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Editorial on the Research Topic

Immunomodulatory role of metalloproteases in chronic inflamma-
tory diseases
Metalloproteases are a diverse class of enzymes involved in the regulation of numerous

pathological and physiological processes. Evidence has shown that metalloproteases could

either directly or indirectly regulate the secretion of chemokines and the differentiation

and/or activation of immune cells, thereby mediating many inflammatory and innate

immune responses (1, 2). While different metalloproteases could have substantially

different primary structure, their active center which contains metal ions (e.g. iron, zinc,

cobalt, nickel ions) is relatively conservative. Metalloprotease relies on metal ions to

maintain its catalytic function. Studies have shown that metal chelators such as EDTA

could completely inactivate metalloproteases (3–6; Liu et al.). Under inflammatory

conditions, metalloproteases are constitutively activated or deactivated in multiple

immune- or non-immune cells and could contribute to a variety of inflammatory

diseases, such as rheumatoid arthritis (RA) (Li et al.), chronic enteritis (Deng et al. and

Mei et al.), allergic dieseases (Wang and Wang and Bendavid et al.), diabetes (Chen et al.),

and cancers (He et al.), etc. Mutiple chronic inflammatory diseases could even hijack

various metalloproteases to promote and exacerbate inflammation (1, 2). Numerous

preclinical and clinical studies have shown that metalloprotease modulators, including

lysine-specific demethyalses (KDMs) inhibitors (3–5, 7), histone deacetylases (HDACs)

inhibitors (8), and matrix metalloproteinases (MMPs) inhibitors (6), and a disintegrin and

metalloproteinases (ADAMs) inhibitors (9), possess in vitro and in vivo anti–inflammatory

activities. Therefore, understanding the roles of metalloproteinases in the immune system

may potenitally uncover new targets for the diagnosis and treatment of chronic

inflammatory diseases.
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This Research Topic contributes to a better understanding of

immunomodulatory role of the metalloproteases in several chronic

inflammatory diseases and highlights the clinical significance of the

immunomodulatory role of metalloproteases in disease diagnosis and

drug discovery. This Research Topic accepted a total of 12 articles

from 75 authors. All contributions to this Research Topic focus on

one or more of the following research areas:
MMPs

MMPs are a family of zinc-dependent proteases playing the role of

targeting and cleaving extracellular proteins. They are involved in the

occurence and progression of multiple chronic inflammatory diseases,

including colitis [Chen et al. and Deng et al.], rheumatoid arthritis

(RA) (Li et al.), diabetes (Chen et al.), and cancers (10), etc. Mei et al.

identifed five MMPs-realted genes (TLR5, CD160, MMP-9, PTGDS,

and SLC26A8) as the biomakers of inflammatory bowel disease (IBD)

using machine learning by screening from public Gene Expression

Omnibus datasets and functional enrichment analysis. In vivo study

using sodium dextran sulfate (DSS)-induced colitis indicated that the

level of TLR5 was significantly reduced in the model group and the

levels of other four protiens were significantly increased. Futher

studies have shown that MMPs modualate intestinally inflammatary

and immune responses mainly through CD8+ cells in colitis. This

study reveals the crucial roles of MMPs in the pathogenesis of IBD and

provides insights into the molecualr mechanism and theranostical

targets of IBD. Deng et al. suggests that MMPs-relatedmodules are the

main differential gene sets between Crohn’s disease and ulcerative

colitis based on integrated analysis of multiple microarray. RA is an

autoimmune disease caused by a variety of factors (Yang et al.). MMPs

were found to play a crucial role in the pathogenesis of RA. Mutiple

herbal medicines can inhibit the inflammatory responses of RA and

thus alleviate RA through modulating MMPs and the associated

signaling pathways (Li et al.). Diabetic ulcer is a serious

complication of diabetes characterized by recalcitrant wounds,

which could tremendously affect the quality of life of patients and

impose a substantail medical and economic burden on a country.

Chen et al. found that many natural products including flavonoids,

alkaloids, polysaccharides, and polypeptides, etc. are effective to treat

diabetic ulcer through regulation of the MMPs-mediated pathways.

Furthermore, MMPs also contribute to many cancers. He et al. found

that MMPs mediate the progression of colitis-associated cancer by

regulating the expression of eachmember of MMPs precisely and thus

promoting cell proliferation and differentiation, angiogenesis, and

extracellular matrix remodeling. Wang et al. also suggested that

MMPs could be theranostic targets of cancers and could potentially

be applied in cancer diagnosis and treatment.
ADAMs

ADAMs are a family of transmembrane and secreted

metalloproteases. They are involved in many chronic inflammatory
Frontiers in Immunology 026
diseases through modulating proteolysis and the related signalling

pathways (11). Wang et al. sumarized the structure and

immunoregulatory roles of ADMAD17 in tumorigenesis and

highlighted that aborgating ADMAD17 using small inhibitors or

monoclonal antibodies is an effective strategy to combat cancers. In

addition, Wang et al. also showed that ADAMs modulate the

adhesion and migration of cancer cells via releasing the proteolytic

cell surface molecules including adhesion molecules, growth factors,

and precursor forms of cytokines. Devel et al. suggested that both

MMPs and ADAMs are involved in regulating CD95/CD95L

signaling in proteolytic enzyme-dependent manner and targeting

this signalling is a potential strategy for fighting cancer. Bendavid

et al. explored the role of ADMAD28 in asthma using an OVA-

induced asthma model. This study found that ADMAD28 could

increase collagen deposition, smooth muscle hyperplasia, mucous

hyperplasia, suggesting that ADMAD28 could promote the

progression of asthma through regulating airway remodeling.
Others

Some enzymes such as Jumonji C (JmjC) demethylases, ten-

eleven-translocation (TET) enzymes, COX2, and HDACs are also

metalloproteases and are invlvoled in modulating several chronic

inflammatory diseases [(5, 7), Jin et al. and Wang et al.]. Our

previous studies showed that KDM5A or LSD1 could inhibit the

progression of triple-negative breast cancer or acute leukemia via

inducing cell cycle arrest and senescence, leading to cell apostosis in

vitro and in vivo (12–15). Jin et al. systematically sumarized the

emerging role of TET enzymes in the immune microenvironment at

the maternal-fetal interface during decidualization and early

pregnancy, providing an insight into the future implications in

disease diagnosis or treatment. Zhou et al. revealed that the aqueous

extract of Dendrobium officinale flowers exhibit anti-glycation, anti-

cyclooxygenase, and anti-skin aging activity. HDAC1, which is a

type of class I HDACs, is a crucial enzyme modulating the

progression of chronic inflammatory diseases, including allergic

diseases (16–19). Wang and Wang sumarized the roles of HDAC1

in allergic diseases. After stimulated by allergen, HDAC1

upregulates the levels of T helper 2 cytokine, reduces the number

of Th1/Th17 cells and Interleukin-10, and downregulate the

expression of TWIK-related potassium channel-1. This review

hightlights the functions and regulatory roles of HDAC1 in

allergic diseases, aids the understanding of allergic multimorbidity

relationships, as well as provides insight into the feasibility of using

HDAC1 as a molecular target for the diagnosis and treatment of

allergic diseases.

In summary, we anticipate that this Research Topic will inspire

future research on the immunoregulatory roles of metalloproteinases

in chronic inflammatory diseases. Understanding the function and

regulatory mechanisms of metalloproteinases may provide insights

into the future development of diagnostic and therapeutic approaches

(e.g. nanomaterials or metal-based probe targeting these enzymes) for

chronic inflammatory diseases (20–24).
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The emerging role of histone
deacetylase 1 in allergic diseases
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Department of Allergy, Second Affiliated Hospital, Zhejiang University School of Medicine,
Hangzhou, China
Histone deacetylase 1 (HDAC1) is a unique member of the classes I HDACs and

helps to regulate acute and chronic adaptation to environmental stimuli such

as allergen, stress. Allergic diseases are complex diseases resulting from the

effect of multiple genetic and interacting foreign substances. Epigenetics play

an important role in both pathological and immunomodulatory conditions of

allergic diseases. To be consistent with this role, recent evidence strongly

suggests that histone deacetylase 1 (HDAC1) plays a critical role in allergic

response. HDAC1 expression is stimulated by allergen and attributes to increase

T helper 2 (Th2) cytokine levels, decrease Th1/Th17 cells and anti-inflammatory

cytokine Interleukin-10 (IL-10), and TWIK-related potassium channel-1 (Trek-1)

expression. This review focuses on the contribution of HDAC1 and the

regulatory role in characterizing allergic endotypes with common molecular

pathways and understanding allergic multimorbidity relationships, as well as

addressing their potential as therapeutic targets for these conditions.

KEYWORDS

epigenetic modifications, allergic diseases, HDAC1, Th2 cytokines, IL-10, Trek-1
Introduction

Epigenetics includes the heritable alterations in gene expression without any changes

in a deoxyribonucleic acid (DNA) sequence, which is crucial in the pathophysiology of

many diseases (1, 2). Multiple enzymes have been extensively studied that induce

epigenetic changes, such as DNA methylation and histone acetylation of DNA regions.

Histone deacetylases (HDACs) are the enzymes that catalyze lysine deacetylation of both

histone and non-histone proteins. HDACs increase the positive charge on histones after

removing acetyl groups from lysine residues, thus increasing the affinity of positively

charged histones for negatively charged DNA (3). HDACs lead to the condensation of the

chromatin and then reduces the accessibility of transcriptase, and finally leads to an

overall suppression of gene transcription (4). HDAC family has four subclasses including

I, II, III and IV. Classes I, II, and IV HDACs utilize a zinc-dependent mechanism and

belong to the Zn2+ superfamily, while class III HDACs require nicotinamide adenine

dinucleotide(NAD)+ for catalytic activity.
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Histone deacetylase 1 (HDAC1) is a unique member of the

classes I HDACs that has been shown to be involved in gene

transcription, transcriptional regulation, cell cycle progression

and developmental events by controlling both enzyme activity

and epigenetics of key proteins (5). HDAC1 is the most

abundant member of the class I HDACs in pulmonary

endothelial cells (6), regulating the enzymatic activity and

epigenetics of key proteins to adapt to external stimuli. It can

efficiently decrotonylate this relatively less abundant histone

modification (7). Moreover, HDAC1 is the key regulators of T

cell subset differentiation and T cell-mediated immune diseases

(8) that helps to regulate acute and chronic adaptation to

environmental stimuli such as allergen, stress (9). Allergic

diseases represent a collection of disorders such as allergic

rhinitis, asthma, that mostly characterized by a type 2 immune

response involving Th2 cells, eosinophils and mast cells, and M2

macrophages. T cell specific loss of HDAC1 leads to an increase

in Th2 type allergic airway inflammation, such as enhanced

secretion of Th2 type cytokines, eosinophil recruitment to the

lung (10).For example, HDAC1 is highly expressed and the most

abundant member of the class I HDACs in allergic rhinitis and

severe asthma (3, 11, 12). Studies show that HDAC1 is localized

within most airway cells and infiltrating inflammatory cells of

asthmatic lung tissues (13). HDAC1 is significantly upregulated

in the murine AR model while H3 acetylation is decreased at

lysine 9 (H3AcK9) (14). The HDAC1 inhibitor sodium butyrate

exhibits a preventive effect by decreasing HDAC1 expression

and increasing H3 acetylation at lysine 9. Herein, we made a

thorough review of recent studies and summarized the emerging

functions of HDAC1 by regulating histone modifications and

gene transcription in allergic disease.
Allergic diseases

Generalized allergic diseases include allergic rhinitis, asthma,

Immunoglobulin E(IgE)-mediated food allergy, eosinophilic

esophagitis, drug allergy, atopic dermatitis, and urticaria/

angioedema. These different allergic diseases share several

overlapping inflammatory pathways concerning with the

hypersensitivity of the individual to foreign substances (15–18).

Allergic diseases are a type 2 immune disorder classically

characterized by high levels of IgE-mediated inflammation and

Th1/Th2 cells imbalance (19–21). The Th 2 immune response

involves Th2 cells, type 2 innate lymphoid cells, mast cells,

eosinophils, and M2 macrophages (22). Th2 cytokines,

particularly IL-4, are essential in the pathophysiology of allergic

rhinitis and asthma (23, 24). In type I immediate allergic

responses, naïve T cells is activated by dendritic cells to

differentiate, proliferate and clonally expand into Th2 cells (23,

25). Enhanced Th2 cytokines induce IgE synthesis in B cells in an
Frontiers in Immunology
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indirect manner (26, 27). In turn, IgE can also enhance Th2-cell

response after sensitization (28). However, the aberrant immune

responses in atopic disorders are not fully understood yet.

Epigenetics plays a major pathogenetic role in the

development and management of allergic diseases by

superimposing its effects above the DNA molecule through

interaction with susceptibility genes, environmental factors,

and immunologic influences (29). Epigenetics holds the key to

unravel the complex associations between phenotypes and

endotypes of allergic disease by identifying effective therapies

and diagnosis (30). Epigenetic modifications of genes are

contributing to asthma induced by allergens, such as DNA

methylation changes in DCs, can be passed to future

generations (31, 32). Histone modifications and DNA

methylation represent the classical epigenetic mechanisms.

Histone modifications participate in airway remodeling by

regulation of T cells and macrophages. Inhibitors of histone-

modifying enzymes may potentially be used as anti-allergic

drugs (33).
The role of HDAC1 in
allergic diseases

HDAC1 displays compensatory or specific roles in different

cell types or in response to different stimuli and signaling

pathways of atopic disorders. The expression level of HDAC1

in the nasal epithelia is elevated in allergic rhinitis (34), and

HDAC1 inhibitors reduce the symptoms of allergic rhinitis (3,

12, 35). Immunohistochemical results also demonstrate the high

HDAC1 expression in nasal epithelium of patients with sinusitis

and nasal polyps (36). The differentially expressed genes (DEGs)

analysis of 1,662 nasal−epithelium tissue samples and 572 DEGs

from peripheral blood samples shows that HDAC1 is hub genes

and serves an important role in the process of asthma (37).

HDAC1 expression is enhanced in patients with severe asthma

compared with healthy volunteers (11). Moreover, expression of

HDAC1 is upregulated by the stimulation of dermatophagoides

pteronyssinus allergen (Der p 1) in peripheral blood

mononuclear cells of patients with severe and non-severe

asthma (38). Animal models of allergic asthma exhibits

significantly higher expression of HDAC1 compared to

control. Selective targeting of HDAC1 may improve

therapeutic effects of asthma (39). One single nucleotide

polymorphism (SNP) in HDAC1 (rs1741981) is closely

associated to asthma severity in a recessive model and

increases the sensitivity to systemic corticosteroids treatment

in asthmatic patients (40, 41). Besides, in epidermal

keratinocytes, HDAC1 expression and activity are upregulated

by the aryl hydrocarbon receptor nuclear translocator (ARNT or

HIF1b) (42).
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Regulation of inflammatory
cytokines and downstream protein
by HDAC1

A number of studies have shown that exposure to allergens

would increase HDAC1 expression, leading to significantly

advanced Th2 cytokine levels, reduced Th1/Th17 cells and

anti-inflammatory cytokine IL-10, and Trek-1 expression

(Figure 1). In the mouse model of allergic rhinitis, epigenetic

regulation of HDAC1 produce an imbalance in Th1/Th2 by

decreasing the secretion of interferon(IFN)-g, increasing the

secretion of IL-4 and IL-6 (14). Moreover, the transcriptional

activity of forkhead box P3(Foxp3) is restrained that decreases T

regulatory cells (43). As the number of Th1 cells decreases, the

number of Th2 cells correspondingly increases, and

subsequently the secretion of IL-4 increases to promote the

activation of IgE released by B cells (44). Additionally, murine

models of asthma confirm the upregulation of HDAC1 could

increase airway inflammation, Th2 cytokine level, IgE and goblet

cell metaplasia dramatically (45). Indeed, treatment with

HDAC1 inhibitor trichostatin A(TSA) significantly attenuate

airway hyper-responsiveness, mucus occlusions in lung tissue

and the numbers of eosinophils and lymphocytes in

bronchoalveolar lavage fluid. The infiltration of CD4+ and the

expression of IL-4, IL-5, and IgE in BALF are also restrained by

TSA (13). Particularly, Th2 cytokine interleukin 4 (IL-4) plays a

key role in the pathogenesis of allergic disorders (46). HDAC1

can be recruited to the IL-4 gene locus in CD4(+) T cells, thereby

promoting the immunoactivity of CD4 positive T cells to
Frontiers in Immunology 03
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increase Th2 cytokine levels (47–49). The IL-4-induced rat

nasal epithelial barrier dysfunction is blocked by HDAC1

inhibitor (Trichostatin A), or sodium butyrate (NaB), or

administration of Clostridium Butyricum (Table 1) (14, 62). A

non-secreted IL-4 variant (IL-4d13) expression in human gd T-

cells is also stimulated by another HDAC inhibitor valproic acid

(VPA) (Table 1) (58). The Induction of IL-4d13 increases

cytoplasmic IL-4Ra and decreases mature IL-4 (59). Along

with the role of HDAC1 in altering the Th2 cytokine profile, it

is reported that HDAC1 is recruited to change the euchromatin

into tightly-packed heterochromatin to repress its expression in

Th17 cells through production of cytokine IL17 (63). HDAC1

inhibitor sodium butyrate increases IL−17、interleukin 2 (IL−2)

and interferon g and decreases the expression of IL−4 and IL−5

(50). HDAC1 regulates the retinoic acid-related orphan

receptor-mediated transcriptional activation of IL-17 (64).

Apart from the studies showing the Th1/Th2 imbalance and

inhibition of IL17, histone deacetylation is an important

mechanism that regulates the expression of anti-inflammatory

cytokine IL-10 (65). HDAC1 represses IL-10 transcription

activity by reducing chromatin accessibility and recruiting

histone H3 acetylation at IL-10 regulatory regions (66).

Sodium butyrate restrains the activation of HDAC1 in the

antigen specific B cells to induce the expression of IL-10 and

decrease the production of IgE in allergic rhinitis model (51).

Another HDAC inhibitor entinostat stimulates the formation of

IL-10 positive Breg cells to suppress contact hypersensitivity in

vivo (54). Indeed, the administration with Clostridium

butyricum (C. butyricum) enforces the effect of specific

immunotherapy on intestinal allergic inflammation by
FIGURE 1

Schematic representations of HDAC1 related mechanism in allergic diseases. Allergic disease patients have an epithelial barrier suffering from
allergen stimulation. Exposure to allergens activate dendritic cell and increase HDAC1 expression, leading to significantly increase Th2 cytokine
levels, decrease Th1/Th17 cells and anti-inflammatory cytokine IL-10, and Trek-1 expression.
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increasing the phosphorylation of HDAC1, the expression of IL-

10 and the IgE-producing plasma cells (67).

There are some studies documenting the role of Trek-1 in

the maintenance of epithelial cell barrier function (62, 68). The

allergic responses induce an insufficiency of Trek1 expression

(69). Enhanced IL-4 markedly suppresses the expression of

Trek1 via upregulating the expression of the HDAC1 in the

nasal mucosa of allergic rhinitis (62). The treatment with

antigen-specific immunotherapy and administration of

probiotic C. butyricum reduce the serum levels of Th2

cytokines by increasing Trek-1 expression levels and

decreasing HDAC1 in the nasal mucosa of allergic rhinitis

patients (23). Allergic responses markedly suppress the

expression of Trek1 in the intestinal epithelia via increasing

the expression of HDAC1 (70).
HDAC1 is regulated by exposure to
stimuli and is associated with
gut microbiome

Different stimuli includes temperature, particles containing

hazardous chemicals, and small chemical molecules that exhibits

an impact on the expression of HDAC1. Particulate matter (PM)

2.5 exposure and cold stress (PMCS) exposures promote

inflammation and redox levels in asthmatic mice through

increasing the percentage of Th2 T cells and decreasing Th1 T

ce l l s , thereby decreas ing HDAC1 expres s ion and

hyperacetylation of H3K9 and H3K14 in IL-4 gene promoter

of CD4+T cells (71). Mechanically, HDAC1 helps maintain

DNA-binding sites (response elements) for redox-sensitive

transcription factors by co-repressor complexes (72). Besides,

exposure to diesel exhaust particulate matter (DEP) causes

degradation of histone deacetylase 1 (HDAC1), thus recruiting

histone acetyltransferase (HAT) p300 to the promoter of the

Cyclooxygenase-2 (COX-2) gene in vitro human bronchial
Frontiers in Immunology 04
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epithelial cell line (BEAS-2B) (73). In addition, chronic

exposure to alcohol decreases HDAC1 expression (74).

Trichostatin A alleviates tissue damage that is caused by

cigarette smoke exposure (75, 76).

On the other hand, HDAC1 is modulated by upstream

transcription factors and signaling pathway in allergic diseases.

Previous studies have shown that the transcription factor c-Myc-

interacting zinc finger protein-1 (Miz1) was upregulated in

allergic asthma, which in turn prevented the pro-Th1 skewing

through the recruitment of histone deacetylase 1 (HDAC1) and

transcriptional repression of IL-12 (77). HDAC1 expression is

also increased by the advanced glycation end products via the

phosphatidylinositol 3-kinase(PI3K)/AKT pathway through

promoting the airway inflammation (45).

Moreover, gut microbiome is associated with allergic

diseases (78–81). Sodium butyrate treatments lead to increase

the richness in the stomach and colon and modify colonic

microbial composition in pigs by decreasing HDAC1 (82, 83).

The intestinal epithelial cells specific HDAC1 support intestinal

homeostasis by controlling specific biological processes

including oxidation-reduction, survival and translation

processes, differentiation and lipid-related metabolic pathways

via Janus kinase(JAK)/signal transducer and activator of

transcription (STAT) pathway and steroid receptor pathway

(84–86).
Potential of HDAC1 inhibitors
as treatments

A large body of evidence shows that HDAC1 is a potential

clinical target for treatment of allergic diseases. At present,

numerous questions remain regarding to the precise functions

of HDAC1 in allergic inflammation. The HDAC inhibitors such

as trichostatin A (TSA) have a bidentate cheator, which binds to

catalytic Zn2+ (87). The broad-spectrum HDAC1 inhibitor
TABLE 1 The role of HDAC inhibitor in allergic diseases.

HDACI inhibitor Structure Model Clinical application Allergic
Diseases

References

Trichostatin
A
(TSA)

pan-
inhibitors

Ovalbumin-induced mouse
asthma model;

Phase I clinical trials in hematologic
malignancies

Asthma (13)

Sodium
butyrate
(SoB, NaB)

selective
inhibitors

Mouse model of allergic
rhinitis

Phase 2 clinical trials in Shigellosis; Randomized
controlled trial in inflammatory Bowel Diseases;

Allergic rhinitis (50–53)

Entinostat selective
inhibitors

Mouse model of oxazolone-
induced contact
hypersensitivity

Phase 3 clinical trials in cancer; Contact
hyper sensitivity

(54–57)

Valproic
acid
(VPA)

selective
inhibitors

Asthmatic mouse model;
Peripheral blood mononuclear
cell

Phase 2 clinical trials in cancer Asthma healthy
donors

(58–61)
fr
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trichostatin A has a hydroxamic acid based structure that affects

the expression of thousand genes in the human genome. There is

still no clinical application of these HDAC1 inhibitors. Thus,

there is an ongoing discussion whether selective HDAC

inhibitors have advantage for clinical use. These small-

mo l ecu l e compounds t a r ge t ing HDAC1 have no

serious toxicities.

There are many HDAC inhibitors in ongoing clinical trials

(Table 1). The study on the tolerance of trichostatin A in patients

with recurrent or refractory hematological malignancies is still in

progress. Genetic and pharmacological studies have confirmed

that HDAC1 is the key enzyme to reverse tumor immune escape.

Entinostat selectively promotes the immune editing of new

tumor antigens, leading effectively reshaping the tumor

immune microenvironment (55). The randomized phase III

trial of endocrine therapy confirms target inhibition in

entinostat-treated breast cancer patients (56). Valproic acid

and entinostat exhibit synergy in preclinical models when

combined with rituximab in Non-Hodgkin’s lymphoma (57).

On the other hand, Valproic acid is the first-line drug for tonic

clonic seizures (60). Besides, Valproic acid induces apoptosis of

activated T cells to maintain immune homeostasis, which may

be a safe and effective treatment for autoimmune diseases, such

as multiple sclerosis (61). Entinostat and valproic acid can

potentially be repurposed for treating asthma (88). However,

there is no clinical trials to determine the role of entinostat and

valproic acid in asthma. These findings highlight the need for

further exploration of HDAC inhibitors in allergic diseases.

Sodium butyrate therapy during shigellosis leads to early

reduction of inflammation and enhanced antimicrobial peptides

(LL-37) expression in the rectal epithelia (52). The double‐blind

randomized controlled trial shows that sodium-butyrate

supplementation in 49 inflammatory bowel diseases patients

increases the growth of bacteria able to produce short‐chain fatty

acids (SCFA) with potentially anti-inflammatory action (53).

These results support the potential effect of sodium butyrate in

modulating gut microbiota, which anyway requires further

confirmatory data including more patients. In considering

future potential clinical application in allergic diseases, more

studies are still needed to develop new HDAC1 specific selective

inhibitors. HDAC1 specific selective inhibitors may provide a

new starting point for the treatment of allergic diseases.
Prospective and conclusion

Allergic diseases comprise some of the most common

chronic disorders in both childhood and adulthood. Allergic
Frontiers in Immunology 05
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conditions are influenced by epigenetic elements which

ultimately affect multiple molecular pathways (89, 90).

Accumulating evidences have established in HDAC1 as a

critical regulator of immune response in terms of imbalance in

Th1/Th2, change in anti-inflammatory cytokine IL-10/IL-17 and

Trek-1 expression. Over the past decades, histone deacetylase

inhibitors are being evaluated in clinical trials for their safety and

efficacy (91, 92). HDAC1 has become an attractive target to treat

a wide range of diseases. However, these HDAC inhibitors do

not display high selectivity and may restrain related HDACs.

The potential side effects due to inhibition of systemic immune

response are an urgent problem to be solved. Besides, additional

work is required to examine the expression and activity of

HDAC1 in allergic diseases. The development of selective

HDAC1 inhibitors may lead to new therapeutic agents for

allergic diseases, particularly in situations where current

therapies are suboptimal.
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Targeting matrix
metalloproteases: A promising
strategy for herbal medicines to
treat rheumatoid arthritis

Ruo-Lan Li1†, Hu-Xinyue Duan1†, Qi Liang1, Yong-Liang Huang2,
Ling-Yu Wang1, Qing Zhang1, Chun-Jie Wu1*, Shu-Qin Liu2*

and Wei Peng1*

1State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy,
Chengdu University of Traditional Chinese Medicine, Chengdu, China, 2Hospital of Chengdu
University of Traditional Chinese Medicine, Chengdu, China
As a type of metalloproteinase, matrix metalloproteinases (MMPs) can be

divided into collagenase, gelatinase, stromelysins, membrane-type (MT)-

MMPs and heterogeneous subgroups according to their structure and

function. MMP contents in the human body are strictly regulated, and their

synthesis, activation and inhibition processes should be kept in a certain

balance; otherwise, this would result in the occurrence of various diseases.

Rheumatoid arthritis (RA) is a known immune-mediated systemic inflammatory

disease that is affected by a variety of endogenous and exogenous factors. In

RA development, MMPs act as important mediators of inflammation and

participate in the degradation of extracellular matrix substrates and digestion

of fibrillar collagens, leading to the destruction of joint structures. Interestingly,

increasing evidence has suggested that herbal medicines have many

advantages in RA due to their multitarget properties. In this paper, literature

was obtained through electronic databases, including the Web of Science,

PubMed, Google Scholar, Springer, and CNKI (Chinese). After classification and

analysis, herbal medicines were found to inhibit the inflammatory process of RA

by regulating MMPs and protecting joint structures. However, further

preclinical and clinical studies are needed to support this view before these

herbal medicines can be developed into drugs with actual application to

the disease.
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1 Introduction

Rheumatoid arthritis (RA) is an immune-mediated systemic

inflammatory disease that is affected by a variety of endogenous

and exogenous factors, and is characterized by synovial

hyperplasia and progressive joint destruction (1). The

prevalence of RA in the population is approximately 0.5-1%.

The incidence of RA peaks between the ages of 40 and 60 years,

and its prevalence is significantly higher in women than in men

(2). In existing studies, it is generally believed that RA is a rare

and nonfatal disease. However, during development of the

disease, joint tissues, including cartilage and bone, experience

nonnegligible damage, which can seriously affect the life quality

and could even reduce the life expectancy of patients (3, 4).

Unfortunately, the pathogenesis of RA has not been fully

elucidated up to now, which brings great challenges to the

cure of RA (5). Retrospective studies on the pathogenesis of

RA have found that genetic and environmental factors may be

important inducers of RA (6, 7). Among the current available

treatment modalities, nonsteroidal anti-inflammatory drugs

(NSAIDs) are commonly used to suppress inflammation and

relieve pain, while glucocorticoids are used to prevent long-term

joint erosion (8). In addition, disease-modifying anti-rheumatic

drugs (DMARDs), which exert anti-inflammatory and

immunomodulatory effects through different pharmacological

mechanisms, are often used as mainstay treatments in newly

diagnosed RA cases. It is worth noting that since DMARDs have

no direct anti-inflammatory or analgesic effects, there are no

immediate effects (9). At the same time, biological agents that

can selectively inhibit some specific molecules in the immune

system have gradually been applied to RA (9). In RA treatments,

high doses of drugs are often used to enable drugs to reach

diseased joints and exert their curative effects, which are

accompanied by toxicity and side effects. For example,

NSAIDs and conventional DMARDs have apparent

gastrointestinal and hepatorenal toxicity (10). Glucocorticoids

can cause adverse reactions including osteoporosis,

hypertension, and hyperglycaemia, while biologics may lead to

autoimmune syndromes (11). Therefore, the development of

new adequate pharmaceutical preparations is of great

significance for conquering RA diseases.

To date, researchers have identified approximately 600

proteases in humans, including endopeptidases and

exopeptidases (12). They are an indispensable part of life due

to their strict regulation of various physiological processes in the

human body, including autophagy, protein degradation, cell

death, immune response and signal transduction (13, 14). In

contrast, when protease activities are out of balance, this will

result in many diseases (15). As a type of endopeptidase,

metalloproteinases are related to extracellular pathways and

can participate in the hydrolysis of the internal peptide bonds
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of polypeptide chains. Among them, matrix metalloproteinases

(MMPs), as the most important metalloproteinases, are involved

in the pathogenesis of various diseases, including RA (16).

Synovial joint lesions are often accompanied by abnormally

elevated MMP levels, suggesting that MMPs are closely related

to the development of RA. This conclusion has been

continuously confirmed in recent decades (16, 17). Meanwhile,

with the deepening of research, we have been able to determine

that MMPs are mainly responsible for the irreversible

destruction of cartilage, bone and tendons in joints. Moreover,

RA can be partially relieved after the use of tissue inhibitors of

MMPs (TIMPs) (18). Therefore, MMPs can be considered

important therapeutic targets for RA. Furthermore, increasing

evidence has suggested that herbal medicines have many

advantages in treating RA. They have promising roles in

improving RA by participating in multiple pathways such as

immune regulation, the inflammatory response, and

angiogenesis (19). In this review, we focused on the regulation

of MMPs by herbal medicines in RA to contribute to the

development of new therapeutic drugs targeting MMPs in RA.

Information on regulation of MMPs and treatment of RA by

herbal medicines through MMPs was obtained through

electronic database searches, including the Web of Science,

PubMed, Google Scholar, Springer, and CNKI (Chinese).

“Herbal medicine” , “matrix metalloproteinases” and

“rheumatoid arthritis” were used for keyword screening, and

the searched literature was classified and managed.
2 Classification and structure
of MMPs

MMPs are zinc-dependent proteolytic enzymes, that can

participate in various physiological and pathological processes,

such as extracellular matrix remodeling, cell migration and

angiogenesis, and are well-known extracellular modulators

( 2 0 ) . MMP s b e l o n g t o t h e me t z i n c i n c l a n o f

metalloendopeptidases along with ADAM (a disintegrin and a

metalloproteinase) and ADAMTS (a disintegrin and

metalloproteinase with a thrombospondin motif), which

contain zinc at the catalytic site for the hydrolysis of peptide

bonds (21). Figure 1 shows that 23 different MMPs have been

found in humans, which can be roughly divided into 5 categories

according to their different functions and structures: (1)

collagenase (MMP-1, MMP-8 and MMP-13); (2) gelatinase

(MMP-2 and MMP-9); (3) stromelysins (MMP-3, MMP-10

and MMP-11); (4) membrane-type (MT)-MMPs, which can

be divided into two types: transmembrane-types (MMP-14,

MMP-15, MMP-16 and MMP-24, also known as MT1-

MMP, MT2-MMP, MT3-MMP and MT5-MMP) and

glycosylphosphatidylinositol (GPI)-anchored types (MMP-17
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and MMP-25, also known as MT4-MMP and MT6-MMP) and

(5) heterogeneous subgroups (HS), such as matrilysins (MMP-7

and MMP-26) , enamels in (MMP-20) , macrophage

metalloelastase (MMP-12) and others (MMP-19, MMP-21,

MMP-23, MMP-27 and MMP-28) (6, 22).

Structurally, MMPs have similar components, including

signal peptide (SP), amino (NH2)-terminal propeptide

domains (Pro) and zinc-containing catalytic domains, which

are shown in Figure 2. When MMPs migrate to the endoplasmic

reticulum, signal peptidases cleaves SP. This basic structure is

commonly found in MMP-7 and MMP-26, which also make

them the smallest MMPs. In MMP-23, the type II

transmembrane domain replaces the SP, making it a type II

transmembrane protein. Meanwhile, the cysteine residues in Pro

interact with zinc ions to inactivate MMP-23. However, there is

also an Arg-X-Lys-Arg motif at the C-terminal of Pro, which can

be recognized and cleaved by the pro-protein convertase furin to

activate MMP-23. The catalytic domain of MMP-23 is followed

by a cysteine array and an immunoglobulin-like domain (6).

Except for the above MMPs, other MMPs, such as MMP-1,

MMP-3, MMP-8, MMP-10, MMP-12, MMP-13, MMP-19 and

MMP-20, also contain the hinge region and hemopexin (Hpx)

C-terminal domain. The hinge region connects the Hpx domain

to the catalytic domain. Among them, the catalytic substrate
Frontiers in Immunology 03
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diversity is determined by the inclusion of four Hpx-like repeats

in the Hpx domain. Meanwhile, the degradation of collagen and

gelatin by MMP-2 and MMP-9 is due to the presence of three

repeats of the fibronectin type II motif in the catalytic domain.

The Pro of MMP-11, MMP-21 and MMP-28 also contain

cysteine residues and Arg-X-Lys-Arg motifs. MT-MMPs, on

the other hand, connect to the type I transmembrane domain or

glycosylphosphatidylinositol (GPI) anchor after the Hgx domain

on the basis of the MMP-11 structure (23).
3 Regulation of MMPs

To maintain a balance between anabolism and catabolism of

joint tissues, the synthesis, activation and inhibition of MMPs

are strictly regulated (24). In existing studies, it has been found

that regulation of MMPs is mainly achieved by regulation of

transcriptional and posttranscriptional activities.

Genes encoding MMPs are mainly expressed in connective

tissue fibroblasts but also in monocytes, macrophages, endothelial

cells and neutrophils. In normal tissues, MMP expression are

maintained at constant low levels, while under pathological

conditions such as RA, MMP expression increase sharply (25).

The mechanisms that regulate the transcription of MMPs are
FIGURE 1

Classification of MMPs (MMPs: Matrix metalloproteinases; MT-MMPs: Membrane-type MMPs, and HS: Heterogeneous subgroups).
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extremely complex. Among them, the activator protein 1(AP-1)

binding site at 73 bp or 1602 bp is a key regulator of MMP

transcription, which can be activated by Jun and Fos family

transcription factor proteins to form c-Jun/c-Jun homodimers

or c-fos/c-Jun heterodimers, which in turn induce transcription of

MMPs (26). Meanwhile, in MMP-1 and MMP-13, AP-1

cooperates with polyomavirus enhancer activator-3 (PEA3) to

participate in the transcriptional activation of MMPs (26). Gene

transcription of MMPs can also be induced by proinflammatory

cytokines (e.g., IL-Ib and TNF), growth factors (including

epidermal growth factor (EGF), platelet-derived growth factor

(PDGF), basic fibroblast growth factor (bFGF) and transforming

growth factor b (TGF-b)), among which, TGF-b can promote or

inhibit transcription of MMPs in different cell types or cell states

(27). In addition, many signaling pathways can also regulate the

gene expression of specific MMPs through signal transduction

pathways. For example, activation of NF-kB leads to

transcriptional activation of MMP-1, MMP-3 and MMP-9,

while MAPK, JNK and p38 can promote transcription of

MMPs by increasing AP-1 levels (28). Notably, in some MMPs,

such as MMP-1, MMP-3 andMMP-13, due to the presence of the

AUUUA sequence in their 3’ untranslated region genes, the

posttranscriptional mRNA half-lives are extremely short, thus

ensuring that MMPs can be maintained at low levels (29).

When MMPs are synthesized, the cysteine residues located

in Pro need to be removed to become active. In the present

study, activation of MMPs can be broadly divided into two

pathways, namely intracellular activation and extracellular

activation. In the intracellular pathway, Arg-X-Lys-Arg motifs
Frontiers in Immunology 04
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can be recognized and activated by furin in the Golgi apparatus,

and then transferred to the cell surface to activate other MMPs

(30). In contrast, the extracellular pathway mainly occurs on the

surfaces of cell membranes or in tissues. Among them, MMP-2

and MMP-13 are mainly activated by activated MT-MMPs on

cell membrane surfaces (31). In tissues, a variety of enzymes are

involved in activating MMPs, including cathepsin B and

plasminogen activator urokinase type (uPA) (32, 33). In

addition, some active MMPs in tissues are the activating

enzymes of other MMPs. For example, MMP-10 can activate

pro-MMP-8, while MMP-13 can activate pro-MMP-9, and other

enzyme activation relationships are shown in Figure 3 (34). In

addition to the above processes, there are endogenous inhibitors

in the body that can block the activity of MMPs. Among them,

TIMPs are closely related to joints. To date, researchers have

identified four TIMPs, among which TIMP-2 can inhibit the

activation process of MMPs and activity of MMPs after

activation (35). In addition to its MMP inhibitory activity,

TIMP-3 has a wide range of inhibitory effects. For example,

TIMP-3 can inhibit the activity of ADAM-17 (also known as

TNF-a converting enzyme, TACE) and ADAMTS-4 and -5

(aggrecan enzymes) (36–38). However, the activity of TIMPs

remains controversial in some current studies, and these results

showed that although TIMPs were able to reduce the effect of

MMPs, their active effects were low. When TIMPs are

overexpressed, they can also promote cell invasion and

apoptosis, thereby promoting the development of RA (39–41).

In addition, clinical attempts to use exogenous TIMPs to inhibit

MMPs have generally failed (42).
FIGURE 2

Structure of MMPs (MMPs: Matrix metalloproteinases).
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4 The role of MMPs in RA

4.1. MMPs act as mediators of
inflammation

RA is an autoimmune disease that is associated with a

chronic inflammatory process that affects multiple joints

throughout the body. Although many molecular mechanisms

have been used to explain the pathogenesis of RA, the exact

etiology of RA is not well understood. It is generally accepted

that genetic susceptibility and some stimulating events can

induce an initial immune or inflammatory response in joints.

Subsequently, inflammatory cells, which consist of neutrophils

and macrophages, are recruited into the joints and release large

amounts of inflammatory cytokines, such as IL-Ib, TNF (also

known as TNF-a), IL-6, and CXCL8. On the one hand, the

released inflammatory cytokines can promote the proliferation

of synovial fibroblasts, recruit macrophages and immune cells to

form pannus and jointly invade and destroy cartilage, tendon

and bone. On the other hand, they can further induce migration

of inflammatory cells to the joints and aggravate immune and

inflammatory responses in the body (43, 44). In addition,

activated inflammatory cells and cytokines can also induce

expression and secretion of MMPs, which in turn affect the

actions of chemokines and cytokines. However, previous studies

have shown that MMPs may promote or inhibit inflammation

through different effects. For example, MMP-1, MMP-2, MMP-

13 and MMP-14 can inactivate chemokines by cleaving

monocyte chemoattractant protein-3 (MCP-3), thereby losing

their ability to recruit monocytes and leukocytes (45, 46). At the

same time, when MMP-8 expressions were restricted, neutrophil

infiltration increased and RA manifestations were aggravated in

mice (47). In contrast, MMP-7 can increase infiltration of

inflammatory cells and promote the inflammatory response by
Frontiers in Immunology 05
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shedding the ectodomain of syndecan-1 (48). Similarly,

overexpression of MMP-12 in macrophages significantly

enhanced the inflammatory response in RA, which was

accompanied by increased synovial infiltration (49). Therefore,

MMPs have dual roles in inflammation, and the balance between

proinflammatory and anti-inflammatory signaling needs to be

tightly regulated.
4.2. MMPs destroy joint structure

Complete joints consist of articular bones, articular cartilage,

fibrous capsules, and synovial membrane. Articular cartilage is

attached to the apex of the contact surface of two or more

articular bones, and there is no vascular distribution. Synovial

membranes can secrete lubricating synovial fluid and provide

nutrients to cartilage through microcirculation. During the

development of RA, in addition to the inflammatory response,

RA is characterized by pathological changes in synovial tissue,

cartilage and bone (50, 51). Previous studies have confirmed that

activated osteoclasts can change the local environment to an

acidic pH while secreting cathepsin K, which can degrade bone

in an acidic environment. MMP activities are inhibited in acidic

environments and therefore have no apparent effect on the

calcified bone matrix (52). However, in RA, degradation of the

cartilage matrix is largely attributed to MMPs. In existing

studies, the expressions of MMP-1, MMP-2, MMP-3, MMP-7,

MMP-8, MMP-9, MMP-13 and MT1-MMP are closely related

to RA.

Healthy articular cartilage is mainly composed of collagen

and proteoglycan aggregates. Among them, a single aggregate of

proteoglycan aggregates consists of approximately 100 core

protein units called aggrecans. It is well known that aggrecans

possess three globular domains (e.g., G1, G2, and G3) and can
FIGURE 3

Regulation of MMPs and enzyme activation relationships between MMPs.
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covalently bind to negatively charged glycosaminoglycans

(GAGs), such as chondroitin sulphate, keratan sulphate, and

dermatan sulphate. Subsequently, single aggregates bind

noncovalently to hyaluronic acid consisting of repeated

glucuronic acid and N-acetylglucosamine disaccharides, and

eventually form proteoglycan aggregates. In proteoglycan

aggregates, GAGs can attract water due to their negative

charge, providing cartilage protection and reducing the friction

coefficients of joint surfaces (53, 54). In RA, ADAMTs are the

major enzymes involved in the degradation of proteoglycan

aggregates in cartilage, while only some MMPs, such as

stromelysin, MMP-1, MMP-2 and MMP-3, can participate in

the cleavage of proteoglycan aggregates (55, 56). When MMPs

act on proteoglycans, the G1 domain dissociates from the

aggregates and diffuses into the synovial fluid, thereby losing

its structural function.

As another important component of articular cartilage,

collagen is also the most abundant protein in the animal

kingdom. In articular cartilage, type II collagen is the most

common collagen, while type IX and XI collagen are only a

minority. Notably, type II collagen is a unique component of

cartilage, consisting of three Alpha1 (type II) chains that support

the rigid structure of cartilage (57). In organisms, collagen

degradation is almost exclusively mediated by MMPs. First,

collagenase (e.g., MMP-1, MMP-8 and MMP-13) can target

the collagen triple helix between Gly775 and Leu776 to cleave

collagen, producing a 1/4 C-terminus and 3/4 N-terminus (56,

58). Subsequently, these deformed molecules are further

degraded by gelatinases (MMP-2 and MMP-9) (59). Although

all three collagenases can cleave the triple helix structure of

collagen and due to their different locations and substrate

preferences, the degradation effects of these three collagenases

are also different. Among the three collagenases, MMP-1 and

MMP-8 are localized to the superficial surfaces of cartilage.

MMP-1 is stably expressed in a variety of cells and has a certain

ability to cleave type I, II, III, VII and X collagens, while MMP-8

can cleave type I, II and III collagens. Notably, MMP-8 is mainly

stored in neutrophils, and its activity is highest when cleaving

type I collagen (60, 61). In addition, MMP-13, as the main force

in the cleavage of type II collagen, is mainly distributed in

chondrocytes, and its activity in cleavage of type II collagen is

5-10 times that of MMP-1. In some studies, MT1-MMP was

shown to directly degrade collagen and indirectly participate in

collagen degradation through proMMP-13 activation (53).

MMPs can degrade all components of the extracellular

matrix, and most MMPs can degrade a variety of extracellular

matrices. Gelatinases degrade proteoglycans in addition to

denatured collagen (62, 63). Stromelysins have a wide range of

specificity for fibronectin, laminin, and elastin. Stromelysin-1

(MMP-3) not only can damage the specificity of proteoglycans,

but also activate proMMP-1 to degrade collagen, so stromelysin-

1 plays a dual role in RA (56).
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In addition to the above methods, synovial tissue invasion,

which is closely related to MMP expression, is another

important pathway of cartilage destruction and is closely

related to the inflammatory process. In addition to MMP-12,

MMP-13 is also thought to be involved in the invasion of RA

synovial fibroblasts (RASFs) into cartilage. Direct evidence

showed that cartilage erosion was significantly alleviated after

the use of a specific MMP-13 inhibitor in vivo (64). Interestingly,

selective silencing of MMP-13 in an in vitro model had no

apparent effect on RASF invasion (65). Moreover, MT1-MMP

not only directly degrades collagen, but also promotes synovial

invasion. After MT1-MMP was specifically inhibited or

selectively knocked out, the invasion effect of RASF on

cartilage was significantly alleviated (66, 67). In addition,

MT1-MMP may contribute to cartilage destruction by

promoting angiogenesis and endothelial cell migration (68).
5 Herbal medicines can treat RA by
regulating MMP

In recent years, the existing drugs have shown certain

deficiencies in treating RA, but the incidence of RA is still

high. Therefore, it is urgent to find new therapeutic drugs.

Herbal medicines are derived from plants that exist in nature.

They have a wide range of sources and various types, and many

have multitarget effects, making them excellent source of drugs.
5.1 Extracts from herbal medicines

5.1.1 Herbal medicine formulas
Qing-Luo-Yin (QLY) is an herbal medicine formula

containing four Chinese herbs, namely Sophora flavescens

Aiton, Phellodendron amurense Rupr., Sinomenium acutum

(Thunb.) Rehder & E.H.Wils. and Dioscorea collettii var.

hypoglauca (Palib.) S.J.Pei & C.T.Ting. QLY is commonly used

to treat RA in China and has achieved remarkable results. As

early as 2002, Li et al. first used a collagen induced arthritis

(CIA) model to confirm that QLY had significant effects on the

arthritis index, pain, and ankle swelling in CIA rats (69).

Subsequently, Li et al. continued to use the CIA model for in-

depth explorations. The results showed that QLY could reverse

imbalances between MMP-3 and TIMP-1 expressions in RA by

inhibiting the expression of MMP-3 and promoting TIMP-1

production, thereby inhibiting angiogenesis in the synovium,

and finally playing a role in improving the joint morphology of

rats (70). More details are shown in Table 1.

Tongbiling (TBL) is a Chinese herbal formula that has anti-

arthritic effects and has been used clinically for many years. It

consists of Neolitsea cassia (L.) Kosterm., Paeonia lactiflora Pall.,

Aconitum carmichaeli Debeaux, Achyranthes bidentata Blume,
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Celastrus orbiculatus Thunb and Wisteriopsis reticulata (Benth.)

J.Compton & Schrire. Shen et al. used CIA mice as a model to

validate the therapeutic effects of TBL on RA. It was found that

TBL suppressed inflammation and attenuated cartilage and bone

destruction, and the underlying mechanisms were corrected by

decreasing the amounts of IL-1b and TNF and reducing the

expressions of MMP-2, -3, and -9 (71).

Jeevaneeya rasayana (JR) is an anti-arthritic ayurvedic

polyherbal formulation that consists of Cyperus rotundus L.,

Boerhaavia diffusa L., Tribulus terrestris L., Curculigo Orchioides

Gaertn., Mucuna Pruriens (L.) DC., Withania somnifera (L.)

Dunal, Asparagus racemosus Willd. and Hygrophila auriculata

(Schumach.) Heine. Shyni et al. studied the anti-arthritic effects

of the alkaloid fraction of Jeevaneeya Rasayana (AJR) in an

adjuvant-induced rat model and found that AJR attenuated paw

oedema. Furthermore, the levels of PGE2 and serum NO,

activity of COX-2 and mRNA expressions of TNF, IL-6 and

MMP-9 were downregulated, suggesting that AJR has

pharmacological anti-arthritis activity (72).

Compound Ruteng (CRT) is a Chinese herbal formula that

has been used to treat rheumatism for centuries in the Tibetan

area of China. It contains seven herbal medicines, including

Boswellia carterii Birdw, Tinospora sinensis (Lour.) Merr., Cassia

obtusifolia L, Abelmoschus manihot (L.) Medic, Terminalia

chebula Retz., Lamiophlomis rotata (Benth.) Kudo, Pyrethrum
Frontiers in Immunology 07
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tatsienense (Bur. et Franch.) Ling. To reveal the mechanisms of

the anti-arthritis effect of CRT, Huang et al. used network

pharmacology and experimental validation. Their results

showed that CRT attenuated inflammation in paw swelling,

synovial joints and cartilage in collagen-induced arthritic

(CIA) rats and downregulated MMP-1, MMP-3, MMP-13,

TNF, COX2 and iNOS, suggesting that CRT may exert anti-

arthritis effects by inhibiting inflammatory cytokines,

suppressing oxidative stress, and balancing MMPs (73).

Another herbal medicine formula, Fufang Shatai Heji (FST),

also protects joint structures. It is mainly composed of

Glycyrrhiza Uralensis Fisch., Ophiopogon japonicus (Thunb.)

Ker Gawl., Astragalus mongholicus Bunge, Pseudostellaria

heterophylla (Miq.) Pax, Adenophora triphylla (Thunb.) A.DC.,

Rehmannia glutinosa (Gaertn.) DC., Triticum aestivum L,

Prunella vulgaris L. and Dendrobium nobile Lindl. First, Fan

et al. found that FST could protect CIA mice from spleen injury,

and they subsequently speculated that FST might also protect

against cartilage injury in CIA mice. Their conjecture was

verified after a tissue staining analysis of knee and ankle joints.

Cartilage destruction was significantly suppressed in CIA mice

after FST treatment. After further exploring the underlying

mechanism, it was found that FST could inhibit collagen

degradation by downregulating the expressions of MMP-9 and

MMP-13 and downregulating the expressions of ADAMTS-4
TABLE 1 Herbal medicine formulas that can treat rheumatoid arthritis by regulating MMPs.

Components Plant source Experimental
model

Effective
dose

Effect Mechanism Ref

In vivo In
vitro

Qing-Luo-Yin Sophora flavescens Aiton, Phellodendron amurense Rupr.,
Sinomenium acutum (Thunb.) Rehder & E.H.Wils. and Dioscorea
collettii var. hypoglauca (Palib.) S.J.Pei & C.T.Ting.

CIA mice 0.3 g/kg/d Suppressing
angiogenesis

MMP-3↓, TIMP-1↑ (69,
70)

Tongbiling Neolitsea cassia (L.) Kosterm., Paeonia lactiflora Pall., Aconitum
carmichaeli Debeaux, Achyranthes bidentata Blume, Celastrus
orbiculatus Thunb, Wisteriopsis reticulata (Benth.) J.Compton &
Schrire

CIA mice 300 mg/kg/
d

Decreasing
inflammation

IL-1b↓, TNF↓,
MMP-2↓, MMP-3↓,
MMP-9↓, IgG2a
type anti-CII
antibody↓

(71)

Alkaloids of
jeevaneeya
rasayana

Cyperus rotundus L., Boerhaavia diffusa L., Tribulus terrestris L.,
Curculigo Orchioides Gaertn., Mucuna Pruriens (L.) DC., Withania
somnifera (L.) Dunal, Asparagus racemosus Willd., Hygrophila
auriculata (Schumach.)

FCA-
induced
rat

10 mg/kg/
day

Decreasing
inflammation

PGE2↓, NO↓, COX-
2↓, TNF, IL-6↓,
MMP-9↓

(72)

Ruteng Boswellia carterii Birdw, Tinospora sinensis (Lour.) Merr., Cassia
obtusifolia L, Abelmoschus manihot (L.) Medic, Terminalia chebula
Retz., Lamiophlomis rotata (Benth.) Kudo, Pyrethrum tatsienense
(Bur. et Franch.) Ling

CIA mice 95.0, 190.0,
285.0 mg/
kg/d

Decreasing
inflammation;
Decreasing
oxidative

MMP-1↓, MMP-3↓,
MMP-13↓, TNF↓,
COX-2↓, iNOS↓, IL-
1b↓, IL-6↓, SOD↑,
MDA↓

(73)

Fufang Shatai
Heji

Glycyrrhiza Uralensis Fisch., Ophiopogon japonicus (Thunb.) Ker
Gawl., Astragalus mongholicus Bunge, Pseudostellaria heterophylla
(Miq.) Pax, Adenophora triphylla (Thunb.) A.DC., Rehmannia
glutinosa (Gaertn.) DC., Triticum aestivum L, Prunella vulgaris L.
and Dendrobium nobile Lindl.

CIA mice 10 mL/kg/d Alleviating
synovial
hyperplasia
and cartilage
destruction

ADAMTS-4↓,
ADAMTS-5↓,
MMP-9↓, MMP-13↓

(74)
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and ADAMTS-5 to inhibit aggrecan degradation, and the two

acted together to protect the structure of cartilage (74).

5.1.2 Plant extracts
In addition to herbal medicine formulas, researchers have also

explored the effects of single herbal extracts on MMP expression

in RA (shown in Table 2). In 2001, Sylvester studied the effect of

Tripterygium wilfordii Hook. F. (TWHF) extract on TNF/IL-1b/
IL-17-induced femoral head primary chondrocytes/confluent

primary bovine chondrocytes/human synovial fibroblasts and

TNF-induced human chondrocytes, and found that a TWHF

extract showed significant anti-inflammation activity and could

inhibit cartilage matrix resorption by MMP-3 and MMP-13 by

interfering with the DNA binding ability of the AP-1 and NF-kB

transcription factors (75).

In the experiment conducted by Shin et al., the researchers

screened 12 herbs that may have potential therapeutic effects on

RA, including Chaenomelis speciosa Nakai, Achyranthes

bibentata Blume, Angelica sinensis Oliv., Cnidium officinale

Makino, Gastrodia elata Blume, Acanthopanax senticosus

Maxim., Carthamus tinctorius L., Cinnamomum aromaticum

Nees, Gentiana macrophylla Pall., Ledebouriella seseloidesWolff,

Clematis chinensis Retz., and Phlomis umbrosa Turczaninow.

These herbs were extracted in 25% ethanol and then

administered to CIA mice. After histopathological observation

of the knee joint, it was found that articular cartilage loss was

alleviated after drug treatment. At the same time, the content of

TIMP-2 in the serum was significantly increased, and the ratios

of TIMP-2 to MMP-2 also increased. After the detection of anti-

inflammatory factors in serum, the results showed that the IL-4

levels increased after administration, while the IL-10 levels did

not change significantly. In conclusion, the above extracts can

affect MMP balance in vivo, inhibit inflammation and protect

joint structure (76).

Chang et al. used n-butanol to extract Panax notoginseng

(Burk.) F. H. Chen and named the extract BT-201. In vitro, BT-

201 inhibited inflammation by inhibiting the NF-KB and MAPK

signaling pathways, resulting in reduced secretion of TNF and IL-

1b and a similar reduction in MMP-13 secretion. CIA mice were

used to evaluate the efficacy of BT-201 in vivo. The results showed

that the onset time of arthritis was delayed after BT-201 treatment,

and cartilage destruction, bone erosion and synovial hyperplasia

were alleviated, indicating that BT-201 had dual anti-

inflammatory and joint structure protection effects in RA (77).

Choi et al. reported that an ethanol extract of Ligularia

fischeri (Ledeb.) Turcz. (EELFL) decreased the amounts of TNF,

IL-6 and MMP-3 in IL-1b–treated SW982 cells, which

demonstrated anti-inflammatory effect of EELFL. In addition,

the expressions of p-JNK, p-p38, NF-kB and AP-1 were

downregulated, which could be the mechanism by which

EELFL exerts anti-inflammatory effects (78).

Ra et al. used IL-1b stimulated fibroblast-like synoviocytes

(FLSs) as a model to screen 35 medicinal plants in 2011. The
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results showed that six species, including Artemisiae Capillaris

Thunb, Phyllostachys nigra var. henonis (Mitford) Rendle, Senna

tora (L.) Roxb., Cornus officinalis Siebold & Zucc., Leonurus

cardiaca L. and Sesamum indicum L., effectively inhibited the

expression of MMP-3, but the pharmacodynamic effects of these

six species on RA were not further investigated (79).

Aflapin contains Boswellia serrata Roxb. extract enriched in

3-O-acetyl-11-keto-b-boswellic acid and non-volatile oil

portion. The experimental results of Sengupta et al. showed

that aflapin significantly reduced the paw oedema volume of SD

rats induced by Freund’s complete adjuvant (FCA) and played

an anti-inflammatory role. Subsequently, the model rats were

treated with drug-containing serum, and the results showed that

aflapin could exert an anti-inflammatory effect by reducing the

content of TNF. In IL-1b-treated human primary chondrocytes,

d i ff e r e n t afl a p i n c on c e n t r a t i o n s i n c r e a s e d t h e

glycosaminoglycan contents in a dose-dependent manner. In

addition, aflapin also decreased the level of MMP-3 in TNF-

induced SW982 human synovial cells. Taken together, these data

collectively suggest that aflapin may have multiple effects in RA,

both anti-inflammatory and anti-protein degradation (80).

Sekiguchi et al. used hot-water extracts of Salacia reticulata

Wight (HSR) to explore their potential effects on RA. They

obtained a synoviocyte-like cell line from mice with type II

collagen antibody-induced arthritis and named it MTS-C H7. In

this study, they found that HSL inhibited both IL-1b-induced
cell proliferation and MMP-13 expression. At the same time,

HESR was isolated and the isolated components were applied to

cells, resulting in inhibition of cell proliferation by only the low

molecular weight protein. Therefore, researchers hypothesized

that the low molecular weight proteins in HSL may have the

potential to inhibit cell proliferation and MMP expression (81).

Celastrus orbiculatus Thunb. (CLO) is a Chinese herb that

has been widely used in folk medicine to treat inflammation. In

the study of Li et al., after applying its extract to FLSs stimulated

by IL-1b and TNF, it was found that CLO could inhibit the

transcriptional activity of MMP-9 by inhibiting the binding

activity of NF-kB in the MMP-9 promoter and the

phosphorylation and nuclear translocation of NF-kB, thereby
downregulating the expression and activity of MMP-9. In turn,

invasion of FLSs was inhibited (82).

The roots of Angelica sinensis (Oliv.) Diels (AS) are a widely

used herbal medicine with a protective effect on AR. Lee et al.

found that the ethyl acetate fraction from Angelica sinensis

(EAAS) could suppress the expression of COX-2, MMP-1 and

MMP-3, decrease PGE2 production, and inhibit the activation of

NF-kB and phosphorylation of MAPK pathways in IL-1b-
induced RASFs, suggesting that EAAS treated RA via anti-

inflammation effects (83).

Salvia plebeia R. Br. has also been considered in recent years

for treating RA due to its excellent anti-inflammatory effects. In

a 2015 study, an extract of Salvia plebeia R. Br. (ESP) was

administered to CIA mice and TNF-stimulated RA synovial
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TABLE 2 Plant extracts that can treat rheumatoid arthritis by regulating MMP.

Components Plant source Experimental model Effective
dose

Effect Mechanism Ref

In vivo In vitro

Extract of
Tripterygium
wilfordii Hook F

Tripterygium wilfordii Hook F TNF/IL-1b/IL-17-
induced femoral
head primary
chondrocytes/
confluent primary
bovine
chondrocytes/
human synovial
fibroblasts

2.5 and 5
ng/mL

Decreasing
inflammation;
Blocking cartilage
matrix resorption

MMP-3↓, MMP-
13↓

(75)

TNF-induced
human
chondrocytes

5 ng/mL AP-1↓, NF-kB↓

Ethanol extract
from 12 herbs
(PG201)

Chaenomelis speciosa Nakai, Achyranthes bibentata
Blume, Angelica sinensis Oliv., Cnidium officinale
Makino, Gastrodia elata Blume, Acanthopanax
senticosus Maxim., Carthamus tinctorius L.,
Cinnamomum aromaticum Nees, Gentiana
macrophylla Pall., Ledebouriella seseloides Wolff,
Clematis chinensis Retz., and Phlomis umbrosa
Turczaninow

Collagen-
induced
arthritis
(CIA) mice

0.2 mg/d Decreasing
inflammation

TNF↓, IL-1b↓,
TIMP-2↑, TIMP-
2/MMP-2↑, IL-4↑

(76)

N-butanol
extract of Panax
notoginseng
(Burk.) F. H.
Chen (P.
notoginseng)
(BT-201)

Panax notoginseng (Burk.) F. H. Chen CIA mice 15 mg/kg/d Decreasing
inflammation

TNF↓, IL-1b↓,
iNO↓, MMP-13↓,
p-IKKb↓,
p-ERK↓, p-p38↓,
p-JNK↓

(77)

LPS-induced THP-
1 cells

0.125, 0.25,
0.5 mg/mL

Ethanol extract
of Ligularia
fischeri (Ledeb.)
Turcz

Ligularia fischeri (Ledeb.) Turcz IL-1b–induced
SW982 cells

10 and 50
mg/ml

Decreasing
inflammation

TNF↓, IL-6↓,
MMP-3↓, p-JNK↓,
p-p38↓, NF-kB↓,
AP-1↓

(78)

Water extract of
six traditional
medicinal plants

Artemisiae Capillaris Thunb, Phyllostachys nigra
var. henonis (Mitford) Rendle, Senna tora (L.)
Roxb., Cornus officinalis Siebold & Zucc., Leonurus
cardiaca L. and Sesamum indicum L.

IL-1b-induced
FLSs

1, 10 and
100 µg/mL

Decreasing
inflammation

MMP-3↓ (79)

Aflapin Boswellia serrata Roxb. Freund’s
Complete
Adjuvant
(FCA)-
induced
rats

100 mg/kg/
d

Decreasing
inflammation

TNF↓ (80)

IL-1b-induced
HCH cells

0.25, 0.5
and 1 mg/
ml

Improving cell
proliferation;
Improving
glycosaminoglycans
production

(80)

TNF-induced
SW982 cells

1 mg/ml Inhibiting secretion
of collagen
degrading enzyme

MMP -3↓ (80)

Water extract of
Salacia
reticulata Wight

Salacia reticulata Wight IL-1b-induced
MTS-C H7 cell

50 µg/mL Inhibiting cell
proliferation

MMP-3↓, MMP-
13↓

(81)

Celastrus
orbiculatus
Thunb. extract

Celastrus orbiculatus Thunb. IL-1b and TNF
combination-

5, 10 and
20 mg/ml

Inhibiting cell
invasion

MMP-9↓, p-
IkBa↓, NF-kB↓

(82)

(Continued)
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fibroblasts. The results showed that EPS could inhibit the

expression of proinflammatory factors and MMP-3 by

inhibiting the NF-kB, Akt and MAPKs signaling pathways,

thereby delaying the occurrence and development of RA (84).

Adhikary et al. investigated the effects of Niphogeton ternata

(Willd. ex Schult.) Mathias & Constance (C. ternateaand) and its

main active ingredient (quercetin-3ß-D-glucoside, QG) on CIA
Frontiers in Immunology 10
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mice, and the results revealed that C. ternateaand and QG

suppressed the release of proinflammatory cytokines,

chemokines and reactive oxygen species, while they could also

inhibit MMP-2 expression (85).

Gastrodia elata Blume (GE) is a traditional Chinese herbal

medicine with anti-inflammatory activity, and according to a

study, GE significantly decreased the IL-6, CXCL8, MMP-3 and
TABLE 2 Continued

Components Plant source Experimental model Effective
dose

Effect Mechanism Ref

In vivo In vitro

stimulated RA-
FLSs

Ethyl acetate
fraction from
Angelica
sinensis

The root of Angelica sinensis (Oliv.) Diels IL-1b-induced
RASFs

100 mg/mL Inhibiting cell
proliferation

MMP-1↓, MMP-
3↓, COX-2↓,
PGE2↓, p-ERK-1/
2↓, p-p38↓, p-
JNK↓, NF-kB↓

(83)

Extract of S.
plebeia

Salvia plebeia R. Br. CIA mice 2, 10, 50
mg/kg

Suppressing the
development of
CIA; Decreasing
inflammation

MMP-1↓, MMP-
3↓, IL-1b↓, IL-6↓,
NF-kB↓, Akt↓

(84)

Methanol
extract of C.
ternatea

Clitoria ternatea Linn. (C. ternatea) CIA mice 50 mg/kg/d Decreasing
inflammation;
Decreasing
oxidative stress

MPO activity↓,
TNF↓, IL-1b↓,
IFNg↓, IL-6↓, IL-
12p4↓, CXCL8↓,
MCP-1↓, ROS↓,
TNFR1↓, TLR2↓,
iNOS↓, COX-2↓,
MMP-2↓

(85)

quercetin-3ß-D-
glucoside

2.5 mg/kg/d

Ethanol extract
of Gastrodia
elata Blume

Gastrodia elata Blume TNF-induced RA-
FLS

1, 5 and 10
mg/ml

Decreasing
inflammation

IL-6↓, CXCL8↓,
MMP-3↓, MMP-
13↓, p-p65↓,
IkBa↑

(86)

TNF-induced
RASFs

Extracts from
Strychnos nux-
vomica L.

Strychnos nux-vomica L. SW982 cells 10 mg/ml Inhibiting cell
proliferation;
Inhibiting cell
migration

Wnt5a↓, Runx2↓,
MMP-3↓, Bmp2↑,
p-JNK↓, p- p65↓

(87)

Polyphenolic
extract from
extra virgin olive
oil

Extra virgin olive oil IL-1b-induced
SW982 cell

12.5, 25
and 50 µg/
mL

Decreasing
inflammation

TNF↓, IL-6↓,
COX-2↓, PGE
synthase-1↓,
MMP-1↓, MMP-
3↓, p-JNK↓, p-
p38↓, p-ERK↓,
IkB-a↑

(88)

Aqueous extract
of Cinnamomi
ramulus

Cinnamomum cassia Presl. (Lauraceae) TNF-induced
MH7A cells

0.2, 0.4 and
0.6 mg/mL

Inhibiting cell
migration and
invasion

MMP-1↓, MMP-
2↓, MMP-3↓,

(89)

Extractive of
Stachys inflata
var. caucasica
Stschegl

Stachys inflata var. caucasica Stschegl. 44 women
(age: 30–65
years)
diagnosed
with
moderately
active RA

Triple-blind,
randomized
controlled

2.4 g/day
SSC + 2.4
g/day black
tea
8 weeks

Reducing the
number of tender,
swollen joints and
DAS28

HS-CRP↓, IL-1b↓,
MMP-3↓

(90)
frontiersin
LPS, lipopolysaccharide; RA-FLSs, rheumatoid arthritis fibroblast-like synoviocytes.
.org

https://doi.org/10.3389/fimmu.2022.1046810
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2022.1046810
MMP-13 levels in TNF-induced rheumatoid arthritis fibroblast-

like synoviocytes (RA-FLSs). At the same time, this decrease in

inflammatory factors was accompanied by a decrease in p-p65

expression and an increase in IkBa. Therefore, GE might be a

potential herbal therapy to treat RA by suppressing the

inflammatory response by inhibiting the NF-kB pathway (86).

Strychnos nux-vomica L. (SL) has been used as medicine for

thousands of years in China, and it has been gradually extended to

treat RA in modern applications. In experiments by Deng et al., it

was found that an alkaloid extract from SL without lappaconitine

(ASLL) could significantly inhibit the proliferation and migration

of SW982 cells. In a qPCR assay, ASLL showed inhibitory effects on

Wnt5a, Runx2 and MMP-3 mRNA and increased the expression

of Bmp2 mRNA. In addition, ASLL inhibited phosphorylation of

JNK and NF-kB p65 and MMP-3 expression. In conclusion, ASLL

may inhibit the proliferation and migration of FLSs by inhibiting

the Wnt5A-mediated JNK and NF-kB pathways and has a certain

therapeutic potential for RA (87).

Another study by Rosillo et al. reported that a polyphenolic

extract (PE) from extra virgin olive oil (EVOO) showed an anti-

inflammatory effect by inhibiting production of IL-6, CXCL8,

MMP-3 and MMP-13, and the mechanisms might be related to

suppress the phosphorylation of MAPK and the activation of

NF-kB (88).

In a later study by Liu and Zhang et al., it was found that an

aqueous extract of Cinnamomi ramulus (ACR), which was derived

from the dry twigs of Cinnamomum cassia Presl. (Lauraceae), may

have potential therapeutic effects on RA. In this study, TNF-

induced RA-derived FLS MH7A cells were used as the research

object. The results showed that ACR could effectively promote

apoptosis of MH7A cells by increasing the expressions of BAX and

caspase-3 and inhibiting the expression of Bcl-2. On the other

hand, it could induce G2/M phase arrest of MH7A cells by

upregulating P53, P21, cyclin D and downregulating cyclins B1,

CDC2, CDK4. More importantly, ACR can inhibit the expression

of MMP-1, MMP-2 and MMP-3 in MH7A cells, and effectively

prevent the invasion and migration of synovial fibroblasts, thereby

protecting cartilage and bone from injury (89).

In addition, a clinical trial examining the anti-arthritic effects

of Stachys inflata var. caucasica Stschegl. (SS) was conducted. A

triple-blind, randomized controlled clinical trial involving 44

female patients diagnosed with RA showed that SSC might

decrease the number of tender and swollen joints by

decreasing serum levels of IL-1b and MMP-3 (90). Other

details are shown in Table 3.
5.2 Monomers from herbal medicines

5.2.1 Terpenoids
Triptolide is a diterpenoid triepoxide that is extracted from the

traditional Chinese herbal Tripterygium wilfordii Hook. f.

(TWHF), which has been reported to have therapeutic effects on
Frontiers in Immunology 11
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RA. Lin et al. initially explored the molecular mechanisms of

triptolide in treating RA, and found that triptolide effectively

inhibited messenger RNA levels and production of proMMP-1

and -3 while inhibiting PGE2 production by suppressing COX-2

expressions in IL-1a-treated human synovial fibroblasts. In

addition, triptolide decreased the levels of IL-1b and IL-6 in

LPS-treated mouse macrophages. These results suggested that

the anti-RA activity shown by triptolide is due at least in part to

anti-inflammatory activity (91). In the experiments of Liacini et al.,

triptolide was found to inhibit the expressions of MMP-3 and

MMP-13 in a variety of cartilage destruction models, such as

primary human OA chondrocytes, SW1353 cells, bovine

chondrocytes and human synovial fibroblasts stimulated by

cytokines and human and bovine cartilage explants stimulated

by IL-1. In addition, triptolide also inhibited ADAMTS-4

expressions in bovine chondrocytes induced by IL-1-, IL-17- and

TNF. All of these results suggest that triptolide has the potential to

protect cartilage (92). Other details are shown in Table 3.

