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Editorial on the Research Topic

Establishment of marker models for molecular typing of renal
cell carcinoma
According to the latest cancer statistics report, renal cell carcinoma (RCC) accounts for

more than 400,000 new cancer cases and causes approximately 179,000 deaths worldwide

(1, 2). Clear cell renal cell carcinoma (ccRCC) comprises approximately 75-80% of all cases

of RCC, with the remaining percentage being represented by several subtypes of nonclear

cell carcinoma (3). While curative treatment may be possible for patients with localized

disease, others may present with metastatic or locally advanced disease. In some cases,

patients with aggressive tumor biology may experience recurrence despite surgical

resection. Given the variability in patient outcomes, accurate risk stratification is

essential to identify patients who might benefit from more intensive initial treatment,

closer monitoring, or adjuvant therapies. The advent of sophisticated multiomics

techniques such as whole genome sequencing, combined with innovative bioinformatic

tools, has enabled researchers to delve deep into tumor etiology and stratify patients based

on characteristics associated with clinical outcomes. Based on the above concerns, there is

an urgent need to identify novel biomarkers and risk models.

In this Research Topic, an overview of novel biomarkers and molecular subtyping of

RCC is performed through 1 review and 15 original research papers by 119 authors, and

these works facilitate our better understanding of cancer progression and heterogeneity to

therapy response among RCC patients (Wang et al., Zheng et al., Pan et al. Lin et al., Zhang

et al. Lin et al., Tao et al., Yu et al., Chen et al., Xia et al. Zhang et al., Chang et al., Teng et al.,

Zeng et al., Ding et al.).

Risk models based on transcriptome signatures could be better applied in clinical

practice because of interpretability and accessibility. Wang et al. performed a

comprehensive in silico combined with in-house validation analysis and divided ccRCC

patients into CIN25-C1 and C2 subtypes based on 25 genes related to chromosomal

instability. Patients with CIN25-C2 had a poor prognosis and increased proliferation, EMT,

stemness and telomerase activity but were sensitive to sunitinib. There is great promise for

the routine clinical application of CIN25-based ccRCC classification, as polymerase chain

reaction (PCR) quantification appears to be sufficient. Lin et al. developed a reliable risk
frontiersin.org015
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system based on ferroptosis and oxidative stress-associated genes

and compared the differences at various levels, including clinical

parameters, the immune microenvironment, and therapy

resistance. They found that ccRCC patients with high risk scores

had higher TMB levels and CD8+ T-cell infiltration degrees and

preferable responsiveness to ICI therapy. Notably, a study from Pan

et al. utilized the interferon regulatory family to construct a novel

risk classifier for ccRCC with the application of a nonnegative

matrix factorization algorithm, and they also applied the least

absolute shrinkage and selection operator to develop a risk system

to guide better risk stratification, which reached a superior

performance than classical clinical parameters and the

ClearCode34 model.

Accumula t ing ev idence sugge s t s tha t me tabo l i c

reprogramming, especially in fatty acid metabolism, is

significantly correlated with tumorigenesis and progression in

RCC. Ding et al. constructed an optimal nomogram consisting of

the risk score of fatty acid metabolism-related genes and verified ten

signatures involved in overall survival by immunohistochemical

analyses, which also participated in uncontrolled pain in advanced

RCC patients. Neutrophils are a type of abundant inflammatory cell

present in the tumor microenvironment and could activate cancer

cells and releasing modified DNA structures coated with

cytoplasmic and granular proteins. A study from Teng et al.

utilized neutrophil extracellular trap-related signatures to carry

out a remodelling analysis and divided ccRCC patients into three

distinctive subtypes with various activated states of metabolism and

immune infiltration degrees, and four promising diagnostic genes,

including SLC27A2, SLC16A12, MAP7 and SLC3A1, were verified

through RT−PCR.

Mitogen-activated protein kinase (MAPK) signaling is one of

the most extensively studied pathways in tumor research. Zhang

et al. constructed a risk score consisting of 14 MAPK-related genes

using Lasso regression analysis and further proved that MAPK

activation is correlated with various malignant behaviors of tumor

cells, including but not limited to invasion, migration, apoptosis,

and extracellular matrix degradation. Recent studies have found

that the basement membrane, comprising fundamental

components, displays crucial biological functions in the body by

providing resistance against mechanical stress and determining

tissue morphology and cancer progression. Tao et al. established a

risk scoring system involving 16 basement membrane genes, which

were related to metabolic and tumor-related signaling cascades.

Studies have suggested the involvement of iron channels, especially

potassium channels, in the proliferation and migration of various

tumors by regulating T-cell function. Notably, Zeng et al.

constructed a promising prognostic signature involving hypoxia

and angiogenesis signatures based on potassium ion channel-

related genes for ccRCC and finally validated the differential

expression of four biomarkers related to potassium transport,

including ATP1A3, GNB3, GNB4 and NSF. The homeobox (HOX)

family, encoding a conserved family of transcription factors in

mammals, plays an indispensable role in organogenesis and

development. A study from Zheng et al. reported an eight HOX

gene-based risk model, and patients were divided into a lower risk

group with a fragile type II IFN response and para-inflammation
Frontiers in Oncology 026
scores. Noninvasive surveillance approaches, especially liquid

biopsy, are suitable for functioning as a repeatable and

personalized snapshot among patients with high clinical stage

scores. Zhang et al. carried out an integrative analysis consisting

of transcriptomic and proteomic profiles and finally developed a

risk score (containing VSIG4, TFGBI and P4HB) to predict the

long-term prognosis of ccRCC patients with venous

tumor thrombus.

Consistently, some promising diagnostic- and therapeutic-

related targets specific for ccRCC were also investigated. Aided by

systematic bioinformatic analysis and in vitro experiments, Xia et al.

proved that T-cell immunoglobulin and the ITIM domain, or

TIGIT, were highly expressed in tumor tissues and identified as

crucial prognostic determinants. TIGIT might promote Treg cell

infiltration, and patients with high expression of this signature

might benefit from sunitinib treatment. In addition, two potential

drugs (PD0325901 and selumetinib) targeting TIGIT were

identified and verified by molecular docking. Chang et al. proved

that the dysregulated expression level of one amino acid metabolism

regulator, L-dopa decarboxylase (DDC), could trigger higher

intratumoral heterogeneity and an immunosuppressive state in

ccRCC via PI3k/Akt signaling after analysing multiomics profiles

across four ccRCC datasets.

For advanced ccRCC patients, a second-line therapeutic

strategy of axitinib is suitable to prolong progression-free survival

after first-line therapies fail, while intra- and intertumoral

heterogeneity could vary the therapy response rate. Lin et al.

enrolled 44 advanced ccRCC patients and applied a combination

of Cox and Lasso algorithms to construct a predictive model to

predict the axitinib benefit rate. This model reached satisfactory

performance, since the area under the curve values of 3-, 6-, and 12-

month progression-free survival were 0.975, 0.909, and

0.911, respectively.

Genetic alterations, such as mutations and chromosomal copy

number variations (CNVs), have emerged as an initial step towards

genomic stratification in RCC. Tai et al. collected 55 patients with

RCC across different regions in China with whole genome

sequences and summarized the results as follows: In patients with

ccRCC, the occurrence of mutations in VHL, PBRM1, BAP1, and

SERD2 reached 74%, 50%, 24%, and 18%, respectively. In contrast,

among patients with nonclear ccRCC, the most frequently observed

mutations were those in FH (29%), MLH3 (24%), ARID1A (18%),

KMT2D (18%), and CREBBP (18%). Previous genomic analysis of

clinical samples of ccRCC unveiled a high incidence of SETD2

mutations, which could expedite cancer progression through

epigenetic regulation. Yu et al. provided a comprehensive

summary of SETD2 in ccRCC occurrence and progression, which

suggested that hypermutated SETD2 could be treated as a novel

therapeutic target.

Although there are numerous prognostic biomarkers found in

RCC that provide novel insights into diagnosis and therapy, their

accuracy and utility remain to be further investigated and verified.

The clinical utility and widespread application of specific risk

models or biomarkers is hindered by numerous challenges,

including resource limitations, complexity, the need for repeated

outhouse validation, and ideally, evaluation across different
frontiersin.org

https://doi.org/10.3389/fonc.2023.1131191
https://doi.org/10.3389/fonc.2023.1131191
https://doi.org/10.3389/fonc.2022.1094657
https://doi.org/10.3389/fonc.2022.1094248
https://doi.org/10.3389/fonc.2023.1077309
https://doi.org/10.3389/fonc.2023.1077309
https://doi.org/10.3389/fonc.2022.1026331
https://doi.org/10.3389/fonc.2022.1013324
https://doi.org/10.3389/fonc.2022.1008714
https://doi.org/10.3389/fonc.2023.1102623
https://doi.org/10.3389/fonc.2023.1096341
https://doi.org/10.3389/fonc.2022.1079446
https://doi.org/10.3389/fonc.2023.1071816
https://doi.org/10.3389/fonc.2023.1095775
https://doi.org/10.3389/fonc.2023.1114461
https://doi.org/10.3389/fonc.2023.1236980
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2023.1236980
prospective clinical trials. Nonetheless, our understanding of the

biological mechanisms governing RCC initiation and progression

continues to progress alongside the advances of new platforms for

clinical application. In the future, it is possible that genomic or other

profiling of each patient’s tumor might facilitate personalized

medicine, enabling the administration of appropriate treatments

to the right patients at the optimal time.
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Jun-jiang Chen1, Tai-heng Chen1, Jing-hui Guo1*
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Clear cell renal cell carcinoma (ccRCC) accounts for 80% of renal cell

carcinomas (RCCs), and its morbidity and prognosis are unfavorable. Surgical

resection is the first-line treatment for ccRCC, but the oncogenesis of ccRCC is

very complex. With the development of high-throughput sequencing

technology, it is necessary to analyze the transcriptome to determine more

effective treatment methods. The tumormicroenvironment (TME) is composed

of tumor cells, various immune-infiltrating cells, fibroblasts, many cytokines,

and catalysts. It is a complex system with a dynamic balance that plays an

essential role in tumor growth, invasion, and metastasis. Previous studies have

confirmed that potassium channels can affect the immune system, especially T

lymphocytes that require potassium channel activation. However, the effect of

potassium channels on the TME of ccRCC remains to be studied. Therefore,

this study aims to construct a prognostic signature for ccRCC patients based on

potassium ion channel-related genes (PCRGs), assess patient risk scores, and

divide patients into high- and low-risk groups based on the cutoff value. In

addition, we investigated whether there were differences in immune cell

infiltration, immune activator expression, somatic mutations, and

chemotherapeutic responses between the high- and low-risk groups. Our

results demonstrate that the PCRG signature can accurately assess patient

prognosis and the tumor microenvironment and predict chemotherapeutic

responses. In summary, the PCRG signature could serve as an auxiliary tool for

the precision treatment of ccRCC.

KEYWORDS

clear cell renal cell carcinoma (ccRCC), prognostic signature, potassium channel,
tumor microenvironment, immunotherapy
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Introduction

Renal cell carcinoma (RCC) is the most common malignant

tumor in the urinary system, and 80% of RCCs are the clear cell

renal cell carcinoma (ccRCC) pathological type. This percentage

is far more than the that for the mixed cell type, granulosa cell

type, and undifferentiated cell type (1). According to the World

Health Organization and the International Society of Urological

Pathology (WHO/ISUP) classification system (2), ccRCC can be

divided into four grades (grades I-IV). Even the first-line

treatment of ccRCC is surgery (3), however, nearly one-third

of patients with ccRCC already have metastasis at the first

diagnosis, and the clinical curative effect is limited in patients

with metastasis, even when combined with chemotherapy and

immunotherapy. The first line of treatment for metastatic RCC

patients is immune checkpoint inhibitors (ICIs) in combination

with tyrosine kinase inhibitors (TKIs) (4); however, patients

with locally advanced or metastatic RCC have a poor prognosis.

Before metastasis, the overall survival rate for RCC is 74%, and

for patients with metastasis, the 5-year survival rate decreases to

8% (5). Thus, it is important to identify new biomarkers or

targets to increase the early diagnosis rate of ccRCC and enhance

the effect of early intervention treatment.

Recently, the tumor microenvironment (TME), which

includes tumor-infiltrating immune cells (TICs), has been

shown to play a decisive role at all stages of tumor progression

(6–8). ccRCC is a highly immune-infiltrated tumor, and the high

immune infiltration of ccRCC has been proven in multiple

studies (9). Immune cells play a key role in anticancer

immunity. By immunomonitoring, TICs could predict the

prognosis of ccRCC patients and enhance the effects of

targeted therapy treatments (10). Most of the immune

checkpoint genes are upregulated in ccRCC, and thus, they

indicate a tumor in an immune-hot (high immune infiltration

inside the tumor) condition. Compared with immune-cold (lack

of immune infiltrates) tumors, the higher levels of infiltrating

lymphocytes in the nidus could help eliminate tumor cells,

resulting in a better prognosis (11). By affecting the TME and

proliferation of immune cells, potassium channels are involved

in the tumorigenesis, proliferation, and migration of tumors

(12). As reported by Masi A (13), hERG1 voltage-dependent

potassium channels promote the secretion of vascular

endothelial growth factor from tumor cells, especially in high-

grade gliomas. This stimulates neoangiogenesis and enhances

the progression of malignancy. Moreover, high expression of

TREK-1, a two-pore domain potassium channel, in prostate

cancer increases the proliferation of tumors, and the

overexpression of Kv1.1 potassium channels promotes the

proliferation of breast cancer (14, 15).

Previous studies (16, 17) have proven that potassium

channels can affect the immune system. In particular, T

lymphocytes need potassium channels to activate to enhance
Frontiers in Oncology 02
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the tumor. This leads to the avoidance of immune destruction or

the promotion of inflammation, which is associated with cancer

progression and prognosis. However, the effect of potassium

channels on the intratumoral immune microenvironment of

ccRCC remains to be investigated. Thus, this study was designed

to evaluate the correlation between potassium channels and the

TME of ccRCC.
Materials and methods

Public data acquisition and processing

In this study, transcriptome RNA sequencing (RNA-seq)

data of human ccRCC samples were downloaded via The Cancer

Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/). All the

RNA-seq data selected in our study were normalized by

fragments per kilobase million (FPKM). After removing

duplications and samples that were missing data, the KIRC

data set consisted of 29 normal samples and 394 cancer

samples and matched the clinical information of the selected

data. The RNA-seq data were combined into an expression

profi le matrix by Perl (http : / /www.perl .org/) . The

“org.hs.eg.db” package was used to convert the Ensembl ID

into a gene symbol. Our study used GeneCards (https://www.

genecards.org/) to obtain PCRGs.
Human renal clinical tissues and
RNA extraction

ccRCC tumor tissues and adjacent normal tissues were

col lected from 12 patients who underwent radical

nephrectomy at The First Affiliated Hospital of Jinan

University, and RNA was extracted from those tissues. These

patients had WHO/ISUP grades I to IV. This study was

approved by the Ethics Committee of the First Affiliated

Hospital of Jinan University. Both patients and the control

individuals provided written informed consent.

The total RNA of tumor tissues and adjacent normal tissues

from all patients was extracted using the EZ-Press RNA

Purification Kit (EZbioscience, USA). cDNA was obtained by

reverse transcription using the PrimeScript RT Kit

(TaKaRa, Japan).
Identification of prognostic differentially
expressed PCRGs

The “limma” package was used to identify the differentially

expressed genes (DEGs) between ccRCC tumor and adjacent

normal tissues. Genes with an adjusted P< 0.05 and |log2 fold
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change (FC)|>0 were defined as DEGs. Additionally, the

“survival” package was used to perform univariate Cox

regression, and the screening condition was P< 0.05 to identify

prognostic genes. Based on the above results, the PCRGs

obtained from GeneCards (https://www.genecards.org/) were

used to screen differentially expressed PCRGs and prognostic

PCRGs. The intersection of the two was used to identify

prognostic differentially expressed PCRGs. To explore the

correlations and interactions among these genes, the “igraph”

package was used to draw a correlation graph of the prognostic

differentially expressed PCRGs. The protein–protein interaction

(PPI) network of these genes was constructed and clustered

through STRING (https://string-db.org/).
Construction and evaluation of the
PCRG signature

The TCGA-KIRC cohort was divided into a training cohort

(n=275) and a validation cohort (n=117). Due to the large number

of PCRGs, our study used least absolute shrinkage and selection

operator (LASSO) regression to identify PCRGs that significantly

impacted survival in the training set and calculated their regression

coefficients. The PCRG signature was used to calculate the risk score

of each patient, and the PCRG expression value of each patient was

multiplied by the corresponding coefficient of the gene for

weighting. Then, the weighted expression values of the 10 PCRGs

were added to finally obtain the risk score of the patient, which was

calculated as follows:

Risk score=

o
n

i=1
Expi*Coefi

where n is the number of genes in the PCRG signature, i.e.,

n=10, Expi the expression value of the ith gene of the patient,

and Coefi is the coefficient of the gene in the PCRG signature.

The patients were classified into high-risk and low-risk

groups according to the median risk score, and then time-

dependent receiver operating characteristic (ROC) analysis was

used to verify the prediction accuracy of the signature.

Multivariate Cox regression was used to verify whether the

risk score obtained by the signature was an independent

prognostic factor, and Kaplan–Meier survival analysis was

performed to detect whether there was a significant difference

in survival between the high- and low-risk groups. A heatmap

was used to show the expression of the 10 PCRGs that

constituted this signature in ccRCC. Principal component

analysis (PCA) was used for dimension reduction, and the

expression pattern of PCRGs in high- and low-risk patients

was studied. Furthermore, one-way ANOVA was used to

analyze whether the risk scores of grade, stage, T stage, and M

stage at different levels were different.
Frontiers in Oncology 03
10
Construction and evaluation of
the nomogram

A nomogram was constructed based on sex, age, stage, T

stage, M stage, and the risk score to predict ccRCC patient

overall survival (OS) at 1, 3, and 5 years. The concordance

index (C-index), calibration curve and decision curve analysis

(DCA) were used to evaluate the predictive accuracy of

the nomogram.
Functional enrichment analysis and gene
set enrichment analysis

After classifying the samples of the TCGA-KIRC cohort into

high-risk and low-risk groups according to the median risk

score, the “limma” package was used to search for DEGs. The

screening conditions were P< 0.05 and |log2FC|>0. These DEGs

were used for Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) functional enrichment analyses. In

addition, gene set enrichment analysis (GSEA) was used to

uncover which biological functions the DEGs showed

statistically significant and consistent differences in.
Estimation of the TME

The “Cibersort” package was used to analyze the abundance

ratios of 22 types of immune cells in the TCGA ccRCC cohort

and determine whether the PCRG signature could distinguish

different immune cell infiltrations. The “survival” and

“survminer” packages were used to analyze the relationships

between immune activators and the PCRG signature and the

effect of the expression of immune activators on the survival of

patients in the high- and low-risk groups.
Gene mutation analysis

The “maftools” package was used to analyze the tumor

mutation burden (TMB) based on somatic mutation data from

TCGA. We calculated the TMB for each patient and compared

the TMB between the high-risk and low-risk groups.
Prediction of sensitivity to chemotherapy

Based on the Genomics of Drug Sensitivity in Cancer

(GDSC) database, we used the “pRRophetic” package to

calculate the half-maximal inhibitory concentration (IC50) for

different chemotherapy drugs between the high-risk and low-

risk groups.
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Real−time quantitative PCR

Based on the SYBR Green (ChamQ Universal SYBR qPCR

Master Mix, Vazyme Biotech, China)method, the CFX96 real-

time PCR system (Bio-Rad, USA) was used for RT–qPCR

detection. After the expression level of GAPDH was used for

normalization, the relative expression level of mRNA was

determined. The mRNA-specific primer sequences are shown

in Table 1.
Statistical analysis

Statistical analyses were conducted using R 4.1.1 and

GraphPad Prism 8 (GraphPad Software, Inc.). All data are

expressed as the mean ± SD. A paired difference test between

ccRCC samples and adjacent normal samples in the two groups

by the “limma” package was used to determine the DEGs.

Analysis with one-way ANOVA followed by the Student–

Newman–Keuls multiple comparison test was used for the

comparison of three or more experimental groups. For qPCR

data, Student’s t test was used for analysis.
Results

Identification of differentially expressed
prognostic PCRGs in the TCGA
ccRCC cohort

Among 118 PCRGs, 73 were differentially expressed. Of

these, 44 were upregulated, and 29 were downregulated in tumor

tissues (Figure 1A). Seventy-three prognosis-related PCRGs

were obtained by univariate Cox regression, and the screening

threshold was p< 0.05 (Figure 1B). The intersection of

differentially expressed PCRGs and prognosis-related PCRGs

was used to obtain 25 differentially expressed PCRGs
Frontiers in Oncology 04
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(Figure 1C). The heatmap illustrates the different expression

patterns of these PCRGs in ccRCC and normal tissues

(Figure 1D). We examined the correlation between 25

differentially expressed PCRGs in the TCGA-KIRC cohort.

Red dots represent a positive correlation, and blue dots

represent a negative correlation (Figure 1E). Our study

mapped the correlations among the 25 PCRGs and

constructed the PPI network of these genes through the

STRING database. The results showed that the 25 PCRGs

could form 3 clusters (Figure 1F).
Construction and validation of the
PCRG signature

Compared with l1SE, lmin has higher accuracy. Hence, lmin

was selected to build the model for accuracy in our study. The

LASSO algorithm was used to determine Log(lmin) = -3.8

(Figure 2A), and the PCRG prognostic signature consisting of

10 genes (Figure 2B) was established. The specific gene

composition and coefficient of each gene are shown in Table 2.

The PCRG prognostic signature was used to calculate the

patients’ risk scores and divide them into high-risk and low-

risk groups (Figure 2C). The risk score calculated by the

signature can separate surviving patients from nonsurviving

patients (Figure 2D). In addition, the heatmap shows the

expression patterns of the 10 genes that make up the PCRG

prognostic signature between the high-risk and low-risk

groups (Figure 2E).

The signature was significantly correlated with survival in

the training cohort (Figure 3A) and validation cohort

(Figure 3B). Nine of the 10 genes that constituted the

prognostic signature were significantly associated with the

Kaplan−Meier survival curve (Figures 3C–L). PCA showed

that the risk score could categorize patients with different

risk scores into two groups (Figure 4A). ROC curve analysis

was used to illustrate the accuracy of this signature. The 1-year,

3-year, and 5-year area under the curve (AUC) values of the

risk score were 0.628, 0.702, and 0.768, respectively.

Interestingly, the 1-year, 3-year, and 5-year AUC values

increased gradually, suggesting that the PCRG signature has

an excellent ability to predict long-term prognosis (Figure 4B).

The forest map shows that the hazard ratio (HR) of the risk

score and 95% confidence interval (CI) were 3.333 (2.391

−4.647), p<0.001, in univariate Cox regression (Figure 4C)

and 2.680 (1.830−3.925), p<0.001, in multivariate Cox

regression (Figure 4D). Moreover, with the increase in T

stage (Figure 4E), M stage (Figure 4F), and stage (Figure 4G),

the risk score also increased. These findings suggest that the

higher the malignancy degree of ccRCC was, the higher the

risk score.
TABLE 1 mRNA-specific primer sequences.

