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Editorial on the Research Topic

Establishment of marker models for molecular typing of renal
cell carcinoma

According to the latest cancer statistics report, renal cell carcinoma (RCC) accounts for
more than 400,000 new cancer cases and causes approximately 179,000 deaths worldwide
(1, 2). Clear cell renal cell carcinoma (ccRCC) comprises approximately 75-80% of all cases
of RCC, with the remaining percentage being represented by several subtypes of nonclear
cell carcinoma (3). While curative treatment may be possible for patients with localized
disease, others may present with metastatic or locally advanced disease. In some cases,
patients with aggressive tumor biology may experience recurrence despite surgical
resection. Given the variability in patient outcomes, accurate risk stratification is
essential to identify patients who might benefit from more intensive initial treatment,
closer monitoring, or adjuvant therapies. The advent of sophisticated multiomics
techniques such as whole genome sequencing, combined with innovative bioinformatic
tools, has enabled researchers to delve deep into tumor etiology and stratify patients based
on characteristics associated with clinical outcomes. Based on the above concerns, there is
an urgent need to identify novel biomarkers and risk models.

In this Research Topic, an overview of novel biomarkers and molecular subtyping of
RCC is performed through 1 review and 15 original research papers by 119 authors, and
these works facilitate our better understanding of cancer progression and heterogeneity to
therapy response among RCC patients (Wang et al., Zheng et al., Pan et al. Lin et al.,, Zhang
etal. Lin etal, Tao etal., Yuetal., Chen et al,, Xia et al. Zhang et al., Chang et al., Teng et al.,
Zeng et al,, Ding et al.).

Risk models based on transcriptome signatures could be better applied in clinical
practice because of interpretability and accessibility. Wang et al. performed a
comprehensive in silico combined with in-house validation analysis and divided ccRCC
patients into CIN25-C1 and C2 subtypes based on 25 genes related to chromosomal
instability. Patients with CIN25-C2 had a poor prognosis and increased proliferation, EMT,
stemness and telomerase activity but were sensitive to sunitinib. There is great promise for
the routine clinical application of CIN25-based ccRCC classification, as polymerase chain
reaction (PCR) quantification appears to be sufficient. Lin et al. developed a reliable risk
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system based on ferroptosis and oxidative stress-associated genes
and compared the differences at various levels, including clinical
parameters, the immune microenvironment, and therapy
resistance. They found that ccRCC patients with high risk scores
had higher TMB levels and CD8" T-cell infiltration degrees and
preferable responsiveness to ICI therapy. Notably, a study from Pan
et al. utilized the interferon regulatory family to construct a novel
risk classifier for ccRCC with the application of a nonnegative
matrix factorization algorithm, and they also applied the least
absolute shrinkage and selection operator to develop a risk system
to guide better risk stratification, which reached a superior
performance than classical clinical parameters and the
ClearCode34 model.

Accumulating evidence suggests that metabolic
reprogramming, especially in fatty acid metabolism, is
significantly correlated with tumorigenesis and progression in
RCC. Ding et al. constructed an optimal nomogram consisting of
the risk score of fatty acid metabolism-related genes and verified ten
signatures involved in overall survival by immunohistochemical
analyses, which also participated in uncontrolled pain in advanced
RCC patients. Neutrophils are a type of abundant inflammatory cell
present in the tumor microenvironment and could activate cancer
cells and releasing modified DNA structures coated with
cytoplasmic and granular proteins. A study from Teng et al.
utilized neutrophil extracellular trap-related signatures to carry
out a remodelling analysis and divided ccRCC patients into three
distinctive subtypes with various activated states of metabolism and
immune infiltration degrees, and four promising diagnostic genes,
including SLC27A2, SLC16A12, MAP7 and SLC3A1, were verified
through RT-PCR.

Mitogen-activated protein kinase (MAPK) signaling is one of
the most extensively studied pathways in tumor research. Zhang
et al. constructed a risk score consisting of 14 MAPK-related genes
using Lasso regression analysis and further proved that MAPK
activation is correlated with various malignant behaviors of tumor
cells, including but not limited to invasion, migration, apoptosis,
and extracellular matrix degradation. Recent studies have found
that the basement membrane, comprising fundamental
components, displays crucial biological functions in the body by
providing resistance against mechanical stress and determining
tissue morphology and cancer progression. Tao et al. established a
risk scoring system involving 16 basement membrane genes, which
were related to metabolic and tumor-related signaling cascades.
Studies have suggested the involvement of iron channels, especially
potassium channels, in the proliferation and migration of various
tumors by regulating T-cell function. Notably, Zeng et al.
constructed a promising prognostic signature involving hypoxia
and angiogenesis signatures based on potassium ion channel-
related genes for ccRCC and finally validated the differential
expression of four biomarkers related to potassium transport,
including ATPIA3, GNB3, GNB4 and NSF. The homeobox (HOX)
family, encoding a conserved family of transcription factors in
mammals, plays an indispensable role in organogenesis and
development. A study from Zheng et al. reported an eight HOX
gene-based risk model, and patients were divided into a lower risk
group with a fragile type II IFN response and para-inflammation
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scores. Noninvasive surveillance approaches, especially liquid
biopsy, are suitable for functioning as a repeatable and
personalized snapshot among patients with high clinical stage
scores. Zhang et al. carried out an integrative analysis consisting
of transcriptomic and proteomic profiles and finally developed a
risk score (containing VSIG4, TFGBI and P4HB) to predict the
long-term prognosis of ccRCC patients with venous
tumor thrombus.

Consistently, some promising diagnostic- and therapeutic-
related targets specific for ccRCC were also investigated. Aided by
systematic bioinformatic analysis and in vitro experiments, Xia et al.
proved that T-cell immunoglobulin and the ITIM domain, or
TIGIT, were highly expressed in tumor tissues and identified as
crucial prognostic determinants. TIGIT might promote Treg cell
infiltration, and patients with high expression of this signature
might benefit from sunitinib treatment. In addition, two potential
drugs (PD0325901 and selumetinib) targeting TIGIT were
identified and verified by molecular docking. Chang et al. proved
that the dysregulated expression level of one amino acid metabolism
regulator, L-dopa decarboxylase (DDC), could trigger higher
intratumoral heterogeneity and an immunosuppressive state in
ccRCC via PI3k/Akt signaling after analysing multiomics profiles
across four ccRCC datasets.

For advanced ccRCC patients, a second-line therapeutic
strategy of axitinib is suitable to prolong progression-free survival
after first-line therapies fail, while intra- and intertumoral
heterogeneity could vary the therapy response rate. Lin et al.
enrolled 44 advanced ccRCC patients and applied a combination
of Cox and Lasso algorithms to construct a predictive model to
predict the axitinib benefit rate. This model reached satisfactory
performance, since the area under the curve values of 3-, 6-, and 12-
month progression-free survival were 0.975, 0.909, and
0.911, respectively.

Genetic alterations, such as mutations and chromosomal copy
number variations (CNVs), have emerged as an initial step towards
genomiic stratification in RCC. Tai et al. collected 55 patients with
RCC across different regions in China with whole genome
sequences and summarized the results as follows: In patients with
ccRCC, the occurrence of mutations in VHL, PBRM1, BAPI1, and
SERD? reached 74%, 50%, 24%, and 18%, respectively. In contrast,
among patients with nonclear ccRCC, the most frequently observed
mutations were those in FH (29%), MLH3 (24%), ARID1A (18%),
KMT2D (18%), and CREBBP (18%). Previous genomic analysis of
clinical samples of ccRCC unveiled a high incidence of SETD2
mutations, which could expedite cancer progression through
epigenetic regulation. Yu et al. provided a comprehensive
summary of SETD2 in ¢ccRCC occurrence and progression, which
suggested that hypermutated SETD2 could be treated as a novel
therapeutic target.

Although there are numerous prognostic biomarkers found in
RCC that provide novel insights into diagnosis and therapy, their
accuracy and utility remain to be further investigated and verified.
The clinical utility and widespread application of specific risk
models or biomarkers is hindered by numerous challenges,
including resource limitations, complexity, the need for repeated
outhouse validation, and ideally, evaluation across different
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prospective clinical trials. Nonetheless, our understanding of the
biological mechanisms governing RCC initiation and progression
continues to progress alongside the advances of new platforms for
clinical application. In the future, it is possible that genomic or other
profiling of each patient’s tumor might facilitate personalized
medicine, enabling the administration of appropriate treatments
to the right patients at the optimal time.

Author contributions

LW and LZ supervised and conceived the topic. A] and LW
reviewed all articles on this Research Topic and wrote the original
manuscript. LQ reviewed the manuscript. All authors approved the
final version of this paper.

References

1. Xia C, Dong X, Li H, Cao M, Sun D, He §, et al. Cancer statistics in China and
united states, 2022: profiles, trends, and determinants. Chin Med J (2022) 135(5):584-
90. doi: 10.1097/CM9.0000000000002108

2. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA: Cancer ]
Clin (2022) 72(1):7-33. doi: 10.3322/caac.21708

Frontiers in Oncology

10.3389/fonc.2023.1236980

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

3. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 WHO
classification of tumours of the urinary system and Male genital organs-part a: renal,
penile, and testicular tumours. Eur Urology (2016) 70(1):93-105. doi: 10.1016/

j.eururo.2016.02.029

frontiersin.org


https://doi.org/10.1097/CM9.0000000000002108
https://doi.org/10.3322/caac.21708
https://doi.org/10.1016/j.eururo.2016.02.029
https://doi.org/10.1016/j.eururo.2016.02.029
https://doi.org/10.3389/fonc.2023.1236980
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

& frontiers | Frontiers in Oncology

‘ @ Check for updates

OPEN ACCESS

EDITED BY
tukasz Zapata,
Medical University of Warsaw, Poland

REVIEWED BY
Yibing Guan,

The Second Affiliated Hospital of Xi'an
Jiaotong University, China,

Pawet Rajwa,

Medical University of Silesia, Poland
Aleksander élusarczyk,

Medical University of Warsaw, Poland

*CORRESPONDENCE
Jing-hui Guo
guojh@jnu.edu.cn

Jun Huang
tzhuoyumin@163.com

These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Genitourinary Oncology,

a section of the journal
Frontiers in Oncology

RECEIVED 06 August 2022
ACCEPTED 12 September 2022
PUBLISHED 28 September 2022

CITATION

Zeng R, Li Y, He D-m, Sun M-z,
Huang W-q, Wang Y-h, Zhuo Y-m,
Chen J-j, Chen T-h, Guo J-h and
Huang J (2022) Potassium channel-
related genes are a novel prognostic
signature for the tumor
microenvironment of renal clear
cell carcinoma.

Front. Oncol. 12:1013324.

doi: 10.3389/fonc.2022.1013324

COPYRIGHT

© 2022 Zeng, Li, He, Sun, Huang, Wang,
Zhuo, Chen, Chen, Guo and Huang.
This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Frontiers in Oncology

TvPE Original Research
PUBLISHED 28 September 2022
D01 10.3389/fonc.2022.1013324

Potassium channel-related
genes are a novel prognostic
signature for the tumor
microenvironment of renal
clear cell carcinoma

Rui Zeng", Yi Li*", Dong-ming He®, Meng-zhu Sun?,
Wen-qing Huang?®, Yu-hang Wang?, Yu-min Zhuo?,

Jun-jiang Chen?, Tai-heng Chen*, Jing-hui Guo™

and Jun Huang?®

iDepartment of Physiology, School of Medicine, Jinan University, Guangzhou, China, 2Department

of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China, *Department of
Transfusion Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, China

Clear cell renal cell carcinoma (ccRCC) accounts for 80% of renal cell
carcinomas (RCCs), and its morbidity and prognosis are unfavorable. Surgical
resection is the first-line treatment for ccRCC, but the oncogenesis of ccRCC is
very complex. With the development of high-throughput sequencing
technology, it is necessary to analyze the transcriptome to determine more
effective treatment methods. The tumor microenvironment (TME) is composed
of tumor cells, various immune-infiltrating cells, fibroblasts, many cytokines,
and catalysts. It is a complex system with a dynamic balance that plays an
essential role in tumor growth, invasion, and metastasis. Previous studies have
confirmed that potassium channels can affect the immune system, especially T
lymphocytes that require potassium channel activation. However, the effect of
potassium channels on the TME of ccRCC remains to be studied. Therefore,
this study aims to construct a prognostic signature for ccRCC patients based on
potassium ion channel-related genes (PCRGs), assess patient risk scores, and
divide patients into high- and low-risk groups based on the cutoff value. In
addition, we investigated whether there were differences in immune cell
infiltration, immune activator expression, somatic mutations, and
chemotherapeutic responses between the high- and low-risk groups. Our
results demonstrate that the PCRG signature can accurately assess patient
prognosis and the tumor microenvironment and predict chemotherapeutic
responses. In summary, the PCRG signature could serve as an auxiliary tool for
the precision treatment of ccRCC.

KEYWORDS

clear cell renal cell carcinoma (ccRCC), prognostic signature, potassium channel,
tumor microenvironment, immunotherapy
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Introduction

Renal cell carcinoma (RCC) is the most common malignant
tumor in the urinary system, and 80% of RCCs are the clear cell
renal cell carcinoma (ccRCC) pathological type. This percentage
is far more than the that for the mixed cell type, granulosa cell
type, and undifferentiated cell type (1). According to the World
Health Organization and the International Society of Urological
Pathology (WHO/ISUP) classification system (2), ccRCC can be
divided into four grades (grades I-IV). Even the first-line
treatment of ccRCC is surgery (3), however, nearly one-third
of patients with ccRCC already have metastasis at the first
diagnosis, and the clinical curative effect is limited in patients
with metastasis, even when combined with chemotherapy and
immunotherapy. The first line of treatment for metastatic RCC
patients is immune checkpoint inhibitors (ICIs) in combination
with tyrosine kinase inhibitors (TKIs) (4); however, patients
with locally advanced or metastatic RCC have a poor prognosis.
Before metastasis, the overall survival rate for RCC is 74%, and
for patients with metastasis, the 5-year survival rate decreases to
8% (5). Thus, it is important to identify new biomarkers or
targets to increase the early diagnosis rate of ccRCC and enhance
the effect of early intervention treatment.

Recently, the tumor microenvironment (TME), which
includes tumor-infiltrating immune cells (TICs), has been
shown to play a decisive role at all stages of tumor progression
(6-8). ccRCC is a highly immune-infiltrated tumor, and the high
immune infiltration of ccRCC has been proven in multiple
studies (9). Immune cells play a key role in anticancer
immunity. By immunomonitoring, TICs could predict the
prognosis of ccRCC patients and enhance the effects of
targeted therapy treatments (10). Most of the immune
checkpoint genes are upregulated in c¢cRCC, and thus, they
indicate a tumor in an immune-hot (high immune infiltration
inside the tumor) condition. Compared with immune-cold (lack
of immune infiltrates) tumors, the higher levels of infiltrating
lymphocytes in the nidus could help eliminate tumor cells,
resulting in a better prognosis (11). By affecting the TME and
proliferation of immune cells, potassium channels are involved
in the tumorigenesis, proliferation, and migration of tumors
(12). As reported by Masi A (13), hERG1 voltage-dependent
potassium channels promote the secretion of vascular
endothelial growth factor from tumor cells, especially in high-
grade gliomas. This stimulates neoangiogenesis and enhances
the progression of malignancy. Moreover, high expression of
TREK-1, a two-pore domain potassium channel, in prostate
cancer increases the proliferation of tumors, and the
overexpression of Kvl.l potassium channels promotes the
proliferation of breast cancer (14, 15).

Previous studies (16, 17) have proven that potassium
channels can affect the immune system. In particular, T
lymphocytes need potassium channels to activate to enhance
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the tumor. This leads to the avoidance of immune destruction or
the promotion of inflammation, which is associated with cancer
progression and prognosis. However, the effect of potassium
channels on the intratumoral immune microenvironment of
ccRCC remains to be investigated. Thus, this study was designed
to evaluate the correlation between potassium channels and the
TME of ccRCC.

Materials and methods
Public data acquisition and processing

In this study, transcriptome RNA sequencing (RNA-seq)
data of human ccRCC samples were downloaded via The Cancer
Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/). All the
RNA-seq data selected in our study were normalized by
fragments per kilobase million (FPKM). After removing
duplications and samples that were missing data, the KIRC
data set consisted of 29 normal samples and 394 cancer
samples and matched the clinical information of the selected
data. The RNA-seq data were combined into an expression
profile matrix by Perl (http://www.perl.org/). The
“org.hs.eg.db” package was used to convert the Ensembl ID
into a gene symbol. Our study used GeneCards (https://www.
genecards.org/) to obtain PCRGs.

Human renal clinical tissues and
RNA extraction

ccRCC tumor tissues and adjacent normal tissues were
collected from 12 patients who underwent radical
nephrectomy at The First Affiliated Hospital of Jinan
University, and RNA was extracted from those tissues. These
patients had WHO/ISUP grades I to IV. This study was
approved by the Ethics Committee of the First Affiliated
Hospital of Jinan University. Both patients and the control
individuals provided written informed consent.

The total RNA of tumor tissues and adjacent normal tissues
from all patients was extracted using the EZ-Press RNA
Purification Kit (EZbioscience, USA). cDNA was obtained by
reverse transcription using the PrimeScript RT Kit
(TaKaRa, Japan).

Identification of prognostic differentially
expressed PCRGs

The “limma” package was used to identify the differentially

expressed genes (DEGs) between c¢cRCC tumor and adjacent
normal tissues. Genes with an adjusted P< 0.05 and |[log2 fold
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change (FC)[>0 were defined as DEGs. Additionally, the
“survival” package was used to perform univariate Cox
regression, and the screening condition was P< 0.05 to identify
prognostic genes. Based on the above results, the PCRGs
obtained from GeneCards (https://www.genecards.org/) were
used to screen differentially expressed PCRGs and prognostic
PCRGs. The intersection of the two was used to identify
prognostic differentially expressed PCRGs. To explore the
correlations and interactions among these genes, the “igraph”
package was used to draw a correlation graph of the prognostic
differentially expressed PCRGs. The protein—protein interaction
(PPI) network of these genes was constructed and clustered
through STRING (https://string-db.org/).

Construction and evaluation of the
PCRG signature

The TCGA-KIRC cohort was divided into a training cohort
(n=275) and a validation cohort (n=117). Due to the large number
of PCRGs, our study used least absolute shrinkage and selection
operator (LASSO) regression to identify PCRGs that significantly
impacted survival in the training set and calculated their regression
coefficients. The PCRG signature was used to calculate the risk score
of each patient, and the PCRG expression value of each patient was
multiplied by the corresponding coefficient of the gene for
weighting. Then, the weighted expression values of the 10 PCRGs
were added to finally obtain the risk score of the patient, which was
calculated as follows:

Risk score=

> Exp;+Coef;
=1

where n is the number of genes in the PCRG signature, i.e.,
n=10, Exp; the expression value of the ith gene of the patient,
and Coef; is the coefficient of the gene in the PCRG signature.

The patients were classified into high-risk and low-risk
groups according to the median risk score, and then time-
dependent receiver operating characteristic (ROC) analysis was
used to verify the prediction accuracy of the signature.
Multivariate Cox regression was used to verify whether the
risk score obtained by the signature was an independent
prognostic factor, and Kaplan-Meier survival analysis was
performed to detect whether there was a significant difference
in survival between the high- and low-risk groups. A heatmap
was used to show the expression of the 10 PCRGs that
constituted this signature in ccRCC. Principal component
analysis (PCA) was used for dimension reduction, and the
expression pattern of PCRGs in high- and low-risk patients
was studied. Furthermore, one-way ANOVA was used to
analyze whether the risk scores of grade, stage, T stage, and M
stage at different levels were different.
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Construction and evaluation of
the nomogram

A nomogram was constructed based on sex, age, stage, T
stage, M stage, and the risk score to predict ccRCC patient
overall survival (OS) at 1, 3, and 5 years. The concordance
index (C-index), calibration curve and decision curve analysis
(DCA) were used to evaluate the predictive accuracy of
the nomogram.

Functional enrichment analysis and gene
set enrichment analysis

After classifying the samples of the TCGA-KIRC cohort into
high-risk and low-risk groups according to the median risk
score, the “limma” package was used to search for DEGs. The
screening conditions were P< 0.05 and [log2FC|>0. These DEGs
were used for Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) functional enrichment analyses. In
addition, gene set enrichment analysis (GSEA) was used to
uncover which biological functions the DEGs showed
statistically significant and consistent differences in.

Estimation of the TME

The “Cibersort” package was used to analyze the abundance
ratios of 22 types of immune cells in the TCGA c¢cRCC cohort
and determine whether the PCRG signature could distinguish
different immune cell infiltrations. The “survival” and
“survminer” packages were used to analyze the relationships
between immune activators and the PCRG signature and the
effect of the expression of immune activators on the survival of
patients in the high- and low-risk groups.

Gene mutation analysis

The “maftools” package was used to analyze the tumor
mutation burden (TMB) based on somatic mutation data from
TCGA. We calculated the TMB for each patient and compared
the TMB between the high-risk and low-risk groups.

Prediction of sensitivity to chemotherapy

Based on the Genomics of Drug Sensitivity in Cancer
(GDSC) database, we used the “pRRophetic” package to
calculate the half-maximal inhibitory concentration (IC50) for
different chemotherapy drugs between the high-risk and low-
risk groups.
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Real-time quantitative PCR

Based on the SYBR Green (ChamQ Universal SYBR qPCR
Master Mix, Vazyme Biotech, China)method, the CFX96 real-
time PCR system (Bio-Rad, USA) was used for RT-qPCR
detection. After the expression level of GAPDH was used for
normalization, the relative expression level of mRNA was
determined. The mRNA-specific primer sequences are shown
in Table 1.

Statistical analysis

Statistical analyses were conducted using R 4.1.1 and
GraphPad Prism 8 (GraphPad Software, Inc.). All data are
expressed as the mean + SD. A paired difference test between
ccRCC samples and adjacent normal samples in the two groups
by the “limma” package was used to determine the DEGs.
Analysis with one-way ANOVA followed by the Student-
Newman-Keuls multiple comparison test was used for the
comparison of three or more experimental groups. For qPCR
data, Student’s t test was used for analysis.

Results

Identification of differentially expressed
prognostic PCRGs in the TCGA
ccRCC cohort

Among 118 PCRGs, 73 were differentially expressed. Of
these, 44 were upregulated, and 29 were downregulated in tumor
tissues (Figure 1A). Seventy-three prognosis-related PCRGs
were obtained by univariate Cox regression, and the screening
threshold was p< 0.05 (Figure 1B). The intersection of
differentially expressed PCRGs and prognosis-related PCRGs
was used to obtain 25 differentially expressed PCRGs

TABLE 1 mRNA-specific primer sequences.

Gene Primer sequence Tm
ATPIA3 F: GCAGTGTTTCAGGCTAACCAGG 58.9
R: CTCCTTCACGGAACCACAGCA 60.2
GNB3 F: CGTTTGGCCCTGTGACTAT 55.0
R: TACCAGGGTGCTACACTTTA 52.3
GNB4 F: TCCTATCCAAAGGCATCCACA 54.0
R: TGTTCAGTTGACCACGAGTGT 56.0
NSF F: GIGTCACATTGCCCCTCTG 56.6
R: TCTGGTCTATTGGTCATTCCTG 53.7
GAPDH F: ACAGTTGCCATGTAGACC 54
R: TITTTGGTTGAGCACAGG 52
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(Figure 1C). The heatmap illustrates the different expression
patterns of these PCRGs in ccRCC and normal tissues
(Figure 1D). We examined the correlation between 25
differentially expressed PCRGs in the TCGA-KIRC cohort.
Red dots represent a positive correlation, and blue dots
represent a negative correlation (Figure 1E). Our study
mapped the correlations among the 25 PCRGs and
constructed the PPI network of these genes through the
STRING database. The results showed that the 25 PCRGs
could form 3 clusters (Figure 1F).

Construction and validation of the
PCRG signature

Compared with A;sg, Amin has higher accuracy. Hence, Apin
was selected to build the model for accuracy in our study. The
LASSO algorithm was used to determine Log(Ami,) = -3.8
(Figure 2A), and the PCRG prognostic signature consisting of
10 genes (Figure 2B) was established. The specific gene
composition and coefficient of each gene are shown in Table 2.
The PCRG prognostic signature was used to calculate the
patients’ risk scores and divide them into high-risk and low-
risk groups (Figure 2C). The risk score calculated by the
signature can separate surviving patients from nonsurviving
patients (Figure 2D). In addition, the heatmap shows the
expression patterns of the 10 genes that make up the PCRG
prognostic signature between the high-risk and low-risk
groups (Figure 2E).

The signature was significantly correlated with survival in
the training cohort (Figure 3A) and validation cohort
(Figure 3B). Nine of the 10 genes that constituted the
prognostic signature were significantly associated with the
Kaplan—Meier survival curve (Figures 3C-L). PCA showed
that the risk score could categorize patients with different
risk scores into two groups (Figure 4A). ROC curve analysis
was used to illustrate the accuracy of this signature. The 1-year,
3-year, and 5-year area under the curve (AUC) values of the
risk score were 0.628, 0.702, and 0.768, respectively.
Interestingly, the 1-year, 3-year, and 5-year AUC values
increased gradually, suggesting that the PCRG signature has
an excellent ability to predict long-term prognosis (Figure 4B).
The forest map shows that the hazard ratio (HR) of the risk
score and 95% confidence interval (CI) were 3.333 (2.391
—4.647), p<0.001, in univariate Cox regression (Figure 4C)
and 2.680 (1.830-3.925), p<0.001, in multivariate Cox
regression (Figure 4D). Moreover, with the increase in T
stage (Figure 4E), M stage (Figure 4F), and stage (Figure 4G),
the risk score also increased. These findings suggest that the
higher the malignancy degree of ccRCC was, the higher the
risk score.
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Prognostic genes

Identification of 25 prognosis-associated differentially expressed PCRGs. (A) Volcano plot of DEGs between ccRCC and normal tissues.
(B) Univariate Cox analysis of 25 differentially expressed PCRGs in ccRCC. (C) Venn diagram showing the intersection of the DEGs and
prognostic genes. (D) Heatmap illustrating the differential expression of 25 prognosis-associated PCRGs between ccRCC tissues and normal
tissues. (E) Correlation between 25 differentially expressed PCRGs in the TCGA-KIRC cohort. Red represents a positive correlation, and blue

represents a negative correlation. (F) PPl network of 25 PCRGs.

Construction and evaluation of
the nomogram

To further evaluate the predictive ability of the PCRG
signature, we constructed a prognostic nomogram for ccRCC
based on the different weights of the risk score, stage, T stage, M
stage, sex, and age (Figure 5A). Our study evaluated the
consistency between nomogram-predicted survival and actual
survival using the C-index, and the C-index of the nomogram
was 0.76. The calibration curves (Figures 5B-D) of the
nomogram showed that the OS predicted by the nomogram
was in good agreement with the actual OS. The DCA curves
indicated that the nomogram provided a better net
benefit (Figure 5E).

Functional annotation analysis of the
PCRG signature

To further explore the underlying biological mechanisms
involved in the association between the PCRG signature and
ccRCC, GO and KEGG were used to annotate the 84 DEGs
between the high-risk and low-risk groups. According to GO
enrichment analysis (Figures 6A, B), the DEGs are mainly
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involved in the “positive regulation of T-helper 1 type immune
response”, “positive regulation of T-helper cell differentiation”,
“positive regulation of neutrophil migration”, “positive regulation
of CD4 -, Alpha-beta T-cell differentiation”, “T-cell activation
involved in the immune response” and other immune-related
pathways. The KEGG pathways (Figures 6C, D) were mainly
related to metabolism, gap junctions, tumor-related signaling
pathways, and other biological processes closely related to
tumorigenesis and development. In addition, GSEA of the high-
risk and low-risk groups showed that the high-risk group was
positively correlated with hypoxia (NES=1.67, FDR=0.04),
angiogenesis (NES=1.65, FDR=0.04), and vasculogenesis
(NES=1.93, FDR=0). In contrast, the low-risk group was positively
correlated with NK-cell activation (NES=-1.84, FDR=0.03) and
germinal center formation (NES=1.72, FDR=0.04) (Figures 6E-I).

Association between immune cell
infiltration and TMB and the risk score
in ccRCC

To further verify the results of functional enrichment
analysis and GSEA, the present study compared the
infiltration of immune cells in the high- and low-risk
groups (Figure 7A). Most of the immune cells were more
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FIGURE 2

Construction of the PCRG prognostic signature. (A) Selection of the optimal parameter (A) of LASSO regression through cross-validation.

(B) LASSO coefficient profiles of the 10 genes that comprise the prognostic signature selected by A. (C) The TCGA-KIRC cohort was divided into
high-risk and low-risk groups according to the median risk score value. (D) Higher mortality was observed in the high-risk group than in the
low-risk group. (E) Heatmap of the expression levels of 10 PCRGs in the high-risk and low-risk groups.

TABLE 2 Genes and their coefficients that constitute the PCRG
signature.

Gene Coefficient
ATPIA3 1.20856795
GNB3 0.192896088
SLC24A3 0.165657175
DPP6 0.141493127
STK39 0.087752983
STXIA -0.0357362
KCNA7 -0.126888902
KCNH5 -0.33762536
NSF -0.437328756
GNB4 -0.977379864

Genes in bold font we performed qPCR validation, and the remaining genes were not.
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infiltrated in the low-risk group than in the high-risk group,
especially memory B cells, NK cells and T helper cells, as
mentioned in the above results (Figure 7B). These findings
suggest that the risk score may be related to the formation of
tertiary lymphatic structures (TLSs) in ccRCC. In addition,
our study explored the relationship between the risk score
and the immune activators TNFAIP1, MHC II and KIR2DS4.
The results showed that the lower the risk score was, the
higher the expression of these immune activators
(Figures 7C-E). After combining these results with the
PCRG signature, the prognosis of the high-risk + low
immune activator group was significantly worse than that of
the low-risk + high immune activator group (Figures 7F-H).
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FIGURE 3

Kaplan—Meier survival curves of the high-risk and low-risk groups. The overall survival of the high-risk group was significantly lower than that of the
low-risk group in the (A) training cohort and (B) validation cohort. The effect of each gene (C—L) expression value on OS in the prognostic signature.

Association between TMB and the risk
score in ccRCC

We further analyzed the relationship between TMB and the
risk score in ccRCC. The somatic mutation results showed that
most genomic variants were missense mutations. The rest were
frameshift deletion mutations, nonsense mutations, and
frameshift insertion mutations, and C>T was the most
common SNV type in both the high- and low-risk groups
(Figure 8A). From an overall perspective, the samples in the
low-risk group had a significantly larger number of variants than
those in the high-risk groups (Figure 8B). The top 10 most
frequently mutated genes in the corresponding groups are
illustrated in Figure 8C. VHL, PBRM]I, and TTN occupied the
top three positions in both groups.

Prediction of chemotherapeutic
drug responses

We used the “pRRophetic” package to predict the
chemotherapeutic response to commonly used chemotherapy
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agents in the high- and low-risk groups based on drug sensitivity
data from GDSC. The results showed that there was no
difference in response between the two groups for sorafenib.
The low-risk group demonstrated a higher response to sunitinib
(p<0.001), gefitinib (p<0.001), and temsirolimus (p=0.0097) than
the high-risk group. The response to axitinib (p=0.045) and
pazopanib (p=0.044) was higher in the high-risk group than in
the low-risk group (Figures 9A-F).

The expression of key genes in the PCRG
signature in ccRCC

To verify the authenticity of the PCRG signature, we
collected tumor and normal tissues from 12 ccRCC patients in
this study. RNA was extracted for RT-qPCR to verify the PCRG
signature. The gene with the most significant coefficient made
the most decisive contribution to the risk score. ATPIA3 and
GNB3 had the largest positive coefficients in the signature, and
GNB4 and NSF had the largest negative coefficients. Therefore,
ATPIA3, GNB3, GNB4, and NSF were identified as key genes in
the signature and further analyzed. The expression of ATP1A3
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Evaluation of the PCRG prognostic signature. (A) The low-risk and high-risk groups can be separated into two parts using PCA. (B) Time-
dependent ROC curves for the risk score for predicting 1-, 3-, and 5-year survival in the TCGA-KIRC cohort. (C) Univariate Cox and
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(E) T stage, (F) M stage, and (G) stage.

(Figure 10A) and GNB3 (Figure 10B) in tumor tissues was
significantly higher than that in normal tissues.

In comparison, the expression of GNB4 (Figure 10C) and NSF
(Figure 10D) in tumor tissues was significantly lower than that in
normal tissues, suggesting that these key genes play an essential role
in the occurrence and development of ccRCC. The results of RT-
qPCR confirmed the database analysis conclusion. In addition, we
used the Human Protein Atlas (HPA) online database (https://
www.proteinatlas.org/) to detect the protein expression of key
genes. The immunohistochemical results of ATPIA3, GNB4, and
NSF were consistent with the RT-qPCR results (Figures 10E-L).

Conclusions

With the rapid development of high-throughput sequencing
technologies, we can better understand the cancer biology of
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ccRCC. In this study, we constructed a novel prognostic
signature composed of PCRGs. The PCRG signature could
accurately classify patients in the training and validation
cohorts into high- and low-risk groups. Our results
demonstrate that the PCRG signature has high specificity and
sensitivity and can supplement clinicopathological parameters
for prognosis evaluation and treatment guidance for patients.
We analyzed the TME landscapes of the high- and low-risk
groups. The results showed that the low-risk group had higher
proportions of immune cell infiltration and somatic mutations
and a better response to chemotherapy. These findings suggest
that patients in the low-risk group were more likely to benefit
from immunotherapy and chemotherapy, indicating that the
PCRG signature has better performance than other prognostic
signatures. In addition, by combining the PCRG signature with
clinical parameters such as age, T stage, and M stage, we
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Construction of a prognostic nomogram including the risk score for ccRCC. (A) A nomogram for predicting the 1-, 3- and 5-year overall survival
of individual ccRCC patients. The calibration curve for predicting the 1-year (B), 3-year (C), and 5-year (D) overall survival of ccRCC patients.
The better the red line and the 45° dashed line fit, the better uniformity between the nomogram-predicted and actual probabilities. (E) DCA

curves of the nomogram and risk score.

constructed a nomogram to provide clinicians with a robust and
straightforward method for the personalized evaluation of
ccRCC patients. Finally, we found that the mRNA expression
of the four key genes in the PCRG signature in clinical samples
was consistent with their coefficients.

Discussion

In this study, we established a prognostic signature
consisting of potassium channel-related genes (PCRGs) to
predict the prognosis of patients with clear cell renal cell
carcinoma (ccRCC) by bioinformatics methods. The risk score
calculated by the PCRG signature was strongly associated with
the prognosis of patients with ccRCC, especially for long-term
prediction. In short, the PCRG signature we propose here may
be a complementary method for assessing the prognosis of
patients with ccRCC.
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As a fatal malignant tumor, ¢cRCC is a common
pathological type of renal cell carcinoma (RCC) that accounts
for approximately 80% of all RCCs. Due to its high degree of
drug resistance and 20-40% recurrence rate after surgical
resection, the prognosis of these patients is poor, and the
quality of human life is seriously affected (18-20). Therefore, it
is of great significance to find new biomarkers or targets for the
early diagnosis and intervention of ccRCC. It has been reported
that potassium channels are involved in the proliferation and
migration of ccRCC. For example, overexpression of the
potassium inward rectifier channel KCNJI can inhibit the
proliferation and migration of ccRCC and lead to apoptosis.
Its low expression is related to the poor prognosis of ccRCC (21).
Another study reported that the Ca*'-activated potassium
channel KCa3.1 is highly expressed in ccRCC and promotes
ccRCC metastasis, which is associated with worse survival (22).
Previous studies have shown that potassium channels, such as
voltage-gated Kv1.3 and the Ca2"-activated potassium channel
IKCal, are crucial for the activation and proliferation of T
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risk and low-risk groups.

lymphocytes (23, 24) and can be used as drug targets to regulate
the function of the immune system (25). According to this
research, Kv1.3 is highly expressed in the perivenular and
parenchymal inflammatory infiltrates of multiple sclerosis
(MS) brain tissue on T cells from the cerebrospinal fluid (26).
Moreover, the use of Kv1.3 inhibitors can specifically and
permanently block the proliferation and function of CD4+ T
cells (27, 28). Furthermore, the activation of Kvl1.3 on T
lymphocytes can enhance the NLRP3 inflammasome and
increase the secretion of IL-1f, which strengthens the T-cell-
mediated inflammatory response (29).

Recently, the tumor microenvironment (TME), which
includes tumor-infiltrating immune cells (TICs), was shown to
play a decisive role at all stages of tumor progression. The high
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level of immune infiltration of ccRCC has been proven in many
types of studies. Therefore, potassium channels are likely to
affect the tumor and immune system, which could affect the
modeling the TME. Ultimately, this could lead to the occurrence
and development of ccRCC. How potassium channels directly
lead to cancer remains unclear, and only a few studies have been
carried out on the correlation between PCRGs and the
development of ccRCC (21, 22).

Our study first proposed a prognostic signature consisting
of 10 PCRGs that could predict the prognosis of patients with
ccRCC, especially for long-term prediction. The low-risk group
calculated by the PCRG signature had a better prognosis and
overall survival (OS) than the high-risk group. We analyzed the
differentially expressed genes (DEGs) between the high-risk
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and low-risk groups predicted by the PCRG signature through
GO enrichment analysis. The results showed that those genes
were mainly concentrated in T lymphocyte activation and
regulation, which is consistent with the previously reported
literature that suggest that potassium channels could regulate T
lymphocytes. Additionally, KEGG pathway analysis showed
that the DEGs were mainly related to tumor-related signaling
pathways and tumorigenesis. This result also supports the
participation of potassium channels in the development of
ccRCC. GSEA showed that the low-risk group was positively
correlated with follicular helper CD4 T cells (TFHs) and
germinal centers (GCs).

In contrast, the high-risk group was positively related to
hypoxia, angiogenesis, vasculogenesis, and glycolysis. In
addition, we compared the infiltration of immune cells in
ccRCC tumor tissues and normal tissues. We found more
infiltration of immune cells, especially memory B cells, NK
cells, and T helper cells, in normal tissues than in ccRCC
tissues. These results suggest that tertiary lymphoid structure
(TLS) formation may be underway.
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TLS is a lymphocyte aggregate located in nonlymphoid
tissue (30). TLSs do not exist under physiological conditions
but occur as the result of infection, autoimmunity, chronic
inflammation, and even numerous cancers (30). They exhibit
all the characteristics of structures in the lymph nodes associated
with the generation of an adaptive immune response, including a
T-cell zone with mature dendritic cells (DC), a germinal center
with follicular DCs, proliferating B cells, and high endothelial
venules (HEV) (31). Previous studies have identified TLSs as a
tumor prognostic biomarker and therapeutic target that is
associated with improved survival (30, 32, 33). Our results
show that the numbers of TFH, GC, CD4+ T cells, and
memory B cells predicted by the PCRG signature were higher
in the low-risk group than in the high-risk group. These findings
indicate a better prognosis and higher OS in the low-risk group.
This indicates that PCRGs may affect TLS formation, including
GC, by regulating T lymphocytes, such as TFH, and ultimately
affect the occurrence and development of ccRCC.

Mutations in the genome of tumor cells may produce new
antigens with immunogenicity that can be recognized by T
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Tumor mutational burden associated with the risk score in ccRCC. (A) The overall landscape of somatic mutations. (B) TMB comparison
between the high-risk and low-risk groups. (C) Waterfall maps of the somatic mutations in the high-risk and low-risk groups.

lymphocytes (34). Tumor mutation burden (TMB) can reflect
the tumor gene mutation status. In short, the higher the TMB is,
the more tumor gene mutations are present. Thus, the possibility
of forming an immunogenic new antigen is greater, and the
possibility of patients benefiting from tumor immunotherapy is
greater (35). Therefore, we conducted a TMB prediction analysis
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on the high- and low-risk groups. The mean TMB scores of the
low-risk group were higher than those of the high-risk group.
These findings suggest that the low-risk group may be more
likely to benefit from tumor immunotherapy and to have a better
response to targeted drugs and chemotherapeutic drugs. This
was proven by our
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Expression of key genes in the PCRG prognostic signature in ccRCC and normal kidney tissues. The mRNA expression levels of ATP1A3 (A),
GNB3 (B), GNB4 (C), and NSF (D) in clinical samples were detected by gPCR. Immunohistochemistry of ATP1A3, GNB3, GNB4, and NSF in
normal tissues (E—H) and ccRCC tissues (I-L) from the Human Protein Atlas (HPA) database.

response to ccCRCC between the high- and low-risk groups by
using the PCRG signature.

Related studies have reported that PCRGs play an important
role in the development of multiple diseases. For example, the G
protein beta3 subunit (GNB3) could be a candidate gene in
disorders associated with poor immune response. It has been
reported that the counts of CD4+ T cells with the GNB3
homozygous 825T allele (TT) genotype were significantly
enhanced compared to those with the C825 allele (CC)
genotype (36). Na/K*-ATPase is widespread in eukaryotic cell
membranes, and its different o/f isoforms (ATPIA1-1A4,
ATPIBI-1B3) were identified in humans in their early years
(37). Moreover, the high expression of sodium pumps was
shown to be closely related to the occurrence, development,
and malignancy of cancer (37). Recently, ATPIA3 has been
reported to exert significant effects in various cancers, including
glioblastomas (38), hepatomas (39), and medulloblastomas (40).
It has been reported that bufalin inhibits the growth of
hepatocellular carcinoma (HCC) cells, which is correlated with
the expression level of ATP1A3 in HCC cells (39). Another study
reported that activation of ATPIA3 could sensitize glioblastoma
cells to temozolomide (41). However, the role of PCRGs in the
development of ccRCC has not been reported, and further
research is needed. In this study, through a series of rigorous
analyses, we established a prognostic signature consisting of
PCRGs that could predict the prognosis of patients with ccRCC.
Our results suggest that these key genes may play a significant
role in the occurrence and development of ccRCC. The PCRG
signature may improve our understanding of the role of
potassium channels in the occurrence and development of

Frontiers in Oncology

20

ccRCC and provide a reference for discovering new prognostic
biomarkers and immunotherapy methods for ccRCC.

There were some limitations to our study. First, the robustness
of the prognostic signature needs to be verified by external data
sets. However, there is no suitable ccRCC gene expression data set,
so we have to split the TCGA-KIRC cohort into training and
validation cohorts to partially compensate for the study’s
limitations. Second, our results require further basic
experiments and clinical studies to validate and further explore
the potential underlying mechanisms and clinical applications of
PCRGs in ccRCC. Finally, many factors, such as comorbidities,
influence overall survival, but we did not study them in depth.
Therefore, further studies concentrating on RFS/CSS are required.
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Background: Clear cell renal cell carcinoma (ccRCC) is a malignant tumor with
limited treatment options. A recent study confirmed the involvement of basement
membrane (BM) genes in the progression of many cancers. Therefore, we studied
the role and prognostic significance of BM genes in ccRCC.

Methods: Co-expression analysis of ccRCC-related information deposited in
The Cancer Genome Atlas database and a BM geneset from a recent study was
conducted. The differentially expressed BM genes were validated using
quantitative reverse-transcription polymerase chain reaction (qRT-PCR).
Least absolute shrinkage and selection operator regression and univariate
Cox regression analyses were performed to identify a BM gene signature
with prognostic significance for ccRCC. Multivariate Cox regression, time-
dependent receiver operating characteristic, Kaplan—Meier, and nomogram
analyses were implemented to appraise the prognostic ability of the signature
and the findings were further verified using a Gene Expression Omnibus
dataset. Additionally, immune cell infiltration and and pathway enrichment
analyses were performed using ImmucCellAl and Gene Set Enrichment Analysis
(GSEA), respectively. Finally, the DSIGDB dataset was used to screen small-
molecule therapeutic drugs that may be useful in treating ccRCC patients.

Results: We identified 108 BM genes exhibiting different expression levels
compared to that in normal kidney tissues, among which 32 genes had
prognostic values. The gRT-PCR analyses confirmed that the expression
patterns of four of the ten selected genes were the same as the predicted
ones. Additionally, we successfully established and validated a ccRCC patient
prediction model based on 16 BM genes and observed that the model function
is an independent predictor. GSEA revealed that differentially expressed BM
genes mainly displayed significant enrichment of tumor and metabolic
signaling cascades. The BM gene signature was also associated with immune
cell infiltration and checkpoints. Eight small-molecule drugs may have
therapeutic effects on ccRCC patients.
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Conclusion: This study explored the function of BM genes in ccRCC for the first
time. Reliable prognostic biomarkers that affect the survival of ccRCC patients
were determined, and a BM gene-based prognostic model was established.

KEYWORDS

clear cell renal cell carcinoma, basement membrane (BM), gene expression profile,
prognostic biomarkers, gene expression analysis

Introduction

There are over 300,000 new cases of clear cell renal cell
carcinoma (ccRCC), acounting for the most prevalent subtype of
renal malignancy, reported worldwide in 2020 (1). In recent years,
several alternative treatments, such as surgery, immunotherapy,
and other targeted therapy, have been applied for ccRCC patients
(2). For patients with ccRCC at early localized stage, surgery
remains the first-line therapy; yet 30% of them meet post-
surgery recurrence (3). Despite encouraging achievements in
immunotherapy and targeted therapy, the five-year survival
probability for metastatic ccRCC has only improved by 11.7%
(4-6). Therefore, exploring the mechanism and mining potential
biomarkers of ccRCC have become the focus of kidney
cancer research.

The basement membrane (BM) is the oldest extracellular
matrix (ECM) in animals, bordering all cells, including the
epithelium and endothelium (7). The BM core structural
components belong to the laminin family, collagen IV, heparan
sulfate proteoglycans, nidogens, and perlecan (8). Utilizing these
basic components, the basement membrane plays a vital biological
role in the body, resisting mechanical stress, determining tissue
morphology, establishing a diffusion barrier, and providing an
environment for guiding cell polarity, differentiation, migration,
and survival (9-12). Over 20 BM gene mutations form the basis of
human diseases, highlighting their diverse and vital functions (13).
As targets of autoantibody attack in immune diseases, deficiencies
in the expression and turnover of BM proteins are crucial causative
factors in cancer, fibrosis, and diabetes (14-16). Collagen type IV,
alpha-6 (COL4A6) is a BM gene encoding the a6 chain of collagen
IV. COL4A6 is highly downregulated in prostate cancer, and its
deletion can promote prostate cancer progression and metastasis
by activating the p-focal adhesion kinase (FAK)/matrix
metallopeptidase 9 (MMP-9) signaling pathway (17).
Nephronectin (NPNT) has also been shown to be a key
regulator of tumor metastasis (18). Huang et al. reported that in
metastatic hepatocellular carcinoma, overexpressed NPNT could
promote malignant progression through transcriptional regulation
of the FAK/phosphatidylinositol 3—kinase (PI3K)/protein kinase B
(AKT) signaling cascade (19). Peroxidasin (PXDN) is a BM-
associated protein with peroxidase activity that promotes the
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proliferation, invasion, and migration of ovarian cancer cells, and
PXDN overexpression has been correlated with an unfavorable
prognosis (20). A disintegrin and metalloproteinase with
thrombospondin motifs (ADAMTS) protein is a zinc
metalloendopeptidase whose substrates are mostly ECM
components associated with multiple malignant phenotypes,
including cancer progression and metastasis (21-23).

However, we currently lack systematic studies on the
relationship between BM genes and c¢cRCC. Herein, we used
bioinformatics analyses to determine the prognostic significance
of the BM gene family in ¢ccRCC and the related mechanisms
affecting prognosis to provide a reference for treating ccRCC.

Materials and methods

Acquisition of data and identification of
differential expression BM genes

The gene expression and related clinical characteristics of
539 ccRCC and 72 noncancerous renal tissue specimens were
acquired from The Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov). In a recent study of BM genes, we
downloaded a set of 224 BM genes (24). We also downloaded
GSE46699, GSE22541, and GSE29609 datasets of GEO (https://
www.ncbi.nlm.nih.gov/geo/), totaling 128 ccRCC organization
information. The downloaded data were normalized with the
corresponding R package, and the R package “limma” (25) was
utilized for identification of the differentially expressed BM
genes (DEGs). DEGs having a |log2 fold change (FC)| > 1 and
an adjusted P <0.05 were considered for subsequent analysis.

Verification of the expression levels
of DEGs

Quantitative reverse transcription-polymerase chain
reaction (QRT-PCR) was performed to test the transcript
abundances of the DEGs. TRIzol (Invitrogen, Shanghai,
China) reagent was employed for isolation of total RNA from
the HEK-293 and 786-O cells. The primers used to test the
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expression of selected DEGs are listed in Supplementary Table 1.
The PCR program was 94°C 3 min, 22 rounds of 94°C 30 s, 55°C
30 s, and 72°C 30 s, and 72°C 5 min. All the reactions were
conducted in triplicate.

Construction and validation of the BM
gene signature

Genes associated with the prognosis of ¢ccRCC were
identified by univariate Cox regression from the DEGs with
the R package “glmnet” (26). We also carried out a least absolute
shrinkage and selection operator (LASSO)-penalized Cox
regression analysis for construction of a prognostic risk model.
Each screened BM gene’s risk score was determined as follows:

Risk score = (Coef 1imRNA1 expression) +
(Coef 2AmRNA2 expression) + (Coef nimRNAn expression) (27)

Coef represents the coefficient of the LASSO-Cox analysis for
a specific mRNA. The median risk score was calculated, based on
which patients with ccRCC were classified to a high- or low-risk
group. For evaluation of the model’s prediction ability, we
conducted a time-based receiver operating characteristic (ROC)
analysis of the model with the survival ROC package (28). Three
downloaded GEO datasets were used as verification sets.

Identification of independent prognostic
indices and establishment of the
predictive nomogram

Correlations between BM gene expression features and
clinical variables were also determined. Univariate and
multivariate Cox regression analyses combined with other
clinical variables were conducted to test the performance of
the our prognostic BM gene signature. The nomogram was
established through clinical variables and the BM gene-based
model risk score to evaluate the 1-year, 3-year and 5-year OS in
ccRCC patients. The prediction effect of the nomogram was
assessed by measuring the concordance index and plotting a
calibration curve.

Functional annotation and gene set
enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis and Gene Ontology (GO)
annotation were carried out for high- and low-risk populations
by utilizing the R package “ClusterProfiler” (29). P < 0.05 was
deemed to signify statistical significance.
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Through GSEA, we explored the potential mechanisms
underlying low-risk and high-risk populations from a
molecular biology perspective. P < 0.05 and FDR < 25% were
considered significantly enriched.

Analysis of the infiltration levels of
immune cells

Based on the features of B cell-specific long non-coding RNAs,
we used the MCP-counter, CIBERSORT-ABS, EPIC, XCELL,
TIMER, and QUANTISEQ algorithms to evaluate the differences
in immune cell infiltration levels between low-risk and high-risk
populations. The expression of some immune checkpoints in the
two groups was examined to explore possible immune checkpoint
blocking therapies, such as LAG3, ICOS, TIGIT, CTLA4, PDCDI,
and BTLA. Additionally, the association between 16 BM genes and
immune cells was determined using the TIMER database (http://
cistrome.shinyapps.io/timer/), which deepened our knowledge of
the effects of BM genes on ccRCC.

Identification of potential small
molecule drugs

Molecular identification of drugs is a crucial link in drug
detection. The Drug Signatures Database (DSigDB) was
searched for candidate drugs implicated with the differential
expression of the BM genes. The Enrichr platform (https://amp.
pharm.mssm.edu/Enrichr/) served as the access path for the
DSigDB database.

Statistics analysis

R software (version 4.0.5) was utilized for analysis of
statistical data. Wilcoxon test was utilized to examine
differences between groups, and P <0.05 was deemed to
indicate statistical significance.

Results

Establishment and validation of the BM
gene-based model

From the TCGA-KIRC dataset, 108 BM genes were identified
to be differentially expressed compared to that in normal kidney
tissues. These DEGs included 39 downregulated and 69
upregulated BM genes (Figure 1). Subsequently, we implemented
univariate Cox regression analysis for identification of the
differentially expressed genes with prognostic significance. The
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results revealed that 32 genes had prognostic values (Figure 2), and
the qRT-PCR analyses demonstrated that four of the ten genes
tested were expressed as predicted (Figure 3).

Subsequently, the top 20 genes were selected according to
their significance, and a LASSO-Cox regression analysis was
carried out. A risk model involving 16 genes (COL9A2, COL4AS6,
NPNT, COL4A4, ITGAX, SEMA3B, HMCNI1, ADAMTS2,
MMP7, FN1, VCAN, FREMI, PXDN, VWAI, GPC2, and
ADAMTS4) was successfully constructed. The risk score was
measured with coefficients for the 16 BM genes as follows
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The heatmap displaying the DEGs.
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(Table 1): Risk score = (0.0788 x COL9A2 mRNA level) +
(0.1435 x COL4A6 mRNA level) + (—0.0198 x NPNT mRNA
level) + (-0.0378 x COL4A4 mRNA level) + (0.0082 x ITGAX
mRNA level) + (0.0027 x SEMA3B mRNA level) + (-0.1336 x
HMCNI mRNA level) + (0.0221 x ADAMTS2 mRNA level) +
(0.0003 x MMP7 mRNA level) + (0.0001 x FNI mRNA level) +
(0.0020 x AN mRNA level) + (—=0.0392 x FREM1 mRNA level) +
(0.0103 x PXDN mRNA level) + (-0.0075 x VWAI mRNA
level) + (0.2294 x GPC2 mRNA level) + (0.0090 x ADAMTS4
mRNA level).
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pvalue Hazard ratio
COL9A2 <0.001 1.1022(1.0481-1.1591)
COL4A6 <0.001 1.2699(1.1186-1.4415)
NPNT <0.001 0.9538(0.9287-0.9796)
COL4A4 <0.001 0.8179(0.7283-0.9184)
ITGAX <0.001 1.0481(1.0199-1.0772)
SPON2 0.0011  1.0106(1.0042-1.0170)
SEMA3B 0.0018  1.0258(1.0095-1.0423)
HMCN1 0.0018 0.8086(0.7076-0.9241)
ADAMTS2 0.0023 1.0669(1.0234-1.1123)
POSTN 0.0027 1.0059(1.0020-1.0098)
MMP7 0.0028 1.0016(1.0006-1.0027)
SPARCL1 0.0032 0.9976(0.9960-0.9992)
FN1 0.0039 1.0015(1.0005-1.0025)
THBS2 0.0040 1.0054(1.0017-1.0090)
VCAN 0.0055 1.0078(1.0023-1.0133)
FREM1 0.0062 0.6039(0.4207-0.8667)
PXDN 0.0084 1.0180(1.0046-1.0316)
VWA1 0.0122  0.9886(0.9798-0.9975)
GPC2 0.0125 1.5538(1.0996-2.1958)
ADAMTS4 0.0129 1.0203(1.0043-1.0365)
FBLN1 0.0152 1.0114(1.0022-1.0207)
DCN 0.0164 1.0114(1.0021-1.0209)
ITGA5 0.0177 1.0096(1.0017-1.0175)
FRAS1 0.0213  0.9103(0.8403-0.9861)
TGFBI 0.0213  1.0004(1.0001-1.0007)
ADAMTS15 0.0273 1.0568(1.0062-1.1099)
ADAMTS8 0.0296 1.1179(1.0111-1.2359)
COL15A1 0.0340 0.9891(0.9791-0.9992)
MEGF6 0.0364 1.0494(1.0031-1.0979)
NELL1 0.0370 1.1587(1.0089-1.3307)
THBS4 0.0477 1.0061(1.0001-1.0122)
MMP1 0.0491 1.0016(1.0000-1.0032)

FIGURE 2

The BM genes with prognostic significance in ccRCC.

Patients were then assigned to high-risk and low-risk groups
based on the median risk score. As revealed by the Kaplan—
Meier analysis, high-risk patients exhibited a significantly lower
survival rate compared with the low-risk ones (P < 0.001),
suggesting a relationship between high risk score and dismal
survival (Figures 4A, C). Additionally, the area under the ROC
curve (AUC) values of the signature were 0.747, 0.719, and 0.715
at 1, 3, and 5 years, respectively, indicating that our model was
stability for predicting the prognosis (Figures 4B, D). We used
data from the GEO database for external validation (Figures 5)
and observed that the risk score was inversely correlated with
survival. The AUCs of time-dependent ROC were 0.867, 0.848,
and 0.749 at 1, 3, and 5 years, respectively.

BM gene-based signature could predict
ccRCC prognosis independently

The independent prognostic significance of the BM gene-
based model was assessed in ccRCC patients using univariable
and multivariable Cox analyses. As displayed in Figure 6A,
univariate analysis revealed a significant correlation between
age, tumor grade, pathological stage, risk score, and ccRCC
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patients’ survival (P < 0.001). Notably, the multivariate analysis
also showed this correlation (P < 0.05) (Figure 6B). Therefore,
based on these findings, we confirmed that our BM gene-based
signature represents an independent indicator for assessing
ccRCC patient prognosis.

Relationship between clinical features
and the signature

The association of our signature with the progression of
ccRCC was investigated using the Chi-square test. As revealed by
the test, there were significant differences in the pathological
stage, T stage, and tumor grade between the two groups of
ccRCC patients (P < 0.001) (Figures 7A,B). Further hierarchical
analysis showed the outstanding role of the model in predicting
prognosis in both male and female patients (P = 0.0014 and P <
0.001, respectively), patients aged both more than, less than or
equal to 65 years (P = 0.002 and 0.001, respectively), as well as in
patients with all stages (P = 0.019 and 0.012 for Stages I-II and
II-1V, respectively), all grades (P=0.009 and P < 0.001 for high
and lo grades, respectively), all T stages (P = 0.007 and 0.011 for
T1-T2 and T3-T4 stages, respectively), NO stage (P < 0.001),
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0.0001

and all M stages (P < 0.001 and P = 0.036 for MO and M1 stages, stage, which might be not large enough to generate statistical
respectively). However, the model performed poorly in significance, but the overall trend is clear that the prognostic
predicting the prognosis for the N1 stage (P > 0.05). In the signature deeply participated in the development and

TCGA-KIRC cohort, only 15 samples were recorded with N1 progression of ccRCC (Figure 8).
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TABLE 1 The list of signature genes and their coefficients.

Gene symbol Coefficient
COL9A2 0.0788
COL4A6 0.1435
NPNT -0.0198
COL4A4 -0.0378
ITGAX 0.0082
SEMA3B 0.0027
HMCN1 -0.1336
ADAMTS2 0.0221
MMP7 0.0003
EN1 0.0001
VCAN 0.0020
FREM1 -0.0392
PXDN 0.0103
VWAL -0.0075
GPC2 02294
ADAMTS4 0.0090

Nomogram construction

We constructed a nomogram with covariates of patients’ sex,
age, tumor grade, pathological stage, and risk score to predict
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patients’ survival rates at 1, 3, and 5 years. As shown in
Figure 9A, each parameter has a score, and the total score was
computed for survival rate prediction at the specific time point.
The nomogram’s performance in survival prediction was
appraised by ROC analysis. We found that the AUCs of the
TCGA cohort were 0.954 for 1-year survival, 0.873 for 3-year
survival, and 0.781 for 5-year survival. The calibration curve
revealed the consistency of the actual survival rate of the patient
with the predicted value (Figure 9B).

Functional enrichment and GSEA

GO annotation and KEGG analysis were performed to
explore the potential functions of the 108 DEGs. As indicated
by biological process analyses, 108 BM genes were significantly
associated with the GO terms of cell-substrate adhesion,
extracellular structure organization, and extracellular matrix
organization. Cellular component analysis suggested that the
GO terms of endoplasmic reticulum lumen, basement
membrane, and collagen-containing extracellular matrix were
mainly enriched. Molecular function analysis revealed that
glycosaminoglycan binding, extracellular matrix structural
constituent, and metalloendopeptidase activity were mainly

o
2 . o Dead °
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Establishment of the BM genes-based prognostic signature based on the TCGA dataset. (A). The Kaplan-Meier (K-M) curves of low-risk and
high-risk ccRCC patients in the TCGA dataset; (B). The time-dependent ROC curves displaying the 1-year, 3-year, and 5-year OS of ccRCC
patients in the TCGA dataset; (C). Survival distributions of the TCGA dataset determined according to the median risk score; (D). Heatmap
displaying the divergences between low- and high-risk patients of 16 signature genes in the prognostic model for the TCGA dataset.
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Verification of the prognostic signature by utilizing the GEO dataset. (A). The Kaplan-Meier curves of low-risk and high-risk ccRCC patients in
the GEO dataset; (B). The time-dependent ROC curves displaying the 1-year, 3-year, and 5-year OS of ccRCC patients in the GEO dataset; (C).
Survival distributions of the GEO dataset determined according to the median risk score; (D). Heatmap displaying the divergences between low
and high-risk patients of 16 signature genes in the prognostic model for the GEO dataset.

involved in 108 DEGs (Figure 10A). In KEGG pathway analysis,
the DEGs were primarily involved in pathways of protein
digestion and absorption, PI3K/Akt signaling, focal adhesion,
ECM-receptor interaction, and human papillomavirus
infection (Figure 10B).

GSEA was carried out to investigate the specific molecular
functions of the BM gene-based model. The PI3K/Akt
signaling pathway, hepatitis C pathway, and estrogen
signaling pathway exhibited significant enrichment for the
high-risk group; whereas for the low-risk group, the adherens
junction pathway, pentose and glucuronate interconversion
pathway, glycine, serine, and threonine metabolism pathways,
and ascorbate and aldarate metabolism pathways were
enriched (Figure 11).

Analysis of the infiltration levels of
immune cells based on the BM gene-
based model

CIBERSORT, CIBERSORT-ABS, EPIC, MCPCOUNTER,
QUANTISEQ, TIMER, and XCELL analyses were performed
to explore the relationship between BM gene-based signatures
and immune infiltration levels (Figure 12). Given the
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significance of immune checkpoints in immunotherapy, the
mRNA levels of several immune checkpoint genes were
compared between the two groups to explore possible immune
checkpoint blocking therapies. The results showed that LAG3,
PDCD1, ICOS, TIGIT, CTLA4, and BTLA mRNA levels were
increased in high-risk patients, implying the existence of
immunosuppressive phenotypes in these patients (Figure 13).

TIMER analysis

We explored the association of six immune cells with the 16
BM genes by employing the TIMER database and observed that
NPNT, COL4A6, ITGAX, HMCNI1, ADAMTS2, FN1, VCAN,
and PXDN were positively associated with the levels of different
immune cell infiltrations, such as those of CD4+ T cells, CD8+
T cells, B cells, dendritic cells, neutrophils, and macrophages.
COL9A2 and ADAMTS4 were positively related to CD8+ T
cells, CD4+ T cells, dendritic cells, neutrophils, and
macrophages. COL4A6 and GPC2 exhibited positive
correlations with CD4+ T cells, macrophages, neutrophils,
and dendritic cells. In conclusion, these immune cells may be
involved in the process of BM genes mediating ccRCC
prognosis (Supplementary Figure 1; Figure 2).
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FIGURE 6
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(A, B). The correlations between clinicopathological features and the gene signature.
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The K-M curves showed the differences of OS between low- and high-risk patients with different ages, genders, stages, T stages, N stages, M stages or grades.

Prediction of candidate drugs implicated
with the differential expression of the
signature genes

We identified candidate drugs related to the differential expression
of BM genes using the DSigDB to further improve the therapeutic effect
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in patients with renal cell carcinoma. These drugs included Healon
BOSS, CGS-27023A TTD 00002801, VANADIUM CTD 00006979,
LAMININ BOSS, O-Phospho-L-tyrosine BOSS, Tetradioxin CTD
00006848, endosulfan CTD 00005896, and orphenadrine
hydrochloride BOSS (Table 2). These small-molecule drugs exhibited
a higher negative correlation and potential to treat ccRCC.
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Establishment of the nomogram. (A). The nomogram; (B). calibration analaysis for predictingl-, 3- or 5-year OS.

Discussion

Treating advanced RCC with drugs has always been a clinical
challenge based on its resistance to traditional radiotherapy and
chemotherapy (30). Despite the initial positive effects of emerging
targeted therapies and immunotherapy in ccRCC patients, in most
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cases, patients develop drug resistance and disease progression
within two years owing to the highly dynamic, adaptive, and
heterogeneous tumor microenvironment of ¢ccRCC (31).
Therefore, research on tumor resistance and distant metastasis
caused by changes in the tumor microenvironment environment
may provide new strategies for ccRCC treatment. Previous
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Enrichment analyses of DEGs. (A). GO enrichment analysis; (B). KEGG enrichment analysis

research acknowledges BM remodeling as a critical step in the
formation of the tumor microenvironment (32), which often
results in complex disarray of pro- and anti-tumor signals from
degradation products (33). Additionally, studies have
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demonstrated that most BM-related collagens are upregulated at
the mRNA and protein levels, are associated with the formation of
aggressive phenotypes of malignant cells and are involved in the
regulation of key tumorigenesis steps, including proliferation,
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invasion, metastasis, apoptosis, and angiogenesis (34-36).
Therefore, BM may genes exert crucial effects on the formation
of a highly heterogeneous tumor microenvironment in ccRCC
and can serve as disease markers for prognosis and treatment
effect prediction in patients with renal cancer.

A prognostic model was constructed that contains 16 BM
genes, and its prognostic value for ccRCC was evaluated via ROC
anlysis. Some of these genes are potentially related to ccRCC. For
instance, MMP7 has been widely reported to promote tumor
angiogenesis by transforming the extracellular matrix, thereby
participating in the invasion and metastasis of ccRCC (37-39). A
previous study identified SEMA3B as a renal tumor suppressor
gene, whose downregulation was positively associated with tumor
progression, stage, and grade of ccRCC (40). As a vital member of
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the BM gene family, ITGAX is responsible for encoding integrin
alpha X, a critical component of leukocyte-specific complement
receptor 4. Its expression in ccRCC has been reported to increase
significantly, and ITGAX overexpression has association with
dismal survival outcomes of ccRCC patients (41). Gong et al.
recently reported that the HMCNI mutations are frequently
detected in patients with ccRCC and are correlated with a higher
tumor mutation burden and dismal clinical consequences, and may
correlate with anti-tumor immunity and cell metabolism (42). In
addition, COL4A4 has been identified as an unfavorable prognostic
factor for ccRCC (43). The functions of other genes in ccRCC
currently remain unknown and require further exploration. Data
from the TGGA and GSEA databases indicated that the BM gene
signatures were positively correlated with a higher risk of adverse
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Index
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OS. Meanwhile, the AUCs were all above 0.7 at 1, 3, and 5 years.
These results indicated the admirable performance of our model for

Name p-value Adjusted p-value
Healon BOSS 0.00000179 0.0007
CGS-27023A TTD 00002801 0.0000466 0.0095
VANADIUM CTD 00006979 0.000211 0.0282
LAMININ BOSS 0.00048 0.0328
O-Phospho-L-tyrosine BOSS 0.000807 0.0438
Tetradioxin CTD 00006848 0.000936 0.0438
endosulfan CTD 00005896 0.001033676 0.0438
Orphenadrine hydrochloride BOSS 0.001175147 0.0438

prognosis prediction.

According to KEGG pathway enrichment analysis, focal
adhesions and ECM-receptor interactions were identified as the
major pathways for 108 DEGs. These pathways further enriched the
molecular mechanisms of ccRCC initiation and progression. GSEA
revealed the involvement of BM gene-based models in tumor and
metabolic pathways. These include the PI3K/AKkt signaling, estrogen
signaling, adherens junction, pentose and glucuronate
interconversions, threonine, glycine and serine metabolism, and
ascorbate and aldarate metabolism pathways. Therefore, the BM

Frontiers in Oncology

Odds Ratio Combined Score

59.68 789.76
259.39 2587.35
31.36 265.34
23.54 179.91
55.83 397.64
5.550 38.70
49.07 337.40
45.90 309.68

gene-based model may be crucial for cancer cell metabolism and
tumor microenvironment formation.

Furthermore, the model had close association with immune

37

cell infiltration, immune cells may be essential in BM genes
mediating the prognosis of ccRCC. We also found higher
expression levels of immune checkpoints in high-risk ccRCC
patients, implying that the dismal prognosis of these patients is
possibly due to the immunosuppressive microenvironment and
may respond to treatment regimens involving checkpoint
inhibitors. Finally, given that the signature BM genes we
identified may be relevant therapeutic targets for patients with
ccRCC, we sucessfully dentified eight potential small-molecule
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The different mRNA levels of immune checkpoint genes between low- and

drugs to further improve the therapeutic effect in patients

with ccRCC.
Our work has certain limitations, such as predicting the

prognostic value of BM genes using only data from public
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databases and the relatively small sample size. We could only
determine how BM genes affect ccRCC based on limited clinical
data, which ignored environmental and genetic factors.
Finally, the underlying mechanism between the identified
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signature genes and ccRCC remains unclear, and we plan to
investigate this further.

In summary, this study comprehensively characterized the
involvement of the BM gene family in ccRCC and its prognosis.
We proposed trustworthy prognostic biomarkers for ccRCC
patients and constructed a BM gene-based prognostic model.
We believe this investigation could support further research on
the role of BM genes in ccRCC.
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The homeobox (HOX) family genes have been linked to multiple types of
tumors, while their effect on malignant behaviors of clear cell renal cell
carcinoma (ccRCC) and clinical significance remains largely unknown. Here,
we comprehensively analyzed the expression profiles and prognostic value of
HOX genes in ccRCC using datasets from The Cancer Genome Atlas (TCGA)
and International Cancer Genome Consortium (ICGC) databases. We
developed a prognostic signature comprising eight HOX genes (HOXBI,
HOXA7, HOXB5, HOXD8, HOXD9, HOXB9, HOXA9, and HOXA11) for overall
survival prediction in ccRCC and it allowed patients to be subdivided into high-
and low-risk groups. Kaplan-Meier survival analysis in all the internal and
external cohorts revealed significant difference in clinical outcome of
patients in different risk groups, indicating the satisfactory predictive power
of the signature. Additionally, we constructed a prognostic nomogram by
integrating signature-derived risk score and clinical factors such as gender,
age, T and M status, which might be helpful for clinical decision-making and
designing tailored management schedules. Immunological analysis revealed
that the regulatory T cells (Tregs) infiltrated differently between the two
subgroups in both TCGA and ICGC cohorts. ssGSEA method showed that
the enrichment scores for mast cells were significantly lower in high-risk group
compared with the low-risk group, which was consistent in both TCGA and
ICGC cohorts. As for the related immune function, the enrichment scores of
APC co-inhibition, para-inflammation, and type Il IFN response were
consistently lower in high-risk group in both cohorts. Of the eight HOX
genes, the mRNA and protein levels of HOXD8 were downregulated in
ccRCC than that in normal tissues, and decreased expression of HOXD8 was
associated with increased tumor grade and stage, and lymph node metastasis.
Survival analysis revealed that lower expression of HOXD8 predicted worse
overall survival in ccRCC. In conclusion, our HOX gene-based signature was a
favorable indicator to predict the prognosis of ccRCC cases and associated
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with immune cell infiltration. HOXD8 might be a tumor suppressor gene in
ccRCC and a potential predictor of tumor progression.

KEYWORDS

homeobox family gene, signature, prognosis, immune microenvironment, ccRCC

Introduction

Renal cell carcinoma (RCC) is a common malignancy
affecting urinary system, with a worldwide incidence rate
growing 2% annual (1, 2). Clear cell renal cell carcinoma
(ccRCC), characterized by robust lipid and glycogen
accumulation, is the most frequent histological subtype of
RCC, accounting for eighty to ninety percentage of all RCC
cases. As one of the most lethal malignancies of the urological
system, ccRCC is known for its high mortality rate and it causes
around 175000 deaths per year worldwide (3). Early diagnosis
and surgical resection could effectively improve clinical outcome
for localized ccRCC, while approximately 30% of patients have
developed metastasis when they are first diagnosed (4, 5).
Besides, about 30%-35% ccRCC patients showed local
recurrence or distant metastasis after nephrectomy (6). For
relapsed or advanced RCC, patients typically undergo surgery
and/or receive systemic therapy. Cytoreductive nephrectomy
before systemic therapy is recommended in select patients
with a potentially surgically resectable primary tumor mass
(7). Patients with metastatic RCC who present with hematuria
or other symptoms related to the primary tumor should be
offered palliative nephrectomy if they are surgical candidates (7).
Targeted therapy including tyrosine kinase inhibitors (TKIs; e.g.,
axitinib, cabozantinib, lenvatinib), and/or anti-VEGF antibodies
are wildly used in first- and second-line treatments. The immune
checkpoint inhibitors (ICIs; e.g., pembrolizumab, nivolumab)
therapy, a method that can improve body’s anticancer immune
response by regulating the activity of immune cells, provided a
revolution in treatment options and have also been increasingly
recommended and investigated (8). According to the NCCN
guidelines for kidney cancer, combination of TKI with ICI,
including axitinib with pembrolizumab, cabozantinib with
nivolumab, and lenvatinib with pembrolizumab, were regarded
as first-line preferred regimens for relapsed or advanced ccRCC
(7). Nevertheless, due to the extensive heterogeneity in genomic
level and the existence of a highly heterogeneous tumor
microenvironment, prediction patients’ respond to these
therapies remains a fundamental problem and patients’
prognosis varies even they share similar clinicopathological
features and are under standard management. Exploring novel
and reliable indicators to predict prognosis and response to
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therapies are of great importance for developing tailored
management schedules and clinical decision-making, which
may assist improving the prognosis of ccRCC patients.