Pristimerin is a natural triterpenoid product that is derived

from the family Celastraceae. In Tong et al. ‘s experiment,

pristimerin effectively inhibited the inflammatory response in

arthritic rats by inhibiting the proinflammatory cytokines IL-6,

IL-17, IL-18 and IL-23 and promoting the anti-inflammatory

factor IL-10. Subsequently, decreases in IL-6 and IL-17 directly

led to a decrease in MMP-9 activity, thus causing pristimerin to

have a protective effect on articular cartilage and bone (93).

However, whether pristimerin directly affects MMP-9 could not

be confirmed in this study.

Swertiamarin, another terpenoid with therapeutic potential

for RA, was derived from Enicostema axillare (Lam.) A. Raynal

(Gentianaceae). When swertiamarin was used to treat arthritic

rats, it significantly reduced rat paw thickness, inhibited synovial

monocyte infiltration, and protected joint tissues. After

treatment, the plasma levels of IL-1, TNF and IL-6 were

decreased, which were accompanied by decreased mRNA

levels of MMP-9, iNOS, PGE2, PPARg and COX-2, while IL-

10 and IL-4 were increased. Further exploration of the

mechanism behind swertiamarin showed that swertiamarin

could inhibit RA development by inhibiting the NF-kB/IkB
and JAK2/STAT3 signaling pathways (94).
5.2.2 Flavonoids
Green tea is a popular beverage worldwide, and it is clear

that catechins are the most active ingredients in green tea.

Fechtner et al. studied whether epigallocatechin-3-gallate

(EGCG), epigallocatechin (EGC), and epicatechin (EC), three

catechins in green tea, had anti-RA effects. Based on their results,

EGCG and EGC suppress IL-6, CXCL8 and MMP-2 production,

and selectively decrease the expression of COX-2 in IL-1b–
treated RASFs. However, EC did not show the same effects as

described above. Thus, GCG and EGC partly contributed to the

anti-inflammatory effect of green tea (95).
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TABLE 3 Monomers from herbal medicines that can treat rheumatoid arthritis by regulating MMP.

Family of
compounds

Components Plant
source

Structure Experimental model Effective
dose

Effect Mechanism Ref

In vivo In vitro
Terpenoids Triptolide Tripterygium

wilfordii hook
f,

IL-1a-
induced
human
synovial
fibroblasts

28, 56 and
140 nM

Decreasing
inflammation

proMMP-1↓,
proMMP-3↓,

TIMP-1↑, TIMP-
2↑, PGE2↓, COX-

2↓

(91)

LPS-induced
mouse

macrophages

28 nM IL-1a↓, IL-1b↓,
TNF↓, IL-6↓

IL-1/IL-17/
TNF-
induced
SW1353
cells

125 and
250 nM

Decreasing
inflammation

MMP-3↓, MMP-
13↓, ADAMTS-4↓

(92)

Pristimerin Celastraceae
family

Mycobacterium
tuberculosis

H37Ra (Mtb)-
induced rat

1 mg/kg/d Decreasing
inflammation

IL-6↓, IL-17↓, IL-
18↓, IL-23↓,

pSTAT3↓, ROR-
gt↓, IL-10↑, IFN-g↑,

(93)

Swertiamarin Enicostema
axillare (Lam.)

A. Raynal
(Gentianaceae)

FCA-induced
rats

2, 5 and 10
mg/kg/d

Inhibiting the
levels of

paw thickness,
lysosomal
enzymes;

Increasing the
body weight;
Alleviating

bone
destruction

IL-1↓, TNF↓, IL-6↓,
MMP-9↓, iNOS↓,
PGE2↓, PPARg↓,
COX-2↓, IL-10↑,
IL-4↑, p65↓, p-

IkBa↓, p-JAK2↓, p-
STAT3↓

(94)

LPS-induced
RAW264.7 cells

10, 25 and
50 mg/mL

p65↓, p-IkBa↓,
p-JAK2↓, p-
STAT3↓

Flavonoids Epigallocatechin-3-
gallate

Tea IL-1b–
induced
RASFs

5, 10 and
20 mM

Decreasing
inflammation

IL-6↓, CXCL8↓,
MMP-2↓, COX-2↓,
TAK-1↓, p-p38↓,

NF-kB↓

(95)

Epigallocatechin Tea IL-1b–
induced
RASFs

5, 10 and
20 mM

Decreasing
inflammation

IL-6↓, CXCL8↓,
MMP-2↓, COX-2↓,

TAK-1↓

(95)

Polysaccharides Lycium barbarum
L. polysaccharide

Lycium
barbarum L.

CIA mice 25, 50, 100
mg/kg/d

Reducing paw
thickness and
CIA score;
Attenuating
joint damage;
Decreasing

inflammation

TNF↓, IL-6↓, IL-
17↓, PGE2↓, MIP-
1↓, anti-type II
collagen IgG↓,

MMP-1↓, MMP-3↓

(96)

Glycoside Polyoxypregnane
glycoside

Dregea
volubilis (L.f)
Benth. ex
Hook. f

IL-1b–
induced
human
articular

chondrocyte
(HAC)

6.25, 12.5
and 25 mM

Inhibiting
cartilage

degradation

MMP-1↓, MMP-
3↓, MMP-13↓,
IKKa/b↓, IkBa↑

(97)

Cinnamomulactone The dried
twigs of

Cinnamomum
cassia (L.) J.

Presl

TNF-
stimulated
RASFs

0.1 mM MMP-1↓, MMP-
3↓, IL-1b↓

(98)

(Continued)
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5.2.3 Polysaccharides
After treating CIA mice with Lycium barbarum L.

polysaccharide (LBP), Liu et al. found that LBP could exert

anti-RA effects by downregulating inflammatory mediators and

inhibiting joint bone damage through MMPs. Specifically, LBP

reversed abnormal increases in inflammatory factors such as

TNF-, IL-6 and IL-17 in CIA mice, decreased the protein

expressions of MMP-1 and MMP-3, alleviated the ankle

swelling in CIA mice, and increased the bone volume (96).

5.2.4 Glycosides
Polyoxypregnane glycoside (PPG), which was extracted

from the roots of Dregea volubilis (L.f) Benth. ex Hook. f, may

have therapeutic potential for RA. Itthiarbha et al. showed that

PPG inhibited the expression of MMP-1, MMP-3 and MMP-13

by inhibiting NF-kB activation in IL-1b-treated human articular

chondrocytes. In addition, they further examined the mRNA

levels of MMP-1, -3 and -13, and concluded that PPG could

directly downregulate MMP expression by reducing mRNA

levels, thus inhibiting the degradation of type II collagen (97).

In addition, in Kim’s experiments, a new butyrolactone

compound, c innamomulactone , was i so la ted from

Cinnamomum cassia (Lauraceae) for the first time. In a

quantitative real-time PCR (qPCR) assay, cinnamomulactone

was found to effectively reduce the gene expressions of MMP-1

andMMP-3 in TNF-stimulated synovial fibroblasts, suggesting a

potential therapeutic effect on RA (98).

(−)-Epicatechin-3-O-b-D-allopyranoside (ECAP) is a

glycoside isolated from Davallia formosana. ECAP significantly

inhibited knee cartilage erosion and reduced arthritis scores in

CIA model mice. In addition, ECAP also reduced the levels of

TNF and IL-17, increased the levels of IL-10 and IL-4, and

inhibited IL-1 and MMP-9 expressions in CIA mice (99).
6 Conclusion and perspectives

As mentioned above, although RA is a nonfatal disease, RA

seriously threatens the quality of life of patients and may even
Frontiers in Immunology 13
28
reduce their life expectancy due to its non-negligible damage to

the joints. Previous studies have confirmed that MMPs, as

important proteolytic enzymes, are involved in multiple RA

processes, in which articular cartilage matrix destruction is

particularly important. Therefore, targeted regulation of

MMPs has become a research hotspot in the prevention and

treatment of RA.

Disappointingly, there are limitations to the existing

therapeutic approaches that target MMPs. For example, some

endogenous proteins such as alpha2-macroglobulin, which can

block the activity of MMPs, are present in the plasma after being

secreted by the liver. However, because this is a large tetrameric

glycoprotein, it cannot cross blood vessels to enrich in the

cartilage, limiting its action to the inflammatory fluid around

the joint. At present, the development of MMP inhibitors is

mainly focused on inhibiting the active effects of MMPs.

Although much research has been devoted to small molecule

inhibitors, single-target inhibitors have not yet been developed.

Non-selective MMP inhibitors may decrease multiple MMPs,

inhibit the low levels of MMPs required for the normal

physiological turnover of connective tissue, and thus cause

significant side effects in the organism. Therefore, the effects of

targeted MMPs in treating RA have not reached expectations.

Due to the unique multitarget effects of herbal medicines, they

have gradually attracted the attention of researchers. In recent

years, an increasing number of studies have focused on RA

treatment that regulate MMPs. In existing studies, researchers

have attempted to explore the efficacy and underlying

mechanisms of herbal medicine in RA treatment through in

vivo and in vitro experiments. To a certain extent, they have

found some drugs with therapeutic potential. After a relevant

comprehensive analysis, it was found that there are also some

problems that cannot be ignored. In this paper, we found that

dozens of herbal medicines can exert therapeutic effects on RA.

Among these, some studies have confirmed that herbal medicines

can directly inhibit collagen or proteoglycan degradation by

affecting MMPs, thereby protecting joint structure. Remaining

studies have focused more on alleviating the development and

progression of RA by suppressing inflammation. In addition,
TABLE 3 Continued

Family of
compounds

Components Plant
source

Structure Experimental model Effective
dose

Effect Mechanism Ref

In vivo In vitro

(-)-Epicatechin-3-
O-b-d-

allopyranoside

Davallia
formosana
Hayata

CIA mice 50 and 100
mg/kg/d

Suppressing
the

development of
CIA;

Decreasing
inflammation

MMP-9↓, IL-1b↓,
TNF↓, IL-17↓, IL-
10↑, IL-4↑, IgG1↓,

IgG2a↓,
CD4+CD25+

regulatory T cells↓

(99)
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some studies have shown that herbal medicines can protect joint

structure, but this protection is only an indirect result after

inhibiting inflammation, rather than directly protecting joint

structure through MMPs. In addition, some MMPs, including

MMP-3 and MMP-13, have been suggested for use as serum

markers for RA diagnosis. Therefore, in these studies, MMPs were

used only as biomarkers to compare their changes before and after

treatment to determine the effects of herbal medicines. However,

in this process, some researchers have ignored the specific roles of

MMPs in RA, so they have not further explored the manner in

through which MMPs are regulated by herbal medicines in

experiments. In addition, although these herbal medicines have

been experimentally validated in vitro and in vivo, most of them

remain in preclinical research, and only a few herbs have been

tested in clinical trials. More work needs to be done before herbal

medicines can actually be applied in clinical trials. Therefore, this

review only provides a reference for the majority of researchers, so

that will have more possibilities for treating RA.
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Glossary

ACR aqueous extract of Cinnamomi ramulus

ADAM a disintegrin and a metalloproteinase

ADAMTS a disintegrin and metalloproteinase with thrombospondin type 1
motif

AP-1 activator protein 1

AS Root of Angelica sinensis (Oliv.) Diels

ASLL alkaloid extract from SL without lappaconitine

bFGF basic fibroblast growth factor

CIA collagen-induced arthritis

CLO Celastrus orbiculatus Thunb.

CRT compound Ruteng

DMARDs disease-modifying anti-rheumatic drugs;

EAAS ethyl acetate fraction from Angelica sinensis var. sinensis

EC epicatechin

ECAP (−)-epicatechin-3-O-b-D-allopyranoside

EGC epigallocatechin

EGCG epigallocatechin-3-gallate

EGF epidermal growth factor

ESP extract of Salvia plebeia R. Br.

EVOO extra virgin olive oil

FCA Freund’s complete adjuvant

FST Fufang Shatai Heji

GAGs glycosaminoglycans

GE Gastrodia elata Blume

GPI glycosylphosphatidylinositol

Hpx hemopexin

HS heterogeneous subgroups

HSR hot-water extracts of Salacia reticulata Wight

JR Jeevaneeya rasayana

LBP Lycium barbarum L. polysaccharide

MCP-3 monocyte chemoattractant protein-3

MMPs matrix metalloproteinases;

MT membrane-type

NSAIDs nonsteroidal anti-inflammatory drugs;

PDGF platelet-derived growth factor

PE polyphenolic extract

PEA3 polyomavirus enhancer activator-3

PPG polyoxypregnane glycoside

QG quercetin-3ß-D

QLY Qing-Luo-Yin

qPCR quantitative real-time PCR

RA rheumatoid arthritis

RASF RA synovial fibroblasts

SL Strychnos spuxvomica L.

SP signal peptide

SS Stachys inflata var. caucasica Stschegl

TACE TNF-a converting enzyme

TBL Tongbiling

(Continued)
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TGF-b transforming growth factor b

TIMPs tissue inhibitors of MMPs

TWHF Tripterygium wilfordii Hook. F.
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ADAM17 is a member of the a disintegrin and metalloproteinase (ADAM) family

of transmembrane proteases involved in the shedding of some cell membrane

proteins and regulating various signaling pathways. More than 90 substrates are

regulated by ADAM17, some of which are closely relevant to tumor formation

and development. Besides, ADAM17 is also responsible for immune regulation

and its substrate-mediated signal transduction. Recently, ADAM17 has been

considered as a major target for the treatment of tumors and yet its

immunomodulatory roles and mechanisms remain unclear. In this paper, we

summarized the recent understanding of structure and several regulatory roles

of ADAM17. Importantly, we highlighted the immunomodulatory roles of

ADAM17 in tumor development, as well as small molecule inhibitors and

monoclonal antibodies targeting ADAM17.

KEYWORDS

ADAM17, tumor microenvironment, shedding activity, immune response, inflammation
Introduction

Transmembrane proteolysis is a post-translational modification that plays an

important role in cellular biological processes, such as signal transduction and

immune responses (1–3). Many transmembrane proteins need to be cleaved from the

cell surface and released in a soluble form to initiate cellular or intercellular signal

transduction (4–6). ADAM17, also known as tumor necrosis factor (TNF)-a converting

enzyme (TACE), CD156B, NISBD1, and snake venom-like protease (cSVP), is a member

of the disintegrin and metalloprotease family. ADAM17 exists in two forms: precursor

and activated ADAM17. Activation of ADAM17 is required for the cleavage of its

prodomain and exposure of the active site. In response to the inflammatory stimuli,
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activated ADAM17 prompts multiple receptor-mediated signal

transduction by cleaving ectodomains of membrane proteins,

including inflammatory cytokines, growth factors, receptors, and

adhesion factors (7). The expression of ADAM17 in mouse

articular cartilage is positively correlated with the development

of arthritis, and its deletion attenuates articular cartilage

degeneration (8). Moreover, ADAM17 is associated with

glomerular inflammation and fibrosis (9). In diabetic mice,

ADAM17 deletion in the proximal tubules improves glucose

tolerance, prevents podocyte loss, and inhibits the accumulation

of glomerular macrophages and collagen (9). More importantly,

ADAM17 is contributory to the occurrence and development of

cancers, including lung carcinoma (10), ovarian carcinoma (11),

breast carcinoma (12–14), gastric carcinoma (15), and cervical

carcinoma (16). Interestingly, it regulates some immune

signaling pathways through the shedding activity, which may

facilitate the inflammatory response in tumor development (17–

19). However, the study of the relationship between the

abnormal expression of this metalloproteinase in tumors and

its immune regulation is still not well studied. Herein, we

summarized and updated multiple regulatory roles of

ADAM17 as well as the development of ADAM17 inhibitors

with a focus on the immunomodulatory role of ADAM17 in

tumor development, which may provide reasonable insights for

the prevention and treatment of cancer diseases.
Characterization of ADAM17

ADAM17 is a widely distributed transmembrane protein

that is involved in different physiological processes such as

inflammation, cell proliferation and apoptosis by its hydrolysis

of various precursor membrane proteins, such as TNF-a,
TNFRII, HB-EGF, IL-1R1, etc. It is localized in the

membranes and cytoplasm of normal and tumor tissues and

expressed in human lung, bronchus, nasopharynx, placenta, and

lymphoid tissues (20, 21). In lung or respiratory tissues,

activation of ADAM17 may contribute to the shedding of the

collectrin-like part of ACE2, leading to the formation of soluble

ACE2 (sACE2) (22, 23) and the development of inflammatory

response (24). Furthermore, in distinct cells from the lung,

ADAM17 expression is relatively high in pneumocytes and

endothelial cells (20), suggesting that ADAM17 may be

participating in the cleavage and shedding of key proteins in

lung tissues. Activation of ADAM17 promotes the release of

soluble fms-like tyrosine kinase 1 (sFlt1) in the placenta and

induces preeclampsia (25). ADAM17 also induces T-cell

activation in lymphoid tissues through the promotion of L-

selectin hydrolysis and shedding (26). ADAM17 is lowly

expressed in NK cells and its activation by IL-15 obstructs the

proliferation of NK cells (19). Among multiple immune cells,

ADAM17 is relatively high expressed in granulocytes and

monocytes (20). ADAM17 mediates IL-6R shedding from
Frontiers in Immunology 02
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neutrophils and induces apoptosis (27), which may be

associated with a pro-inflammatory response mediated by the

sIL-6R/IL-6 trans-signaling pathway (28).
Structure of ADAM17

ADAM17 is a member of the adamalysins subfamily of

metzincin metalloproteinases consisting of 824 amino acids

with zinc-dependent catalytic activities (29). The human

ADAM17 protein sequence contains an N-terminal signal

sequence (SS), a prodomain (PD), a catalytic metalloprotease

domain (MD), a disintegrin domain (DD), a membrane-

proximal protein domain (MPD), a conserved ADAM17

interaction sequence (CANDIS), a transmembrane domain

(TM), and a C-terminal cytoplasmic domain (CD), which are

located at amino acid residues 1-17, 18-216, 217-474, 480-559,

581-642, 643-666, 672-694, and 695-824, respectively (7, 30)

(Figure 1A). Among them, the first five protein sequences that

make up its extracellular domain may be involved in regulating

multiple biological functions, including angiogenesis, cell

migration, cell proliferation, inflammation, and immune

responses. SS transfers the newly synthesized ADAM17

protein (110 kDa) to endoplasmic reticulum and Golgi

apparatus (32). The PD obstructs the catalytic activity of

metalloproteinases based on the cysteine-switch mechanism

(33) (Figure 1B). During activation, furin, PC7 and PC5B pro-

protein convertases are able to remove the prodomain of

ADAM17 and induce production of the matured protein (80

kDa) (34). The cysteine-switch mechanism is not essential for

the maintenance of inactivated ADAM17, which may be due to

the presence of subdomains in the amino-terminal region of the

prodomain (35). The MD serves as the main catalytic region of

ADAM17 that contains a zinc-dependent HexGH-XXGXXHD

motif (36). Amino acid residues His405, His409 and His415 located

in this motif bind to zinc ions and determine the activity of the

ADAM17 enzyme (31). The curved “Met turn” structure

consisting of amino acid residues Tyr433, Val434, Met435,

Tyr436, also known as 1,4-b-turn, is prone to ADAM17

cleavage and its mutations (37, 38). The DD can impair

multiple functions of integrins, thereby affecting cell-cell/

extracellular matrix interactions (20). In contrast to other

members of ADAMs family, ADAM17 shows disulfide bonds

in the MD, but its DD lacks typical calcium binding sites (39,

40). ADAM17 MPD plays crucial roles in substrate recognition

and protein shedding. Due to the dimerization of ADAM17 and

its substrate specificity, cysteine-rich and epidermal growth

factor (EGF)-like domains are considered important

components of MPD (41, 42). The hypervariable region of the

former contributes to substrate recognition and shedding of

extra-substrate domains and the latter affects the protein

regulation of ADAM17 activity (43, 44). However, the

existence of EGF-like domain remains controversial (45). In
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addition, the positively charged motif (Arg625-Lys628) in MPD

binds to phosphatidylserine in the outer membrane, affects the

conformation of ADAM17, and induces its activation (46). TM

and CD mainly regulate the response of exocytodomain

signaling molecule-related events (7, 38, 47), which may be

attributed to the functional assembly of the Src SH3-binding

motif (20). The CANDIS domain lies between MPD and TM,

consisting of amino acid residues 643-666 (48), which binds to

the type I transmembrane protein IL-6R but not the type II

transmembrane protein TNF-a (49). As shown in Figure 1C, the

visualized crystal structure of the catalytic domain of ADAM17

has five a-helices and five highly distorted b-sheet structures.
The N-terminus binds to b1 and b3 sites, and the C-terminus

binds to the a5 sites (31, 50). ADAM17 has shallower

hydrophobic S1’ and very deep hydrophobic S3’ pockets linked

by water channels, which facilitate the binding of the
Frontiers in Immunology 03
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hydroxamic acid-based inhibitor TAPI-1 (also called an

ADAM17 inhibitor) to the isobutyl side chain S1’ pocket and

its other long chain to the S3’ pocket (31, 45). The structure and

function of MD and MPD catalyzed by ADAM17 have been

studied extensively, but the crystal structure and exact function

of the remaining domains are still unclear.
Regulatory roles of ADAM17

ADAM17 regulates
post-translational modification

Post-translational modification of precursor proteins includes

proteolysis, phosphorylation, glycosylation, methylation and

acetylation (51). It can regulate the hydrolysis and cleavage of

proteins, affect their activities, localization and interaction with

other cellular molecules. As an irreversible post-translational

modification, proteolysis/cleavage of transmembrane proteins is

responsible for activating multiple cytokine-mediated signal

transduction pathways. ADAM17 was first identified as the

TNF-a converting enzyme, and its transmembrane proteolysis

is related to inflammation (52) and immune regulation (26). TNF

consists of TNF-a and TNF-b, to be secreted by macrophages

and/or T lymphocytes (53, 54). TNF-a interacts with its receptors

TNFR1 and TNFR2. TNFR1 is widely expressed in various human

cells and is involved in cell survival and cellular damage (55, 56).

The death domain of TNFR1 is occupied by the silencer of death

domains (SODD) which blocks the binding of TRADD to TNFR1

and suppresses the TNFR1 signaling pathway (57). The binding of

TNF-a and TNFR1 enables the shedding of SODD from the death

domain of TNFR1 and leads to the formation of the TNFR1-

TRADD-RIP1-TRAF2 complex, thus promoting cell survival (57).

In addition, TNFR1 is also internalized by the clathrin protein,

which subsequently triggers the assembly of intracellular death-

inducing signaling complex and activation of caspase8, leading to

apoptosis or necrosis (57, 58). TNFR2 is mainly distributed in

immune cells and plays a role in regulating the function of the

immune system (59). Numerous studies have shown that furin

endopeptidase close to the prodomain can remove the NH2-

terminus of ADAM17 by proteolysis/protein cleavage (60),

thereby activating it and inducing shedding of pro-TNF-a,
TNFR1, and TNFR2 and subsequent pro-inflammatory

response. Besides, ADAM17 triggers the hydrolysis and release

of more than 90 substrate proteins. These have been further

discussed in “ADAM17 Mediates Substrate Shedding Activity”

section. Phosphorylation of ADAM17’s cytoplasmic tail is

another post-translational modification. ADAM17 is often

hyperphosphorylated in patients with emphysema (61). As

shown in Figure 2, ADAM17 can be phosphorylated by various

protein kinases, such as PKC (3), PKL2 (3), PTK2 (18), MAPKs

(3, 62), Akt/GSK (63), and Smad2/3 (64). Recent studies have
FIGURE 1

Molecular structure of the ADAM17 protein. (A) Sequence and
structure of ADAM17. ADAM17 protein mainly comprises five
extracellular domains, a transmembrane domain, and a
cytoplasmic domain. (B) The classic cysteine-switch mechanism.
The conserved cysteine switch is located in the prodomain. It
coordinates with Zn2+ at the catalytic site of the
metalloproteinase domain to produce an inactivated enzyme
(ADAM17 precursor). Once its prodomain is cleaved, the adjacent
furin site (RVKR sequence) is responsible for catalyzing the
separation of zinc from cysteine, ultimately leading to ADAM17
activation. (C) The 3D catalytic structure of ADAM17 (PDB CODE:
1BKC) (31) with a hydroxamic acid-based inhibitor INN and Zn2+

shows N-terminal domains, a-helix (blue), b-sheet (green), and
C-terminal domains. INN stands for N-{(2R)-2-[2-
(hydroxyamino)-2-oxoethyl]-4-methylpentanoyl}-3-methyl-L-
valyl-N-(2-aminoethyl)-L-alaninamide with the chemical
structure of C19H37N5O5. INN, also known as TAPI-2, is an
analogue of TAPI-1. This 3D image was made with the SWISS-
MODEL Expasy.
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shown that the extracellular domain of ADAM17 with a

homodimer structure can bind tightly to selective ADAM17

inhibitors, while serine 819 (Ser819) and threonine 735 (Thr735)

in the cytoplasmic tail release selective ADAM17 inhibitors, which

activate ADAM17 by inhibiting its phosphorylation-induced

dimerization (65, 66). In addition, ADAM17 phosphorylation

further promotes the shedding of TNF-a and two TNF receptors

(32). Short term pro-TNF-a shedding by ADAM17 substrate does

not depend on rapid phosphorylation of pro-TNF-a or the

cytoplasmic tail of ADAM17 and it is mainly regulated by

serine/threonine kinases (67). It has been reported that serine

phosphorylation of ADAM17 substrate NRG1-ICD can restrain

its cleavage of these post-translational modified substrates to some

extent (68). Glycosylation of ADAM17 plays an important role in

regulating enzyme activity or binding to substrates (69). ADAM17

glycosylation is significantly different between mammalian and

insect cells (69). The glycosylation of ADAM17 cannot be

detected in CRIB-1 cells (70). ADAM17-mediated TNF-a
shedding is associated with O-glycosylation in the extracellular

proximal membrane region (71). O-glycosylation at Ser41,

however, prevented ADAM17-dependent cleavage of b1-AR
(72). Glycosylation not only alters protein folding and

conformation and affects ADAM17 activity, but also regulates

receptor-mediated signal transduction (73, 74) and facilitates drug

interventions targeting non-zinc-binding exosome sites of

ADAM17 (69). Chen et al. found that zidovudine-based

treatment inhibited the glycosylation of ADAM17 and the lysis

of monocyte CD163 (75), indicating the important role of

glycosylation in ADAM17 activity and disease progression.
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ADAM17 affects
post-transcriptional regulation

In addition to post-translational modifications, ADAM17

also affects post-transcriptional regulation. ADAM17 is highly

expressed or upregulated in cancer (76, 77) and other

inflammation-related diseases, including kidney disease (78),

sepsis (79), cicatrization (80), diabetic retinopathy (81),

myocardial fibrosis (82), aortic dissection (83), arthritis (84)

and atherosclerosis (7). The guanine-cytosine (G-C) sequences

in the promoter region of ADAM17 are capable of binding

specifically to many transcription factors (85–87). The gain- or

loss-of-function of ADAM17 is attributed to the regulation of

the following transcription factors, such as NF-kB (77, 88, 89),

AP-1 (77, 88), SP1 (85), HIF-1a (82, 83), C/EBP-b (76), EGR1

(79), Sim1 (90), RUNX2 (91). For instance, inflammatory

induction of inactive rhomboid protein 2 (iRhom2) stimulated

by TNF and IFN-g drives the activation and upregulation of

ADAM17 expression and subsequent shedding of cell-surface

molecules (77, 88, 89), which is blocked by NF-kB and AP-1 (77,

88, 89). However, ADAM17 can negatively regulate miR-449b-

3p expression and its promoter activity via activating NF-kB
transcription. MiR-449b-3p is a downstream target of ADAM17

and has a binding site of NF-kB in its promoter (77). He et al.

found that EGR1 is bound to the ADAM17-172A>G

(rs12692386) promoter region with affinity, leading to

upregulation of ADAM17 promoter activity and transcription

(79). However, the loss of EGR1 function prevents ADAM17

expression and induces a pro-inflammatory response. HIF-1a is
FIGURE 2

Multiple regulatory roles of ADAM17. ADAM17 activity is affected by transcriptional regulation, and post-transcriptional and post-translational
modification. ADAM17 activity is also associated with substrate shedding. iRhoms affect the shedding of ADAM17 and regulation of its
downstream signaling pathways.
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an upstream target of ADAM17, and the transcriptional

activation of HIF-1a promotes the upregulation of ADAM17

expression (82, 83). The latter regulates AMPK metabolism-

related diseases through the adrenergic receptor (ADRA1A)

(82). In addition, miR-145 downregulates ADAM17 expression

by binding to the 3’-UTR of ADAM17, which leads to activation

of the ADAM17-EGFR-Akt-C/EBP-b feedback loop and

induction of tumor invasion (76). Epigenetic regulation of

histone post-transcriptional modifications also plays a pivotal

role in the post-transcriptional regulation of ADAM17.

Recruitment/deletion of histone H3K4me3/H3K27me3 at the

ADAM17 gene promoter downregulates ADAM17 expression

(92), suggesting that dynamic chromatin modifications at this

site lead to inflammatory responses.
ADAM17 mediates substrate
shedding activity

Due to the shedding activity, ectodomains of many

transmembrane proteins are hydrolyzed and released by

ADAMs metalloproteinases. Studies over the past five years

revealed that ADAM17 has more than 90 substrates (7, 32)

with distinct functions (Table 1), which are involved in various

cellular processes, including cell adhesion, migration,

development, inflammation, immune response, tumorigenesis,

signal transduction. The cleavage and release of substrates

(inflammatory cytokines, growth factors, receptors, adhesion

molecules, and others) for ADAM17 may result in different

functions of substrate proteins. Some substrate proteins, such as

glycocalyx (104), TNFR (173, 178), and JAM-A/FIIR (156), are

shed by ADAM17 in the form of active molecules. Glycocalyx is

a polysaccharide protein complex that covers the aperture

membrane surface of vascular endothelial cells and regulates

the homeostasis of the cytoplasmic membrane through

proteoglycan-glycoprotein attachment to endothelial cells.

Recent studies have shown that activation of S100B/RAGE

signaling by traumatic brain injury contributes significantly to

ADAM17-mediated endothelial calyx shedding, which

aggravates blood-brain barrier dysfunction and increased

vascular permeability (104). The sheddase activity of ADAM17

drives scramblase-dependent phosphatidylserine (PS) exposure

to the membrane surface, allowing the substrate to be cleaved

and shed at the membrane surface (178, 179). The inability of

ADAM17 to interact directly with PS may be due to the ability of

the ortho-phosphorylserine form of PS to competitively inhibit

the shedding of ADAM17 substrates (179). ANO6 facilitates the

regulation of phosphatidylserine on the plasma membrane due

to its scramblase activity. Veit M et al. found that

downregulation of ANO6 expression by RNA interference

significantly reduced the cleavage and release of TNFR1 by
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ADAM17 in HUVECs (178) and that free TNFR1 promotes

TNF-induced cell necrosis (173). ADAM17-mediated JAM-A/

FIIR shedding is responsible for aging-related abnormal

endothelial remodeling (156). However, other substrates, like

EGFR ligands (17, 97, 180), E-cadherin (124), VLDLR (4), IL-

11R (5), CD137 (94), P75 (11), GPIBa (6), HPP1 (119), and

NRG1 (10) are precursor proteins or fusion proteins that can

yield active components or soluble active receptors only after

cleavage and release by ADAM17 (Figure 2). Evidence suggests

that ADAM17 promotes tumor-associated macrophage

polarization and angiotensin II-mediated pro-growth and pro-

migration signals by shedding EGFR ligands, including heparin-

binding EGF-like growth factor (HB-EGF) and AREG (members

of the EGF family), from the cell membrane (17, 32). E-cadherin

is a key substrate for ADAM17, which is conducive to epigenetic

regulation, endocytosis and efflux of cells by cleaving and

shedding E-cadherin. Once ADAM17 binds to CD82,

ADAM17 metalloproteinase activity is inhibited, leading to a

reduction in E-cadherin cleavage products (124). IL-11 is

a member of the IL-6 family that binds to IL-11R and forms a

complex with CP130 to mediate anti-inflammatory signal

transduction. On the other hand, IL-11R is hydrolyzed to

soluble IL-11R (sIL-11R) via ADAM17 overexpression,

mediating IL-11 trans-signaling pathway (5), which confers

pro-inflammatory cytokine activity. Similarly, the bidirectional

regulation of CD137/CD137L-mediated cellular responses has

been implicated in the development of tumors and

autoimmunity. The shedding protease ADAM17 triggers the

production of soluble CD137 (sCD137), a spliceosome of

CD137, which subsequently enhances T cell proliferation,

whereas inhibition of ADAM17 activity intercepts the sCD137

production (94). VLDLR, an apolipoprotein receptor, plays an

important role in foam cell formation, plasma triglyceride

metabolism and inflammation. Its soluble ectodomain-

mediated anti-inflammatory effect is related to the activation

of the Wnt signaling pathway. ADAM17 induces the release of

soluble VLDLR (sVLDLR), which inhibits the Wnt pathway and

leads to macular degeneration in eye tissue, whereas the

shedding of sVLDLR is blocked by selective ADAM17

inhibitors (4). Carrido et al. revealed that tumor formation

mechanisms were probably caused by ADAM17-mediated

cleavage of the P75 ectodomain (11). In addition, the

increased ectodomain cleavage of other ADAM17 substrates

(GPIBa and HPP1) may be required for immune platelet

clearance and tumor suppression (119, 181). However, in

another study related to oncogenic KRAS, KRAS mutations

triggered enhanced ADAM17-mediated NPG1 shedding of the

SLC3A2-NPG1 fusion protein, which in turn promoted tumor

cell growth (10). Collectively, the pro-inflammatory and anti-

inflammatory effects induced by ADAM17 substrate shedding

may be related to distinct regulatory effects and functions of

the substrates.
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TABLE 1 Updated ADAM17 substrates (7, 32).

Cytokines Growth factors Receptors Adhesion molecules Others

CSF1 (93) AREG (17) 4-1BB/CD137 (94) ALCAM/CD166 (95, 96) EGFRL (97)

CX3CL1 (98) Epigen (99) ACE2 (100, 101) CD44 (102, 103) Glycocalyx (104)

FLT-3L (105) Epiregulin (106) APP (107) CD62L/L-selectin (108) Klotho (109)

INFg (110) HB-EGF (111) CA IX (112) Collagen XVII (113–115) Pref1 (116, 117)

Jagged1 (118) HPP1/TMEFF2/Tomoegulin2 (119) CD163 (75) Desmoglein2 (95, 120) SEMA4D (121)

Kit-ligand l and 2 (122) NRG1 (10) CD30 (123) E-cadherin (124) VASN/Vasorin (125)

LAG-3 (126) TGFa (127) CD40 (128, 129) EpCAM (130)

MICA (131) CD89/FcaR (132) ICAM1 (133)

MICB (134) c-MET (38, 135) L1-CAM (136)

RANKL (7, 137) EMMPRIN/CD147 (138) NCAM (139)

TNFa (140) EPCR (141) Nectin4 (142)

TNFb (143) ErbB4 (96) PTP-LAR (144)

GHR (145) VCAM1 (146)

GPIba (6)

GPV (147)

GPVI (148)

IGFR1 (138)

IGF2R (149)

IL-11R (5)

IL-1RII (150, 151)

IL-6R (152, 153)

Integrin b1 (154, 155)

JAM-A/FIIR (156)

KIM1 (157)

LeptinR (158)

LOX1 (159, 160)

LRP1 (46, 161)

MEGF10 (162)

MerTK (163)

Notch1 (164)

NPR (32, 165)

p55TNFaR1 (140)

P75 (11)

p75 TNFR (127)

Ptprz (166)

PTPRA/PTPa (167)

sVLDLR (4)

Syndecan-1 and -4 (168)

TGFbR1 (169)

TIL4 (170)

TIM-3 (171, 172)

TNFR1 (173)

Trop2 (174, 175)

VEGFR2 (176)

VPS10P (177)
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ADAM17 participates in the regulation of
its downstream signaling pathways

ADAM17 regulates signal transduction in many

pathophysiological processes, including inflammation,

immunity and tumor. The upregulation of ADAM17

expression leads to increased EGFR ligand release and

polarization of the EGFR signaling, which is responsible for

cell proliferation, invasion, and migration (182, 183). However,

downregulation of the ADAM17 expression urges the opposite

effect by suppressing the EGFR/ERK, EGFR/Akt/C/EBP-b or

EGFR/ErbB signaling pathways (76, 184). ADAM17-mediated

EGFR signaling increases the levels of TGF-b and accumulates

extracellular matrix (185), implying the role of TGF-b in the

regulation of multiple immune cells under pro-inflammatory

conditions. Emerging evidence suggest that blocking ADAM17

expression effectively alleviates inflammatory responses, which

may be relevant to the regulation of pro-inflammatory cytokines

IL-1b, IL-6 and TNF-a (186, 187). However, the loss of

ADAM17 function with gene mutations triggers the

development of inflammatory diseases (48, 188). Based on the

aforementioned discussion, we suggest that ADAM17’s critical

role in various signaling pathways ensures its activity is

strictly regulated.

iRhoms, lacking the catalytic motif GxS, are members of the

rhomboid protein family with important biological functions

(189). Recently, iRhoms have been identified as key regulators of

ADAM17 activation. In different tissues, iRhoms appear to form

proteolytic complexes with ADAM17 sheddase, but not other

ADAMs (190), thus mediating ADAM17 cell membrane surface

transport. iRhoms contribute to the activation of ADAM17-

dependent shedding events and substrate recognition, while

deletion of iRhoms hinders ADAM17 activation, suggesting

that iRhoms are required for ADAM17 maturation (190).

iRhoms contain two inactive homologs, iRhom1 and iRhom2,

also known as RHBDF1 and RHBDF2, respectively. iRhom1 is

barely expressed in inflammatory/immune cells and yet iRhom2

is highly expressed in these cells and is responsible for ADAM17

activation (89). iRhom2 deficiency inhibits ADAM17-dependent

substrate release, including bidirectional regulators and TNFs

(191, 192). In iRhom2-mutated macrophages, ADAM17

remains in endoplasmic reticulum (ER), and cannot be

activated by lysis of its prodomain (193). The cytoplasmic

domain of iRhom2 participates in the regulation of ADAM17-

dependent shedding events (189). Shed ADAM17 triggers

phosphorylation of the N-terminus of iRhom2 and promotes

the separation of ADAM17 from the iRhom2/ADAM17

complex by recruiting 14-3-3 protein (194). Despite the loss of

protease activity, iRhom1 and iRhom2 maintain critical non-

protease activities in regulating EGF and TNF-a signaling

pathways (41, 195). Upregulated expression of iRhom1 in ER

may enhance proteasome activity via the PAC1/2 pathway

rather than via EGF signaling. Mice with iRhom2 deficiency
Frontiers in Immunology 07
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had severe immunodeficiency and could neither produce the

main inflammatory cytokine, TNF, nor could they respond to

lipopolysaccharide-induced inflammation and immune

responses. Therefore, iRhoms play an integral role in

ADAM17-mediated downstream signal regulation. Hence,

targeting iRhoms and ADAM17 may provide new strategies

for anti-inflammatory treatment.
Immune regulation of ADAM17
in cancers

Abnormal expression of ADAM17
in cancers

Due to the shedding activity, ADAM17 is closely related to

the formation and development of distinct cancer types,

including lung cancer, ovarian cancer, breast cancer, stomach

cancer, colorectal cancer, bladder cancer, melanoma, cervical

cancer, pancreatic cancer, etc.

ADAM17 in lung cancer
Lung cancer has the highest incidence and mortality rate in

the world. ADAM17 is usually an oncogene and its upregulation

is associated with the progression of lung cancer. In LUAD,

KRAS mutation contributes to the phosphorylation of ADAM17

threonine via p38 MAPK, thereby driving ADAM17 to

selectively promote its substrate IL-6R shedding and

subsequent ERK1/2 MAPK-IL-6-mediated trans-signal

transduction, leading to malignant progression of the cancer

(152). Enhanced ADAM17 activity mediated by KRAS mutation

also facilitates the shedding of S-N (SLC3A2-NRG1) fusion

protein NRG1 and the release of soluble NRG1 (sNRG1),

which contributes to the increase in ERBB2-ERBB3

heterocomplex receptors and the activation of the downstream

PI3K-AKT-mTOR pathway, leading to the growth of lung

cancer cells (10). In addition, iRhom2, as a key binding

protein for ADAM17, further promotes KRAS-induced tumor

cell growth by modulating the release of ERBB ligands (196).

However, the efficacy of radiotherapy for non-small cell lung

cancer was enhanced when blockade of ADAM17 function with

the neutralizing antibody (197). These findings suggest that

ADAM17 is a cancer-promoting gene and a potential target

for anti-lung cancer therapies.
ADAM17 in ovarian cancer
Fabbi et al. found that ADAM17 is significantly upregulated

in ovarian cancer, and its high-expression is associated with poor

clinical prognosis in ovarian cancer patients (198). High levels of

ADAM17 in serum and ascites fluid of patients with ovarian

cancer may be used as a hematologic tumor marker for the

detection of ovarian cancer (199). ADAM17 promotes the
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malignant progression of ovarian cancer and causes chemo-

resistance by mediating ADAM17-dependent shedding of

AREG, HB-EGF, IL-6Ra, TNF, TNFR1-a, TGFa and

activating the EGFR signaling pathway (198, 200). Deletion of

ADAM17 or treatment with selective ADAM17 inhibitor

GW280264X is capable of declining substrate cleavage/release

and promoting chemo-sensitization (198, 201). ADAM17-

induced P75 cleavage may also be responsible for ovarian

cancer-promoting activities (11).

ADAM17 in breast cancer
ADAM17 functions as one of the highly expressed genes in

breast cancer that plays an important role in the development of

breast cancer. ADAM17 promotes cleavage of PD-L1 on the surface

of breast cancer cells (12), regulates the interaction between PD-L1

and PD-1 (12), and may contribute to immune escape of triple-

negative breast cancer cells (12, 202). ADAM17 can mediate the

release of sTNFR1 and sTNFR2, which inhibit the secretion of

metastasis-promoting chemokines (CXCL8, CCL5, CXCL) and

induce anti-metastasis effects in triple-negative breast cancer cells

(203). An earlier study indicated that breast cancer-associated

fibroblasts stimulated breast cancer cell proliferation through

ADAM17-mediated cleavage of TGF-a (204). Interestingly,

ADAM17 is also present in platelets and is involved in tumor

immune escape. It was found that downregulation of ADAM17 in

activated platelets from breast cancer patients was associated with

tumormetastasis and clinical stage of breast cancer (14). D8P1C1, an

anti-ADAM17 monoclonal antibody, remarkably inhibited tumor

growth in triple-negative breast cancer mouse models (205). Similar

results were reported in another published paper (13). In summary,

the critical role of ADAM17 in breast cancer makes it a potential

target for breast cancer therapy.

ADAM17 in gastric cancer
ADAM17 is probably associated with aggressive metastasis

and poor prognosis of gastric cancer. A meta-analysis associated

with gastric cancer indicated that ADAM17 might be a tumor

marker for poor prognosis in gastric cancer, and high expression

of ADAM17 is associated with lymph node metastasis and

clinical staging of lymph node metastasis in gastric cancer

(15). ADAM17 promotes gastric cancer cell metastasis by

activating the Notch-Wnt signaling pathway (206). Epithelial-

mesenchymal transition (EMT) is a transformation of cell

morphology that occurs in the development of tumors,

including gastric cancer. It was reported that ADAM17

promotes EMT in gastric cancer cells (33, 64). The mechanism

of ADAM17 in gastric cancer may be through TGF-b/p-Smad2/

3-mediated EMT activation (207, 208).
ADAM17 in other cancers
ADAM17 is also highly expressed in cervical cancer, liver

cancer, colorectal cancer and bladder cancer. ADAM17-
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modified bone marrow mesenchymal stem cells may stimulate

the malignant growth of drug-resistant cervical cancer cells by

activating the EGFR/PI3K/Akt pathway (16). ADAM17 is

thought to cleave the Notch receptor and inactivate Notch

signaling, thereby impeding the GPR50/ADAM17/Notch axis-

mediated development of liver cancer (85). ADAM17 can

interact with cellular integrin a5b1 to promote the binding

and uptake of exosomes derived from colorectal cancer (209).

Newly formed exosomes are associated with the malignant

phenotype of tumors. In addition, ADAM17 also promotes

STAT3 activation by induction of EGFR/IL-6 transduction

signaling pathways, which ultimately lead to tumor

progression; inhibition of the ADAM17/IL-6/STAT3 signaling

axis significantly attenuated the growth of colon cancer cells

(210). The ADAM17/EGFR/AKT/GSK3b axis plays a key role in

regulating melanoma cell proliferation, migration, and cell

sensitivity to chemotherapeutic drugs (211). ADAM17 is also

involved in immune-related autocrine and paracrine regulation

(40). However, knockdown of ADAM17 or treatment with anti-

ADAM17 antibody MEDI3622 resulted in regression of

pancreatic tumors, accompanied by down-regulated EGFR/

STAT3 signaling, increased cytotoxic T cells, and decreased

granulocyte-like medullary inhibitory cells in mouse models of

pancreatic cancer (212).
Regulation of macrophages by ADAM17

Tumor microenvironment (TME) refers to a complex

environment closely related to tumorigenesis, tumor growth

and its metastasis, which is composed of a variety of cells

(including macrophages, fibroblasts, lymphocytes, endothelial

cells, etc.), extracellular matrix, and multiple signaling molecules

(cytokines, growth factors, chemokines, hormones, etc.) (213).

Autocrine and paracrine are conducive to the activation of

multiple signaling pathways in tumor cells and non-tumor

cells (e.g., macrophages, lymphocytes, endothelial cells) (214–

216). In this way, the dynamic interaction between tumor cells

and their surrounding matrix triggers tumor cell proliferation,

immune evasion, distal metastasis, and drug resistance, and

angiogenesis as well (217, 218).

Tumor-associated macrophage (TAM) is derived from

mature monocyte in peripheral blood. Monocytes are recruited

to TME through chemokines and cytokines secreted by tumor

cells and become TAMs. TAMs are the most abundant immune

cells in the TME and are closely relevant to tumor growth,

invasion and metastasis (219). For one thing, macrophages

serves as an important component of tumor stromal cells that

are able to gather around blood vessels and promote

angiogenesis, tumor invasion and metastasis (220, 221). For

another thing, it also has the ability to remove tumor cells and

reshape the TME (222). Due to the influence of cytokines in the

TME, TAMs can be divided into two distinct polarized forms,
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M1 and M2 macrophages. The former is responsible for killing

tumor cells; the latter is able to promote tumor growth (223).

Macrophage M1/M2 polarization is adjustable and reversible.

Increased M2-polarized TAMs are often associated with

cytokines and growth factors, e.g., IL-4 (224), IL-10 (225),

CSF-1 (226), TGF-b (227) secreted by tumor cells or Th2 cells

in the TME, indicating a poor prognosis for tumor patients.

Metalloproteinase ADAM17 can shed distinct signaling

proteins on the cell surface, making it a mediator for

intercellular signal transduction (7, 20). Our previous study

showed that the expression of ADAM17 was associated with

infiltration of multiple immune cells, including macrophages

(20), in TCGA pan-cancer samples and yet the specific

regulatory mechanism of ADAM17 is unknown. Recently,

Gnosa et al. have revealed the positive roles of ADAM17 in

regulating the polarization of TAMs (17). By using

bioinformatics analysis based on the TCGA dataset and

immunohistochemical analysis from triple-negative breast

cancer cohort, the authors first confirmed that highly

expressed ADAM17 in tumors is positively correlated with

tumorigenic macrophage markers CD163 or CD206. Deletion

of ADAM17 gene inhibited tumor growth, increased the survival

in tumor-bearing mouse models, and resulted in a significant

decrease in CD163+ cell population. In a co-cultured mouse

bone marrow-derived macrophages with ADAM17-WT or

ADAM17-KO tumor cells , knockdown of ADAM17

significantly diminished the expression of CD163 or CD206,

IL-6, IL-10, and CCR7 in bone marrow-derived polarized

macrophages, suggesting an important role of ADAM17 in

tumorigenic macrophages. Furthermore, the authors used

cellular co-culture and zebrafish embryo propagation models
Frontiers in Immunology 09
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to demonstrate that tumor cells, in an ADAM17-dependent

manner, drive macrophage polarization into a tumor-promoting

phenotype and accelerate tumor cell invasion. Based on the

sheddase activity of ADAM17 (38), this macrophage

polarization is regulated by ADAM17-mediated shedding of

EGFR ligands (HB-EGF, AREG). Actually, the mechanism of

macrophage polarization driven by tumor cells has been

reported in many previous works. For instance, the EGFR/

PI3K/AKT/mTOR axis plays an important role in promoting

TAM M2 polarization by secreting EGF from colon cancer cells

(228). Pancreatic cancer triggers the polarization of TAMM2 by

secreting REG4 through the EGFR/AKT/CREB pathway (229).

These findings further indicate that EGFR ligand shedding

mediated by ADAM17 may be beneficial to activating the

EGFR signaling pathway and inducing the polarization of

tumor-promoting TAMs. Finally, they further demonstrated

the promoting effect of macrophage-derived CXCL1 secretion

on tumor cell invasion by RNA-seq analysis of transcriptome

data from co-cultured macrophages. Taken together, these

findings suggest a critical role of the ADAM17-EGFR (HB-

EGF/AREG) axis in the polarization of TAMs (Figure 3), which

also provides a new strategy for the anti-tumor immunotherapy.
Regulation of NK cells by ADAM17

Natural killer (NK) cells are important lymphocytes to fight

against tumor escape or immune evasion. A large number of

studies have shown that the activity and function of NK cells in

peripheral blood of some cancer patients are significantly

reduced (230), which may be conducive to the development of
FIGURE 3

Immunomodulatory role of ADAM17 in tumor development.
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malignant tumors. In non-small cell lung cancer, the function of

NK cells has been shown to be significantly impaired. Therefore,

immunotherapy targeting NK cells has become a therapeutic

concept for this type of cancer (231). One of the reasons for the

anti-tumor immune activity of NK cells is attributed to the

binding of its surface-activated receptor natural killer cell group

2D (NKG2D) to MHC class I chain-related protein A/B (MICA/

B), an NKG2D ligand on the surface of tumor cells, thus

activating NK cell function and enables NK cells to kill tumor

cells (232). Studies have shown that inhibition of the ADAM9

activity significantly blocked MICA shedding and affected the

immune killing effect of NK cells on tumor cells (233). ADAM17

is also a member of the metalloproteinase family that may have a

similar function. Recently it was found that ADAM17 has the

ability to hydrolyze MICA/B on the surface of tumor cells to

generate soluble MICA/B (sMICA/B) (52), the latter of which

alters the conformation of NKG2D on the surface of NK cells

(234) and affects the recognition and binding of membranous

MICA with NKG2D, thereby inhibiting NK activation signals

and reducing the killing sensitivity of NK cells to tumor cells

(235). Knockdown of ADAM17 prohibits MICA shedding and

boosts MICA expression on the surface of hepatocellular

carcinoma cells (131). In addition, hypoxia-induced shedding

of MICA on the surface of pancreatic cancer cells enables tumor

cells to evade NK cell immune killing (235). The function of

MICA/B monoclonal antibodies is to inhibit MICA/B shedding

by binding antibodies at key epitopes in the MICA/M proximal

membrane domain, and its antitumor immunity activity is

associated with NKG2D and CD16 Fc receptor activation

(236). Inhibition of MICA/B shedding with monoclonal

antibodies drives NK cell-mediated antitumor immunity (237),

suggesting that the sMICA levels may be correlated with

decreased NK cell function. Therefore, blocking ADAM17-

mediated hydrolytic activity to inhibit MICA shedding may be

one of the ways to improve NK cell killing of tumor

cells (Figure 3).

The antitumor immune activity of NK cells is also related to

the antibody-dependent cell-mediated cytotoxicity (ADCC)

induced by CD16 Fc receptor (Figure 3). ADCC is a key

cytolytic mechanism of NK cells. NK cells, on the one hand,

interact with the Fc region of antibodies that recognize proteins

on the surface of tumor cells through their IgG Fc receptors to

target tumor antigens and produce cytotoxic effects. On the

other hand, it also mediates adaptive immune responses. In

human beings, IgG’s FcR family consists of six receptors,

including FcgRI (CD64), FcgRIIa (CD32a), FcgRIIb (CD32b),

FcgRIIc (CD32c), FcgRIIIa (CD16a), and FcgRIIIb (CD16b), of

which CD16a is primarily responsible for triggering NK cell-

mediated ADCC. Therefore, exploring the mechanism of CD16a

contributes to the development of anti-tumor immunotherapy

drugs that enhance ADCC activity. The metalloprotease

ADAM17 has been reported to shed CD16a (238), leading to

decreased ADCC activity and reduced IFN-g production (239).
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However, Blocking CD16 shedding or avoiding cleavage

prompted a stronger tumor cell killing by NK cells (240, 241)

and increased IFN-g production (242). Paradoxically, treatment

with an ADAM17 inhibitor did not increase IFN-g levels

induced by stimulated NK cells (242). CD16a is a hot topic

discussed in recent NK cell anti-tumor immunity, and more

information about the role of ADAM17 in the regulation of

CD16a in NK cells can be seen in some recent studies (238, 243).

In addition, IL-15, an immunomodulatory factor, also plays

a key role in the development, homeostasis, activation and

proliferation of NK cells (244). IL-15 can differentiate

hematopoietic progenitor cells into CD56+ NK cells to induce

pro-proliferative responses. In NOG-IL-15 Tg mice expressing

transgenic human IL-15, there is a significant increase in

transplanted NK cells from healthy subjects’ peripheral blood

(19, 245). In different tumor-bearing animal models, IL-15

treatment contributes to tumor regression, reduction of tumor

metastasis, and improvement of animal survival. Currently, the

developed IL-15 mutant (IL-15N72D) or its stable soluble

complex, ALT-803, has been shown to have similar functions

as IL-15 and significantly improved the antitumor activity of

anti-CD20 monoclonal antibody in NK cells and the

immunotherapeutic efficacy of PD-1/PD/L1 monoclonal

antibody (232). ADAM17 is present in various immune cells,

including NK cells (20), which mediates lysis and shedding of

cell surface receptors. CD62L/L-selectin is an immune cell

homing receptor that regulates the migration of white blood

cells to sites of inflammation. It was found that CD62L

expression is increased in IL-15-stimulated NK cells (19).

Expression of ADAM17 on NK cells promotes the

downregulation of CD62L expression (242). Mishra et al. first

indicated that ADAM17 reduced IL-15-stimulated NK cell

proliferation with the participation of CD62L (19). The

blockade of ADAM17 reversed this event. Overall, IL-15-

mediated NK cell proliferation promotes an increase in CD62L

levels, while prolonged activation of ADAM17 leads to CD62L

shedding and impaired NK cell proliferation stimulated by IL-

15 (Figure 3).
Regulation of endothelial cells
by ADAM17

Metastasis is a form of tumor progression. 90% of tumor-

related deaths are caused by metastasis of tumor cells. The

process includes: 1) the shedding of tumor cells from the

primary tumor; 2) intravasation; 3) survival in the blood

circulation; 4) extravasation of blood vessels and metastases.

The interaction between endothelial cells and tumor cells is an

important step in tumor metastasis. Tumor cell-endothelial cell

tight contacts promote tumor cell adhesion to the vascular wall

through justacrine or paracrine signaling (246). As shown in
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Figure 3, endothelial cells secrete a series of adherent molecules,

such as E-selectin, VCAM-1, etc., to increase the adhesion of

tumor cells with endothelial cells, and further promote tumor

metastasis. The mechanism of tumor metastasis may be related

to EMT, angiogenesis, tumor stem cell characteristics, and the

increase of circulating tumor cells. ADAM17 is widely present in

endothelial cells and is positively correlated with immune

infiltration levels of endothelial cells in multiple cancer species

(20, 88, 173). It is speculated that endothelial ADAM17may help

tumor metastasis. Recent emerging evidence supports this

speculation (173). Julia et al. also confirmed that endothelial

ADAM17 is required for endothelial necrosis, tumor cell

extravasation and metastasis (247). ADAM17-dependent death

receptor TNFR1 ectodomain shedding promotes endothelial cell

necrosis and tumor cell extravasation (173, 247). In addition,

CCL2 secreted by tumor cells and macrophages promotes PKCb
activation by binding to endothelial CCR2, which further leads

to ADAM17 activation (247). ADAM17 appears to be closely

associated with pathological angiogenesis (138). In

ADAM17flox/flox/Tie2-Cre mice, loss of endothelial ADAM17

inhibits chord formation and impedes ectopic injected tumor

growth (138). In endothelial cells, soluble Robo4 (sRobo4) is

shed and released by ADAM1, which subsequently inhibits

SLIT3-induced angiogenesis (248). Meanwhile, SLIT3

obstructs Robo4 shedding and enhances its signal transduction

(248). ADAM17 may disrupt the barrier effect of vascular

endothelial cells by affecting their attachment and tight

junctions (249). Beyond vascular endothelial cells, ADAM17 is

also important in lymphatic endothelial cell-induced tumor

migration and metastasis. Sun et al. indicated that ADAM17

activation by MAPK14/T180 promoted the secretion of soluble

CX3CL1, which further led to malignant metastasis of liver

cancer cells (18). In addition, Macrophage M2 polarization is

also associated with ADAM17-dependent CX3CL1 secretion

(18). As a critical binding protein for ADAM17, iRhom1 has

been found to promote independent regulation of ADAM17

under physiological shear stress (88). However, there is no report

yet on the regulation of ADAM17 by iRhom1 in endothelial cells

and its effect on tumor malignant progression, which may be an

interesting topic.
ADAM17 inhibitors

ADAM17 has over 90 substrates, some of which are

mediators of cancer diseases, which implies that substrate

based ADAM17 inhibitors have the potential to be used for

the treatment of malignant tumors. In this section, we outline

recent advances in potent and selective ADAM17 inhibitors

containing hydroxamate and non-hydroxamate moieties, as well

as anti-ADAM17 monoclonal antibodies (Figure 4, Table 2).
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Hydroxamate-based
small-molecule inhibitors

The metalloproteinase domain of ADAM17 has a catalytic

site containing a sequence of zinc-dependent amino acid

residues that can bind to zinc ions to interfere with ADAM17

enzyme activity. The hydroxamate moiety is a common zinc-

binding motif, and hydroxamate-based small-molecule

inhibitors targeting the catalytic site may be an effective

strategy against tumors. Marimastat and apratastst are the

earliest synthesized hydroxamate-based inhibitors with limited

selectivity. Marimastat inhibits the cleavage of TNF-a and CD44

and reduces the invasion of tumor cells with an IC50 of 4.75 mM
(102). Shu et al. found that apratastst significantly inhibited

TNF-a cleavage with IC50 of 81.7 ng/mL ex vivo and 144 ng/mL

in vitro, respectively (250). INCB7839 is not ideal as a single

agent, but it enhances the efficacy of trastuzumab in metastatic

HER2-positive breast cancer. INCB7839 suppresses ADAM10/

17-dependent EGFR ligand shedding and potentiates the

antitumor effects of the recombinant peptidase PEPDG278D

(251). Since January 2009, INCB7839 has been used in Phase I/II

clinical trials alone or in combination with rituximab/

trastuzumab + vinorelbine/trastuzumab + docetaxel for the

treatment of diffuse large B cells non-hodgkin lymphoma

gliomas, breast cancer or solid tumors (Table 3). In a subset of

subjects, INCB7839 at a dose of 300 mg b.i.d. (Phase II) in

combination with rituximab resulted in a range of serious side
FIGURE 4

Chemical structures of representative small molecule ADAM17
inhibitors.
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effects, including thromboembolism, pain, and infections

(NCT02141451). However, other anticancer clinical trials

associated with INCB7839 were terminated for some reason or

were not conducted or not yet reported (NCT01254136;

NCT00864175; NCT0429575; NCT00820560). INCB3619, an

early hydroxamate-based inhibitor with the IC50 value of 14

nmol/L, significantly inhibits tumor cell survival by blocking the

shedding of ErbB ligands (252). INCB3619 also enhances the

sensitivity of gefitinib (264), cisplatin (252), and lapatinib (265),

and acts synergistically with CD16 × 33 bispecific killer cell

conjugates against acute myelogenous leukemia (266). KP457
Frontiers in Immunology 12
44
increases the production of platelets derived from functional

human induced pluripotent stem cells by inhibiting the

exodomain shedding of platelet glycoprotein Iba (GPIba), with

an IC50 value of 10.6 nmol/L for KP457 (253). GW280264X

facilitates the anti-ovarian cancer effect of cisplatin (201) and

restrains the development of lung adenocarcinoma cells (254).

The IC50 value of PF-5480090/TMI-002 in MDA-MB-468 cells

is approximately 1696.6 RFU/mg, which reduces the release of

TGF-a and increases the cytotoxic effects of anti-EGFR/HER

drugs (255). GI254023X is a selective inhibitor of ADAM10 and

ADAM17, but its selectivity for ADAM10 is 100 times higher
TABLE 2 Summary of the inhibitory activities of ADAM17 inhibitors.

Compound
Numbera

Chemical Name or Product Name IC50 Value
b Reference

Hydroxamate-based small-molecule compounds:

1 Marimastat 4.75 mM (102)

2 Apratastat 144 ng/mL (in vitro);
81.7ng/mL (ex vivo)

(250)

3 Aderbasib/INCB7839 N.D. (251)

4 INCB3619 14 nM (252)

5 KP-457 10.6 nM (253)

6 GW280264X N.D. (4, 201, 254)

7 PF-5480090/TMI-002 ~1696.5 RFu/mg (255)

8 GI254023X 541 mM (256)

9 Batimastat N.D. (257)

10 TAPT-1 8.09 mM (107)

11 (2R)-N-hydroxy-2-[(3S)-3-methyl-3-{4-[(2-methylquinolin-4-yl)methoxy]phenyl}-2-
oxopyrrolidin-1-yl]propanamide

N.D. (20)

12 (3S)-4-{[4-(but-2-ynyloxy)phenyl]sulfonyl}-N-hydroxy-2,2-dimethylthiomorpholine-3-
carboxamide

N.D. (20)

13 (3S)-4-{[4-(but-2-ynyloxy)phenyl]sulfonyl}-N-hydroxy-2,2-dimethylthiomorpholine-3-
carboxamide

N.D. (20)

14 Methyl (1R,2S)-2-(hydroxycarbamoyl)-1-{4-[(2-methylquinolin-4-yl)methoxy]benzyl}
cyclopropanecarboxylate

N.D. (20)

15 BMS-561392 0.20 nM (258)

Non-hydroxamate-based small-molecule compounds:

16 ZLDI-8 6.85 mM (259)

17 SN-4 3.22 mM (102)

18 SN-4(Nps)2 N.D. (102)

19 JTP-96193 5.4 nM (258)

20 (1S,3R,6S)-4-oxo-6-{4-[(2-phenylquinolin-4-yl)methoxy]phenyl}-5-azaspiro[2.4]heptane-1-
carboxylic acid

N.D. (20)

21 N-{[4-(but-2-yn-1-yloxy)phenyl]sulfonyl}-5-methyl-D-tryptophan N.D. (20)

22 (3S)-1-{[4-(but-2-yn-1-yloxy)phenyl]sulfonyl}pyrrolidine-3-thiol N.D. (20)

23 3-{[4-(but-2-yn-1-yloxy)phenyl]sulfonyl}propane-1-thiol N.D. (20)

Anti-ADAM17 monoclonal antibodies:

A300E ~0.7 mg/mL (260)

A9(B8) 0.22 nM (human); 0.25 nM
(mouse)

(261)

D1(A12) 4.7 nM (262)

MEDI3622 39 pmol/L (human); 132 pmol/L
(mouse)

(263)
fro
aSee Figure 4; bN.D. refers to not detected.
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than that of ADAM17, with IC50 values of 5.3 mM and 541 mM
for ADAM10 and ADAM17, respectively (256). The

hydroxamate derivative batimastat inhibits ADAM17 shedding

(267) and has prevented the progression of multiple tumors in

clinical trials, particularly the formation of peritoneal

carcinomas (268). TAPI-1 with IC50 value of 8.09 mM is

capable of inhibiting matrix metalloproteinase and blocking

the shedding of cytokine receptors (107). Recent studies have

shown that TAPI-1 appreciably restrains ADAM17 activation

during pseudomonas aeruginosa infection (269). Additionally,

we previously retrieved four novel hydroxamate-based small

molecule compounds 11-14 targeting ADAM17 from the

DrugBank database, but no in vitro and in vivo experimental

data were reported (20). BMS-561392 reduced ADAM17 activity

with an IC50 of 0.2 nM. Overall, most hydroxamate-based

inhibitors exhibit potent ADAM17 shedding activity and resist

tumor progression. Compounds with the hydroxamate group,

however, are usually poorly bioavailable and produce toxic

hydroxylamine through metabolism, which somewhat limits

the clinical use of these compounds (270).
Non-hydroxamate-based
small-molecule inhibitors

To avoid side effects and toxicity caused by the hydroxamate

group and to improve bioavailability, research on new ADAM17

inhibitors has been directed toward non-hydroxamate-based

small-molecule compounds (46). By searching the literature

published in the last five years, we have selected the following

four new compounds for description. With computerized virtual

screening, Lu et al. identified a non-hydroxamate-based

inhibitor, called thioxodihydro pyrimidindione ZLDI-8, which

reversed taxol resistance, displayed an IC50 value equal to 6.85

mM against ADAM17 (259), and inhibited metastasis of

hepatocellular carcinoma (271). It also enhanced the

antitumor effects of sorafenib and 5-fluorouracil (272, 273).

Another non-hydroxamate-based inhibitor, SN-4 specifically
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impedes ADAM17-mediated cleavage of TNF-a and CD44

with a higher activity than malistamate and an IC50 value of

3.22 mM (102). SN-4(Nps)2, a prodrug of SN-4, can markedly

enhance its bioavailability. A thiadiazolone derivative JTP-96193

showed 1800 times more selectivity toward ADAM17 over other

matrix metalloproteinases with an IC50 value of 5.4 mM (258).

Compounds 20-23 are novel non-hydroxamate-based small

molecules targeting ADAM17 from the DrugBank database,

whereas their ADAM17 inhibitory activity and potential

mechanism remain to be further explored (20).
Anti-ADAM17 monoclonal antibodies

The development of anti-ADAM17 monoclonal antibodies

has accelerated the progress of innovative ADAM17 inhibitors.

Anti-ADAM17 monoclonal antibodies include A300E, A9 (B8),

D1 (A12), MEDI3622, etc. A300E is rapidly internalized by

ADAM17-expressing cells (274), and its IC50 against ADAM17

is approximately 0.7 mg/mL (260). Trad et al. suggested that

A300E plays a role in cancer cells by transporting a conjugated

toxin to target cells (260). A9 (B8) cross-reacts with both human

and mouse ADAM17, whereas D1 (A12) binds only to human

ADAM17. D1 (A12) is bound to both the catalytic and non-

catalytic domains of ADAM17. Yang et al. found that A9 (B8)

conferred EGFR-TKI-mediated antitumor effects in NSCLC cells

with IC50 values of 0.22 nM and 0.25 nM against human and

murine ADAM17, respectively (261). Ye et al. revealed that A9

(B8) inhibited the shedding of ADAM17 substrate and

contributed to the growth inhibition of pancreatic ductal

adenocarcinoma in vivo and in vitro (275). D1 (A12) at 4.7

nM inhibits 50% TNF-a shedding and induces anti-ovarian

cancer effects (262). Besides, D1 (A12) restrains the progression

of head and neck squamous cell carcinoma by reducing HERS-

transactivation induced by retarded hormone and even has

therapeutic prospects for EGFR TKI-resistant head and neck

squamous cell carcinoma (276). Another anti-ADAM17

monoclonal antibody, MEDI3622, inhibits tumor-dependent
TABLE 3 Currently approved clinical trials using ADAM17 inhibitors for tumor treatment.

Diseases ADAM17 inhibitors Phase for
trial

Trial ID First Posted
date

Recruitment
Status

Last Update
Posted

Diffuse Large B Cell Non-Hodgkin
Lymphoma

INCB7839 + Rituximab Phase I/II NCT02141451 May 19, 2014 Completed Feb 19, 2020

Gliomas INCB7839 Phase I NCT04295759 Mar 4, 2020 Active, not
recruiting

Aug 16, 2022

Breast Cancer INCB007839 + Trastuzumab and
Vinorelbine

Phase I/II NCT01254136 Dec 6, 2010 Terminated Jan 25, 2012

Breast Cancer INCB007839 + trastuzumab and
docetaxel

Phase I/II NCT00864175 Mar 18, 2009 Terminated Jan 18, 2018

Solid Tumors and Hematologic
Malignancy

INCB007839 Phase I NCT00820560 Jan 12, 2009 Completed Jan17, 2018
(Source: the U.S. National Library of Medicine, https://clinicaltrials.gov/).
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EGFR activity with IC50 values of 39 pmol/L and 132 pmol/L

against human and murine ADAM17, respectively (263). In

esophageal and colorectal tumors, the antitumor effect of

MEDI3622 was superior to that of the EGFR/HER pathway

inhibitor, suggesting that MEDI3622 inhibits tumor growth by

partially modulating non-EGFR-mediated pathways (263). In

addition, MEDI3622 enhances the release of antibody-bound

tumor cells binding IFN-g in NK cells by blocking CD16A

shedding (239).

To date, there are no clinically available ADAM17 inhibitors.

The high toxicity and low selectivity of existing ADAM17

inhibitors and the high structural homology between the

catalytic domain of ADAM17 and other metalloproteases (e.g.,

ADAM10) have limited the development of selective ADAM17

inhibitors. However, the advent of small molecule compounds

and anti-ADAM17 monoclonal antibodies targeting the non-

catalytic domain of ADAM17 or the catalytic and non-catalytic

domains of ADAM17 (44, 46, 277–279) further overcome these

problems and improve bioavailability, which may provide a new

strategy for the development of the highly effective low-toxicity

ADAM17 inhibitors. In addition, as iRhom2 is a specific binding

protein of ADAM17, targeting iRhom2 to inhibit ADAM17

activity is also a trend in the development of ADAM17 inhibitors.
Discussion

Metalloproteinase ADAM17 holds a vital role in post-

translational protein modification, gene transcription and

post-transcriptional regulation, and is closely associated with

tumors and inflammation. ADAM17 regulates cell membrane

protein shedding and subsequent signal transduction. It can also

be impacted by the interacting proteins and thus participate in

the regulation of its downstream signaling pathways. ADAM17

has been implicated in immune regulation of tumor

development. However, its immunomodulatory functions and

mechanisms in cancer diseases are not well studied, and

therefore more studies are needed to further determine the

role of ADAM17 in tumor development. In this article, we

summarized the structure and multiple regulatory roles of

ADAM17, the latest immune regulation of ADAM17 in tumor

formation and development, as well as the progress in the

development of ADAM17 inhibitors. On the one hand,

although the regulatory effect of ADAM17 on macrophages,

NK cells, and endothelial cells has been confirmed in tumor,

more key proteins or genes related to ADAM17 need to be

identified, and the immune response involved in TME needs to

be further explored. In addition, the role of ADAM17 in post-

t r ans l a t iona l mod ifica t ions , such as pro t eo l y s i s ,

phosphorylation, glycosylation, and post-transcriptional

regulation in cancer progression remains unclear. On the other

hand, due to the structural homology of ADAM17’s catalytic

domain with other metalloproteinases, more three-dimensional
Frontiers in Immunology 14
46
crystal structures associated with ADAM17 need to be

uncovered to make them more conducive to highly selective

and toxic drug design for ADAM17 inhibitors. How to reduce or

avoid the toxic side effects of ADAM17 is also a potential

research direction. Therefore, studying the key role and

immunomodulatory mechanisms of ADAM17 in tumor

development will provide new strategies for the prevention,

diagnosis and treatment of cancer diseases.
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Integrated analysis of multiple
microarray studies to establish
differential diagnostic models
of Crohn’s disease and
ulcerative colitis based
on a metalloproteinase-
associated module

Jiang Deng1,2, Ning Zhao1,2, Li-ping Lv1,2, Ping Ma1,2,
Yang-yang Zhang1,2, Jin-bo Xu1,2, Xi-peng Zhou1,2,
Zi-an Chen3,4* and Yan-yu Zhang1,2*

1Institute of Health Service and Transfusion Medicine, Beijing, China, 2Beijing Key Laboratory of
Blood Safety and Supply Technologies, Beijing, China, 3Department of Gastroenterology, The
Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China, 4Hebei Key Laboratory of
Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive
Disease, Shijiazhuang, Hebei, China
Background: The ulcerative colitis (UC) and Crohn’s disease (CD) subtypes of

inflammatory bowel disease (IBD) are autoimmune diseases influenced by

multiple complex factors. The clinical treatment strategies for UC and CD

often differ, indicating the importance of improving their discrimination.

