103 41.1
Faster-RCNN 82.8 315 11.0
YOLOv3 843 235 46.2
YOLOv4 84.6 244 48.6
YOLOvS5s 85.4 13.7 60.9
YOLOv5m 86.0 40.2 46.5
YOLOv7 84.9 713 51.8
EBG_YOLOV5 88.0 11.6 61.7

The bold values represent the original and improved models.
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Flight date owth stage Abbr.
Mar 16, 2020 Jointing IN
Mar 26, 2020 Booting BS

Apr 2, 2020 Heading HS
Apr 15, 2020 Initial filling IFS
Apr 24, 2020 ‘ Middle filling MFS
Apr 29, 2020 Late filling LFS
May 12, 2020 Maturity ' MS
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Category YOLOV5s EBG_YOLOV5

D (Decayed) 77.8 81.1
B(Broken) ‘ 74.6 823 ‘
Y (Yellow) 90.0 90.6 ‘

W(Wilting) 98.0 99.1
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Spectral range Resolution Field of Positioning Ground resolution at

(nm) (pixels) view (°) accuracy (cm) = 100m height (cm)
RGB RGB / 54723648 4 Hon?ontal: 1 2.74
camera Vertical: 1.5
MS camera Blue (B) 450 + 16 1600x1300 62.7 Horizontal: 1 5.3
Vertical: 1.5

Green (G) 560 + 16

Red (R) 650 £ 16

Red Edge (RE) 730 £ 16

Near Infrared

3
(NIR) 840 + 26
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Models ECA BiFPN GSCol Pr/% Re/% /MB GFLPOs eters
YOLOVSs x x x 88.9 823 85.4 137 158 7020913
E_YOLOV5 v x x 904 819 86.7 138 158 7020937
B_YOLOV5 x v x 874 857 87.0 138 160 7086458
G_YOLOVS x x v 90.7 821 87.2 115 126 5843793
EB_YOLOV5 N N x 89.5 834 87.2 138 16.0 7086482
EBG_YOLOV5 v N v 89.0 843 88.0 11.6 12.8 5876594

“y” indicates that this method is used.
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Models Pr/% Re/% APo 5/% Weights/MB GFLPOs

eters

YOLOVSs 889 82.3 85.4 137 158 7020913
Baseline+CBAM 89.9 81.2 85.2 1.7 129 5925610
Baseline+SE 91.2 81.8 87.2 117 128 5924826
Baseline+CA 89.0 82.1 85.8 11.7 129 5923186
Baseline+ECA

89.0 84.3 88.0 11.6 12.8 5876594
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Bbox  Mask Bbox
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Image GT Det. TP

FN Prec. Recall Accuracy F1-Score

GSGC_test2 73 78 66 12 7 0.85 0.90 78% 0.87
GSGC test4 76 78 72 6 4 0.92 0.95 88% 0.94
GSGC test5 72 72 65 7 7 0.90 0.90 82% 0.90
GSYC test199 73 76 72 4 1 0.95 0.99 94% 0.97
GSYC test220 84 89 81 8 3 0.91 0.96 ' 88% 0.94
GSYC test242 86 94 84 10 2 0.89 0.98 88% 0.93
GSYC test320 89 95 85 10 4 0.89 0.96 86% 0.92
GSYC test383 89 97 87 10 2 0.90 0.98 88% 0.94
GSYC test417 87 94 82 12 5 0.87 0.94 83% 091
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YSYC test3 80 84 75 9 5 0.89 0.94 84% 091
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Type

Value

Optimizer SGD momentum=0.9 weight_decay=0.0001
Batch size batch_size=1
Learning Rate Ir = 0.000625
Learning rate policy MultiStep step = [100, 140]
Linear warmup.iterations=500

‘Warmup policy

warmup_ratio=0.01
Epochs Number=150
Classification stages Cascaded Number=3

Stage 1 =0.5
10U threshold Stage_2 = 0.6

Stage 3 =0.7

‘ Score threshold RCNN Score_thr=0.5
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Accuracy Precision Recall F-Measure

Healthy 93.63% 94.76% 93.15 93.95315
Bacterial Spot 88.59% 92.40% 94.17 93.28223

Average 91.11% 93.58% 93.66% 93.61
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Parameter

Attribute Selection Method LASSO
Eliminate Colinear Attributes Yes
BatchSize 50
Number Decimal Places 2

Ridge 1.0e-3
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Parameter Value/Type

Optimizer SGDM
Momentum 0.5
Initial Learning Rate 0.0001
Validation Data Yes
Epochs 50
BatchSize 128
Shuffle Samples True
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Accuracy

(Wu et al, 2020) DCGAN+CNN 9433%
(Sibiya and Sumbwanyambe, 2021) N-Fuzzy+CNN 89%
(Islam et al,, 2022) Parallel CNN 98%
(Brahimi et al., 2017) DNN 99.18

Proposed CANet 99.04%
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Metric Linear Regression Linear Regression + LASSO

Correlation Coefficient 204 0.91
Mean Absolute Error 1.54 0.65

Root Mean Squre Error 297 0.89
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Methods Study Areall— Study AreaV

AA(%) OA(%) AA(%) OA(%)

No_Pre RF 3793 25.21 41.52 47.68
Performer 33.65 30.54 43.62 44.38

Cropformer 25.96 62.13 27.68 62.98

Pre W | ALBERT - - 22.65 43.67
BERT = = 2334 3277

Cropformer E E 25.65 6170

Pre_E ALBERT 35.93 52.34 29.32 63.40
BERT 28.36 62.98 44.78 62.55

Cropformer 29.65 63.77 45.46 64.26

Bolded indicates best results.
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Methods

Res-18
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SIFT_BERT

ALBERT

Cropformer

Study AA(%) 56.43 50.14 54.95 7111 70.66 73.16
Area I
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Study AA(%) 48.16 34.73 60.33 63.62 63.31 64.81
Area IT