The homeobox (HOX) genes encode a highly conserved
family of transcription factors in mammal that are essential for
organogenesis and development (9). Up to now, a total of thirty-
nine HOX genes have been identified in human genome. On the
basis of sequence similarity and chromosomal location, HOX
genes are split into four clusters, namely HOXA, HOXB, HOXC,
and HOXD, which are located on chromosomes 7, 17, 12, and 2,
respectively (10). Over the past decades, we have come to
discovered that many genes controlling embryogenesis such as
HOX genes participate in carcinogenesis likewise (11). Apart
from their role as master regulators of embryonic development
in physiological status, HOX genes have been linked to multiple
types of tumors (12-14). Altered expression of HOX genes were
oncogenes or tumor suppressor genes by acting as transcription
activator or transcriptional repressor, depending on context. In
tumors, the deregulation of HOX genes may affect cell
proliferation, invasion, differentiation, angiogenesis, and
intracellular signal transduction (15-17). For example, higher
HOXB9 expression was associated with poorer prognosis in
adrenocortical carcinoma and simultaneous overexpression of
HOXB9 and Ctnnbl in adrenal cortex of transgenic mice led to
larger adrenal tumors (18). In gastric cancer, the upregulated
HOXA10 promoted the transcription of TGFB2, which triggered
the activation of TGFB/SMAD signaling and led to accelerated
lung metastasis (19). In ccRCC, little is known about the role of
HOX genes on malignant behaviors and its clinical significance.

The rapid development of high-throughput sequencing
technology and bioinformatic methods has permitted their
widespread application in cancer research, resulting in a
comprehensive understanding of genetic or epigenetic
abnormalities during carcinogenesis and progression (20, 21).
Many of these abnormalities were confirmed to be potential
therapeutic targets and prognosis indicators in multiple types of
cancers in the later research. Recently, re-analyzing publicly
available statistics such as RNA-Seq data from public databases
has opened the door to the discovery of novel biomarker
molecules, particularly certain gene families, for overall survival
prediction in cancers (22, 23). In this study, using the
transcriptome data of ccRCC sample and corresponding clinical
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information from public databases, we systematically analyzed the
expression profiles and prognostic value of HOX genes in ccRCC.
We developed an eight HOX gene-based signature for overall
survival prediction and validated its accuracy in both internal and
external cohorts. Additionally, we constructed a prognostic
nomogram by integrating the signature-derived risk score and
clinical parameters such as gender, age, T and M status for clinical
decision-making. Moreover, we analyzed the association of the
signature with immune microenvironment and distinct immune
cell infiltration in ccRCC. Finally, we compared the expression of
the eight HOX gene in tumor and adjacent normal tissues, and
performed Kaplan-Meier survival analysis in ccRCC cohorts.

Materials and methods
Data sources

We downloaded transcriptome profiles (HTSeq-FPKM) of
539 ccRCC tumor tissues and 72 non-tumor tissues, and
corresponding clinical information of ccRCC patients from
the TCGA database (https://portal.gdc.cancer.gov/) and named
as TCGA cohort. The ICGC cohort containing gene expression
matrix files and clinical data was obtained from the ICGC
database (https://dcc.icgc.org/projects) and was utilized for
external validation. Patients without overall survival time or
survival status were excluded in the subsequent analysis.
Finally, a total of 621 c¢cRCC including 530 cases from
TCGA cohort and 91 cases from ICGC cohort was collected
in our study.

Construction and validation of the HOX
family gene-based signature

First, we randomly split the TCGA cohort (entire cohort)
into a training cohort and a testing cohort at a ratio of roughly
1:1. To reduce overfitting, in the training cohort, differentially
expressed HOX family genes were submitted to LASSO (least
absolute shrinkage and selection operator) Cox regression
analysis with the glmnet package in R. Following that, a
multivariate Cox regression analysis was carried out, which
resulted in the development of a HOX family gene-based
signature in ccRCC. The risk score derived from the signature
was calculated by a liner combination of gene expression level
(Expi) and associated coefficients (Coefi), with the
formula:riskscore = >, (CoefixExpi). We computed the risk
score of all the cases in training, testing, entire, and ICGC
cohorts, and it allowed patients to be classified as high- or

Frontiers in Oncology

43

10.3389/fonc.2022.1008714

low-risk based on the median risk score value in training cohort.
Finally, Kaplan-Meier survival analysis and time-dependent
receiver operating characteristic (ROC) curves analysis were
used to determine the signature’ predictive power in training,
testing, entire, and ICGC cohorts.

Construction of a prognostic nomogram

Integrating the signature-derived risk score and clinical
factors such as gender, age, T and M status, a prognostic
nomogram was built by using rms package in R. Calibration
curves were plotted in TCGA and ICGC cohorts to evaluate
whether the nomogram’s predicted overall survival of ccRCC
patients was close to the actual clinical outcome.

Functional annotation and gene set
enrichment analysis

Using the edgeR package in R software, we first identified
genes that were differently expressed across high- and low-risk
groups, with the criterion of FDR<0.05 and |log2FC| >0.5.
Subsequently, these differentially expressed genes (DEGs) were
subjected to Gene ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses using
DAVID online tool (https://david.ncifcrf.gov/), and a P. value
less than 0.05 was considered as significantly enriched. Gene set
enrichment analysis was conducted using the GSEA software
(version 4.0.2) to unearth the underlying signaling pathways
associated with the signature based on the KEGG terms. P.
value<0.05 and |NES| >1 was set as the screening criterion of the
enrichment results, and the results were visualized using ggplot2
package in R.

Evaluation of immune cell infiltration and
immune function

The CIBERSORT algorithm was used to calculate the
proportion of infiltrated immune cells in ¢ccRCC samples
based on gene expression matrixes (24, 25), and the
abundance of 22 infiltrated immune cell types were then
compared between high- and low-risk groups. Using the
GSVA package in R, single-sample gene set enrichment
analysis (ssGSEA) was applied to determine the enrichment
scores of immune cells and associated immunological
activities, which were then compared across high- and low-
risk groups.
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Tissue collection

A total of 20 frozen tissue samples including 10 ccRCC
tissues and 10 adjacent normal tissues were collected in Renmin
hospital of Wuhan university between August 2020 and June
2022. All the samples were harvest after resection and stored at
-80°C. The experiment with patient tissue specimens was
authorized by the Ethics Committee of Renmin Hospital of
Wuhan University.

RNA isolation and qRT-PCR

RNA isolation and quantitative real-time PCR (qRT-PCR)
were performed as previously described (26). The primer
sequences were list as follow: GAPDH, forward, 5-
CCATCTTCCAGGAGCGAGAT-3’ and reverse, 5-TGAG
TCCTTCCACGATACCA-3’; HOXDS, 5-CACAAGC
TCCTGGTAGACGA-3’ and reverse, 5-GCTCTGTCTTCCT
CCAGCTC-3.

Statistical analysis

R software (version 4.1.0) was employed to conduct all the
statistical analyses and was utilized for visualization of the
results. Kaplan-Meier method and the log-rank test was
used to compare the difference in overall survival between risk
groups. Differences of multiple variables between risk
groups were assessed using Student’s ¢-test or Wilcoxon test. If
not otherwise stated, P. value less than was deemed
statistically significant.

Results

Characterization of homeobox
family genes

A total of thirty-nine homeobox family genes were enrolled in
our study. The transcriptional expressions of these HOX genes
in ccRCC tumor tissues and adjacent normal tissues were shown
in Figure 1A. Of the 39 HOX family genes, thirty-two were
differentially expressed between tumor and adjacent normal
tissues (with the criteria of P-value less than 0.05) (Figure 1B).
Moreover, fourteen HOX genes were significantly associated with
the prognosis of ccRCC patients based on univariate Cox
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regression analysis and Kaplan-Meier survival analysis, and
these genes were regarded as robust prognosis-related HOX
genes (Figures 1B, C). Among the fourteen HOX genes, nine
genes (HOXA2, HOXA13, HOXA3, HOXBI13, HOXAI, HOXAII,
HOXC4, HOXCI1, and HOXDI0) were risk factors (Hazard Ratio
>1) and the other six genes (HOXD1, HOXD3, HOXD8, HOXCI10,
and HOXA?) were protective factors (Hazard Ratio<1) in ccRCC
(Figure 1C). Figure 1D exhibits the correlation of these prognosis-
related HOX genes. We then constructed a protein-protein
interaction (PPI) network using the prognosis-related HOX
genes (Figure 1E), and hub gene analysis suggested that
HOXAII and HOXC4 were the top two ranked genes in this
PPI network (Figure 1F).

Construction of a homeobox family
gene-based signature in ccRCC

To construct a prognostic signature based on homeobox
family genes, the TCGA c¢cRCC cohort was randomly classified
into a training (n=266) and a testing cohort (1=264). In training
cohort, the HOX family genes were subjected to LASSO regression
analysis followed by multivariate Cox analysis (Figures 2A-B),
and eight HOX genes (HOXBI, HOXA7, HOXB5, HOXDS,
HOXDY, HOXBY, HOXA9, and HOXA11) were finally retained
to construct a prognosis signature in ccRCC. The detailed
information and coefficient of the eight HOX genes was shown
in Figure 2C and Table 1. The risk score based on the prognosis
signature was obtained by a linear combination of the expression
levels of selected genes and corresponding coefficients. The
formula was as follow: risk score = HOXAI11 x 0.401 + HOXA7
x (-0.837) + HOXA9 x 0.238 + HOXBI x (-4.284) + HOXB5 x
(-0.276) + HOXB x 0.163 + HOXBY x 0.163 + HOXDS x (-0.085)
+ HOXD9 x 0.066. Then, the risk score of each patient in training
cohort was computed and it allowed patients to be stratified into
high- and low-risk groups according to the median value of risk
score. Figure 2D shows the risk score distribution of patients in
training cohort. The living status and survival time of patients in
training cohort was exhibited in Figure 2E, and it suggested that
the mortality rate of patients in high-risk group was higher than
that in low-risk group. Figure 2F shows the transcription levels of
the three HOX genes in high- and low-risk groups. Kaplan-Meier
survival analysis demonstrated significant difference in the overall
survival between high- and low-risk groups (Figure 2G). The area
under the curve (AUC) values of the time-dependent receiver
operating characteristic (ROC) curves were 0.750, 0.750, and 0.776
for 1-, 2- and 3-year overall survival, respectively (Figure 2H).
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(F) Hub genes in the PPI network.

Validation of the homeobox family gene-
based signature in internal cohorts

First, we assessed the prognostic value of the HOX gene-based
signature in internal cohorts including testing cohort and entire
cohort. The risk score of each case in testing cohort and entire
cohort was calculated using the formula mentioned above. Then, we
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divided patients of the internal cohorts into high- and low-risk
groups using the median risk score value in training cohort as the
cutoff. Figures 3A, B show the profile of risk score in testing cohort
and entire cohort. The distributions of survival time and living
status were shown in Figures 3C, D. The expression patterns of the
three HOX genes were exhibited in Figures 3E, F. Kaplan-Meier
survival analysis determined that patient in high-risk group had
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TABLE 1 Overall information of nine-HOXs constructing the prognostic model.

Gene Name

HOXAI11
HOXA7
HOXA9
HOXBI1
HOXB5
HOXB9
HOXD8
HOXD9

Frontiers in Oncology

Coefficient HR
0.4010 1.4933
-0.8368 04331
0.2382 1.2690
-4.2839 0.0138
-0.2765 0.7584
0.1629 1.1769
-0.0855 09181
0.0662 1.0685

46

HR.95L

1.1911
0.2889
1.1587
0.0000
0.6211
1.0815
0.8585
1.0336

HR.95H

1.8721
0.6493
1.3899
4.4573
0.9262
1.2807
0.9818
1.1045

P.value

0.0005
0.0001
0.0000
0.1462
0.0067
0.0002
0.0126
0.0001

frontiersin.org


https://doi.org/10.3389/fonc.2022.1008714
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zheng et al.
A ° Testing cohort
| ® High risk e
@ 7 Low risk
8 o
2] P
3 ™
X o
ol———— : —
c 0 50 100 150 200 250
— Patients (increasing risk score)
12
£ 2 ® Dead
g . o Alive
2 o
o —
£
E
3
50 100 150 200 250
E Patients (increasing risk score)
u Low rlsk u H|gh nsk
*' i ‘H'} | \” 11} l
1 IfIH I||
HOXB
HOXB5 \ \ | |||
HoxB9 |||
Hoxps| || ’ \HH H H H
HOXDY I I|| ||
G . -
1.00 High risk Low risk
bl
= 0.75
Qo
o
¥
2
4 0.50
2
2
3 9% p=1457e-04
0.00
0 2 - 6 8 10 12
1 ) ime(years)
©
jud
>
=2 o
2 o
g <
b o
g, —— AUC at 1 years: 0.682
; — AUC at 2 years: 0.652
g — AUC at 3 years: 0.642
0.0 0.2 04 0.6 0.8 1.0
1-Specificity
FIGURE 3

10.3389/fonc.2022.1008714

B ° Entire cohort
~ 7 ® High risk ; fa
© - ° Low risk °
8 o
12}
5
X o
o4 - . : . .
D 0 100 200 300 400 500
— Patients (increasing risk score)
(2]
g 2 : * Dead
g . i o Alive
=~ o] A
o ~
£
§ [Xe}
£
3 :
0 100 200 300 400 500
F Patients (increasing risk score)
 Low risk ¥ High risk
e 20
HOXA11 LI | H|HI|
HOXA? || TINNATN
HOXA9 \ \ \HI
5 Hoxg1| ]| -20
HOXB5 [l \ } { ‘ {
HOXBO | IR I
HOXD8 | \
HOXD9 | | \ \ I
H EE Hinh rick BB .
1.00 High risk Low risk
&
£ 0.75
Qo
[
Qo
<}
48050
2
2
3 %2%1 p=1.475e-11
0.00
0 2 6 8 10 12
J Time(years)
o
|
IS
=
£
2 <
8 S
N — AUC at 1 years: 0.711
e — AUC at 2 years: 0.699
g_ e — AUC at 3 years: 0.704
0.0 0.2 04 0.6 0.8 1.0
1-Specificity

Validation of the HOX gene-based signature in internal cohorts. (A, B) The profile of risk score in testing cohort and entire cohort. (C, D) The
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ROC curve analysis in testing cohort and entire cohort.

worse overall survival than that in low-risk group, which was
consistent in both testing cohort and entire cohort (Figures 3G,
H). Time-dependent ROC analyses suggested that the AUC values
for 1-, 2-, and 3-year overall survival were 0.682, 0.652, and 0.642 in
testing cohort (Figure 3I), and 0.711, 0.699, and 0.704 in entire
cohort (Figure 3]), respectively. Moreover, we classified patients of
the entire cohort into multiple subgroups according to the clinical
parameters including gender (female vs male), age (<60 vs >60),
grade (Grade: T1/2 vs Grade: T3/4), stage (stage I/II vs stage III/IV),
T (T 1/2 vs T3/4), and M stage (MO vs MI). Survival analyses
revealed that in different strata of clinicopathological features,

Frontiers in Oncology

47

patients of high-risk group harbored worse overall survival
(Figures 4A-F), suggesting that our HOX family gene-based
signature was quite useful and perform well in prognosis prediction.

Validation of the homeobox family gene-
based signature in external ICGC cohort

Subsequent, the external ICGC cohort was utilized to

estimate the stability and generalizability of the prognostic
signature. Using the same formula as in training cohort, the
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risk score of patients in ICGC cohort was computed and it
allowed patients to be assigned into high- and low-risk groups
based on the median value of risk score in training cohort. The
risk score distribution of patients in high- and low-risk groups
was shown in Figure 5A. The distribution of survival time and
living status of patients in ICGC cohort was exhibited in
Figure 5B, and it suggested that patients of high-risk group
tended to have better survival status and longer survival time.
Figure 5C shows the expression profile of the eight HOX genes
in ICGC cohort. Survival analysis revealed that the overall
survival of patients who belonged to the high-risk group was
poorer than that of the low-risk group (Figure 5D). Time-
dependent ROC analysis suggested that the AUC values were
0.630, 0.659, and 0.727 for 1-, 2-, and 3-year overall survival
(Figure 5E). Taken together, these analyses indicated the

Frontiers in Oncology

satisfactory predictive power of the signature in forecasting the
clinical outcomes of ccRCC patients.

Estimation of the independent
prognostic value of the signature and
construction of a nomogram

To investigate the independence of the signature and other
clinicopathological parameters (age, gender, grade, stage, T and
M status), both univariate and multivariate Cox regression
analyses were performed. The results indicated that age, grade,
stage, M status, and the signature-derived risk score showed
significance in both analyses, and they thus could be regarded as
independent prognostic indicators in patients with ccRCC
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(Table 2). Furthermore, a nomogram was created by combining
risk score and other four clinicopathological characteristics
including gender, age, T, and M status that were shared in
TCGA and ICGC cohorts (Figure 6A). As shown in Figures 6B,
C, calibration curves indicated satisfactory agreement between
the nomogram prediction and actual observations, showing the
remarkable dependability of the nomogram in predicting the
overall survival of ccRCC patients.

Functional annotation of the HOX family
gene-based signature

To reveal the underlying biological mechanism of the HOX
family gene-based signature, we screened differentially expressed
genes (DEGs) between high- and low-risk groups using edgeR
filtration. A total of 328 shared DEGs between different risk
groups in both TCGA and ICGC cohorts were identified the

TABLE 2 Univariable and multivariable analysis of the HOX family gene-based signature and clinical factors in the TCGA cohort.

Variables Univariable analysis

Multivariable analysis

HR 95% CI of HR
Lower Upper
Age (<60 vs >60) 1.788 1.309 2.441
Gender (Female vs Male) 0.930 0.679 1.274
Grade (I/11 vs III/TV) 2.593 1.837 3.659
Stage (I/II vs III/IV) 3.610 2.618 4.978
T (T 1/2vs T 3/4) 3.003 2.205 4.088
M (MO vs M1) 4.205 3.070 5.759
Risk (High vs Low) 1.005 1.001 1.008
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P HR 95% CI of HR P
Lower Upper
0.000 1.694 1233 2.329 0.001
0.651 0.932 0.673 1.290 0.671
0.000 1.617 1118 2.338 0.011
0.000 2.158 1.039 4481 0.039
0.000 0.937 0.500 1.757 0.840
0.000 2447 1.655 3.616 0.000
0.000 1.006 1.002 1.009 0.002
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Construction and validation of a prognostic nomogram in ccRCC. (A) The nomogram combining risk score with clinical factors such as gender,
age, T and M status for forecasting 1-, 3-, and 5-year overall survival. (B, C) The calibration plots of predicted and actual probabilities for the

nomogram in TCGA and ICGC cohorts **P < 0.01; ***P < 0.001.

criterion of FDR<0.05 and [log2FC| >0.5 (Figure 7A). The
expression patterns of these shared DEGs in TCGA and ICGC
cohorts were exhibited in Figures 7B, C. Then, we annotated the
function of these shared DEGs using DAVID database. GO
enrichment analysis suggested that biological processes
including regulation of response to stimulus, immune system
process, response to external stimulus, defense response, and
regulation of immune system process, were significantly
enriched. As for the cellular component, extracellular region,
extracellular region part, and vesicle were the three most
enriched terms. In the molecular function category, DEGs
were mainly enriched in receptor binding, protein complex
binding, and antigen binding (Figure 7D). KEGG enrichment
analysis suggested that multiple signaling pathways including
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PI3K-Akt, MAPK, Ras, Rapl, and HIF-1 were significantly
enriched (Figure 7E). GSEA method revealed that allograft
rejection, base excision repair, complement and coagulation
cascades, lysosome, primary immunodeficiency, proteasome,
and pyrimidine metabolism were markedly enriched in ccRCC
samples with higher risk scores in TCGA cohort. Meanwhile,
hallmarks including adherens junction, fatty acid metabolism,
propanoate metabolism, TGF-B signaling pathway, tight
junction, valine leucine and isoleucine degradation, and WNT
signaling pathway were significantly enriched in ccRCC samples
of low-risk group in TCGA cohort (Figure 7F). In ICGC cohort,
oxidative phosphorylation and ribosome were significantly
enriched in ¢ccRCC samples of high-risk group, while
hallmarks such as apoptosis, basal transcription factors, JAK/
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different risk groups in TCGA and ICGC cohorts. (B, C) Heatmap showing the expression profiles of the DEGs in TCGA and ICGC cohorts.
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STAT signaling pathway, RIG I like receptor signaling pathway,
and T cell receptor signaling pathway were markedly enriched in
ccRCC samples of low-risk group (Figure 7G).

Association between the HOX family
gene-based signature with immune
cell infiltration

To explore the relationship between HOX family gene-based
signature with the immune landscape of ccRCC, we estimated the
proportions of immune cell infiltrated in each ¢cRCC sample by
analyzing RNA sequencing data, and compared them between
high- and low-risk groups. Figure 8A and Supplementary
Figure 1A show the proportion of 22 infiltrated immune cell
types in ccRCC samples of TCGA and ICGC cohorts, and it
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suggested that M2 macrophages, CD8 T cells, and resting memory
CD4 T cells were the three most abundant immune cells in tumor
microenvironment. The correlations of these infiltrated immune
cells in ccRCC samples of TCGA and ICGC cohorts were shown
in Figure 8B and Supplementary Figure 1B. In TCGA cohort, the
regulatory T cells (Tregs) infiltrated differently between the two
subgroups (Figures 10C, D). In ICGC cohort, a higher level of
immune infiltration by regulatory T cells (Tregs), and a lower level
of M1 macrophages and resting dendritic cell were associated with
higher risk score (Supplementary Figure 1C, D). Additionally, we
employed ssGSEA method to compare the enrichment scores of
immune cell and related immune functions in high- and low-risk
groups. As shown in Figures 9A, B, the scores for mast cells were
significantly lower in high-risk group compared with the low-risk
group, which was consistent in both TCGA and ICGC cohort. As
for the related immune function, the enrichment scores of APC
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Comparison of immune cell infiltration in high- and low-risk groups in TCGA cohort. (A) Relative abundance of immunocyte infiltration in KIRC
samples of the TCGA cohort. (B) The heatmap showing the correlation of infiltrating immune cells in the TCGA cohort. (C, D) The fraction of 22

immune cell types in high- and low- risk groups of the TCGA cohort.

co-inhibition, para-inflammation, and type II IFN response were
consistently lower in high-risk group in both cohorts
(Figures 9C, D).

Expression and Kaplan-Meier survival
analysis of the eight HOX family genes

We then analyzed the expression levels of the eight HOX
family genes in ccRCC tissues and adjacent normal tissues, and
performed Kaplan-Meier survival analysis in TCGA and ICGC
cohorts. As shown in Figures 10A-G, the transcript levels of
HOXBI1, HOXA7, HOXB5, HOXD8, HOXBY, HOXAY9, and
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HOXAI1 were significantly lower in ¢ccRCC tumor tissues
compared to adjacent normal tissues, which was consistent in
both TCGA and ICGC cohorts. Compared to normal tissues, the
expression of HOXD9 was lower in ccRCC tumor tissues of
TCGA cohort, while it was higher in ¢ccRCC tumor tissues of
ICGC cohort (Figure 10H). Meanwhile, Kaplan-Meier survival
analysis in TCGA cohorts revealed that lower expression of
HOXA7 and HOXDS, and higher expression of HOXA9,
HOXA11, and HOXB9 were associated with worse overall
survival in ccRCC patients (Figures 11A-H). In ICGC cohort,
survival analysis indicated that higher expression of HOXA9
predicted poorer prognosis in ccRCC (Supplementary
Figure 2A-H).
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HOXD8 was downregulated in ccRCC
and correlated with tumor progression

Finally, we comprehensively analyzed HOXDS8 in ccRCC
based on public resources. Figure 12A shows the expression
profiles of HOXDS in various tumor types and it suggested that
compared to adjacent normal tissues, HOXD8 was
downregulated in tumor tissues including BRCA, COAD,
KIRC, KIRP, KICH, PRAD, READ, and UCEC, while it was
upregulated in tumor tissues such CHOL, ESCA, HNSC, LIHC,
and LUSC. Moreover, HOXDS8 expression were markedly
downregulated in c¢cRCC tissues than that in match non-
tumor tissues (Figure 12B). Besides, HOXD8 expression was
significantly decreased with the increase of tumor grade and
stage, and lymph node metastasis (Figures 12C-E). Additionally,
the protein level of HOXD8 was also lower in ccRCC tissues than
that in normal tissues (Figure 12F), and HOXDS protein level
decreased with the increase of tumor grade (Figure 12G). Finally,
we analyzed the expression of HOXDS in three independent
datasets (GSE40435, GSE46699, and GSE53757) from GEO
database and performed qRT-PCR to detect HOXDS
expression in clinical samples. Our results indicated that
HOXDS8 expression were dramatically downregulated in
ccRCC tissues compared to adjacent non-tumor tissues
(Figures 12H-K).
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Discussion

Members of HOX family genes had been found to be
aberrantly expressed in multiple types of tumors. In ccRCC,
although some studies have indicated that dysregulation of HOX
genes such as HOXDI, HOXA13, and HOXCII were associated
with cell proliferation, metastasis, and apoptosis (27-29), while
the detailed roles of HOX family genes on malignant behaviors
of ccRCC and its prognostic values remained largely to be
characterized. Here, we comprehensively analyzed the
expression profiles and clinical significance of HOX genes in
ccRCC using transcriptome profiles of tumor samples and
corresponding clinical information from the TCGA database.
We are suppressed to find that over eighty percent (32/39) of
HOX genes were differentially expressed between ccRCC
samples and adjacent normal tissues, and about thirty-five
percent (14/39) of HOX genes were robustly associated with
patients’ prognosis. These analyses indicated that HOX genes
might exert vital role in the development and progression of
ccRCC. Subsequently, we built a prognostic signature based on
eight HOX genes including HOXB1, HOXA7, HOXB5, HOXDS,
HOXD9, HOXBY9, HOXAY9, and HOXAII in c¢cRCC for risk
stratification, which allowed patients with higher or lower risk
score to be divided into different risk groups. Comparing the
overall survival in subgroups of all the internal cohorts (training
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Comprising the expression of HOXA7 (A), HOXA9 (B), HOXA11 (C), HOXB1 (D), HOXBS5 (E), HOXB9 (F), HOXDS8 (G), and HOXD9 (H) between

tumor tissues and adjacent normal tissues in TCGA and ICGC cohorts

cohort, testing cohort, entire cohort) and external cohort (ICGC
cohort) by Kaplan-Meier survival method indicated that the
overall survival of patients who belonged to the high-risk group
was poorer than that of the low-risk group. Moreover, time-
dependent ROC curve analyses suggested the favorable
forecasting performance of the signature. Besides, the
specificity and accuracy of our eight-gene based signature was
superior to some previously reported prognostic signatures in
ccRCC (30, 31), in terms of AUC values of the ROC curves
(Supplementary Table 1). Taken together, our HOX gene-based
signature harbored satisfactory accuracy and generalizability in
prognosis prediction. Additionally, univariate and multivariate
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Cox regression analyses revealed that the signature-derived
risk score was an independent prognostic indicator in patients
with ccRCC. Furthermore, we successfully developed a
nomogram by combining signature-derived risk score, gender,
age, T and M status to expand the predictive ability of the
signature, which exhibited good clinical application value and
might be helpful in facilitating individualized treatment and
clinical decision-making.

In order to reveal the underlying biological mechanism of
the HOX family gene-based signature, a total of 328 shared
DEGs between the two risk groups were identified and were then
functionally annotated. In KEGG enrichment analysis, we found
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TCGA cohort.

that these DEGs were mainly enriched in PI3K-Akt, MAPK, Ras,
Rapl, and HIF-1 signaling pathways, and these enriched
pathways had been previously demonstrated to be critical for
ccRCC development and progression (32-35). For example, the
modestly mutated genes in PI3K/AKT pathway leads to its
highly activated in ¢ccRCC and represents promising drug
targets (36). Isoform-specific AKT inhibitors are being tested
in ccRCC clinical trials (37). Thus, we could speculate that the
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two risk groups stratified by our signature might exhibit distinct
activation of these signaling pathways.

Tumor microenvironment consists of two major categories of
components, including cellular components (e.g., tumor cell,
vascular endothelial cells, immune cells, and mesenchymal stem
cells) and surrounding acellular components (e.g., cytokines,
adhesion molecules, growth factors). These non-tumor
components provide a scaffold, barrier and environment for
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HOXD8 was downregulated in KIRC and correlated with tumor progression. (A) The expression profiles of HOXD8 in various types of tumors.
(B) Comparison of the expression of HOXDS8 in KIRC tissues and match non-tumor tissues. (C-E) The expression of HOXD8 in KIRC tissues with
different tumor grade, stage, and N status. (F) The protein level of HOXD8 in KIRC tissues and normal tissues. (G) The protein level of HOXDS8 in
KIRC tissues with different tumor grade. (H-J) Comparison of the expression of HOXD8 in normal and tumor tissues in GSE40435, GSE46699,
and GSE53757 database. (K) gRT-PCR was used to detect HOXD8 expression in clinical samples *P < 0.05; **P < 0.01; ***P < 0.001.

tumor occurrence and growth. Recent studies revealed that ccRCC
is one of the most immune and vascularly infiltrated cancer types
and the immune microenvironment played crucial role in ccRCC
progression, and was associated with immune therapy response
and patients’ prognosis (38, 39). Thus, we further explored the
association of the signature with immune microenvironment and
immune cell infiltration in ¢cRCC. CIBERSORT algorithm
revealed that CD8 T cells, M2 macrophages, and resting
memory CD4 T cells were the three most abundant immune
cell types in ccRCC tissues. Moreover, a higher level of
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immune infiltration by regulatory T cells (Tregs), and a lower
level of M1 macrophages and resting dendritic cell were associated
with higher risk score. The regulatory T cells in tumor
microenvironment hindered protective immunosurveillance of
tumor and suppress anticancer immunity, thereby leading to
tumor progression (40-42). A higher proportion of infiltrated
regulatory T cells in tumor tissues was regarded to be associated
with worse prognosis (43). Treg-cell targeting therapy was shown
to evoke and enhance anti-tumor immune response (44). The M1
macrophages, developed from MO macrophages, exert tumor
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inhibiting role by mediating cytotoxicity and antibody-dependent
cell-mediated cytotoxicity (ADCC) to kill tumor cells (45, 46). The
abundance of infiltrating M1 macrophages was positively
correlated with clinical outcome in diverse tumor types (47). By
combining our findings with those of previous studies, we were
able to conclude that our HOX gene-based signature was closely
associated with distinct immune status and different patterns of
infiltrating immune cells, which might contribute to diverse
clinical outcome in the two risk groups. Our signature might
offer prominent therapy guidance and could be useful in
determining which patients would benefit from immune therapy.

Of the eight HOX genes (HOXBI, HOXA7, HOXB5, HOXDS,
HOXD9Y, HOXBY, HOXA9, and HOXA1I) comprised in our
signature, their transcript levels were consistently lower in
ccRCC tissues compared to adjacent normal tissues (except for
HOXD?). Survival analysis indicated that lower expression of
HOXA9, HOXA11, and HOXBY were associated with favorable
clinical outcome in ccRCC patients, thus the prognostic prediction
performance of HOXA9, HOXAII, and HOXBY might be
controversial with their expression level in ccRCC. HOXA9 had
been extensively studied in various types of tumors and it could
act in opposite ways when it was dysregulated in tumors. Lower
expression of HOXA9, accompanied by hypermethylation of its
promoter region, was diagnostic or prognostic biomarker in
tumors such as non-small cell lung cancer, ovarian cancer, and
head and neck squamous cell carcinoma (48-50). Modulating
HOXA9 expression could either promote or inhibit tumor
progression through different mechanism, depending on context
(51, 52). In renal cell tumors (RCT), promoter methylation of
HOX9A was disclosed in 73% of RCTs, and the two-gene
(HOX9A and OXRI1) methylation panel led to 90% sensitivity
and 98% specificity in the identification of ccRCC (53). However,
up to now, little is known about the role of HOXA9 in c¢cRCC,
further experiments should be carried out to detect the effect of
HOXA9 knockdown or overexpression on malignant behaviors of
ccRCC cells and unearth the underlying mechanism. HOXAI11
was a putative tumor suppressor in a number of solid tumors and
it was frequently epigenetic inactivated (54, 55). HOXA11
antisense LncRNA (HOXA11-AS) was shown to be associated
with advanced tumor stage and metastasis in RCC. Functionally,
overexpression of HOXA11-AS promoted tumor growth and
invasion through regulating miR-146b-5p-MMP16 axis (56).
HOXB9 was also reported to play a dual role in different types
of tumors (57). The aberrant expression of HOXB9 in tumors was
not only prognostic predictor but also indicator of response to
target therapy. Protein encoded by HOXB9 functioned as
oncoprotein and could accelerate cell proliferation and invasion
in endometrial cancer, colorectal cancer, and hepatocellular
carcinoma cells (58-60). However, HOXB9 could also delay
tumor progression in other kinds of tumors such as gastric
cancer and pancreatic cancer (61, 62). Nevertheless, the
functional role of HOXB9 in ccRCC remains largely unknown
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and deserves further investigation. HOXBI is a well-defined tumor
suppressor gene in diverse tumors (63, 64) and it was dramatically
downregulated in ccRCC. However, HOXBI expression is
extremely low in ccRCC tissues, which might limit its biological
roles in ccRCC. Whether HOXBI had an effect on malignant
behavior of ccRCC cells should be further explored in vitro and in
vivo. The downregulated expression of HOXA7 in ccRCC and its
lower expression being associated with poorer patients’ prognosis
indicated that it might be a tumor suppressor in ccRCC. However,
HOXA7 was recently more reported to be oncogene and
promoted oncogenic characteristics in many kinds of tumors
such as liver cancer, cervical cancer, ovarian cancer, colorectal
cancer and breast cancer (65-69). The role of HOXA7 in ccRCC
had not been reported until now and exploring its effect on
malignant characteristics of ¢ccRCC might lead to the
understanding of its diverse biological role and the complicated
intracellular regulatory network. HOXB5 and HOXD9 were
suspected to be oncogenes in tumors and their translation
products were reported to aggravate malignant development of
tumors (70-72). Though our bioinformatic analysis suggested that
HOXB5 and HOXD9 were markedly downregulated in ccRCC, the
detailed role of them in ccRCC should be further experimentally
investigated. Protein encoded by HOXDS8 gene is a conserved
transcription factor that exert a tumor-suppressing role in various
tumors through diverse mechanism. Overexpression of HOXD8
in colorectal cancer cells impaired cell proliferation and migration
via inducing apoptotic event (73). Enforced expression of HOXD8
in breast cancer repressed tumor growth by inactivating AKT/
mTOR pathway (74). Up to now, the role of HOXD8 in ccRCC
had not been elucidated. Intriguingly, we found that the mRNA
and protein levels of HOXD8 were downregulated in ccRCC than
that in normal tissues, and decreased expression of HOXD8 was
associated with increased tumor grade and stage, and lymph node
metastasis. Survival analysis revealed that lower expression of
HOXD8 predicted worse overall survival in ccRCC. Taken
together, it is reasonable to speculate that HOXD8 might be a
tumor suppressor gene in ccRCC and a potential predictor of
tumor progression.

Inevitably, there are several shortcomings in our study.
First, we should endeavor to collect prospective cohort to
verify the reliability of our signature. Second, we need to
examine the protein levels of the HOX family genes,
especially HOXDS, in ccRCC though immunoblotting or
immunohistochemistry staining. Third, the role of HOX
family genes, especially HOXDS, are warrant to be
experimentally explored in ccRCC.

In all, we here systemically analyzed HOX family genes in
ccRCC using bioinformatic method, and successfully
constructed a prognostic signature based on eight HOX genes.
Our signature was a favorable indicator to predict the prognosis
of ccRCC cases and associated with tumor immune
microenvironment and immune cell infiltration. HOXDS, one
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of the eight HOX genes, might be a tumor suppressor gene in
ccRCC and a potential predictor of tumor progression.
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Multi-omics profiles refine
L-dopa decarboxylase (DDC)
as a reliable biomarker for
prognosis and immune
microenvironment of clear
cell renal cell carcinoma

Kun Chang***, Jiaqi Su™**, Chuanyu Li*,
Aihetaimujiang Anwaier™**, Wangrui Liu*, Wenhao Xu*??,
Yuanyuan Qu*??, Hailiang Zhang*** and Dingwei Ye'**

tDepartment of Urology, Fudan University Shanghai Cancer Center, Shanghai, China, 2Department
of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, *Shanghai
Genitourinary Cancer Institute, Shanghai, China, “Department of Neurosurgery, Affiliated Hospital
of Youjiang Medical University for Nationalities, Baise, China

Background: Increasing evidence indicates that L-dopa decarboxylase
(DDC), which mediates aberrant amino acid metabolism, is significantly
associated with tumor progression. However, the impacts of DDC are not
elucidated clearly in clear cell renal cell carcinoma (ccRCC). This study aimed
to evaluate DDC prognostic value and potential mechanisms for ccRCC
patients.

Methods: Transcriptomic and proteomic expressions of and clinical data
including 532 patients with ccRCC (The Cancer Genome Atlas RNA-seq
data), 226 ccRCC samples (Gene Expression Omnibus), 101 ccRCC patients
from the E-MTAB-1980 cohort, and 232 patients with ccRCC with
proteogenomic data (Fudan University Shanghai Cancer Center) were
downloaded and analyzed to investigate the prognostic implications of DDC
expression. Cox regression analyses were implemented to explore the effect of
DDC expression on the prognosis of pan-cancer. The "limma" package
identified the differentially expressed genes (DEGs) between high DDC
subgroups and low DDC groups. Functional enrichments were performed
based DEGs between DDC subgroups. The differences of immune cell
infiltrations and immune checkpoint genes between DDC subgroups were
analyzed to identify potential influence on immune microenvironment.

Results: We found significantly decreased DDC expression in ccRCC tissues
compared with normal tissues from multiple independent cohorts based on
multi-omics data. We also found that DDC expression was correlated with
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tumor grades and stages.The following findings revealed that lower DDC
expression levels significantly correlated with shorter overall survival (P
<0.001) of patients with ccRCC. Moreover, we found that DDC expression
significantly correlated with an immunosuppressive tumor microenvironment,
higher intra-tumoral heterogeneity, elevated expression of immune
checkpoint CD274, and possibly mediated malignant behaviors of ccRCC
cells via the PI3k/Akt signaling pathway.

Conclusion: The present study is the first to our knowledge to indicate that
decreased DDC expression is significantly associated with poor survival and an
immune-suppressive tumor microenvironment in ccRCC. These findings
suggest that DDC could serve as a biomarker for guiding molecular diagnosis
and facilitating the development of novel individual therapeutic strategies for

patients with advanced ccRCC.

KEYWORDS

l-DOPA decarboxylase, amino acids metabolism, tumor microenvironment, clear cell
renal cell carcinoma (ccRCC), prognosis, biomarker

Introduction

Renal cell carcinoma (RCC) is the third most common
genitourinary malignancy worldwide (1, 2). In 2022, it is
estimated that 79,000 new cases are diagnosed as RCC and
13,920 related deaths in the United States (3). Pathologically,
RCC incorporates three main subtypes, including clear cell RCC
(ccRCC), papillary RCC, and chromophobe RCC (4). Clear-cell
RCC is the most common type of RCC with high aggressiveness,
accounting for approximately 80% of all RCC pathology types (5).
Around 30% of RCC patients are diagnosed as having advanced
RCC, and the five-year survival rate is 23% (6). Hence, there is an
urgent need to discover the underlying mechanisms of high
invasiveness and high metastatic potential to find more reliable
biomarkers that could assist in diagnosing and predicting prognosis.

Metabolic reprogramming is widespread in malignant
tumors, the most well-known of which is glucose metabolic
reprogramming that is termed the “Warburg effect” (7). This
inefficient form of energy metabolism supplies the need for new
proliferating cancer cells and enables the use of intermediate
products to yield biomolecules, such as amino acids, and
nucleotides (8). Previous studies revealed that amino acids
could have impacts on cell proliferation, the tumor
microenvironment, epigenetic modification, and drug
resistance (9-14). Previous studies also revealed that amino
acid aberrant metabolism was associated with tumor
progression and immune infiltration in ¢cRCC and other
cancers (15-18). Therefore, to better understand the profound
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mechanisms, studies are in demand to identify key amino acid
metabolism-related genes and transfer them to drug targets.

L-dopa decarboxylase (DDC) locates at chromosome 7p and
encodes a protein that catalyzes the decarboxylation process of
L-3,4-dihydroxyphenylalanine (DOPA), L-5-hydroxytryptophan,
and L-tryptophan to dopamine, serotonin, and tryptamine,
respectively (19). Our previous proteomic analysis demonstrated
that L-dopa decarboxylase was significantly downregulated in
ccRCC (15). The regional dopamine of the kidney plays
a potential role in regulating blood pressure, and the
dysregulation of DDC might lead to hypertension, which is a
common symptom of RCC (20). Tremmel et al. found that DDC
was a favorable prognostic factor in breast cancer (21). However,
in prostate cancer, the higher expression of DDC was associated
with advanced stages, higher Gleason scores, biochemical
recurrence, and short disease-free survival (DFS) (22). Also, the
role of DDC has been investigated in the development of
colorectal cancer (23), small cell lung cancer (24), and gastric
cancer (25). However, the prognostic value and underlying
mechanism caused by aberrant L-dopa decarboxylase expression
have not been systematically elucidated in ccRCC.

In this study, we thoroughly performed DDC-related
bioinformatics analysis in ¢ccRCC and validated conclusions
using external cohorts from multi-omics data. We found the
downregulation of DDC in ¢cRCC was significantly associated
with worse outcomes. Furthermore, DDC expression showed
close relationships with clinicopathologic features and prognosis.
We also revealed that DDC was correlated with immune cell
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infiltration and expressions of immune checkpoint genes. In order
to boost the knowledge of basic cancer biology, our study sought
to identify the underlying mechanisms of DDC in carcinogenesis
and provided a new therapeutic target for ccRCC patients.

Materials and methods

Patients’ inclusion and
data preprocessing

Proteogenomic expression data of 232 Chinese paired ccRCC and
normal samples and 93 c«cRCC tumors were included from our
institute, the Fudan University Shanghai Cancer Center (FUSCC-
ccRCC cohort) (15), and the Clinical Proteomic Tumor Analysis
Consortium (CPTAC) (https://proteomics.cancer.gov/programs/
cptac). Transcriptomic expression profiles, tumor somatic mutations,
and corresponding clinical information of 532 patients with ccRCC and
patients across 33 cancers were obtained from The Cancer Genome
Atlas (TCGA) database. Transcriptomics data of 226 ¢cRCC and 196
normal kidney samples were also enrolled from the Gene Expression
Omnibus (GEO) database, including GSE36895 (53 ¢cRCC and 23
normal samples), GSE40435 (101 ccRCC and 101 normal renal
samples), and GSE53757 (72 ¢cRCC and 72 normal samples)
cohorts. Additionally, RNA sequences and clinicopathological data of
101 ccRCC patients from the E-MTAB-1980 cohort were available
from the ArrayExpress (https://www.ebiac.uk/arrayexpress/) database
as a transcriptomics validation cohort. Besides, we also included 232
ccRCC samples with proteomics information and available clinical and
pathologic data from the FUSCC-ccRCC cohort as a proteomics
validation cohort. The details about the FUSCC-ccRCC cohort and
how amino acid metabolism clusters are defined were discussed in the
previous study (15).

DDC expression and correlations with
clinicopathological features

The DDC expressions of two proteomic cohorts and three
transcriptomic cohorts were used to determine whether DDC
expression was dysregulated in ccRCC using the Wilcox test.
Statistical analyses were conducted on the relationship between
DDC expression and clinicopathological features using ggplot2
(v3.3.2) in R software. The Sankey plot of clinicopathological
features was conducted in R software.

Differentially expressed genes
identification and functional
enrichment analysis

We divided the TCGA cohort into two subgroups based on
the median value of DDC expression in order to keep the
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classification model simple and ensure universality. Then the
DEGs between two subgroups were identified with the threshold
of |log2(Fold Change)| >1.5 and adjusted P <0.05 using the R
package “limma” (26) in the TCGA cohort. The Cluster Profiler
package (version: 3.18.0) in R software was employed to analyze
the Gene Ontology (GO)-identified functions of potential targets
and perform Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis between subgroups. For
pathway analysis, the R software GSVA package was used,
choosing parameter as method = ‘ssgsea’ (27). The correlation
between DDC expression and pathway score was assessed using
Spearman’s correlation analysis.

Evaluation of immune cells abundance
in the TME and immunological response
of ccRCC

To evaluate the absolute proportion of tumor-infiltrating
lymphocytes (TILs) in ccRCC, we conducted the CIBERSORT
and assessed the proportion of all TILs using support vector
regression. Besides, to assess the reliability of the algorithms, we
used the “immuneeconv” and “pheatmap” R packages that
provide an integrated P-value from the six latest algorithms,
including TIMER, xCell, MCP-counter, CIBERSORT, EPIC, and
quanTIseq for individuals (28). We also explored the TIL
differences between two DDC subgroups. The potential
therapeutic response to immune checkpoint inhibitors (ICIs)
was predicted with the TIDE algorithm, as described
previously (29).

Survival analysis

The primary endpoint was overall survival (OS), and the
secondary endpoint was progression-free survival (PFS) in
ccRCC patients. Survival curves were performed to assess the
prognostic significance using the Kaplan-Meier method and
log-rank test with 95% confidence intervals (95% CI). The
cut-off value was defined via the “survminer” R package or
median threshold according to samples assigned to the TCGA
cohort. To detect the independent prognostic indicators, we
assessed the hazard ratio (HR) and 95% CI using univariate and
multivariate Cox logistic regression analysis and visualized the
results in the forest plots. We utilized two external validation
cohorts, including E-MTAB-1980 and the FUSCC-ccRCC
cohort, to confirm the prognostic value of DDC in ccRCC.

Immunohistochemical analysis

Samples were embedded in paraffin at a thickness of 4 nm.
Deparaffinization and rehydration were performed on each slide.
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Immunohistochemical (IHC) assay was conducted with
anti-DOPA Decarboxylase/DDC antibody (1:1,000, ab211535,
Abcam) diluted 1:1,000. After incubating the HRP-labeled
secondary antibody for 2 h, we performed immunodetection
the next day, following the manufacturer’s protocols. Based on
the integration of the degree of intensity and density of staining,
two independent pathologists evaluated the overall THC score
(from 0 to 12) as follows: negative staining, 0 to 3; positive
staining, 4 to 12, as previously described (30).

Statistical analysis

For statistical analyses, the SPSS software (version 23.0),
GraphPad Prism software (version 8.0), or R software (version
3.3.2) were employed. The relationships between DDC expression
and clinicopathological characteristics were evaluated using the
Chi-square test. The Student’s t-test was used to compare the
differences between the two groups. A one-way ANOVA was
performed to compare the differences among multiple groups. All
hypothesis tests were two-sided, and P-values below 0.05 were
regarded as significant.

Results

Identification of DDC expression in
regulating amino acids metabolism
of ccRCC

Our previous study found that tumor and adjacent normal
tissue had significant differences in amino acid metabolism-
related pathways in the FUSCC proteomic ccRCC cohort
(Figure 1A). The amino acid metabolism-related proteins,
including SHMT1, BHMT, AHCY, ALDHIL1, DDC, AOX1,
AFMID, KYNU, and HAAO, were downregulated in c¢cRCC
compared to adjacent normal tissue, while NNMT was
upregulated in ccRCC compared to adjacent normal tissue
(Figure 1A). Thus, we found that DDC was significantly
downregulated compared to other downregulated amino acid
metabolism-related genes. The immunohistochemistry staining
demonstrated a similar phenomenon (Figure 1B). To determine
whether DDC is aberrantly expressed in ccRCC, we utilized two
proteomic cohorts (FUSCC and CPTAC) and three
transcriptomic cohorts (GSE36859, GSE40435, and GSE53757)
to verify DDC expression at the transcription and translation level.
The results demonstrated that both the protein and mRNA levels
of DDC were lower in the ccRCC specimen compared to adjacent
normal tissue (P <0.001) (Figures 1C, D). We next explored DDC
expression in human cancers and found that DDC is widely
differentially expressed in pan-cancer analysis using the TCGA
expression profiling (Figure 1E), which indicated that DDC is
expressed differently in different human cancers. The aberrant
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DDC expressions deserved further investigation to determine
whether DDC could serve as a therapeutic target.

Associations between DDC and
clinicopathological features in ccRCC
from the TCGA cohort

To explore whether DDC expression altered in the process of
tumor progression, we divided TCGA cohort into two subgroups
based on the median value of DDC expression (DDC™#" vs,
DDC"™"). We found that different DDC subgroups had different
compositions of clinicopathological features, indicating that DDC
expression had potential associations with clinicopathological
features, including gender, T stage, N stage, and M stage, as well
as the American Joint Committee on Cancer (AJCC) stage and
tumor grade (P <0.05) (Figure 2A). Then, the distribution of clinical
phenotypes and DDC expression of the TCGA cohort was
presented in Figure 2B. Patients diagnosed as stages III-IV were
group
showed a worse prognosis compared to the DDC™*¢" group
(Figure 2B). We then found that DDC expression demonstrated
weak but statistically significant correlations with tumor AJCC stage
(R=-0.126, P = 0.0036) and tumor grade (R = —0.134, P = 0.00214)
(Figure 2C). The results indicated the indispensable role of DDC
expression in the ccRCC progression process.

more likely to have lower DDC expression, and the DDC*™

Low DDC expression in ccRCC is
associated with worse prognosis

Due to DDC expression dysregulation in human cancers, we
first explored the prognostic value of DDC in pan-cancer analysis.
We found that, among all the cancers in the TCGA database, the
prognostic implications of DDC expression showed the most
significant value in the ¢cRCC (Figure 3A). The following
analyses performed in ccRCC cohort demonstrated similar
results: lower DDC expression was associated with shorter OS
and progression-free survival (PFS) (P <0.001) (Figure 3B). We next
employed univariate and multivariate Cox analyses to identify the
independent prognostic factor. In univariate Cox analysis, the
gender, T stage, N stage, M stage, and tumor grade was
correlated with worse outcome, while DDC expression was
correlated with better outcome (P <0.001). After adjusting for the
confounding factors, only DDC expression (HR: 0.828, 95% CI:
0.754-0.909) and M stage (HR: 5.194, 95% CI: 3.080-8.759) could
serve as independent prognostic factors (P <0.001) (Figure 3C). To
confirm the prognostic ability of DDC expression, we performed
survival analysis in two external cohorts. The results revealed that
the lower level of DDC expression was correlated with a worse
prognosis in the E-MTAB-1980 cohort (P = 0.030) and in the
FUSCC-proteomic-ccRCC cohort (P = 0.003), respectively
(Figure 3D). The findings above indicated the stable prognostic
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FIGURE 1
Identification of DDC expression in regulating amino acid metabolism of ccRCC. (A) The FUSCC proteomic ccRCC cohort demonstrates that
amino acid metabolism is extensively dysregulated between tumor and normal tissue and the DDC protein is significantly downregulated in
ccRCC. (B) Representative immunohistochemical (IHC) staining of DDC protein in normal kidney and ccRCC tissues. (C) Proteomic cohorts
(FUSCC and CPTAC) showed DDC protein is lower in tumors than in normal tissue. (D) Transcriptomic cohorts (GSE36859, GSE40435, and
GSE53757) showed DDC mRNA is lower in tumors than in normal tissue. (E) Pan-cancer analysis of DDC mRNA expression in human cancers.
CPTAC, Clinical Proteomic Tumor Analysis Consortium; ccRCC, clear cell renal cell carcinoma; DDC, L-dopa decarboxylase; mRNA, messenger
RNA (**P <.01; ***P <.001; ****P <.0001).

value of DDC expression, suggesting that DDC expression could be
an independent biomarker in predicting outcomes.

Functional enrichments of DDC
expression subgroups

Based on the above results that DDC expression was lower in
ccRCC specimens and correlated with a worse prognosis, we tried
to undermine the potential mechanisms that might contribute to
the differential prognosis. The differentially expressed genes
(DEGs) between the DDC*" and DDC'"#" subgroups are
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presented in Figure 4A. With the exception of DDC, other
genes such as PKLR, AGX12, HAO2, TMEM174, LRP2,
CYP4A11, CUBN, SLC22A6, SLC22A12, SLC6A19, ALDOB,
and SLC17A3 also showed significant low expression in the
DDC™" group (Figure 4A). The DEGs were used to perform
the following functional enrichment analysis: The upregulated
DEGs are mainly enriched in the PI3K-Akt signaling pathway,
while the downregulated DEGs are mainly enriched in valine,
leucine, and isoleucine degradation, the PPAR signaling pathway,
drug metabolism-cytochrome P450, bile secretion, and arginine
and proline metabolism (Figure 4B). The GO results
demonstrated that upregulated DEGs were mainly enriched in
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extracellular structure organization, extracellular matrix
organization, and so on. The downregulated DEGs were mainly
enriched in small molecule catabolic processes, organic acid
transport, organic acid catabolic processes, cellular amino acid
metabolic processes, carboxylic acid transport, carboxylic acid
catabolic processes, and so on (Figure 4B). Because the KEGG
pathway is enriched in the PI3K-Akt signaling pathway, we
explored the correlation between the tumor proliferation
signature and DDC expression. The Spearman’s correlation test
indicated potential correlations between DDC and cancer cell
proliferation (R = -0.15, P <0.001) (Figure 4C). These results
revealed the biological differences between the DDC'" and
DDC™8" subgroups and the potential correlation of DDC
on proliferation.

Differential immune microenvironment
between DDC expression subgroups

Based on the above subgroups, we wondered whether DDC
could exert a potential influence on immune cell infiltrations and
expressions of ICP genes. The immune cell infiltrations analyzed
by the “CIBERSORT” package showed that the proportions of
monocytes and M1 macrophages were higher in the DDC'"
subgroup, while the proportions of Tregs, follicular helper T
cells, MO macrophages, and memory B cells were higher in the
DDC"" subgroup (Figure 5A). This might partly explain the
survival difference in that the prognosis of the DDC"*™ subgroup
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was better than that of the DDC™ subgroup. Next, we found
that the ICP genes, including SIGLEC15, HAVCR2, and CD274
(PD-L1), expressed differently in DDC subgroups (Figure 5B).
The SIGLEC15 expression was lower in the DDC™" subgroup,
while HAVCR2 and CD274 were higher in the DDCH&"
subgroup (P <0.001), which suggested the potential capability
in immune regulation. The tumor immune dysfunction and
exclusion (TIDE) score has confirmed its ability to predict the
immune checkpoint inhibitor (ICI) response (31). In our study, we
found that the DDC™#" subgroup had a lower level of TIDE score
than the DDC™" subgroup (P <0.0001) (Figure 5C), which meant
that the DDC"™ subgroup seemed to have a worse immunotherapy
response and worse prognosis. To investigate the impacts of DDC
protein on immune cell infiltrations, we explored the pan-cancer
analysis and found that DDC expression was closely correlated with
immune cell infiltrations in the c¢cRCC cohort (Figure 5D).
Consistent with the above results, DDC demonstrated significant
correlations with M0 and M1 macrophages in ¢ccRCC, and the
underlying regulatory mechanisms need to be elucidated in
the future.

Discussion

Kidney cancer is a highly genetically heterogeneous malignant
tumor, which may cause patients from different races and regions
to carry different gene mutations and genetic phenotypes, which
in turn cause the biological behavior of tumor cells and different
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Low DDC expression in ccRCC correlated with a worse prognosis. (A) The pan-cancer associations between DDC expression and OS in human
cancers. (B) Kaplan—Meier survival analysis of the relationships between DDC mRNA expression and OS (P <.001) and PFS (P <.001) in the KIRC
cohort. (C) Univariate and multivariate Cox logistic regression analysis of OS in the TCGA cohort. (D) External Kaplan—Meier survival analysis of

the relationships between DDC expression and OS in the E-MTAB-1980 cohort (P = .030) and FUSCC-ccRCC cohort (P = .003). DDC, L-dopa

decarboxylase; mRNA, messenger RNA; OS, Overall Survival; PFS, Progression-free Survival; KIRC, Kidney renal clear cell carcinoma.

sensitivity to treatment (32, 33). Therefore, molecular
characteristics and subtypes based on multi-omics data are
essential for improving treatment efficacy and promoting the
achievement of precision medicine in cancer (34, 35). Although
there is a growing interest in the function of amino acid
metabolism-related genes in cancer, little is known about how
DDC proteins work in ccRCC, and it is uncertain whether DDC
expression may be used as diagnostic or prognostic markers. Here,
we assessed the diagnostic and prognostic value of DDC mRNA
and protein expression in external ccRCC cohorts and found
potential associations between DDC expression and
clinicopathological features. We also explored functional
analysis and found aberrant enrichment in the PI3K-Akt
signaling pathway. Analysis of immune cell infiltration and ICP
expression revealed the underlying regulatory effects of DDC on
the tumor microenvironment (TME) and immune system.
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In our study, we discovered that DDC mRNA and protein
expression were downregulated in ccRCC compared to
adjacent normal tissue. There were potential correlations
between DDC expression and higher grade, advanced stages.
The survival analysis from external validation cohorts revealed
that low DDC expression correlated with worse OS. The results
above indicate that DDC expression level might be a reliable
biomarker assisting in diagnosis and predicting prognosis in
ccRCC. To further investigate the potential functions of DDC,
we employed KEGG and GO analyses. The findings reveal that
DDC protein could possibly enrich the PI3K-Akt signaling
pathway, amino acid metabolism, extracellular matrix
organization, and so on. The following subgroup analysis
identified Treg as being significantly upregulated in the
DDC"€" subgroup, while M1 macrophage was significantly

upregulated in the DDC"" subgroup. There were significant
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differences in ICP gene expressions between the two DDC
subgroups, which might eventually contribute to the different
TIDE scores and prognosis.

DDC expression has been investigated in several malignant
tumors. But in contrast, high DDC expressions are found more
frequently in high Gleason’s score and advanced stage, and the
underlying mechanism could be attributed to that DDC could co-
activate androgen receptor (AR)-ligand transcriptional activity
without affecting AR protein expression (36, 37). The following
research tested whether the DDC enzymatic inhibitor, carbidopa,
would suppress prostate cancer cell proliferation (38). Carbidopa
could significantly restrict AR transactivation and PSA upregulation.
The cell and castrated mice experiments demonstrated significant
tumor growth suppression and decreased serum PSA effects of
carbidopa. However, in ¢ccRCC, the opposite strategy should be
taken into consideration because of the unique genetic
backgrounds between prostate cancer and ccRCC. In breast
cancer, DDC upregulation was associated with a longer OS. The
two breast cancer cells treated with epinephrine demonstrated
contrary results in DDC expression and cell viability (21).
Although the previous studies provided a novel insight that
antitumor treatments could be combined with endocrine-related
therapy strategies, targeted therapy combined with immunotherapy
has become the first line of treatment for advanced ccRCC patients
and ccRCC patients usually demonstrate relatively fixed types of
mutations unlike prostate cancer or breast cancer. The underlying
correlations between DDC and mutations such as VHL, BAPI,
SETD2, and PBRM1 and whether DDC could serve as a new drug
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target for treating ccRCC patients or boosting immunotherapy
response should be investigated in future studies to better
guide treatments.

Dopamine (DA), catalyzed by the DDC protein, plays a role
in the normal activities of human lives. It is also an important
ingredient in orepinephrine and epinephrine (39). Previous
studies found that dopamine receptors could be a biomarker
for several malignant tumors (40), which highlights the
important role of dopamine that depends on DDC activity in
carcinogenesis. Chakroborty et al. found that a low dosage of
DDC could restrict tumor angiogenesis via inhibiting VEGFR
phosphorylation and was correlated with growth restriction in
vitro (41). Dopamine could significantly promote the efficacy of
anti-cancer drugs. The replenishments caused a low
proliferation rate and metastatic potential that might be
attributed to decreased phosphorylation levels of VEGF
receptor-2, mitogen-activated protein kinase, and focal
adhesion kinase. Angiogenesis is also one of the major
characteristics of ccRCC, and several targeted therapies such as
sunitinib, axitinib, and other drugs inhibit ccRCC progression by
targeting VEGF targets. Supplementation with dopamine or
increasing the activity of DDC enzymes may have a synergistic
effect in combination with targeted therapy, significantly
inhibiting tumor growth and progression. Moreover, a
previous study found that mice with daily stress contributed to
increased tumor growth compared to those without daily stress,
which could be blocked by dopamine replenishment (42). This
study also highlighted the importance of the tumor
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microenvironment in dopamine deletion and high-stress
conditions. Dopamine could activate resting effector T cells
(Tefts) and suppress regulatory T cells (Tregs) (43, 44). It also
affects helper T-cell differentiation, inhibits Treg activation,
takes part in antigen presentation processes, and modulates
intracellular signaling pathways, suggesting that dopamine
plays an important regulatory role in affecting the tumor
microenvironment (45). Dopamine improved the efficacy of
chemotherapy in vivo and in vitro experiments by inhibiting
the M2 characteristics of tumor-associated macrophages
(TAMs) (46). Qin et al. attempted to re-polarize M2
macrophages to M1 macrophages, and they found that
dopamine could upregulate M1-polarized markers and
downregulate M2-polarized markers, which could transfer the
tumor microenvironment from “cold” to “hot” (47, 48). The M1
macrophage exerted anti-tumor effects and correlated with the
immunotherapy response (49, 50). PD-L1 expression (CD274)
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FIGURE 5
DDC expression correlated with immune microenvironment regulation in ccRCC. (A) The differences in immune cell infiltration between DDC
subgroups. (B) The differences of ICP genes between DDC subgroups. (C) The differences in TIDE scores between DDC subgroups. The TIDE
score is significantly higher in the DDC" group (P <.0001). (D) The pan-cancer correlations between immune cell infiltrations and DDC
expression. DDC, L-dopa decarboxylase; ICP, immune checkpoint; TIDE, Tumor Immune Dysfunction and Exclusion (*P <.05; **P <.01;
**+P <.001; ****P <.0001).

was previously approved by the FDA as a predictive biomarker
for ICI (50, 51). Thus, the differentially expressed PD-L1 and
different proportions of M1 macrophages may influence the
efficacy of immunotherapy. Future studies should focus on the
effects of dopamine catalyzed by the DDC protein on the TME
and the underlying mechanisms.

The findings of this study contribute to our knowledge of the
function of DDC and recognize it as a potential diagnostic and
prognostic factor in ccRCC. However, our study has certain
limitations. First, although we utilize several external cohorts to
validate DDC expression, large cohorts are needed to validate
our conclusions. Second, the diagnostic and prognostic
significance of DDC expression has been defined, although the
underlying processes regulating its expression levels are still
unknown. This will be made clearer by additional functional
enrichment and annotation analysis. Third, the DDC protein
could influence the percentage of M1 macrophages within the
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tumor microenvironment, and the underlying mechanisms are
needed to be explored in future studies.

In conclusion, our study first systematically identified and
assessed DDC expression and its potential functions in the
regulation of metabolism and tumor microenvironment of
ccRCC. DDC might function as a tumor suppressor protein
and has been markedly linked to cancer progression and a worse
prognosis in ccRCC.
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Prognosis and pain dissection
of novel signatures in kidney
renal clear cell carcinoma
based on fatty acid
metabolism-related genes

Ruifeng Ding", Huawei Wei', Xin Jiang", Liangtian Wei?,
Mengqiu Deng* and Hongbin Yuan™
‘Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical

University, Shanghai, China, 2Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical
University, Xuzhou, China

Renal cell carcinoma (RCC) is a malignant tumor that is characterized by the
accumulation of intracellular lipid droplets. The prognostic value of fatty acid
metabolism-related genes (FMGs) in RCC remains unclear. Alongside this
insight, we collected data from three RCC cohorts, namely, The Cancer
Genome Atlas (TCGA), E-MTAB-1980, and GSE22541 cohorts, and identified
a total of 309 FMGs that could be associated with RCC prognosis. First, we
determined the copy number variation and expression levels of these FMGs,
and identified 52 overall survival (OS)-related FMGs of the TCGA-KIRC and the
E-MTAB-1980 cohort data. Next, 10 of these genes—FASN, ACOT9, MID1IP1,
CYP2C9, ABCD1, CPT2, CRAT, TP53INP2, FAAH2, and PTPRG—were identified
as pivotal OS-related FMGs based on least absolute shrinkage and selection
operator and Cox regression analyses. The expression of some of these genes
was confirmed in patients with RCC by immunohistochemical analyses.
Kaplan—Meier analysis showed that the identified FMGs were effective in
predicting the prognosis of RCC. Moreover, an optimal homogram was
constructed based on FMG-based risk scores and clinical factors, and its
robustness was verified by time-dependent receiver operating characteristic
analysis, calibration curve analysis, and decision curve analysis. We have also
described the biological processes and the tumor immune microenvironment
based on FMG-based risk score classification. Given the close association
between fatty acid metabolism and cancer-related pain, our 10-FMG
signature may also serve as a potential therapeutic target with dual effects on
ccRCC prognosis and cancer pain and, therefore, warrants
further investigation.

KEYWORDS

kidney renal clear cell carcinoma, fatty acid metabolism, prognostic signature,
nomogram, tumor microenvironment, cancer pain
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Introduction

Renal cell carcinoma (RCC) originates in tubular epithelial cells,
occupying approximately 2%-3% of adult malignancies (1). For
several decades, the incidence and mortality of RCC have been on the
rise. According to the International Agency for Research on Cancer,
431,288 new cases of clear-cell RCC (ccRCC) were diagnosed and
179,368 deaths related to this cancer were recorded worldwide in
2020 (2). The majority of deaths associated with kidney cancer are
caused by ccRCC, which is the most common subtype (3). The
survival rate after treatment for early-stage RCC is 60-70%, while
advanced RCC usually has a poor prognosis, of which the 5-year
survival is<10% (4). Therefore, it is clinically significant to predict
prognosis and provide guidance for personalized treatment by
exploring potential markers to improve overall survival of patients.

More and more evidence shows that metabolic changes play
an explanatory role in tumor progression (5). Although
increased lipid synthesis has received less attention than
aerobic glycolysis, it has recently been recognized as another
important metabolic abnormality required for carcinogenesis
(6). There is growing evidence to suggest that upregulation of
several enzymes involved in fatty acid metabolism is a universal
metabolic marker in cancer cells (7). In many cancers, lipids are
ingested and stored to meet the energy needs of tumor cells,
which are supplied with energy by fatty acids through the
process of B-oxidation (8). ccRCC is characterized by a high
rate of mutation of genes that control metabolism; therefore, this
cancer is also thought to be driven by metabolic changes (9). In
fact, it is known that ccRCC cells accumulate a large amount of
lipids and exhibit abnormal fatty acid metabolism, which is
correlated with clinical outcomes (10).

Pain is one of the most common and bothersome symptoms
in cancer patients. Across all stages of cancer, 50.7% of patients
experience pain; in particular, 66.4% of cancer patients in the
advanced stage experience pain (11). Uncontrolled pain can
contribute to poor physical and emotional well-being. It is
widely accepted that cancer pain is caused by nociceptive,
inflammatory, and neuropathic mechanisms (12). It is
essential to note that fatty acid metabolism not only has an
impact on cancer development but also has an effect on pain
development. As shown in the study by Koundouros et al., an
increase in the levels of arachidonic acid and eicosanoids can
promote cell proliferation (13). Furthermore, the role of
arachidonic acid and its metabolite prostaglandin in
inflammation and pain has been demonstrated (14). Both
anandamide hydrolase and monoacylglycerol lipase are
endocannabinoid-degrading enzymes, and inhibitors of these
enzymes can reduce pain by blocking the metabolism of
anandamide and 2-arachidonic glycerol, while increasing
endogenous levels of fatty acid amides. Interestingly, inhibitors
of these enzymes, on their own or in combination with other

Frontiers in Oncology

73

10.3389/fonc.2022.1094657

drugs, have shown therapeutic potential in a variety of cancers
(15, 16). Thus, further investigation of the role of fatty acid
metabolism-related genes (FMGs) in ccRCC might be useful for
better prediction of patient prognosis and pain management.
In this study, we constructed a fatty acid-related signature to
evaluate the prognosis of RCC. Potential relationships between
this signature and the immune microenvironment were
investigated. Moreover, we attempted to determine the
potential association between these genes and cancer pain, as
this could provide new insights into personalized cancer therapy.

Materials and methods
Data source

Transcriptome sequencing (mRNA) data, along with
detailed clinical information about RCC patients, were
acquired from The Cancer Genome Atlas (TCGA) database,
the E-MTAB-1980 cohort (17) in the EMBL-EBI database, and
the GSE22541 cohort in the Gene Expression Omnibus (GEO)
database. Altogether, we obtained data for 535 samples from the
TCGA-KIRC database, 101 samples from the E-MTAB-1980
cohort, and 68 samples from the GSE22541 cohort.

Screening of FMG-associated genes

A predefined set of FMGs was obtained from the Molecular
Signature Database (MSigDB, v7.4) (18). We identified three
relevant sets of FMGs, namely, KEGG fatty acid metabolism
pathway genes, hallmark fatty acid metabolism genes, and
reactome fatty acid metabolism genes. After deleting duplicates
from these three sets of genes, 309 reliable records were
obtained. Furthermore, we performed intersection analysis of
these 309 genes with three ccRCC cohorts, and finally obtained
291 genes for follow-up studies (Supplementary Figure 1,
Supplementary Table 1).

Identification of mutated and
differentially expressed genes

The UCSC Xena database (19) was used to obtain the copy
number variation (CNV) information of the TCGA-KIRC
patients. Then, we calculated and summarized the most
significant results of CNV frequencies for these FMGs.
Differential expression genes (DEGs) between normal kidney
group and KIRC group were analyzed by “limma” package in R,
and genes with fold change > 1.50 and P< 0.05 were considered
to be differentially expressed.
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Construction and validation of
risk scores

Univariate Cox regression analysis was used to identify
FMGs associated with overall survival (OS) in the TCGA-
KIRC and E-MTAB-1980 datasets (P< 0.01), and the least
absolute shrinkage and selector operation (LASSO) analysis
was used to analyze overlapping gene sets with the “glmnet”
package in R (20). The prognostic genes were determined by the
best penalty parameter A, and 10 optimal FMGs were screened
out. The expression levels between normal kidney group and
KIRC group and Kaplan-Meier (K-M) analysis results were also
respectively shown base on TCGA-KIRC cohort. Furthermore,
the fatty acid metabolic index (FMI) was calculated by adding
the expression and corresponding coefficients of the FMGs for
each RCC patient. In order to make the results more intuitive,
MinMax variation was used to adjust FMI by using the following
formula.

x; — min(x;)

Adjust FMI =
Jus max(x;) — min(x;)

The median cut-off value of FMI was used to classify
patients, and prognostic performance was evaluated by K-M
analysis and time-dependent receiver operating characteristic
(ROC) analysis.

Comprehensive assessment of FMI
in patients

The association of FMG-based risk scores with clinical
features was analyzed based on adjusted FMI values to assess
the clinical usability of FMGs. The factors included age, T/N/M
stage, and tumor grade.

Construction and evaluation of an FMG-
based clinicopathologic nomogram

Univariate and multivariate Cox regression analyses were
performed to explore the prognostic value of FMI. A nomogram
combining the clinical features of RCC and FMG-based risk
score was developed. To evaluate the performance of nomogram,
calibration curve, ROC curve and decision curve analysis (DCA)
were performed.

Functional enrichment analysis of the
FMI groups

To further characterize the biological processes in different
FMI groups, gene set enrichment analysis (GSEA) was
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performed. Enrichment results with P< 0.05 as well as FDR<
0.1 were considered statistically significant.

Evaluation of the immunogenomic
landscape of RCC

Immune checkpoints are new target molecules in
immunotherapy for RCC. In this study, the immune
checkpoints were compared between the FMI groups in the
three cohorts to evaluate the potential application of these
immune checkpoints for FMI-based immunotherapy. The
candidate checkpoints identified were PDCDI, IL2RA, MICB,
SELP, CX3CL1 and EDNRB.