Gene Primer sequence Tm

ATP1A3 F: GCAGTGTTTCAGGCTAACCAGG 58.9

R: CTCCTTCACGGAACCACAGCA 60.2

GNB3 F: CGTTTGGCCCTGTGACTAT 55.0

R: TACCAGGGTGCTACACTTTA 52.3

GNB4 F: TCCTATCCAAAGGCATCCACA 54.0

R: TGTTCAGTTGACCACGAGTGT 56.0

NSF F: GTGTCACATTGCCCCTCTG 56.6

R: TCTGGTCTATTGGTCATTCCTG 53.7

GAPDH F: ACAGTTGCCATGTAGACC 54

R: TTTTTGGTTGAGCACAGG 52
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Construction and evaluation of
the nomogram

To further evaluate the predictive ability of the PCRG

signature, we constructed a prognostic nomogram for ccRCC

based on the different weights of the risk score, stage, T stage, M

stage, sex, and age (Figure 5A). Our study evaluated the

consistency between nomogram-predicted survival and actual

survival using the C-index, and the C-index of the nomogram

was 0.76. The calibration curves (Figures 5B–D) of the

nomogram showed that the OS predicted by the nomogram

was in good agreement with the actual OS. The DCA curves

indicated that the nomogram provided a better net

benefit (Figure 5E).
Functional annotation analysis of the
PCRG signature

To further explore the underlying biological mechanisms

involved in the association between the PCRG signature and

ccRCC, GO and KEGG were used to annotate the 84 DEGs

between the high-risk and low-risk groups. According to GO

enrichment analysis (Figures 6A, B), the DEGs are mainly
Frontiers in Oncology 05
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involved in the “positive regulation of T-helper 1 type immune

response”, “positive regulation of T−helper cell differentiation”,

“positive regulation of neutrophil migration”, “positive regulation

of CD4 -, Alpha-beta T-cell differentiation”, “T-cell activation

involved in the immune response” and other immune-related

pathways. The KEGG pathways (Figures 6C, D) were mainly

related to metabolism, gap junctions, tumor-related signaling

pathways, and other biological processes closely related to

tumorigenesis and development. In addition, GSEA of the high-

risk and low-risk groups showed that the high-risk group was

positively correlated with hypoxia (NES=1.67, FDR=0.04),

angiogenesis (NES=1.65, FDR=0.04), and vasculogenesis

(NES=1.93, FDR=0). In contrast, the low-risk group was positively

correlated with NK-cell activation (NES=-1.84, FDR=0.03) and

germinal center formation (NES=1.72, FDR=0.04) (Figures 6E–I).
Association between immune cell
infiltration and TMB and the risk score
in ccRCC

To further verify the results of functional enrichment

analysis and GSEA, the present study compared the

infiltration of immune cells in the high- and low-risk

groups (Figure 7A). Most of the immune cells were more
A
B

D

E

F

C

FIGURE 1

Identification of 25 prognosis-associated differentially expressed PCRGs. (A) Volcano plot of DEGs between ccRCC and normal tissues.
(B) Univariate Cox analysis of 25 differentially expressed PCRGs in ccRCC. (C) Venn diagram showing the intersection of the DEGs and
prognostic genes. (D) Heatmap illustrating the differential expression of 25 prognosis-associated PCRGs between ccRCC tissues and normal
tissues. (E) Correlation between 25 differentially expressed PCRGs in the TCGA-KIRC cohort. Red represents a positive correlation, and blue
represents a negative correlation. (F) PPI network of 25 PCRGs.
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infiltrated in the low-risk group than in the high-risk group,

especially memory B cells, NK cells and T helper cells, as

mentioned in the above results (Figure 7B). These findings

suggest that the risk score may be related to the formation of

tertiary lymphatic structures (TLSs) in ccRCC. In addition,

our study explored the relationship between the risk score

and the immune activators TNFAIP1, MHC II and KIR2DS4.

The results showed that the lower the risk score was, the

higher the express ion of these immune act ivators

(Figures 7C–E). After combining these results with the

PCRG signature, the prognosis of the high-risk + low

immune activator group was significantly worse than that of

the low-risk + high immune activator group (Figures 7F–H).
A B

D

E

C

FIGURE 2

Construction of the PCRG prognostic signature. (A) Selection of the optimal parameter (l) of LASSO regression through cross-validation.
(B) LASSO coefficient profiles of the 10 genes that comprise the prognostic signature selected by l. (C) The TCGA-KIRC cohort was divided into
high-risk and low-risk groups according to the median risk score value. (D) Higher mortality was observed in the high-risk group than in the
low-risk group. (E) Heatmap of the expression levels of 10 PCRGs in the high-risk and low-risk groups.
TABLE 2 Genes and their coefficients that constitute the PCRG
signature.

Gene Coefficient

ATP1A3 1.20856795

GNB3 0.192896088

SLC24A3 0.165657175

DPP6 0.141493127

STK39 0.087752983

STX1A -0.0357362

KCNA7 -0.126888902

KCNH5 -0.33762536

NSF -0.437328756

GNB4 -0.977379864
Genes in bold font we performed qPCR validation, and the remaining genes were not.
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Association between TMB and the risk
score in ccRCC

We further analyzed the relationship between TMB and the

risk score in ccRCC. The somatic mutation results showed that

most genomic variants were missense mutations. The rest were

frameshift deletion mutations, nonsense mutations, and

frameshift insertion mutations, and C>T was the most

common SNV type in both the high- and low-risk groups

(Figure 8A). From an overall perspective, the samples in the

low-risk group had a significantly larger number of variants than

those in the high-risk groups (Figure 8B). The top 10 most

frequently mutated genes in the corresponding groups are

illustrated in Figure 8C. VHL, PBRM1, and TTN occupied the

top three positions in both groups.
Prediction of chemotherapeutic
drug responses

We used the “pRRophetic” package to predict the

chemotherapeutic response to commonly used chemotherapy
Frontiers in Oncology 07
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agents in the high- and low-risk groups based on drug sensitivity

data from GDSC. The results showed that there was no

difference in response between the two groups for sorafenib.

The low-risk group demonstrated a higher response to sunitinib

(p<0.001), gefitinib (p<0.001), and temsirolimus (p=0.0097) than

the high-risk group. The response to axitinib (p=0.045) and

pazopanib (p=0.044) was higher in the high-risk group than in

the low-risk group (Figures 9A–F).
The expression of key genes in the PCRG
signature in ccRCC

To verify the authenticity of the PCRG signature, we

collected tumor and normal tissues from 12 ccRCC patients in

this study. RNA was extracted for RT–qPCR to verify the PCRG

signature. The gene with the most significant coefficient made

the most decisive contribution to the risk score. ATP1A3 and

GNB3 had the largest positive coefficients in the signature, and

GNB4 and NSF had the largest negative coefficients. Therefore,

ATP1A3, GNB3, GNB4, and NSF were identified as key genes in

the signature and further analyzed. The expression of ATP1A3
A B

D E F G

IH J K L

C

FIGURE 3

Kaplan–Meier survival curves of the high-risk and low-risk groups. The overall survival of the high-risk group was significantly lower than that of the
low-risk group in the (A) training cohort and (B) validation cohort. The effect of each gene (C–L) expression value on OS in the prognostic signature.
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(Figure 10A) and GNB3 (Figure 10B) in tumor tissues was

significantly higher than that in normal tissues.

In comparison, the expression of GNB4 (Figure 10C) and NSF

(Figure 10D) in tumor tissues was significantly lower than that in

normal tissues, suggesting that these key genes play an essential role

in the occurrence and development of ccRCC. The results of RT–

qPCR confirmed the database analysis conclusion. In addition, we

used the Human Protein Atlas (HPA) online database (https://

www.proteinatlas.org/) to detect the protein expression of key

genes. The immunohistochemical results of ATP1A3, GNB4, and

NSF were consistent with the RT–qPCR results (Figures 10E–L).

Conclusions

With the rapid development of high-throughput sequencing

technologies, we can better understand the cancer biology of
Frontiers in Oncology 08
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ccRCC. In this study, we constructed a novel prognostic

signature composed of PCRGs. The PCRG signature could

accurately classify patients in the training and validation

cohorts into high- and low-risk groups. Our results

demonstrate that the PCRG signature has high specificity and

sensitivity and can supplement clinicopathological parameters

for prognosis evaluation and treatment guidance for patients.

We analyzed the TME landscapes of the high- and low-risk

groups. The results showed that the low-risk group had higher

proportions of immune cell infiltration and somatic mutations

and a better response to chemotherapy. These findings suggest

that patients in the low-risk group were more likely to benefit

from immunotherapy and chemotherapy, indicating that the

PCRG signature has better performance than other prognostic

signatures. In addition, by combining the PCRG signature with

clinical parameters such as age, T stage, and M stage, we
A
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C

FIGURE 4

Evaluation of the PCRG prognostic signature. (A) The low-risk and high-risk groups can be separated into two parts using PCA. (B) Time-
dependent ROC curves for the risk score for predicting 1-, 3-, and 5-year survival in the TCGA-KIRC cohort. (C) Univariate Cox and
(D) multivariate Cox regression analyses of age, sex, grade, stage, T stage, M stage, and risk score. Relationship between the risk score and
(E) T stage, (F) M stage, and (G) stage.
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constructed a nomogram to provide clinicians with a robust and

straightforward method for the personalized evaluation of

ccRCC patients. Finally, we found that the mRNA expression

of the four key genes in the PCRG signature in clinical samples

was consistent with their coefficients.
Discussion

In this study, we established a prognostic signature

consisting of potassium channel-related genes (PCRGs) to

predict the prognosis of patients with clear cell renal cell

carcinoma (ccRCC) by bioinformatics methods. The risk score

calculated by the PCRG signature was strongly associated with

the prognosis of patients with ccRCC, especially for long-term

prediction. In short, the PCRG signature we propose here may

be a complementary method for assessing the prognosis of

patients with ccRCC.
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As a fatal malignant tumor, ccRCC is a common

pathological type of renal cell carcinoma (RCC) that accounts

for approximately 80% of all RCCs. Due to its high degree of

drug resistance and 20-40% recurrence rate after surgical

resection, the prognosis of these patients is poor, and the

quality of human life is seriously affected (18–20). Therefore, it

is of great significance to find new biomarkers or targets for the

early diagnosis and intervention of ccRCC. It has been reported

that potassium channels are involved in the proliferation and

migration of ccRCC. For example, overexpression of the

potassium inward rectifier channel KCNJ1 can inhibit the

proliferation and migration of ccRCC and lead to apoptosis.

Its low expression is related to the poor prognosis of ccRCC (21).

Another study reported that the Ca2+-activated potassium

channel KCa3.1 is highly expressed in ccRCC and promotes

ccRCC metastasis, which is associated with worse survival (22).

Previous studies have shown that potassium channels, such as

voltage-gated Kv1.3 and the Ca2+-activated potassium channel

IKCa1, are crucial for the activation and proliferation of T
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FIGURE 5

Construction of a prognostic nomogram including the risk score for ccRCC. (A) A nomogram for predicting the 1-, 3- and 5-year overall survival
of individual ccRCC patients. The calibration curve for predicting the 1-year (B), 3-year (C), and 5-year (D) overall survival of ccRCC patients.
The better the red line and the 45° dashed line fit, the better uniformity between the nomogram-predicted and actual probabilities. (E) DCA
curves of the nomogram and risk score.
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lymphocytes (23, 24) and can be used as drug targets to regulate

the function of the immune system (25). According to this

research, Kv1.3 is highly expressed in the perivenular and

parenchymal inflammatory infiltrates of multiple sclerosis

(MS) brain tissue on T cells from the cerebrospinal fluid (26).

Moreover, the use of Kv1.3 inhibitors can specifically and

permanently block the proliferation and function of CD4+ T

cells (27, 28). Furthermore, the activation of Kv1.3 on T

lymphocytes can enhance the NLRP3 inflammasome and

increase the secretion of IL-1b, which strengthens the T-cell-

mediated inflammatory response (29).

Recently, the tumor microenvironment (TME), which

includes tumor-infiltrating immune cells (TICs), was shown to

play a decisive role at all stages of tumor progression. The high
Frontiers in Oncology 10
17
level of immune infiltration of ccRCC has been proven in many

types of studies. Therefore, potassium channels are likely to

affect the tumor and immune system, which could affect the

modeling the TME. Ultimately, this could lead to the occurrence

and development of ccRCC. How potassium channels directly

lead to cancer remains unclear, and only a few studies have been

carried out on the correlation between PCRGs and the

development of ccRCC (21, 22).

Our study first proposed a prognostic signature consisting

of 10 PCRGs that could predict the prognosis of patients with

ccRCC, especially for long-term prediction. The low-risk group

calculated by the PCRG signature had a better prognosis and

overall survival (OS) than the high-risk group. We analyzed the

differentially expressed genes (DEGs) between the high-risk
A
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FIGURE 6

Functional enrichment analysis of the DEGs between the high-risk and low-risk groups. Bar plot (A) and circle plot (B) of the top 30 GO
pathway analysis enrichment results. Bar plot (C) and circle plot (D) of KEGG pathway analysis enrichment results. (E–I) GSEA between the high-
risk and low-risk groups.
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and low-risk groups predicted by the PCRG signature through

GO enrichment analysis. The results showed that those genes

were mainly concentrated in T lymphocyte activation and

regulation, which is consistent with the previously reported

literature that suggest that potassium channels could regulate T

lymphocytes. Additionally, KEGG pathway analysis showed

that the DEGs were mainly related to tumor-related signaling

pathways and tumorigenesis. This result also supports the

participation of potassium channels in the development of

ccRCC. GSEA showed that the low-risk group was positively

correlated with follicular helper CD4 T cells (TFHs) and

germinal centers (GCs).

In contrast, the high-risk group was positively related to

hypoxia, angiogenesis, vasculogenesis, and glycolysis. In

addition, we compared the infiltration of immune cells in

ccRCC tumor tissues and normal tissues. We found more

infiltration of immune cells, especially memory B cells, NK

cells, and T helper cells, in normal tissues than in ccRCC

tissues. These results suggest that tertiary lymphoid structure

(TLS) formation may be underway.
Frontiers in Oncology 11
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TLS is a lymphocyte aggregate located in nonlymphoid

tissue (30). TLSs do not exist under physiological conditions

but occur as the result of infection, autoimmunity, chronic

inflammation, and even numerous cancers (30). They exhibit

all the characteristics of structures in the lymph nodes associated

with the generation of an adaptive immune response, including a

T-cell zone with mature dendritic cells (DC), a germinal center

with follicular DCs, proliferating B cells, and high endothelial

venules (HEV) (31). Previous studies have identified TLSs as a

tumor prognostic biomarker and therapeutic target that is

associated with improved survival (30, 32, 33). Our results

show that the numbers of TFH, GC, CD4+ T cells, and

memory B cells predicted by the PCRG signature were higher

in the low-risk group than in the high-risk group. These findings

indicate a better prognosis and higher OS in the low-risk group.

This indicates that PCRGs may affect TLS formation, including

GC, by regulating T lymphocytes, such as TFH, and ultimately

affect the occurrence and development of ccRCC.

Mutations in the genome of tumor cells may produce new

antigens with immunogenicity that can be recognized by T
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FIGURE 7

Immune cell infiltration associated with the risk score in ccRCC. (A) The abundance ratios of 22 immune cells in the TCGA-KIRC cohort.
(B) Differences in immune cell abundance between the high-risk and low-risk groups. Relationship between the risk score and the immune
activators TNFAIP1 (C), MHC II (D), and KIR2DS4 (E). Relationship between the risk score and the expression of the immune activators TNFAIP1
(F), MHC II (G), and KIR2DS4 (H) with OS.
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lymphocytes (34). Tumor mutation burden (TMB) can reflect

the tumor gene mutation status. In short, the higher the TMB is,

the more tumor gene mutations are present. Thus, the possibility

of forming an immunogenic new antigen is greater, and the

possibility of patients benefiting from tumor immunotherapy is

greater (35). Therefore, we conducted a TMB prediction analysis
Frontiers in Oncology 12
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on the high- and low-risk groups. The mean TMB scores of the

low-risk group were higher than those of the high-risk group.

These findings suggest that the low-risk group may be more

likely to benefit from tumor immunotherapy and to have a better

response to targeted drugs and chemotherapeutic drugs. This

was proven by our prediction of chemotherapeutic drug
A B

C

FIGURE 8

Tumor mutational burden associated with the risk score in ccRCC. (A) The overall landscape of somatic mutations. (B) TMB comparison
between the high-risk and low-risk groups. (C) Waterfall maps of the somatic mutations in the high-risk and low-risk groups.
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FIGURE 9

Predictive results of chemotherapeutic responses. The differences in the chemotherapeutic response to common chemotherapeutic drugs
between the high- and low-risk groups (A–F).
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response to ccRCC between the high- and low-risk groups by

using the PCRG signature.

Related studies have reported that PCRGs play an important

role in the development of multiple diseases. For example, the G

protein beta3 subunit (GNB3) could be a candidate gene in

disorders associated with poor immune response. It has been

reported that the counts of CD4+ T cells with the GNB3

homozygous 825T allele (TT) genotype were significantly

enhanced compared to those with the C825 allele (CC)

genotype (36). Na+/K+‐ATPase is widespread in eukaryotic cell

membranes, and its different a/b isoforms (ATP1A1‐1A4,

ATP1B1‐1B3) were identified in humans in their early years

(37). Moreover, the high expression of sodium pumps was

shown to be closely related to the occurrence, development,

and malignancy of cancer (37). Recently, ATP1A3 has been

reported to exert significant effects in various cancers, including

glioblastomas (38), hepatomas (39), and medulloblastomas (40).

It has been reported that bufalin inhibits the growth of

hepatocellular carcinoma (HCC) cells, which is correlated with

the expression level of ATP1A3 in HCC cells (39). Another study

reported that activation of ATP1A3 could sensitize glioblastoma

cells to temozolomide (41). However, the role of PCRGs in the

development of ccRCC has not been reported, and further

research is needed. In this study, through a series of rigorous

analyses, we established a prognostic signature consisting of

PCRGs that could predict the prognosis of patients with ccRCC.

Our results suggest that these key genes may play a significant

role in the occurrence and development of ccRCC. The PCRG

signature may improve our understanding of the role of

potassium channels in the occurrence and development of
Frontiers in Oncology 13
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ccRCC and provide a reference for discovering new prognostic

biomarkers and immunotherapy methods for ccRCC.

There were some limitations to our study. First, the robustness

of the prognostic signature needs to be verified by external data

sets. However, there is no suitable ccRCC gene expression data set,

so we have to split the TCGA-KIRC cohort into training and

validation cohorts to partially compensate for the study’s

limitations. Second, our results require further basic

experiments and clinical studies to validate and further explore

the potential underlying mechanisms and clinical applications of

PCRGs in ccRCC. Finally, many factors, such as comorbidities,

influence overall survival, but we did not study them in depth.

Therefore, further studies concentrating on RFS/CSS are required.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material. Further

inquiries can be directed to the corresponding authors.

Ethics statement

This study was approved by the Ethics Committee of the

First Affiliated Hospital of Jinan University. Both patients and

controls provided written informed consent.

Author contributions

Conception and design of the research: All authors.

Acquisition of data: RZ and YL. Analysis and interpretation of
A B D

E F G

I

H

J K L

C

FIGURE 10

Expression of key genes in the PCRG prognostic signature in ccRCC and normal kidney tissues. The mRNA expression levels of ATP1A3 (A),
GNB3 (B), GNB4 (C), and NSF (D) in clinical samples were detected by qPCR. Immunohistochemistry of ATP1A3, GNB3, GNB4, and NSF in
normal tissues (E–H) and ccRCC tissues (I–L) from the Human Protein Atlas (HPA) database.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1013324
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2022.1013324
data: RZ, YL, and MS. Statistical analysis: RZ and YL. Drafting

manuscript: RZ, YL, DH, MS, YW, and TC. Obtaining funding:

JH, JG, WH, JC, and YZ. All authors contributed to the article

and approved the submitted version.
Acknowledgments

Financial support from the Science and Technology

Program of Guangzhou, China (805147677069) is gratefully

acknowledged. The experimental instrument support from the

Medical Experimental Center, School of Medicine, Jinan

University is gratefully acknowledged.
Frontiers in Oncology 14
21
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin
(2019) 69(1):7–34. doi: 10.3322/caac.21551

2. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. The 2016 who
classification of tumours of the urinary system and Male genital organs-part a:
Renal, penile, and testicular tumours. Eur Urol (2016) 70(1):93–105. doi: 10.1016/
j.eururo.2016.02.029

3. Fisher R, Gore M, Larkin J. Current and future systemic treatments for renal
cell carcinoma. Semin Cancer Biol (2013) 23(1):38–45. doi: 10.1016/
j.semcancer.2012.06.004

4. Khan Y, Slattery TD, Pickering LM. Individualizing systemic therapies in first
line treatment and beyond for advanced renal cell carcinoma. Cancers (Basel)
(2020) 12(12). doi: 10.3390/cancers12123750

5. Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell
carcinoma. N Engl J Med (2017) 376(4):354–66. doi: 10.1056/NEJMra1601333

6. Zitvogel L, Tesniere A, Kroemer G. Cancer despite immunosurveillance:
Immunoselection and immunosubversion. Nat Rev Immunol (2006) 6(10):715–27.
doi: 10.1038/nri1936

7. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer.
Cell (2010) 140(6):883–99. doi: 10.1016/j.cell.2010.01.025

8. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy:
Understanding the characteristics of tumor-infiltrating immune cells and their
therapeutic implications. Cell Mol Immunol (2020) 17(8):807–21. doi: 10.1038/
s41423-020-0488-6
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Expression of basement
membrane genes and their
prognostic significance in clear
cell renal cell carcinoma patients

Junyue Tao1,2,3†, Xiao Li1,2,3†, Chaozhao Liang1,2,3, Yi Liu1,2,3*

and Jun Zhou1,2,3*

1Department of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical
University, Hefei, China, 2Institute of Urology, Anhui Medical University, Hefei, China, 3Anhui
Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei, China
Background: Clear cell renal cell carcinoma (ccRCC) is a malignant tumor with

limited treatment options. A recent study confirmed the involvement of basement

membrane (BM) genes in the progression of many cancers. Therefore, we studied

the role and prognostic significance of BM genes in ccRCC.

Methods: Co-expression analysis of ccRCC-related information deposited in

The Cancer Genome Atlas database and a BM geneset from a recent study was

conducted. The differentially expressed BM genes were validated using

quantitative reverse-transcription polymerase chain reaction (qRT-PCR).

Least absolute shrinkage and selection operator regression and univariate

Cox regression analyses were performed to identify a BM gene signature

with prognostic significance for ccRCC. Multivariate Cox regression, time-

dependent receiver operating characteristic, Kaplan–Meier, and nomogram

analyses were implemented to appraise the prognostic ability of the signature

and the findings were further verified using a Gene Expression Omnibus

dataset. Additionally, immune cell infiltration and and pathway enrichment

analyses were performed using ImmuCellAI and Gene Set Enrichment Analysis

(GSEA), respectively. Finally, the DSIGDB dataset was used to screen small-

molecule therapeutic drugs that may be useful in treating ccRCC patients.

Results: We identified 108 BM genes exhibiting different expression levels

compared to that in normal kidney tissues, among which 32 genes had

prognostic values. The qRT-PCR analyses confirmed that the expression

patterns of four of the ten selected genes were the same as the predicted

ones. Additionally, we successfully established and validated a ccRCC patient

prediction model based on 16 BM genes and observed that the model function

is an independent predictor. GSEA revealed that differentially expressed BM

genes mainly displayed significant enrichment of tumor and metabolic

signaling cascades. The BM gene signature was also associated with immune

cell infiltration and checkpoints. Eight small-molecule drugs may have

therapeutic effects on ccRCC patients.
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Conclusion: This study explored the function of BM genes in ccRCC for the first

time. Reliable prognostic biomarkers that affect the survival of ccRCC patients

were determined, and a BM gene-based prognostic model was established.
KEYWORDS

clear cell renal cell carcinoma, basement membrane (BM), gene expression profile,
prognostic biomarkers, gene expression analysis
Introduction

There are over 300,000 new cases of clear cell renal cell

carcinoma (ccRCC), acounting for the most prevalent subtype of

renal malignancy, reported worldwide in 2020 (1). In recent years,

several alternative treatments, such as surgery, immunotherapy,

and other targeted therapy, have been applied for ccRCC patients

(2). For patients with ccRCC at early localized stage, surgery

remains the first-line therapy; yet 30% of them meet post-

surgery recurrence (3). Despite encouraging achievements in

immunotherapy and targeted therapy, the five-year survival

probability for metastatic ccRCC has only improved by 11.7%

(4–6). Therefore, exploring the mechanism and mining potential

biomarkers of ccRCC have become the focus of kidney

cancer research.