Methods: Two methods, robust rank aggregation (RRA) analysis and merging

and intersection, were applied to integrate data frommultiple IBD cohorts, and

the identified differentially expressed genes (DEGs) were used to establish a

protein−protein interaction (PPI) network. Molecular complex detection

(MCODE) was used to identify important gene sets. Two differential

diagnostic models to distinguish CD and UC were established via a least

absolute shrinkage and selection operator (LASSO) logistic regression, and

model evaluation was performed in both the training and testing groups,

including receiver operating characteristic (ROC) curves, calibration plots and

decision curve analysis (DCA). The potential value of MMP-associated genes

was further verified using different IBD cohorts and clinical samples.

Results: Four datasets (GSE75214, GSE10616, GSE36807, and GSE9686) were

included in the analysis. Both data integration methods indicated that the

activation of the MMP-associated module was significantly elevated in UC. Two

LASSO models based on continuous variable (Model_1) and binary variable

(Model_2) MMP-associated genes were established to discriminate CD and UC.

The results showed that Model_1 exhibited good discrimination in the training
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and testing groups. The calibration analysis and DCA showed that Model_1

exhibited good performance in the training group but failed in the testing

group. Model_2 exhibited good discrimination, calibration and DCA results in

the training and testing groups and exhibited greater diagnostic value.

The effects of Model_1 and Model_2 were further verified in a new

IBD cohort of GSE179285. The MMP genes exhibited high value as

biomarkers for the discrimination of IBD patients using published cohort and

immunohistochemistry (IHC) staining data. The MMP-associated gene levels

were statistically significantly positively correlated with the levels of the

differentially expressed cell types, indicating their potential value in

differential diagnosis. The single-cell analysis confirmed that the expression

of ANXA1 in UC was higher than that in CD.

Conclusion: MMP-associated modules are the main differential gene sets

between CD and UC. The established Model_2 overcomes batch differences

and has good clinical applicability. Subsequent in-depth research investigating

how MMPs are involved in the development of different IBD subtypes is

necessary.
KEYWORDS

crohn’s disease, ulcerative colitis, robust rank aggregation, microarray, metalloproteinases,
differential diagnostic models
Introduction

Inflammatory bowel disease (IBD) leads to chronic intestinal

inflammation, is associated with significant morbidity, and

results from the intersection of genetic and environmental

factors that influence immune responses (1). Crohn’s disease

(CD) and ulcerative colitis (UC) are the two main types of

inflammatory bowel disease. Despite certain common

pathological and clinical characteristics, CD and UC have

several differences that indicate they are two distinct disease

types. CD is characterized by fissuring ulceration,

granulomatous inflammation and submucosal fibrosis.

However, the characteristic histological findings in UC include

crypt distortion, lymphocyte infiltration and chronic

inflammation of the rectum, which is usually limited to the

lamina propria (2, 3). Clinically, the diagnosis of IBD is usually

established by a collective assessment of the clinical presentation

and endoscopic, histopathological, radiographic and laboratory

findings (4, 5).

An objective and clear discrimination between CD and UC

diagnoses in patients with IBD colitis is currently vital for a

tailored treatment plan since each disease involves different

therapeutic and coping mechanisms (6–9). However, the

differential diagnosis of these subtypes remains a remarkable

clinical challenge since there is no single diagnostic gold
02
55
standard for either UC or Crohn’s colitis (6–11). According to

the public literature, approximately 5% to 15% of patients do not

meet the strict criteria for either UC or CD (12–14), and the

diagnoses of up to 14% of patients change over time (15–19).

Therefore, the diagnostic assessment of IBD is often challenging;

discriminating between CD and UC can be particularly

challenging in patients in whom the inflammatory lesions are

limited to the colon (20).

In recent years, with the development of high-throughput

microarray technology, several studies have reported miRNAs as

candidate biomarkers in IBD diagnostic assessment (21);

however, few studies reported that mRNAs can be directly

used for the differential diagnosis of CD and UC.

Metalloproteinases (MMPs) belong to a large group of zinc-

dependent proteolytic enzymes involved in degrading and

remodeling the extracellular matrix (ECM) by cleaving specific

components (22). In this study, we integrated data obtained

from multiple IBD cohorts using two methods to identify

important functional gene sets that differed between CD and

UC and identified that the activation of the MMP-associated

module was significantly elevated in UC. Furthermore, using

different analytical methods, we established two differential

diagnostic models to distinguish CD and UC via a least

absolute shrinkage and selection operator (LASSO) logistic

regression and further verified the models’ efficiency in several
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https://doi.org/10.3389/fimmu.2022.1022850
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Deng et al. 10.3389/fimmu.2022.1022850
different cohorts. Finally, we explored the roles of these genes in

immunity during the progression of UC, providing evidence that

the expression of MMP-associated genes is correlated with the

presence of multiple immune cell types. Thus, our diagnostic

models provide promising diagnostic tools that might soon

improve clinical practice.
Materials and methods

Search strategy for microarray datasets

In total, 139 datasets were collected from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/) by systematic retrieval using the following

keywords: (“Inflammatory Bowel Diseases”[MeSH Terms] OR

Inflammatory Bowel Diseases [All Fields]) AND “Homo

sapiens”[porgn] AND (“Expression profiling by array”[Filter]

AND (“2008/01/01”[PDAT]: “2021/01/01”[PDAT]). The

inclusion criteria were (1) a sample size > 15 (2); the inclusion

of both CD and UC samples (3); sample sources of

“ileum/colon”; and (4) available gene annotation information.

To further verify the effectiveness of the models, a newly

published IBD cohort, GSE179285, was used to evaluate the

two models simultaneously. Another dataset, GSE125527,

generated from single-cell sequencing was analyzed to

investigate the role of MMP-associated genes in different cell

clusters. The flow of the experimental design and data analysis is

shown in Figure 1. The detailed information of the

characteristics of the included datasets is shown in Table 1.
Frontiers in Immunology 03
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Robust rank aggregation analysis and
identification of differentially expressed
genes in the integrated cohort

Using RRA, all genes in each dataset were sorted and ranked

based on their log fold-change (logFC) values using the limma

package. The DEGs were then ranked using the ranked list and

aggregated using the RRA package in R software. Using this

method, an adjusted P value determines the likelihood that

DEGs will be identified in the datasets with highly ranked

genes. LogFC values > 0.7 and adjusted P values < 0.05 were

set as the criteria for identifying DEGs.
Identification of DEGs by merging
and intersection

To increase the sample size of the IBD cohort, three datasets

(GSE10616, GSE36807, and GSE9686) from the same platform were

merged and named Combined Datasets. The ComBat function was

used to remove batch effects using the SVA package. Then, the DEGs

were identified in the Combined Datasets and GSE75214 with the

criteria of LogFC values > 0.6 and adjusted P values < 0.1. The final

DEGs were identified by considering the intersection of the DEGs

between the two IBD cohorts.
Functional and pathway
enrichment analyses

We performed a Gene Ontology biological process (GO-BP)

analysis and Kyoto Encyclopedia of Genes and Genomes
FIGURE 1

Flowchart of the overall study design.
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(KEGG) analysis of the DEGs identified by the RRA analysis

using the limma and clusterProfiler packages. The enrichment

analysis of the DEGs was performed with the criteria of adjusted

P values of < 0.05 (23).
Establishment of a PPI network and
MCODE analysis

Using the DEGs obtained by the RRA analysis/intersection, a

PPI network was established using the STRING website (https://

cn.string-db.org/), with a parameter of confidence of > 0.4.

Visualization of the PPI network was performed by Cytoscape

(v3.7.2), and molecular complex detection (MCODE) (a plug-in

in Cytoscape) was used to identify the functional modules (24).
Establishment of model_1 via LASSO
logistic regression

For the logistic regression, to achieve a high performance,

LASSO was applied to reduce the dimensions of the analysis. The

candidate genes were collected from the combination of two MMP-

associated modules identified in the PPI network, including MMP3,

MMP1, MMP12, PLAU, MMP9, CXCL1, MMP10, PTGS2, TIMP1,

MMP7, CXCL13, S100A12, S100A8, S100A9, and ANXA1. The

combined datasets were set as the training group, while GSE75214

was used as the testing group to verify the effect of the model.

The LASSO procedure involved performing a logistic

regression with an L1 regularization penalty, which has the

effect of shrinking the regression weights of the least predictive
Frontiers in Immunology 04
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features to 0. To determine the coefficients of optimal penalty,

we performed tenfold cross-validation, and binomial deviation

was used as a performance measure. Therefore, the function

cv.glmnet was used with the following parameters: alpha = 1,

nfolds = 10, and type.measure = “deviance”. To obtain

parsimonious models, the largest lambda, which was within

one standard error of the minimum training deviance as

recommended, was used to establish the final model.
Establishment of model_2 via LASSO
logistic regression

To correct the model application problems caused by the

batch differences across different platforms, we used another

method to generate the model. A binary variable translation was

performed with 15 candidate MMP-associated genes to obtain a

new index for each MMP-associated gene in each sample. For

genes with increased expression in UC, the binary variable of

MMP-associated genes was assigned a value of 1 if the

expression value of a gene was greater than the median of the

expression value of that gene in all samples; otherwise, the index

was defined as 0. For genes with increased expression in CD, the

binary variable of MMP-associated genes was assigned a value of

1 if the expression value of a gene was less than the median of the

expression value of that gene in all samples; otherwise, the index

was defined as 0. Therefore, the expression values of 15 genes

were converted from continuous variables into binary variables.

Similar to the method used to establish Model_1, the combined

datasets were set as the training group, while GSE75214 was used

as the testing group to verify the effect of the model.
TABLE 1 Characteristic of the included microarray datasets.

GSE ID Participants
(CD/UC)

Analysis
type

Platform Year Tissues Sex
(Male:
Female)

Included in the
RRA analysis

Network address

GSE75214 59/74 Array GPL6244 2017 8 Colon and 51 Ileum in
CD/74 Colon in UC

Not
determined

Yes https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=

GSE75214

GSE10616 32/10 Array GPL5760
(identical to
GPL570)

2009 14 Colon and 18 Ileo-
colonic in CD/10 Colon in

UC

Not
determined

Yes https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=

GSE10616

GSE36807 13/15 Array GPL570 2013 Not determined 9:4 in CD/
8:7 in UC

Yes https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=

GSE36807

GSE9686 11/5 Array GPL5760
(identical to
GPL570)

2008 11 Colon in CD/5 Colon
in UC

Not
determined

Yes https://www.ncbi.nlm.hih.gov/
geo/query/acc.cgi?acc=GSE9686

GSE179285 37/23 Array GPL6480 2021 14 Colon and 33 Ileo in
CD/23 Colon in UC

Not
determined

No https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=

GSE179285

GSE125527 7/7 Single-cell
Sequencing

GPL20301 2020 7 Rectum in CD/7 Rectum
in UC

Not
determined

No https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=

GSE125527
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Model_2 was generated using a different method than

model_1. To determine the coefficients of optimal penalty, we

performed 8-fold cross-validation, and the area under the

receiver operator characteristics (ROC) curve was used as a

performance measure. Thus, the function cv.glmnet in the

package glmnet v2.0-16 was used with the following

parameters: alpha = 1, nfolds = 8, and type.measure = “auc”.

To obtain parsimonious models, the largest lambda, which was

within one standard error of the maximal training AUC as

recommended, was used to generate the final model.
Evaluation of the differential
diagnostic models

The models were developed and strictly validated according

to the Transparent Reporting of a multivariable prediction

model for Individual Prognosis Or Diagnosis (TRIPOD)

guidelines (25). Specifically, we used ROC analyses and the

AUC to assess the discriminatory ability of the model in

discriminating CD from UC cases. Calibration plots were

drawn to assess the goodness of fit of each model. A decision

curve analysis (DCA) was performed to assess the clinical net

benefit of each model and compare the model with the use of all

strategies and random chance. The equations used in the final

models are presented as nomograms. Importantly, the ROC

analysis, calibration plot assessments and DCA were performed

in both the training and testing groups, while the nomogram was

illustrated only in the training group according to the TRIPOD

guidelines. All analyses were conducted using R version 4.1.3.
Evaluation of
immunohistochemical staining

To validate the results of the genetic analysis at the

transcriptional level, human intestinal mucosal tissues were

collected from the Department of Gastroenterology at the

Second Hospital of Hebei Medical University between 2020-

2021. The histopathologic diagnosis was made by two

pathologists, and the sample set included 15 CD samples and

23 UC samples.

The collected intestinal mucosa of the patients were fixed

with 4% paraformaldehyde (PFA) and embedded in paraffin.

IHC staining was performed as previously described (26). The

following antibodies were used: MMP7 (A20701), ANXA1

(A1118), MMP10 (A3033), HRP-labeled goat anti-rabbit

antibody (AS014; 1:200 dilution, all from ABclonal, Wuhan,

China), CXCL13 (bs-2553R), and CXCL1 (bs-10234R, all from

Bioss, Beijing, China; 1:200 dilution).

The samples were scored by two trained pathologists

according to the percentage contribution of the high positive,

positive, low positive, and negative samples. The immunoreactive
Frontiers in Immunology 05
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score (IRS) was evaluated as follows: 4, high positive; 3, positive; 2,

low positive; and 1 negative (27).
Landscape of immune cell infiltration

To evaluate immune cell infiltration, CIBERSORT was used

to quantify 22 tumor-infiltrating immune cell subgroups in the

CD and UC groups in both the Combined Datasets and the

GSE75214 dataset. Because the MMP-associated genes exhibited

a higher level in UC in this study, the relationships between the

expression of immune cell subgroups and MMP-associated

genes in UC were further examined by a Spearman

correlation analysis.
Single-cell sequencing analysis

The single-cell sequencing analysis was based on public data

(GSE125527, including 7 CD and 7 UC patients) downloaded

from the GEO website and analyzed via R software according to

the following steps: 1) the “Seurat” package was adopted to

convert 10× scRNA-seq data as a Seurat object; 2) the

“FindVariableFeatures” function was adopted to filter the top

2000 highly variable genes; 3) a principal component analysis

(PCA) was performed based on the 2000 genes, and the data

from different samples were further merged via harmony

integration; 4) a clustering analysis was performed to find

subtypes, and uniform manifold approximation and projection

(UMAP) was used for dimensionality reduction and

cluster identification.
Statistical analysis

All statistical tests were implemented using R software

4.1.3. A Wilcoxon test was used to analyze the significance of

the differences between the groups. Spearman’s correlation test

was used to determine the correlation between the variables.

Statistically significant results were defined as those with

P values < 0.05.
Results

Characteristics of the included
microarray datasets

After conducting a systematic search based on the inclusion

criteria described in the Materials and Methods, in total, four

microarray datasets of IBD patients were retrieved from the

GEO database, including GSE75214 (N=59/74, x/y=the number

of CD/UC included in the research) (28), GSE10616 (N=32/10)
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(29), GSE36807 (N=13/15) (30), and GSE9686 (N=11/5) (31).

Therefore, in total, 115 cases of CD and 104 cases of UC were

finally included in the analysis.
Identification of DEGs by an RRA analysis
and functional enrichment analysis

Considering that the collected data were generated from

different microarray platforms, combining the datasets by using

direct merging inevitably led to erroneous conclusions caused by

bias. Therefore, the RRA method was first applied to identify

DEGs in the four GEO datasets.

First, the datasets were standardized to correct batch differences

within the datasets, and the results showed that the homogeneity of

the data met the requirements (Supplementary Figure 1). A volcano

map of each dataset was produced using the Limma package in R

software, and the DEGs are indicated as green and red points in

Figures 2A-D. The results showed that the DEGs greatly differed

across the different datasets. In the GSE75214 dataset, many DEGs

were identified, while few DEGs were identified in the GSE10616,

GSE36807, and GSE9686 datasets as indicated in the figures,

suggesting that the data collected from the cohorts across

different sources were heterogeneous.

After the RRA analysis, in total, 141 DEGs (86 overexpressed

in UC and 55 overexpressed in CD) were finally identified, and a

heatmap of the expression data of the top 20 DEGs is shown in

Figure 2E. The top 10 significant genes that were aberrantly

expressed in UC included five genes [SLC6A14 (P = 2.78E-08),

TNIP3 (P = 1.03E-07), MMP7 (P = 4.45E-07), MMP10 (P =

1.68E-06), and CXCL13 (P = 2.09E-06)], and five genes were

overexpressed in CD [GBA3 (P = 7.48E-07), PCK1 (P = 3.27E-

06), AQP8 (P = 8.98E-06), MEP1B (P = 1.82E-05), and GUCA2A

(P = 3.48E-05)]. The overall results of the RRA analysis are listed

in Supplementary Table 1.

The DEGs were subjected to a GO-BP analysis and KEGG

analysis, and the top five results are listed in Figures 2F, G. The

results showed that the short-chain fatty acid metabolic process,

cellular lipid catabolic process, drug catabolic process, fatty acid

metabolic process and cellular response to xenobiotic stimulus

were the top five enriched BPs, while bile secretion, drug

metabolism - cytochrome P450, tyrosine metabolism, steroid

hormone biosynthesis, and phenylalanine metabolism were the

top five enriched KEGG pathways in CD. In the UC samples,

negative regulation of proteolysis, extracellular matrix

organization, collagen catabolic process, extracellular matrix

disassembly, and extracellular structure organization were the

top five enriched BPs, while the IL-17 signaling pathway,

rheumatoid arthritis, cytokine−cytokine receptor interaction,

NF-kappa B signaling pathway and TNF signaling pathway

were the top five enriched KEGG pathways. The detailed

results are listed in Supplementary Table 2.
Frontiers in Immunology 06
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Identification of DEGs by merging
and intersection and a functional
enrichment analysis

To identify the DEGs more comprehensively, we adopted

another method. Because the data in the GSE10616, GSE36807

and GSE9686 datasets were collected using the same platform,

combined datasets (named Combined Datasets, N=56/30) were

generated by merging the GSE10616, GSE36807 and GSE9686

datasets by removing batch effects via the SVA package in R

software. The distribution of the data before and after correction

was tested by a principal component analysis (PCA)

dimensionality reduction (Figures 3A, B). The results showed

that the distribution of each dataset was quite different before the

batch correction, while the distribution of the data after

correction overlapped well.

The differentially expressed genes in the GSE75214 dataset

and Combined Datasets were analyzed (Figures 3C, D). The final

DEGs were determined by considering the intersection of the

differentially expressed genes, and in total, 65 DEGs were

identified as listed in Figure 3E and Supplementary Table 3.

The DEGs, including 45 overexpressed in UC and 20

overexpressed in CD, were subjected to a GO-BP analysis and

KEGG analysis, and the top five results are listed in Figures 4F,

G. The results showed that bicarbonate transport, positive

regulation of guanylate cyclase activity, regulation of guanylate

cyclase activity, chloride transport, and positive regulation of

cyclase activity were the top five enriched BPs, while nitrogen

metabolism, proximal tubule bicarbonate reclamation,

glycolysis/gluconeogenesis, the PPAR signaling pathway, and

bile secretion were the top five enriched KEGG pathways in the

CD samples. In the UC samples, humoral immune response,

neutrophil degranulation, neutrophil activation involved in

immune response, antimicrobial humoral response, and

granulocyte chemotaxis were the top five enriched BPs, while

the IL-17 signaling pathway, amoebiasis, TNF signaling

pathway, cytokine−cytokine receptor interaction, and

complement and coagulation cascades were the top five

enriched KEGG pathways. The detailed results are listed in

Supplementary Table 4. Notably, although we used two

different methods to identify the DEGs, the results showed

that the identified enriched signaling pathways were highly

similar, including the IL-17 signaling pathway, TNF signaling

pathway, and cytokine−cytokine receptor interaction in UC.
MMP-associated module is the most
important network module in both
PPI networks

For clarity, we named the DEGs identified in the RRA

analysis RRA-DEGs, and the DEGs identified from the
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intersection of the GSE75214 dataset and Combined DataSets

were named Intersection-DEGs. Two PPI networks based on the

RRA-DEGs and intersection-DEGs were generated to better

explore the differences in complex regulatory mechanisms

between CD and UC using the STRING website, and the

results were visualized by Cytoscape software.

The network generated by using the RRA-DEGs is shown in

Figure 4A and includes 101 nodes and 464 edges. The Molecular

Complex Detection (MCODE) function module is a commonly

used module in the establishment of PPI networks. This module

can be used to identify important subnetworks and genes in a

large PPI network according to the relationship between the

edges and nodes to facilitate the following analysis. Through a
Frontiers in Immunology 07
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MCODE analysis, we observed that the most important

subnetworks mainly involved MMP fami ly genes ,

including MMP1, MMP12, PLAU, MMP9, CXCL1, MMP10,

PTGS2, TIMP1, and MMP7, with MMP3 as the seed gene

(Figure 4B). Through a gene enrichment analysis, we observed

that extracellular matrix disassembly, collagen catabolic

process, collagen metabolic process, extracellular matrix

organization, and extracellular structure organization were the

top five enriched BPs, while the IL-17 signaling pathway, TNF

signaling pathway, rheumatoid arthritis, prostate cancer, and

NF-kappa B signaling pathway were the top five enriched

KEGG pathways (Figure 4C and details in Supplementary

Table 5).
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C

FIGURE 2

Identification of DEGs by an RRA analysis and functional enrichment analysis. Volcano plots of the DEG distributions in the GSE75214 (A),
GSE10616 (B), GSE36807 (C), and GSE9686 (D) datasets. Upregulated genes are indicated by red points, while downregulated genes are
indicated by green points. Genes with no significant differences in levels are indicated by black points. (E) Heatmap of the expression data of the
top 10 DEGs identified in the RRA. The genes upregulated in CD are indicated in blue, and those upregulated in UC are indicated in orange.
Functional enrichment analysis of DEGs, including (F) a GO-BP analysis and (G) a KEGG pathway analysis.
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Then, we used the intersection-DEGs to generate another

PPI network. The results are shown in Figure 4D, which shows

49 nodes and 190 edges. As before, the MCOD plug-in was used

to identify important subnetworks and key genes. Although

fewer DEGs were used to generate the PPI network in this

analysis, the key subnetworks finally identified still mainly

involved the MMP family, including MMP12, MMP10,

MMP3, MMP9, TIMP1, CXCL1, PLAU, S100A9, CXCL13,

S100A8, ANXA1 and S100A12, with MMP7 as the seed gene

(Figure 4E). Through a gene enrichment analysis, we found that

extracellular matrix disassembly, collagen catabolic process,

granulocyte chemotaxis, granulocyte migration, and myeloid

leukocyte migration were the top five enriched BPs, while the

IL-17 signaling pathway, prostate cancer, TNF signaling

pathway, transcriptional misregulation in cancer, and

rheumatoid arthritis were the top five enriched KEGG

pathways (Figure 4F and details in Supplementary Table 5).
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Notably, the results of both PPI networks independently

identified the MMP family as a pivotal module, and the results of

the gene functional enrichment analysis of both MMP modules

were quite similar to those obtained by analyzing all DEGs in the

RRA/intersection analysis as shown in Figures 2F, G and

Figures 3F, G; this finding indicates that the module of the

MMP family is the main differential gene set between CD

and UC.
Establishment of model_1 based on the
MMP-associated module via a LASSO
logistic regression

Based on the above results, we speculated that the MMP

family module was the main differential gene set between UC

and CD. Therefore, the genes in two MMP subnetworks were
A B

D

E
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C

FIGURE 3

Identification of DEGs by merging and intersection and a functional enrichment analysis. The GSE10616, GSE36807 and GSE9686 datasets were
merged, and batch effects were further removed. PCA plots of different datasets are illustrated before (A) and after (B) batch effects were
removed. Volcano plots of the DEG distributions in the GSE75214 dataset (C) and Combined Datasets (D). (E) The intersection of DEGs in the
GSE75214 dataset and Combined Datasets is displayed as a Venn diagram. Functional enrichment analysis of DEGs, including (F) a GO-BP
analysis and (G) a KEGG pathway analysis.
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merged and served as candidates for establishing the LASSO

logistic regression model. The combined datasets were set as

the training group, while the GSE75214 dataset was set as the

testing group. After the model reached the minimum+1 standard

error lambda, an MMP-related signature with 4 components

was built discriminate between CD and UC (Figure 5A).

The diagnostic score was defined as -3.7469+[expression

level of ANXA1 × (0.4213)]+[expression level of MMP10 ×

(0.2944)]+[expression level of MMP1 × (0.0826)]+[expression

level of CXCL13 × (0.0351)], and the optimal features and their

coefficient values are shown in Figure 5B. Notably, the diagnostic

score was a scoring system used only for differential diagnosis, and

the score was positively correlated with UC and negatively

correlated with CD.

In the next investigation, we evaluated the diagnostic

efficiency of Model_1 in discriminating between CD and UC.

The methods of the evaluation strictly complied with the

guidelines of the TRIPOD (Transparent Reporting of a

multivariable prediction model for Individual Prognosis Or

Diagnosis) Statement (25), including discrimination (ROC

curve and AUC), calibration (calibration plot), decision curve

analyses and a nomogram. The results of the ROC curve showed

that the AUC achieved in the training group was 0.839, and that
Frontiers in Immunology 09
62
achieved in the testing group was 0.815 (Figures 5C, D). In

addition, the calibration curve showed that the diagnostic score

had a better prediction accuracy in the training group and poor

calibration in the testing group (Figures 5E, F). Similarly, the

DCA results showed that the diagnostic score in the training

group served as a better indicator during clinical decision-

making than that in the testing group (Figures 5G, H). The

nomogram for the differential diagnosis of CD and UC is

illustrated in Figure 5I. For example, for a patient with a

CXCL13 value of 1.0416, MMP1 value of 2.6360, ANXA1

value of 1.9737, and MMP10 value of 1.5244, the predicted

probability of the patient having UC was 0.0987, while the

predicted probability of the patient having CD was 0.9013.

According to a cutoff value of 0.5, the patient was identified as

having CD based on Model_1.
Establishment of model_2 based on the
MMP family module via a LASSO
logistic regression

Based on the poor calibration and clinical applicability of

Model_1, a better method for establishing a diagnostic model
A B

D E F

C

FIGURE 4

Visualization and module identification using two different PPI networks. (A) RRA-DEGs were mapped using Cytoscape software (genes mainly
expressed in CD are indicated in blue, and genes mainly expressed in UC are indicated in orange). Using the MCODE plug-in, the module with
the highest scores was identified (indicated in yellow). (B) The identified module comprised MMP1, MMP12, PLAU, MMP9, CXCL1, MMP10,
PTGS2, TIMP1, and MMP7 (indicated in orange), with MMP3 as the seed gene (indicated in yellow). Functional enrichment analyses of the genes
in the MMP-associated module were performed (C). (D) The intersection-DEGs were mapped using Cytoscape software (genes mainly
expressed in CD are indicated in blue, and genes mainly expressed in UC are indicated in orange). Using the MCODE plug-in, the module with
the highest scores was identified (indicated in yellow). (E) The identified module comprised MMP12, MMP10, MMP3, MMP9, TIMP1, CXCL1, PLAU,
S100A9, CXCL13, S100A8, ANXA1 and S100A12 (indicated in orange), with MMP7 as the seed gene (indicated in yellow). Functional enrichment
analyses of the genes in the MMP-associated module were performed (F).
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was applied as described in the Methods and Material. The main

difference was that the continuous variables representing gene

expression were transformed into binary variables, leading to a

reduction in distribution differences due to specific expression

values.

Similar to the method used to assess Model_1, the Combined

Datasets were set as the training group, while the GSE75214

dataset was set as the testing group. After the model reached the

minimum+1 standard error lambda, an MMP-related signature

with 4 components was generated to discriminate between CD

and UC (Figure 6A). The diagnostic score was defined as -1.3813+

[value of ANXA1×(0.6358)]+ [value of CXCL13×(0.1000)]+

[value of MMP1×(0.2507)]+ [value of CXCL1×(0.4478)], and

the optimal features and their coefficient values are shown

in Figure 6B.

Similar to the method used during the investigation of

Model_1, we further evaluated the diagnostic efficiency of

Model_2 in identifying CD and UC. The results of the ROC

curve showed that the AUC achieved in the training group was

0.801, and that achieved in the testing group was 0.811

(Figures 6C, D). In addition, the calibration curve showed that

the diagnostic score had a better prediction accuracy in both the

training group and the testing group (Figures 6E, F). Similarly,

the DCA results showed that the diagnostic score in both the
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training group and the testing group served as a better indicator

in clinical decision-making (Figures 6G, H). The nomogram for

the differential diagnosis of CD and UC is illustrated in Figure 6I.

For example, for a patient with a CXCL13 value of 0, an MMP1

value of 1, an ANXA1 value of 0, and a CXCL1 value of 1, the

predicted probability of a UC diagnosis was 0.336, while the

predicted probability of a CD diagnosis was 0.664. According to

a cutoff value of 0.5, the patient was identified as having CD

based on Model_2. Overall, these results suggest that Model_2

based on the MMP-associated module has good prediction

ability.
Verification of the effectiveness of
model_1 and model_2 in a new
IBD cohort

Although the effects of Model_1 and Model_2 were tested in

the above studies, considering that the GSE75214 cohort was

included in the RRA analysis, strictly speaking, the GSE75214

cohort is not a complete test queue. Therefore, a recently

published IBD cohort, GSE179285, which was not included in

the RRA analysis, was used for a more rigorous evaluation of the

effects of the two models.
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FIGURE 5

Establishment and evaluation of Model_1 with the MMP-associated module. (A) Selection of the optimal parameter (lambda) in the LASSO
model. (B) Plot of coefficients obtained by LASSO. ROC curve (C, D), calibration curves (E, F), and decision curve analysis (DCA) (G, H) of the
training and testing cohort models. (I) Nomogram of Model_1 for the predictive value of CD/UC is illustrated.
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The evaluation results of Model_1 are shown in Figures 7A-

C. The results show that the ROC curve, calibration curves and

decision curve analysis of Model_1 are very poor likely because

GSE179285 was generated from GPL6480, a platform different

from the other queues. In addition, since the GSE179285 cohort

contains a large number of colon tissue from CD cases, we used

Model_1 to evaluate CD and UC in colon tissue only and

showed that the differentiation of Model_1 was still poor

(Figure 7D, AUC=0.509). In contrast, Model_2 still shows

good ROC curves, calibration curves and decision curve

analysis in the new cohort (Figures 7E-G), although the data

were derived from a platform that the model never faced before.

Furthermore, Model_2 still shows a good ROC curve between

the UC and CD samples from only colon tissue, highlighting its

great application value as a clinical diagnostic model

(Figure 7H, AUC=0.730). As we know, the real challenge of

differential diagnostic of two subtypes of IBD is between colonic

dominant CD versus UC, which reflects the potential clinical

value of the Model_2. We performed statistical analysis on

CD and UC samples from colonic tissue in the former IBD

cohort. The results showed that the model had an AUC of

0.674 in GSE75214 (CD/UC=8/74), 0.754 in GSE10616

(CD/UC=14/10), and 0.900 in GSE9686 (CD/UC=11/5,

Supplementary Figure 3).
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Verification of MMP-associated genes in
different IBD cohorts

After establishing and evaluating the model, we explored the

function and diagnostic value of MMP-associated genes,

including the seed genes identified in the MCODE analysis

(MMP3 and MMP7) and 5 genes assessed in Model_1 and

Model_2 (ANXA1, MMP10, MMP1, CXCL13 and CXCL1). We

first examined the correlation between the internal MMP-

associated genes in both the Combined Datasets and the

GSE75214 dataset using a Spearman correlation analysis, and

the results are illustrated in Figures 8A, B. The results showed

that multiple strong positive correlations were detected between

the levels of the MMP-associated genes. In addition, the

differences in the MMP-associated gene levels between CD

and UC were examined, and the results showed statistically

significant differences between the two groups in the expression

of most MMP-associated genes, including MMP3, MMP7,

ANXA1, MMP10, CXCL13 and CXCL1, except for MMP1 in

the GSE75214 dataset (Figures 8C, D).

To further verify the value of the MMP-associated genes as

diagnostic markers, we explored their ROC curves in different

cohorts (Figures 8E, F). The results showed that the AUCs of

ANXA1 and MMP10 were greater than 0.75, and those of
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FIGURE 6

Establishment and evaluation of Model_2 with the MMP-associated module. (A) Selection of the optimal parameter (lambda) in the LASSO
model. (B) Plot of coefficients obtained by LASSO. ROC curve (C, D), calibration curves (E, F), and decision curve analysis (DCA) (G, H) of the
training and testing cohort models. (I) Nomogram of Model_2 for the predictive value of CD/UC is illustrated.
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MMP7, CXCL13 and CXCL1 were greater than 0.70 in the two

cohorts, CD and UC. Therefore, these genes showed high value

as biomarkers for the discrimination of IBD patients.

Validation of the expression levels
of MMP-associated genes in
clinical samples

To verify the reliability of the above results obtained from a

public database, we collected intestinal mucosa samples from 38

patients (CD/UC =15/23) to test the expression levels of the MMP-

associated genes. As shown in Figure 9, the expression levels of

ANXA1, MMP10 and CXCL13 did not differ between CD and UC

samples. However, MMP7 and CXCL1 showed higher levels in the
Frontiers in Immunology 12
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UC patients than in the CD patients. After the scoring data were

summarized and analyzed, the results showed that the differences in

the MMP7 and CXCL1 levels between the CD and UC groups were

statistically significant. However, due to the complexity of the

etiology of IBD, we believe that IHC of a single index cannot

accurately provide a reference for disease diagnosis, especially based

on the judgment of a small clinical sample size.

Analysis of the correlation between
MMP-associated gene levels and the
levels of infiltrating immune cells

By performing CIBERSORT, we compared the infiltration

levels of most immune cell populations between CD and UC
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FIGURE 7

Verification of the effect of both Model_1 and Model_2 in a new IBD Cohort Calibration curves (A), DCA curve (B) and ROC curve (C) testing the
effect of Model_1 in GSE179285 are illustrated. CD and UC samples from colon tissue only were further examined by Model_1, and (D) ROC
curve is shown. Calibration curves (E), DCA curve (F) and ROC curve (G) testing the effect of Model_2 in GSE179285 are illustrated. CD and UC
samples from colon tissue only were further examined by Model_2, and (H) ROC curve is shown. CD/UC=37/23 is the sample size in
GSE179285, and CD/UC=14/23 is the sample size in GSE179285 including only colon tissue.
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patients in both the Combined Datasets and the GSE75214

dataset (Figures 10A, B). The results showed that several

immune cell types, including neutrophils and humoral

immune cells (naive B cells and follicular helper T cells), were
Frontiers in Immunology 13
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more abundant in UC patients, while a higher level of Treg cells

was observed in the CD group. In addition, the correlations

between the MMP-associated gene levels and the levels of

various immune cell populations were further examined by a
A B
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C

FIGURE 8

Verification of MMP-associated genes in different IBD cohorts The correlation between the levels of internal MMP-associated genes in both
Combined Datasets (A) and the GSE75214 dataset (B) using a Spearman correlation analysis. The differences in MMP-associated genes between
CD and UC were examined in both the Combined Datasets (C) and the GSE75214 dataset (D) using the limma package. ROC curves estimating
the diagnostic performance of the MMP-associated genes ANXA1, MMP10, MMP1, CXCL13 and CXCL1 in the discrimination of IBD patients in
the Combined Datasets (E) and GSE75214 (F). ** indicates P<0.01, *** indicates P<0.001.
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Spearman correlation analysis (Figures 10C, D, and

Supplementary Figure 2), and the results showed that the

levels of all MMP-associated genes were statistically

significantly positively correlated with the levels of the

differentially expressed cell types, indicating their potential

value as biomarkers during differential diagnosis.
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Investigation of MMP-associated genes
in CD and UC via single-cell sequencing

Finally, we used single-cell sequencing technology to explore

the expression of MMP-associated genes in IBD. Using

GSE125527, we analyzed a total of 14 samples, including 7 UC
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FIGURE 9

Clinicopathological examination of MMP-associated genes in tissue samples. (A) Representative images of H&E staining of samples from CD and
UC patients. The IHC staining images are representative images of the expression levels of ANXA1 (B), MMP10 (C), MMP7 (D), CXCL13 (E) and
CXCL1 (F) in CD and UC samples. (G) IHC score difference analysis of MMP-associated genes in IBD patients. Statistical differences were
analyzed by a Mann−Whitney U test.
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patients and 7 CD patients. Through harmony integration

technology, we reduced the batch differences between the

different samples to better analyze gene expression

(Figure 11A). Due to the limitation of single-cell sequencing

technology in sequencing depth, most MMP-associated genes

were not detected, except for ANXA1. The results showed that

the expression of ANXA1 in UC was higher than that in CD, and

the cells with a high expression of ANXA1 were mainly

monocytes, NK cells and gd T cells (Figure 11B).
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Discussion

UC and CD are subtypes of inflammatory bowel disease and are

autoimmune diseases influenced by multiple complex factors,

including the environment, genetic factors, and the gut

microbiota. The specific pathogenesis underlying IBD remains

unclear despite extensive research investigating the disease over

many years. The clinical treatment strategies used for UC and CD

patients are often different. For example, it is recommended that
A B

DC

FIGURE 10

Correlations between MMP-associated gene levels and the levels of infiltrating immune cells determined by CIBERSORT. Differences in the
levels of infiltrating immune cells between the CD and UC groups in the Combined Datasets (A) and the GSE75214 dataset (B). Correlations
between the MMP-associated gene levels and immune cell levels were further examined by a Spearman correlation analysis in the Combined
Datasets (C) and the GSE75214 dataset (D), and results with significant differences are shown (*p < 0.05, **p < 0.01). The results, including data
regarding other MMP-associated genes, including CXCL13, MMP3, MMP1 and CXCL1, are illustrated in Supplementary Figure 2.
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aminosalicylates should be used as a first-line approach for treating

andmaintaining remission inUC, but they play amuch smaller role

in the management of CD (6, 7, 32, 33). In contrast, methotrexate

has shown a higher rate of response in CD patients than in UC

patients (34–36). However, there remains a large number of IBD

patients who are difficult to identify in clinical practice, indicating

that it is important to improve the discrimination of the two

different subtypes, especially since the results of differential

diagnosis affect clinical management (21).

In this study, we systematically collected and integrated

published microarray data obtained from CD and UC patients.

The first challenge we faced was determining the best strategy for

integrating these data to best identify the DEGs. Importantly, the

choice of integration method has an impact on the analysis

results. If bias is introduced during the integration of the data,

the results and their interpretation are inevitably affected. An

RRA analysis was adopted to integrate the data to identify the

DEGs. RRA is based on a comparison of actual data with a null

model that assumes a random order of input lists; then, a P value

is assigned to the difference in the levels of each gene in the

aggregated list that describes how much better a gene ranked

than expected. As an algorithm that is both computationally

efficient and statistically stable, RRA has obvious advantages.

First, due to scoring based on the order of gene expression, this

method is very robust and can accommodate the variable gene

content that results from the use of different microarray

platforms. Second, even if a gene is not indicated in one

platform, it is not eliminated due to the combination of

multiple datasets to prevent losing information regarding

important genes. This conjecture can also be confirmed from

the analysis results. For example, in the GSE75214 dataset, we

identified many differentially expressed genes, while relatively

few DEGs were identified in the other three datasets, proving the

heterogeneity of the data obtained from different central sources

(Figures 2A-D).
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However, RRA also has shortcomings. For example, when

the final results from different datasets are summarized by an

RRA, the results obtained from large sample sizes and small

sample sizes are given the same weight, which may lead to issues

in the representativeness of the final results. Therefore, after

conducting the RRA, we used another method of data

consolidation. Datasets from the same gene platform were

merged with the removal of batch variance. Then, the DEGs

were identified in the Combined Datasets and the GSE75214

dataset, and the final DEGs were identified by considering the

intersection of the DEGs between the two IBD cohorts. The gene

enrichment analysis showed that the pathways enriched by the

DEGs identified by the two integration methods were similar,

indicating the robustness of the DEG screening results. Another

noteworthy finding was that the IL-17 signaling pathway was the

most significant pathway enriched in UC. This result was similar

to the results of a recently published single-cell sequencing study

that reported that IL17A+ T cells are mainly enriched in

UC (37).

The DEGs identified by the two different filtering strategies

were further used to generate PPI networks, and pivotal gene

modules were identified through MCODE. Interestingly, the

results from both sets of DEGs indicated that the MMP-

associated module was the most important gene set differing

between CD and UC patients, providing credible evidence that

the MMP-associated module serves as the main functional group

associated with the difference between CD and UC.

In future studies, we plan to establish a differential diagnosis

model based on the MMP-associated module to assist in the

diagnosis of the CD and UC subtypes in IBD patients. To the best

of our knowledge, this study offers the first publicly reported

mRNAmodel for the differential diagnosis of IBD, although some

studies have reported the role of miRNAs in the differential

diagnosis of IBD (20). In this study, combined datasets were

used as the training group, and the GSE75214 dataset was used as
A B

FIGURE 11

Exploring the Expression of MMP-Associated Genes by Single-cell Sequencing (A) Intestinal mucosa samples from 14 IBD patients (7 UC and 7 CD)
were integrated through the Harmony method and are displayed in a UMAP reduction diagram. (B) ANXA1 expression in different cell clusters.
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the testing group to generate Model_1 via a LASSO logistic

regression. From the results of the model evaluation, Model_1

showed good discrimination in both the training group and the

testing group. Further studies using a calibration analysis and

DCA showed that Model_ 1 exhibited good performance in the

training group but failed in the testing group. We believe the

reason is that the data obtained from the training set and

the testing set were collected from different microarray

platforms, resulting in large batch differences between the two

IBD cohorts. Although Model_ 1 based on the training set could

better distinguish the data obtained from other platforms, it was

difficult to meet higher accuracy requirements. This challenge is

an inherent defect of diagnostic models obtained based on

microarray technology, which also limits the application of such

diagnostic models; thus, a diagnostic model can only be applied to

clinical data collected from the same microarray platform in real

clinical diagnosis.

Based on the above, another model named Model_ 2 was

generated. In the new model, we omitted the specific expression

values of the genes and converted them into binary variables;

thus, we did not need to consider the problem of batch

differences. Subsequently, we used the Combined Datasets as

the training group and the GSE75214 dataset as the testing group

to generate a LASSO logistic regression model. Interestingly,

although the continuous variables in the matrix were

transformed into binary variables, the genes identified using

Model_2 were generally the same as those identified using

Model_1 (ANXA1, MMP10, MMP1 and CXCL13 in Model_1

vs. ANXA1, MMP1 CXCL13 and CXCL1 in Model_2). In the

subsequent model evaluation, we found that Model_2 showed

good discrimination in both the training set and the testing set.

More importantly, Model_2 also performed well in both the

training group and testing group based on the results of the

calibration analysis and DCA. Notably, because Model_2 only

included 4 genes and the levels of each gene were represented by

a binary variable, the actual values obtained using Model_2

included only 16 different values at most, further indicating the

reliability of the analysis based on the included genes. Most

importantly, the newly included cohort GSE179285 contains CD

samples from colon tissue. In the newly added validation results,

we performed a model validation using IBD cases containing

colonic/ileal CD and IBD cohorts containing colonic CD only,

and the validation results were consistent with our expected

results. In the subsequent experiment, we explored the

diagnostic value of the MMP-associated genes. The results

showed that the use of a single-gene diagnostic strategy

performed better, and these results were further confirmed in

clinical samples.

Matrix metalloproteinases (MMPs) constitute a group of

zinc-dependent neutral peptidases that can degrade all

components of the extracellular matrix (ECM) and are

associated with extensive mucosal degradation and tissue

remodeling, which ultimately favor the development of ulcers,
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fistulae and strictures (38). According to their primary substrate,

MMPs can be divided into various subclasses. The genes

identified in this research included stromelysins (MMP-3,

MMP-7, and MMP-10) and collagenases (MMP-1). To date,

sufficient evidence suggests that IBD-related mucosal

inflammation is associated with an enhanced induction of

several MMPs. For example, a series of pioneering studies

documented the abundant expression of MMP-1 (39–42) and

MMP-3 (39, 43–46) RNA in gastrointestinal tissue surrounding

ulcers, including those present in the gut of IBD patients.

Subsequent research has further proven that MMP-7 (47–51)

and MMP-10 (47, 48, 52–54) RNA expression levels are

increased in the inflamed tissue of UC patients. Considering

that adequate functional studies support the involvement of

MMPs in IBD-related mucosal degradation, several inhibitors of

MMPs have been developed and used to attenuate gut

inflammation in animal models of IBD (55–57), and 3 clinical

trials investigating MMP inhibitors have been performed in the

context of IBD treatment (58–61). However, our research

indicates that the MMP-associated module was also the main

differential gene set between CD and UC. CIBERSORT showed

that MMP-associated genes were closely associated with unique

immune characteristics in UC, including higher levels of

neutrophils and humoral immune cells (naive B cells and

follicular helper T cells) and lower levels of Treg cells than in

CD patients.

Regarding the other genes included in the models, chemokine

C-X-C motif ligand-1 (CXCL1) is widely known as a strong

neutrophil chemoattractant that participates in inflammation in

multiple tissues. MMP3-CXCL1 (62) and MMP7-CXCL1 (63)

often function as partners in neutrophil activation or as

biomarkers of the dysplasia-carcinoma transition in sporadic

colorectal cancer. The chemokine CXC ligand 13 (CXCL13),

also named B-cell-attracting chemokine-1 (BAC-1) or B-

lymphocyte-chemoattractant (BLC), is a CXC subtype member

of the chemokine superfamily that serves as an inflammatory

mediator linked to B lymphocyte activity and lymphoid-

neogenesis (64). Recently, UC was characterized as exhibiting a

plasmablast-skewed humoral response associated with disease

activity, and a subset of intestinal CXCL13-expressing TFH-like

T peripheral helper cells was identified to be associated with the

pathogenic B-cell response (65). Another molecule that deserves

attention is annexin A1 (ANXA1) because it played an important

role in both models. According to early studies of UC, one of the

characteristics of an active episode of US is the intense mucosal

infiltration of leukocytes, and the proresolution mediator ANXA1

exerts counterregulatory effects on leukocyte recruitment and

exhibits elevated levels in sera isolated from active IBD patients

(66). Further studies reported that ANXA1 was packaged in

extracellular vesicles (EVs) derived from IECs (67), indicating

that an analysis of the increasing levels of ANXA1 in IEC-derived

EVs may become a specific diagnostic approach for IBD clinical

diagnosis (68–71). By conducting a single-cell sequencing analysis,
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we searched for ANXA1 expression traces more precisely. The

results showed that ANXA1 is mainly expressed in monocytes,

including macrophages and dendritic cells. More studies are

needed to explore the biological functions of ANXA1 in IBD.

The advantages of this study include the following: 1) to the

best of our knowledge, this study is the most recently published

study using CD and UC microarray data with the largest

sample size and the first to offer an mRNA-based model for

differential diagnosis; 2) this study strictly followed the

guidelines of the TRIPOD and performed a comprehensive

evaluation of the generated model; and 3) the generated

Model_2 overcame the problem of batch differences and had

good clinical applicability. However, this study also had some

shortcomings. The data used during the model establishment

were obtained from a public database, and the results need to

be verified using a larger amount of clinical data. Although we

collected a certain number of clinical samples for IHC testing

in our article, the number was small. In particular, due to the

lack of examination of difficult cases, it is not possible to assess

whether the model can be used as an aid in the diagnosis of

difficult IBD cases.
Conclusion

Although both CD and UC are types of IBD and exhibit

similar clinical symptoms, there are many differences in the

immune landscape. This finding can explain to some extent why

CD and UC patients exhibit different responses after receiving

the same treatment. In recent years, single-cell sequencing has

been used to describe the immune landscape of CD and UC

patients, which has enabled a more accurate identification of

immune cell differences (37). However, due to the heterogeneity

and complexity of IBD, data analyses based on larger sample

sizes and multicenter data through high-throughput microarray

remains important.

Our study revealed that the MMP-associated module is an

important differential functional set in CD and UC, and based

on this, we established two models to assist in the differential

diagnosis of CD and UC in the clinic. The comprehensive model

evaluation demonstrated that the model based on the MMP-

associated module had good application value. Subsequent in-

depth research investigating how MMPs are involved in the

development of different subtypes of IBD is necessary.
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CD95L (also known as FasL or CD178) is a member of the tumor necrosis family

(TNF) superfamily. Although this transmembrane ligand has been mainly

considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells,

more recent studies pointed out its role in the implementation of non-

apoptotic signals. Accordingly, this ligand has been associated with the

aggravation of inflammation in different auto-immune disorders and in the

metastatic occurrence in different cancers. Although it remains to decipher all

key factors involved in the ambivalent role of this ligand, accumulating clues

suggest that while the membrane bound CD95L triggers apoptosis, its soluble

counterpart generated by metalloprotease-driven cleavage is responsible for

its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and

ADAMs) involved in the CD95L shedding, the cleavage sites and the different

stoichiometries and functions of the soluble CD95L remain to be elucidated. To

better understand how soluble CD95L triggers signaling pathways from

apoptosis to inflammation or cell migration, we propose herein to

summarize the different metalloproteases that have been described to be

able to shed CD95L, their cleavage sites and the biological functions

associated with the released ligands. Based on these new findings, the

development of CD95/CD95L-targeting therapeutics is also discussed.

KEYWORDS

ADAM, CD95L, cancer, cleavage, inflammation, MMP
Introduction

Different environmental factors (infection, pollution, UV …) involved in chronic

inflammatory disorders and cancers affect the expression level and/or the interaction of

different receptors and ligands, which in turn alter intracellular signaling pathways,

subsequently leading to pathophysiological phenotypic changes. Death receptors (DR)

are transmembrane receptors that can implement cell death signals via apoptosis,
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necroptosis, pyroptosis or ferroptosis. Ligands of the tumor

necrosis factor (TNF) family and their receptors (TNF-R) are

cytokines contributing to the induction of a caspase-dependent

apoptotic death. Interestingly, these so-called “death receptors”

can also trigger non-apoptotic signaling pathways involved in

cell migration, differentiation, survival, and proliferation (1–5).

Six human death receptors (DRs) have been identified, TNF-

R1 (6, 7), CD95 (Fas/APO-1/TNFRSF6) (8, 9), TRAIL-R1 (DR4)

(10), TRAIL-R2 (DR5) (11, 12), DR3 (TRAMP) (13–16), and

DR6 (also known as TNFRSF21 (17)). These death receptors are

activated by TNF (18), CD95L (also known as FasL or CD178)

(19), TRAIL (20), and TL1A, respectively (21), with the ligand

for DR6 remaining to be confirmed even if amyloid precursor

protein represents a solid option (22, 23). Apoptosis is finely

regulated by these DRs, and mutations or expression

deregulation of these receptors lead to various diseases (auto-

immune, neurodegenerative, heart diseases or cancer) and

development of chemoresistance (24).
CD95 and CD95L

CD95 is a ubiquitously expressed transmembrane receptor,

which belongs to the TNF-R family (8). Its natural ligand, CD95L

is a transmembrane protein involved in the induction of a

caspase-dependent apoptotic signal (8, 25, 26). The CD95/

CD95L pair contributes to immune homeostasis and

surveillance, and different mutations mainly localized within the

CD95 death domain (DD), an intracellular region involved in the

recruitment of the adaptor protein Fas-Associated protein with

Death Domain (FADD), have been associated with breakdown of

self-tolerance in autoimmune lymphoproliferative syndrome

(ALPS) patients (27, 28) and LprCg mice (29, 30). CD95

mutations have also been detected in lymphoma pushing the

authors to classify CD95 as a tumor suppressor gene (31, 32).

Although DD-localized CD95 mutations foster tumor progression

by rendering tumor cells resistant to the apoptotic response (33),

new and accumulating evidence support that this receptor exerts

more complex biological functions, and might promote

oncogenesis and inflammation/auto-immunity independently of

its ability to trigger cell death (3, 34–36).

For CD95L, rare mutations have been reported in human

and are associated with lupus (37) or ALPS type Ib (38, 39)

pathologies. The gld (for generalized lymphoproliferative disease)

mice also display a lupus-like phenotype and harbor a mutation

in CD95L with the replacement of its phenylalanine 273 by a

leucine (F273L). This mutation reduces the efficiency of CD95/

CD95L interaction (40).

Interestingly, CD95L might also interact with another TNFR

member, DR5 (41). The authors show that, although the CD95L

affinity for DR5 was weaker than that for CD95 ((KD was 1.23x10-12

M for DR5–CD95L versus 6.01x10-13 M for DR5–TRAIL), CD95L

can compete TRAIL for DR5 binding, suggesting that both ligands
Frontiers in Immunology 02
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share a similar interaction region in DR5 (41). More importantly,

the CD95L/DR5 interaction has been suggested to promote arthritis

severity in a mouse model (i.e., autoantibody-induced arthritis).

Surprisingly, the KD of CD95L for DR5 assessed in this study is far

higher than that currently measured for CD95 (KD comprised

between and 7x10-8 and 2x10-9M (42–45), suggesting that CD95L

would possess a stronger affinity for DR5 than for its own receptor.

This conclusion remains to be strengthened with structural

methods to definitively validate the CD95L/DR5 interaction.

At least, two main forms of CD95L exist. The transmembrane

CD95L (m-CD95L) triggers cell death when it interacts with CD95-

expressing cells, while metalloproteases can release soluble CD95L

(s-CD95L) (46–48). Expressed by activated B and T-cells, m-CD95L

contributes to the immune contraction (49) and its expression by

myeloid cells participates in tissue inflammation by recruiting

macrophage in damaged spinal cord (50). In this latter study, the

role of m-CD95L and/or s-CD95L in the inflammatory process

remains to be addressed. Contradicting studies exist on s-CD95L;

while soluble CD95L can trigger apoptosis and promote lung

damage in acute lung injury (ALI) (51, 52), it fails to induce cell

death but rather stimulates inflammation in chronic autoimmune

disorders such as systemic lupus erythematosus (SLE) (34, 48) and

metastasis occurrence in cancers (53–57). Such a discrepancy might

be ascribed to the stoichiometry of s-CD95L (43, 58), which seems

to rely on the presence or absence of juxtamembrane N-terminal

end (51, 59). In this respect, metalloproteases involved in the m-

CD95L shedding as well as their preferential cleavage sites within

the stalk region will directly impact the N-terminal length of s-

CD95L (Figures 1A–C) end and thereby, its biological function as

discussed below. It has been reported that m-CD95L can be shed

close to its transmembrane domain releasing a s-CD95L

encompassing a stalk region both in mouse (43, 60) and human

(43, 61). This stalk region promotes the aggregation and the

cytotoxic activity of s-CD95L. These observations point out that

the presence or absence of certain metalloproteases involved in the

CD95L shedding, might be responsible for the release of different

ligands that either trigger cell death or aggravate inflammation

or oncogenesis.
Cloning

CD95L/FasL, cloned in 1993 (19), is a type II transmembrane

protein that belongs to the tumor necrosis factor (TNF) family.

Northern hybridization revealed that the ligand is mainly

expressed in activated splenocytes and thymocytes, consistent

with its involvement in T cell-mediated cytotoxicity and

immune homeostasis. This ligand is also detected in several

nonlymphoid tissues, such as testis (19). In 1989, a monoclonal

antibody (mAb) APO-1 isolated by Peter Krammer’s group killed

many tumor cells (25). This antibody recognizes CD95, a

transmembrane receptor cloned in 1991 by the Nagata’s team

(8, 9).
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CD95L and CD95 structures

As aforementioned, CD95L is a type II transmembrane

protein that encompasses a long cytoplasmic intracellular

domain, a transmembrane (TM) domain, a stalk region and a

TNF homology domain (THD) (Figure 1A). The THD adopts a

‘ je l ly-rol l ’ topology that participates in the l igand

homotrimerization and its interaction with CD95 (62). CD95L

can be cleaved within its stalk region (amino acid residues 103 to

143) by different proteases (Figure 1B). Of note, only 3 cleavage

sites over 5 are conserved between human and mouse

(Figure 1C) suggesting that either different proteases or

different sites are involved between these two species or that

the main cleavage sites correspond to the three conserved

sequences. The intracellular N-terminal region of CD95L is

long and contains different domains including a casein kinase

I (CKI) substrate motif (SSASS in human) and a proline-rich

domain (PRD) (63)(Figure 1A). CD95L PRD interacts with

proteins containing SH3 and/or WW domains (i.e., SH3

domain of Src kinase p59Fyn) and these interactions seem to

regulate the expression level and stability of CD95L (64, 65). In

addition, PRD contributes to the CD95L-mediated reverse

signaling (66, 67). Like TNF (68), the CKI domain of CD95L

might also participate in the reverse signaling. In addition, the

intracellular region of CD95L can be cleaved by signal peptide

peptidase-like 2a (SPPL2a) releasing an intracellular peptide,

trafficking to the nucleus to inhibit transcription (69). The

biological role of SPPL2a cleavage and its cleavage site remain

to be elucidated.

CD95 contains three extracellular cysteine-rich domains

(CRDs) (70). While CRD1 is responsible for pre-association of
Frontiers in Immunology 03
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the receptor at the plasma membrane and has been named the

pre-ligand binding assembly domain (PLAD) (71–73), both

CRD2 and CRD3 regions contribute to ligand binding (74).

Although CD95 does not possess any enzymatic activity, its

cytosolic region encompasses a death domain (DD) (75)

involved in the apoptotic signal, and a juxtamembrane domain

interacting with ezrin (76) and phospholipase Cg1 (48, 77, 78) to
promote neurite growth or cell migration, respectively. Through

protein-protein interactions (PPIs), the 80-amino acid

containing DD recruits the Fas-Associated protein with Death

Domain (FADD), which in turn binds and aggregates the pro-

caspase-8 (79). This complex, designated death inducing

signaling complex (DISC), initiates apoptosis (79). The

juxtamembrane region interacts with different partners to

trigger the motility-inducing signaling complex (MISC)

formation implementing a Ca2+ response, and the subsequent

induction of non-apoptotic signaling pathways (2, 76, 80, 81).
Extracellular matrix
and metalloproteases

Extracellular matrix (ECM) is composed of a large number

of structural and functional components that includes enzymes,

collagens and proteoglycans, which are secreted and self-

assembled into the immediate cellular environment (82).

Other non-proteoglycan matrix components include

hyaluronic acid, fibronectin, elastin, and laminin. This ECM

provides structural support to cells and an integral signaling

network through the action of different cytokines and growth

factors interacting with the matrix components (83–86).
B

C

A

FIGURE 1

CD95L structures and cleavages sites. (A) Representation of CD95L domains. Proline rich domain: PRD; Casein kinase I substrate motif: CSI; TNF
homology domain: THD. (B) Representation of the different cleavage sites described within the CD95L stalk region. (C) Alignment of human and
mouse CD95L protein sequence using Clustal omega (1.2.4). The transmembrane and the stalk domains are represented.
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Forinstance, binding of the s-CD95L to ECM, and more

specifically to fibronectin, transforms the non-apoptotic ligand

into a potent death inducer (87) suggesting that immobilization

and/or aggregation of the s-CD95L homotrimer can foster the

induction of the apoptotic response. In agreement with this

observation, although a soluble and homotrimeric CD95L fails

to trigger apoptosis, its hexameric counterpart (58) can do it. We

also observed that the more CD95L is aggregated, the more its

ability to induce apoptosis is increased (88).

Most of the ECM protein components are processed by

matrix metalloproteinases (MMPs). In human, this family of

zinc-dependent endopeptidases englobes 23 members sharing

structural domains (89, 90). These proteases are mainly secreted

within the pericellular and extracellular space (61) but can also be

anchored to the cell surface (91) or adopt an intracellular

localization, that has been correlated in certain cases to non-

proteolytic functions (90, 92). Except during specific stages of

development involving tissue remodeling (e.g., embryogenesis)

and wound healing processes, there is no constitutive expression

of MMPs at homeostasis. Once secreted, these enzymes coexist

within the extracellular space under latent forms (zymogens) and

active forms, whose proteolytic activity is finely tuned

by endogenous inhibitors such as tissue inhibitors of

metalloproteases (TIMPs) or alpha-macroglobulin.

Recent N-terminomics and proteomics techniques have

been used to profile hundreds of cleavage sites in proteomes

associated with MMP activity, which reveal that more than two-
Frontiers in Immunology 04
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third of MMP substrates are non-ECM proteins. Accordingly,

far beyond their capacity to collectively cleave the ECM

substrates, MMPs can process chemokines, cytokines, cell-

surface receptors, growth factors, and nuclear proteins. Thus,

MMPs are involved in inflammatory response, angiogenesis,

cell-to-cell communication and cell proliferation, and the

deregulation of their activity contributes to the progression of

many diseases including cancer, chronic inflammatory

disorders, vascular and central nervous system diseases (90).

MMPs are classified according to their linear sequence

similarity, domain organization and substrate specificity (90).

All the MMPs share a minimal N-terminal region, consisting in

a signal peptide, a pro-domain and a metalloprotease/catalytic

domain (90) (Figure 2A). Except for MMP-7, -26 and -23, all

MMPs encompass a hemopexin-like C-terminal region, which is

important in determining substrate specificity and interaction

with tissue inhibitors of metalloproteinases (TIMPs). This C-

terminal domain plays also an important role in cell migratory

function of certain MMPs. Gelatinase-A (MMP-2) and

gelatinase-B (MMP-9) contain fibronectin type-II inserts

within their catalytic domain. These inserts confer the ability

to bind and cleave gelatin and collagen.

Membrane-type MMPs (MT-MMPs) are embedded in the

plasma membrane of the cells via a transmembrane domain or a

glycosylphosphatidylinositol (GPI)-anchor (Figure 2A). This family

includes the transmembrane proteins MMP-14, MMP-15, MMP-

16, andMMP-24, and the GPI-anchored proteins MMP-17 and -25
B

C

A

FIGURE 2

Domains in human MMPs and ADAMs. (A) Schematic representation of the domains in human MMPs consisting in a signal peptide, a prodomain,
a metalloprotease/catalytic domain, a linker domain, a hemopexin domain, fibronectin inserts, a convertase cleavage site, a membrane linker, a
glycosylphosphatidylinositol, a transmembrane segment 1, a cytoplasmic tail, a transmembrane segment 2, a cysteine array and
immunoglobulin-like domain. (B) Schematic representation of ADAMs organized in modules consisting in a prodomain, a metalloprotease/
catalytic domain, a disintegrin domain, a cysteine rich domain, an EGF-like domain, a transmembrane region and a cytoplasmic tail. (C) Crystal
structure of a typical Metalloprotease/catalytic domain in cartoon representation (hMMP-12, PDB code: 4GQL), with catalytic zinc ion as
magenta ball, His residues chelating the catalytic zinc ion in yellow stick, catalytic glutamic acid residue in blue stick, and structural zinc and
calcium ion as grey and green balls, respectively.
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(93). Some MMPs harbor a furin-like convertase cleavage site

(Figure 2A), which is intracellularly cleaved to activate the

protease and promote its distribution at the cell surface. MMP-23

is a unique MMP that contains a cysteine array and

immunoglobulin-like domain, whose exact role remains elusive.

Within the extracellular space, a disintegrins and

metalloproteinases (ADAMs) family can also exert a proteolytic

activity (94–96). The main substrates for ADAMs are type I and II

transmembrane proteins, which make them as shedding

proteases. However, these proteases are also capable of

processing cytokines and growth factors (95). Interestingly, in

the case of transmembrane proteins, the cleavage consistently

occurs between 10 and 15 amino acids from the plasma

membrane. Like MMPs, ADAMs possess several domains,

including a pro-domain, a metalloprotease/catalytic domain, a

disintegrin domain, a cysteine rich domain, an EGF-like domain,

a transmembrane domain and a C-terminal cytoplasmic tail

(Figure 2B). All ADAMs contain a disintegrin domain, which

can bind to integrins from adjacent cells, with potential

consequences in cell adhesion and migration. These

metalloproteases are implicated in different diseases including

cancer (95), systemic inflammation (96), cardiovascular diseases

and atherosclerosis (97, 98). A critical role in kidney pathologies

(99) and in immunity (100) has also been documented.

BothMMPs andADAMs belong to the superfamily of metzincin

proteases. These metzincins share a conserved HEXXHXXGXXH

motif within their metalloprotease/catalytic domain, where the three

histidine residues bind to the catalytic zinc ion and the glutamate, as a

general acid base, and activates a water molecule required for the

peptide bond hydrolysis (Figure 2C).
MMPs, ADAMs and
CD95L regulation

CD95L can be cleaved by several metalloproteases, including

MMPs and ADAMs, to release different soluble CD95Ls (s-

CD95Ls), which have been reported to induce cell proliferation,

migration, survival (36) but also cell death (51, 59). Rendering

more complex to predict the biological outcome of s-CD95L, this

ligand can also interact with other TNFR members, including as

aforementioned, DR5 (41) or the soluble receptor DcR3 (44).

Despite the complexity of the signaling pathways induced by the

different forms of s-CD95L and their implication in the

progression of different pathologies including chronic

inflammatory disorders and cancers only a limited structural

knowledge exists on these s-CD95Ls.
Metalloproteases and CD95L

Thirty years after CD95L cloning, it remains difficult to

address what are the MMP/ADAMs responsible for the cytokine
Frontiers in Immunology 05
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shedding, where the protease cleaves m-CD95L and whether the

released soluble factor triggers non-apoptotic (34, 41, 55, 57, 78,

80, 101) or apoptotic outcome (51, 59, 102).

Some ADAMmembers have been described to contribute to

the generation of s-CD95L. Indeed, both ADAM10 (69, 103) and

ADAM17 (104) can cleave m-CD95L to release s-CD95L.

ADAM10 can also shed the transmembrane TNFa (105). As

aforementioned, a second step occurs following ADAM10-

mediated cleavage, with the SPPL2a-mediated cleavage of the

CD95L intracellular region to release a cytosolic domain

modulating gene expression (69). MMP7 also cleaves the

transmembrane CD95L but the biological role of the released

ligand remains difficult to apprehend. While from prostate

epithelial cells, MMP7 can release a soluble and cytotoxic

CD95L, which is involved in the involution of the organ in rat

(106), the same metalloprotease in human sheds membrane-

bound CD95L from tumor cells to protect them from

doxorubicin or oxaliplatin-induced cell death in human (107,

108). S-CD95L is increased in sera of human idiopathic

pulmonary fibrosis (IPF) and bleomycin-induced lung fibrosis

in mice and this ligand prevents the elimination of fibrotic-lung

myofibroblasts by CD95L-expressing T cells (109). Accordingly,

MMP-7 knock-out mice exhibit resistance to the bleomycin-

induced lung fibrosis, probably because these animals fail to

cleave CD95L and generate the anti-apoptotic soluble ligand

(109). Of note, MMP7 also cleaves the receptor of CD95L, CD95

and by doing so, promotes its ability to implement non-

apoptotic signaling pathways in cancer cells (45, 110).

Regarding the cleavage positions within the CD95L stalk

region, in vitro analyses revealed that MMP-7 is likely to cleave

before the two leucine residues in the amino acid residues
110ELAELR115 conserved between human and mouse

sequences (Figures 2B, C) (111). This sequence is at proximity

of the plasma membrane bilayer suggesting that the released

ligand might exert an apoptotic function because it conserves a

full-length stalk region. As above mentioned, the stalk region of

CD95L seems to exert a pivotal role in the apoptotic property of

the soluble ligand (59). For instance, conservation of the stalk

region (Figures 1A, C) in the soluble CD95L dosed in acute

respiratory distress syndrome (ARDS) engenders a cytotoxic

ligand killing the alveolar epithelial cells by apoptosis (51).

Mutations of the 110ELAELR115 sequence do not completely

abrogate the release of s-CD95L, because MMP7 might process

m-CD95L at an additional position between 126SL127 (111),

which, in this case, generate a non-apoptotic cytokine

regarding the loss of the stalk region. Tschopp’s team also

highlighted a cleavage of the transmembrane CD95L between

amino acid residues 126SL127 (47), while Nagata’s team observed

a processing between 129KQ130 (46, 112). The protease(s)

involved in these shedding was/were not identified and

although the cleavage sites diverge, both groups came with the

conclusion that the metalloprotease-cleaved CD95Ls do not

trigger apoptosis.
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In rheumatoid arthritis (RA), MMP3 has also been suggested

to cleave m-CD95L and accumulate s-CD95L in the synovial

fluid of these patients (113). The role of s-CD95L in RA remains

to be elucidated.

In neuronal and glial cells, preclinical studies showed that

MMP9 contributes to the motor neuron cell death in

amyotrophic lateral sclerosis (ALS) patients by regulating

TNF-a and CD95L expression (114). Selective inhibition of

MMP-9 activity has also been shown to increase in the m-

CD95L/s-CD95L ratio on neonatal monocytes (115).

Macrophages exposed to bacteria (i.e., Escherichia coli

infection) undergo an increase in CD95L expression (115) and

the up-regulation of MMP-9 in these cells protects them from an

autocrine and/or paracrine precocious phagocytosis-induced cell

death by shedding the transmembrane CD95L.

Plasmin, a serine protease, can also cleave CD95L between

amino acid residues Arg144 and Lys145 (Figure 2B) and although

the released CD95L is devoid of its stalk region, it can still trigger

cell death in endothelial cells (102). In conclusion, not only the

identification of the amino acid sequence, but also the structure

and stoichiometry of the soluble CD95Ls present in the different

chronic inflammatory disorders and cancers must be realized to

apprehend the biological role of each CD95 ligand.
MMPs and cancer

Many studies have reported the expression of MMPs in

human cancers. However, what was originally thought about

their detrimental roles has been challenged these two last

decades. Indeed, an overexpression of certain MMPs does not

necessarily imply the promotion of tumor or metastasis. In this

respect, at least 10 MMPs have been reported to have protective

roles in cancer (116). Among the “oncogenic” MMPs, MMP-2

and MMP-9 have been implicated as the most important

prognostic factor in cancer microenvironment (117, 118).