OA(%) 85.82 84.80 84.65 84.56 85.39 86.32

Study AA(%) 60.02 43.85 58.89 57.42 62.37 61.23
Area IIT

OA(%) 85.61 7829 83.69 83.97 85.99 85.70

Study AA(%) 73.26 59.71 78.10 82.91 79.66 81.52
Area IV

OA(%) 79.71 7171 81.46 82.44 83.49 84.39

Study AA(%) 53.92 48.45 60.86 72.42 70.92 70.23
Area V

OA(%) 71,79 71.49 71.06 77.87 78.91 79.15
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Test R Test MAPE

squared (%)
Average of all 585.127 0 11.385
Average with seed information » 570.569 ‘ 0.010 12412
Proposed method without seed 382.820 0.554 7.895
information
Proposed method 332.072 ‘ 0.664 ‘ 6.340

Average of all: using the mean values of all training samples as the estimate. Average with seed
information: using the mean values of each group as the estimate.
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Processes Module Model 1 Model 2 Model 3

Image LR 4 ‘ v ‘
Time series LR ‘ v ‘
Seed IR v oo v
Test RMSE 665.729 545.619 ‘ 530.489 ‘
Evaluation Test R squared -0.348 0.094 ‘ 0.144 ‘
Test MAPE (%) 13.346 10.993 ‘ 10816 ‘

The “Image” row indicates whether image information is used as input, where the RGB (Red,
Green, and Blue) values of each pixel are averaged, and the images are converted into one-
dimensional vectors. The “Time series” row indicates whether time-series images are used as
input. The “Seed” row indicates whether the one-hot encoded seed combination is used as input.
""" means that the module is selected for the corresponding process in a specific method.
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Proposed

Processes Module
Image Segmentation
CNN v
ViT
Time-series LR v
|
LSTM
Transformer
Seed FCNN v
Evaluation Test RMSE 570.569 510.959
Test R squared 0.010 0205
Test MAPE (%) 12412 9.648

Aver-seed: using the mean values of each combination of seed information as the estimate.

"/" means that the module is selected for the corresponding process in a specific method.
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Seed treatment  Number of combinations (seed variety and

seeding rate)

Non-treated control 5
Base seed treatment 9
control

ILEVO alone 2
ILEVO + Base 9
Saltro + Base 10

Other 16
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Methods

AP (loU=0.5)

Hasan et al. (2019) 0.6763 =
Wen et al. (2022) 0.9262 -
Su et al. (2021) 0.567 0.572
Zhang et al. (2022) 0.904 0.907
Proposed (WheatSpikeNet) 0.9303 0.9416





OPS/images/fpls.2023.1246717/M13.jpg
(13)





OPS/images/fpls.2023.1226190/table5.jpg
Train time(hr)

Epoch
(optimal) Inference time(s/img)

ResNet50 Backbone 0917 | 09165 07797 | 07845 = 0667  0.6278 230 10 067
ResNet50 + DCN | Backbone 093 | 09404 0801  0.8018  0.678  0.6459 51 11 067
MultiStep LR Scheduler = 093 | 09404 0801  0.8018  0.678  0.6459 51 11 067
Linear Annealing | LR Scheduler = 0.9303  0.9416 =~ 0.8002 = 08009 = 0.6765  0.6436 70 11 087
Faster RCNN Optimized | 0.901 - 0.8018 - 0.669 = 241 9 0.55
Mask RCNN Optimized | 0.9047 = 09062 07459 | 07542 | 0.6327  0.6001 213 10 063
Proposed - 09303 0.9416  0.8002 = 0.8009 = 0.6765  0.6436 70 7 11 0.87

* Training and testing of model was done using NVIDIA RTX 3080 12gb VRAM GPU. Bold value in a column represents the highest number (or, lowest for time).
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Disease/Pest Types

Dataset Name Description Covered

A publicly available dataset of over 54,000 images of diseased and healthy plant 38 crop species and 38 disease

PlantVillage leaves, compiled from experts and citizen scientists RGB Images types
PlantClef A dataset of over 9,000 images of plar?l leaves, uvsed for the annual PlantCLEF RGB Images Multiple crop species and disease
benchmarking campaign types
Open Plant Disease A dataset of over 8,000 images of plant leaves, compiled from various sources RGB and Multiple crop species and disease
Dataset including university research and citizen scientists infrared images types
Plant Disease Detection in A dataset of over 5,000. images o.f cotton .leaves, comp.iled by the National Cotton RGB Images Cotton leaf diseases
Cotton Images Council of America for disease detection research
A dataset of over 3,000 images of various crops, compiled by the AGRONOMI- RGB and Multiple crop species and disease
AGRONOMI-Net p 2 ; .
Net project for disease detection research thermal images types
Northern Lea.f Blight A dataset of images of corn plamf affected by NLB collected from a field RGB Northern Leaf Blight Discase
(NLB) Lesions environment
Insects from rice, maize, A dataset of images of insects on rice, maize, and soybean plants collected from a RGB Rice Planthoppers, Brown
soybean field environment Planthoppers, and Whiteflies
Pest and Disease Image A dataset of over 7,000 images of diseased and healthy plants collected from a . y i
RGB V: d d
Database (PDID) field environment A CIop Recienans cisease
Plant Disease and Pest A dataset of over 30,000 images of diseased and healthy plants collected from a RGB Vatiotiseropspecies and discases

Recognition (PDPR) field environment
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Transfer learning with CNNs

Multitasking learning networks

Deconvolution-guided VGNet
(DGVGNet)

Traditional methods (e.g. manual
inspection, microscopy)

Adv

ages

High accuracy, able to detect small lesions
Improved performance using pre-trained models

Can dlassify and segment simultaneously, reducing sampling
requirements for classification

Robust in occlusion, low light, and other conditions, with high
accuracy

Low-cost and widely available

Need large amounts of labeled data for training

Limited to the specific task and dataset the pre-trained
model was trained on

Complex architecture requires more computational
resources

Requires specific architecture and computationally
intensive

Time-consuming, prone to human error and
subjectivity
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Technology