The basement membrane (BM) is the oldest extracellular

matrix (ECM) in animals, bordering all cells, including the

epithelium and endothelium (7). The BM core structural

components belong to the laminin family, collagen IV, heparan

sulfate proteoglycans, nidogens, and perlecan (8). Utilizing these

basic components, the basement membrane plays a vital biological

role in the body, resisting mechanical stress, determining tissue

morphology, establishing a diffusion barrier, and providing an

environment for guiding cell polarity, differentiation, migration,

and survival (9–12). Over 20 BM gene mutations form the basis of

human diseases, highlighting their diverse and vital functions (13).

As targets of autoantibody attack in immune diseases, deficiencies

in the expression and turnover of BM proteins are crucial causative

factors in cancer, fibrosis, and diabetes (14–16). Collagen type IV,

alpha-6 (COL4A6) is a BM gene encoding the a6 chain of collagen

IV. COL4A6 is highly downregulated in prostate cancer, and its

deletion can promote prostate cancer progression and metastasis

by activating the p-focal adhesion kinase (FAK)/matrix

metallopeptidase 9 (MMP-9) signaling pathway (17).

Nephronectin (NPNT) has also been shown to be a key

regulator of tumor metastasis (18). Huang et al. reported that in

metastatic hepatocellular carcinoma, overexpressed NPNT could

promote malignant progression through transcriptional regulation

of the FAK/phosphatidylinositol 3−kinase (PI3K)/protein kinase B

(AKT) signaling cascade (19). Peroxidasin (PXDN) is a BM-

associated protein with peroxidase activity that promotes the
02
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proliferation, invasion, and migration of ovarian cancer cells, and

PXDN overexpression has been correlated with an unfavorable

prognosis (20). A disintegrin and metalloproteinase with

thrombospondin motifs (ADAMTS) protein is a zinc

metalloendopeptidase whose substrates are mostly ECM

components associated with multiple malignant phenotypes,

including cancer progression and metastasis (21–23).

However, we currently lack systematic studies on the

relationship between BM genes and ccRCC. Herein, we used

bioinformatics analyses to determine the prognostic significance

of the BM gene family in ccRCC and the related mechanisms

affecting prognosis to provide a reference for treating ccRCC.
Materials and methods

Acquisition of data and identification of
differential expression BM genes

The gene expression and related clinical characteristics of

539 ccRCC and 72 noncancerous renal tissue specimens were

acquired from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov). In a recent study of BM genes, we

downloaded a set of 224 BM genes (24). We also downloaded

GSE46699, GSE22541, and GSE29609 datasets of GEO (https://

www.ncbi.nlm.nih.gov/geo/), totaling 128 ccRCC organization

information. The downloaded data were normalized with the

corresponding R package, and the R package “limma” (25) was

utilized for identification of the differentially expressed BM

genes (DEGs). DEGs having a |log2 fold change (FC)| > 1 and

an adjusted P <0.05 were considered for subsequent analysis.
Verification of the expression levels
of DEGs

Quantitative reverse transcription-polymerase chain

reaction (qRT-PCR) was performed to test the transcript

abundances of the DEGs. TRIzol (Invitrogen, Shanghai,

China) reagent was employed for isolation of total RNA from

the HEK-293 and 786-O cells. The primers used to test the
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expression of selected DEGs are listed in Supplementary Table 1.

The PCR program was 94°C 3 min, 22 rounds of 94°C 30 s, 55°C

30 s, and 72°C 30 s, and 72°C 5 min. All the reactions were

conducted in triplicate.
Construction and validation of the BM
gene signature

Genes associated with the prognosis of ccRCC were

identified by univariate Cox regression from the DEGs with

the R package “glmnet” (26). We also carried out a least absolute

shrinkage and selection operator (LASSO)-penalized Cox

regression analysis for construction of a prognostic risk model.

Each screened BM gene’s risk score was determined as follows:

Risk score  ¼  ðCoef 1ñmRNA1 expressionÞ + 
ðCoef 2ñmRNA2 expressionÞ + ðCoef nñmRNAn expressionÞ (27)

Coef represents the coefficient of the LASSO-Cox analysis for

a specific mRNA. The median risk score was calculated, based on

which patients with ccRCC were classified to a high- or low-risk

group. For evaluation of the model’s prediction ability, we

conducted a time-based receiver operating characteristic (ROC)

analysis of the model with the survival ROC package (28). Three

downloaded GEO datasets were used as verification sets.
Identification of independent prognostic
indices and establishment of the
predictive nomogram

Correlations between BM gene expression features and

clinical variables were also determined. Univariate and

multivariate Cox regression analyses combined with other

clinical variables were conducted to test the performance of

the our prognostic BM gene signature. The nomogram was

established through clinical variables and the BM gene-based

model risk score to evaluate the 1-year, 3-year and 5-year OS in

ccRCC patients. The prediction effect of the nomogram was

assessed by measuring the concordance index and plotting a

calibration curve.
Functional annotation and gene set
enrichment analysis

Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis and Gene Ontology (GO)

annotation were carried out for high- and low-risk populations

by utilizing the R package “ClusterProfiler” (29). P < 0.05 was

deemed to signify statistical significance.
Frontiers in Oncology 03
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Through GSEA, we explored the potential mechanisms

underlying low-risk and high-risk populations from a

molecular biology perspective. P < 0.05 and FDR < 25% were

considered significantly enriched.
Analysis of the infiltration levels of
immune cells

Based on the features of B cell-specific long non-coding RNAs,

we used the MCP-counter, CIBERSORT-ABS, EPIC, XCELL,

TIMER, and QUANTISEQ algorithms to evaluate the differences

in immune cell infiltration levels between low-risk and high-risk

populations. The expression of some immune checkpoints in the

two groups was examined to explore possible immune checkpoint

blocking therapies, such as LAG3, ICOS, TIGIT, CTLA4, PDCD1,

and BTLA. Additionally, the association between 16 BM genes and

immune cells was determined using the TIMER database (http://

cistrome.shinyapps.io/timer/), which deepened our knowledge of

the effects of BM genes on ccRCC.
Identification of potential small
molecule drugs

Molecular identification of drugs is a crucial link in drug

detection. The Drug Signatures Database (DSigDB) was

searched for candidate drugs implicated with the differential

expression of the BM genes. The Enrichr platform (https://amp.

pharm.mssm.edu/Enrichr/) served as the access path for the

DSigDB database.
Statistics analysis

R software (version 4.0.5) was utilized for analysis of

statistical data. Wilcoxon test was utilized to examine

differences between groups, and P <0.05 was deemed to

indicate statistical significance.
Results

Establishment and validation of the BM
gene‑based model

From the TCGA-KIRC dataset, 108 BM genes were identified

to be differentially expressed compared to that in normal kidney

tissues. These DEGs included 39 downregulated and 69

upregulated BM genes (Figure 1). Subsequently, we implemented

univariate Cox regression analysis for identification of the

differentially expressed genes with prognostic significance. The
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http://cistrome.shinyapps.io/timer/
http://cistrome.shinyapps.io/timer/
https://amp.pharm.mssm.edu/Enrichr/
https://amp.pharm.mssm.edu/Enrichr/
https://doi.org/10.3389/fonc.2022.1026331
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Tao et al. 10.3389/fonc.2022.1026331
results revealed that 32 genes had prognostic values (Figure 2), and

the qRT-PCR analyses demonstrated that four of the ten genes

tested were expressed as predicted (Figure 3).

Subsequently, the top 20 genes were selected according to

their significance, and a LASSO-Cox regression analysis was

carried out. A risk model involving 16 genes (COL9A2, COL4A6,

NPNT, COL4A4, ITGAX, SEMA3B, HMCN1, ADAMTS2,

MMP7, FN1, VCAN, FREM1, PXDN, VWA1, GPC2, and

ADAMTS4) was successfully constructed. The risk score was

measured with coefficients for the 16 BM genes as follows
Frontiers in Oncology 04
26
(Table 1): Risk score = (0.0788 × COL9A2 mRNA level) +

(0.1435 × COL4A6 mRNA level) + (−0.0198 × NPNT mRNA

level) + (−0.0378 × COL4A4 mRNA level) + (0.0082 × ITGAX

mRNA level) + (0.0027 × SEMA3B mRNA level) + (−0.1336 ×

HMCN1 mRNA level) + (0.0221 × ADAMTS2 mRNA level) +

(0.0003 × MMP7 mRNA level) + (0.0001 × FN1 mRNA level) +

(0.0020 × ANmRNA level) + (−0.0392 × FREM1mRNA level) +

(0.0103 × PXDN mRNA level) + (-0.0075 × VWA1 mRNA

level) + (0.2294 × GPC2 mRNA level) + (0.0090 × ADAMTS4

mRNA level).
FIGURE 1

The heatmap displaying the DEGs.
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Patients were then assigned to high-risk and low-risk groups

based on the median risk score. As revealed by the Kaplan–

Meier analysis, high-risk patients exhibited a significantly lower

survival rate compared with the low-risk ones (P < 0.001),

suggesting a relationship between high risk score and dismal

survival (Figures 4A, C). Additionally, the area under the ROC

curve (AUC) values of the signature were 0.747, 0.719, and 0.715

at 1, 3, and 5 years, respectively, indicating that our model was

stability for predicting the prognosis (Figures 4B, D). We used

data from the GEO database for external validation (Figures 5)

and observed that the risk score was inversely correlated with

survival. The AUCs of time-dependent ROC were 0.867, 0.848,

and 0.749 at 1, 3, and 5 years, respectively.
BM gene-based signature could predict
ccRCC prognosis independently

The independent prognostic significance of the BM gene-

based model was assessed in ccRCC patients using univariable

and multivariable Cox analyses. As displayed in Figure 6A,

univariate analysis revealed a significant correlation between

age, tumor grade, pathological stage, risk score, and ccRCC
Frontiers in Oncology 05
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patients’ survival (P < 0.001). Notably, the multivariate analysis

also showed this correlation (P < 0.05) (Figure 6B). Therefore,

based on these findings, we confirmed that our BM gene-based

signature represents an independent indicator for assessing

ccRCC patient prognosis.
Relationship between clinical features
and the signature

The association of our signature with the progression of

ccRCC was investigated using the Chi-square test. As revealed by

the test, there were significant differences in the pathological

stage, T stage, and tumor grade between the two groups of

ccRCC patients (P < 0.001) (Figures 7A,B). Further hierarchical

analysis showed the outstanding role of the model in predicting

prognosis in both male and female patients (P = 0.0014 and P <

0.001, respectively), patients aged both more than, less than or

equal to 65 years (P = 0.002 and 0.001, respectively), as well as in

patients with all stages (P = 0.019 and 0.012 for Stages I-II and

III-IV, respectively), all grades (P=0.009 and P < 0.001 for high

and lo grades, respectively), all T stages (P = 0.007 and 0.011 for

T1–T2 and T3–T4 stages, respectively), N0 stage (P < 0.001),
FIGURE 2

The BM genes with prognostic significance in ccRCC.
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and all M stages (P < 0.001 and P = 0.036 for M0 and M1 stages,

respectively). However, the model performed poorly in

predicting the prognosis for the N1 stage (P > 0.05). In the

TCGA-KIRC cohort, only 15 samples were recorded with N1
Frontiers in Oncology 06
28
stage, which might be not large enough to generate statistical

significance, but the overall trend is clear that the prognostic

signature deeply participated in the development and

progression of ccRCC (Figure 8).
B

C D

A

FIGURE 3

The RNA levels of (A) COL4A6, (B) NPNT, (C) SEMA3B, (D) ADAMTS4 in HEK-293 and 786-O cells. "*" represents P < 0.05, "****" represents P <
0.0001.
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Nomogram construction

We constructed a nomogram with covariates of patients’ sex,

age, tumor grade, pathological stage, and risk score to predict
Frontiers in Oncology 07
29
patients’ survival rates at 1, 3, and 5 years. As shown in

Figure 9A, each parameter has a score, and the total score was

computed for survival rate prediction at the specific time point.

The nomogram’s performance in survival prediction was

appraised by ROC analysis. We found that the AUCs of the

TCGA cohort were 0.954 for 1-year survival, 0.873 for 3-year

survival, and 0.781 for 5-year survival. The calibration curve

revealed the consistency of the actual survival rate of the patient

with the predicted value (Figure 9B).
Functional enrichment and GSEA

GO annotation and KEGG analysis were performed to

explore the potential functions of the 108 DEGs. As indicated

by biological process analyses, 108 BM genes were significantly

associated with the GO terms of cell–substrate adhesion,

extracellular structure organization, and extracellular matrix

organization. Cellular component analysis suggested that the

GO terms of endoplasmic reticulum lumen, basement

membrane, and collagen-containing extracellular matrix were

mainly enriched. Molecular function analysis revealed that

glycosaminoglycan binding, extracellular matrix structural

constituent, and metalloendopeptidase activity were mainly
TABLE 1 The list of signature genes and their coefficients.

Gene symbol Coefficient

COL9A2 0.0788

COL4A6 0.1435

NPNT -0.0198

COL4A4 -0.0378

ITGAX 0.0082

SEMA3B 0.0027

HMCN1 -0.1336

ADAMTS2 0.0221

MMP7 0.0003

FN1 0.0001

VCAN 0.0020

FREM1 -0.0392

PXDN 0.0103

VWA1 -0.0075

GPC2 0.2294

ADAMTS4 0.0090
B

C D

A

FIGURE 4

Establishment of the BM genes-based prognostic signature based on the TCGA dataset. (A). The Kaplan-Meier (K-M) curves of low-risk and
high-risk ccRCC patients in the TCGA dataset; (B). The time-dependent ROC curves displaying the 1-year, 3-year, and 5-year OS of ccRCC
patients in the TCGA dataset; (C). Survival distributions of the TCGA dataset determined according to the median risk score; (D). Heatmap
displaying the divergences between low- and high-risk patients of 16 signature genes in the prognostic model for the TCGA dataset.
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involved in 108 DEGs (Figure 10A). In KEGG pathway analysis,

the DEGs were primarily involved in pathways of protein

digestion and absorption, PI3K/Akt signaling, focal adhesion,

ECM−receptor interaction, and human papillomavirus

infection (Figure 10B).

GSEA was carried out to investigate the specific molecular

functions of the BM gene-based model. The PI3K/Akt

signaling pathway, hepatitis C pathway, and estrogen

signaling pathway exhibited significant enrichment for the

high-risk group; whereas for the low-risk group, the adherens

junction pathway, pentose and glucuronate interconversion

pathway, glycine, serine, and threonine metabolism pathways,

and ascorbate and aldarate metabolism pathways were

enriched (Figure 11).
Analysis of the infiltration levels of
immune cells based on the BM gene-
based model

CIBERSORT, CIBERSORT-ABS, EPIC, MCPCOUNTER,

QUANTISEQ, TIMER, and XCELL analyses were performed

to explore the relationship between BM gene-based signatures

and immune infiltration levels (Figure 12). Given the
Frontiers in Oncology 08
30
significance of immune checkpoints in immunotherapy, the

mRNA levels of several immune checkpoint genes were

compared between the two groups to explore possible immune

checkpoint blocking therapies. The results showed that LAG3,

PDCD1, ICOS, TIGIT, CTLA4, and BTLA mRNA levels were

increased in high-risk patients, implying the existence of

immunosuppressive phenotypes in these patients (Figure 13).
TIMER analysis

We explored the association of six immune cells with the 16

BM genes by employing the TIMER database and observed that

NPNT, COL4A6, ITGAX, HMCN1, ADAMTS2, FN1, VCAN,

and PXDN were positively associated with the levels of different

immune cell infiltrations, such as those of CD4+ T cells, CD8+

T cells, B cells, dendritic cells, neutrophils, and macrophages.

COL9A2 and ADAMTS4 were positively related to CD8+ T

cells, CD4+ T cells, dendritic cells, neutrophils, and

macrophages. COL4A6 and GPC2 exhibited positive

correlations with CD4+ T cells, macrophages, neutrophils,

and dendritic cells. In conclusion, these immune cells may be

involved in the process of BM genes mediating ccRCC

prognosis (Supplementary Figure 1; Figure 2).
B

C D
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FIGURE 5

Verification of the prognostic signature by utilizing the GEO dataset. (A). The Kaplan-Meier curves of low-risk and high-risk ccRCC patients in
the GEO dataset; (B). The time-dependent ROC curves displaying the 1-year, 3-year, and 5-year OS of ccRCC patients in the GEO dataset; (C).
Survival distributions of the GEO dataset determined according to the median risk score; (D). Heatmap displaying the divergences between low
and high-risk patients of 16 signature genes in the prognostic model for the GEO dataset.
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FIGURE 6

The signature could predict the prognosis of ccRCC patients in the TCGA dataset independently. (A). The univariate Cox regression analysis; (B).
The multivariate Cox regression analyses showed the associations of the risk score predicting overall survival with clinicopathological indices.
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FIGURE 7

(A, B). The correlations between clinicopathological features and the gene signature.
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Prediction of candidate drugs implicated
with the differential expression of the
signature genes

We identified candidate drugs related to the differential expression

of BMgenes using theDSigDB to further improve the therapeutic effect
Frontiers in Oncology 11
33
in patients with renal cell carcinoma. These drugs included Healon

BOSS, CGS-27023A TTD 00002801, VANADIUM CTD 00006979,

LAMININ BOSS, O-Phospho-L-tyrosine BOSS, Tetradioxin CTD

00006848, endosulfan CTD 00005896, and orphenadrine

hydrochloride BOSS (Table 2). These small-molecule drugs exhibited

a higher negative correlation and potential to treat ccRCC.
FIGURE 8

The K-M curves showed the differences of OS between low- and high-risk patients with different ages, genders, stages, T stages, N stages, M stages or grades.
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Discussion

Treating advanced RCC with drugs has always been a clinical

challenge based on its resistance to traditional radiotherapy and

chemotherapy (30). Despite the initial positive effects of emerging

targeted therapies and immunotherapy in ccRCC patients, inmost
Frontiers in Oncology 12
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cases, patients develop drug resistance and disease progression

within two years owing to the highly dynamic, adaptive, and

heterogeneous tumor microenvironment of ccRCC (31).

Therefore, research on tumor resistance and distant metastasis

caused by changes in the tumor microenvironment environment

may provide new strategies for ccRCC treatment. Previous
B

A

FIGURE 9

Establishment of the nomogram. (A). The nomogram; (B). calibration analaysis for predicting1-, 3- or 5-year OS.
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research acknowledges BM remodeling as a critical step in the

formation of the tumor microenvironment (32), which often

results in complex disarray of pro- and anti-tumor signals from

degradation products (33). Additionally, studies have
Frontiers in Oncology 13
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demonstrated that most BM-related collagens are upregulated at

the mRNA and protein levels, are associated with the formation of

aggressive phenotypes of malignant cells and are involved in the

regulation of key tumorigenesis steps, including proliferation,
B

A

FIGURE 10

Enrichment analyses of DEGs. (A). GO enrichment analysis; (B). KEGG enrichment analysis.
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invasion, metastasis, apoptosis, and angiogenesis (34–36).

Therefore, BM may genes exert crucial effects on the formation

of a highly heterogeneous tumor microenvironment in ccRCC

and can serve as disease markers for prognosis and treatment

effect prediction in patients with renal cancer.

A prognostic model was constructed that contains 16 BM

genes, and its prognostic value for ccRCC was evaluated via ROC

anlysis. Some of these genes are potentially related to ccRCC. For

instance, MMP7 has been widely reported to promote tumor

angiogenesis by transforming the extracellular matrix, thereby

participating in the invasion and metastasis of ccRCC (37–39). A

previous study identified SEMA3B as a renal tumor suppressor

gene, whose downregulation was positively associated with tumor

progression, stage, and grade of ccRCC (40). As a vital member of
Frontiers in Oncology 14
36
the BM gene family, ITGAX is responsible for encoding integrin

alpha X, a critical component of leukocyte-specific complement

receptor 4. Its expression in ccRCC has been reported to increase

significantly, and ITGAX overexpression has association with

dismal survival outcomes of ccRCC patients (41). Gong et al.

recently reported that the HMCN1 mutations are frequently

detected in patients with ccRCC and are correlated with a higher

tumor mutation burden and dismal clinical consequences, and may

correlate with anti-tumor immunity and cell metabolism (42). In

addition, COL4A4 has been identified as an unfavorable prognostic

factor for ccRCC (43). The functions of other genes in ccRCC

currently remain unknown and require further exploration. Data

from the TGGA and GSEA databases indicated that the BM gene

signatures were positively correlated with a higher risk of adverse
FIGURE 11

Gene Set Enrichment Analysis analysis.
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OS. Meanwhile, the AUCs were all above 0.7 at 1, 3, and 5 years.

These results indicated the admirable performance of our model for

prognosis prediction.

According to KEGG pathway enrichment analysis, focal

adhesions and ECM-receptor interactions were identified as the

major pathways for 108 DEGs. These pathways further enriched the

molecular mechanisms of ccRCC initiation and progression. GSEA

revealed the involvement of BM gene-based models in tumor and

metabolic pathways. These include the PI3K/Akt signaling, estrogen

signaling, adherens junction, pentose and glucuronate

interconversions, threonine, glycine and serine metabolism, and

ascorbate and aldarate metabolism pathways. Therefore, the BM
Frontiers in Oncology 15
37
gene-based model may be crucial for cancer cell metabolism and

tumor microenvironment formation.

Furthermore, the model had close association with immune

cell infiltration, immune cells may be essential in BM genes

mediating the prognosis of ccRCC. We also found higher

expression levels of immune checkpoints in high-risk ccRCC

patients, implying that the dismal prognosis of these patients is

possibly due to the immunosuppressive microenvironment and

may respond to treatment regimens involving checkpoint

inhibitors. Finally, given that the signature BM genes we

identified may be relevant therapeutic targets for patients with

ccRCC, we sucessfully dentified eight potential small-molecule
FIGURE 12

Differences in infiltration levels of immune cells between low- and high-risk patients.
TABLE 2 The eight candidate small molecule drugs predicted based on DSigDB.

Index Name p-value Adjusted p-value Odds Ratio Combined Score

1 Healon BOSS 0.00000179 0.0007 59.68 789.76

2 CGS-27023A TTD 00002801 0.0000466 0.0095 259.39 2587.35

3 VANADIUM CTD 00006979 0.000211 0.0282 31.36 265.34

4 LAMININ BOSS 0.00048 0.0328 23.54 179.91

5 O-Phospho-L-tyrosine BOSS 0.000807 0.0438 55.83 397.64

6 Tetradioxin CTD 00006848 0.000936 0.0438 5.550 38.70

7 endosulfan CTD 00005896 0.001033676 0.0438 49.07 337.40

8 Orphenadrine hydrochloride BOSS 0.001175147 0.0438 45.90 309.68
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drugs to further improve the therapeutic effect in patients

with ccRCC.