Since the tissue samples used in transcriptome sequencing
are not composed of single cells, the heterogeneity of these
samples is inevitable. Therefore, the gene expression profile data
may also reflect changes in the cell components in the tissue. In
this study, xCell tool was used to predict the immune
microenvironment typing of gene expression profile data, and
further compared the expression differences of cell subsets
between different groups.

Analysis of sensitivity to chemotherapy

Based on the Genomics of Drug Sensitivity in Cancer
(GDSC) database, we performed the “pRRophetic” package in
R to predict semi-inhibitory concentrations (IC50) of ccRCC
chemotherapeutic drugs between different groups.

Validation of genes included in the
risk model

Immunohistochemical (IHC) staining was performed with
antibodies against FASN (D162701, BBI), ACOT9 (D121491,
BBI), FAAH2 (D122328, BBI), and PTPRG (GB114422,
Servicebio) to validate the expression of risk model-related
genes in 10 paired tumor and normal tissues from the Naval
Medical University cohort. The procedure for IHC was based on
a previous protocol (21). Three independent blind observers
analyzed the images by using Image] Software (Image],
Marlyand, USA), and sum of area and integrated option
density (IOD) were measured. The mean integrated option
density was calculated by dividing the IOD sum by the area sum.

Statistical analysis

Unless otherwise stated, statistical significance was
considered significant at P< 0.05 and two-sided tests.
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Results

Construction of the FMG-related
signature for ccRCC

The CNVs and DEGs from the 309 FMGs were detected in the
TCGA-KIRC cohort. As a result of exploring the incidence of CNVs,
FMGs were found have massive CNV alterations. We have listed the
top 10 genes with amplified or deleted CNV’s (Figure 1A). A total of

10.3389/fonc.2022.1094657

34 DEGs were detected in 535 ccRCC samples when compared to 72
normal renal samples. The 10 significantly augmented FMGs were
among the DEGs identified in the ccRCC samples, while 24 have been
attenuated essentially (Figures 1B, C). The OS-related FMGs were
screened in TCGA-KIRC and E-MTAB-1980 datasets (Figures 1D,
E). In total, 160 and 67 significant OS-related FMGs were retrieved
respectively. Further analysis of 52 overlapping OS-related FMGs was
conducted by combining the results of the two cohorts (Figure 1F).
Partial likelihood deviation analysis was performed on the results of
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LASSO regression (Figures 1G, H). We calculated the coefficient for
the prediction of the prognosis of ccRCC by the OS-related
FMGs (Figure 11I).

Effect of expression levels of each of
the 10 FMGs in the signature on
prognosis of RCC

A prognostic gene signature was constructed by identifying
10 pivotal OS-related FMGs, namely, FASN, ACOT9, MID1IP1,
CYP2C9, ABCDI, CPT2, CRAT, TP53INP2, FAAH2, and

10.3389/fonc.2022.1094657

PTPRG. The expression level and prognostic potential of the
10 selected genes were evaluated individually. Boxplots were
used to depict the expression level of the 10 prognostic FMGs in
tumors and normal tissues (Figure 2A), and K-M curves were
drawn for analysis of OS (Figure 2B). As shown in the figures, a
significant decrease was observed in the expression of MID1IP1,
CYP2C9, CPT2, CRAT, TP53INP2, FAAH2, and PTPRG, while
a moderate increase in the expression of ABCD1 was observed in
the ccRCC samples. As noted in the separate K-M analyses of
OS, high expression of FASN, ACOT9, MID1IP1, CYP2C9, and
ABCDI1 and low expression of CPT2, CRAT, TP53INP2,
FAAH?2, and PTPRG were associated with more impaired OS.
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e signature on prognosis. (A) Expression level of the 10 prognostic FMGs
patients according to relative expression of the 10 FMGs. *P< 0.05; **P<
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Evaluation and validation of the
10-FMG signature

Based on the expression level of the 10 FMGs, the FMI was
calculated using the following formula. FMI = Sum of the
expression of each gene x coefficients = FASN x 0.204117 +
ACOT9 x 0.151747 + MIDIIP1 x 0.149099 + CYP2C9 x
0.147525 + ABCD1 x 0.106468 — CPT2 x 0.20157 — CRAT x
0.222481 — TP53INP2 x 0.240641 — FAAH2 x 0.278899 —
PTPRG x 0.314233.
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According to their median FMI values, ccRCC patients could
be classified as low-risk or high-risk group. Further, FMI was
normalized for easy visual representation of the data. According
to the data for the TCGA-KIRC cohort, patients in the high-risk
group were more likely to die than those in the low-risk group
(Figure 3A). The prognostic significance of FMI was confirmed
in two additional cohorts (Figures 3B, C). K-M analyses revealed
that the high-risk group had significantly worse OS and disease-
free survival (DFS) than the low-risk group in TCGA-ccRCC
cohort (Figures 3D, E). The two additional cohorts showed that
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OS deteriorated more among those at high risk than those at low
risk, consistent with the TCGA-ccRCC cohort (Figures 3F, G).

Correlation between FMI and clinical
features of ccRCC

The clinical parameters survival status and clinicopathologic
T/N/M were correlated with FMI to varying degrees (Figure 4A,
P< 0.05 for all). That is, higher FMI was associated with greater
severity of these clinical characteristics. The E-MTAB-1980
cohort also showed conspicuous differences in various clinical
parameters, including tumor stage and grade (Figure 4B). In
addition, FMI was found to be associated with gender and age:
specifically, male patients and patients older than 65 years had
higher FMI than female patients and patients younger than 65
years in the E-MTAB-1980 and GSE22541 cohorts (except for
age in the GSE22541 dataset) (Figures 4B, C). Figure 4D presents
a heatmap of the overall distribution of the 10 FMGs with
clinical parameters in the TCGA-KIRC cohort.

Establishment and assessment of an
FMG-based clinicopathologic nomogram

According to univariate Cox analysis, age, T/N/M stage,
tumor grade, AJCC stage, and FMI showed a remarkable
association with OS (Figure 5A, P< 0.001 for all). Multivariate
Cox analysis of these variables showed that only age, N, M, and
FMI were independent predictors (Figure 5B, P< 0.01 for all).

According to the above results, an individual OS prediction
nomogram was developed using FMI and the six clinical features
that were associated with prognosis according to univariate Cox
regression analysis (Figure 5C). In the calibration plot, the
nomogram was similar to an ideal curve in terms of predictive
value, and this was indicative of perfect stability (Figure 5D).
According to the results of DCA, the nomogram had a better
predictive effect than any individual clinical feature (Figure 5E).
Additionally, the area under the ROC curve values for the
nomogram for 2-year, 4-year, and 5-year survival were 0.853,
0.851, and 0.844, respectively, and it had better efficiency than
each of the other clinical factors in predicting OS (Figures 4F, G,
H). Thus, the predictive nomogram for OS appears to be fairly
accurate, and it could be used to assist decision-making in the
clinical setting.

GSEA analysis based on FMI grouping

The GSEA analysis results from the GO database,
demonstrated in Figures 6A and B, indicate that B-cell-
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mediated immunity, interferon-gamma production, NIK/NF
—kappaB signaling, phagocytosis, engulfment, and regulation
of tumor necrosis factor superfamily cytokine production were
considerably enriched in the group with high EMI (Figure 6A).
In addition, the results from the KEGG database showed that
antigen processing and presentation, the B cell receptor signaling
pathway, the cell cycle, PD-L1 expression and PD-1 checkpoint
pathway, and the TNF signaling pathway were enriched in the
high-FMI group (Figure 6B).

Immune microenvironment of ccRCC

In TCGA cohort, the immune score and tumor
microenvironment score were higher in the high-FMI group,
whereas the stroma score was markedly lower (Figures 6C, D, E,
P< 0.05 for all). The tumor microenvironment analysis results
demonstrated that the number of B cells, plasma B cells, M1 and
M2 macrophages, monocytes, central and effector memory CD4+
T cells, naive CD4+ T cells, Thl and Th2 CD4+ T cells, CD8+ T
cells, central and effector memory CD8+ T cells, naive CD8+ T
cells, and natural killer (NK) T cells was significantly higher in the
high-FMI group (Figures 6F, G). Additionally, the immune
microenvironment analysis results of E-MTAB-1980 and
GSE22541 cohorts are shown in Supplementary Figure 2. The
results revealed that B cells, plasma B cells, M1 macrophages, Th2
CD4+ T cells, and NK T cells were notably strengthened in the
high-FMI group in all three cohorts.

Immunotherapy has shown great promise in cancer
treatment, and immune checkpoint blockade is a promising
anti-tumor strategy. Accordingly, the expression of six candidate
immune checkpoints were assessed. The results revealed that
PDCDI, IL2RA and MICB exhibited significant augmentation in
the high-FMI group, whereas SELP, CX3CL1 and EDNRB
exhibited significant augmentation in the low-FMI group. All
results were consistent across all three datasets (Figures 7A, B,
C). These findings indicate that the efficacy of immunotherapy
against different targets for patients with ccRCC may differ
according to whether they have high or low FML

Prediction of chemotherapeutic
drug sensitivity

According to the predicted results of the “pRRophetic”, we
observed differences in drug sensitivity between different groups
(Figures 8A-F). The results showed that there were no difference
in response for pazopanib and axitinib (P > 0.05 for all), and the
low-FMI group was more sensitive to sorafenib (P< 0.05), while
the high-FMI group were more sensitive to paditaxel,
rapamycin, and temsirolimus (P< 0.05 for all).
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(D) Calibration curve showing the predicted OS versus actual OS. (E) DCA of the clinical usefulness of the constructed nomogram.

(F, G, H) Receiver operating characteristic (ROC) analysis of the nomogram for predicting 2-, 4-, and 5-year OS in the TCGA-KIRC cohorts. **P

< 0.01; ***P < 0.001.

Clinical validation of the expression
of genes

The protein expression of four genes (FASN, ACOT9, FAAH2,
and PTPRQG) in the identified FMG signature was validated with
IHC in 10 ccRCC samples and 10 paired normal samples. The
results showed that all the four genes expressed in higher amounts
in normal samples than in tumor samples (Figures 9A, B). In
particular, to our knowledge we evaluated the
immunohistochemical expression of FAAH2 in ¢cRCC for the
first time. The protein expression of other 4 genes (ABCDI,
CPT2, CRAT and MIDIIP1) in the identified FMG signature
could be assessed using the Human Protein Atlas (http://www.
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proteinatlas.org/) database, and we summarized the representative

images of these genes in Supplementary Figure 3.

Pain dissection of the FMGs signature

Considering that the majority of cancer patients experience pain

during cancer progression or treatment, we further dissected the

association of FMGs signature with cancer pain. As shown in Table 1,

we first provided literature evidence for 10 signatures associated with

fatty acids, and further we summarized the literature-reported

evidence for pain-related genes, including gene FASN, CYP2C9,

ABCD1, CPT2, and FAAH2.
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Gene set enrichment analysis and landscape of the immune microenvironment in the TGCA-KIRC. GO (A) and KEGG pathway (B) analyses of
the high- and low-FMI groups. (C, D, E) Evaluation of the tumor microenvironment of ccRCC. (F) The correlation of infiltrating immune cells.
(G) Violin diagram of the proportions of different tumor-infiltrating cells in the high- and low-FMI group. *P < 0.05; **P < 0.01; ***P < 0.001. ns

means no significance.

Discussion

There is considerable evidence that fatty acid metabolism is
severely disrupted in ccRCC; further, the dysregulation of
various lipid metabolism pathways that drive lipid deposition
is closely related to ccRCC (22). For example, it has been
appreciated that elevated lipid storage levels can maintain cell
membrane fluidity, thereby enhancing metastatic capacity (23).
Timely intervention with therapeutic approaches, such as
tyrosine kinase inhibition with sunitinib, pazopanib, and
nivolumab, has been found to significantly improve survival in
patients with advanced RCC (24). However, the complexity of
the tumor microenvironment in ccRCC and the high
heterogeneity of individual gene regulation are associated with
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inadequate treatment response and drug resistance. Given the
close association between ccRCC and fatty acid metabolism, a
systematic analysis of the role of FMGs in RCC could be helpful
for understanding the mechanism of disease progression and for
treatment decision-making.

In this study, we first identified FMGs and later confirmed
the significant role of FMGs in RCC based on the identification
of DEGs with CNV alterations. Based on data from the TCGA-
KIRC and E-MTAB-1980 cohorts, univariate Cox analysis along
with LASSO Cox regression analysis were used to identify a
novel robust prognostic signature of FMGs. Subsequently, the
signature was used to classify RCC patients into low- and high-
FMI groups and was validated in the three cohorts. Further, each
ccRCC patient was further stratified by constructing a risk score
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Expression levels of immune checkpoints in the high- and low-FMI group. Expression level of PDCD1, IL2RA, MICB, SELP, CX3CL1 and EDNRB in
TCGA-KIRC (A), E-NTAB-1980 (B), and GSE22541 (C) cohorts. *P < 0.05; **P < 0.01; ***P < 0.001.

model, and the groups showed significant differences in survival
and various clinicopathological parameters. In addition, ROC
analysis demonstrated the superior performance of our model
and indicated that it might be useful for formulating follow-up
treatments. We further used xCell to construct the
immunogenomic landscape of RCC and explore differences in
the distribution of immune cells. Altogether, the results above
revealed the prognostic signature of our FMGs has a great
promise in ccRCC.

The signature we constructed contains 10 fatty acid
metabolism genes, some of which have previously been
reported to be associated with multiple cancers. FASN encodes
fatty acid synthase, which primarily regulates the deposition of
animal liposomes by synthesizing long-chain fatty acids from
acetyl-coenzyme A (CoA) and malonyl-CoA. All esterified fatty
acids in most tumor cells are synthesized de novo. FASN is
dysregulated in a variety of cancers, including kidney, liver, lung,
and colorectal cancer, and this dysregulation is thought to be
associated with the aggressiveness and poor prognosis of cancers
(25, 26). The ACOT9 gene encodes acyl-CoA thioesterase 9,
which is a well-known key regulator of cellular utilization and
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regulates intracellular acyl-CoA/fatty acid levels. A recent study
found that ACOT9 promoted tumor metastasis and growth by
reprogramming lipid metabolism pathways in hepatocellular
carcinoma (27). Interestingly, we found that the FASN and
ACOT9 genes were significantly downregulated in RCC
patients. In the future, we will further study its potential
mechanisms in ¢ccRCC. Protein tyrosine phosphatase receptor
gamma (PTPRG) is a well-known tumor suppressor in various
neoplasms (28). For example, Shu et al. found that PTPRG may
play an inhibitory role in breast tumorigenesis by upregulating
the p21(cip) and p27(kip) proteins through the ERK1/2 pathway
(29). In line with this finding, PTRPG expression was
significantly reduced in ccRCC according to the IHC results of
this study. In addition, the results of this study revealed that low
expression of PTRPG could predict poor prognosis. According
to recent reports, other genes, such as MID1IP1 (30), ABCD1
(31), CPT2 (32), and TP53INP2 (33), are closely associated with
the progression of ccRCC. However, our study is the first to
demonstrate that FAAH2 is inhibited in ¢ccRCC and is an
indicator of poor prognosis. In general, the above results
confirm the reliability of our signature to a certain extent, but
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FIGURE 8

Predictive results of chemotherapeutic responses. (A-F) The differences of chemotherapeutic response in the high- and low-FMI group. *P <

0.05; ***P <0.001.

the specific influencing mechanism and prognostic value in
clinical practice need to be further studied.

In order to further investigate the role of the signature genes,
GSEA analyses were conducted in two FMI groups. Noticeable
NIK/NF-KB signaling enrichment was observed in the high-FMI
patients. Growing body of research suggests that dysregulation
of NF-xB signaling pathway activity can lead to inflammatory
diseases as well as cancer and NF-xB has long been proposed as a
potential therapeutic target (34). Meteoglu et al. reported that
NF-xB was associated with markers of angiogenesis and
apoptosis in ccRCC, including VEGF, EGFR, and p53 (35). In
addition, it has also been reported that activation of the NF-xB
pathway is associated with ccRCC cell migration and invasion
(36). Further, drugs that target NF-xB have been found to have
therapeutic and preventive effects in a variety of cancers (37, 38).
The results of our study suggest that patients with high FMI
could benefit more from NF-kB-targeted therapy than patients
with low FMI. Similarly, it is now widely accepted that
immunotherapy is an effective method for treating cancer, and
an increasing number of immunotherapy drugs are being
evaluated in clinical trials (39). As an indispensable strategy in
immunotherapy, immune checkpoint inhibitors have gained
attention for their potential to improve the long-term
outcomes of cancer patients (40). However, the effectiveness of

Frontiers in Oncology

83

this treatment varies, as it is only effective in certain subsets of
cancer patients (41). Therefore, we compared six immune
checkpoint genes to explore potential immune therapeutic
targets in different FMI groups. In the high-FMI group,
PDCDI, IL2RA and MICB were significantly elevated, whereas
in the low-FMI group, SELP, CX3CLl and EDNRB were
significantly elevated. These results indicate that FMI should
be considered when making decisions about immune checkpoint
inhibitor therapy for ccRCC patients. Brahmer et al. has reported
that PD-L1 inhibitors could promote tumor regression and
prolong survival in patients with advanced cancers including
ccRCC (42). Accordingly, ccRCC patients with higher FMI
might be more likely to benefit from anti-PD-L1 therapy, since
they have higher expression levels of PDCD1.

Notably, the majority of cancer patients experience pain
during cancer treatment and after curative treatment (55% and
40%, respectively) (43). For cancer survivors, the long-term
sequelae of pain after cancer treatment should not be ignored,
as cumulative reports have found that opioid abuse is associated
with increased mortality (44). Therefore, there is an urgent need
to explore other effective pain management options. Basically,
cancer cells are abnormal cell growth and proliferation, and fatty
acid metabolism changes significantly in the rapid proliferation
of cancer cells. Accordingly, interventions to prevent fatty acid

frontiersin.org


https://doi.org/10.3389/fonc.2022.1094657
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Ding et al.

ACOT9

Normal Tumor

50X

10.3389/fonc.2022.1094657

PTRPG

Tumor

Normal

200X

50X

200X

06

Mean integrated option density
o ° o

Mean integrated option density

Normal Tumor

PTPRG

Normal Tumor

FIGURE 9

Mean integrated option density

°

°

2
Mean integrated option density

Tumor

°

Normal Tumor Normal

Clinical Validation of the risk model based on IHC. (A) Representative IHC images of the four selected gene. (B) The quantitative expression

levels of each gene. **P < 0.01; ***P < 0.001.

synthesis, increase fatty acid degradation through oxidation, and
decrease fatty acid release from storage are commonly used to
manage the abnormal proliferation of lipids and arrest cancer
progression (45). Among the 10 fatty acid metabolism genes
associated with prognosis that were identified in this study,
FASN has been previously reported as a therapeutic target. That
is, studies have confirmed that inhibition of FASN reduced
triacylglycerol and phospholipid levels and inhibited lymph
node metastasis of prostate carcinoma (46). Similarly, down-
regulation of CPT2 also inhibited fatty acid B-oxidation in the
tumor microenvironment and promoted cancer progression
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through acylcarnitine accumulation (47). Interestingly, fatty
acid metabolism interventions may not only alter cancer cell
proliferation but also help reduce pain during the disease. Recent
studies have found that specialized pro-resolving lipid mediators
(SPMs) can reduce fatty acid levels and effectively relieve chronic
pain, and this mechanism of pain regulation is currently believed
to be associated with the activation of immune cell receptors in
the lipid environment, changes in pro-/anti-inflammatory
pathways, and changes
(48). For example, SPMs can activate the immune cell receptor

N-formyl peptide receptor 2 (ALX/FPR2), induce cell cycle

in peripheral nociceptor sensitivity

frontiersin.org


https://doi.org/10.3389/fonc.2022.1094657
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Ding et al.

TABLE 1 The summary of the pain dissection of the FMGs signature.

Gene

FASN

ACOT9

MIDI1IP1

CYP2C9

ABCD1

CPT2

CRAT

TP53INP2

FAAH2

PTPRG

Association with fatty acid

FASN is a key enzyme regulating the de novo synthesis of fatty acids,
which can catalyze acetyl-CoA and malonyl-CoA to produce palmitate.
(PMID: 26519059)

ACOT? regulates fatty acid synthesis by catalyzing the hydrolysis of fatty
acyl-coenzyme A to form free fatty acid (FFA) and coenzyme A (CoA).
(PMID: 36004563)

The change of MID1IP1 expression can affect the expression of fatty acid
synthase (FASN) and induce phosphorylation of Acetyl-CoA carboxylase
(ACC), thereby affecting the biosynthesis of fatty acids and triglycerides.
(PMID: 34153683, 35916211)

CYP2C9 is a cytochrome P450 enzyme that has cyclooxygenase activity
and catalyzes the oxidation of polyunsaturated fatty acid arachidonic acid
to eicosatrienoic acids. (PMID: 30012669)

ABCDI gene encodes peroxisome transport protein, which is involved in
transporting saturated very long chain fatty acids to peroxidase for B-
oxidation. (PMID: 32017990)

Fatty acid oxidation (FAO) is a process in which carnitine
palmitoyltransferase 1 and 2 (CPT1 and CPT2) transport long-chain fatty
acids to the mitochondrial matrix, and then oxidize them to acetyl-CoA,
NADH and FADH2 and generate energy. (PMID: 33027638)

Carnitine acetyltransferase (CRAT) is the basic enzyme in carnitine
metabolism, which regulates the metabolic flexibility of muscle and
increases exercise ability. Carnitine can promote fatty acids to enter
mitochondria for oxidative decomposition during fat metabolism, which is
helpful to promote the balance of fat metabolism. (PMID: 29444428)

TP53INP2 mediates peroxisome proliferator-activated receptor gamma
(PPARG) regulates macroautophagic/autophagic-dependent mechanism
that induce brown fat differentiation and thermogenesis. (PMID:
35947488)

Fatty acid amide hydrolase (FAAH1 and FAAH2) can inactivate
endogenous cannabinoid, and monoacylglycerol lipase can hydrolyze to 2-
arachidonic glycerol. (PMID: 30070030)

PTPRG is a negative regulator of insulin signal transduction, and insulin
can promote the synthesis and storage of fat and reduce free fatty acids in
blood. (PMID: 29180649)

NA, missing references.

arrest, and prevent phosphorylation of the nuclear factor kappa
B (NF-xB) pathway (49). Moreover, altered fatty acid
metabolism may also prevent the formation of neutrophil
extracellular traps, thus promoting inflammation resolution
and exerting an analgesic effect (48). In a nutshell, our results
and the aforementioned studies might indicate that
interventions targeting fatty acid metabolism-related genes
may have a dual effect on improving prognosis and pain that
warrants further investigation.

Conclusions

In summary, we integrated multiple bioinformatic analysis
methods to construct a reliable 10-gene prognostic signature of
ccRCC based on fatty acid metabolism and established a
nomogram that can be used in clinical practice. The signature
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Association with pain

Palmitate can activate NF-xB transcription factors and regulate the expression of
NMDA receptor subunits. FASN can be used as a therapeutic target to reduce
neuropathic pain. (PMID: 25855977)

NA

CYP2C9 can predict the analgesic effect of tramadol and ketorolac. (PMID:
34246203)

Absence of ABCD1 will lead to mechanical allodynia mediated by
mechanosensitive ion channels and dysfunction of satellite glial cells. (PMID:
35681537)

CPT?2 deficiency may lead to metabolic disorder in the body, causing patients to
have diffuse muscle pain symptoms. (PMID: 27034144)

NA

NA

Fatty acid amide hydrolase (FAAH) plays an important role in the hydrolysis
and inactivation of endogenous arachidonic ethanolamide (AEA). AEA can
protect neurons from inflammatory injury by activating cannabinoid receptors
(CBIR and CB2R) and transient receptor TRPV1. FAAH inhibitors may become
a safe and reliable new analgesic. (PMID: 34364309, 29017758)

NA

may also serve as a potential therapeutic target with dual effects
on both ccRCC prognosis and cancer pain, but further studies
are needed to support the conclusions.
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Background: Neutrophil extracellular traps (NETs) are web-like structures
formed by neutrophils, and their main function is antimicrobial defense.
Moreover, NETs have numerous roles in the pathogenesis and progression of
cancers. However, the potential roles of NET-related genes in renal cell
carcinoma remain unclear. In this study, we comprehensively investigated
the NETs patterns and their relationships with tumor environment (TME),
clinicopathological features, prognosis, and prediction of therapeutic benefits
in the clear cell renal cell carcinoma (ccRCC) cohort.

Methods: We obtained the gene expression profiles, clinical characteristics,
and somatic mutations of patients with ccRCC from The Cancer Genome Atlas
database (TCGA), Gene Expression Omnibus (GEO), and ArrayExpress datasets,
respectively. ConsensusCluster was performed to identify the NET clusters. The
tumor environment scores were evaluated by the "ESTIMATE,” "CIBERSORT,”
and ssGSEA methods. The differential analysis was performed by the “limma” R
package. The NET-scores were constructed based on the differentially
expressed genes (DEGs) among the three cluster patterns using the ssGSEA
method. The roles of NET scores in the prediction of immunotherapy were
investigated by Immunophenoscores (TCIA database) and validated in two
independent cohorts (GSE135222 and IMvigor210). The prediction of targeted
drug benefits was implemented using the “pRRophetic” and Gene Set Cancer
Analysis (GSCA) datasets. Real-time quantitative reverse transcription
polymerase chain reaction (RT-PCR) was performed to identify the reliability
of the core genes’ expression in kidney cancer cells.

Results: Three NET-related clusters were identified in the ccRCC cohort. The
patients in Cluster A had more metabolism-associated pathways and better
overall survival outcomes, whereas the patients in Cluster C had more
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immune-related pathways, a higher immune score, and a poorer prognosis
than those in Cluster B. Based on the DEGs among different subtypes, patients
with ccRCC were divided into two gene clusters. These gene clusters
demonstrated significantly different immune statuses and clinical features.
The NET scores were calculated based on the ten core genes by the Gene
Set Variation Analysis (GSVA) package and then divided ccRCC patients into two
risk groups. We observed that high NET scores were associated with favorable
survival outcomes, which were validated in the E-MTAB-1980 dataset.
Moreover, the NET scores were significantly associated with immune cell
infiltration, targeted drug response, and immunotherapy benefits.
Subsequently, we explored the expression profiles, methylation, mutation,
and survival prediction of the 10 core genes in TCGA-KIRC. Though all of
them were associated with survival information, only four out of the 10 core
genes were differentially expressed genes in tumor samples compared to
normal tissues. Finally, RT-PCR showed that MAP7, SLC16A12, and SLC27A2
decreased, while SLC3A1 increased, in cancer cells.

Conclusion: NETs play significant roles in the tumor immune microenvironment
of ccRCC. Identifying NET clusters and scores could enhance our understanding
of the heterogeneity of ccRCC, thus providing novel insights for precise
individual treatment.

KEYWORDS

neutrophil extracellular traps, ccRCC, subtypes, prognosis, immune tumor environment

Introduction

Renal cell carcinoma (RCC) is one of the most common
urological carcinomas (1). In 2022, the number of tumor cases and
cancer-associated deaths in China are expected to reach 7,410 and
46,345, respectively (2). Although the diagnosis and management
of RCC have improved (3), its incidence is expected to increase
globally. Moreover, approximately 30% of patients are diagnosed
with advanced ccRCC, develop distant metastases, and have a
poor prognosis due to the atypical symptoms in the early stage of
ccRCC (1). ccRCC is the most common subtype of RCC (4). Thus,
for better personal precision therapy and management,
investigating novel biomarkers is an urgent necessity.

Neutrophils are one type of affluent inflammatory cell in the
tumor microenvironment (TME). They could activate cancer cells
and desorb modified DNA structures coated with cytoplasmic and
granular proteins (5). The web-like structures released by
neutrophils to trap microorganisms are termed neutrophil
extracellular traps (NETs) (6, 7). Commonly, NETs play critical
roles in infectious and non-infectious conditions, such as bacterial
and viral infections (5), cystic fibrosis (8), and psoriasis (9).
Recently, NETs have been reported to be involved in tumor
growth, metastatic spread (10, 11), and immunomodulatory
(12). Moreover, NET extrusion exerts a protective effect on the
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tumor from NK cells and T cells (13). NETs can increase the
metastatic potential of circulating tumor cells through
augmentation of cell cycle progression (14). Hu et al. reported
that NETs could promote the dysfunction of glomerular
endothelial cells and pyroptosis in diabetic kidney disease (15).
NETs are closely associated with dirty necrosis in RCC (16).
Several recent studies have documented the scrutiny of NET-
related genes for head and neck squamous cell carcinomas (6),
non-small-cell lung cancer (17), and breast cancer (18); however,
few studies have focused on the functions of NETs in kidney
diseases, particularly kidney cancers. Therefore, it is meaningful to
explore new NET-related biomarkers to identify the molecular
characteristics of NETSs in patients with kidney cancer.

Considering the previous findings, we performed a systemic
study on NET-related genes to investigate their roles in the
ccRCC cohort. In this study, we first screened the expression,
protein—protein network, and prognostic values in the TCGA-
KIRC dataset. Based on the expression of NET-related genes, we
classified ccRCC patients into three clusters. Patients were
further stratified into two gene clusters based on the
differentially expressed genes (DEGs) among the three NET
subtypes. We further constructed a scoring system to predict
overall survival (OS), which may form the basis for research on
ccRCC precision treatment.
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Methods
Data collection and processing

The RNA-sequencing dataset of 534 kidney renal clear cell
carcinoma (KIRC) samples, which contained mRNA and clinical
and survival data, were acquired from UCSC Xena (http://xena.
ucsc.edu/). The GSE29609 dataset, which contained 39 KIRC
samples, were downloaded from the GEO database. The mRNA
expression levels were transformed from counts to transcripts
per kilobase million (TPM) values. The batch effects of the two
datasets were eliminated by “ComBat” from the “sva” R package,
and principal component analysis (PCA) was performed to
demonstrate the before and aftereffects. Finally, 573 samples,
14,074 genes were enrolled into our after-batched cohort. The E-
MTAB-1980 dataset, which contained 101 patients with ccRCC,
was downloaded from ArrayExpress (https://www.ebi.ac.uk/
arrayexpress/).

Exploration of the genetics and
biological significance of NET
genes in KIRC

According to previous studies (19-22), we acquired a list of
published NET gene sets, which had 69 genes with NET initial
biomarkers. The mRNA expression and prognostic values of
NETs were based on the TCGA-KIRC dataset. The network of
69 genes was explored based on the GeneMANIA (http://
genemania.org/) website.

Unsupervised clustering analysis

The unsupervised consensus clustering algorithm was
applied to assess the variability and stability of clusters based
on NET-related and NET subtype-related genes from the
ConsensusClusterPlus (23) R package. Then Kaplan-Meier
survival analysis was performed to explore the prognosis
among different clusters based on the survival (24) and
survivor (25) R packages.

Gene set variation analysis

The 50 terms of the HALLMARK pathway, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway, and
the Reactome pathway were downloaded from the Molecular
Signatures Database (MsigDB, http://software.broadinstitute.
org/gsea/msigdb/). Then, function enrichments for different
subtypes were performed using the GSVA (26) and
ClusterProfiler (27) R packages.
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The immune infiltration landscape of the
ccRCC cohort

The StromaScore, ImmuneScore, and ESTIMATEScore were
calculated with the “ESTIMATE” R package. The ImmuneScore
and StromalScore were the abundance of immune and stromal
components, respectively. The ESTIMATEScore was the total
values of ImmuneScore and StromalScore. The abundance of 23
kinds of infiltrating immune cells (28) was evaluated using the
ssGSEA method from the GSVA (26) R package.

Calculation of NET score (NET-scores)

According to the mRNA expression of NET subtype-related
genes, 94 DEGs were used for further univariate Cox regression
analysis. Then the NET score was calculated as an enrichment
score (ES) by the ssGSEA method from the GSVA R package
based on the top ten genes with P <0.05 samples. The ccRCC
cohort was divided into high and low NET score groups based
on the optimal cutoff value.

Prognosis, enrichment analysis, genetic
alterations, chemokines, immune
exploration, and clinical feature analysis
based on NET-scores

The prognosis analysis between the high- and low-NET
score groups was tested using the log-rank method. The
correspondence among different groups, subtypes, and survival
outcomes was shown as Sankey diagrams by the “ggalluvial” R
package. The hallmark enrichment analysis between different
NET score groups was done using the GSVA R package and
genetic alterations by the “maftools” (29) R package. The mRNA
expression of chemokines between different NET score groups
was displayed using a heatmap. The clinical characteristics of

» o«

“survival outcomes,” “clinical grade,” “TNM,” and “clinical
stage” were selected to demonstrate the discrepancy in the

different NET score groups.

Expression levels of immune
checkpoints, immunotherapy response,
and drug sensitivity of patients in
different NET-score groups

Two immunotherapy-treated cohorts, the IMvigor210 cohort
(288 urological tumor patients treated with anti-PDL1) and the
GSE135222 cohort (27 lung carcinoma patients treated with anti-
PD-1/PD-L1), were collected to explore the immunotherapy
response ability of NET scores. The pRRophetic (30) package
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was implemented to predict the half-maximal inhibitory
concentration (IC50) of 138 antitumor agents.

Online analysis

mRNA expression, single nucleotide variation (SNV), copy
number variation (CNV), drug sensitivity, and methylation of
genes were analyzed by the GSCA database (http://bioinfo life.hust.
edu.cn/GSCA/#/). The protein levels of core genes in human tumor
and non-tumor samples were acquired from the Human Protein
Atlas (HPA; https://www.proteinatlas.org/). The oncoplot of genes
was explored from cBioportal (https://www.cbioportal.org/).

Cell culture and RT-PCR

Human normal renal tubular epithelial cells (HK-2) and
kidney cells (Caki-1 and 786-0) were purchased from the ATCC
company. All cells were cultured in RPMI 1640 as previously
described (28). Total RNA from the cultured cells was extracted
using the Faster reagent (Invitrogen). Relative gene expression
was calculated by Eq. 274", with GAPDH as an internal
control. The primers are as follows:

MAP7 gene 5-TCATCATGCCCTACAAAGCTG-
3’(sense) and 5-TGCCAGATGTGAGGAAGAGTA-
3’(antisense).

SLC16A12 gene 5-TGCTTGCATCTACTGGACTCA-
3’(sense) and 5-TGGCAATAGCTGGAGAGTAACA-
3’ (antisense).

SLC27A2 gene 5-TGGCGCTCCTTATGGGTAACG-
3’(sense) and 5-CTTGGCAGTATCTCTTCGACAG-3’
(antisense).

SLC3A1 gene 5-CAGGAGCCCGACTTCAAGG-3’(sense)
and 5-GAGGGCAATGATGGCTATGGT-3’
(antisense).

Statistical analysis

All data were analyzed using R software (v4.1.1); a P-value
less than 0.05 was considered statistically significant. The
“limma” (31) R package was used to perform a difference
analysis. The Wilcoxon test was used for data that did not
accord with a normal distribution. A t-test was used for normally
distributed data. Univariate Cox regression analysis and the
Kaplan-Meier method were used to assess the prognostic
value of DEGs. The forest plot was achieved by “forestplot”
(32) R package. All heatmaps were performed via the R
“pheatmap” package.
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Results

Expression and prognostic values of
NET-related genes in the TCGA-KIRC

We identified 43 differential expression NET-related genes
in the TCGA-KIRC dataset, of which 20 are upregulated genes
and 23 are downregulated genes with a false discovery rate <0.05
and [log2FoldChange| >0.5 (Figures 1A, B, Supplementary
Table 1). Figure 1C shows the locations of the NET-related
genes. We then submitted the NET-related genes to
GeneMANTIA for exploring their interaction network. The
results revealed the co-expression to be high (62.39%) and the
physical interaction to be 15.79% (Figure 1D).

Identification of NET-related gene
subtypes in the ccRCC cohort

The TCGA-KIRC and GSE29609 datasets were merged, and
PCA demonstrated the before and after batch effects (Figure
S1A). In the merged ccRCC cohort, we performed unsupervised
clustering and classification based on these NET-related genes.
Our results showed that k = 3 appeared to be an optimal
selection (Figures 2A-C). The Kaplan-Meier survival analysis
demonstrated that the prognoses of patients were significantly
different among these subtypes (log-rank test, P <0.001,
Figure 2D). Cluster A exhibited better survival better survival
advantage than other clusters. The PCA results showed
significant differences in NET-related gene expression among
the three clusters (Figure 2E). The clinicopathological features
among the different clusters also revealed significant differences
(Figure 2F). Moreover, most of the NET-related genes were
differentially expressed (Figure 2G).

Characteristics of TME in
different subtypes

Cluster A was significantly associated with cancer-related
and metabolism pathways, such as pancreatic cancer, renal cell
carcinoma, butanoate metabolism, histidine metabolism, fatty
acid metabolism, tryptophan metabolism, and beta-alanine
metabolism (Figure 3A). Cluster C was significantly enriched
in immune-activated pathways, including NK cell-mediated
cytotoxicity, antigen processing and presentation, allograft
rejection, autoimmune thyroid disease, T and B cell receptor
signaling pathways, and Toll-like and NOD-like receptor
signaling pathways (Figure 3A). To explore the roles of NET-
related genes in the TME of ccRCC, we calculated the TME score
using the ESTIMATE method. The results revealed that Cluster
C had higher stromal and immune scores than the other two
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FIGURE 1

The landscape of neutrophil extracellular trap-associated genes in the TCGA-KIRC. (A) Volcano plot and (B) heatmap of 69 NET-associated
genes in ccRCC and non-tumor samples. (C) The location of the NET-associated genes on different chromosomes. (D) GeneMANIA gene-gene

interaction network showed the correlation among different genes.

clusters (Figure 3B). Analysis of three critical immune
checkpoints showed significance among three subtypes
(Figure 3C). Then, the ssGSEA method was applied to
calculate the infiltrating status of immune cells and explore the
differential patterns. The results revealed that the infiltration
levels of several cells, such as activated B cells, CD4 T cells, and
CD8 T cells, were significantly higher in Cluster C than in other
clusters (P <0.05, Figure 3D), which agreed with the results of the
TME score.

Identification of gene clusters based
on DEGs

To explore genes associated with our NET-related clusters,
differential gene analyses were performed to select the DEGs
among clusters A-C by using “limma” R packages (|logFC| >1.5
and P-value <0.05, Figure S1B). The DEGs of these results were
then combined, and 94 genes were enrolled for further analysis.
The GO enrichment of DEGs demonstrated that the NET
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subtype-related genes were significantly enriched in
transmembrane transport and transporter activity (Figure 4A).
The KEGG analysis revealed enrichment of immune response-
related diseases (such as coronavirus disease 2019 and systemic
lupus erythematosus) and cancer-related pathways (Figure 4B),
which indicated that NETs may play a critical role in
immunomodulation. Then, the univariate Cox method was used
to explore the prognostic values, and 89 genes were found to be
related to OS time (Supplementary Table 2). The top ten genes
(SLCA16A12, SLC3A1, TMEM27, GFPT2, NPR3, MAP7,
BBOXI1, PDK4, SLC27A2, and CUBN) with the smallest P-
value were selected for further analysis (Figure 4C). Based on
these 10 prognostic genes, patients were divided into two clusters,
namely gene clusters A and B (Figure 4D). The Kaplan-Meier
curves demonstrated that patients in gene cluster B had poor OS,
whereas those in gene cluster A had favorable OS (P-value <0.001,
Figure 4E). In addition, the gene cluster A patterns were closely
related to the late TNM stage (Figure 4F). The expression profiles
of 10 hub genes were significantly different, consistent with the
expected gene clusters (Figure 4G).

frontiersin.org


https://doi.org/10.3389/fonc.2022.1094248
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Teng et al. 10.3389/fonc.2022.1094248
A matrix k=3 B c
‘consensus CDF Delta area
-2
o3
o4
|5
a6
-7
LE]
=9 Om——on
———
00 T T T T T T T T
! o A o L) z 2 3 4 5 5 7 8 9
‘consensus index b
D F
o -
gnsq [T L T T T e T T T T T e T T T T T T T N e T M'J'- I:“’
fuliv Gl‘.ﬂFF.W”‘WI' T I H'IMM LY Vi lw.'“ \‘{g “ In
I \ ‘J Im} |\ |I\| JI I WH I '\ ‘ I ‘ ﬁé':s _oll ™
Number at risk e i il 1‘ m‘ i Z f 1 ol | “EE'ZL il
[ P !i‘” It y1h ARl P Fio
1 imonmwnmnisssoo i (it e el Ig:
TETETIIIOLLLL i MW = K
E = [
| T
o k=3
\‘ Fvéifi °
¢ e lcseomn
- | 5 o
B I;
mu e ) D e B
I
G Cluster E3 A E3BE3 C
[ Mg & e e e o 5 R S o . N
g
75
c
g
gs.o
a
3
§2.5
00
FIGURE 2
NET subtypes and clinicopathological features of three clusters. (A) Consensus matrix of ccRCC samples’ co-occurrence proportion for k = 3.
(B, C) Consensus clustering CDF for k from 2 to 9. (D) The Kaplan—Meier plot showed the overall survival differences among the three subtypes
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FIGURE 4

The different expression genes (DEGs), enrichment pathways among different clusters, and consensus clustering based on DEGs. (A) The GO and (B)
KEGG enrichment of different subtypes. (C) The forest plot for ten core DEGs based on univariate Cox regression analysis. (D) Consensus matrix of
ccRCC samples’ co-occurrence proportion for k = 2. (E) Kaplan—Meier curves for the two gene clusters of ccRCC patients. The log-rank test shows
an overall p <0.001. (F) Heatmap showing the relationship among the clinicopathological characteristics of the gene clusters. (G) The boxplot of
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Calculation of the NET scores, and
evaluation of TME and chemokines in
different risk groups

Based on the 10 core genes, we used the ssGSEA method to
calculate the NET scores of each patient in the ccRCC cohort. The
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patients were then divided into high (n = 337) and low (n = 236)
risk score groups based on the NET scores. Moreover, compared
with the low NET-score group, the high NET-score group had a
favorable OS (Figure 5A), which was also validated in E-MTAB-
1980 (Figures S1D-G). We observed a significant difference in the
NET scores among different subtypes, which are displayed in
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Figures 5B, C. Cluster C had the lowest NET scores, whereas Cluster
A had the highest, revealing that NET scores may be closely
associated with immune-infiltration status (Figure 3B). Figure 5D
shows the plots displaying the distribution of patients in three
clusters: two gene clusters and two risk score groups.

To investigate the relationship between the abundance of
immune cells and NET-scores, we performed the CIBERSORT

10.3389/fonc.2022.1094248

algorithm to assess. As shown in the correlation matrix, the
NET-scores were positive for NK cells and neutrophils, and
negative for type 2 helper T cells (Figure 5E). The heatmap
showed that several chemokines, interleukins, interferons, and
their receptors were significantly overexpressed in the high
NET-score group (Figure 5F), indicating that NET scores may
provide novel targets for anti-tumor immunity.
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Clinical characteristics of the NET-scores
and functional enrichment between
different subtypes

To assess the effect of the NET scores on clinical
characteristics, we investigated the association between the NTE
scores and several critical features (overall survival status, grade,
stage, and TNM stage). The results demonstrated that patients
with higher NET scores were associated with a better survival
status (Figure 6A). Moreover, advanced tumor stages (Grades 3-4,
Stages III-IV) also displayed low NET scores (Figures 6B, C),
which were also observed in tumor size (Figure 6D), regional
lymph node status (Figure 6E), and metastasis (Figure 6F).

To further analyze the specific mechanism, common
functional enrichments were performed between the high and
low NET-score groups using the GSVA method. The hallmark
results indicated that high NET scores were associated with several
metabolisms and oxidative phosphorylation pathways, such as
fatty acid metabolism and xenobiotic metabolism (Figure 6G),
which were also identified in the KEGG enrichment results
(Figure 6H). Furthermore, the hallmark and KEGG enrichment
showed that the high NET-score group was associated with a
series of immune-related pathways, such as allograft rejection and
autoimmune thyroid disease (Figures 6G, H).

Evaluation of checkpoints and
immunotherapeutic benefit between the
high- and low-NET-score groups

We next investigated the expression profiles of three
checkpoints (PDCD1, LAG3, and CD274), immunophenoscores
(IPS), and immune-checkpoint therapy response. The results
demonstrated that PD-1 (PDCD1) and LAG3 were significantly
higher in the low NET-score group than the high NET-score
group, whereas the PD-L1 (CD274) level displayed a reverse
discrepant trend (Figures 7A-C). According to the above
results, we speculated that the PD-1 inhibitor is more reactive in
the low NET-score group and the PDL-1 inhibitor is more
effective in the high NET scores. IPS, as the novel method for
evaluating the potential clinical efficacy of immunotherapy, was
calculated to predict the immunotherapeutic benefit. The results
revealed that the high IPS with a positive CTLA-4 signature was
associated with high NET-scores (Figure 7D).

In the subsequent analysis, we included two public datasets,
GSE135222 and IMvigor210 to predict the immunotherapeutic
efficacy. Patients with low NET scores were more likely to benefit
from immunotherapy (Figures 7E, H). Compared to the high-
risk group, there was an increase in patients with responses in
the low-risk group (Figures 7F, I). Patients with low NET scores
showed significant immunotherapeutic benefits and favorable
survival (Figures 7G, J).

Frontiers in Oncology

97

10.3389/fonc.2022.1094248

Pathway activity and drug
sensitivity analysis

As chemotherapy is still a traditional therapy method for
ccRCC, particularly for advanced c¢cRCC, we investigated the
response of the two NET-score groups to common chemo-
drugs. As shown in Figures 8A-H, compared with the high
NET-score group, sunitinib (P-value = 3.6e—08) and rapamycin
(P-value <0.001) showed lower IC50 values in the low NET-
score group, whereas sorafenib (P-value = 1.2e-14), lapatinib
(P-value= 0.038), erotinib (P-value = 3e—09) and axitinib
(P-value =0.081) showed higher values in the low NET-score
group, suggesting that patients in the low NET-score group were
more likely to respond well to sunitinib, and poorly to sorafenib and
axitinib than those in the high NET-score group. Based on the
GSCA dataset, we first explored the activity pathways in the TCGA-
KIRC. As shown in Figure 8I, the NET scores were negatively
associated with apoptosis, cell cycle, and DNA damage and positively
associated with PI3K/AKT and RTX pathways. This indicated that
the NET scores were more likely to play roles in apoptosis and cell
cycle by regulating PI3K/AKT and RTX pathways. The drug
sensitivity in the pan-cancer analysis of GDSCs and CTRP is
shown in Figures 8]-K. The results demonstrated that BRD-
A96377914, tubastatin A, BRD-K85133207, WZ8040, afatinib,
canertinib, ibrutinib, cetuximab, gefitinib, TGX221, CCT007093,
and RO-3306 were more likely to function well.

Genetic mutations of two NET-score
groups, landscape, and validation of
core genes

To investigate the mutation status between the two NET-
score groups, genetic mutations were analyzed using the
maftools (29) R package. The results revealed that the high
NET-score group had a higher mutation rate than the low NET-
score group (70.05% vs 58.4%). The top 10 most frequently
mutated genes are displayed in Figure SIC. Subsequently, the
landscape of 10 core genes was explored in the TCGA-KIRC.
The results demonstrated that only four genes (MAP7,
SLC16A12, SLC27A2, and SLC3A1) were DEGs in ccRCC
compared to normal samples (Figure S2A). Four genes had
more than a 1% mutation rate (Figure S2B). The 10 core genes
were significantly associated with DSS, OS, and PES (Figure
S2C). Several genes were positively correlated with methylation
levels, whereas CUBN, MAP7, and SLC16A12 were closely
associated with copy number variation (CNV) levels (Figure
S2D). Most of the genes (9/10) were positively associated with
PI3K/AKT, RTK, and hormone AR activity and negatively
associated with apoptosis, cell cycle, and DNA damage (Figure
S2E). Considering only four genes were DEGs, we explored these
four genes in the CCLE dataset. The results revealed that the
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FIGURE 6

The correlation of NET-scores with clinic-pathological characteristics, hallmark and KEGG enrichment between high- and low-NET-score

groups. The boxplot of different survival status (A), clinical grade (B), cli
distant metastasis (F). The hallmark (G) and (H) KEGG enrichment betw

basal expression profiles of MAP7, SLC16A12, and SLC3Al
were high in kidney cancer cells (Figure S2F). The RT-PCR
showed that MAP7, SLC16A12, and SLC27A2 were decreased in
786-0 and Caki-1 compared with HK2, while SLC3A1 increased
(Figure S2G), which was consistent with the results of the
TCGA-KIRC (Figure S2A). The protein levels of HPA
demonstrated that MAP7 and SLC27A2 levels were lower, and
SLC3ALl levels were higher, in tumor tissues than in normal
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nical stage (C), tumor stage (D), regional lymph node status (E), and
een high- and low-NET-score groups.

samples (Figure S2H), in accordance with the results of the
TCGA-KIRC and RT-PCR.

Discussion

ccRCC, the most common subtype of RCC, is highly
associated with poor clinical outcomes (33). Emerging
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treatments such as targeted drugs and immunotherapy have
significantly enhanced the prognosis of patients with advanced
ccRCC; however, the effectiveness of these treatment strategies
still needs to be improved (34). Moreover, ccRCC has strong
immune-associated characteristics (35). Thus, reliable
biomarkers are urgently required to predict recurrence risk
and guide treatments. NETs and immune cell infiltrations
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have been reported to have critical roles in tumor progression
(36). Sivan et al. first described the association between NETSs
and cancer (Ewing sarcoma) (12). Subsequently, there are
increasing studies on NETs and cancer. For example, NETs
drive the process of endothelial-to-mesenchymal transition (37).
Aldabbous et al. identified that NETs promote angiogenesis (38).
Moreover, NETs promote cancer-associated thrombosis via
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thrombin generation and the conversion of fibrinogen to fibrin
(39). Additionally, many prognostic signatures based on NET's
have been reported in human cancers (19, 20). However,
whether NETSs are also involved in tumor prognosis and play
prognostic values in ccRCC has not been explored. Therefore, we
collected the expression profiles of NET-related genes and
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clinical characteristics from the TCGA, GEO, and
ArrayExpress datasets and comprehensively explored the
NET-related genes in the ccRCC cohort.

In the current study, we first examined the roles of NET-
related genes in the TCGA-KIRC and found that 43 of 69 genes
were significantly differentially expressed in the tumor samples
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compared to non-tumor tissues. Moreover, most of the genes
were prognostic genes. Then, three NET-related subtypes
(Clusters A-C) were identified in the ccRCC cohort by
consensus cluster algorithms. It was found Cluster B had low
levels of NET-related genes and low abundance of immune cells
infiltration, whereas Cluster C had high levels of NET-related
genes and immune cell infiltration. Moreover, the three subtypes
had significantly different overall survival outcomes. The
differences in mRNA expression profiles among the three
subtypes were dramatically correlated with metabolism- and
immune-related biological pathways. We identified two gene
clusters, A and B, based on the DEGs among the three NET-
related subtypes. Our findings suggested that NETs act as a
predictor for clinical survival outcomes, targeted drugs, and the
immunotherapy response of ccRCC. Therefore, we established
the NET scores based on 10 hub genes by using the ssGSEA
method. Patients with low and high NET scores showed
significant discrepancies in clinical characteristics, prognosis,
immune cell infiltrations, immune checkpoints, and activity
signal pathways.

As for the 10 core genes, MAP7, SLC16A12, SLC27A2, and
SLC3A1 were significantly different in patients with ccRCC
when compared to non-tumor samples. MAP7, Microtubule-
associated protein 7, functions as a regulator of microtubule
bundling and dynamics. Several studies had reported MAP7
involved in cell cycle progression (40) and autophagy pathway in
cancers (41). SLC16A12, SLC27A2, and SLC3A1 belonged to the
solute carrier group of membrane transport proteins (42). Liu
et al. reported that decreased expression of SLC16A12 mRNA
levels was associated with a poor prognosis for ccRCC (43).
Upregulation of SLC27A2 could inhibit the proliferation and
invasion of RCC via a CDK3-mediated pathway (44). SLC3A1,
the cysteine carrier, has been reported to promote breast cancer
tumorigenesis via AKT signaling (45). In our study, we found
MAP7, SLC16A12, and SLC27A2 in kidney cancer cells when
compared with normal kidney cells, which agreed with the
results of the TCGA-KIRC. Generally, the results indicated
that MAP7, SLC16A12, SLC27A2, and SLC3A1 could be the
biomarkers for the complement system of ccRCC.

Immunotherapies, particularly immune checkpoint
inhibitors (ICIs), have transformed the treatment of several
advanced carcinomas (46-49). Although clinical benefits have
been achieved when patients with ccRCC receive ICIs, the
responses demonstrated personal heterogeneity (50). Thus,
looking for markers to predict the responses of ICI treatment
is highly important. In our study, we observed higher expression
levels of PD1 and LAG3 in Cluster C and low NET scores.
Moreover, we found that the NET scores were significantly lower
in patients responding to ICIs, which identified their predictive
effects. These results suggested that patients with low NET scores
and higher expression levels of PD1 and LAG3 are more likely to
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respond to ICI treatment. Considering that targeted therapy
remains the recommended treatment for patients with advanced
ccRCC, we evaluated eight common drugs based on the GDSC
dataset. The results showed that a low-NET-score group might
be likely to acquire benefits from sorafenib, axitinib,
gemcitabine, and lapatinib treatments. The above results
indirectly suggested the use of NET modifications for
predicting clinical benefits from ICI and targeted therapy.

Although in the present study we identified three NET
clusters, established a NET-score system, and provided a novel
perspective for precise immunotherapy and targeted therapy for
ccRCC, several limitations should be addressed. First, all
analyses were performed on data obtained from public
datasets; thus, the analysis results might be influenced by an
intrinsic case selection bias. Large-scale prospective studies and
cell and animal experimental research are necessary to confirm
our findings.

In conclusion, our study expansively displayed the
relationship between NET modification patterns and TME,
clinical characteristics, and prognosis. We also assessed the
treatment sensitivity prediction of NETs in ICI and targeted
treatments. Finally, we constructed a NET-score system for
quantifying the NET patterns of patients with ccRCC and
validated the expression of core genes. Thus, the findings of
the present study might facilitate our understanding of ccRCC
and provide ideal strategies for individual treatment.
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Background: Recently studies have identified a critical role for interferon
regulatory factor (IRF) in modulating tumour immune microenvironment (TME)
infiltration and tumorigenesis.

Methods: Based on IRF1-9 expression profiles, we classified all ccRCC samples
into three molecular subtypes (clusters A-C) and characterized the prognosis and
immune infiltration of these clusters. IRFscore constructed by principal
component analysis was performed to quantify IRF-related subtypes in individual
patients.

Results: We proved that IRFscore predicted multiple patient characteristics, with
high IRFscore group having poorer prognosis, suppressed TME, increased T-cell
exhaustion, increased TMB and greater sensitivity to anti- PD-1/CTLA-4 therapies.
Furthermore, analysis of metastatic ccRCC (mccRCC) molecular subtypes and
drug sensitivity proved that low IRFscore was more sensitive to targeted therapies.
Moreover, IRFscore grouping can be well matched to the immunological and
molecular typing of ccRCC. gRT-PCR showed differential expression of IRFs in
different cell lines.

Conclusions: Evaluating IRF-related molecular subtypes in individual ccRCC
patients not only facilitates our understanding of tumour immune infiltration, but
also provides more effective clinical ideas for personalised treatment.

KEYWORDS

ccRCC, IRF family, tumour microenvironment, t cell exhaustion, immunotherapy,
targeted therapy
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Introduction

As the most common pathological subtype of kidney cancer, clear
cell renal cell carcinoma (ccRCC) is the least malignant but has a high
metastatic rate of up to 60% (1). Patients with advanced metastatic
kidney cancer are mostly treated with drug therapy, including
targeted therapy and immunotherapy (2, 3). Targeted therapies
specifically target certain mutated genes or abnormal proteins,
which cause less damage to normal cells (4, 5). Some
immunotherapeutic drugs are widely used and achieve significant
efficacy (2). Actually, researchers found that immunotherapeutic
drugs combined with targeted drugs were more effective than
monotherapy, which represents a gradual shift in treatment options
for kidney cancer towards targeted combination immunotherapy (6).

Interferon regulatory factors (IRFs), can regulate interferons
transcriptional modification to fight pathogenic infections (7). Multiple
studies confirmed that IRFs regulate tumour immune activity and
tumorigenesis. For example, IRF7 high expression potently induces
CD8+ T cell responses and strengthens host immune surveillance to
fight viral infection and restrict tumour metastasis (8); IRF9 effectively
prevents CD8+ T cell exhaustion caused by over-exposure to antigens
(9). These results provide a theoretical basis for future studies on tumour
immune mechanism and therapeutic applications of IRFs.

In this work, three IRF-related clusters were constructed in ccRCC,
and clinical and immune characteristics were assessed between three
clusters. Furthermore, we proposed to calculate IRFscore to quantify IRF
subtypes in individual patients and proved that IRFscore is highly
correlated with patient prognosis, immune infiltration, T-cell
exhaustion and treatment. This work will assist clinicians to better
understand and differentiate ¢ccRCC immunological and molecular
subtypes, and formulate individualised treatment.

Materials and methods
Data sources and pre-processing

Figure S1 illustrated the workflow for this study. We searched and
downloaded ccRCC expression datasets with complete clinical
annotation and mutations from The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) databases. Two datasets
(TCGA-KIRC and GSE36895 datasets) were analysed in this work.
For TCGA-KIRC dataset, we obtained gene expression data from
UCSC website (https://xenabrowser.net/datapages/) and converted
them to kilobase per million values. GSE36895 dataset were
downloaded from GEO (http://www.ncbinlm.nih.gov/geo/). “Sva”
package was performed for correcting batch effects in two datasets
(10). Samples lacking complete clinical information and mutation
data were excluded. Clinical information was summarised in Table S1.

Cell culture

Human renal tubular epithelial cells (HK-2) and ccRCC cell lines
(786-0 and Caki-1) were obtained from the Cell Bank of the Chinese
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Academy of Sciences (Shanghai, China). These cells were cultured in
DMEM or RPMI-1640 medium containing 10% fetal bovine serum
and 1% streptomycin-penicillin. All cells were incubated in a sterile
incubator at 5% CO2 and 37°C.

RNA isolation and quantitative
real-time PCR

TRIzol reagent (Invitrogen, USA) was applied to isolate and
extract total RNA from the cells. NanoDrop 2000
spectrophotometer (Thermo Scientific, USA) was applied for
evaluating of RNA quantity control and concentration. Reverse
Transcription Kit (Takara, China) was applied to reverse transcribe
total cellular RNA into ¢cDNA. ABI 7500 real-time fluorescence
quantitative PCR instrument was designed for carrying out qRT-
PCR process. The cycling threshold (Ct) for each gene was recorded
and 2-AACt method was applied to calculate gene mRNA expression.
All experiments were repeated 3 times and procedures were carried
out according to reagent instructions. Primer sequences were listed in
Table S2.

Unsupervised clustering of IRF1-9

Unsupervised clustering analysis were applied to identify IRF-related
molecular subtypes. Consensus clustering algorithm was performed for
determining the number of clusters. “ConsensuClusterPlus” package was
employed to perform consistency clustering analysis (11). The process
was repeated a thousand times to ensure consistency of classification.

Gene set variance analysis

GSVA is a non-parametric unsupervised analysis method that
transforms gene expression matrices into gene set expression
matrices to evaluate gene set enrichment results of transcriptome
(12). Based on the “c2.cp.kegg.v6.2.symbols” gene set obtained from
MSigDB database, GSVA analysis was conducted using
“GSVA” package.

Estimation of immune infiltration

Single sample gene set enrichment analysis (ssGSEA) was
performed to assess immune infiltration levels based on immune
cell-specific gene expression. The immune gene set file is derived from
Charoentong et al (13, 14). ESTIMATE algorithm calculates immune
and stroma score to estimate the amount of stroma and immune cells
and compute tumour purity (15). CIBERSORT is designed to
calculate the composition ratio of the 22 immune cells. 22 immune
cell expression data are taken from CIBERSORT website (https://
cibersort.stanford.edu/) (16). Considering that CD4 naive T cells was
0 in all ccRCC samples, CIBERSORT algorithm only analysed
remaining 21 immune cells.
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Identification of DEGs and
functional annotation

“limma” package is applied to filter differentially expressed genes
(DEGs) between clusters (17). Genes with adjusted P-value<0.001
were recognized as DEGs. “ClusterProfiler” package is intended for
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and
Genomes) enrichment analysis of DEGs (18).

Construction of IRFscore

Univariate COX regression screened for prognosis-related DEGs.
Principal component analysis (PCA) was performed for constructing
IRF gene signature. PC1 and PC2 were used as feature scores to
calculate IRFscore for individual samples (19). IRFscore = ¥ (PCli +
PC2i), where i represented DEGs’ expression.

Validation of the clinical value of IRFscore

The TCGA-KIRP and TCGA-KICH cohorts were used to validate
the clinical performance of the IRFscore. Information on both queues
can be downloaded from the online website (https://portal.gdc.cancer.
gov/).

IPS analysis

The four different immunophenotypic scores (antigen-presenting,
effector, suppressor, checkpoint) are calculated separately by
immunophenoscore (IPS), IPS z-score is the integration of the four,
and the higher the IPS z-score, the more immunogenic the sample
(20). IPS was obtained from The Cancer Immunome Atlas (https://
tcia.at/home).

Drug sensitivity analysis

GDSC (https://www.cancerrxgene.org/) database contains
massive genomic data on tumour therapeutics and drug sensitivity
data (21). We predicted the response of ccRCC patients to five
chemotherapeutic agents, including sunitinib, sorafenib, nilotinib,
temsirolimus and pazopanib. “pRRophetic” package was performed
for quantifying the half maximal inhibitory concentration (IC50).

Statistics analysis

Protein-protein interaction (PPI) network maps between IRFs
was obtained from STRING database (22). Wilcoxon rank sum test
was designed to comparative analysis of two groups, Kruskal-Wallis
and one-way ANOVA was designed to calculate differences between
three and more groups. Spearman correlation analysis was designed
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to determine correlation coefficient. Kaplan-Meier and log-rank test
were performed for plotting survival curves and calculating statistical
differences. Multivariate COX regression analysis was conducted to
detect independent prognostic factors. “maftools” package was
conducted to describe mutations. Statistical analyses were all two-
sided and P<0.05 was considered statistically different. All data were
analysed by R software (version 4.1.1).

Results

Expression pattern and clinical relevance of
IRFs in ccRCC

IRF1-9 were included in this work. First, we analysed mRNA
expression levels of IRFs in TCGA and GSE36895 cohort,
respectively. IRFs were severely imbalanced in expression and the
results of both databases remained largely consistent (Figures 1A, B).
All genes were up-regulated in ccRCC except IRF6. ROC and PCA
analysis indicated that IRFs can distinguish well between ccRCC and
normal samples (Figures 1C-E). We then used two databases, CTPAC
and HPA, to compare differential protein expression. CTPAC
database results were consistent with the above database (Figure
S2A). Figure S2B illustrated that in HPA database, IRF1, IRF3,
IRF7-9 were upregulated in tumour, while the opposite is true for
IRF6. IRF2 was highly expressed in both tissues. IRF4 and IRF5 were
low or undetectable in both tissues. Furthermore, we observed that
IRFs were highly correlated in expression (Figure 1F) and interacted
with each other in PPI network (Figure 1G).

To validate IRFs mRNA expression, we performed qRT-PCR
analysis in three cell lines. Most IRFs were more highly expressed in
tumour cells (Figure 2), which is generally consistent with the results
above. Furthermore, we noted that IRFs were expressed with cell
specificity in different cells (Figure S2C).

We then discussed clinical relevance of IRFs. We found that most
IRFs were correlated with prognosis (Figure 1F and S2D). IRF6
exhibited a tumour suppressive profile and its expression was
positively correlated with prognosis. In contrast, the higher the
expression of other IRFs, the worse the prognosis of patients.

Identification of IRF-related subtypes
in ccRCC

Using an unsupervised clustering approach, we classified ccRCC
patients into different subtypes. We ultimately identified three IRF-
associated molecular subtypes, termed IRF Cluster A-C (Figure 3A
and S3A-C). Heat maps illustrated the relationship between three
subtypes and clinicopathological features (Figure S3D). Prognostic
analysis pointed to a much higher survival advantage for cluster B
(Figure 3B). By analysing IRF expression profiles, we observed higher
expression of protective factors (IRF6) in cluster B, while the opposite
was true for risk factors (e.g. IRF3 and IRF7) (Figure 3C). This
laterally explained why cluster B had a better prognosis.
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FIGURE 1

Landscape of IRFs expression in ccRCC. (A-B) Boxplot of IRFs expression in ccRCC and normal tissues from TCGA database (A) and GSE36895 (B).
(C) ROC curves demonstrate IRF family ability to differentiate between tumour and normal tissue. (D-E) Principal component analysis for the expression
profiles of IRFs to distinguish tumours from normal samples in TCGA database (D) and GSE36895 (E). (F) The interaction between IRFs in ccRCC. (G) The

PPI network of IRFs. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.

Immune characteristics of different IRF-
related subtypes

GSVA analysis was performed to characterise different biological
properties. Multiple immune activation-related pathways, including T
and B cell receptor signalling pathways accumulated in cluster C
(Figures 3D, E and S3E). Cluster B enriched for some matrix
activation pathways, whereas cluster A was mainly associated with
immunosuppression and base excision repair. We then proceeded to
analyse TME immune infiltration. First, we evaluated 23 immune cell
infiltrations using ssGSEA, and almost all immune cells were heavily
infiltrated in cluster C (Figure 3F). We then ran ESTIMATE
algorithm to calculate stromal and immune cell content.
Apparently, cluster C had much higher immune and stromal
scores, signifying that cluster C had lowest tumour purity
(Figure 3G). However, no matching survival advantage was found
for cluster C with this immune profile. Therefore, we counted the
relative proportions of cell subpopulations via CIBERSORT. CD8+ T
cells and M2 macrophages were more predominant (Figures S3F-G).
Typically, the higher the expression of CD8+ T cells, the more positive
the prognosis (23). Interestingly, we observed the greatest proportion
of CD8+ T cells in cluster C and the lowest in cluster B, which is
opposite to the prognosis. Researches have revealed that CD8+ T cells
are exhausted in ccRCC and secrete numerous immune checkpoints,
including PD-1 and CTLA-4. At this point, the higher the intensity of
CD8+ T cell infiltration, the worse the prognosis of ccRCC (24). Here,
we analysed T cell exhaustion-related immune checkpoint expression.
Most checkpoints were highest in cluster C (Figure 3H). Combining
with previous studies, we speculated IRFs may regulate T-
cell exhaustion.

Frontiers in Oncology

107

Comprehensive analysis of IRFs-
related DEGs

To further characterise biological functions of IRF-related
subtypes, we filtered 547 DEGs from three subtypes and performed
functional enrichment analysis (Figure 4A). These DEGs participated
in many immune cell activation and proliferation-related pathways
(Figures 4B, C). This implied that IRF-associated DEGs are actively
engaged in immune processes and modulating immune infiltration.
Subsequently, univariate COX regression analysis was performed to
identify 426 prognosis-related DEGs (Table S3). Similarly, we ran
unsupervised cluster analysis on 426 DEGs and identified three gene
clusters, termed IRF gene Cluster A-C (Figures S4A-D). Similarly, we
compared clinicopathological characteristics and immune infiltration
between different gene clusters and found that gene cluster A had
superior prognostic prospects (p<0.001, Figures 4D and S4E). Except
for IRF6 and IRF8, the remaining risk genes were expressed in gene
clusters in the order C, B and A (Figure 4E). CD8+ T cells and MDSC
had lowest infiltration intensity in Cluster A (Figure 4F). This
accounted for the greatest survival advantage of gene cluster A.
Overall, the concordance of prognostic and immune infiltration
characteristics among gene clusters justified this classification.

Establishment of IRF gene signature and its
clinical characteristics

PCA analysis was conducted on 426 DEGs and IRFscore were

calculated to accurately quantify individual IRF-related molecular
subtypes. The samples were divided into high and low IRFscore
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FIGURE 2
RT-PCR analysis of IRF1-9 expression levels in 786-0, Caki-1 and HK-2 cells. *P < 0.05, **P < 0.01, ***P < 0.001.

groups following the threshold values determined by “survminer”
package. Figures 5A-C exhibited the variation in attributes of
individual patients in different clusters. Figure 5D demonstrated
IRFs expression profiles in two groups. Prognostic analysis revealed
that the higher the IRFscore, the worse the prognosis
(p<0.001, Figure 5E).

Next, we proceeded with a stratified prognostic analysis by
different clinical characteristics. First, we observed a higher
proportion of patients with advanced tumours were in high-
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IRFscore group (p<0.05, Figure S5A). Patients with VHL, PBRM1
and BAP1 mutations also had higher IRFscore, although not
statistically different (Figure S5B). Stratified prognostic analysis
revealed that low IRFscore consistently showed marked survival
advantages (p<0.05, Figure S5C). Multivariate Cox regression
analysis proved that IRFscore could be independent prognostic
factor (Table S4). ROC curves and nomograms demonstrated the
performance of IRF scores in predicting patients’ rates at 1, 3, 5 and 7
years (AUC20.666, Figures 5F, G).
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The IRF-related molecular subtypes in ccRCC and biological and immune characteristic of each pattern. (A) PCA for the transcriptome profiles of three
IRF clusters. (B) Survival analyses of three IRF clusters. (C) The expression of IRF1-9 in three IRF clusters. (D-E) GSVA enrichment analysis showing the
activation states of biological pathways in distinct clusters. (F) The abundance of each TME infiltrating cell in three clusters. (G) Box plot indicated the
correlation between IRF clusters and immune scores, stromal scores and estimate scores. (H) The expression of most immune checkpoints among
distinct IRF clusters. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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KEGG (C) enrichment analysis on these DEGs. (D) Survival analyses of three IRF gene clusters. (E) The expression of IRFs in three gene clusters. (F) The
abundance of each TME infiltrating cell in three gene clusters. **p < 0.01; ***p < 0.001

Frontiers in Oncology 109 frontiersin.org


https://doi.org/10.3389/fonc.2022.1118472
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Chen et al. 10.3389/fonc.2022.1118472
B IRF geneCluster B3 A %18 B3 C c IRF cluster B3 A 598 3 C
w p<222e-t6 w0 p<2z2e-ts
peaderte ootz
w© ) & ; w©
" goneCiust ¢ R cstor N
D IRFs E3 Hon Low
i % an = i J H
i e R
1 : :
I e |
& & &£ & & & & & ¢
Time(years) 1-Specificity
G
FIGURE 5
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analysis for two IRFscore groups. (F) ROCs for 1-, 3-, 5-, and 7-year survival time based on IRFscore. (G) Nomograms incorporating IRFscore and clinical
characteristics for predicting patient 1-, 3-, 5-year survival. ns, not significant; ***p < 0.001.

Further validation of IRFscore's
prognostic performance using
two independent cohorts

To gain insight into IRFscore’s prognostic value, we further
validated the effectiveness of IRFscore in predicting papillary renal
cell carcinoma (KIRP) and kidney chromophobe (KICH) prognosis.
Based on previous PCA results obtained from 426 DEGs, IRFscore
was re-established and survival analyses were performed. In KICH,
the prognosis was significantly better in low IRFscore group, while the
opposite was true in KIRP (P<0.05, Figures S5D, E). This suggested
that IRFs are responsible for renal cancer progression, but for specific
efficacy, it depended on cancer type.

Association between IRFscore and CD8+ T
cell exhaustion

To uncover how IRFscore works in regulating TME, we examined
immune infiltration in two groups. High IRFscore group had a more
significant immune infiltration (Figures 6A, B). Furthermore, we found
that CD8+ T cells and M2 macrophages accounted for largest proportion
in both groups (Figure 6C). Therefore, we speculated that these cells
probably function primarily in ccRCC progression. Previous studies
demonstrated that immune dysregulation occurs in advanced ccRCC
(25), when massive exhausted T cells and M2 macrophages are
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simultaneously enriched in TME and substantial receptor-ligand
interactions exist between two cells leading to worse prognosis (26).
Table S5 listed receptors or ligands expressed by two cells. Expression
analysis revealed that most co-stimulatory receptors, except for HAVCR2
and BTLA, were significantly overexpressed in high IRFscore group
(Figure 6D). This suggested that CD8+ T cells in high IRFscore were
mostly in exhausted state. However, a matching profile of M2
macrophages was not observed in high IRFscore group (Figure S6A).
These results indicated that IRFs may not participate in interaction of
exhausted T cells with M2 macrophages.

Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues that
surround the tumour. The higher the density of its presence, the better
the patient’s prognosis (27). In ccRCC, TLS not only occurs significantly
less frequently than other cancers, but also becomes dysfunctional (28).
Interestingly, when TLS density and mature DCs are increased in ccRCC,
a group of patients with high CD8+ T-cell infiltration and good prognosis
emerges (29). This contradicted previous findings that CD8+ T cells
cause worse prognosis in ccRCC (23). Therefore, scientists assumed that
the emergence of TLS and mature DCs could be one reason for reduced
T-cell exhaustion (30). We extracted TLS-related markers from published
literatures, including three chemokines (CCL19, CCL21 and CXCL13)
and two TLS-DC-related markers (HLA-DR and CD83). HLA-DR,
CD83 and CCLI13 were significantly upregulated in low IRFscore,
while only CCL19 was downregulated (Figure 6E). Thus, we
hypothesized that increased presence of TLS and mature DCs in low
IRFscore may enhance ccRCC prognosis by reducing T-cell exhaustion.
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The role of IRFs in TMB and therapy

Many studies proved that the more genetic mutations a tumour has,
the more abnormal proteins it produces and the more likely the immune
system is to be activated. This implied that tumour mutational burden
(TMB) is somewhat predictive of immunotherapy effects (31).
Furthermore, TMB can accurately predict multiple targeted and
chemotherapeutic drug effects (32). Generally, the higher the TMB, the
better the treatment effect. In this work, quantitative analysis and
correlation analysis confirmed a positive correlation between IRFscore

and TMB (Figures S6B-C). Survival analysis proved that lower TMB
predicts a good prognosis (p<0.001, Figure 6F). We further assessed the
synergistic effect of these two scores in prognosis. Stratified survival
analysis indicated that TMB and IRFscore did not interfere with each
other, with IRFscore showing significant survival differences in two TMB
subgroups (p<0.001, Figure 6G). This meant that IRFscore could serve as
a prognostic indicator independent of TMB.

Next, we discussed the performance of IRFscore in predicting
targeted therapy efficacy. We compared estimated IC50 of five drugs
(Figures 7A-E). Except for pazopanib, IC50 levels for remaining drugs
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FIGURE 7
IRFscore in the role of ccRCC clinical therapies. (A-E) Box plot showing the sensitivity of patients with high and low IRFscore subgroups to
chemotherapy drugs, including sunitinib (A), sorafenib (B), nilotinib (C), temsirolimus (D) and pazopanib (E). (F-1) The association between IPS and
immune checkpoints in ccRCC patients with different IRFscore.
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were significantly higher in low IRFscore, meaning that low IRFscore was
more sensitive to these drugs (p < 0.001). We then investigated the
association between IRFscore and immune checkpoint inhibitor (ICI)
therapy by IPS. Figures 7F-1 depicted that four IPS scores were
significantly higher in high IRFscore (p<0.001), signifying that higher
IRFscore may have higher immunogenic phenotypes and be more
sensitive to ICIs. Additionally, the higher the frequency of PBRM1
mutations, the better the outcome of anti-PD-1 treatment was found
(26). Figure S5B demonstrated that PBRM1 mutations were more
frequent in high IRFscore. Above results indicated that low IRFscore
group may be more sensitive to targeted therapies, while high IRFscore
subgroup were more sensitive to immunotherapy.

Degree of matching of IRFscore
groups to ccRCC immunological
and molecular subtypes

Numerous studies indicated that patient response to treatment
options can be predicted by different tumour subtypes (33). We
therefore sought to understand whether ccRCC-related phenotypes
could explain why IRFs influence treatment outcome and analysed the
extent to which IRFscore-related subgroups matched these tumour
phenotypes. First, combining immune infiltration characteristics
(Figures 6A-C), we hypothesized that high IRFscore group matched
immune-inflamed phenotype, whereas low IRFscore group matched
immune-desert phenotype. Generally, immune-inflamed phenotype
was more responsive to anti-PD-L1/PD-1 therapies. In contrast,
immune-desert phenotypes had no or the weakest response (34). This
was consistent with our previous prediction that high IRFscore group was
more sensitive to ICI therapies (Figures 7F-I).

Generally, targeted therapies are more effective in metastatic ccRCC
(mccRCC) than other treatments (2, 3). To accurately predict the
effectiveness of tyrosine kinase inhibitor (TKI) therapy in mccRCC,
Benoit et al. identified four mccRCC molecular subtypes with different
therapeutic effects on sunitinib based on tumour gene mutations, copy
number variants (CNV) and methylation status (35). To determine
whether this typing was applicable to our work, we collated the
distribution of these features across two groups and summarised in
Table S6 and Figures S6D-L. We considered that high IRFscore group
may correspond to mccRCC 1/4 group, characterised by poor prognosis,
low sunitinib sensitivity, increased methylation levels, slightly higher
VHL and PBRMI1 mutations, higher CNV, highly inflammatory
immunosuppressive environment and low stem cell differentiation
(Figures S6D-L). In contrast, low IRFscore group corresponded to
mccRCC 2/3 group, which has the opposite characteristics. Although
not all features match exactly, in general we assume that mccRCC
subtypes can be applied to describe IRFscore grouping. These results
pointed that IRFscore groupings can be well matched to ccRCC
immunological and molecular typing, indicating that optimal treatment
can be selected according to each patient’s tumour subtype.

Discussion

Numerous studies highlight the important role of IRFs in
regulating host immune responses and tumorigenesis. To date,
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most studies focused on single IRF and still lack a comprehensive
understanding of how entire IRF family integrally regulates cancer
development and TME. In our research, we focus on the value of
IRF1-9 in modifying ccRCC TME and treatment.

Different ¢cRCC molecular subtypes and their characteristics
have been identified through transcriptome analysis. In our study,
we identified three distinct IRF-related subtypes, each with different
prognostic and immune characteristics. Combining with previous
studies, we hypothesized that cluster C corresponded to immune-
inflamed phenotype characterised by massive immune cell infiltration
(33). Unlike three immune phenotypes (immune-inflamed, immune-
excluded and immune-desert phenotype) that are widely recognised
in other tumours (33), David et al. argued that immune-excluded
phenotype is rare in ccRCC (25). Thus, combining immune
infiltration, we hypothesized that clusters A and B correspond to
immune-desert phenotype with low immune infiltration (33).
Previous studies demonstrated that CD8+ T cells are exhausted in
ccRCC, when the greater the cellular infiltration, the worse the
prognosis (28). By analysing the proportion and degree of immune
cell infiltration, we observed that Cluster C exhibited significant CD8
+ T cell exhaustion characteristics, while Cluster B had relatively few.
Comprehensive analysis of prognostic and immunological features
plausibly explained why Cluster C had the worst prognosis despite
being immunologically activated, while the opposite was true for
Cluster B. This meant that immunophenotypic classification of
different IRF-related subtypes was reasonable and valid.

According to these DEGs, we classified ccRCC into three distinct
gene subtypes, which also have different clinical and immunological
profiles. This reaffirmed IRFs’ potential value in predicting survival
and shaping different TMEs. Given individual heterogeneity in IRFs
expression, we quantified IRF-related molecular subtypes in
individual ccRCC patients accurately by IRFscore. Comprehensive
analysis suggested that IRFscore not only correlated significantly with
clinical features, but also served as an independent prognostic factor.
Besides, several mutation-prone genes in ccRCC, including PBRM1,
VHL and BAPI, were mutated more frequently in high IRFscore
group. It has been well established that these mutations indicate a
poor prognosis for patients (36) and PBRM1 mutations substantially
increase patient susceptibility to targeted therapies and
immunotherapy (37). These results indirectly indicated potential
value of IRFscore in predicting patient prognosis, suggesting that
IRFs may be critical factors in affecting ccRCC treatment efficacy.

During chronic infection or cancer with continuous antigen
stimulation, T cells fail to differentiate effectively into effector and
memory T cells, at which point they gradually lose their original effect
and become exhausted. This process is accompanied by massive
inhibitory receptors (IRS) expression (24). In ccRCC TME,
interactions between exhausted CD8+ T cells and M2-like
macrophages cause immune dysfunctional circuits (25, 26).
However, by analysing two cell infiltrations and corresponding
receptor (ligand) expression in IRFscore groups, we did not find
significant interactions between two cells. This indicated that IRFs
may not regulate this interaction. TLS, existing around the tumour,
consists of a B-cell follicular zone with a germinal centre and a T-cell
zone with DC-Lamp+ mature DCs (27). During TLS formation,
CCL19 and CCL21 recruit immune cells in vicinity of high
endothelial vein to form T, B cell areas. CXCL13 recruits lymphoid
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tissue-inducing factors and initial B cells to inflammatory site and
TLS-B cell area, respectively. A reduced risk of death and recurrence
of ccRCC has been found when increased frequency of TLS is
accompanied by increased CD8+ T-cell infiltration, contradicting
the previous belief that CD8+ T cells cause poorer prognosis (29).
Therefore, researchers pointed that increased mature TLS in ccRCC
may be relevant to reduced T-cell exhaustion (30). In our study, TLS
and mature DCs were more frequent in low IRFscore group (high
prognosis) and accompanied by reduced CD8+ T-cell exhaustion. We
speculated that IRF may improve patient prognosis by influencing
TLS frequency.

Targeted therapy is preferred for mccRCC as it is not effective
against conventional chemotherapy and radiotherapy (3). Widely
recognised kidney cancer targeted agents fall into two categories,
TKI and mTOR inhibitors, acting through VHL/HIF/VEGF and
PI3K/AKT/mTOR signalling pathways respectively (4). Some TKI
drugs, including sorafenib and sunitinib, can slow down neo-
angiogenesis by blocking VEGF (38). Temsirolimus and
everolimus, as mTOR pathway inhibitors, can block mTOR
proteins to exert therapeutic effects (4). Benoit et al. constructed
mccRCC-related molecular markers to predict patient response to
treatment with sunitinib and identified four different molecular
subtypes (mccRCC1-4) (35). Interestingly, we found that high
IRFscore matched mccRCC1/4, while low IRFscore matched
mccRCC2/3. Therefore, we proposed that IRFscore not only
serves as a marker for mccRCC typing, but also predicts targeted
therapeutic efficacy. ICIs restore T-cell anti-tumour activity by
blocking intra-tumour immunosuppressive signalling (6). PBRM1
mutations, TMB and tumour immunophenotypes influence ICI
efficacy to some extent. In this work, we revealed significant
associations between IRFscore and PBRM1 mutations, TMB and
immunotype and confirmed the predictive value of IRFscore in
immunotherapy efficacy.

Due to technical limitations, most conclusions in this paper
were based on information from public databases. In future,
appropriate clinical cohorts and basic trials will be required to
address these issues.

Conclusion

The IRFscore, constructed based on the transcriptomic expression
of the IRF family, has independent prognostic value and can provide
accurate survival prediction for ccRCC patients. Furthermore,
IRFscore can help us to comprehensively assess the IRF-related
immune and molecular subtypes in individual patients and guide
more effective individualised clinical treatment.
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Development and validation of a
nomogram to evaluate the
therapeutic effects of second-line
axitinib in patients with
metastatic renal cell carcinoma

Denggiang Lin™, Peng Lai', Wen Zhang?®, Jinglai Lin*,
Hang Wang?®, Xiaoyi Hu* and Jianming Guo™**
‘Department of Urology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, China,

2Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, Shanghai, China,
sDepartment of Urology, Zhongshan Hospital, Fudan University, Shanghai, China

The unpredictable biological behavior and tumor heterogeneity of metastatic renal
cell carcinoma (mMRCC) cause significant differences in axitinib efficacy. The aim of
this study is to establish a predictive model based on clinicopathological features
to screen patients with mRCC who can benefit from axitinib treatment. A total of
44 patients with mRCC were enrolled and divided into the training set and
validation set. In the training set, variables related with the therapeutic efficacy of
second-line treatment with axitinib were screened through univariate Cox
proportional hazards regression and least absolute shrinkage and selection
operator analyses. A predictive model was subsequently established to assess
the therapeutic efficacy of second-line treatment with axitinib. The predictive
performance of the model was evaluated by analyzing the concordance index and
time-dependent receiver operating characteristic, calibration, and decision curves.
The accuracy of the model was similarly verified in the validation set. The
International Metastatic RCC Database Consortium (IMDC) grade, albumin,
calcium, and adverse reaction grade were identified as the best predictors of the
efficacy of second-line axitinib treatment. Adverse reaction grade was an
independent prognostic index that correlated with the therapeutic effects of
second-line treatment with axitinib. Concordance index value of the model was
0.84. Area under curve values for the prediction of 3-, 6-, and 12-month
progression-free survival after axitinib treatment were 0.975, 0.909, and 0.911,
respectively. The calibration curve showed a good fit between the predicted and
actual probabilities of progression-free survival at 3, 6, and 12 months. The results
were verified in the validation set. Decision curve analysis revealed that the
nomogram based on a combination of four clinical parameters (IMDC grade,
albumin, calcium, and adverse reaction grade) had more net benefit than adverse
reaction grade alone. Our predictive model can be useful for clinicians to identify
patients with mRCC who can benefit from second-line treatment with axitinib.

KEYWORDS

renal cell carcinoma, tyrosine kinase inhibitor, axitinib, nomogram, receiver
operating characteristic
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1 Introduction

Globally, approximately 85% of renal tumors were renal cell
carcinoma (RCC), which is one of the ten most common cancer types
and characterized by unpredictable biological behavior and
heterogeneity (1, 2). Until recently, surgical resection was the standard
of care, with a favorable overall prognosis for patients with localized
RCC. The 5-year survival rate for patients with early stage I and II/III
RCC are 93% and 72.5%, respectively, whereas those for patients with
stage IV metastatic RCC is 12% (3). Moreover, 17%-30% of patients
present with advanced stage of the disease at primary diagnosis, and
20%-40% of patients with localized disease eventually develop advanced
disease (4, 5), which requires systemic therapies. In the past decades, the
therapeutic strategy for locally advanced and metastatic RCC (mRCC)
has broadened remarkably—from the use of cytokines (interferon-alpha
and interleukin-2) to the administration of molecular-targeted therapies,
such as tyrosine kinase inhibitors (TKIs) (6). Although treatment with
molecular-targeted therapies has improved the prognosis of patients with
mRCC, first-line therapies fail in most patients because of disease
progression or unacceptable side effects (7).

After first-line therapies fail, a second-line therapeutic strategy is
selected to improve patient prognosis. According to the NCCN
guidelines, axitinib is recommended as a second-line treatment
option. Compared with sorafenib as second-line treatment, axitinib
significantly increased median progression-free survival (PFS) time
and provided a better objective response rate for patients with mRCC
who received sunitinib or cytokine treatment as a first-line therapy in
a randomized phase III study (AXIS trial) (8). Moreover, the results of
subgroup analyses of the AXIS study attested to the efficacy of axitinib
in the Asian population, further supporting the registration of axitinib
in China (8). Axitinib is more cost-effective than sorafenib (9). By
contrast, a retrospective and noncomparative phase II trial indicated
that the 5-year survival rate of patients who received axitinib was
20.6% after failure of prior systemic treatment (10). The differences in
PFS and overall survival were insignificant in patients with mRCC
who received axitinib or everolimus as second-line treatment (11);
however, axitinib had a manageable tolerability profile.

Genomic studies have reported intratumoral and intertumoral
heterogeneity in RCC (8, 12, 13), which leads to differential prognosis
and response to targeted treatment. Consequently, it is imperative to
screen patients with mRCC who can benefit from axitinib therapy
after failure of first-line therapies and improve the cost-effectiveness
of therapy. This study aimed to retrospectively evaluate the
prognostic clinicopathological parameters associated with the
therapeutic effects of second-line treatment with axitinib.

Abbreviations: mRCC, Metastatic renal cell carcinoma; IMDC, The International
Metastatic RCC Database Consortium; RCC, Renal cell carcinoma; TKI, Tyrosine
kinase inhibitor; PFS, Progression-free survival; CPHR, Cox proportional-hazards
regression; ROC, Receiver operating characteristic curve; AUC, Area under the
curve; C-index, Concordance index; DCA, Decision curve analysis; HR, Hazard
rate; VHL, The von Hippel-Lindau; PDGF, Platelet-derived growth factor (PDGF);
CCRCC, Clear cell renal cell carcinoma; nCCRCC, Non-clear cell renal cell
carcinoma; PD, Progressive disease; PR, Partial response; SD, Stable disease; KPS

score, Karnofsky score.

Frontiers in Oncology

10.3389/fonc.2023.1071816

2 Methods
2.1 Patients and inclusion criteria

The study was conducted in accordance with the Declaration of
Helsinki (revised in 2013). Study approval was given by the Ethics
Committee of Zhongshan Hospital, affiliated to Fudan University, China
(B2016-030). Data from 44 patients with advanced RCC, who received
axitinib as second-line targeted therapy between December 2014 and
December 2021 at the Department of Urology, Zhongshan Hospital,
Fudan University, were retrospectively collected and analyzed. The
inclusion criteria were as follows: (1) advanced RCC or mRCC verified
histopathologically with surgery or biopsy, (2) advanced RCC
irrespective of pathological type, (3) advanced RCC irrespective of
first-line treatment, and (4) advanced RCC with axitinib as second-line
targeted therapy. Because 14 patients lacked complete
clinicopathological data, 30 patients were finally enrolled in the study
as the training set to evaluate factors related to the therapeutic effects of
second-line treatment with axitinib and construct a predictive model.
Four clinical parameters, namely albumin, calcium, International
Metastatic RCC Database Consortium (IMDC) grade, and adverse
reaction grade, were further identified. Because complete data were
available for the four candidate factors for 14 patients, they were
included in the validation set to verify the model (Figure 1).
Biochemical parameters were collected before patients received axitinib.

2.2 Statistical analysis

Statistical analysis was performed using SPSS v23 and R v4.20.
Continuous variables are presented as the mean and standard deviation,
and categorical variables are presented as frequency or percentage.
Comparisons of continuous variables between two groups were
performed with the ¢ test, and categorical variables were compared
using the chi-square test or Fisher’s exact test. p-Value < 0.05, two-tailed,
was considered statistically significant. Kaplan-Meier survival plots were
generated with the log-rank statistic using the survival package of R.

We first screened the clinicopathological parameters associated with
the therapeutic effects of second-line treatment with axitinib using
univariate Cox proportional-hazards regression (CPHR) analysis.
Because CPHR is not used to analyze multidimensional survival datasets,
theleast absolute shrinkage and selection operator (LASSO) technique was
subsequently performed for variable selection and shrinkage from many
clinical variables identified by univariate CPHR, using the glmnet package
of R (8, 14). Finally, we identified and then established a predictive model
based on four clinical parameters (albumin, calcium, IMDC grade, and
adverse reaction grade) through multivariate CPHR.

To evaluate the predictive accuracy of the model, time-dependent
receiver operating characteristic curve (ROC) and area under curve
(AUC) at 3-, 6-, and 12-month PFS after axitinib treatment were
constructed using the survival package of R. Concordance index (C-
index) is used to evaluate predictive accuracy (15). The consistence
between predicted PFS probability and actual PES probability was
confirmed using a calibration curve after 1000 bootstrap resampling.
The ROC curve and AUC are not used to make clinical decisions. In
clinical practice, decision curve analysis (DCA) was used to estimate the
net benefit for patients based on threshold from the predictive model.
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FIGURE 1

Flow chart of the data selection and process. IMDC, International Metastatic Renal Cell Carcinoma Database Consortium classification; LASSO, least

absolute shrinkage and selection operator; RCC, renal cell carcinoma

3 Results
3.1 General characteristics

Based on the inclusion criteria, 44 patients with advanced RCC
received axitinib as a second-line targeted therapy. Thirty patients
were included in the training set and 14 in the validation set. The
clinicopathological features of patients are shown in Table 1. Mean
age at initial diagnosis was 60.25 + 10.02 years. Most of the patients
were men (79.55%, 35/44) and had received nephrectomy (86.36%,
38/44). The pathologic type of 35 patients (79.55%) was clear cell
carcinoma, of which two tissue samples were associated with
sarcomatous degeneration. The maximum tumor diameter was 2.5—
15.0 cm. The most common metastatic sites were the lungs (63.64%,
28/44), bones (34.10%, 15/44), and liver (15.91%, 7/44). In addition,
the lymph node was a common distant site (40.91%, 18/44). In some
patients, the tumor metastasized to the brain (4.55%, 2/44), adrenal
gland (4.55%, 2/44), and pancreas (9.10%, 4/44). Mean overall follow-
up time was 1485.44 + 1150.61 days and median survival time was
2071 days for the whole cohort.

Axitinib was introduced as a second-line targeted therapy after the
failure of first-line treatment with drugs, including sorafenib (n = 5),
sunitinib (n = 33), and pazopanib (n = 6). Failure of first-line therapy
was a result of progression (25/44, 56.82%) or intolerable adverse effects
(19/44, 43.18%). Mean therapeutic time and median PFS time of first-
line treatment were 841.68 + 695.15 days and 1058 days, respectively,
for the whole cohort. Time of disease progression during second-line
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treatment with axitinib was defined as the time from the start of axitinib
treatment to the first documentation of progression. Patients during
treatment comprised the progression (Pro) group (n = 20) or the
progression-free (ProFree) group (n = 24). The mean therapeutic time
of second-line treatment was 446.02 + 350.21 days for the whole cohort
and 486.30 + 372.28 days and 359.71 + 291.11 days for the training and
validation sets, respectively (p = 0.2690).

Statistically significant differences were present between the
training and validation sets within the cohort, including
hemoglobin level (120.77 + 20.67 vs. 104.33 + 28.28 g/L, p =
0.0429), C-reactive protein level (4.69 + 10.72 vs. 38.04 + 33.40 mg/
L, p=0.0002), and other metastatic sites (14/30 vs. 11/14, P = 0.0466).
The differences were not statistically significant for the other
clinicopathological features. However, hemoglobin level, C-reactive
protein level, and other metastatic sites were unrelated to the
therapeutic effects of second-line treatment with axitinib.

3.2 Subtype analysis

Results of subtype analysis are shown in Table 2. Albumin
concentration was higher in the Pro group than in the ProFree
group (41.13 + 4.64 vs. 35.75 * 6.39 g/L, p = 0.0024), and patients
with mRCC who were malnourished (albumin <35 g/L) were more
likely to have disease progression (8/10 vs. 12/34, p = 0.0270). Patients
who were younger (<75 years old) did not benefit more from second-
line treatment with axitinib than patients who were older (=75 years
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TABLE 1 Patient demographics and clinicopathological features.

Variable All patients Training set Validation set p-Value
(n = 44) (n = 30) (n=14)
Age (years) 60.25 + 10.02 59.37 + 1091 62.14 £+ 7.77 0.3990
Gender 0.2471
Male (n) 34 25 9
Female (n) 10 5 5
Tumor location 0.5206
Left 21 13 8
Right 23 17 6
Nephrectomy 38/44 25/30 13/14 0.6467
Pathologic type 0.6951
CCRCC 36 25 11
nCCRCC 8 5 3
Sarcomatous change 2/44 1/30 1/14 0.5720
Primary tumor size (cm) 691 +2.94 6.87 +3.13 7.00 + 2.59 0.8932
Metastasis
Liver 7/44 3/30 4/14 0.1167
Lung 28/44 20/30 8/14 0.5408
Bone 15/44 9/30 6/14 0.4020
Brain 2/44 2/30 0/14 0.3227
Lymph node 18/44 12/30 6/14 0.8575
Other 25/44 14/30 11/14 0.0466
First-line drug 0.5009
Sorafenib 5 3 2
Sunitinib 33 24 9
Pazopanib 6 3 3
Time from first- to second-line treatment (days) 841.68 + 695.15 647.43 + 593.93 662.57 + 712.80 0.9419
Results of first-line treatment 0.7530
PD 25 18 7
SD 17 11 6
PR 2 1 1
Time from second-line treatment (days) 446.02 + 350.21 486.30 + 372.28 359.71 + 291.11 0.2690
Results of second-line treatment 0.5881
PD 21 15 6
SD 17 12 5
PR 6 3 3
KPS score >80 31 21 10 >0.9999
Hemoglobin 116.07 £ 23.94 120.77 + 20.67 104.33 + 28.28 0.0429
Platelet 237.31 £ 117.35 241.30 = 119.25 226.45 + 116.90 0.7244
Lymphocyte 1.53 £ 0.80 1.59 + 1.06 153 +1.12 0.8712
Neutrophil 3.62 £2.26 322+ 153 4.70 + 3.46 0.0629
(Continued)
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TABLE 1 Continued
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Variable All patients Training set Validation set p-Value
(n = 44) (n =30) (n=14)

C-reactive protein 9.59 + 22.87 4.69 £ 10.72 38.04 + 33.40 0.0002
Creatinine 127.21 + 34.43 132.43 + 35.31 114.17 + 29.52 0.1218
Albumin 28.68 £ 6.07 38.60 + 5.57 40.17 + 5.87 0.3967
Calcium 245+ 0.25 247 +0.16 244 £ 043 0.7366
IMDC grade 0.6824
I 6 5 1

I 30 20 10

1T 8 6 2

Largest adverse reaction grade 0.8266
0 5 3 2

1 16 12 4

1I 22 15 7

111 1 1 0

Follow-up time (days) 1485.44 + 1150.61 1623.83 + 1268.75 1166.08 + 764.94 0.2353
Alive at last follow-up 22/44 16/30 6/14 0.5174

CCRCC, Clear cell renal cell carcinoma; nCCRCC, non-clear cell renal cell carcinoma; PD, Progressive disease; PR, Partial response; SD, Stable disease; KPS score, Karnofsky score; IMDC,

International Metastatic Renal Cell Carcinoma Database Consortium classification.

old, p = 0.5832). Age distribution between the Pro and ProFree groups
was not different (58.10 £ 11.14 vs. 62.04 + 8.81 years, p = 0.1972).
Higher levels of calcium (> 2.55 mmol/L) were related to worse
prognosis than lower levels (<2.55 mmol/L) (9/12 vs. 11/32, p =
0.0212). Nephrectomy in patients with RCC did not affect the
therapeutic effect of second-line treatment with axitinib.
Consistently, significant differences between first-line treatment
settings or metastatic sites and efficacy of second-line treatment
with axitinib were not verified.

3.3 Prognostic model construction

To evaluate the therapeutic effects of second-line treatment with
axitinib, univariate CPHR analysis was used to identify potentially
important factors. Seven parameters were screened, namely, IMDC
grade [hazard rate (HR) = 5.26, p < 0.0001], albumin (HR = 0.82, p <
0.0001), calcium (HR = 172.34, p = 0.0005), adverse reaction grade
(HR = 0.31, p = 0.0169), Karnofsky score (KPS score, HR = 0.92, p =
0.0442), bone metastasis (HR = 2.85, p = 0.0462), and hemoglobin
(HR = 0.97, p = 0.0124) (Table 3). These parameters were
incorporated into LASSO regression analysis to avoid bias from
collinearity between factors (Figure 2). IMDC grade, albumin,
calcium, and adverse reaction grade, with non-zero coefficients,
were further enrolled in multivariate CPHR analysis to construct a
prognostic model. IMDC grade had the highest hazard ratio (HR)
(3.21, p = 0.1370), followed by calcium (2.55, p = 0.6833) (Figure 3
and Table 2). Adverse reaction grade was an independent prognostic
index that correlated with the therapeutic effects of second-line
treatment with axitinib. To construct a quantitative and more
intuitive tool for the individualized prediction of the therapeutic
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effects of second-line treatment with axitinib in patients with
advanced RCC, a novel prognostic nomogram was established
based on the four parameters, and the probability of 3-, 6-, and 12-
month PFS was predicted (Figure 4).

3.4 Predictive performance of the model

The C-index value of the model was 0.84, suggesting that the
predictive model had excellent predictive performance. Time-
dependent ROC curve analysis verified the accuracy of the model;
AUC values for the prediction of 3-, 6-, and 12-month PFS were 0.975,
0.909, and 0.911, respectively (Figure 5A). After 1000 bootstrap
resampling was complete, the predictive model showed excellent
consistency between predicted PFS probability and actual PFS
probability at 3, 6, and 12 months, confirmed by the calibration
curve (Figure 5B). The results were verified in the validation set,
which had a C-index value of 0.776 (Figure 5C). Moreover, DCA
was used to evaluate net benefit and make clinical decisions at 3, 6, and
12 months (Figure 5D). A nomogram (green) based on a combination
of IMDC grade, albumin, calcium, and adverse reaction grade showed
more area than adverse reaction grade alone (purple) (Figure 5D).

4 Discussion

Two primary signaling pathways are involved in RCC
pathogenesis—vascular endothelial growth factor (VEGF) and
mammalian target of rapamycin (mTOR) signaling pathways (16,
17). Loss mutation of the von Hippel-Lindau (VHL) is a common
event in many RCCs, and then causes the abnormal activation of the
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TABLE 2 Subtype analysis.

Variable Difference of axitinib efficacy
Progression Progression-Free

Age (years) 58.10 + 11.14 62.04 + 8.81 0.1972
Age 275 years 0.5832
Yes 2 1

No 18 23

Gender 0.7344
Male 16 18

Female 4 6

Tumor location >0.9999
Left 10 11

Right 10 13

Nephrectomy >0.9999
Yes 17 21

No 3 3

Pathologic type 0.4361
CCRCC 15 21

nCCRCC 5 3

Sarcomatous change 0.4926
Yes 0 2

No 20 22

Primary tumor size <7 cm 0.5385
Yes 11 16

No 9 8

Liver metastasis 0.2172
Yes 5 2

No 15 22

Lung metastasis >0.9999
Yes 13 15

No 7 9

Bone metastasis 0.2097
Yes 9 6

No 11 18

Brain metastasis >0.9999
Yes 1 1

No 19 23

Lymph node metastasis 0.2268
Yes 6 12

No 14 12

Other metastasis sites 0.1151

(Continued)
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TABLE 2 Continued

Variable

Progression

10.3389/fonc.2023.1071816

Difference of axitinib efficacy

Progression-Free

No 11 6

First-line drug

Sorafenib 0.1605
Yes 4 1

No 16 23

Sunitinib 0.4728
Yes 14 19

No 6 4

Pazopanib 0.6731
Yes 2 4

No 18 20

KPS score >80 0.5220
Yes 13 18

No 7 6

Albumin (g/L) 35.75 £ 6.39 41.13 + 4.64 0.0024
Albumin <35 g/L 0.0270
Yes 8 2

No 12 22

Calcium 249 +£0.22 241 +£0.28 0.3053
Calcium >2.55 mmol/L 0.0212
Yes 9 3

No 11 21

IMDC grade I 0.1977
Yes 1 5

No 19 19

Largest adverse reaction grade <I >0.9999
Yes 10 11

No 10 13

CCRCC, Clear cell renal cell carcinoma; nCCRCC, Non-clear cell renal cell carcinoma; PD, Progressive disease; PR, Partial response; SD, Stable disease; KPS score, Karnofsky score; IMDC,

International Metastatic Renal Cell Carcinoma Database Consortium classification.

above pathways, which is linked to cancer progression and poor
prognosis (18). Currently, many TKIs targeting to VEGF-induced
angiogenesis, including sunitinib, pazopanib, and axitinib, have been
developed and are integral to the treatment (6, 16). However, RCC is
characterized by a wide range of molecular and clinicopathological
heterogeneity. Although considerable efforts have been made in the
past decades to treat mRCC, targeted agents offer limited benefits to
most patients. Compared with 8-9 months in the first-line treatment
setting, the average time of stable disease is 5-6 months in the second-
line treatment setting (19). At second-line treatment setting, axitinib
significantly increased PFS time and improved objective response rate
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compared with sorafenib (8). Compared to first-line treatment with
TKIs, axitinib not only showed fewer side effects, such as
hepatotoxicity, hematological toxicity, and hypertension (20-22),
but also immunomodulatory effects, where it downregulated the
expression of the immune-suppressor signal transducer and
activator of transcription 3 in patients with RCC (23), indicating
that axitinib is relatively potent and must be further explored in
combination therapy, first- or second-line setting.

However, fewer studies have identified biomarkers, including
clinicopathological features and biochemical indices, to guide
treatment. Biomarkers related to the therapeutic effects of second-
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TABLE 3 Results of the Cox proportional-hazards regression analysis.

Variable Univariate CPHR Multivariate CPHR
p-Value HR

IMDC grade 5.26 <0.0001 321 0.1370
Albumin 0.82 <0.0001 091 0.1814
Calcium 172.34 0.0005 2.55 0.6833
Adverse reaction 0.31 0.0169 0.28 0.0152
KPS score 0.92 0.044

Bone metastasis 2.85 0.046

Hemoglobin 0.97 0.0124

CPHR, Cox proportional-hazards regression; HR, hazard ratio; KPS score: Karnofsky score; IMDC: International Metastatic Renal Cell Carcinoma Database Consortium classification.
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FIGURE 2
(A) Screening path of the least absolute shrinkage and selection operator (LASSO) regression model. (B) Penalty parameter (log lambda) in the LASSO
regression model.
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FIGURE 3
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proportional-hazards regression analysis. IMDC: International Metastatic Renal Cell Carcinoma Database Consortium classification.
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line treatment with axitinib should be identified based on precision
medicine or individual treatment.

In this study, a nomogram (C-index value = 0.84) was developed based
on four variables (IMDC grade, albumin, calcium, and adverse reaction
grade) in the test set. AUC values of the model for the prediction of 3-, 6-,
and 12-month PFS were 0.975, 0.909, and 0.911, respectively. In addition,
the model was internally validated after 1000-bootstrap resampling and
externally validated in the validation set. But neither the ROC curve nor the
calibration curve guides clinical decision. The DCA method was used to
first evaluate the benefit of the predictive model and then help make a
rational clinical decision. To our knowledge, DCA has never been used to
evaluate the therapeutic effects of axitinib. Therefore, the performance of

T T T T T T T 1
100 120 140 160 180 200 220 240
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this prognostic model is reliable and accurate. Of course, small sample size
is a limitation of this study. Moreover, independent validation sets from
other centers were not enrolled in this study. Thus, further studies must
verify the conclusion made using this prognostic model.

Hypertension is the most frequently documented adverse reaction in
patients who received second-line treatment with axitinib (8); therefore,
hypertension can be an effective predictor of axitinib efficacy. For
instance, diastolic blood pressure > 90 mmHg (23-26) and systolic
blood pressure > 140 mmHg (25, 27) were related to improved outcome
of axitinib. Consistently, the findings of this study indicated that more
adverse reaction grade was as an independent protective biomarker of
axitinib efficacy. Compared with variable hypertension alone, the adverse

A 10 1B 1.0 1 C 1.0 /Wx
0.8 © 0.8 © 087
. o 0 i
Fn [T [ 4
5061 S 0.6 506
= o o
S 0.4 T 0.41 T 04
> >
n © °
0.2 <0.24 <0.2
- T2 AG o month rorres. 0500 . S menh prorree / ot Prorree
0.0 T AUC o1 12 month Profree: 0911 0.0~ 12 month Profree 0_07_."' : : : —12;ﬂnnthProFrs:
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
1-Specificity Nomogram-predicted ProFree Nomogram-predicted ProFree
D

3-month ProFree

6-month ProFree

12-month ProFree

o
= — e — =
s =] o IR =
~ S &
=28 & go
52 s © 2 o
o5 9] O K
a2 Mo o s
— - 2 -
[Te] O T (=]
Z Q] z° Z 2
S S
o o o
o
S+ & S
=] o =]
0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%

Threshold Probability

FIGURE 5

(A) Predictive performance of the model is evaluated using receiver operating characteristic curve. (B) Consistency of the model is evaluated using a
calibration curve in the training set. (C) Consistence of the model is evaluated using a calibration curve in the validation set. (D) Decision curve analysis to
evaluate the clinical benefit of 3-, 6-, and 12-month PFS and compare the clinical benefit of the model based on four parameters (IMDC grade, albumin,

calcium, and adverse reaction) with adverse reaction grade.
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reaction grade in this study reflected more information about the kinds of
side effects, such as hypertension, fatigue, diarrhea, myelosuppression,
hypothyroidism, and stomatitis. Moreover, blood pressure may be
affected by many factors. In other words, its specificity is worse
compared to our indexer that consists of all adverse reaction grades.
However, it is still unclear for us and other researchers whether the
adverse reaction, when it occurs, should be included into our nomogram,
which must be further explored in prospective studies. Generally, 4 weeks
is optimal for evaluating the efficacy and adverse reaction grade of
second-line treatment with axitinib. Irrespective of the Memorial Sloan
Kettering Cancer Center risk score or IMDC risk score, hypercalcemia in
patients with mRCC was considered a risk factor for poor outcome, such
as advanced stages and bone metastasis (28, 29). Consistently, in this
study, IMDC grade and calcium level are included in the nomogram,
confirming that higher IMDC grade and hypercalcemia are associated
with lesser efficacy of axitinib. Albumin is sensitive to the nutritional
state. Many studies have demonstrated that albumin is a risk parameter
for the prognosis of some diseases, such as gastrointestinal stromal
tumors, human immunodeficiency virus, lymphoma, and cutaneous
malignant melanoma (30-35). For example, Datta et al. (31) reported
that low albumin level was common in patients with stage IV cutaneous
malignant melanoma. However, to our knowledge, the relationship
between the prognosis of RCC or efficacy of TKIs and albumin
concentration remains unclear. The findings of this study
demonstrated that second-line axitinib treatment had worse efficacy in
patients with RCC who were malnourished. Thus, improved nutrition
may benefit more during targeted, second-line treatment with axitinib.

Older patients with RCC have often been excluded from receiving
axitinib treatment, owing to safety concerns. According to Hideaki
et al. (36), axitinib therapy was not only effective but also safe in
patients aged >75 years. The results of this study revealed that patients
aged <75 years old did not benefit more than patients aged 275 years
(p = 0.5832). Patients in the ProFree group may be older than those in
the Pro group (62.04 + 8.81 vs. 58.10 + 11.14 years, p = 0.1972), further
suggesting that treatment with axitinib in older patients is worthy of
attention. According to a phase III AXIS study, there was a significant
difference for the effect size of the PFS benefit in different prior first-line
treatments (37). In this study, differences in axitinib efficacy were not
statistically significant between prior first-line treatment types.

This study has limitations. First, the sample size was small (n = 44),
and the study was retrospective. Although the patients were divided into
the training set and validation set, which was used to validate the
performance of the model, the relatively small sample size and
retrospective nature of the study significantly affected the accuracy and
predictive performance of the study. Second, although patients were
enrolled regardless of the type of first-line therapy, including sorafenib
(n =5), sunitinib (n = 33), and pazopanib (n = 6), patients who received a
combination of TKI and immunotherapy as a first-line therapy were not
included in the nomogram. Combined treatment with lenvatinib and
pembrolizumab was related to significantly longer PES and overall
survival than that with sunitinib (38). Therefore, it is unclear whether
the combination of TKI and immunotherapy as a first-line therapy could
affect the efficacy of second-line treatment with axitinib. In addition,
results from KEYNOTE 426 indicated that patients who received
pembrolizumab-axitinib showed better ORR (59.3% vs. 35.7%) and
median PFS (15.1 vs. 11.1 months) compared with patients who received
sunitinib (39). Similarly, whether the model can be used to evaluate the
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efficacy of first-line treatment with axitinib, with a combination of
pembrolizumab (39) or avelumab (20), is unclear.

Although the included parameters in the model may not only
indirectly reflect plasma exposure of the drug by distinguishing
adverse grade (23, 40) but also directly reflect individualized status,
such as nutrition (albumin) and biochemical level (calcium), those
parameters don’t reflect altered signaling pathways such as VHL,
VEGF, mTOR, platelet-derived growth factor (PDGEF), cell cycle, p53
Related Signaling, Ferroptosis, and so on (17, 41, 42). Additionally,
imaging features of tumor during targeted therapy should be considered.
The predictive performance and scope of applicability of the model to
evaluate the efficacy of second-line axitinib treatment should be further
verified in large-sample, multicenter, prospective studies in the future.
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Purpose: The mitogen-activated protein kinase (MAPK) signaling pathway is
often studied in oncology as the most easily mentioned signaling pathway.
This study aims to establish a new prognostic risk model of MAPK pathway
related molecules in kidney renal clear cell carcinoma (KIRC) based on genome
and transcriptome analysis.

Methods: In our study, RNA-seq data were acquired from the KIRC dataset of
The Cancer Genome Atlas (TCGA) database. MAPK signaling pathway-related
genes were obtained from the gene enrichment analysis (GSEA) database. We
used “glmnet” and the “survival” extension package for LASSO (Least absolute
shrinkage and selection operator) regression curve analysis and constructed a
prognosis-related risk model. The survival curve and the COX regression analysis
were used the “survival” expansion packages. The ROC curve was plotted using
the “survival ROC" extension package. We then used the "rms” expansion
package to construct a nomogram plot. We performed a pan-cancer analysis
of CNV (copy number variation), SNV (single nucleotide variant), drug sensitivity,
immune infiltration, and overall survival (OS) of 14 MAPK signaling pathway-
related genes using several analysis websites, such as GEPIA website and TIMER
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database. Besides, the immunohistochemistry and pathway enrichment analysis
used The Human Protein Atlas (THPA) database and the GSEA method. Finally,
the mRNA expression of risk model genes in clinical renal cancer tissues versus
adjacent normal tissues was further verified by real-time quantitative reverse
transcription (QRT-PCR).

Results: We performed Lasso regression analysis using 14 genes and created a
new KIRC prognosis-related risk model. High-risk scores suggested that KIRC
patients with lower-risk scores had a significantly worse prognosis. Based on the
multivariate Cox analysis, we found that the risk score of this model could serve
as an independent risk factor for KIRC patients. In addition, we used the THPA
database to verify the differential expression of proteins between normal kidney
tissues and KIRC tumor tissues. Finally, the results of gRT-PCR experiments
suggested large differences in the mRNA expression of risk model genes.

Conclusions: This study constructs a KIRC prognosis prediction model involving
14 MAPK signaling pathway-related genes, which is essential for exploring
potential biomarkers for KIRC diagnosis.

KEYWORDS

KIRC, tumor biomarkers, MAPK pathway, TCGA, prognostic model

1 Introduction

The mortality rate of kidney cancer ranks first among all
urological malignancies (1). Renal cell carcinoma (RCC) is the
most common type of primary renal malignancy, and about 70%
of RCC patients are diagnosed with KIRC (2). More than one-fifth of
patients with advanced kidney cancer will relapse even after radical
nephrectomy. Besides, kidney cancer patients with distant metastases
have a 1-year survival rate of only 50% and a 5-year survival rate of
only 10% (3, 4). Early diagnosis and treatment are of great
importance to improve the prognosis of kidney cancer. A growing
number of studies confirm that cancer is a human genomic disease (5,
6). Tumor progression is caused by coordinated genetic changes in
multiple signaling pathways (7). Therefore, it is important to explore
the relevant cancer-causing genes and pathways and construct risk
models based on them for early detection and treatment of KIRC.

MAPK (mitogen-activated protein kinase) signaling pathway is
one of the most extensive pathways in tumor pathway research.
Related studies in human cancers have confirmed that most of
cancers are associated with changes in the MAPK pathway. Since
the recognition of Ras small GTPases as the first oncogenes of
sarcoma viruses, research on the MAPK pathway has intensified
over the past 40 years (8). The internal signaling of the MAPK
signaling pathway is complex. Besides, this signaling pathway is
often regulated by related genes or by crosstalk with other signaling
pathways. In the physiological state, intracellular MAPK signaling is
tightly controlled. Growth factors (GFs) bind to and activate
receptor tyrosine kinases (RTKs) on the cell membrane, a critical
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first step in initiating the classical MAPK signaling pathway (9).
Activation of RTKs drives phosphorylation of RAS superfamily
proteins represented by HRAS, KRAS, and NRAS, thereby
transducing extracellular signals to the cytoplasm (10). The
subsequent activation of intracellular cascade reactions is also
caused by the phosphorylation of molecules. Activated RAS
further activates MAPKKK (mitogen-activated protein kinase
kinase, represented by RAF and its variants), followed by MAPK
kinase (MAPKK: MEK1/2/3/4/5/6/7), and finally MAPK, resulting
in a cascade activation reaction of the intracellular MAPK signaling
pathway (11). The MAPKs mainly include the following: ERKs
(extracellular signal-regulated kinases, represented by ERK1/2/5),
JNKs(c-Jun N-terminal kinases, represented by JNK1/2/3), and p38
MAPKs(represented by p38c/f/y/3) (12-14). Numerous studies
have confirmed that the progression of most solid tumors is
associated with gene mutations in the RAS/RAF/MEK/ERK
signaling pathway (15). Approximately 30% of human solid
tumors are associated with mutations in the RAS gene (16).
Activation of Ras not only drives the MAPK cascade, but also
acts as an initiator of the PI3k/AKT/mTOR cascade to regulate cell
growth (11). In addition, ERK1/2 can regulate the activation of
transcriptional factors such as c-Myc (transcriptional regulator
Myc-like) through phosphorylation, which has received much
attention in the research of tumor-targeted therapy (12).

In recent years, studies have demonstrated that the MAPK
signaling pathway influences the prognosis of KIRC through the
regulation of HIF-low (17). In addition, the MAPK signaling
pathway also influences the sensitivity of KIRC patients to
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targeted drugs such as sunitinib and sorafenib (17, 18). The
construction of predictive models based on genes related to the
MAPK signaling pathway and the exploration of the mechanisms
by which the MAPK signaling pathway affects prognosis and
targeted therapy resistance will be of great significance in the
future for the diagnosis and treatment of KIRC.

2 Materials and methods
2.1 Data acquisition

The mRNA expression data and clinical datasets of KIRC
patients used in this study were obtained from the TCGA
database (https://portal.gdc.cancer.gov/). The dataset we
downloaded included 539 tumor tissues and 72 normal tissues.
We then downloaded and analyzed the MAPK pathway-related
genes using the GSEA analysis website (https://www.gsea-
msigdb.org/gsea/index.jsp).

2.2 Data processing and analysis

The R language operating platform (https://www.rstudio.com/) is
one of the most influential and widely used bioinformatics operating
platforms. We used Perl and several R packages to analyze and
process data. The “heatmaps” expansion package was used to make
the heatmap. Then we used tbtools (https://github.com/CJ-Chen/
TBtools) to further beautify and process the heatmap to better display
the data. Statistical data analysis was performed using the “limma”
software package to analyze variance. Lasso regression analysis was
mainly performed using “glmnet” expansion packages. The survival
curve was plotted using the “survival” expansion packages, and the
ROC curve was analyzed and plotted using the “survival ROC”
extension package. Finally, based on the risk model, we validated it
with clinical characteristics by univariate Cox analysis and
multivariate Cox analysis using the “survival” and “forestplot”
expansion packages. Finally, we combined the predictive risk model
with various clinical features as independent risk factors to draw a
nomogram using the “rms” expansion package. P <0.05 was
considered a statistically significant difference. We used the “plyr”,
“ggplot2”, “grid” and “gridExtra” extension packages for multi-GSEA
analysis, to explore the biological pathways that risk model genes may
affect in KIRC, and to explore the correlation of the MAPK pathway
with other pathways.

2.3 GEPIA website

GEPIA (http://gepia.cancer-pku.cn/) has a robust data
aggregation function. The analysis tool includes RNA-seq
expression data from more than 9,000 tumors and 8,000 tumor
genome maps based on the TCGA database (19). Based on the
website’s online tool, the CNV and SNV of model genes were
differentially analyzed in different tumors.
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2.4 ImmucCellAl website

We analyzed the infiltration of 24 types of immune cells in pan-
cancer based on the ImmuCellAl website (http://
bioinfo life.hust.edu.cn/ITmmuCel 1AI/). We used the “pheatmap”
R language to draw and visualize the analysis results in the form of
heat maps. Statistical analysis was performed using the Spearman’s
correlation coefficient.

2.5 Generation of PPl networks

We draw the PPI network based on the online analysis tool
STRING (https://www.string-db.org/). To make the PPI network
more beautiful, we used the visualization software of Cystoscope.
The data in PPI were used to construct a quantization table.

2.6 TIMER website

The Tumor Immune Estimation Resource (TIMER) 2.0s (http://
cistrome.org/TIMER/) has recently been used to analyze immune cell
infiltration in the environment of tumors. This study further judged
the infiltration of immune cells in 14 genes by analyzing the
correlation between 14 genes and immune cells. Heatmaps were
drawn and visualized using the “heatmaps” expansion package.

2.7 GDSC database

Two hundred sixty-six drugs are included in the GDSC
database (20). In this study, we analyzed the relationship between
related drugs and the mRNA expression of MAPK pathway-related
genes based on the GDSC database, and then we drew a heatmap to
visualize the correlation.

2.8 The Human Protein Atlas database

The Human Protein Atlas database (http://www.proteinatlas.org/)
was a proteome analysis website of 27173 antibodies targeting 17268
unique proteins (21). In our study, we used this website to explore the
protein expression of MAPK pathway-related genes in normal kidney
tissues and ccRCC tumor tissues.

2.9 Collection of clinical tissue samples

From March to May 2022, we collected tumor and adjacent
normal kidney samples of 8 KIRC patients from Shandong Provincial
Hospital. This study was approved by the Ethics Committee of
Shandong Affiliated Hospital. Patients provided written informed
consent for all samples and information collected. The research
adhered to the principles of the Declaration of Helsinki and those
of the World Medical Association.
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2.10 Total RNA extraction
and qRT-PCR experiments

We extracted total RNA from collected KIRC tumor tissues and
paracancerous normal tissues using TRIzol reagent (Thermo Fisher
Scientific, Waltham, MA, USA). Next, we reverse-transcribed the
pre-extracted RNA into cDNA using EvoM-MLVRT master mix
(Accurate Biotechnology). We then mixed the reagents for qRT-
PCR detection according to the manufacturer’s instructions of the
SYBR® Green Premix Pro Taq HS qPCR Kit (Accurate
Biotechnology). The above process was carried out in strict
accordance with the manufacturer’s instructions.

2.11 Statistical analyses

Expression of MAPK pathway-related genes in tumor tissues
and adjacent tissues using One-way ANOVA. T-test was used to
compare the expression of MAPK pathway-related genes of
different gender, age, stage, node (N), tumor (T) and metastasis
(M) in KIRC data set. The “survminer” package was used to
determine the cut-off value of each risk score in the tumor group,
and we divided patients into a high-risk group and a low-risk group.
R Studio software package was used for all statistical analysis. P <
0.05 meant statistically significant.

3 Results

3.1 The expression of MAPK signaling
pathway-related genes in KIRC and
univariate Cox analysis

We first drew the flowchart to more conveniently show this
research process (Figure 1). Then, We constructed a heat map of the
mRNA data of the 81 MAPK signaling pathway-related genes in the
KIRC patient dataset based on the TCGA database (Figure 2A). Among
the 81 MAPK signaling pathway-related genes, nearly 80% of the genes
have statistically significant differences in expression between normal
kidney tissue and KIRC tissue, further confirming that the MAPK
signaling pathway plays an essential role in the occurrence and

/ [ KIRC dataset in TCGA \
MAPK Pathway-related genes
[ Univariate Cox analysis
LASSO regression analysis
E o L (GHCL, MAPIKIZ MAPIRR, RPSGRAZ)
HPA verification }—ﬂ Prognostic risk model *’(;,‘;‘ﬂ'ﬁ;}";‘ﬁ‘p“;;ﬁ:‘\",,‘;,}'s_‘;';},,_
L / [RACI MAP3KS )

\KManalysis} COX analysis| | Nomogram | | Pan-cancer analysis {GDSCamlysisJ GSEAannI_vsis/

FIGURE 1
The flow chart of this research.
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development of KIRC. We then performed the univariate Cox
analysis of MAPK signaling pathway-related genes in KIRC patients,
and drew a forest plot (Figure 2B). The potential role of each signaling
pathway-related gene in the occurrence and development of KIRC was
determined. Using the HR value of 1 as a cutoff, there are 16 genes with
HR values >1, including STAT1(signal transducer and activator of
transcription 1), MAP3K8(mitogen-activated protein kinase kinase 8),
SHCI(SHC adaptor protein 1), MAP3K9(mitogen-activated protein
kinase kinase kinase 9), TRAF2(TNF receptor associated factor 2),
RACI(Rac family small GTPase 1), MAP3KI12(mitogen-activated
protein kinase kinase kinase 12), RPS6KA4(ribosomal protein S6
kinase A4), meaning that these genes are risk factors in disease
progression. whereas 23 genes, including MAPK3(MAPK3: mitogen-
activated protein kinase 3), MAP2K6(MAP2K6: mitogen-activated
protein kinase kinase 6), MAPK13, MAP3K5(mitogen-activated
protein kinase kinase 5), RPS6KA2(ribosomal protein S6 kinase A2),
RPS6KA5(ribosomal protein S6 kinase A5), NFKBI1(nuclear factor
kappa B subunit 1), whose HR values are less than 1, are protective
factors. Finally, we used the String database to analyze the PPI protein
interaction to verify the interaction and connection between the proteins
in the MAPK pathway (Figure 2C).

3.2 Construct a novel prognostic-related
survival model in KIRC

After univariate cox analysis of genes related to the MAPK
signaling pathway, we screened out genes with a P value < 0.05 for
LASSO regression analysis, and screened out 14 model genes, including
RPS6KA2, MAPK3, RPS6KAS5, MAP2K6, MAP3KS5, NFKBI, STAT1,
RACI, MAP3K9, TRAF2, RPS6KA4, SHC1, MAP3K12, and MAP3K8
(Figures 3A, B). A prognostic risk model was established based on these
model genes. KIRC patients were divided into high-risk and low-risk
groups with the median level of risk score as the optimal cutoff value.
After plotting the survival curves, we found a significant difference in
survival between the two groups (Figure 3C). Subsequently, we
validated this prognostic-related risk model using the ROC curve.
The results showed that the 5-year AUC value was 0.744 (Figure 3D)
and the 10-year AUC value was 0.825 (Figure 3E), suggesting that the
risk model is suitable for prognosis prediction of KIRC patients with
high accuracy.

3.3 The relationship between the risk
model and clinicopathological
characteristics, and draw the
corresponding nomogram in KIRC

We verified the relationship between the prognostic risk model and
the clinical characteristics of patients (Figure 3F). The prognostic risk
model was correlated with clinical characteristics including tumor
volume (T), lymph nodes (N) distant metastasis (M), stage, grade,
gender, and fustat, suggesting that the predictive model has good
clinical prognosis and diagnostic and therapeutic efficacy. Univariate
Cox analysis found that age, stage, grade tumor volume (T), distant
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MAPK signaling pathway-related genes in cancer and normal tissue in KIRC patients. Red represents the gene that is highly expressed in the tumor.
The darker the color, the higher the expression level; blue represents the gene that is lowly expressed in the tumor, and the color the deeper it is,
the lower the expression level. (B) Perform univariate Cox regression analysis on genes related to the MAPK signaling pathway. (C) The String
database was used to analyze the protein interaction of 81 genes related to the MAPK signaling pathway, and the Cystoscope software platform was

used to visualize the analysis results. *P<0.05, **P<0.01, and ***P<0.001.

metastasis (M), and risk score were statistically significant (Figure 4A).
Multivariate Cox analysis showed that age, stage, grade, and risk score
were independent risk factors for KIRC (Figure 4B). Subsequently, we
established a new nomogram based on the four independent risk
factors verified by multivariate Cox analysis (Figure 4C). In this
nomogram, the quantified values of each variable correspond to the
scale axis to obtain a score. Finally, the total score is obtained by
summing the scores corresponding to the four variables, so that the 5-,
7-, or 10-year survival of KIRC patients can be intuitively obtained.

3.4 OS and variation of model genes in
pan-cancer

We mapped the mRNA expression, CNV and SNV of these genes
in 33 different tumors. First, we observed the extent to which these 14
model genes affect survival and prognosis in pan-cancer (Figure 5A).
When we explored the role of genes in different tumors, we found
that genes such as RAC1 and SHCI were elevated in most cancers,
suggesting their role as prognostic risk factors in most tumors. For a
specific tumor pathological type, we can observe that most MAPK
signaling pathway model genes are highly expressed in KICH and
LGG, suggesting that they are associated with poor prognosis.
Notably, we found that high expression of MAP2K6, MAP3KS5,
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RPS6KA5, MAPK3, NFKB1, and RPS6KA4 in KIRC tumors
suggested a better prognosis. In contrast, high expression of
MAP3K8 and MAP3K12 suggested a poorer prognosis for KIRC.
The SNV percentage heatmap (Figure 5B) and CNV percentage
(Figure 5C) heatmap show the single nucleotide variation and copy
number variation of different model genes in pan-cancer,
respectively. The SNV percentage heatmap found that MAP3KS5,
STAT1, and MAP3K9 have the highest single-nucleotide mutation
rates in pan-cancer. When we explored the single-nucleotide
mutations of pathway-related genes in various pathological types of
tumors, we found that the MAPK signaling pathway prognostic
model genes had the most obvious SNV in uterine corpus
endometrial carcinoma (UCEC), skin cutaneous melanoma
(SKCM), and colon adenocarcinoma (COAD). In particular, the
single-nucleotide mutation rate of MAP3K5 in UCEC and SKCM
tumors was as high as 45% and 46%, respectively, while the single-
nucleotide mutation rate of MAP3K9 in SKCM tumors was 46%.
Nucleotide mutations played an essential role in the development of
these tumors. Next, we found copy number variations of MAP2K6,
SHCI, and RACI in most cancer tissues. RPS6KA2, MAP3KS5,
MAP3K9, RPS6KAS5, and TRAF2 had higher rates of heterozygous
deletion mutations in KIRC tissue, while STAT1, MAPKS3,
MAP3K12, SHCI, and RACI heterozygous amplification mutations
were more prevalent. Notably, the MAPK pathway model genes had a
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significantly increased mutation rate in KICH, which was one of the
most common pathological types of RCC.

3.5 Immune infiltration and drug sensitivity
of model genes in pan-cancer

We verified the correlation of the risk model genes with the
infiltration of various immune cells in different types of tumors
(Figure 5D). DC, NKT, Trl, NK, Macrophage, CD4_T, nTreg, Th1,
Tth, and iTreg show high expression in most types of tumors,
suggesting that their infiltration potentially contributes to tumor
progression. On the contrary, Neutrophil and CD8_naive were
lowly expressed in most types of tumors. Notably, immune cells
such as NKT, Trl, NK, macrophages, CD4_T, nTreg, Thl, Tth, and
iTreg were more infiltrated in KIRC tissues, while neutrophils,
CDS8_naive, CD4_naive, Th2, and Th17 were less infiltrated. Based
on the establishment of the previous prediction model, we analyzed
the correlation between the mRNA expression of 14 model genes
and drug sensitivity (Figure 5E). Drug sensitivity analysis showed
that MAPK3, RPS6KA4, STAT1, RAC1, RPS6KA2, SHCI and other
model genes, especially RAC1 and SHCI genes, were significantly
positively correlated with drug sensitivity. On the contrary, the
higher the expression of RPS6KA5, MAP2K6 and other genes, the
worse the drug sensitivity and the worse the curative effect.

Frontiers in Oncology

131

3.6 Verify the protein expression of
model genes between KIRC tissues
and normal tissues

To further understand the protein expression of 14 model genes in
KIRC tumor and normal tissues, we used the HPA website for further
analysis (Figures 6A-N). We found that MAP2K6, MAP3K5,
MAP3K9, MAP3K12, RPS6KA2, RPS6KAS5, and STAT1 were lowly
expressed in tumor tissues; However, NFKB1, RAC1, SHCI, and
TRAF2 are highly expressed compared to normal tissues. The above
results are consistent with our previous verification results.

3.7 GSEA analysis in KIRC for risk
model genes

We performed GSEA pathway analysis on these risk model
genes to explore the role of MAPK-related genes in other
pathways and to establish the connection between the MAPK
pathway and other pathways (Figures 7A-N). We found that risk
model genes play different roles in different pathways, and each
gene is also involved in different signaling pathways. For example,
MAP2K6 is elevated in focal adhesion, adhesion, long-term
potentiation, vascular smooth muscle contraction, GnRH
signaling pathway, pathways in cancer, but its expression
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The comprehensive analysis is based on the clinical information of KIRC patients. (A) Univariate Cox analysis. (B) Multivariate Cox analysis. (C) A new
nomogram was drawn based on this prognostic risk signature. The value of each variable gets a score on the dot scale axis. The total score can be
easily calculated by adding each score and projecting the total score to a lower total score system. We can estimate the risk for predicting 5-, 7- or

10-year survival in KIRC

decreased in Parkinson disease, oxidative phosphorylation,
phenylalanine metabolism.

3.8 Validation of mRNA differential
expression of risk model genes in KIRC
clinical samples based on qRT-PCR

Based on the analysis of public databases, we successfully
screened out 14 risk model genes. To further verify the reliability
of the previous experimental results and evaluate the clinical
application value, we collected 8 pairs of KIRC pathological
tissues and normal control tissues. Based on qRT-PCR
experiments, we verified the samples’ relative mRNA expression
levels of 14 risk model genes (Figures 8A-N). We found that most
genes (including MAP3K5, MAP3K8, MAP3K12, MAPK3, NFKBI,
RACI1, RPS6KA4, SHCI1, STAT1 and TRAF2) were increased in
KIRC pathological tissues. In contrast, the mRNA expression levels
of MAP2K6, MAP3K9 and RPS6KA5 in KIRC pathological tissues
were reduced to varying degrees compared with normal control
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tissues. The mRNA expression of RPS6KA2 was not statistically
significant in the difference analysis.

4 Discussion

In 2020, experts estimated 431,288 new kidney tumors
worldwide, and 179,368 patients worldwide died from kidney
cancer in the same year (22). Renal cell carcinoma (RCC)
originates from renal cortical or tubular epithelial cells, of which
KIRC is the most common subtype. The current treatment methods
for early KIRC are mainly limited to surgery, and patients often
have a good prognosis after surgery (23). However, although the
targeted therapies has brought the light of treatment to advanced
stage KIRC patients who are ineligible for surgery, drug resistance
and side effects have resulted in a median survival of less than 3
years (24). Precision medicine has always been the development
trend of current medical diagnosis and treatment, and the
establishment of new predictive models will have a positive effect
on the early diagnosis of cancers. To this end, we comprehensively
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FIGURE 5

Overall survival analysis and variation analysis of this risk model gene in pan-cancer. (A) Overall survival analysis of this risk model gene in pan-
cancer. Red represents this risk model gene as a risk factor, and blue represents this risk model gene as a protective factor. (B) SNV levels of 14
model genes in pan-cancer, where the darker the red color, the higher the probability of SNV. (C) CNV ratio of 14 model genes in pan-cancer, Light
red hete amp represents heterozygous amplification, light green hete del represents heterozygous deletion, dark red Homo amp represents
homozygous amplification, dark green Homo del represents homozygous deletion, and gray represents no CNV. (D) The GSVA method was used to
analyze the level of immune cell infiltration in 33 different types of tumors, and the Spearman correlation coefficient was used to evaluate its
correlation. Red indicates that the level of immune cell infiltration is positively correlated with the tumor. On the contrary, blue indicates a negative
correlation. ("P-value < 0.05; *FDR < 0.05). (E) In a sensitivity analysis of prognostic risk model gene mRNA expression and mainstream anticancer
drugs, red represents a positive correlation, while blue represents a negative correlation.

used bioinformatics analysis tools and websites to analyze MAPK
pathway-related genes in pan-cancer and establish a predictive
model in KIRC. In addition, we validated these prognostic genes
in KIRC tissues. We hope that this study will provide guidance for
the early diagnosis and targeted treatment of KIRC.

We used 14 risk model genes in pan-cancer for CNV, SNV, drug
sensitivity, immune infiltration, and overall survival analysis, and
predicted other biological pathways that these 14 MAPK pathway-
related genes may be involved in. Since the main area of focus of this
study is KIRC, we discuss KIRC in more depth. Our study first
analyzed the mRNA expression of 81 MAPK pathway-related genes
in KIRC patients and normal kidney tissues. The results indicated that
nearly 80% of the genes were differentially expressed. Research statistics
show that over 85% of cancers have overactive MAPK signaling, which
is directly caused by genetic changes in its upstream activators or key
molecules (including RTK, RAS, and BRAF) or affected by changes in
other regulatory genes (25). These results also demonstrate that altered
expression of MAPK pathway-related genes may influence KIRC
progression by affecting MAPK signaling pathway transduction.
Precision medicine has always been the development trend of
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current medical diagnosis and treatment, and the establishment of
new predictive models has led the way in the diagnosis and treatment
of cancers. After univariate COX and LASSO regression analysis, we
established a risk model consisting of 14 MAPK pathway-related genes,
including RAC1, SHCI1, NFKB1, MAPK3, RPS6KA2, RPS6KA4,
RPS6KAS5, MAP3K5, MAP3K8, MAP3K9, MAP3K12, STATI1,
TRAF2, MAP2Ké6.

RACI belongs to the RAS superfamily of small GTP-binding
proteins. This molecule often acts as an upstream of the MAPK
signaling pathway and is often used as a target for tumor therapy
(26). RAC1 inhibitors, such as the compound GYS32661 proved to
be effective in tumor therapy. Our investigation further confirmed
that RACI is highly expressed in ccRCC at the mRNA and protein
levels. Further investigation of RAC1 may provide a basis for the
therapeutic application of RACI inhibitors in ¢ccRCC. The role of
SHCI in the MAPK signaling pathway is mainly to link activated
receptor tyrosine kinases to the Ras, which in turn participates in
the MAPK signaling cascade. Recent studies have confirmed that
SHCI interacts to form protein complexes to promote the
progression of lung cancer (27). This is consistent with the trend
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The Results of immunohistochemistry. (A—N) The Human Protein Atlas database was used to verify the proteins’ differential expression of 14 model
genes (MAP2K6, MAP3K5, MAP3K8, MAP3K9, MAP3K12, MAPK3, NFKB1, RAC1, RPS6KA2, RPS6KA4, RPSEKAS, SHC1, STAT1, TRAF2) in KIRC tumor

tissues (T) and adjacent normal tissues (N).
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of elevated expression of SHCI in ccRCC in our study. NFKBI, a
common transcription regulator, acts as a transcriptional regulator
and contributes to the infiltration of inflammatory cells by moving
to the nucleus when it is activated. The present study demonstrated
that NFKB1 mRNA was highly expressed in ccRCC. A related study
confirmed that the expression of HIF-1o. decreased dramatically in
ccRCC cells due to the reduced movement of NF-kB1 to the
nucleus, which also inhibited the progression of ccRCC (28). The
above results also confirm that the decreased expression of NFKB1
in ¢ccRCC may be associated with the inhibition of tumor
progression. MAPK3 encodes a protein that is an important
member of the MAP kinase family. MAPK3/ERK1 plays a critical
role in the MAPK/ERK cascade. As a recognized oncogene, its role
in promoting cancer progression and influencing drug resistance to
targeted drugs has been demonstrated in a variety of cancers (29,
30). Mutations in BRCAl-associated protein-1 (BAP1) are very
common in ¢ccRCC, and Jin § et al. used PPI network analysis to
confirm that mutations in MAPK3, one of the core genes, regulated
BAP1 (31). Our study also confirmed the increased mRNA
expression of MAPK3 in ¢cRCC, and whether it could regulate
BAP1 to affect the prognosis of ccRCC needs to be further
investigated. RPS6KA2, RPS6KA4, and RPS6KA5 belong to the
RSK (ribosomal S6 kinase) family of serine/threonine kinases. The
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common characteristics of this family are that they all have kinase
catalytic domains, which can phosphorylate various MAPK
signaling pathway-related molecules. Milosevic N et al. showed
that RPS6KA2 acts downstream of EGFR/RAS/MEK/ERK signaling
and is activated by EGF. Inhibition of its activity could synergize
with erlotinib against pancreatic cancer cell survival (32). RPS6KAS5
regulates lung tumor growth by activating the MAPK classical
signaling pathway through phosphorylation, which in turn
phosphorylates TRIM7 protein (33). RPS6KA4 is activated by the
RAS-MAPK or p38-MAPK pathway and activates histone H3 by
phosphorylation, leading to increased transcription of genes such as
proto-oncogene c-fos/FOS and c-jun/JUN (34). MAP3KS5,
MAP3K8, MAP3K9, and MAP3K8 all belong to the serine/
threonine protein kinase family. The above four kinases have
been extensively studied in different types. MAP3K8 is a common
oncogene in most tumors. Our study likewise confirmed the high
expression of MAP3K8 in ccRCC. This molecule can mediate the
MAPK signaling pathway by activating MAP kinase and JNK kinase
pathways. Many studies have shown that some striking features of
the tumor microenvironment can promote immunosuppression
and limit the anticancer immune response. Among them,
immune cells infiltrating the physical barrier and causing local
inflammation play an essential role in forming and developing
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GSEA in KIRC. (A) MAP2K6. (B) MAP3KS. (C) MAP3K8. (D) MAP3K9. (E) MAP3K12. (F) MAPK3. (G) NFKBL. (H) RACL. (I) RPS6KA2. (J) RPS6KA4.

(K) RPS6KAS. (L) SHC1. (M) STATL. (N) TRAF2.

tumors (35). MAP3KS8 also promotes the production of TNF-alpha
and IL-2 during T-lymphocyte activation, which also links the
MAPK signaling pathway to immune cell infiltration (36-38).
STAT1 can be activated by EGF phosphorylation, thus forming a
dimer that is transferred to the nucleus to act as a transcriptional
activator. Most evidence suggests that STAT1 plays an oncogenic
role in tumor cells. However, results from several experimental and
clinical studies suggest that STAT1 also functions as a tumor
promoter under specific conditions. In ccRCC, STAT1 activation
of JAK2/STAT1/IRF-1 signaling drives the expression of PD-L1 in
ccRCC (39). TRAF?2 interaction with TNF receptors is required for
TNF-alpha-mediated JNK MAP kinase signaling and NF-kappaB
activation (40). In addition, TRAF2 regulates inflammatory
signaling, thereby affecting the immune response to tumors (41,
42). MAP2K6 is one of the important mitogen-activated protein
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(MAP) kinase kinases in the MAPK signaling pathway. This protein
is involved in cell growth or apoptosis by activating p38 MAP
kinase in response to immune stimulation or stress. Our study
confirmed the differential expression of MAP2K6 in KIRC, which
suggests its possible involvement in the biological processes of
ccRCC. Recent study confirms MAP2K6 as senescence-related
genes in ¢ccRCC may influence the efficacy of anti-PD-1 therapy
and Sunitinib/Everolimus treatment (43). Related studies have
confirmed that activation of the Ras-MAPK pathway promotes
immune evasion of tumor cells, proving that many associated
molecules of the MAPK signaling pathway are significantly
correlated with immune cell infiltration. MAPK pathway-
targeting inhibitors combined with immune drugs can enhance
anti-tumor immunity (44). Meanwhile, this study confirmed the
alteration of multiple immune cell infiltrations including CD4_T,
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CD4_naive, and CD8_naive in the immune microenvironment of
KIRC. The above studies on the regulation of MAPK signaling-
related genes in different tumors for inflammatory cell infiltration
and for PD-1/PD-L1 expression seem to explain the changes in
immune cell infiltration in ccRCC.

We divided KIRC patients into high-risk and low-risk groups
based on this risk model, and KIRC patients in the high-risk group
had a lower survival rate than KIRC patients in the low-risk group.
The ROC curve calculation results proved the high accuracy of the
risk model. We validated the relationship between the risk model and
the clinical characteristics of the patients and the results suggest that
prognostic model genes influence the tumor volume (T), lymph node
(N) distant metastasis (M) of KIRC patients. After identifying age,
stage, grading and risk score as the four independent risk factors for
KIRC, we drew a nomogram based on these independent risk factors.
We could judge the 5-, 7- or 10-year survival of the KIRC patients
based on this new nomogram. Numerous studies have investigated
the role of MAPK pathway-related genes in different cancers.

In summary, the pathogenesis of KIRC and various cancers are
related to the signal changes of the MAPK signaling pathway. The
development of drugs acting on this pathway may provide new
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ideas for treating KIRC and cancer. Research in this field has
confirmed that abnormal activation of MAPK is related to tumor
cell invasion, migration, proliferation, apoptosis and degradation of
extracellular matrix (45). A deeper understanding of the mechanism
of action of the MAPK pathway on cancer, especially KIRC, may
become the direction of future basic research.