MMP-2 is correlated with the development of different types

of cancers and associated with poor prognosis (119, 120). MMP9

contributes to the ECM remodeling and the release of

membrane-bound proteins and thereby, might favor cell

invasion and poor prognosis (121, 122). Other MMPs such as

MMP3, MMP-7, MMP-11, and MMP-13 also participate in

cancer development (123–128). With MMPs, ADAM10 is up-

regulated in gastric cancer lesions compared with adjacent non-

cancerous tissues (129). It remains to evaluate whether these

metalloproteases could affect oncogenesis by reducing the

quantity of membrane-bound CD95L or increasing the

concentration of soluble CD95L. Numerous small-molecule

MMP inhibitors (MMPi) have been developed but

systematically failed in late-stage clinical studies (91, 130).

Beside their poor pharmacokinetics and low oral availability/

inability, this major failure has been mainly attributed to their

lack of specificity within the MMP family and towards other
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metalloenzymes. Benefiting from a better understanding of

MMP biology that emphasizes the necessity to selectively

target one single MMP in a given pathological context, a new

generation of selective MMPi has emerged recently (131). To

achieve a better selectivity, several strategies have been deployed.

Regarding the small-molecule inhibitors they mainly consist in

either replacing the hydroxamic acid group found in most of

broad spectrum MMPis by a weaker Zn2+ chelating moiety (132,

133) or targeting exclusively the S1’ pocket which significantly

differ between the MMPs (131, 132). Alternatively, the

development of surrogates of MMPs endogenous inhibitors

such as TIMP analogs or targeting MMP gene expression

using mRNAs have also been explored. Despite these

improvements, finding the right balance between activity,

selectivity and ADMET parameters still remain challenging

and the timing of MMPi application is critical to achieve the

desired therapeutic effect, as the “window of opportunity” is

often in premetastatic disease (91, 130, 134).
CD95L, metalloproteases and cancer

Accumulating evidence highlight the pro-oncogenic role of

CD95 and CD95L pair. Although the elimination of CD95

expression in some colorectal tumors was reported to predict

metastatic tumor recurrence (135), most of the analyses indicate

that CD95 expression is maintained in these tumors and

contributes to activate pro-oncogenic signaling pathways

(136). On the other side, the expression of membrane CD95L

and CD95 expression is gradually increased during progression

from (early) adenoma to colorectal carcinoma (56, 137).

Overexpression of CD95 in apoptosis-resistant 3LL cells makes

them apoptosis-sensitive in vitro (138) but, transplantation of

these cells into mice, reveals a tumor growth advantage as

compared to control cells. This underscores the importance of

investigating a mechanism within an environment that

resembles the clinical situation as much as possible. The

seminal experiments establishing the oncogenic role of CD95

came from the elimination of the receptor in two mouse models

of cancers (i.e., ovarian and liver cancers), which was associated

with the significant reduction of cancer occurrence and growth

(35). More recently, we observed that the expression of CD95 is

maintained in triple negative breast cancer (TNBC) cells to

regulate the NF-kB signaling pathway (139). Accordingly,

CD95 loss in TNBC cells stimulates an inflammatory signal,

which contributes in vivo to the anti-tumor activity of natural

killer (NK) cells (140). Therefore, although soluble CD95L is an

attractive target to develop drugs and prevent metastasis

dissemination of TNBC cells (57), it might be more

appropriate to develop therapeutics targeting CD95.

Accumulating evidence support that s-CD95L promotes

tumor development and metastasis but the MMPs or ADAMs

involved in this process remain to be elucidated. The identification
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of i) the MMPs/ADAMs and ii) their cleavage sites in CD95L will

help us to identify how many s-CD95Ls exist in vivo, and

anticipate their stoichiometry to better predict their biological

effects on the immune response and the tumor progression.
Targeting CD95/CD95L in clinic,
what next?

As aforementioned, CD95 can induce a broad range of

signaling pathways, with different biological outcomes. This is

related to a fine-tuned control of CD95 aggregation,

conformation, distribution within plasma membrane sub-

domains and post-translational modifications. These parameters

rely on the quality of the CD95/CD95L interaction (141). MMPs

and ADAMs are responsible for the generation of soluble CD95L,

that might promote metastatic occurrence in cancers or stimulate

trafficking/activation of immune cells in chronic inflammatory

disorders and thus, inhibiting MMP or ADAM activity could

represent an attractive therapeutic strategy in these pathologies

(Figure 3). In addition, inhibition of the non-apoptotic signaling

pathways downstream s-CD95L/CD95 interaction might also

represent an attractive option to treat certain cancers and chronic

inflammatory disorders. Asunercept (initially called APG101) is a

decoy receptor encompassing the extracellular region of CD95 fused

to the Fc domain of human IgG1. APG101 interacts with CD95L,

both transmembrane and soluble forms (Figure 3), and abrogates all

signals induced by these ligands. Asunercept in phase I/II clinical
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trials exhibits encouraging therapeutic effect on myelodysplastic

syndromes (142) and glioblastoma (143, 144). In addition, the

therapeutic value of this drug is also under evaluation

(NCT04535674) in COVID-19 patients, in whom CD95L

inhibition might protect against the macrophage/neutrophil-

driven damage of epithelial cells (145). Although the clinical

outcomes of these trials are motivating, it remains that APG101

blocks both apoptotic and non-apoptotic signals, rendering difficult

to discriminate the role of each cellular response in the

pathogenesis. We recently developed a drug (i.e., peptidomimetic)

neutralizing in a selective fashion, the CD95 non-apoptotic pathway

(78). This drug, designated DB550, disrupts the CD95/PLCg1
interaction and the subsequent calcium signaling pathway, which

is mandatory for cell migration (77). DB550 injection in SLE-prone

mice prevents Th17 cell transmigration in inflamed kidneys and

alleviates clinical symptoms (78). These findings support that the

selective inhibition of CD95-mediated non apoptotic pathways

might turn out sufficient to treat cancers and chronic

autoimmune disorders in which s-CD95L is up-regulated (36).

Regarding m-CD95L shedding, another alternative to

selectively block the CD95-mediated non-apoptotic signal is to

prevent the generation of s-CD95L by inhibiting metalloproteases.

Beyond the fact that metalloproteases are pleotropic enzymes,

whose inhibition will engender clinical outcomes difficult to

predict, an additional concern is the accumulation of

membrane-bound CD95L that, might favor the elimination of

certain cancer or immune cells, but might also engender undesired

tissue damage (Figure 3). Finally, another therapeutic approach
FIGURE 3

CD95/CD95L-mediated signaling pathways. (Left) Binding of m-CD95L to CD95 induces an apoptotic signaling pathway. (Right) m-CD95L
processing by proteases (ADAMs, MMPs, plasmin) leads to the release of different s-CD95L in the extracellular environment. Depending on the
ratio m-CD95L/s-CD95L, and the shedding sequence, several signaling pathways can be triggered: cell survival, migration (promotes the
development of metastases), chemoattraction and pro-inflammatory signal, or cell death. Blocking of CD95L binding to CD95 by APG101
(Asunercept) blocks both apoptotic and non-apoptotic signaling pathways.
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for cancer patients could be to develop methods to extinguish the

CD95 expression itself. Indeed, we recently observed that the

elimination of CD95 in triple negative breast cancers induces a

pro-inflammatory signal and promote the anti-tumor activity of

NK cells (139, 140).
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Metalloproteinases (MPs) is a large family of proteinases with metal ions in their

active centers. According to the different domains metalloproteinases can be

divided into a variety of subtypes mainly including Matrix Metalloproteinases

(MMPs), A Disintegrin and Metalloproteases (ADAMs) and ADAMs with

Thrombospondin Motifs (ADAMTS). They have various functions such as

protein hydrolysis, cell adhesion and remodeling of extracellular matrix.

Metalloproteinases expressed in multiple types of cancers and participate in

many pathological processes involving tumor genesis and development,

invasion and metastasis by regulating signal transduction and tumor

microenvironment. In this review, based on the current research progress,

we summarized the structure of MPs, their expression and especially

immunomodulatory role and mechanisms in cancers. Additionally, a relevant

and timely update of recent advances and future directions were provided for

the diagnosis and immunotherapy targeting MPs in cancers.

KEYWORDS

metalloproteases, immunomodulatory, cancers, diagnosis, therapy
1 Introduction

Metalloproteinases (MPs) efficiently hydrolyze proteins and peptides. MPs comprise

the largest of the five groups of proteases in the human genome and can be divided into

two subgroups: endopeptidase and exopeptidase. Endopeptidases are split into three

main families; matrix metalloproteinases (MMPs), A disintegrin and metalloproteases

(ADAMs), and ADAMs with thrombospondin motifs (ADAMTS) (1, 2). It is well known
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that metalloproteinases initially produced were in inactive

zymogens form, which were activated by intracellular and

extracellular proteins such as plasmin and even active

members of their family (3). And recently, several new

mechanisms have been found increasing a few complications

of the regulation of metalloproteinases activity, including

binding to the molecules of ECM or some specific cells, such

as cancers cells and immune cells (4). For instance, the

proteolytic activity of MMP7 can be increased after it’s

catalytic site interacted with cholesterol sulfate on the surface

of colon cancer cells (5). Active metalloproteinases are

dependent on metal ions that are inhibited by tissue inhibitors

of metalloproteases (TIMPs) as well as other metal chelating

agents such as ethylene diamine tetra-acetic acid and

phenanthroline (2, 6, 7).

Studies have shown that MPs are involved in multiple

biological and pathological processes including inflammatory

and immune interactions, protein homeostasis, processing of

peptide hormones, release of cytokines and growth factors,

metabolism of antibiotics, cell migration and invasion and tissue

morphogenesis (8, 9). Recent studies have demonstrated that MPs

and their inhibitors are closely related to the diagnosis, treatment

and prognosis of cancers, especially in immunomodulation during

tumorigenesis and cancer development (10–12). In fact, MPs not

only regulate tumor immunomodulation through signal

transduction pathways, but also influence the tumor

microenvironment (TME) (13, 14). Most cancers are associated

with a TME rich in various immune-infiltrating cells and factors

produced by these cells that induce host cells to differentiate and

produce growth factors, cytokines, and chemokines that are

conducive to tumor cell survival and metastasis (15). MPs can

modulate immunoregulatory factors and other immune-related

proteins containing cytokine receptors, notch receptors,

phagocytic receptors and cell adhesion molecules, all of which

play significant roles in immune system function (11, 16).

MPs are also responsible for matrix protein degradation and

remodeling of the extracellular matrix (ECM), either directly or

through the liberation of growth factors and cell surface

receptors (14). The ECM, a non-cellular three-dimensional

macromolecular network structure secreted by cells, is

composed of collagen, proteoglycan/glycosaminoglycan,

elastin, fibronectin, laminin and other glycoproteins (17).

Proteoglycan and hyaluronic acid, which are rich in the ECM,

have been found to be elevated during inflammatory progression

in a variety of diseases, including cancers (18, 19). The ECM

becomes highly dysregulated in tumors and the loss of matrix

homeostasis is considered a hallmark of solid tumors (20).

Moreover, the ECM contains bioactive motifs that can directly

modulate immune responses in cancer (21). For a long time,

studies of tumor invasion and metastasis have focused on the

inherent adhesion and migration ability of tumor cells

themselves. MPs are known to assist tumor cells to break
Frontiers in Immunology 02
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through the tissue barrier via adhesion and protease

hydrolysis, and facilitate ECM remodeling during the

migration process, leading to invasion and metastasis (22, 23).

In this review, we provide an overview of MPs structure,

expression and regulation in various tumors, principally MMPs,

ADAMs and ADAMTS, with a focus on their emerging

immunomodulatory role in cancers. We also review

investigational MP-targeting therapies.
2 The structure, expression and role
of MPs in cancer

There are numerous members of the MP family that have

similar but not identical structure. Importantly, each MP has a

varying but equally important roles in the occurrence and

development of various cancers (Figure 1 and Table 1).
2.1 Matrix metalloproteinases

The MMP family consists of 28 members, at least 23 of

which are expressed in human tissues (83). Typically MMPs

comprise a pro-peptide of about 80 amino acids maintaining the

stability of zymogen, a catalytic metalloproteinase domain of

about 170 amino acids with zinc ion binding sites, a linker

peptide (hinge region) of variable length rich in proline, and a

hemopexin domain of about 200 amino acids in length (84, 85).

Although MMPs have a common core structure, they are

classified either as collagenases (MMP1, MMP8, MMP13),

gelatinases (MMP2, MMP9), stromelysins (MMP3, MMP10,

MMP11), matrilysins (MMP7, MMP26), membrane-type

MMPs (MT-MMPs) or other MMPs according to the

structure of their substrates and structural domains (86).

PRCGXPD is a cysteine-switch motif in the MMP pro-peptide

that is responsible for the characteristic proteolytic activity (84).

Different types of MMPs have specific structural characteristics

that are different from typical MMPs (86). For instance, MT-

MMPs lack the pro-domain, while MMP7 (matrilysin 1),

MMP26 (matrilysin 2) and MMP23 lack the Hpx domain and

the linker peptide. In addition, MMP2 and MMP9 contain three

repeats of a fibronectin. These various domains, modules, and

motifs in MMPs are involved in interactions with other

molecules, thereby influencing or determining MMP activity,

substrate specificity, cellular and tissue localization (87). MMPs

participate in both broad-spectrum turnover and some

proteolysis of extracellular proteins, which includes

ectodomain shedding at the plasma membrane in a

complementary fashion to ADAMs (24). In addition, MMPs

can degrade the ECM and participate in almost the whole

process of tumor growth and development, including tumor

invasion, metastasis and angiogenesis (38).
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Reportedly, MMPs have been detected in a variety of human

cancers, and high expression of MMPs is usually associated with

poor survival in most cancers (25) including colorectal cancer

(39), lung cancer (40), breast cancer (26), ovarian cancer (41),

and gastric cancer (70). However, upregulation of a specific

MMP does not always lead to promotion of tumor growth or

metastasis. The gelatinase protein family including MMP2

(gelatinase A) and MMP9 (gelatinase B) are able to degrade

type IV collagen in basement membranes and are the most

extensively studied metalloproteinases that are associated with

disease progression and poorer survival in patients with various

cancers (88). A meta-analysis comprising 41 studies and 6517

patients with primary breast cancer reported that MMP2 and

MMP9 overexpression conferred a higher risk of distant and

lymph node metastasis, respectively, and were both associated

with higher clinical stage and histological grade (26). Similarly,

high levels of MMP12 are strongly associated with poor survival

in patients with gastric cancer. In contrast, MMP12

overexpression is related to increased survival in patients with

colorectal cancer (70, 89).
2.2 A disintegrin and metalloproteases

Also known as Metalloprotease Disintegrin Cysteine-rich

(MDC), ADAMs are type I transmembrane proteins anchored to

cell surface membranes. Over 30 types of ADAM have been
Frontiers in Immunology 03
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discovered so far (90). Similar to MMPs, ADAMs include a pro-

domain and a zinc-binding metalloprotease domain. ADAMs

also include a disintegrin domain, which is unique among cell

surface proteins (91). The metalloproteinase domain of ADAM

is highly conserved, and most ADAMs have an EGF-like domain

adjacent to a cysteine-rich domain and a membrane-spanning

region, followed by a cytoplasmic tail that varies widely in length

and sequence between different ADAM family members (90–

92). Due to the presence of these domains, ADAMs can bind

substrates and affect changes in cell adhesion and migration, and

the proteolytic release of cell surface molecules. Their major

substrates are intact transmembrane proteins such as growth

factors, adhesion molecules, and precursor forms of

cytokines (71).

Cancer cells often express high levels of ADAMs, suggesting

a selective advantage for tumors. Interestingly, overexpression of

ADAMs is not carcinogenic (52). There are two functional

attributes of ADAM proteins, namely proteolytic activity and

cell adhesion, which supports the hypothesis that ADAMs may

have a crucial role in cell migration as well as extracellular

remodeling (93) ADAM17 is the most widely studied of all the

ADAM proteins. One study evaluating ADAM17 as a potential

blood biomarker for ovarian cancer showed that ADAM17 levels

are significantly higher in culture medium supernatants of

cultured ovarian cancer cell lines and also in the serum and

ascites of patients with ovarian cancer, compared with controls

(94). Toshie et al. reported that ADAM10 could be a potential
FIGURE 1

The typical domain structure of human metalloproteinases (MMP, ADAM, ADAMTS). An archetypal MMP orderly contains a propeptide, a
catalytic metalloproteinase domain, a linker peptide (hinge region) and a hemopexin domain. ADAM is a class of transmembrane protein with
characterized structure including a propeptide, a metalloproteinase domain, a disintegrin domain, a cysteine-rich domain, an EGF-like domain, a
membrane-spanning region and a cytoplasmic tail. The basic domain organization of ADAMTS comprises a propeptide, a metalloproteinase and
disintegrin-like domain, a thrombospondin type 1 repeat (TSR), a cysteine-rich domain and a spacer region, while lacked a transmembrane
region, cytoplasmic domain and EGF-like domain.
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lung cancer biomarker through investigating enzyme-specific

proteolytic activities, rather than ADAM17 (95). Proteomics

technologies can be used to identify ADAM proteins that are

shed by tumor cells (52).
2.3 ADAMs with thrombospondin motifs

As close relatives of ADAMs, ADAMTS also belong to the

Adamalysins family of proteins (79, 80). Unlike ADAMs,

ADAMTS are secreted metalloproteinases characterized by an

ancillary domain containing a thrombospondin type 1 repeat

(TSR) and a spacer region, and the absence of a transmembrane
Frontiers in Immunology 04
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region, cytoplasmic domain and (EGF)-like (81). The human

ADAMTS family includes 19 proteins that can be sub-grouped

on the basis of their known substrates, namely aggrecanases or

proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), procollagen

N-propeptidases (ADAMTS2, 3 and 14), cartilage oligomeric

matrix protein (also known as thrombospondin-5), cleaving

proteinases (ADAMTS7 and 12), von Willebrand factor

(VWF), cleaving proteinase (ADAMTS13) and a group of

orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19) (81, 82).

ADAMTS proteases are involved in the maturation of

procollagen and von Willebrand factor, as well as in ECM

proteolysis relating to morphogenesis, angiogenesis and cancer

(82, 96, 97).
TABLE 1 The prognostic role and functions of several representative metalloproteinases involved in pan-cancers.

Type of MP Representatives Cancers Prognostic
role

Functions References

Matrix Metalloproteinase
(MMPs)

MMP2 Most types of cancer Decreasing OS Degrading collagen and
extracellular matrix;
Involving TGF-b signaling
pathway;
Increasing cytokine
production;
Enhancing cancer cell
invasiveness;
Promoting angiogenesis;

(24–37)

MMP9 Most types of cancer Decreasing OS Degrading collagen and
extracellular matrix;
Involving TGF-b signaling
pathway;
Facilitating the migration of
immune cell;
Hydrolyzing cytokines;
Promoting cancer migration,
invasiveness and metastasis;
Promoting angiogenesis;

(24–29, 31–35,
38–50)

MMP14 Ovarian cancer, Breast cancer, etc. Decreasing OS Degrading extracellular
matrix;
Cleaving and activating
cytokines;
Activating metalloproteinase;
Promoting angiogenesis;

(27–29, 31–35,
39, 51)

A Disintegrin and
Metalloprotease
(ADAMs)

ADAM10 Lung cancer, glioma, head and neck
squamous cell carcinoma(HNSCC),
etc.

Most in
decreasing OS
(controversy
in HNSCC)

Involving Notch signaling
pathway;
Involving formation of
cancer-associated fibroblasts;
Regulating immune cells;
Inhibiting antitumor
immunity;

(13, 52–69)

ADAM17 Most types of cancer Decreasing OS Involving TNF and Notch
signaling pathway;
Regulating immune cells;
Regulating cytokines;
Inhibiting antitumor
immunity;

(12, 13, 53, 54,
58–63, 67, 68, 70–

78)

ADAMs with
Thrombospondin Motifs
(ADAMTS)

None Many cancers Uncertainty Dual function (Promoting
and inhibiting cancer
progression)

(79–82)
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Although major ADAMTS members were identified as

suppressors or oncogenes in cancers, studies have shown that

different ADAMTS exhibit diverse biological functions and that

individual ADAMTS can play distinct roles in different cancers

or depending on the clinical setting (98). For example, high

expression of ADAMTS8 was associated with better survival in

patients with lung cancer by inhibiting cell proliferation and

promoting apoptosis.ADAMTS8 overexpression was also

associated with decreased levels of vascular endothelial growth

factor A (VEGFA), which is a major regulator of angiogenesis

and contributes to tumor growth and metastasis (99). A study

using topological data analysis identified 38 elusive cancer-

related genes, including an inactivating mutation in

ADAMTS12 in lung adenocarcinoma. Mice with ADAMTS12

deletion mutations have a five-fold increased susceptibility to

lung cancer, confirming the role of ADAMTS12 as a tumor

suppressor gene (100). In general, the involvement of ADAMTS

in the TME is less well studied compared with MMPs and
Frontiers in Immunology 05
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ADAMs, and studies systematically characterizing their

functions in cancers are urgently needed.

3 The relationship between
metalloproteases and
immunomodulation in cancers

3.1 Signal pathway involving MPs related
to immunity in cancer cells

Signal transduction pathways are comprised of multiple

molecules recognizing and interacting with each other and

transmitting signals to regulate many important biological

processes such as tumor cell proliferation, metastasis and

immune regulation. Three signaling pathways in particular are

closely related to MPs in immunomodulation and are described

below (Figure 2).
FIGURE 2

Signal pathway involving metalloproteinases related to immunity in cancer cells. Tumor Necrosis Factor (TNF) signal pathway: The
transmembrane TNF-a (tmTNF-a) cleaved by proteolytic enzyme ADAM17 produced soluble TNF-a (sTNF-a), which binds to TNFR1 and then
recruits TNFR-associated death domain (TRADD), TNFR-associated factor (TRF)-1 and TRF-2 generating two different results: mediating caspase
activation to apoptosis or leading to activation of the NF-kB and AP-1 for tumor cell proliferation. When tmTNF-a binds to TNFR2 as ligands to
inhibite NF-kB mediated activation of anti-apoptotic genes, then apoptosis and tumor suppression will be triggered; as a receptor tmTNF-a
transect the reverse signal to promote tumor proliferation by constitutively activating NF-kB. The activity of ADAM17 can be stimulate by
pseudoprotease enzyme iRhom2. Transforming growth factor b (TGF-b) signal pathway: MMP9 and MMP2 cleave the inactive latent TGF-b
propeptide (LAP) and produce different activated TGF-b proteolytic cleavage products. In the canonical pathway, active TGF-b triggers TGFbRII
to phosphorylate TGFbRI, which in turn recognizes and phosphorylate SMAD2 and SMAD3 proteins to interact with SMAD4 to form a complex
that can enter the nucleus and regulate the transcription of target genes. For example, down-regulating the expression of proto-oncogene Myc
to inhibit cell proliferation, inducing the Snail1 and ZEB1 to promote epithelial mesenchymal transition (EMT) in tumors. The co-aggregation of
CD44 and MMP9 can promoted the protein activity of MMP9. Notch signaling pathway: ADAM10 and ADAM17 have been indicated in many
studies that they can act on cleaving S2, and subsequent cleavage S3 mediated by g-secretase occurs in the transmembrane region, leading to
the release of Notch intracellular domain (NICD), which translocate into the nucleus and combines Mastermind-like (MAML) and DNA-binding
protein Recombination Signal-binding Protein for Immunoglobulin kappa J region (RBPJ) to recruits additional coactivators (CoA) triggering the
transcription of target genes, such as Myc, P21, HES1 and so on.
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3.1.1 Tumor necrosis factor signaling
Tumor necrosis factor-a (TNF-a) is an important

proinflammatory cytokine that is involved in the maintenance

and homeostasis of the immune system, as well as inflammation

and host defense (72). Substantial experimental and clinical data

have been shown that TNF-a is involved in the promotion and

progression of cancer (72, 101–104). TNF-a is found in both a

soluble and transmembrane form. Soluble TNF-a is cleaved

from transmembrane TNF-a (tmTNF-a) by proteolytic enzyme

ADAM17, also known as TNF-a-converting enzyme (TACE),

which can orchestrate immune and inflammatory responses via

activation of TNF-a (73, 90). Both tmTNF-a and soluble TNF-a
initiate signaling cascades by binding to TNF-a receptors. There

are two types of TNF-receptors: TNF receptor 1 (TNFR1), which

is activated by soluble ligands, and TNF receptor 2 (TNFR2) that

binds primarily to tmTNF-a. The shedding of tmTNF-a and

TNFR both require pseudoprotease enzyme iRhom2, which is an

important cofactor of ADAM17 and can stimulate the activity of

ADAM17 on the cell surface to control the specificity of

ADAM17 protein breakdown (105).

Soluble TNF-a and tmTNF-a all possess dual abilities to

promote tumor growth and survival, while tmTNF-a has much

broader anti-proliferative capabilities (106). The binding of

soluble TNF-a to TNFR1 generates two different out comes.

First, TNFR1 recruits TNFR-associated death domain

(TRADD), TNFR-associated factor (TRF)-1 and TRF-2. If the

complex activates nuclear factor kB (NF-kB), tumor cell

proliferation is observed. Otherwise, the complex enters the

cytoplasm and the recruitment of FAS-associated via death

domain (FADD) mediates caspase8 activation leading to

apoptosis, which was found to contribute to ADAM17-mediated

shedding of TNFR1 (74, 107). It should also be noted that the

activity of ADAM17 plays a crucial role in TNFR1-dependent

tumor cell–induced endothelial cell death. This is because

ADAM17-mediated ectodomain shedding and subsequent g-
secretase-mediated regulated intramembrane proteolysis (RIP)

of TNFR1 is a prerequisite for TNF-induced cell death (108).

TmTNF-a can be transduced bidirectionally as a ligand or

membrane receptor. Apoptosis and tumor suppression are

triggered when TmTNF-a binds to TNFR2, leading to the

inhibition of NF-kB-mediated activation of anti-apoptotic genes,

which is regulated in part by the actin cytoskeleton. However, if

tmTNF-a is expressed on the cell surface, it will act as a receptor

and transect the reverse signal to promote tumor proliferation by

constitutively activating NF-kB (106). Although the exact

mechanism has not been elucidated, TNF-signaling in cancer

cells has an overall pro-tumor effect, promoting survival,

proliferation, and evasion of immune surveillance (109, 110).

Therefore, in view of the action of ADAM17 on the receptors

and ligands of TNF-signaling pathway, ADAM17 is deemed to

affect TNF-a signaling in a variety of ways. For example, a

decrease in the production of soluble TNF-a would lead to
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accumulation of tmTNF-a, which would bind to TNFR2 and

lead to a different biological outcome (111).

3.1.2 Transforming growth factor–b signaling
As a key regulator of tumor behavior, transforming growth

factor- b (TGF-b) plays an important role in tumor invasion and

metastasis, immune regulation and therapeutic resistance (42).

TGF-b is also the core of immune suppression in the TME,

which has bidirectional effects on the immune system depending

on the specific situation (43). In general, TGF‐b inhibits cell

proliferation during the early stages of cancer development.

Inactivation of the TGF‐b pathway or decoupling from tumor

suppressor effects can promote tumor progression, which affects

ECM and cell adhesion molecules, promotes metastasis and

angiogenesis, and induces immune suppression. Through a

classic membrane-to-nucleus signaling process, the TGF-b
pathway involves direct receptor-mediated activation of small

mother against decapentaplegic (SMAD) transcription factors

(43). TGF-b1, TGF-b2, and TGF-b3 are three closely related

isoforms secreted by an inactive complex that covalently

combine mature TGF-b with the latent TGF-b pro-peptide

(LAP) via disulfide bonds in the endoplasmic reticulum (112).

There are also three known TGF-b receptors (TGFbRI, TGFbRII
and TGFbRIII). In the canonical pathway, active TGF‐b triggers

TGFbRII to phosphorylate TGFbRI, which in turn recognizes

and phosphorylates SMAD2 and SMAD3 proteins to interact

with SMAD4 to form a complex that can enter the nucleus and

regulate the transcription of target genes (113).

MMP9 and MMP2 are two metalloproteinases known to

cleave the inactive latent TGF‐b and produce different TGF-b
proteolytic cleavage products, which leads to transforming

growth factor-B activation (114). Hyaluronic acid-mediated

CD44 cross-linking induced co-aggregation of CD44 and

MMP9 promotes the protein degradation activity of MMP9.

Moreover, degradation of fibronectin by MMP9 bound to CD44

results in release of the active TGF‐b (115). The levels of MMP9

in cancer cells may not only influence the proteolysis of TGF‐b,
but also the expression of TGF‐b and substances downstream of

the TGF signaling pathway. A study on the relationship between

MMP9 and the TGF signaling pathway in breast cancer showed

that overexpression of MMP9 in breast cancer cells not only

significantly up-regulated the expression of SMAD2, SMAD3

and SMAD4, but also enhanced the phosphorylation of SMAD2

(116). Subsequently, the target gene KLF10 binds to the

promoters of SMAD2 and TGF-b1 and to form a positive

feedback loop regulating the TGF-b signaling pathway by

inducing SMAD2 expression (117). In addition, decorin,

which is expressed in the stroma of various cancers and can be

cleaved by MMP2, 3, 7 and MT1-MMP, recognizes and binds to

all isoforms of TGF-b to form an inactive complex, which

inhibits TGF-b signaling in vitro and indirectly attenuates

downstream signaling pathways (118).
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3.1.3 Notch signaling pathway
Notch signaling is involved in multiple aspects of tumor

biology, and its role in the development and regulation of

immune responses is complex, including shaping the immune

system and components of the TME, such as intricate crosstalk

between antigen presenting cells, T-cell subsets and cancer cells

(119). In particular, Notch plays a crucial role in the

development and maintenance of different immune cells such

as adaptive T-cells, Natural killer cells and innate immune

myeloid cells e.g., granulocytes, macrophages, and dendritic

cells (53). Several studies have found that Notch is a target of

tumor-mediated immune suppression, and reactivation of

Notch in T cells may protect T cells from tumor-mediated

immune suppression and enhance their anti-tumor activity

(54, 119). The Notch signaling pathway mediates the

activation effect after two cells come into contact with each

other. Notch receptors comprise four isoforms (Notch1–4),

which are single-pass transmembrane proteins that receive

signals from transmembrane ligands comprised of three delta-

like ligands (DLL1, DLL3, and DLL4) and two jagged ligands

(Jag1 and Jag2) expressed on neighboring cells (75). Following

binding of transmembrane ligands to Notch receptors,

downstream signaling is mediated by some proteases including

members of the ADAM family (55).

Firstly, the receptor/ligand interaction exposes the

proteolytic cleavage site, S2, which is cleaved by ADAM

metalloproteases. Subsequent cleavage at S3, mediated by g-
secretase occurs in the transmembrane region, leading to the

release of Notch intracellular domain (NICD), which

translocated into the nucleus and combines Mastermind-like

(MAML) with DNA-binding protein Recombination Signal-

binding Protein for Immunoglobulin kappa J region (RBPJ) to

recruit additional coactivators (CoA), triggering the

transcription of target genes such as Myc, P21, and HES1

(120). ADAM10 and ADAM17 are known to be involved in

cleaving S2, while ADAM17 leads to ligand-independent Notch

activation, and ADAM10 causes ligand-dependent activation

(27, 121, 122). One study tested whether restoring Notch

signaling in ADAM10-deficient mice would block tumor

development and showed that the loss of ADAM10 promotes

head and neck squamous cell carcinoma (HNSCC)

tumorigenesis by impairing Notch signaling (28).
3.2 Tumor microenvironment regulation
by MPs

The TME refers to the surrounding microenvironment of

tumor cells including blood vessels, immune cells, fibroblasts,

bone marrow-derived inflammatory cells, various signaling

molecules and the ECM. Previous studies have shown that

tumors can modulate their microenvironment, and in turn,

the TME can influence tumor growth and spread. The TME
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plays a key role in regulating the immune response in cancers.

Tumor cells and their microenvironment typically produce

multiple immunomodulatory molecules that have either

negative or positive effects on immune cell function. Thus, the

TME is able to switch the immune response from tumor-

destructive mode to tumor-promoting mode depending on the

composition of the TME.

3.2.1 The influence of MPs on the ECM
The ECM is a non-cellular component of the TME stroma,

and remodeling of the ECM plays a significant role in the

development and homeostasis of cancers, as well as immune

cell recruitment and tissue transfer. Extensive remodeling of the

ECM during cancer progression leads to changes in its density

and composition, and ECM degradation is an important

consequence (14). Specifically, protease-induced breakdown of

ECM components is essential for tumor cells to cross tissue

barriers. MMPs and ADAMs are the main enzymes involved in

ECM degradation, either directly or through the release of

growth factors and cell-surface receptors (29, 123). The MMPs

involved in ECM degradation can be broadly divided into

membrane-anchored MMPs and soluble MMPs (Figure 3).

They are first synthesized as inactive precursors (zymogens) in

the endoplasmic reticulum and then transported to the Golgi

apparatus, where they are sorted and transported to specific

membrane domains on the cell surface (56). Although

membrane-anchored MMP14, which also called membrane-

type 1 matrix metalloproteinase (MT1-MMP), localizes

preferentially at membrane protrusions called invadopodia

where it plays a central role in degradation of the surrounding

ECM. ECM degradation is mainly achieved by MT1-MMP-

activated soluble MMPs such as soluble gelatinases MMP2,

MMP9 and soluble collagenase MMP13, and there is a

significant decrease in total ECM degradation when soluble

MMP dynamics are switched off (124–126).

The ECM has three main components: fiber, proteoglycans and

polysaccharides. MMPs play an important role in tissue remodeling

by binding to these substrates to promote turnover of various ECM

proteins. The catalytic activity of metalloproteinases usually requires

zinc ions and water molecules, and water bound to zinc ions

performs a nucleophilic attack on the substrate, causing it to

rupture and release the water molecules (86). Matrix degradation

can also remove physical barriers (such as basement membranes),

and destruction of the normal matrix facilitates malignancy and

metastatic dissemination. The specific mechanism by which MMPs

degrade the ECM remains unclear, although multiple studies have

identified a role for MMPs in ECM degradation (125).

Cancer-associated fibroblasts (CAFs) are the main

contributors to ECM stiffness and degradation, and alterations

in CAFs contribute to tumor growth and dissemination as well as

regulation of T-cell infiltration in cancers (14). High expression of

TGF-b induces the transition of endothelial cells into

mesenchymal cells, leading to the formation of CAFs and
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promoting tumor formation (127). In addition, a wide range of

MPs controlled by the TIMP gene family influence the TME in

cancer. Loss of TIMP1-4 in fibroblasts results in the acquisition of

CAF-like features, manifested by increased collagen contractility

and expression of activation markers such as A-SMA, stromal

derived factor 1 (SDF-1), and TGF-b. ADAM10 inhibits RhoA

and Notch activation induced by exonucleosome treatment, and

down-regulation of ADAM10 expression in TIMP-free fibroblasts

reduces their tumor-promoting and metastatic potential in vivo

(128). Immune cells in the TME also release MMPs to assist with

ECM degradation. For instance, mast cell precursors may

spontaneously produce MMP9 during local tissue migration,

which is directly or indirectly activated by MMP3 released from

fibroblasts, chymase released from mast cells, and plasminogen

activator released from microvascular endothelial cells, thereby

causing degradation of the ECM (129).

3.2.2 The relationship between MPs and
immune cells

Immune cells in the TME play an important role in

tumorigenesis and possess tumor-antagonistic or tumor-

promoting functions. Although anti-tumor immune cells in

the TME tend to target and kill cancer cells in the early stages

of tumorigenesis, cancer cells appear to inhibit the cytotoxic

function of anti-tumor immune cells in a variety of ways,

resulting in immune escape (130). Tumor-associated immune
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cells can be divided into two types according to their function:

innate immune cells and adaptive immune cells. Innate immune

cells, comprised of natural killer cells, eosinophils, basophils, and

phagocytes, participate in tumor suppression by directly killing

tumor cells or triggering adaptive immune responses. The

adaptive immune system is comprised of lymphocytes (B cells

and T cells), with B cells playing a major role in the humoral

immune response and T cells participating in the cellular

immune response (57). MPs play an important role in

promoting immune cell activity and regulating immune cell

migration (58, 59). The relationship between MPs and immune

cells is depicted in Figure 4.

3.2.2.1 T cells

T cells are involved in the immune response through direct

secretion of soluble cytokines or cell contact-dependent

mechanisms. They also play an increasingly important role in

tumor immunotherapy. T cells are complex, heterogeneous and

are constantly regenerating. They can also be divided into several

subpopulations according to their function. Helper T (Th) cells

are central regulators of the adaptive immune response, (also

known as CD4+ cells because they express CD4 on their surface).

They are activated by engagement of the T-cell receptor (TCR)

with the major histocompatibility complex (MHC II), which is

expressed on the surface of antigen-presenting cells (APCs) (60,

61). ADAM10 and ADAM17 are expressed on the surface of
FIGURE 3

The influence of metalloproteinases on ECM degradation and angiogenesis. Various types of metalloproteinases in ECM-degrading are firstly
synthesized as inactive precursors (zymogens) in the endoplasmic reticulum and then transported to the Golgi apparatus, which can be divided
into membrane-type 1 matrix metalloproteinase (MT1-MMP) and other soluble MMPs. Several immune cells and cancer-associated fibroblasts
(CAFs) can also produce metalloproteinases. ECM degradation is mainly performed by MT1-MMP-activated soluble MMPs, such as soluble
gelatinases MMP2, MMP9 and soluble collagenase MMP13. The MMPs degrade the basement membrane structure of vascular endothelial cells
and release VEGF bound to the extracellular matrix to initiate vessel maturation.
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resting CD4+ Th cells and are important for regulating the

development and function of CD4+ Th cells (16). ADAM10/17

play crucial roles in shedding of the T-cell costimulatory receptor

as well as co-inhibitory receptors (62). For instance, CD154

(CD40L) is a type II membrane co-stimulatory receptor that is

expressed by all antigen-activated CD4+ Th cells with the

exception of “regulatory” T cells (Tregs). Following the

interaction between a T cell and an APC, CD154 expression is

rapidly upregulated within a few hours and is subsequently

released from the T cell surface following cleavage by ADAM10

and ADAM17 (131, 132). In addition, ADAM10 and/or

ADAM17 also act on the costimulatory receptor CD137, which

is expressed on CD4+ and CD8+ T cells following TCR activation

(63) Lymphocyte Activation Gene-3 (LAG-3; CD223) and T-cell

immunoglobulin and mucin domain-containing protein-3 (TIM-

3) are both T-cell coinhibitory receptors acting as substrates for

ADAM10/17 protease. The soluble form of each protein (sLAG-3
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and sTIM-3, respectively) in humans are formed after proteolytic

cleavage of ADAM10 and ADAM17 (15, 16). Hydrolytic cleavage

of LAG-3 proximal linker peptides by ADAM10 and ADAM17

yields sLAG-3, which has been shown to bind to MHCII thereby

inhibiting binding of LAG3,reducing the activation of T cells, and

inducing dendritic cell maturation (133, 134). Anti-cleavage of

LAG-3 can inhibit antitumor T-cell responses in mice, and sTIM-

3 can impair the anti-tumor immune response in T cells by

reducing the expression of Th1 cytokines in CD4 effector T cells

(135). Similarly, CD8+ T cells are a subset of cells that express

CD8 on the cell surface. Successful binding between naive CD8+ T

cells and APCs stimulates immature T cells to become activated

CD8+ T cells with cytotoxic capabilities (136). It is well known

that the transmembrane glycoprotein PD-L1 is expressed on the

surface of tumor cells and binds to the PD-1 receptor on the

surface of immune cells to inhibit T cell proliferation, block

cytokine production and inhibit T-cell survival. ADAM10 and
FIGURE 4

The relationship between metalloproteinases and immune cells. When T-cell receptor (TCR) of T cells interact with the major histocompatibility
complex (MHC II) of antigen presenting cells (APCs), co-stimulatory receptor CD40L(CD154) expression is rapidly upregulated and linked to
CD40, and subsequently released from the T cell surface by cleavage by ADAM10 and ADAM17. Lymphocyte Activation Gene-3 (LAG-3), T-cell
immunoglobulin and mucin domain-containing protein-3 (TIM-3) are T-cell coinhibitory receptors can be cleaved by ADAM10 and ADAM17
yielding soluble form sLAG-3 and sTIM-3. SLAG-3 binds to MHCII inhibiting the activation of T cells and inducing dendritic cell maturation,
sTIM-3 can impair the antitumor immune response of T cells. ADAM10 and ADAM17 can both produce different cleavage products of PD-L1,
which called soluble PD-L1 (sPD-L1) and shed from the surface of tumor cells, inducing apoptosis of CD8+ T cells and inhibiting antitumor
immunity. In B cells, Notch2 heterodimers bind to ligands DLL1 presented on antigen presenting cells (APCs), which initiates ADAM10 resulting
in the release of the Notch intracellular domain that translocating to the nucleus to trigger the expression of downstream target genes. The IgG
Fc receptor FcgRIII (CD16), recognizing blinding the Fc part of the IgG antibody of tumor cells and dissolving the cells by Ab-dependent cell-
mediated cytotoxicity (ADCC), on NK cells can be cleaved by the metalloprotease ADAM17, leading to NK cell dysfunction and reduced ADCC
capacity. MMPs and ADAMs can cleave ligands of the activated receptor NKG2D, such as MIC, on the surface of tumor cells, they bind to
NKG2D inducing endocytosis this receptor and causing tumors to evade immune surveillance. Tumour-associated macrophages (TAM) can
secret MMPs to promote tumor angiogenesis, invasion and regulate immune response. The chemokine CCL2 secreted by MMP11-
overexpressing macrophages activates MAPK pathway, including Phosphorylation of ERK1/2 and JNK, through combined with its receptor
CCR2, thereby promoting the migration of cancer cells by up-regulating MMP9. MMP11-expressing macrophages can also upregulate PD-L1
expression and induce immunosuppression of cancer cells. MMP2 and MMP9 released by mast cells (MCs) can promote tumor angiogenesis
and tumor invasiveness, respectively. MMP2 as a physiological TLR2 ligand can specifically trigger TLR2 and then increase OX40 ligand (OX40L),
which interacted with OX40, on dendritic cells (DCs) to drive T cell responses leading to modulation of immune responses.
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ADAM17 were recently shown to produce different cleavage

products of PD-L1 that are shed from the surface of tumor

cells, leading to apoptosis of CD8+ T cells and inhibition of

anti-tumor immunity (137).

3.2.2.2 B cells

B cells are key cellular components of humoral immunity

and play a role in immune regulation and tolerance induction

through various mechanisms. Unlike T cells, B cells can respond

directly to antigens. Activated B cells express both MHC class I

and class II molecules on the cell surface; therefore, they can

present intracellular and extracellular antigens to CD4+ Th and

CD8+ T cytotoxic lymphocytes (64, 65). In particular, marginal

zone B (MZB) cells located in the spleen express high levels of

CD80/86 costimulatory molecules leading to activation of T cells

(66). Notch2 signaling is required for the development of MZB

cells, which play an important role in antigen trafficking and

presentation. During the development of MZB, Notch2

heterodimers bind to ligands such as DLL1 on stromal cells

and APCs, which initiates an unknown metalloproteinase

hydrolytic receptor resulting in the release of the Notch

intracellular domain that translocate to the nucleus and

triggers the expression of downstream target genes (16, 138,

139). The unknown metalloproteinase may be ADAM10. Taok3

transports ADAM10 to the surface of immature B cells, which

then promote the development of immature B cells into MZB

cells (16, 76, 140). In addition, studies have shown that glioma

cells produce ADAM10 upon activation, and ADAM10 can

induce the development of regulatory B cells (Bregs) by

converting latency associated peptide (LAP) into TGF-b in B

cells. Bregs not only exert immunosuppressive effects by

inhibiting the activity of CD8+ T cells, but also have the

ability to induce the production of Tregs, which play an

important role in the evasion of tumor cells from immune

surveillance (77).

3.2.2.3 NK cells

Natural killer (NK) cells are specialized immune effector

cells that are able to kill tumor cells and are the main source of

cytokines and chemokines such as interferon (IFN)-g and TNF-

a, which regulate the function of lymphocytes and enhance the

antigen-specific T-cell response (78). NK cells express an IgG Fc

receptor FcgRIII (CD16). Activated NK cells can effectively

recognize the Fc part of the IgG antibody that binds to tumor

cells and dissolve cells by antibody-dependent cell-mediated

cytotoxicity (ADCC) (141, 142). Notably, the CD16 molecule

can be cleaved from the surface of activated NK cells by

ADAM17, and inhibition of ADAM17 impairs the exocytotic

abscission of CD16 and CD62L, which significantly increases

intracellular levels of TNF-a and IFN-g (143–145). In addition,

the critical interaction between activating receptors on NK cells

and MHC-I molecules (MIC) is important to prevent
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autoimmune destruction and facilitate evasion of immune

surveillance by NK cells (146). For example, MMPs and

ADAMS can cleave ligands of the activated receptor NKG2D

from the surface of tumor cells. The soluble forms of these lysed

proteins bind to NKG2D and induce endocytosis and

degradation of this receptor, causing tumors to evade

surveillance (147). Overall, there are multiple substrates lysed

by ADAM17 that are associated with diverse effects on NK cells.

3.2.2.4 Macrophages

Among the immune inflammatory cells in the TME,

macrophages are one of the most common (148). Although

macrophages have anti-tumor effects as immune cells,

experimental and clinical evidence suggests that tumor-

associated macrophages (TAM) contribute to cancer initiation

and malignant progression, and high levels of TAMs are

associated with poor prognosis and reduced overall survival (44,

149–151). Activated macrophages include M1 and M2 subtypes.

M1 macrophages can kill tumor cells, while M2 macrophages

mainly play a role in promoting tumor growth. However, most of

the macrophages in tumor tissues have the phenotype and

function of M2 macrophages. In a variety of cancers, TAMs

have been found to promote tumor angiogenesis and invasion

as well as regulation of the immune response by secreting MMPs

(45). MMP regulation is closely related to the chemokines secreted

by TAMs. MMP11 expression on macrophages is an independent

negative prognostic factor in breast cancer. The chemokine CCL2

secreted by MMP11-overexpressing macrophages activates the

MAPK pathway, inducing phosphorylation of ERK1/2 and JNK

and promotion of HER2+ breast cancer cell migration facilitated

by the upregulation of MMP9. Additionally, MMP11-expressing

macrophages play a role in promoting tumor through via the

upregu la t ion o f PD-L1 expre s s ion and induc ing

immunosuppression in breast cancer cells (46). In GMB, CCL5

(derived from glioma-associated microglia/brain macrophages

[GAMs]) enhances glioma cell invasiveness through a novel

calcium-dependent MMP2 signaling pathway (47). SLIT2 has

been found to be functionally deficient in breast cancer.

Mechanistic studies have shown that SLIT2-activated

macrophages have high phagocytic capacity, are polarized into

an anti-tumor M1 phenotype, and inhibit tumor fibrosis by

activating MMP13 secreted by macrophages (48). Although

evidence has suggested that MT-MMPs are expressed in

primary brain tumors as effective mediators of tumor cell

infiltration into central nervous system tissues, recent studies

have revealed that glioma cells, rather than macrophages/

microglia, are the main source of MT-MMPs (152).

3.2.2.5 Mast cells

In the TME, MCs have both pro-tumor and anti-tumor

properties. Once activated and degranulated, they recruit

immune system cells to coordinate the anti-tumor immune
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response. However, their presence may contribute to tumor

progression by releasing vascular endothelial growth factor to

support MMP9 degradation of the ECM (153, 154). In prostate

cancer, infiltrating MCs can reduce androgen receptor (AR)

transcription and increase the aggressiveness of prostate cancer

cells by increasing MMP9 expression (155). The invasive ability

of bladder cancer cells is enhanced by upregulation of estrogen

receptor b(ERb) expression in both MCs and bladder cancer

cells, resulting in increased signaling related to CCL2, CCR2,

EMT, and MMP9 (156). MC progenitors may spontaneously

produce MMP9 during local tissue migration, and stem cell

factors can down-regulate mast cell motility by reducing MMP9

production (129). In addition, MMP2 and MMP9 released by

MCs can promote angiogenesis and tumor invasiveness,

respectively (157).

3.2.2.6 Dendritic cells

Dendritic cells (DC)are APCs that can extract, process and

present endogenous antigens to T and B lymphocytes (158, 159)

Although DCs do not have the ability to kill tumor cells directly,

they play a crucial role in the immune system. Recent studies

have shown that in solid tumors, of the number of infiltrating

DCs is directly proportional to prognosis, and DC-based

vaccines have been applied in the study of tumor

immunotherapy (49, 160, 161). Most DCs are in an immature

state with strong antigen-phagocytosis ability. They eventually

and evolve into mature DCs when they ingest antigens or are

stimulated. During maturation, DCs migrate from antigen-

exposed peripheral tissues into secondary lymphoid organs,

where they present antigen peptides on the surface of MHC

molecules to antigen-specific cognate responder T cells through

the TCR, which stimulates immune responses (162, 163). The

ability of mature DCs to migrate to secondary lymphoid tissues

requires expression of a collagenase type IV protein, such as

MMP9 (164). In a study of cervical cancer, monocyte-derived

cells maintained MMP9 expression during differentiation into

immature and phenotypically mature DCs (165). OX40 ligand

(OX40L), which is expressed on DCs and modulated by

molecules such as toll-like receptor 2 (TLR2), is a key

costimulatory molecule that primes Th cells (166). MMP2 is a

physiological TLR2 ligand/agonist that specifically triggers

TLR2, leading to increased cytokine production and OX40L

on DCs through activating components of the canonical NF-kB

pathway, which results in modulation of immune responses

(167). Additionally, ADAM23 expression on DCs partially

governs antigen-presentation capacities to responder CD4+ T

cells. Knockdown of ADAM23 in murine BMDCs did not alter

the maturation profile of DCs but markedly depressed the

activation, proliferation and total levels of cytokine production

in CD4+ T cells, such as IL-2, IFN-g, IL-4, and IL-17 (168).

Notably, DCs have podosomes that can degrade the ECM and

are proposed to be involved in cell migration (169). The

podosome-related domains contain MMP14, which generates
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guidance tunnels within collagen gels in endothelial cells, and

cancer cells use a similar mechanism as they move through the

matrix (51).

3.2.3 Immunomodulatory substances
associated with MPs

Cytokines are proteins secreted by immune and related cells

that mediate and regulate immune processes (170). According to

their structure and function, cytokines can be generally divided

into interleukins, interferons, TNFs, colony-stimulating factors,

chemokines, and growth factors. Cytokines coordinate the

interaction between the TME and tumor immune cells, and

their release can inhibit or promote tumor development (57).

The interaction between cytokines and MPs plays an important

role in regulating the TME. Inflammatory cytokines generally

upregulate the expression, secretion and activation of MPs in

immune cells (11, 171, 172). In addition, they are shed as

substrates or become active after cleavage by MPs leading to

various immune-inflammatory responses in multiple cancers

(12, 173, 174).

A variety of cytokines derived from tumor cells, including

TGF-b, EGF, HGF and TNF-a, mediate the expression of many

MPs. The most important of these is MMP9, which is elevated in

serum and tissues associated with tumors, and is involved in the

degradation of the ECM to facilitate the migration of immune

cells in cancer (11). A study on breast cancer showed that MMP9

was secreted predominantly by fibroblasts, and its expression in

tumor fibroblasts is regulated by multiple cytokines and complex

cellular signaling pathways (175). Interleukin, as one of the most

widely studied cytokines, is associated with the occurrence and

development of cancer. Various cell sources, receptors and

signaling pathways determine that interleukins have

pleiotropic effects in cancers, including participating in

immune responses through interaction with MPs (173, 176).

The members can be divided into several protein families

according to their structural homology. Biochemical and cell-

based assays suggest that IL-2 is subject to proteolytic processing

by neutrophil MMP9. The proliferation of IL-2-dependent cells,

including primary human regulatory T cells, significantly

decreased after IL-2 was cleaved (173).

In addition, these cytokines must be cleaved by MPs to

participate in tumor immune process. TmTNF-a, cleaved by

ADAM17, generates active sTNF-a (106). IL-12 also plays a

critical role in T-cell development and expansion and stimulates

activated T cells and NK cells to release toxic enzymes or secrete

effector cytokines in the TME, which are essential for tumor

clearance (50). It was hypothesized that pro-IL-12 is mostly

inactive before cleavage and switches to an active state in the

TME after cleavage by MMP14. The amino acid sequence

recognized by MMP14 (SGRSENIRTA) was chosen as the

cleavable substrate linker. The hydrolysis efficiency of this

peptide sequence is 79% for MMP14, 4% for MMP2 and 9%

for MMP9. Therefore, pro-IL-12 was almost completely cleaved
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and activity was significantly recovered after incubation with

MMP14 (174).

3.2.4 Relationship between metalloproteinases
and angiogenesis

Tumor blood vessels can provide oxygen and nutrients and

remove waste products as well as serve as a conduit for tumor cell

metastasis and immune cell infiltration. In terms of structure and

function, these vessels are abnormal compared with those in non-

malignant tissues, which promotes progression of cancers through

impaired perfusion leading to hypoxia and low pH in the TME

(30). The hypoxic microenvironment caused by impaired tumor

blood perfusion can promote the invasion of tumor cells and

hinder the anti-cancer effect of immune cells, which produce

chemokines, cytokines, proteases and microvesicles. VEGF and

inflammatory chemokines are not only major proangiogenic

factors, but also immune modulators, increasing angiogenesis

and immune suppression (177).

To date, several types of tumor angiogenesis have been

reported, including sprouting angiogenesis and vasculogenic

mimicry (VM) (178). Sprouting angiogenesis is achieved by

the upregulation of various hydrolases such as MPs and tissue

plasmin activators in the vascular basement membrane, which

leads to degradation and remodeling of the basement membrane

and the ECM (Figure 4) (179). MMPs secreted by CAFs degrade

the basement membrane of vascular endothelial cells and release

VEGF bound to the extracellular matrix to initiate angiogenesis.

For example, in pancreatic neuroendocrine tumors, increased

secretion of MMP9 releases sequestered VEGF from the matrix,

which switches vascular quiescence to active angiogenesis (31).

In lung cancer cells, inhibition of MMP2 activity reduces its

interaction with integrin-AVB3, and inhibits the expression of

VEGF mediated by downstream PI3K/AKT signaling, leading to

decreased angiogenesis (32).

VM is a newer model for invasive tumors to form new blood

vessels, which provides blood supply for tumor growth (33).

Studies have shown that the initial hypoxic environment of solid

tumors is inseparable from VM, and that hypoxia is closely

related to the expression and activity of MMPs (34, 35, 180).

Hypoxia-inducible factor-1a (HIF-1a) has been shown to

directly regulate the expression of MMP14, MMP9 and MMP2

(36, 180, 181). In the early stage of VM formation, MMPs

dissolve ECM adhesion proteins and connexins, leading to the

release of individual epithelial cells from the epithelium. Some

cell fragments then initiate signal transduction pathways, leading

to extensive changes in gene transcription. MMP2, activated by

MMP14, causes the lysis of Ln5g2 (laminin) and promotes the

formation of VM ducts. In addition, cell protrusions termed

invasive pseudopodia, aggregate the proteolytic enzymes MMP2,

MMP9, and MMP14 at their leading edge where they degrade

collagen and the ECM basement membrane (182). However,
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other studies have shown that MMP2 and MMP9 are

upregulated in cancer cells through a HIF1 -dependent

mechanism, whereas MMP14 is upregulated in a HIF2-

dependent manner, and their enhanced activity is due to

increased expression of HIF-dependent urokinase-type

plasminogen activator surface receptors (183).
4 Recent advances and
future trends in application
targeting MPs in tumors diagnosis
and immunotherapy

4.1 The crucial role of
metalloproteinases in cancers diagnosis

As MPs have been found to play an important role in the

occurrence and development of tumors, several diagnostic

methods involving MPs have emerged in recent years. Various

molecular imaging techniques have been used in cancer

diagnosis to show the activity of MPs in vivo. For the past

decade or so, MP imaging has been limited to optical imaging

(OIM), positron emission tomography (PET), single photon

emission computed tomography (SPECT), and magnetic

resonance imaging (MRI), all of which have been inadequate

in quantifying MP expression levels (184). Recently, a method

has been developed for that precise quantification of MT1-MMP

in cancer tissue sections using metal clusters composed of

intrinsic red fluorescence and a specific mass signal. MMP14

can be directly observed via optical fluorescence microscopy and

quantified by mass spectrometry 2D imaging (MSI) (185).

Highly selective fluorescent nanoprobes have also been

developed to improve the diagnostic accuracy in early and

metastatic cancers. MMP-2-responsive nanoprobes were

prepared by immobilizing fluorescent fusion proteins, which

consists of a fluorescent mCherry protein with a cell penetrating

peptide (CPP) moiety with MMP-2 cleavage site, on nickel

ferrite nanoparticles via the His-tag nickel chelation

mechanism. The high selectivity of nanoprobes is due to the

steric hindrance effect between nanoprobes and MMPs formed

by hiding the cleavage site of MMP-2 substrates inside the

system, which allows detection of soluble MMP-2 in the TME

(186). Fluorescence nanoprobe technology can not only be used

to accurately diagnose distant lymph node metastasis, but also as

a prognostic tool for cancer treatment after treatment with

photodynamic therapy (PDT) treatment (187). Rapid

diagnosis during surgery has become an indispensable tool in

cancer diagnostics. MP-mediated fluorescence nanoprobe

technology has been proposed as a rapid and accurate method

to assist decision-making during surgery (188).
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4.2 Metalloproteinases inhibitors can be
a potential partner for combination
therapy in cancer immunotherapy

In view of the role of MPs in cancer immune regulation, it is

conceivable that MPs can play a pivotal role in immunotherapy.

The main immunotherapy modalities currently available are

immune checkpoint blockade (ICB) therapy, chimeric antigen

receptor (CAR)-T cell therapy, and cancer vaccines. Notably, the

role of MP inhibitors or activators in different immunotherapy

modalities is diverse. A variety of broad-spectrum MP inhibitors

have emerged in clinical trials. However, due to the non-

specificity of drugs and the complex role of MPs in immune

regulation, MP inhibitors have so far failed to improve survival

and prognosis of patients with cancer (10, 189). Recently, it has

been reported that MP inhibitors can be used in combination

therapy to improve the efficacy of immunotherapy (67–69).

4.2.1 The mechanism of MPs
as an immunomodulator

ICB has been revolutionary for cancer treatment by

suppressing immunosuppressive components in the TME

including programmed cell death protein 1 and its ligand (PD-

1/PD-L1) and cytotoxic T lymphocyte-associated antigen 4

(CTLA-4) (190). Importantly, clinical response rates of ICB

have been relatively low in some cancers, despite improved

treatment outcomes; therefore, combination therapy has the

potential to improve ICB therapy (191). SB-3CT, as an

MMP2/9 inhibitor, has been suggested to improve the efficacy

of anti-PD-1 and anti-CTLA4 treatment in mouse models of

melanoma and lung cancer, as well as metastatic melanoma in

the lung. SB-3CT treatment not only causes a reduction of PD-

L1 expression through reducing multiple oncogenic pathways,

but substantially improved immune cell infiltration and

cytotoxicity of T cells in combination with anti-PD-1

treatment. In addition, the combination of SB-3CT with anti-

CTLA-4 enhanced the downregulation of PD-L1 expression and

increased the concentration of activated tumor-infiltrating CD8

+ T cells in the tumor (67). Conversely, abundant expression of

MMP2 in TME could trigger a gradual enzymatic-degradation of

DOX-aTIGIT-GAB hydrogel that is composed of drugs

including doxorubicin (DOX) and anti-TIGIT monoclonal

antibody (aTIGIT) co-packaged in an injectable enzyme-

responsive hydrogel. After being stimulated by released DOX,

the immunogenic tumor recruits the infiltration of NK cells and

effector T cells that could be further stimulated by the

subsequently released aTIGIT to boost multilayered innate and

adaptive immune responses (192).

As an emerging antitumor immunotherapy, tumor vaccines,

including nucleic acid, DC-based, tumor cell, and synthetic long

peptide (SLP) vaccines, have achieved notable therapeutic effects

in several trials. The combination of tumor vaccines with

immune checkpoint inhibition or other therapies may achieve
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superior therapeutic effects compared with single-agent

treatment (37). Many studies in recent years have focused on

the use of DC vaccines to initiate and shape an anti-tumor-

specific immune response and/or boost existing spontaneous

anti-tumor T-cell responses (193). However, the critical

pathways by which DC-based vaccines activate effective

immunity remain unknown (194). DCs from patients with

melanoma have reduced expression of the cell surface

inducible T-cell costimulator ligand (ICOSL), which plays an

importance role in activating protective T-cell responses (195).

Therefore, there is potential to improve therapeutic T-cell

responses and treatment outcomes in patients with cancer

through improving ICOSL expression on DCs. DCs express

ADAM10 and significantly increase levels of ADAM17 after

maturation, which can modulate availability of ICOSL co-

stimulation during humoral immune activation by cleaving

surface ICOSL (196, 197). In addition, inhibition of ADAM10/

17 cleavage enzyme activity in DCs can increase surface

expression of ICOSL, which yielded a vaccine with more

effective anti-tumor capability (198).

CARs are synthetic receptors that enable T cells to recognize

tumor-associated antigens (TAAs) independent of MHC (199).

Although CAR-T cell therapy has been associated with clinical

responses in subsets of B-cell leukemia or lymphoma, there are

several challenges for CAR-T therapy in solid tumors and

mal ignant hematologica l tumors , including tumor

heterogeneity (200, 201). The development of CAR-T therapy

for glioblastoma (GBM) has been limited by the scarcity and

heterogeneity of GBM biomarkers. Chlorotoxin (CLTX), an acid

peptide, has been studied in GBM and other neuroectodermal

tumors as a method to weaken tumor cell migration and

invasiveness, while exhibiting minimal cross-reaction with

normal cells in the brain and elsewhere (202). CAR-T cells

utilizing CLTX as the targeting domain (CLTX-CAR T cells)

address two major hurdles in the way of effective

immunotherapy for GBM: reduction of antigen escape and

maintenance of tumor cell restriction (202). MMP2, a secreted

MMP, specifically and selectively interacts with CLTX and high

MMP2 expression facilitates the binding of CLTX (202–204).

Accordingly, MMP2 knockdown in GBM cells substantially

reduced CLTX-CAR T-cell activation and cytotoxicity (202).

Additionally, MMP8 have been indicated that it was positive

associated with good prognosis and survival of various cancers

patients. The homing of CAR-T cells can be enhanced when

CAR-T cells carrying overexpressing MMP8 because MMP8 can

damage the collagen fibers surrounding the tumor (205).

4.2.2 Traditional and vanguard
immunomodulatory drugs
4.2.2.1 Monoclonal antibodies

With a high target selectivity and favorable pharmacokinetic

profiles, mAbs have shown promise for immunotherapy in

cancer. These mAbs modulate the activity of these by barring
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access to the active site, disrupting of exosite binding and

preventing protease activation (206). Selective inhibition of

single MMP isoforms has been previously demonstrated, e.g.,

the humanized monoclonal antibody Andecaliximab (GS-5745)

that selectively inhibits MMP9 and Fab 3369 acting on MMP14

(207). Structural investigation revealed that GS-5745 inhibits

MMP9 by binding to pro-MMP9 and preventing MMP9

activation, whereas binding to active MMP9 allosterically

inhibits its activity (208). Fab 3369, derived from a synthetic

humanized Fab library, intercepts endogenous MMP14

expressed on the cell surface and inhibits ECM degradation in

triple-negative breast cancer (TNBC) (35). There are a variety of

mAbs that effectively inhibit ADAM17, including first-

generation Administration of D1(A12), second generation

mAb A9 and MED13622 (206). mAbs targeting ADAMTS

family members have also been studied in inflammatory and

cardiovascular diseases, but not in cancer. There are also several

small molecule inhibitors in clinical development that have

shown positive effects in clinical trials (207).
4.2.2.2 Others

Engineered nanoparticles have also shown promise for the

treatment of cancer (209, 210). O-NP, an intelligent nanocarrier,

contains a cationic core and a molecule consisting of

hydrophobic oleic acid, as well as a MMP9-cleavable peptide

and a glutamate-rich segment (OMPE). Once exposed to MMP9

in the TME, OMPE is proteolytically processed, which leads to

elimination of glutamic acid residues causing a charge reversal

from anionic to cationic, which enhances endocytosis of the

nanocarrier in cancer cells. When administrated systemically,

this phenomenon results in efficient delivery to MMP9-

overexpressing tumors (211). In addition, there is a growing

body of research aimed at integrating multiple therapeutic tools

into one for precise molecular sensing and site-specific cancer

treatment. For instance, gold nanostars (GNS), which can be

attached to MMP2 polypeptides (Ac-GPLGIAGQ) and IR-780

iodide, have been utilized for enhanced photothermal therapy

(PTT)/PDT in lung cancer (212).
4.3 Current challenge of targeting MPs in
the clinical applications

Despite a number of preclinical trials have suggested that

targeting MPs can bring benefits to the diagnosis and treatment

of cancer, they failed at different phases in researches, mostly

because to the non-specificity of the drug and the complicated

background for specific effects of MPs. While some studies have

begun to test highly selective MP-targeting drugs, such as the

monoclonal inhibitors against MPs mentioned above, the field is

still at exploring and the efficacy and safety of this approach is
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not yet known. In addition, whether the addition of targeting

MPs will bring some potential toxicity or immune-related

adverse reactions while enhancing the efficacy of tumor

immunotherapy still need to be explored with more studies in

future. For example, inhibition of protease activity has been

reported to produce significant joint pain and swelling, as well as

myelosuppression and venous thromboembolism [7].

Remarkably, with the continuous breakthroughs in

biotechnology, nanoparticles are particularly attractive as a

new medium for targeting MPs for cancer diagnosis and

treatment. While improving the specificity, the excellent

targeting efficiency of nanoparticles is confronted with the

selection of the nanocarriers, its stability and sustainability.
5 Conclusion and perspective

In this review, we highlighted the immunomodulatory roles of

MPs in the TME including ECM remodeling, signal pathway

transduction, cytokine shedding and release, and promotion of

angiogenesis. MPs and some relating cleavage substrates may be

prospectively used as predictive biomarker candidates of

prognosis for certain cancer types; however, large, confirmatory

studies are required. Emerging technologies and compounds

related to MPs have been increasingly explored in cancer

diagnosis and treatment. As such, it is difficult to develop highly

selective drugs and nanoprobes targeted towards specific MPs.

Better understanding of MP expression patterns and functions in

the immunoregulation of cancer will contribute to the

development of more effective therapeutic approaches for cancer

diagnosis and immunotherapy. Evidence shows that

combinations of biomedical technologies may be more efficient

for cancer therapy compared with single agents. The new

technologies based on MPs are of area constant exploration and

great potential. If these technologies can be put into practice, they

may provide effective strategies for the diagnosis and treatment of

cancer in the future.
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Role for the metalloproteinase
ADAM28 in the control
of airway inflammation,
remodelling and
responsiveness in asthma

Guillaume Bendavid1,2, Céline Hubeau1, Fabienne Perin1,
Alison Gillard1, Marie-Julie Nokin1, Oriane Carnet1,
Catherine Gerard1, Agnès Noel1, Philippe Lefebvre2,
Natacha Rocks1 and Didier Cataldo1,3*

1Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiege),
Liege, Belgium, 2Department of Otorhinolaryngology Head and Neck Surgery, University of Liege
(ULiege) and Centre Hospitalier Universitaire (CHU) Liege, Liege, Belgium, 3Department of
respiratory diseases, University of Liege (ULiege) and Centre Hospitalier Universitaire (CHU) Liege,
Liege, Belgium
Background: Asthma is characterized by morphological modifications of the

airways (inflammation and remodelling) and bronchial hyperresponsiveness.

Mechanisms linking these two key features of asthma are still poorly

understood. ADAM28 (a disintegrin and metalloproteinase 28) might play a

role in asthma pathophysiology. ADAM28 exists as membrane-bound and

soluble forms and is mainly expressed by lymphocytes and epithelial cells.

Methods: ADAM28-/- mice and ADAM28+/+ counterparts were sensitized and

exposed to ovalbumin (OVA). Airway responsiveness was measured using the

flexiVent
®
system. After sacrifice, bronchoalveolar lavage (BAL) was performed

and lungs were collected for analysis of airway inflammation and remodelling.

Results: The expression of the soluble form of ADAM28 was lower in the lungs

of OVA-exposed mice (as compared to PBS-exposed mice) and progressively

increased in correlation with the duration of allergen exposure. In lungs of

ADAM28-/- mice exposed to allergens, the proportion of Th2 cells among CD+
4

cells and the number of B cells were decreased. Bronchial responsiveness was

lower in ADAM28-/- mice exposed to allergens and similar to the

responsiveness of sham-challenged mice. Similarly, features of airway

remodelling (collagen deposition, smooth muscle hyperplasia, mucous

hyperplasia) were significantly less developed in OVA-exposed ADAM28-/-

animals in sharp contrasts to ADAM28+/+. In addition, we report the first

evidence of ADAM28 RNA expression by lung fibroblasts and we unveil a

decreased capacity of lung fibroblasts extracted from OVA-exposed

ADAM28-/- mice to proliferate as compared to those extracted from OVA-

exposed ADAM28+/+ suggesting a direct contribution of this enzyme to the

modulation of airway remodelling.
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Conclusion: These results suggest that ADAM28 might be a key contributor to

the pathophysiology of asthma.
KEYWORDS

asthma, proteases, adamalysins, ADAM28, mouse model, airway remodelling
Background

Asthma is an inflammatory disease of the airways of

increasing prevalence worldwide (1). The vast majority of

asthmatics see their disease adequately controlled with

currently available standard therapies and a minority of

severe asthmatics remains uncontrolled and requires targeted

treatments with biologicals aiming at interfering with the

disease process (1). With an impaired quality of life and a

number of disease-related complications, this subgroup of

patients is responsible for the majority of asthma-related

costs (healthcare resources, drugs, hospitalizations, working

day loss, etc). Moreover, asthmatics displaying an accelerated

decline of lung function during their lifetime or a fixed airway

obstruction display significantly more profound airway

remodelling (2, 3). Airway remodelling in asthma is a

characteristic of the disease and includes Goblet cell

hyperplasia, basement membrane thickening, collagen

deposition around the airways as well as smooth muscle

hyperplasia (4). The biological mechanisms leading to an

established airway remodelling are still not fully unveiled but

there is a strong influence of airway epithelial cells. Indeed, the

airway epithelial cells collected from asthmatic donors display

an enhanced expression of remodelling- related genes (5, 6).

These characteristics of the asthmatic airway epithelial cells

affect the profibrogenic potential of the airway fibroblasts that

contribute to profoundly modify the extracellular matrix of the

bronchi (7, 8). Although many different pathways might

contribute to the activation of fibroblasts, transforming

growth factor (TGF)-b induced fibroblast activation that

triggers extracellular matrix production is key (9). The

biology of TGF- b is complex since this mediator requires a

post-translational activation that can be achieved by different

mechanisms including a cleavage by matrix metalloproteinases

(MMPs) (10).

A disintegrin and metalloproteinases (ADAMs) are

membrane-bound or secreted enzymes that display the

characteristics to play an important role in the regulation of

inflammation and remodelling since they are able to process

many soluble or membrane-bound mediators (including a
02
105
number of chemokines/cytokines), hence modifying their

biological activity (11). The prototypical example is the

membrane-bound pro-TNF-alpha that requires a cleavage by

ADAM proteases before being activated and released in a soluble

form (11, 12). Some of these enzymes also cleave different

components of the extracellular matrix. The ADAM proteins

are matrix metalloproteinase (MMPs)-related enzymes, bearing

a multi-domain structure. They have been associated to

numerous physiological and pathological processes to date

(11). Modulation of the expression of different ADAM(TS) in

the bronchial tree of a cohort of human asthmatics has been

reported (13, 14).