Our work has certain limitations, such as predicting the

prognostic value of BM genes using only data from public
Frontiers in Oncology 16
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databases and the relatively small sample size. We could only

determine how BM genes affect ccRCC based on limited clinical

data, which ignored environmental and genetic factors.

Finally, the underlying mechanism between the identified
FIGURE 13

The different mRNA levels of immune checkpoint genes between low- and high-risk patients, and the "****" represents P < 0.0001.
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signature genes and ccRCC remains unclear, and we plan to

investigate this further.

In summary, this study comprehensively characterized the

involvement of the BM gene family in ccRCC and its prognosis.

We proposed trustworthy prognostic biomarkers for ccRCC

patients and constructed a BM gene-based prognostic model.

We believe this investigation could support further research on

the role of BM genes in ccRCC.
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Comprehensive analysis
of a homeobox family gene
signature in clear cell
renal cell carcinoma with
regard to prognosis and
immune significance

Di Zheng †, Jinzhuo Ning †, Yuqi Xia, Yuan Ruan*

and Fan Cheng*

Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
The homeobox (HOX) family genes have been linked to multiple types of

tumors, while their effect on malignant behaviors of clear cell renal cell

carcinoma (ccRCC) and clinical significance remains largely unknown. Here,

we comprehensively analyzed the expression profiles and prognostic value of

HOX genes in ccRCC using datasets from The Cancer Genome Atlas (TCGA)

and International Cancer Genome Consortium (ICGC) databases. We

developed a prognostic signature comprising eight HOX genes (HOXB1,

HOXA7, HOXB5, HOXD8, HOXD9, HOXB9, HOXA9, and HOXA11) for overall

survival prediction in ccRCC and it allowed patients to be subdivided into high-

and low-risk groups. Kaplan-Meier survival analysis in all the internal and

external cohorts revealed significant difference in clinical outcome of

patients in different risk groups, indicating the satisfactory predictive power

of the signature. Additionally, we constructed a prognostic nomogram by

integrating signature-derived risk score and clinical factors such as gender,

age, T and M status, which might be helpful for clinical decision-making and

designing tailored management schedules. Immunological analysis revealed

that the regulatory T cells (Tregs) infiltrated differently between the two

subgroups in both TCGA and ICGC cohorts. ssGSEA method showed that

the enrichment scores for mast cells were significantly lower in high-risk group

compared with the low-risk group, which was consistent in both TCGA and

ICGC cohorts. As for the related immune function, the enrichment scores of

APC co-inhibition, para-inflammation, and type II IFN response were

consistently lower in high-risk group in both cohorts. Of the eight HOX

genes, the mRNA and protein levels of HOXD8 were downregulated in

ccRCC than that in normal tissues, and decreased expression of HOXD8 was

associated with increased tumor grade and stage, and lymph node metastasis.

Survival analysis revealed that lower expression of HOXD8 predicted worse

overall survival in ccRCC. In conclusion, our HOX gene-based signature was a

favorable indicator to predict the prognosis of ccRCC cases and associated
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with immune cell infiltration. HOXD8 might be a tumor suppressor gene in

ccRCC and a potential predictor of tumor progression.
KEYWORDS

homeobox family gene, signature, prognosis, immune microenvironment, ccRCC
Introduction

Renal cell carcinoma (RCC) is a common malignancy

affecting urinary system, with a worldwide incidence rate

growing 2% annual (1, 2). Clear cell renal cell carcinoma

(ccRCC), characterized by robust lipid and glycogen

accumulation, is the most frequent histological subtype of

RCC, accounting for eighty to ninety percentage of all RCC

cases. As one of the most lethal malignancies of the urological

system, ccRCC is known for its high mortality rate and it causes

around 175000 deaths per year worldwide (3). Early diagnosis

and surgical resection could effectively improve clinical outcome

for localized ccRCC, while approximately 30% of patients have

developed metastasis when they are first diagnosed (4, 5).

Besides, about 30%-35% ccRCC patients showed local

recurrence or distant metastasis after nephrectomy (6). For

relapsed or advanced RCC, patients typically undergo surgery

and/or receive systemic therapy. Cytoreductive nephrectomy

before systemic therapy is recommended in select patients

with a potentially surgically resectable primary tumor mass

(7). Patients with metastatic RCC who present with hematuria

or other symptoms related to the primary tumor should be

offered palliative nephrectomy if they are surgical candidates (7).

Targeted therapy including tyrosine kinase inhibitors (TKIs; e.g.,

axitinib, cabozantinib, lenvatinib), and/or anti-VEGF antibodies

are wildly used in first- and second-line treatments. The immune

checkpoint inhibitors (ICIs; e.g., pembrolizumab, nivolumab)

therapy, a method that can improve body’s anticancer immune

response by regulating the activity of immune cells, provided a

revolution in treatment options and have also been increasingly

recommended and investigated (8). According to the NCCN

guidelines for kidney cancer, combination of TKI with ICI,

including axitinib with pembrolizumab, cabozantinib with

nivolumab, and lenvatinib with pembrolizumab, were regarded

as first-line preferred regimens for relapsed or advanced ccRCC

(7). Nevertheless, due to the extensive heterogeneity in genomic

level and the existence of a highly heterogeneous tumor

microenvironment, prediction patients’ respond to these

therapies remains a fundamental problem and patients’

prognosis varies even they share similar clinicopathological

features and are under standard management. Exploring novel

and reliable indicators to predict prognosis and response to
02
42
therapies are of great importance for developing tailored

management schedules and clinical decision-making, which

may assist improving the prognosis of ccRCC patients.

The homeobox (HOX) genes encode a highly conserved

family of transcription factors in mammal that are essential for

organogenesis and development (9). Up to now, a total of thirty-

nine HOX genes have been identified in human genome. On the

basis of sequence similarity and chromosomal location, HOX

genes are split into four clusters, namely HOXA, HOXB, HOXC,

and HOXD, which are located on chromosomes 7, 17, 12, and 2,

respectively (10). Over the past decades, we have come to

discovered that many genes controlling embryogenesis such as

HOX genes participate in carcinogenesis likewise (11). Apart

from their role as master regulators of embryonic development

in physiological status, HOX genes have been linked to multiple

types of tumors (12–14). Altered expression of HOX genes were

oncogenes or tumor suppressor genes by acting as transcription

activator or transcriptional repressor, depending on context. In

tumors, the deregulation of HOX genes may affect cell

proliferation, invasion, differentiation, angiogenesis, and

intracellular signal transduction (15–17). For example, higher

HOXB9 expression was associated with poorer prognosis in

adrenocortical carcinoma and simultaneous overexpression of

HOXB9 and Ctnnb1 in adrenal cortex of transgenic mice led to

larger adrenal tumors (18). In gastric cancer, the upregulated

HOXA10 promoted the transcription of TGFB2, which triggered

the activation of TGFb/SMAD signaling and led to accelerated

lung metastasis (19). In ccRCC, little is known about the role of

HOX genes on malignant behaviors and its clinical significance.

The rapid development of high-throughput sequencing

technology and bioinformatic methods has permitted their

widespread application in cancer research, resulting in a

comprehensive understanding of genetic or epigenetic

abnormalities during carcinogenesis and progression (20, 21).

Many of these abnormalities were confirmed to be potential

therapeutic targets and prognosis indicators in multiple types of

cancers in the later research. Recently, re-analyzing publicly

available statistics such as RNA-Seq data from public databases

has opened the door to the discovery of novel biomarker

molecules, particularly certain gene families, for overall survival

prediction in cancers (22, 23). In this study, using the

transcriptome data of ccRCC sample and corresponding clinical
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information from public databases, we systematically analyzed the

expression profiles and prognostic value of HOX genes in ccRCC.

We developed an eight HOX gene-based signature for overall

survival prediction and validated its accuracy in both internal and

external cohorts. Additionally, we constructed a prognostic

nomogram by integrating the signature-derived risk score and

clinical parameters such as gender, age, T and M status for clinical

decision-making. Moreover, we analyzed the association of the

signature with immune microenvironment and distinct immune

cell infiltration in ccRCC. Finally, we compared the expression of

the eight HOX gene in tumor and adjacent normal tissues, and

performed Kaplan-Meier survival analysis in ccRCC cohorts.
Materials and methods

Data sources

We downloaded transcriptome profiles (HTSeq-FPKM) of

539 ccRCC tumor tissues and 72 non-tumor tissues, and

corresponding clinical information of ccRCC patients from

the TCGA database (https://portal.gdc.cancer.gov/) and named

as TCGA cohort. The ICGC cohort containing gene expression

matrix files and clinical data was obtained from the ICGC

database (https://dcc.icgc.org/projects) and was utilized for

external validation. Patients without overall survival time or

survival status were excluded in the subsequent analysis.

Finally, a total of 621 ccRCC including 530 cases from

TCGA cohort and 91 cases from ICGC cohort was collected

in our study.
Construction and validation of the HOX
family gene-based signature

First, we randomly split the TCGA cohort (entire cohort)

into a training cohort and a testing cohort at a ratio of roughly

1:1. To reduce overfitting, in the training cohort, differentially

expressed HOX family genes were submitted to LASSO (least

absolute shrinkage and selection operator) Cox regression

analysis with the glmnet package in R. Following that, a

multivariate Cox regression analysis was carried out, which

resulted in the development of a HOX family gene-based

signature in ccRCC. The risk score derived from the signature

was calculated by a liner combination of gene expression level

(Expi) and associated coefficients (Coefi), with the

formula:riskscore =on
i=1(Coefi*Expi). We computed the risk

score of all the cases in training, testing, entire, and ICGC

cohorts, and it allowed patients to be classified as high- or
Frontiers in Oncology 03
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low-risk based on the median risk score value in training cohort.

Finally, Kaplan-Meier survival analysis and time-dependent

receiver operating characteristic (ROC) curves analysis were

used to determine the signature’ predictive power in training,

testing, entire, and ICGC cohorts.
Construction of a prognostic nomogram

Integrating the signature-derived risk score and clinical

factors such as gender, age, T and M status, a prognostic

nomogram was built by using rms package in R. Calibration

curves were plotted in TCGA and ICGC cohorts to evaluate

whether the nomogram’s predicted overall survival of ccRCC

patients was close to the actual clinical outcome.
Functional annotation and gene set
enrichment analysis

Using the edgeR package in R software, we first identified

genes that were differently expressed across high- and low-risk

groups, with the criterion of FDR<0.05 and |log2FC| >0.5.

Subsequently, these differentially expressed genes (DEGs) were

subjected to Gene ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses using

DAVID online tool (https://david.ncifcrf.gov/), and a P. value

less than 0.05 was considered as significantly enriched. Gene set

enrichment analysis was conducted using the GSEA software

(version 4.0.2) to unearth the underlying signaling pathways

associated with the signature based on the KEGG terms. P.

value<0.05 and |NES| >1 was set as the screening criterion of the

enrichment results, and the results were visualized using ggplot2

package in R.
Evaluation of immune cell infiltration and
immune function

The CIBERSORT algorithm was used to calculate the

proportion of infiltrated immune cells in ccRCC samples

based on gene expression matrixes (24, 25), and the

abundance of 22 infiltrated immune cell types were then

compared between high- and low-risk groups. Using the

GSVA package in R, single-sample gene set enrichment

analysis (ssGSEA) was applied to determine the enrichment

scores of immune cells and associated immunological

activities, which were then compared across high- and low-

risk groups.
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Tissue collection

A total of 20 frozen tissue samples including 10 ccRCC

tissues and 10 adjacent normal tissues were collected in Renmin

hospital of Wuhan university between August 2020 and June

2022. All the samples were harvest after resection and stored at

-80°C. The experiment with patient tissue specimens was

authorized by the Ethics Committee of Renmin Hospital of

Wuhan University.
RNA isolation and qRT-PCR

RNA isolation and quantitative real-time PCR (qRT-PCR)

were performed as previously described (26). The primer

sequences were list as follow: GAPDH , forward, 5 ’-

CCATCTTCCAGGAGCGAGAT-3’ and reverse, 5’-TGAG

TCCTTCCACGATACCA-3 ’ ; HOXD8 , 5 ’-CACAAGC

TCCTGGTAGACGA-3’ and reverse, 5’-GCTCTGTCTTCCT

CCAGCTC-3’.
Statistical analysis

R software (version 4.1.0) was employed to conduct all the

statistical analyses and was utilized for visualization of the

results. Kaplan-Meier method and the log-rank test was

used to compare the difference in overall survival between risk

groups. Differences of multiple variables between risk

groups were assessed using Student’s t-test or Wilcoxon test. If

not otherwise stated, P. value less than was deemed

statistically significant.
Results

Characterization of homeobox
family genes

A total of thirty-nine homeobox family genes were enrolled in

our study. The transcriptional expressions of these HOX genes

in ccRCC tumor tissues and adjacent normal tissues were shown

in Figure 1A. Of the 39 HOX family genes, thirty-two were

differentially expressed between tumor and adjacent normal

tissues (with the criteria of P-value less than 0.05) (Figure 1B).

Moreover, fourteen HOX genes were significantly associated with

the prognosis of ccRCC patients based on univariate Cox
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regression analysis and Kaplan-Meier survival analysis, and

these genes were regarded as robust prognosis-related HOX

genes (Figures 1B, C). Among the fourteen HOX genes, nine

genes (HOXA2, HOXA13, HOXA3, HOXB13, HOXA1, HOXA11,

HOXC4, HOXC11, and HOXD10) were risk factors (Hazard Ratio

>1) and the other six genes (HOXD1,HOXD3,HOXD8,HOXC10,

and HOXA7) were protective factors (Hazard Ratio<1) in ccRCC

(Figure 1C). Figure 1D exhibits the correlation of these prognosis-

related HOX genes. We then constructed a protein-protein

interaction (PPI) network using the prognosis-related HOX

genes (Figure 1E), and hub gene analysis suggested that

HOXA11 and HOXC4 were the top two ranked genes in this

PPI network (Figure 1F).
Construction of a homeobox family
gene-based signature in ccRCC

To construct a prognostic signature based on homeobox

family genes, the TCGA ccRCC cohort was randomly classified

into a training (n=266) and a testing cohort (n=264). In training

cohort, the HOX family genes were subjected to LASSO regression

analysis followed by multivariate Cox analysis (Figures 2A–B),

and eight HOX genes (HOXB1, HOXA7, HOXB5, HOXD8,

HOXD9, HOXB9, HOXA9, and HOXA11) were finally retained

to construct a prognosis signature in ccRCC. The detailed

information and coefficient of the eight HOX genes was shown

in Figure 2C and Table 1. The risk score based on the prognosis

signature was obtained by a linear combination of the expression

levels of selected genes and corresponding coefficients. The

formula was as follow: risk score = HOXA11 × 0.401 + HOXA7

× (-0.837) + HOXA9 × 0.238 + HOXB1 × (-4.284) + HOXB5 ×

(-0.276) + HOXB × 0.163 + HOXB9 × 0.163 + HOXD8 × (-0.085)

+ HOXD9 × 0.066. Then, the risk score of each patient in training

cohort was computed and it allowed patients to be stratified into

high- and low-risk groups according to the median value of risk

score. Figure 2D shows the risk score distribution of patients in

training cohort. The living status and survival time of patients in

training cohort was exhibited in Figure 2E, and it suggested that

the mortality rate of patients in high-risk group was higher than

that in low-risk group. Figure 2F shows the transcription levels of

the three HOX genes in high- and low-risk groups. Kaplan-Meier

survival analysis demonstrated significant difference in the overall

survival between high- and low-risk groups (Figure 2G). The area

under the curve (AUC) values of the time-dependent receiver

operating characteristic (ROC) curves were 0.750, 0.750, and 0.776

for 1-, 2- and 3-year overall survival, respectively (Figure 2H).
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Validation of the homeobox family gene-
based signature in internal cohorts

First, we assessed the prognostic value of the HOX gene-based

signature in internal cohorts including testing cohort and entire

cohort. The risk score of each case in testing cohort and entire

cohort was calculated using the formula mentioned above. Then, we
Frontiers in Oncology 05
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divided patients of the internal cohorts into high- and low-risk

groups using the median risk score value in training cohort as the

cutoff. Figures 3A, B show the profile of risk score in testing cohort

and entire cohort. The distributions of survival time and living

status were shown in Figures 3C, D. The expression patterns of the

three HOX genes were exhibited in Figures 3E, F. Kaplan-Meier

survival analysis determined that patient in high-risk group had
A B

D
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C

FIGURE 1

Characterization of homeobox family genes in ccRCC based on TCGA database. (A) Heatmap showing the expression patterns of HOX family
genes in tumor tissues and adjacent normal tissues. (B) Venn plot showing the number of differentially expressed HOX genes and prognosis-
related HOXs. (C) Volcano plot showing the prognosis-related HOXs based on univariate Cox regression analysis and Kaplan-Meier survival
analysis. (D) Correlation heatmap of the 14 prognosis-related HOXs. (E) Protein-protein interaction network of the 14 prognosis-related HOXs.
(F) Hub genes in the PPI network.
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FIGURE 2

Construction of HOX family gene-based signature in ccRCC. (A, B) LASSO regression analysis and multivariate Cox analysis. (C) The distribution
of the coefficient of the eight HOX family genes. (D, E) The distribution of risk score and survival status in high- and low-risk groups. (F) The
transcription levels of the eight HOX family genes in high- and low-risk groups. (G) Kaplan-Meier survival curve for overall survival of patients in
high- and low-risk groups. (H) Time-dependent ROC curve analysis in training cohort.
TABLE 1 Overall information of nine-HOXs constructing the prognostic model.

Gene Name Coefficient HR HR.95L HR.95H P.value

HOXA11 0.4010 1.4933 1.1911 1.8721 0.0005

HOXA7 -0.8368 0.4331 0.2889 0.6493 0.0001

HOXA9 0.2382 1.2690 1.1587 1.3899 0.0000

HOXB1 -4.2839 0.0138 0.0000 4.4573 0.1462

HOXB5 -0.2765 0.7584 0.6211 0.9262 0.0067

HOXB9 0.1629 1.1769 1.0815 1.2807 0.0002

HOXD8 -0.0855 0.9181 0.8585 0.9818 0.0126

HOXD9 0.0662 1.0685 1.0336 1.1045 0.0001
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worse overall survival than that in low-risk group, which was

consistent in both testing cohort and entire cohort (Figures 3G,

H). Time-dependent ROC analyses suggested that the AUC values

for 1-, 2-, and 3-year overall survival were 0.682, 0.652, and 0.642 in

testing cohort (Figure 3I), and 0.711, 0.699, and 0.704 in entire

cohort (Figure 3J), respectively. Moreover, we classified patients of

the entire cohort into multiple subgroups according to the clinical

parameters including gender (female vs male), age (≤60 vs >60),

grade (Grade: T1/2 vsGrade: T3/4), stage (stage I/II vs stage III/IV),

T (T 1/2 vs T3/4), and M stage (M0 vs M1). Survival analyses

revealed that in different strata of clinicopathological features,
Frontiers in Oncology 07
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patients of high-risk group harbored worse overall survival

(Figures 4A–F), suggesting that our HOX family gene-based

signature was quite useful and perform well in prognosis prediction.
Validation of the homeobox family gene-
based signature in external ICGC cohort

Subsequent, the external ICGC cohort was utilized to

estimate the stability and generalizability of the prognostic

signature. Using the same formula as in training cohort, the
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FIGURE 3

Validation of the HOX gene-based signature in internal cohorts. (A, B) The profile of risk score in testing cohort and entire cohort. (C, D) The
distribution of survival time and status in testing cohort and entire cohort. (E, F) The expression patterns of the eight HOX genes in testing
cohort and entire cohort. (G, H) Kaplan-Meier survival curve for overall survival of patients testing cohort and entire cohort. (I, J) Time-dependent
ROC curve analysis in testing cohort and entire cohort.
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risk score of patients in ICGC cohort was computed and it

allowed patients to be assigned into high- and low-risk groups

based on the median value of risk score in training cohort. The

risk score distribution of patients in high- and low-risk groups

was shown in Figure 5A. The distribution of survival time and

living status of patients in ICGC cohort was exhibited in

Figure 5B, and it suggested that patients of high-risk group

tended to have better survival status and longer survival time.

Figure 5C shows the expression profile of the eight HOX genes

in ICGC cohort. Survival analysis revealed that the overall

survival of patients who belonged to the high-risk group was

poorer than that of the low-risk group (Figure 5D). Time-

dependent ROC analysis suggested that the AUC values were

0.630, 0.659, and 0.727 for 1-, 2-, and 3-year overall survival

(Figure 5E). Taken together, these analyses indicated the
Frontiers in Oncology 08
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satisfactory predictive power of the signature in forecasting the

clinical outcomes of ccRCC patients.
Estimation of the independent
prognostic value of the signature and
construction of a nomogram

To investigate the independence of the signature and other

clinicopathological parameters (age, gender, grade, stage, T and

M status), both univariate and multivariate Cox regression

analyses were performed. The results indicated that age, grade,

stage, M status, and the signature-derived risk score showed

significance in both analyses, and they thus could be regarded as

independent prognostic indicators in patients with ccRCC
A B

D
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C

FIGURE 4

Kaplan-Meier survival curves to compare overall survival of high- and low-risk groups in subgroups stratified by gender (A), age (B), grade (C),
stage (D), T and M status (E, F).
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(Table 2). Furthermore, a nomogram was created by combining

risk score and other four clinicopathological characteristics

including gender, age, T, and M status that were shared in

TCGA and ICGC cohorts (Figure 6A). As shown in Figures 6B,

C, calibration curves indicated satisfactory agreement between

the nomogram prediction and actual observations, showing the

remarkable dependability of the nomogram in predicting the

overall survival of ccRCC patients.
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Functional annotation of the HOX family
gene-based signature

To reveal the underlying biological mechanism of the HOX

family gene-based signature, we screened differentially expressed

genes (DEGs) between high- and low-risk groups using edgeR

filtration. A total of 328 shared DEGs between different risk

groups in both TCGA and ICGC cohorts were identified the
A

B

D

E

C

FIGURE 5

Validation of the HOX family gene-based signature in external ICGC cohort. (A) The profile of risk score in ICGC cohort. (B) The distribution of
survival time and living status in ICGC cohort. (C) The expression patterns of the three HOX family genes in ICGC cohort. (D) Kaplan-Meier
survival curve for overall survival of patients in ICGC cohort. (E) Time-dependent ROC curve analysis in ICGC cohort.
TABLE 2 Univariable and multivariable analysis of the HOX family gene-based signature and clinical factors in the TCGA cohort.