5 Conclusions

In our research, we used 14 genes related to the MAPK signaling
pathway to establish a new KIRC predictive risk model, and the role
of the ROC curve is to predict the accuracy of the model (5-year
AUC value of 0.744, 10-year AUC value of 0.825), suggesting that
the model has good predictive performance. However, it must be
acknowledged that the specific mechanism of how these 14 genes
function in KIRC is not yet clear. In addition, this prognostic risk
model needs to be further validated using large-scale multi-center
clinical data. However, we firmly believe our study can provide
valuable consultation for future scientific diagnosis and clinical
treatment of KIRC.
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SET domain-containing 2 (SETD2) is a lysine methyltransferase that catalyzes
histone H3 lysine36 trimethylation (H3K36me3) and has been revealed to play
important roles in the regulation of transcriptional elongation, RNA splicing, and
DNA damage repair. SETD2 mutations have been documented in several
cancers, including clear cell renal cell carcinoma (ccRCC). SETDZ2 deficiency is
associated with cancer occurrence and progression by regulating autophagy
flux, general metabolic activity, and replication fork speed. Therefore, SETD2 is
considered a potential epigenetic therapeutic target and is the subject of
ongoing research on cancer-related diagnosis and treatment. This review
presents an overview of the molecular functions of SETD2 in H3K36me3
regulation and its relationship with ccRCC, providing a theoretical basis for
subsequent antitumor therapy based on SETD2 or H3K36me3 targets.

KEYWORDS

SETD2, clear cell renal cell carcinoma (ccRCC), H3K36me3, epigenetic
regulation, mutation

Abbreviations: AWS, associated with SET; AID, auto-inhibitory domain; ATG, autophagy-related genes;
ATR, Ataxia telangiectasia and Rad3 related; CTD, C terminal domain; ccRCC, clear cell renal cell carcinoma;
CC: coiled-coil; CtIP, C-terminal binding protein interacting protein; DAC, 5-aza-2’-deoxycytidine; DDR,
DNA damage response; DSBs, DNA double-strand breaks; DNMT3B, DNA-methyltransferase 3B; emRNA,
exosomal mRNA; FH, Fumarate hydratase; GSEA, Gene set enrichment analysis; hnRNP L, heterogeneous
nuclear ribonucleoprotein L; H3K36me3: histone H3 lysine36 trimethylation; HR, homologous
recombination; HIP1R, HTT-interacting protein 1-related protein; HTT, Huntingtin; LEDGF, Lens
epithelium-derived growth factor; MSI, microsatellite instability; MMR, mismatch repair; MRG15,
MORF4-related gene on chromosome 15; MDSC, myeloid-derived immune suppressive cell; NHE], non-
homologous end-joining; PHD, plant homeodomain; PKD, polycystic kidney disease; PTB, polypyrimidine
tract-binding protein; PRR, proline-rich region; PWWP, Pro-Trp-Trp-Pro; RCC, renal cell carcinoma;
PTECs, renal primary tubular epithelial cells; RPA, replication protein A; PHRF1, ring finger domains 1;
RNAPII, RNA polymerase II; RRM2, RNA-recognition motif 2; SAM, S-adenosylmethionine; SDH, Succinate
dehydrogenase; SETD2, SET domain-containing 2; SRI, Set2-Rpbl interacting; SHI, SETD2-hnRNP
interaction; ssDNA, single-stranded DNA; VHL, von Hippel-Lindau; ZMYNDI11, zinc finger MYND-

domain containing 11.
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1 Introduction

Renal cell carcinoma (RCC) is one of the most prevalent
malignancies with a case-fatality rate among urinary tract tumors
(1, 2). There are several pathological types of renal cancer, such as
clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe
RCC (chRCC). In the WHO classification, with a list of RCC
defined molecularly, including TFE3-rearranged RCC, TFEB-
rearranged RCC, ELOC (TCEBI1)-mutated RCC, Fumarate
hydratase (FH)-deficient RCC, Succinate dehydrogenase (SDH)-
deficient RCC, ALK-rearranged RCC, SMARCBI-deficient RCC,
and so on (3), a molecular perspective to define RCC is necessary.
ccRCC is the major type with a high incidence rate and poor
prognosis. Remarkably, several secondary mutations of tumor
suppressor genes and chromatin regulators have been identified
near von Hippel-Lindau (VHL), including PBRMI1, BAPI, and
SETD2 (4). Furthermore, metastatic ccRCC occurs in about 30%
of patients, and there are few effective treatment options available
(5). Despite advances in chemotherapeutic drugs, chemotherapy
resistance remains a problem in ccRCC treatment; therefore, there
is an urgent need to understand the regulatory mechanism
underlying the recurrence and metastasis of ccRCC, identify
possible therapeutic targets and develop new therapeutic options.

Epigenetic regulation, including histone modification, plays a
crucial role in maintaining eukaryotic genome stability, gene
expression regulation, and chromatin structure. Histone H3 lysine
36 trimethylation (H3K36me3) is involved in the regulation of
transcriptional activation and RNA splicing, as well as DNA repair
and recombination (6). In mammalian cells, SETD2 is the main
H3K36me3 methyltransferase (7), and genomic profiling of ccRCC
clinical samples revealed high-frequency SETD2 mutations. SETD2
has been reported to accelerate ccRCC progression (4, 8) and is a
potential prognostic and predictive marker in both localized and
metastatic RCC (9). This paper reviews the multiple roles and
functions of SETD2 in the occurrence and progression of ccRCC.

2 Protein structure of SETD?2

The human SETD2 gene is located in the p21.31 region of
chromosome 3, where the copy number is frequently lost in many
tumors. Thus, SETD2 is generally considered a tumor suppressor.

N-terminal

SET
(1550~ 1667)

w
(1494-1548) (1874 1690)

FIGURE 1

10.3389/fonc.2023.1114461

The human SETD2 protein consists of several conserved functional
domains, containing the AWS (associated with SET)-SET-PS (post-
SET) domains, WW domains, SRI (Set2-Rpbl Interacting domain),
SETD2-hnRNP interaction (SHI) domains, and a large
unstructured N-terminal domain (Figure 1).

2.1 The AWS-SET-PS domains

The AWS-SET-PS domains are essential as a catalytic
methyltransferase domain for H3K36me3; the AWS and post-SET
domains are flanked onto the SET domain at the N- and C-terminally,
respectively. All methylation of H3K36me2 to H3K36me3 depends on
the SET domain, with S-adenosylmethionine (SAM) as the cofactor,
providing an additional methyl (10). It is reported that the H3K36M
oncohistone mutation inhibits SETD2 methyltransferase activity; the
structure of the SETD2-H3K36M-SAM complex suggests that SAM
indirectly affects the SETD2-H3K36M interaction and maintains the
SET domain in the proper fold state (11). The AWS-SET-PS domains
of SETD2 recognize the 0-N helix of histone H3 and bind to the
nucleosome DNA by cryo-EM analyses (12).

2.2 The Set2-Rpbl interacting domain

The SRI domain of 108 amino acids at the C-terminal end is the
main region that interacts with RNA polymerase II (RNAPII), entering
a transcription elongation phase. The SRI domain binds to RNAPII-C
terminal domain (RNAPII-CTD) Ser5P and Ser2P (13) and promotes
SETD2 activity to modify H3K36me3, particularly along the 3" end of
the coding sequences of long genes (Figure 2). This association is
crucial for SETD2 activity and stability. In addition, the SRI domain of
SETD2 is also required for microtubule lysine 40 trimethylation (-
TubK40me3) (14, 15) (Figure 2). Molenaar et al. recently reported that
overexpression of the SRI domain significantly inhibited H3K36me3
and enlarged cell size (16).

2.3 The WW domain

The WW domain comprises two conserved tryptophan (W)
residues in the SETD2 C-terminus. The WW domain interacts with

(2117 2146) (2389 P422)
= :?) 2564
(2114 2263) (2457 2564)

The protein domains of human SETD2. AWS, associated with-SET domain; AID, auto-inhibitory domain; WW, tryptophan-tryptophan domain; CC,
coiled-coil domain; SHI, SETD2-hnRNP interaction domain; SRI, Set2-Rpbl interacting domain
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SETD?2 catalyzes histone and non-histone substrate methylation. SETD2 has initially identified a methyltransferase that trimethylates H3 histones on
lysine 36, also occurs on the non-histone substrate, trimethylates o.-tubulin at lysine 40 and actin at lysine 68, as well as methylates STAT1 at lysine
525 and EZH2 at lysine 735. RNA Pol I, RNA polymerase II; STATL, signal transducer and activator of transcription 1; EZH2, enhancer of zeste
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proline-rich or proline-containing motifs of other proteins
mediating protein-protein interactions (17). For example, the
WW domain interacts with the Huntingtin (HTT) proline-rich
region (PRR) and the actin-binding adaptor HTT-interacting
protein 1-related protein (HIPIR), leading to SETD2 tri-
methylating actin at lysine 68 (ActK68me3) (Figure 2). The
SETD2-HTT-HIP1R axis modifies actin, which increases actin
polymerization and promotes cell migration (18).

2.4 The SHI domain

The structure of the coiled-coil (CC) domain has been predicted
by in-silico calculations to be a conserved motif that participates in
protein-protein interactions in yeast and promotes protein
homodimerization. In human SETD2, the predicted structure of
the CC domain is much shorter (19). The SHI domain contains the
CC domain and adjacent unstructured sequences in a recently
identified region. The histone mark H3K36me3 is known to
regulate splicing (8). The SHI region interacts with heterogeneous
nuclear ribonucleoprotein L (hnRNP L), RNA-recognition motif 2
(RRM2), as well as other splicing-related factors associated with
RNA processing (20). Crystallographic analysis revealed that the
Leu-Leu in the SHI domain is important for the interaction (21).
Moreover, the double mutant that lacks both the SHI and SRI
domains lost practically all catalyzing H3K36me3 activity,
indicating that these domains are regulators of SETD2 activity.
SETD2 activity toward H3K36me3 modification is similarly
influenced by the SHI domain (20).

2.5 Auto-inhibitory domain

The AID domain in the middle region of Set2 (a yeast ortholog
of human SETD2) suppresses SET domain activity, and the AID
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domain suppresses its catalytic activity when the SRI domain is lost.
AID mutations usually lead to excessive activity of Set2 in vivo and
promote the abnormal methylation of Set2 to histones (22). The
AID and SRI domains synergistically control the catalytic SET
domain, with AID mutations resulting in changes in Set2 protein
stability and binding to RNAPII-CTD and variable H3K36me3
levels. In summary, Set2 AID exerts repressive effects requiring the
presence of the SRI domain and Set2 SRI to interact with RNAPII
and histones, ensuring that H3K36 methylation occurs explicitly on
the active transcript chromatin. Therefore, under specific growth
conditions, the Set2 autoinhibitory domain may serve as a target for
other regulators (23). It would be intriguing to ascertain whether the
Set2 AID interacts with any proteins and whether this interaction
infuses Set2 activity via the AID-SRI axis (19). All the above studies
are implemented in yeast, but there are no reports about the
structure and function of human AID as yet.

2.6 The large unstructured
N—-terminal domain

Human SETD2 has an extended N-terminal region with
unknown function (~1400 amino acids) and is unstructured.
SETD2 is an unstable protein that depends on the degradation of
the proteasome (24). It was recently reported that the N-terminal
region regulates its half-life by the proteasome system, and removal
of the N-terminal region leads to SETD2 stabilization (25), and a
segment (aa 1104-1403) of the N-terminal region contributes to
SETD2 degradation by the proteasome (24). SETD2 is an
intrinsically aggregation-prone protein, and the N-terminal region
contributes to SETD2 droplet formation in vivo, a property that is
enhanced by its reduced degradation. The N-terminal region is
conducive to the liquid-liquid phase separation of the protein, and
the phase separation behavior of SETD2 intensifies with the
removal of the N-terminal fragment (26). Thus, the N-terminal
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fragment of SETD2 regulates the amount of SETD2 protein
required in the cell and may contribute to its role in regulating
transcription and splicing.

3 SETD2 and clear cell renal
cell carcinomas

3.1 SETD2 mutation and ccRCC

VHL inactivation occurs in 90% of all ccRCCs, and several
mutations in tumor suppressor genes on chromosome 3p have been
identified: PBRM1, BAPI1, and SETD2 (4, 27). SETD2 mutations
occur in about 15% of ccRCC (4). Mono-allelic and bi-allelic
mutations in SETD2 are observed in many cancers, including
ccRCC (28-30). Bi-allelic mutations in SETD2 cause loss of
H3K36me3 in ccRCC (31). SETD2 gene inactivation mutations
are a prevalent molecular feature, and SETD2 deficiency is
associated with ccRCC recurrence and poor prognosis (Tables 1,
2). Moreover, SETD2 mutations are more frequently found in late-
stage ccRCC tumors, which is related to a higher and earlier risk of
relapse and poor survival outcomes (9, 50).

Referenced by cBioPortal database and reported research (31,
32, 34, 36-38, 42), SETD2 mutations were identified in ccRCC
predominantly inactivating, containing nonsense mutations,
missense mutations, frame shift, and fusion, which lead to loss of
function, such as mutations R1625C or R1625G, resulting in a
complete loss of SETD2 enzymatic activity (31, 33) (Table 1). The
presence of intratumor heterogeneity was confirmed in metastatic
renal-cell carcinoma tumors, which demonstrated independent and
different SETD2 mutations in different sections of an individual
tumor (51). Thus, SETD2 plays a critical role in the development
and progression of ccRCC.

3.2 SETD2 serves as a tumor-suppressor
gene in ccRCC

3.2.1 Cryptic transcription

Cryptic transcription initiates transcription from a downstream
“promoter-like” region and produces short and meaningless
transcripts in gene bodies. Previous studies have demonstrated
that SETD2 suppresses cryptic transcription initiation from
within several active gene bodies (52, 53). The histone chaperone
FACT and its subunits SPT16 and SPT6 promote transcriptional
elongation through nucleosome recombination, and deletion of
SETD2 reduces recruitment to FACT and plays a critical role in
repressing cryptic intragenic transcriptional initiation (52). In yeast,
Set2-mediated prevention of cryptic intragenic transcription is
independent on histone deacetylation (54). In mammalian cells,
SETD2-mediated H3K36me3 recruits DNA-methyltransferase 3B
(DNMT3B), resulting in a high density of DNA methylation, and
thus represses transcription from alternate intragenic promoters or
initiation of cryptic transcription (55), protecting RNAPII from
inappropriate transcription re-initiation and enforced silence
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intragenic transcription (53, 56). In conclusion, SETD2 is crucial
in maintaining active gene bodies dormant in mammalian
cells (Figure 3).

3.2.2 RNA splicing

SETD?2 is linked to the RNA splicing process. Compared to
controls, SHI domain deletion mutation lost interaction with
hnRNP L and did not affect splicing events (21). SETD2-deficient
ccRCC is susceptible to mis-splicing. Gene set enrichment analysis
(GSEA) shows that SETD2-deficient negatively enriched the gene
related to the mRNA splicing pathway (57). A genome-wide
transcript profile for SETD2-deficient primary ccRCC tumors
demonstrated that altered splicing patterns or splicing defects,
including intron retention and variation in exon utilization, are
widely present in SETD2-deficient cancers. Notably, active genes
also revealed increased chromatin accessibility (39). The increased
chromatin accessibility of upstream abnormally spliced exons and
decreased occupancy of nearby nucleosomes significantly
contribute to the splicing defect in tumors with H3K36me3
deficiency (58).

Proteins containing the Pro-Trp-Trp-Pro (PWWP) domain
play an important role in recognizing H3K36me3. MORF4-
related gene on chromosome 15 (MRG15) can bind to
H3K36me3 (59, 60) and recruit polypyrimidine tract-binding
protein (PTB) to its target alternatively spliced exon sites (61).
Lens epithelium-derived growth factor (LEDGF) binds to
H3K36me3 (62), as well as to both chromatin and multiple
regulators, to modulate alternative splicing events and influence
transcription elongation (63, 64). Zinc finger MYND-domain
containing 11 (ZMYND11) directly binds to H3K36me3 and
H3K36me3-modified chromatin to regulate RNA splicing and Pol
II elongation (65, 66). Furthermore, the deficiency of SETD2-
mediated H3K36me3 reduces the recruitment of readers, resulting
in splicing defects (Figure 3).

3.2.3 DNA damage and repair signaling

SETD2 is vital in the DNA damage response (DDR) by
generating H3K36me3. Cell death occurs if DNA repair fails, and
tumor development may arise from incorrect DNA repair. SETD2
facilitates DNA double-strand breaks (DSBs) repair by homologous
recombination (HR), activating replication protein A (RPA) single-
stranded DNA (ssDNA)-binding protein complex loading and the
formation of RADS51 presynaptic filaments (35, 62, 67, 68). ATM is
activated in DSB, then phosphorylates a variety of downstream
effector proteins, such as p53. SETD2-deficient cancer cells failed to
activate p53 and displayed lower cell survival in DNA damage (62,
67, 68). Ectopic expression of demethylase KDM4A decreased
H3K36me3 levels and resulted in HR (62). Consistent with this,
LEDGEF recruits and binds C-terminal binding protein interacting
protein (CtIP), promoting HR by CtIP-dependent DNA end
resection (69). Accordingly, the loss of SETD2 obstructs HR
repair (70, 71). Also, SETD2 promotes DSB repair via
combination with plant homeodomain (PHD) of Ring finger
domains 1 (PHRFI), modulating non-homologous end-joining
(NHE]) and stabilizing genomic integrity (72). SETD2 has also
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TABLE 1 List of SETD2 mutations reported in ccRCC.

Mutation - :
Domain = Function
type
Oncogenic, inactivate
Mi 31-
R1625C, R1625H fssense SET SETD2 enzymatic ¢
Mutation . 33)
activity
(32,
X2413_splice Splice Site WwW Oncogenic 34,
35)
Oncogenic, lose the (32,
X2478_splice Splice Site SRI interaction with RNA 34-
polymerase II 36)
Oncogenic, lose the (32,
F Shift
K2545* amePE s interaction with RNA 34,
polymerase II 35)
Oncogenic, lose the (32,
F Shift
T25408£5*22, D2504* o O s interaction with RNA 34,
polymerase IT 35)
X Oncogenic, lose the (32,
Splice . . .
K2511= i SRI interaction with RNA 34,
Region
polymerase II 35)
N Oncogenic, lose the (32,
onsense
Y2489* . SRI interaction with RNA 34,
Mutation
polymerase IT 35)
Oncogenic, lose the (32,
X2477_splice Splice Site SRI interaction with RNA 34,
polymerase II 35)
32,
Oncogenic, lose the (34
X2475_splice Splice Site SRI interaction with RNA 35’
1 11 :
polymerase 37)
32,
Q2207* Nonsense SHI o i (34
ncogenic ,
Mutation 8
35)
. Oncogenic, SETD2
Missense . .
Y1666H . SET Y1666 interact with (38)
Mutation
H3K36M
32,
Nonsense . (
Y1666* K SET Oncogenic 34,
Mutation
35)
(32,
X1572_splice Splice Site SET Oncogenic 34,
35)
. (32,
F Shift
V1656Efs*11 I:SIme ! SET Oncogenic 34,
35)
(32,
X1640_splice Splice Site SET Oncogenic 34,
35)
. (32,
Spl
X1672_splice p lf:e SET Oncogenic 34,
Region
35)
(32,
N
Y1688_L1689delins* onSénse Post-SET Oncogenic 34,
Mutation
35)
(Continued)
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TABLE 1 Continued

Mutation . :
Domain = Function
type
Nonsen: 62,
L2124* onsense cc Oncogenic 34,
Mutation
35)
(32,
X1529_splice Splice Site AWS Oncogenic 34,
35)
S2031fs*33, K1969Nfs*2, P1973Lfs*33, K941Rfs*41, T2372Sfs*54, S708Hfs*54, S595Kfs*3, Y1286Sfs*12, Frame Shift (32,
L1778Cfs*9, R1994Nfs*9, P1822Qfs*16 (Germline), R1694Sfs*17, 1.2364Cfs*8, K1863Sfs*2 (Germline), Del - Oncogenic 34,
1669%, D289Mfs*12, P1873Nfs*10, D20041fs*2, 11194Yfs*42, Y2296Lfs*72, P2380Tfs*31 35)
Q109%, S185%, Q256*, R368*, R400*, K466*, E505*, K528*, G538%, S543%, Y545*, S560*, S618*, C727*, Nonsense (32,
E777%, R973%, §996*, Y1113*, W1217%, R1322*, Q1368%, Y1472%, R1492*, E1720*, L1748%, W1782%, Mutati - Oncogenic 34,
utation
E1964*, Q2277* 35)
. (32,
. Frame Shift .
S2382Lfs*47, S546Ffs*2, D1456Gfs*28, T2443Nfs*3, P22881fs*22, P230Tfs*7 (Germline) I - Oncogenic 34,
n
s 35)
(32,
X1485_splice, X2450_splice, X2037_splice Splice Site - Oncogenic 34,
35)
Splice 62
X2037_splice P X - Oncogenic 34,
Region
35)
Globeally restore
Missense H3K36me3; loss of (15,
R2510H SRI
Mutation both tubulin binding 31)
and methylation
E Shift Red SETD2
G1681fs, Q320fs rame St SET educe SEIDZ 39)
Del enzymatic activity
Mi Red SETD2
R2510L ssense SRI R (39)
Mutation enzymatic activity
E978*, Q1409* Nonse'nse B Inactivat.e SE'I'“D'Z (39)
Mutation enzymatic activity
. Facilitate localization of
Missense
N1734D, S1769P K - hMSH6 (hMutSc) to (40)
Mutation .
chromatin
It i PTC 42
Frame Shift Result 1'n aPIC
R2132fsX13 - nucleotides (41)
Del
downstream
Missense Influence
D1616N . SET methyltransferase (41)
Mutation L
activity of SETD2
T2354A MisseIllse B Aff-ect 'transcr-ip-tional 1)
Mutation activation activity
Oncogenic, lose the
F Shift
K2541fs I:slme ! SRI interaction with RNA (37)
polymerase II
F Shift
E2120fs rame St cc Unknown (37)
Del
F Shift
F1651Lfs*12 S:lme T seT Unknown (42)
Nonsense
Q2131* i CC Unknown (42)
Mutation
(Continued)
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TABLE 1 Continued

10.3389/fonc.2023.1114461

Mutation

type Domain = Function
Nonsense
E2128* K SHI Unknown (42)
Mutation
Mi
T25131 issense SRI Unknown (42)
Mutation
F Shift
W2417Lfs*7 ];:lme T ww Unknown (12)
Mi
C15168 fssense AWS Unknown (12)
Mutation
(32,
SETD2-QRICH1 Fusion - Oncogenic 34,
35)

Frame Shift Ins, Frame Shift Insertion; Frame Shift Del, Frame Shift Deletion; PTC, Premature Termination Codons. The asterisk (*) indicates the stop codon.

been proven to trigger DNA mismatch repair (MMR). Specifically,
the mismatch recognition protein hMutSo. (hMSH2-hMSHS),
hMSH6 contains a PWWP domain that recruits and interacts
with H3K36me3 like many other H3K36me3 effector proteins.
hMSHE6 foci are reduced in SETD2 knockdown cancer cells (40).
The crystal structure modeling revealed that H3G34R/V mutations
block the SETD2 catalytic activity and inhibit H3K36me3-MSH6
interaction from inducing tumorigenesis (73). SETD2-deficient cells
exhibit microsatellite instability (MSI) with a high frequency of
spontaneous mutations (40). Compared to introns and non-
transcribed regions, H3K36me3 and MutS are more enriched in
exons as well as active transcriptional regions and transcriptionally
protect against actively transcribed genes (74). Recent studies
suggest that targeting DDR is feasible to achieve immunotherapy
in ccRCC (75, 76) (Figure 3).

3.2.4 Autophagy

Autophagy is involved in physiological and pathological
processes and tightly regulated by a network of autophagy-related
genes (ATG). Also, the actin cytoskeleton regulates autophagy
dynamics (77). Autophagy is an intracellular degradation system
procedure associated with cytoplasmic events, and key epigenetic
events are recognized to be significant for this progression. De facto,
histone post-translational modification plays a central role in

TABLE 2 Effects and mechanisms of SETDZ2 deficiency in ccRCC.

regulating transcriptional programs and epigenetic networks
during autophagy (78-83).

Autophagy is an important regulatory process in ccRCC (84—
86). The deficiency of SETD2 in ccRCC cells reduces LC3-II
expression, which is linked with abnormal cumulative ATG12 in
free and complexes containing ATGI12, except for the ATGS5-
ATGI12 complex. Furthermore, SETD2-loss deregulates alternative
splicing, which is related to increased ATGI2 short isoform and
reduced conventional ATGI2 long isoform (43). Another research
confirms that SETD2 knockdown causes a decreased expression of
ATGI4 long isoform in HeLa cells (87). Whether ATGI14 long
isoforms expression is down-regulated in ccRCC cells with a high-
frequency mutation in SETD2 remains to be further investigated.

Autophagy also involves the actin cytoskeleton. As mentioned
before, SETD2 trimethylates actin (ActK68me3), cells lacking
SETD2 have decreased interaction of the actin nucleation-
promoting factor WHAMM with its target actin, actin filaments
are required for initiation of autophagy in ccRCC, and autophagy
markers LC3-1II and p62 are decreased (44).

Recent studies display that the components of the autophagic
system play a central role in regulating the innate immune system
(88, 89). In pancreatic ductal adenocarcinoma cells, autophagy
deficiency results in increased MHC-I expression and increased
infiltration of CD8" T cells. Inhibition of autophagy or lysosomal

Effect Mechanism Cell type Ref.
Increase ATG12 short isoform ACHN, Caki-1 (43)
Decreased autophagic flux
Inhibit the actin-WHAMM interaction 786-0O (44)
Enhance oxidative phosphorylation 786-0O (45)
Metabolic alterations
Inhibit multiple metabolic-related genes 293T (46)

Promotes metastases
Cell cycle arrest

PKD conversion to ccRCC

Induce the recruitment of histone chaperone ASF1A/B and SPT16, increase MMP1 chromatin accessibility
RRM2 expression reduction, dNTP depletion, S-phase arrest

Activate the Wnt/B-catenin signaling pathway

JHRCCI12, Caki-2 (47)
A498 (48)

PETC, 293T (49)

ATG12, autophagy-related gene 12; WHAMM, WAS Protein Homolog Associated with Actin, Golgi Membranes, and Microtubules; ASF1A/B, anti-silencing function 1 A/B; SPT16, suppressor
of Ty 16; MMP1, matrix metalloproteinase-1; RRM2, Ribonucleotide reductase (RNR) small subunit M2; PKD, Polycystic Kidney Disease.
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Alternative splicing

DNA Damage repair

FIGURE 3

Schematic overview of SETD2 functions. SETD2-mediated H3K36me3 plays important biological roles in ccRCC. Cryptic transcription: SETD2-
mediated H3K36me3 recruits DNMT3B to target intragenic DNA methylation. RNA splicing: SETD2-mediated H3K36me3 recruits splice factors
MRG15, LEDGF and ZMYND11 to modulate alternative splicing events. DNA damage repair: SETD2-mediated H3K36me3 recruits LEDGF, and LEDGF
binds CtIP at the break site to promote HR repair. SETD2-mediated H3K36me3 recruits PHRF1 to modulate NHEJ repair. SETD2-mediated
H3K36me3 recruits hMutSo. (nMSH2-hMSH6) to MMR repair. DNMT3B, DNA-methyltransferase 3B; MRG15, MORF4-related gene on chromosome
15; LEDGF, lens epithelium-derived growth factor; ZMYND11, Zinc finger MYND-domain containing 11; HR, Homologous recombination; CtIP, C-
terminal binding protein interacting protein; RPA, replication protein A; NHEJ, non-homologous end-joining; PHRF1, plant homeodomain of Ring
finger domains 1; MMR, mismatch repair; MSH2, MutSa. homolog 2; MSH6, MutSa. homolog 6.

production increases MHC-I expression, enhances the adaptive
immune response, and inhibits the generation of tumors (90).
Thus, tumor-autonomous autophagy can alter tumor growth by
regulating immune responses. SETD2 promotes autophagy flux.
Therefore, further understanding the pathways inhibited by SETD2
deficiency in ¢ccRCC may help identify immunotherapy targets.

3.2.5 Cancer metabolism

ccRCC is considered a metabolic disease and involves several
inactivated genes (91), such as VHL, controlled tumor energetics
and biosynthesis, and the hypoxia pathway (92). The KEGG
pathway-based study identified compounds that were present in
varied abundance in tumor and normal kidney tissues. Remarkably,
most of the upregulated pathways in tumor tissues were engaged in
carbohydrate metabolism, whereas the deregulated pathways
involved amino acid metabolism (93).

However, the influence of inactivated SETD2 on metabolic
reprogramming is unclear. Compared to parental 786-O cells,
SETD2-deficient cells promote PGCla, increase oxidative
phosphorylation, and elevate mitochondrial oxidative metabolism.
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Acetyl-CoA is a pivotal substance in biochemical metabolism,
which enters the TCA cycle for oxidation and catabolism, and
also as a source of fatty acid synthesis, given fatty acid metabolism is
always associated with metastasis. Liu et al., hypothesized that
enhanced TCA metabolite acetyl-CoA may shunt fatty acid
synthesis, resulting in cancer metastasis (45). Compared to wild-
type cells, SETD2 knockout cells inhibit multiple metabolic-related
genes in the various metabolic pathways (46). Therefore, tumor
metastasis accompanied by metabolic alterations and further
metabolic pathways analysis of SETD2 inactivated in ¢cRCC will
have the potential to discover new therapeutics for
precision medicine.

3.2.6 Metastases

Previous studies identified an association between SETD2
mutations and the prognosis of patients with localized ccRCC.
The mono-allelic mutant of SETD2 is insignificant in H3K36me3
modification. SETD2 loss-of-function mutations were revealed in
10%~20% of primary ccRCC tumors, increasing to 30%~60% of
metastatic ccRCC tumors. A significant reduction in H3K36
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methylation was also found in both ¢ccRCC cell lines and patient
samples, suggesting the potential involvement of SETD2 in driving
ccRCC metastatic progression (8, 9). In the TCGA cohort, SETD2
mutations were correlated with poorer cancer-specific survival in
ccRCC patients (50). Immunohistochemical staining displayed a
gradually decreasing H3K36me3 modification with distant
metastases from primary ccRCC tumors. During the progression
of ccRCC, H3K36me3 is reduced in distant metastases, and regional
H3K36me3 alterations influence alternative splicing in ccRCC (94—
97). The H3K36me3 dysregulation axis is linked to an increased risk
of death from RCC. Specifically, this connection is substantial,
especially for patients with low-risk malignancies (98); however,
the mechanism by which SETD2 causes cell metastasis has not been
fully elucidated.

The activation of enhancer elements that promote metastatic
carcinoma progression has been proven in several cancers,
including ccRCC (99-101). Increased chromatin accessibility
containing activating enhancers is regulated by aberrant histone
chaperone recruitment and activity (102, 103). A recent study has
shown that SETD2 deficiency mediated reduction of H3K36me3
induced the recruitment of histone chaperone ASF1A/B and SPT16,
increased MMP1 chromatin accessibility, and activated enhancers
to drive genes involved in metastasis, promoted ccRCC
metastasis (47).

3.2.7 Cell proliferation and cell cycle regulation

SETD2 stabilization increases cell proliferation contrary to its
canonical role as a tumor suppressor (25). According to Li et al.,
decreased SETD2 reduces cell proliferation and can be restored by
CDK1 knockdown. Multiple SETD2-regulated cellular pathways
suppress cancer development and uncover mechanisms
underlying aberrant cell cycle regulation in SETD2-depleted cells
(46). SETD2 is a tumor suppressor in renal primary tubular
epithelial cells (PTECs). The proliferative capacity of SETD2-
knockdown PTECs was higher than that of SETD2 wild-type
PTECs, indicating that SETD2 inactivation enables PTECs to
facilitate a malignant transformation toward ccRCC (67).

Generally, DNA damage could cause cell cycle arrest. The
abundance of H3K36me3 ensures the recruitment of DNA
damage repair key proteins during DNA replication to restore
genome integrity in G1 and early S phase (40, 104). Replication
fork speed is also decreased in ccRCC cells when SETD2 is depleted
(35). Throughout the cell cycle, the SETD2 protein level is minimal
in G1 and maximal in G2/M. Both H3K36me3 and WEEI are
critical in DNA replication and promote ribonucleotide reductase
subunit (RRM2) expression, respectively. In SETD2-deficient cells,
WEE1 inhibition reduces dNTP and RRM2 with higher sensitivity,
resulting in S-phase arrest (48).

In recent studies, Helena et al. and Zhu et al. found SETD2 can
also catalyze H3K37mel and H3K14me3, H3K14me3 recruits the
RPA complex to active Ataxia telangiectasia and Rad3 related
(ATR) during replication stress, which plays a crucial role in the
DNA replication stress response and negatively regulates
replication initiation, the deletion of SETD2 reduces replication
stress in the absence of H3K37mel and H3K14me3 (105, 106). In
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conclusion, SETD2 controls the proper course of the S-phase, and
catalyzes H3K37mel and H3K14me3 to regulate the replication
progress. However, the detailed correlation between SETD2 and cell
cycle regulation is still incomplete and requires further exploration.

3.2.8 Non-histone substrates of SETD2

SETD2 is the main H3K36me3 methyltransferase in
mammalian cells. Recent studies have suggested that SETD2
could also catalyze non-histone substrate methylation. During
ccRCC mitosis, SETD2 trimethylates o-TubK40me3 and
maintains genomic stability. Mono-allelic mutation of SETD2
results in o-TubK40me3 deficiency, leading to chromosome
abnormalities and genomic instability exhibiting multipolar
spindle formation, chromosome bridges, micronuclei, polyploidy,
and multiple nuclei (14). SETD2, as a chromatocytoskeletal
remodeler, trimethylates ActK68me3. The SETD2-HTT-HIP1R
axis modifies actin, which increases actin polymerization and
promotes ccRCC migration (18). In addition, SETD2 methylates
STATI on lysine 525 promotes IFNo-dependent antiviral
immunity (107), and methylates EZH2 on lysine 735 inhibits
prostate cancer metastasis (33). Since SETD2 and EZH2
commonly occur abnormally in urological cancers, the SETD2-
EZH2 axis may also be promising targets for pharmacological
intervention in ccRCC. In order to search the specificity substrate
sequence of SETD?2, the amino acid specificity profile of the SETD2
substrate sequence was determined by the peptide SPOT arrays and
find the super-matching methylation site on K666 of FBN-1 (108).
Further cytological work is still needed to demonstrate that FBN1 is
a methylated substrate of SETD2.

A recent study reported that SETD2 could indirectly methylate
non-histone substrates, loss of SETD2 increases protein translation-
related gene expression and decreases eEF1A1 K165me3 and
K318mel in ccRCC, but SETD2 is associated with eEF1A1
methylation indirectly, SET domain of SETD2 regulated the
expression of EEFIAKMT2 and EEF1AKMT3, EEF1AKMT3
methylates ¢EF1A1 on lysine 165 and EEFIAKMT2 methylates
eEF1A1 on lysine 318 (109). Finally, the discovery of SETD2 for
non-histone substrates is particularly crucial for a more in-depth
understanding of its biological role (Figure 2).

3.2.9 Other functions

Recent research has depicted that multiple chromatin
remodeling enzymes are genetically inactive in ccRCC. Even
though there is emerging evidence that epigenetic changes are
important in cancer, only DNA methylation changes have been
identified (92). Widespread DNA hypomethylation correlates to the
mutation of the H3K36 methyltransferase SETD2 (94).

Patients with polycystic kidney disease (PKD) have a high
probability of converting to RCC. However, there is a paucity of
knowledge regarding how PKD can develop into RCC, necessitating
further research into genetic alterations or the regulation of
signaling pathways. Li et al. found that SETD2 deletion can lead
to increased activation of the Wnt/B-catenin signaling pathway and
promote epithelial-mesenchymal transition and tumor formation.
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SETD2 plays an essential role in the process of the conversion of
PKD to ccRCC (49).

Emerging evidence suggests that exosomal circRNAs might be
potential cancer biomarkers (110-112). He et al. reported that
circulating exosomal mRNA (emRNA) is a potential diagnostic
biomarker of ccRCC; thus, an emRNA-based screening signature
could be developed to provide noninvasive indicators for
ccRCC (113).

4 Conclusion

SETD2-mediated H3K36me3 enhances transcriptional
elongation and is also involved in DNA damage repair and
alternative splicing (Figures 2, 3). SETD2 mutations have been
identified in ccRCC (41), but further research should focus on the
association with the function of SETD2 and ccRCC. Loss of SETD2
in ccRCC is related to decreased autophagy processing, greater
levels of general metabolic activity, poorer cancer-specific survival
in ccRCC patients, and slower replication fork speed.

As a tumor suppressor, SETD2 may serve as a biomarker to
reduce drug resistance to targeted therapy and as a potential
therapeutic target to promote individualized treatment and
improve patient survival. The TCGA pan-cancer cohort shows
that patients with SETD2 mutations have a higher immune-
related gene expression and MSI. Clinical data analysis of cancer
patients treated with immune checkpoint inhibitors demonstrated
that SETD2 mutation is a potential biomarker (114). 5-aza-2’-
deoxycytidine (DAC) is used clinically to treat tumors with
mutations in chromatin regulators, which competitively inhibits
DNA methyltransferase activity and demethylates DNA.
H3K36me3 is reduced in SETD2-deficient tumor cells, decreasing
the recruitment of DNMT3B and the methylation of DNA,
increasing interferon immune responses and the expression of
transposable elements, therefore improving the sensitivity to
DAC. In wild-type tumors, the number of myeloid-derived
immune suppressive cell (MDSC) increased with DAC treatment.
In the SETD2-knockdown tumor model, increased CD8" T cell
infiltration and fewer MDSC following combined treatment with
DAC and anti-PD-L1. ccRCC with altered SETD2 gene provides
preclinical support for a therapeutic target for DAC and anti-PD-L1
(57). A case report about advanced HCC showed that
immunotherapy could be effective, leading to long-term survival,
and they focused on two mutated genes, SETD2 and LRPIB, to
further explore (115). Thus, the hypermutated SETD2 in ccRCC is
worthy of attention.

With current innovations in genome engineering and
proteomics, the role of SETD2 in normal cells and cancer will be
better understood at the molecular level. Nonetheless, it is urgent to
explore whether and how SETD2 regulates the molecular
mechanisms of recurrence and ccRCC metastasis.
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Furthermore, SMYD5 and SETD5 were also demonstrated to
catalyze H3K36me3 (7, 116). A growing number of enzymes were
initially discovered for methylating additional amino acid residues
of histones and other proteins (117), so a reanalysis of known
histone methyltransferases is necessary.

In conclusion, the in-depth study of SETD2 during tumor
formation and development is warranted for diagnosing, treating,
and preventing tumors. It is anticipated that further epigenetics
studies will reveal the regulatory pathway of SETD2 expression.
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Background: Clear cell renal cell carcinoma (ccRCC) patients with venous tumor
thrombus (VTT) have poor prognosis. We aimed to reveal features of ccRCC with
VTT and develop a urine-based prognostic classifier to predict ccRCC prognosis
through integrative analyses of transcriptomic landscape and urinary signature.

Methods: RNA sequencing was performed in five patients with ccRCC
thrombus-tumor-normal tissue triples, while mass spectrometry was
performed for urine samples from 12 ccRCC and 11 healthy controls. A urine-
based classifier consisting of three proteins was developed to predict patients’
survival and validated in an independent cohort.

Results: Transcriptomic analysis identified 856 invasion-associated differentially
expressed genes (DEGs). Furthermore, proteomic analysis showed 133
differentially expressed proteins (DEPs). Integration of transcriptomic landscape
and urinary signature reveals 6 urinary detectable proteins (VSIG4, C3, GAL3ST1,
TGFBI, AKR1C3, P4HB) displaying abundance changes consistent with
corresponding genes in transcriptomic profiling. According to TCGA database,
VSIG4, TGFBI, and P4HB were significantly overexpressed in patients with shorter
survival and might be independent prognostic factors for ccRCC (all p<0.05). A
prognostic classifier consisting of the three DEPs highly associated with survival
performed satisfactorily in predicting overall survival (HR=2.0, p<0.01) and
disease-free survival (HR=1.6, p<0.001) of ccRCC patients. The ELISA analysis
of urine samples from an independent cohort confirmed the satisfied predictive
power of the classifier for pathological grade (AUC=0.795, p<0.001) and stage
(AUC=0.894, p<0.001).

Conclusion: Based on integrative analyses of transcriptomic landscape and
urinary signature, the urine-based prognostic classifier consisting of VSIG4,
TGFBI, and P4HB has satisfied predictive power of ccRCC prognosis and may
facilitate ccRCC molecular subtyping and treatment.

KEYWORDS

clear cell renal cell carcinoma, venous tumor thrombus, prognosis, urine, biomarker
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Introduction

Renal cell carcinoma (RCC) is a frequently diagnosed cancer
originating from the renal epithelium, with an estimated 431,280
new incidences globally in 2020 (1). RCC comprises a
heterogeneous group of malignant tumors, of which the most
common (~70%) and aggressive histological subtype is clear cell
RCC (ccRCC) (2). ccRCC is prone to metastasis, as about 30% of the
patients have metastasis at the first visit, and one-third of the
remaining patients have recurrence and metastasis after surgery (3,
4). In addition, 4%-15% of the patients have their primary tumor
invading the venous system to form venous tumor thrombus
(VTT). The ccRCC patients with VIT exhibit poor prognosis if
left untreated, with a 5-year disease-specific survival rate of 10% (2,
5). The current first-line regimen for metastatic and locally
advanced c¢cRCC is immune checkpoint inhibitor combined with
tyrosine kinase inhibitor (6). Although it has greatly improved the
survival of ccRCC patients, the acquired resistance after receiving
treatment or even original drug resistance are still challenges (7-9).
Timely identification of these cases would improve the overall
survival (OS) of ccRCC patients.

At present, the risk stratification and prognosis prediction
models in current clinical practice are mainly pathological
characteristics including WHO/ISUP grades and TNM stages (6).
However, patients with similar clinical and pathological features
may have different prognosis in that ccRCC exhibited extensive
functional and genomic intratumoral heterogeneity (10, 11).
Therefore, it is urgent to discover those molecular markers related
to prognosis, so as to develop a prognostic classifier to facilitate
ccRCC molecular subtyping and treatment. As an important
method of liquid biopsy, urine is the ideal biological matrix for

10.3389/fonc.2023.1102623

discovery of cancer biomarkers, in particular for kidney-related
diagnostics (12). In addition, its non-invasive and cost-effective
natures make it suitable for providing a personalized snapshot of
disease during active surveillance or postoperative follow-up (13).

In the study, we first reveal features of ccRCC with VTT
through integrative analyses of transcriptomic landscape and
urinary signature. Second, a urine-based prognostic classifier
consisting of the prognosis-related proteins was developed to
predict ccRCC prognosis. Finally, the predictive efficiency of this
prognostic classifier was further validated by ELISA analysis of
urine samples from an independent cohort to facilitate ccRCC
molecular subtyping.

Materials and methods
Patient selection and sample collection

For RNA sequencing, patients were included if they had
histologically confirmed ccRCC with VTIT. The ccRCC thrombus-
tumor-normal tissue triples of 5 cases were obtained following
nephrectomy and tumor thrombus resection (Supplementary
Table 1). For mass spectrometry, 12 patients with histological-
type ccRCC undergoing nephrectomy and 11 healthy donor
volunteers from the same period were included (Supplementary
Table 2). Their samples of the second urine in the morning were
collected before surgery in sterile tubes containing 1 mM of
phenylmethanesulfonyl fluoride (Sigma, St. Louis, MO) to inhibit
proteases. In addition, 54 urine samples from an independent
cohort of consecutive ccRCC patients were also collected for
ELISA analysis (Supplementary Table 3). Figure 1 shows a

Paried tissue of 5 RCC associated
with VTT and adjacent NRT

Urine samples from 12 RCC
patients and 11 healthy individuals

RNA isolation

RNA sequence

Y

Protein isolation

i

Label-free mass spectrometry

!

856 DEGs (382 up-regulated and
474 down-regulated)

133 DEPs (85 up-regulated and 48
down-regulated

Integrative analysis of the transcriptome and proteome

{ i 1
850 DEGs-protein 6 upregulated DEG-DEPs 127 DEPs-mRNA
unchanged (VSIG4, C3, GAL3ST1, TGFBI, unchanged
AKR1C3, P4HB)

I

Functional enrichment analysis of DEGs & DEPs

Determination of GO terms and KEGG pathway |

Selection through TCGA database (n=539) and
validation by ELISA in independent cohort (n=54)

Identification of urinary signatures associated with VTT (VSIG4, TGFBI, P4HB)
to facilitate RCC molecular subtyping and prognostic prediction

FIGURE 1

Flowchart of RNA sequencing in ccRCC patients with thrombus-tumor-normal tissue triples and mass spectrometry in urine samples from ccRCC
patients and healthy controls to develop a urine-based prognostic classifier for predicting ccRCC prognosis.
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workflow summary of the transcriptomic and proteomic research
that revealed characteristics of ccRCC with VI'T and developed a
urine-based prognostic classifier to predict ccRCC prognosis. The
study was approved by the ethics committee of Changhai Hospital,
Naval Medical University, and written informed consent was
obtained from all participants prior to study enrollment.

RNA sequencing

Total RNA of thrombus, tumor and normal tissue from ccRCC
patients was extracted using the mirVana miRNA Isolation Kit
(Ambion, TX, USA) following the manufacturer’s instructions.
RNA purity was checked using a NanoPhotometer
spectrophotometer (IMPLEN, CA, USA). The TruSeq Stranded
mRNA LTSample Prep Kit (Illumina, CA, USA) was used to
build the libraries. Then these libraries were sequenced on the
Ilumina sequencing platform (HiSeqTM 2500 or Illumina HiSeq X
Ten) and 150 bp paired-end reads were generated.

Mass spectrometry

The urine samples were centrifugated to collect the supernatant,
and then the protein extract in urine supernatant was digested into
peptides with trypsin. The peptides were subjected to capillary
source followed by the timsTOF Pro (Bruker Daltonics) mass
spectrometry. The electrospray voltage applied was 1.60 kV.
Precursors and fragments were analyzed at the TOF detector,
with a MS/MS scan range from 100-1700 m/z. The timsTOF Pro
was operated in parallel accumulation serial fragmentation (PASEF)
mode. Precursors with charge states 0 to 5 were selected for
fragmentation, and 10 PASEF-MS/MS scans were acquired per
cycle. The dynamic exclusion was set to 30s.

Analyses of differentially expressed
genes/proteins

The analyses of differentially expressed genes (DEGs) and
differentially expressed proteins (DEPs) were performed using the
“limma” package of R statistical software.

DEGs were divided among three groups: RCC vs. normal renal
tissue (NRT), VIT vs. NRT, VIT vs. RCC. The DEGs which co-
expressed in RCC vs. NRT and VTT vs. NRT and those in VIT vs.
RCC were defined as thrombus invasion-associated genes.
Furthermore, DEPs were selected based on their different levels
between urinary samples of ccRCC patients and healthy controls.
DEGs/DEPs were defined by |log2 FC|>2 and P<0.05. For the public
single-cell RNA sequencing data, the transcriptional profiles from
all ccRCC patients and samples were visualized via uniform
manifold approximation and projection. Then, the normalized
expressions of DEGs were presented in all single-cell clusters and
compared among tissues of ccRCC tumor, adjacent normal kidney,
and lymph node. Gene Ontology (GO) functional annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
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enrichment were performed using the “clusterProfiler” package of
R statistical software.

Screening of prognostic proteins
for survival

Using the survival package, the univariate Cox regression analysis
was carried out to targeted proteins linked to OS. (version 3.3.1; https://
github.com/therneau/survival). The optimal prognostic protein set for
OS was further screened on the basis of SVM-RFE method using the
el071 (version 1.7.1; https://cran.r-project.org/web/packages/e1071)
and caret packages (version 6.0.76; https://cran.r-project.org/web/
packages/caret). The SVM classifier was then built to predict OS
according to the expression levels of optimal prognostic protein set.
Additionally, the results of the SVM classification analysis were
validated using data from The Cancer Genome Atlas-Kidney Renal
Clear Cell Carcinoma (TCGA-KIRC) dataset.

Development and validation of prognostic
classifier for survival

The multivariate Cox regression analysis was performed to extract
independent prognostic genes for OS using survival package (version
3.3.1; https://github.com/therneau/survival). Afterwards, a risk score
model of prognostic makers was established according to following
formula: risk score = YBDEPs x ExpDEPs. The BDEPs represented the
estimated contribution coefficient of independent prognostic proteins
in multivariate Cox regression analysis and ExpDEPs denoted the level
of independent prognostic genes. Then, all patients were divided into
high- or low-risk groups with the median of risk scores as the cutoff.

Statistical analysis

All data processing and statistical tests were performed using R
4.1.2 and further visualized using GraphPad Prism 6. The
continuous parametric variables were displayed as mean *
standard deviation and compared using Student’s t-Test. The
hazard ratios (ORs) and corresponding 95% confidence intervals
(CIs) of the selected predictors of survival were also presented. The
difference in survival between two groups was shown with Kaplan-
Meier curves, and the receiver operating characteristic curve (ROC)
for pathological grades and stages were drawn to obtain the area
under the curve (AUC) values. Statistically significant P value was
set at 0.05 with two sides.

Results

Transcriptomic landscape and urinary
signature of ccRCC patients with VTT

The transcriptomic analysis of 5 matched RCC, VIT and NRT
tissues found 1131, 1258, and 63 transcripts differentially expressed
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in RCC vs. NRT, VTIT vs. NRT, and VTIT vs. RCC groups,
respectively. Among them, 856 DEGs were obtained as thrombus
invasion-associated genes, of which there were 382 up-regulated
and 474 down-regulated genes (Figure 2A). In addition, mass
spectrometry analysis of urinary samples between 12 ccRCC
patients and 11 healthy subjects showed 133 DEPs, with 85 up-
regulated and 48 down-regulated proteins (Figure 2B).

The integrative analysis of transcriptomic landscape and
urinary signature reveals six urinary detectable proteins (VSIG4,
C3, GAL3ST1, TGFBI, AKR1C3, P4HB) displaying upregulated
abundance changes consistent with corresponding genes in
transcriptomic profiling (Figure 2C). Among them, expressions of
TGFBI, AKR1C3, and P4HB increased consecutively from NRT to
RCC and then to VTT, indicating that they had a consistent
promoting effect in the processes of tumorigenesis and thrombus
invasion (Figure 2D). The expressions of the targeted proteins in
urine samples of ccRCC patients were over 1.5-time higher than
those of healthy controls. However, only the expressions of C3,
GAL3ST1, TGFBI, and P4HB achieved statistically significant
difference between two groups (Figure 2E).

The upregulated DEPs indicate poor
survival in ccRCC patients

We obtained the transcriptional and follow-up data from
TCGA and evaluated the correlation between expressions of
targeted proteins and prognosis of ccRCC patients. First, the
significant higher mRNA levels of all the six proteins in tumor
compared to matched normal renal tissue were verified (Figure 3A;
Supplementary Figure 1A). Second, in the TCGA cohort of ccRCC
patients, increased mRNA levels of VSIG4, TGFBI, P4HB were
associated with higher pathological grades (all p<0.01) and later
pathological stages (all p<0.05) (Figures 3B-E). While mRNA levels
of C3, AKRIC3, GAL3ST1 were not completely correlated with
tumor pathological grades and stages (Supplementary Figures 1B-
E). Third, significant expression differences of VSIG4, TGFBI, and
P4HB could be seen between patients with different OS events (366
alive vs. 173 dead). They were significantly overexpressed in
patients with shorter survival and might be independent
prognostic factors for ccRCC patients (all p<0.05) (Figure 3F).
However, the expression differences of C3, AKR1IC3, and
GAL3ST1 were not seen in ccRCC patients with different
prognosis (Supplementary Figure 1F).

A urine-based prognostic classifier to
predict ccRCC prognosis

The qRT-PCR and immunohistochemistry (IHC) experiments
were respectively conducted to evaluate the mRNA and protein
expression levels of VSIG4, TGFBIL, and P4HB in ccRCC thrombus-
tumor-normal tissue triples. The qRT-PCR analysis showed that
mRNA levels of these three molecules were the highest in VIT, and
then their levels in RCC were significantly higher than those in NRT
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(Figure 4A). The IHC assay further confirmed that protein
expressions of VSIG4, TGFBI, and P4HB increased consecutively
from normal kidney to renal tumor and then to tumor
thrombus (Figure 4B).

The three proteins highly associated with survival (VSIG4,
TGEFBI, and P4HB) were used to establish a prognostic classifier
(Figure 4C). We calculated the risk score of survival in each case
from TCGA database according to expression levels of these three
proteins, and then divided patients into high- or low-risk groups
(Figure 4D). It demonstrated that ccRCC patients in high-risk
group had shorter OS time (HR=2.0, p<0.01) and disease-free
survival (DFS) time (HR=1.6, p<0.001) (Figure 4E).

The ELISA analysis was conducted in 54 urine samples from an
independent cohort of ccRCC patients. As for the tumor
pathological characteristics, the WHO/ISUP grade was I in two
cases, IT in 41 cases, III in nine cases, and IV in two cases. Urinary
detectable TGFBI and P4HB, but not VSIG4, were demonstrated to
be higher expressed in patients with III-IV grade tumor than those
with I-IT grade tumor (Figure 4F). The T stage was T1la in 36 cases,
T1b in nine cases, T2 in three cases, and T3-4 in six cases. Urinary
detectable VSIG4 and TGFBI, but not PAHB, were demonstrated to
be higher expressed in patients with pathological T2-4 stage than
those with pathological T1 stage (Figure 4G). Finally, it confirmed
the satisfactory predictive power of the prognostic classifier for
pathological grade (AUC=0.795, p<0.001) (Figure 4H) and stage
(AUC=0.894, p<0.001) (Figure 4I) in ccRCC patients.

Effects of DEPs on tumor
microenvironment and thrombus invasion

To determine the key roles of selected proteins in processes of
tumorigenesis and thrombus invasion, we analyze the single-cell
RNA-sequencing data obtained from research by Krishna et al (14).
Louvain clustering revealed 31 clusters across tissues spanning
lymphoid, myeloid, epithelial cells, and cancer cells based on the
single-cell RNA-sequencing of 167,283 cells from multiple tumor
regions, lymph node, normal kidney of ccRCC patients (Figure 5A).
VSIG4 was indicated to be a characteristic marker for tumor-
associated macrophage populations, while TGFBI and P4HB were
showed to be broadly expressed in ccRCC tumor and its immune
microenvironment. Furthermore, the average expression level of
P4HB in ccRCC tumor and renal epithelium was the highest among
31 single-cell clusters (Figure 5B). After dividing single-cell
transcriptomes into ccRCC tumor, adjacent normal kidney, and
lymph node subgroup according to the different sources of each cell.
As we can see, the macrophage-expressed VSIG4 in lymph node
was higher than that in ¢cRCC tumor and adjacent normal kidney
(Figure 5C), whereas the epithelium-expressed TGFBI and P4HB in
ccRCC tumor were higher than those in adjacent normal kidney
(Figures 5D, E). In addition, the GO and KEGG enrichment
analyses disclosed that those selected proteins were
predominantly related to the central carbon metabolism,
ferroptosis, ECM-receptor interaction, and platinum drug
resistance (Supplementary Figure 2).
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FIGURE 2

The integrative analysis data of transcriptomic landscape and urinary signature in ccRCC patients. (A) Heatmap of DEGs in transcriptome analysis of
normal, tumor and thrombus tissue showing the top up-regulated thrombus invasion-associated genes. (B) Heatmap of DEPs in proteome analysis
of urine samples from ccRCC patients and healthy controls showing the top up-regulated proteins. (C) Venn diagram to illustrate the six urinary
detectable proteins (VSIG4, C3, GAL3ST1, TGFBI, AKR1C3, P4HB) displaying abundance changes consistent with corresponding genes in
transcriptomic profiling. (D) Regulative expression trends of DEGs among normal, tumor and thrombus tissue indicating expressions of TGFBI,
AKR1C3, P4HB increase consecutively from NRT to RCC and then to VTT. (E) Different expressions of DEPs in urine between ccRCC patients and
healthy controls indicating expressions of VSIG4, C3, GAL3ST1, TGFBI, AKR1C3, P4HB in ccRCC patients are over 1.5-time higher than those in

healthy controls. *p < 0.05, ns, no significance.

Discussion

The omics-based analytical approaches are becoming available

to enhance the understanding of the tumor pathophysiology (15,

16). Transcriptomic technique focuses on coding and noncoding

sequences to identify differentially expressed genes. While
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proteomic approach makes it an ideal strategy to study the

molecular mechanism of RCC. However, given the complexity

and variability of the pathophysiological processes involved in

RCC, independent analysis from each omics level may miss

crosstalk between different molecular entities and biological

relevant information (17, 18). In this context, integrated analysis
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FIGURE 3

The selection of prognosis-related molecules based on TCGA database. (A) Different expressions of the prognosis-related genes between ccRCC
tumor and normal renal tissue indicating higher mRNA levels of VSIG4, TGFBI, P4HB in tumor compared to matched normal tissue. (B—E) Different
expressions of the prognosis-related genes between ccRCC patients with different pathological characteristics including WHO/ISUP grades and TNM
stages indicating increased mRNA levels of VSIG4, TGFBI, P4HB are associated with higher pathological grades and later pathological stages. (F) The
Kaplan-Meier curves of OS for ccRCC patients with different expressions of the prognosis-related genes showing VSIG4, TGFBI, P4HB are
overexpressed in patients with shorter survival. *p < 0.05, **p < 0.01, ***p < 0.001.

has emerged as a novel approach that facilitate interpretation of
multidimensional data and insights into extensive functional and
genomic intratumoral heterogeneity in RCC. The ccRCC patients
with/without VIT show distinct molecular characteristics in that
tumors from ccRCC patients with VI'T showed a higher mutational
burden and genomic instability (19). Furthermore, macrophages,
malignant cells, endothelial cells and myofibroblasts in VTT
exhibited enhanced remodeling of the extracellular matrix
pathways compared to matched primary cancer cells, providing
evidence of phenotypic heterogeneity between primary tumors and
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tumor thrombus (20). To our knowledge, there have been few
studies depicting RCC infiltration into the renal vein by tumor
thrombus-related multi-omics analysis (21).

As the number of prognostic biomarkers for ccRCC has been
increasing regularly over the last decade, Petitprez et al. (22)
performed a review of the relevant studies and found that the
predictive methods have evolved from single markers to multiple-
marker models. Interestingly, the main genes involved in ccRCC
carcinogenesis such as VHL, PBRM1, BAP1, and SETD2, were not
the most relevant for predicting survival. Our results suggest that in
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FIGURE 4

The development and validation of a urine-based prognostic classifier for survival. (A) gRT-PCR analysis of the selected prognosis-related molecules
in ccRCC thrombus-tumor-normal tissue triples showing mRNA levels of VSIG4, TGFBI, P4HB are the highest in VTT, followed by those in RCC and
NRT. (B) IHC analysis of the selected prognosis-related molecules in ccRCC thrombus-tumor-normal tissue triples showing protein expressions of
VSIG4, TGFBI, P4HB increase consecutively from NRT to RCC and then to VTT. (C) Forest plot of hazard ratios for the genes in prognostic classifier
showing expressions of VSIG4, TGFBI, P4HB are highly associated with survival. (D) Distributions of risk score and expression profile of the genes in
prognostic classifier in patients with different survival time and status. (E) The Kaplan-Meier curves of OS and DFS for ccRCC patients in high-risk and
low-risk groups by prognostic classifier in TCGA database showing patients in high-risk group had shorter OS and DFS time. (F, G) Different urinary
expressions of the proteins in prognostic classifier between ccRCC patients with different pathological grades and stages indicating urinary TGFBI
and P4HB are overexpressed in patients with higher grade tumors while urinary VSIG4 and TGFBI are overexpressed in patients with later
pathological stages. (H, 1) The ROCs for the prognostic classifier predicting pathological grade and stage of ccRCC patients by ELISA showing AUC
value of 0.795 for pathological grade and AUC value of 0.894 for pathological stage. *p < 0.05, **p < 0.01, ***p < 0.001, NS, no significance.

addition to body biofluid samples including plasma and urine,
thrombosis may also contain biomarker information related to the
prognosis of ccRCC patients, which can provide new ideas for the
discovery of biomarkers. In addition, the constructed prognostic
classifier in our study can be detected in urinary specimens. The
urine carries a variety of set of soluble proteins and peptides that are
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primarily derived from kidney, bladder and prostate (23). Chinello
etal. (24) conducted integrative proteomic analyses of the urine and
blood in c¢cRCC patients and found that urine carried specific
“biofluid functional signature”, which provided a landscape of
RCC dynamic system of processes in venous infiltration. One
major advantage of urinary biomarkers is that the detection of
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FIGURE 5

The expression analysis of the genes in prognostic classifier through single-cell RNA sequencing public database. (A) Visualized map of
transcriptional profiles from all ccRCC patients and samples showing 31 single-cell clusters including lymphoid, myeloid, epithelial cells, and cancer
cells. (B) Normalized expressions of the genes in prognostic classifier among 31 single-cell clusters indicating VSIG4 is uniquely expressed in tumor-
associated macrophages while TGFBI and P4HB are broadly expressed. (C—E) Comparison of gene expressions among ccRCC tumor, adjacent
normal kidney, and lymph node indicating macrophage-expressed VSIG4 is higher in lymph node than tumor while epithelium-expressed TGFBI and

P4HB are higher in tumor than normal kidney.

these markers is noninvasive, convenient, high-volume, and easy to
evaluate. Thus, this liquid biopsy method can be scheduled
frequently to provide a personalized snapshot of disease to
actively monitor disease progression. Such narrow control also
allows a rapid switch in the case for therapy by any changes (13).
In our study, satisfactory predictive power of the urine-based
prognostic classifier for pathological grade and stage of ccRCC
was finally verified through ELISA analysis of 54 urine samples
from an independent cohort.

Frontiers in Oncology

The review of 341 reported prognostic biomarkers in ccRCC
found that 20% of these biomarkers were involved in four biological
pathways: hypoxia, angiogenesis, cell cycle, and immune response
(22). In terms of the biological activities of the dysregulated
thrombus invasion-associated genes in our study, several in vitro
experiments showed that TGFBI promoted adhesion, migration,
and invasion in ccRCC cells (25, 26). Recent study further showed
that TGFBI were ubiquitinated and downregulated by VHL
restoration and upregulated in human c¢cRCC (27). M2-related
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factor frequencies were regarded as robust biomarkers for
predicting the renal clear cell carcinoma patient clinical
phenotype and immune microenvironment. Wang et al. explored
M2 macrophage-related factors of ccRCC and found that VSIG4, as
a co-expressed gene of M2 macrophages, was correlated with
infiltration of M2 macrophages and predicted outcomes of ccRCC
(28). As an autophagy-related gene, PAHB was proposed to be one
potential novel ccRCC diagnostic and prognostic biomarker at both
mRNA and protein levels (29, 30). Furthermore, P4HB could be
used to construct prognostic models with other autophagy-related
genes or clinicopathological parameters (31). However, the role of
P4HB in occurrence and invasion processes of ccRCC has not been
reported. Further studies on biological processes associated with
these molecules would expand applications of our prognostic
classifier including prediction of patient response to targeted
therapy or immunotherapy and discovery of novel
therapeutic targets.

We do acknowledge some limitations of the study. First, the
independent cohort applied to validate the performance of our
prognostic classifier lacked survival information of patients. Second,
the study was conducted in a single-center with limited sample size,
further multicenter studies for validation are needed. Last, the
biological functions of these proteins in tumorigenesis and
invasion processes of ccRCC need to be revealed in the future.

Conclusion

Based on integrative analyses of transcriptomic landscape and
urinary signature, the urine-based prognostic classifier consisting of
VSIG4, TGFBI, and P4HB has satisfied predictive power of survival
time, pathological grade and stage in ccRCC patients, which
facilitate ccRCC molecular subtyping and treatment.
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SUPPLEMENTARY FIGURE 1

The exclusion of prognosis-unrelated molecules based on TCGA database.
(A) Different expressions of the prognosis-unrelated genes between ccRCC
tumor and normal renal tissue indicating higher mRNA levels of C3, AKR1C3,
GAL3STL in tumor compared to matched normal tissue. (B-E) Different
expressions of the prognosis-unrelated genes between ccRCC patients
with different pathological characteristics including WHO/ISUP grades and
TNM stages indicating mRNA levels of C3, AKR1C3, GAL3ST1 are not
completely correlated with tumor pathological grades and stages. (F) The
Kaplan-Meier curves of OS for ccRCC patients with different expressions of
the prognosis-unrelated genes showing no difference exists in expressions of
C3, AKR1C3, GAL3ST1 between ccRCC patients with different survivals. *p <
0.05, **p < 0.01, ***p < 0.001.

SUPPLEMENTARY FIGURE 2

GO and KEGG analyses of the transcriptome. (A) The GO functional
annotation of the genes in prognostic classifier. (B) KEGG pathway
annotation of the genes in prognostic classifier
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Integrated bioinformatic analysis
and cell line experiments reveal
the significant role of the novel
immune checkpoint TIGIT in
kidney renal clear cell carcinoma

Qi-Dong Xia', Bo Li', Jian-Xuan Sun, Chen-Qian Liu,
Jin-Zhou Xu, Ye An, Meng-Yao Xu, Si-Han Zhang,

Xing-Yu Zhong, Na Zeng, Si-Yang Ma, Hao-Dong He,
Yu-Cong Zhang, Wei Guan*, Heng Li* and Shao-Gang Wang*

Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China

Background: T cell immunoglobulin and ITIM domain (TIGIT) is a widely
concerned immune checkpoint, which plays an essential role in
immunosuppression and immune evasion. However, the role of TIGIT in
normal organ tissues and renal clear cell carcinoma is unclear. We aim to
identify the critical role of TIGIT in renal clear cell carcinoma and find potential
targeted TIGIT drugs.

Materials and methods: Data retrieved from the GTEX database and TCGA
database was used to investigate the expression of TIGIT in normal whole-body
tissues and abnormal pan-cancer, then the transcriptome atlas of patients with
kidney renal clear cell carcinoma (KIRC) in the TCGA database were applied to
distinguish the TIGIT related features, including differential expression status,
prognostic value, immune infiltration, co-expression, and drug response of
sunitinib an anti-PD1/CTLA4 immunotherapy in KIRC. Furthermore, we
constructed a gene-drug network to discover a potential drug targeting TIGIT
and verified it by performing molecular docking. Finally, we conducted real-time
polymerase chain reaction (PCR) and assays for Transwell migration and CCK-8
to explore the potential roles of TIGIT.

Results: TIGIT showed a moderate expression in normal kidney tissues and was
confirmed as an essential prognostic factor that was significantly higher
expressed in KIRC tissues, and high expression of TIGIT is associated with poor
OS, PES, and DSS in KIRC. Also, the expression of TIGIT was closely associated
with the pathological characteristics of the tumor, high expression of TIGIT in
KIRC was observed with several critical functions or pathways such as apoptosis,
BCR signaling, TCR signaling et al. Moreover, the expression of TIGIT showed a
strong positive correlation with infiltration of CD8+ T cells and Tregs and a
positive correlation with the drug sensitivity of sunitinib simultaneously. Further
Tide ips score analysis and submap analysis reveal that patients with high TIGIT
expression significantly show a better response to anti-PD1 immunotherapy.
Following this, we discovered Selumetinib and PD0325901 as potential drugs
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targeting TIGIT and verified the interaction between these two drugs and TIGIT
protein by molecular docking. Finally, we verified the essential role of TIGIT in the
proliferation and migration functions by using KIRC cell lines.

Conclusions: TIGIT plays an essential role in tumorigenesis and progression in
KIRC. High expression of TIGIT results in poor survival of KIRC and high drug
sensitivity to sunitinib. Besides, Selumetinib and PD0325901 may be potential
drugs targeting TIGIT, and combined therapy of anti-TIGIT and other treatments
show great potential in treating KIRC.

KEYWORDS

KIRC, TIGIT, targeted therapy, immunotherapy, molecular docking

Introduction

T cell immunoglobulin and ITIM domain (TIGIT), first
introduced by Yu et al. (1), is a member of the poliovirus
receptor (PVR)/nectin family and a subset of the immunoglobulin
superfamily. The protein encoded by TIGIT contained an
extracellular immunoglobulin variable-set (IgV) domain, a type I
transmembrane domain, an intracellular immune receptor tyrosine
inhibitory motif (ITIM), and an Immunoglobulin tyrosine tail
(ITT) motif (1, 2). Interestingly, once introduced, TIGIT was
discovered to inhibit T cell activity (1, 3, 4). Moreover, the
expression level of TIGIT on the surface of tumor-infiltrating T
cells was discovered to increase fourfold than that on peripheral
blood mononuclear cells (PBMC), and further studies reveal that
only the expression of TIGIT in CD8" T cell exhaustion increased
significantly, and changed synchronously with that of PD-1 (5),
indicating that TIGIT and PD1/PD-Ll pathway had a synergistic
inhibitory effect on tumor-infiltrating T cells. Furthermore,
compared with CD8" T cells that less expressed TIGIT, CD8" T
cells expressing TIGIT showed a significantly low expression of
TNF o, IFN v, and IL-2. However, the expression of Annexin V and
CD95, which represent apoptosis markers, was significantly
increased simultaneously (6). Also, when knocked down the
expression of TIGIT in CD8" T cells by siRNA, the expression of
Annexin V and CD95 decreased significantly, and the level of TNF
o, IFN 7, and IL-2 increased significantly (6). Thus, the expression
of TIGIT was considered closely related to the apoptosis of CD8* T
cells, and once blocking TIGIT signaling pathway, the apoptosis of
CD8"* T cells can be reversed to some extent. More importantly, it

Abbreviations: TIGIT, T cell immunoglobulin and ITIM domain; PVR, poliovirus
receptor; IgV, immunoglobulin variable-set; ITIM, immune receptor tyrosine
inhibitory motif; ITT, Immunoglobulin tyrosine tail; PBMC, peripheral blood
mononuclear cells; ICIS, immune checkpoint inhibitors; KIRC, Kidney renal clear
cell carcinoma; TKIs, tyrosine kinase inhibitors; VEGF, vascular endothelial growth
factor; EAU, European Association of Urology; cc-mRCC, clear cell metastatic renal
cell carcinoma; AML, acute myelogenous leukemia; RCC, renal cell carcinoma;

AFP, a-fetoprotein; HCC, human hepatocellular carcinoma.
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not only plays a significant inhibitory role in CD8" T cells, but
TIGIT was also found combating anti-tumor immunity by
influencing nature kill cells (7, 8), antigen-presenting dendritic
cells (1, 9), and T regulatory cells (Tregs) (10, 11). Thus, TIGIT
has been considered one of the most critical immune checkpoints
that more and more researchers and scientists devoted to
investigating and developing a novel drug for TIGIT, such as
TIGIT monoclonal antibody tiragolumab (12). However, our
standing of the TIGIT expression in normal organs and tissues is
still unclear because we only focused on the immune cell’s
expression in TIGIT.

Kidney cancer is the 6th most common cancer in both sexes and
the most common urogenital tumor, accounting for approximately
2-3% of all malignancies and 90% of all diagnosed renal
parenchymal malignanciesl (13, 14), claiming 14,830 lives with
73,750 new confirmed cases in the USA in 2020 (13). Kidney renal
clear cell carcinoma (KIRC) is the predominant pathological
subtype of all kidney cancer, accounting for approximately 85%
of renal cancer (15, 16), also considered to be one of the most
invasive diseases, which is associated with a high mortality rate in
the form of metastasis (17). Although surgical intervention is still
the main treatment considering that it is not sensitive to radiation,
hormone, and cytotoxic therapy. Besides, tyrosine kinase inhibitors
(TKIs) such as sunitinib targeting vascular endothelial growth
factor (VEGF) pathway also play an essential role in the current
clinical treatment as the first-line targeted therapy (18, 19).
Moreover, immunotherapy consisting of anti-PD1/PDL1 or anti-
CTLA4 therapy have also shown great performance in the therapy
of KIRC (20), especially in combination with VEGF-directed
therapy (21). Interestingly, immunotherapy combined therapy has
replaced TKT’s first-line targeted therapy as a first-line treatment in
the latest 2020 European Association of Urology (EAU) guidelines
for clear cell metastatic renal cell carcinoma (cc-mRCC) (22).