Developer

Auxiliary
Devices

Functionality

Language

Popular Applications

TensorFlow

PyTorch

ONNX
Runtime

MXNet

CNTK

Google

Facebook

Microsoft

Amazon

Microsoft

CPU, GPU,
TPU, Mobile

CPU, GPU

CPU, GPU,
TPU, Edge

CPU, GPU,
TPU, Mobile

CPU, GPU

High usability with a large community and
extensive documentation

High usability for research and development
with dynamic computation graphs

High usability for deploying models across
multiple platforms

High usability with a variety of language
support and performance optimization

High usability for large-scale distributed
training and models

Python

Python

Python

Python, C+
+ R, Scala

Python

Computer Vision, NLP, Speech Recognition,
Robotics, Reinforcement Learning

Computer Vision, NLP, Speech Recognition,
Robotics, Reinforcement Learning

Computer Vision, NLP, Speech Recognition,
Robotics, Reinforcement Learning

Computer Vision, NLP, Speech Recognition,
Robotics, Reinforcement Learning

Computer Vision, NLP, Speech Recognition,
Robotics, Reinforcement Learning
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Year Model Segmentation Subject

Results
2019 Modified U-Net Cucumber powdery mildew 96.08% Accuracy
2019 Mask R-CNN Northern Leaf Blight 96% Accuracy
2019

Mask R-CNN, ResNet-101 Tomato Diseases 99.64% mAP
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Year Model Disease Classes Results

2017 Faster R-CNN, VGG, ResNet 9 85.98% mAP
2019 Faster R-CNN 1 95.48% Accuracy
2019 Faster R-CNN, FCM-KM - 97.2% Accuracy
2020

Fast R-CNN, InceptionV1, ResNet V2 4 81.1% Accuracy
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ataset Model Accuracy Subject Disease Classes

Plant Village 2016 AlexNet, GoogleNet, CNN 99.35% 14 Crops 26
2018 VGG 99.53% 25 Plants 38

2017 Multiclass SVM 95% Potato 2

2017 GoogleNet 99.18% Tomato plant 9,

2017 GoogleNet 98.6% Banana Leaf 2

Custom 2022 SE-ResNet-101, ILCAN 98.99% Late Blight Detection 1
2020 InceptionV3, VGG16, VGG19 93.4% Tomato Leaves 6

2020 CNN 98.4% Corn 2

2019 CNN 96.5% Leaf images 11

2019 VGG16 with Inception and Squeeze-and-Excite Module 91.7% Apple and Cherry 4

2019 CNN 98.8% Maize Leaves 8

2018 GoogleNet 98.9% Maize Leaves 8

2016 CaffeNet, CNN 96.3% Leaf images 13
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Dataset Environment Pl Species Disease Classes No. of Images notation Type
Plant Village Lab-Controlled 14 26 54,309 Bounding Box
PlantDoc Real-field 13 17 2,598 Bounding Box
Digipathos Lab-Controlled 21 171 3,000 Bounding Box
PlantCLEF2022 Real Field 80K - 4,000,000 Specie Labels
Rice Disease Image Dataset Lab-Controlled 1 3 3,355 Bounding Box
Rice Leaf Disease Dataset Lab-Controlled 1 3 120 Bounding Box






OPS/images/fpls.2023.1283235/crossmark.jpg
©

2

i

|





OPS/images/fpls.2023.1158933/M1.jpg
Recall = Arue: Fositive Ratio
ol = T Posithe Ratio + Fake Nesative. Ratio





OPS/images/fpls.2023.1224709/table2.jpg
atasets taset limitatio limitations = Results Comparison
2022 Jackulin C (Jackulin and Murugavalli, 2022). R x x v
2022 Ghosh D (Ghosh et al,, 2022). x x % J
‘ 2022 Tugrul B (Tugrul et al., 2022). y y ¥ v
2022 Altalak M (Altalak et al,, 2022). x % v x
2022 Rokhman N (Derisma et al., 2022). X X X X
‘ 2022 Jhajaria K (Jhajharia and Mathur, 2022). X X X X
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Input Deep-learning model Accuracy

Dataset GAN augmentation CNN
Proposed model v v v v 09843
M1 v X v v 0.9723
M2 v v v X 09717
M3 v v X v 09587
M4 v X v X 096
M5 v X X v 093
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Reference Datasets Dataset limitations sea imitations = Results Comparison
2019 H. Saleem (Saleem et al., 2019) x x x x ‘
2019 S. Kaur (Kaur et al,, 2019) x x v v
‘ 2021 Liu J (Liu and Wang, 2021). v y N x
‘ 2021 Ngugi L.C (Ngugi et al,, 2021). v x y y
‘ 2019 Shruthi U (Shruthi et al,, 2019). X x x v
2021 Dhaka V.S (Dhaka et al, 2021). v x v J
|
2021 LiL (Li etal, 2021). v x v «/
2020 Hassan R.I (Hasan et al., 2020). X V N v
|
2020 Nagaraju M (Nagaraju and Chawla, 2020). v % y R
2020 Singh V (Singh et al,, 2020). x X X
2020 Chouhan S.S (Chouhan et al., 2020). ¥ 4 X x
[- ours v v v J
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Classification approac Accuracy (%)
Proposed model 98.43
GAN-CNN 98
CNN with IoT 95
CNN 99.45
Random forest 69.00
CNN-SVM 99.20
CNN with transfer learning 92.49
Deep Convolutional Neural Network (DCNN) with SVM 97.50
CNN with LSTM 91.71
CNN with VGG19 model 95.40