ADAM28 is a multipotent membrane-bound proteinase

expressed by tissues derived from the foregut in embryo

suggesting its involvement in respiratory tract organogenesis.

Membrane-bound ADAM28 can be released after proteolytic

cleavage by different proteinases including MMP7 resulting in

the release of a soluble form of ADAM28 as it has been also

shown for ADAM33 (15, 16). Interestingly, the soluble form of

ADAM28 has been reported to enhance the a4b1-dependent
cell adhesion to vascular cell adhesion molecule-1 (VCAM-1)

and therefore it influences lymphocyte adhesion and trans-

endothelial migration (17). Various ADAM28 splicing variants

have been described. Notably, microarray studies show an

upregulation of ADAM28 expression after induction of lung

inflammation in a mouse model of chronic asthma (18) and

ADAM28 is expressed by airway epithelial cells (19). Moreover,

ADAM28 deficiency has been associated with impaired CD+
8 T

recruitment in lung and spleen contributing to a protective role

for host ADAM28 against metastasis dissemination of cancer

cells (20). This protease can therefore play different roles in the

microenvironment either in its soluble or membrane-

bound form.

In this article, we establish a strong relationship between the

expression of ADAM28 and asthma-associated bronchial

hyperresponsiveness and remodelling. ADAM28 deficient mice

display lower infiltration of bronchial walls and bronchoalveolar

lavage (BAL) by inflammatory cells, reduced features of airway

remodelling, and lower hyperresponsiveness as compared to

wild-type mice.
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Materials and methods

Sensitization followed by
allergen sensibilisation

Full Knock out mice (ADAM28-/-) for ADAM28 BALB/c

mice and Wild type (ADAM28+/+) counterparts were previously

described (20) and were enrolled in our studies according to

“Principles of Laboratory Animal Care” (National Society for

Medical Research). Experimental protocols described were

approved by the animal ethical committee of the University of

Liège (under the references #1597 and #2146). All experiments

were performed on male and female mice. Animals were

included in the asthma protocol aged 8 weeks and their weight

was between 20 and 25 grams. Three protocols of asthma

induction were used and referred to as a “short-term” (ST),

“intermediate-term” (IT) and a “long-term” (LT) exposure

protocol (Figure 1). Eight weeks-old BALB/c mice were

sensitized on days 1 and 8 (ST model) or on days 1 and 12

(IT and LT models) by intraperitoneal injection of 10 mg of

ovalbumin (OVA Grade V; ref#A5503 Sigma-Aldrich,

Schnelldorf, Germany) emulsified in 2 mg aluminium

hydroxide (AlumInject; ref#77161 Perbio, Erembodegem,
Frontiers in Immunology 03
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Belgium). Mice were subsequently divided into 4 groups for

daily nebulization in standard Plexiglas boxes (30 × 20 × 15 cm):

2 groups of mice (ADAM28-/- and ADAM28+/+ mice) were only

exposed to PBS (ref#17-516Q, Lonza, Verviers, Belgium) aerosol

(control cohorts), and the 2 other groups (ADAM28-/- mice and

ADAM28+/+) were subjected to ovalbumin 1% aerosol for 30

min (OVA Grade III; ref#A5378 Sigma-Aldrich, Schnelldorf,

Germany). Aerosols were generated daily by ultrasonic nebulizer

from days 22 to 26 for the ST exposure model and from days 22

to 56 for the IT model (aerosols were continued until day 90 for

the LT model) 5 days/week (every odd week).
Assessment of airway responsiveness

Mice were exposed to the 90 days model of exposition to

OVA. At the day of sacrifice, they were anesthetized by

intraperitoneal injection of pentobarbital (70 mg/kg,

Nembutal®, Sanofi Animal Health, Belgium) and ketamin (75

mg/kg, Ketalar®, Pfizer, Brussels, Belgium). A surgical

tracheotomy was performed and was followed by insertion of

an 18-gauge polyethylene catheter into the trachea. Mice were

ventilated by using a FlexiVent small animal ventilator
A

B

C

FIGURE 1

Experimental procedure. Short-term (ST) protocol (A), intermediate-term (IT) protocol (B), and long-term (LT) protocol (C). PBS/ovalbumin
(OVA) sensitization and exposure protocols. Mice were sensitized on days 1 and 8 by intraperitoneal injection of 10 mg of OVA. Mice were
subsequently exposed to daily PBS aerosol or OVA 1% aerosol for 30 min for ST, IT, or LT duration (see materials and methods section for the
detailed protocol).
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(SCIREQ, Montréal, Québec, Canada). Baseline lung-function

was evaluated during FlexiVent manoeuvres measuring lung

compliance, tissue elastance, and tissue hysteresivity in basal

conditions. Lung hysteresis, the area between the ascending and

descending portions of the pressure-volume curve is a reflect of

the property of the lung to dissipate the received energy (the

energy applied to the lung in inspiration is not completely

recovered in expiration). Hysteresivity (h) is the ratio of tissue

damping (G) over tissue elastance (H). After basal evaluation,

mice were exposed by inhalation to increasing doses of nebulized

methacholine (1.25, 2.5, 5, 10, 20 mg/ml; ref#190231 ICN, Asse-

Relegem, Belgium, PBS was used as a diluting solvent), and a

dose-response (airway resistance) curve was obtained for

each animal.
Measurement of airway remodelling and
airway inflammation

Right main bronchus was clamped and right lung was

excised and immediately frozen in liquid nitrogen. The

remaining left lung was inflated with 4% paraformaldehyde

(PFA, Ref#8.18715.1000, Sigma-Aldrich, Schnelldorf,

Germany) and resected. After a night in PFA bath, lungs were

embedded in paraffin. Five-µm sections were stained with

haematoxylin–eosin. A peribronchial inflammation score was

determined, related to cell infiltration around the bronchi, by

quantification of peribronchial inflammatory cells (eosinophils,

lymphocytes, macrophages, etc.), as previously described (21).

When no inflammatory cells were detectable around the bronchi

a value of 0 was given. A value of 1 was given when there were

occasionally inflammatory cells, a value of 2 when most bronchi

were surrounded by a thin layer (one to five cells) of

inflammatory cells, and a value of 3 when most bronchi were

surrounded by a thick layer (more than five cells) of

inflammatory cells. The score was measured on seven

randomly selected bronchial sections per mouse and

peribronchial inflammation scores are expressed as a mean

value per animal.

Masson’s Trichrome staining was used to measure collagen

deposition around the bronchi. As previously described, a

collagen deposition score was applied (allowing to give a score

from 0 to 3 to each observed bronchi) (18). A score of 0 was

recorded when no collagen was stained by Trichrome Masson

around the bronchi, a score of 1 for a thin layer of collagen, 2, for

a cluster of collagens and 3, for a thick layer of collagen.

Immunohistochemistry for alpha-smooth muscle actin (a-
SMA) was performed using mouse primary antibody anti-a-
SMA-FITC (ref#F3777 Sigma–Aldrich, Schnelldorf, Germany).

Digitalized slides corresponding to 7 bronchi per mice were

analysed. Smooth-muscle-cell layer was measured and reported

to epithelial basement membrane perimeter. Glandular

hyperplasia was evaluated by measuring the percentage of
Frontiers in Immunology 04
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periodic acid-Schiff (PAS)-stained goblet cells per total

epithelial cells (percentage of 300 randomly counted cells)

(PAS ref#1.09034.1000, Merck, Hoeilaart, Belgium).
Lung fibroblasts: Culture, proliferation
test and RNA analyse

Fibroblasts were isolated from the lung of ADAM28+/+ mice

exposed or non-exposed to allergens in LT model of asthma.

They were cultured according to already validated protocols

(22). Immediately after sacrifice, chests of mice were disinfected

with 70% ethanol and lungs were excised using sterile tools. They

were cut into small pieces by cutting with razor blades. Tissue

digestion was performed by collagenase (Collagenase from

Clostridium histolyticum, ref#C9891 Sigma-Aldrich).

Fibroblasts were cultured in hypoxia (incubator at 37°C, 5% of

CO2 and 3% of O2). Confluence of the fibroblasts was followed

using microscope. When they covered 60% of the plate medium

was changed to remove debris and unattached cells. Between

days 7 and 14, according to fibroblasts confluence, cells were

harvested and divided in several plates for analyse. One of them

was reserved for further RNA extraction. A CyQUANT cell

proliferation assay was performed following manufacturer’s

instructions. To evaluate fibroblasts growth rate, fluorescence

was analysed 48 hours after first passage.
Native lung fibroblasts cultured
in bronchoalveolar lavage
conditioned medium

Mice were sacrificed, and a bronchoalveolar lavage was

immediately performed using 4 x 1 ml PBS–EDTA 0.05 mM

(ref#324503 Calbiochem, Darmstadt, Germany) as previously

described (13, 14). Cells were recovered by gentle manual

aspiration. After centrifugation (1,200 rpm for 10 min, at 4°C),

supernatant was collected and frozen at –80°C. BAL was

collected from ADAM28+/+ and ADAM28-/- mice exposed and

non-exposed to OVA in a LT model of asthma. Cultured lung

fibroblasts were isolated from the lungs of naïve ADAM28+/+

mice. Enrichment of fibroblasts culture medium was performed

by adding 10% of previously collected BAL (ADAM28+/+ and

ADAM28-/- exposed to OVA or to PBS) to culture medium and

cell proliferation was measured by a CyQUANT assay

(Ref#C7026, Invitrogen, Merelbeke, Belgium).
Tissue processing: RNA extraction
and analyses

The right lobe of the lung previously frozen was disrupted

with a Mikro-Dismembrator (Sartorius Stedim Biotech,
frontiersin.org
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Vilvoorde, Belgium). Total lung RNA was extracted and purified

using High Pure RNA Tissue Kit (Roche ref#12033674001,

Mannheim, Germany) according to the manufacturer’s

instructions. Total ADAM28, membrane-bound (Variant 1,

Var1) and soluble form (Variant 4, Var4) expressions were

assessed by semiquantitative RT-PCR and normalized to the

28s rRNA. As 28S rRNA is the product of the precursor 45S

rRNA, some portions of 45S rRNA are also amplified by the

primers chosen to target 28S.

The following primers targeting respectively 28S, total

ADAM28, ADAM28 Var1 and ADAM28 Var4 were used: (F)

5’- GTTCACCCACTAATAGGGAACGTGA -3’, (R) 5’-GGATTC

TGACTTAGAGGCGTTCAGT-3’, (F) 5’-CTACTTGAGCT

GCAAGTGTCCATC-3 ’ and (R) 5 ’ -CAGGTCTTGCT

CACAGCATTTG-3’, (F) 5’-AGCCTCCACCTGATGTCCT

AATCA-3’, (R) 5’-TAACCCACTTTCCAGGGGTCAGTT-3’, (F)

5 ’-AGCCTCCACCTGATGTCCTAATCA-3 ’ , and (R) 5 ’-

cctgagggttaagagcgctagtaa-3’. These latter primers amplifying

ADAM28 variant 4 also amplify variant 5 that is a non-

coding sequence.

For real-time RT-PCR, 100ng of cDNA were used, produced

using RNA extracted, from whole lungs of OVA-exposed mice

and control counterparts (PBS).
Flow cytometry

To assess and quantify inflammatory cells infiltration, lungs of

ADAM28+/+ and ADAM28-/- were harvested and digested in

collagenase C (1mg/ml; Gibco) prior to red blood cell lysis (Red

Blood Cell Lysis Buffer, Sigma Aldrich, Saint-Louis, Missouri).

Cells were stained with fluorochrome-conjugated surface

antibodies during 30 minutes, fixed and permeabilized using

Cytofix/Cytoperm (ref#554714 BD Biosciences, Erembodegem,

Belgium) before intracellular antigen staining. Antibodies used for

flow cytometry analysis were: CD5-BV421 (ref#53-7.3,

BioLegend), CD4-PERCP CY 5.5 (ref#RM4-5, BD Biosciences),

CD8a-BB515 (ref#53-6.7, BD Biosciences), IFN-g-PE CY7

(ref#XMG 1.2, BD Biosciences), IL-4-APC (ref#11B11,

eBioscience, Thermo Fisher Scientfic), CD45R-APC-eFluor780

(B220) (ref#RA3-6B2, eBioscience). Data were acquired on

FACS CANTO II flow cytometer (BD Biosciences) and

analyzed using BD FACSDiva software (BD Biosciences).
Statistical analyses

Results are expressed as columns and scatter plots with

means ± SE. Statistic comparison between groups was

performed, using GraphPad InStat (GraphPad; http://www.

graphpad.com). The D’Agostino Pearson and Bartlett’s tests

were performed to assess normality of the values and

difference of variances. Non-normal law variables were
Frontiers in Immunology 05
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compared by nonparametric Mann Whitney test, while

normal-law variables were compared using the parametric t-

test. When multiple comparisons were performed a one-way

ANOVA was used. Values of P<0.05 were considered

as significant.
Results

ADAM28 expression in lungs of
OVA-exposed animals

In order to assess ADAM28 expression in lung in mouse

models mimicking acute to chronic features of asthma, mRNAs

corresponding to total ADAM28, soluble form (referred to as

Variant 4: Var4) and membrane-bound form (or Variant 1:

Var1) were measured by RT-PCR after ST, IT and LT allergen

exposure (Figures 2A–C).

In the ST exposure model, total ADAM28 expression was

lower in lungs of allergen-exposed mice as compared to PBS-

exposed animals and ADAM28 expression correlated with the

duration of exposure, i.e., animals challenged with OVA in

the LT protocol had higher ADAM28 expression as compared

to animals exposed to OVA in the ST protocol or in the IT

protocol (Figure 2A). These results were confirmed by q-PCR

(data not shown). Expression of the membrane-bound

variant (var1) of ADAM28 was not significantly modulated

at any stage of OVA exposure as compared to PBS

(Figure 2B). On the other hand, expression of the soluble

ADAM28 form (var4) was about twice higher when animals

were exposed to OVA in the IT or LT protocol while not

modulated in the ST protocol after OVA exposure

(F i gu r e 2C) and ADAM28 expr e s s i on inc r e a s ed

progressively according to the duration of allergen

exposure, as it was observed for the total ADAM28.
Effects of ADAM28 depletion on
allergen-induced inflammation in lungs
in long-term asthma model

In order to assess a potential role for ADAM28 in airway

remodelling, ADAM28+/+ or ADAM28-/- mice were exposed to

OVA in the LT protocol. OVA-exposed animals displayed

increased levels of peribronchial inflammation as compared

to PBS-exposed animals regardless of the ADAM28 expression

(Figure 3A). Nevertheless, bronchial inflammation score was

significantly lower in OVA-exposed ADAM28-/- as compared

to OVA-exposed ADAM28+/+ mice. In PBS-exposed animals,

levels of bronchial inflammation were low and similar in

ADAM28-/- and ADAM28+/+ (Figures 3A–E). CD+
4T

lymphocytes were measured in lungs of PBS- or OVA-

exposed animals by flow cytometry. ADAM28-/- displayed a
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slightly higher recruitment of CD+
4 T cells in the lungs upon

allergen exposure as compared to ADAM28+/+ (Figures 3F, G).

In the meantime, levels of CD+
8 T lymphocytes were lower in

non-exposed ADAM28-/- mice as compared to the

corresponding non-exposed ADAM28+/+(Figure 3G).

Nevertheless, Th2 lymphocytes were significantly less

recruited after OVA exposure in ADAM28-/- animals as

compared to wild-type counterparts (Figures 3H, I). B

lymphocytes failed to increase in the lungs of ADAM28-/-

after OVA exposure in contrast with what was measured in

ADAM28+/+ mice (Figures 3J, K).
Measurement of lung function and
airway responsiveness to methacholine
after a LT allergen exposure

At baseline, i.e., in PBS-exposed mice, there were no

significant differences between ADAM28-/- and ADAM28+/+

animals regarding lung function parameters measured by
Frontiers in Immunology 06
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Flexivent® (compliance (C), hysteresis and airway resistances)

(Figures 4A–C). In the LT protocol, OVA-exposed ADAM28+/+

mice displayed changes in lung function (significant decrease of

compliance, and increase of hysteresis and airway resistances)

when compared to PBS-exposed mice. In contrast, lung function

measurements in the LT protocol (evaluated by compliance,

hysteresis and airway resistances measurements) in ADAM28-/-

were not modified after OVA exposure and remained similar to

the values obtained from sham-exposed mice.

Bronchial responsiveness following exposure to increasing

doses of methacholine was measured using the FlexiVent®

system in ADAM28+/+ or ADAM28-/- mice exposed for 90

days to OVA or PBS. During methacholine challenge, OVA-

exposed ADAM28+/+ animals displayed a classical increase in

airway resistances when compared with PBS exposed

counterparts while, in sharp contrast, OVA-exposed

ADAM28-/- animals did not reach similar levels of airway

resistance after being exposed to the highest doses of

methacholine and displayed values similar to PBS-exposed

animals (Figure 4D).
A

B C

FIGURE 2

Effects of OVA exposure on ADAM28 RNA expression in the lung of mice assessed by RT-PCR on RNA extracted from lungs of mice exposed
and non-exposed to OVA. Results are normalized to the 28s rRNA RT-PCR. (A) Quantification of relative total ADAM28 mRNA expression in lung
of mice (N=2; PBS-ST n=12, OVA-ST n=15, PBS-IT n=6, OVA-IT n=10, PBS-LT n=7, OVA-LT n=10), (B) membrane-bound ADAM28 (Var1) mRNA
expression (N=2; PBS-ST n=15, OVA-ST n=13, PBS-IT n=6, OVA-IT n=10, PBS-LT n=7, OVA-LT n=9), (C) secreted (Var4) ADAM28 mRNA
expression (N=2; PBS-ST n=12, OVA-ST n=16, PBS-IT n=6, OVA-IT n=10, PBS-LT n=7, OVA-LT n=9). Results are represented as the mean ± SE,
. *p < 0.05, **p < 0.01, ***p < 0.001 (one-way ANOVA).
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Allergen-exposed ADAM28-/- mice
display significantly less features of
airway remodelling in LT asthma model

Airway remodelling was evaluated in the LT protocol after

allergen (OVA) or PBS exposure by histology and immuno-

histological analysis. Mucous hyperplasia was measured by

Periodic Acid-Schiff (PAS) staining. Percentages of mucous

cells in the airway epithelium were higher in OVA-exposed

mice as compared to PBS-exposed counterparts (Figures 5A–C).

Percentages of mucous cells after OVA exposure were

significantly lower in ADAM28-/- as compared to ADAM28+/+

animals (Figures 5A–C). Airway smooth muscle hyperplasia was

quantified by the measurement of alpha-smooth muscle actin

(a-sma) in immunohistochemistry (Figures 5D–F). In OVA-

exposed ADAM28+/+ mice, the area occupied by a-sma was

significantly increased in airway walls as compared to PBS
Frontiers in Immunology 07
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counterparts while this area did not increase in ADAM28-/-

exposed to allergens (Figures 5D–F). ADAM28+/+ mice exposed

to allergens displayed a significantly increased collagen

deposition in the airway walls as measured by Masson’s

trichrome staining. In contrast, the extent of collagen

deposition in the airway walls was significantly lower in

ADAM28-/- exposed to allergens (Figures 5G–I).
Lung fibroblasts express ADAM28
mRNA and their proliferation rate is
lower after OVA exposure when they
originate from ADAM28-/-

In order to study the potential role of ADAM28 in the

modulation of airway remodelling, fibroblasts were isolated from

lungs of OVA- or PBS-exposed animals (LT protocol) and
A B

D E

F

G I

H J

K

C

FIGURE 3

Effects of ADAM28 depletion on allergen-induced inflammation in lung tissue . Histological score estimating the peribronchial inflammation
quantified from haematoxylin-eosin (H&E) stained lung section of mice lungs (N=3; ADAM28+/+ - PBS n=10, ADAM28+/+-OVA n=10, ADAM28-/–

PBS n=6, ADAM28-/–OVA n=5) (A). Representative H&E staining of lung sections. Scale bar: 100mm. (B-E). Measurement of cell numbers in
digested lung: CD4+/CD5+ ratio (N=2; ADAM28+/+- PBS n=8, ADAM28+/+-OVA n=9, ADAM28-/– PBS n=4, ADAM28-/–OVA n=8) (F) and
corresponding contour plot of one representative animal for each condition (G); IL4+ and CD4+ cells that corresponds to the proportion of Th2
among Th cells (N=1; ADAM28+/+- PBS n=4, ADAM28+/+- OVA n=4, ADAM28-/– PBS n=4, ADAM28-/– OVA n=5) (H) and corresponding contour
plot of one representative animal for each condition (I); CD45R+ positive and CD5+ negative cells that represents proportion of B cells among
lymphocytes (N=2; ADAM28+/+- PBS n=8, ADAM28+/+- OVA n=9, ADAM28-/– PBS n=8, ADAM28-/– OVA n=10) (J) and corresponding contour
plot of one representative animal for each condition (K). Results are represented as mean ± SE, . *p < 0.05.
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cultured in order to evaluate their ability to produce ADAM28

mRNA and to proliferate. Proliferation rate of freshly isolated

fibroblasts was evaluated after the first passage by measuring

DNA levels in cell culture during 48h by Cyquant analysis.

Fibroblast proliferation was significantly increased after OVA

exposure, regardless of their extraction from ADAM28+/+ or

ADAM28-/- mouse lungs (Figure 6A). However, the

proliferation of fibroblasts extracted from lungs of OVA-

exposed ADAM28-/- animals was significantly lower as

compared with OVA-exposed ADAM28+/+ (Figure 6A). No

significant difference was found regarding ADAM28 mRNA

expression measured by RT-PCR in fibroblasts extracted from

OVA- or PBS-exposed wild-type mice (Figure 6B).
Bronchoalveolar lavage from
OVA-exposed ADAM28-/- fail to
stimulate fibroblast proliferation

Lung fibroblasts were isolated from naïve ADAM28+/+ mice

and cultured with a medium containing 10% BAL. Cell
Frontiers in Immunology 08
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proliferation was evaluated by measuring DNA levels using

CyQUANT during 48 hours. Fibroblast proliferation was

significantly increased when cells were cultured with BAL

from OVA-exposed ADAM28+/+ (LT model) in contrast to

what was observed when fibroblasts were incubated with BAL

collected from OVA-exposed ADAM28-/- (Figure 6C).
Discussion

We report here that total ADAM28 expression in lungs is

lower after allergen exposure in a mouse model of asthma.

However, the expression of the secreted variant of ADAM28

(var4) gradually increase with the duration of allergen exposure

with levels that stay lower in allergen-exposed animals as

compared to sham-exposed mice. As our working hypothesis

was that ADAM28 could play a role in asthma-related airway

remodelling, we focused on a long term allergen-exposure model

(LT) obtained after 90 days of exposure to allergens where the

highest levels of ADAM28 expression in the lung tissue

were measured.
A B

DC

FIGURE 4

Measurement of airway function in ADAM28-/- and ADAM28+/+ animals after allergen (OVA) or sham exposure (PBS). (A) Baseline lung
compliance (N=2; ADAM28+/+- PBS n=8, ADAM28+/+- OVA n=5, ADAM28-/– PBS n=5, ADAM28-/– OVA n=4), (B) lung hysteresis (N=2;
ADAM28+/+- PBS n=5, ADAM28+/+- OVA n=11, ADAM28-/– PBS n=4, ADAM28-/– OVA n=6) (C) lung hysteresivity (N=2; ADAM28+/+- PBS n=6,
ADAM28+/+- OVA n=10, ADAM28-/– PBS n=4, ADAM28-/– OVA n=4). (D) Measurement of the airway responsiveness. The airway resistance was
measured via the forced oscillation technique (Flexivent®) 24h after the last OVA or PBS exposure after exposure to increasing concentrations
of methacholine. Results are expressed as mean ± SE, (N=2; ADAM28+/+- PBS n=7, ADAM28+/+- OVA n=10, ADAM28-/– PBS n=3, ADAM28-/–

OVA n=6). *p < 0.05, **p < 0.01 (One way ANOVA).
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Although its precise biological functions are still uncertain,

ADAM28 might play a role in key mechanisms leading to

asthma-related inflammation and airway remodelling. We

show indeed that after OVA exposure, ADAM28-/- mice does

not display the same level of inflammatory cells recruitment in

the peribronchial area as observed in ADAM28+/+ mice.

Interestingly, Th2 cell numbers fail to increase after allergen

exposure in the lungs of ADAM28-/- suggesting a profound

dysregulation of immunological pathways when these ADAM28

deficient mice are exposed to allergens. This is in line with the

lower levels of CD8 cells reported earlier in cancer models in
Frontiers in Immunology 09
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these mice (20). Together with lower levels of inflammation in

ADAM28-/- animals, key features of airway remodelling

(glandular hyperplasia, smooth muscle cell hyperplasia and

collagen deposition) are significantly smaller after allergen

exposure as compared to wild-type animals.

As we hypothesized that ADAM28 could cleave membrane-

bound or soluble mediators and activate these molecules, we

planned to assess the possible biological effects on fibroblasts

(that could contribute to explain our findings regarding airway

remodeling). One of the mechanisms that might account for

these differences is an inhibition of fibroblast proliferation as
A B

D

E F

G
H I

C

FIGURE 5

Assessment of airway remodelling in the lung of ADAM28-/- and ADAM28+/+ mice exposed to allergens for 90 days (LT protocol).
(A) Quantification of the percentage of PAS-positive epithelial cells per bronchi (N=2; ADAM28+/+- PBS n=10, ADAM28+/+- OVA n=10,
ADAM28-/– PBS n=6, ADAM28-/– OVA n=5). (B, C) Representative PAS staining of lung sections of ADAM28+/+ and ADAM28-/- mice exposed to
OVA. Scale bar: 100 mm. (D) Assessment of smooth muscle area around the bronchi stained by IHC against a-SMA reported to perimeter of the
epithelial basement membrane (mean of 7 bronchi per mouse) (N=2; ADAM28+/+- PBS n=4, ADAM28+/+- OVA n=14, ADAM28-/– PBS n=6,
ADAM28-/– OVA n=9). (E, F) Representative IHC with an anti-a-SMA in lung sections of ADAM28+/+ and ADAM28-/- mice exposed to OVA. Scale
bar: 100 mm. (G). Collagen deposition score related to the thickness collagen (mean of 7 bronchi randomly selected per mouse, each one
scored from 0 to 3) (N=2; ADAM28+/+- PBS n=10, ADAM28+/+- OVA n=13, ADAM28-/– PBS n=6, ADAM28-/– OVA n=9). (H, I) Collagen stained
by Masson’s Trichrome staining of lung sections of ADAM28+/+ and ADAM28-/- mice exposed to OVA. Scale bar: 100 mm. Results are
represented as the mean ± SE. *p < 0.05, **p < 0.01, ***p < 0.001 (One way ANOVA).
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shown in this article on fibroblasts extracted from lungs of

ADAM28-/- and wild-type counterparts. As fibroblasts

incubated with the BAL from ADAM28-/- mice also displayed

a lower proliferation rate, this suggests that a soluble factor in the

BAL can stimulate fibroblast proliferation and is not produced

nor activated in the absence of ADAM28. We chose to study

effects of the BAL fluid since it contains a large number of

mediators that have potentially been processed by ADAM28.

However, the identification of such factor that might be a

substrate for ADAM28 is not achieved yet. Specific techniques

as iTRAQ-TAILS followed by mass spectrometry might be

helpful to answer that question by unveiling cleavages

performed by membrane-bound proteases (23).

In line with a significantly lower remodelling of the airways of

ADAM28-/- animals after OVA challenge, we measured

significantly lower airway responsiveness in these animals as

compared to wild-type mice after allergen exposure. A possible

protection of ADAM28-/- mice against structural changes of the

airways is plausible since we measured significantly lower

compliance, an increase of hysteresis and hysteresivity (h) in

ADAM28+/+ exposed to allergens. These parameters are closely

related to the remodelling classically observed in models of asthma

after 90 days allergen exposure therefore confirming our histological

observations (lower airway remodelling in ADAM28-/- mice as

compared to ADAM28+/+ after OVA exposure).

The exact mechanisms linking ADAM28 and a modulation of

airway remodelling and responsiveness in asthma are still to be

unveiled but there are arguments to hypothesize that ADAM28

contributes to the events leading to the asthma phenotype. The

ability of this protease to cleave the low affinity IgE receptor CD23

present at the surface of B-cells, monocytes, macrophages and

eosinophils (24, 25) could interfere with different key processes.

Indeed, this cleavage of CD23 generates a soluble form of CD23 as

already demonstrated for other ADAM proteases including
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ADAM8 (26, 27). However, this effect on CD23 could be

negligible since ADAM10 was recognized as the main sheddase

for CD 23 (28). Nevertheless, control of CD23 is of key

importance in mechanisms of asthma and allergy as this

mediator modulates T cell activation (29, 30). As ADAM28 has

the capacity to bind various integrins, it can also be hypothesized

that this protease might interfere with inflammatory and stromal

cells trafficking (17). For example, ADAM28 recognizes a9b1 as
well as a4b1 which contribute to adhesion and transendothelial

migration of neutrophils and lymphocytes, respectively (31–34).

Also, it was shown that soluble ADAM28 is able to enhance a4b1-
dependent cell adhesion to VCAM-1 (vascular cell adhesion

molecule-1) therefore influencing lymphocyte adhesion to

endothelium and trafficking across the capillary walls (17). This

is possibly the cause of the lack of migration of Th2 lymphocytes

to the lung after allergen exposure in ADAM28-/- animals

reported in this work.

We recently reported that ADAM28 depletion in mice

causes increased tumour cell dissemination in lungs by

decreasing the cancer cytotoxicity mediated by CD8

lymphocytes (20). However, ADAM28 expression has been

reported in thymic epithelial cells suggesting a role in T

lymphocyte differentiation (32–35) but mice depleted for

ADAM28 did not display any abnormalities in thymocytes

and T lymphocytes differentiation (20). A drastic reduction of

CD8+ T cells was reported in spleen of ADAM28-/- (20). In this

study, we report that CD8 lymphocytes are lower in ADAM28-/-

as compared to ADAM28+/+ animals. The role of CD8+

lymphocytes in asthma is complex and has been nicely

reviewed by Lourenço et al. (36). Inhibition studies using

depleting antibodies suggest that CD+
4 lymphocytes are not per

se sufficient to induce airway remodelling (37) suggesting a role

for other actors as CD+
8 cells. These cells are heterogeneous and a

subset of CD+
8 cells was reported to produce IL13 and was
A B C

FIGURE 6

Study of lung fibroblasts. (A) CyQuant measurement of cell proliferation of fibroblasts extracted from lungs of ADAM28-/- and ADAM28+/+ mice
exposed to OVA or PBS. DNA levels were measured in cell culture during 48h (N=2; ADAM28+/+- PBS n=8, ADAM28+/+- OVA n=9, ADAM28-/–

PBS n=8, ADAM28-/– OVA n=6). (B) RT-PCR measurement of ADAM28 mRNA expression in fibroblasts extracted from wild-type mice exposed
to OVA or PBS for 90 days (N=2; ADAM28+/+- PBS n=8, ADAM28+/+- OVA n=10). (C) Measurement by CyQuant of cell proliferation of
fibroblasts extracted from lungs of naive mice exposed during 48 hours to media enriched with 10% of BALF from ADAM28+/+ or ADAM28-/-

mice exposed to OVA in the LT model. DNA levels were measured in cell culture during 48h (N=1; ADAM28+/+- OVA n=7, ADAM28-/– OVA
n=7). Results are represented as the mean ± SE. *p < 0.05, ***p < 0.001 (Figure 6A: One way ANOVA, Figures 6B, C: Mann-Withney).
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associated with airway obstruction suggesting a plausible role of

these cells in airway remodelling (38). Moreover, IL13 plays a

significant role in airway remodelling and was shown to increase

the pro-fibrotic gene expression in fibroblasts (39).

Interestingly, ADAM28 might activate pathways leading to

or supporting asthma-related inflammation by modulating the

biological activity of mediators as TNF-a. Indeed, ADAM28

might activate TNF-a acting as a sheddase able to release mature

TNF-a in the supernatant of ADAM28 transfected HEK-293

cells (40). Also, inhibition of endogenous ADAM28 in

macrophages resulted in a reduced mature TNF-a release (40).

Recently, it was suggested that ADAM28 might play a role in key

immunomodulatory mechanisms since CD20+/CD22+/

ADAM28+ B cells were shown to promote response to

immune checkpoint inhibitor therapy in non-small-cell lung

cancer (41).

Regarding the differences of expression of ADAM28 Var4 in

the mouse model, the primers used to amplify Var4 also

recognize and amplify Var5 that is a non-coding sequence.

However, we cannot rule out a possible interference with

measurements of RNA corresponding to Var4.

Full ADAM28 depletion in mouse does not lead to any

spontaneous phenotype and specifically no developmental

abnormalities in bronchial tree, alveolae architecture, or

bronchial epithelium (20). As previously reported for many

other proteases, the stimulation of inflammation is able to

unveil specific functions of ADAM28. Furthermore, our

observations suggest that ADAM28 contributes to mechanisms

leading to asthma-related airway inflammation and remodelling

but it is probably not the final effector and further experiments

are needed to fully unveil the precise molecular mechanism.
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cells were identified as alive CD5+ CD8+ cells.
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A dysregulated immune microenvironment at the maternal-fetal interface in early

pregnancy may lead to early pregnancy loss, fetal growth restriction, and

preeclampsia. However, major questions about how epigenetic modifications

regulate the immune microenvironment during the decidualization process and

embryo implantation remain unanswered. DNA methylation, the main epigenetic

mechanism involved in the endometrial cycle, is crucial for specific transcriptional

networks associated with endometrial stromal cell (ESC) proliferation, hormone

response, decidualization, and embryo implantation. Ten-eleven translocation

(TET) enzymes, responsible for catalyzing the conversion of 5-methylcytosine to

5-hydroxymethylcyosine, 5-formylytosine, and 5-carboxylcyosine to achieve the

DNA demethylation process, appear to play a critical role in decidualization and

embryo implantation. Here, we provide a comprehensive view of their structural

similarities and the commonmechanism of regulation in the microenvironment at

the maternal-fetal interface during decidualization and early pregnancy. We also

discuss their physiological role in the decidual immune microenvironment. Finally,

we propose a key hypothesis regarding TET enzymes at the maternal-fetal

interface between decidual immune cells and ESCs. Future work is needed to

elucidate their functional role and examine therapeutic strategies targeting these

enzymes in pregnancy-related disease preclinicalmodels, whichwould be of great

value for future implications in disease diagnosis or treatment.

KEYWORDS

DNAmethylation, TET enzymes, decidualization, early pregnancy, microenvironment,
immune cells
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Introduction

The endometrium, regarded as one of the most dynamic

tissues in the human body, undergoes periodic changes,

including cell proliferation, differentiation, and apoptosis (1).

This tissue is composed of luminal and glandular epithelial cells,

stromal cells, immune cells, endothelial cells, and so on,

participating in the formation of the microenvironment at the

maternal-fetal interface and controlling the subsequent invasion

of trophoblast cells and the establishment of the maternal-fetal

interface immune tolerance (2, 3). Abnormal decidualization of

the endometrium can lead to infertility and a variety of

pregnancy-related diseases, including early pregnancy loss

(EPL), fetal growth restriction (FGR), and preeclampsia (PE)

(4, 5). At present, studies have shown that a variety of steroid

hormones, transcription factors, lipids and cell cycle–related

proteins regulate the process of decidualization and participate

in early embryo implantation and pregnancy maintenance.

Epigenetic modification is an important regulation mode that

affects gene expression and cell function. It can occur at

transcriptional, posttranscriptional, and posttranslational

levels, involving DNA methylation, histone methylation, and

histone acetylation and deacetylation. At present, there is a large

amount of evidence that epigenetic modification is involved in

the regulation of the decidualization process (6).

DNAmethylation is one kind of chemicalmodification ofDNA,

bywhich the cytosinenucleotide is converted into 5mCbya familyof

DNA methyltransferases (7). Whereas DNA demethylation is

generated by active enzymatic demethylation during which 5-

methylcytosine (5mC) undergoes a series of oxidation reactions

catalyzed by the methylcytosine dioxygenases ten-eleven

translocation (TET) enzymes (8). High levels of CpG islands and

methylationof these islandsmay result in transcriptional silencing or

repressing (7, 9, 10). Thus, DNA methylation is considered to be a

main mechanism behind many fundamental cellular processes,

including the endometrium’s cyclical changes (11). The tissue-

specific variation in DNA methylation content across the

menstrual cycle further suggests that DNA methylation regulates

gene expression during the endometrial cycle (7, 12, 13).

Of note, the creation of an appropriate immune

microenvironment is another key element for blastocyst

implantation (14, 15). The decidual immune cells are mainly

composed of lymphocytes (e.g., NK cells, T cells, dendritic cell

and NK-T cells, etc.) and macrophages, and their proportion

changes in the endometrial cycle (16). Dysregulation of the

immune response and immune cell distribution may lead to

placentation failure and reproductive decline (17, 18). Studies

have shown that the genes affected by decreased methylation

during decidualization were mainly associated with immune

response regulation (19, 20). Furthermore, DNA methylation also

plays a vital role in immune cell development and maturation,

which contributes to decidual immune homeostasis (21–23).

Altogether, we performed a comprehensive literature review
Frontiers in Immunology 02
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concerning the roles of TET enzymes in the microenvironment at

the maternal-fetal interface during decidualization and

early pregnancy.
Common features of TET proteins

TET1, TET2, and TET3, which constitute a family of iron

(II)/2-oxoglutarate-dependent dioxygenase, are responsible for

catalyzing the conversion of 5mC to 5-hydroxymethylcyosine

(5hmC), 5-formylytosine (5fC), and 5-carboxylcyosine (5caC) to

achieve the DNA demethylation process (24–26). These

enzymes are associated with several conserved signaling

pathways in several kinds of organs or tissues during

development, especially in embryo and cancer development

(27, 28).
Structural similarities

TETs are all composed of an acatalytic region in their C-

terminal that is responsible for 5mC dioxygenase activity termed

the double-stranded b-helix domain and a conserved cysteine-

rich domain, which is thought to be essential for proper folding.

However, TET1 and TET3 carry a CXXC domain at the N-

terminal region, which is not present in TET2. As a result, CXXC

was separated and originates the IDAX gene, which acts as a

negative regulator for TET2 (29).
Functions in DNA demethylation and
decidualization and early pregnancy

During the DNA demethylation process, TET enzymes

oxidize the methyl group to 5hmC, 5-formylcytosineand 5-

carboxylcytosine (30–33). After being recognized and excised

by the enzyme thymine DNA glycosylase, these bases are

substituted by an unmodified cytosine by base excision repair

and lose their indicated function (33). In other words, TET

enzymes work as erasers in the DNA methylation machinery

during the whole endometrial cycle (34). All three TET enzymes

are detectable in both epithelium and stroma tissues during the

cycle. Besides this, recent studies show that TET1 and TET3 are

preferentially expressed in the midsecretory phase over the other

phases (27). Moreover, progesterone induces expression levels of

all TET enzymes in endometrial epithelial cells, whereas

estradiol plus progesterone treatment increases the expression

of TET3 in the same cell type, but estradiol only induces the

expression of TET1 in stromal cells, indicating that sex

hormones regulate the expression of TET genes in a dynamic

and cell-specific manner in the human endometrium (27). Our

previous study found that the expression of TET3 gradually

decreases in the endometrial tissues of women in the
frontiersin.org
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proliferative and secretory phases of the menstrual cycle as well

as in the decidual tissues of early pregnancy, whereas it increases

in the decidual tissues of women with EPL. Further mechanism

studies indicate that TET3 negatively mediates miR-29a’s role in

promoting the decidualization of endometrial stromal cells

(ESCs) in vitro and maintaining pregnancy in vivo, suggesting

that TET3 inhibits decidualization of ESCs, which may be

involved in the pathogenesis of EPL caused by abnormal

decidualization (35).

It is worth noting that miR-29a can upregulate the levels of

decidualization markers IGFBP1 and PRL, whereas TET3

inhibits this effect (35). The specific mechanism remains to be

further explored. At present, there are two main mechanisms of

action of TET3: first, TET3 a-ketoglutaric acid (a-ketoglutarate,
a-KG) and Fe2+catalyze the conversion of 5mC to 5hmC,

mediate the demethylation process, and finally promote gene

expression (36). In addition to the above mechanisms, TET3 also

combines O-linked b-N-acetylglucosamine (O-GlcNAc)

transferase (OGT), catalyses the O-GlcNAc glycosylation of

histone serine and threonine residues (O-GlcNAcylation), and

the final effect is to promote the downstream target genes

transcription (37). However, these mechanisms are not enough

to explain the phenomenon that TET3 downregulates the levels

of IGFBP1 and PRL. There should be other mechanisms by

which TET3 regulates the decidualization process of ESCs.

Based on the epigenetic modification mechanism, it can

reduce or enhance the degree of DNA aggregation, thus

regulating the expression of target genes at the transcriptional

level (38–40). At the same time, other members of the TET

family, TET1 and TET2, bearing certain structural homology

with TET3, are also proved to be able to combine with multiple

epigenetic regulatory molecules, for example, TET1 combines

SIN3A, MeCP2, HDAC1/6/7, EZH2, LSD1, etc. (41, 42); TET2

combines Smarcb1/c2/e1, HDAC1/2, Ncor1/2, Baz1a/1b,

Top2a/2b, Mbd2, Phf2, Ino80, Sap30bp, Trrap, Wdhd1, Chd8,

Chaf1a, and Dnmt3a, etc. (43). At present, studies have shown

that multiple molecules interacting with TETs play a role in the

decidualization of ESCs, including SIN3A, EZH2, Dnmt3a, etc.

(11, 44, 45), suggesting that members of the TET family can not

only act as catalytic enzymes to affect epigenetic modification,

but also act as anchor proteins for a variety of epigenetic

modification enzymes.

Besides this, some studies also show TET expression in

endometrial pathology. For example, a higher level of TET3

and lower levels of TET1 and TET2 were found in endometrial

cancer compared with the normal endometrium, whereas

endometrial cancer tissues showed lower levels of global

hydroxymethylation at the same time (46). TET gene

expression was also found dysregulated in the ectopic

endometrial tissue of women with endometriosis, including

decreased TET1 levels (47). However, the expression and

regulation of TETs in the endometrium is still not clear.

Therefore, further studies are required to explore the
Frontiers in Immunology 03
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mechanism by which and how TETs regulate the key

processes during decidualization, embryo implantation, and

placental growth.
Additional biological roles of
TET enzymes in decidual
immune tolerance

Decidual immune microenvironment and
DNA methylation levels

Decidual immune cells are mainly composed of natural killer

(NK) cells, macrophages, T cells, dendritic cells, and so on.

Decidual NK (dNK) cells represent the largest population (50%–

70%), whereas macrophages comprise approximately 10%–20%

of whole decidual leukocyte populations, and the others are a

very small minority (48–50). These immune cells, together with

decidual stromal cells, cooperate to modulate trophoblast

invasion, promote fetal growth, and regulate immune

tolerance. Epigenetic modifications, including DNA

methylation, are a key avenue for controlling immune

responses, which can change the gene expression level without

altering the underlying DNA sequence, thus allowing for a rapid

adaptation of cells to the surrounding environment (51, 52).

DNA methylation also provides an unexplored mechanism for

immune regulation of decidual immune cells during the

endometrial cycle, which could help explain how decidual

immune cells are able to adapt and respond to the dynamic

changes throughout the decidualization process. Interestingly,

one recent study has identified low expression levels of genes

that are related to NK cell function, such as KIR2DL3 and

KLRC3, at the late proliferative phase, suggesting a decreased

immune response mediated by NK cells at this phase of the

endometrial cycle, which is consistent with the modulation of

the immune response to favor embryo implantation (53).

Besides this, another study also found the genes affected by

decreased methylation were mainly associated with immune

response regulation (FYN, BCL3, PVR, JAK3, IL1RL1, RFTN1,

MYO1G, CXCL13, and C1S) (19).
Roles of TET enzymes in immune cell
development and function

Whereas the implication of TET proteins in DNA

demethylation is well-established, the mechanisms underlying

TET proteins in immune cells is yet to be explored. Strikingly,

TET loss of function is strongly associated with hematological

malignancies. For example, TET2 loss-of-function mutations are

frequently observed in myelodysplastic syndromes and myeloid

malignancies as well as in certain peripheral T-cell lymphomas

(54–57). The biological roles of TET proteins in immune cell
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development, function, and malignant transformation have been

unraveled in these studies.
T cells

In T cells, the loss of TET proteins may result in compromised

immune function or malignant transformation. Of note, TET2/3

are preferentially expressed in T cells compared with TET1 and

play central roles in 5hmC modification in these cells (58).

Deletion of TET2 alone in the hematopoietic system or in T

cells did not result in any defect in T-cell lineage fate, indicating a

compensative relationship between TET2 and TET3 (59, 60).

However, it is reported that lack of TET2 enhanced CD8+ T-cell

memory formation and differentiation (60). Although deletion of

TET2 in CD4+ T cells in mice have intact thymic and peripheral

T-cell subpopulations, typical cytokine expression was found

decreased, including IL-17, IL-10, and IFN-g (59). The most

profound phenotypes have been found in T cells upon

codeletion of at least two TET members. For instance, TET2/

TET3 DKO mice exhibited a striking increase of iNKT cells with

impaired function and enhanced stemness (59, 61, 62).

Surprisingly, genome-wide DNA methylation remains

unchanged in response to the loss of TET proteins, but the

deposition of 5hmC across specific genes, such as Tbx21 and

Zbtb7b, is affected, suggesting a focal regulation role of TET

members. These TET2/3 DKO iNKT cells can produce large

amounts of immune response–related cytokines and drive other

immune cell subset expansion and responses. In addition, TET

enzymes are also required for the homeostasis of T regulatory

(Treg) cells by modulating the expression of the transcriptional

factor FOXP3. TET2 and TET3 are able to demethylate two

intronic enhancers, termed conserved noncoding sequence

(CNS) 2, which is critical for maintenance of FOXP3 expression

(63–65). Deleting TET2 and TET3 specifically in Tregs not only

results in compromised Treg lineage, but also a gain of aberrant

activation and effector function in those cells, which enhances

whole-body inflammation and ultimately accelerates death.

Double TET1/2 deletion may also result in impaired Treg

inactivation and differentiation due to hypermethylation of the

CNS locus (66). Given the importance of all kinds of T cells

involved in the endometrial cycle and decidualization process,

future pharmacological methods specifically targeting TET

proteins to modulate T-cell activity may employ a strong

biological effect in the endometrial cycle.
B cells

TET-dependent DNA demethylation is essential for B-cell

differentiation, maturation, and function. TET protein

expression levels are dynamically regulated during B-cell

development. TET1 is significantly reduced in pro-B-cells,
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whereas TET2 and TET3 is increased during B-cell maturation

and activation, suggesting a critical role of TET proteins in B-cell

biology (67). In vitro analysis of TET1 KO cells showed a

promoted status of lymphoid bias differentiation with more

self-renewing pro-B-cell colonies compared with pre-B-cells

(68). Long-term lack of TET1 resulted in lymphocytosis in

mice by 18–24 months of age. TET2, one of the most

frequently mutated genes in diffuse large B-cell lymphoma,

works as a tumor-suppressor gene. Based on previous studies,

TET2 was shown to be required for CSR and affinity maturation

of antibodies, and disruption of TET2 may result in germinal

hyperplasia. Mechanically, TET2 can preferentially strengthen

the activity of enhancers (Igk and Aicda) (69). Compared with

TET2 deletion, codeletion of TET2 and TET3 may cause more

severe B-cell phenotypes during bone marrow development,

including halting the pro-B-cell to pre-B-cell transition process

and decreasing mature B cells in mice, and it diminishes the

rearrangement of the Igk locus by increasing CpG methylation

levels at the Igk3′ and distal enhancers (70). Future studies are

needed to examine how TET proteins epigenetically affects B-cell

biology in the decidual microenvironment.
Myeloidcell

Compared with other TET proteins, TET2 is preferentially

abundantly expressed in myeloid cells and further required for the

myeloid cell–mediated innate immune response and surely critical

in the decidual immunemicroenvironment (71, 72). TET2 deletion

does not dramatically alter alternative macrophage (M2) gene

expression levels, but indeed decreases the immunosuppressive

function of these cells. TET2-KO macrophages and DCs produce

more proinflammatory cytokines, such as IL-6, in response to

bacterial activation (43, 73). Compared with wild-type mice, Tet2-

KO mice show increased susceptibility to endotoxin-induced

shock, DSS induced colitis, and so on, all suggesting the anti-

inflammatory function of TET2 (43). Notably, during tumor

growth, TET2 expression was found increased in myeloid-

derived suppressor cells and tumor-associated macrophages and

preserved immunosuppressive gene expression levels. TET2

deficiency in tumor-associated macrophages results in defective

immunosuppressive capacity and an altered cytokine expression

profile (74, 75). However, the role of TET2 in the myeloid-

mediated decidualization process awaits further investigation.
NK cells

NK cells play central roles in boosting inflammation and

decidualization, but the evidence is lacking regarding whether

and how TET proteins function in NK cells and, thus, have an

effect during the endometrial cycle (3, 48). Continued efforts are

needed to investigate the possible role of TET proteins in dNK
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cells, and this will shed light on the current understanding of the

biological role of TET enzymes in decidual immune tolerance.
Macrophages

Macrophages are highly diverse cells and the major antigen-

presenting cells at the maternal-fetal interface. In addition to

protection of the embryo from the attack of the maternal

immune system, decidual macrophages also play a key role in

embryo implantation, trophoblastic invasion, spiral artery

remodeling, and placentation. Recently, new concepts have

emerged to explain how macrophage polarization and function

are regulated, including immune metabolism and epigenetics (76,

77). Macrophages are divided into M1-like macrophages and M2-

like macrophages. M1 macrophages secrete a variety of cytokines

including IL-2, IL-6 and TNF-a, which involved in pro-

inflammatory responses, whereas M2 macrophages are mainly

involved in anti-inflammatory responses (78). The balance of M1

macrophages and M2 macrophages is critical for various processes

in both normal and pathological pregnancy (79). However, the

functions of TETs in decidual macrophages are largely unknown.

Although only a few studies showed epigenetic regulation in the

differentiation and function of decidual macrophages, emerging

studies reported the role of epigenetic modulating by TETs in

macrophages in other fields (43, 73, 80), which may shed new

insights for further studies on decidual macrophages.
Conclusions and future perspectives

Collectively, TET proteins are critical to 5hmC/5Mc/5fC/

5caC modification in various decidual immune and stromal

cells, which is essential for the decidualization process and early

pregnancy. It is expected that using specific compounds

modulating TET activity may be useful in pregnancy-related

diseases and for modulating immune cell responses during the

decidualization process. Thus, it is critical to elucidate the

functional role of TET proteins for modulating 5hmC/5mC/

5fC/5caC levels in decidual stromal and immune cells, which
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requires further understanding of the possible underlying

molecular mechanism in various cell types. Future work may

also be required to explore how to discover and utilize novel TET

interactors to modulate immune responses during

decidualization and early pregnancy. The elucidation of these

aspects will open an exciting field for future work.
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The role of intestinal
immune cells and matrix
metalloproteinases in
inflammatory bowel disease
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Bin Wang2* and Renjun Gu1,6,7*

1Nanjing University of Chinese Medicine, Nanjing, China, 2Department of Cardiothoracic Surgery,
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Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing,
Jiangsu, China, 4Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and
Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China, 5Department of
Ultrasound, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese
Medicine, Nanjing, China, 6School of Chinese Medicine & School of Integrated Chinese and
Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China, 7Department of
Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing,
Jiangsu, China
Inflammatory bowel disease (IBD) has become globally intractable. MMPs play a

key role in many inflammatory diseases. However, little is known about the role

of MMPs in IBD. In this study, IBD expression profiles were screened from

public Gene Expression Omnibus datasets. Functional enrichment analysis

revealed that IBD-related specific functions were associated with immune

pathways. Five MMPS-related diseasemarkers, namely MMP-9, CD160, PTGDS,

SLC26A8, and TLR5, were selected by machine learning and the correlation

between eachmarker and immune cells was evaluated. We then induced colitis

in C57 mice using sodium dextran sulfate and validated model construction

through HE staining of the mouse colon. WB and immunofluorescence

experiments confirmed that the expression levels of MMP-9, PTGDS,

SLC26A8, and CD160 in colitis were significantly increased, whereas that of

TLR5 were decreased. Flow cytometry analysis revealed that MMPs regulate

intestinal inflammation and immunity mainly through CD8 in colitis. Our

findings reveal that MMPs play a crucial role in the pathogenesis of IBD and

are related to the infiltration of immune cells, suggesting that MMPs may

promote the development of IBD by activating immune infiltration and the

immune response. This study provides insights for further studies on the

occurrence and development of IBD.

KEYWORDS

inflammatory bowel disease, matrix metalloproteinases, immune microenvironment,
biomarker, gene expression omnibus
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1 Introduction

The global incidence of inflammatory bowel disease (IBD) is

increasing yearly (1). IBD includes intestinal autoimmune

diseases, inflammation, stimulation of inflammatory cells, with

the release of inflammatory cytokines, activation of immune

cells, and abnormal changes in intestinal microvascular

endothelial cell function, which affect immune cell function

and the stability of the intestinal environment and lead to cell

and tissue damage (2). In recent years, it is generally believed

that a part of colorectal cancer can progress from IBD (3, 4). The

inflammatory response of the colon is a major factor in the

development of colorectal cancer (5). Studies on the treatment of

IBD provide insights for the prevention and treatment of

colorectal cancer. However, due to the increasing incidence,

long course, and delayed healing in IBD, its diagnosis, treatment,

and prognosis have become a challenge (6).

Although IBD can be triggered by various factors, the

immune response appears critical for the onset of IBD (7, 8).

As the largest immune organ of mammals, the gut contains

many types of immune cells, including B cells, T cells, dendritic

cells, macrophages, eosinophils, and mast cells (7, 9). When the

intestinal barrier is damaged, bacterial infection occurs, which

affects the process of IBD (10). A focus of our research includes

identifying the immune cells that play a role in the pathogenesis

of IBD. At present, therapy for IBD mostly involves inhibiting

intestinal inflammation (11). Immunotherapy that can regulate

the intestinal barrier also provides a new idea for treating IBD.

MMPs are enzymes with specific biological activities (12).

MMPs participate in many activities related to maintaining their

own stability and play a wide range of roles in the development of

disease (13). MMPs can regulate inflammation at all levels. They

can regulate the migration of inflammatory cells from the artery to

the inflammatory zone and process ECM components, growth

factors, cytokines, and chemokines, thus regulating the uptake of

inflammatory cells and access to the inflammatory zone (14–16).

The inflammatory marker role of metalloproteinases can help in the

diagnosis and treatment of some inflammatory diseases (17),

especially rheumatoid arthritis (18, 19); however, the role of

MMPs in IBD has not been elucidated, and the value of MMPs

in the immunotherapy of IBD is rarely demonstrated. Notably, the

relationship between MMPs and immune cells may be much more

complex than understood (20). Studies have demonstrated high

expression of MMP-3 (21), MMP-9 (22, 23), and MMP-13 (24) in

damaged colonic mucosa. This gives us confidence to further

demonstrate the relationship between other MMPs and IBD.

To evaluate the potential impact of MMPs on IBD, machine

learning was used to identify five MMP-related disease markers.

The expression of MMP-9, PTGDS, SLC26A8, and CD160 in

colitis was increased in the IBD mouse model, whereas the

expression of TLR5 was downregulated. In addition, the findings

revealed that MMPs regulated the occurrence and development

of IBD through CD8.
Frontiers in Immunology 02
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2 Materials and methods

2.1 Data sources and processing

The GSE94648 and GSE119600 microarray data sets were

downloaded from the Gene Expression Omnibus (GEO) datasets.

The GSE94648 profile includes samples from 75 patients with IBD

and 22 healthy controls, whereas GSE119600 contains samples

from 188 patients with IBD and 47 healthy controls. The

platforms are GPL19109 and GPL10558, respectively. Finally,

the batch effect was eliminated using the “SVA” package in R,

and the two datase ts were subsequent ly merged .

Metalloproteinase-related genes were retrieved from Gene Cards

(https://www.genecards.org/). The cut-offs were set as Relevance

Score > 0.2 (Supplementary Table 1).
2.2 Analysis of differentially
expressed genes

The “limma” package in R is used to identify various genes.

Genes with P-value < 0.05 and absolute log2FC > 0.6 were

considered differentially expressed genes (DEGs). Volcano plots

and heatmaps were constructed using “heatmap” and “ggplot2”

packages in R, respectively.
2.3 Gene set enrichment analysis

Gene ontology (GO) enrichment analysis, KEGG pathway

analysis, and DO method combined with “cluster Profiler” in R

and the DOSE program were used to study DEGs. The GSEA

technique allows for the identification of the most important

functional terms in patients with IBD and control groups.

“c2.cp.kegg.v7.0.symbols.gm t” is a criterion used for

mymbols.gm t. The gene cluster is considered significantly

aggregated if P < 0.05 or false issue rate < 0.025.
2.4 Candidate diagnostic
biomarker screening

Three machine learning methods are used to predict

patients’ conditions to identify the main prognostic variables.

The least absolute compression and selection operation (LASSO)

is a new approach that uses regularization methods to improve

forecast accuracy. In R, the LASSO regression algorithm uses

“glmnet” grouping to identify genetic factors that are

significantly associated with IBD and control samples. Support

vector machine (SVM) is one of the most widely used supervised

machine learning methods. The metadata sequences are

optimized using recursive feature elimination (RFE) methods

to prevent duplicate screening. SVM-RFE was used to screen for
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https://www.genecards.org/
https://doi.org/10.3389/fimmu.2022.1067950
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mei et al. 10.3389/fimmu.2022.1067950
suitable features to identify the set of gene pools with the highest

discrimination power. Then “randomForest” in R was used to

implement the random tree algorithm. Finally, the intersection

was obtained through the Venn diagram package.
2.5 Discovery of immune cell subtypes

To quantify the rate of invasive immune cells in the gene

expression profile of IBD, a bioinformatics algorithm called

CIBERSORT (https://cibersortx.stanford.edu/) was used to

estimate the invasion rate of the immune system. The number of

an immune cell type was estimated using a reference system

containing 22 isoforms (LM22) for 1000 permutations. A total of

22 infiltrating immune cell types were correlated using “corrplot” in

R. Violin charts were used to represent the infiltration of immune

cells in IBD and control samples using “vioplot” in R.
2.6 Correlation analysis between
identified genes and infiltrating
immune cells

The relationship between identified genetic markers and

invading immune cells was evaluated using Spearman’s

hierarchical correlation in R. The correlations were generated

using the graphical technique in the “ggplot2” suite.
2.7 Construction of the mouse model of
chronic colitis and experimental design

Male C57 mice (22–24 g), aged ~6 weeks, were purchased from

Ltd. in Jiangsu, China. After 1 week of acclimatization, the rats were

randomly divided into two groups (n = 6 per group): normal control

anddextran sulfate (DSS)groups. For theDSSgroup, 1.5%(w/v)DSS

(36000–50000 Da, China Eason Biochemical Technology Co., Ltd.)

waspreparedbydissolving in sterilizedwater,filtered through a0.22-

mmfilter, andprovided to the rats in theDSSgroup.TheDSSsolution

was reconfigured every other day. Rats in the control group drank

sterilized freshwater and bred in the same facility. Amousemodel of

chronic colitis lasted for three weeks per period, and after three

periods, the mice were euthanized. Themice was weighed every two

days, and the blood in the feces and changes in character were

evaluated. All mice were euthanized by cervical dislocation. The

colon was collected, and its length and thickness were measured.
2.8 HE staining and histological
evaluation of colonic damage

Colonic tissue was fixed in 4% methylal solution and left

overnight. Then the tissue was fixed and embedded in paraffin
Frontiers in Immunology 03
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and cut into slices with a thickness of ~3 mm. Then after

dewaxing, dehydrating, HE staining, dehydrating, and making

the samples transparent, the slides were covered with a cover slip

coated with neutral gum and sealed. The lesions were observed

and recorded under an optical microscope. Lesions and

inflammatory cell infiltration were evaluated in colon tissue.

Then colon damage was determined histologically according to

the scoring criteria of the histological examination provided in

Supplementary Table 2.
2.9 Immunofluorescence

Immunofluorescence for MMP-9, PTGDS, the activating

NK cell receptor CD160 and TLR5 and SLC26A8 on colonic

tissue was performed using standard methods. Colonic sections

were deparaffinized and rehydrated. Then antigen retrieval was

performed by continuous heating with citrate buffer in a

pressure cooker at 98°C for 10 min. The sections were then

blocked-in normal serum and labeled with primary antibodies in

blocking solution overnight at 4°C. After washing with PBS, the

sheet was ligated to Alexa Fluor-488 or Cy-3. The sections were

then examined with a fluorescence microscope (Olympus DP72

Microscopic imaging system).
2.10 Flow cytometry

The spleen was cut into pieces with sterilized surgical

scissors and put into centrifuge tubes, digested with an

appropriate amount of trypsin, and centrifuged at 1000 rpm

for 5 min. Then 1 × 106 cells were collected and resuspended

with appropriate amount of flow staining buffer, and 5 mL of

each antibody was added to the final reaction volume of 100 mL.
Anti-CD16/CD32, -CD8, -CD25, and -CD56 antibodies were

purchased from Multisciences. The cells were mixed by shaking

and incubated for 20 min in the dark at room temperature. Then

1 mL of flow staining buffer was added to each tube. The tube

was centrifuged at 300 × g for 10 min and the supernatant was

discarded. Then 500 mL of flow staining buffer was added to the

tube to resuspend the cells and a flow cytometer (Beckman

Coulter, Inc.) was used for detection.
2.11 Western blotting

Colonic tissue was cut and placed in EP tubes, and RIPA

lysis buffer (Epizyme Biomedical Technology, Shanghai, China)

was added at 100 mg/mL (containing 1% phosphatase inhibitor

and 1% PMSF). The sample was homogenized with a tissue

homogenizer until no visible pieces remained. Then lysis was

performed on ice for 30 min. The supernatant was collected and

total protein concentration was evaluated using a bicinchoninic
frontiersin.org
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acid kit (TransGen Biotech, Beijing, China). The samples were

run using 12% SDS-PAGE and transferred to polyvinylidene

difluoride membranes. Then, the membranes were blocked with

QuickBlock Blocking Buffer (Beyotime Biotechnology in

Shanghai, China) for 15 min, incubated with diluted primary

antibodies overnight at 4°C, washed three times with TBST, and

incubated for 1 h with secondary antibodies. TLR5 (19810-1-

AP) and SLC26A8 (12776-1-AP) were purchased from

Proteintech (Wuhan, China). MMP-9 (TA5228S) was

purchased from Abmart Technology (Shanghai, China).

PTGDS was purchased from Solarbio Life Science (Beijing,

China) and CD160 from Affinity Biosciences (Suzhou, China).

Goat anti-rabbit IgG (H+L) HRP (BL003A) was purchased from

Biosharp (Hefei, China).
3 Results

3.1 Identification of DEGs in IBD

In this study, data were collected from three GEO data sets,

namely GSE94648 and GSE119600, for 263 IBD and 69 control

samples, respectively. After correcting for batch processing,

metadata DEGs were parsed using the limma software. The

results showed that 18 DEGs could be obtained by this method.

Furthermore, 11 genes were significantly upregulated and 7 were

significantly downregulated (Figures 1A, B). Subsequently, the

DEGs were intersected with 3970 metalloproteinase-related

genes, and 9 differentially expressed metalloproteinase-related

genes (MRDEGs) were finally obtained.
3.2 Functional correlation analysis

The MRDEGs were initially evaluated using GO enrichment,

KEGG pathway analysis, and DO pathway enrichment analysis.

The results revealed that 205 biological processes, 10 signaling

pathways, and 127 diseases were significantly enriched. The

biological processes were enriched for positive control of

defense response to bacterium, leukocyte mediated immunity,

leukocyte degranulation, and myeloid cell activation involved in

immune response. In the cellular component, tertiary granule

lumen, specific granule, tertiary granule, and anchored

component of membrane were enriched. In addition, a

significant enrichment of serine-type endopeptidase activity,

serine-type peptidase activity, serine hydrolase activity, and

oxalate transmembrane transporter activity in molecular

function (Figure 2A) was observed. KEGG enrichment analysis

showed that thiamine metabolism, folate biosynthesis, bladder

cancer, legionellosis, arachidonic acid metabolism, and IBD were

enriched (Figure 2B). DO analysis revealed that kidney disease,

urinary system disease, arthropathy, central nervous system

cancer, infertility, and primary bacterial infectious disease were
Frontiers in Immunology 04
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significantly enriched (Figure 2C). In addition, enrichment

differences were further investigated between IBD and control

groups using GSEA. In IBD, Galactose metabolism, insulin

signaling pathway, leukocyte transendothelial migration,

lysosome, the toll-type receptor signaling pathway is an

important area of aggregation. In the control group, graft

rejection, graft-versus-host disease, Huntington’s disease,

oxidative phosphorylation, and Parkinson’s disease were

significantly enriched (Figures 2D, E).
3.3 Identification and validation of
diagnostic feature biomarkers

Three methods were used for detecting possible biological

markers. The application of MRDEGs was investigated using the

LASSO regression method and eight biochemical indicators

were identified that could be used for the diagnosis of IBD

(Figure 3A). MRDEGs were identified using the SVM-RFE

method for four feature points (Figure 3B). In addition, the

features of the top 5 were obtained by the random forest

algorithm (Figures 3C, D). Finally, the intersection of the three

algorithms was used to obtain five related metalloproteinases

(Figure 3E). These included CD160, MMP-9, PTGDS, SLC26A8,

and TLR5. Subsequently, the accuracy of the relevant genes was

evaluated by machine learning as disease diagnostic genes using

the ROC curve (Figures 4A–E). The AUC values of the five

related genes were 0.732, 0.728, 0.715, 0.748, and 0.751,

respectively, showing high sensitivity and specificity.
3.4 Immune cell infiltration

From the results of the analysis, a map was made that

showed how immune cells are distributed (Figure 5A) and

then a preliminary discussion of the immune cell component

of IBD was provided. To investigate the correlation between

immune cell expression, correlation analysis was performed. The

results showed the relationship between the expression of

immune cells in the combined data (Figure 5B). Immune cell

differential analysis revealed that in IBD, the expression of

plasma cells, T cells CD4 naïve, T cells CD4 memory resting,

and neutrophils was higher and B cells memory, T cells CD4

memory activated, macrophages M0, and macrophages M2 was

lower than that in the control group (Figure 6).
3.5 Correlation analysis between the five
biomarkers and infiltrating immune cells

The correlation of the five biological markers with each

immune cell type was investigated (Appendix 5). The five

biomarkers were positively correlated with NK cells resting,
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A

B

FIGURE 1

Differentially expressed genes in normal and inflammatory bowel disease (IBD). (A) Volcano plot of differentially expressed genes. Red dots represent
significantly upregulated genes and green dots indicate significantly downregulated genes. (B) Heatmap of differentially expressed genes.
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Neutrophils, and T cells CD4 memory activated, respectively,

while negatively correlated with Neutrophils, T cells CD8 and T

cells CD4 memory activated (Figures 7A–E).
3.6 Chronic colitis model evaluation and
histological identification

The feeding process of mice is shown in Figure 8A. The mice

in the DSS group had redness and swelling around the anus. Due

to the proliferation and swelling of the perianal mucosa, some

mice showed adenomatous changes, with obvious redness and

swelling and irregular prolapse of the anus (Figure 8B). Analysis

of change in body weight revealed that the body weights of the

mice decreased at the initial stage of administration, and in the

subsequent modeling, the body weights of the mice in the DSS

group increased at a lower rate than that in the control group

(Figure 8C). After the mice were euthanized, the cecum was

dissected to the anal hilum, stretched and spread spontaneously,

and placed flat on A4 paper. When the length of each colon was

measured, the intestinal length of the DSS group was found to be

shortened (Figure 8D). The control group showed normal

colonic structure with smooth mucosal surface and absence of

annular folds and villi. The DSS group mainly showed typical
Frontiers in Immunology 06
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manifestations of inflammatory mucosa, including infiltration of

a large number of inflammatory cells in the mucosa, submucosa,

and muscle layer; atypical gland hyperplasia; structural disorder;

submucosal hemorrhage; and edema (Figure 9).
3.7 Expression of immune cells in
the spleen

The results of flow cytometry showed that the expression of

the T cell CD8 marker (CD8 antibody) was different between the

DSS and control groups, whereas that of other neutrophil

markers (CD16/32) and T cells CD4 memory activated

markers (CD25 and CD65) were not different (Figures 10A–

F). CD8 was negatively correlated with MMP-9 and SLC26A8.
3.8 Validation of inflammatory factors
and MMPs associated with IBD

We verified the increased expression of inflammatory factors

(IL-6 and IL-1b) in DSS group, which indicate that MMPs are

closely related to inflammatory response (Figures 11A, B). Changes

in the levels of MMP-related genes were evaluated in chronic IBD
A B

D E

C

FIGURE 2

Enrichment analysis of differentially expressed genes: (A) GO enrichment analysis. (B) KEGG enrichment analysis. (C) Disease ontology
enrichment analysis. (D, E) GSEA enrichment analysis.
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models. Compared with the control group, the expression levels of

MMP-9, PTGDS, SLC26A8, and CD160 significantly increased,

whereas that of TLR5 decreased in the DSS group, suggesting that

the MMPs play a role in the development of the chronic

inflammatory intestinal disease mouse model (Figures 11C, D).

The results of immunofluorescence assay showed that compared

with the control group, the fluorescence intensity of MMP-9,

PTGDS, SLC26A8, and CD160 increased, whereas that of TLR5
Frontiers in Immunology 07
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decreased (Figures 12A–E) in the DSS group, which is consistent

with the results of western blotting.
4 Discussion

IBD is an autoimmune disease of the intestine and includes

ulcerative colitis and Crohn’s disease (25). As an important
A B

D

E

C

FIGURE 3

LASSO, SVM-RFE, and random forest were used for feature selection. (A) LASSO coefficient profiles of eight genes that initially met the
prognostic criteria. (B) Biomarker selection map based on the support vector machine recursive feature elimination (SVM-RFE) algorithm.
(C) Random forest model. (D) Random forest MeanDecreaseGini assessment. (E) Venn diagram shows the five diagnostic markers shared by the
three algorithms.
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causative factor of colorectal cancer, IBD has attracted global

attention. However, due to the increasing incidence, long course,

and delayed healing in IBD, its diagnosis, treatment, and

prognosis have become a challenge. The main feature of IBD

is the chronic inflammatory reaction in the intestine (26), which

induces immune stimulation of the mucosa and makes the

intestinal environment abnormal (27, 28). Therefore,

the immune function of the intestinal barrier is crucial for the

prevention and resolution of intestinal inflammatory diseases.

MMPs are a group of proteolytic enzymes containing active

zinc.MMPs can be divided into groups based on the structure of the

catalytic region (29). They are classified according to substrate and

fragment homology, such as collagenases, gelatinases, stromelysins,

elastases, and membrane-type MMPs (30). Dysregulation of MMP

expression can cause tissue damage and persistent inflammation.

Some studies have demonstrated the antitumor effects of MMPs.