KIRC has long been categorized as an immunotherapy-
responsive cancer type that belongs to ‘hot tumor’ (18). However,
the efficacy of Nivolumab monotherapy in advanced renal cell
carcinoma was reported as 16% to 29% (23, 24), and the effective
rate of Atezolizumab monotherapy was 15% (25-27). It seems only
a small part of patients can benefit from immunotherapy,
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suggesting that other mechanisms must limit anti-tumor immunity.
Whether the TIGIT signaling pathway is the significant
immunosuppression and immune evasion mechanism in KIRC is
unclear. Thus, we wonder what role TIGIT plays in KIRC and
whether it could be a potential therapeutic target in the future. In
this study, we first systematically explored the expression of TIGIT
in various normal organs of the body, especially in the kidney, and
then investigated the differential expression of TIGIT between
normal tissues and KIRC tissues, explored the prognostic value
and clinical correlation of TIGIT in KIRC, further focused on the
TIGIT related functions and pathways, investigate the correlation
between TIGIT and tumor-infiltrating immune cells, as well as drug
sensitivity, and considered TIGIT as a novel therapeutic target and
discovered two potential drugs targeting TIGIT by applying
molecular docking technology, which referred to the process that
a small molecular is spatially docked into a macromolecular and can
evaluate the complementary energy at the binding sites, used for
structure-based drug design (28) and finally performed a series of in
vitro experiments to validate our results.

Materials and methods
Data acquisition and sources

The transcriptional expression data of normal tissues from the
whole-body’s organs and systems, including both male and female,
were retrieved from the GTEX database (29). The expression status
of TIGIT between the tumor and normal tissues of whole-body was
acquired from the GEPIA database (30). The transcriptional data
and corresponding survival information of pan-cancer were
downloaded from the UCSC Xena (http://xena.ucsc.edu/). The
transcriptome profiles of kidney clear cell carcinoma patients and
their corresponding clinical characteristics were downloaded from
the TCGA database (https://portal.gdc.cancer.gov/) (31). The
different expression status of TIGIT in pan-cancer and the
corresponding immune infiltration of each sample emphasized by
multiple acknowledged methods was acquired from TIMER 2.0
database (http://timer.cistrome.org/) (32).

TIGIT in normal tissues between organs
and genders or between tumor and
normal tissues

The expression of TIGIT in normal tissues from the whole-body
was extracted and sorted according to the expression value. Then we
visualized it as a boxplot to show the ranking of TIGIT’s expression.
Besides, we compared the expression of TIGIT in the same organ
tissues but between different genders by performing Wilcoxon
rank-sum test. Following this, we visualized the expression of
TIGIT in whole-body including male and female by applying R
program package ‘gganatogram’. We would also like to investigate
the expression status of TIGIT between tumor and normal tissues in
the whole-body, especially in the kidney. Thus, we searched TIGIT
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in pan-cancer from the GEPIA database and acquired the
differential expression plot.

TIGIT in KIRC: Differential expression,
prognostic value, and clinical correlation

The fragments per kilobase of per million formats (FPKM) of
kidney clear cell carcinoma (KIRC) transcriptome profiles were
sorted and normalized. The expression of TIGIT in the KIRC tumor
and normal adjacent tumor tissues was extracted. Wilcoxon rank-
sum test was performed to compare the differential expression of
TIGIT between tumor and normal tissues in KIRC (including both
paired and non-paired samples). Following this, samples were
divided into high or low TIGIT expression groups by the
expression of TIGIT that was higher/lower than the medium
value was considered high/low TIGIT expression groups. Then
Kaplan-Meier methods survival curves were plotted that including
overall survival (OS), progression-free survival (PES), disease-
specific survival (DSS), and disease-free survival (DFS). The log-
rank test was also carried out to examine these survival interval
differences between high and low TIGIT expression patients.
Further univariate and multivariate cox regression was applied to
check whether TIGIT could serve as an independent prognostic
factor and the differential expression status of TIGIT between
different clinicopathological subgroups containing age (<=65 or
>65). gender (male or female), grade (G1, G2, G3, G4), grade (G1-2
or G3-4), stage (stage I, stage II, stage III, stage IV), stage (stage I-II
or stage III-IV), pathological T stage (T1, T2, T3, T4), pathological
N stage (NO or N1), and pathological M stage (M0 or M1) were
compared by Wilcoxon rank-sum test.

TIGIT in KIRC: Differential enhanced
pathways, differential immune infiltration,
and differential drug response

Same as above, samples were grouped as high or low TIGIT
expression, and the transcriptome profiles were merged, proceeded,
and exported as ‘get’ and ‘cls’ format files prepared for the following
gene set enrichment analysis (GSEA). The GSEA version 4.0.3 was
applied to perform the enrichment analysis, and here we focused on
the HALLMARK gene sets and KEGG pathway gene sets.
Discovered the enhanced pathways were associated with
immunity, and as TIGIT was an immune checkpoint, we were
interested in the association between TIGIT and immune
infiltration in KIRC. However, there were several acknowledged
methods to estimate the immune infiltration of samples according
to their transcriptional expression atlas. Thus, here we performed
seven different methods to precisely investigate the immune
infiltration status of KIRC patients, including XCELL, TIMER,
QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and
CIBERSORT. We then applied the SPEARMAN correlation test
to explore the significant TIGIT-related immune cells with p < 0.05,
we explored the differential immune infiltration between the high-/
low-TIGIT group by the Wilcox test. Besides, we were also
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interested in the drug response of the first-line targeted therapy for
renal clear cell carcinoma, applying R program package
‘pPRRophetic’ to predict each sample’s drug sensitivity to the
targeted therapy of sunitinib. Then compared the different drug
sensitivity between high-TIGIT and low-TIGIT patients by using
Wilcoxon signed-rank test and explored the correlation between
TIGIT and the drug sensitivity by applying the SPEARMAN
correlation test to discover the association between expression of
TIGIT and drug sensitivity of the targeted therapy. Furthermore,
Tide ips scores analysis and submap algorithm were applied to
predict the treatment response to anti-PDI1 or anti-CTLA4
immunotherapy between KIRC patients with high-/low-
TIGIT expression.

TIGIT in KIRC: Novel potential targeted
drug and molecular docking

Interested in the TIGIT and targeted therapy, we searched
TIGIT in the IGMDR database (33), acquired the gene-drug
network, and discovered two potential targeted therapy drugs for
TIGIT. Subsequently, molecular docking was applied to verify the
interaction between these two drugs and TIGIT. The 2D structure
of these two drugs was acquired from the PubChem database (34),
and ChemBio 3D software was used to calculate the 3D structure
with minimizing energy. The receptor protein encoded by TIGIT
was searched in the Uniprot database (35), and then the 3D
structure of the protein was downloaded from the RCSB PDB
database (36). PyMOL 2.4.0 software was applied to conduct the
dehydration of the receptor protein, and Autodock software was
used to carry out further hydrogenation and charge calculation of
proteins. Parameters of the receptor protein docking site were set to
include the active pocket sites where small-molecule drugs bind.
Finally, Autodock Vina was used to conduct docking the receptor
protein encoded by TIGIT with the small molecule drugs.

Cell culture

The human c¢cRCC cell lines (786-0O), the human embryonic
kidney 293T (HEK-293T) cell and the human renal tubular
epithelial cell lines (HK,) were purchased from the Shanghai Cell
Bank Type Culture Collection Committee (Shanghai, China). The
786-0 and HK, cells were cultured in RPMI-1640 (Gibco, Thermo
Fisher Scientific, Waltham, MA, United States) supplemented with
10% FBS and 100 U/mL Penicillin/Streptomycin in a 5% CO2
incubator. While the HEK-293T cells were cultured in high-glucose
DMEM media supplemented with 10% FBS. Cells were collected at
90% confluence, and the medium was changed every 48-72 h.

Cell transfection
Relative target fragments were inserted into lentiviral vectors

PCDH-CMV-MCS-EF1-copGFP. Together with pGC-LV,
pHelper1.0, pHelper2.0, pHelper3.0, and recombinant lentiviral
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vectors, plasmids were co-transfected into HEK-293T cells using
Lipofectamine 3,000 (Invitrogen, United States).

RNA extraction and quantitative real-time
polymerase chain reaction

Total RNAs of cells or tissues were extracted using the TRIzol
reagent (Vazyme, R401-01), and then cDNA was synthesized by
reverse transcription using the HiScript III RT SuperMix for gPCR
(Vazyme, R323-01). RT-PCR was conducted using Taq Pro
Universal SYBR qPCR Master Mix (Vazyme, Q712-02). GAPDH
was used as an internal control. Supplementary Table S1 displayed
the sequences of all primers.

CCK-8 assay

1,500 of 786-O cells were seeded into 96-well plates per well for
the CCK-8 assay. Then 10 uL CCK-8 (MCE, HY-K0301) was added
to each well for 1-h incubation, and the absorbance of each well was
measured at 450 nm every day for 5 times.

Transwell migration assay

For migration assays, about 5 x 10* of 786-O cells were
suspended and seeded in the upper chambers of 24-well transwell
plates (Corning, United States) with 250l FBS-free medium. Then,
500ul RPMI-1640 with 10% FBS was added to the lower chamber.
After 12h incubation, the chambers were fixed and stained with
crystal violet for 30 min. Finally, imaging was performed under an
inverted microscope

Results
Basic characteristics

The study flow was displayed in the Figure 1. A total of 611
transcriptome profile (72 normal tissue and 539 tumor tissue) from
530 TCGA_KIRC patients were downloaded and sorted, for those
samples sequenced multiple time, we took the average of them as
their transcriptional data. and the characteristic of the samples were
shown in Table 1, XZ test or Fisher’s exact test were performed to
explore the heterogeneity between high or low expression of TIGIT.

TIGIT in normal tissues and tumor tissues

We first systematically analyze the relationship between TIGIT
and a variety of cancers, especially kidney cancer, and discovered
that the expression of TIGIT was quite high in KIRC, but not KICH
and KIRP, and was associated with poor prognosis (Figures 2A-C).
We also found that there is a positive correlation between the
expression level of TIGIT and objective response rate (ORR) in
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FIGURE 1
The study flow.

TABLE 1 Detailed clinicopathological characteristics of the KIRC patients.

Overall High TIGIT Low TIGIT P-value

Number 530 265 265
Age (mean (SD)) 60.56 (12.14) 60.42 (11.81) 60.71 (12.47) 0.789
Gender = FEMALE/MALE (%) 186/344 (35.1/64.9) 81/184 (30.6/69.4) 105/160 (39.6/60.4) 0.036
Grade (%) <0.001

Gl 14 (2.6) 4(1.5) 10 (3.8)

G2 227 (42.8) 91 (34.3) 136 (51.3)

G3 206 (38.9) 117 (44.2) 89 (33.6)

G4 75 (14.2) 52 (19.6) 23 (8.7)

GX 5(0.9) 0 (0.0) 5(1.9)

unknow 3 (0.6) 1(0.4) 2 (0.8)
Stage (%) <0.001

Stage T 265 (50.0) 106 (40.0) 159 (60.0)

Stage II 57 (10.8) 34 (12.8) 23 (8.7)

Stage III 123 (23.2) 73 (27.5) 50 (18.9)

Stage IV 82 (15.5) 50 (18.9) 32 (12.1)

unknow 3(0.6) 2(0.8) 1(0.4)
T (%) <0.001

T1 21 (4.0) 6(23) 15 (5.7)
(Continued)
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TABLE 1 Continued

10.3389/fonc.2023.1096341

Overall High TIGIT Low TIGIT P-value

Tla 140 (26.4) 45 (17.0) 95 (35.8)
Tib 110 (20.8) 60 (22.6) 50 (18.9)
T2 55 (10.4) 29 (10.9) 26 (9.8)
T2a 10 (1.9) 7 (2.6) 3(1.1)

4(08) 4(15) 0 (0.0)
T3 5(0.9) 4(15) 1(04)
T3a 120 (22.6) 68 (25.7) 52 (19.6)
T3b 52 (9.8) 35 (13.2) 17 (6.4)
T3c 2(0.4) 0 (0.0) 2(0.8)
T4 11 (2.1) 7 (2.6) 4(15)

M (%) 0.002
MO 420 (79.2) 206 (77.7) 214 (80.8)
Ml 78 (14.7) 50 (18.9) 28 (10.6)
MX 30 (5.7) 8 (3.0) 22 (8.3)
unknow 2(0.4) 1(04) 1(04)
N (%) 0.107

NO 239 (45.1) 121 (45.7) 118 (44.5)
N1 16 (3.0) 12 (4.5) 4(1.5)
NX 275 (51.9) 132 (49.8) 143 (54.0)

various cancers (Figure 2D). And the first three organs with the
highest expression of TIGIT were the spleen, blood, and small
intestine. The lowest three were pancreas, skeletal muscle, and bone
marrow, and TIGIT showed a moderate expression in normal
kidney (Figure 3A). Interestingly, the expression of TIGIT in
females’ brains, lungs, breasts, and small intestine was
significantly higher than that in males (Figure 3B). TIGIT was the
highest expression in the spleen in males and females (Figures 3C,
D). Here we focused on the kidney and discovered a higher
expression of TIGIT in kidney tumor with a mean expression of
0.24 in normal kidney and that of 1.47 in kidney tumor (Figure 3E).

TIGIT in KIRC: Differential expression,
prognostic value, and clinical correlations

TIGIT showed a significantly higher expression in KIRC tissues
than normal tissues in both non-paired and paired samples
(Figures 4A, B). Following this, we wondered whether high
expression of TIGIT resulted in poor clinical outcomes and
discovered the high expression of TIGIT was associated with poor
overall survival (Figure 4C), poor progression survival (Figure 3D),
and poor disease-specific survival (Figure 4E). There was no difference
in disease-free survival (Figure 4F). This showed that TIGIT played an
essential role in the tumorigenesis, progression, and clinical outcomes
of KIRC. Besides, we performed univariate and multivariate cox
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regression and found TIGIT as a significant risk factor with a
hazard ratio (HR) of 1.344 (1.098 to 1.646) for KIRC patients in
univariate Cox regression (Figure 4G). Subsequently, after correction
from other clinical features, the HR of TIGIT was 1.009 (0.822 to
1.238), showing no significant difference (Figure 4H). This suggested
that the expression of TIGIT was significant associated with clinical
characteristics, so we conducted further exploration about the clinical
correlation of TIGIT. There were no significant differences between
age (Figure 5A) and gender (Figure 5B). However, TIGIT showed
great association with pathological characteristics as expected. TIGIT
showed a gradually increasing trend from G1 to G4 (Figure 5C), and
significantly higher expressed in G3-4 than G1-2 (Figure 5D). Also
showed the same trend from Stage I to Stage IV (Figure 5E), and
significantly higher expressed in Stage III-IV than Stage I-II
(Figure 5F). Besides, TIGIT was significantly lowest expressed in T1
than T2 to T4 (Figure 5G), and significantly higher expressed in N1
than NO (Figure 5H), in M1 than MO (Figure 5I), which showed the
significant role of TIGIT in the tumor metastasis.

TIGIT in KIRC: Differential enhanced
pathways, differential immune infiltration,
and differential drug response

Having identified TIGIT as an essential prognostic factor and
explored its association between expression and clinical
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FIGURE 2

Analysis of TIGIT in pan-cancer. (A) Univariate Cox regression showed the OS of TIGIT in pan-cancer. (B) Univariate Cox regression showed the
disease specific survival of TIGIT in pan-cancer. (C) Differential expression status of TIGIT in pan-cancer. (D) The potiential association between the
expression level of TIGIT and objective response rate in various cancers. *: p<0.05, **: p<0.01, ***: p<0.001

characteristics, we were interested in the functions and pathways
influenced by TIGIT. Subsequent KEGG enrichment analysis
showed high expression of TIGIT was associated with
significantly enhanced pathways such as B cell receptor signaling
pathway, cell adhesion molecular cams, cytokine-cytokine receptor
interaction, JAK-STAT signaling pathway, nature kill cell-mediated
cytotoxicity, T cell receptor signaling pathway, and Toll-like
receptor signaling pathway, also associated with significantly
attenuated functions such as glutathione metabolism and
glycerolipid metabolism (Figure 6A). HALLMARK gene set
enrichment analysis suggested high expression of TIGIT was
associated with significantly enhanced functions and pathways
such as apoptosis, IL2-STATS5 signaling pathways, IL6-JAK-
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STATS3 signaling, inflammatory response, interferon-o. response,
interferon-A response, P53 pathway, PI3K-AKT-mTOR signaling,
and TNF-o signaling via NF-xB, and significantly attenuated
functions such as estrogen response and TGF beta signaling
(Figure 6B). It was interesting that TIGIT was associated with so
many essential pathways and functions in KIRC.

As TIGIT is one of the most important immune checkpoints
associated with so many immunity-related functions and pathways,
we further investigated the association between its expression and
patients’ immune infiltration. The SPEARMAN correlation test
suggested the expression of TIGIT was significant negative
correlated with NK resting cell, endothelial cell, neutrophil, M2
macrophages, and significant positive correlated with M1
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macrophages, CD8" T cells, T regulatory cells (Tregs), Thl cells,
Th2 cells et al. (Figure 7A). All these seven emphasized methods
suggested TIGIT a strong positive correlation with CD8" T cells,
which should have resulted in a great clinical outcome. So, we
focused on the Tregs, and discovered TIGIT was significantly
positively correlated with the infiltration of Tregs (Figure 7A),
and significant-high infiltration with Tregs was observed in high
TIGIT expression samples emphasized by CIBESORT (Figure 7B),
CIBESORT-ABS (Figure 7C), and QUANTISEQ (Figure 7D).
Observed TIGIT as a significant correlation with immune
infiltration in KIRC, we were interested in the correlation
between TIGIT and other common immune checkpoints such as
PDI1(PDCD1), PD-L1 (CD274), and CTLA4. As expected, we found
TIGIT significant positive correlated with PDCD1 (R =0.87, p<
0.001), CD274 (R=0.38, p< 0.001), CTLA4 (R=0.81, p< 0.001) as
Figures 8A-C. This may explain the poor response for the existing
immunotherapy in KIRC that although we inhibit some immune
checkpoints like PD1, PD-L1, or CTLA4, their associated
expression of TIGIT still plays a role in immunosuppression and
immune evasion. Besides, we further explored the correlation
between the expression of TIGIT and the drug response of
sunitinib, the most used targeted therapy drug in KIRC.
Discovered high expression of TIGIT was associated with a
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significantly higher response for sunitinib (Figure 8D), and TIGIT
showed a significant positive correlation with the drug sensitivity of
sunitinib (R=-0.31, p< 0.001) as Figure 8E. Further Tide ips scores
analysis showed that KIRC patients with high TIGIT expression
may response better to anti-PD1 immunotherapy (Figure 9A), anti-
CTLA4 immunotherapy (Figure 9B), and combined
immunotherapy (Figure 9C). Also, the submap analysis reaches a
consistent result that KIRC patients with high TIGIT expression
showed a significant better response to anti-PD1 immunotherapy
(p=0.001, Bonferroni corrected p=0.008, Figure 9D).

TIGIT in KIRC: Novel potential targeted
drug and molecular docking

After revealing the important role of TIGIT in immunotherapy
and targeted therapy of KIRC, we believe that TIGIT is an
important therapeutic target for KIRC and intend to discover a
new drug or a new use targeting TIGIT in conventional drugs. Thus,
we constructed the gene-drug network (Figure 10A) and found two
potential therapeutic drugs targeting TIGIT, and they were
Selumetinib and PD0325901. To verify our discovery, we
performed molecular docking technology to examine the
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FIGURE 4

Differential expression and prognostic value of TIGIT in KIRC. (A) TIGIT shows a significantly higher expression in non-paired KIRC tissues compared
to the normal tissues. (B) TIGIT shows a significantly higher expression in paired KIRC tissues compared to the normal tissues. (C) High expression of
TIGIT was associated with significantly poor overall survival in KIRC. (D) High expression of TIGIT was associated with significantly poor progression-
free survival in KIRC. (E) High expression of TIGIT was associated with significantly poor disease-specific survival in KIRC. (F) There were no
significant differences between patients with high or low expression of TIGIT in disease-free survival in KIRC. (G) Univariate Cox regression showed
TIGIT a significant prognostic factor in KIRC. (H) Multivariate Cox regression of TIGIT in KIRC.

interaction between these two drugs and TIGIT protein. The 3D
structure of the TIGIT protein was shown in Figure 10B, the 2D
structure and 3D structure of Selumetinib were shown in
Figures 10C, D, that of PD0325901 was shown in Figures 10F, G.
Both molecular dockings for Selumetinib and PD0325901 showed
that these two drugs could enter into the active pocket of TIGIT
(Figures 10E, H), which suggested they could serve as potential
drugs targeting TIGIT.

TIGIT enhanced the progression of 786-0O
clear cell renal carcinoma cells

Finally, we validated the potential physiological role of TIGIT in
in vitro experiments. We explored the expression of TIGIT in renal
carcinoma cells (786-0) and normal cells (HK,) and found that the
level of TIGIT in tumor cells was significantly increased compared
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to normal cells (Figure 11A). To investigate the biological functions
of TIGIT in renal carcinoma, TIGIT was overexpressed in 786-O
cells by lentiviral infection, and its expression was validated by qRT-
PCR (Figure 11B). CCK8 assay demonstrated that TIGIT promoted
cellular viability of 786-O cells by contrast with control groups
(Figure 11C). Furthermore, we explored whether TIGIT was
involved in cell metastasis and discovered that the overexpression
of TIGIT remarkably increased migration ability in 786-O cells
(Figure 11D). Taken together, these findings indicated that TIGIT

enhanced carcinogenesis of renal carcinoma cells in vitro.

Discussion

The present study conducted a comprehensive analysis of
TIGIT in KIRC, confirmed TIGIT as an essential prognostic
factor significantly higher expressed in KIRC tissues, and high
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expression of TIGIT is associated with a poor OS, PES, and DSS in
KIRC. Also, the expression of TIGIT was closely associated with the
pathological characteristics of the tumor, high expression of TIGIT
in KIRC was observed with several critical functions or pathways
such as apoptosis, BCR signaling, TCR signaling et al. Moreover, the
expression of TIGIT shows a strong positive correlation with
infiltration of CD8" T cells and Tregs, and shows a positive
correlation with the drug sensitivity to sunitinib and anti-PD1
immunotherapy at the same time. Furthermore, we constructed a
gene-drug network, discovered Selumetinib and PD0325901 as
potential drugs targeting TIGIT, and verified the interaction
between these drugs and TIGIT protein by molecular docking.
Finally, in-vitro experiments verified the essential role of TIGIT
in KIRC.

Hong et al. reported a significant positive observation of TIGIT
expression in renal cell carcinoma (RCC) tissues than adjacent
normal tissues by immunohistochemistry in their cohorts (37),
which was consistent with our results TIGIT showed a significantly
higher expression in KIRC tissues than normal tissues. Also, Yin
et al. reported the prognostic value of TIGIT in KIRC and
constructed a survival-predicting model based on this (38). All
these studies confirmed the significant role TIGIT played in
tumorigenesis, progression, and clinical outcomes of KIRC.
Interestingly, not only KIRC, Duan et al. reported TIGIT as an
effective tumor biomarker in human hepatocellular carcinoma
(HCC) that the expression levels of TIGIT were upregulated in
the cancerous tissues with the degree of cancerous differentiation
from high to low from patients with HCC, and TIGIT showed
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positive correlation with the level of a-fetoprotein (AFP), which
reveals the potential of TIGIT as a cancer biomarker in HCC (39).
Thus, Whether TIGIT is differentially expressed in the pan-cancer
spectrum and whether TIGIT can be used as a tumor marker of
pan-cancer is still questionable and needs more exploration in
the future.

Another interesting result is the TIGIT-related functions and
pathways. Our work shows that high TIGIT was associated with an
enhanced function of apoptosis. This is consistent with the previous
study. Kong et al. focused on TIGIT expression in T cells in patients
with acute myelogenous leukemia (AML) (6). They confirmed the
correct correlations between apoptosis and exhaustion of CD8* T
cells and the TIGIT, and the enhanced apoptosis or exhaustion
could be reversed after the knockdown of TIGIT (6). Also, Song
et al. demonstrated the significant role of TIGIT in aging CD8" cells
in aged mice (40), found that TIGIT was associated with high levels
of expression of other inhibitory receptors, including PD-1 and
showed features of exhaustion such as downregulation of the key
costimulatory receptor CD28, the representative internal
transcriptional regulation, the low production of cytokines, and
high susceptibility to apoptosis. Importantly, their functional
defects associated with aging could be reversed by TIGIT
knockdown (40). Thus, TIGIT has great potential as a therapeutic
target that several significant functions, such as apoptosis, could be
reversed after targeting TIGIT.

Studies of TIGIT in NK cells can better show the important role
of TIGIT in inhibiting anti-tumor immunity. Previous studies have
shown that PVR molecules expressed on the surface of tumor cells
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can bind to TIGIT on the surface of NK cells, which lead to
inhibitory signals in NK cells, and then reduce the function of
NK cells to kill tumor cells (8, 41, 42). These results indicate that
TIGIT is also an inhibitory molecule on the surface of NK cells.
Moreover, exhaustion NK cells highly express TIGIT rather than
PDI, and whether it is to knock out the TIGIT gene or to inhibit
TIGIT with anti TIGIT antibody can increase the expression of
CD107a, tumor necrosis factor (TNF), and other tumor suppressor
factors in NK cells, enhance the tumor-Kkilling ability of NK cells and
prolong the survival time of tumor-bearing mice (8). Also, it is
surprising that the specific knockout of the TIGIT gene in NK cells
can reverse the depletion of NK cells and significantly reduce the
expression of PD1 in tumor-infiltrating cytotoxic T cells (8).
Manieri et al. systematically summarized the important
mechanisms of TIGIT in inhibiting anti-tumor immunity (43),
which mainly includes the following three mechanisms: first, the
PVR of tumor cells or dendritic cells binds to the TIGIT on the
surface of tumor-infiltrating CD8'T cells or NK cells, directly
inhibiting the activity of these two immune cells. Second, TIGIT
can also be used as a ligand. TIGIT ligands on the surface of tumor-
infiltrating CD8"T cells or Tregs can bind to PVR receptors of
tumor cells or dendritic cells, promote the production of anti-
inflammatory cytokines such as IL-10 and inhibit the immune
response. Third, the TIGIT on the surface of tumor-infiltrating
CD8'T cells competitively binds to the PVR on the surface of tumor
cells or dendritic cells, resulting in the failure of T cell-activated
receptor CD226 to bind to PVR, thus inhibiting the activity of T
cells (43).

These results indicate that targeting TIGIT can play a role in
multiple ways and relieve the immunosuppression. This also
inspires the combination therapy of PD1/PD-L1 and TIGIT
monoclonal antibody. Johnston et al. reported that the combined
use of TIGIT antibody and PD-L1 antibody at the same time is far
better than blocking TIGIT or PD1/PD-L1 pathway alone, which
can more significantly reduce the tumor volume and the survival
time of tumor-bearing mice (5). Besides, CITYSCAPE (44), a
randomized, double-blind, placebo-controlled phase II clinical
trial of anti-TIGIT antibody tiragolumab combined with
atezolizumab in the first-line treatment of patients with PD-L1
positive non-small cell lung cancer, demonstrated that the objective
response rate (ORR) of combination therapy was 31.3%. In
comparison, that of PD-L1 antibody monotherapy combined with
placebo was 16.2%. Besides, in patients with high expression of PD-
L1, ORR of combination therapy was 55.2%, while ORR of PD-L1
antibody monotherapy combined with placebo group was 17.2%
(44). This is quite encouraging. As a result, Roche TIGIT
monoclonal antibody tiragolumab has been recognized by FDA as
a breakthrough therapy designation and combined with PD-L1
monoclonal antibody atezolizumab for the first-line treatment of
metastatic non-small cell lung cancer with high expression of PD-
L1 and non-EGFR nor ALK mutation patients.

TIGIT antibody showed huge potential in futural
immunotherapy, and our works also identified TIGIT as an
essential prognosis related and immune suppressive factor in
KIRC. We discovered a significant correlation between PD1, PD-
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L1, and CTLA4 expression and TIGIT expression, which might give
the explanation on the low response for the common immune
monotherapy and might contribute to the combined therapy of
PD1/PD-L1 or CTLA4 antibody therapy with TIGIT antibody in
KIRC in the future. Besides, we found the expression of TIGIT was
positive associated with the drug sensitivity of sunitinib, which
might contribute to the combined therapy of the TIGIT antibody
with sunitinib in KIRC in the future. More importantly, we
discovered two potential drugs targeting TIGIT: Selumetinib and
PD0325901. Interestingly, Selumetinib, a selective MEK1 inhibitor,
was reported to enhance the antitumor activity of everolimusa
against renal cell carcinoma by decreasing p-RPS6 and p-4E-BP1
dramatically, which caused G1 cell cycle arrest and preventing
reactivation of AKT and ERK (45). Besides, Zeng et al. reported
everolimus-induced autophagy involves activation of the ERK,
which could impair the cytotoxicity of everolimus in RCC cells
and inhibit the activation of ERK pathway-mediated autophagy like
combined use of Selumetinib, which contributed to overcoming
chemoresistance to everolimus (46). As for PD0325901, Diaz-
Montero has claimed the combined use of PD0325901
contributes to abrogating the sunitinib resistance and leading to
improved anti-tumour efficacy renal cell carcinoma (47). Thus,
based on these studies and our discoveries, combined therapy of
TKIs with Selumetinib or PD0325901 also shows great potential in
treating KIRC in the future. More in-depth cohort studies were
urgently needed in the future.

There are several limitations in this study. Firstly, our analysis
were based on the bulk RNA-seq. However, the results would be
more precise if the data were acquired by single-cell sequencing,
which could contribute to our understanding of TIGIT in different
cell types. Secondly, we suggested several novel therapeutic
strategies for KIRC in this research, such as the application of
Selumetinib or PD0325901 monotherapy as targeting TIGIT,
combined therapy of PD1/PD-L1 antibody with TIGIT antibody,
combined therapy of sunitinib with Selumetinib or PD0325901,
et al. They were all hypotheses, and we need carrying out further
studies including laboratory experiments and real-world cohort
studies in the future.

Conclusion

TIGIT plays an essential role in tumorigenesis, progression in
KIRC. High expression of TIGIT results in poor survival of KIRC
and higher drug sensitivity to sunitinib and anti-PD1
immunotherapy. Besides, Selumetinib and PD0325901 may be
potential drugs targeting TIGIT, and combined therapy of anti-
TIGIT and other treatments show great potential in treating KIRC.
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Background: Ferroptosis is a newly defined cell death process triggered by
increased iron load and tremendous lipid reactive oxygen species (ROS).
Oxidative stress-related ferroptosis is of great important to the occurrence and
progression of clear cell renal cell carcinoma (ccRCC), which is particularly
susceptibility to ferroptosis agonist. Therefore, exploring the molecular features
of ferroptosis and oxidative stress might guide the clinical treatment and
prognosis prediction for ccRCC patients.

Methods: The differentially expressed ferroptosis and oxidative stress-associated
genes (FPTOSs) between normal renal and ccRCC tissues were identified based on
The Cancer Genome Atlas (TCGA) database, and those with prognostic
significances were applied to develop a prognostic model and a risk scoring
system (FPTOS_score). The clinical parameter, miRNA regulation, tumor mutation
burden (TMB), immune cell infiltration, immunotherapy response, and drug
susceptibility between two FPTOS-based risk stratifications were determined.

Results: We have identified 5 prognosis-associated FPTOSs (ACADSB, CDCAS,
CHACI1, MYCN, and TFAP2A), and developed a reliable FPTOS_socre system to
distinguish patients into low- and high-risk groups. The findings implied that
patients from the high-risk group performed poor prognoses, even after
stratified analysis of various clinical parameters. A total of 30 miRNA-FPTOS
regulatory pairs were recognized to identify the possible molecular mechanisms.
Meanwhile, patients from the high-risk group exhibited higher TMB levels than
those from the low-risk groups, and the predominant mutated driver genes were
VHL, PBRM1 and TTN in both groups. The main infiltrating immune cells of high-
and low-risk groups were CD8" T cells and resting mast cells, respectively, and
patients from the high-risk groups showed preferable drug responsiveness to
anti-PD-1 immunotherapy. Eventually, potential sensitive drugs (cisplatin, BI-
D1870, and docetaxel) and their enrichment pathways were identified to guide
the treatment of ccRCC patients with high-risk.
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Conclusion: Our study comprehensively analyzed the expression profiles of FFTOSs
and constructed a scoring system with considerable prognostic value, which would
supply novel insights into the personalized treatment strategies and prognostic
evaluation of ccRCC patient.

KEYWORDS

clear cell renal cell carcinoma, ferroptosis, oxidative stress, prognostic model, bioinformatics

1 Introduction

Renal cell carcinoma (RCC) is one of the most common
malignant genitourinary tumors. There are 431,288 newly
diagnosed cases and 179,368 newly dead cases worldwide in 2020
(1), and it is estimated that there are 81,800 new cases and 14,890
dead cases in the United States in 2023 (2). The incidence of RCC
continued increasing at a rate of approximately 1% annually, while
mortality rates have decreased by about 2% annually from 2016 to
2020, which might be attributed to advancements in diagnostic
tools and early treatment (2). Clear cell renal cell carcinoma
(ccRCC) represents the predominant pathological subtype,
accounting for almost 70% of all RCC (3). Although 70% of early
localized RCC tumor can be completely surgery resection by radical
nephrectomy, there is still up to 30% of patients will eventually
progress to distant metastasis (3, 4). The ccRCC patients with
advanced stage are likely to experience poor outcomes, and the 5-
year overall survival (OS) rate is only 11.7% (5). Despite there are
occasional reports of durable responses, most advanced RCC
patients will develop resistance to targeted drugs such as first-line
VEGEFR inhibitor (sunitinib, pazopanib) and second-line mTOR
inhibitor (everolimus) (6, 7). Therefore, seeking for molecular
biomarkers with accurate predictive capacity and therapeutical
potential has attract the concerns of many scholars.

Crosstalk between ferroptosis and oxidative stress has been
demonstrated in many diseases, such as ischemic stroke (8),
inflammation (9), and cancer (10). Ferroptosis is a newly defined
nonapoptotic programmed cell death type, characterized by active
iron overload, excessive lipid reactive oxygen species (ROS)
generation and membrane phospholipid peroxidation (11). In
brief, when the redox homeostasis is impaired, iron generates
active hydroxyl radical (-OH) via Fenton reaction, which then
promotes the production of phospholipid hydroperoxides
(PLOOH). Meanwhile, blocking of cystine/glutamate antiporter
system Xc~ decreases the synthesis of glutathione (GSH) and the
only intracellular PLOOH-neutralizing enzyme glutathione
peroxidase 4 (GPX4), and eventually contributes to the
accumulation of ROS and ferroptosis (12). Oxidative stress is
occurred due to the breakdown of the redox homeostasis,
characterized by an increase of ROS and a decrease of antioxidant
enzymes (13). ROS at physiological level is essential to maintain the
function of cellular biology, however, excessive ROS generation
under oxidative stress condition is a double-edged sword for cancer
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(14). For one thing, ROS-caused oxidative damage promotes cell
death (apoptosis, ferroptosis) and triggers anti-tumor immune cells
(M1 macrophages, T cells) infiltration to function as a tumor
suppressor (15). Besides, high level of ROS causes detrimental
damages of DNA, protein, and lipid, and induces genomic
instability to function as a tumor promoter (16). In general,
exacerbating ROS generation and undermining antioxidant
system are sufficient to trigger oxidative stress and ferroptosis in
tumor cells (17).

Sensitivity analysis of ferroptosis agonist erastin on 177 cancer
cell lines indicated that RCC and diftuse large B cell lymphoma were
extremely susceptible to GPX4-dependent ferroptosis (18). Hence,
targeting ferroptosis and oxidative stress may challenge the current
treatment paradigm of RCC. Previous studies usually consider the
impact of a single gene or variable on the ccRCC development.
However, a widely accepted consensus is that tumorigenesis and
progression were affected by the interaction of multiple factors in a
sequential and coordinated manner. Thus, it is urgent to develop an
integrative and efficient utility to reflect the features of ferroptosis
and oxidative stress in ccRCC. With the advances in multiomic
sequencing, it is possible to comprehensively explore the genomic
profiles of ccRCC. Here, we had identified differentially expressed
ferroptosis and oxidative stress-associated genes (FPTOSs), and 5
genes with independent prognostic values were incorporated into
the prognostic model. Subsequently, all ccRCC patients were
allocated into low- and high-risk groups according to the
FPTOS_score, and the prognostic significance of FPTOS-based
risk stratification was assessed in both the TCGA-KIRC and E-
MTAB-1980 cohorts. The miRNA regulation, mutation pattern,
immune cell population, immunotherapy responsiveness, and drug
susceptibility were also examined.

2 Materials and methods
2.1 Data collection and preprocessing

Transcriptome data, clinical parameters and prognosis data,
miRNA sequencing data, and somatic mutation data of ccRCC
patients were extracted from The Cancer Genome Atlas (TCGA)
database (https://portal.gdc.cancer.gov/). E-MTAB-1980 cohort
was acquired from ArrayExpress database (https://www.ebi.ac.uk/
arrayexpress/) and served as the external validation dataset. The raw
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data from TCGA-KIRC cohort were preprocessed through
averaging the expression levels of same genes, removing the genes
with low expression levels below 1, and normalizing the expression
profiles using trimmed mean of M-values (TMM) method based on
the edgeR package. As for the microarray data from E-MTAB-1980
cohort, we performed background adjustment and normalization
using the robust multiarray analysis (RMA) method based on Affy
package. Furthermore, the expression values were log2 transformed,
and the probes were converted into corresponding gene symbols.

2.2 Preparation of ferroptosis and oxidative
stress-associated gene set

Ferroptosis-associated genes were gained from the FerrDb
database (http://www.zhounan.org/ferrdb/current/). To obtain
oxidative stress-associated genes, we applied “oxidative stress” as
search term to acquire genes that were involved in the process of
oxidative stress from the OMIN database (https://
www.oncomine.org/resource/), NCBI gene function module
(https://www.ncbi.nlm.nih.gov/gene/) and GeneCard database
(https://www.genecards.org/). We then acquired the integrative
gene set from the TCGA-KIRC cohort. After that, ferroptosis and
oxidative stress-associated gene set was prepared by selecting the
intersecting genes among above gene sets using Venn diagram.

2.3 Development and validation of a
FPTOS-based prognostic model

Differentially expressed FPTOSs of ccRCC patients were
identified through R package “EdgeR” referring to screening
criteria of |log2 fold change (FC)| > 1 and adjusted P < 0.05.
Subsequently, univariate Cox regression, least absolute shrinkage
and selection operator (LASSO) regression, and multivariate Cox
regression analyses were utilized to investigate the FPTOSs with
prognostic significance of ccRCC. The individualized risk score of
each ccRCC patient, named FPTOS_score, was measured using the
formula: FPTOS_score = > Expif3i. Of that, Exp denoted the
expression level of specific gene, while 3 represented the
corresponding regression coefficient. On basis of the median
value of FPTOS_score, all ccRCC patients were allocated into
low- and high-risk groups. Subsequently, Kaplan-Meier method
was used to explore the prognosis difference between two risk
groups, and receiver operating characteristic (ROC) curve was
plotted to estimate the power and accuracy of FPTOS-based
prognostic model. The external validation cohort (E-MTAB-1980)
was applied to assess the predictive performance and stability of the
prognostic model. Meanwhile, the prognostic values of the FPTOSs
were verified separately based on the GEPIA database (http://
gepia.cancer-pku.cn/index.html).

We first compared the difference in the number of deaths
between two risk stratifications, and calculated the FPTOS_score
of alive and dead patients, so as to reveal whether FPTOS-based risk
stratification could distinguish patients with poor prognosis. In
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order to discover independent prognostic factors of ccRCC,
FPTOS_score and various clinical parameters including age,
gender, grade, stage, T stage, N stage, M stage were subjected to
univariate and multivariate Cox regression analyses. Furthermore,
stratified analyses of various clinical parameters were conducted to
determine whether FPTOS-based risk stratification still performed a
considerable prognostic value.

2.4 Construction of miRNA-FPTOS
regulatory network

miRNA sequencing data were extracted from TCGA-KIRC
cohort, and the differentially expressed miRNAs were determined
via comparing the expression differences between the normal and
tumor samples with the setting criteria of |log2 FC| > 1 and P < 0.05.
Then we investigated the co-expression patterns between miRNAs
and prognostic-associated FPTOSs, and mapped miRNA-FPTOS
regulatory pairs on the basis of filtering criteria (|cor| > 0.25, P
< 0.001).

2.5 Tumor mutation burden (TMB) analysis

R package “Maftool” was applied to determine the TMB levels
using somatic mutation data from the TCGA database. Survival
analysis was applied to determine the influence of TMB on the
outcome of ccRCC patients. The TMB levels in two risk
stratifications and their correlations with FPTOS_score were also
measured. TMB was estimated via counting the overall number of
mutations per coding in the tumor sample. Moreover, waterfall
diagrams were plotted to display the landscape of gene mutation
profiles in two risk stratifications. We then evaluated the predictive
capacities of risk stratification on the ccRCC patients’ prognosis
when the mutation of driver genes such as VHL, PBRM1 and TNN
were considered.

2.6 Exploration of immune
microenvironment and response
to immunotherapy

The abundances of immune cell types between two risk
stratifications was evaluated by the CIBERSORT approach and
LM22 signature matrix (19). We performed 1000 permutation
tests to ensure the stability of the outputs. The immune
microenvironment was investigated using ESTIMATE algorithm
according to the predictive results of immune score, estimate score
and tumor purity (20).

In order to determine the immunotherapy responsiveness, we
subsequent analyzed the expression profiles of immune checkpoint
inhibitor (ICI)-targeted genes (PD-1, CTLA-4) between two risk
stratifications. Taken the mutation profiles of ICI-targeted genes
into account, the influence of FPTOS_score on the patients’
prognosis was explored. Since the lack of available ccRCC cohorts
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receiving immunotherapy, we employed the Tumor Immune
Dysfunction and Exclusion (TIDE) algorithm to predict the
responsiveness towards immunotherapy (21). Applying an open-
access immunotherapy-treated melanoma cohorts, unsupervised
subclass mapping (SubMap) method was utilized to indirectly
predict the immunotherapy responsiveness in the two risk
stratifications according to the similarity of gene expression
profile (22). Additionally, adopting expression and survival data
from a metastatic melanoma cohort who receiving PD-1
immunotherapy, we further conducted survival analysis to
evaluate the progression-free survival (PFS) rates of different
risk groups.

2.7 ldentification of sensitive drugs based
on FPTOS_score

The transcriptional data, drug susceptibility data, and
corresponding drug targets or pathways of various tumor cell lines
were extracted from a pharmacogenomic dataset Genomics of Drug
Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org/). The
relationship between the drug susceptibility and the FPTOS_score
was evaluated by Person correlation analysis according to the criteria
(|correlation coefficient (R) | > 0.15 and P < 0.05). The targets or
pathways of these drugs were also screened out to estimate the
underlying mechanisms.

2.8 Real-time PCR (RT-PCR) analysis

To examine the expression level of the identified FPTOSs in
ccRCC sample, we further carried out RT-PCR experiments to
compare the mRNA expression difference between human ccRCC
tumor specimen and adjacent normal specimen. Moreover, the
mRNA expression of FPTOSs in human normal renal proximal
tubular cell line (HK2), human renal clear cell carcinoma cell lines
(786-0, OS-RC-2) were also evaluated. Cells was purchased from
Shanghai Cell Bank Type Culture Collection Committee (Shanghai,
China) and incubated in RPMI-1640 medium containing 10% fetal
bovine serum (FBS). The total RNA was extracted using Trizol
reagent and then transcribed into cDNA using 1st Strand cDNA
Synthesis Kit (Vazyme, China). RT-PCR method was performed via
qPCR SYBR Green Master Mix (Vazyme, China) in a
QuantStudio' ™ 6 Flex Real-Time PCR System. The result was
normalized to housekeeping gene GAPDH, and the selected
primers for the FPTOSs were listed in Table S1.

2.9 Statistical analysis

The statistical analysis and result presentation were realized via
R version 4.0.5 and GraphPad Prism version 8.0. Unpaired
student’s t test or Mann-Whitney U test was utilized to
investigate the differences between two groups with or without
normally distributed variables, respectively. Log-rank test was
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applied to compare different survival outcomes between two
groups. Correlation analysis between two continuous variables
was realized by either Pearson or Spearman test as appropriate.
Contingency table variables were processed with Chi-squared ()°)
test or Fisher’s exact test. Unless otherwise stated, P < 0.05 was
regarded as statistically significant for all analysis.

3 Results

3.1 Identification of FPTOS gene signature

Figure 1 depicted the selection procedures of FPTOS-based
prognostic signature. Specifically, we first obtained transcriptome
data of ccRCC patients from the TCGA-KIRC cohort, which
included 72 normal renal specimens and 539 ccRCC tumor
specimens. A Venn diagram was plotted to identify all genes of
interest that was closely associated with ferroptosis and oxidative
stress, and a total of 437 FPTOSs were output for further analysis
(Figure 2A). Subsequently, the differentially expressed FPTOSs
between normal and tumor specimens were screened out based
on the filtering criteria (|log2 FC| > 1.0, P < 0.05), and 50
downregulated genes and 81 upregulated genes met the
requirement. The expression and distribution profiles of these
FPTOSs were presented in Figures 2B, C.

We then carried out GO and KEGG enrichment analyses to
determine the biological functions and involved pathways of the
FPTOSs. The biological processes were enriched in the responses to
hypoxia, oxygen levels, chemical stress and oxidative stress. The cell
components lied in apical part of cell, apical plasma membrane, and
basolateral plasma membrane. With regard to molecular functions,
these genes were involved in iron ion binding, oxidoreductase
activity, acting on single donors with incorporation of molecular
oxygen, and dioxygenase activity (Figure 2D). Additionally, KEGG
analysis indicated that the identified genes were related with
miRNAs in cancer, HIF-1 signaling pathway, carcinogenesis-
reactive oxygen species, human cytomegalovirus infection, and
ferroptosis (Figure 2E). The findings revealed that the

genes were acquired from mutation and miRNA sequence data were acquired from GeneCard database, OMIM

564 ferroptosis-associated | [ Transcriptome, clinical prognosis, somatic | (9469 oxidative stress-associated genes were
FerDb database acquired from TCGA-KIRC cohort database, and NCBI gene function module

[ 437 overlapping FPTOS-associated genes ]
l Differential expression analysis
" Functional analysis
(s FPTO d genes | G0 and KEGG analysis

LASSO regression analysis
Multivariate Cox regression analysis

l

[ 5 FPTOS prognostic gene signature ]

Logranktest ~ ROCcurve  Subgroup analysis E'M:hi',lgw

[ Univariate Cox regression analysis ]

miRNA-FPTOS Tumor mutation burden and | | Immune cell infitration and |[ Drug susceptibility
regulatory network driver gene variations immunotherapy responsiveness analysis
FIGURE 1

Flowchart depicts the searching procedures to develop a FPTOS-
based prognostic model in ccRCC.
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FIGURE 2

Identification of the differentially expressed FPTOSs of ccRCC in
TCGA database. (A) Searching for FPTOS-associated genes in
ccRCC patients using Venn diagram. (B) Visualization of differentially
expressed FPTOSs between normal renal tissues (N = 72) and
ccRCC tissues (N = 539) using volcano plot based on the
transcriptional data in TCGA-KIRC cohort. (C) Visualization of
differentially expressed FPTOSs using heatmap based on
transcriptional data in TCGA-KIRC cohort. (D) GO enrichment
analysis of differentially expressed FPTOSs to determine involved
gene function. (E) KEGG enrichment analysis of differentially
expressed FPTOSs to determine involved pathway.

differentially expressed FPTOSs were primarily implicated in
hypoxia, oxidative stress, ferroptosis and oxygen level regulation,
confirming that the filtering criteria could accurately recognize the
FPTOSs of interest.
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3.2 Development and validation of a
FPTOS-based prognostic model

We identified 131 FPTOS-related prognostic genes by
univariate Cox regression analysis (Table S2). LASSO regression
analysis was carried out to search the predominant prognostic
FPTOSs. The trajectory variations in regression coefficients of
above 131 genes were presented in Figure SI1A, and the cross-
validation results of LASSO model construction were presented in
Figures S1B. Finally, 6 output genes (ACADSB, BID, CDCA3,
CHACI, MYCN and TFAP2A) were identified and subjected for
further study. Applying multivariate Cox regression analysis, 5
genes (ACADSB, CDCA3, CHACI, MYCN, TFAP2A) with
independent prognostic significances were incorporated into the
prognostic model (Table 1; Figure 3A). Among them, ACADSB and
MYCN were considered as the protective factors, while CDCA3,
CHACI, and TFAP2A were considered as the detrimental factors.
Furthermore, we examined the prognostic values of the identified
FPTOSs in the ccRCC patients. Based on the expression profiles and
outcome data in the GEPIA database, we found that ACADSB and
MYCN are the favorable prognostic marker of ccRCC, while
CDCA3, CHACI, and TFAP2A are the unfavorable prognostic
marker of ccRCC (Figure S2). The above findings further
highlighted the considerable prognostic capacities of the FPTOSs
in monitoring ccRCC progression.

The FPTOS_score of each ccRCC patient was computed applying
the following formula: FPTOS_score = (-0.2832 x Exp ACADSB) +
(0.2549 x Exp CDCA3) + (0.1523 x Exp CHACI) + (-0.1508 x Exp
MYCN) + (0.0672 x Exp TFAP2A). To assess the model applicability,
the ccRCC patients were allocated into the low- and high-risk groups
on the basis of the median value of FPTOS_score. The difference of
OS between two risk stratifications from the TCGA-KIRC cohorts
was measured by Kaplan-Meier method, and the results suggested
that patients from the high-risk group performed a worse prognosis
than those from the low-risk group (P = 4.432e-12, Figure 3B). The
ROC curve was also plotted to evaluate the prediction power and
accuracy of FPTOS-based risk stratification. As presented in
Figure 3C, the area under the ROC curve (AUC) values were 0.751
at 1-year, 0.724 at 3-year, and 0.734 at 5-year. Furthermore, external
validation was applied to evaluate whether the prognostic model
showed stable performance in the E-MTAB-1980 cohort. As a result,
a poor prognosis was observed in the high-risk group (P = 0.003,
Figure 3D), and the AUC values of 1-year, 3-year, and 5-year OS rates
were 0.807, 0.797, and 0.804 (Figure 3E). Generally, these findings
indicated a preferable predictive power and stability of the FPTOS-
based prognostic model.

3.3 Independence of the FPTOS_score
from clinical parameters of ccRCC

We then investigated the survival outcomes between two
FPTOS-based risk stratifications, and it is shown that ccRCC
patients with high-risk exhibited lower OS rates than those with
low-risk (*= 84.130, P < 0.001) (Figure 4A). Similarly, the dead
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TABLE 1 Multivariate Cox regression analysis to identify prognosis-related FPTOSs.

Gene Coef Exp (coef)
ACADSB -0.2832 0.7534
CDCA3 0.2549 1.2904
CHACI 0.1523 1.1645
MYCN -0.1508 0.8600
TFAP2A 0.0672 1.0695

se (coef) z Pr (>|z])
0.1130 -2.5057 0.0122
0.0868 2.9370 0.0033
0.0603 2.5261 0.0115
0.0587 -2.5688 0.0102
0.0405 1.6575 0.0974

Coef, coefficient.

patients performed a higher FPTOS_score than the alive patients (P
< 2e-16) (Figure 4B), indicating a positive correlation between
FPTOS_score and poor prognosis. To further confirm the
independence of FPTOS_score on the prognostic evaluation of
ccRCC, the crucial clinical parameters (age, gender, grade, stage,
T stage, N stage, M stage) and FPTOS_score were subjected to
univariate and multivariate Cox regression analyses (Table S3;
Figures 4C, D). The findings suggested that FPTOS_score could
serve as an independent prognostic variable of ccRCC patients (HR
= 2.028, 95% CI: 1.640-2.507, P < 0.001).

We next investigated the feasibility of the FPTOS-based risk
stratification in predicting the prognosis of ccRCC patient
subgroups stratified by above clinical parameters. As the results
acquired from the Kaplan-Meier survival analyses, the survival
prognosis of ccRCC patients with high-risk were significantly
worse than those with low-risk, regardless of the clinical variable
stratifications (All P < 0.001) (Figures S3A-S3N). Such results
implied that FPTOS-based risk stratification could distinguish
patients with poor outcomes without considering the influence of
other clinical parameters.

3.4 Construction of miRNA-FPTOS
regulatory network

miRNAs are implicated in multiple cellular processes including
redox homeostasis regulation (23). Therefore, it is valuable to map
the miRNA-FPTOS regulatory network, which may underlie the
upstream regulatory mechanism of FPTOSs. We first extracted the
miRNA sequencing data from the TCGA database. Abnormally
expressed miRNAs were identified according to filtering criteria (|
log2 FC| > 1.0, P < 0.05), and were displayed in heatmap (Figure 5A).
Then the co-expression analysis between prognostic FPTOSs and
abnormally expressed miRNAs was conducted in reference to the
inclusion criteria (Jcor| > 0.25, P < 0.001). A total of 30 miRNA-
FPTOS regulatory pairs were screened out (Table S4), and a Sankey
diagram was plotted to exhibit the regulatory network (Figure 5B).

3.5 Association between FPTOS_score and
mutation profiles

The occurrence and progression of ccRCC were partially
attributed to the mutation of driver genes. At present, we
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extracted the somatic mutation data of ccRCC patients from
TCGA-KIRC cohort to reveal the association between
FPTOS_score and mutation profiles. We found that patients with
high TMB levels experienced worse outcomes than patients with
low levels (P = 0.002) (Figure 6A), and elevated TMB levels were
observed in the patients from high-risk group (Figure 6B).
Moreover, correlation analysis suggested that FPTOS_score was
positively correlated with TMB level (R = 0.20, P = 3e-
4) (Figure 6C).

Subsequently, the genes mutated in at least 5% of the tumor
specimens from two risk stratifications were illustrated via
waterfall plot. A significant abundant mutation events was
existed in the specimens from high-risk group, accompanying
by an increased dead population (Figures 6D, E). We employed
the top 3 mutated driver genes (VHL, PRBM1, TNN) to investigate
whether the FPTOS_score still had prognostic value when the
driver gene mutations were taken into account. The results
revealed that VHL-mutated patients with low-risk performed
significant survival advantages than those with high-risk,
meanwhile, VHL-wild patients with low-risk also performed
significant survival advantages than those with high-risk
(Figure 6F). Consistent with the performance of different VHL
phenotype groups, patients with low-risk still experienced better
outcomes than those with high-risk, no matter whether the
mutation of PRBMI1 and TNN occurred (Figures 6G, H).
Collectively, these findings implied that FPTOS-based risk
stratification was positively correlated with TMB level and gene
mutation frequency, and patients with relatively low FPTOS_score
exhibited favorable prognosis even when the mutation of driver
genes were considered.

3.6 Determination of immune cell
infiltration and immune microenvironment

RCC is recently regarded as an immunogenic tumor, which is
partly caused by the immune dysfunction with the infiltration of
suppressive immune cell subtypes such as regulatory T cells (Tregs)
and myeloid-derived suppressor cells (MDSCs) (24). Currently, the
components of immune cells were measured using CIBERSORT
method. Correlation matrix was plotted to depict all the 22 immune
cell proportions, and a strong relevance was existed between CD8"
T cells and Tregs in the TCGA-KIRC cohort (Figure 7A). It was
shown that abundant populations of CD8" T cells, MO
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Construction and validation of a FPTOS-based prognostic model. (A) Multivariate Cox regression analysis to evaluate the prognostic values of 5
FPTOSs. (B) Kaplan-Meier survival curve analysis to compare overall survival (OS) difference between low- and high-risk groups in the TCGA-KIRC
cohort. (C) Time-dependent ROC curve analysis to evaluate the predictive power of the FPTOS-based risk stratification in the TCGA-KIRC cohort.
(D) Kaplan-Meier survival curve analysis to compare OS difference between low and high-risk groups in the validated E-MTAB-1980 cohort.

(E) Time-dependent ROC curve analysis to evaluate the predictive power of the FPTOS-based risk stratification in the validated E-MTAB-1980
cohort. Log-rank test was applied to compare the statistical differences in the Kaplan-Meier curves.

macrophages, and Tregs existed in the patient specimens from
high-risk group, while predominant populations of resting mast
cells, M2 macrophages, and monocytes accumulated in the
specimens from low-risk group (Figure 7B).

What else, the immune microenvironment properties of
ccRCC specimens were quantified, and the output values of
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immune score and estimate score in the high-risk group (1152.85
+ 793.65, 1796.53 + 1239.89, respectively) were significantly
higher than those in the low-risk group (860.65 + 565.16, 1504.52
+ 943.08, respectively), while the output values of tumor purity in
the high-risk group (0.6348 + 0.1311) were significantly lower than
those in the low-risk group (0.6712 + 0.0956) (Figures 7C-E).
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3.7 Evaluation of immunotherapy
responsiveness based on FPTOS

risk stratification

treatment of various tumors (25). Therefore, we next measured the
changes of ICI targeted genes (PD-1, CTLA-4) in different risk
stratifications. Compared with the low-risk patients, the expression
of PD-1 and CTLA-4 in the high-risk patients were dramatically

Immunotherapy, especially immune checkpoint inhibitor (ICI), upregulated (all P < 0.001) (Figures 8A, B). Subsequently, we
has witnessed a tremendous development and revolutionized the =~ measured the survival prognosis of ccRCC patients between two
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FIGURE 5

Construction of miRNA-FPTOS regulatory network for ccRCC patients. (A) Heatmap of differentially expressed miRNAs between normal renal
samples and ccRCC tumor samples. (B) Sankey plot to visualize the potential regulatory relationship between differentially expressed miRNAs and

prognostic FPTOSs.

Gene

risk stratifications when the expression of ICI-targeted genes was
taken into consideration. As a result, patients with high-risk and
high PD-1/CTLA-4 expression experienced worse outcomes when
compared with patients with low risk and high PD-1/CTLA-4 level,
and patients with high-risk and low PD-1/CTLA-4 level experienced
worse outcomes when compared with patients with low-risk and
low PD-1/CTLA-4 level (Figures 8C, D).

Since the absence of easily-accessible ccRCC cohort treated with
immunotherapy, the TIDE algorithm, which integrated T cell
dysfunction and exclusion on the basis of the expression profiles,
was applied to predict the response to immunotherapy. When
compared with the low-risk group, the high-risk group presented
significantly elevated TIDE prediction scores (P = 0.00047)
(Figure 8E). Meanwhile, patients in different risk stratifications
exhibited different immunotherapy responsiveness, while the
response ratio of high-risk to low risk was 46.77% to 35.21% (y
=7.325, P = 0.007) (Figure 8F).
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Subsequently, the SubMap analysis was conducted to compare
the expression characteristics of FPTOS_score acquired from the
TCGA and GEO databases with an open-access metastatic
melanoma cohort who receiving anti-PD-1 or anti-CTLA-4
treatment. The results revealed that patients with high-risk might
respond positively to anti-PD-1 immunotherapy in both TCGA and
GEO cohorts (adjusted P = 0.049 and 0.012, respectively),
conversely, patients with low-risk might respond poorly to anti-
CTLA-4 immunotherapy (adjusted P = 0.0033 and 0.011,
respectively) (Figures 8G, H). Furthermore, we evaluated the
predictive efficacy of FPTOS_score in the Riaz’s cohort who
receiving anti-PD-1 immunotherapy, and discovered that patients
with high-risk experienced worse outcomes in PFS when compared
with those with low-risk (P = 0.015) (Figure 8I). These results had
provided guidance for the immunotherapy strategy of ccRCC
patients, for instance, a feasibility of anti-PD-1 treatment for
high-risk patients.
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3.8 Relationship between FPTOS_score

and drug susceptibility

To explore available drugs for high-risk patients, we further
investigated the relevance between FPTOS_score and IC50 values of

corresponding drugs in the ¢

pharmacogenomics database GDSC. In the light of inclusion
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criteria (|[R| >0.15, P < 0.05), 18 drugs (including cisplatin, BI-

D1870 and docetaxel) performed sensitive responses towards high
FPTOS_score, while 21 drugs (including AS601245, AKT Inhibitor

cRCC cell lines via the

188

VIII and AZD8055) performed resistant responses towards high
FPTOS_score (Figure 9A). What else, the drug-involved pathways
were analyzed. As shown in the Figure 9B, the sensitive drugs were
enriched in the pathways associated with genome integrity,
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populations. (B) Exploring the differentially infiltration of immune cell populations between low- and high-risk groups. (C—E) Comparison of immune
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metabolism, p53 pathway, protein stability and degradation, while
the resistant drugs were involved in the pathways such as WNT
signaling, RTK signaling, hormone-related, EGFR signaling,
apoptosis regulation and Other. The above findings indicated that
the FPTOS_score might influence the drug responsiveness of
ccRCC cell lines, which might provide insights into the
cancer treatment.

3.9 Exploring the expression pattern of the
identified FPTOSs

The mRNA expression of prognostic FPTOSs in both renal
tissue and cell samples was determined by RT-PCR method. As the
results indicated, the expressions of CDCA3, MYCN and TFAP2A in
ccRCC tumor tissue were significantly upregulated compared with
those in adjacent normal kidney tissue, while the expressions of
ACADSB and CHACI were significantly downregulated
(Figures 10A-E). Additionally, the mRNA expression of
ACADSB, CHACI, and TFAP2A were also significantly
upregulated in ccRCC cell line 786-O, while the CHACI was
downregulated but ACADSB and TFAP2A were upregulated in
another ccRCC cell line OS-RC-2 (Figures 10F-]).
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4 Discussion

Resistance to cell death, genome instability and mutation are the
basic hallmarks of cancer (26). Interestingly, RCC cells were more
sensitive to erastin-induced ferroptosis than others tumor cell types,
which might be attributed to the dependence of GSH content and
GPX4 activity to regulate redox homeostasis (18). Mechanistically,
peroxisomes promoted the biosynthesis of polyunsaturated ether
phospholipids (PUFA-ePLs), substrates of lipid peroxidation, and
triggered the occurrence of ferroptosis. A decrease of PUFA-ePLs
will promote the conversion of ferroptosis-sensitive state to
ferroptosis-resistant state of RCC cells (27). Chemerin, a hypoxia-
inducible factor (HIF)-dependent adipokine, suppressed fatty acid
oxidation and thus mediated ferroptosis resistance in ccRCC (28).
Moreover, one analysis revealed that ccRCC patients occurred a 2-
82% mutation frequency among 36 ferroptosis-related genes (29).
The multi-kinase inhibitors sorafenib is recommended to be the
first-line strategy for treating advanced ccRCC patients (30, 31).
Interestingly, it can block the system Xc  function, induce GSH
consumption and lipid ROS accumulation, and thus trigger
ferroptosis in RCC cells (32-34). Therefore, comprehensive
exploration of the FPTOSs expression profiles could deepen the
understanding of occurrence and progression of ccRCC.
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FIGURE 8

Evaluation of immunotherapy responsiveness based on FPTOS risk
stratification. (A, B) Expression patterns of ICl targeted gene PD-1 or
CTLA-4 in two FPTOS-based risk stratifications. (C, D) Kaplan-Meier
survival analysis for OS among four groups stratified by the FPTOS-
based risk stratifications and PD-1 or CTLA-4 expression level,
respectively. (E) Difference of TIDE prediction score between the
low- and high-risk groups. (F) Comparison of immunotherapy
responsiveness between low- and high-risk groups. (G, H) SubMap
analysis to predict the immunotherapy responsiveness in the low-
and high-risk groups from the TCGA cohort or GEO cohort,
respectively, according to the anti-PD-1 or anti-CTLA-4
responsiveness from the open-access metastatic melanoma cohort.
(1) Kaplan-Meier survival analysis of progression-free survival (PFS)
between the low- and high risk groups in the Riaz's cohort who
have received anti-PD-1 immunotherapy.
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In the current study, using univariate Cox regression, LASSO
regression, and multivariate Cox regression analyses, 5 FPTOSs
with crucial prognostic significances were identified, including
ACADSB, CDCA3, CHACI, MYCN, and TFAP2A. Among them,
ACADSB and MYCN were discovered as the protective factors,
while CDCA3, CHACI and TFAP2A were discovered as the
detrimental factors. ACADSB is a member of acyl-CoA
dehydrogenase family, and is predominantly involved in the
processes of fatty acid metabolism, branch-chained amino acid
metabolism and ferroptosis (35, 36). It was reported that
ACADSB expression was positively associated with the expression
of ferroptosis driving genes. Suppression of ACADSB was observed
in ccRCC samples, which was accompanied with advanced grade
and stage, and might function as an independent prognostic factor
of ccRCC patients (37). CDCA3 engaged in cell cycle regulation
through mediating ubiquitin degradation of mitosis-inhibitory
kinase WEE1 (38). It was considered to be a prognostic factor of
RCC, and the upregulation of CDCA3 was associated with advanced
TNM stage, tumor grade and immune cell infiltration (39). In
addition, IncRNA SNHGI12 increased CDCA3 expression and thus
mediated tumor progression and sunitinib resistance in RCC
patients (40). CHAC1 was implicated in the processes of
endoplasmic reticulum (ER) stress and ferroptosis (41). It could
serve as a biomarker to independently forecast the prognostic
outcomes of ccRCC patients, and was positively associated with
the expression signatures of various immune cells (memory B cell,
NK cell and Thl cell) and ICI genes (ADORA2A, CD200, CD44)
(42). Aberrant MYCN amplification was previously considered as a
driving event of high-risk neuroblastoma (43). However, inhibition
of MYCN contributed to the drug resistance of cisplatin through
repressing apoptosis in epithelial ovarian cancer (44). The specific
roles of MYCN in ccRCC progression still requires further
verification. Transcriptional factor TFAP2A controlled the
expression of various tumor-related genes including VEGF, BCL-
2, ¢-Kit and c-Myc, and was reported to be widely upregulated in
tumor samples (45). Additionally, suppression of TFAP2A
inhibited cell proliferation, migration and invasion via initiating
oxidative stress and ferroptosis in gallbladder carcinoma (46).

These 5 FPTOS genes were then included into a prognostic
model, which was utilized to develop a risk scoring system, named
FPTOS_score. All patients were allocated into low- and high-risk
groups on the basis of the median value of FPTOS_score. The
results indicated a poor prognosis existed in the high-risk group,
and the prognostic model presented preferable predictive sensitivity
and accuracy. What else, the FPTOS-based risk stratification was
able to distinguish patients with undesirable outcomes, and the
results were robust even after considering the influence of various
clinical parameters.

miRNAs served as a class of crucial molecules that regulate gene
expression in a post-transcriptional modification manner. It was
reported that miRNAs were responsible for regulating ROS
generation and thus promoting ferroptosis occurrence in ccRCC
(47). Hence, we carried out a co-expression analysis to explore the
crosstalk between differentially expressed miRNAs and prognostic
FPTOSs, and a total of 30 miRNA-FPTOS regulatory pairs were
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Identification of sensitive drugs for ccRCC patients based on FPTOS_score. (A) Person correlation analysis between FPTOS_score and drug
susceptibility in the GDSC database. (B) Screening for involved pathways of identified drugs.

obtained, which might bring novel insights into the gene regulation
patterns in ccRCC.

Emerging evidences demonstrated that accumulation of
somatic mutation events is responsible for the tumorigenesis and
progression (48). TMB is newly considered as a substitute for
neoantigen load to act as a prognostic biomarker for cancer (49).
Therefore, identification of mutated genes especially driver genes of
ccRCC may provide promising opportunities for personalized
therapy and prognosis prediction. The findings indicated that
patients from high-risk group performed elevated TMB level,
which was accompanied with a poor prognosis. Abundance
mutation events were existed in patients with high-risk, and the
well-defined driver genes VHL, PRBMI and TTN occupied the most
frequent mutation sites in both the low- and high-risk groups.
Interestingly, patients from the high-risk groups experienced a
worse prognosis than those from the low-risk groups when the
mutation of these diver genes was taken into account. A recently
accepted notion of RCC progression is that VHL mutation function
as an initial event to drive tumorigenesis, while PBRM1, BAPI and
SETD2 subsequent trigger defects in DNA repair system and
abnormal tumor growth (50). TTN mutation has been reported to
be correlated with myopathy and cancer, and one study showed that
IncRNA TTN-ASI, which is transcribed in the opposite direction of
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TTN, was upregulated in ccRCC samples and positive associated
with poor clinicopathological performances (51).

The infiltration of immune cell was predicted using
CIBERSORT algorithm. Herein, the tumor samples from high-
risk group were infiltrated with CD8" T cells, whereas those from
low-risk group were infiltrated with resting mast cells. Unlike other
solid tumors, there is a generally accepted viewpoint that increased
CD8" T cells infiltration in RCC samples was positively associated
with weak outcome (52). This phenomenon might owe to a relative
lack of tertiary lymphoid structures, which suppressed the mature
process of dendritic cell, and thus prevented CD8" T cells from
recognizing tumor antigen (52, 53). Conversely, ccRCC tumor
samples with abundant mast cell population performed better OS
and PFS than those with scare mast cell population (54).
Meanwhile, the immune score and estimate score were increased
but the tumor purity was decreased in the high-risk group. The
diversities of immune microenvironment might confer distinct drug
susceptibilities to chemotherapy and immunotherapy. When
compared with the low-risk group, the expression of ICI targeted
genes (PD-1, CTLA-4) were significantly increased in the high-risk
group. Patients with advanced or metastatic RCC have exhibited a
desirable response rate to FDA-approved ICI drugs, such as anti-
PD-1 antibody (nivolumab, pembrolizumab, atezolizumab) and/or
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Comparing the expression pattern of the identified FPTOSs between ccRCC and normal renal sample using RT-PCR method. (A—E) The mRNA
expression level of ACADSB, CDCA3, CHAC1, MYCN, TFAP2A in human ccRCC tumor samples and adjacent normal samples. (F-J) The mRNA
expression level of ACADSB, CDCA3, CHAC1, MYCN, TFAP2A in human ccRCC cell lines (786-0O, OS-RC-2) and normal renal proximal tubular cell
line (HK2). Results were presented as mean + standard error of mean (SEM), and P < 0.05 was considered to have statistically significant. *P < 0.05,

**P < 0.01, **P < 0.001.

anti-CTLA-4 antibody (ipilimumab) (55-58). Despite these
advantages, most patients could not gain a durable response to
immunotherapy. Encouragingly, the current study demonstrated
that patients with high-risk performed a better response probability
to anti-PD-1 immunotherapy than those with low-risk. Therefore,
applying the FPTOS-based risk stratification might bring great
benefits to metastatic RCC patients through distinguishing
patients who respond positively to immunotherapy. Finally,
correlation analysis indicated that cisplatin, BI-D1870 and
docetaxel might serve as sensitive drugs to treat patients with
high FPTOS_score.

Generally, the present study had mapped a ferroptosis and
oxidative stress-associated landscape of ccRCC, and developed a
prognostic model with a preferable predictive accuracy and stability.
However, limitations should not be ignored. First, the transcriptome
data were extracted from a retrospective cohort, and thus the
prognostic model should be revaluated by a prospective cohort.
Second, although robust results from bioinformatic analysis, the
molecular functions and pathological mechanisms of the identified
FPTOSs in ccRCC were still required experimental verification. Third,
despite ICI-based immunotherapy and easily accessible drugs have
shown the therapeutic potential for high-risk group, how to choose the
optimum treatment protocol deserve further exploration.

5 Conclusion

Overall, we identified the FPTOSs with potential prognostic
significance in ccRCC patients. A reliable score system to
distinguish high-risk patients was established and performed a
preferable predictive accuracy and stability. Subsequently, the
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miRNA-FPTOS regulatory network, driver gene mutation status,
immune cell population, immunotherapy responsiveness, and drug
susceptibility were examined. The results supply novel insights into
the expression profiles of FPTOSs in ¢cRCC, and provide
opportunities to identify therapeutical targets or prognostic
biomarkers for ccRCC.
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Background: Interferon regulatory factors (IRFs) played complex and essential
roles in progression, prognosis, and immune microenvironment in clear cell renal
cell carcinoma (ccRCC). The purpose of this study was to construct a novel IRFs-
related risk model to predict prognosis, tumor microenvironment (TME) and
immunotherapy response in ccRCC.

Methods: Multi-omics analysis of IRFs in ccRCC was performed based on bulk
RNA sequencing and single cell RNA sequencing data. According to the
expression profiles of IRFs, the ccRCC samples were clustered by non-
negative matrix factorization (NMF) algorithm. Then, least absolute shrinkage
and selection operator (LASSO) and Cox regression analyses were applied to
construct a risk model to predict prognosis, immune cells infiltration,
immunotherapy response and targeted drug sensitivity in ccRCC. Furthermore,
a nomogram comprising the risk model and clinical characteristics was
established.