IoT, internet of things; DCNN, Deep Convolutional Neural Network.
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Kernel : Neuron A . Output Parameters
Layer type : Stride . Activation function P
size size shape (n)
conv2d_12 (Conv2D) Convolutional 5x5 2 96 x 96 (Rectified Linear Unit) Null, 32,32,9 | 7,29
layer C1 ReLU
‘max_pool2d_12 Max-pooling layer
(MiPosIzD) bl 2x2 2 96 x 96 - Null, 16,16,96 0
conv2d_13(Conv2D) Convolutional 3x3 2 64 % 64 (Rectified Linear Unit) Nul, 16, 16,64 | 55,360
layer C2 ReLU
max_pool2d_13 Max-pooling layer
2x2 2 64 x 64 - Null, 8, 8, 64 0
(MaxPooling2D) P2 % 2
flatten_6 (Flatten) Flatten - - - - Null, 4,096 0
dense_17 Sequential CNN | — = = (Rectified Linear Unit) Null, 288 1,179,936
ReLU
dense_18 SVM = - = Softmax Null, 3 867

Overall parameters: 1,243,458

Trainable parameters: 1,243,458

ReLU, Rectified Linear Unit.
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Characteristic

Primary source

Secondary source

Mendeley GitHub
Plant type Rice Rice Rice Rice Rice
Number of different discases 3 2 2 2 2 ‘
Image width 1,908 pixels 300 pixels 300 pixels 756 pixels 756 pixels ‘
‘ Image height 4,032 pixels 300 pixels 300 pixels 250 pixels 250 pixels ‘
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Rice leaf disease

Secondary resources

Mendeley

Kaggle

GitHub

Primary resources

Bacterial blight 1,583 41 41 191 202 2,058
Leaf blast 1,440 0 0 159 218 1,817
Leaf smut 0 40 40 0 113 193

Total 3,024 80 80 351 533 4,068





OPS/images/fpls.2023.1158933/fpls-14-1158933-g004.jpg
YOLO Head

L

o
B
£
Z
=
=)
&

-t vy

suogyoeg






OPS/images/fpls.2023.1224709/fpls-14-1224709-g012.jpg
Multi-Class
classification

Bounding Box Regression

— — — % For each ROI

For each ROI location
ROI Pooling 4

RPN
ROI Projection

Feature Maps

Convolution
Feature Extraction

Image Input





OPS/images/fpls.2023.1234067/table1.jpg
Cita with year Diseases consider: Model framework Category Accuracy of model (%)
Lamba et al., 2022a 3 rice leaf disease CNN-LSTM with GAN Disease classification 97
Lamba et al,, 2022b 3 rice leaf diseases GAN and CNN Disease classification 98.23
Patil and Kumar, 2022 3 rice leaf diseases CNN with IoT Disease classification 95.31
Deng et al., 2021 6 rice leaf diseases CNN Disease classification 91
Priyangka and Kumara, 2021 7 rice leaf diseases CNN model VGG19 Disease classification 95.4
Mekha and Teeyasuksaet, 2021 Rice leaf diseases Random forest Disease classification 69
Luo et al,, 2019 4 rice leaf diseases CNN with SVM Disease classification 96.8
Ghosal and Kamal, 2020 3 rice leaf diseases CNN transfer learning Disease classification 92.46
Goluguri et al., 2021 Rice leaf diseases DCNN with SVM Disease classification 97.5
Bhattacharyya and Mitra, 2019 3 rice leaf diseases CNN Disease classification 94
Dastider et al., 2021 COVID-19 DCNN with SVM Severity classification 97.5
She and Zhang, 2018 Text classification CNN-LSTM Image classification 90.68
Zhang et al,, 2018 Text classification LSTM-CNN Image classification 91.17
‘Waldamichael et al., 2022 Cereal crop disease CNN Severity classification 89
Dhiman and Vinod, 2022 Rice disease CNN Disease classification ‘ 97.692
Hassan and Maji, 2022 Rice leaf diseases CNN Disease classification 99
Babu et al., 2022 Rice leaf diseases CNN Disease classification 99.45
Saidi et al., 2020 Depression CNN-SVM hybrid DAIC-WOZ 68
Khairandish et al., 2022 Brain tumor CNN-SVM hybrid BRATS 98.50
Sun et al,, 2017 MRI CNN-SVM hybrid Haxby’s 2001 fMRI dataset 99.65
Ahlawat and Choudhary, 2020 Biotic stress in paddy CNN-SVM hybrid MNIST dataset ‘ 99.30
Niu and Suen, 2012 Skin lesion CNN-SVM hybrid MNIST dataset 99.18
Jiang et al., 2020 Paddy infections CNN-SVM hybrid Self-created 96.79
Hasan et al,, 2019 Paddy infections CNN-SVM hybrid Self-created 97.49
Liang et al., 2019 Paddy blast infections CNN-SVM hybrid Self-created 99.19
Gulzar, 2023 Fruit classification TL-MobileNetV2 model Kaggle dataset 99
(Lamba et al., 2023) Blast severity classification CNN-SVM Kaggle, GitHub, UCI ‘ 97
Lamba et al., 2022¢ Rice disease classification SVM Kaggle, GitHub, UCI 96.23
Gulzar et al., 2020 Seed classification CNN Self-created 99
Mamat et al., 2023 Fruit classification Transfer learning Self-created 99.5

fMRI, functional MRI; IoT, internet of things; MNIST, Modified National Institute of Standards and Technology; UCI, University of California, Irvine, Machine Learning Repository; BRATS,

Multimodal Brain Tumor Image Segmentation Benchmark; DCNN, Deep CNN; DAIC-WOZ, Distress Analysis Interview Corpus/Wizard-of-Oz set.
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Ref

(Cravero and
Sepulveda, 2021)

(Nandy and Singh,
2020)

(Sharma et al.,
2020)

(Minghua et al,,
2012)

(Shehadeh et al.,
2021)

(Charbuty and
Abdulazeez, 2021)

(Sujjaviriyasup and
Pitiruek, 2013)

(Lee and Moon,
2014)