Variables Univariable analysis Multivariable analysis

HR 95% CI of HR P HR 95% CI of HR P

Lower Upper Lower Upper

Age (≤60 vs >60) 1.788 1.309 2.441 0.000 1.694 1.233 2.329 0.001

Gender (Female vs Male) 0.930 0.679 1.274 0.651 0.932 0.673 1.290 0.671

Grade (I/II vs III/IV) 2.593 1.837 3.659 0.000 1.617 1.118 2.338 0.011

Stage (I/II vs III/IV) 3.610 2.618 4.978 0.000 2.158 1.039 4.481 0.039

T (T 1/2 vs T 3/4) 3.003 2.205 4.088 0.000 0.937 0.500 1.757 0.840

M (M0 vs M1) 4.205 3.070 5.759 0.000 2.447 1.655 3.616 0.000

Risk (High vs Low) 1.005 1.001 1.008 0.000 1.006 1.002 1.009 0.002
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criterion of FDR<0.05 and |log2FC| >0.5 (Figure 7A). The

expression patterns of these shared DEGs in TCGA and ICGC

cohorts were exhibited in Figures 7B, C. Then, we annotated the

function of these shared DEGs using DAVID database. GO

enrichment analysis suggested that biological processes

including regulation of response to stimulus, immune system

process, response to external stimulus, defense response, and

regulation of immune system process, were significantly

enriched. As for the cellular component, extracellular region,

extracellular region part, and vesicle were the three most

enriched terms. In the molecular function category, DEGs

were mainly enriched in receptor binding, protein complex

binding, and antigen binding (Figure 7D). KEGG enrichment

analysis suggested that multiple signaling pathways including
Frontiers in Oncology 10
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PI3K-Akt, MAPK, Ras, Rap1, and HIF-1 were significantly

enriched (Figure 7E). GSEA method revealed that allograft

rejection, base excision repair, complement and coagulation

cascades, lysosome, primary immunodeficiency, proteasome,

and pyrimidine metabolism were markedly enriched in ccRCC

samples with higher risk scores in TCGA cohort. Meanwhile,

hallmarks including adherens junction, fatty acid metabolism,

propanoate metabolism, TGF-b signaling pathway, tight

junction, valine leucine and isoleucine degradation, and WNT

signaling pathway were significantly enriched in ccRCC samples

of low-risk group in TCGA cohort (Figure 7F). In ICGC cohort,

oxidative phosphorylation and ribosome were significantly

enriched in ccRCC samples of high-risk group, while

hallmarks such as apoptosis, basal transcription factors, JAK/
A
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FIGURE 6

Construction and validation of a prognostic nomogram in ccRCC. (A) The nomogram combining risk score with clinical factors such as gender,
age, T and M status for forecasting 1-, 3-, and 5-year overall survival. (B, C) The calibration plots of predicted and actual probabilities for the
nomogram in TCGA and ICGC cohorts **P < 0.01; ***P < 0.001.
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STAT signaling pathway, RIG I like receptor signaling pathway,

and T cell receptor signaling pathway were markedly enriched in

ccRCC samples of low-risk group (Figure 7G).
Association between the HOX family
gene-based signature with immune
cell infiltration

To explore the relationship between HOX family gene-based

signature with the immune landscape of ccRCC, we estimated the

proportions of immune cell infiltrated in each ccRCC sample by

analyzing RNA sequencing data, and compared them between

high- and low-risk groups. Figure 8A and Supplementary

Figure 1A show the proportion of 22 infiltrated immune cell

types in ccRCC samples of TCGA and ICGC cohorts, and it
Frontiers in Oncology 11
51
suggested that M2macrophages, CD8 T cells, and resting memory

CD4 T cells were the three most abundant immune cells in tumor

microenvironment. The correlations of these infiltrated immune

cells in ccRCC samples of TCGA and ICGC cohorts were shown

in Figure 8B and Supplementary Figure 1B. In TCGA cohort, the

regulatory T cells (Tregs) infiltrated differently between the two

subgroups (Figures 10C, D). In ICGC cohort, a higher level of

immune infiltration by regulatory T cells (Tregs), and a lower level

of M1macrophages and resting dendritic cell were associated with

higher risk score (Supplementary Figure 1C, D). Additionally, we

employed ssGSEA method to compare the enrichment scores of

immune cell and related immune functions in high- and low-risk

groups. As shown in Figures 9A, B, the scores for mast cells were

significantly lower in high-risk group compared with the low-risk

group, which was consistent in both TCGA and ICGC cohort. As

for the related immune function, the enrichment scores of APC
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FIGURE 7

Identification of risk-related differentially expressed genes and functional enrichment analysis. (A) Venn plot exhibiting shared DEGs between
different risk groups in TCGA and ICGC cohorts. (B, C) Heatmap showing the expression profiles of the DEGs in TCGA and ICGC cohorts.
(D, E) GO and KEGG enrichment analyses. (F, G) Gene set enrichment analysis in TCGA and ICGC cohorts.
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co-inhibition, para-inflammation, and type II IFN response were

consistently lower in high-risk group in both cohorts

(Figures 9C, D).
Expression and Kaplan-Meier survival
analysis of the eight HOX family genes

We then analyzed the expression levels of the eight HOX

family genes in ccRCC tissues and adjacent normal tissues, and

performed Kaplan-Meier survival analysis in TCGA and ICGC

cohorts. As shown in Figures 10A-G, the transcript levels of

HOXB1, HOXA7, HOXB5, HOXD8, HOXB9, HOXA9, and
Frontiers in Oncology 12
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HOXA11 were significantly lower in ccRCC tumor tissues

compared to adjacent normal tissues, which was consistent in

both TCGA and ICGC cohorts. Compared to normal tissues, the

expression of HOXD9 was lower in ccRCC tumor tissues of

TCGA cohort, while it was higher in ccRCC tumor tissues of

ICGC cohort (Figure 10H). Meanwhile, Kaplan-Meier survival

analysis in TCGA cohorts revealed that lower expression of

HOXA7 and HOXD8, and higher expression of HOXA9,

HOXA11, and HOXB9 were associated with worse overall

survival in ccRCC patients (Figures 11A–H). In ICGC cohort,

survival analysis indicated that higher expression of HOXA9

predicted poorer prognosis in ccRCC (Supplementary

Figure 2A–H).
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FIGURE 8

Comparison of immune cell infiltration in high- and low-risk groups in TCGA cohort. (A) Relative abundance of immunocyte infiltration in KIRC
samples of the TCGA cohort. (B) The heatmap showing the correlation of infiltrating immune cells in the TCGA cohort. (C, D) The fraction of 22
immune cell types in high- and low- risk groups of the TCGA cohort.
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HOXD8 was downregulated in ccRCC
and correlated with tumor progression

Finally, we comprehensively analyzed HOXD8 in ccRCC

based on public resources. Figure 12A shows the expression

profiles of HOXD8 in various tumor types and it suggested that

compared to adjacent normal tissues, HOXD8 was

downregulated in tumor tissues including BRCA, COAD,

KIRC, KIRP, KICH, PRAD, READ, and UCEC, while it was

upregulated in tumor tissues such CHOL, ESCA, HNSC, LIHC,

and LUSC. Moreover, HOXD8 expression were markedly

downregulated in ccRCC tissues than that in match non-

tumor tissues (Figure 12B). Besides, HOXD8 expression was

significantly decreased with the increase of tumor grade and

stage, and lymph node metastasis (Figures 12C–E). Additionally,

the protein level of HOXD8 was also lower in ccRCC tissues than

that in normal tissues (Figure 12F), and HOXD8 protein level

decreased with the increase of tumor grade (Figure 12G). Finally,

we analyzed the expression of HOXD8 in three independent

datasets (GSE40435, GSE46699, and GSE53757) from GEO

database and performed qRT-PCR to detect HOXD8

expression in clinical samples. Our results indicated that

HOXD8 expression were dramatically downregulated in

ccRCC tissues compared to adjacent non-tumor tissues

(Figures 12H–K).
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Discussion

Members of HOX family genes had been found to be

aberrantly expressed in multiple types of tumors. In ccRCC,

although some studies have indicated that dysregulation of HOX

genes such as HOXD1, HOXA13, and HOXC11 were associated

with cell proliferation, metastasis, and apoptosis (27–29), while

the detailed roles of HOX family genes on malignant behaviors

of ccRCC and its prognostic values remained largely to be

characterized. Here, we comprehensively analyzed the

expression profiles and clinical significance of HOX genes in

ccRCC using transcriptome profiles of tumor samples and

corresponding clinical information from the TCGA database.

We are suppressed to find that over eighty percent (32/39) of

HOX genes were differentially expressed between ccRCC

samples and adjacent normal tissues, and about thirty-five

percent (14/39) of HOX genes were robustly associated with

patients’ prognosis. These analyses indicated that HOX genes

might exert vital role in the development and progression of

ccRCC. Subsequently, we built a prognostic signature based on

eight HOX genes including HOXB1, HOXA7, HOXB5, HOXD8,

HOXD9, HOXB9, HOXA9, and HOXA11 in ccRCC for risk

stratification, which allowed patients with higher or lower risk

score to be divided into different risk groups. Comparing the

overall survival in subgroups of all the internal cohorts (training
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FIGURE 9

Comparison of immune cell infiltration and immune function based on ssGSEA. (A, B) Box plots exhibiting enrichment scores of immunocytes
between the two subgroups in TCGA and ICGC cohorts. (C, D) Box plots exhibiting enrichment scores of the related-immune function between
the two subgroups in TCGA and ICGC cohorts *P < 0.05; **P < 0.01; ***P < 0.001. not significant.
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cohort, testing cohort, entire cohort) and external cohort (ICGC

cohort) by Kaplan-Meier survival method indicated that the

overall survival of patients who belonged to the high-risk group

was poorer than that of the low-risk group. Moreover, time-

dependent ROC curve analyses suggested the favorable

forecasting performance of the signature. Besides, the

specificity and accuracy of our eight-gene based signature was

superior to some previously reported prognostic signatures in

ccRCC (30, 31), in terms of AUC values of the ROC curves

(Supplementary Table 1). Taken together, our HOX gene-based

signature harbored satisfactory accuracy and generalizability in

prognosis prediction. Additionally, univariate and multivariate
Frontiers in Oncology 14
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Cox regression analyses revealed that the signature-derived

risk score was an independent prognostic indicator in patients

with ccRCC. Furthermore, we successfully developed a

nomogram by combining signature-derived risk score, gender,

age, T and M status to expand the predictive ability of the

signature, which exhibited good clinical application value and

might be helpful in facilitating individualized treatment and

clinical decision-making.

In order to reveal the underlying biological mechanism of

the HOX family gene-based signature, a total of 328 shared

DEGs between the two risk groups were identified and were then

functionally annotated. In KEGG enrichment analysis, we found
A B

D

E F

G H

C

FIGURE 10

Comprising the expression of HOXA7 (A), HOXA9 (B), HOXA11 (C), HOXB1 (D), HOXB5 (E), HOXB9 (F), HOXD8 (G), and HOXD9 (H) between
tumor tissues and adjacent normal tissues in TCGA and ICGC cohorts.
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that these DEGs were mainly enriched in PI3K-Akt, MAPK, Ras,

Rap1, and HIF-1 signaling pathways, and these enriched

pathways had been previously demonstrated to be critical for

ccRCC development and progression (32–35). For example, the

modestly mutated genes in PI3K/AKT pathway leads to its

highly activated in ccRCC and represents promising drug

targets (36). Isoform-specific AKT inhibitors are being tested

in ccRCC clinical trials (37). Thus, we could speculate that the
Frontiers in Oncology 15
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two risk groups stratified by our signature might exhibit distinct

activation of these signaling pathways.

Tumor microenvironment consists of two major categories of

components, including cellular components (e.g., tumor cell,

vascular endothelial cells, immune cells, and mesenchymal stem

cells) and surrounding acellular components (e.g., cytokines,

adhesion molecules, growth factors). These non-tumor

components provide a scaffold, barrier and environment for
A B

D

E F

G H

C

FIGURE 11

Kaplan-Meier survival analysis of HOXA7 (A), HOXA9 (B), HOXA11 (C), HOXB1 (D), HOXB5 (E), HOXB9 (F), HOXD8 (G), and HOXD9 (H) in
TCGA cohort.
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tumor occurrence and growth. Recent studies revealed that ccRCC

is one of the most immune and vascularly infiltrated cancer types

and the immune microenvironment played crucial role in ccRCC

progression, and was associated with immune therapy response

and patients’ prognosis (38, 39). Thus, we further explored the

association of the signature with immune microenvironment and

immune cell infiltration in ccRCC. CIBERSORT algorithm

revealed that CD8 T cells, M2 macrophages, and resting

memory CD4 T cells were the three most abundant immune

cell types in ccRCC tissues. Moreover, a higher level of
Frontiers in Oncology 16
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immune infiltration by regulatory T cells (Tregs), and a lower

level of M1macrophages and resting dendritic cell were associated

with higher risk score. The regulatory T cells in tumor

microenvironment hindered protective immunosurveillance of

tumor and suppress anticancer immunity, thereby leading to

tumor progression (40–42). A higher proportion of infiltrated

regulatory T cells in tumor tissues was regarded to be associated

with worse prognosis (43). Treg-cell targeting therapy was shown

to evoke and enhance anti-tumor immune response (44). The M1

macrophages, developed from M0 macrophages, exert tumor
A

B D

E F G

IH J K

C

FIGURE 12

HOXD8 was downregulated in KIRC and correlated with tumor progression. (A) The expression profiles of HOXD8 in various types of tumors.
(B) Comparison of the expression of HOXD8 in KIRC tissues and match non-tumor tissues. (C-E) The expression of HOXD8 in KIRC tissues with
different tumor grade, stage, and N status. (F) The protein level of HOXD8 in KIRC tissues and normal tissues. (G) The protein level of HOXD8 in
KIRC tissues with different tumor grade. (H-J) Comparison of the expression of HOXD8 in normal and tumor tissues in GSE40435, GSE46699,
and GSE53757 database. (K) qRT-PCR was used to detect HOXD8 expression in clinical samples *P < 0.05; **P < 0.01; ***P < 0.001.
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inhibiting role by mediating cytotoxicity and antibody-dependent

cell-mediated cytotoxicity (ADCC) to kill tumor cells (45, 46). The

abundance of infiltrating M1 macrophages was positively

correlated with clinical outcome in diverse tumor types (47). By

combining our findings with those of previous studies, we were

able to conclude that our HOX gene-based signature was closely

associated with distinct immune status and different patterns of

infiltrating immune cells, which might contribute to diverse

clinical outcome in the two risk groups. Our signature might

offer prominent therapy guidance and could be useful in

determining which patients would benefit from immune therapy.

Of the eight HOX genes (HOXB1, HOXA7, HOXB5, HOXD8,

HOXD9, HOXB9, HOXA9, and HOXA11) comprised in our

signature, their transcript levels were consistently lower in

ccRCC tissues compared to adjacent normal tissues (except for

HOXD9). Survival analysis indicated that lower expression of

HOXA9, HOXA11, and HOXB9 were associated with favorable

clinical outcome in ccRCC patients, thus the prognostic prediction

performance of HOXA9, HOXA11, and HOXB9 might be

controversial with their expression level in ccRCC. HOXA9 had

been extensively studied in various types of tumors and it could

act in opposite ways when it was dysregulated in tumors. Lower

expression of HOXA9, accompanied by hypermethylation of its

promoter region, was diagnostic or prognostic biomarker in

tumors such as non-small cell lung cancer, ovarian cancer, and

head and neck squamous cell carcinoma (48–50). Modulating

HOXA9 expression could either promote or inhibit tumor

progression through different mechanism, depending on context

(51, 52). In renal cell tumors (RCT), promoter methylation of

HOX9A was disclosed in 73% of RCTs, and the two-gene

(HOX9A and OXR1) methylation panel led to 90% sensitivity

and 98% specificity in the identification of ccRCC (53). However,

up to now, little is known about the role of HOXA9 in ccRCC,

further experiments should be carried out to detect the effect of

HOXA9 knockdown or overexpression on malignant behaviors of

ccRCC cells and unearth the underlying mechanism. HOXA11

was a putative tumor suppressor in a number of solid tumors and

it was frequently epigenetic inactivated (54, 55). HOXA11

antisense LncRNA (HOXA11-AS) was shown to be associated

with advanced tumor stage and metastasis in RCC. Functionally,

overexpression of HOXA11-AS promoted tumor growth and

invasion through regulating miR-146b-5p-MMP16 axis (56).

HOXB9 was also reported to play a dual role in different types

of tumors (57). The aberrant expression ofHOXB9 in tumors was

not only prognostic predictor but also indicator of response to

target therapy. Protein encoded by HOXB9 functioned as

oncoprotein and could accelerate cell proliferation and invasion

in endometrial cancer, colorectal cancer, and hepatocellular

carcinoma cells (58–60). However, HOXB9 could also delay

tumor progression in other kinds of tumors such as gastric

cancer and pancreatic cancer (61, 62). Nevertheless, the

functional role of HOXB9 in ccRCC remains largely unknown
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and deserves further investigation.HOXB1 is a well-defined tumor

suppressor gene in diverse tumors (63, 64) and it was dramatically

downregulated in ccRCC. However, HOXB1 expression is

extremely low in ccRCC tissues, which might limit its biological

roles in ccRCC. Whether HOXB1 had an effect on malignant

behavior of ccRCC cells should be further explored in vitro and in

vivo. The downregulated expression of HOXA7 in ccRCC and its

lower expression being associated with poorer patients’ prognosis

indicated that it might be a tumor suppressor in ccRCC. However,

HOXA7 was recently more reported to be oncogene and

promoted oncogenic characteristics in many kinds of tumors

such as liver cancer, cervical cancer, ovarian cancer, colorectal

cancer and breast cancer (65–69). The role of HOXA7 in ccRCC

had not been reported until now and exploring its effect on

malignant characteristics of ccRCC might lead to the

understanding of its diverse biological role and the complicated

intracellular regulatory network. HOXB5 and HOXD9 were

suspected to be oncogenes in tumors and their translation

products were reported to aggravate malignant development of

tumors (70–72). Though our bioinformatic analysis suggested that

HOXB5 andHOXD9were markedly downregulated in ccRCC, the

detailed role of them in ccRCC should be further experimentally

investigated. Protein encoded by HOXD8 gene is a conserved

transcription factor that exert a tumor-suppressing role in various

tumors through diverse mechanism. Overexpression of HOXD8

in colorectal cancer cells impaired cell proliferation and migration

via inducing apoptotic event (73). Enforced expression of HOXD8

in breast cancer repressed tumor growth by inactivating AKT/

mTOR pathway (74). Up to now, the role of HOXD8 in ccRCC

had not been elucidated. Intriguingly, we found that the mRNA

and protein levels of HOXD8 were downregulated in ccRCC than

that in normal tissues, and decreased expression of HOXD8 was

associated with increased tumor grade and stage, and lymph node

metastasis. Survival analysis revealed that lower expression of

HOXD8 predicted worse overall survival in ccRCC. Taken

together, it is reasonable to speculate that HOXD8 might be a

tumor suppressor gene in ccRCC and a potential predictor of

tumor progression.

Inevitably, there are several shortcomings in our study.

First, we should endeavor to collect prospective cohort to

verify the reliability of our signature. Second, we need to

examine the protein levels of the HOX family genes,

especially HOXD8, in ccRCC though immunoblotting or

immunohistochemistry staining. Third, the role of HOX

family genes, especially HOXD8 , are warrant to be

experimentally explored in ccRCC.

In all, we here systemically analyzed HOX family genes in

ccRCC using bioinformatic method, and successfully

constructed a prognostic signature based on eight HOX genes.

Our signature was a favorable indicator to predict the prognosis

of ccRCC cases and associated with tumor immune

microenvironment and immune cell infiltration. HOXD8, one
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of the eight HOX genes, might be a tumor suppressor gene in

ccRCC and a potential predictor of tumor progression.
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Multi-omics profiles refine
L-dopa decarboxylase (DDC)
as a reliable biomarker for
prognosis and immune
microenvironment of clear
cell renal cell carcinoma

Kun Chang1,2,3†, Jiaqi Su1,2,3†, Chuanyu Li4†,
Aihetaimujiang Anwaier1,2,3, Wangrui Liu4, Wenhao Xu1,2,3,
Yuanyuan Qu1,2,3, Hailiang Zhang1,2,3* and Dingwei Ye1,2,3*

1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China, 2Department
of Oncology, Shanghai Medical College, Fudan University, Shanghai, China, 3Shanghai
Genitourinary Cancer Institute, Shanghai, China, 4Department of Neurosurgery, Affiliated Hospital
of Youjiang Medical University for Nationalities, Baise, China
Background: Increasing evidence indicates that L-dopa decarboxylase

(DDC), which mediates aberrant amino acid metabolism, is significantly

associated with tumor progression. However, the impacts of DDC are not

elucidated clearly in clear cell renal cell carcinoma (ccRCC). This study aimed

to evaluate DDC prognostic value and potential mechanisms for ccRCC

patients.

Methods: Transcriptomic and proteomic expressions of and clinical data

including 532 patients with ccRCC (The Cancer Genome Atlas RNA-seq

data), 226 ccRCC samples (Gene Expression Omnibus), 101 ccRCC patients

from the E-MTAB-1980 cohort, and 232 patients with ccRCC with

proteogenomic data (Fudan University Shanghai Cancer Center) were

downloaded and analyzed to investigate the prognostic implications of DDC

expression. Cox regression analyses were implemented to explore the effect of

DDC expression on the prognosis of pan-cancer. The "limma" package

identified the differentially expressed genes (DEGs) between high DDC

subgroups and low DDC groups. Functional enrichments were performed

based DEGs between DDC subgroups. The differences of immune cell

infiltrations and immune checkpoint genes between DDC subgroups were

analyzed to identify potential influence on immune microenvironment.

Results: We found significantly decreased DDC expression in ccRCC tissues

compared with normal tissues from multiple independent cohorts based on

multi-omics data. We also found that DDC expression was correlated with
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tumor grades and stages.The following findings revealed that lower DDC

expression levels significantly correlated with shorter overall survival (P

<0.001) of patients with ccRCC. Moreover, we found that DDC expression

significantly correlated with an immunosuppressive tumor microenvironment,

higher intra-tumoral heterogeneity, elevated expression of immune

checkpoint CD274, and possibly mediated malignant behaviors of ccRCC

cells via the PI3k/Akt signaling pathway.

Conclusion: The present study is the first to our knowledge to indicate that

decreased DDC expression is significantly associated with poor survival and an

immune-suppressive tumor microenvironment in ccRCC. These findings

suggest that DDC could serve as a biomarker for guiding molecular diagnosis

and facilitating the development of novel individual therapeutic strategies for

patients with advanced ccRCC.
KEYWORDS

l-DOPA decarboxylase, amino acids metabolism, tumor microenvironment, clear cell
renal cell carcinoma (ccRCC), prognosis, biomarker
Introduction

Renal cell carcinoma (RCC) is the third most common

genitourinary malignancy worldwide (1, 2). In 2022, it is

estimated that 79,000 new cases are diagnosed as RCC and

13,920 related deaths in the United States (3). Pathologically,

RCC incorporates three main subtypes, including clear cell RCC

(ccRCC), papillary RCC, and chromophobe RCC (4). Clear-cell

RCC is the most common type of RCC with high aggressiveness,

accounting for approximately 80% of all RCC pathology types (5).

Around 30% of RCC patients are diagnosed as having advanced

RCC, and the five-year survival rate is 23% (6). Hence, there is an

urgent need to discover the underlying mechanisms of high

invasiveness and high metastatic potential to find more reliable

biomarkers that could assist in diagnosing and predicting prognosis.

Metabolic reprogramming is widespread in malignant

tumors, the most well-known of which is glucose metabolic

reprogramming that is termed the “Warburg effect” (7). This

inefficient form of energy metabolism supplies the need for new

proliferating cancer cells and enables the use of intermediate

products to yield biomolecules, such as amino acids, and

nucleotides (8). Previous studies revealed that amino acids

could have impacts on cell proliferation, the tumor

microenvironment, epigenetic modification, and drug

resistance (9–14). Previous studies also revealed that amino

acid aberrant metabolism was associated with tumor

progression and immune infiltration in ccRCC and other

cancers (15–18). Therefore, to better understand the profound
02
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mechanisms, studies are in demand to identify key amino acid

metabolism-related genes and transfer them to drug targets.