Results: Two molecular subtypes with different prognosis, clinical characteristics
and infiltration levels of immune cells were identified in ccRCC. The IRFs-related
risk model was developed as an independent prognostic indicator in the TCGA-
KIRC cohort and validated in the E-MTAB-1980 cohort. The overall survival of
patients in the low-risk group was better than that in the high-risk group. The risk
model was superior to clinical characteristics and the ClearCode34 model in
predicting the prognosis. In addition, a nomogram was developed to improve the
clinical utility of the risk model. Moreover, the high-risk group had higher
infiltration levels of CD8" T cell, macrophages, T follicular helper cells and T
helper (Thl) cells and activity score of type | IFN response but lower infiltration
levels of mast cells and activity score of type Il IFN response. Cancer immunity
cycle showed that the immune activity score of most steps was remarkably
higher in the high-risk group. TIDE scores indicated that patients in the low-risk
group were more likely responsive to immunotherapy. Patients in different risk
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groups showed diverse drug sensitivity to axitinib, sorafenib, gefitinib, erlotinib,
dasatinib and rapamycin.

Conclusions: In brief, a robust and effective risk model was developed to predict
prognosis, TME characteristics and responses to immunotherapy and targeted
drugs in ccRCC, which might provide new insights into personalized and precise
therapeutic strategies.

KEYWORDS

interferon regulatory factors, clear cell renal cell carcinoma, tumor microenvironment,
immunotherapy, drug sensitivity

Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common
histological subtype of renal cell carcinoma and accounts for
approximately 80%-90% of cases (1). Radical nephrectomy
remains the effective option for localized ccRCC, however, nearly
30% of patients develop distant metastatic or recurrence after
surgery (2, 3). TKIs-targeted and mTOR-targeted therapies have
been widely adopted, but the clinical benefits are limited (4). In
recent years, immune checkpoint inhibitors (ICIs) therapy targeting
PD-1/PD-L1 and/or CTLA-4 has made significant breakthroughs in
ccRCC (5, 6). However, the therapeutic response rate of ICIs in
ccRCC remains poor (7). Despite the combination treatment of ICIs
and targeted therapeutic drugs may improve the response rate,
these patients receiving the combination therapy often suffer from
adverse events (5, 8, 9). Moreover, ccRCC exhibits extremely high
heterogeneity, so the responses and prognoses after
immunotherapy in patients with the same degree of progression
vary extensively (10). Therefore, it is essential to explore the
heterogeneity of the ccRCC patients and develop novel
biomarkers or therapeutic targets to predict the prognosis and
improve ICIs therapeutic efficacy, thereby optimizing
immunotherapy for ccRCC.

Interferon regulatory factors (IRFs), which comprise nine gene
family members (IRF1, IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, IRF8 and
IRF9), are a family of transcription factors that regulate the
transcription process of interferons by acting at their gene sites
(11). Cumulative evidences revealed IRFs played critical roles in the
regulation of cell cycle, cell differentiation, cell apoptosis and cancer
immune responses (11). Multiple studies suggested that IRFs played
complex and essential roles in progression, prognosis, and immune
microenvironment in ¢ccRCC. Kong et al. reported that PD-L1
expression in ccRCC cells was induced by IFNY stimulation through
activation of JAK2/STAT1/IRF1 signaling (12). In addition, the high
expression of IRF3 and IRF4 was found to be significantly associated
with the advanced clinical stage and poor prognosis in ccRCC (13,
14). Moreover, Bai et al. found high expression of IRF5 was
significantly associated with poor overall survival (OS) and
recurrence free survival (RFS) in ¢ccRCC (15). Furthermore, Ma
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et al. revealed that IRF6 overexpression could attenuate
proliferation, migration and invasion of ccRCC cells by
downregulating the KIF20A expression (16). IRF8 expression by
tumor-associated macrophages (TAMs) was negatively associated
with tumor stage and positively correlated with prognosis in ccRCC
patients (17). As a component of IFN-stimulated gene factor 3
(ISGF3), IRF9 expression in ccRCC cells was negatively associated
with tumor growth (18). The above results indicated that IRFs played
a diverse regulatory role in the oncogenesis and progression of ccRCC.
Cumulative evidences showed that carcinogenesis and progression of
cancer was the consequence of the interaction of multiple genes and/
or signal pathways (19). A single gene as biomarkers may be not
sufficient to accurately predict prognosis and estimate immune status
in ccRCC. Hence, we utilized all IRF family members to construct a
novel risk model to provide new insights into predicting prognosis
and promoting the individualized immunotherapy.

In our study, we classified ccRCC patients into different
molecular subtypes based on IRFs and constructed a novel risk
model. Moreover, we estimated the clinical performance of this risk
model in terms of prognosis, immune microenvironment, response

to immunotherapy and targeted drug sensitivity.

Materials and methods
Ethical statement

This study was approved by the Ethical Committee of Shandong
Provincial Hospital Affiliated to Shandong First Medical University
(SWYX: NO.2021-277). Written informed consent was obtained
from all patients.

Data preparation
Transcriptomic RNA (HTseq-FPKM) including 539 ccRCC
tissues and 72 adjacent nontumor tissues with clinical

information were acquired from The Cancer Genome Atlas
(TCGA) database. The gene annotation of the gene transfer
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format (GTF, release 37, GRCh38.p13) file downloaded from
GENECODE (http://gencodegenes.org) was used to annotate gene
symbols. Somatic mutation data and copy number variation (CNV)
data of TCGA-KIRC patients were downloaded from the USUC
Xena (https://xena.ucsc.edu). In addition, three gene expression
profiles of the GSE40435, GSE53757 and GSE66272 datasets with a
total of 400 samples were downloaded from the Gene Expression
Omnibus (GEO) database. After the batch effects were corrected
using “sva” R package, the three datasets (GSE40435, GSE53757 and
GSE66272) were merged into a single dataset. The single-cell RNA-
sequencing (scRNA-seq) raw count files of the GSE156632 dataset
was also obtained from the GEO database. The E-MTAB-1980
cohort comprising 101 ccRCC patients with clinical data was
obtained from the EMBL-EBI database (https://www.ebi.ac.uk/).

scRNA-seq data analysis

The 10x scRNA-seq data was converted to Seurat object using
“Seurat” R package. The clusters with cells less than 3, cells that were
detected less than 50 genes and cells that expressed more than 5% of
mitochondrial genes were removed. Principal component analysis
(PCA) was performed using the top 1500 most variable genes. The
“FindNeighbors” and “FindClusters” functions were used for cell
clustering analysis based on the top 15 principal components (PCs).
The “FindAllMarkers” function was applied to identify marker genes
of different cell clusters based on the threshold of FDR< 0.01 and |
log,FC| > 1. Furthermore, cluster annotation was performed to
recognize different cell type using “SingleR” package.

Differential expression analysis of the
IRF family members and gene-gene
interaction network

The mRNA expression levels of the IRF family members in
non-paired samples and paired samples were analyzed using
Wilcoxon rank-sum test and Wilcoxon signed-rank test
respectively based on the TCGA-KIRC dataset. The mRNA
expression levels of the IRF family members between ccRCC
samples and normal samples were validated based on the GEO
dataset using the Wilcoxon signed-rank test. In addition, UALCAN
(http://ualcan.path.uab.edu) was used to analyze the protein
expression levels of IRF family members between ccRCC samples
and normal samples according to data from the Clinical Proteomic
Tumor Analysis Consortium (CPTAC). P< 0.05 was considered
statistically significant. The correlation analysis of the IRF family
members was performed on basis of their mRNA expression data
from the TCGA-KIRC dataset.

Prognostic values of the IRF family
members

Kaplan-Meier (KM) survival curves were plotted to evaluate OS
of the IRF family members in ccRCC based on the optimal cutoft
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value using “survival” R package. A receiver operating-
characteristic (ROC) curve was plotted using the “pROC” R
package, and the area under curve (AUC) was calculated to
evaluate diagnostic capability of the IRF family members.

Identification of molecular subtypes based
on IRF family members

Based on the expression profiles of IRF family members, non-
negative matrix factorization (NMF) with “brunet” method for 10
iterations was performed to cluster the TCGA-KIRC samples. The
number of clusters was set as 2 to 10 and the average contour width
of the common member matrix was determined using the “NMF” R
package. The minimum number of each subset was set as 10. Then,
the optimal number of clusters was determined according to
cophenetic, dispersion and silhouette indexes. KM survival curve
was used to explore the difference of OS between the different
molecular subtypes. Besides, the difference in mRNA expression of
IRF family members between the different molecular subtypes was
analyzed. Differentially expressed genes (DEGs) between different
molecular subtypes were identified using the “limma” R package
with the threshold of FDR< 0.05 and |log,FC| > 1.

Gene set variation analysis (GSVA) and
functional enrichment analysis

GSVA was applied to explore the difference in biological
pathways between the different molecular subtypes through
“GSVA” R package. The gene sets of “c2.cp.kegg.v2022.
1.Hs.symbols.gmt” were obtained from the MSigDB database.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were performed
with the “clusterprofiler”, “org.Hs.eg.db”, “enrichplot” and
“circlize” R packages. The enrichment categories were considered
as statistically significant if a false discovery rate (FDR)< 0.05.

Construction and validation of an IRFs-
related prognostic model

Subsequently, the prognostic-related DEGs were identified by
univariate Cox regression analysis based on the TCGA-KIRC
cohort (p<0.01). To avoid the overfitting risk, least absolute
shrinkage and selection operator (LASSO) Cox regression analysis
was performed to narrow down the candidate genes using the
“glmnet” R package. Finally, multivariate Cox regression analysis
was conducted to determine the target genes for constructing an
IRFs-related prognostic model. The risk score was calculated as
follows: risk score = i Expi * coefi(where n, Expi and coefi represent
the number of gen?s, the expression of each gene, and risk
coefficient of each gene, respectively). According to the median
value of the risk score, patients were divided into the high-risk and
low-risk groups. Survival analysis was conducted to explore
differences in the OS between the high-risk and low-risk groups.
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Additionally, time-dependent ROC curve using “timeROC” R
package was plotted, and the 1-, 3- and 5-year AUCs were
calculated to evaluate the sensitivity and specificity of the
prognostic model. PCA and t-distributed stochastic neighbor
embedding (t-SNE) were performed to explore the distribution of
the two risk groups. The E-MTAB-1980 cohort was used as an
external independent cohort to validate the prognostic model.

Furthermore, we evaluated the relationships between the risk
score and clinical characteristics. Univariate and multivariate Cox
regression analyses were used to evaluate whether the risk score
could serve as an independent prognostic biomarker. A nomogram
combining the risk score and clinical characteristics (age, gender
and stage) was constructed to predict the 1-, 3- and 5-year OS of
ccRCC patients. To evaluate the predictive accuracy of the
nomogram, the calibration curve and concordance index (C-
index) curve were plotted. Decision curve analysis (DCA) was
performed to evaluate the clinical utility and net benefit of
the nomogram.

Evaluation of immune characteristics

To explore the immune status in ccRCC, the ESTIMATE
algorithm was used to calculate the stromal score and immune
score of each sample. The abundance of 22 immune cells was
estimated using the CIBERSORT algorithm. The infiltration levels
of 16 immune cells and activity scores of 13 immune-related
pathways were calculated by the single sample gene set
enrichment analysis (ssGSEA). The cancer immunity cycle
including seven steps could reflect anticancer immune response in
tumor microenvironment (TME) (20). Therefore, we compared the
differences in the immune activity scores of the seven steps between
the high-risk and low-risk groups based on the Tracking Tumor
Immunophenotype (TIP; http://biocc.hrbmu.edu.cn/TIP/index.jsp)
database. Furthermore, tumor mutation burden (TMB) of each
patient in the TCGA-KIRC cohort was calculated. The difference in
TMB between the high-risk and low-risk groups was compared, and
the correlation between the risk score and TMB was also analyzed.

Assessment of immunotherapy response

To evaluate the immunotherapy response between the high-risk
and low-risk groups, the tumor immune dysfunction and exclusion
(TIDE; http://tide.dfci.atherard.edu/) was used to calculate the
TIDE score of each patient according to myeloid-derived
suppressor cell (MDSC), macrophage M2, T cell Dysfucntion and
Exclusion (21). Moreover, the T-cell inflammatory signature (TIS)
score was calculated based on the mean value of a log2-scaled
normalized expression of 18 signature genes (22). The ROC curve
was conducted to compare the predictive ability of risk model,
TIDE and TIS using “timeROC” R package.
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Drug sensitivity analysis

Based on the Genomics of Drug Sensitivity in Cancer (GDSC;
https://www.cancerrxgene.org/) database, the half-maximal
inhibitory concentration (IC50) of chemotherapeutic drugs was
estimated using the “oncoPredict” R package. Thereafter, the
difference in IC50 between the high-risk and low-risk groups was
analyzed by Wilcoxon signed-rank test.

RNA extraction and quantitative real-time
polymerase chain reaction (QRT-PCR)

20 pairs of ccRCC tissues and adjacent normal tissues were
collected and stored at -80°C for qRT-PCR. Total RNA was
extracted from 20 pairs of ccRCC tissues and adjacent normal
tissues using TRIzol (TaKaRa, Japan) in accordance with the
manufacturer’s instructions. The T100 Thermal Cycler (Bio-Rad,
USA) was used to reverse-transcribe RNA into ¢cDNA. qPCR
reactions were performed using Fast Start Universal SYBR Green
Master (Roche, Switzerland) in the LightCycler 480 (Roche,
Switzerland). The qPCR conditions were as follows: (1) 30 s at
95°C; (2) 5 s at 95°C, and 30 s at 60°C for 45 cycles; and (3) melt
curve analysis. The sequences of primers are shown in
Supplementary Table SI. The relative mRNA expression levels of

IRF family members were calculated by the 224" method.

Immunohistochemistry (IHC)

In addition, ccRCC tissues and adjacent normal tissues were
fixed in formalin and embedded in paraffin for IHC analysis. Tissue
sections (4 um in thickness) were cut from the clinical samples
(ccRCC tissues and normal tissues). The sections were placed in an
oven at 72°C for two hours to prevent the tissues from falling out.
Then, the sections were deparaffinized with xylene, rehydrated with
ethanol and placed in sodium citrate buffer in a pressure cooker for
antigen retrieval. Next, the sections were immersed into 3%
hydrogen peroxide solution for 4 min at room temperature to
inactivate endogenous peroxidase, and then they were rinsed in
phosphate-buffered saline (PBS). The sections were incubated with
primary antibodies against IRF1 (Abclonal, Wuhan, China), IRF2
(Abclonal), IRF3 (Abclonal), IRF4 (Abcam, Cambridge, UK), IRF5
(Abclonal), IRF6 (HUABIO, Hangzhou, China), IRF7 (Proteintech,
Wuhan, China), IRF8 (Abcam) and IRF9 (Proteintech) at 4°C
overnight. Then, the sections were incubated with secondary
antibodies at room temperature for 40 min. Subsequently, the
sections were stained with 3,3’-diaminobenzidine (DAB) and
counterstained with hematoxylin. We examined three fields of
view (200x) selected randomly from each section. The average
optical density (AOD) value of each image was measured by
Image ] software, and the difference in AOD value between
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ccRCC tissues and normal tissues was compared using
Wilcoxon test.

Results

Multi-omics landscape of IRF family
members in ccRCC

Based on the TCGA-KIRC dataset, the mRNA expression levels
of IRF1/2/3/4/5/7/8/9 in 539 ccRCC samples were significantly
higher than those in 72 normal samples, whereas the mRNA
expression level of IRF6 in 539 ccRCC samples was significantly
lower than that in 72 normal samples (Figure 1A). Moreover, the
mRNA expression trends of the IRF family members, except for
IRF5, in paired samples were consistent with those in non-paired
samples (Supplementary Figure S1). The result in the GEO dataset
showed that the expression levels of IRF1/2/3/4/5/7/8/9 in ccRCC
samples were significantly upregulated compared with those in the
normal samples, whereas the expression level of IRF6 in ccRCC
samples was significantly downregulated compared with that in the
normal samples (Figure 1B). On basis of the scRNA-seq data, we
further validated the expression of the IRF family members in
different types of cells in the TME. Eight cell clusters, namely

o Endotheial_cells
© Macrophage

© Monocyte

© Tissue_stem_cells
o Toells

o Hepatocytes

o Epithelal_oells

o DC

FIGURE 1
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endothelial cells, macrophage, monocyte, tissue stem cells, T cells,
hepatocytes, epithelial cells and DC, were identified (Figure 1C) and
the expression levels of the IRF family members in different types of
cell clusters were shown in Figure 1D. Furthermore, we found that
the protein levels of IRF2/3/4/7/8/9 in ccRCC samples were higher
than those in the normal samples, while the protein level of IRF6 in
ccRCC samples was lower than that in the normal samples
(Supplementary Figure S2). The incidence of somatic mutation
and CNVs of IRFs were also estimated. Among the 336 samples,
only 5 samples (1.49%) had mutations in IRF family members
(Figure 2A). We also found IRF1 and IRF9 had copy number
amplification, while IRF2 had copy number deletion (Figure 2B).
The location of CNV alterations of IRF family members on the
chromosomes were shown in Figure 2C. A correlation network of
IRF family members was constructed to show the whole landscapes
of their interactions and prognostic values (Figure 2D). KM survival
curves showed that the high expression of IRF1 (p = 0.049), IRF3
(p< 0.001), IRF4 (p< 0.001), IRF5 (p< 0.001), IRF7 (p< 0.001) and
IRF9 (p< 0.001), and the low expression of IRF2 (p = 0.049) and
IRF6 (p< 0.001) were significantly associated with poor OS
(Supplementary Figure S3). We also found that IRF1, IRF3, IRF4,
IRF5 and IRF7 were significantly higher in tumor stage III/IV or
grade 3/4 compared with tumor stage I/II or grade 1/2, whereas the
expression level of IRF6 was lower in tumor stage III/IV or grade 3/
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4 (Supplementary Figure S4). These findings suggested that IRF
family members might serve an important role in the oncogenesis
and progression of ccRCC. Subsequently, multivariate Cox
regression analysis identified that IRF9 (HR: 1.174; 95% CI:
1.051-1.311; p = 0.004) was an independent prognostic risk factor
(Supplementary Figures S5A, B). ROC curve revealed that IRF9
(AUC = 0.826) had good diagnostic value for ccRCC
(Supplementary Figure S5C). Nonetheless, time-dependent ROC
curves indicated that IRF9 (1-, 3-, 5-year AUC: 0.581, 0.581 and
0.656, respectively) had low predictive capability for the OS

(Supplementary Figure S5D).

Validation of the IRF family members by
gRT-PCR and IHC

We performed qRT-PCR to examine the mRNA expression
levels of the IRF family members in clinical specimens. As shown in
Figure 3A, the relative mRNA expression levels of IRF1/2/3/7/8/9 in
ccRCC tissues were significantly higher than those in the normal
tissues, whereas the relative mRNA expression levels of IRF4/5/6 in
ccRCC tissues were significantly lower than those in the normal
tissues. The mRNA expression trends of the IRF family members,
except for IRF4/5, were consistent with the results of the above
bioinformatics analysis. Meanwhile, IHC was conducted to validate
the protein expression levels of the IRF family members between

Altered in 5 (1.49%) of 336 samples.

FIGURE 2
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ccRCC tissues and normal tissues (Figures 3B, C). The result
revealed that the protein levels of IRF1/2/3/7/8/9 in ccRCC tissues
were higher than those in the normal tissues, while the protein level
of IRF6 in ccRCC tissues was lower than that in the normal tissues.

Identification of IRFs-related molecular
subtypes

According to the expression profile of IRF family members,
unsupervised NMF algorithm was performed to identify novel IRF-
related molecular subtypes in ccRCC. The optimal number of the
clusters was identified as two (k =2). Consequently, the TCGA-
KIRC cohort was divided into C1 (n = 62) and C2 (n = 468)
subtypes (Figure 4A). PCA showed diverse clustering of the two
molecular subtypes (Figure 4B). Survival analysis showed that the
patients in C2 subtype had a worse OS than those in C1 subtype
(Figure 4C). The distribution of clinical characteristics between the
two molecular subtypes was illustrated in Supplementary Figure Sé.
As expected, all IRF family members showed significant differences
between the two molecular subtypes (Figure 4D). In addition,
GSVA enrichment analysis showed that C1 subtype was enriched
in Wnt signaling pathway, thyroid cancer, colorectal cancer,
regulation of autophagy and fatty acid metabolism, while C2
subtype was enriched in cytosolic DNA-sensing pathway,
cytokine-cytokine receptor interaction and primary
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immunodeficiency (Figure 4E). Simultaneously, we estimated the
differences in immune score, stromal score and immune infiltrating
cells between the two molecular subtypes. The result revealed that
immune score and stromal score in C2 subtype were significantly
higher than those in C1 subtype. Additionally, naive B cells, M2
macrophages, activated dendritic cells, resting mast cells and
eosinophils were remarkably higher in C1 subtype, whereas
plasma cells, CD8 T cells, T follicular helper cells (Tth) and T
regulatory cells (Tregs) were significantly higher in C2 subtype
(Figure 4F). These results all indicated that there was a significant
difference in immune microenvironment between the two
molecular subtypes.

To further explore the heterogeneity between the two molecular
subtypes, 1425 DEGs were identified with the threshold of FDR<
0.05 and [log,FC| > 1. GO and KEGG pathway enrichment analyses
for these DEGs were performed. GO analysis revealed that these
DEGs were mainly concentrated on biological processes related to
immune regulatory processes, such as positive regulation of
lymphocyte activation, B cell mediated immunity, T cell receptor
complex, and chemokine activity (Figure 4G). Moreover, KEGG
pathway analysis showed that these DEGs were mainly enriched in
cytokine-cytokine receptor interaction, Th17 cell differentiation,
Th1 and Th2 cell differentiation, T cell receptor signaling pathway,
TNF signaling pathway, NF-xB signaling pathway, and PD-LI
expression and PD-1 checkpoint pathway in cancer (Figure 4H).
Hence, it is supposed that IRFs might be closely involved in
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regulating immune cells and immune responses in the TME
of ccRCC.

Construction and validation of an IRFs-
related prognostic model

By performing univariate Cox regression analysis, 421
prognostic-related DEGs were identified based on TCGA-KIRC
cohort (Supplementary Table S2). To avoid overfitting risk and
narrow down the range of candidate genes, LASSO Cox regression
analysis was conducted to further filter out 19 candidate genes
(Figure 5A). Finally, 9 genes (NPNT, BCL3, KISS1, PABPCIL,
DBH-ASI1, PYCRI1, BACE2, MELTF, and TOX3) were retained to
construct an IRFs-related prognostic model using the multivariate
Cox regression analysis (Figure 5B). The risk score of each patient in
both TCGA-KIRC and E-MATB-1980 cohorts was calculated using
the following formula: risk score = expression of NPNT*(-0.12142)
+ expression of BCL3*(0.278869) + expression of KISS1*(0.3112) +
expression of PABPC1L*(0.193679) + expression of DBH-ASI*
(0.225393) + expression of PYCRI1*(0.156245) + expression of
BACE2*(0.208868) + expression of MELTF*(0.155669) +
expression of TOX3*(-0.21914). Then, we examined the
expression levels of the nine genes based on the TCGA-KIRC
cohort and found that the expression levels of BCL3, PABPCIL
and PYCRI in ¢ccRCC samples were higher than those in normal
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samples, while the expression levels of NPNT, BACE2, MELTF and
TOX3 in ccRCC samples were lower than those in normal
samples (Figure 5C).

Patients were stratified into low-risk and high-risk groups
according to the median value of risk score. PCA and ¢-SNE
revealed that patients in the two risk groups were distributed in
diverse directions in both TCGA-KIRC and E-MTAB-1980
cohorts (Supplementary Figures S7TA-D). Additionally, there
were remarkably differences in expression levels of IRF1/3/4/5/
6/7/9 between the high-risk and low-risk groups
(Supplementary Figure S7E). Meanwhile, we found that IRF
family members were positively or negatively correlated with
risk score and target genes in the risk model (Figure 5D).
Survival analysis indicated that the patients in the low-risk
group had a better OS than those in the high-risk group whether
in the TCGA-KIRC (Figure 5E) or E-MTAB-1980 cohorts
(Figure 5F). Furthermore, time-dependent ROC curves were
plotted to explore the predictive capability of the prognostic
model. The 1-, 3- and 5-year AUCs in TCGA-KIRC cohort were
0.807, 0.776 and 0.809, respectively (Figure 5G). Similarly, the
1-, 3- and 5-year AUCs in E-MTAB-1980 cohort were 0.773,
0.807 and 0.867, respectively (Figure 5H).
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Correlation between risk score and clinical
characteristics

To evaluate the independent prognostic value of the IRFs-
related prognostic model, univariate and multivariate Cox
regression analyses were performed in both TGCA-KIRC and E-
MTAB-1980 cohorts. Univariate Cox regression analysis revealed
that the risk score in both the TCGA-KIRC (Figure 6A; HR = 1.127,
95% CI:1.100-1.154, p< 0.001) and E-MTAB-1980 (Figure 6B; HR =
1.559, 95% CI:1.306-1.860, p< 0.001) cohorts was significantly
associated with OS. After adjusting for confounding factors by
multivariate Cox regression analysis, the risk score was confirmed
to be an independent prognostic indicator in ccRCC patients
(TCGA-KIRC: Figure 6C, HR = 1.098, 95% CI: 1.066-1.130, p<
0.001; E-MTAB-1980: Figure 6D, HR = 1.251, 95% CI: 1.024-1.528,
p = 0.028). According to the TCGA-KIRC cohort, the relationships
between clinical characteristics and risk score were explored, and
the result revealed a significant difference in age, grade and TNM
stage (Figure 6E). Furthermore, Figure 6F showed that there were
more ccRCC patients with stage I-II in the low-risk group, but there
were more ccRCC patients with stage III-IV in the high-risk group
(p< 0.001). Besides, the C-index and ROC curve were conducted to
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Construction and validation of an IRFs-related prognostic model. (A) The LASSO Cox regression analysis was performed to filter out the candidate
genes. (B) 9 genes were retained to construct a prognostic model using the multivariate Cox regression analysis. (C) The mRNA expression levels of
the nine genes between ccRCC samples and normal samples in the TCGA-KIRC dataset. (D) Correlations between IRF family members and risk
score. (E, F) KM curves of OS between the low- and high-risk groups in TCGA-KIRC and E-MTAB-1980 datasets. (G, H) ROC curves of the IRFs-
related prognostic model in predicting the 1-, 3- and 5-year OS in the TCGA-KIRC and E-MTAB-1980 datasets. * p<0.05, ** p<0.01, *** p<0.001.

evaluate the predictive performance of the risk model. We found
that the C-index of the risk score was higher than those of other
clinical characteristics (Figure 7D), suggesting the risk score could
better predict the prognosis of ccRCC patients. Similarly, ROC
curves also revealed that the AUC of the risk score was higher than
those of other clinical characteristics, indicating that the risk score
had higher sensitivity and specificity in predicting prognosis of
ccRCC patients (Figures 7A-C). As reported, the robust predictive
power of a ClearCode34 model has been validated in clinical
cohorts (23, 24). We performed the 1-, 3-, and 5-year ROC
curves of the ClearCode34 model (Figure 7E), and found that the
1-, 3-, and 5-year AUCs of IRFs-related risk model were higher than
those of the ClearCode34 model, indicating that IRFs-related risk
model was superior to the ClearCode34 model in predicting the
prognosis of ccRCC.

Construction and evaluation of the
prognostic nomogram

A nomogram scoring system comprising age, gender, stage and
risk score was constructed to predict the 1-, 3- and 5-year OS of
ccRCC patients based on the TCGA-KIRC cohort (Figure 7G). The
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excellent consistency of the calibration curve suggested that the
nomogram had a high accuracy to predict the 1-, 3- and 5-year OS
in ccRCC patients (Figure 7F). ROC curves revealed that the 1-, 3-
and 5-year AUCs of the nomogram were 0.866, 0.822 and 0.793,
indicating the nomogram showed satisfactory predictive ability,
which was superior to other clinical characteristics (Supplementary
Figures S8A-C). Furthermore, DCA revealed that the nomogram
had better net benefit than other clinical characteristics (Figure 7H).

Evaluation of immune characteristics and
immunotherapeutic response

To further explore the correlation between immune landscape
and the risk score, the ESTIMATE algorithm was used to calculate
the immune score, stromal score and ESTIMATE score. The high-
risk group had a higher ESTIMATE score and immune score than
the low-risk group (Figure 8A), indicating that ccRCC patients in
the high-risk group might present more active immune status.
Subsequently, the ssGSEA was used to explore the infiltration
levels of 16 immune cells and activity scores of 13 immune-
related pathways between the two risk groups. We found that the
high-risk group had higher infiltration levels of CD8" T cell, CD4"
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T cell, macrophages, T helper (Th) cells, Tth, Type 1 T helper (Th1)
cells and Type 2 T helper (Th2) cells, whereas the low-risk group
had higher infiltration levels of immature dendritic cells (iDCs) and
mast cells (Figure 8B). Moreover, the activity scores of APC co-
stimulation, CCR, check point, cytolytic activity, inflammation
promoting, parainflammation, T cell co-inhibition, T cell co-
stimulation and type I IFN response were higher in the high-risk
group, whereas the activity score of type II IFN response was lower
in the high-risk group (Figure 8B). Thorsson et al. (25) have
identified six cancer immune subtypes (IS) including IS1 (wound
healing), IS2 (IFN-y dominant), IS3 (inflammatory), 1S4
(Iymphocyte depleted), IS5 (immunologically quiet), and IS6
(TGF-B dominant). As shown in Supplementary Figure 8D, there
was significant difference in immune subtypes between the two risk
groups and there were more patients with IS3 immune subtype in
both the high-risk and low-risk groups (p< 0.001). To further
explore the activity of immune cells in ccRCC, we calculated the
immune activity score of each step based on TIP database. We
discovered that the immune activity scores of most steps in the
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high-risk group were remarkably higher than those in the low-risk
group (Figure 8D). Furthermore, we found that the high-risk group
presented a more extensive TMB level than the low-risk group, and
TMB level was positively associated with the risk score (Figure 8C).
However, clinical researches have demonstrated that TMB could
not predict the therapeutic response to ICIs in ¢ccRCC (26, 27).

To evaluate the value of the risk model in immunotherapy, the
relationships between risk score and TIDE, T-cell dysfunction, T-
cell exclusion score and MSI score were explored. The result showed
that TIDE score in the high-risk group was higher than that in the
low-risk group, indicating patients in the low-risk group were more
likely to benefit from ICIs therapy than those in the high-risk group
(Figure 9A). Besides, we found that high-risk group showed a
higher T-cell dysfunction and lower MSI score than low-risk
group (Figures 9B-D). Meanwhile, ROC curve showed that the
AUC of IRF-related risk model was remarkably higher than that of
TIS and TIDE (Figure 9E), which suggested that the risk model
displayed better predictive value for prognosis in ccRCC than TIS
and TIDE.
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Drug sensitivity analysis

To explore the correlation between the risk score and response
to targeted drugs of ccRCC, we compared the differences in IC50 of
these drugs between the high-risk and low-risk groups. We
observed that the IC50 of axitinib, sorafenib, dasatinib, and
rapamycin in the high-risk group were lower than those in the
low-risk group, while the IC50 of erlotinib and gefitinib in the high-
risk group were higher than those in the low-risk group (Figure 9F).
Thus, we proposed that IRFs-related risk model could serve as a
potential predictive factor for the sensitivity of targeted drugs.

Discussion

ccRCC is a heterogeneous tumor with high infiltration levels of
immune cells, high aggressiveness and poor prognosis (28, 29).
Intratumor heterogeneity in ccRCC is considered to be related to
patterns of metastatic spread and prognosis, which makes it
complex to predict prognosis and determine the appropriate
therapeutic strategies (30). Moreover, the heterogeneity of tumor
microenvironment (TME) might be responsible for the distinct
therapeutic responses to ICIs in ccRCC patients (10). Cumulative
evidences showed that IRFs participated in regulating immune cells
and immune-related pathways in cancers (11), which suggested that
IRFs might play an essential role in TME. Hence, identifying IRFs-
related risk model is naturally significant to stratify ccRCC patient
heterogeneity, predict prognosis and develop the individualized
immunotherapeutic strategies.

Herein, multi-omic analysis of IRF family members in ccRCC
indicated that IRFs might play an important role in oncogenesis and
progression of ccRCC. Subsequently, the NMF algorithm was used
to classify ccRCC patients into two distinct molecular subtypes
based on the expression profile of IRF family members. We
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discovered that the patients in C2 subtype showed a worse OS
than those in Cl subtype. In addition, there were differences in
immune score, stromal score and abundance of various immune
cells between the two molecular subtypes. Furthermore, GO and
KEGG pathway enrichment analyses showed enrichment of
immune-related pathways, such as positive regulation of
lymphocyte activation, B cell mediated immunity, chemokine
activity, cytokine-cytokine receptor interaction, Th17 cell
differentiation, Thl and Th2 cell differentiation, T cell receptor
signaling pathway, TNF signaling pathway, NF-xB signaling
pathway, and PD-LI expression and PD-1 checkpoint pathway in
cancer. It was evidenced that regulatory B cells could attenuate
antitumor immune responses by suppressing the T-cell immune
response (31). Cytokines and chemokines were found to play a
crucial role in cancer-related inflammation and immune escape
(32). Qu et al. revealed that the TNF-o/TNFR2 pathway was
activated to enhance the immunosuppressive phenotype and
function of Tregs in TME of gastric cancer (33). Overexpression
of miR-210-3p could promote epithelial-mesenchymal transition,
invasion, migration and bone metastasis in prostate cancer by
activating NF-xB signaling pathway (34). IFNy could promote
tumor immune escape by regulating the PD-L1 expression via the
JAK/STAT and PI3K-AKT signaling pathways (35). Taken
together, it is reasonable to propose that IRFs were significantly
involved in oncogenesis and progression of ccRCC through
regulating immune responses and/or immune-related pathways.
We identified 9 target genes (NPNT, BCL3, KISS1, PABPCIL,
DBH-AS1, PYCR1, BACE2, MELTF, and TOX3) to construct an
effective and robust prognostic model in the TCGA-KIRC cohort,
and validated the performance of the prognostic model in the E-
MTAB-1980 cohort. Some target genes in the prognostic model
have been explored in ccRCC. For instance, Braga et al. revealed
that p50 together with Bcl-3 played an important role in the
regulation of gene transcription in RCC (36). The invasiveness
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and colonized ability in RCC cells were inhibited through the
activation of KISS1/KISSIR signaling by honokiol (37).
Bioinformatic analysis showed that PYCRI may contribute to
create an immunosuppressive microenvironment in the TME,
and thus it could be as potential target in the immunotherapy for
ccRCC (38). Jiang et al. found that TOX3 overexpression could
inhibit the epithelial-mesenchymal transition (EMT) to reduce cell
migration and invasion via transcriptionally repressing SNAI1 and
SNAI2 in ccRCC cells (39). However, the other genes were revealed
for the first time, which remains to be further explored in ccRCC.
Survival analysis demonstrated that patients in the low-risk group
had a remarkably better prognosis. Multivariate Cox regression
analysis indicated that the risk model was an independent
prognostic indicator. Moreover, IRFs-related risk model was
superior to the ClearCode34 model in predicting the prognosis.
To improve the predictive performance of the risk model, we then
constructed a nomogram comprising risk score and clinical
characteristics to accurately predict prognosis for ccRCC, which
was superior to conventional clinical characteristics.

The ccRCC is reported to be one of the cancers with highly
immune infiltration by pan-cancer analysis (40). In the TME,
immune cells serve a critical role in cancer growth, invasion,
migration and regulating anticancer immunity (41). Recent
studies revealed that high infiltration of CD8" T cells was
observed in ccRCC, which was closely correlated with the poor
prognosis (42, 43). In addition, overexpression of immune escape
markers and enhanced the infiltration levels of immunosuppressive
cells were related to the high infiltration of CD8" T cells in ccRCC
(44, 45). Similarly, it was evidenced that the infiltration of Tregs and
Tth in ccRCC indicated a poor prognosis (46, 47). Moreover, high
infiltration of tumor-associated macrophages (TAMs) correlated
with the poor prognosis and tumor metastasis of cancers (48, 49).
Senbabaoglu et al. found that the infiltration of mast cells was
significantly negatively associated with OS and progression-free
survival (PFS) in ccRCC (46). Consistent with these studies, we
discovered that high infiltration of CD8" T cells, macrophages and
Tth but low infiltration of mast cells in the high-risk group were
associated with a worse prognosis. Interestingly, we also found
higher activity scores of inflammation promoting and type I IFN
response were in the high-risk group. Type I IFNs could be induced
by IRF1/3/5/7/8 through Toll-like receptor (TLR) signaling and
c¢GAS-STING pathways (50, 51). Meanwhile, evidences showed that
type I IFNs offered proinflammatory mediators that contribute to
tumor progression and increased negative regulatory cells and
factors to promote immune escape (52). However, patients in the
high-risk group presented lower activity of type II IFN response and
showed higher expression of IRF1, which seemed to contradict the
theory that activation of IFN-y can induce IRF1 expression (51). In
fact, IRF1 transcription can be driven not only by IFN-y but also by
proinflammatory NF-xB (51, 53). Previous studies showed that the
excessive activation of NF-kB was closely associated with increased
resistance to chemotherapy or cytokine therapy and a worse
prognosis in ¢ccRCC patients (54). Combined with KEGG
enrichment analysis showing that NF-kB signaling pathway had a
close relationship with IRFs-related molecular subtypes, it is
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supposed that NF-kB rather than IFN-y played a major role in
the regulation of IRF1 expression in ccRCC patients with high-risk.
Additionally, IRF4 expression was excessively elevated in exhausted
T cells that reduced IFN-y production, which was in accordance
with our results (55). To summarize, the reciprocal crosstalk
between IRFs and IFNs might be responsible for the immune
evasion and poor outcome in ccRCC patients. Furthermore, we
also found that patients in high-risk group had higher immune
scores and ESTIMATE scores. In accordance with the above
findings, we believed that IRFs-related risk model could be an
effective indicator for predicting prognosis and reflecting immune
cells infiltration in the TME of ccRCC.

In recent years, ICIs have been widely used in immunotherapy
for ccRCC. However, ccRCC patients exhibited diverse therapeutic
responses to ICIs, which might be due to the heterogeneity of TME
(10). Thus, it is extremely important to predict which patients can
respond to ICIs. TIDE scores were associated with the potential of
anticancer immune evasion, thereby predicting the therapeutic
response to anti-PD1 and anti-CTLA4 (21). Moreover, high MSI
showed a better response to immunotherapy (56). Our analysis
showed that patients in low-risk group had lower TIDE score and
T-cell dysfunction but a higher MSI than those in high-risk group,
indicating that patients in low-risk group had a better response to
ICIs. At the moment the combination of immunotherapy with
targeted therapy have been deemed to be the first-line treatment for
advanced ccRCC (57, 58). Thus, we next explored the response to
targeted drugs in different risk groups. As expected, patients in
different risk groups showed diverse drug sensitivity to axitinib,
sorafenib, gefitinib, erlotinib, dasatinib and rapamycin. To
summarize, the IRF-related risk model may be a valid tool to
evaluate the response to both immunotherapy and targeted
therapy, which can promote the development of personalized
therapy for ccRCC patients.

In conclusion, we explored the different molecular subtypes of
ccRCC based on IRF family members and evaluated the clinical
prognosis, immune cell infiltration and signaling pathways of
different molecular subtypes. Furthermore, we developed a
robust and effective risk model to predict prognosis and
responses to ICIs and targeted drugs and reflect the TME
characteristics in ccRCC. These findings might provide new
insights into personalized and precise therapeutic strategies.
However, there were several limitations in our study. First, the
public TCGA-KIRC and E-MTAB-1980 retrospective cohorts
were used to construct and validate the risk model. Prospective
research with a larger sample size is required to verify the clinical
performance of the risk model. Besides, more functional
experiments are needed to explore the potential biological
mechanisms of IRFs in ccRCC.
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and serves as a predictor for
survival and Sunitinib response
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Background: Chromosomal instability (CIN) is a cancer hallmark and it is difficult
to directly measure its phenotype, while a CIN25 gene signature was established
to do so in several cancer types. However, it is currently unclear whether there
exists this signature in clear cell renal cell carcinoma (ccRCC), and if so, which
biological and clinical implications it has.

Methods: Transcriptomic profiling was performed on 10 ccRCC tumors and
matched renal non-tumorous tissues (NTs) for CIN25 signature analyses. TCGA
and E-MBAT1980 ccRCC cohorts were analyzed for the presence of CIN25
signature, CIN25 score-based ccRCC classification, and association with
molecular alterations and overall or progression-free survival (OS or PFS).
IMmotion150 and 151 cohorts of ccRCC patients treated with Sunitinib were
analyzed for the CIN25 impact on Sunitinib response and survival.

Results: The transcriptomic analysis of 10 patient samples showed robustly
upregulated expression of the CIN25 signature genes in ccRCC tumors, which
were further confirmed in TCGA and E-MBAT1980 ccRCC cohorts. Based on
their expression heterogeneity, ccRCC tumors were categorized into CIN25-C1
(low) and C2 (high) subtypes. The CIN25-C2 subtype was associated with
significantly shorter patient OS and PFS, and characterized by increased
telomerase activity, proliferation, stemness and EMT. The CIN25 signature
reflects not only a CIN phenotype, but also levels of the whole genomic
instability including mutation burden, microsatellite instability and homologous
recombination deficiency (HRD). Importantly, the CIN25 score was significantly
associated with Sunitinib response and survival. In IMmotion151 cohort, patients
in the CIN25-C1 group exhibited 2-fold higher remission rate than those in the
CIN25-C2 group (P = 0.0004) and median PFS in these two groups was 11.2 and
5.6 months, respectively (P = 7.78E-08). Similar results were obtained from the
IMmotion150 cohort analysis. Higher EZH2 expression and poor angiogenesis,
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well characterized factors leading to Sunitinib resistance, were enriched in the

CIN25-C2 tumors.

Conclusion: The CIN25 signature identified in ccRCC serves as a biomarker for
CIN and other genome instability phenotypes and predicts patient outcomes
and response to Sunitinib treatment. A PCR quantification is enough for the
CIN25-based ccRCC classification, which holds great promises in clinical
routine application.

KEYWORDS

ccRCC, chromosomal instability, CIN25, prognosis, Sunitinib, telomere

Introduction

Sporadic clear cell renal cell carcinoma (ccRCC) is the major
subtype of renal cell carcinoma (RCC) (up to 80% of all RCCs) and
originates from the epithelial cells in the nephron (1-3). Most
patients are diagnosed early when tumors are localized, and thus
successfully removed via nephrectomy, but the disease will
eventually recur in about 30% of them post-surgery (2, 4).
Clinical and pathological variables have been traditionally applied
to stratify recurrence risk and survival, however, there exist certain
limitations (4). To further improve the robustness of ccRCC
prognostication, molecular biomarkers, such as multigene
expression signature models, have recently been established to
make molecular classifications or to combine with clinic-
pathological factors for stratifications (5-11). Despite so, a
substantial gap remains between all the models currently applied
in the clinic and the prediction accuracy. Therefore, looking for
more reliable prognostic factors is an unmet demand.

Metastasis readily occurs in approximately 1/3 of ccRCC patients
at diagnosis, which requires adjuvant treatments (4, 12, 13). These
same interventions are also requisite for patients with recurrent
ccRCC or even patients with localized ccRCC (12, 14, 15).
However, ¢cRCC tumors are intrinsically insensitive to
conventional chemo- and radio-therapies (12, 14). Fortunately,
over the last decades, targeted therapies, immunotherapies, and
other multi-therapeutic modalities have been developed, which has
revolutionized ccRCC treatment landscapes (14). For instance,
immune checkpoint inhibitors (ICIs) are used to target immune
checkpoint proteins PD-1/PDL-1 and/or CTLA4, thereby boosting
anti-cancer immune response and showing a great efficacy in ccRCC
(14, 16). Targeted therapeutic drugs, which mainly includes tyrosine
kinase receptor inhibitors (TKRis), such as the small molecule
Sunitinib, have been approved for the first-line treatment of
metastatic ccRCC (13-15, 17). However, subsets of patients do not
respond or develop resistance to ICI and/or TKRi treatments (6, 13-
15, 17). Distinguishing responders from non-responders should be
clinically important for personalized interventions of ccRCC.

It has long been documented that aneuploidies, or somatic copy
number alterations (SCNAs), are associated with ccRCC outcomes,
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including recurrence, and metastasis, survival and drug resistance
(4, 18-21). Therefore, aneuploidies and SCNAs have been used as
genomic prognostic biomarkers in ccRCC (19-21). Mechanistically,
aneuploidies or SCNAs are primarily driven by chromosomal
instability (CIN), the cancer hallmark event resulting from
persistent high-rates of chromosome mis-segregations during
mitosis (22-25). The direct assessment of the CIN phenotype is
difficult, and Carter et al. identified a 25 gene expression signature
of CIN, so-called CIN25, for the CIN measurement (22). The genes
included in the CIN25 are involved in spindle assembly checkpoint
signaling, proliferation, and DNA replication and repair
(Figure 1A) (22). By calculating their expression score, the
authors showed a strong correlation between the CIN25 score
and levels of CIN (22). The CIN25 was further observed to serve
as a prognostic factor in breast, lung and several other cancers (22,
26). It is currently unclear whether this CIN25 signature is present
in ccRCC, and if so, whether it has any clinical implications.
Moreover, because CIN plays an important part in the cancer
evolution, progression, and drug resistance (23), it is warranted to
elucidate the relationship between CIN25 and targeted therapies of
ccRCC. The present study is thus designed to address these issues.
To this end, we performed the transcriptomic profiling in ccRCC
tumors together with their matched renal tissues and analyzed
TCGA and other cohorts of ccRCC.

Materials and methods

Primary ccRCC tumor specimens and their
matched renal noncancerous tissues

Nineteen patients with ccRCC, diagnosed at Qilu Hospital of
Shandong University, were randomly recruited and their clinical
information was listed in Table S1. Tumors and their matched NT
specimens were collected from these patients who underwent
nephrectomy. All the samples were stored in nitrogen tanks until
use. The study was approved by the Institutional review board of
Qilu Hospital of Shandong University (#KYLL-2021(KS)-192) and
the signed informed consent was obtained from all patients.
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FIGURE 1

Upregulation of CIN25 genes in ccRCC tumors. (A) The CIN25 signature genes and their function. (B) Upregulated expression of 25 genes included
in the CIN25 signature in primary ccRCC tumors. Tumors and matched non-tumorous tissues (NTs) from 10 patients were analyzed for
transcriptomic profile and expression levels of CIN25 genes were expressed as Transcripts Per Million (TPM) counts. (C) The heatmap showing CIN25
ssGSEA scores between 10 ccRCC tumors and their matched NTs. (D) The qPCR validation of upregulated CIN25 gene expression in primary ccRCC
tumors. Paired specimens from 9 ccRCC patients were analyzed for mRNA levels of CIN25 genes. mRNA levels of target genes were based on 2
(-=AACT) values and normalized by B-actin expression. (E) Differences in expression of 25 CIN25 signature genes between 530 ccRCC tumors and

72 NTs in the TCGA cohort. TPM was used for expression level. *, **, *** gnd **** indicate P values <0.05, 0.01, 0.001 and 0.0001, respectively.

ns, Not significant.

RNA extraction and RNA sequencing

RNA was extracted from primary tissues and cells using a
RNAfast2000 kit (Fastagen) and quality control was performed
using NanoDrop ND-1000 (Thermo Fisher Scientific). RNA
sequencing was performed on 10 paired specimens. Sequencing

libraries were generated using NEBNext" Ultra"™ RNA Library
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Prep Kit (New England Biolabs) according to the manufacturer’s
recommendation. RNA sequencing was carried out using Illumina
HiSeq 4000 sequencer at Metware Biotechnology (Wuhan, China).
Paired-end reads were quality controlled by Q30 and Cutadapt
software (v 1.9.3) was used to remove low-quality reads and 3’
adaptor-trimming. Hisat2 (v 2.0.4) was further used to align clean
reads from sequencing, and sequencing depth and gene length were
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adjusted by Fragments Per Kilobase of transcript per Million (TPM)
fragments mapped. The sequencing data were deposited in the GEO
database (GSE217386).

Reverse transcription and qPCR analysis

The qPCR evaluation of CIN25 gene expression was performed
on paired specimens from 9 patients with ccRCC. cDNA was
synthesized using a PrimeScriptTM RT reagent Kit (TAKARA).
qPCR was carried out using SYBR Green of RT Master Mix
(TAKARA) to assess mRNA levels of target genes based on 2
(—AACT) values. B-actin mRNA levels were used as the internal
control for normalization of target gene expression. All the primers
were synthesized at Wuhan Genecreate Biotech (Wuhan, China)
and primer sequences are listed in Table S2.

Data collection and processing of
ccRCC tumors

The TCGA cohort of ccRCCs included 530 tumor samples with
survival information available and 72 renal NTs. Patient clinical
data were summarized in Table S3 (27). Transcriptome, mutation,
copy number variations (CNAs) and clinical-pathological data were
downloaded from https://gdc.cancer.gov/. One hundred and one
patients with ccRCC were in the E-MTAB-1980 cohort (28), and
RNA array and clinical information were downloaded from http://
www.ebi.ac.uk. Patient clinical characteristics were listed in Table
S4. For RNA sequencing data, mRNA abundances were expressed
as TPM. For array results (determined by 4x44K v2 microarray kit)
from the E-MTAB-1980 cohort, probe-set values were used to
quantify mRNA levels. ¢ccRCC patients receiving Sunitinib
treatments were contained in IMmotion150 (Table S5) (29, 30)
and IMmotion151 (Table S6) trials (31, 32). Expression differences
in CIN25-containing 25 genes were compared between ccRCC
tumors and NTs in the TCGA cohort. For RNA expression, log2
(TPM+1) based on RNA sequencing data was from https://
gdc.cancer.gov/ as stated above. Protein expression data was
obtained from Clinical Proteomic Tumor Analysis Consortium
(http://ualcan.path.uab.edu/index.html).

CIN25 signature

The CIN25 gene signature includes the following genes
responsible for spindle assembling/checkpoint, DNA damage
checkpoint and cell cycle regulation: NCAPD2, ESPL1, CDK1,
MELK, PRC1, KIF20A, TOP2A, TTK, TPX2, UBE2C, MCM?7,
MCM2, RFC4, FENI1, CDC45, FOXM1, RAD51AP1, H2AFZ,
MAD2L1, PCNA, RNASEH2A, TGIF2, CCT5, TRIP13 and
CCNB2 (22) (Figure 1A). The CIN25 score for each sample were
expressed as mean Z-scores based on the Z-normalized mRNA level
of 25 CIN-related genes above. We also calculated the CIN25 score
based on single sample gene set enrichment analysis (ssGSEA) to
confirm the accuracy of the Z-score method and other purposes.
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Copy number alterations and aneuploidy
score analysis

Somatic CNAs were downloaded from https://xenabrowser.net/.
CNA plots were made using R package ‘oncoPrint’ in
‘ComplexHeatmap’. Aneuploidy scores were the sum total of
altered (amplified or deleted) chromosome arms. TMB is defined
as the number of non-silent mutations per million bases and the data
were downloaded from https://xenabrowser.net/.

Analyses for proliferation, cancer stemness,
Epithelial-mesenchymal transition,
angiogenesis and telomerase score

Proliferation statuses were estimated using expression levels of
Ki-67 mRNA and cell cycle scores, respectively. ccRCC cell cycle,
stemness, EMT and angiogenesis signature scores were calculated
based on ssGSEA or as the median z-score of genes included in each
signature for each sample. These signatures are as follow:
Angiogenesis: VEGFA, KDR, ESM1, PECAMI1, ANGPTL4 and
CD34 (33). Cell Cycle: CDK2, CDK4, CDK6, BUB1B, CCNEl,
POLQ, AURKA, KI-67 and CCNB2 (34, 35). EMT: VIM, CDH2,
FOXC2, SNAI1, SNAI2, TWIST1, EN1, ITGB6, MMP2, MMP3,
MMP9, SOX10, GCS, CDHI, DSP and OCLN (36).

Telomere length and telomerase
activity assessments

Telomere length data in the TCGA cohort of ccRCCs were from
Bartheal et al. (37). Telomerase activity was evaluated using the
telomerase score based on expression levels of the following 10
telomerase factors: TERT, TERC, DKC1, NHP2, NOP10, TCAB1,
GARI, NVL, RUVBLI and RUVBL2 (38).

GSEA analysis

GSEA (http://www.gsea-msigdb.org/) analyses were performed
to enrich KEGG pathways and hallmarks in two CIN25 subtypes of
ccRCC tumors. P <0.05 and False discovery rate (FDR) <0.05 was
considered statistically significant.

Nomograms for survival prediction

Cox regression analysis was conducted to assess the effect of the
CIN25 cluster and clinical variables on survival. Then according to
multivariate Cox regression analysis results, we constructed
predictive nomograms including CIN25 and stage to predict 1-,
3-, and 5-year OS and/or PFS). Predicted survival of the nomogram
against observed ones was plotted using the calibration curve. All
nomograms and assessments of their predicative powers were made
using R package regplot. Time-dependent Receiver Operator
Characteristic (ROC) curves were used to determine sensitivity
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and specificity of OS and PFS predictions. Time-dependent ROCs
and AUCs were made using Rpackage timeROC.

Statistical analysis

All statistical analyses were carried out using R package version
4.0.5. Wilcox and K-W sum tests were used for analysis of differences
between two groups and among multi groups, respectively.
Spearman’s Rank-Order Correlation coefficient was applied to
determine correlation coefficients r between two variables. Survival
analyses were made using log-rank test. The Survival and Survminer
packages were employed to draw Kaplan-Meier survival curves for
visualization of OS and PFS. Univariate and multivariate Cox
regression analyses were used to determine the effect (HR and 95%
CI) of various quantitative predictor variables on OS and PFS. P <
0.05 were considered as statistically significant.

Results

Robust upregulation of the CIN25
signature genes in primary ccRCC tumors

Although aneuploidies and SCNAs have been well documented
in ccRCCs, it remains unclear whether there exists the CIN25
signature as identified in other tumor types. We thus probed this
issue first. RNA sequencing was performed on primary ccRCC
tumors and their matched NTs from 10 patients who underwent
nephrectomy. Expression levels of 25 genes in the CIN25 signature
were evaluated in both tumors and NTs. As shown in Figure 1B,
tumors exhibited significantly upregulated expression of 21/25
genes. The analysis of CIN25 ssGSEA in these samples further
unraveled enhanced CIN25 levels in tumors (Figure 1C). For
validation, we did qPCR-based expression analyses of these 25
genes in paired tumors and NTs from 9 patients, and largely similar
results were obtained (Figure 1D). To confirm this finding obtained
from our small patient cohorts, we analyzed the TCGA c¢cRCC
sequencing data for their CIN25 signature expression. The
comparison between 530 tumors and 72 NTs revealed
significantly higher mRNA levels of 22/25 genes in tumors than
in NTs (Figure 1E). Protein information was available in 20 of 25
genes, and protein levels were similarly higher in tumors, which is
consistent with the transcriptomic analysis data (Figure S1).

CIN25 expression-based classification
of ccRCCs

The results above demonstrate highly upregulated expression of
almost all CIN25 genes in ccRCC tumors, however, a significant
heterogeneity was observed among them. To determine whether
ccRCC tumors could be classified based on the CIN25 expression
score, we performed consensus cluster analyses of the TCGA
cohort. Nonnegative matrix factorization clustering of CIN25
mRNA data showed consistency K = 2, indicating that a two-
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cluster classification was optimal (Figure 2A). In a total of 530
tumors, CIN25-cluster 1 (CIN25-C1, low CIN level) and cluster 2
(CIN25-C2, high CIN level) were 350 (66%) and 180 (34%),
respectively (Figure 2B). Because the CIN phenotype is
characterized by the presence of aneuploidy, we further compared
global CNAs, and calculated aneuploidy, amplified and deleted
scores between two CIN25 clusters (Figures 2C, D). Indeed, the
aneuploidy score was significantly higher in CIN25-C2 tumors
(CIN25-C1 vs CIN25-C2, P = 1.78E-04) (Figures 2C, D).
Interestingly, the amplified score was more robustly higher in the
CIN25-C2 tumors than in CIN25-C1 ones (CIN25-C1 vs CIN25-
C2, the amplified and deleted scores, P = 2.86E-18 and 4.95E-02,
respectively) (Figure 2D). Moreover, we also calculated CIN25
ssGSEA score of each tumor based on the expression of 25 genes
and observed a drastically higher CIN25 ssGSEA score in CIN25-
C2 tumors (Figure 2E). To validate the CIN25 clustering
classification of ccRCC tumors, we carried out the same analysis
of the E-MTAB1980 ccRCC cohort, and tumors were readily
categorized into two distinct CIN25 clusters, with higher CIN25
ssGSEA scores in CIN25-C2 tumors (Figures 2F, G).

Association between CIN25 subtypes and
clinic-pathological variables

We next determined the potential association between CIN25
subtypes and clinic-pathological variables in ¢ccRCC tumors. We
first examined the distribution of two clusters between two genders
and different age groups (260 and <60 years) in the TCGA cohort
and did not observe significant differences, although male patients
had a slightly higher frequency of CIN25-C2 than did females
(38.6% vs 29.4%, P = 0.055) (Figure 3A). CIN25-C2 was more
frequently observed in higher-stage (P = 5E-06) and higher-grade
tumors (P = 0.007) (Figure 3B). Very similar results were obtained
from the analysis of the E-MTAB1980 cohort (Figures 3C, D).

We further performed the same analysis of 10 ccRCC patients
whose tumors were with transcriptomic profiling. Because 10
tumors were too few to make a CIN classification, we calculated
ssGSEA score to express CIN25 levels in each tumor. The CIN25
ssGSEA score was significantly increased in higher-stage (III/IV vs
I/II, P = 0.019) and grade (III/IV vs I/II, P = 0.032) tumors
(Figure 3E), which was consistent with the result obtained from
the TCGA patient analysis.

Telomere length, telomerase and
genomic aberrations in CIN25
subtypes of ccRCC tumors

It is well established that telomere dysfunction drives CIN in
oncogenesis (39). We thus sought to determine whether telomere
length was altered in the TCGA ccRCC cohort. Telomeres were
significantly shorter in tumors than in matched NTs (Figure 4A),
but there was no statistically significant difference in telomere
length between CIN25-C1 and C2 subtypes (Figure 4A). Because
telomeric DNA is synthesized by telomerase, while telomerase
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FIGURE 2

CIN25 signature-based classification of ccRCCs. (A) Consensus clustering of ccRCC tumors according to expression of CIN25 genes. A two-cluster
classification of ccRCC tumors was optimal CIN25 signature-based clustering based on the K value from nonnegative matrix factorization. CDF:
Cumulative distribution function. (B) TCGA ccRCC tumor clustering. Tumors were categorized into two clusters: CIN25-C1 (low) and CIN25-C2
(high). (C) Global copy number alterations (CNAs) in CIN25-C1 and CIN25-C2 tumors. The plots show frequencies of gain/amplification (Red) and
deletion (Green) in 22 chromosomes. Top and bottom: CIN25-C1 and CIN25-C2, respectively. (D) Differences in the total aneuploidy score, and
amplified and deleted scores between CIN25-C1 and CIN25-C2 tumors. (E) Differences in CIN25 ssGSEA score between CIN25-C1 and CIN25-C2
tumors. (F) CIN25 signature-based clustering of ccRCC tumors in the E-MTAB1980 cohort. (G) Differences in CIN25 ssGSEA score between CIN25-
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activity is primarily governed by its catalytic component telomerase
reverse transcriptase (TERT) (40), we further compared TERT
expression and telomerase activity between CIN-C1 and C2
tumors. As shown in Figure 4B, TERT mRNA levels were
significantly higher coupled with the increased frequency of

Frontiers in Oncology

CIN-C2

1 IlTele
MCM7

H2AZ1

FEN1

BN Iccts
TRIP13
KIF20A

215

CIN-C1

CIN-C2

ssGSEA score
e o o o
N » d -

=
°

m

N

ssGSEA score
°
©

0.6

P =8.93e-61

CIN-C1 CIN-C2

P =1.40e-16

=

CIN-C1

CIN-C2

TERT copy number gain in CIN25-C2 tumors (C2 vs Cl for
TERT mRNA and copies: P = 1.84E-08, and 0.018, respectively).
Telomerase activity, as determined using telomerase score (38),
increased markedly in the CIN25-C2 tumors compared with that in
CIN25-C1 tumors (P = 2.15E-05) (Figure 4C). Moreover, there was
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FIGURE 3

Association between CIN25 subtypes and clinic-pathological
characteristics in ccRCCs. (A, B) The TCGA cohort. CIN25
subtypes were associated with stages and grades, but not age and
gender. (C, D) The E-MTAB1980 cohort. CIN25 subtypes were
associated with stages and grades but not age. More female
patients were in the CIN25-C1 group. (E) The present cohort of 10
patients. Advanced stages and grades of ccRCC tumors exhibited
significantly higher CIN25 ssGSEA scores. The CIN25 ssGSEA score
was calculated as described in the Method.

a significantly positive correlation between telomerase and CIN25
ssGSEA scores (R = 0.43, P <2.22E-16) (Figure 4C).

CIN is one subtype of genomic instability, whereas the later also
includes several other forms of genomic aberrations such as
nucleotide instability (NIN), microsatellite instability (MSI),
homologous recombination deficiency (HRD), etc. (41). Thus, we
further addressed the association of CIN25 clusters with the following
important alterations: (i) Tumor mutation burden (TMB) (P = 0.034)
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Association between CIN25 subtypes and telomere length,
telomerase and other genomic alterations in ccRCCs. The TCGA
cohort of ccRCCs were analyzed. Telomere length data were from
reference 33. (A) Telomere shortening occurred in ccRCC tumors
independently of CIN25 subtypes. Left panel: ccRCC tumors had
significantly shorter telomeres than did renal nontumorous tissues
(NTs). Right panel: Both CIN25-C1 and C2 tumors had similar
telomere length, shorter than NTs. (B) Robustly higher TERT
expression (left) and increased TERT copy numbers (right) in CIN25-
C2 tumors. (C) Left panel: Significantly higher levels of telomerase
activity, as assessed using the telomerase score in CIN25-C2
tumors. Right panel: The strong correlation between telomerase
score and CIN25 ssGSEA score in ccRCC tumors. (D—G) CIN25-C2
tumors coupled with higher levels of other types of genomic
instability. Higher tumor mutation burden (TMB) (D), intratumoral
heterogeneity (ITH) (E), homologous recombination deficiency
(HRD) (F) and microsatellite instability (MSI) (G) in CIN25-C2 tumors.

(Figure 4D). Moreover, we compared the top 10 mutated genes
between two subtypes. As expected, VHL, PBRM1, BAP1, MTOR
and SETD2 are among the top mutated genes in both subtypes,
however, significantly higher mutated frequencies of BAP1 and
SETD2 were observed in the CIN25-C2 tumors (BAP1 and SETD2:
P =0.0003 and 0.018, respectively (Figure S3). In addition, KDM5C
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mutation was more frequent in the CIN25-Cl1 tumors (P = 0.04). (ii)
Intratumor genetic heterogeneity (P = 0.01) (Figure 4E). (iii) HRD (P
= 0.0002) (Figure 4F). (iv) MSI (P = 0.00004) (Figure 4G). CIN25-C2
tumors exhibited significantly higher levels or frequencies of all the
aberrations analyzed above.

CIN25 clusters for prediction of ccRCC
patient survival

We then wanted to assess whether this CIN25 classification
system could predict patient survival. The TCGA cohort of 530
ccRCC patients was first evaluated as the discovery set. Log-rank
test analysis unravelled that those patients in the CIN25-C2 group
had significantly shorter OS and PFS, as shown by Kaplan-Meier
survival curves (P = 7.57E-06 and 4.83-07 for OS and PS,
respectively) (Figure 5A). We further performed univariate COX
regression analyses by including patient age, gender, stage, and
grade together with the CIN25 clustering system. Advanced Stages,
higher grades and CIN25-C2 were all associated with shorter OS
and PFS (Figures 5B, C). Multivariate COX regression analyses
showed that all three of them were independent prognostic factors
for shorter OS and PES (Figures 5B, C).

The E-MTAB-1980 ccRCC cohort as the validation set were
further analyzed in the same manner. There was no PFS information
available, and we only evaluated OS. Kaplan-Meier survival analysis
showed that CIN25-C2 was associated with significantly shorter OS
(P = 0.0003) (Figure 5D), and the CIN25 subtype and stages were
independent OS predictors, as assessed using univariate (Figure 5E)
and multivariate COX regression analyses (Figure 5F).

The data above consistently show that CIN25-C2 subtype and
advanced stages are independent prognostic variables for OS and/or
PFS in both TCGA and E-MTAB-1980 cohorts. We thus established
a prognostic nomogram composed of CIN25 subtypes and stages.
For the TCGA cohort, the nomograms exhibited a highly accurate
estimation of OS and PFS possibilities at 1-, 3- and 5-years (Figures
S2A, B). Similar results were obtained for OS prediction in the E-
MTAB-1980 cohort (Figure S2C). To further evaluate the sensitivity
and specificity of their prediction, we did time-dependent ROC
analyses. In the TCGA cohort, Area under ROC curves (AUCs) for
1-, 3- and 5-year OS were 0.799, 0.767 and 0.740, respectively, while
the AUCs for 1-, 3- and 5-year PFS were 0.825, 0.797 and 0.798,
respectively (Figures S2D, E). For 1-, 3- and 5-year OS in the E-
MTAB-1980 cohort, AUCs were 0.886, 0.871 and 0.838, respectively
(Figure S2F). Separate analyses of these two variables showed that
AUCs were largely between 0.6 and 0.7, between 0.7 and 0.8 for all
CIN25- and stage-based predictions of 1-, 3- and 5-year survival
(Figures S2G, H). AUCs obtained from stage-prediction were bigger
in all the estimations.

The CINZ25 cluster as a predictor for patient
response to Sunitinib treatment

Sunitinib has long been applied for advanced ccRCC treatment

as the first line drug (14), however, reliable biomarkers to predict its
efficacy or patient response are few (6, 8). We thus determined
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whether the CIN25 cluster classification could help distinguish
responders from non-responders in patients treated with Sunitinib.
Toward this end, the IMmotion151 cohort of 416 ccRCC patients
treated with Sunitinib was first analyzed as the discovery set (31, 32).
Patient response to Sunitinib was categorized into complete
remission (CR), partial remission (PR), stable disease (SD) and
progressive disease (PD), respectively. A total of 416 patients were
classified into CIN25-Cl (273 patients) and C2 (143 patients)
groups. The CR and PR (CRPR) rate was 42% and 26% in CIN25-
C1 and C2 groups, respectively (P = 0.0004) (Figure 6A). The disease
progression during the Sunitinib treatment occurred in 14.9% and
30.9% for CIN25-C1 and C2 patients, respectively. The median PFS
for C1 and C2 patients was 5.6 and 11.2 months, respectively (P =
7.78E-08; HR, 1.90 (95% CIL 145 - 2.47) (Figure 6B). We then
analyzed the IMmotion150 cohort (29, 30) to validate the findings
obtained from IMmotion151 cohort. In a total of 85 available
patients, CIN25-C1 and C2 were 58 and 27, respectively. The total
CRPR rate was 41.4% and 14.8% in CIN25-Cl and C2 groups,
respectively (P = 0.002) (Figure 6C). Almost the half of CIN25-C2
patients (48.1%) underwent progression during the treatment, while
only 13.8% of CIN25-Cl1 patients did so (Figure 6C). Higher CRPR
rates in CIN25-C1 group led to longer PFS, and the median PFS for
C1 and C2 patients was 4.4 and 9.8 months, respectively (P = 0.002;
HR, 2.13 (95% CI: 1.18 - 3.84) (Figure 6D).

Signaling pathways enriched in CIN25-C2
tumors and phenotypic association

We next performed the GSEA analysis to probe differences in
signaling pathways between two tumor groups. Figures 7A, B
showed significantly enriched KEGG and hallmark pathways in
CIN25-C2 tumors, and almost all of them are oncogenic and play
key parts in ccRCC development and progression, such as G2/M
checkpoint, E2F and MYC targets, IL6-JAK-STATS3, glycolysis,
EMT and others (Figure 7C). Consistent with these enriched
pathways, CIN25-C2 tumors had robustly strong proliferation
activity compared to CIN25-C1 tumors, as assessed using
proliferation marker Ki-67 and cell cycle score, and stemness
score (Figure 7D); furthermore, an established EMT 16 gene
signature (36) was further used to evaluate EMT between CIN25-
C1 and C2 tumors and significantly increased EMT scores were
observed in the CIN25-C2 group (Figure 7D) (P = 0.035).

Increased EZH2 expression and diminished
angiogenesis in CIN25-C2 tumors

EZH2, a histone methyltransferase catalyzing H3K27
trimethylation (H3K27me3), has been shown to promote
stemness, EMT and Sunitinib resistance in ccRCC and other
tumors (42-44). Given the results above, we set out to determine
whether EZH2 expression differed between CIN25-C1 and C2
tumors. The analysis of both TCGA and E-MTAB1980 ccRCC
cohorts showed robustly higher EZH mRNA levels in CIN25-C2
than in C1 tumors (CIN25-C1 vs C2: P = 2.21E-38 and 3.12E-06,
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FIGURE 5
The CIN25 subtypes for survival prediction in ccRCCs. (A—C) The TCGA cohort analysis and (D, E) The E-MTAB1980 cohort analysis. (A) Significantly
shorter overall and progression-free survival (OS and PFS) in the CIN25-C2 group. Left and right panel: OS and PFS, respectively. (B) Univariate and
multivariate COX regression analyses of OS for the TCGA ccRCCs. (C) Univariate and multivariate COX regression analyses of PFS for the TCGA
ccRCCs. (D) Significantly shorter OS in the CIN25-C2 group in the E-MTAB1980 cohort. (E, F) Univariate and multivariate COX regression analyses of
OS for the E-MTAB1980 cohort.

respectively) (Figure 8A). In the Sunitinib-treated IMmotion150  expression between responders and non-responders to Sunitinib.
and IMmotionl51 cohorts, similar results were obtained (CIN25-  As expected, tumors from resistant patients expressed significantly
C1 vs C2: P = 9.40E-08 and 1.71E-27 for IMmotion150 and 151,  higher levels of EZH2 than did those from responders (P = 0.021
respectively) (Figure 8B). We further compared differences in EZH2  and 0.004, respectively) (Figure 8C).
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In addition to higher EZH2 expression, poor angiogenesis is
also a well characterized predictor for Sunitinib resistance (34, 35),
and we thus analyzed the angiogenesis score in CIN25 subtypes of
ccRCC tumors. As shown in Figure 8D, a significantly lower
angiogenesis score was observed in the CIN-C2 tumors from the
IMmotion151 (CIN25-C1 vs C2: P = 9.78E-17) and IMmotion150
(P =0.0096) cohorts of ccRCC patients treated with Sunitinib. The
TCGA and E-MTAB1980 c¢cRCC analyses showed similar results,
which validated the observations above (Figure 8E).

Discussion

CIN is an important cancer hallmark (23-25). Because of the
difficulty in directly assessing a CIN phenotype, a CIN25 signature
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has been developed, and the CIN25 expression-based score system
roughly reflected levels of CIN in several cancer types (22). By
analyzing primary ccRCC tumors and TCGA c¢cRCC cohort, we
observed that expression of genes included in the CIN25 signature
was robustly upregulated but significantly heterogenous. Based on
CIN25 scores calculated from their mRNA levels, we categorized
ccRCC patients into two clusters: CIN25-C1 (CIN25-low) and
CIN25-C2 (CIN25-high), respectively. Our findings demonstrate
that the CIN25 signature is present in ccRCC and this cluster
system is useful in predicting patient outcomes and therapeutic
response to TKR inhibitors.

CIN has been shown as a key driver of chromosomal alterations
in human malignancies and primarily characterized by aneuploidy
or SCNAs (23-25). Consistent with this, we observed that CIN25-
C2 c¢cRCC tumors exhibited robustly increased aneuploidy. CIN-
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FIGURE 7

The enriched oncogenic pathways and aggressive phenotypes in the CIN25-C2 subtype of ccRCC tumors. The TCGA cohort analysis. (A, B)
Enrichments of overrepresented KEGG (A) and hallmark (B) pathways in CIN25-C2 tumors. (C) Representative enriched pathways in CIN25-C2
tumors: Cell cycle, E2F targets, EMT and IL6-JAK-STAT3. (D) Higher EMT, proliferation and stemness scores in CIN-C2 tumors.

triggered aneuploidy creates intratumour genetic heterogeneity,
thereby promoting phenotypic adaptation during cancer
evolution and progression. On the other hand, aneuploidy or
SCNAs further accelerate CIN rates. Thus, CIN and aneuploidy
affect each other, establishing positive feedback.