Ours

Yeal

2021

2020

2020

2012

2020

2021

2013

2014

2023

taset

Big data

Collected data using multistage random sampling

technique from 45 rural areas in West Bengal of India

Collecting data from different sources

Historical agricultural product price data in China

Bureau of Economic Analysis, U.S. Census Bureau

Private data generation

Thailand’s Pacific white shrimp export data

Yearly yield of apple

Self-generated dataset

Technique

Classical ML and
ensemble ML

RF and Logistic
Regression (LR)

RF, DT, Bayesian
network, SVM, NN, and
GA

NN

DT, LightGBM, and
XGBoost

DT

ARIMA and SVM

Kernel smoothing model

KRR (proposed) and SVR,
NB, RR, RF, and CB

Error/Score

Comparison charts

RF = 75.21% accuracy and 85.0% AUC and
LR = 72.34% accuracy and 78.0% AUC

Comparison among the models

Prediction error 6.5% and 8.1% for different
years

DT shows 93% accuracy, LightGBM 87%, and
XGBoost 85%

Comparison among the models
SVM (MAE 1504.52, RMSE 1978.79, and
MAPE 11.22%)

MAPE 5.7 and R2 is 1

KRR obtains highest results





OPS/images/fpls.2023.1143326/table5.jpg
Image/sensor

technology

Main objective

Task to be
solved

ML Algorithm

Reference

VNIR-SWIR
spectroradiometer

Portable NIR
spectroscopy & e-
nose sensors

UAV-based
multispectral
imagery

RGB imagery from
traps

Repository of
insect images

On-ground RGB
imagery

Cotton/
‘Worm

Wheat/
Aphid

Cotton/
Spider mite

No crop/
Pest moth

No crop/
Multi-class
plagues

No crop/
Multi-class
plagues

Tomato

and pepper/
Pest

Strawberry/
Thrips

Modeling the spectral response of cotton
plants under the Fall armyworm attacks

Detecting level of Oat aphids infestation
and predicting insect number

Detection of two-spotted spider mite in
crop fields

Detecting Helicoverpa assulta, Spodoptera
litura and Spodoptera exigua in
pheromone trap images

Detection and classification of multi-class
plague species in trap images

Detection and classification of multi-class
plague species in insect images

Vision-based automated detection and
identification of Bemisia tabaci &
Trialeurodes vaporariorum

Real-time detection of thrips
(Thysanoptera) in flower images

Classification

Classification,

regression

Classification

Classification

Classification

Classification

Classification

Classification

RF, DT, MLP, XGBoost, SVM, Naive Bayes, LoR,
k-NN

ANN-based regression models, Bayesian

Regularization, SVM

SVM, AlexNet

Faster-RCNN ResNet, Faster RCNN Inception, R-
FCN ResNet, RetinaNet ResNet, RetinaNet
Mobile, SSD Inception

VGG16, ZF, ResNet50, ResNet101

VGG19, SSD, Fast RCNN

k-NN, MLP, SSD, Faster-RCNN

SVM

(Ramos
et al,, 2022)

(Fuentes

etal, 2021)

(Huang
etal, 2018)

(Hong et al.,
2020)

(Liu et al.,
2019)

(Xia et al,
2018)

(Gutierrez
et al, 2019)

(Ebrahimi
etal, 2017)
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Input: 6 (Train model); ¢ (Environmental
data); o (Land area); v (Crops’ names); T
(Threshold value)

Output: Recommended crop

1: procedure CropRecommendation (6, £, a, v, T)

2: foreachvdo

3 PY « Predict(6,&,a); [P’ Predicted

production amount of v]

4: endfor

5 if PY> 7 then
6: return v

7 end if

8: end procedure
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Image/sensor Crop/Weed

species

technology

Main objective

Task to be
solved

ML Algorithm

Reference

Field
spectroradiometer

No crop/Sorghum
halepense

No crop/Amaranthus
species

No crop/Cyperaceae
weeds

Wheat, broad bean/
Cruciferous weeds

‘Wheat/Avena sterilis,
Phalaris spp.

On-ground
hyperspectral
camera

Spring wheat, barley/
Kochia scoparia

No crop/Amaranthus
palmeri

Rice/Echinochloa
crusgalli, Oryza sativa

Maize/ Convolvulus
arvensis, Rumex,
Cirsium arvense

‘Winter wheat/
Cruciferous weeds

Satellite multi-
spectral images

UAV-based multi-
spectral and/or RGB
images

‘Wheat/blackgrass
weed

Sunflower, cotton/
broad-leaved & grass
weeds

Vineyard/Cynodon
dactylon

Sunflower, cotton/
Several weeds

Sunflower, maize/
Several weeds

Sunflower/Several
weeds

On-ground RGB Tomato/Several weeds

imagery

Potato/ Chenopodium
album

Differentiating glyphosate- resistant and
susceptible Johnsongrass plants

Spectral discrimination of six Amaranthus
species

Spectral discrimination of Cyperus
esculentus clones and morphologically
similar weeds

Selecting optimal spectral bands for image-
based weed detection

Selecting suitable timeframe and spectral
regions for discriminating wheat and two
grass weeds

Differentiating glyphosate- and dicamba-
resistant and susceptible Kochia plants

Differentiating glyphosate- resistant and
susceptible Palmer amaranth plants

Discrimination of two weed species
(Barnyard grass and weedy rice) with
similar spectral signatures

Discrimination of three weed species

Mapping cruciferous weed patches in
multiple fields at broad scale

Spectral analysis and mapping of blackgrass
weed

Discrimination between broad-leaved and
grass weeds

Detection of bermudagrass in complex
scenarios with cover crop, bare soil and
vines

Early-season weed mapping between and
within crop rows

Selecting patterns and features for between
and within crop-row weed mapping

Comparing several ML paradigms to
distinguish both weeds outside and within
crop rows