Various MMPs are associated with the poor prognosis of tumors

(31). Cancer cells can evade the immune system by using MMPs to

ensure the survival of metastatic cells (32). In addition to the

regulatory role of MMPs in cancer, MMPs are also involved in

the inflammatory response of many inflammatory diseases, such as

sepsis (33), atherosclerosis (34, 35), and arthritis (36).

In this study, a mouse model of chronic IBD induced by DSS

was constructed to evaluate the relationship between immune

cells in IBD and MMPs. Histologically, chronic colitis is

characterized by shortened colon length and loss of goblet

cells and crypts. Additionally, some mice may have
Frontiers in Immunology 08
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adenomatous polyps and tumor-like changes. During the 9

weeks of modeling, mice showed weight loss and mucus and

blood in stool. Some mice showed adenomatous changes due to

the proliferation and swelling of the perianal mucosa, and

obvious redness, swelling, and irregular prolapse in the anus.

The histological score was statistically different from that of the

control group. Thus, the model of chronic IBD was validated.

In this study, a clustering approach was used to identify the types

of differentially expressed metalloproteinase-related genes. Toll-type

receptors (TLRs) are an important source of IBD. TLR is a natural

immune system receptor that contributes to the pathogenic

mechanisms of IBD, including immune response, genetics, and

microbiology (37). The TLR signal transduction pathway can

induce various factors involved in defense, such as inflammatory

factors, chemokines, and antigen presenting factors (38, 39).

Inflammatory cytokines play a crucial role in multiple processes of

IBD development, when TLR pathway is activated, immune cells will

produce a large number of pro-inflammatory factors, such as IL-1b,
IL-6.This was also verified in our experiment. According to the

results of Western Blot, the expression of inflammatory cytokines in

the DSS group was significantly higher than that in the other.

On this basis, CD160, MMP-9, PTGDS, SLC26A8, and TLR5

were selected as indicators of tumor detection. A survey by

Marônek et al. (40) showed that reduced MMP-9 in patients

with IBD is a risk factor in patients with IBD and infection (41).

Liu et al. studied MMP-9 in excreta using nanoparticles (42). A

study reported that TLR5 plays a key role in the inflammatory
A B

D E

C

FIGURE 4

The receiver operating characteristic (ROC) curve of the diagnostic effectiveness of the five diagnostic markers. (A) ROC curve of CD160. (B)
ROC curve of MMP9. (C) ROC curve of PTGDS. (D) ROC curve of SLC26A8. (E) ROC curve of TLR5.
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response in the intestine through animal tests on TLR5 and that

disruption of TLR5 signaling triggers the TNFR2 signaling

pathway, which leads to an inflammatory response in the

intestine (43). CD160 activates natural killer cells with specific

domains, making it a novel therapeutic target in the fight against

atherosclerosis, autoimmune diseases, and many cancers (44). In

recent years, researchers have shown that CD160 is associated

with the recovery of COVID-19 patients (45). PTGDS have been

shown to be selectively expressed in cancers, including ovarian

cancer (46) and melanoma (47) with overexpression, gastric

cancer (48) and lung cancer (49) with low expression. This

selective expression also indicates that PTGDS has a more

complex mechanism and potential research value. A study has

shown that SLC26A8 is a susceptibility gene for hereditary non-

polyposis colorectal cancer (50), which also provides reference for

our subsequent research on the development of IBD for colorectal

cancer. In this study, high levels of MMP-9, PTGDS, SLC26A8,
Frontiers in Immunology 09
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and CD160 and reduced levels of TLR5 protein in patients with

IBD (identified using WB and immunofluorescence analysis)

suggest that these are clinically significant in IBD.

In the pathogenesis of many chronic diseases, both innate

and adaptive immune functions are affected to some extent. A

comparison of different cell types identified high levels of plasma

cells, T-cell CD4 naive, T-cell CD4 memory, and eosinophils.

Mitsialis et al. (51) reported that the abundance of HLA-DR

+CD38+ T lymphocytes increased in colonic mucosal samples

from patients with IBD, where T-regulatory cells were also

present. Based on the relationship of the five antigens different

cell types, we suggest that there are differences in the function of

CD4 of neutrophils and T cells in the pathogenesis of IBD, which

is related to the non-homogeneity of cells. However, all but CD8

were ineffective at elevated expression levels in IBD. Recent data

show that CD8+ T lymphocytes (Tc1) and CD8+ (Tc17) play an

important role in the development of IBD (52).
A

B

FIGURE 5

Immune infiltration analysis. (A) Immune cell distribution map. (B) Correlation of immune cells between patients with inflammatory bowel
disease (IBD) and normal patients.
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Inconclusion, thefindingsof this studyshowthatMMPS-related

genes, namely MMP-9, CD160, PTGDS, SLC26A8, and TLR5,

regulate the occurrence and development of IBD. These findings

provide insights into future research on the mechanism of IBD. In

addition, bioinformatics and mouse model studies revealed that

MMP-related genes can participate in the progression of IBD by

regulating CD8 cells. However, the detailed mechanism of action of

MMPs in IBD is unknown and requires further investigation.
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5 Conclusion

The findings of this study show that patients with IBD and

healthy controls have significantly different gene expression,

identifying the role of metalloproteinases in IBD. Moreover, the

results provide insights into immune cell activation through

metalloproteinases in IBD. However, more in-depth research is

needed in future studies.
FIGURE 6

Expression of immune cells between patients with inflammatory bowel disease (IBD) and normal patients.
A B

D E

C

FIGURE 7

Correlation between five metalloproteinase-related genes and infiltrating immune cells. (A) Correlation between CD160 and infiltrating immune
cells. (B) Correlation between MMP-9 and infiltrating immune cells. (C) Correlation between PTGDS and infiltrating immune cells.
(D) Correlation between SLC26A8 and infiltrating immune cells. (E) Correlation between TLR5 and infiltrating immune cells.
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D
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FIGURE 8

The construction of the inflammatory bowel disease (IBD) model. (A) Flow chart for mice feeding. (B) Irregular perianal prolapse in mice.
(C) Body weight changes in mice. (D) Comparison of the length of colon. *P < 0.05, ***P < 0.001, ****P < 0.0001. .
FIGURE 9

Comparison of HE staining between the DSS and control groups.
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FIGURE 10

Effects of chronic inflammatory bowel disease (IBD) on immune cells in the spleen of mice. (A–F) The strategy of CD8, CD56, CD16/CD32, and
CD25 in the DSS and control groups.
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A B

DC

FIGURE 11

Validation of differential expression of inflammatory factors and five biomarkers. (A) Protein expression of IL-6 and IL-1b. (B) Protein statistics of
IL-6 and IL-1b. (C) Protein expression of five biomarkers. (D) Protein statistics of five biomarkers. **P < 0.01, ****P < 0.0001.
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FIGURE 12

Colonic tissue immunofluorescence in mice. (A–E) Immunofluorescence of CD160, MMP-9, PTGDS, SLC26A8, and TLR5.
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The immunomodulatory role of
matrix metalloproteinases in
colitis-associated cancer

Luying He1†, Qianming Kang1†, Ka Iong Chan2, Yang Zhang1,
Zhangfeng Zhong2* and Wen Tan1*

1School of Pharmacy, Lanzhou University, Lanzhou, China, 2Macao Centre for Research and
Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau,
Macao, Macao SAR, China
Matrix metalloproteinases (MMPs) are an important class of enzymes in the

body that function through the extracellular matrix (ECM). They are involved in

diverse pathophysiological processes, such as tumor invasion and metastasis,

cardiovascular diseases, arthritis, periodontal disease, osteogenesis imperfecta,

and diseases of the central nervous system. MMPs participate in the occurrence

and development of numerous cancers and are closely related to immunity. In

the present study, we review the immunomodulatory role of MMPs in colitis-

associated cancer (CAC) and discuss relevant clinical applications. We analyze

more than 300 pharmacological studies retrieved from PubMed and the Web

of Science, related to MMPs, cancer, colitis, CAC, and immunomodulation. Key

MMPs that interfere with pathological processes in CAC such as MMP-2, MMP-

3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13, as well as their

corresponding mechanisms are elaborated. MMPs are involved in cell

proliferation, cell differentiation, angiogenesis, ECM remodeling, and the

inflammatory response in CAC. They also affect the immune system by

modulating differentiation and immune activity of immune cells, recruitment

of macrophages, and recruitment of neutrophils. Herein we describe the

immunomodulatory role of MMPs in CAC to facilitate treatment of this

special type of colon cancer, which is preceded by detectable inflammatory

bowel disease in clinical populations.

KEYWORDS

matrix metalloproteinases (MMPs), colitis associated cancer (CAC), immunomodulation,
inflammation, extracellular matrix (ECM)
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1 Introduction

1.1 Classification and
structural characteristics of
matrix metalloproteinases

MMPs are a kind of calcium-and zinc-dependent proteolytic

enzyme (1), that exist in invertebrates, vertebrates and plants (2).

They are produced by multiple cells and tissues, with neutrophils

and dermal fibroblasts being the main sources (3). Connective

tissue, pro-inflammatory and uteroplacental cells, including

endothelial cells, osteoblasts, cytotrophoblasts, lymphocytes,

macrophages, and vascular smooth muscle are also capable of

secreting MMPs (4). Degrading the ECM is the main function of

MMPs (5). The ECM plays an important role in the

proliferation, growth, organization, differentiation, migration

of cells, and in the exchange among information cells; it also

acts as a physical barrier for microorganisms (6, 7). To date, 28

types of MMPs have been found. The homologous domains of

these MMPs include the signal peptide domain, propeptide

domain, catalytic domain and hinge region or linker peptide

along with a hemopexin domain (4, 8). The hinge region

connects the catalytic domain to the hemopexin domain (7, 9,

10). MMPs are divided into collagenases (e.g., MMP-1, MMP-8,

MMP-13, and MMP-18) (11, 12), gelatinases (e.g., MMP-2 and

MMP-9) (13, 14), stromelysins (e.g. MMP-3, MMP-10, and

MMP-11) (15, 16), matrilysins (e.g. MMP-7 and MMP-26)

(17), membrane-type MMPs (MT-MMPs) (MMP-14, MMP-
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15, MMP-16, MMP-17, MMP-24, and MMP-25), and others

(MMP-12, MMP-19, MMP-21, and MMP-28) based on

structural features and substrates (18–24). In particular,

gelatinases have a special additional exosome insert in the

catalytic domain called the collagen binding domain;

matrilysins lack a C-terminal hemopexin-like domain linked

by a hinge or linker region, and MT-MMPs have a C-terminal

transmembrane domain with a short cytoplasmic tail (9, 25).

The classifications and structures of MMPs are shown

in Figure 1.
1.2 Regulation of MMPs at multiple levels

MMP activity is regulated in three different ways, through

transcriptional regulation, inhibition by specific inhibitors, or

activation by the proenzyme (26). At the transcriptional level,

the activator protein (AP) -1 and -2 sites, the NF-kB site, the

signal transducer and activator of transcription site, the

polyomavirus enhancer-A binding protein-3 site, and others

are key transcription binding sites for regulation of the MMP

gene (8, 27–33). The AP-1 site is located close to the most

proximal promoter of the typical TATA box and is the major

mediator in MMP gene regulation. In many MMP promoters

that contain AP-1 site, the juxtaposed transcription factor

binding sites bind multiple erythroblastosis twenty-six factors,

which determine the peculiarities among different genes and

affect gene expression (8). The polyomavirus enhancer-A
FIGURE 1

Classifications and structures of matrix metalloproteinases (MMPs). The homologous domains of these MMPs include the signal peptide domain
(SP), propeptide domain (Pro), catalytic domain, and hinge region or linker peptide along with a hemopexin domain. The hinge region connects
the catalytic domain to the hemopexin domain. Matrilysins lack a C-terminal hemopexin-like domain linked by a hinge or linker region;
Gelatinases have special additional fibronectin repeats in the catalytic domain; MT-MMPs have a C-terminal transmembrane domain with a
short cytoplasmic tail. MT, membrane-type; Cs, cytosolic; GPI, glycosylphosphatidylinositol.
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binding protein-3 site, can combine with members of the

erythroblastosis twenty-six factors family of oncoproteins and

work in synergy with the AP-1 site nearby to promote the

production of MMPs among cancer cells for migration and

invasiveness (28). MicroRNA is a non-coding single-stranded

RNA. In liver cancer cells, mRNA expression of MMP-2 and

MMP-9 is up-regulated as a result of the inhibition of miR-21,

which stimulates the invasion and migration of tumor cells.

miR-224 is associated with gene expression of MMP-1, which

enables breast tumors to metastasize to the bone (34). NEMO-

binding domain, a synthetic peptide corresponding to the

S100A4-binding domain of methionine aminopeptidase 2

[MetAP2], blocks interaction between the metastasis

−enhancing calcium−binding protein (S100A4) and its effector

protein (MetAP2). And this blockage inhibits specificity protein

1 (Sp1) and ultimately leads to the downregulation of MMP-14

gene expression (35). MMP-7 antisense oligonucleotides inhibit

gene expression of MMP-7 and inhibit the metastasis of gastric

and colon cancer by interfering with protein translation or

promoting mRNA degradation (36). The modulation of

gene expression differs in various physiological and

pathophysiological events, such as Ets1 enhancing gene

expression of MMP-1 through c-Jun (29, 30). Note that

modulation of the MMP gene can be affected by several

stimuli. Some factors, such as phorbol esters and ultraviolet B

radiation, activate expression of the MMP gene, whereas others

(37–39), such as transforming growth factor b (TGF-b),
glucocorticoids and retinoic acid (40, 41), suppress it. In

addition, the MMP gene may be induced indirectly by several

signaling pathways. Inflammatory cytokines, for example,

interleukin (IL)-1 and tumor necrosis factor, indirectly

influence MMP gene expression and activate the ceramide

signaling pathway. Three distinct MAP kinase pathways, p38,

ERK1/2 and c-Jun N-terminal kinase (JNK) affect ceramide-

dependent MMP-1 gene expression in human skin fibroblasts

(42–45). MMPs genes are not generally upregulated by gene

amplification or mutation like classical oncogenes. Usually

transcriptional changes and/or epigenetic modifications result

in an upregulation of MMP gene expression in colorectal cancer

(CRC) (46, 47). Besides transcriptional regulation, MMP activity

is related to proMMPs, which are secreted as inactive zymogens.

Extracellular activation of proMMPs involves two steps. First,

the N-terminal sequence of the propeptide domain is cleaved

and releases the Zn2+-binding site stemming from catalytic

domain exposition. Second, propeptide cleavage resulting in an

active form of enzyme (21, 48, 49). For example, proMMP-9 was

activated and then generated MMP-9, thus catalyzing

angiogenesis via the FGF-2/FGFR-2 pathway (50). In addition,

the activity of MMPs is regulated by a2-macroglobulin and

tissue inhibitors of MMPs (TIMs), the two main endogenous

inhibitors (26, 51). Thiol-modifying reagents, sodium dodecyl

sulfate, and oxygen radicals also induce activation of MMPs in
Frontiers in Immunology 03
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vitro(52).Variation in temperature or a decrease pH in the

physicochemical environment serves the same purpose (25).
1.3 Immunological function of MMPs

The immune system, human beings’ main defense against

disease, is indispensable. It eliminates foreign invaders through

the immune response in a sophisticated and scientific way.

Components that participate in immune regulation include

innate immune cells, which act as early-responders, and

adaptive immune cells, which enhance the response and

generate immunological memory and molecules. Cytokines

and chemokines control the immunoreaction in time and

space. They take part in cell migration to the site of

inflammation, proliferation, intercellular communication, and

cell death (53, 54). The immune response does not necessarily

lead to an inflammatory response, but inflammation

accompanies the immune response in most cases (55).

Inflammation commonly occurs after infection and damage

(56). When antigens enter the body, macrophages or epithelial

cells secrete chemokines, causing an increase in the vascular

epithelial cell gap and vascular expansion; a large number of

neutrophils, mast cells, basophils, and eosinophils infiltrate from

the blood vessels into tissue fluid, resulting in localized febrile

response, redness, swelling, and pain the cardinal signs of

inflammation. An excessive immune response can lead to

inflammation, such as pathogenic microbial infection, tumor,

autoimmune disease, and tissue damage induced by physical or

chemical elements. Immune cells and cytokines play an

important role in the occurrence and resolution of

inflammation. Numerous immune cells (e.g., macrophages,

neutrophils) infiltrate the inflamed area and activated immune

cells to release inflammatory factors (e.g., TNF-a, IL-6 and IL-

1b), which worsens the inflammation (56, 57). Resolving this

inflammatory response requires the release of anti-inflammatory

cytokines (e.g., IL-10) by immune cells (58–61).

The composition of the tumor microenvironment is very

complex. The tumor stroma is composed of the ECM, immune

cells, fibroblasts, endothelial cells and other non‐neoplastic cells

(62). MMPs produced in immune cells take part in innate and

acquired immunity (63). Many immune cells express low levels

of MMPs in the resting state. In mouse splenic CD4+ T cells,

membrane-anchored disintegrin metalloproteinase-10 (ADAM-

10) and ADAM-17 mRNAs are expressed highly, whereas the

mRNA expressions of MMPs, such as MMP-2, MMP-9 and

MMP-14 are low (64). Under normal conditions, when the

expression of inflammatory cytokines and chemokines

increases, MMPs of immune cells are secreted and activated.

When stimulated by IL-8, TNF, or chemo-attractive formyl-

Met-Leu-Phe peptide, MMP-9 in neutrophils is immediately

released from gelatinase granules (also called tertiary granules)
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(65). In addition, TIMP1 protein is not expressed in neutrophils

(66). However, B cells, T cells, and unstimulated human

peripheral blood monocytes are able to express TIMPs in the

steady state. The transcript levels of TIMP1, TIMP2 and TIMP4

are expressed more highly in monocytes than in B cells or T cells.

In contrast, TIMP3 mRNA is highly expressed in B cells (67).

ADAM17 and MMP-8 cleave the lymphotoxin (LT)-a1b2
heterotrimer, causing the release of heterotrimers from

polarized T helper 1 (TH1) and TH17 cells (68). The

combination of LTa1b2 heterotrimers and LTb receptor

activates primary synovial fibroblasts, eventually leading to

synovial inflammation (68). The OX40 (a member of the TNF

superfamily)–OX40 ligand axis is involved in numerous

inflammatory diseases, anti-tumor immune responses and

metabolic syndromes (69). MMP-2-specific CD4(+) T cells

exist in tumor-infiltrating lymphocytes from melanoma

patients, and they have an inflammatory T(H)2 (Type 2 helper

T cells) profile. Dendritic cells (DCs) with MMP-2 initiates TH2

responses against several melanoma-associated antigens. As a

reaction to exogenous melanoma antigens, active MMP-2

promotes TH2 cell differentiation, degrades the IF-a/b
receptor in immature DCs and increases the protein

expression of OX40 ligand in mature DCs. Therefore,

researchers speculate that the mechanisms by which activated

MMP-2 promotes tumor development is as follows: MMP-2

polarizes tumor-infiltrating lymphocytes toward a TH2 cell

phenotype, which restrains the tumoricidal TH1-type

response. Moreover, MMP-2 inhibits the powerful promoter of

TH1 cell polarization-IL-12 subunit p35 (IL-12a) (70).
Important factors in building an immune response are

efficient migration of neutrophils along a chemotactic gradient

and extravasation through blood vessels and tissues to sites of

infection. MMPs play a role in these processes by modifying

chemotactic agents. A cleavage mediated by MMP-7 releases the

heparan sulfate proteoglycan syndecan 1, and its associated

CXC-chemokine ligand 3 (CXCL3), which attracts neutrophils

to the site of infection (71). MMP‐8 which is mainly produced by

neutrophils can be detected in the inflammatory response and

some malignant tumors. In one study, there was a persistent

inflammatory response after MMP-8-deficient mice were

injected with methylcholanthrene. The incidence of skin

tumors in male mice of this type increased significantly;

female mice that were treated with tamoxifen or had their

ovaries removed were more likely than wild-type mice to

develop tumors. These results indicate that MMP-8 has a

tumor suppressor function to some extent (72). This function

is also supported by the finding that MMP-8 inhibits melanoma

growth in vitro and in vivo (73). MMP-8 is necessary for

recruiting chemokine CXCL6 to activate neutrophils;

neutrophils are not able to migrate to sites of LPS

administration without MMP-8 (74). IL-8 is a prototype

chemokine that activates neutrophils. There is positive

feedback between MMP-9 and IL-8. Stimulated by IL-8,
Frontiers in Immunology 04
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neutrophils secrete gelatinase granules whose main component

is MMP-9 (65). MMP-9 truncates an amino-terminal fragment

of IL-8 for large increases in IL-8 potency (75). MMP‐2

cooperates with MMP‐9 to promote neutrophil infiltration (76,

77). MMP-2 and MMP-9 have synergistic effects on cleaving

CXCL5 to increase neutrophil migration to the peritoneum

during IL-1b-induced peritonitis (78). Meprins are members

of the metzincin superfamily of zinc metalloproteinases, the

cleaved substrate involved in many pathological processes, such

as inflammation, cancer and fibrosis. Meprins participate in

activating MMP-9 in the immune response. MMP-3 is an

efficient activator of proMMP-9. The cleavage mediated by

meprins improves the activation kinetics of proMMP-9 by

MMP-3 (79). In contrast, MMP-2 may suppress the

inflammatory response inactivating monocyte chemotactic

protein 3 or Chemokine (C-C motif) ligand 7 (80).

Monocyte precursors are capable of differentiating into local

macrophages in tissues (81). In different microenvironments, the

cell surface phenotypes and functions of macrophage populations

are heterogeneous (82). Macrophages play a prominent role in

anti-infection and, anti-tumor activity and immune regulation

(83). Similar to what happens in neutrophils, macrophages move

directionally along the concentration gradient of certain chemicals

and accumulate at the site of the lesion, where these substances are

released (56). Metalloproteinases are able to affect macrophage

recruitment (84–86). In mice with TIMP3-null mammary glands,

the inflammatory response is exacerbated, the number of CD3+

T-cells increases, andmacrophage infiltration is more pronounced

than in wild-type mice glands (87). A classic means of activating

macrophages (classically activated macrophages or M1

macrophages) is through Toll-like receptor ligands and pro-

inflammatory mediators, such as TNF-a, interferon-g (IFN-g),
and IL-1. Additionally, alternatively-activated macrophages, or

M2 macrophages, can also be alternatively activated by distinct

mediators, like IL-4 and IL-13 (88, 89). In inflammation, M1

macrophages effectively dispose of infectious organisms, and

orchestrate angiogenesis and the ingress of connective tissue

cells to form a granuloma. The function of MMPs ECM

remodeling is vital in that process (90). In healing, M2

macrophages may promote connective tissue cells to remodel

the ECM (88, 89). In vitro-differentiatedM1macrophages, mRNA

expression of MMP-1, MMP-3, MMP-7, MMP-10, MMP-14 and

MMP-25 are increased, and mRNA expression of TIMP-3 is

decreased. mRNA expression of MMP-11, MMP-12, MMP-25

and TIMP-3 are upregulated, whereas MMP-2,MMP-8 andMMP

-19 were reduced in M2 macrophages (91). Researchers speculate

that the function of macrophages is related to the profile of MMP

expression profile. The upregulation of MMP-12 in M2

macrophages is a major influence on the formation of

aneurysms (92). Higher levels of MMP-1 collagenase may might

be linked to higher collagenolytic activity of M1 macrophages

(91).Macrophages also participate in specific immune response by

releasing either pro- or anti-inflammatory cytokines (93, 94).
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MMP-14 (MT1-MMP) can control inflammatory gene responses.

MMP-14-deficient macrophages produce excessive chemokine

and cytokine responses to immune stimulation both in vitro

and in vivo: they increase the gene and protein expression levels

of the pro-inflammatory IL-12p40 (also called IL-12b) and IL-6,

along with decrease the gene and protein levels of the anti-

inflammatory IL-10. Phosphoinositide 3-kinase d (PI3Kd), a key
regulator of macrophage immune responses, is the downstream

transcriptional target of MMP-14 (95–97). Protein expression of

MMP-14-dependent PI3Kd evokes the expression and activation

of a PI3Kd/Akt/GSK3b signaling axis, thus mediating the

immunoregulatory Mi-2/nucleosome remodeling and

nucleosome remodeling and deacetylase to limit the expression

of proinflammatory mediators in macrophage (97–100). MMP-12

originating from macrophages participated in abrogating the

acute immune response. In MMP-12-deficient mice, leukocytes

accumulated at the site of infection. MMP-12 cleaves and

inactivates numerous CXC-chemokines and CC-chemokines

which are implicated in the influx of leukocytes at the site of

inflammation (101).

MMP-7 is involved in the immune activity of macrophages

and neutrophils. One immunological function of MMP-7 is

proteolytically activating a-defensins (cryptdins), which are a

group of six cationic anti-bacterial peptides that work by

disrupting bacterial membranes (102, 103). When stimulated

by bacterial products, such as LPS and lipoteichoic acid, a-
defensins are secreted from neutrophils, monocyte/macrophages

and Paneth cells at the base of the crypts in the small intestine

(104). a-defensins also act as the chemo-attractants for

monocytes, T-cells and DCs to connect innate immunity to

adaptive immunity (104). a-defensins are also mitogenic for

epithelial cells and fibroblasts to aid in wound healing (105).

The cDNA sequence of MMP-25 from Japanese sea bass

(Lateolabrax japonicus) (LjMMP25) regulates the production of

inflammatory cytokines and promotes phagocytosis and

bactericidal activity in monocytes/macrophages. Moreover,

LjMMP25 regulates the inflammatory response by modulating

NF-kB activity during innate immunity (106). Macrophages

have a negative impact on cancer treatment (107–109). They

create an inflammatory environment to promote tumorigenesis

and tumor progression, such as angiogenesis, migration and

invasion, and immunosuppression (109). For example, the

penetration of cancer cells and leukocytes into the cerebral

vessels is a complex multi-step process. The activity of

macrophage-derived MMP-2 and MMP-9 is pivotal to

leukocyte’s ability to penetrate the parenchymal basement

membrane in mice wi th the ab i l i t y auto immune

encephalomyelitis. These MMPs can be inhibited to protect

the brain parenchyma from damage by preventing the

infiltration of leukocytes (110). Moreover, the activation of

TNF‐a by MMPs contributes to tumor progression (63, 111).

The membrane-bound precursor, proTNF‐a, is mainly

expressed in macrophages. ADAM17 (a TNF-converting
Frontiers in Immunology 05
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enzyme) and MMPs, such as MMP-1, MMP-2, MMP-3,

MMP-9, MMP-12, MMP-14, MMP-15 and MMP-17, convert

proTNF-a into TNF‐a (112).
2 MMPs in pathological processes

2.1 Multifaceted role of MMPs in
biological and pathological processes

Under normal physiological conditions, the activities of

MMPs are controlled by various stimuli at multiple levels.

However, under pathological conditions, this dynamic balance

is broken. Over-degradation of the ECM due to overactivation of

MMPs, is associated with a great many diseases, such as

cardiovascular disease (4, 113–115), arthritis (116), periodontal

diseases (117–119), osteogenesis imperfecta (120), disorder of

the central nervous system (121), tumor invasion and metastasis

(34, 122), age-related macular degeneration (123) and many

other pathological states (7). Moreover, a decrease in MMPs can

give rise to hypertensive pregnancy, preeclampsia (124), and

inflammatory damage (125, 126).

As mentioned above, there are several main types of MMPs

including collagenases, gelatinases, stromelysins, matrilysins,

and MT-MMPs. Different MMPs have different three-

dimensional structures, along with corresponding specific

inhibitors or drugs. A typical MMPs consists of a prodomain,

a propeptide, a catalytic domain and a hemophosphate domain.

Approximately 80 amino acids make up the propeptide domain,

and about 170 amino acids make up the catalytic

metalloproteinase domain. The polypeptide folding of the

MMP catalytic domain is basically superposition. The domain

consists of a five-stranded b fold sheet, three a helices, and

connecting rings. It contains two zinc ions and up to three stable

calcium ions. The joint peptide contained in MMPs consists

of a hinge region of variable length and a hemophosphate

domain of about 200 amino acids. Exceptions include MMP-7,

MMP-26, and MMP-23, which lack the hinge region and heme

domain; MMP-23 has unique cysteine-rich domains and

immunoglobulin domains (127–129). MMP-1, MMP-8, MMP-

13, and MMP-18 are collagenases, and their key feature is their

ability to cleave interstitial collagen I, II, and III at specific sites

three-fourths away from the N-terminus. MMP-2 and MMP-9

are gelatin enzymes, which have three type II fiber-fiber-domain

repeats in the catalytic domain and can bind to gelatin, collagen

and laminin to digest denatured collagen. MMP-3 and MMP-10

are matrix lysins that digest ECM components (21). The

classification of common MMPs implied in pathological

processes is shown in Table 1. Collagenases recognize the

substrate via a hemopexin-like domain, degrade fibrillar

collagen and affect the ECM environment (19). Collagenases

are closely related to the occurrence and development of diseases

characterized by the degradation or change in the ECM are
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TABLE 1 The classification of common matrix metalloproteinases (MMPs) implied in pathological processes.

Category Structural feature MMPs The related diseases Effects and Mechanisms Refs
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TABLE 1 Continued

Category Structural feature MMPs The related diseases Effects and Mechanisms Refs
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closely related to collagenase, including heart failure,

atherosclerosis, cancer, arthritis, abdominal aortic aneurysm

(130–132, 136, 137, 167, 168). In addition, they play a

protective role in some diseases, for instance hypertrophic

cardiomyopathy (134). Furthermore, collagenases improve

liver fibrosis (133, 138). MMP-1 inhibits the development of

atherosclerosis (130). MMP-8 plays a protective role in arthritis

(135). Another category of MMPs is gelatinase. These MMPs act

as digestive agents for components of the ECM, such as type I

and IV collagen (19). They are induced or inhibited by a diverse

range of resolvable factors, including growth factors, cytokines

and hormones, and are acted on by cellular contacts through

specific signaling pathways (169). MMP-9 has pro-inflammatory

properties, whereas MMP-2 has pro-homeostatic properties

(169, 170). Gelatinases have a profound influence in

inflammatory process and tumor progression and have

therefore long been considered one of the most significant

anti-tumor targets (139, 140, 171). In terms of non-

neoplasticity, gelatinases are mainly involved in cardiovascular

pathology and auto-immune diseases (20). Moreover, MMP-9 is

associated with many respiratory diseases (143). A reduction in

vascular MMP-2 and MMP-9 gives rise to hypertensive

pregnancy and preeclampsia (124). Stromelysins, another class

of MMPs, have a structural domain arranged similarly to that of

collagenases. However, these MMPs do not cleave fibrillar

collagen type I (19). An important physiological function of

stromelysins is to activate other members of the MMP family

(21, 129). The most widely described pathological role of

stromelysins is in cancer progression (144, 147–149). In

addition, they function in the progression of cardiovascular,

degenerative, and auto-immune diseases (145, 146, 172).

Matrilysins, yet another category of MMPs, do not contain a

hemopexin-like domain and are able to decompose collagen type

IV but not type I (19). Matrilysins are associated with a number

of pathological conditions in humans, mainly cancer and,

respiratory, cardiovascular, and neurological diseases (20, 143,

151, 153, 154). A large number of studies have demonstrated

that MMP-7 acts in the development and migration of cancer

(151, 173). Moreover, MMP-7 also has a critical role in

pathogenesis of tonsillitis and permanent hearing loss (150,

152). A study confirmed the early role of MMP-26 in the

invasion and angiogenesis of malignant tumors (139). The

final member of the MMPs family discussed here is MT-

MMPs, which are an important mediator of infiltration. The

influence of MT-MMPs on pathological process is mainly

reflected in their promotion of tumor invasion (140, 155–161,

165, 166). The ability to activate MMP-2 is one of the reasons

why most MT-MMPs play these roles (173). A different example

is MMP-17, which has no regulatory effect on MMP-2 although

it still affects tumor invasion (174). In addition, studies have

demonstrated that MT-MMPs are also implicated in the

pathological process of osteoarthritis, atherosclerosis and

Alzheimer’s disease (85, 132, 162–164). MMPs are medicinal
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targets highly relevant to the treatment of a variety of diseases.

As understanding of the role of MMPs in biology and pathology

increases, greater understanding of the structural similarities and

differences among MMP families makes it possible to discover

highly selective MMP inhibitors.

In the tumor microenvironment, the activity of a variety of

MMPs, including MMP-1, MMP-2, MMP-3, MMP-7, MMP-8,

MMP-9, MMP-10, MMP-11 and MMP-14, are up-regulated.

These MMPs participate in tumor proliferation, survival, and

angiogenesis, enabling replication immortality, invasion/

migration, immunity evasion and other processes (175, 176).

These MMPs control tumor cell growth by the releasing of

ectodomains of growth factor, regulating the bioavailability of

growth factors and regulating signaling pathways related to cell

proliferation (177). MMP-3 and MMP-7 expression in tumor

cells may contribute to an apoptosis resistant phenotype (178,

179). In addition, the MMP family is necessary for tumor

angiogenesis via a two-way action, that is promoting or

inhibiting angiogenesis. MMP-1, MMP-2, MMP-7, MMP-9

and MMP-14 regulate this process, and the first three of them

play critical roles (180–182). Another key process in which

MMPs are the migration of tumor cells. MMP-14 is among

the key contributors to cancer invasion and promotes cancer

development by activating proMMP-2 and degrading the ECM

to promote cancer migration (176). MMP-7 acts in tumor cell

metastasis by activating the ERK 1/2 and JNK 1/2 signaling

pathways (183). MMP-1, MMP-2, MMP-8, MMP-11, and

MMP-13 are implicated in the regulation of tumor cell

migration (184–188). Finally, MMPs, such as MMP-14, also

participate in tumor immune monitoring (176, 189, 190).

Increasing attention has been paid to the role of MMPs in

tumor immune regulation, such as their effects on inflammatory

and immune responses, the tumor immune microenvironment

and their diagnostic or prognostic potential (191–196).
2.2 Relationship between MMPs and
immune-related diseases

MMPs affect the process of colitis. MMP-2 is causative for

inflammatory bowel disease (IBD), which is derived from weak

mRNA expression of pro-inflammatory cytokines including

IFN-g and TNF-a, and weak protein expression of IL-6 and

less overgrowth of the colonic lumen by potentially pro-

inflammatory enterobacteria from the commensal gut

microbiota (197). MMP-9 plays a potentially key role in the

progress of ulcerative colitis (UC) by regulating the immune

system (198). MMP-19 coordinates the appropriate innate

immune response in colitis, which is critical to balancing the

host response to colon pathogens (126). MMP-9 is a member of

MMPs closely related to cancer. MMP-9 is related to immune

infiltration in pan-cancer and can be used as a biomarker of
Frontiers in Immunology 09
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cancer prognosis and metastasis (199). It is overexpressed in

peripheral blood NK cells of prostate cancer (86). And MMP-9

also effectively reduces the tumor killing-effect of T cells via

cutting the MHC class I molecule, cell surface antigen-

presenting complex molecules expressed in melanoma cells

(200). In addition, high expression of MMP-11 is associated

with worse survival rate in breast cancer, which is related to a

low immune response, such as the reduction in the number of

CD8+T cells, CD4+T cells, B cells and activated DCs (201).
2.3 Relationship between MMPs and
inflammatory diseases

Inflammation is a fundamental pathological process that

occurs when biological tissue is stimulated by certain kinds of

injury, such as trauma and infection. Topical presentations of

inflammation include redness, swelling, heat, pain and

functional impairment. Systemic reactions include fever and

changes in peripheral blood levels. MMPs are vital elements

implicated in the manifold regulation of inflammation (202,

203). In one study, levels of some MMPs, such as MMP-1,

MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and

MMP-13, were significantly elevated in ulcer biopsies from

patients with inflammatory disease (204–208). MMPs have not

only a negative influence (125), but they also have an impact on

vascular permeability (209–211), ECM remodeling, epithelial

proliferation, and angiogenesis in different stages of

inflammation (4, 173). In a model of colonic injury induced by

sodium dextran sulfate, MMP-10 had a positive effect on disease

(172). Because the progression of damage due to lack of MMP-

10 is accelerated with viciousness-potential, enhancing

expression of MMP-10 is helpful (125). A similar observation

can be found for MMP-19 (126).
3 Key MMPs in CAC and their
immunomodulatory aspects

3.1 Important role of MMPs in colitis

Chronic inflammatory disease is often associated with the

occurrence and development of various cancers. A classic

example is the increased risk for CAC in patients with IBD. In

chronic environments marked by chronic inflammation, the

ECM is a major factor in maintaining and promoting tumor

growth, and MMPs are the major protease involved in the

pathogenesis of IBD. Although both sporadic CRC and CAC

are malignancies of the colon, CAC differs from sporadic colon

cancer in several respects. CRC is produced through three main

pathways: the adenomato-carcinoma sequence, the serrated

pathway, and the inflammatory pathway. In contrast, the
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development of CAC is associated with the inflammatory-

dysplasia-carcinoma pathway. MMPs counteract ECM

proteins expressed in the gastrointestinal tract during

inflammation (212, 213). Therefore, this study was conducted

to evaluate the role of MMPs in CAC and its related mechanisms

(214). The essential role of these enzymes in the remodeling and

destruction of tissue in IBD has been well documented (205,

215–220). Pathological results of IBD, progressive mucosal

disintegration (e.g., ulcers and fistulas) and fibrosis due to

excessive deposition of collagen (the main component of

ECM), is related to a disruption in the balance between

composition and breakdown of the ECM (221). As an

important molecule in mucosa and submucosa, ECM is the

substrate of MMPs, which is why MMPs play such an essential

role in the development of IBD. In Crohn’s disease (CD), TNF-a
and activated T cells stimulate mesenchymal cells to increase the

secretion of MMPs, and then MMPs causes tissue damage by

degrading the lamina propria matrix (222, 223). MMP-3 and

MMP-9 participate in the formation of fistula in CD by

degrading the ECM (224). Moreover, MMPs are the key

element in wound healing in the late stage of IBD through

their effects on degradation of the ECM (225). MMP-1, MMP-7,

and MMP-10 are expressed in migratory enterocytes in this

process (226), which is important for epithelial regeneration and

wound granulation (225, 227, 228). Furthermore, MMP-3 is

crucial in scar contraction and ECM remodeling (229–231).

Regarding the ECM, MMPs have roles in a diverse array of

substrates (232), including cytokines (90, 233), chemokines

(234–237), TNF-a (238), a1-antitrypsin/a1-antichymotrypsin

(239), IL-1b (240, 241), stromal cell-derived factor-1 (234),

growth factors (239) and so forth. Some factors, such as TNF-

a and IL-1b, in turn, stimulate the production of MMPs (242–

244). Injury to the intestinal barrier is also responsible for IBD.

When the intestinal barrier is disrupted, gene and protein

expression of MMP-1, MMP-2, MMP-3, MMP-7, MMP-9,

MMP-10 and MMP-13 increase, and leukocytes are

summoned to inflamed areas (219, 245–247). MMP-8 and

MMP-9 are released from neutrophi ls to regulate

proinflammatory cytokines and chemokines to increase the

number of leukocytes and eliminate bacteria (204, 224, 245).

Macrophages phagocytose bacteria, along with MMP-9 released

externally and MMP-12 entering into the phagosome (248).

MMP-12 has a direct bactericidal effect. Briefly, when bacterial

pathogens invade, MMP-12 is mobilized to macrophage

phagolysosomes and adhere to bacterial cell walls, destroying

cell membranes and causing bacterial death (249). MMP-7 plays

an indirect bactericidal role by activating and releasing

bactericidal alpha defensins into the gut lumen (250, 251).

MMP-10 from infiltrating myeloid cells participates in the

recovery of DSS-induced damage to the colon (125). Research

has also shown that the susceptibility to colitis, including

significant disease progression, increased mortality, severe
Frontiers in Immunology 10
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tissue destruction, increases level of pro-inflammatory

regulators in the colon and plasma, and a significant delay in

neutrophil infiltration and persistent inflammation, increased

markedly in MMP-19-null mice. In IBD, MMP-14 in endothelial

cells promotes angiogenesis, which is achieved by combining the

C-terminal fragment of MMP-14 substrate thrombospondin-1

with CD47/avb3 integrin to produce nitric oxide (252).

Moreover, the migration of macrophages that lack MMP-19 is

reduced in vivo and in vitro and the mucosal barrier is damaged

(126). Chemokine fractalkine (CX3CL1), a substrate of MMP-

19, is an essential component of the response to DSS in acute

colitis. Because CX3CL1 receptors exist on innate immune cells

(e.g., macrophages, neutrophils), impaired immune cell

trafficking may be associated with a lack of the soluble

CX3CL1 in MMP-19-deficient mice. Mice without the receptor

CX3CR1 have more serious symptoms of DSS-induced colitis

(126, 253–255). The application value of MMPs as biomarkers in

IBD has also been recognized. A number of studies have

demonstrated the high sensitivity of MMP-9 in evaluation of

active UC (256–258). In addition, through an analysis of

emerging BiomARKers (EMBARK), the researcher not only

proposed that the combination of fecal calprotectin and serum

MMP-9 can be used as a biomarker of UC, but also confirmed

the value of MMP-9 as a biomarker of CD, indicating the

combination of fecal calprotectin, serum MMP-9 and serum

IL-22 can be used as a biomarker of CD (259).

In conclusion, MMPs participate in the host immune

defense, would healing, and epithelial regeneration and they

have bidirectional effects in IBD. On the one hand, they are

involved in the development of IBD through the process of

inflammation. MMPs are indirectly associated with progressive

organ damage, ulceration or over accumulation of collagen, the

persistence of inflammation, and fibrosis because of their

substrate ECM. On the other hand, some members of MMP

family have an inhibitory effect on inflammation (215, 260).
3.2 Key MMPs in CAC

CAC is a very common fatal complication of IBD (261–264).

The pathogenesis of CAC is multifactorial, although a key driver

of colitis is neoplastic progression (265–267). The lifetime risk

for CAC in IBD patients is 15-40%, and CAC accounts for about

15% of mortality in these patients (268). Chronic inflammation

generates oxidative stress that induces DNA damage that might

activate some oncogenes and inactivate some anti-oncogenes

(267). Related mechanisms include oxidative base lesions,

replication stress, DNA crosslinking, and strand breaks, which

eventually lead to genomic destabilization and tumorigenesis

(269). MMPs play a roles in both promoting and inhibiting

regulation of CAC development and progression, as shown in

Table 2. The main role of MMPs in colitis and CAC is shown in
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Figure 2, and the network of MMPs that interfere with CAC is

shown in Figure 3. A list of all genes mentioned here could be

found in Table S1.

MMPs degrade the protein components of the ECM and

basement membranes, which provides a channel for cancer cells

to invade to the vascular and lymphatic systems as well as promotes

metastasis (276). In the process of tumor growth, MMPs are up-

regulated, which strengthens the permeability of vascular

endothelial cells, thereby increasing cell proliferation, migration

and angiogenesis (287). Histone demethylase (JMJD2D) and b-
catenin interacts physically (JMJD2D demethylates H3K9me3 on

the promoter of b-catenin target genes), which increases the
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promoter activity of target genes (including MMP-2 and MMP-9)

of b-catenin; activates transcription ofMMP-2,MMP-9, and others;

and ultimately cause CRC cells to proliferate, migrate and invade,

and form colorectal tumors in mice (270). In a mouse model of

tumor invasion, macrophages infiltrate and express MT1-MMP,

resulting in activation of MMP-2 and consequent inhibition of

TGF-b. This process leads to submucosal invasion of epithelial cells

when it occurs in conjunction with KRAS or phosphatase and

tensin homolog deleted on chromosome 10 (271). Specifically,

when the inhibition of TGF-b is accompanied by the expression

of KRAS, activation of the epidermal growth factor receptor (EGFR)

signaling pathway is increased as a result of increased protein
TABLE 2 The key matrix metalloproteinases (MMPs) in colitis associated cancer.

MMPs Protein
Expression Molecular Mechanisms Effects Refs

MMP-2 ↑

Histone demethylase (JMJD2D) and b-Catenin interacts physically
(JMJD2D demethylates H3K9me3 on the promoter of b-Catenin target
genes), hence this interaction increases promoter activity of target genes
(including MMP-2) of b-Catenin, activates transcription of MMP-2 and
others;
Macrophages infiltrate and express MT1-MMP, causing MMP-2 activation;

Promote CRC cell to proliferate, migrate
and invade and form colorectal tumors in
mice;
Promote submucosal invasion of
transforming growth factor (TGFB)
signaling-repressed epithelial cells;

(270,
271)

MMP-3 ↑
TNF-a and bradykinin enhance the expression of MMP-3 at a
transcriptional level through protein kinase C /protein kinase D1
/mitogen-activated protein signal 20 pathway;

Promote tumor invasion;
(272–
274)

MMP-7 ↑
Lack of adenomatosis polyposis coli lead to deregulation of WNT signaling
pathway, and binding accumulation of b-catenin and T-cell factor-4;
Stat-3 signaling is activated by FGFR, thereby inducing MMP-7 expression;

Relate to the occurrence and development
of CAC;

(275–
278)

MMP-9 ↑

Histone demethylase (JMJD2D) and b-Catenin interacts physically
(JMJD2D demethylates H3K9me3 on the promoter of b-Catenin target
genes), hence this interaction increases promoter activity of target genes
(including MMP-9) of b-Catenin, activates transcription of MMP-9 and
others;

Activate p21WAF1/Cip1 by regulating notch
activity, a key transcription factor in
epithelial cell lineage, resulting in b-
catenin inhibition and cell cycle arrest;
Acts tumor suppressive effect by activating
MMP-9-Notch1-ARF-p53 axis, which lead
to apoptosis and DNA damage in colonic
epithelium;
Reduce reactive oxygen species
accumulation and DNA destruction;
Inhibit metastasis and adhesion of
colorectal cancer cells;
Reduce tumor angiogenesis;
Act on EGFR-nuclear transcription factor-
specificity protein 1 (Sp1) signaling
pathway to sustain the epithelial mucosal
and function as well as immune
homeostasis;
Maintain epithelial and mucosal integrity
by increasing mucin and intestinal trefoil
factor (ITF) and downregulating STAT3
pathway;
Maintain the balance of microbiota;

(212,
213,
270,
276,
279–
282)

MMP-10 ↑
Activate proTNF-a turning into TNF-a, then promote NF-kB signaling
pathway activation;

Destroy intestinal barrier function;
Facilitate the resolution of inflammation;

(283)

MMP-11 ↑ Associate with the increase of b-catenin accumulated crypts number; Reduce apoptosis of cancer cells;
(276,
284,
285)

MMP-13 ↑
Activate proTNF-a turning into TNF-a, then promote NF-kB signaling
pathway activation;

Destroy intestinal barrier function;
Facilitate the resolution of inflammation;

(283,
286)
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expression of epiregulin and mRNA expression of Errb1. When the

inhibition of TGF-b is accompanied by phosphatase and tensin

homolog deleted on chromosome 10 deletion, mRNA expressions

of cyclin-dependent kinase (CDK) inhibitors (Cdkn2b/p15Ink4b,

Cdkn1a/p21Cip1 and Cdkn1b/p27Kip1) is down-regulated (288,

289). The level of MMP-3 secreted from myofibroblasts is up-

regulated in IBD and tumorigenesis (272, 273). TNF-a and

bradykinin enhance expression of MMP-3 at a transcriptional

level through the protein kinase C/protein kinase D1/mitogen-

activated protein signaling pathway, and thus mediate CAC (272).

This mediating effect is related to the promotion of tumor invasion

by MMP-3 (274). MMP-7 is connected to the occurrence and

progression of CAC, and is expressed intensely at crypt bases of

epithelial cells and in dysplastic CAC biopsy, as observed in CRC

(275). Because of the lack of adenomatosis polyposis coli, the WNT

signaling pathway is deregulated and b-catenin and T-cell factor-4

accumulate. Hence, the expression of MMP-7 up-regulated (276,

277). In addition, fibroblast growth factor receptors in cancer-

related fibroblasts activate Stat-3 signaling, thereby inducing MMP-

7 expression (278). In contrast, the highly expressed MMP-9 in

CAC inhibits the tumor by affecting the Notch signaling pathway.

Specifically, MMP-9 activates p21WAF1/Cip1 by regulating notch

activity, a key transcription factor in epithelial cell lineage,

resulting in b-catenin inhibition and cell cycle arrest (213).

MMP-9 from the colonic epithelium also acts as a tumor

suppressor by activating the MMP-9-Notch1-ARF-p53 axis,

which leads to apoptosis and DNA damage (279). Previous study

claimed that epithelium-derived MMP-9 is beneficial for chronic

inflammation, regardless of tissue origin, in contrast to neutrophil-

derived MMP-9. They also proposed that MMP-9 (stemming from

epithelium or neutrophils) is a pivotal regulator of acute IBD and
Frontiers in Immunology 12
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sporadic cancers (279). MMP-9 reduces reactive oxygen species and

DNA destruction in CAC as well (212). Some researchers have also

found that the hemopexin domain of MMP-9 has an inhibitory

effect on the metastasis and adhesion of CRC (280). The decrease in

MMP-9 in plasma causes down-regulation of angiostatin synthesis,

which results in tumor growth and vascularization (280, 281).

MMP-9 expressed in the colonic epithelium maintains the

microbiota balance. Antimicrobial peptides including REG3 and

S100A families, are effective agents of the innate immune system

(290–292). In transgenic mice constitutively expressing MMP-9 in

the colonic epitheliummRNA levels ofTNF-a, IL-6, IL-1b and IFN-
g increased, but mRNA levels of IL-22, REG3g and S100A8

decreased. MMP-9 maintains epithelial and mucosal integrity by

increasing mucin and intestinal trefoil factor protein levels and

down-regulating the STAT3 pathway in vivo. Moreover, MMP-9

acts on the EGFR-nuclear transcription factor-Sp1 signaling

pathway to sustain epithelial mucosa and functioning as well as

immune homeostasis (282).

MMP-9 and MMP-10 are only significantly expressed in

inflamed tissue, not normal colon tissue, and they start to peter

out when healing begins (276). MMP-10 is mostly expressed by

macrophages. In UC, it is found in enterocytes at the margins of

ulcers and in the cells of granulation tissue (276). Researchers

believe that MMP-10 from infiltrating bone marrow cells plays a

role in resolving the inflammation. With a lack of MMP-10,

susceptibility to DSS-induced colitis increases, and prolonged IBD

may eventually lead to dysplasia (276). In miR-148/152-deficient

mice, expressions of MMP-10 and MMP-13 increases, thus

activating pro-TNF-a turning into TNF-a and promotes

activation of the NF-kB signaling pathway. Damaged functioning

of the intestinal barrier accelerates colitis and CAC (283). Similarly,
FIGURE 2

The main role of matrix metalloproteinases (MMPs) in colitis and colitis-associated cancers (CAC). MMPs are involved in pathological processes
of colitis and CAC, including cell growth and division, angiogenesis and migration, ECM remodeling and invasion, as well as inflammation and
immune response. ROS, reactive oxygen species; ITF, intestinal trefoil factor; Sp1, specificity protein 1; ECM, extracellular matrix.
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MMP-11 is virtually absent in regular tissues (276). The mRNA

level of MMP-11 is related to CAC in some way (284, 285). The

mRNA level ofMMP-11 is up-regulated in CAC, and is associated

with the increase in the number of b-catenin accumulated crypts

(284). The proton pump inhibitor-omerprazole and TNF-a
blocker-infliximab reduce the mRNA level of MMP-11 and

induces cells apoptosis in CAC (285). MMP-13 is highly

increased in CAC colonic tissues, but do not change as the CAC

progression (286). Compared to other MMPs, MMP-14 (MT1-

MMP) does not increase markedly in CAC. Researchers have also

found that Omerprazole and Infliximab were able to down-regulate

the mRNA levels of MMP-14 (284). In a mouse model of CAC,

miR-128, miR-134 and miR-330 are influenced by Dicer1. These

microRNAs inhibit tumor growth in vitro and in vivo andmodulate

expression of MMP-3, MMP-10, and MMP-13 (285, 293).
3.3 Mechanisms underlying of typical
MMPs in CAC

In CAC, typical MMPs affecting the organism’s immune

function and their expressions are regulated by the immune

system, as shown in Figure 4 (10). MMP-7 decreases the

sensitivity of mice to intestinal bacteria. Specifically, MMP-7

knockout mice do not activate pro-a-defensins in the gut to their
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mature active forms, with the result that these mice are highly

susceptible to intestinal bacterial infection (250). MMP-8 affects

the immune response to tumor and helps to resolve necrosis,

which is positively related to the degree of primary tumor

necrosis and blood neutrophil count, as well as negatively

correlated with destructive inflammatory infiltration and

Crohn’s-like lymphoid reaction (294). MMP-8, which is

involved in resolving acute and chronic inflammation and

helps to recruit neutrophils during acute inflammation, is

mainly produced by neutrophils (295, 296). It plays a role in

the recruitment of neutrophils to necrotic areas and in tissue

remodeling, including collagen breakdown (294). MMP-9 is

associated with the onset of lymphadenitis in patients with

CAC, and is significantly up-regulated before the onset of

lymphadenitis in these patients (297). In addition, MMP-9

maintains the integrity of epithelial mucosa and acts as a

tumor suppressor in CAC, which is inseparable from its

function of mediating the level of proinflammatory cytokines

(282). The linings of gastrointestinal epithelial mucosa act as an

external physical barrier and a functional immune barrier for an

immune monitoring system (298). The imbalance in immune

cells is crucial to the development of cancer (299). The

inflammatory cytokines released by immune cells function in

immune defense, and promote the development of cancer in

specific circumstances (300, 301). MMP-9 increases mRNA
FIGURE 3

The network of matrix metalloproteinases (MMPs) interfering with colitis-associated cancers (CAC). MMP-2, MMP-3, MMP-7, MMP-9, MMP-10,
MMP-11, and MMP-13 are involved in the regulation of CAC. MMP-2 and MMP-9 promote CRC cell proliferation. MMP-2 and MMP-3 contribute
to tumor invasion. Expression of MMP-9 leads to apoptosis, reduced accumulation of ROS, DNA damage and inhibition of tumor vascularization,
while maintaining epithelial mucosa, microbiota homeostasis and immune homeostasis. MMP-10 plays a role in inflammation regression. MMP-
11 reduces apoptosis in cancer cells. PKC/PKD1/MEK: protein kinase C/protein kinase D1/mitogen-activated protein; TCF-4: T-cell factor-4;
PTEN: phosphatase and tensin homolog deleted on chromosome 10; EGFR, epidermal growth factor receptor; FGFR, fibroblast growth factor
receptors; CDK, cyclin dependent kinase; Sp1, specificity protein 1; ROS, reactive oxygen species.
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levels of IL-6, IL-1b, TNF-a and IFN-g, but decreases the mRNA

level of IL-22 (282). Regarding the regulation of MMPs by the

immune system, elevated MMP-8 is associated with systemic

inflammation and increased secretion of various cytokines,

including IL-1ra, IL-7 and IL-8, and is negatively associated

with the number of tumors infiltrating mast cells (302). In a

mouse model of colitis-associated CRC, the NF-kB mediated

inflammatory reaction promotes protein expression of cyclin

D1, phosphorylated ribosomal protein S6 and MMP-9 in the

colon tissues of these mice, which plays a beneficial role in CRC

progression (303). In the mouse model of CAC, MMP-9

expression is associated with excessive angiogenesis and cell

proliferation, which is related to CXCL2 and neutrophil

recruitment (304). CXCR2 is present in neutrophils and

interacts with CXCL2 (305). This interaction promotes the

recruitment of neutrophil and the synthesis of MMP-8 and

MMP-9 (304, 306, 307). The proinflammatory factors IL-17 and

IL-21 increase the MMPs secreted by human intestinal

fibroblasts, including MMP-1, MMP-2, MMP-3 and MMP-9

(308–310). Among them, the inducing effect of IL-17 on MMP-1

and MMP-3 depends on the rapid activation of mitogen-

activated protein kinase (308, 311). The regulation of MMPs

by IL-21 does not occur at the level of transcription and

translation and stimulating fibroblast with IL-21 does not

increase the intracellular level of MMP RNA transcripts and

proteins. The up-regulation of MMPs by IL-21 may depend on

preferentially increasing the secretion of preconstituted or newly
Frontiers in Immunology 14
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synthesized MMPs (309). In addition, expression of MMPs is

regulated by TNF-a and IFN-g (312).
3.4 Potential clinical applications of
MMP inhibitors

Clinical trials of MMPs mainly focus on three factors. They

are respectively the changes in clinical levels of MMPs in

different disease states, the clinical use of MMP inhibitors in

colitis and colorectal cancer, and combining MMPs and some

regulatory factors with other drugs to control inflammation and

tumors. MMP-2, MMP-3, MMP-7 and MMP-9 are the key

MMPS in this process. However, current clinical trials have

shown that inhibiting MMPs has no obvious effect on tumor

responses, although it has a certain role in stabilizing the

condition of diseases.

Many MMPs are upregulated in IBD. These MMPs remodel

tissue and release several small protein fragments. In a clinical

trial with 164 volunteers, these protein fragments could be used

to distinguish between CD and UC. For example, measuring

segments of vimentin (MMP-2 and MMP-8 decomposed and

citrullinated-vimentin [VICM]) and type III (MMP-9

decomposed collagen type III [C3M]) can distinguish between

CD and UC (313). A total of 138 participants took part in an

IBD-related study, including different types of disease. Fecal

MMP-9 can be used to diagnose and differentiate between UC
FIGURE 4

The network of MMPs and therapeutic targets in colitis-associated cancers (CAC). Key aspects of carcinogenesis are mediated by MMPs, including
cell growth, angiogenesis, invasion, epithelial-mesenchymal transition (EMT), inflammation, and immune surveillance in immunomodulatory manner.
CXCL2: CXC-chemokine ligand 2; CXCR 2: CXC chemokine receptor 2; MAPK, mitogen-activated protein kinases; FGF-2, fibroblast growth factor 2;
IGF, insulin-like growth factors; IGF-BP, insulin-like growth factors binding protein; TNF-b, tumor necrosis factor-b; TNF-a, tumor necrosis factor-a;
ECM, extracellular matrix; Lam-5, laminin-5; CD44, cluster of differentiation-44; VEGF, vascular endothelial-derived growth factor; a1-P1, alpha 1-
proteinase inhibitor;IL-17, interleukin-17; IL-21, interleukin-21; IL-2Ra, interleukin-2 receptor alpha.
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and pouchitis, because it is strongly associated with clinical,

histological, and endoscopic activities of different forms of IBD

(257). A clinical trial evaluated the relationship between MMP

and prognosis in CRC. This study enrolled 198 consecutive

patients who had undergone operation for CRC, (85 females and

113 males). Of the patient, 67% were older than 65 years old, and

their Tumor-Node-Metastasis classification ranged from 1 to 4.

Expression of MMPs was higher in tumor tissue than in normal

mucosa. This result indicates that high expression of MMP-2

and MMP-9 in the mucosa of CRC patients is related to poorer

5-year survival rates (314). MMP-7 is implicated in multiple

processes of tumor development. To estimate the contribution of

serum MMP-7 to the prognosis of resected CRC, researchers

have conducted several clinical trials. In a study with 303 CRC

patients (87 healthy controls, 96 nonmetastatic patients and 120

advanced patients), high serum MMP-7 was associated with a

higher risk of death in terminal CRC patients (315). Included in

another study were 175 curatively resected CRC patients. In two

Cox proportional hazard models (overall survival and disease-

free survival), higher MMP-7 was associated with higher

recurrence and faster progression (316). Given the role of

MMP-3 in cancer progression and metastasis, a study with 73

CRC patients who underwent minimally invasive colorectal

resection investigated the relationship between increased

plasma MMP-3 and residual metastases after surgery.

Minimally invasive surgery directly up-regulated MMP-3 levels

owing to surgery or subsequent wound healing or indirectly up-

regulated MMP-3 by increasing TNF-a and IL-1 in the acute

inflammatory response after surgery (317).

BAY 12-9566 inhibits MMP-2, MMP-3, and MMP-9. A

phase I clinical enrolled 13 patients with colorectal, renal,

gastroesophageal junction, duodenum, lung, and sarcoma

cancer. Subjects were given BAY 12-9566 at four dosages. No

tumor responses were found, but two patients had stable disease

after 1.1 and 1.5 years of treatment (318). In another phase I

clinical trial, 27 patients with advanced solid tumors took BAY

12-9566 100 to 1,600 mg/day. These patients had colorectal,

lung, breast, ovarian and cervical cancers. The condition of 48%

patients was stable. BAY 12-9566 did not reduce the size of the

tumor, but slowed their growth (319). BMS-275291 is another

wide-spectrum inhibitor of MMPs. In an open-label, phase I

trial, 40 late-stage or metastatic cancer patients were given BMS-

275291, most of them had CRC or non-small cell lung cancer.

Although the researchers found no objective tumor responses,

the condition of some patients stabilized (320).

Two clinical trials have been conducted on drug

combinations. In a randomized, double-blind, clinical trial of

rectal cancer, 34 patients receiving chemoradiotherapy were

divided into a placebo group and a conjugated linoleic acid

group. Supplementing conjugated linoleic acid decreased the

levels of TNF-a, IL-1b, hsCRP, MMP-2 and MMP-9, which are

biomarkers of tumor aggression and angiogenesis (321). A trial

that included 37 patients with CRC lasted for 7 weeks. These
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patients who underwent chemotherapy, were separated into two

groups: a fisetin group (n=18) and a placebo group (n=19).

Flavonoid fisetin reduced levels of MMP-7, and significantly

lowered levels of high-sensitivity C-reactive protein and IL-8 by

the end of the study (322).

Despite the important role of MMPs in many human

diseases, no broad-spectrum synthetic MMP inhibitor has

successfully passed the clinical trial stage because of the

bilateral pro-tumor and anti-tumorigenic effects of MMPs in

cancer (323). A variety of MMPs, including MMP-2, MMP-9

and MMP-14, can degrade the basal layer of capillaries and

promote exosmosis of tumor cells. MMP-9 also down-regulates

the IL receptor on the surface of T cells, further inhibiting

immunity and promoting cancer tolerance (324–326). By

eliminating cell apoptosis, MMP-7 reduces the effect of

chemotherapy even promoting tumor growth. However,

MMP-8 may directly inhibit tumor metastasis in tumor cells.

One of the side effects of broad-spectrumMMP inhibitors is that

they interfere with the tumor-inhibiting function of MMP-8

(76). With more specific MMPs inhibitors now available, MMPs

targeting can be reconsidered for cancer therapy (326).
4 Conclusion

Given their role in degrading the ECM, MMPs are associated

with the occurrence and development of many diseases,

especially inflammatory diseases. Most MMPs, such as MMP-

2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-12, and MMP-13

are increased in colitis and CAC. Therefore, reducing levels of

these MMPs could effectively prevent the development of

inflammation and CAC, as well as the progression of colitis-

the eventual cause of CAC- from acute inflammation to chronic.

However, the effect of some MMPs, like MMP-9, on CAC is

bidirectional, which means they are involved in the pathogenesis

of IBD and promote the metastasis and spread of malignant

tumors, but also play a role in tumor suppression as well.

Therefore, how to balance the bidirectional role of MMPs in

clinical applications is a vital question. In specific diseases, it

might be advisable to clarify the therapeutic target, especially the

definitive role and efficacy of a certain MMP. Given their

multifaceted role in colitis and CAC, more in-depth research

is needed. In addition, MMPs participate in the host immune

defense, wound healing, and epithelial regeneration. Normally

MMPs are secreted and activated in immune cells when the

expression of inflammatory cytokines and chemokines increase.

MMPs modulate immune system activity by interfering with the

differentiation and immune activity of immune cells,

recruitment of macrophages, and migration of neutrophils. In

clinical trials, the condition of CRC patients could be stabilized

to a certain extent by inhibiting levels of MMPs. Therefore, levels

of MMPs could be used to predict the condition and

development of inflammatory diseases and CAC. Furthermore,
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MMPs have very broad prospects in the treatment of CAC

through immunoregulation, which is also a promising direction

in future research.
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Chronic inflammation participates in the progression of multiple chronic

diseases, including obesity, diabetes mellitus (DM), and DM related

complications. Diabetic ulcer, characterized by chronic wounds that are

recalcitrant to healing, is a serious complication of DM tremendously affecting

the quality of life of patients and imposing a costly medical burden on society.

Matrix metalloproteases (MMPs) are a family of zinc endopeptidases with the

capacity of degrading all the components of the extracellular matrix, which play a

pivotal part in healing process under various conditions including DM. During

diabetic wound healing, the dynamic changes of MMPs in the serum, skin tissues,

and wound fluid of patients are in connection with the degree of wound

recovery, suggesting that MMPs can function as essential biomarkers for the

diagnosis of diabetic ulcer. MMPs participate in various biological processes

relevant to diabetic ulcer, such as ECM secretion, granulation tissue

configuration, angiogenesis, collagen growth, re-epithelization, inflammatory

response, as well as oxidative stress, thus, seeking and developing agents

targeting MMPs has emerged as a potential way to treat diabetic ulcer. Natural

products especially flavonoids, polysaccharides, alkaloids, polypeptides, and

estrogens extracted from herbs, vegetables, as well as animals that have been

extensively illustrated to treat diabetic ulcer through targeting MMPs-mediated

signaling pathways, are discussed in this review and may contribute to the

development of functional foods or drug candidates for diabetic ulcer therapy.

This review highlights the regulation of MMPs in diabetic wound healing, and the

potential therapeutic ability of natural products for diabetic wound healing by

targeting MMPs.

KEYWORDS

matrix metalloproteases, diabetic wound healing, natural products, chronic
inflammation, clinical research studies
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1 Introduction

Diabetes mellitus (DM) is a chronic metabolic noncommunicable

disease principally characterized by consistently high blood glucose

levels that may affect more than 783 million individuals in 2045

worldwide (1, 2). Sustained exposure to high levels of glucose induces

neurological, microvascular and macrovascular lesions and low

immune response in the body, which thereby contributes to the

impaired wound healing, a crucial matter in diabetic patients (3).

Such chronic wound ulcer is often exacerbated by tissue ischemia or

constant stress, especially in the foot, which can eventually lead to

amputation if no appropriate therapeutic strategy are applied (4).

Besides, high glucose (HG) also affects the functions of cornea,

leading to several diabetic corneal complications especially delayed

epithelial wound healing (5). Unlike wound healing in healthy

individuals, the healing process in DM is retarded in the

inflammatory phase, as manifested by the elevation of pro-

inflammatory cytokines, proteases, and reactive oxygen species

(ROS), and the dysfunctions of numerous cell types (6). In

addition, wounds under diabetic condition are more susceptible to

bacterial infection on account of damaged immune responses, which

brings about substantial recruitment of inflammatory cells that

produce various ROS and destroy structural elements of the

extracellular matrix (ECM) (7). Noticeably, ROS together with pro-

inflammatory cytokines can further impairs the wound by inducing

matrix metalloproteinases (MMPs) expression, which results in

degradation of the ECM and growth factors (8).

MMPs, a set of zinc-dependent proteolytic enzymes, participate

in kinds of wound healing events by degrading almost all protein

components of ECM (9). According to the structure of substrates

and domains, MMPs can be primarily classified as collagenases (like

MMP-1, MMP-8, and MMP-13), matrilysins (such as MMP-7),

stromelysins (such as MMP-3, MMP-10, and MMP-11), gelatinases

(such as MMP-2 and MMP-9), membrane type metalloproteinases

(such as MMP-14), as well as others (10, 11). Usually, MMPs are

inactive and exist as latent precursors “zymogens” in vivo, but turn

into active status when stimulated by external stimuli like cytokines,

growth factors, as well as cell-matrix interactions (12). A critical

mechanism for the modulation of MMPs is through conjugation

with endogenous inhibitors, such as tissue inhibitors of

metalloproteinases (TIMPs), a2-macroglobulin, and small

molecules with TIMP-like domains (13–15). During the progress

of diabetic ulcer, MMPs show higher level of protease activity, they

degrade protein, undermine the temporary ECM, remodel the

granulation tissue, modulate angiogenesis, and administrate the

activity of growth factors (16–18). Intriguingly, multiple signaling

pathways associated with inflammatory response, oxidative stress,

and apoptosis, as well as epigenetic modification are illustrated to be

implicated in the regulation of MMPs during diabetic wound

healing (19–21), which indicate that targeting these signals-

mediated MMPs is a promising strategy for diabetic ulcer.

Natural products are a dominating resource for developing drug

candidates with specific bioactivities to prevent diseases and can

function as dietary supplements to provide benefits for human

health. Over the past decade, increasing evidence has shown that

naturally occurring flavonoids, polysaccharides, saponins, and
Frontiers in Immunology 02163
alkaloids exhibit outstanding therapeutic activities on wound

healing under a variety of pathological conditions (22). In

addition, animal-derived peptides and hormones have also been

reported to possess promising ability to improve diabetic wound

healing (23, 24). These compounds mainly improve diabetic wound

healing through accelerating re-epithelization and ECM formation,

alleviating oxidative stress, relieving inflammation, promoting

angiogenesis, and suppressing apoptosis via MMPs-relevant

signaling pathways (25–29). As a result of the favorable ability of

natural products in regulating aberrantly altered MMPs during

diabetic wound healing, developing the novel agents based on the

structures of these natural products may contribute to the treatment

or mitigation of diabetic ulcers.

This review highlights the physiological and pathological

regulation of MMPs in diabetic ulcers, and the potential

therapeutic ability as well as mechanisms of natural products for

diabetic wound healing by targeting MMPs. In addition, clinical

research studies focused on MMPs in the process of diabetic wound

healing are also addressed. At the same time, the application

prospect of natural products targeting MMP in the prevention

and treatment of diabetic ulcers is pointed.
2 MMPs in diabetic ulcer

2.1 Stem cells and MMPs

Mesenchymal stem cells (MSCs) are illustrated to accelerate

wound healing under diabetic condition via regulating ECM

proteolysis. MSCs reverses the reduction of COL I and COL II,

down-regulates MMP-9 expression, and suppresses the levels of

activated MMP-9 in diabetic wounds. In addition, MSCs

administration up-regulates the expression of miR-29b in diabetic

wounds and HG-treated dermal fibroblasts (30), indicating that

MSCs exert therapeutic effect on diabetic wound healing through

repressing proteolysis and improving COL levels in ECM via

targeting miR-29/MMP-9 axis. Interestingly, adipose derived

mesenchymal stem cells (ADSCs) are demonstrated to improve

diabetic ulcer through modulating the expression of ECM

remodeling-associated genes. Ghaneialvar et al. reported that

ADSCs administration down-regulates the gene expressions of

MMP-9 and up-regulates the expressions of MMP-2 as well as

TIMP-1 in STZ-induced mice. Besides, the mRNA expression of

urokinase-type plasminogen activator (uPA) is elevated at the early

stages of wound healing process, which may promote the activity of

MMP in the inflammatory phase, while ADSCs intervention reduces

the expression of uPA in diabetic group (31). Additionally, Wang

et al. reported that extracellular vesicles derived from adipose-derived

stem cells (ADSC-EVs) play a significant role in diabetic wound

healing by promoting collagen (COL) deposition through down-

regulating MMP-9 expression. In vitro studies demonstrated that

ADSC-EVs promotes the proliferation of AGEs-BSA-treated HaCaT

cells, while inhibits the secretion of MMP-9. Besides, ADSC-EVs

improves the wound healing rate of diabetic mice through

accelerating the re-epithelialisation, facilitating COL deposition, and

reducing MMP-9 levels in the wound fluids (32).
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Bone-marrow-derived mesenchymal stem cells (BM-MSCs) has

been utilized as effective therapeutic strategy for wound healing due

to their abilities to modulated inflammation, ECM production, as

well as angiogenesis. Kamiya et al. reported that BM-MSCs

transplantation accelerates wound healing in STZ-induced rats

and HG-induced keratinocytes through improving re-

epithelialization, elevating the suppressed viability of HKCs, and

increasing the expressions of MMP-2, epidermal growth factor

(EGF), human insulin-like growth factor 1 (IGF-1) as well as p-

FAK (33). In addition, mouse bone marrow (BM)-derived

allogeneic MSCs (allo-mBM-MSCs) facilitate wound healing in

STZ-induced diabetic mice through secreting the growth factors

and proteins such as MMP-1. Allo-mBM-MSCs administration

improves the wound healing rate through promoting the re-

epithelialization, granulation tissue formation, COL deposition

and vascular proliferation. Notably, Allo-mBM-MSCs accelerates

the wound repair through secreting the factors and proteins such as

COL-1, keratinocyte growth factor, MMP-1, Ang-2, IGF-1,

hepatocyte growth factor, prostaglandin E2 and vascular

endothelial growth factor (VEGF) (34). Altogether, these results

suggest that modulating the secretion of MMP-1 by allo-mBM-

MSCs may be a potential therapy for diabetic wound repair.