L-dopa decarboxylase (DDC) locates at chromosome 7p and

encodes a protein that catalyzes the decarboxylation process of

L-3,4-dihydroxyphenylalanine (DOPA), L-5-hydroxytryptophan,

and L-tryptophan to dopamine, serotonin, and tryptamine,

respectively (19). Our previous proteomic analysis demonstrated

that L-dopa decarboxylase was significantly downregulated in

ccRCC (15). The regional dopamine of the kidney plays

a potential role in regulating blood pressure, and the

dysregulation of DDC might lead to hypertension, which is a

common symptom of RCC (20). Tremmel et al. found that DDC

was a favorable prognostic factor in breast cancer (21). However,

in prostate cancer, the higher expression of DDC was associated

with advanced stages, higher Gleason scores, biochemical

recurrence, and short disease-free survival (DFS) (22). Also, the

role of DDC has been investigated in the development of

colorectal cancer (23), small cell lung cancer (24), and gastric

cancer (25). However, the prognostic value and underlying

mechanism caused by aberrant L-dopa decarboxylase expression

have not been systematically elucidated in ccRCC.

In this study, we thoroughly performed DDC-related

bioinformatics analysis in ccRCC and validated conclusions

using external cohorts from multi-omics data. We found the

downregulation of DDC in ccRCC was significantly associated

with worse outcomes. Furthermore, DDC expression showed

close relationships with clinicopathologic features and prognosis.

We also revealed that DDC was correlated with immune cell
frontiersin.org
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infiltration and expressions of immune checkpoint genes. In order

to boost the knowledge of basic cancer biology, our study sought

to identify the underlying mechanisms of DDC in carcinogenesis

and provided a new therapeutic target for ccRCC patients.
Materials and methods

Patients’ inclusion and
data preprocessing

Proteogenomic expression data of 232 Chinese paired ccRCC and

normal samples and 93 ccRCC tumors were included from our

institute, the Fudan University Shanghai Cancer Center (FUSCC-

ccRCC cohort) (15), and the Clinical Proteomic Tumor Analysis

Consortium (CPTAC) (https://proteomics.cancer.gov/programs/

cptac). Transcriptomic expression profiles, tumor somatic mutations,

and corresponding clinical information of 532 patients with ccRCCand

patients across 33 cancers were obtained from The Cancer Genome

Atlas (TCGA) database. Transcriptomics data of 226 ccRCC and 196

normal kidney samples were also enrolled from the Gene Expression

Omnibus (GEO) database, including GSE36895 (53 ccRCC and 23

normal samples), GSE40435 (101 ccRCC and 101 normal renal

samples), and GSE53757 (72 ccRCC and 72 normal samples)

cohorts. Additionally, RNA sequences and clinicopathological data of

101 ccRCC patients from the E-MTAB-1980 cohort were available

from the ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) database

as a transcriptomics validation cohort. Besides, we also included 232

ccRCC samples with proteomics information and available clinical and

pathologic data from the FUSCC-ccRCC cohort as a proteomics

validation cohort. The details about the FUSCC-ccRCC cohort and

how amino acid metabolism clusters are defined were discussed in the

previous study (15).
DDC expression and correlations with
clinicopathological features

The DDC expressions of two proteomic cohorts and three

transcriptomic cohorts were used to determine whether DDC

expression was dysregulated in ccRCC using the Wilcox test.

Statistical analyses were conducted on the relationship between

DDC expression and clinicopathological features using ggplot2

(v3.3.2) in R software. The Sankey plot of clinicopathological

features was conducted in R software.
Differentially expressed genes
identification and functional
enrichment analysis

We divided the TCGA cohort into two subgroups based on

the median value of DDC expression in order to keep the
Frontiers in Oncology 03
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classification model simple and ensure universality. Then the

DEGs between two subgroups were identified with the threshold

of |log2(Fold Change)| >1.5 and adjusted P <0.05 using the R

package “limma” (26) in the TCGA cohort. The Cluster Profiler

package (version: 3.18.0) in R software was employed to analyze

the Gene Ontology (GO)-identified functions of potential targets

and perform Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment analysis between subgroups. For

pathway analysis, the R software GSVA package was used,

choosing parameter as method = ‘ssgsea’ (27). The correlation

between DDC expression and pathway score was assessed using

Spearman’s correlation analysis.
Evaluation of immune cells abundance
in the TME and immunological response
of ccRCC

To evaluate the absolute proportion of tumor-infiltrating

lymphocytes (TILs) in ccRCC, we conducted the CIBERSORT

and assessed the proportion of all TILs using support vector

regression. Besides, to assess the reliability of the algorithms, we

used the “immuneeconv” and “pheatmap” R packages that

provide an integrated P-value from the six latest algorithms,

including TIMER, xCell, MCP-counter, CIBERSORT, EPIC, and

quanTIseq for individuals (28). We also explored the TIL

differences between two DDC subgroups. The potential

therapeutic response to immune checkpoint inhibitors (ICIs)

was predicted with the TIDE algorithm, as described

previously (29).
Survival analysis

The primary endpoint was overall survival (OS), and the

secondary endpoint was progression-free survival (PFS) in

ccRCC patients. Survival curves were performed to assess the

prognostic significance using the Kaplan–Meier method and

log-rank test with 95% confidence intervals (95% CI). The

cut-off value was defined via the “survminer” R package or

median threshold according to samples assigned to the TCGA

cohort. To detect the independent prognostic indicators, we

assessed the hazard ratio (HR) and 95% CI using univariate and

multivariate Cox logistic regression analysis and visualized the

results in the forest plots. We utilized two external validation

cohorts, including E-MTAB-1980 and the FUSCC-ccRCC

cohort, to confirm the prognostic value of DDC in ccRCC.
Immunohistochemical analysis

Samples were embedded in paraffin at a thickness of 4 nm.

Deparaffinization and rehydration were performed on each slide.
frontiersin.org
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Immunohistochemical (IHC) assay was conducted with

anti-DOPA Decarboxylase/DDC antibody (1:1,000, ab211535,

Abcam) diluted 1:1,000. After incubating the HRP-labeled

secondary antibody for 2 h, we performed immunodetection

the next day, following the manufacturer’s protocols. Based on

the integration of the degree of intensity and density of staining,

two independent pathologists evaluated the overall IHC score

(from 0 to 12) as follows: negative staining, 0 to 3; positive

staining, 4 to 12, as previously described (30).
Statistical analysis

For statistical analyses, the SPSS software (version 23.0),

GraphPad Prism software (version 8.0), or R software (version

3.3.2) were employed. The relationships between DDC expression

and clinicopathological characteristics were evaluated using the

Chi-square test. The Student’s t-test was used to compare the

differences between the two groups. A one-way ANOVA was

performed to compare the differences among multiple groups. All

hypothesis tests were two-sided, and P-values below 0.05 were

regarded as significant.
Results

Identification of DDC expression in
regulating amino acids metabolism
of ccRCC

Our previous study found that tumor and adjacent normal

tissue had significant differences in amino acid metabolism-

related pathways in the FUSCC proteomic ccRCC cohort

(Figure 1A). The amino acid metabolism-related proteins,

including SHMT1, BHMT, AHCY, ALDH1L1, DDC, AOX1,

AFMID, KYNU, and HAAO, were downregulated in ccRCC

compared to adjacent normal tissue, while NNMT was

upregulated in ccRCC compared to adjacent normal tissue

(Figure 1A). Thus, we found that DDC was significantly

downregulated compared to other downregulated amino acid

metabolism-related genes. The immunohistochemistry staining

demonstrated a similar phenomenon (Figure 1B). To determine

whether DDC is aberrantly expressed in ccRCC, we utilized two

proteomic cohorts (FUSCC and CPTAC) and three

transcriptomic cohorts (GSE36859, GSE40435, and GSE53757)

to verify DDC expression at the transcription and translation level.

The results demonstrated that both the protein and mRNA levels

of DDC were lower in the ccRCC specimen compared to adjacent

normal tissue (P <0.001) (Figures 1C, D). We next explored DDC

expression in human cancers and found that DDC is widely

differentially expressed in pan-cancer analysis using the TCGA

expression profiling (Figure 1E), which indicated that DDC is

expressed differently in different human cancers. The aberrant
Frontiers in Oncology 04
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DDC expressions deserved further investigation to determine

whether DDC could serve as a therapeutic target.
Associations between DDC and
clinicopathological features in ccRCC
from the TCGA cohort

To explore whether DDC expression altered in the process of

tumor progression, we divided TCGA cohort into two subgroups

based on the median value of DDC expression (DDCHigh vs.

DDCLow). We found that different DDC subgroups had different

compositions of clinicopathological features, indicating that DDC

expression had potential associations with clinicopathological

features, including gender, T stage, N stage, and M stage, as well

as the American Joint Committee on Cancer (AJCC) stage and

tumor grade (P <0.05) (Figure 2A). Then, the distribution of clinical

phenotypes and DDC expression of the TCGA cohort was

presented in Figure 2B. Patients diagnosed as stages III–IV were

more likely to have lower DDC expression, and the DDCLow group

showed a worse prognosis compared to the DDCHigh group

(Figure 2B). We then found that DDC expression demonstrated

weak but statistically significant correlations with tumor AJCC stage

(R = −0.126, P = 0.0036) and tumor grade (R = −0.134, P = 0.00214)

(Figure 2C). The results indicated the indispensable role of DDC

expression in the ccRCC progression process.
Low DDC expression in ccRCC is
associated with worse prognosis

Due to DDC expression dysregulation in human cancers, we

first explored the prognostic value of DDC in pan-cancer analysis.

We found that, among all the cancers in the TCGA database, the

prognostic implications of DDC expression showed the most

significant value in the ccRCC (Figure 3A). The following

analyses performed in ccRCC cohort demonstrated similar

results: lower DDC expression was associated with shorter OS

and progression-free survival (PFS) (P <0.001) (Figure 3B).We next

employed univariate and multivariate Cox analyses to identify the

independent prognostic factor. In univariate Cox analysis, the

gender, T stage, N stage, M stage, and tumor grade was

correlated with worse outcome, while DDC expression was

correlated with better outcome (P <0.001). After adjusting for the

confounding factors, only DDC expression (HR: 0.828, 95% CI:

0.754–0.909) and M stage (HR: 5.194, 95% CI: 3.080–8.759) could

serve as independent prognostic factors (P <0.001) (Figure 3C). To

confirm the prognostic ability of DDC expression, we performed

survival analysis in two external cohorts. The results revealed that

the lower level of DDC expression was correlated with a worse

prognosis in the E-MTAB-1980 cohort (P = 0.030) and in the

FUSCC-proteomic-ccRCC cohort (P = 0.003), respectively

(Figure 3D). The findings above indicated the stable prognostic
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value of DDC expression, suggesting that DDC expression could be

an independent biomarker in predicting outcomes.
Functional enrichments of DDC
expression subgroups

Based on the above results that DDC expression was lower in

ccRCC specimens and correlated with a worse prognosis, we tried

to undermine the potential mechanisms that might contribute to

the differential prognosis. The differentially expressed genes

(DEGs) between the DDCLow and DDCHigh subgroups are
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presented in Figure 4A. With the exception of DDC, other

genes such as PKLR, AGX12, HAO2, TMEM174, LRP2,

CYP4A11, CUBN, SLC22A6, SLC22A12, SLC6A19, ALDOB,

and SLC17A3 also showed significant low expression in the

DDCLow group (Figure 4A). The DEGs were used to perform

the following functional enrichment analysis: The upregulated

DEGs are mainly enriched in the PI3K-Akt signaling pathway,

while the downregulated DEGs are mainly enriched in valine,

leucine, and isoleucine degradation, the PPAR signaling pathway,

drug metabolism-cytochrome P450, bile secretion, and arginine

and proline metabolism (Figure 4B). The GO results

demonstrated that upregulated DEGs were mainly enriched in
A B

D

E

C

FIGURE 1

Identification of DDC expression in regulating amino acid metabolism of ccRCC. (A) The FUSCC proteomic ccRCC cohort demonstrates that
amino acid metabolism is extensively dysregulated between tumor and normal tissue and the DDC protein is significantly downregulated in
ccRCC. (B) Representative immunohistochemical (IHC) staining of DDC protein in normal kidney and ccRCC tissues. (C) Proteomic cohorts
(FUSCC and CPTAC) showed DDC protein is lower in tumors than in normal tissue. (D) Transcriptomic cohorts (GSE36859, GSE40435, and
GSE53757) showed DDC mRNA is lower in tumors than in normal tissue. (E) Pan-cancer analysis of DDC mRNA expression in human cancers.
CPTAC, Clinical Proteomic Tumor Analysis Consortium; ccRCC, clear cell renal cell carcinoma; DDC, L-dopa decarboxylase; mRNA, messenger
RNA (**P <.01; ***P <.001; ****P <.0001).
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extracellular structure organization, extracellular matrix

organization, and so on. The downregulated DEGs were mainly

enriched in small molecule catabolic processes, organic acid

transport, organic acid catabolic processes, cellular amino acid

metabolic processes, carboxylic acid transport, carboxylic acid

catabolic processes, and so on (Figure 4B). Because the KEGG

pathway is enriched in the PI3K-Akt signaling pathway, we

explored the correlation between the tumor proliferation

signature and DDC expression. The Spearman’s correlation test

indicated potential correlations between DDC and cancer cell

proliferation (R = −0.15, P <0.001) (Figure 4C). These results

revealed the biological differences between the DDCLow and

DDCHigh subgroups and the potential correlation of DDC

on proliferation.
Differential immune microenvironment
between DDC expression subgroups

Based on the above subgroups, we wondered whether DDC

could exert a potential influence on immune cell infiltrations and

expressions of ICP genes. The immune cell infiltrations analyzed

by the “CIBERSORT” package showed that the proportions of

monocytes and M1 macrophages were higher in the DDCHigh

subgroup, while the proportions of Tregs, follicular helper T

cells, M0 macrophages, and memory B cells were higher in the

DDCLow subgroup (Figure 5A). This might partly explain the

survival difference in that the prognosis of the DDCLow subgroup
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was better than that of the DDCLow subgroup. Next, we found

that the ICP genes, including SIGLEC15, HAVCR2, and CD274

(PD-L1), expressed differently in DDC subgroups (Figure 5B).

The SIGLEC15 expression was lower in the DDCHigh subgroup,

while HAVCR2 and CD274 were higher in the DDCHigh

subgroup (P <0.001), which suggested the potential capability

in immune regulation. The tumor immune dysfunction and

exclusion (TIDE) score has confirmed its ability to predict the

immune checkpoint inhibitor (ICI) response (31). In our study, we

found that the DDCHigh subgroup had a lower level of TIDE score

than the DDCLow subgroup (P <0.0001) (Figure 5C), which meant

that the DDCLow subgroup seemed to have a worse immunotherapy

response and worse prognosis. To investigate the impacts of DDC

protein on immune cell infiltrations, we explored the pan-cancer

analysis and found that DDC expression was closely correlated with

immune cell infiltrations in the ccRCC cohort (Figure 5D).

Consistent with the above results, DDC demonstrated significant

correlations with M0 and M1 macrophages in ccRCC, and the

underlying regulatory mechanisms need to be elucidated in

the future.
Discussion

Kidney cancer is a highly genetically heterogeneous malignant

tumor, which may cause patients from different races and regions

to carry different gene mutations and genetic phenotypes, which

in turn cause the biological behavior of tumor cells and different
A B

C

FIGURE 2

Associations between DDC and clinicopathological features in ccRCC from the TCGA cohort. (A) The differences between clinicopathological
features and DDC subgroups. (B) The distribution of clinicopathological features, DDC subgroups, and live status in KIRC. (C) The Spearman
correlation between DDC mRNA expression and tumor stage (left) and tumor grade (right) in KIRC. DDC, L-dopa decarboxylase; mRNA,
messenger RNA; KIRC, Kidney renal clear cell carcinoma (*P <.05).
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sensitivity to treatment (32, 33). Therefore, molecular

characteristics and subtypes based on multi-omics data are

essential for improving treatment efficacy and promoting the

achievement of precision medicine in cancer (34, 35). Although

there is a growing interest in the function of amino acid

metabolism-related genes in cancer, little is known about how

DDC proteins work in ccRCC, and it is uncertain whether DDC

expressionmay be used as diagnostic or prognostic markers. Here,

we assessed the diagnostic and prognostic value of DDC mRNA

and protein expression in external ccRCC cohorts and found

potential associations between DDC expression and

clinicopathological features. We also explored functional

analysis and found aberrant enrichment in the PI3K-Akt

signaling pathway. Analysis of immune cell infiltration and ICP

expression revealed the underlying regulatory effects of DDC on

the tumor microenvironment (TME) and immune system.
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In our study, we discovered that DDC mRNA and protein

expression were downregulated in ccRCC compared to

adjacent normal tissue. There were potential correlations

between DDC expression and higher grade, advanced stages.

The survival analysis from external validation cohorts revealed

that low DDC expression correlated with worse OS. The results

above indicate that DDC expression level might be a reliable

biomarker assisting in diagnosis and predicting prognosis in

ccRCC. To further investigate the potential functions of DDC,

we employed KEGG and GO analyses. The findings reveal that

DDC protein could possibly enrich the PI3K-Akt signaling

pathway, amino acid metabolism, extracellular matrix

organization, and so on. The following subgroup analysis

identified Treg as being significantly upregulated in the

DDCHigh subgroup, while M1 macrophage was significantly

upregulated in the DDCLow subgroup. There were significant
A B

D
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FIGURE 3

Low DDC expression in ccRCC correlated with a worse prognosis. (A) The pan-cancer associations between DDC expression and OS in human
cancers. (B) Kaplan–Meier survival analysis of the relationships between DDC mRNA expression and OS (P <.001) and PFS (P <.001) in the KIRC
cohort. (C) Univariate and multivariate Cox logistic regression analysis of OS in the TCGA cohort. (D) External Kaplan–Meier survival analysis of
the relationships between DDC expression and OS in the E-MTAB-1980 cohort (P = .030) and FUSCC-ccRCC cohort (P = .003). DDC, L-dopa
decarboxylase; mRNA, messenger RNA; OS, Overall Survival; PFS, Progression-free Survival; KIRC, Kidney renal clear cell carcinoma.
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differences in ICP gene expressions between the two DDC

subgroups, which might eventually contribute to the different

TIDE scores and prognosis.

DDC expression has been investigated in several malignant

tumors. But in contrast, high DDC expressions are found more

frequently in high Gleason’s score and advanced stage, and the

underlying mechanism could be attributed to that DDC could co-

activate androgen receptor (AR)–ligand transcriptional activity

without affecting AR protein expression (36, 37). The following

research tested whether the DDC enzymatic inhibitor, carbidopa,

would suppress prostate cancer cell proliferation (38). Carbidopa

could significantly restrict AR transactivation andPSAupregulation.

The cell and castrated mice experiments demonstrated significant

tumor growth suppression and decreased serum PSA effects of

carbidopa. However, in ccRCC, the opposite strategy should be

taken into consideration because of the unique genetic

backgrounds between prostate cancer and ccRCC. In breast

cancer, DDC upregulation was associated with a longer OS. The

two breast cancer cells treated with epinephrine demonstrated

contrary results in DDC expression and cell viability (21).

Although the previous studies provided a novel insight that

antitumor treatments could be combined with endocrine-related

therapy strategies, targeted therapy combinedwith immunotherapy

has become the first line of treatment for advanced ccRCC patients

and ccRCC patients usually demonstrate relatively fixed types of

mutations unlike prostate cancer or breast cancer. The underlying

correlations between DDC and mutations such as VHL, BAP1,

SETD2, and PBRM1 and whether DDC could serve as a new drug
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target for treating ccRCC patients or boosting immunotherapy

response should be investigated in future studies to better

guide treatments.

Dopamine (DA), catalyzed by the DDC protein, plays a role

in the normal activities of human lives. It is also an important

ingredient in orepinephrine and epinephrine (39). Previous

studies found that dopamine receptors could be a biomarker

for several malignant tumors (40), which highlights the

important role of dopamine that depends on DDC activity in

carcinogenesis. Chakroborty et al. found that a low dosage of

DDC could restrict tumor angiogenesis via inhibiting VEGFR

phosphorylation and was correlated with growth restriction in

vitro (41). Dopamine could significantly promote the efficacy of

anti-cancer drugs. The replenishments caused a low

proliferation rate and metastatic potential that might be

attributed to decreased phosphorylation levels of VEGF

receptor-2, mitogen-activated protein kinase, and focal

adhesion kinase. Angiogenesis is also one of the major

characteristics of ccRCC, and several targeted therapies such as

sunitinib, axitinib, and other drugs inhibit ccRCC progression by

targeting VEGF targets. Supplementation with dopamine or

increasing the activity of DDC enzymes may have a synergistic

effect in combination with targeted therapy, significantly

inhibiting tumor growth and progression. Moreover, a

previous study found that mice with daily stress contributed to

increased tumor growth compared to those without daily stress,

which could be blocked by dopamine replenishment (42). This

study also highlighted the importance of the tumor
A B

C

FIGURE 4

Functional enrichment analysis of DEGs between DDC subgroups. (A) The volcano plot of DEGs between DDC subgroups in KIRC. (B) The
KEGG pathways and GO functional enrichment analysis of DEGs between DDC subgroups. (C) The Spearman correlation between DDC
expression and tumor proliferation signature (R = −0.15; P <.001). DDC, L-dopa decarboxylase; KIRC, Kidney renal clear cell carcinoma; GO,
Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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microenvironment in dopamine deletion and high-stress

conditions. Dopamine could activate resting effector T cells

(Teffs) and suppress regulatory T cells (Tregs) (43, 44). It also

affects helper T-cell differentiation, inhibits Treg activation,

takes part in antigen presentation processes, and modulates

intracellular signaling pathways, suggesting that dopamine

plays an important regulatory role in affecting the tumor

microenvironment (45). Dopamine improved the efficacy of

chemotherapy in vivo and in vitro experiments by inhibiting

the M2 characteristics of tumor-associated macrophages

(TAMs) (46). Qin et al. attempted to re-polarize M2

macrophages to M1 macrophages, and they found that

dopamine could upregulate M1-polarized markers and

downregulate M2-polarized markers, which could transfer the

tumor microenvironment from “cold” to “hot” (47, 48). The M1

macrophage exerted anti-tumor effects and correlated with the

immunotherapy response (49, 50). PD-L1 expression (CD274)
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was previously approved by the FDA as a predictive biomarker

for ICI (50, 51). Thus, the differentially expressed PD-L1 and

different proportions of M1 macrophages may influence the

efficacy of immunotherapy. Future studies should focus on the

effects of dopamine catalyzed by the DDC protein on the TME

and the underlying mechanisms.

The findings of this study contribute to our knowledge of the

function of DDC and recognize it as a potential diagnostic and

prognostic factor in ccRCC. However, our study has certain

limitations. First, although we utilize several external cohorts to

validate DDC expression, large cohorts are needed to validate

our conclusions. Second, the diagnostic and prognostic

significance of DDC expression has been defined, although the

underlying processes regulating its expression levels are still

unknown. This will be made clearer by additional functional

enrichment and annotation analysis. Third, the DDC protein

could influence the percentage of M1 macrophages within the
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FIGURE 5

DDC expression correlated with immune microenvironment regulation in ccRCC. (A) The differences in immune cell infiltration between DDC
subgroups. (B) The differences of ICP genes between DDC subgroups. (C) The differences in TIDE scores between DDC subgroups. The TIDE
score is significantly higher in the DDCLow group (P <.0001). (D) The pan-cancer correlations between immune cell infiltrations and DDC
expression. DDC, L-dopa decarboxylase; ICP, immune checkpoint; TIDE, Tumor Immune Dysfunction and Exclusion (*P <.05; **P <.01;
***P <.001; ****P <.0001).
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tumor microenvironment, and the underlying mechanisms are

needed to be explored in future studies.