Object detection and classification of five
weed species

Comparing CNN-based method to detect
Chenopodium album in the crop field

Classification,
regression, ensemble

Classification

Classification,
dimensionality
reduction

Classification

Classification,
Dimensionality
reduction

Classification

Classification,
dimensionality
reduction

Classification,
regression, ensemble

Classification,
dimensionality
reduction, ensemble

Classification

Classification,
dimensionality
reduction

Classification

Classification

Classification,
ensemble

Classification,
clustering

Classification,

clustering

Classification

Classification

K-NN, RF, SVM with FLDA

SVM, Generalized Linear

Model, DT, Naive Bayes

RF, regularized LoR, PLS-DA

MLP, RBF

Stepwise discriminant
analysis

SVM with RBF kernel

MLC, FLDA

RF, SVM, feature selection:
successive projection
algorithm (SPA).

k-NN, RF, PCA

MLC

Feature selection, RF with
Bayesian optimization

ANN-based MLP

DT

RF

K-means clustering, SVM

k-means clustering, Linear
SVM-based approximation,
k-NN, SVM

RetinaNet, Faster RCNN,
YOLOv7

GoogLeNet, VGG-16,
EfficientNet

(Huang
et al, 2022)

(Sohn et al.,
2021)

(Lauwers
et al, 2020)

(de Castro
etal, 2012)

(Gomez-
Casero et al.,
2010)

(Nugent
etal, 2018)

(Reddy et al,,
2014)

(Zhang
et al,, 2019b)

(Gao et al.,
2018)

(de Castro
et al,, 2013)

(Su et al,
2022)

(Torres-
Sanchez
et al, 2021)

(de Castro
et al,, 2020)

(De Castro
et al,, 2018)

(Pérez-Ortiz
etal, 2016)

(Pérez-Ortiz
et al, 2015)

Lopez-
Correa et al.,
2022)

(Hussain
et al,, 2021)
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Input: Raw data (S)

Output: Preprocessed dataset after missing
value handling

1: procedure MissingValueHandling(S)

2: for each attribute 5% do

3: m=mean (S7) [m"is the arithmetic mean of
attribute 5%]

4 for each sample data S4° do
5 if S4” ismissing then

6: Sq:i=m
7: endif
8 end for

9 end for

10: end procedure
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Image/sensor Crop/ Main objective Task to be solved ML Reference

technology Pathogen Algorithm
type

Field spectroradiometer | Wheat/fungal | Detection and monitoring of powdery mildew (Erysiphe | Regression, ensemble  PLSR, SVM, RE  (Feng ct al.,

graminis) 2022)
Potato/fungal Pre- and post-symptomatic detection of late blight Classification, ensemble RF, PLS-DA (Gold et al.,
(Phytophthora infestans) in leaves 2020)
Avocado/fungal, Early and late detection of laurel wilt (Raffaelea Classification DT, MLP (Abdulridha
nutrient lauricola), N deficiency and Fe deficiency in leaves et al, 2018)
deficiency
Tomato/ Discrimination of bacterial spots (Xanthomonas Dimensionality PCAk-NN (Lu et al,
bacterial, fungal  vesicatoria) among others fungal diseases (e.g. Late blight | reduction, classification 2018)
and target) with similar symptoms
Strawberry/ Asymptomatic and symptomatic detection of Classification, FDA, SDA, k- (Lu et al,,
fungal anthracnose crown rot (Colletotrichum) regression NN 2017)
Avocado/fungal Early and late detection of laurel wilt (Raffaelea Classification MLP, RBF (De Castro
lauricola) & phytophthora root rot et al,, 2015)
On-ground X Sugar beet/ Early detection of rhizoctonia root and crown rot Classification, PLS, RF, k-NN, (Barreto
hyperspectral camera fungal (Rhizoctonia solani) in leaves regression, ensemble Linear SVM, et al., 2020)
Radial SVM
Seed potatoes/ Real-time detection of potato virus y (pvy, genus Classification Fully CNN (Polder
viral potyvirus, family potyviridae) in tractor-mounted et al, 2019)
imagery
Wheat/fungal Early detection of head blight (Fusarium) Classification VGG, RNN (Jin et al.,
2018)
Tobacco/viral Early (pre-symptomatic) detection of tobacco mosaic Classification, PLS-DA, RF, (Zhu et al.,
virus (tmv) in tobacco leaves regression, ensemble SVM, BPNN, 2017)
ELM, LS-SVM

Satellite multi-spectral Coffee/bacterial Detection and progress of bacterial blight (Pseudomonas  Classification, ensemble ~ RF, SVM, Naive  (de Carvalho

and thermal images syringae pv. Garcae) Bayes Alves et al,
2022)
Airborne hyperspectral Olive and Detection of Xylella fastidiosa (bacteria) and Verticillium Classification, SVM, RF (Zarco-
and thermal images almond trees/  dahlia (fungus) symptoms across species and pathogens clustering Tejada et al.,
bacterial, fungal 2021)
Olive trees/ Previsual symptoms detection of Xylella fastidiosa Classification, ensemble |~ LDA, SVM, RBF, (zarco- |
bacterial infection neural network Tejada et al.,
ensemble 2018)
Olive trees/ Early detection and quantification of Verticillium wilt Classification LDA, SVM (Calderon
fungal (Verticillium dahlia) et al, 2015)
Airborne hyperspectral Citrus trees/ Identification of Huanglongbing (HLB) with two aerial Regression, Stepwise (Garcia-Ruiz
& UAV-based bacterial imaging systems Classification regression, SVM, et al,, 2013)
multispectral images LDA, QDA
UAV-based ‘Wheat/fungal Detection of yellow rust (Puccinia striiformis f. Sp. Tritici Classification, ResNet, RF (Zhang
hyperspectral images (pst)) across crop cycle regression etal, 2019a)
UAV-based Apple trees/ Detection of apple fire blight (Erwinia amylovora) Dimensionality mRMR, Isolation (Xiao et al.,
multispectral images bacterial reduction, anomaly forest, DT, RF, 2022)
detection, classification SVM
Banana/ Discrimination between Banana Xanthomonas wilt Classification, VGG16, (Selvaraj
bacterial, viral (BXW) and Bunchy top virus (BBTV) diseases dimensionality ResNet50 et al,, 2020)
reduction
Pear trees/ Detection of fire blight (Erwinia amylovora) Classification SVM, RBF (Bagheri,
bacterial 2020)
Repository of RGB Grapes/fungal Diagnosing black rot, black measles (esca) and leaf blight Classification AlexNet, (Tanget al,,
images of leaves diseases in leaves for potential use in mobile devices MobileNet, 2020)
ShuffleNet
Corn/fungal Real-time detection of common rust and northern leaf Classification CNN (Mishra
blight damages in leaves et al,, 2020)
Tomato/ Real-time detection of tomato mosaic virus in leaves Classification AlexNet, (Durmug
bacterial, SqueezeNet et al,, 2017)
fungal, viral
On-ground RGNIr for Pear trees/ Detection of fire blight (Erwinia amylovora) Classification SVM, RBF (Bagheri,