Stem cells from human exfoliated deciduous teeth (SHED)

possess strong differentiation capacity that display outstanding

therapeutic effect in wound repair. Lv et al. found that SHED

treatment up-regulates MMP-9 and MMP-2 in rats with DFU,

resulting in the improvement of wound healing, enhancement of

angiogenesis, reduction of inflammation, as evidenced by the up-

regulation of VEGF and eNOS, as well as the down-regulation of

interleukin (IL)-10, Tumor necrosis factor (TNF)-1a as well as IL-

1b. However, SHED transplantation is not as effective as MSCs in

wound healing (35). Even so, SHED is a potential treatment for

diabetic ulcer healing and may address the surgical invasiveness

associated with MSCs transplantation.

Considerable studies have illustrated that endothelial

progenitor cells (EPCs) play a pivotal part in vasculo-genesis,

which thereby gives rise to the reconstitution of microcirculation

and healing. Impeded neovascularization and impaired EPCs are

major features of diabetic wound healing. Angiopoietin (Ang)-1is a

potent mobilizer of EPCs from the BM, which improves re-

epithelialization and EPC recruitment in the wounds of diabetic

mice though up-regulating the expression of MMP-9 and stem cell

factor (SCF). Interestingly, SCF treatment can reverses the

decreased mobilization of EPCs in MMP-9-/- mice, and Ang-1

overexpression elevates the re-epithelialization of wounds in

MMP-9-/- mice (36), which suggest that the protective effects of

Ang-1 on diabetic wound healing are involved in the EPC

recruitment and MMP-9 regulation.
2.2 Inflammation-associated signals
pathways and MMPs

During the development of diabetic wounds, the excessive

inflammation coupled with advanced glycation end products

(AGEs) accumulation cause down-regulation of growth factors,
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rapid degradation of matrix, as well as reduction of COL,

ultimately leading to impeded wound healing in patients (37).

Numerous studies have reported that nuclear transcription factor-

kB (NF-kB) signaling pathways contribute to the expression of

MMPs in diabetic foot ulcers (DFUs). Chang et al. reported that

DFUs infection impairs the wound healing by increasing

inflammation and inhibiting angiogenesis, which gives rise to the

up-regulation of MMP-9 through activating the NF-kB signaling

pathway via increasing ROS, whereas it does not affect the level of

MMP-8. Remarkably, the inhibitor of MMP-8 delays the diabetic

wound healing, but (R)-ND-336, the inhibitor of MMP-9, promotes

the wound repair, which suggest that MMP-8 facilitates wound

healing in DM, whereas MMP-9 does not (18, 38). In addition,

Notch1/NF-kB/MMP-9 axis also participates in diabetic wound

closure. Zhu et al. reported that Notch1 signaling pathway is

activated in skin of diabetic rats and AGEs-BSA-treated primary

human keratinocytes, as evidenced by the up-regulation of Notch

intracellular domain (NICD), Delta-like 4 (Dll4), as well as Hes1,

which contributes to the elevation of MMP-9 activation.

Remarkably, the regulatory effect of Notch1 on MMP-9 relies on

NF-kB activation, and suppression of Notch1 significantly prevents

the nuclear translocation of NF-kB induced by AGEs-BSA in

keratinocytes. Interestingly, inhibiting Notch1 signal with DAPT

represses NICD and MMP-9, resulting in the improvement of COL

accumulation and diabetic wound healing (39). Moreover, MMP-9

in diabetic wound healing is also mediated by receptor for AGE

(RAGE), MAPK as well as NF-kB signaling pathways. In AGEs-

BSA-treated HaCaT cells, MMP-9 expressions are significantly up-

regulated, while such effect is reversed by the intervention of

inhibitors of extracellular regulated protein kinases (ERK)1/2,

p38, as well as NF-kB. In addition, AGEs-BSA also elevates the

expression of RAGE in HaCaT cells and promotes NF-kB p65

translocation. Remarkably, silence of RAGE abrogates MMP-9

activation and the phosphorylation of ERK1/2 as well as p38 (21).

Indeed, long-term HG exposure is elucidated to impair

keratinocyte migration and obstacle wound healing through

stimulating M1 macrophage polarization via TNF-a TIMP-1/

MMP-1 axis. Huang et al. reported that pro-inflammatory M1

macrophages and TNF-a levels are obviously increased in the

perilesional area of diabetic rats, as evidenced by the up-regulated

ratio of C-C chemokine receptor type 7 (CCR7)/CD68. Besides,

TNF-a from M1 type macrophage suppresses the migration of

keratinocytes by down-regulating MMP-1 and up-regulating

TIMP-1, while TNF-a antibody addition or gene-silencing of

TIMP-1 restore the impaired function of keratinocytes. Further in

vivo studies demonstrated that TNF-a antagonist promotes wound

healing process in diabetic rats (40). In addition to high systemic

blood glucose concentration, local hyperglycemia can also inhibit

wound healing. Kruse et al. found that the migration of keratinocyte

and fibroblast is suppressed by 5.6 mM glucose intervention, which

results in the delayed close of scratch wounds. In addition, local

hyperglycemia inhibits the wound healing and re-epithelialization

in rats through increasing the levels MMP-1 (41). Interestingly,

Feng et al. reported that MMP-9 blocks the wound healing process

in DM mice through attenuating EPCs recruitment via suppressing

CXCL12 activation. The expressions of phagocyte-derived MMP-9
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and pro-inflammation factors (such as TNF-a and IL-6) are

augmented, whereas the numbers of EPC and levels of CXCL12

are decreased in STZ-induced diabetic mouse. However, the

inhibitor of MMP significantly facilities the diabetic wound

healing compared with TNFa-treated group (42). Therefore, these

results suggest that the inhibitor of MMPs may be a potential agent

for impaired wound closure in diabetic patients. Furthermore, IL-

1b is demonstrated to impede fibroblasts functions from diabetic

wound tissues by modulating the expression of MMPs via a p38-

mediated pathway. A recent study reported that IL-1b levels are up-

regulated in the wounds and serum of diabetic individuals as well as

that of db/db mice, which suppresses the proliferation and

migration of fibroblasts, enhances MMP-2 and MMP-9

expression, and down-regulates TIMP-1 and TIMP-2.

Additionally, IL-1b intervention dose-dependently promotes the

phosphorylation of p38 in cultured fibroblasts, while SB203580 (a

p38 inhibitor) countervails the effects of IL-1b on collagenase,

MMPs, and TIMPs (43), suggesting that IL-1b takes part in

delayed wound healing in DM by altering levels of ECM

remodeling proteins through activating p38 signal.

Altogether, these studies indicate that targeting inflammatory

response-relevant signaling pathways involving NF-kB, MAPK,

TNF-a, as well as IL-1b is a promising therapeutic strategy to

modulate MMP-9, MMP-8, and MMP-1 expression during diabetic

ulceration (Figure 1).
2.3 Oxidative stress-associated signals
and MMPs

ERK1/2 signal is demonstrated to participate the development of

diabetic wound healing by modulating MMPs and activator protein-1

(AP-1). AP-1 comprises c-Jun and c-Fos proteins and has been

illustrated to function as the modulator of MMPs transcriptions

under the diabetic condition. The protein levels of AP-1 and MMP-9

are enhanced in the epithelium of diabetic skin tissues. Besides, the

protein stability of c-FOS/c-Jun, the subunits of AP-1, as well as the

activation of ERK1/2 are elevated in HG-treated HaCaT cells, while

ERK1/2 inhibitor reverses the phosphorylation of c-FOS and c-Jun,

and down-regulates MMP-9 expression, suggesting that ERK1/2

activated by HG can stabilize AP-1, which leads to the transcription

and expression of MMP-9 and subsequently the delayed wound

healing (44). In addition, increasing studies proved that the

transcriptions of MMP-2 as well as MMP-9 are regulated by AP-1,

and c-Jun is a suppresser of p53 in immortalized fibroblasts.

Tombulturk et al. reported that c-Jun, MMP-2, as well as MMP-9

are up-regulated in diabetic rats during wound healing process

concomitant with the increase of p53 (20). Moreover, several up-

stream signals have been considered as important targets for ERK1/2-

mediated MMPs regulation in diabetic ulcer. CXCL16-CXCR6 axis

promotes the diabetic wound healing in diabetic mice and db/db mice

through improving MSC migration by targeting the expression of

MMP-2 via FAK-Src-ERK1/2-MMP2 signaling pathway. Dhoke et al.

observed that CXCR6 gene therapy facilitates the wound healing in

mice with T1DM or T2DM through accelerating the re-

epithelialization and neovascularization. Meanwhile, CXCR6
Frontiers in Immunology 04165
overexpression up-regulates the expression of MMP-2 through

increasing the levels of FAK, Src and ERK1/2 in vitro experiment.

Interestingly, the inhibitor of CXCL16 or the lack of CXCR6 gene

attenuates wound repair through inhibiting theMSCmigration and the

increase of MMP-2, which suggests that CXCL16-CXCR6 axis play a

critical role in diabetic wound recovery (45). In a nutshell, these

findings reveal that interfering with ERK1/2-centered signaling

pathways is paramount for regulating the expression of MMPs in

diabetic wound healing.

Nuclear factor erythroid 2-related factor 2 (Nrf-2) regulates the

adaptive response to exogenous and endogenous oxidative stresses.

Previous studies have shown that severe oxidative stress can be

observed in the wound tissue of DM patients, as revealed by

activation of Nrf-2 as well as the downstream genes such as HO-1

and NQO1. Long et al. reported that Nrf2-/- diabetic mice exhibits poor

wound healing, which is due to oxidative DNA damage, up-regulation

of MMP-9, and decrees of transforming growth factor (TGF)-b1.
Nevertheless, Nrf-2 activation contributes to wound healing in

HaCaT cells, which is conferred through elevating TGF-b1 and

suppressing MMP-9 (46). Thus, it suggests that targeting NRf-2/

MMP-9 is a promising axis for treating diabetic wound healing.

Furthermore, elevated secretion of ROS in diabetic wounds is

regarded as a hazardous factor that may contribute to delayed

wound healing under the diabetic condition through prolonging

infiltration of M1 macrophages and impairing dermal fibroblast and

keratinocyte function (47). Seraphim et al. found that higher M1/M2

macrophage ratio and basal ROS levels, as well as decreased antioxidant

defenses and angiogenesis are observed in Rag-2 and IL-2Rg double

knockout (KO) diabetic mice that lack T, B, as well as innate lymphoid

cells cell function. However, the increased expression of MMP-9 in

diabetic conditions is not observed in KO mice, which demonstrated

that lymphocyte may mediate the up-regulation of MMP-9 in diabetic

wounds to a certain degree (48). However, such mechanism is not clear

at present, and further experiments are needed to verify how

lymphocyte affects the expression of MMP-9 under diabetic condition.
2.4 Apoptosis-related signals and MMPs

Apoptosis has been illustrated to plays a pivotal part in diabetic

ulcer, and recent studies reported that MMP-9 contributes to

delayed wound healing under diabetic condition through

regulating fibroblasts apoptosis, while TIMP-1 is demonstrated to

promote cells growth and prevent apoptosis. Down-regulated

expression of TIMP-1 can be observed in diabetic skin tissues as

well as in AGEs-intervened fibroblasts, whereas active protein of

TIMP-1 prevents apoptosis triggered by AGEs or DM (49). MMP-9

is significantly up-regulated in HG and hyper-homocysteine

medium-treated skin fibroblasts, which results in the decrease of

cell proliferation, viability, COL secretion, and migration. However,

these inhibitory effects of MMP-9 on fibroblasts are abrogated by

TIMP-1 (50). Moreover, AGEs-BSA suppresses the migration of

keratinocyte through increasing MMP-9 expression, while reducing

TIMP-1 levels. Besides, AGEs-BSA application also down-regulates

the expression of phospho-focal adhesion kinase- Tyr397 (p-FAK)

as well as a2b1 in keratinocytes (51), suggesting that in the context
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of the chronic hyperglycemia, the influences of AGEs-BSA on

keratinocyte are conferred through regulating MMP-9/TIMP-1,

p-FAK, and a2b1 integrin. Besides, Yang et al. observed that

MMP-9 and TIMP-1 levels in diabetic rats changed dynamically

with the alteration of wound. Specifically, the mRNA and protein

levels of MMP-9 are obviously elevated in DM rats compared with

control group, which reach the peak on day 3. On contrary, the

mRNA and protein levels of TIMP-1 are obviously lowered, leading

to the increase of MMP-9/TIMP-1 ratio. Intriguingly, changes in

MMP-9 and TIMP-1 levels occur long before the skin is

traumatized, suggesting the presence of hidden damage to

diabetic skin that may cause ulcers (52). Thus, it suggests that

targeting MMP-9/TIMP-1 axis is a promising strategy to alleviate

apoptosis during diabetic wound healing.

Additionally, a recent study manifested that FasL/Fas signal is

also implicated in the regulation of MMP in diabetic wound ulcer.

Elevated MMP-9 in AGEs-treated keratinocytes promotes the

apoptosis of keratin-forming cells through up-regulating the

expression levels of cleaved caspases-3 as well as FasL, which

suggests that MMP-9 may exert pro-apoptotic effect to suppress

diabetic wound healing via a FasL/Fas-mediated pathway (53).

Thus, targeting MMP-9/FasL/Fas axis may be a feasible strategy

for diabetic wound healing therapy.
2.5 Non-coding RNAs and MMPs

Epigenetic modification especially the regulation of non-coding

RNAs like microRNAs (miRNAs), long non-coding RNAs (lncRNAs),
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circular RNAs (circ_ RNAs), as well as small hairpin RNA (shRNA) on

the secretion and expression of MMPs, has been considered as another

integral mechanism associated with the pathogenesis of diabetic ulcer.

Wang et al. observed that excessive miR-129 and miR-335 down-

regulate the expression of MMP-9 via directly targeting Sp1 in AGEs-

treated HaCaT cells. In vivo studies illustrated that miR-129 and miR-

335 agomir accelerates wound healing through improving re-

epithelialization and COL deposition by decreasing Sp1 and MMP-9

in diabetic rats, which suggest that miR-129 and miR-335 regulate

MMP-9 levels via Sp1-mediated axis (54). In addition, miR-21 is

demonstrated to promote wound healing in DM rats through

improving fibroblast functions via targeting MMPs. Human

keratinocyte-derived microvesicle miRNA-21 increases the migration

as well as fibroblast-mediated angiogenesis, and accelerates diabetic

cutaneous wound healing in rats through up-regulating IL-6, IL-8,

MMP-1, as well as MMP-3, down-regulating TIMP-3 and TIMP-4,

suppressing the expression of PTEN and RECK, and activatingMAPK/

ERK signaling pathway (55). Besides, miR-217 also participates in

diabetic wound healing via modulating hypoxia inducible factor-1a
(HIF‐1a)/VEGF pathway and the down-stream proteins such as

MMP-2 and MMP-9. The serum levels of miR-217 are enhanced in

DFU individuals and rats, which causes the down-regulation of VEGF

by repressing the target gene HIF-1a. Noticeable, inhibition of miR-

217 reduces foot ulcer area, improves ulcer healing, and elevates the

micro-vessel density through suppressing the levels of inflammatory

factors, while up-regulating MMP-2, MMP-9, VEGF, VEGFR-2, and

eNOS in DFU rats (56).

Moreover, ten-eleven translocation-2 (TET2)-interacting

lncRNA (TETILA) can facilitate active DNA demethylation of the
FIGURE 1

Roles of MMPs in regulating inflammation-related cross-talks among keratinocytes, macrophage, and fibroblast during diabetic wound healing.
(AGEs stimulates the activation of Notch-1/NICD/NF-kB, RAGE/ERK1/2, and MAPK signaling pathways in keratinocytes, which gives rise to the up-
regulation of MMP-9. MMP-9 released by keratinocytes suppresses the recruitment of EPCs through down-regulating the expression of CXCL-12. In
addition, TNF-a, IL-6, and other pro-inflammatory cytokines secretes by M2 macrophage elevate TIMP-1 and reduce of MMP-1, resulting in the
suppressed migration of keratinocytes. Intriguingly, IL-6 also inhibits the migration as well as proliferation of fibroblast via promoting the expression
of MMP-2 and MMP-9, while decreasing the levels of TIMP-2 through activating IL-6R/p38 pathway.).
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MMP-9 promoter in wound healing under diabetic condition.

TETILA is obviously elevated in HaCaT cells and diabetic skin

tissues induced by AGEs, which enhances the protein levels of TET2

as well as its nuclear translocation, thus activating MMP-9

promoter demethylation. Besides, as a molecular scaffold, TETILA

provides a binding surface for the assemble of TET2 and thymine-

DNA glycosylase (TDG), contributing to the base excision repair-

mediated MMP-9 promoter demethylation and the transcriptional

activation of MMP-9 (19). Thus, it suggests that TETILA may

function as a genomic homing signal for TET2-mediated

demethylation specific loci in MMP-9 promoter, which ultimately

disrupts the progress of wound healing in DM. Additionally,

Circ_PRKDC is illustrated to hamper wound healing in DFUs by

modulating the proliferation and migration of keratinocyte.

Circ_PRKDC overexpression down-regulates MMP-2 and MMP-

9 in human epidermal keratinocytes through targeting miR-31/

FBN1 axis, which results in the suppression of cell migration (57).

Notably, the slow wound healing of diabetic cornea is related to

MMP-10 overexpression. Studies show that recombinant

adenovire-driven shRNA promotes wound healing in diabetic

corneas by inhibiting MMP-10 and cathepsin F, which activates

the phosphorylation of epidermal growth factor receptor (EGFR)

and Akt. Also, the combination of shRNA and c-Met

overexpression can activate p38 and thus the downstream EGFR-

Akt pathway, showing a more significant wound healing effect (58),

suggesting that targeting MMP-10/EGFR/Akt is a promising axis

for the treatment of diabetic keratopathy. Taken together, these

studies manifest that targeting non-coding RNAs-mediated

signaling pathways is a feasible option to modulate the expression

of MMPs in wound healing under the diabetic condition.
2.6 FOXO-1 and MMPs

Recently, increasing evidences illustrated that forkhead box

protein O1(FOXO1) is a critical regulator in wound healing,

whose up-regulation may lead to the deterioration of diabetic

ulcer. Foxo1L/L diabetic mice exhibits better wound healing,

which is related to down-regulation of MMP-9 and decrees of

FOXO1. Remarkably, elevation of FOXO1 in HG-treated

keratinocytes enhances the transcriptional activity as well as

expression of MMP-9 through binding to its promoter, whereas

FOXO1 depletion prevents HG-induced keratinocyte migration,

through up-regulating the expression of the TIMP1 while inhibiting

the expression of MMP-9 (59). Thus, it suggests that targeting

FOXO1/MMP-9 axis is a possible way for the treatment of diabetic

wound healing.
2.7 uPA/uPAR and MMPs

Recent studies found that corneal wounds of diabetic mice heals

more slowly than those of normal mice, which may be related to the

inhibition of Serpine1(PAI-1), uPA, and uPA receptor (uPAR)
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expression by hyperglycemia. Interestingly, epithelial wound

healing is accelerated by the addition of Serpine1 to the corneal

conjunctiva of diabetic mice. Further experiments show that

increasing Serpine1 up-regrates the expression of Plau, Plaur and

MMP-3 in the cornea of DM mice (60), which indicates that

targeting uPA proteolytic pathway is a promising option for

regulating MMP-3 in treating diabetic keratopathy. Transcription

factor homeobox A3 (HOXA3) plays a principal part in wound

repair and angiogenesis, which is increased during wound healing

and leads to the elevation of endothelial cell migration, promotion

of angiogenesis, and up-regulation the levels of MMP-14 as well as

uPAR in endothelial cells. Nevertheless, the expression of HOXA3

is blocked in the wounds of diabetic mice, contributing to the

delayed wound repair and angiogenesis. Exogenous HOXA3

application reverses these adverse phenomena in diabetic mice,

and facilitates migration of endothelial cells and keratinocytes via a

uPAR-dependent mechanism (61). In berif, targeting uPA/uPAR is

a possible way to modulate MMPs expression in diabetic

wound healing.
2.8 DNA methylation and MMPs

Site-specific DNA demethylation of the MMP-9 promoter is

demonstrated to be a paramount mechanism for MMP-9 regulation

during diabetic wound healing. Ling et al. reported that TNF-a
intervention augments MMP-9 expression and decrease the

demethylation trend at the -36 bp promoter site in HaCaT cells.

Besides, the alteration at the -36 bp site is the most significant

among the CpG sites that distinctively demethylated in the MMP-9

promoter region, and higher transcriptional activity can be detected

in the promoter with only the -36 bp site demethylated, which

suggests that the -36 bp site is required in MMP-9 expression, while

other CpG sites might play synergistic effects in TNF-a-stimulated

keratinocytes (62). In addition, the activation of MMP-9 in AGEs-

BAS-induced HaCaT cells is accompanied by the elevation of RhoA,

GTP-RhoA and ROCK1, suggesting that mevalonate pathway

participates in the expression of MMP-9 in AGEs-treated HaCaT

keratinocytes. Moreover, AGEs-BSA stimulation promotes the

activation of ERK1/2 and RAS through mevalonate pathway,

thereby demethylating the -562bp site of MMP-9 promoter and

upregulating MMP-9 level. Interestingly, the HMG-CoA reductase

inhibitor simvastatin blocks demethylation at the -562bp site (63).

Furter studies illustrated that TET2, a DNA demethylation enzyme,

is elevated in AGEs-BSA-stimulated human primary keratinocytes,

while the methylation of the MMP-9 promoter is decreased. TET2

can directly bind to a segment around the transcriptional start site

in the MMP-9 promoter domain and regulate its expression, thus

affecting the migration and proliferation of skin keratinocytes (64).

Therefore, it suggests that the MMP-9 promoter DNA

demethylation would pass though the mevalonate pathway to

TET-2. Interestingly, another study proved that GADD45a plays

an important role in demethylation of the MMP-9 promoter, which

is augmented in diabetic wound and AGEs-induced HaCaT cell.
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Nevertheless, GADD45a knockout suppresses AGEs-induced

increase of MMP-9 and demethylation of the MMP-9 promoter,

and enhances the HaCaT cells migration without influencing the

apoptosis and proliferation of HaCaT cells, whereas overexpression

of GADD45a improves the MMP-9 promoter demethylation.

Remarkably, HG induces the binding of GADD45a to MMP-9

promoter and promotes GADD45a to thymine-DNA glycosylase

recruitment for base excision repair-mediated demethylation (65).

Altogether, these findings reveal that targeting the site-specific

demethylation of MMP-9 promoter through interfering with

mevalonate pathway, ERK1/2 and RAS signals, TET-2, as well as

GADD45a is a promising therapeutic strategy to modulate the

aberrant expression of MMP-9 during diabetic ulcer.
2.9 Endogenous substance and MMPs

Substance P (SP) is a type of neuropeptide consisting of 10-

amino acid, which has been demonstrated to accelerate the skin

wound repair under diabetic condition. Compared with non-

diabetic acute wounds, impaired re-epithelization, decreased

formation of granulation tissue, and suppressed re-vascularization

can be observed in diabetic wounds in mice, accompanied by the

reduction of SP, up-regulation of MMP-9, as well as elevation of

cytokines associated with inflammation in wound fluids (66). SP

facilities the wound healing in DM rats through relieving

inflammation, promoting fibroblast proliferation, promoting COL

deposition and improving angiogenesis, which up-regulates the

expressions of IL-10 and HO-1, down-regulates TNF-a, IL-1b, as
well as MMP-9, and enhances neovascularization via elevating

VEGF, TGF-b1, and eNOS (67). In short, these findings indicate

that SP may possess great potential in treating diabetic

cutaneous wounds.

Leucine-rich a-2-glycoprotein-1 (LRG1), as a crucial factor that
participates in angiogenesis as well as cutaneous wound repair, has

been proved to be down-regulated in the corneal epithelium of DM

mice and in HG-treated TKE2 cells. Nevertheless, exogenous

administration of LRG1 improves corneal re-epithelialization,

nerve regeneration, and wound healing through up-regulating

MMP-3 and MMP-13, which is accompanied by the activation of

JAK2/STAT3, AKT, EGFR as well as TGF-b3 signaling.

Remarkably, these protective effects of LRG1 are abrogated by

MMP-3 and MMP-13 inhibitors, indicating that LRG1 accelerates

wound repair in diabetic corneal epithelium via modulating MMPs

(68). Thus, targeting LRG1/MMPs axis is a promising strategy for

wound healing in diabetic keratopathy.

Angiotensin II is a type of fibrogenic factor that modulates COL

metabolism and capillary formation of skin cells by regulating Ang

II type 1 (AT1) and AT2 receptors. Ren et al. reported that

Angiotensin II up-regulates the expression levels of TIMP-1,

TGF-b, COL I, and COL III in diabetic skin fibroblasts without

influencing the expression of MMP-1, thus leading to the imbalance

of MMP-1 and TIMP-1, as well as the improvement of COL

synthesis. However, losartan, an AT1 receptor blocker, suppresses
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the effects of Angiotensin II (69), which demonstrates that targeting

Angiotensin II/AT1 receptor and TGF-b-associated axis may

contribute to the balance of MMP-1 and TIMP-1 in diabetic skin.

Cytochrome P450 (CYP) epoxygenases play a critical part in

diabetic wound healing, which catalyzes arachidonic acid to

produce epoxyeicosatrienoic acids (EETs). Zhao et al. found that

CYP2C65 and CYP2J6 are obviously decreased in the granulation

tissues in ob/ob mice, leading to the down-regulation of EETs, the

aggravation of inflammation, and the inhibition of angiogenesis.

However, exogenous EETs administration down-regulates the levels

of TNF-a, IL-6, as well as IL-1b, the expressions of MMP-9, and the

infiltration of neutrophil and macrophage, resulting in the

improvement of wound healing, angiogenesis and COL

deposition (70). Therefore, these findings reveal that targeting

CYP epoxygenases-mediated MMP-9 expression is a potential

option for diabetic wound healing.

Aldose reductase is the first enzyme present in the polyol

pathway, whose inhibition plays a paramount part in the

progression of diabetic keratopathy in humans. Aldose reductase

inhibitor treatment facilitates the corneal wound healing in

galactose-induced diabetic rats by inhibiting sorbitol

accumulation, down-regulating the gene and protein expressions

of MMP-10, and up-regulating the protein expression of integrin

a3. Notably, topical treatment with the recombinant MMP-10

impairs the wound healing in DM rats (71), which reveal that

targeting MMP-10 is a promising option to improve wound healing

in diabetic retinopathy.

In addition to TIMPs, neutrophil gelatinase-associated lipocalin

(NGAL) is another significant regulator of MMP-9, which forms a

complex with MMP-9, stabilizing it and preventing its degradation.

NGAL/MMP-9 complex attenuates the diabetic wound healing in

DM rats by facilitating the inflammation via up-regulating MMP-9

expression. Abdollahi et al. observed that the wound healing rate is

decreased, whereas the number of neutrophils in tissue and

circulating, as well as the expression of NGAL, MMP-8, as well as

MMP-9 are elevated in diabetic group. However, insulin reverses

these phenomena induced by HG. Besides, insulin also down-

regulates the pro-inflammation factors TLR4, TLR2 and TNF-a
in diabetic skin wound granulation tissue (72). Thus, these findings

suggest that targeting NGAL/MMP-9 complex may be a potential

therapy for diabetic wound repair.
3 Clinical research studies of MMPs in
regulating diabetic ulcer

High levels of MMP-9 in serum, wound fluid, as well as skin

tissue of diabetic individuals is a signal that may indicate the poor

healing process and connected with failed dermal grafting of DFUs

(73). Jindatanmanusan et al. reported that MMP-9 contents in

wound fluid from poor healers are dynamic and obviously higher

than those of good healers, while the MMP-9 remained at a lower

level throughout the treatment period in the good healer group (74).

Notably, the original MMP-9 level at week 0 proved to be a
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predictor of good/poor healing during the 12-week follow-up.

Besides, compared with patients with non-healing DFUs, the

levels of pro-MMP-9 and active-MMP-9 in wound fluid of

patients with healing DFUs were significantly reduced, while

TIMP-1 and TGF-b1 were significantly increased (75). These

results suggest that the elevated MMP-9/TIMP-1 ratio affects the

healing of DFUs. Interestingly, single nucleotide polymorphism

(SNP -1562C>T) (rs3918242) in the promoter region of MMP-9

gene that modifies the transcriptional activity of MMP-9 is relevant

to the development of DFUs. Singh et al. reported that Increased

frequency and expression of T allele of SNP -1562C>T in MMP-9

gene are related to up-regulation of MMP-9 in wound fluids of

T2DM patients, which results in degradation of matrix and the

development of chronic wound (76). Trøstrup et al. found that there

are no significant differences between MMP-9 levels in the wound

fluid from patients with venous leg ulcers (VLUs) and patients with

DFUs, but are both higher than that of healing wounds. Notably,

serum levels of MMP-9 in patients with DFUs are higher than that

of patients with VLUs (77).

Furthermore, increased ratio of serum MMP-9/TIMP-1 has

been proved to predict poor wound healing in DFUs. The level of

MMP-9 in the serum of good healers is lower than poor healers at

first visit, and it reduces about 5-fold after 4-week therapy, while the

serum level of MMP-9 in the poor healer shows little change.

Remarkably, the MMP-9/TIMP-1 ratio can better reflect the healing

before therapy and after 4-week therapy compared with MMP-9

(78). Dinh et al. reported that higher levels of TNF-a, monocyte

chemoattractant protein-1 (MCP-1), MMP-9, as well as fibroblast

growth factor (FGF)-2 can be detected in the serum of individuals

whose ulcers are unable to heal. In addition, the results of skin

biopsy analysis demonstrated that diabetic individuals have elevated

immune cell infiltration, as well as increased MMP-9 expression,

which adversely modulates the signals related to insulin, leptin, as

well as growth factors (79). Moreover, MMP-9 is up-regulated in

the skin tissue of diabetic wounds with bacterial infection compared

with nondiabetic patients with wounds, while that of TIMP-1 as

well as VEGF is down-regulated, which indicate that an excessively

high ratio of MMP-9/TIMP-1 contributes to delayed wound healing

in infected DFUs through reducing VEGF levels (80). The activity of

MMP-9 as well as A Disintegrin and A MetalloProtease Domain 17

(ADAM17)/TNF-Alpha Converting Enzyme (TACE) is proved to

be enhanced in ischemic diabetic wound biopsies compared with

neuropathic biopsies, while the mRNA levels of MMP-9 and

ADAM17/TACE are comparable between the two groups.

Importantly, TIMP-3 is significantly lower in ischemic samples,

which indicates that increased protein hydrolysis milieu may be a

trigger for diabetic ulcer development (81).

In addition to MMP-9, MMPs contains MMP-1, MMP-2, MMP-

3, as well as MMP-8 are illustrated to play indispensable roles in

individuals with diabetic ulcer. The expressions of MMP-1, MMP-9,

and TIMP-1 in diabetic individuals are in dynamic change during the

wound healing process. The initial levels of MMP-1 as well as the

MMP-1/TIMP-1 ratio are obviously higher in wound fluid fromDFU

patients with better wound healing, while that of MMP-9 is
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significantly lower in these patients. Besides, the MMP-1 level starts

to elevate at week 4 in patients with better wound healing and is

followed by a reduction at week 8, whereas that of MMP-1 is stable in

patients with poor wound healing (82). Thus, MMP-9, MMP-1, as

well as TIMP-1 may be useful biomarkers for DFU therapy at the first

patient visit. Min et al. reported that faster wound closure rate is

relevant to lower plasma MMP-2 and MMP-9 at week-4 and week-8

visits. In addition, the percentage of CD16++ monocytes is negatively

correlate with plasma MMP-2 and pro-MMP-9, but is positively

related to the percentage of CD163 monocytes. Remarkably, MMP-9

and percentage of CCR2+ are significantly decreased, while non-

classical percentage of CD16++ and MMP-3 are increased in the

DFUs healing group after 8 weeks compared with the DFUs non-

healing group (83). Therefore, MMPs and non-classical percentage of

CD16++ may be biomarkers for detecting the degree of healing of

DFUs. Besides, Kupczyk et al. found that the serum levels of MMP-2

and MMP-3 in diabetic individuals with ulcer are obviously higher

than those in the control group, which may serve for the delayed

healing of chronic wounds and the aggravation of vascular

complications (84). Another study illustrated that MMP-9 levels in

the wounds of diabetic individuals are parallel to NF-kB p65. When

skin injury occurs, a mass of neutrophils will be mobilized to the site

of injury, which release cytokines like MMP-8, MMP-9, and ROS to

resist bacterial infection as well as modulate thrombus formation.

Interestingly, excessive ROS activates NF-kB signal, which

subsequently triggers the up-regulation of MMP-9 and eventually

the delayed wound healing. On the contrary, MMP-8 contributes to

the COL deposition and ECM formation (85). The changes of MMPs

levels in individuals with diabetic ulcers are shown in Figure 2.
4 Regulation of MMPs in diabetic
ulcer by natural products

4.1 Flavonoids

Luteolin (Figure 3) is a critical flavonoid extracted from

numerous of plants, such as leaves of M. annua Linn., which is

reported to reduce blood glucose levels, enhance cutaneous wound

healing process, and accelerate skin wounds re-epithelization in

diabetic rats through attenuating inflammation and oxidative stress.

Luteolin represses the infiltration of inflammatory cell, reduces the

levels of TNF-a, IL-6, IL1-b and MMP-9 via down-regulating the

NF-kB signaling pathway. Meanwhile, luteolin brings down the

expressions of SOD1 and glutathione peroxidase (GSH-Px), as well

as p-Nrf2 to modulate oxidative stress (86). Therefore, these

phenomena indicate that luteolin may be a possible agent to treat

diabetic wound injury by targeting NF-kB/MMP-9 axis and Nrf2-

meidated anti-oxidant system.

Myricetin (Figure 3), a bioflavonoid widely presents in a variety

of plants, tea, fruits as well as vegetables, is demonstrated to exert

numerous biological activities, especially preventing cellular

oxidative stress through regulating antioxidant enzymes. Recent
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study found that myricetin intervention obviously mitigates the

damages on dermal fibroblasts stimulated by DM through

modulating MMPs. Myricetin inhibits the formation of MMP-1,

MMP-2, and MMP-9 in diabetic fibroblasts, and suppresses catalase

(CAT) and SOD. In contrast, myricetin increases the mRNA

expression of TIMP-1, resulting in the increase of the ratio of

TIMP1/MMPs in diabetic fibroblasts. Additionally, pro-COL I and

III levels in diabetic fibroblasts are enhanced after myricetin

intervention, which is conducive to diabetic wound repair (26).

All in all, myricetin can relive DM-induced damages on dermal

fibroblasts, which implies that myricetin may function as a drug

candidate to accelerate wound healing under in patients with DM.

Quercetin (Figure 3) is a naturally occurring flavonoid

compound with a variety of bioactivities, covering anti-ulcer, anti-

inflammation, and cardiovascular protection. Recently, several

studies reveal that quercetin displays promising effect on diabetic

ulcer (87), which accelerates the wounds closure and reduces wound

diameter through down-regulating the pro-inflammatory cytokines

and enzymes, including TNF-a, IL-1b, as well as MMP-9, while up-

regulating IL-10, VEGF, and TGF-b. In addition, topical application
of quercetin improves the formation of thick granulation tissue with

more new blood vessels, accelerates re-epithelialization and

fibroblast conversion into the phenotypic of myofibroblast,

promotes the COL synthesis, and deposition and orientation in

wounds of diabetic rats (88). Thus, its suggests that quercetin

exhibits great potential to mitigate diabetic ulcer.

Rutin (quercetin-3-O-rutoside, Figure 3) is a common

flavonoid that can be found in the seeds, stems, leaves, as well as

flowers of buckwheat, which improves wound healing in
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hyperglycemic rats via preventing oxidative stress and

inflammatory response. Specifically, rutin intervention obviously

relieves the body weight loss and metabolic dysfunctions in rats

induced by DM, decreases the number of inflammatory cells,

promotes the activity of Nrf-2 as well as the expression of related

antioxidant enzymes such as SOD1 and GSH-Px, down-regulates

the levels of TGF-b1, MMP-2, MMP-9, NF-kB, IL-1b, IL-6, TNF-a,
and VEGF, and elevates the expression of neurogenic-related

protein (89). Thus, these results reveal that targeting NF-kB-
mediated MMPs axis is one of the crucial mechanisms of rutin in

regulating diabetic wound healing, and rutin could function as a

potential drug for DFUs.

Vicenin-2 (VCN-2, Figure 3) is a flavonoid glycoside separated

from numerous natural plants, which attenuates oxidant stress and

inflammatory, and improves epithelialization as well as cell

remodeling. More recently, studies illustrated that VCN-2

intervention facilities wound healing in STZ-induced DM rats

through improving cells proliferation as well as reducing the

inflammatory cells, which down-regulates the expressions of pro-

inflammatory cytokines via NF-kB signal pathway. Meanwhile,

VCN-2 augments the number of fibroblast cel ls and

neoangiogenesis via down-regulating the levels of MMP-9 and

anti-HIF-1a via VEGF and TGF-1b signal pathway. Compared

with diabetic group, VCN-2 treatment decreases the levels of blood

glucose, reduces food and fluid intakes, while increases insulin

levels, body weight, as well as the percentage of wound closure (90).

Altogether, it suggests that VCN-2 may be an available agent for

diabetic wound repair via modulating NF-kB, VEGF, and TGF-1b
signal pathways.
FIGURE 2

The changes of MMPs levels in individuals with diabetic ulcers. (MMPs are influential regulators in DFUs, whose expressions are diverse in the wound
fluid, skin tissue, and blood of patients. The correlations have been observed between MMPs and physiological as well as pathological processes of
DFUs, involving COL deposition, inflammatory response, oxidative stress, and bacterial infection. The MMPs in red are increased in individuals with
DFUs, while the MMPs in green are decreased in individuals with DFUs.).
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Icariin (Figure 3) is a pivotal flavonoid derived from Epimedium

genus with various bioactivities, including anti-cancer, anti-

inflammation, and pro-angiogenesis. Icariin administration

improves wound repair in diabetic rats through down-regulating

the protein expressions of NF-kB, TNF-a, MMP-2, as well as

MMP-9, elevating the levels of IL-10, up-regulating the

expression of CD31, and increasing the relative COL deposition

in the healing tissue. In short, icariin contributes to the progression

of diabetic wound healing via alleviating inflammation, improving

angiogenesis, and promoting normal ECM formation as well as
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remodeling in the healing tissue (27), which suggest that icariin may

serve as a promising agent for diabetic ulcer.

Mangiferin (Figure 3) a well-known naturally occurring

polyphenol widely distributed in various plant species, is

demonstrated to exert numerous bioactivities, particularly

preventing cancer and DM. Lwin et al. reported that mangiferin

application attenuates the ROS-induced oxidative stress, lessens the

wound area, and increases the skin thickness of around the wound.

In addition, mangiferin elevates EGF, FGF, TGF-b, VEGF, PI3K,
and Nrf-2 protein expression in diabetic wound, while reduces the
FIGURE 3

Structures of natural products regulating MMPs in diabetic wound healing.
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expression of MMP-2, TNF-a and NF-kB p65, suggesting that

mangiferin can shorten the inflammatory phase of wound tissue

under hyperglycemia (91). Therefore, mangiferin is a potential

agent for promoting wound repair in individuals with DM, and

targeting MMP-2 is an underlying mechanism of mangiferin in

treating diabetic ulcer.
4.2 Steroids and terpenoids

Ginsenoside Rb1 (G-Rb1, Figure 3), an active substance widely

existed in Panax ginseng, has been demonstrated to possesses

numerous pharmacological act ivi t ies , including anti-

inflammation, antioxidant, and antimicrobial effects. Recent

studies revealed that G-Rb1 displays promising effect on diabetic

chronic wounds healing in vitro, which significantly increases cell

proliferation and COL synthesis. Specifically, G-Rb1 up-regulates

VEGF, TGF-b1, TIMP-1 in cultured fibroblasts from patients with

DFUs. Interestingly, TGF-b1 and TIMP-1 may increase COL

synthesis, and VEGF improves the formation of thick granulation

tissue with more new blood vessels in G-Rb1-treated diabetic (92).

Taken together, it suggests that G-Rb1 is a candidate agent for the

wound-healing activity of diabetic fibroblasts. Nevertheless, further

in vivo studies are required to investigate the activity of G-Rb1 on

diabetic would healing.

Notoginsenoside R1 (NR1, Figure 3), a dominating bioactive

ingredient separated from Panax notoginseng, is demonstrated to

facilitate wound healing in diabetic rats by obviously accelerating

the wound closure rate, increasing ECM secretion, elevating COL

growth, up-regulating the expression of CD31, and down-regulating

the expression of cleaved caspase-3. More importantly, NR1

administration gives rise to the down-regulation of MMP-9,

MMP-3, IL-1b, and IL-6, while up-regulation of TIMP1 as well as

TGF-b1. The results of RNA-Seq technology illustrate that NR1

mainly influence ECM related processes and inflammation in

diabetic wound healing by targeting TIMP-1 and MMP-3 (93).

Thus, these phenomena indicate that NR1 may be a feasible

candidate agent for diabetic ulcer via regulating MMP-mediated

signaling pathway.

Patchouli alcohol (PA, Figure 3) is a bioactive ingredient

separated from patchouli, with anti-inflammatory and anti-

influenza effects. Recently, several studies reveal that PA

administration improves wound healing in HFD-fed mice by up-

regulating TGF-b1, MMP-2, MMP-9, COL1A1, down-regulating

the levels of NF-kB, p-IkB, TNF-a as well as MCP-1, promoting

adenosine monophosphate activated protein kinase (AMPK)

phosphorylation and relieving inflammation. Simultaneously, PA

intervention significantly reverses the decreased viability of LPS-

induced HaCaT cells, impaired cell migration and proliferation,

increases AMPK phosphorylation and activates TGF-b1 pathway in
a dose-dependent manner. Notably, TGF-b1 siRNA blocks the

effect of PA on LPS-induced HaCaT cells (94). Therefore, it

suggests that PA is a candidate agent for obesity or insulin
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resistance, which facilitates diabetic wound healing through

relieving inflammatory response.

17b-Estradiol (E2, Figure 3) is one of the most essential forms of

estrogen, which is demonstrated to control the expressions of COL

and MMP, and regulate cytokines, growth factors, as well as ECM

turnover in diabetic wound healing. Recently, Pincus et al.

investigates the regulatory effects of E2 in db/db mice, and they

found that topical E2 treatment accelerates cutaneous wound

healing by modulating the expressions of MMP. E2 can not only

directly reduces the levels of MMP-13 and MMP-2, but also

indirectly declines MMP-13 and MMP-2 via decreasing the

MMP-14, pro-MMP-2. Besides, uterine weight and COL fibers

deposition augmented in E2-treatment group compared with

placebo treated mice. In addition, E2 treated up-regulates the

expressions of estrogen receptor-a (ER-a) (95). Therefore, these

findings illustrate that E2 may act as a therapeutic agent for diabetic

wound injury by targeting ER-a-mediated signaling pathway.

Kirenol (Figure 3) is an important diterpenoid separated from

the medicinal plant Siegesbeckia orientalis, which possesses various

bioactivities, including anti-inflammation, anti-rheumatism, and

wound healing. Kirenol administration reverses the up-regulation

of angiogenesis-associated genes MMP-2 and MMP-9 in wounds of

STZ-induced DM rats, decreases inflammation-related genes NF-

kB, cyclooxygenase-2 (COX-2), as well as iNOS, reduces the

contents of malonaldehyde (MDA), while increases the activities

of antioxidant enzymes, which result in the alleviation of oxidative

trauma. In addition, the results of histopathological examination

demonstrate that kirenol intervention gives rise to the decline of

inflammatory cell infiltration, elevation of fibroblasts, new blood

vessels, as well as granulation tissue configuration (96). In short,

these evidences illustrate that kirenol is promising for improving

wound curing in diabetic ulcer.
4.3 Polysaccharide and glucoside

Hsian-tsao polysaccharides (WEP) are the major functional

component in Mesona procumbens Hemsl., which has potent anti-

oxidant and anti-inflammatory effects. Recently, several studies

revealed that Hsian-tsao extracts (EE) and WEP displays promising

effect on wound healing in diabetic, which decrease crust and improve

the formation of thick granulation tissue with more new blood vessels,

and re-epithelialization. Specifically, EE and WEP up-regulate IL-8,

MIP-2, MCP-1, TIMP-1, as well as VEGF, down-regulate MMP-2 and

MMP-9, and suppress MG-triggered protein glycation and ROS

accumulation. Furthermore, both EE and WEP enhance the

methylglyoxal (MG)-impeded phagocytosis of Staphylococcus aureus

and Pseudomonas aeruginosa driven by macrophages, which maybe

improve impaired wound healing. Interestingly, WEP is more effective

on regulating the factors associated with diabetic wound repair than EE

(97). Therefore, it suggests that EE and WEP are the candidate agent

for chronic diabetic wounds.
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Dendrobium Polysaccharides (PDC) is the main bioactive

substance of Dendrobium candidum, which has anti-tumor and

anti-aging effects. Recently, these studies revealed that PDC at the

concentrations of 100, 200, as well as 400 mg/mL elevates the level of

COL, improves the viability of human skin fibroblasts, suppresses

the cell apoptosis induced by HG, accompanied by the elevation of

TIMP-2 and reduction of MMP-2. Therefore, these results

confirmed that PDC can display protective effects on diabetic

ulcer in vitro, and the mechanism may be related to the

modulation of TIMP-2 and MMP-2, which provides a new idea

for the prevention and treatment of diabetic skin ulcer or wound

(98). However, further in vivo researches are required to clarify the

activity of PDC against diabetic wound healing.
4.4 Other compounds

Berberine (Figure 3) is a naturally occurring alkaloids separated

from Coptis chinensis Franch. and has been demonstrated to

possesses various pharmacological activities, including anti-

microorganisms, anti-obesity, and improving insulin resistance

(99). Recent studies found that berberine displays promising

therapeutic effect on diabetic ulcer, which alleviates HG-induced

HaCaT cell damage and enhances cell proliferation by activating

thioredoxin reductase 1 (TrxR1)/c-Jun N-terminal kinase (JNK)

pathway, and relieves oxidative stress and apoptosis through

increasing GSH, SOD, and total antioxidant capacity (T-AOC),

while down-regulating ROS, MDA, TUNEL-positive rate as well as

caspase-3 activity. Notably, topical berberine application promotes

the wound healing and elevates ECM synthesis in T2DM rats

stimulated by HFD and STZ via decreasing MMP-9 and elevating

TGF-b1 and TIMP-1 (28). Therefore, these findings illustrate that

the wound healing effect of berberine against diabetic ulcer might be

conferred through modulating TrxR1/MMP9 signaling pathway.

Bilirubin (Figure 3) is final metabolite of heme in mammals,

which promotes wound healing by ameliorating oxidant stress,

inflammation and angiogenesis. Recent study illustrated that

bilirubin accelerates wound repair by facilitating COL fibers

deposition, granulation tissue formation and contraction, induce

neoangiogenesis and anti-inflammatory in STZ-induced diabetic

rats. Bilirubin intervention alleviates inflammation through

augmenting the expressions of IL-10 and decreasing IL-1b, which
improves the angiogenesis and wound closure via up-regulating the

levels of TGF-b1, HIF-1a, VEGF, IL-10 and SDF-1a and down-

regulating TNF-a and MMP-9. Meanwhile, the results of

histopathological assay indicate that re-epithelization of skin

wound in bilirubin-treated group better than the control group

(100). Thus, these results display bilirubin enhances skin wound

healing in DM rats through balancing the levels of factors-

associated with the process of wound closure.

Syringic acid (Figure 3), a critical phenolic compound

synthesized via shikimic acid pathway in plants, is widely

distributed in numerous edible plants like olives, pumpkin, and

grapes. Syringic acid administration accelerates the wound closure
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rate and epithelization of diabetic wounds in rats, accompanied by

the increase of hydroxyproline content and total protein levels. In

addition, 14 days after syringic acid intervention, the inflammation

and oxidative stress in diabetic wounds are alleviated, as evidenced

by down-regulation of p65, IL-8, TNF-a, IL-2, IL-1b, MDA, and

elevation of IL-10, Nrf-2, Keap1, as well as antioxidant enzyme

activities. Intriguingly, syringic acid significantly reduces MMP-2,

MMP-8, and MMP-9, up-regulates TIMP-1 and TIMP-2, elevates

the contents of TGF-b1, COL I, a-SMA, CD31, CD68, as well as

VEGF in diabetic wounds (29). Thus, its suggests that syringic acid

exhibits great potential to mitigate diabetic ulcer.

Plumbagin (Figure 3), one of the bioactive constituents

separated from the roots of Plumbago zeylanica, has emerged as a

promising agent for diabetic wound healing. Plumbagin

administration significantly promotes the wound closure as well

as contraction of diabetic rats through accelerating epithelialization

and the deposition of COL, promoting the secretion of insulin,

improving the antioxidant status,and lowering lipid peroxides and

lipid levels while elevating the HDL level Specifically plumbagin up-

regulates the expression of Nrf-2, COL I, TGF-b as well as a-SMA

down-regulates the expression of Keap1and rescues the decreased

activities of the antioxidant enzymes in diabetic rats. Interestingly,

plumbagin also increases EGF, VEGF and FGF, decreases MMP-2,

COX-2, iNOS, CD8, CD163, as well as NF-kB p65, and suppresses

IL-6 and IL-1b (101). Thus, alleviating inflammation and

oxidation-induced injury is a possible mechanism of plumbagin

in diabetic ulcer therapy.

Calcitriol (Figure 3) is the active form of vitamin D, which

regulates the proliferation and differentiation of keratinocytes.

Recent studies demonstrate that Calcitriol exerts promising

protective effect on diabetic wound healing by targeting MMPs.

The slower wound healing during DM is in connection with the

up-regulation of MMP-1, MMP-9, and TIMP-1, as well as the down-

regulation of MMP-8 and MMP-10 in wound tissue. Calcitriol

intervention leads to the decrease of MMP-1 and MMP-10 levels,

and contributes to wound healing in primary keratinocytes from the

patients with DFUs (102). Therefore, Calcitriol may serve as a feasible

modulator of MMP expression to accelerate wound healing in DM.

Curcumin (Figure 3) is a naturally occurring diketone compound

principally extracted from the rhizomes of some plants in

Zingiberaceae and Araceae, with potent anti-inflammatory and anti-

cancer properties. Recently, several studies revealed that curcumin

displays promising effect on diabetic ulcer, which accelerates the

wounds closure through down-regulating the pro-inflammatory

cytokines and enzymes, including TNF-a, IL-1b, and MMP-9, up-

regulating IL-10 levels, and elevating the activities of SOD, CAT, as well

as GSH-Px. Besides, topical administration of curcumin improves thick

granulation tissue formation with more new blood vessels and

fibroblasts, and promotes the COL synthesis, deposition and

orientation in diabetic wounds (103). In addition, another study

reported that combination of substance P (SP) and curcumin is a

potential strategy for diabetic wound healing. SP is derived from the

body and has the function of regulating angiogenic factors.

Combination of SP and curcumin intervention promotes the
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formation of thick granulation tissue, reduces wound diameter,

increases fibroblasts, and accelerates COL synthesis, deposition, as

well as orientation in wounds of diabetic rats. In addition, combination

of SP and curcumin facilitates new blood vessels formation through the

levels of VEGF, TGF-b1, HIF-1a, SDF-1a, HO-1 as well as eNOS.

Simultaneously, after combination of SP and curcumin administration,

the inflammation and oxidative stress in diabetic wounds are alleviated,

as evidenced by the down-regulation of TNF-a, IL-1b and MMP-9,

and the elevation of IL-10, SOD, GSH-Px, growth associated protein-43

(GAP-43) and CAT activities (104). Therefore, it suggests that

curcumin is a candidate agent for diabetic ulcer, which promotes

wound healing through relieving inflammatory response and

oxidative stress.

All-trans-retinoic acid (RA, Figure 3), an intermediate product

of vitamin A metabolism in animals, exerts a broad spectrum of

bioactivities. RA can moderate the skin of chronological aging

process by declining the levels of COL-degrading MMPs and

augmenting the COL. Interestingly, RA treatment was established

that accelerate the diabetic wound healing in organ culture through

improving epidermal hyperplasia, elevating soluble COL and pro-

COL production, as well as down-regulating the expressions of

active MMP-9 and active MMP-1 and up-regulating TIMP-1.

Meanwhile, Lateef et al. also reported the results of TIMP-1

inhibiting MMP function are similar to RA intervention. It is

likely that RA attenuates the function of MMP via increasing the

level of TIMP-1 (105). Taken together, although these findings

indicate RA possibly be an agent to treat diabetic wound injury,

further experiments are needed to clarify the specific mechanisms.

Relaxin, a peptide hormone with the molecular weight of 6 kDa,

can improve wound healing under diabetic condition. Relaxin

intervention elevates the mRNA and protein contents of VEGF in

wounds from diabetic mice on postoperative day 3 and 6. Daily

treatment of relaxin improves the levels of SDF1-a, accelerates
healing process in the wounds of diabetic mice, shortens the time of

complete wound closure through mediating VEGF and SDF1-a.
Further studies demonstrated that treatment of relaxin markedly

increases the level of microvessel density, augment levels of

VEGFR-2, vascular endothelial cadherin, MMP-11, and enhances

immunostaining of CD34 and VEGFR-1 in both non-diabetic and

diabetic mice. More importantly, the results from clinical

observation displayed that relaxin administration represents an

alternative therapeutic regimen without any side effects (106).

Thus, relaxin may possess a promising application in diabetic

wound healing.

Exendin-4 is a polypeptide hormone isolated from the saliva of

the Heloderma suspectum, which is proved to improve the

transcription level of insulin gene, stimulate the release of insulin,

and control blood glucose concentration. Recently, Exendin-4 was

reported to possesses potent wound healing activity in DM, which

facilities the wound healing in spontaneously diabetic ZDF rats via

attenuating inflammation, promoting fibroblast/myofibroblast

activities, and augmenting total COL content via decreasing the

CRP concentration and the level of MMP-9, as well as elevating the

level of TIMP-1. However, exendin-4 at the concentration of 100

nM suppresses fibroblast/myofibroblast metabolic activity and

reduces COL production, which suggests that high exendin-4
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doses display a cytotoxic effect (107). Another study showed that

Glucagon-like peptide (Glp)-1 analogue exendin (Ex)-4 improves

chronic gastric ulcer through suppressing inflammation and

promoting angiogenesis in STZ-induced diabetic rats, which

ameliorates the polymorphonuclear leukocytes (PMN) infiltration,

up-regulates the levels of MCP-1, IL-10, eNOS, and cAMP, while

down-regulates the levels of MMP-2, myeloperoxidase, superoxide

anions, and IL-1b (108). Thus, these results demonstrate that

exendin-4 is a potential therapeutic option for diabetic wound

repair, but the safety doses need further investigation.
5 Conclusions and future directions

MMP family plays an indispensable role in numerous biological

processes, involving tissue remodeling and growth, wound repair,

tissue defense mechanisms, as well as immune responses. Under

diabetic condition, tissues are trapped in inflammatory phase;

continuous intensive stimulation of inflammatory cytokines leads

to the dysregulation of MMPs, which subsequently degrades growth

factors and matrix proteins necessary for wound repair, resulting in

delayed wound healing. Notably, the expression of MMPs in

diabetic ulcers is influenced by various internal and external

factors, including DNA methylation, miRNAs, lncRNAs, AGEs,

TIMPs, SP, LRG1, CYP, NGAL, etc. Additionally, signaling

pathways such as Notch1/NF-kB, ERK1/2, p38, CXCL16-CXCR6,
NRf-2, uPA/uPAR, FOXO1, as well as FasL/Fas are demonstrated to

be concerned with the expression of MMPs during diabetic wound

healing, which mainly improve the processes associated with

inflammation, oxidative stress, apoptosis, angiogenesis, ECM

formation, and re-epithelization. Furthermore, stem cells-

mediated MMPs expression is another significant mechanism of

diabetic wound healing (Figure 4). In short, these evidences indicate

that developing agents targeting MMPs and the related signals or

pathways has important implications for diabetic ulcers therapy.

Natural products are essential modifiable factors that affect

human health and disease. In the last decade, more and more

researchers have focused on bioactive natural ingredients to address

the emergency situation of diabetic ulcers. Natural products exhibit

a lot of beneficial effects in diabetic ulcers via targeting MMPs, such

as alleviating inflammatory infiltration and oxidative stress of the

wound, promoting angiogenesis, as well as enhancing granulation

tissue configuration, ECM secretion, and COL growth (Table 1).

Interestingly, natural products have been regarded as outstanding

regulators that target miRNAs and DNA methylation in DM and

related complications including diabetic ulcer. However, whether

natural products mediate the expression of MMPs by regulating

DNA methylation or non-coding RNAs and thus facilitate the

diabetic wound repair process needs further investigation. In

addition, these compounds possess different structures, but some

of them are able to regulate the same MMPs or signaling pathways,

suggesting that studying the structure-activity relationships of these

compounds is important for elucidating the potential mechanisms

by which they regulate MMPs to act as anti-diabetic ulcer agents.

More importantly, not all natural products mentioned above are

free from toxicity or side effects, a small percentage of them, such as
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TABLE 1 Natural products in diabetic wound healing targeting MMPs.

Compound Dosage Administration
route

Model/Cells Targets Ref

Luteolin 100 mg/kg (14
days)

Intraperitoneal. STZ-induced diabetic
rats with incision in the

skin on the dorsal
thorax

TNF-a↓, IL-6↓, IL1-b↓, MMP-9↓, NF-kB↓, SOD1↓, GSH-Px↓,
Nrf2↓, VEGF↓, UCH-L1↑

(86)

Myricetin 3 mM – Fibroblasts from female
T2DM patient

MMP-9↓, MMP-2↓, MMP-1↓, TIMP1↑, (26)

Quercetin 0.3% quercetin
ointment (21 days)

Topically. STZ-induced diabetic
rats with incision on the

back

TNF-a↓, IL-1b↓, MMP-9↓, IL-10↑, VEGF↑, TGF-b1↑ (88)

Rutin 100 mg/kg Intraperitoneal. STZ-induced diabetic
rats with incision on the

back

Nrf2↑, SOD1↑, GPx↑, TGF-b1↓, MMP-2↓, MMP-9↓, NF-kB↓,
IL-1b↓, IL-6↓, TNF-a↓, VEGF↓

(89)

Vicenin-2 12.5, 25, and 50
mM (14 days)

Topically. STZ-induced diabetic
rats with incision on the

dorsal

IL-1b↓, IL-6↓, TNF-a↓, VEGF↑, TGF-1b↑, NO↓, iNOS↓,
COX-2↓, NF-kB↓, MMP-9↓, anti-HIF1a↓

(90)

Icariin 0.04, 0.2, 1, and 5
ng/mg (14 days)

Topically. STZ-induced diabetic
rats with excisional
wound on the back

IL-10↑, NF-kB↓, TNF-a↓, MMP-2↓, MMP-9↓ (27)

Mangiferin 1 and 2% Topically. STZ-induced type-2
diabetic male rat

EGF↑, FGF↑, TGF-b↑, PI3K↑, VEGF↑, TNF-a↓, Nrf2↑, MMP-
2↓, NF-kBp65↓

(91)

Ginsenoside Rb1 10 ng/mL – Diabetic fibroblasts VEGF↑, TGF-b1↑, TIMP-1↑ (92)

Notoginsenoside
R1

0.038 mg/cm2 (15
days)

Topically. HFD/STZ-induced
diabetes rats with

incision on the dorsum

Caspase-3↓, ECM↑, CXCL1↑, FOS↑, TGF-b1↑, MMP-9↓, IL-
1b↓, IL-6↓, MMP3↓, TIMP1↑

(93)

Patchouli alcohol 20 mg/kg Intraperitoneal. HFD-fed mice TGFb1↑, MMP-2↑, MMP-9↑, COL1A1↑, p-AMPK↑, NF-kB↓,
p-IkB↓, TNFa↓, MCP-1↓,

(94)

0~30 mg/mL –

(Continued)
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FIGURE 4

Regulation of MMPs by different cell types and related mechanisms. (Stimulated by HG and AGEs, keratinocytes and fibroblasts could produce a
large amount of MMP-9, MMP-2, MMP-1 and MMP-14, which leads to decreased activity and migration, and ultimately causes impaired wound
healing. During this process, signals such as miRNAs, lncRNAs, circRNAs, ERK1/2, FOXO1, HOXA3, Sp1, Notch, NF-kB, p38, FasL/Fas, and cells like
ADSC, MSC, as well as lymphocyte are involved, which may promote or slow down the production of the above mentioned MMPs and thus affect
diabetic wound healing.).
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TABLE 1 Continued

Compound Dosage Administration
route

Model/Cells Targets Ref

LPS-induced HaCaT
cells

17b-Estradiol 50 mg Estrogel
0.06% (7days)

Topically. Female db/db mice with
full-thickness wounds on

the back

MMP-13↓, MMP-2↓, MMP-14↓, ER-a ↑ (95)

Kirenol 15% and 30% (14
days)

Topically. STZ-induced diabetic
rats with incision on the

backside

NF-kB↓, COX-2↓, iNOS↓, MMP-2↓, MMP-9↓, (96)

Hsian-tsao
polysaccharides

100 mL Topically. STZ-induced diabetic
mice

IL-8↑, MIP-2↑, MCP-1↑, TIMP-1↑, VEGF↑, MMP-2↓, MMP-
9↓, ROS↓

(97)

0~200 mg/mL – MG-induced RAW 264.7
cells and 3T3-L1

fibroblasts

Dendrobium
Polysaccharides

100, 200, and 400
mg/mL

– HG-induced HSF cells TIMP-2↑, MMP-2↓ (98)

Berberine 0.06 mg/ml (12
days)

Topically. HFD/STZ-induced
diabetes rats with

incision on the dorsum

GSH↑, SOD↑, T-AOC↑, ROS↓, MDA↓, caspase-3↓, MMP-9↓,
TGF-b1↑, TIMP1↑, ECM↑

(28)

1.5625, 3.125, and
6.25 mM

– HG-induced in HaCaT
cells

Bilirubin 0.3% bilirubin
ointment (twice/

days)

Topically. STZ-induced diabetic
rats with incision on the
dorsal thoracic region

HIF-1a↑, VEGF↑, SDF-1a↑, TGF-b1↑, IL-10↑, TNF-a↓, IL-
1b↓, MMP-9↓, MVD↑

(100)

Syringic acid 2.5% and 5% (14
days)

Topically. STZ-induced diabetic
rats with incision on the

dorsal midline

Nrf2↑, Keap 1↑, MDA↓, SOD↑, CAT↑, GPx↑, GST↑, GR↑,
collagen-1↑, a-SMA ↑, TGF-b↑, NF-kB↓, p65↓, IL-1b↓, IL-8↓,
MMP-2↓, MMP-9↓, TNF-a↓, TIMP-1↓, TIMP-2↓, MMP-8↓,

VEGF↑, IL-2↓

(29)

Plumbagin 10% and 20% Topically. STZ-induced diabetic
rats with full thickness
wounds on the back

Nrf2↑, TGF-b↑, a-SMA↑, Keap1↓, SOD↑, CAT↑, GPx↑, GR↑,
GST↑, EGF↑, VEGF↑, FGF↑, MMP-2↓, COX-2↓, iNOS↓,
CD68↓, CD163↓, NF-kBp65↓, NF-a↓, IL-6↓, IL-1b↓

(101)

Calcitriol 0.001 mM – Primary epidermal
keratinocyte from DFUs

MMP-1↓, MMP-10↓ (102)

Curcumin 400 ml of curcumin
0.15% (19 days)

Topically. STZ-induced diabetic
rats with full thickness
excisional wounds

TNF-a↓, IL-1b↓, MMP-9↓, IL-10↑, VEGF↑, TGF-b1↑, HIF-
1a↑, SDF-1a↑, HO-1↑, eNOS↑, SOD↑, GPx↑, GAP-43↑

(103,
104)

400 ml of curcumin
0.3% (19 days)

All-trans-retinoic
acid

0.75 g/ml providing
at 2- to 3-day
intervals,

incubating 9 days

– 2-mm punch biopsies
were obtained from hip

skin of 16 diabetic
patients

active MMP-9↓, active MMP-1↓, TIMP-1↑ (105)

Relaxin 25 mg/d (12 days) Subcutaneously. db/db mice with
incisional wound on the

back

VEGF↑, SDF1-a↑, p-eNOS↑, VEGFR-1↑, VEGFR-2↑, VE-
cadherin↑, MMP-11↑

(106)

Exendin-4 week1: 3 mg/kg;
week2: 6 mg/kg;
week3: 10 mg/kg

Intraperitoneal. HFD-induced diabetic
rats with subcutaneous
implantation of foreign

material

CRP concentrations↓, MMP-9↓, TIMP-1↑, (107)

0~100 nmol/l – Fibroblasts/
myofibroblasts obtained
from rat wounds in vivo

experiment

Intraperitoneal. IL-10↑, eNOS↑, peNOS↑, MMP-2↓, cAMP↑ (108)

(Continued)
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bilirubin, calcitriol, and all-trans-retinoic acid have been proved to

cause damage to brain and liver or produce teratogenic effects in

overdose (109–111). Thus, it suggests that the long-term toxicity of

natural products needs further consideration due to the long healing

time of diabetic wounds requiring prolonged administration.
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Glossary

ADAM17 A Disintegrin and A MetalloProtease Domain 17

ADSC-EVs Adipose-derived stem cells

ADSCs Adipose Derived Mesenchymal Stem Cells

AGEs Advanced glycation end products

allo-mBM-MSCs Mouse bone marrow-derived allogeneic MSCs

AMPK Adenosine monophosphate activated protein kinase

Ang Angiopoietin

BM bone marrow

BM-MSCs Bone-marrow-derived mesenchymal stem cells

CAT Catalase

CCR7 C-C chemokine receptor type 7

circ-RNAs circular RNAs

COL Collagen

COX-2 Cyclooxygenase-2

CYP Cytochrome P450

DFUs Diabetic foot ulcers

Dll4 Delta-like 4

DM Diabetes mellitus

E2 17b-Estradiol

ECM Extracellular matrix

EE Hsian-tsao extracts

EGF Epidermal growth factor

EGFR Epidermal growth factor receptor

EPCs endothelial progenitor cells

ERK Extracellular regulated protein kinases

ER-a estrogen receptor-a

FGF fibroblast growth factor

FOXO1 Forkhead box protein O1

GAP-43 Growth associated protein-43

G-Rb1 Ginsenoside Rb1

GSH-Px Glutathione peroxidase

HG High glucose

HIF-1a hypoxia inducible factor-1a

HOXA3 Homeobox A3

IGF-1 Human insulin-like growth factor 1

IL Interleukin

JNK c-Jun N-terminal kinase

lncRNAs long non-coding RNAs

LRG1 Leucine-rich a-2-glycoprotein-1

(Continued)
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Continued

MCP-1 Monocyte chemoattractant protein-1

MDA Malonaldehyde

MG methylglyoxal

miRNAs microRNAs

MMPs Matrix metalloproteases

MSCs Mesenchymal stem cells

NF-kB Nuclear transcription factor-kB

NGAL neutrophil gelatinase-associated lipocalin

NICD Notch intracellular domain

NR1 Notoginsenoside R1

Nrf-2 Nuclear factor erythroid 2-related factor 2

PA Patchouli alcohol

PAI-1 inhibition of Serpine1

PDC Dendrobium Polysaccharides

RA All-trans-retinoic acid

RAGE Receptor for AGE

ROS Reactive oxygen species

SCF Stem cell factor

SHED Stem cells from human exfoliated deciduous teeth

shRNA small hairpin RNA

TACE TNF-Alpha Converting Enzyme

T-AOC Total antioxidant capacity

TDG thymine-DNA glycosylase

TET2 ten-eleven translocation-2

TETILA TET2-interacting lncRNA

TGF Transforming growth factor

TIMPs Tissue inhibitors of metalloproteinases

TNF Tumor necrosis factor

TrxR1 Thioredoxin reductase 1

uPA urokinase-type plasminogen activator

uPAR uPA receptor

VCN-2 Vicenin-2

VEGF Vascular endothelial growth factor

VLUs venous leg ulcers

WEP Hsian-tsao polysaccharides
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aging effect of Dendrobium
officinale flowers’ aqueous
extract and its phytochemical
validation in aging

Huiji Zhou1, Luxian Zhou2, Bo Li1,3* and Rongcai Yue4,5*

1Amway (Shanghai) Innovation and Science Co., Ltd, Shanghai, China, 2Shanghai Archgene
Biotechnology Co., Ltd, Shanghai, China, 3Amway (China) Botanical R&D Center, Wuxi, China, 4School
of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China, 5Fujian Key Laboratory of Drug Target
Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian, China
Introduction:Dendrobium officinale Kimura et Migo (D. officinale) , widely called

as “life-saving immortal grass” by Chinese folk, is a scarce and endangered

species. The edible stems of D. officinale have been extensively studied for active

chemical components and various bioactivities. However, few studies have

reported the well-being beneficial effects of D. officinale flowers (DOF).

Therefore, the present study aimed to investigate the in vitro biological

potency of its aqueous extract and screen its active components.

Methods: Antioxidant tests, including 2,2-diphenyl-1-picrylhydrazyl (DPPH),

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), the ferric

reducing ability of plasma (FRAP), and intracellular reactive oxygen species

(ROS) level analyses in primary human epidermal keratinocytes, anti-

cyclooxygenase2 (COX-2) assay, anti-glycation assay (both fluorescent AGEs

formation in a BSA fructose/glucose system and glycation cell assay), and anti-

aging assay (quantification of collagen types I and III, and SA-b-gal staining assay)

were conducted to determine the potential biological effects of DOF extracts

and its major compounds. Ultra-performance liquid chromatography-

electrospray ionisation-quadrupole-time-of-flight-mass spectrometry (UPLC-

ESI-QTOF-MS/MS) was performed to investigate the composition of DOF

extracts. Online antioxidant post-column bioassay tests were applied to rapidly

screen major antioxidants in DOF extracts.