In conclusion, our study first systematically identified and

assessed DDC expression and its potential functions in the

regulation of metabolism and tumor microenvironment of

ccRCC. DDC might function as a tumor suppressor protein

and has been markedly linked to cancer progression and a worse

prognosis in ccRCC.
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Prognosis and pain dissection
of novel signatures in kidney
renal clear cell carcinoma
based on fatty acid
metabolism-related genes

Ruifeng Ding1†, Huawei Wei1†, Xin Jiang1†, Liangtian Wei2,
Mengqiu Deng1 and Hongbin Yuan1*

1Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical
University, Shanghai, China, 2Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical
University, Xuzhou, China
Renal cell carcinoma (RCC) is a malignant tumor that is characterized by the

accumulation of intracellular lipid droplets. The prognostic value of fatty acid

metabolism-related genes (FMGs) in RCC remains unclear. Alongside this

insight, we collected data from three RCC cohorts, namely, The Cancer

Genome Atlas (TCGA), E-MTAB-1980, and GSE22541 cohorts, and identified

a total of 309 FMGs that could be associated with RCC prognosis. First, we

determined the copy number variation and expression levels of these FMGs,

and identified 52 overall survival (OS)-related FMGs of the TCGA-KIRC and the

E-MTAB-1980 cohort data. Next, 10 of these genes—FASN, ACOT9, MID1IP1,

CYP2C9, ABCD1, CPT2, CRAT, TP53INP2, FAAH2, and PTPRG—were identified

as pivotal OS-related FMGs based on least absolute shrinkage and selection

operator and Cox regression analyses. The expression of some of these genes

was confirmed in patients with RCC by immunohistochemical analyses.

Kaplan–Meier analysis showed that the identified FMGs were effective in

predicting the prognosis of RCC. Moreover, an optimal nomogram was

constructed based on FMG-based risk scores and clinical factors, and its

robustness was verified by time-dependent receiver operating characteristic

analysis, calibration curve analysis, and decision curve analysis. We have also

described the biological processes and the tumor immune microenvironment

based on FMG-based risk score classification. Given the close association

between fatty acid metabolism and cancer-related pain, our 10-FMG

signature may also serve as a potential therapeutic target with dual effects on

ccRCC prognos i s and cancer pa in and , the re fo re , war ran t s

further investigation.

KEYWORDS

kidney renal clear cell carcinoma, fatty acid metabolism, prognostic signature,
nomogram, tumor microenvironment, cancer pain
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Introduction

Renal cell carcinoma (RCC) originates in tubular epithelial cells,

occupying approximately 2%–3% of adult malignancies (1). For

several decades, the incidence andmortality ofRCChave beenon the

rise. According to the International Agency for Research on Cancer,

431,288 new cases of clear-cell RCC (ccRCC) were diagnosed and

179,368 deaths related to this cancer were recorded worldwide in

2020 (2). The majority of deaths associated with kidney cancer are

caused by ccRCC, which is the most common subtype (3). The

survival rate after treatment for early-stage RCC is 60–70%, while

advanced RCC usually has a poor prognosis, of which the 5-year

survival is<10% (4). Therefore, it is clinically significant to predict

prognosis and provide guidance for personalized treatment by

exploring potential markers to improve overall survival of patients.

More and more evidence shows that metabolic changes play

an explanatory role in tumor progression (5). Although

increased lipid synthesis has received less attention than

aerobic glycolysis, it has recently been recognized as another

important metabolic abnormality required for carcinogenesis

(6). There is growing evidence to suggest that upregulation of

several enzymes involved in fatty acid metabolism is a universal

metabolic marker in cancer cells (7). In many cancers, lipids are

ingested and stored to meet the energy needs of tumor cells,

which are supplied with energy by fatty acids through the

process of b-oxidation (8). ccRCC is characterized by a high

rate of mutation of genes that control metabolism; therefore, this

cancer is also thought to be driven by metabolic changes (9). In

fact, it is known that ccRCC cells accumulate a large amount of

lipids and exhibit abnormal fatty acid metabolism, which is

correlated with clinical outcomes (10).

Pain is one of the most common and bothersome symptoms

in cancer patients. Across all stages of cancer, 50.7% of patients

experience pain; in particular, 66.4% of cancer patients in the

advanced stage experience pain (11). Uncontrolled pain can

contribute to poor physical and emotional well-being. It is

widely accepted that cancer pain is caused by nociceptive,

inflammatory, and neuropathic mechanisms (12). It is

essential to note that fatty acid metabolism not only has an

impact on cancer development but also has an effect on pain

development. As shown in the study by Koundouros et al., an

increase in the levels of arachidonic acid and eicosanoids can

promote cell proliferation (13). Furthermore, the role of

arachidonic acid and its metabolite prostaglandin in

inflammation and pain has been demonstrated (14). Both

anandamide hydrolase and monoacylglycerol lipase are

endocannabinoid-degrading enzymes, and inhibitors of these

enzymes can reduce pain by blocking the metabolism of

anandamide and 2-arachidonic glycerol, while increasing

endogenous levels of fatty acid amides. Interestingly, inhibitors

of these enzymes, on their own or in combination with other
Frontiers in Oncology 02
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drugs, have shown therapeutic potential in a variety of cancers

(15, 16). Thus, further investigation of the role of fatty acid

metabolism-related genes (FMGs) in ccRCC might be useful for

better prediction of patient prognosis and pain management.

In this study, we constructed a fatty acid-related signature to

evaluate the prognosis of RCC. Potential relationships between

this signature and the immune microenvironment were

investigated. Moreover, we attempted to determine the

potential association between these genes and cancer pain, as

this could provide new insights into personalized cancer therapy.
Materials and methods

Data source

Transcriptome sequencing (mRNA) data, along with

detailed clinical information about RCC patients, were

acquired from The Cancer Genome Atlas (TCGA) database,

the E-MTAB-1980 cohort (17) in the EMBL-EBI database, and

the GSE22541 cohort in the Gene Expression Omnibus (GEO)

database. Altogether, we obtained data for 535 samples from the

TCGA-KIRC database, 101 samples from the E-MTAB-1980

cohort, and 68 samples from the GSE22541 cohort.
Screening of FMG-associated genes

A predefined set of FMGs was obtained from the Molecular

Signature Database (MSigDB, v7.4) (18). We identified three

relevant sets of FMGs, namely, KEGG fatty acid metabolism

pathway genes, hallmark fatty acid metabolism genes, and

reactome fatty acid metabolism genes. After deleting duplicates

from these three sets of genes, 309 reliable records were

obtained. Furthermore, we performed intersection analysis of

these 309 genes with three ccRCC cohorts, and finally obtained

291 genes for follow-up studies (Supplementary Figure 1,

Supplementary Table 1).
Identification of mutated and
differentially expressed genes

The UCSC Xena database (19) was used to obtain the copy

number variation (CNV) information of the TCGA-KIRC

patients. Then, we calculated and summarized the most

significant results of CNV frequencies for these FMGs.

Differential expression genes (DEGs) between normal kidney

group and KIRC group were analyzed by “limma” package in R,

and genes with fold change > 1.50 and P< 0.05 were considered

to be differentially expressed.
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Construction and validation of
risk scores

Univariate Cox regression analysis was used to identify

FMGs associated with overall survival (OS) in the TCGA-

KIRC and E-MTAB-1980 datasets (P< 0.01), and the least

absolute shrinkage and selector operation (LASSO) analysis

was used to analyze overlapping gene sets with the “glmnet”

package in R (20). The prognostic genes were determined by the

best penalty parameter l, and 10 optimal FMGs were screened

out. The expression levels between normal kidney group and

KIRC group and Kaplan-Meier (K-M) analysis results were also

respectively shown base on TCGA-KIRC cohort. Furthermore,

the fatty acid metabolic index (FMI) was calculated by adding

the expression and corresponding coefficients of the FMGs for

each RCC patient. In order to make the results more intuitive,

MinMax variation was used to adjust FMI by using the following

formula.

Adjust   FMI =
xi −min xið Þ

max xið Þ −min xið Þ
The median cut-off value of FMI was used to classify

patients, and prognostic performance was evaluated by K-M

analysis and time-dependent receiver operating characteristic

(ROC) analysis.
Comprehensive assessment of FMI
in patients

The association of FMG-based risk scores with clinical

features was analyzed based on adjusted FMI values to assess

the clinical usability of FMGs. The factors included age, T/N/M

stage, and tumor grade.
Construction and evaluation of an FMG-
based clinicopathologic nomogram

Univariate and multivariate Cox regression analyses were

performed to explore the prognostic value of FMI. A nomogram

combining the clinical features of RCC and FMG-based risk

score was developed. To evaluate the performance of nomogram,

calibration curve, ROC curve and decision curve analysis (DCA)

were performed.
Functional enrichment analysis of the
FMI groups

To further characterize the biological processes in different

FMI groups, gene set enrichment analysis (GSEA) was
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performed. Enrichment results with P< 0.05 as well as FDR<

0.1 were considered statistically significant.
Evaluation of the immunogenomic
landscape of RCC

Immune checkpoints are new target molecules in

immunotherapy for RCC. In this study, the immune

checkpoints were compared between the FMI groups in the

three cohorts to evaluate the potential application of these

immune checkpoints for FMI-based immunotherapy. The

candidate checkpoints identified were PDCD1, IL2RA, MICB,

SELP, CX3CL1 and EDNRB.

Since the tissue samples used in transcriptome sequencing

are not composed of single cells, the heterogeneity of these

samples is inevitable. Therefore, the gene expression profile data

may also reflect changes in the cell components in the tissue. In

this study, xCell tool was used to predict the immune

microenvironment typing of gene expression profile data, and

further compared the expression differences of cell subsets

between different groups.
Analysis of sensitivity to chemotherapy

Based on the Genomics of Drug Sensitivity in Cancer

(GDSC) database, we performed the “pRRophetic” package in

R to predict semi-inhibitory concentrations (IC50) of ccRCC

chemotherapeutic drugs between different groups.
Validation of genes included in the
risk model

Immunohistochemical (IHC) staining was performed with

antibodies against FASN (D162701, BBI), ACOT9 (D121491,

BBI), FAAH2 (D122328, BBI), and PTPRG (GB114422,

Servicebio) to validate the expression of risk model-related

genes in 10 paired tumor and normal tissues from the Naval

Medical University cohort. The procedure for IHC was based on

a previous protocol (21). Three independent blind observers

analyzed the images by using ImageJ Software (ImageJ,

Marlyand, USA), and sum of area and integrated option

density (IOD) were measured. The mean integrated option

density was calculated by dividing the IOD sum by the area sum.
Statistical analysis

Unless otherwise stated, statistical significance was

considered significant at P< 0.05 and two-sided tests.
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Results

Construction of the FMG-related
signature for ccRCC

The CNVs and DEGs from the 309 FMGs were detected in the

TCGA-KIRC cohort. As a result of exploring the incidence of CNVs,

FMGswere found havemassive CNV alterations.We have listed the

top 10 genes with amplified or deleted CNVs (Figure 1A). A total of
Frontiers in Oncology 04
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34DEGswere detected in 535 ccRCC samples when compared to 72

normal renal samples. The 10 significantly augmented FMGs were

among theDEGs identified in theccRCCsamples,while24havebeen

attenuated essentially (Figures 1B, C). The OS-related FMGs were

screened in TCGA-KIRC and E-MTAB-1980 datasets (Figures 1D,

E). In total, 160 and 67 significant OS-related FMGs were retrieved

respectively.Furtheranalysisof52overlappingOS-relatedFMGswas

conducted by combining the results of the two cohorts (Figure 1F).

Partial likelihood deviation analysis was performed on the results of
A

IH

B

D F

E

G

C

FIGURE 1

Construction of a fatty acid metabolism-related signature in ccRCC patients. (A) The frequency of the top 10 genes with amplified or deleted
CNVs of FMGs in the TCGA-KIRC cohort. (B) Heatmap analysis of 34 DEGs among FMGs. (C) Volcano plot depicting the distribution of DEGs.
(D) 160 prognostic FMGs in the TCGA-KIRC dataset. (E) 67 prognostic FMGs in the MTAB dataset. (F) Venn plot identifying 52 overlapping
prognostic FMGs. (G) LASSO Cox regression analysis of the 52 prognostic FMGs. (H) Plot depicting partial likelihood deviance of the LASSO
regression. (I) Corresponding coefficients of the 10 FMGs.
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LASSO regression (Figures 1G, H). We calculated the coefficient for

the prediction of the prognosis of ccRCC by the OS-related

FMGs (Figure 1I).
Effect of expression levels of each of
the 10 FMGs in the signature on
prognosis of RCC

A prognostic gene signature was constructed by identifying

10 pivotal OS-related FMGs, namely, FASN, ACOT9, MID1IP1,

CYP2C9, ABCD1, CPT2, CRAT, TP53INP2, FAAH2, and
Frontiers in Oncology 05
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PTPRG. The expression level and prognostic potential of the

10 selected genes were evaluated individually. Boxplots were

used to depict the expression level of the 10 prognostic FMGs in

tumors and normal tissues (Figure 2A), and K-M curves were

drawn for analysis of OS (Figure 2B). As shown in the figures, a

significant decrease was observed in the expression of MID1IP1,

CYP2C9, CPT2, CRAT, TP53INP2, FAAH2, and PTPRG, while

a moderate increase in the expression of ABCD1 was observed in

the ccRCC samples. As noted in the separate K-M analyses of

OS, high expression of FASN, ACOT9, MID1IP1, CYP2C9, and

ABCD1 and low expression of CPT2, CRAT, TP53INP2,

FAAH2, and PTPRG were associated with more impaired OS.
A

B

FIGURE 2

Analyses of the effect of expression levels of each of the 10 FMGs in the signature on prognosis. (A) Expression level of the 10 prognostic FMGs
in tumor and normal samples. (B) K-M overall survival curves of ccRCC patients according to relative expression of the 10 FMGs. *P< 0.05; **P<
0.01; ***P< 0.001; ns means no significance.
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Evaluation and validation of the
10-FMG signature

Based on the expression level of the 10 FMGs, the FMI was

calculated using the following formula. FMI = Sum of the

expression of each gene × coefficients = FASN × 0.204117 +

ACOT9 × 0.151747 + MID1IP1 × 0.149099 + CYP2C9 ×

0.147525 + ABCD1 × 0.106468 − CPT2 × 0.20157 − CRAT ×

0.222481 − TP53INP2 × 0.240641 − FAAH2 × 0.278899 −

PTPRG × 0.314233.
Frontiers in Oncology 06
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According to their median FMI values, ccRCC patients could

be classified as low-risk or high-risk group. Further, FMI was

normalized for easy visual representation of the data. According

to the data for the TCGA-KIRC cohort, patients in the high-risk

group were more likely to die than those in the low-risk group

(Figure 3A). The prognostic significance of FMI was confirmed

in two additional cohorts (Figures 3B, C). K-M analyses revealed

that the high-risk group had significantly worse OS and disease-

free survival (DFS) than the low-risk group in TCGA-ccRCC

cohort (Figures 3D, E). The two additional cohorts showed that
A B

D
E

F G

C

FIGURE 3

Evaluation and validation of the 10-FMG signature. Distribution plots of the patients’ normalized FMI and OS status TCGA-KIRC (A), E-MTAB-
1980 (B), and GSE22541 cohorts (C). K-M analyses of OS (D) and DFS (E) in the TCGA-KIRC cohorts. K-M analyses of OS (F) and DFS (G) in the
E-MTAB-1980 and GSE22541 cohorts respectively.
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OS deteriorated more among those at high risk than those at low

risk, consistent with the TCGA-ccRCC cohort (Figures 3F, G).
Correlation between FMI and clinical
features of ccRCC

The clinical parameters survival status and clinicopathologic

T/N/M were correlated with FMI to varying degrees (Figure 4A,

P< 0.05 for all). That is, higher FMI was associated with greater

severity of these clinical characteristics. The E-MTAB-1980

cohort also showed conspicuous differences in various clinical

parameters, including tumor stage and grade (Figure 4B). In

addition, FMI was found to be associated with gender and age:

specifically, male patients and patients older than 65 years had

higher FMI than female patients and patients younger than 65

years in the E-MTAB-1980 and GSE22541 cohorts (except for

age in the GSE22541 dataset) (Figures 4B, C). Figure 4D presents

a heatmap of the overall distribution of the 10 FMGs with

clinical parameters in the TCGA-KIRC cohort.
Establishment and assessment of an
FMG-based clinicopathologic nomogram

According to univariate Cox analysis, age, T/N/M stage,

tumor grade, AJCC stage, and FMI showed a remarkable

association with OS (Figure 5A, P< 0.001 for all). Multivariate

Cox analysis of these variables showed that only age, N, M, and

FMI were independent predictors (Figure 5B, P< 0.01 for all).

According to the above results, an individual OS prediction

nomogram was developed using FMI and the six clinical features

that were associated with prognosis according to univariate Cox

regression analysis (Figure 5C). In the calibration plot, the

nomogram was similar to an ideal curve in terms of predictive

value, and this was indicative of perfect stability (Figure 5D).

According to the results of DCA, the nomogram had a better

predictive effect than any individual clinical feature (Figure 5E).

Additionally, the area under the ROC curve values for the

nomogram for 2-year, 4-year, and 5-year survival were 0.853,

0.851, and 0.844, respectively, and it had better efficiency than

each of the other clinical factors in predicting OS (Figures 4F, G,

H). Thus, the predictive nomogram for OS appears to be fairly

accurate, and it could be used to assist decision-making in the

clinical setting.
GSEA analysis based on FMI grouping

The GSEA analysis results from the GO database,

demonstrated in Figures 6A and B, indicate that B-cell-
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mediated immunity, interferon−gamma production, NIK/NF

−kappaB signaling, phagocytosis, engulfment, and regulation

of tumor necrosis factor superfamily cytokine production were

considerably enriched in the group with high FMI (Figure 6A).

In addition, the results from the KEGG database showed that

antigen processing and presentation, the B cell receptor signaling

pathway, the cell cycle, PD−L1 expression and PD−1 checkpoint

pathway, and the TNF signaling pathway were enriched in the

high-FMI group (Figure 6B).
Immune microenvironment of ccRCC

In TCGA cohort, the immune score and tumor

microenvironment score were higher in the high-FMI group,

whereas the stroma score was markedly lower (Figures 6C, D, E,

P< 0.05 for all). The tumor microenvironment analysis results

demonstrated that the number of B cells, plasma B cells, M1 and

M2 macrophages, monocytes, central and effector memory CD4+

T cells, naive CD4+ T cells, Th1 and Th2 CD4+ T cells, CD8+ T

cells, central and effector memory CD8+ T cells, naive CD8+ T

cells, and natural killer (NK) T cells was significantly higher in the

high-FMI group (Figures 6F, G). Additionally, the immune

microenvironment analysis results of E-MTAB-1980 and

GSE22541 cohorts are shown in Supplementary Figure 2. The

results revealed that B cells, plasma B cells, M1 macrophages, Th2

CD4+ T cells, and NK T cells were notably strengthened in the

high-FMI group in all three cohorts.

Immunotherapy has shown great promise in cancer

treatment, and immune checkpoint blockade is a promising

anti-tumor strategy. Accordingly, the expression of six candidate

immune checkpoints were assessed. The results revealed that

PDCD1, IL2RA andMICB exhibited significant augmentation in

the high-FMI group, whereas SELP, CX3CL1 and EDNRB

exhibited significant augmentation in the low-FMI group. All

results were consistent across all three datasets (Figures 7A, B,

C). These findings indicate that the efficacy of immunotherapy

against different targets for patients with ccRCC may differ

according to whether they have high or low FMI.
Prediction of chemotherapeutic
drug sensitivity

According to the predicted results of the “pRRophetic”, we

observed differences in drug sensitivity between different groups

(Figures 8A-F). The results showed that there were no difference

in response for pazopanib and axitinib (P > 0.05 for all), and the

low-FMI group was more sensitive to sorafenib (P< 0.05), while

the high-FMI group were more sensitive to paditaxel,

rapamycin, and temsirolimus (P< 0.05 for all).
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FIGURE 4

Correlation analysis of clinical features and FMI. Association between adjusted FMI and different clinical parameters in the TGCA-KIRC. (A), E-
MTAB-1980 (B), and GSE22541 (C) cohorts. Heatmaps of the correlations between FMI and clinical parameters in the TGCA-ccRCC cohort (D).
*P < 0.05; **P < 0.01; ***P < 0.001; ns means no significance.
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Clinical validation of the expression
of genes

The protein expression of four genes (FASN, ACOT9, FAAH2,

and PTPRG) in the identified FMG signature was validated with

IHC in 10 ccRCC samples and 10 paired normal samples. The

results showed that all the four genes expressed in higher amounts

in normal samples than in tumor samples (Figures 9A, B). In

pa r t i cu l a r , t o ou r know l edge we eva l ua t ed the

immunohistochemical expression of FAAH2 in ccRCC for the

first time. The protein expression of other 4 genes (ABCD1,

CPT2, CRAT and MID1IP1) in the identified FMG signature

could be assessed using the Human Protein Atlas (http://www.
Frontiers in Oncology 09
80
proteinatlas.org/) database, and we summarized the representative

images of these genes in Supplementary Figure 3.
Pain dissection of the FMGs signature

Considering that themajority of cancer patients experience pain

during cancer progression or treatment, we further dissected the

associationof FMGs signaturewith cancerpain.As shown inTable 1,

we first provided literature evidence for 10 signatures associatedwith

fatty acids, and further we summarized the literature-reported

evidence for pain-related genes, including gene FASN, CYP2C9,

ABCD1, CPT2, and FAAH2.
A B

D

F G H
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FIGURE 5

Development and evaluation of a clinicopathologic nomogram based on the identified FMGs. (A, B) Univariate and multivariate Cox regression
analyses. (C) Development of a prognostic nomogram based on age, T stage, N stage, M stage, tumor grade, AJCC stage, and FMI.
(D) Calibration curve showing the predicted OS versus actual OS. (E) DCA of the clinical usefulness of the constructed nomogram.
(F, G, H) Receiver operating characteristic (ROC) analysis of the nomogram for predicting 2-, 4-, and 5-year OS in the TCGA-KIRC cohorts. **P
< 0.01; ***P < 0.001.
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Discussion

There is considerable evidence that fatty acid metabolism is

severely disrupted in ccRCC; further, the dysregulation of

various lipid metabolism pathways that drive lipid deposition

is closely related to ccRCC (22). For example, it has been

appreciated that elevated lipid storage levels can maintain cell

membrane fluidity, thereby enhancing metastatic capacity (23).

Timely intervention with therapeutic approaches, such as

tyrosine kinase inhibition with sunitinib, pazopanib, and

nivolumab, has been found to significantly improve survival in

patients with advanced RCC (24). However, the complexity of

the tumor microenvironment in ccRCC and the high

heterogeneity of individual gene regulation are associated with
Frontiers in Oncology 10
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inadequate treatment response and drug resistance. Given the

close association between ccRCC and fatty acid metabolism, a

systematic analysis of the role of FMGs in RCC could be helpful

for understanding the mechanism of disease progression and for

treatment decision-making.

In this study, we first identified FMGs and later confirmed

the significant role of FMGs in RCC based on the identification

of DEGs with CNV alterations. Based on data from the TCGA-

KIRC and E-MTAB-1980 cohorts, univariate Cox analysis along

with LASSO Cox regression analysis were used to identify a

novel robust prognostic signature of FMGs. Subsequently, the

signature was used to classify RCC patients into low- and high-

FMI groups and was validated in the three cohorts. Further, each

ccRCC patient was further stratified by constructing a risk score
A B
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C

FIGURE 6

Gene set enrichment analysis and landscape of the immune microenvironment in the TGCA-KIRC. GO (A) and KEGG pathway (B) analyses of
the high- and low-FMI groups. (C, D, E) Evaluation of the tumor microenvironment of ccRCC. (F) The correlation of infiltrating immune cells.
(G) Violin diagram of the proportions of different tumor-infiltrating cells in the high- and low-FMI group. *P < 0.05; **P < 0.01; ***P < 0.001. ns
means no significance.
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model, and the groups showed significant differences in survival

and various clinicopathological parameters. In addition, ROC

analysis demonstrated the superior performance of our model

and indicated that it might be useful for formulating follow-up

treatments. We further used xCell to construct the

immunogenomic landscape of RCC and explore differences in

the distribution of immune cells. Altogether, the results above

revealed the prognostic signature of our FMGs has a great

promise in ccRCC.