CIN underpins much of the intratumoural heterogeneity
observed in cancers and drives phenotypic adaptation during

Frontiers in Oncology

tumor evolution (23-25). It has been shown that the CIN
phenotype is associated with resistance to chemo- and radio-

therapies, however, it remains to be defined whether it has

impacts on targeted therapeutic drugs. Sunitinib, a TKR inhibitor,
has been applied as the first-line drug for advanced ccRCC
treatment (12-14). Clinical studies showed that the intrinsic

resistance to Sunitinib occurred in approximately 1/3 of patients,
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FIGURE 8

Differences in EZH2 expression and angiogenesis between CIN25-C1 and C2 subtypes of ccRCC tumors. (A, B) CIN25-C2 tumors expressed significantly
higher levels of EZH2 mRNA. (A) TCGA (left) and E-MTAB1980 (right) ccRCC cohorts. (B) IMmotion150 (left) and 151 (right) cohorts. (C) Differences in
EZH2 expression in tumors from CRPR, SD and PD patients (left and right: IMmotion150 and 151 cohorts, respectively). (D) Lower angiogenesis scores in
CIN25-C2 tumors (left and right: TCGA and E-MTAB1980 ccRCC cohorts, respectively). (E) Lower angiogenesis scores in CIN25-C2 tumors (left and
right: IMmotion150 and 151 cohorts, respectively).
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while many of them initially responded to Sunitinib but the
treatment failure developed eventually (6, 12, 15). Several
molecules and signaling pathways have been implicated in
Sunitinib irresponsiveness, however, the development of reliable
biomarkers that distinguish Sunitinib responders from non-
responders remains challenging. Our present findings suggest that
the CIN25 signature serves as a useful stratifier to predict the
therapeutic efficacy of Sunitinib and PFS in ccRCC patients. EZH2
upregulation and poor angiogenesis are likely the mechanism
underlying lower efficacy observed in CIN25-C2 patients. Further
studies are required to elucidate how CIN25 signature affects EZH2
expression and angiogenesis.

A link between telomere dysfunction and CIN has been well
characterized in human malignancies and animal carcinogenesis
models (39). Telomeric DNA repeats, when sufficient long, together
with their binding-factors or sheltering proteins, form protective
structures at the ends of linear chromosomes that prevent
CIN (39, 45). Telomeric DNA is synthesized by telomerase, an
RNA-dependent DNA polymerase activated in most human
malignancies for telomere length maintenance (40). However,
telomerase activation usually occurs at the late stage during a
stepwise malignant transformation (45). Therefore, telomeres
already become shortened in precursor lesions, which leads to
telomere dysfunction as a driving event for CIN in early
carcinogenesis (39, 45, 46). Shorter or dysfunctional telomere-
bearing chromosomes are prone to fusion, thereby triggering the
dicentric chromosome formation that missegregate or break in
mitosis during anaphase (39). The resultant chromosomal breaks
are fusogenic, through which a cycle of chromosome fusion and
breakage is propagated. In the present study, we observed
significantly shorter telomeres in ccRCC tumors than in their
matched renal tissues. There were no differences in telomere
length between CIN25-Cl and C2 tumors, but TERT expression
and telomerase activity was noticeably higher in CIN25-C2 tumors.
Likely, increased telomerase activity attenuates or compensates for
telomere attrition in CIN25-C2 tumors.

CIN is one subtype in the genomic instability category that
encompasses a variety of DNA alterations, including single
nucleotide to whole chromosome changes (41). Interestingly, we
observed that CIN25-C2 tumors also had increased genomic
alterations reflecting all other aspects of genomic instability. In
addition, HRD has been implicated in genomic instability including
CIN, and consistently, HRD scores were significantly higher in
CIN25-C2 tumors. Thus, the CIN25 clustering system help measure
not only the CIN phenotype, but also the whole genomic instability
level. From this point of a view, assessment of CIN25 signature may
have broader implications both biologically and clinically. For
instance, HRD occurs frequently in breast and ovarian cancer,
and those patients are in general sensitive to PARP inhibitors.
Conceivably, the CIN25 assessment may also be useful to stratify
patients who respond to PARP inhibitor treatment. A PCR method
is sufficient to quantify expression levels of 25 CIN genes, which is
cost- and time-friendly, and easily applied for clinical routine.
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In conclusion, the CIN25 clustering model can categorize
ccRCC tumors into CIN25-Cl and C2 subtypes, and this
classification hold great promises in predicting patient survival
and response to Sunitinib. CIN25-C2 tumors are characterized by
active proliferation, stemness and EMT phenotypes. EZH2
overexpression and poor angiogenesis may drive all these
aggressive phenotypes, shorter survival and drug resistance.
Importantly, the CIN25 clustering model not only represents a
CIN phenotype, but also is strongly associated with other genomic
instability-related alterations. Thus, the assessment of CIN25
reflects levels of CIN and whole genomic instability. Moreover, a
PCR quantification is enough for the CIN25-based tumor
classification, which is suitable for clinical routine application.
Taken together, the present findings will contribute to improved
personalized management of ccRCCs.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

The studies involving human participants were reviewed and
approved by Institutional review board of Qilu Hospital of
Shandong University. The patients/participants provided their
written informed consent to participate in this study.

Author contributions

All authors participated in the conception and design of the
study. CW, HY, JW, XQ, LL and WG performed bioinformatic
analysis. XQ and ZF analyzed patient data and RNA sequencing.
CW, XQ, HY, ZF, YF and DX participated in the data process,
analysis and interpretation. CW, XQ, HY, YF and DX conceived
and drafted the manuscript. HY, YF and DX revised the
manuscript. All authors contributed to the article and approved
the submitted version.

Funding

This work was supported by grants from Scientific Research
Foundation of Qilu Hospital of Shandong University (Qingdao)
(No. QDKY2019QN17), National Natural Science Foundation of
China (No. 82103557, 82002674 and 81972475), Shandong
Provincial Natural Science Foundation (No. ZR2020QH245), the
Swedish Cancer Society No. 22 1989 Pj), Swedish Research Council
(2018-02993), the Cancer Society in Stockholm (201393), and
Karolinska Institutet (2022-01889).

frontiersin.org


https://doi.org/10.3389/fonc.2023.1133902
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wang et al.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

References

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin (2020) 70
(1):7-30. doi: 10.3322/caac.21590

2. Znaor A, Lortet-Tieulent J, Laversanne M, Jemal A, Bray F. International
variations and trends in renal cell carcinoma incidence and mortality. Eur Urol
(2015) 67(3):519-30. doi: 10.1016/j.eururo.2014.10.002

3. Fang Z, Zhang N, Yuan X, Xing X, Li X, Qin X, et al. GABPA-activated TGFBR2
transcription inhibits aggressiveness but is epigenetically erased by oncometabolites in
renal cell carcinoma. J Exp Clin Cancer Res (2022) 41(1):173. doi: 10.1186/s13046-022-
02382-6

4. Graham ], Dudani S, Heng DYC. Prognostication in kidney cancer: recent
advances and future directions. J Clin Oncol (2018) JC0O2018790147. doi: 10.1200/
JCO.2018.79.0147

5. Ghatalia P, Rathmell WK. Systematic review: ClearCode 34 - a validated
prognostic signature in clear cell renal cell carcinoma (ccRCC). Kidney Cancer
(2018) 2(1):23-9. doi: 10.3233/KCA-170021

6. Yuan H, Qin X, Wang J, Yang Q, Fan Y, Xu D. The cuproptosis-associated 13
gene signature as a robust predictor for outcome and response to immune- and
targeted-therapies in clear cell renal cell carcinoma. Front Immunol (2022) 13:971142.
doi: 10.3389/fimmu.2022.971142

7. Rini B, Goddard A, Knezevic D, Maddala T, Zhou M, Aydin H, et al. A 16-gene
assay to predict recurrence after surgery in localised renal cell carcinoma: development
and validation studies. Lancet Oncol (2015) 16(6):676-85. doi: 10.1016/S1470-2045(15)
70167-1

8. Chen S, Zhang E, Jiang L, Wang T, Guo T, Gao F, et al. Robust prediction of
prognosis and immunotherapeutic response for clear cell renal cell carcinoma through
deep learning algorithm. Front Immunol (2022) 13:798471. doi: 10.3389/
fimmu.2022.798471

9. TaoJ, Li X, Liang C, Liu Y, Zhou J. Expression of basement membrane genes and
their prognostic significance in clear cell renal cell carcinoma patients. Front Oncol
(2022) 12:1026331. doi: 10.3389/fonc.2022.1026331

10. ZengR,LiY, He DM, Sun MZ, Huang WQ, Wang YH, et al. Potassium channel-
related genes are a novel prognostic signature for the tumor microenvironment of renal
clear cell carcinoma. Front Oncol (2022) 12:1013324. doi: 10.3389/fonc.2022.1013324

11. Zheng D, Ning J, Xia Y, Ruan Y, Cheng F. Comprehensive analysis of a
homeobox family gene signature in clear cell renal cell carcinoma with regard to
prognosis and immune significance. Front Oncol (2022) 12:1008714. doi: 10.3389/
fonc.2022.1008714

12. Angulo JC, Shapiro O. The changing therapeutic landscape of metastatic renal
cancer. Cancers (Basel) (2019) 11(9). doi: 10.3390/cancers11091227

13. Motzer R]J, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, et al.
Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl ] Med (2015)
373(19):1803-13. doi: 10.1056/NEJMoal510665

14. Srivastava A, Doppalapudi SK, Patel HV, Srinivasan R, Singer EA. The roaring
2020s: a new decade of systemic therapy for renal cell carcinoma. Curr Opin Oncol
(2022). doi: 10.1097/CC0O.0000000000000831

15. Sharma R, Kadife E, Myers M, Kannourakis G, Prithviraj P, Ahmed N.
Determinants of resistance to VEGF-TKI and immune checkpoint inhibitors in
metastatic renal cell carcinoma. J Exp Clin Cancer Res (2021) 40(1):186. doi:
10.1186/s13046-021-01961-3

16. Braun DA, Hou Y, Bakouny Z, Ficial M, Sant’ Angelo M, Forman J, et al.
Interplay of somatic alterations and immune infiltration modulates response to PD-1
blockade in advanced clear cell renal cell carcinoma. Nat Med (2020) 26(6):909-18. doi:
10.1038/541591-020-0839-y

17. Deng H, Liu W, He T, Hong Z, Yi F, Wei Y, et al. Comparative efficacy, safety,
and costs of sorafenib vs. sunitinib as first-line therapy for metastatic renal cell

Frontiers in Oncology

10.3389/fonc.2023.1133902

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1133902/
full#supplementary-material

carcinoma: a systematic review and meta-analysis. Front Oncol (2019) 9:479. doi:
10.3389/fonc.2019.00479

18. Turajlic S, Xu H, Litchfield K, Rowan A, Horswell S, Chambers T, et al.
Deterministic evolutionary trajectories influence primary tumor growth: TRACERx
renal. Cell (2018) 173(3):595-610 el1. doi: 10.1016/j.cell.2018.03.043

19. Brugarolas J. Molecular genetics of clear-cell renal cell carcinoma. J Clin Oncol
(2014) 32(18):1968-76. doi: 10.1200/]C0O.2012.45.2003

20. Correa AF, Ruth KJ, Al-Saleem T, Pei J, Dulaimi E, Kister D, et al. Overall tumor
genomic instability: an important predictor of recurrence-free survival in patients with
localized clear cell renal cell carcinoma. Cancer Biol Ther (2020) 21(5):424-31. doi:
10.1080/15384047.2020.1721251

21. Klatte T, Rao PN, de Martino M, LaRochelle J, Shuch B, Zomorodian N, et al.
Cytogenetic profile predicts prognosis of patients with clear cell renal cell carcinoma.
J Clin Oncol (2009) 27(5):746-53. doi: 10.1200/JC0O.2007.15.8345

22. Carter SL, Eklund AC, Kohane IS, Harris LN, Szallasi Z. A signature of
chromosomal instability inferred from gene expression profiles predicts clinical
outcome in multiple human cancers. Nat Genet (2006) 38(9):1043-8. doi: 10.1038/
ngl86l

23. Lukow DA, Sheltzer JM. Chromosomal instability and aneuploidy as causes of
cancer drug resistance. Trends Cancer (2022) 8(1):43-53. doi: 10.1016/
j-trecan.2021.09.002

24. Al-Rawi DH, Bakhoum SF. Chromosomal instability as a source of genomic
plasticity. Curr Opin Genet Dev (2022) 74:101913. doi: 10.1016/j.gde.2022.101913

25. Bakhoum SF, Cantley LC. The multifaceted role of chromosomal instability in
cancer and its microenvironment. Cell (2018) 174(6):1347-60. doi: 10.1016/
j.cell.2018.08.027

26. Weiler SME, Pinna F, Wolf T, Lutz T, Geldiyev A, Sticht C, et al. Induction of
chromosome instability by activation of yes-associated protein and forkhead box M1 in
liver cancer. Gastroenterology (2017) 152(8):2037-51 e22. doi: 10.1053/j.gastro.
2017.02.018

27. Cancer Genome Atlas Research N. Comprehensive molecular characterization
of clear cell renal cell carcinoma. Nature (2013) 499(7456):43-9. doi: 10.1038/
naturel2222

28. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al.
Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet (2013) 45
(8):860-7. doi: 10.1038/ng.2699

29. McDermott DF, Huseni MA, Atkins MB, Motzer RJ, Rini BI, Escudier B, et al.
Clinical activity and molecular correlates of response to atezolizumab alone or in
combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med
(2018) 24(6):749-57. doi: 10.1038/s41591-018-0053-3

30. Powles T, Atkins MB, Escudier B, Motzer R], Rini BI, Fong L, et al. Efficacy and
safety of atezolizumab plus bevacizumab following disease progression on
atezolizumab or sunitinib monotherapy in patients with metastatic renal cell
carcinoma in IMmotion150: a randomized phase 2 clinical trial. Eur Urol (2021) 79
(5):665-73. doi: 10.1016/j.eururo.2021.01.003

31. Motzer R], Powles T, Atkins MB, Escudier B, McDermott DF, Alekseev BY, et al.
Final overall survival and molecular analysis in IMmotionl51, a phase 3 trial
comparing atezolizumab plus bevacizumab vs sunitinib in patients with previously
untreated metastatic renal cell carcinoma. JAMA Oncol (2022) 8(2):275-80. doi:
10.1001/jamaoncol.2021.5981

32. Rini BI, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C, et al.
Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated
metastatic renal cell carcinoma (IMmotion151): a multicentre, open-label, phase 3,
randomised controlled trial. Lancet (2019) 393(10189):2404-15. doi: 10.1016/S0140-
6736(19)30723-8

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2023.1133902/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1133902/full#supplementary-material
https://doi.org/10.3322/caac.21590
https://doi.org/10.1016/j.eururo.2014.10.002
https://doi.org/10.1186/s13046-022-02382-6
https://doi.org/10.1186/s13046-022-02382-6
https://doi.org/10.1200/JCO.2018.79.0147
https://doi.org/10.1200/JCO.2018.79.0147
https://doi.org/10.3233/KCA-170021
https://doi.org/10.3389/fimmu.2022.971142
https://doi.org/10.1016/S1470-2045(15)70167-1
https://doi.org/10.1016/S1470-2045(15)70167-1
https://doi.org/10.3389/fimmu.2022.798471
https://doi.org/10.3389/fimmu.2022.798471
https://doi.org/10.3389/fonc.2022.1026331
https://doi.org/10.3389/fonc.2022.1013324
https://doi.org/10.3389/fonc.2022.1008714
https://doi.org/10.3389/fonc.2022.1008714
https://doi.org/10.3390/cancers11091227
https://doi.org/10.1056/NEJMoa1510665
https://doi.org/10.1097/CCO.0000000000000831
https://doi.org/10.1186/s13046-021-01961-3
https://doi.org/10.1038/s41591-020-0839-y
https://doi.org/10.3389/fonc.2019.00479
https://doi.org/10.1016/j.cell.2018.03.043
https://doi.org/10.1200/JCO.2012.45.2003
https://doi.org/10.1080/15384047.2020.1721251
https://doi.org/10.1200/JCO.2007.15.8345
https://doi.org/10.1038/ng1861
https://doi.org/10.1038/ng1861
https://doi.org/10.1016/j.trecan.2021.09.002
https://doi.org/10.1016/j.trecan.2021.09.002
https://doi.org/10.1016/j.gde.2022.101913
https://doi.org/10.1016/j.cell.2018.08.027
https://doi.org/10.1016/j.cell.2018.08.027
https://doi.org/10.1053/j.gastro.2017.02.018
https://doi.org/10.1053/j.gastro.2017.02.018
https://doi.org/10.1038/nature12222
https://doi.org/10.1038/nature12222
https://doi.org/10.1038/ng.2699
https://doi.org/10.1038/s41591-018-0053-3
https://doi.org/10.1016/j.eururo.2021.01.003
https://doi.org/10.1001/jamaoncol.2021.5981
https://doi.org/10.1016/S0140-6736(19)30723-8
https://doi.org/10.1016/S0140-6736(19)30723-8
https://doi.org/10.3389/fonc.2023.1133902
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Wang et al.

33. Masiero M, Simoes FC, Han HD, Snell C, Peterkin T, Bridges E, et al. A core
human primary tumor angiogenesis signature identifies the endothelial orphan
receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell (2013) 24(2):229-41.
doi: 10.1016/j.ccr.2013.06.004

34. Hakimi AA, Voss MH, Kuo F, Sanchez A, Liu M, Nixon BG, et al.
Transcriptomic profiling of the tumor microenvironment reveals distinct subgroups
of clear cell renal cell cancer: data from a randomized phase III trial. Cancer Discovery
(2019) 9(4):510-25. doi: 10.1158/2159-8290.CD-18-0957

35. Motzer R], Banchereau R, Hamidi H, Powles T, McDermott D, Atkins MB, et al.
Molecular subsets in renal cancer determine outcome to checkpoint and angiogenesis
blockade. Cancer Cell (2020) 38(6):803-17 e4. doi: 10.1016/j.ccell.2020.10.011

36. Gibbons DL, Creighton CJ. Pan-cancer survey of epithelial-mesenchymal
transition markers across the cancer genome atlas. Dev Dyn (2018) 247(3):555-64.
doi: 10.1002/dvdy.24485

37. Barthel FP, Wei W, Tang M, Martinez-Ledesma E, Hu X, Amin SB, et al.
Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat
Genet (2017) 49(3):349-57. doi: 10.1038/ng.3781

38. Wang J, Dai M, Xing X, Wang X, Qin X, Huang T, et al. Genomic, epigenomic,
and transcriptomic signatures for telomerase complex components: a pan-cancer
analysis. Mol Oncol (2022). doi: 10.1002/1878-0261.13324

39. Herate C, Sabatier L. Telomere instability initiates and then boosts
carcinogenesis by the butterfly effect. Curr Opin Genet Dev (2020) 60:92-8. doi:
10.1016/j.gde.2020.01.005

Frontiers in Oncology

224

10.3389/fonc.2023.1133902

40. Yuan X, Larsson C, Xu D. Mechanisms underlying the activation of TERT
transcription and telomerase activity in human cancer: old actors and new players.
Oncogene (2019) 38(34):6172-83. doi: 10.1038/s41388-019-0872-9

41. Pikor L, Thu K, Vucic E, Lam W. The detection and implication of genome
instability in cancer. Cancer Metastasis Rev (2013) 32(3-4):341-52. doi: 10.1007/
§10555-013-9429-5

42. Adelaiye-Ogala R, Budka J, Damayanti NP, Arrington J, Ferris M, Hsu CC, et al.
EZH2 modifies sunitinib resistance in renal cell carcinoma by kinome reprogramming.
Cancer Res (2017) 77(23):6651-66. doi: 10.1158/0008-5472.CAN-17-0899

43. Lyu C, Wang L, Stadlbauer B, Noessner E, Buchner A, Pohla H. Identification of
EZH2 as cancer stem cell marker in clear cell renal cell carcinoma and the anti-tumor
effect of epigallocatechin-3-Gallate (EGCG). Cancers (Basel) (2022) 14(17). doi:
10.3390/cancers14174200

44. Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, et al.
Chromosomal instability drives metastasis through a cytosolic DNA response. Nature
(2018) 553(7689):467-72. doi: 10.1038/nature25432

45. Yuan X, Dai M, Xu D. Telomere-related markers for cancer. Curr Top Med
Chem (2020) 20(6):410-32. doi: 10.2174/1568026620666200106145340

46. Zhang A, Wang J, Zheng B, Fang X, Angstrom T, Liu C, et al. Telomere attrition
predominantly occurs in precursor lesions during in vivo carcinogenic process of the
uterine cervix. Oncogene (2004) 23(44):7441-7. doi: 10.1038/sj.0onc.1207527

frontiersin.org


https://doi.org/10.1016/j.ccr.2013.06.004
https://doi.org/10.1158/2159-8290.CD-18-0957
https://doi.org/10.1016/j.ccell.2020.10.011
https://doi.org/10.1002/dvdy.24485
https://doi.org/10.1038/ng.3781
https://doi.org/10.1002/1878-0261.13324
https://doi.org/10.1016/j.gde.2020.01.005
https://doi.org/10.1038/s41388-019-0872-9
https://doi.org/10.1007/s10555-013-9429-5
https://doi.org/10.1007/s10555-013-9429-5
https://doi.org/10.1158/0008-5472.CAN-17-0899
https://doi.org/10.3390/cancers14174200
https://doi.org/10.1038/nature25432
https://doi.org/10.2174/1568026620666200106145340
https://doi.org/10.1038/sj.onc.1207527
https://doi.org/10.3389/fonc.2023.1133902
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

& frontiers | Frontiers in Oncology

@ Check for updates

OPEN ACCESS

EDITED BY
Linhui Wang,
Second Military Medical University, China

REVIEWED BY
Xuedong Wei,

The First Affiliated Hospital of Soochow
University, China

Aimin Jiang,

Fudan University, China

*CORRESPONDENCE
Chaozhao Liang
liang_chaozhao@ahmu.edu.cn
Jun Xiao
xiaojun0551@126.com
Song Xue
xs580155@163.com

"These authors share first authorship

RECEIVED 11 November 2022
ACCEPTED 20 April 2023
PUBLISHED 22 June 2023

CITATION

Tai S, Xu D-d, Yu Z, Guan Y, Yin S, Xiao J,
Xue S and Liang C (2023) Genomic profiles
of renal cell carcinoma in a small

Chinese cohort.

Front. Oncol. 13:1095775.

doi: 10.3389/fonc.2023.1095775

COPYRIGHT

© 2023 Tai, Xu, Yu, Guan, Yin, Xiao, Xue and
Liang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Oncology

TvpPE Original Research
PUBLISHED 22 June 2023
Dol 10.3389/fonc.2023.1095775

Genomic profiles of renal
cell carcinoma in a small
Chinese cohort

Sheng Tai***, Dan-dan Xu**!, Zhixian Yu®, Yu Guan?®?,
Shuiping Yin**?, Jun Xiao™, Song Xue®
and Chaozhao Liang™***

‘Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China,
2Institute of Urology, Anhui Medical University, Hefei, Anhui, China, 3Anhui Province Key Laboratory of
Genitourinary Diseases, Anhui Medical University, Hefei, Anhui, China, “Department of Oncology,
Hospital of Anhui Medical University, Hefei, Anhui, China, °Department of Oncology, Anhui Public
Health Clinical Center, Hefei, China, °®Department of Urology, The First Affiliated Hospital of Wenzhou
Medical University, Wenzhou, China, "Department of Urology, The First Affiliated Hospital of
University of Science and Technology of China (USTC), Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei, China, eDepartment of Urology, General
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Objectives: Our aim was to describe the molecular characteristics of Renal Cell
Carcinoma (RCC) and develop a small panel of RCC-associated genes from a
large panel of cancer-related genes.

Materials and methods: Clinical data of 55 patients with RCC diagnosed in four
hospitals from September 2021 to August 2022 were collected. Among the 55
patients, 38 were diagnosed with clear cell RCC (ccRCC), and the other 17 were
diagnosed with non-clear cell RCC (nccRCC), including 10 cases of papillary
renal cell carcinoma, 2 cases of hereditary leiomyomatosis and RCC syndrome
(HLRCCQ), 1 eosinophilic papillary RCC, 1 tubular cystic carcinoma, 1 TFE3 gene
fusion RCC, and 2 RCC with sarcomatoid differentiation. For each patient, 1123
cancer-related genes and 79 RCC-associated genes were analyzed.

Results: the most frequent mutations in a large panel of 1123 cancer-related
genes in the overall population of RCC patients were VHL (51%), PBRM1 (35%),
BAP1 (16%), KMT2D (15%), PTPRD (15%), and SETD2 (15%). For ccRCC patients,
mutations in VHL, PBRM1, BAP1, and SERD?2 can reach 74%, 50%, 24%, and 18%,
respectively, while for nccRCC patients, the most frequent mutation was FH
(29%), MLH3 (24%), ARID1A (18%), KMT2D (18%), and CREBBP (18%). The germline
mutation rate in all 55 patients reached 12.7% (five with FH, one with ATM, and
one with RAD50). The small panel containing only 79 RCC-associated genes
demonstrated that mutations of VHL, PBRM1, BAP1, and SETD2 in ccRCC
patients were 74%, 50%, 24%, and 18% respectively, while for the nccRCC
cohort, the most frequent mutations were FH (29%), ARID1A (18%), ATM (12%),
MSH6 (12%), BRAF (12%), and KRAS (12%). For ccRCC patients, the spectrum of
mutations by large and small panels was almost the same, while for nccRCC
patients, the mutation spectrum showed some differences. Even though the
most frequent mutations (FH and ARID1A) in nccRCC were both demonstrated
by large panels and small panels, other less frequent mutations such as MLH3,
KMT2D, and CREBBP were not shown by the small panel.
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Conclusion: Our study revealed that nccRCC is more heterogeneous than
ccRCC. For nccRCC patients, the small panel shows a more clear profile of
genetic characteristics by replacing MLH3, KMT2D, and CREBBP with ATM,
MSH®6, BRAF, and KRAS, which may help predict prognosis and make clinical

decisions.

KEYWORDS

renal cell carcinoma (RCC), clear cell renal cell carcinoma (ccRCC), non-clear cell renal
cell carcinoma (nccRCC), mutation, VHL, FH

1 Introduction

In 2020, 4.3 million patients were diagnosed with kidney cancer,
accounting for 1.79 million deaths worldwide (1). There were 75800
newly diagnosed kidney cancer cases and 27800 patients who died of
kidney cancer in China (2). Renal cell carcinoma (RCC) is the most
common renal tumor in adults, including clear cell RCC (ccRCC),
type 1 and type 2 papillary RCC (pRCC), chromophobe carcinoma,
and other rare RCCs. ccRCC is the most common subtype,
accounting for 75-85% of all cases. Early-stage renal cell carcinoma
can be cured by surgical resection. However, recurrent, unresectable,
and metastatic RCCs (mRCCs) have a high mortality rate, with a 5-
year survival rate of only 12% (3). With the development of targeted
therapy and immunotherapy, mRCC survival has been significantly
prolonged; however, cancer progression and resistance to therapy
need to be resolved, and comprehensive genomic profiles are
important for RCC management.

Previous genetic characterization of RCC has significantly increased
our knowledge of tumor biology and disease progression. The Cancer
Genome Atlas (TCGA) accrued flash-frozen samples of tumor
resections and adjacent normal kidneys (or an aliquot of blood if no
normal kidney was available) for whole exome sequencing and analyzed
the genomic information and related clinical and pathological patient
data (4). This project revealed that ccRCC had a specific deletion on
chromosome 3 in approximately 90% of patients and most ccRCCs
harbored VHL gene mutations. Besides the 3p deletion, TCGA analysis
confirmed a frequent occurrence in chromosome 5 (67%) and
chromosome 14q (45%) deletions, and the top ten mutated genes in
ccRCC were VHL, PBRM1, BAP1, SETD2, KDM5C, TP53, mTOR,
SMARCA, PTEN, and ARIDIA (5, 6). Numerous epigenomic-related
genes are mutated in ccRCC, suggesting that epigenetic regulation plays
an important role in the molecular pathways underlying ccRCC leading
to the development of possible epigenetic therapies. pRCC is a
heterogeneous RCC subtype in which the unifying feature is the
presence of papillae in the tumor, which is most commonly separated
into type 1 pRCC that has basophilic cytoplasm and type 2 pRCC that
has abundant eosinophilic cytoplasm. Genomic profiles have also been
described in TCGA studies. Type 1 pRCC is associated with frequent
concurrent gains in chromosomes 7 and 17, and numerous potential
oncogenes are encoded on chromosome 7, including MET, EGFR, and
BRAF. Type 2 papillary RCC was the only loss of chromosome 22 that
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occurred consistently as a specific copy number alteration (frequency,
30.4%) (7, 8). Compared with type 1 pRCC, type 2 pRCC had low-
frequency mutations, and the FH gene (encoding fumarate hydratase)
germline and/or somatic mutations were discovered in type 2 pRCC.
TCGA has characterized somatic genetic and genomic alterations in
RCC; however, these databases are based on Western patients, and only
1.8% of Asian patients were included. Therefore, it is necessary to
elucidate Chinese RCC genomic symbols and clinical characteristics of
Chinese RCC.

We enrolled 55 patients with RCC from multiple hospitals and
performed a panel of 1123 genes sequence, focusing on 79 RCC cancer-
related gene target sequences. This study aimed to describe the genomic
map of Chinese renal cell cancer and explore the differences between
ccRCC and nccRCC, achieving precision medicine for RCC.

2 Methods
2.1 Patients

Patients were enrolled in three hospitals between November 1,
2021, and August 31, 2022. The pathologist confirmed the diagnosis
of renal cell cancer, including ccRCC and pRCC. All participants
provided signed informed consent. The specimens used were
formalin fixed paraffin-embedded (FFPE) and fresh tumor
specimens and were tested by DNA NGS. Clinical demographic
parameters, cancer stage using the American Joint Committee on
Cancer guidelines, and pathological data including tumor stage and
lymph node status were collected.

2.2 Next-generation sequence

Tumor samples were collected, and next-generation sequencing
tests of all samples were performed at ChosenMed Technology
(Beijing) Co., Ltd., Beijing, China). Genomic DNA extraction and
library preparation with TruSightTM Oncology 500 (TSO 500) Library
Preparation Kit (Illumina, San Diego, CA, United States) were
performed following the manufacturer’s protocols. The library was
sequenced on an Illumina NextSeq 550Dx platform with a paired-end
run of 150 base pairs. Sequence alignment to the human genome
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(hg19) (9) was completed using the BWA-MEM (version 0.7.11)
alignment algorithm. SAMtools (version 1.3) (10) was used to
perform the bam-sam conversions. We used the Genome Analysis
Toolkit (GATK, version 3.6) (11) module IndelRealigner to perform
local realignment of indels. Germline variants were filtered using an
in-house built database, and all parameters were set according to the
standard protocol (12). Copy number variants (CNVs), including
amplification and deletion, were identified using CRAFT copy-
number callers from the TSO500 pipeline. Manta (version 1.6.0)
(13) was employed to detect large-scale structural variations (SVs) in
the RNA library, and only fusions with at least three unique
supporting reads, one of which is a split read crossing the fusion
breakpoint, were considered candidate fusions. The process of SNVs
and indel mutation calling, TMB measurement, and read filtering was
performed as described in a previous study. Germline variants were
filtered using an in-house built database, and all parameters were set
according to the previous workflow. We finally obtained two R
packets with 1,123 genes named ChosenOne® and 79 genes
named ChsenFocus®.

2.3 Statistical analysis

The assessment of clinical characteristics between different
cohorts, including age, sex, histological subtype, location, and
TNM stage, was performed using SPSS 20.0. The R package
“maftools package” (Mayakonda et al., 2018) was applied to
perform the mutation analysis and provide a visualized process of
variant analysis results. All statistical analyses were performed using
R version 3.6.3. All the p-values presented are for a two-tailed test,
and p <0.05 represents statistical significance.

3 Results
3.1 Patients summary

A total of 55 patients diagnosed with renal cell cancer were
enrolled from the First Affiliated Hospital of Anhui Medical
University, the First Affiliated Hospital of Wenzhou Medical
University, and the General Hospital of Eastern Theater Command
between November 1, 2021, and August 31, 2022. Among the 55
patients, 78.2% were men and 21.8% were women, with a median age
of 57 years. Approximately 69.1% of the patients had ccRCC and
30.9% had nccRCC, including eight with type 2 pRCC and two with
type 1 pRCC. Of the tumors, 40.0% were localized to the left kidney,
and 58.2% were located on the right side. Of the patients, 52.7% were
diagnosed with TNM stage I, and 10% had distant metastases
(Table 1; Table S1).

3.2 Somatic mutation of RCC in 1123
gene panel

All the samples were sequenced in an 1123 gene panel. VHL
(51%), PBRM1 (35%), BAP1 (16%), KMT2D (15%), PTPRD (15%),
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TABLE 1 Clinical characteristics of 55 RCCs.

Age, median (range) 57 (10~79)
Sex, n (%)

Men 43 (78.2%)
Women 12 (21.8%)

Histological subtype, n (%)

ccRCC 38 (69.1%)
nccRCC 17 (30.9%)
Tumor location, n (%)
Right 22 (40.0%)
Left 32 (58.2%)
Unknown 1(1.8%)
TNM, n (%)
I 29 (52.7%)
I 5(9.1%)
11T 10 (18.2%)
v 11 (10.0%)

and SETD2 (15%) were the most common mutations in all RCC
patients (Figure 1). The mutation frequency in ccRCC was higher
than that in nccRCC. Common gene mutations in ccRCC patients
were VHL (74%), PBRM1(50%), BAP1(24%), SETD2 (18%), and
ARID1B (16%) (Figure S1). The mutation copies were lower in
nccRCC than in ccRCC, and the most frequent mutations in
nccRCC were MLH3(24%), ARID1B (18%), CREBBP (18%), and
KMT2D (18%) (Figure S2). Missense mutations accounted for the
most prevalent mutation in ccRCC, while the most common genetic
variation in nccRCC was Fram_Shift. Furthermore, Frame Shift Del
and Frame Shift Ins have higher rates of mutation in nccRCC.
Specifically, missense mutations in KRAS, NKX2-1, BRAF, CUL3,
PRSS1, ABCC6, CYLD, ANKRD11, and BLM only have Frame Shift
Ins, whereas BCL10 and MSH6 only have frameshift delay. KMT2D
had the highest mutation rate in all three groups when the results of
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FIGURE 1
Genomic landscape of 55 RCC patients with 1123 gene.
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the three groups were examined, and the mutation results of ccRCC
were equivalent to those of all RCC patients.

3.3 Somatic mutation of RCC in 79 gene
small panel

Based on an analysis of 79 genes associated with renal cancer, we
found that VHL, PBRM1, BAP1, SETD2, and TSC1 mutation rates
were higher in all RCCs at 51%, 35%, 16%, 15%, and 13%, respectively
(Figure 2). VHL (74%), PBRM1 (50%), BAP1 (24%), SETD2 (18%),
and TSC1 (16%) were the most frequently mutated genes in ccRCC
(Figure S3). nccRCC mutations are highly specific, with high rates of
mutations in FH, ARID1A, ATM, BRAF, and KRAS. nccRCC was
more heterogeneous than ccRCC (Figure S4). The most common
type of mutation in both groups of patients was missense mutation,
and many genes had only missense mutations. Splice site, Frame Shift
Del, Nonsense Mutation, and In Frame Del have all shown
independent mutations in nccRCC patients. It seems that ccRCC
has a clear driver gene mutation, and patients with ccRCC have a
higher mutation rate than those with nccRCC. For ccRCC patients,
the mutation profiles in the 1123 gene panel and 79 gene panels were
nearly identified, whereas for nccRCC patients, the mutation profiles
showed some differences. The most frequent mutations (FH and
ARID1A) in nccRCC were both demonstrated by the 1123 gene panel
and 79 gene panel; other less frequent mutations such as MLH3,
KMT2D, and CREBBP were not detected in the 79 gene panel.

3.4 germline mutation of RCC

In 55 patients, we discovered six germline mutations in five (5/
55, 9.1%) patients, including four FH genes, one ATM gene, and
one RAD50 gene (Figure S4); it’s important to note that all six of
these germline mutations were discovered in nccRCC (5/17, 29.4%),
and no germline mutations were discovered in ccRCC. Four of the
five germline mutation patients were diagnosed with type 2 pRCC,
three with FH germline mutations, and one with FH mutation
concurrent with ATM germline mutation. Patients with a TFE3
fusion have a RAD50 germline mutation.
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FIGURE 2
Genomic landscape of 55 RCC patients with 79 gene.
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4 Discussion

Since kidney cancer is the most common cancer in urology, we
report a comprehensive genomic analysis of 55 RCCs including 38
ccRCCs and 17 nccRCCs to reveal the genomic characteristics of a
small Chinese RCC cohort. We discovered that the VHL gene is the
most frequent mutation in ccRCC, which was similar to the
conclusion that the VHL mutation is the most common mutation
of ccRCC according to the TCGA project. Some Chinese
researchers have reported that approximately 50% of ccRCC
patients have VHL mutations (14), and our results show that
VHL is approximately 51% in all RCCs and 78% in ccRCCs,
which is similar to that in previous reports. VHL is a key
component of the VHL E3 ubiquitin ligase complex that
recognizes and binds hydroxylated target proteins in an oxygen-
dependent manner. Loss of VHL stabilizes the protein levels of
hypoxia-inducible factors HIF1o and HIF2a, which results in a loss
of oxygen sensing, induces cellular proliferation, and promotes
angiogenesis (15). Besides, VHL, PBRM1, BAPI, and SETD2 are
regarded as driver mutations in ¢cRCC, which also act as
biomarkers for ccRCC treatment and prognosis. The PBRM1
gene codes for BAF180, a subunit of the PBAF subtype of the
SWI/SNF chromatin remodeling complex, and the PBAF complex
suppress the hypoxic transcriptional signature. A study has
reported that loss-of-function mutations in the PBRM1 gene were
associated with the clinical benefit of using PD-1 inhibitor because
PBAF loss shows that RCC is more sensitive to T-cell-mediated
cytotoxicity than its PBAF-intact counterparts. Some clinical trials
have shown that PBRM1 is a biomarker for immunotherapy (16,
17), but the results are still controversial. Some researchers have
reported that PBRM1 loss defines a non-immunogenic tumor
phenotype associated with checkpoint inhibitor resistance in
renal carcinoma (17). Therefore, more evidence is required to
reveal the relationship between PBRMI1 mutation and
immunotherapy response. In our study, mutations in VHL,
PBRM1, BAP1, and SERD2 can reach 74%, 50%, 24%, and 18%,
respectively, for ccRCC patients; while for nccRCC patients, the
most frequent mutation was FH (29%), MLH3 (24%), ARID1A
(18%), KMT2D (18%) and CREBBP (18%). As we know, the
inactivation of the Von Hippel-Lindau (VHL) gene is by far the
most common oncogenic driver event in ccRCC. Gene mutations in
RCC patients were revealed by next-generation sequencing
techniques, and the altered genes were then utilized to predict
patients’ prognosis and develop therapeutic drugs. The molecular
fingerprints described by next-generation sequencing techniques
categorize ccRCC into different subtypes that are clinically and
therapeutically important. Specific mutations that seem to influence
immune cell populations can be discovered in ccRCC tumors
because of the interaction between these subtypes and the tumor
microenvironment. Opportunities for illness prevention, early
identification, prognosis, and therapy have been presented in
these studies (18). PBRAMI1, BAP1, and SETD2 are chromatin-
remodeling genes that are present in the commonly lost region of
chromosome arm 3p, which is critical for chromosome stability and
remodeling. A lot of studies have revealed that the mutation of
BAPI is associated with poor prognosis (19, 20) even though how
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PBRM1 gene mutations promote carcinogenesis and tumor
progression is still unknown. PBRM1 is considered a tumor
suppressor gene by in vitro experiments in ccRCC-derived cell
lines, which show that PBRM1 gene silencing results in increased
proliferation, migration, and colony formation (21).

Joseph RW et al. found that the loss of PBRM1 expression in 1330
ccRCC tumor samples was associated with an increased risk of
metastasis without affecting the overall survival (22). The gene
mutation of FH was the driving cause of hereditary leiomyomatosis
and renal cell carcinoma (HLRCC). The median relapse-free survival
for patients with FH gene mutation was only 9 months, so the 2022
WHO classification of renal cell carcinoma has changed the term
from HLRCC to FH-deficient RCC which represents a new subtype
in nccRCC. FH gene mutation of RCC was the golden standard for
FH-deficient RCC, which requires more active treatment.

NccRCC is a rare subtype of RCC, accounting for 15-20% of RCCs,
and it is a heterogeneous disease that comprises various types of renal
cancer. We recruited 17 nccRCCs to perform the next-generation
sequencing techniques, and the results showed that nccRCC has
distinct genomic characteristics compared to ccRCC. There were no
major mutated genes in nccRCC, and the highest mutated genes were
MLH3(24%), ARIDIB (18%), CREBBP (18%), and KMT2D (18%),
which were lower than those in ccRCC. Numerous potential oncogenes
of type 1 pRCC have been reported, including MET, EGFR, and BRAF,
and somatic or germline activating mutations of MET has been found in
a subset of type 1 pRCC; however, our study did not observe MET
mutations due to the small sample size. Nevertheless, we found a higher
frequency of FH mutations in type 2 pRCC, which is consistent with a
previous report. Some research found that Cabozantinib plus nivolumab
is effective in most non-clear cell variants of RCCS, especially those with
prominent papillary features, but limited in chromophobe RCCS (23).
Over the past two decades, a variety of options have been recognized as
the dominant treatment for metastatic renal cell carcinoma (mRCC),
including angiogenesis inhibitors, vascular endothelial growth factor
receptor inhibitors, other tyrosine kinase inhibitors (TKIs), as well as
MET inhibitors and mammalian targeted rapamycin (mTOR)
inhibitors. More recently, immunotherapy or combination targeting
agents have been shown to significantly improve outcomes in patients
with mRCC compared to TKI alone (24).

For all solid tumor gene tests, an 1123 gene panel was designed;
however, some genes were not frequently mutated in RCC. We
searched for literature and clinical trials and then constructed a
panel of 79 genes that were significantly associated with RCC
tumorigenesis. Compared to the COSMIC and TCGA databases,
the mutation of ccRCC by 79 gene panels is more consistent with
the RCC driver mutation. For example, BLM and LRP1B are not
significantly associated with the prognosis of ccRCC, but in the
1123 panel, we observed that the frequency exceeded 10%, so the 79
gene panel may be more suitable for profiling RCC gene mutation.

Kidney cancer is an inherited cancer. Several well-known
hereditary RCC syndromes account for 5-9% of all RCC cases,
including VHL disease, BHD syndrome, and HLRCC. Patients with
a family history of RCC have an approximated two-fold increased risk
of RCC. Early onset RCC diagnosed before the age of 46 years was
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reported to be associated with hereditary RCC. In a study of 190
Chinese patients under the age of 45 years who presented with renal
tumors, 9.5% had a pathogenic/likely pathogenic (P/LP) germline
mutation (25). Our study of 55 RCC patients revealed six germline
mutations in five patients (5/55, 9.1%), which was consistent with
previous reports. Interestingly, all germline mutations were found in
nccRCC, indicating that nccRCC is associated with a high risk of
hereditary diseases. We enrolled only seven cases of type 2 pRCGC;
surprisingly, four of them had FH pathogenic/likely pathogenic
germline mutations and one had FH somatic loss. This could be
higher than that reported in previous studies of the pRCC germline.
FH-deficient RCC is a new WHO 2022 category with more aggressive
habits and poor prognosis. A large study cohort including 77 FH-
deficient RCC patients observed in the real world has been reported in
China (26), with a median progression time of only 21 months, among
which 70 patients were confirmed with FH germline mutation and the
other 7 patients confirmed with somatic mutation. Therefore, it is
necessary to test for germline mutations in nccRCC patients.
Furthermore, we found two DDR genes (ATM and BRIP1) germline
mutations. Although the DDR germline mutation is not an inherited
gene of RCC, some publications have reported DDR germline
mutations in kidney cancer in approximately 5% of cases (27, 28);
however, the clinical and biological aspects of DDR germline kidney
cancer are unknown. There are also differences in genetic mutations
between Chinese and Western populations due to ethnic differences.
Researchers have found that the five genes with the most mutations in
the Chinese population are TP53, KRAS, ARID1A, PBRMI, and
SMAD4, while the five most mutated genes in western populations
were IDH1, ARIDIA, BAPI, TP53, and KRAS. VHL (59.7%), PBRM1
(18.0%), SETD2 (12.2%), BAP1 (10.2%), and TP53 (9.4%) were the
most common somatic cell alteration sites in our study. Compared
with the TCGA database, the mutation frequency of VHL (59.7% vs.
50.0%, p< 0.001) and TP53 (9.4% vs. 3.5%, p <0.001) in our cohort
were higher, while the mutation frequency of PBRM1 was lower (18.0%
vs. 31.0%, p < 0.001) in the Chinese cohort (14). Therefore, we believe
that racial disparities influence the emergence and progression of RCC.
Thus, clinicians would greatly benefit from our work in the prognosis
and clinical treatment counseling for RCC in the Chinese population.

Our results described the genomic characteristics of Chinese
RCC, revealing that nccRCC has a higher frequency of germline
mutations. However, our study had some limitations. First, the
study’s limited sample size of Chinese participants raises the
possibility that not all RCC genomic alterations are present. This
is because, in general, we only performed genetic testing on patients
who have reached stage 3 or above. Moreover, genetic testing is still
inaccessible for most patients as a result of the price, and some
patients cannot afford the entire process. To further enhance our
study, we will continue to gather sequencing information from
kidney cancer patients in the follow-up study. Second, the gene
panel of 1123 and 79 genes could not avoid selection bias. Finally,
the mean follow-up time was not long enough; we did not explore
the relationship between gene mutations and recurrence.

In conclusion, the present study described commonly mutated
genes associated with RCC in a small Chinese cohort and revealed
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that nccRCC was more heterogeneous than ccRCC, which may help
to predict the prognosis and make clinical decisions.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding authors. We declare that the data
and materials in this study will be provided free of charge to
scientists for noncommercial purposes.

Ethics statement

The studies involving human participants were reviewed and
approved by Ethics Committee of the First Affiliated Hospital of
Anhui Medical University. The patients/participants provided their
written informed consent to participate in this study.

Author contributions

ST, D-DX, ZY, and CL contributed to the concept and design of
the study. TS, ZY, YG, and SY participated in the writing, review,
and/or modification of the manuscript. CL, SX, and JX provided
administrative, technical, or material support. All authors
contributed to the article and approved the submitted version.

Funding

This study was supported by the Clinical Research Special Fund
of Wu Jieping Medical Foundation(320.6750.2021-04-05), and the
National Natural Science Foundation of China (82102788).

References

1. SungH, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA: Cancer J Clin (2021) 71(3):209-49. doi: 10.3322/
caac.21660

2. Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R, et al. Cancer incidence and
mortality in China, 2016. ] Natl Cancer Center (2022) 2(1):1-9. doi: 10.1016/
jjnce.2022.02.002

3. Hsieh JJ, Purdue MP, Signoretti S, Swanton C, Albiges L, Schmidinger M, et al.
Renal cell carcinoma. Nat Rev Dis Primers (2017) 3:17009. doi: 10.1038/nrdp.2017.9

4. Linehan WM, Ricketts CJ. The cancer genome atlas of renal cell carcinoma:
findings and clinical implications. Nat Rev Urol (2019) 16(9):539-52. doi: 10.1038/
541585-019-0211-5

5. Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M, Reznik E, et al. et al: The
cancer genome atlas comprehensive molecular characterization of renal cell carcinoma.
Cell Rep (2018) 23(1):313-26.€315. doi: 10.1016/j.celrep.2018.03.075

6. Comprehensive molecular characterization of clear cell renal cell carcinoma.
Nature (2013) 499(7456):43-9. doi: 10.1038/nature12222

7. Cancer Genome Atlas Research N, Linehan WM, Spellman PT, Ricketts CJ,
Creighton CJ, Fei SS, et al. et al: Comprehensive molecular characterization of papillary
renal-cell carcinoma. N Engl ] Med (2016) 374(2):135-45. doi: 10.1056/
NEJMoal505917

Frontiers in Oncology

230

10.3389/fonc.2023.1095775

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1095775/
full#supplementary-material

SUPPLEMENTARY FIGURE 1
Genomic landscape of ccRCC patients with 1123 gene.

SUPPLEMENTARY FIGURE 2
Genomic landscape of nccRCC patients with 1123 gene.

SUPPLEMENTARY FIGURE 3
Genomic landscape of ccRCC patients with 79 gene

SUPPLEMENTARY FIGURE 4
Genomic landscape of nccRCC patients with 79 gene.

SUPPLEMENTARY TABLE 1
Clinical characteristics of all the patients.

8. Trpkov K, Hes O, Agaimy A, Bonert M, Martinek P, Magi-Galluzzi C, et al. et al:
Fumarate hydratase-deficient renal cell carcinoma is strongly correlated with fumarate
hydratase mutation and hereditary leiomyomatosis and renal cell carcinoma syndrome.
Am ] Surg Pathol (2016) 40(7):865-75. doi: 10.1097/PAS.0000000000000617

9. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler
transform. Bioinf (Oxf Engl) (2009) 25(14):1754-60. doi: 10.1093/bioinformatics/
btp324

10. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence
Alignment/Map format and SAMtools. Bioinf (Oxf Engl) (2009) 25(16):2078-9. doi:
10.1093/bioinformatics/btp352

11. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
et al: The genome analysis toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res (2010) 20(9):1297-303. doi: 10.1101/
gr.107524.110

12. He X, Chen S, Li R, Han X, He Z, Yuan D, et al. Comprehensive fundamental
somatic variant calling and quality management strategies for human cancer genomes.
Briefings Bioinf (2021) 22(3):bbaa083. doi: 10.1093/bib/bbaa083

13. Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Killberg M, et al.
Manta: rapid detection of structural variants and indels for germline and cancer
sequencing applications. Bioinf (Oxf Engl) (2016) 32(8):1220-2. doi: 10.1093/
bioinformatics/btv710

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2023.1095775/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2023.1095775/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.jncc.2022.02.002
https://doi.org/10.1016/j.jncc.2022.02.002
https://doi.org/10.1038/nrdp.2017.9
https://doi.org/10.1038/s41585-019-0211-5
https://doi.org/10.1038/s41585-019-0211-5
https://doi.org/10.1016/j.celrep.2018.03.075
https://doi.org/10.1038/nature12222
https://doi.org/10.1056/NEJMoa1505917
https://doi.org/10.1056/NEJMoa1505917
https://doi.org/10.1097/PAS.0000000000000617
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1093/bib/bbaa083
https://doi.org/10.1093/bioinformatics/btv710
https://doi.org/10.1093/bioinformatics/btv710
https://doi.org/10.3389/fonc.2023.1095775
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Tai et al.

14. Huang J, Cai W, Cai B, Kong W, Zhai W, Zhang J, et al. et al: Comprehensive
genomic landscape in Chinese clear cell renal cell carcinoma patients. Front Oncol
(2021) 11:697219. doi: 10.3389/fonc.2021.697219

15. Kaelin WGJr. Molecular basis of the VHL hereditary cancer syndrome. Nat Rev
Cancer (2002) 2(9):673-82. doi: 10.1038/nrc885

16. Miao D, Margolis CA, Gao W, Voss MH, Li W, Martini D], et al. et al: Genomic
correlates of response to immune checkpoint therapies in clear cell renal cell
carcinoma. Sci (New York NY) (2018) 359(6377):801-6. doi: 10.1126/science.aan5951

17. Braun DA, Hou Y, Bakouny Z, Ficial M, Sant’ Angelo M, Forman J, et al. et al:
Interplay of somatic alterations and immune infiltration modulates response to PD-1
blockade in advanced clear cell renal cell carcinoma. Nat Med (2020) 26(6):909-18. doi:
10.1038/s41591-020-0839-y

18. Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny
and mechanisms of lethality. Nat Rev Nephrol (2021) 17(4):245-61. doi: 10.1038/
$41581-020-00359-2

19. Voss MH, Reising A, Cheng Y, Patel P, Marker M, Kuo F, et al. et al: Genomically
annotated risk model for advanced renal-cell carcinoma: a retrospective cohort study. Lancet
Oncol (2018) 19(12):1688-98. doi: 10.1016/S1470-2045(18)30648-X

20. Hsieh JJ, Chen D, Wang PI, Marker M, Redzematovic A, Chen YB, et al. et al:
Genomic biomarkers of a randomized trial comparing first-line everolimus and
sunitinib in patients with metastatic renal cell carcinoma. Eur Urol (2017) 71
(3):405-14. doi: 10.1016/j.eururo.2016.10.007

21. Varela I, Tarpey P, Raine K, Huang D, Ong CK, Stephens P, et al. Exome
sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal
carcinoma [J]. Nature (2011) 469(7331):539-42. doi: 10.1038/nature09639

Frontiers in Oncology

231

10.3389/fonc.2023.1095775

22. Joseph RW, Kapur P, Serie DJ, Parasramka M, Ho TH, Cheville JC, et al. Clear
cell renal cell carcinoma subtypes identified by BAP1 and PBRM1 expression [J]. ] Urol
(2016) 195(1):180-7. doi: 10.1016/j.juro.2015.07.113

23. Lee CH, Voss MH, Carlo MI, Chen YB, Zucker M, Knezevic A, et al. Phase 11
trial of cabozantinib plus nivolumab in patients with non-Clear-Cell renal cell
carcinoma and genomic correlates. J Clin Oncol (2022) 40(21):2333-41. doi: 10.1200/
JCO.21.01944

24. Sepe P, Ottini A, Pircher CC, Franza A, Claps M, Guadalupi V, et al.
Characteristics and treatment challenges of non-clear cell renal cell carcinoma. [J].
Cancers (Basel) (2021) 13(15):3807. doi: 10.3390/cancers13153807

25. Wu J, Wang H, Ricketts CJ, Yang Y, Merino MJ, Zhang H, et al. et al: Germline
mutations of renal cancer predisposition genes and clinical relevance in Chinese
patients with sporadic, early-onset disease. Cancer (2019) 125(7):1060-9. doi:
10.1002/cncr.31908

26. Xu'Y, Kong W, Cao M, Wang ], Wang Z, Zheng L, et al. Genomic profiling and
response to immune checkpoint inhibition plus tyrosine kinase inhibition in FH-
deficient renal cell carcinoma. Eur Urol (2022) 83(2):163-72. doi: 10.1016/
j.eururo.2022.05.029

27. Truong H, Sheikh R, Kotecha R, Kemel Y, Reisz PA, Lenis AT, et al. Germline
variants identified in patients with early-onset renal cell carcinoma referred for
germline genetic testing. Eur Urol Oncol (2021) 4(6):993-1000. doi: 10.1016/
j.€10.2021.09.005

28. Abou Alaiwi S, Nassar AH, Adib E, Groha SM, Akl EW, McGregor BA, et al.
Trans-ethnic variation in germline variants of patients with renal cell carcinoma. Cell
Rep (2021) 34(13):108926. doi: 10.1016/j.celrep.2021.108926

frontiersin.org


https://doi.org/10.3389/fonc.2021.697219
https://doi.org/10.1038/nrc885
https://doi.org/10.1126/science.aan5951
https://doi.org/10.1038/s41591-020-0839-y
https://doi.org/10.1038/s41581-020-00359-2
https://doi.org/10.1038/s41581-020-00359-2
https://doi.org/10.1016/S1470-2045(18)30648-X
https://doi.org/10.1016/j.eururo.2016.10.007
https://doi.org/10.1038/nature09639
https://doi.org/10.1016/j.juro.2015.07.113
https://doi.org/10.1200/JCO.21.01944
https://doi.org/10.1200/JCO.21.01944
https://doi.org/10.3390/cancers13153807
https://doi.org/10.1002/cncr.31908
https://doi.org/10.1016/j.eururo.2022.05.029
https://doi.org/10.1016/j.eururo.2022.05.029
https://doi.org/10.1016/j.euo.2021.09.005
https://doi.org/10.1016/j.euo.2021.09.005
https://doi.org/10.1016/j.celrep.2021.108926
https://doi.org/10.3389/fonc.2023.1095775
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Frontiers in
Oncology

Advances knowledge of carcinogenesis and
tumor progression for better treatment and
management

The third most-cited oncology journal, which
highlights research in carcinogenesis and tumor
progression, bridging the gap between basic
research and applications to imrpove diagnosis,
therapeutics and management strategies.

Discover the latest
Research Topics  trontiers

Frontiers in

Oncology

Frontiers

Avenue du Tribunal-Fédéral 34
1005 Lausanne, Switzerland
frontiersin.org

Contact us

+41(0)21 510 17 00
frontiersin.org/about/contact

& frontiers | Research Topics



https://www.frontiersin.org/journals/Oncology/research-topics

	Cover

	FRONTIERS EBOOK COPYRIGHT STATEMENT

	Establishment of marker models for molecular typing of renal cell carcinoma

	Table of contents

	Editorial: Establishment of marker models for molecular typing of renal cell carcinoma
	Author contributions
	References

	Potassium channel-related genes are a novel prognostic signature for the tumor microenvironment of renal clear cell carcinoma
	Introduction
	Materials and methods
	Public data acquisition and processing
	Human renal clinical tissues and RNA extraction
	Identification of prognostic differentially expressed PCRGs
	Construction and evaluation of the PCRG signature
	Construction and evaluation of the nomogram
	Functional enrichment analysis and gene set enrichment analysis
	Estimation of the TME
	Gene mutation analysis
	Prediction of sensitivity to chemotherapy
	Real&minus;time quantitative PCR
	Statistical analysis

	Results
	Identification of differentially expressed prognostic PCRGs in the TCGA ccRCC cohort
	Construction and validation of the PCRG signature
	Construction and evaluation of the nomogram
	Functional annotation analysis of the PCRG signature
	Association between immune cell infiltration and TMB and the risk score in ccRCC
	Association between TMB and the risk score in ccRCC
	Prediction of chemotherapeutic drug responses
	The expression of key genes in the PCRG signature in ccRCC

	Conclusions
	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Acknowledgments
	References

	Expression of basement membrane genes and their prognostic significance in clear cell renal cell carcinoma patients
	Introduction
	Materials and methods
	Acquisition of data and identification of differential expression BM genes
	Verification of the expression levels of DEGs
	Construction and validation of the BM gene signature
	Identification of independent prognostic indices and establishment of the predictive nomogram
	Functional annotation and gene set enrichment analysis
	Analysis of the infiltration levels of immune cells
	Identification of potential small molecule drugs
	Statistics analysis

	Results
	Establishment and validation of the BM gene‑based model
	BM gene-based signature could predict ccRCC prognosis independently
	Relationship between clinical features and the signature
	Nomogram construction
	Functional enrichment and GSEA
	Analysis of the infiltration levels of immune cells based on the BM gene-based model
	TIMER analysis
	Prediction of candidate drugs implicated with the differential expression of the signature genes

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Comprehensive analysis of a homeobox family gene signature in clear cell renal cell carcinoma with regard to prognosis and immune significance
	Introduction
	Materials and methods
	Data sources
	Construction and validation of the HOX family gene-based signature
	Construction of a prognostic nomogram
	Functional annotation and gene set enrichment analysis
	Evaluation of immune cell infiltration and immune function
	Tissue collection
	RNA isolation and qRT-PCR
	Statistical analysis

	Results
	Characterization of homeobox family&#146;genes
	Construction of a homeobox family gene-based signature in ccRCC
	Validation of the homeobox family gene-based signature in internal cohorts
	Validation of the homeobox family gene-based signature in external ICGC cohort
	Estimation of the independent prognostic value of the signature and construction of a nomogram
	Functional annotation of the HOX family gene-based signature
	Association between the HOX family gene-based signature with immune cell&#146;infiltration
	Expression and Kaplan-Meier survival analysis of the eight HOX family genes
	HOXD8 was downregulated in ccRCC and correlated with tumor progression

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Multi-omics profiles refine L-dopa decarboxylase (DDC) as a reliable biomarker for prognosis and immune microenvironment of clear cell renal cell carcinoma
	Introduction
	Materials and methods
	Patients’ inclusion and data preprocessing
	DDC expression and correlations with clinicopathological features
	Differentially expressed genes identification and functional enrichment analysis
	Evaluation of immune cells abundance in the TME and immunological response of ccRCC
	Survival analysis
	Immunohistochemical analysis
	Statistical analysis

	Results
	Identification of DDC expression in regulating amino acids metabolism of ccRCC
	Associations between DDC and clinicopathological features in ccRCC from the TCGA cohort
	Low DDC expression in ccRCC is associated with worse prognosis
	Functional enrichments of DDC expression subgroups
	Differential immune microenvironment between DDC expression subgroups

	Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References

	Prognosis and pain dissection of novel signatures in kidney renal clear cell carcinoma based on fatty acid metabolism-related genes
	Introduction
	Materials and methods
	Data source
	Screening of FMG-associated genes
	Identification of mutated and differentially expressed genes
	Construction and validation of risk scores
	Comprehensive assessment of FMI in patients
	Construction and evaluation of an FMG-based clinicopathologic nomogram
	Functional enrichment analysis of the FMI groups
	Evaluation of the immunogenomic landscape of RCC
	Analysis of sensitivity to chemotherapy
	Validation of genes included in the risk model
	Statistical analysis

	Results
	Construction of the FMG-related signature for ccRCC
	Effect of expression levels of each of the 10 FMGs in the signature on prognosis of RCC
	Evaluation and validation of the 10-FMG signature
	Correlation between FMI and clinical features of ccRCC
	Establishment and assessment of an FMG-based clinicopathologic nomogram
	GSEA analysis based on FMI grouping
	Immune microenvironment of ccRCC
	Prediction of chemotherapeutic drug sensitivity
	Clinical validation of the expression of genes
	Pain dissection of the FMGs signature

	Discussion
	Conclusions
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	Neutrophil extracellular traps-associated modification patterns depict the tumor microenvironment, precision immunotherapy, and prognosis of clear cell renal cell carcinoma
	Introduction
	Methods
	Data collection and processing
	Exploration of the genetics and biological significance of NET genes in KIRC
	Unsupervised clustering analysis
	Gene set variation analysis
	The immune infiltration landscape of the ccRCC cohort
	Calculation of NET score (NET-scores)
	Prognosis, enrichment analysis, genetic alterations, chemokines, immune exploration, and clinical feature analysis based on NET-scores
	Expression levels of immune checkpoints, immunotherapy response, and drug sensitivity of patients in different NET-score groups
	Online analysis
	Cell culture and RT-PCR
	Statistical analysis

	Results
	Expression and prognostic values of NET-related genes in the TCGA-KIRC
	Identification of NET-related gene subtypes in the ccRCC cohort
	Characteristics of TME in different subtypes
	Identification of gene clusters based on DEGs
	Calculation of the NET scores, and evaluation of TME and chemokines in different risk groups
	Clinical characteristics of the NET-scores and functional enrichment between different subtypes
	Evaluation of checkpoints and immunotherapeutic benefit between the high- and low-NET-score groups
	Pathway activity and drug sensitivity analysis
	Genetic mutations of two NET-score groups, landscape, and validation of core genes

	Discussion
	Data availability statement
	Author contributions
	Supplementary material
	References

	Identification of IRF-associated molecular subtypes in clear cell renal cell carcinoma to characterize immunological characteristics and guide therapy
	Introduction
	Materials and methods
	Data sources and pre-processing
	Cell culture
	RNA isolation and quantitative real-time PCR
	Unsupervised clustering of IRF1-9
	Gene set variance analysis
	Estimation of immune infiltration
	Identification of DEGs and functional annotation
	Construction of IRFscore
	Validation of the clinical value of IRFscore
	IPS analysis
	Drug sensitivity analysis
	Statistics analysis

	Results
	Expression pattern and clinical relevance of IRFs in ccRCC
	Identification of IRF-related subtypes in ccRCC
	Immune characteristics of different IRF-related subtypes
	Comprehensive analysis of IRFs-related DEGs
	Establishment of IRF gene signature and its clinical characteristics
	Further validation of IRFscore’s prognostic performance using two independent cohorts
	Association between IRFscore and CD8+ T cell exhaustion
	The role of IRFs in TMB and therapy
	Degree of matching of IRFscore groups to ccRCC immunological and molecular subtypes

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	Development and validation of a nomogram to evaluate the therapeutic effects of second-line axitinib in patients with metastatic renal cell carcinoma
	1 Introduction
	2 Methods
	2.1 Patients and inclusion criteria
	2.2 Statistical analysis

	3 Results
	3.1 General characteristics
	3.2 Subtype analysis
	3.3 Prognostic model construction
	3.4 Predictive performance of the model

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	References

	Establishment of a new prognostic risk model of MAPK pathway-related molecules in kidney renal clear cell carcinoma based on genomes and transcriptomes analysis
	1 Introduction
	2 Materials and methods
	2.1 Data acquisition
	2.2 Data processing and analysis
	2.3 GEPIA website
	2.4 ImmuCellAI website
	2.5 Generation of PPI networks
	2.6 TIMER website
	2.7 GDSC database
	2.8 The Human Protein Atlas database
	2.9 Collection of clinical tissue samples
	2.10 Total RNA extraction and qRT-PCR experiments
	2.11 Statistical analyses

	3 Results
	3.1 The expression of MAPK signaling pathway-related genes in KIRC and univariate Cox analysis
	3.2 Construct a novel prognostic-related survival model in KIRC
	3.3 The relationship between the risk model and clinicopathological characteristics, and draw the corresponding nomogram in KIRC
	3.4 OS and variation of model genes in pan-cancer
	3.5 Immune infiltration and drug sensitivity of model genes in pan-cancer
	3.6 Verify the protein expression of model genes between KIRC tissues and normal tissues
	3.7 GSEA analysis in KIRC for risk model genes
	3.8 Validation of mRNA differential expression of risk model genes in KIRC clinical samples based on qRT-PCR

	4 Discussion
	5 Conclusions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Supplementary material
	References
	Glossary

	Histone methyltransferase SETD2: An epigenetic driver in clear cell renal cell carcinoma
	1 Introduction
	2 Protein structure of SETD2
	2.1 The AWS-SET-PS domains
	2.2 The Set2-Rpb1 interacting domain
	2.3 The WW domain
	2.4 The SHI domain
	2.5 Auto-inhibitory domain
	2.6 The large unstructured N&minus;terminal domain

	3 SETD2 and clear cell renal cell carcinomas
	3.1 SETD2 mutation and ccRCC
	3.2 SETD2 serves as a tumor-suppressor gene in ccRCC
	3.2.1 Cryptic transcription
	3.2.2 RNA splicing
	3.2.3 DNA damage and repair signaling
	3.2.4 Autophagy
	3.2.5 Cancer metabolism
	3.2.6 Metastases
	3.2.7 Cell proliferation and cell cycle regulation
	3.2.8 Non-histone substrates of SETD2
	3.2.9 Other functions


	4 Conclusion
	Author contributions
	Funding
	Acknowledgments
	References

	Integrative analysis of transcriptomic landscape and urinary signature reveals prognostic biomarkers for clear cell renal cell carcinoma
	Introduction
	Materials and methods
	Patient selection and sample collection
	RNA sequencing
	Mass spectrometry
	Analyses of differentially expressed genes/proteins
	Screening of prognostic proteins for survival
	Development and validation of prognostic classifier for survival
	Statistical analysis

	Results
	Transcriptomic landscape and urinary signature of ccRCC patients with VTT
	The upregulated DEPs indicate poor survival in ccRCC patients
	A urine-based prognostic classifier to predict ccRCC prognosis
	Effects of DEPs on tumor microenvironment and thrombus invasion

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Integrated bioinformatic analysis and cell line experiments reveal the significant role of the novel immune checkpoint TIGIT in kidney renal clear cell carcinoma
	Introduction
	Materials and methods
	Data acquisition and sources
	TIGIT in normal tissues between organs and genders or between tumor and normal tissues
	TIGIT in KIRC: Differential expression, prognostic value, and clinical correlation
	TIGIT in KIRC: Differential enhanced pathways, differential immune infiltration, and differential drug response
	TIGIT in KIRC: Novel potential targeted drug and molecular docking
	Cell culture
	Cell transfection
	RNA extraction and quantitative real-time polymerase chain reaction
	CCK-8 assay
	Transwell migration assay

	Results
	Basic characteristics
	TIGIT in normal tissues and tumor tissues
	TIGIT in KIRC: Differential expression, prognostic value, and clinical correlations
	TIGIT in KIRC: Differential enhanced pathways, differential immune infiltration, and differential drug response
	TIGIT in KIRC: Novel potential targeted drug and molecular docking
	TIGIT enhanced the progression of 786-O clear cell renal carcinoma cells

	Discussion
	Conclusion
	Data availability statement
	Author contributions
	Supplementary material
	References

	Exploring a ferroptosis and oxidative stress-based prognostic model for clear cell renal cell carcinoma
	1 Introduction
	2 Materials and methods
	2.1 Data collection and preprocessing
	2.2 Preparation of ferroptosis and oxidative stress-associated gene set
	2.3 Development and validation of a FPTOS-based prognostic model
	2.4 Construction of miRNA-FPTOS regulatory network
	2.5 Tumor mutation burden (TMB) analysis
	2.6 Exploration of immune microenvironment and response to immunotherapy
	2.7 Identification of sensitive drugs based on FPTOS_score
	2.8 Real-time PCR (RT-PCR) analysis
	2.9 Statistical analysis

	3 Results
	3.1 Identification of FPTOS gene signature
	3.2 Development and validation of a FPTOS-based prognostic model
	3.3 Independence of the FPTOS_score from clinical parameters of ccRCC
	3.4 Construction of miRNA-FPTOS regulatory network
	3.5 Association between FPTOS_score and mutation profiles
	3.6 Determination of immune cell infiltration and immune microenvironment
	3.7 Evaluation of immunotherapy responsiveness based on FPTOS risk stratification
	3.8 Relationship between FPTOS_score and drug susceptibility
	3.9 Exploring the expression pattern of the identified FPTOSs

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Supplementary material
	References

	Construction of an interferon regulatory factors-related risk model for predicting prognosis, immune microenvironment and immunotherapy in clear cell renal cell carcinoma
	Introduction
	Materials and methods
	Ethical statement
	Data preparation
	scRNA-seq data analysis
	Differential expression analysis of the IRF family members and gene-gene interaction network
	Prognostic values of the IRF family members
	Identification of molecular subtypes based on IRF family members
	Gene set variation analysis (GSVA) and functional enrichment analysis
	Construction and validation of an IRFs-related prognostic model
	Evaluation of immune characteristics
	Assessment of immunotherapy response
	Drug sensitivity analysis
	RNA extraction and quantitative real-time polymerase chain reaction (qRT-PCR)
	Immunohistochemistry (IHC)

	Results
	Multi-omics landscape of IRF family members in ccRCC
	Validation of the IRF family members by qRT-PCR and IHC
	Identification of IRFs-related molecular subtypes
	Construction and validation of an IRFs-related prognostic model
	Correlation between risk score and clinical characteristics
	Construction and evaluation of the prognostic nomogram
	Evaluation of immune characteristics and immunotherapeutic response
	Drug sensitivity analysis

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	The chromosomal instability 25 gene signature is identified in clear cell renal cell carcinoma and serves as a predictor for survival and Sunitinib response
	Introduction
	Materials and methods
	Primary ccRCC tumor specimens and their matched renal noncancerous tissues
	RNA extraction and RNA sequencing
	Reverse transcription and qPCR analysis
	Data collection and processing of ccRCC tumors
	CIN25 signature
	Copy number alterations and aneuploidy score analysis
	Analyses for proliferation, cancer stemness, Epithelial–mesenchymal transition, angiogenesis and telomerase score
	Telomere length and telomerase activity assessments
	GSEA analysis
	Nomograms for survival prediction
	Statistical analysis

	Results
	Robust upregulation of the CIN25 signature genes in primary ccRCC tumors
	CIN25 expression-based classification of ccRCCs
	Association between CIN25 subtypes and clinic-pathological variables
	Telomere length, telomerase and genomic aberrations in CIN25 subtypes of ccRCC tumors
	CIN25 clusters for prediction of ccRCC patient survival
	The CIN25 cluster as a predictor for patient response to Sunitinib treatment
	Signaling pathways enriched in CIN25-C2 tumors and phenotypic association
	Increased EZH2 expression and diminished angiogenesis in CIN25-C2 tumors

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Genomic profiles of renal cell carcinoma in a small Chinese cohort
	1 Introduction
	2 Methods
	2.1 Patients
	2.2 Next-generation sequence
	2.3 Statistical analysis

	3 Results
	3.1 Patients summary
	3.2 Somatic mutation of RCC in 1123 gene panel
	3.3 Somatic mutation of RCC in 79 gene small panel
	3.4 germline mutation of RCC

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Supplementary material
	References

	Back Cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