Results and discussion: The aqueous extract of D. officinale flowers was found

to have potential antioxidant capacity, anti-cyclooxygenase2 (COX-2) effect,

anti-glycation potency, and anti-aging effects. A total of 34 compounds were

identified using UPLC-ESI-QTOF-MS/MS. Online ABTS radical analysis

demonstrated that 1-O-caffeoyl-b-D-glucoside, vicenin-2, luteolin-6-C-b-D-
xyloside-8-C-b–D-glucoside, quercetin-3-O-sophoroside, rutin, isoquercitrin,

and quercetin 3-O-(6″-O-malonyl)-b-D-glucoside are the major potential

antioxidants. In addition, all selected 16 compounds exerted significant ABTS

radical scavenging ability and effective AGE suppressive activities. However, only
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certain compounds, such as rutin and isoquercitrin, displayed selective and

significant antioxidant abilities, as shown by DPPH and FRAP, as well as potent

COX-2 inhibitory capacity, whereas the remaining compounds displayed

relatively weak or no effects. This indicates that specific components

contributed to different functionalities. Our findings justified that DOF and its

active compound targeted related enzymes and highlighted their potential

application in anti-aging.
KEYWORDS

Dendrobium officinale, flavone di-C-glycosides, UPLC-ESI-qTOF-MS/MS, anti-
aging, antioxidant
1 Introduction

Skin is mainly composed of several structures, including the

epidermis and dermis, and protects the body against sunlight

radiation. The epidermis, the outmost layer of the skin, mainly

consists of keratinocytes and absorbs most of the ultraviolet B

(UVB) irradiation (1). UVB irradiation stimulates the

overproduction of various reactive oxygen species (ROS), which

can trigger complex inflammatory signal cascades, such as aberrant

cyclooxygenase-2 (COX-2) expression (2), and ultimately lead to

various adverse symptoms, including wrinkle formation, skin

sagging, and dryness. The dermis, a support tissue maintaining

skin resistance and elasticity, harbours critical skin cells referred to

as fibroblasts, which are responsible for the synthesis and secretion

of the extracellular matrix (ECM) (3). Collagen, mainly types I and

III, is the most abundant fibrous protein found within the ECM.

However, collagen degradation occurs with age, and its content

decreases at a rate of approximately 1% annually after the age of 20,

leading to wrinkles, sagging skin, and premature aging (4).

Additionally, increased cellular senescence has been found to

promote the aging process. Senescent cells exhibit various

distinctive molecular properties; senescence-associated b-
galactosidase (SA-b-gal) is one of the best-characterised and

frequently used biomarkers to identify senescent cells (5, 6).

Normal cells have a limited capacity to replicate and eventually

enter the senescent state, in which SA-b-gal activity increases

rapidly (7, 8).

Furthermore, superfluous reactive free radicals produced during

the oxidation process induce abnormal protein modification,

destroy the secondary structure, and ultimately accelerate the

formation of advanced glycation end products (AGEs), which

stimulate ROS production. AGEs are a series of compounds

gradually formed as a result of a non-enzymatic glycation

reaction with fluorescent and non-fluorescent entities, such as

argpyrimidine and N-carboxymethyl lysine (CML) (9).

Accumulation of AGEs occurs throughout life, and they are

found at significantly higher levels among the elderly population

(10). Growing evidence has shown that AGEs are a major etiologic

factor in age-related disorders, especially skin aging, as it is the most

direct manifestation of body aging. A few studies also have shown
02182
that external stimuli such as excessive free radicals and spontaneous

AGE generation in vivo, which are irreversible once formed in the

body (11), are associated with skin fibroblast damage, destruction of

collagen and elastic fibres, a yellow complexion without splendour,

and deterioration with aging (12). Therefore, antioxidant, anti-

inflammatory, and anti-glycation effects, as well as collagen

protection and SA-b-gal inhibition, are important for the

development of anti-aging products.

D. officinale Kimura et Migo, widely referred to as “life-saving

immortal grass” by the Chinese, is a scarce and endangered species

due to its unique environmental requirements, low fertility, slow

growth, and sparse distribution (13). The edible stems of D.

officinale, known as “TiepiShihu”, have been extensively studied

in recent years for active chemical components (14) and used as a

precious medicinal herb to improve immune function, nourish the

stomach, alleviate the symptoms of diabetes, and postpone senility

(15). However, as a medicinal by-product, the flowers of D.

officinale are typically discarded and rarely studied. Recently, the

flowers of D. officinale have been reported to be rich in nutrients

and other chemical ingredients, including anthocyanins, flavonoids,

and polysaccharides, and specific bioactivities have been elucidated,

such as liver protection as well as hypoglycaemic, antioxidant, and

antihypertensive effects (16–18). Therefore, it is necessary to

establish reliable methods for component analysis of D. officinale

flowers and expand its use for health-related products through

comparison with stems.

The D. officinale flower is popular in China due to its anti-aging

properties and beneficial effects on yin deficiency syndromes.

However, scientific data to confirm the pharmacological effects

listed above is limited in the literature. Therefore, the purpose of

this study was to tentatively conduct more systematic experiments on

the aqueous extracts of D. officinale, including its biological effects on

skin aging, such as antioxidant capacity (through 2,2-diphenyl-1-

picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-
sulfonic acid)(ABTS), the ferric reducing ability of plasma (FRAP)),

anti-inflammatory effect (through COX-2), anti-glycation potency

(through inhibition of non-enzymatic glycation reaction and

inhibition of CML expression in fibroblasts), and anti-aging

evaluation (through the SA-b-gal staining test and collagen

expression). The phytochemical composition of D. officinale was
frontiersin.org
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also analysed using ultra-performance liquid chromatography-

electrospray ionisation-quadrupole-time-of-flight-mass spectrometry

(UPLC-ESI-QTOF-MS/MS). Antioxidants in D. officinale flower

aqueous extract were identified using the online ultra-performance

liquid chromatography-photodiode array detection-mass

spectrometry-2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid

(UPLC-PDA-MS-ABTS+·) method and the biological capacities of

specific isolated constituents were explored (through DPPH, ABTS,

FRAP, anti-COX-2, and AGE inhibitory activities). Previous research

has shown that D. officinale flowers can alleviate brain aging and

improve spatial learning abilities in senescent rats (17). However,

previous literature contains few reports on the anti-glycation effect of

D. officinale flower aqueous extract. Online antioxidant investigation

of D. officinale flower aqueous extract and various biological activities

of its identified compounds that are described in the work have not

been reported previously.
2 Materials and methods

2.1 Plant material, solvents, and chemicals

The flowers of D. officinale were purchased by Amway

(Shanghai) Technology Co. and authenticated as D. officinale

Kimura et Migo flowers by doctor Gangqiang Dong, Amway

(China) Botanical Research Centre. Analytical-grade methanol

was purchased from Honeywell Co. (Charlotte, USA). Acetic acid

and liquid LS-MS-HPLC-grade acetonitrile was purchased from

Merck (Darmstadt, Germany). Bovine serum albumin (BSA)

lyophilised powder, ABTS (98%), DPPH· (98%), 6-hydroxyl-

2,5,7,8-tetra-methylchroman-2-carboxylic acid (Trolox),

tyrosinase, ascorbic acid, NS-398 (COX-2 inhibitor, CAS: 123653-

11-2), and dimethyl sulfoxide (DMSO) were purchased from

Sigma-Aldrich (Darmstadt, Germany). High-glucose Dulbecco’s

modified Eagle’s medium (DMEM), fetal bovine serum (FBS),

penicillin–streptomycin stock solution (PS, 10,000 U/ml),

phosphate-buffered saline (PBS), and pancreatin solution were

purchased from Gibco (Carlsbad, CA, USA). The reference

standards vicenin-2, luteolin 6-C-b-D-xyloside-8-C-b-D-glucoside,
vicenin-1, luteolin-6-C-b-D-glucoside-8-C-b-D-xyloside, quercetin-
3-O-sophoroside, schaftoside, luteolin-6-C-b-D-glucopyranoside,
vicenin-3, apigenin-6-C-b-D-glucoside-8-C-a-arabinoside, rutin,
isoquercitrin, apigenin-6-C-a-L-arabinoside-8-C-b-D-xyloside,
quercetin 3-O-(6″-O-malonyl)-b-D-glucoside, kaempferol-3-O-

rutinoside, astragaline, and isorhamnetin-3-O-glucoside were

purchased from Nature Standard Biotech Co. (Shanghai, China).

Aminoguanidine hydrochloride (AG) and glucose were purchased

from Aladdin (Shanghai, China), and methylglyoxal (MGO) was

purchased from Adamas (Delaware, USA). The Cell Counting Kit-8

(CCK-8), FRAP kit, and SA-b-gal staining kit were purchased from

Beyotime Biotechnology Co. (Shanghai, China). Alexa Fluor®488

Donkey anti-mouse IgG was purchased from Thermo Fisher

(Waltham, Massachusetts, USA). Carboxymethyl lysine antibody,

Alexa Fluor® 488 donkey anti-mouse IgG, Alexa Fluor® 488

donkey anti-rabbit IgG, Alexa Fluor® 568 goat anti-rabbit IgG,
Frontiers in Immunology 03183
type I collagen primary antibody, type III collagen primary

antibody, and mounting medium with 4′,6-diamidino-2-

phenylindole (DAPI) were purchased from Abcam (Cambridge,

UK). The types I and III collagen enzyme-linked immunosorbent

assay (ELISA) kits were purchased from BIO-SWAMP Co.

(Wuhan, China). The human dermal fibroblasts (HDFs) were

purchased from Archgene Biotechnology Co. (Shanghai, China).

Zebrafish were purchased from Hunter Biotechnology Co.

(Hangzhou, China). All other chemicals were purchased from

Titan Co. (Shanghai, China). Water was purified using a Milli-Q

purification system (Barnstead, USA).
2.2 Extraction procedure

Aqueous extracts of D. officinale flower (DOF) were prepared

using slightly modified methods [3]. Briefly, the pulverised flower

powder was reflux-extracted twice with distilled water at a solid-to-

solvent ratio of 1:12 (w/v) for 1 h at 100°C. The extract was

separated through centrifugation at 19,000×g for 15 min at 4°C

(RWB3220CY-2, Eppendorf, Germany). The supernatant was

evaporated at 65°C using a scale rotary evaporator (Hei-VAP

Expert, Heidolph; Schwabach, Germany) until a small volume

remained, then lyophilised using a freeze dryer. The DOF hot-

water extract (DOF-W) was then stored at −18°C until

further analysis.
2.3 Antioxidant capacity (DPPH·, ABTS·+,
and FRAP assays)

Fast colourimetric methods were slightly modified for the in

vitro assessment of DPPH· scavenging (19), ABTS·+ decolourisation

capacity (20), and total antioxidant capacity of FRAP (21). The

stock solutions of derivatisation reagents were diluted as follows

before measurement: DPPH was diluted with absolute ethanol until

the absorbance was 0.8 ± 0.05 at l = 517 nm. ABTS working

solution was prepared with phosphate buffer (0.2 M, pH 7.4) to

display absorbance of 0.8 ± 0.05 at l = 729 nm, based on a previous

study (22). The FRAP solution was prepared according to the

instructions of the FRAP kit. Absorbances were measured using

an automatic microplate reader (Molecular Group Ltd., USA), and

all analyses were performed using 96-well plates. All measurements

were performed in triplicate, and Trolox was used as a

positive control.

For DPPH· scavenging, 100 ml sample solution was mixed with

100 ml fresh DPPH ethanolic solution, and the absorbance of the

mixture was measured after 10 min at 517 nm. Ethanol was used as

a negative control.

For ABTS·+ decolourisation capacity, 100 ml of ABTS working

solution was mixed with 200 ml of sample solution, and the

absorbance was recorded after 10 min at 729 nm. Phosphate

buffer (0.2 M, pH 7.4) was used as a negative control.

DPPH· and ABTS·+ radical scavenging activities of the tested

sample were both calculated using the following formula:
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% inhibition = (A control − A sample)/A control × 100

Where A control and A sample represent the absorbance of the

control and test samples, respectively. The IC50 was calculated

graphically from the dose-inhibition curves.

For total antioxidant capacity, 180 ml of FRAP solution was

mixed with 5 ml of sample solution, and the absorbance was

measured after 5 min at 539 nm with PBS as the negative control.

FeSO4 solutions (0.15, 0.3, 0.6, 0.9, 1.2, and 1.5 mM) were used for

the calibration curve. The FRAP value represents the corresponding

concentration of FeSO4 solutions (mM FeSO4). The regression

equation from the standard curve was used to calculate the

equivalent concentration 1 (EC1) of each sample. EC1 is defined

as the concentration of the test sample with an absorbance

equivalent to that of 1.0 mmol/L of FeSO4 solution, determined

by its calibration curve (23).
2.4 Cellular antioxidant activity assay

2.4.1 Cell culture and UVB treatment
Primary human epidermal keratinocytes (NHEKs) were

purchased from Lifeline® Cell Technology (Frederick, MD,

USA) and cultured in DermaLife K Keratinocyte Calcium-Free

Medium (Cat. LL-0029). NHEKs were incubated in a humidified

incubator with 5% CO2 at 37°C. NHEKs were exposed to a spectral

peak at 312 nm of the UVB irradiation by using an UVB lamp

(Spectroline Model EB-160C, New York, NY, USA) at doses of 10

mJ/cm2. After UVB irradiation, the cells were washed with warm

PBS, and then fresh medium with and without different

concentrations of DOF-W (10 and 40 mg/ml) was added and

incubated for 24 h.

2.4.2 Cell viability assay and measurement of
ROS generation

Cell viability was determined using the CCK-8. After 24 h of

incubation, the optical density (OD) was recorded using a

microplate reader at 450 nm, according to the instructions of the

kit. Based on the methods reported in a previous study [4], the

relative levels of ROS were detected using CellROX® Reagent (Life

Technologies, Waltham, MA USA). Briefly, NHEKs were seeded in

96-well microplates at 2 × 104 cells/well for 48 h, followed by the

UVB treatment and incubation periods specified above. The cells

were then incubated with 5 μM CellROX® for 1 h and washed thrice

with PBS. ROS production was measured through the fluorescent

intensity with the excitation and emission wavelengths set at 485

and 520 nm, respectively.
2.5 Anti-COX-2 assay

Anti-inflammatory activity was assessed by measuring COX-2

enzymatic inhibition on the basis of a described method by using

the COX-2 Inhibitor Screening Kit (Beyotime, No. S0168) [5].

Celecoxib, a COX-2 inhibitor, was used as a positive control. The

results of anti-COX-2 activities are presented as IC50 values (mg/ml
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or mM), a measurement of the inhibition of enzyme activity by each

sample by 50%.
2.6 Anti-glycation capacity

2.6.1 Fluorescent AGEs formation in a BSA-
fructose/glucose system

The formation of total fluorescent AGEs in glycated samples

was assessed by determining their fluorescent intensities at an

excitation/emission wavelength of 350/450 nm, as previously

described (24). Glycated protein was prepared in vitro by

incubating BSA in the presence of D-glucose (GLC) and D-

fructose (FRC). The DOF extract and specific standards were

dissolved in DMSO:water (1:4). BSA (4 mg/ml, 100 ml) was

preliminary mixed with 50 ml of GLC (0.5 M) and 50 ml of FRC
(0.5 M) in 20 mM sodium phosphate buffer (pH 7.4), and then 100

ml samples were added in the 96-well plate and incubated at 37.5°C

for 7 days. All solutions were prepared under sterile conditions and

filtered using a 0.22-mm syringe before incubation. The assay was

performed in triplicate, and AG was used as a positive control. The

percentage inhibition of fluorescent AGE formation was calculated

using the following equation:

Inhibition ( % )  =  1  −  ½(IF sample 

−  IF sample control)=(IF control 

−  IF blank control)� �  100% :

Where IF sample is fluorescence intensity in the presence of

samples and BSA, IF sample control is fluorescence intensity in the

presence of samples without BSA, IF control is fluorescence

intensity without samples, and IF blank control is fluorescence

intensity without samples and BSA. The results of anti-glycation

activities are presented as IC50 values (mg/ml or mM), a

measurement of the 50% inhibition of enzyme activity by

each sample.

2.6.2 Glycation cell assay
Based on previously reported methods (25), human primary

dermal fibroblasts (HDFs) were induced by MGO to establish a cell

model of high CML expression.

HDFs were cultured in high-glucose DMEM supplemented

with 10% FBS containing 100 g/ml of PS at 37°C in a humidified

5% CO2 incubator. Cell viability was assessed using the CCK-8 kit.

HDFs were cultured in 12-well plates to approximately 70%

confluence and then treated with 0.5 mmol/L of MGO for 48 h to

induce glycation and the formation of CML. Subsequently, different

concentrations of samples were added and co-cultured with MGO

for an additional 48 h. Cells were then washed once with PBS and

fixed in polyformaldehyde overnight at 4°C. Triton-X-100 solution

(0.1%) was assigned to fixed cells for 5 min at room temperature to

improve cell membrane permeability. After washing twice with

PBS, cells were blocked in 1% BSA for 1 h, followed by incubation

with the primary CML antibody (1:50) overnight at 4°C. The

secondary antibody donkey-anti-Mouse Alexa Fluor® 488
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(1:1,000) was then added for 2 h at room temperature.

Counterstaining was performed by adopting anti-fluorescence

quenching and sealing liquid containing DAPI, followed by

visualisation and fluorescence image capture using a microscope

(Leica, Germany). ImageJ software was used to quantify CML

expression from different images randomly selected in each group.
2.7 Anti-aging assay on HDFs

2.7.1 Cell culture
HDFs were cultured in DMEM with 10% (v/v) FBS and 1% PS

at 37°C in a humidified 5% CO2 incubator. Cells were subcultured

using pancreatin solution after reaching confluence. All

experiments were performed between the third and eighth passages.

2.7.2 Quantification of collagen types I and III
using immunofluorescence

The synthesis of collagen types I and III was detected using IF

(26) and ELISA (27). HDFs were digested and seeded in a 24-well

culture plate on slides at a density of 50,000 cells/well in a complete

medium. After reaching 80% confluency, cells were starved with the

medium in the absence of serum for 16 h. Cells were then treated

with positive controls or active samples (prepared in medium

without serum) for an additional 48 h. For analysis and

visualisation of types I and III collagens, the supernatants and

remaining cell slides were both collected and analysed using ELISA

kits and the IF staining method, respectively.

Collected supernatants were centrifuged at 10,000 rpm for

10 min and used for types I and III collagen ELISA, according to

the manufacturer’s protocol. The remaining cell slides were washed

once with PBS and fixed in polyformaldehyde overnight at 4°C.

Subsequently, the slides were treated with 0.5% Triton-X100 for

5 min. After washing, cells were blocked with 1% BSA at room

temperature for 1 h. Cells were then incubated with types I and type

III collagen primary antibodies (1:100) for 2 h at room temperature.

After washing, cells were stained with secondary antibody (1:1,000)

for 1 h (Alexa Fluor® 568 goat anti-rabbit IgG and Alexa Fluor®

488 donkey anti-rabbit IgG were used to detecting fluorescence of

types I and type III collagen, respectively). Finally, the nuclei were

counter-stained with DAPI, and relevant fluorescent images were

captured using a microscope. ImageJ software was used to quantify

collagen expression from different images randomly selected in

each group.

2.7.3 SA-b-gal staining assay
Senescent human skin fibroblasts induced by D-galactose (D-gal)

were established based on a previously reported method (28, 29).

HDFs were divided into the control, aging model, and sample

(aging model with DOF extract) groups. Except for the control

group, HDFs were cultured in six-well plates to approximately 70%

confluence and then treated with 20 mg/ml D-gal for 72 h to induce

cell senescence. Subsequently, different concentrations of DOF

extract were added to the sample group and co-cultured with D-

gal for an additional 72 h. The media was then aspirated from cells,
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and the wells were washed once with PBS. SA-b-gal staining was

performed using an SA-b-gal staining kit (Beyotime Co.). Fixative

was added and incubated for 10 min at room temperature. Cells

were then washed twice with PBS and incubated in 1 ml of SA-b-gal
staining solution (freshly prepared according to the protocol of the

kit). Plates were maintained in the dark, overnight, in a humidified

incubator at 37°C without CO2. The following day, the staining

solution was removed and cells were maintained in the final

solution of PBS. The staining of SA-b-gal was observed, and

relevant images were captured using a microscope. ImageJ

software was used to determine the average value of the

proportion of blue-stained cells of five randomly selected

microscopic images in each group.
2.8 UPLC-PDA-QTOF-ESI-MS/MS analysis

DOF extract (1 mg) was diluted with 1 ml of distilled water,

sonicated for 20 min, and filtered using a 0.45-mm syringe filter

before analysis.

The UPLC analysis was performed using an Agilent 1290 UPLC

system (California, USA) combined with an Agilent Q-TOF 6545

LC/MS system, a sample manager, a PDA detector, and a binary

solvent manager, and was controlled using MassHunter

Workstation Software. The Acquity HSS T3 reverse phase column

(2.1 × 100 mm, 1.8 mm; Waters, Milford, MA, USA) at a separation

temperature of 30°C was used to perform the chromatographic

separation of 2 ml of each sample with a wavelength scanning range

of 190–400 nm. Gradient elution at a flow rate of 0.2 ml/min was

completed with the mobile phase consisting of solvent A (0.2%

acetic acid in ultrapure water) and solvent B (acetonitrile) in the

following order: 0–5 min, 2% B; 5–8 min, 2%–10% B; 8–12 min,

10% B; 12–20 min, 10%–15% B; 20–28 min, 15%–20% B; 28–31

min, 20% B; 31–38 min, 20–80% B; and 38–40 min, 80% B. Finally,

the initial conditions were reintroduced over the course of 2 min.

Before each run, the column was equilibrated for an additional

2 min. The MS was operated in both positive and negative ion

modes. The optimised MS conditions were as follows: TOF mass

range, m/z 50–1,700; ion source gas, 50 psi; curtain gas, 35 psi; ion

spray voltage, 5 kV; ion source temperature, 500°C; and collision

energy, 10 eV. The following MS/MS parameters were applied: MS/

MS mass range, 50–1,250 m/z; collision energy, 40 eV; declustering

potential, 100 V; and collision energy spread, 20 eV. Compounds

were identified and analysed by comparing their retention times,

fragment ions, and formulas using corresponding standards and

commercial databases.
2.9 Antioxidant online profiling using
UPLC-PDA-QDa coupled with
postcolumn derivatisation with ABTS

Online identification of antioxidant components of DOF extract

was performed using a UPLC system (Milford, MA, USA)

consisting of a Waters photodiode array detector and a Waters
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postcolumn derivatisation system supplying fresh ABTS solution

(UPLC-PDA-QDa-ABTS). Gradient elution at a flow rate of 0.8 ml/

min was completed with the mobile phase consisting of solvent A

(0.2% acetic acid in ultrapure water) and solvent B (acetonitrile) in

the following order: 0–5 min, 2% B; 5–8 min, 2%–10% B; 8–12 min,

10% B; 12–20 min, 10%–15% B; 20–28 min, 15%–20% B; 28–31

min, 20% B; 31–38 min, 20%–80% B; and 38–40 min, 80% B.

Separation of compounds was performed at 30°C using an Acquity

reversed-phase column (4.6 × 250 mm, 5 mm;Waters, Milford, MA,

USA). The detection wavelengths were set at 280 and 734 nm, and

the injection volume of the sample was 10 ml.
The technical route and relevant device installation are shown

in Figure 1. To detect radical scavengers, the UPLC system was

coupled with a Waters pump, which supplied freshly prepared

ABTS·+ solution into a reaction coil (15 m, 0.25 mm ID) with a flow

rate of 0.2 ml/min at 37°C. Negative peaks were recorded based on a

decrease of absorbance at 729 nm after the reaction of individual

compounds with the ABTS·+ radical. For preliminary identification

of compounds, a Waters Acquity QDa mass detector in negative

ionisation mode was connected in series to PDA with the following

parameters: electrospray ion source; cone voltage, 15 V; atomiser,

N2; and scanning range, 100–800 m/z.
2.10 Statistical analysis

The data were statistically processed using GraphPad software.

The test data were expressed as mean ± standard deviation (SD),

and significance was evaluated by one-way analysis of variance

(ANOVA) and Tukey’s test. Statistical significance was indicated as

follows: *p< 0.05 and **p< 0.01.
3 Results

3.1 In vitro antioxidant potency of
DOF extracts

The growing awareness of herbs with antioxidant properties has

been noted over the last few decades, mainly due to the discovery of

ROS closely involved in chronic non-infectious diseases. Using
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several antioxidation assays and various models is vital for a more

comprehensive assessment of natural products. Therefore, in the

present study, DPPH, ABTS, and FRAP assays, as well as

intracellular ROS levels induced by UVB radiation in NHEKs

cells, were used for measuring the antioxidant potential of the D.

officinale flower aqueous extract (DOF-W).

For the concentration range of 15.6–1,000 mg/ml, DOF-W

showed antioxidant activity in a dosage-dependent manner, as

shown in Figure 2. For the DPPH and ABTS assays, the IC50

value of DOF-W was 669.7 ± 20.59 mg/ml and 224.57 ± 0.65 mg/ml,

respectively, whereas the IC50 values of Trolox were 24.7 ± 1.0 mg/
ml and 27.68 ± 1.04 mg/ml. For the FRAP assay, the EC1 value of

DOF-W was 4,580 ± 260 mg/ml, whereas the EC1 value of Trolox

was 55.35 ± 5.22 mg/ml. Though DOF-W showed a weaker

antioxidant ability compared to a classical antioxidant standard

(Trolox), it still exhibited potential antioxidant activity, particularly

at high concentrations, which were consistent with various previous

studies (30, 31).

Safety and non-toxicity are essential for functional foods, as well

as skin-care cosmetics. The DOF-W had no significant damage to

NHEK cell viability in the range of 1–40 mg/ml (Supplementary

Data). After being irradiated by UVB (10 mJ/cm2), cell survival was

significantly reduced. However, DOF-W did not further aggravate

UVB-induced NHEK cell mortality (Supplementary Data). As

Figure 2D shows, UVB irradiation leads to an increasing ROS

level of NHEK cells. Treatment with 40 mg/ml of DOF-W notably

reduced intracellular ROS levels.
3.2 Anti-COX-2 capacity of DOF extracts

As COX-2 is an inducible enzyme that produces prostaglandins

(PGs) and is responsible for generating ROS, it is always regarded as

a pathologic enzyme chiefly responsible for inflammation (32), and

COX-2 inhibitors, which can cause a sharp drop in the amount of

ROS, are also found to be highly associated with potential

antioxidant effects (33). In this study, the COX-2 inhibition assay

was used to evaluate the anti-inflammatory effect of DOF-W.

The COX-2 inhibitory activity of DOF-W was compared with a

well-known selective COX-2 inhibitor (Celecoxib). For the
FIGURE 1

Flow chart of online detection of antioxidants.
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concentration range of 31.3–2,000 mg/ml, DOF-W showed great

concentration-dependent COX-2 inhibitory activity, as shown in

Figure 3. The DOF-W had an IC50 value of 133.5 ± 27.4 mg/ml,

whereas Celecoxib had an IC50 value of 0.53 ± 0.30 mg/ml. Although
Frontiers in Immunology 07187
DOF-W may show lower capacities due to the dilution of the active

constituents with neutral ones, it still could be used as a promising

COX-2 inhibitor.
3.3 Anti-glycation activity of DOF-W

Glycosylation within tissues is a slow and complicated process.

Excessive generation and accumulation of AGEs in the process will

cause irreversible damage to the body. Various AGEs in skin

collagen, including CML, can damage skin fibroblasts, resulting in

skin aging and the formation of dark spots (10). In the present

study, the determination of anti-glycation activities was evaluated

by multimodal methods, including routine chemical tests, cell

experiments, and a zebrafish assay.

3.3.1 Inhibition of DOF-W on total fluorescent
AGEs of non-enzymatic glycation

Incubation of reducing sugars and BSA induced the production

of fluorescent AGEs (34). In this study, the BSA-fructose/glucose as a

model reaction system was first applied to preliminarily evaluate the

effect of DOF aqueous extracts on the inhibition of AGEs. As shown
FIGURE 3

COX-2 inhibition of DOF-W. Compared with the control, **p< 0.01.
A B

DC

FIGURE 2

Antioxidant potency of DOF extracts. DPPH scavenging activity (A), ABTS scavenging activity (B), FRAP value (C), and intracellular ROS level (D) of
DOF-W. Compared with the control, **p< 0.01. Compared with the UVB model, ##p< 0.01.
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in Figure 4A, DOF-W extracts can reduce levels of fluorescent AGEs

in a concentration-dependent relationship with IC50 values of 428.4 ±

75.1 mg/ml. AG, a synthetic AGE inhibitor, expectedly displayed an

effective inhibition with IC50 values of 177.3 ± 11.6 mg/ml.

3.3.2 Anti-glycation effect of DOF-W in human
primary fibroblasts

Anti-glycation primary assay of BSA/reducing sugar system as

the above showed that DOF extract was a potential anti-glycans.

The DOF extract was then further tested in an in vitro glycation

assay to confirm its activities on cells. MGO is a critical and potent

precursor in the formation of AGEs, reacting with proteins to

produce Nϵ-carboxymethyl lysine (CML), which is one of the

principal AGEs in the skin without fluorescence properties and

cannot be detected by conventional assay (35). Fibroblasts were

treated with MGO to induce glycation, which was then visualised

and quantified using IF. No obvious CML green fluorescence

staining in the blank control group was observed, which indicated

that normal cells hardly secrete CML, whereas a large amount of

CML was expressed in MGO-induced cells after CML IF, as shown

in Figure 4D. The treatment of the cells with the positive compound

AG resulted in significant inhibition of glycation by 88.11%. Since

no cytotoxicity was found under concentrations of 40 mg/ml, as

shown in Figure 4B, treatment with 10 and 40 mg/ml of DOF extract

in HDFs both resulted in significant inhibition of glycation by

77.88% and 69.70%, respectively, without a distinct dose-dependent

manner (Figures 4C, D).
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3.4 Effect of DOF extracts on collagen
synthesis in human skin fibroblast cells

Dermal fibroblasts are thought to be responsible for

synthesizing various dermal ECM proteins, including fibrous

collagens. Type I collagen accounted for approximately 80% of

total collagen, whereas type III collagen is more prevalent in young

skin than aged skin and is particularly involved in wound healing

(36). Since skin aging is characterized by the degradation of ECM

components such as types I and III collagen breakdown, we

investigated whether DOF could enhance the expression of types

I and III collagen in HDFs.

As shown in Figures 5A, B, IF assay revealed that DOF-

treated cells synthesized more amount of type I collagen than

untreated control cells after 48 h. DOF increased the extent of

collagen type I staining by 111.88% and 154.59% of control at a

concentration of 10 and 40 mg/ml, respectively. However, the

level of expression of type III collagen was not statistically altered

or even decreased by DOF extract, as shown in Figures 5C, D.

Collagen types I and III expressions were significantly increased

by vitamin C by 190.20% and 125.90% of control as a positive

drug, respectively.

We also tested the extracellular content of collagen types I and

III for 48 h on HDFs in the culture medium. As shown in

Figures 5E, F, treatment with vitamin C (VC), 10 mg/ml of DOF,

and 40 mg/ml of DOF increased secreted collagen type I levels by

21.94%, 42.6%, and 57.65%, respectively, whereas DOF had no
A B

D

C

FIGURE 4

Anti-glycation activity of DOF-W. (A) Inhibition of fluorescent AGEs by DOF-W extract. (B) Cytotoxicity of DOF-W extract to fibroblasts. (C) Effect of
CML expression in glyoxal-induced HDFs by DOF-W extract. (D) Representative images of HDFs by fluorescence microscope and statistics. ##p<
0.01 compared with the MGO model. **p< 0.01 compared with control. AG, aminoguanidine hydrochloride; MGO, methylglyoxal; CML, N-
carboxymethyl lysine.
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obvious effect on type III collagen secretion, further confirming the

corresponding significantly stronger effect on collagen type I.

Therefore, we conclude that DOF extracts can upregulate collagen

type I level in HDFs, but they have no positive effect on type

III collagen.
3.5 SA-b-Gal staining assay on DOF-W

Cellular senescence is an irreversible physiological phenomenon

in which normal cells have lost their proliferative potential but are

still alive and maintaining their metabolic activity (37). Cell

senescence can be measured using SA-b-gal staining assay, which

is widely used to locate SA-b-gal-positive cells (blue-stained cells)

by optical microscope. Among several existing types of aging

models, such as X-ray, H2O2, and D-Gal-induced aging models, D-

gal induced aging models to resemble natural aging but take a

shorter time than the latter (38).

As shown in Figure 6, few blue-stained cells were observed in

the control group (3.0% ± 1.2%). SA-b-gal-positive cells

significantly increased after treatment with 20 mg/ml of D-gal for

6 days, consecutively, in the model group (7.9% ± 2.0%). When
Frontiers in Immunology 09189
senescent cells coincubated with 10 and 40 mg/ml of DOF extracts,

the proportion of SA-b-gal-positive cells were 4.0% ± 0.9% and

5.6% ± 1.2%, respectively, which were conspicuously lower than

those of the model group.
3.6 Determination of phytochemicals using
UPLC-Q/TOF-MS/MS

The 25 compounds were further characterised by structural

analysis using UPLC-PDA-ESI-Q/TOF-MS/MS (Table 1;

Supplementary Materials). The total ion chromatogram of the

aqueous extract of the sample under both negative and positive

ion mode is shown in Figure 7. The retention time (Rt), molecular

formula, and ion and ions after fragmentation are shown in Table 1.

The Rt and fragmentation information of compounds 13, 14, 16, 17,

19, 20, 23, 24, and 25 were compared with those of standards. The

major constituents of DOF-W were flavonoids (Figure 8). A typical

MS spectrogram fragmentation mechanism for flavonoid

disaccharide C-glycoside such as schaftoside is shown in

Supplementary Figure S2.
A

B D E F

C

FIGURE 5

Effects of DOF extract on the expression of collagens by IF staining. HDFs were treated with VC (200 mg/ml, positive control) and DOF extract (10
and 40 mg/ml), whereas HDFs were incubated without any treatment as the control group. (A) Images of collagen I staining (red color) and
quantification (B). (C) Images of collagen III staining (green color) and quantification (D). Extracellular content of types I (E) and III (F) collagen on
HDFs using ELISA. Bar scale, 100 mm. Compared with the control group, *p< 0.05, **p< 0.01.
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TABLE 1 The physical properties of the identified compounds from the flowers of Dendrobium officinale.

No. T(min) Ion m/z ppm Formula Mol. wt. Name MS/MS data

1 3.08 [M+H]+ 294.1547 −2.0 C12H23NO7 293.15 Fructoseleucine 276.1445; 258.1295; 230.1362; 212.1264;
182.1158

2 5.78 [M−H]− 282.0842 1.3 C10H13N5O5 283.09 Guanosine 150.0397; 133.0150; 108.0204; 78.9594

3 6.83 [M+H]+ 268.1047 0.5 C10H13N5O4 267.10 Adenosine 136.0618; 119.0350; 94.0394; 57.0330

4 8.04 [M−H]− 299.0776 3.0 C13H16O8 300.08 Salicylic acid 2-O-b-D-glucoside 137.0238; 123.0080; 93.0346

5 11.49 [M−H]− 341.0889 4.8 C15H18O9 342.10 1-O-caffeoyl-b-D-glucoside 179.0347; 161.0246; 135.0448; 133.0296

6 14.41 [M−H]− 325.0935 3.6 C15H18O8 326.10 1-O-(4-coumaroyl)-b-D-glucose or
isomer

163.0392; 145.0293; 117.0345; 59.0135

7 15.45 [M−H]− 325.0935 3.6 C15H18O8 326.10 1-O-(4-coumaroyl)-b-D-glucose or
isomer

163.0376; 145.0296; 117.0348; 59.0139

8 16.53 [M−H]− 771.1987 0.4 C33H40O21 772.21 Quercetin 3-O-glucosyl-rutinoside 771.1974; 609.1456; 463.0794; 301.0343;
178.9978

9 17.57 [M−H]− 609.1461 0.2 C27H30O16 610.15 Luteolin-6-C-b-D-glucoside-8-C-
b-D-galactoside

489.1025; 429.0796; 399.0700; 369.0604

10 19.86 [M−H]− 593.1519 2.1 C27H30O15 594.16 Vicenin-2 593.1533; 473.1087; 383.0768; 353.0659;
297.0749

11 19.86 [M−H]− 579.1352 1.3 C26H28O15 580.14 Luteolin- 6-C-b-D-xyloside-8-C-b-
D-glucoside

429.0776; 399.0709; 369.0602; 339.0487

12 20.82 [M−H]− 579.1355 −0.2 C26H28O15 580.14 Luteolin-6-C-xyloside-8-C-
glucoside isomer

459.0916; 429.0811; 399.0711; 369.0605;
339.0518

13 21.06 [M−H]− 623.1620 0.0 C28H32O16 624.16 Isorhamnetin-3-O-
neohesperidoside

503.1182; 413.0874; 383.0774; 357.0621;
315.0635

14 22.03 [M−H]− 563.1398 −0.5 C26H28O14 564.15 Vicenin-1 563.1490; 503.1179; 473.1081; 383.0680;
353.0667

15 22.03 [M−H]− 579.1353 −0.2 C26H28O15 580.14 Luteolin-6-C-b-D-glucoside-8-C-
b-D-xyloside

429.0799; 399.0710; 369.0616

16 22.36 [M−H]− 625.1396 −1.4 C27H30O17 626.15 Quercetin-3-O-sophoroside 625.1370; 463.0864; 301.0338

(Continued)
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FIGURE 6

Images of fibroblasts with SA-b-gal staining. Statistics results of fibroblasts with SA-b-gal staining. Bar scale, 100 mm. Compared with the model
group, **p< 0.01.
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3.7 Determination of antioxidants by the
online UPLC-PDA-MS-ABTS·+ scavenging

To preliminarily screen out antioxidant phytochemicals in

DOF-W, in the present study, UPLC coupled with PDA-Qda and

ABTS-based assay was performed. The constituents, for which MS

data and reference compounds were available, can be identified

from positive peaks in Supplementary Figure S2. The area of

reordered negative peaks on the lower chromatogram at 734 nm

conforms to the ABTS radical scavenging activity of individual

compounds of the DOF extract. As it may be judged from the size of

the negative peaks in the chromatogram, 1-O-caffeoyl-b-D-
glucoside (compound 5), vicenin-2 (compound 10), luteolin-6-C-

b-D-xyloside-8-C-b-D-glucoside (compound 11), quercetin-3-O-

sophoroside (compound 16, rutin (compound 24), isoquercitrin

(compound 25), and quercetin 3-O-(6″-O-malonyl)-b-D-glucoside
Frontiers in Immunology 11191
(compound 27) were the strongest ABTS radical scavengers in the

investigated extract. Since components 10 and 11 are not well

separated, it is a challenge to distinguish which component is

mainly responsible for the negative peak and needs further

confirmation by extra experiments. In a previous report (30), by

employing precolumn DPPH and ABTS assay followed by HPLC-

DAD analysis, 1-O-caffeoyl-b-D-glucoside, rutin, and isoquercitrin

were identified as major components with obvious scavenging free

radical abilities in methanol extract of DOF.
3.8 In vitro pro-health potency of specific
compounds from DOF extracts

In consideration of the time-consuming process of isolating

components in flowers and to further identify and confirm the
TABLE 1 Continued

No. T(min) Ion m/z ppm Formula Mol. wt. Name MS/MS data

17 22.93 [M−H]− 563.1404 0.6 C26H28O14 564.15 Schaftoside 563.1398; 503.1182; 473.1082; 383.0770;
353.0664

18 23.07 [M−H]− 447.0932 −0.2 C21H20O11 448.10 Luteolin-6-C-b-D-glucoside 411.0716; 357.0613; 327.0495; 298.0475;
285.0412

19 24.91 [M−H]− 563.1426 4.5 C26H28O14 564.15 Vicenin-3 563.1391; 473.1082; 443.0974; 383.0768;
353.0663

20 25.14 [M−H]− 593.1521 1.0 C27H30O15 594.16 Glucosyl-vitexin 431.0946; 311.0549; 293.0463; 59.0139

21 25.56 [M−H]− 563.1404 −0.2 C26H28O14 564.15 Neoschaftoside 473.1073; 444.1005; 413.0873; 383.0770;
353.0649; 311.0548

22 25.87 [M−H]− 533.1309 1.1 C25H26O13 534.14 Apigenin-6-C-b-D-xyloside-8-C-
a-L-arabinoside-

413.0855; 383.0770; 353.0660

23 26.07 [M−H]− 609.1469 2.2 C27H30O16 610.15 Quercetin-7-O-rutinoside 609.1433; 463.0865; 301.0333; 300.0277;
271.0242

24 26.52 [M−H]− 609.1484 4.7 C27H30O16 610.15 Rutin 609.1455; 301.0346; 300.0283; 178.9980

25 27.46 [M−H]− 463.0897 4.4 C21H20O12 464.10 Isoquercitrin 301.0281; 300.0281; 271.0254; 255.0302;
178.9985

26 29.05 [M+H]+ 535.1457 1.0 C25H26O13 534.14 Apigenin-6-C-a-L-arabinoside-8-
C-b-D-xyloside

463.0998; 433.0909; 403.0807; 391.0804;
379.0806; 325.0697; 307.0595

27 29.38 [M−H]− 549.0882 0.2 C24H22O15 550.10 Quercetin 3-O-(6″-malonyl-
glucoside)

549.0832; 505.0937; 463.1016; 301.0437;
300.0274; 271.0244; 255.0295

28 29.76 [M−H]− 593.1517 1.7 C27H30O15 594.16 Kaempferol-3-O-rutinoside 593.1506; 285.0398; 284.0323; 255.0293;
151.0030

29 30.45 [M+H]+ 565.1561 0.7 C26H28O14 564.15 Apigenin-6-C-arabinosyl-(1!2)-
O-b-D-glucoside

367.0808; 349.0704; 337.0704; 313.0702;
283.0598

30 30.82 [M+H]+ 565.1538 −3.4 C26H28O14 564.15 Apigenin-8-C-glucosyl-(1!2)-a-
L-arabinoside

367.0810; 349.0697; 337.0704; 313.0702;
283.0601

31 30.83 [M−H]− 447.0942 3.3 C21H20O11 448.10 Astragalin 284.0320; 255.0293; 227.0343; 151.0034

32 31.60 [M−H]− 477.1038 −0.3 C22H22O12 478.11 Isorhamnetin-3-O-glucoside 314.0426; 299.0176; 285.0401; 271.0237;
257.0448; 243.0291

33 31.86 [M−H]− 505.0987 −0.1 C23H22O13 506.11 Quercetin 3-O-(6″-acetyl-
glucoside)

300.0273; 271.0243; 225.0307

34 33.76 [M−H]− 533.0935 −0.3 C24H22O14 534.10 Kaempferol 3-O-(6″-
malonylglucoside)

284.0326; 255.0299; 229.051
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biological activities of components that may contribute to the

antioxidative, anti-inflammatory, and anti-glycation properties of

the extract, specific available compounds were selected for more

detailed investigation on the assays of DPPH, ABTS, FRAP, COX-2,

and BSA/reducing sugar glycation. The results of these isolated

compounds are shown in Table 2.

In view of the limitations of different antioxidant methods, the

use of at least two or more assays with different mechanisms of

oxidation is strongly recommended. Three in vitro assays (DPPH,

ABTS, and FRAP) were performed to comprehensively analyse the

antioxidant capacities of selected compounds (39). These examined

compounds demonstrated various influences on these functional

activities. All compounds were observed to display significant

scavenging capacities against the ABTS radical, with IC50 values

ranging from 6.63 ± 0.41 mM (compound 16) to 96.39 ± 2.11 mM
(compound 14). However, as for the DPPH radical and FRAP assay,

some compounds (compounds 10, 14, 17, 19, 21, 26, 28, and 31)

showed a low level of inhibition with IC50 values that were even

higher than 5,000 mM, whereas other compounds (compounds 11,

15, 16, 18, 24, 25, and 27) exhibited extraordinary inhibition, with

IC50 of DPPH varying from 24.70 ± 0.96 to 226.93 ± 47.26 mM and

EC1 of FRAP ranging from 205.0 ± 12.2 to 1,100.3 ± 138.4 mM,

respectively. The remaining compound 32 had a relatively weak

inhibition, with an IC50 of DPPH of 2,366.67 ± 87.61 and an EC1 of

FRAP of 2,757.3 ± 103.8. Based on previous reports, flavonoids

appear to exhibit anti-inflammatory properties through the

modulation of ROS (40). According to our findings, our data

from the anti-COX-2 assay indeed revealed a similar tendency,

which was in line with the results observed in the DPPH radical and

FRAP assays. Compounds 11, 15, 16, 18, 24, 25, and 27 showed

great COX-2 inhibition, with the lowest IC50 being 7.9 ± 2.4 mM, as

opposed to no inhibitory effects of compounds 10, 14, 17, 19, 21, 26,

28 and 31. Similar to the antioxidant results (DPPH and FRAP) of
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compound 32, its inhibitory effect on COX-2 was weak with an IC50

of 535.3 ± 150.0 mM.

Analysis of the influence on AGE formation illustrated that all

compounds were observed to display excellent anti-AGE effects, with

IC50 ranging from 209.2 ± 3.1 to 374.4 ± 18.1 mM. All the results are

very close to that of rutin (IC50, 222.03± 13.49 mM), which is not only

the main component of DOF-W extracts but also a well-known AGE

inhibitor, and the inhibitory effects of all compounds are even better

than aminoguanidine hydrochloride (1,604.1 ± 104.5 mM), another

frequently used synthetic AGE inhibitor.
4 Discussion

In the current study, the results demonstrated that DOF-W

exhibited promising antioxidant capacity (DPPH, ABTS, FRAP,

intracellular ROS level in NHEK cells), anti-COX-2 effect, anti-

glycation potency (inhibition of non-enzymatic glycation reaction

and inhibition of CML expression in fibroblasts), and anti-aging

effect (SA-b-gal staining test and collagen expression in fibroblasts).

In addition, chemical and cellular anti-glycation activity as well as

the anti-COX-2 effect on DOF-W were reported for the first time.

Oxidative stress and inflammation caused by unstable free

radicals, which are highly deleterious to cells and skin, are both

major contributors to the aging process (Wang, 2021). Compared

with younger skin, elderly skin is more susceptible to environmental

stimuli and needs external support such as antioxidants. It is

demonstrated that DOF-W had obvious antioxidant and anti-

inflammatory effects based on chemical, enzymatic, and cellular

methods. Previous studies indicated that DOF-W could increase the

antioxidant status and inhibit the inflammatory response in

alcohol-impaired mice (Wu et al., 2020), which is consistent with

our experimental results. Online UPLC-PDA-MS-ABTS·+
FIGURE 7

UPLC-ESI/MS/MS total ion chromatogram of DOF-W.
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scavenging results indicated that seven compounds (5, 10 or 11, 16,

24, 25, and 27) are most likely to be major contributors to the

overall antioxidant potential of DOF-W extracts. However,

although all selected compounds displayed an excellent capacity

to scavenge ABTS radicals, only compounds 11, 15, 16, 18, 21, 24,

25, and 27 showed great antioxidant potency with respect to DPPH

and FRAP assays. Due to the absence of standard 5, its authentic

antioxidant capacity cannot be verified in this paper. Combining the

results of online and traditional chemical methods, compounds 11,

16, 24, 25, and 27 were predicted to be the main antioxidants of

DOF-W extract. Based on previous reports, flavonoids appear to

exhibit anti-inflammatory properties via the modulation of ROS

(40). The anti-cyclooxygenase-2 assay was indeed observed to reveal

a similar tendency as the results of the DPPH radical and FRAP

assays. Only compounds 11, 15, 16, 18, 21, 24, 25, and 27 showed

outstanding COX-2 inhibitory effects. According to our study, the

antioxidant and anti-inflammatory effects of DOF-W extract are

more likely to be attributed to compounds 11, 15, 16, 18, 24, 25, and
Frontiers in Immunology 13193
27. Luteolin C-glycosylflavones such as compounds 11, 15, and 18

demonstrated great antioxidant and COX-2 inhibitory effects. On

the other hand, though apigenin, as one of the most widely

distributed flavonoids in the plant kingdom and most frequently

studied by researchers, is characterized as a fantastic free-radical

scavenger and a remarkable anti-inflammatory agent (41), apigenin

C-glycosylflavones such as compounds 10, 14, 17, 19, 21, and 26

exhibited very weak biological effects. Among these compounds,

compounds 11 and 15 possess the same glycosidic bond as

compounds 14 and 19, respectively. Therefore, it looks like that

the type of aglycone rather than C- or O-glycosides of flavonoids,

had a great effect on antioxidant and COX-2 inhibitory potency. It

has also been reported that both luteolin and apigenin C-

glycosylflavones had much lower inflammatory effects than those

observed with their corresponding aglycones and O-glycosides in

LPS-induced RAW264.7 (42). Our results may be explained by the

speculation that C-glycosylation of apigenin leads to a reduction of

antioxidant and anti-inflammatory potential. Since most of the
FIGURE 8

The chemical structures of main herb markers in the DOF-W.
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flavonoids in plants exist primarily as O-glycosides, C-glycoside

flavonoids received relatively less attention than flavonoid O-

glycosides, especially in the absence of comprehensive studies on

their biological benefits. It is more purposeful to explore the

pharmacokinetic properties of flavonoid C-glycosides and

their bioactivities.
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Numerous studies have also shown that external stimuli such as

excessive free radicals and spontaneous AGE generation in vivo,

which are irreversible once formed in the body (11), are associated

with skin fibroblast damage, destruction of collagen and elastic

fibres, a yellow complexion without splendour, and aging

deterioration (12). DOF-W extract displayed excellent capacity to
FIGURE 9

Graphic review of the anti-aging effect of D. officinale flower aqueous extract.
TABLE 2 Antioxidant (DPPH, ABTS, FRAP), anti-cyclooxygenase (COX-2), and AGE inhibition activity (BSA/reducing sugar reaction) (% of inhibition) of
various compounds from Dendrobium officinale flower-aqueous extract.

No. Compound name DPPH ABTS FRAP COX-2 BSA-glycation

IC50 (mM) IC50 (mM) EC1 (mM) IC50 (mM) IC50 (mM)

10 Vicenin-2 (apigenin 6,8-C-diglucoside) >5,000 74.41 ± 0.69 >5,000 nd 257.67 ± 7.56

11 Luteolin 6-C-b-D-xyloside-8-C-b-D-glucoside 226.93 ± 47.26 15.90 ± 0.19 1,009.1 ± 143.3 14.2 ± 3.4 251.6 ± 5.1

14 Vicenin-1 (apigenin 6-C-b-D-xyloside-8-C-glucoside) >5,000 96.39 ± 2.11 >5,000 nd 255.63 ± 5.44

15 Luteolin-6-C-b-D-glucoside-8-C-b-D-xyloside 145.13 ± 51.37 13.80 ± 0.82 1,100.3 ± 138.4 13.9 ± 2.4 293.6 ± 13.3

16 Quercetin-3-O-sophoroside 172.13 ± 76.03 6.63 ± 0.41 949.6 ± 41.9 11.0 ± 0.7 295.7 ± 8.5

17 Schaftoside (apigenin 6-C-b-D-xyloside-8-C-arabinoside) >5,000 75.59 ± 12.12 >5,000 nd 250.30 ± 4.16

18 Luteolin-6-C-b-D-glucopyranoside 102.28 ± 6.20 7.10 ± 0.10 506.6 ± 78.3 7.9 ± 2.4 316.6 ± 15.6

19 Vicenin-3 (apigenin 6-C-b-D-glucoside-8-C-xyloside) >5,000 74.76 ± 0.92 >5,000 nd 242.90 ± 11.97

21 Neoschaftoside >5,000 21.45 ± 0.24 >5,000 nd 430.3 ± 8.0

24 Rutin 43.33 ± 1.75 33.09 ± 0.37 205.0 ± 12.2 10.3 ± 2.8 222.03 ± 13.49

25 Isoquercitrin 197.30 ± 42.07 10.67 ± 0.03 520.2 ± 17.9 15.4 ± 3.7 212.7 ± 10.4

26 Apigenin-6-C-a-L-arabinoside-8-C-b-D-xyloside >5,000 80.36 ± 0.77 >5,000 nd 272.7 ± 4.7

27 Quercetin 3-O-(6″-O-malonyl)-b-D-glucoside 24.70 ± 0.96 28.36 ± 0.47 826.7 ± 98.5 12.5 ± 2.9 288.2 ± 17.9

28 Kaempferol-3-O-rutinoside >5,000 35.01 ± 0.22 >5,000 nd 374.4 ± 18.1

31 Astragaline (kaempferol 3-b-D-glucopyranoside) >5,000 34.31 ± 0.10 >5,000 nd 275.7 ± 33.0

32 Isorhamnetin-3-O-glucoside 2,366.67 ± 87.61 44.71 ± 1.52 2,757.3 ± 103.8 535.3 ± 150.0 209.2 ± 3.1

Positive Trolox 158.87 ± 4.47 145.67 ± 1.22 559.8 ± 19.4

Celecoxib 89.7 ± 6.4

Aminoguanidine hydrochloride 1,604.1 ± 104.5
nd, not detected; values represented as mean ± standard deviation (n = 3); values in the same columns followed by different letters are significantly different at p ≤ 0.05 according to Tukey’s test.
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inhibit AGE formation with low IC50 values and decreased CML

expression obviously in MGO-induced fibroblasts. In addition, all

selected compounds were observed to have a potent capacity to

inhibit AGE formation. Therefore, anti-glycation ability of DOF-W

may be justified by the synergistic action of most polyphenolic

compounds present in the extract. So far, several studies have

reported that various flavonoids, both O- and C-glycosides, can

cause a marked decrease on AGE production in several in vitro and

in vivo experimental models (43, 44).

Human skin fibroblasts, which primarily exist in the dermis, can

form a large amount of collagen, which is a key factor in

maintaining skin elasticity. Studies have reported that skin aging

may be related to the accumulation of aging fibroblasts within our

skin (Wlaschek et al., 2021). Both immunofluorescence assay and

extracellular ELISA assay showed that DOF-W extracts can increase

the expression of collagen type I, but they have no obvious effect on

collagen type III. Moreover, DOF-W can also significantly decrease

the proportion of D-Gal-induced senescent cells. In previous

research, it had been reported that the Dendrobium officinale

flower can alleviate brain aging and improve spatial learning

abilities in senescent rats (23). Continuous efforts should be made

for the detailed identification of representative bioactive

constituents in DOF, which may be followed by a systematic

clinical study on suitable animal models and humans.
5 Conclusion

Based on the current research regarding in vitro studies and

phytochemistry analysis, it is suggested that DOF-W is potent with

antioxidation, anti-glycation, and anti-aging effects (Figure 9) and

deserves further research and development. Both DOF-W and its

specific compounds might be promising agents for skin anti-aging.
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Gallego J, Tuñón MJ. Quercetin attenuates nuclear factor-kappaB activation and
nitric oxide production in interleukin-1beta-activated rat hepatocytes. J Nutr (2005)
135(6):1359–65. doi: 10.1093/jn/135.6.1359

41. Salehi B, Venditti A. The therapeutic potential of apigenin. Int J Mol Sci (2019)
20(6):1305. doi: 10.3390/ijms20061305

42. Nam TG, Lim TG, Lee BH, Lim S, Kang H. Comparison of anti-inflammatory
effects of flavonoid-rich common and tartary buckwheat sprout extracts in
lipopolysaccharide-stimulated RAW 264. 7 Peritoneal Macrophages. Oxid Med Cell
Longev (2017) 2017:9658030. doi: 10.1155/2017/9658030

43. Xiao J, Capanoglu E, Jassbi AR, Miron A. Advance on the flavonoid c-glycosides
and health benefits. Crit Rev Food Sci Nutr (2016) 56 Suppl 1:S29–45. doi: 10.1080/
10408398.2015.1067595

44. Ren GX, Cheng KW, Peng X, Zheng Z, Chen F, Wang M, et al. Inhibitory effect of
mung bean extract and its constituents vitexin and isovitexin on the formation of advanced
glycation endproducts. Food Chem (2008) 2):106. doi: 10.1016/j.foodchem.2007.06.016
frontiersin.org

https://doi.org/10.1016/j.bbagen.2016.08.002
https://doi.org/10.1016/j.foodcont.2015.06.044
https://doi.org/10.1016/j.foodchem.2018.08.090
https://doi.org/10.1016/j.foodchem.2018.08.090
https://doi.org/10.1074/jbc.M406313200
https://doi.org/10.1016/j.jff.2018.06.024
https://doi.org/10.1016/j.jff.2018.06.024
https://doi.org/10.1038/srep27848
https://doi.org/10.1038/srep27848
https://doi.org/10.4268/cjcmm20110623
https://doi.org/10.4268/cjcmm20110623
https://doi.org/10.1007/s00216-015-8781-4
https://doi.org/10.3390/molecules22091543
https://doi.org/10.1155/2020/1421853
https://doi.org/10.2174/1386207323666200407080352
https://doi.org/10.2174/1386207323666200407080352
https://doi.org/10.1002/ptr.7013
https://doi.org/10.1186/s13065-016-0184-x
https://doi.org/10.1016/s0891-5849(98)00315-3
https://doi.org/10.1006/abio.1996.0292
https://doi.org/10.1006/abio.1996.0292
https://doi.org/10.3390/antiox10121869
https://doi.org/10.1016/j.fbio.2020.100628
https://doi.org/10.1016/j.bbadis.2021.166283
https://doi.org/10.1111/jocd.13176
https://doi.org/10.11648/j.cb.20200802.13
https://doi.org/10.1371/journal.pone.0216501
https://doi.org/10.1093/toxsci/kfy181
https://doi.org/10.1016/j.jchromb.2021.122857
https://doi.org/10.1016/j.foodres.2019.05.040
https://doi.org/10.1016/j.foodres.2019.05.040
https://doi.org/CNKI:SUN:ZNGZ.0.2019-04-030
https://doi.org/10.1016/j.apsb.2022.01.002
https://doi.org/10.1016/j.bioorg.2019.103007
https://doi.org/10.1039/c6ra12321j
https://doi.org/10.3390/nu9111214
https://doi.org/10.1089/wound.2013.0485
https://doi.org/10.1016/j.electacta.2015.10.115
https://doi.org/10.1016/j.exger.2015.11.003
https://doi.org/10.1016/j.foodchem.2016.04.098
https://doi.org/10.1016/j.foodchem.2016.04.098
https://doi.org/10.1093/jn/135.6.1359
https://doi.org/10.3390/ijms20061305
https://doi.org/10.1155/2017/9658030
https://doi.org/10.1080/10408398.2015.1067595
https://doi.org/10.1080/10408398.2015.1067595
https://doi.org/10.1016/j.foodchem.2007.06.016
https://doi.org/10.3389/fimmu.2023.1095848
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


+41 (0)21 510 17 00 
frontiersin.org/about/contact

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

Frontiers

Explores novel approaches and diagnoses to treat 

immune disorders.

The official journal of the International Union of 

Immunological Societies (IUIS) and the most cited 

in its field, leading the way for research across 

basic, translational and clinical immunology.

Discover the latest 
Research Topics

See more 

Frontiers in
Immunology

https://www.frontiersin.org/journals/immunology/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Immunomodulatory role of metalloproteases in chronic inflammatory diseases

	Table of contents

	Editorial: Immunomodulatory role of metalloproteases in chronic inflammatory diseases
	MMPs
	ADAMs
	Others
	Author contributions
	Funding
	Acknowledgments
	References

	The emerging role of histone deacetylase 1 in allergic diseases
	Introduction
	Allergic diseases
	The role of HDAC1 in allergic diseases
	Regulation of inflammatory cytokines and downstream protein by HDAC1
	HDAC1 is regulated by exposure to stimuli and is associated with gut microbiome
	Potential of HDAC1 inhibitors as treatments
	Prospective and conclusion
	Author contributions
	Funding
	References

	Targeting matrix metalloproteases: A promising strategy for herbal medicines to treat rheumatoid arthritis
	1 Introduction
	2 Classification and structure of MMPs
	3 Regulation of MMPs
	4 The role of MMPs in RA
	4.1. MMPs act as mediators of inflammation
	4.2. MMPs destroy joint structure

	5 Herbal medicines can treat RA by regulating MMP
	5.1 Extracts from herbal medicines
	5.1.1 Herbal medicine formulas
	5.1.2 Plant extracts

	5.2 Monomers from herbal medicines
	5.2.1 Terpenoids
	5.2.2 Flavonoids
	5.2.3 Polysaccharides
	5.2.4 Glycosides


	6 Conclusion and perspectives
	Author contributions
	Funding
	References
	Glossary

	Immunomodulatory role of metalloproteinase ADAM17 in tumor development
	Introduction
	Characterization of ADAM17
	Structure of ADAM17
	Regulatory roles of ADAM17
	ADAM17 regulates post-translational modification
	ADAM17 affects post-transcriptional regulation
	ADAM17 mediates substrate shedding activity
	ADAM17 participates in the regulation of its downstream signaling pathways

	Immune regulation of ADAM17 in cancers
	Abnormal expression of ADAM17 in cancers
	ADAM17 in lung cancer
	ADAM17 in ovarian cancer
	ADAM17 in breast cancer
	ADAM17 in gastric cancer
	ADAM17 in other cancers

	Regulation of macrophages by ADAM17
	Regulation of NK cells by ADAM17
	Regulation of endothelial cells by ADAM17

	ADAM17 inhibitors
	Hydroxamate-based small-molecule inhibitors
	Non-hydroxamate-based small-molecule inhibitors
	Anti-ADAM17 monoclonal antibodies

	Discussion
	Author contributions
	Funding
	Acknowledgments
	References

	Integrated analysis of multiple microarray studies to establish differential diagnostic models of Crohn’s disease and ulcerative colitis based on a metalloproteinase-associated module
	Introduction
	Materials and methods
	Search strategy for microarray datasets
	Robust rank aggregation analysis and identification of differentially expressed genes in the integrated cohort
	Identification of DEGs by merging and intersection
	Functional and pathway enrichment analyses
	Establishment of a PPI network and MCODE analysis
	Establishment of model_1 via LASSO logistic regression
	Establishment of model_2 via LASSO logistic regression
	Evaluation of the differential diagnostic models
	Evaluation of immunohistochemical staining
	Landscape of immune cell infiltration
	Single-cell sequencing analysis
	Statistical analysis

	Results
	Characteristics of the included microarray datasets
	Identification of DEGs by an RRA analysis and functional enrichment analysis
	Identification of DEGs by merging and intersection and a functional enrichment analysis
	MMP-associated module is the most important network module in both PPI networks
	Establishment of model_1 based on the MMP-associated module via a LASSO logistic regression
	Establishment of model_2 based on the MMP family module via a LASSO logistic regression
	Verification of the effectiveness of model_1 and model_2 in a new IBD cohort
	Verification of MMP-associated genes in different IBD cohorts
	Validation of the expression levels of MMP-associated genes in clinical samples
	Analysis of the correlation between MMP-associated gene levels and the levels of infiltrating immune cells
	Investigation of MMP-associated genes in CD and UC via single-cell sequencing

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Role of metalloproteases in the CD95 signaling pathways
	Introduction
	CD95 and CD95L
	Cloning
	CD95L and CD95 structures

	Extracellular matrix and metalloproteases
	MMPs, ADAMs and CD95L regulation
	Metalloproteases and CD95L
	MMPs and cancer
	CD95L, metalloproteases and cancer

	Targeting CD95/CD95L in clinic, what next?
	Author contributions
	Funding
	References

	Immunomodulatory role of metalloproteases in cancers: Current progress and future trends
	1 Introduction
	2 The structure, expression and role of MPs in cancer
	2.1 Matrix metalloproteinases
	2.2 A disintegrin and metalloproteases
	2.3 ADAMs with thrombospondin motifs

	3 The relationship between metalloproteases and immunomodulation in cancers
	3.1 Signal pathway involving MPs related to immunity in cancer cells
	3.1.1 Tumor necrosis factor signaling
	3.1.2 Transforming growth factor–β signaling
	3.1.3 Notch signaling pathway

	3.2 Tumor microenvironment regulation by MPs
	3.2.1 The influence of MPs on the ECM
	3.2.2 The relationship between MPs and immune cells
	3.2.2.1 T cells
	3.2.2.2 B cells
	3.2.2.3 NK cells
	3.2.2.4 Macrophages
	3.2.2.5 Mast cells
	3.2.2.6 Dendritic cells

	3.2.3 Immunomodulatory substances associated with MPs
	3.2.4 Relationship between metalloproteinases and angiogenesis


	4 Recent advances and future trends in application targeting MPs in tumors diagnosis and immunotherapy
	4.1 The crucial role of metalloproteinases in cancers diagnosis
	4.2 Metalloproteinases inhibitors can be a potential partner for combination therapy in cancer immunotherapy
	4.2.1 The mechanism of MPs as an immunomodulator
	4.2.2 Traditional and vanguard immunomodulatory drugs
	4.2.2.1 Monoclonal antibodies
	4.2.2.2 Others


	4.3 Current challenge of targeting MPs in the clinical applications

	5 Conclusion and perspective
	Author contributions
	Funding
	References

	Role for the metalloproteinase ADAM28 in the control of airway inflammation, remodelling and responsiveness in asthma
	Background
	Materials and methods
	Sensitization followed by allergen sensibilisation
	Assessment of airway responsiveness
	Measurement of airway remodelling and airway inflammation
	Lung fibroblasts: Culture, proliferation test and RNA analyse
	Native lung fibroblasts cultured in bronchoalveolar lavage conditioned medium
	Tissue processing: RNA extraction and analyses
	Flow cytometry
	Statistical analyses

	Results
	ADAM28 expression in lungs of OVA-exposed animals
	Effects of ADAM28 depletion on allergen-induced inflammation in lungs in long-term asthma model
	Measurement of lung function and airway responsiveness to methacholine after a LT allergen exposure
	Allergen-exposed ADAM28-/- mice display significantly less features of airway remodelling in LT asthma model
	Lung fibroblasts express ADAM28 mRNA and their proliferation rate is lower after OVA exposure when they originate from ADAM28-/-
	Bronchoalveolar lavage from OVA-exposed ADAM28-/- fail to stimulate fibroblast proliferation

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	The emerging role of TET enzymes in the immune microenvironment at the maternal-fetal interface during decidualization and early pregnancy
	Introduction
	Common features of TET proteins
	Structural similarities
	Functions in DNA demethylation and decidualization and early pregnancy

	Additional biological roles of TET enzymes in decidual immune tolerance
	Decidual immune microenvironment and DNA methylation levels
	Roles of TET enzymes in immune cell development and function
	T cells
	B cells
	Myeloidcell
	NK cells
	Macrophages

	Conclusions and future perspectives
	Author contributions
	Funding
	References

	The role of intestinal immune cells and matrix metalloproteinases in inflammatory bowel disease
	1 Introduction
	2 Materials and methods
	2.1 Data sources and processing
	2.2 Analysis of differentially expressed genes
	2.3 Gene set enrichment analysis
	2.4 Candidate diagnostic biomarker screening
	2.5 Discovery of immune cell subtypes
	2.6 Correlation analysis between identified genes and infiltrating immune cells
	2.7 Construction of the mouse model of chronic colitis and experimental design
	2.8 HE staining and histological evaluation of colonic damage
	2.9 Immunofluorescence
	2.10 Flow cytometry
	2.11 Western blotting

	3 Results
	3.1 Identification of DEGs in IBD
	3.2 Functional correlation analysis
	3.3 Identification and validation of diagnostic feature biomarkers
	3.4 Immune cell infiltration
	3.5 Correlation analysis between the five biomarkers and infiltrating immune cells
	3.6 Chronic colitis model evaluation and histological identification
	3.7 Expression of immune cells in the spleen
	3.8 Validation of inflammatory factors and MMPs associated with IBD

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	The immunomodulatory role of matrix metalloproteinases in colitis-associated cancer
	1 Introduction
	1.1 Classification and structural characteristics of matrix metalloproteinases
	1.2 Regulation of MMPs at multiple levels
	1.3 Immunological function of MMPs

	2 MMPs in pathological processes
	2.1 Multifaceted role of MMPs in biological and pathological processes
	2.2 Relationship between MMPs and immune-related diseases
	2.3 Relationship between MMPs and inflammatory diseases

	3 Key MMPs in CAC and their immunomodulatory aspects
	3.1 Important role of MMPs in colitis
	3.2 Key MMPs in CAC
	3.3 Mechanisms underlying of typical MMPs in CAC
	3.4 Potential clinical applications of MMP inhibitors

	4 Conclusion
	Author contributions
	Funding
	Supplementary material
	References

	Targeting matrix metalloproteases in diabetic wound healing
	1 Introduction
	2 MMPs in diabetic ulcer
	2.1 Stem cells and MMPs
	2.2 Inflammation-associated signals pathways and MMPs
	2.3 Oxidative stress-associated signals and MMPs
	2.4 Apoptosis-related signals and MMPs
	2.5 Non-coding RNAs and MMPs
	2.6 FOXO-1 and MMPs
	2.7 uPA/uPAR and MMPs
	2.8 DNA methylation and MMPs
	2.9 Endogenous substance and MMPs

	3 Clinical research studies of MMPs in regulating diabetic ulcer
	4 Regulation of MMPs in diabetic ulcer by natural products
	4.1 Flavonoids
	4.2 Steroids and terpenoids
	4.3 Polysaccharide and glucoside
	4.4 Other compounds

	5 Conclusions and future directions
	Author contributions
	Funding
	References
	Glossary

	Anti-cyclooxygenase, anti-glycation, and anti-skin aging effect of Dendrobium officinale flowers’ aqueous extract and its phytochemical validation in aging
	1 Introduction
	2 Materials and methods
	2.1 Plant material, solvents, and chemicals
	2.2 Extraction procedure
	2.3 Antioxidant capacity (DPPH&middot;, ABTS&middot;+, and FRAP assays)
	2.4 Cellular antioxidant activity assay
	2.4.1 Cell culture and UVB treatment
	2.4.2 Cell viability assay and measurement of ROS generation

	2.5 Anti-COX-2 assay
	2.6 Anti-glycation capacity
	2.6.1 Fluorescent AGEs formation in a BSA-fructose/glucose system
	2.6.2 Glycation cell assay

	2.7 Anti-aging assay on HDFs
	2.7.1 Cell culture
	2.7.2 Quantification of collagen types I and III using immunofluorescence
	2.7.3 SA-β-gal staining assay

	2.8 UPLC-PDA-QTOF-ESI-MS/MS analysis
	2.9 Antioxidant online profiling using UPLC-PDA-QDa coupled with postcolumn derivatisation with ABTS
	2.10 Statistical analysis

	3 Results
	3.1 In vitro antioxidant potency of DOF extracts
	3.2 Anti-COX-2 capacity of DOF extracts
	3.3 Anti-glycation activity of DOF-W
	3.3.1 Inhibition of DOF-W on total fluorescent AGEs of non-enzymatic glycation
	3.3.2 Anti-glycation effect of DOF-W in human primary fibroblasts

	3.4 Effect of DOF extracts on collagen synthesis in human skin fibroblast cells
	3.5 SA-β-Gal staining assay on DOF-W
	3.6 Determination of phytochemicals using UPLC-Q/TOF-MS/MS
	3.7 Determination of antioxidants by the online UPLC-PDA-MS-ABTS&middot;+ scavenging
	3.8 In vitro pro-health potency of specific compounds from DOF extracts

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