leaves bacterial 2020)
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Investigated Aus Rice (DM Aman Rice (DM Boro Rice (DM Potato (DM Wheat (DM

Model Value) Value) Value) Value) Value)
SVR 23.041% 16.323* 17.554* 12.253* ‘ 13.862*
NB 22.060* 15542+ 5884 0 13.870* ‘ 11,960
RF 2561 2870 22.021% 10.530* ‘ 9532+
RR 4202 4454 0.460°* 11.984** ‘ 12,933
CB 6.160* 59201 14.744* 10,953 ‘ 8.192%

Observation represents the algorithm’s DM value of Aus rice, Aman rice, Boro rice, wheat, and potato while *, **, *** represent the significance level according to the p-values of the test. *
represents 1% significance, ** represents 5% significance, and *** represents 10% significance of our proposed model against the investigated algorithms.
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Number of ML Publications

In Precision Crop Protection

Algorithm Task to be solved (+) (PCP) PCZ/)PA
Clas Regr Clus Al Dim Asso Diseases Weeds Plagues InPA
Traditional:
Support Vector Machine (SVM) v 4 612 560 540 >1,000 s
Linear Regression (LR) v 287 699 693 >10,000 ek
Stacked Generalization (Stacking) i v 292 393 812 >1,000 Ll
Principal Component Analysis (PCA) v v 383 458 518 >10,000 o
Random Forest (RF) v v 374 437 395 >1000 e,
Decision Trees (DT) v 311 380 414 >1000 %,
Bootstrap Aggregation (Bagging) v v 195 356 414 >1000 ek
Logistic Regression (LoR) v I 129 171 451 >1000 i
k-Nearest Neighbors (k-NN) v 276 195 247 >1000 AR
K-Means Clustering v 210 185 152 >1000 o
Hierarchical Clustering v 114 143 182 >1000 o
Linear Discriminant Analysis (LDA) v 158 125 129 >1000 AER
Naive Bayes 4 ‘ 146 95 169 >1000 e
Regression Trees v 94 134 124 >1000 o
Factor Analysis v 37 80 208 >1000 e
Stochastic Gradient Descent v 117 84 74 >100 e
Partial Least Squares Regression (PLSR) v 101 127 40 >1000 o
Support Vector Regression (SVR) v 75 75 84 >1000 o
Expectation Maximization v 45 40 131 >1000 pais
Singular Value Decomposition (SVD) v 24 37 151 >1000 e
LASSO v 39 44 118 >100 o
AutoEncoder v 53 46 102 >100 iead
Multi Dimensional Scaling (MDS) v 58 68 70 >1000 R
Self-Organizing Maps v 57 63 71 >1000 i
Extreme Learning Machine (ELM) v 59 64 64 >1000 L
Gaussian Mixture Model (GMM) v 49 46 91 >100 L
AdaBoost v v 58 46 74 >100 e
Fuzzy c-Means (FCM) v 61 59 46 >100 .
JI:n]ra!]i;ls:s_east Squares Discriminant v 6 5 19 51000 -
Fuzzy Clustering v 33 56 43 >100 o
Independent Component Analysis (ICA) v 22 22 85 >100 il ‘
Ridge Regression (RR) v 15 25 77 >100 ok \
Extreme Gradient Boosting (xGBoost) v v 24 25 64 >1000 e ‘
Stepwise Regression v 24 40 39 >1000 i ‘
Quadratic discriminant analysis v 51 26 25 >100 il ‘
I Gaussian Process Regression (GPR) v 31 19 40 >100 il
Polynomial Regression v 15 33 41 >100 o
Principal Component Regression (PCR) v 33 31 22 >100 ot
Boosted Trees (BoT) v v 22 20 25 >100 i
Simple Linear Iterative Clustering (SLIC) | v 31 30 4 >100 e
Apriori ‘ 4 8 14 42 >100 e,
I Subset Selection 4 18 21 23 >100 e
Quantile Regression v 6 15 39 >100 R
Ordinary Least Squares (OLS) Regression 7 6 13 41 >100 ot
DBSCAN v 16 22 17 >100 X
Model Trees v 13 19 21 >100 h
Spectral Clustering v ‘ 5 12 35 >100 o
Gradient Boosting Machines (GBM) v v 10 9 28 >100 AR
Poisson Regression v 2 14 30 >100 o
f;ﬁ/{uiu;;;iate Adaptive Regression Splines P o i 5 i -
Minimum Spanning Trees v 3 11 27 >100 iz
Enbetdg Oy / o I e e
f;;;;vli(s)e Multiple Linear Regression v 17 16 5 5100 Sk
Stepwise Discriminant Analysis (SDA) 20 13 4 >1,000 bl
Generalized Regression Neural Network , b " b 100 -
(GRNN)
Maximum likelihood classifier (MLC) v 7 24 3 >100 b
One Rule v 6 6 21 >100 o
g(ejl::)el Principal Component Analysis (k- v 0 6 13 510 ey
One Class SVM v 8 5 16 >10 il
Gradient Boosted Regression Trees v v 11 11 4 >100 el
Quality Threshold v 6 7 12 >100 e
Gaussian Naive Bayes 4 10 7 7 >10 i
Fisher’s linear discriminant analysis v 10 4 9 >10 i
Fuzzy K-Means v 4 14 5 >100 ek ‘
Bagging Trees (BaT) v v 10 6 7 >100 A ‘
Multiple-Kernel Learning (MKL) v 2 6 14 >10 ‘
Isomap v 5 1 15 >100 o ‘
Kernel Ridge Regression (KRR) 4 8 5 13 >10 o |
Extremely Randomized Trees v v 6 7 7 >10 o
Rotation Forest v v 7 7 3 >100 i
Isolation Forest v 5 2 10 >10 i
Multinomial Naive Bayes v 2 2 13 >10 pioid
Laplacian Eigenmaps v 2 1 13 >10
Elastic Net Regression v | 2 3 10 >10 wE
LASSO Regularization v 1 3 11 >10 fsd
K-Medoids Clustering v 1 3 9 >10 i
Least-Angle Regression (LAR) v 2 3 7 >10
Mean Shift Clustering v 1 7 4 >10 hiiad
Locally Weighted Regression (LWR) v 1 2 9 >100 L
FP-growth v 2 3 6 >10 il
Elastic Net Regularization v 1 2 8 >10 b
Zero-Shot Learning 3 2 6 >10 e
Locality Preserving Projections v 3 1 6 >10
Bayesian Network Classifier v 2 4 4 >10 e
Forward Feature Selection v 4 3 2 >10 e
Voting Classifier v v 2 3 3 >10 i
Decision Stump v 1 4 3 >10 A
Local Linear Embedding (LLE) v 5 1 2 >10 AR
Ordinal Regression v - 1 6 >10 >
Local Outlier Factor (LOF) v/ e - 6 >10
Gaussian Mixture Regression (GMR) 4 - - 6 >1 e
Random Subspace Methods v v 1 2 2 >10 o
Category Boosting (CatBoost) v v - - 5 >10 h
Clustering Large Applications (CLARA) v 2 1 2 >10 o
DENCLUE v 2 1 2 >10 e
Ridge Regularization v - 2 2 >10
Bayesian Linear Regression v 1 1 2 >10 *
Sammon Mapping v 1 1 2 >10 e
Eclat 4 1 1 1 >10 i
Relevance Vector Regression v - - 2 >10 ot
Bernoulli Naive Bayes v - - 2 >10 ot
K-Modes Clustering v - - 2 >1 X
:l];:Lg;laAr)ized Linear Discriminant Analysis p _ 2 ~ S10 .
Zero Rule 4 - - 1 >1 o
Gradient Descent Regression v - - 1 >1 R
Fast-MCD v - - - >1 -
PCA-Based Anomaly Detection v - - - >1 -
Artificial Neural Networks:
Convolutional Neural Network (CNN) v v 528 395 339 >1,000 il
Back Propagation v v 190 176 189 >1,000 et
Radial Basis Function (RBF) v 149 135 167 >1,000 Y
Recurrent Neural Network (RNN) v v 92 80 159 >1,000 b
Multi-Layer Perceptron (MLP) v v 65 66 83 >1,000 L
Generative Adversarial Network (GAN) v 86 43 85 >100 ks
Deep Belief Network (DBN) v v 46 35 45 >100 ki
Probabilistic Neural Network (PNN) v 52 22 21 >100 il
Boltzmann Machine 4 24 15 36 >100 L
Restricted Boltzmann Machine (RBM) v 18 9 29 >100 e
Stacked Autoencoder 4 v 8 12 13 >100 d
Learning Vector Quantization (LVQ) v 14 8 3 >100 G
Kohonen’s Self-Organizing Map (SOM) v 4 4 5 >10 b
Single-Layer Perceptron (SLP) v v 4 4 6 >10 o
Hopfield Networks v 3 2 8 >10 e
Bayesian Regularized Neural Networks v - - 4 >10 e
Supervised Kohonen Network (SKN) v 6 9 - >10 i
Counter-Propagation ANNs (CP-ANNs) v - - - >1 -

(1) Clas, Classification; Regr, Regression; Clus, Clustering; Anom, Anomaly Detection; Dim, Dimensionality Reduction; Asso, Association Rule Learning.
(k) #0** >50%; **** >25%; *** >10%; ** >5%; —No cases.
v Indicates that this algorithm was used in the task to be solved.
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Abbreviations Full Form Abbreviations Full Form

KRR K-nearest Neighbor Random Forest Ridge Regression BRAC Bangladesh Rural Advancement Committee
ML Machine Learning BMD ' Bangladesh Meteorological Department
BADC Bangladesh Agricultural Development Corporation BRRI Bangladesh Rice Research Institute
BBS Bangladesh Bureau of Statistics SVR Support Vector Regression

NB Naive Bayes RR Ridge Regression

RF Random Forest CB CatBoost

KNN K-Nearest Neighbors DM Diebold-Mariano

ARIMA Auto-regressive Integrated Moving Average SVM Support  Vector Machine

APC Average Pearson Correlation cv Coefficient of Variance

NN Neural Network IR Logistic Regression

MSE Mean Square Error RMSE Root Mean Square Error

MAE Mean Absolute Error RR Ridge Regression

DT Decision Tree DL Deep Learning
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CNN Architecture

Depth (layers)

LeNet-5 (LeCun et al., 1998) 5 0,06 -

AlexNet (Krizhevsky et al., 2012) 8 60 84.6
VGG-Net (Simonyan and Zisserman, 2014) 16 1384 90.1
GoogLeNet (Szegedy et al,, 2015) 22 4 922
ResNet (He et al,, 2016) 152 60.4 93.1
Xception (Chollet, 2016) 126 228 94.5
DenseNet (Huang et al., 2016) 402 20.2 93.6
MobileNet (Howard et al., 2017) 55 43 89.5

*ImageNet validation dataset.
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