The signature we constructed contains 10 fatty acid

metabolism genes, some of which have previously been

reported to be associated with multiple cancers. FASN encodes

fatty acid synthase, which primarily regulates the deposition of

animal liposomes by synthesizing long-chain fatty acids from

acetyl-coenzyme A (CoA) and malonyl-CoA. All esterified fatty

acids in most tumor cells are synthesized de novo. FASN is

dysregulated in a variety of cancers, including kidney, liver, lung,

and colorectal cancer, and this dysregulation is thought to be

associated with the aggressiveness and poor prognosis of cancers

(25, 26). The ACOT9 gene encodes acyl-CoA thioesterase 9,

which is a well-known key regulator of cellular utilization and
Frontiers in Oncology 11
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regulates intracellular acyl-CoA/fatty acid levels. A recent study

found that ACOT9 promoted tumor metastasis and growth by

reprogramming lipid metabolism pathways in hepatocellular

carcinoma (27). Interestingly, we found that the FASN and

ACOT9 genes were significantly downregulated in RCC

patients. In the future, we will further study its potential

mechanisms in ccRCC. Protein tyrosine phosphatase receptor

gamma (PTPRG) is a well-known tumor suppressor in various

neoplasms (28). For example, Shu et al. found that PTPRG may

play an inhibitory role in breast tumorigenesis by upregulating

the p21(cip) and p27(kip) proteins through the ERK1/2 pathway

(29). In line with this finding, PTRPG expression was

significantly reduced in ccRCC according to the IHC results of

this study. In addition, the results of this study revealed that low

expression of PTRPG could predict poor prognosis. According

to recent reports, other genes, such as MID1IP1 (30), ABCD1

(31), CPT2 (32), and TP53INP2 (33), are closely associated with

the progression of ccRCC. However, our study is the first to

demonstrate that FAAH2 is inhibited in ccRCC and is an

indicator of poor prognosis. In general, the above results

confirm the reliability of our signature to a certain extent, but
A

B

C

FIGURE 7

Expression levels of immune checkpoints in the high- and low-FMI group. Expression level of PDCD1, IL2RA, MICB, SELP, CX3CL1 and EDNRB in
TCGA-KIRC (A), E-NTAB-1980 (B), and GSE22541 (C) cohorts. *P < 0.05; **P < 0.01; ***P < 0.001.
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the specific influencing mechanism and prognostic value in

clinical practice need to be further studied.

In order to further investigate the role of the signature genes,

GSEA analyses were conducted in two FMI groups. Noticeable

NIK/NF-kB signaling enrichment was observed in the high-FMI

patients. Growing body of research suggests that dysregulation

of NF-kB signaling pathway activity can lead to inflammatory

diseases as well as cancer and NF-kB has long been proposed as a

potential therapeutic target (34). Meteoglu et al. reported that

NF-kB was associated with markers of angiogenesis and

apoptosis in ccRCC, including VEGF, EGFR, and p53 (35). In

addition, it has also been reported that activation of the NF-kB
pathway is associated with ccRCC cell migration and invasion

(36). Further, drugs that target NF-kB have been found to have

therapeutic and preventive effects in a variety of cancers (37, 38).

The results of our study suggest that patients with high FMI

could benefit more from NF-kB-targeted therapy than patients

with low FMI. Similarly, it is now widely accepted that

immunotherapy is an effective method for treating cancer, and

an increasing number of immunotherapy drugs are being

evaluated in clinical trials (39). As an indispensable strategy in

immunotherapy, immune checkpoint inhibitors have gained

attention for their potential to improve the long-term

outcomes of cancer patients (40). However, the effectiveness of
Frontiers in Oncology 12
83
this treatment varies, as it is only effective in certain subsets of

cancer patients (41). Therefore, we compared six immune

checkpoint genes to explore potential immune therapeutic

targets in different FMI groups. In the high-FMI group,

PDCD1, IL2RA and MICB were significantly elevated, whereas

in the low-FMI group, SELP, CX3CL1 and EDNRB were

significantly elevated. These results indicate that FMI should

be considered when making decisions about immune checkpoint

inhibitor therapy for ccRCC patients. Brahmer et al. has reported

that PD-L1 inhibitors could promote tumor regression and

prolong survival in patients with advanced cancers including

ccRCC (42). Accordingly, ccRCC patients with higher FMI

might be more likely to benefit from anti-PD-L1 therapy, since

they have higher expression levels of PDCD1.

Notably, the majority of cancer patients experience pain

during cancer treatment and after curative treatment (55% and

40%, respectively) (43). For cancer survivors, the long-term

sequelae of pain after cancer treatment should not be ignored,

as cumulative reports have found that opioid abuse is associated

with increased mortality (44). Therefore, there is an urgent need

to explore other effective pain management options. Basically,

cancer cells are abnormal cell growth and proliferation, and fatty

acid metabolism changes significantly in the rapid proliferation

of cancer cells. Accordingly, interventions to prevent fatty acid
A B
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C

FIGURE 8

Predictive results of chemotherapeutic responses. (A-F) The differences of chemotherapeutic response in the high- and low-FMI group. *P <
0.05; ***P <0.001.
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synthesis, increase fatty acid degradation through oxidation, and

decrease fatty acid release from storage are commonly used to

manage the abnormal proliferation of lipids and arrest cancer

progression (45). Among the 10 fatty acid metabolism genes

associated with prognosis that were identified in this study,

FASN has been previously reported as a therapeutic target. That

is, studies have confirmed that inhibition of FASN reduced

triacylglycerol and phospholipid levels and inhibited lymph

node metastasis of prostate carcinoma (46). Similarly, down-

regulation of CPT2 also inhibited fatty acid b-oxidation in the

tumor microenvironment and promoted cancer progression
Frontiers in Oncology 13
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through acylcarnitine accumulation (47). Interestingly, fatty

acid metabolism interventions may not only alter cancer cell

proliferation but also help reduce pain during the disease. Recent

studies have found that specialized pro-resolving lipid mediators

(SPMs) can reduce fatty acid levels and effectively relieve chronic

pain, and this mechanism of pain regulation is currently believed

to be associated with the activation of immune cell receptors in

the lipid environment, changes in pro-/anti-inflammatory

pathways, and changes in peripheral nociceptor sensitivity

(48). For example, SPMs can activate the immune cell receptor

N-formyl peptide receptor 2 (ALX/FPR2), induce cell cycle
A

B

FIGURE 9

Clinical Validation of the risk model based on IHC. (A) Representative IHC images of the four selected gene. (B) The quantitative expression
levels of each gene. **P < 0.01; ***P < 0.001.
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arrest, and prevent phosphorylation of the nuclear factor kappa

B (NF-kB) pathway (49). Moreover, altered fatty acid

metabolism may also prevent the formation of neutrophil

extracellular traps, thus promoting inflammation resolution

and exerting an analgesic effect (48). In a nutshell, our results

and the aforementioned studies might indicate that

interventions targeting fatty acid metabolism-related genes

may have a dual effect on improving prognosis and pain that

warrants further investigation.
Conclusions

In summary, we integrated multiple bioinformatic analysis

methods to construct a reliable 10-gene prognostic signature of

ccRCC based on fatty acid metabolism and established a

nomogram that can be used in clinical practice. The signature
Frontiers in Oncology 14
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may also serve as a potential therapeutic target with dual effects

on both ccRCC prognosis and cancer pain, but further studies

are needed to support the conclusions.
Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material. Further

inquiries can be directed to the corresponding author.
Author contributions

RD, HW and XJ designed the study and wrote original draft.

RD and LW analyzed the data and performed the bioinformatics

analysis. MD and HY reviewed the conclusions. RD, HW and XJ
TABLE 1 The summary of the pain dissection of the FMGs signature.

Gene Association with fatty acid Association with pain

FASN FASN is a key enzyme regulating the de novo synthesis of fatty acids,
which can catalyze acetyl-CoA and malonyl-CoA to produce palmitate.
(PMID: 26519059)

Palmitate can activate NF-kB transcription factors and regulate the expression of
NMDA receptor subunits. FASN can be used as a therapeutic target to reduce
neuropathic pain. (PMID: 25855977)

ACOT9 ACOT9 regulates fatty acid synthesis by catalyzing the hydrolysis of fatty
acyl-coenzyme A to form free fatty acid (FFA) and coenzyme A (CoA).
(PMID: 36004563)

NA

MID1IP1 The change of MID1IP1 expression can affect the expression of fatty acid
synthase (FASN) and induce phosphorylation of Acetyl-CoA carboxylase
(ACC), thereby affecting the biosynthesis of fatty acids and triglycerides.
(PMID: 34153683, 35916211)

NA

CYP2C9 CYP2C9 is a cytochrome P450 enzyme that has cyclooxygenase activity
and catalyzes the oxidation of polyunsaturated fatty acid arachidonic acid
to eicosatrienoic acids. (PMID: 30012669)

CYP2C9 can predict the analgesic effect of tramadol and ketorolac. (PMID:
34246203)

ABCD1 ABCD1 gene encodes peroxisome transport protein, which is involved in
transporting saturated very long chain fatty acids to peroxidase for b-
oxidation. (PMID: 32017990)

Absence of ABCD1 will lead to mechanical allodynia mediated by
mechanosensitive ion channels and dysfunction of satellite glial cells. (PMID:
35681537)

CPT2 Fatty acid oxidation (FAO) is a process in which carnitine
palmitoyltransferase 1 and 2 (CPT1 and CPT2) transport long-chain fatty
acids to the mitochondrial matrix, and then oxidize them to acetyl-CoA,
NADH and FADH2 and generate energy. (PMID: 33027638)

CPT2 deficiency may lead to metabolic disorder in the body, causing patients to
have diffuse muscle pain symptoms. (PMID: 27034144)

CRAT Carnitine acetyltransferase (CRAT) is the basic enzyme in carnitine
metabolism, which regulates the metabolic flexibility of muscle and
increases exercise ability. Carnitine can promote fatty acids to enter
mitochondria for oxidative decomposition during fat metabolism, which is
helpful to promote the balance of fat metabolism. (PMID: 29444428)

NA

TP53INP2 TP53INP2 mediates peroxisome proliferator-activated receptor gamma
(PPARG) regulates macroautophagic/autophagic-dependent mechanism
that induce brown fat differentiation and thermogenesis. (PMID:
35947488)

NA

FAAH2 Fatty acid amide hydrolase (FAAH1 and FAAH2) can inactivate
endogenous cannabinoid, and monoacylglycerol lipase can hydrolyze to 2-
arachidonic glycerol. (PMID: 30070030)

Fatty acid amide hydrolase (FAAH) plays an important role in the hydrolysis
and inactivation of endogenous arachidonic ethanolamide (AEA). AEA can
protect neurons from inflammatory injury by activating cannabinoid receptors
(CB1R and CB2R) and transient receptor TRPV1. FAAH inhibitors may become
a safe and reliable new analgesic. (PMID: 34364309, 29017758)

PTPRG PTPRG is a negative regulator of insulin signal transduction, and insulin
can promote the synthesis and storage of fat and reduce free fatty acids in
blood. (PMID: 29180649)

NA
NA, missing references.
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Neutrophil extracellular
traps-associated modification
patterns depict the tumor
microenvironment, precision
immunotherapy, and
prognosis of clear cell
renal cell carcinoma

Zhi-Hai Teng, Wen-Ce Li, Zhi-Chao Li, Ya-Xuan Wang,
Zhen-Wei Han and Yan-Ping Zhang*

Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
Background: Neutrophil extracellular traps (NETs) are web-like structures

formed by neutrophils, and their main function is antimicrobial defense.

Moreover, NETs have numerous roles in the pathogenesis and progression of

cancers. However, the potential roles of NET-related genes in renal cell

carcinoma remain unclear. In this study, we comprehensively investigated

the NETs patterns and their relationships with tumor environment (TME),

clinicopathological features, prognosis, and prediction of therapeutic benefits

in the clear cell renal cell carcinoma (ccRCC) cohort.

Methods: We obtained the gene expression profiles, clinical characteristics,

and somatic mutations of patients with ccRCC from The Cancer Genome Atlas

database (TCGA), Gene Expression Omnibus (GEO), and ArrayExpress datasets,

respectively. ConsensusCluster was performed to identify the NET clusters. The

tumor environment scores were evaluated by the “ESTIMATE,” “CIBERSORT,”

and ssGSEA methods. The differential analysis was performed by the “limma” R

package. The NET-scores were constructed based on the differentially

expressed genes (DEGs) among the three cluster patterns using the ssGSEA

method. The roles of NET scores in the prediction of immunotherapy were

investigated by Immunophenoscores (TCIA database) and validated in two

independent cohorts (GSE135222 and IMvigor210). The prediction of targeted

drug benefits was implemented using the “pRRophetic” and Gene Set Cancer

Analysis (GSCA) datasets. Real-time quantitative reverse transcription

polymerase chain reaction (RT-PCR) was performed to identify the reliability

of the core genes’ expression in kidney cancer cells.

Results: Three NET-related clusters were identified in the ccRCC cohort. The

patients in Cluster A had more metabolism-associated pathways and better

overall survival outcomes, whereas the patients in Cluster C had more
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immune-related pathways, a higher immune score, and a poorer prognosis

than those in Cluster B. Based on the DEGs among different subtypes, patients

with ccRCC were divided into two gene clusters. These gene clusters

demonstrated significantly different immune statuses and clinical features.

The NET scores were calculated based on the ten core genes by the Gene

Set Variation Analysis (GSVA) package and then divided ccRCC patients into two

risk groups. We observed that high NET scores were associated with favorable

survival outcomes, which were validated in the E-MTAB-1980 dataset.

Moreover, the NET scores were significantly associated with immune cell

infiltration, targeted drug response, and immunotherapy benefits.

Subsequently, we explored the expression profiles, methylation, mutation,

and survival prediction of the 10 core genes in TCGA-KIRC. Though all of

them were associated with survival information, only four out of the 10 core

genes were differentially expressed genes in tumor samples compared to

normal tissues. Finally, RT-PCR showed that MAP7, SLC16A12, and SLC27A2

decreased, while SLC3A1 increased, in cancer cells.

Conclusion: NETs play significant roles in the tumor immunemicroenvironment

of ccRCC. Identifying NET clusters and scores could enhance our understanding

of the heterogeneity of ccRCC, thus providing novel insights for precise

individual treatment.
KEYWORDS

neutrophil extracellular traps, ccRCC, subtypes, prognosis, immune tumor environment
Introduction

Renal cell carcinoma (RCC) is one of the most common

urological carcinomas (1). In 2022, the number of tumor cases and

cancer-associated deaths in China are expected to reach 7,410 and

46,345, respectively (2). Although the diagnosis and management

of RCC have improved (3), its incidence is expected to increase

globally. Moreover, approximately 30% of patients are diagnosed

with advanced ccRCC, develop distant metastases, and have a

poor prognosis due to the atypical symptoms in the early stage of

ccRCC (1). ccRCC is the most common subtype of RCC (4). Thus,

for better personal precision therapy and management,

investigating novel biomarkers is an urgent necessity.

Neutrophils are one type of affluent inflammatory cell in the

tumor microenvironment (TME). They could activate cancer cells

and desorbmodified DNA structures coated with cytoplasmic and

granular proteins (5). The web-like structures released by

neutrophils to trap microorganisms are termed neutrophil

extracellular traps (NETs) (6, 7). Commonly, NETs play critical

roles in infectious and non-infectious conditions, such as bacterial

and viral infections (5), cystic fibrosis (8), and psoriasis (9).

Recently, NETs have been reported to be involved in tumor

growth, metastatic spread (10, 11), and immunomodulatory

(12). Moreover, NET extrusion exerts a protective effect on the
02
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tumor from NK cells and T cells (13). NETs can increase the

metastatic potential of circulating tumor cells through

augmentation of cell cycle progression (14). Hu et al. reported

that NETs could promote the dysfunction of glomerular

endothelial cells and pyroptosis in diabetic kidney disease (15).

NETs are closely associated with dirty necrosis in RCC (16).

Several recent studies have documented the scrutiny of NET-

related genes for head and neck squamous cell carcinomas (6),

non-small-cell lung cancer (17), and breast cancer (18); however,

few studies have focused on the functions of NETs in kidney

diseases, particularly kidney cancers. Therefore, it is meaningful to

explore new NET-related biomarkers to identify the molecular

characteristics of NETs in patients with kidney cancer.

Considering the previous findings, we performed a systemic

study on NET-related genes to investigate their roles in the

ccRCC cohort. In this study, we first screened the expression,

protein–protein network, and prognostic values in the TCGA-

KIRC dataset. Based on the expression of NET-related genes, we

classified ccRCC patients into three clusters. Patients were

further stratified into two gene clusters based on the

differentially expressed genes (DEGs) among the three NET

subtypes. We further constructed a scoring system to predict

overall survival (OS), which may form the basis for research on

ccRCC precision treatment.
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Methods

Data collection and processing

The RNA-sequencing dataset of 534 kidney renal clear cell

carcinoma (KIRC) samples, which contained mRNA and clinical

and survival data, were acquired from UCSC Xena (http://xena.

ucsc.edu/). The GSE29609 dataset, which contained 39 KIRC

samples, were downloaded from the GEO database. The mRNA

expression levels were transformed from counts to transcripts

per kilobase million (TPM) values. The batch effects of the two

datasets were eliminated by “ComBat” from the “sva” R package,

and principal component analysis (PCA) was performed to

demonstrate the before and aftereffects. Finally, 573 samples,

14,074 genes were enrolled into our after-batched cohort. The E-

MTAB-1980 dataset, which contained 101 patients with ccRCC,

was downloaded from ArrayExpress (https://www.ebi.ac.uk/

arrayexpress/).
Exploration of the genetics and
biological significance of NET
genes in KIRC

According to previous studies (19–22), we acquired a list of

published NET gene sets, which had 69 genes with NET initial

biomarkers. The mRNA expression and prognostic values of

NETs were based on the TCGA-KIRC dataset. The network of

69 genes was explored based on the GeneMANIA (http://

genemania.org/) website.
Unsupervised clustering analysis

The unsupervised consensus clustering algorithm was

applied to assess the variability and stability of clusters based

on NET-related and NET subtype-related genes from the

ConsensusClusterPlus (23) R package. Then Kaplan–Meier

survival analysis was performed to explore the prognosis

among different clusters based on the survival (24) and

survivor (25) R packages.
Gene set variation analysis

The 50 terms of the HALLMARK pathway, the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway, and

the Reactome pathway were downloaded from the Molecular

Signatures Database (MsigDB, http://software.broadinstitute.

org/gsea/msigdb/). Then, function enrichments for different

subtypes were performed using the GSVA (26) and

ClusterProfiler (27) R packages.
Frontiers in Oncology 03
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The immune infiltration landscape of the
ccRCC cohort

The StromaScore, ImmuneScore, and ESTIMATEScore were

calculated with the “ESTIMATE” R package. The ImmuneScore

and StromalScore were the abundance of immune and stromal

components, respectively. The ESTIMATEScore was the total

values of ImmuneScore and StromalScore. The abundance of 23

kinds of infiltrating immune cells (28) was evaluated using the

ssGSEA method from the GSVA (26) R package.
Calculation of NET score (NET-scores)

According to the mRNA expression of NET subtype-related

genes, 94 DEGs were used for further univariate Cox regression

analysis. Then the NET score was calculated as an enrichment

score (ES) by the ssGSEA method from the GSVA R package

based on the top ten genes with P <0.05 samples. The ccRCC

cohort was divided into high and low NET score groups based

on the optimal cutoff value.
Prognosis, enrichment analysis, genetic
alterations, chemokines, immune
exploration, and clinical feature analysis
based on NET-scores

The prognosis analysis between the high- and low-NET

score groups was tested using the log-rank method. The

correspondence among different groups, subtypes, and survival

outcomes was shown as Sankey diagrams by the “ggalluvial” R

package. The hallmark enrichment analysis between different

NET score groups was done using the GSVA R package and

genetic alterations by the “maftools” (29) R package. The mRNA

expression of chemokines between different NET score groups

was displayed using a heatmap. The clinical characteristics of

“survival outcomes,” “clinical grade,” “TNM,” and “clinical

stage” were selected to demonstrate the discrepancy in the

different NET score groups.
Expression levels of immune
checkpoints, immunotherapy response,
and drug sensitivity of patients in
different NET-score groups

Two immunotherapy-treated cohorts, the IMvigor210 cohort

(288 urological tumor patients treated with anti-PDL1) and the

GSE135222 cohort (27 lung carcinoma patients treated with anti-

PD-1/PD-L1), were collected to explore the immunotherapy

response ability of NET scores. The pRRophetic (30) package
frontiersin.org
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was implemented to predict the half-maximal inhibitory

concentration (IC50) of 138 antitumor agents.
Online analysis

mRNA expression, single nucleotide variation (SNV), copy

number variation (CNV), drug sensitivity, and methylation of

genes were analyzed by the GSCA database (http://bioinfo.life.hust.

edu.cn/GSCA/#/). The protein levels of core genes in human tumor

and non-tumor samples were acquired from the Human Protein

Atlas (HPA; https://www.proteinatlas.org/). The oncoplot of genes

was explored from cBioportal (https://www.cbioportal.org/).
Cell culture and RT-PCR

Human normal renal tubular epithelial cells (HK-2) and

kidney cells (Caki-1 and 786-O) were purchased from the ATCC

company. All cells were cultured in RPMI 1640 as previously

described (28). Total RNA from the cultured cells was extracted

using the Faster reagent (Invitrogen). Relative gene expression

was calculated by Eq. 2−DDCT, with GAPDH as an internal

control. The primers are as follows:
Fron
MAP7 gene 5 ’-TCATCATGCCCTACAAAGCTG-

3’(sense) and 5’-TGCCAGATGTGAGGAAGAGTA-

3’(antisense).

SLC16A12 gene 5’-TGCTTGCATCTACTGGACTCA-

3’(sense) and 5’-TGGCAATAGCTGGAGAGTAACA-

3’ (antisense).

SLC27A2 gene 5’-TGGCGCTCCTTATGGGTAACG-

3’(sense) and 5’-CTTGGCAGTATCTCTTCGACAG-3’

(antisense).

SLC3A1 gene 5’-CAGGAGCCCGACTTCAAGG-3’(sense)

and 5 ’ -GAGGGCAATGATGGCTATGGT-3 ’

(antisense).
Statistical analysis

All data were analyzed using R software (v4.1.1); a P-value

less than 0.05 was considered statistically significant. The

“limma” (31) R package was used to perform a difference

analysis. The Wilcoxon test was used for data that did not

accord with a normal distribution. A t-test was used for normally

distributed data. Univariate Cox regression analysis and the

Kaplan–Meier method were used to assess the prognostic

value of DEGs. The forest plot was achieved by “forestplot”

(32) R package. All heatmaps were performed via the R

“pheatmap” package.
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Results

Expression and prognostic values of
NET-related genes in the TCGA-KIRC

We identified 43 differential expression NET-related genes

in the TCGA-KIRC dataset, of which 20 are upregulated genes

and 23 are downregulated genes with a false discovery rate <0.05

and |log2FoldChange| >0.5 (Figures 1A, B, Supplementary

Table 1). Figure 1C shows the locations of the NET-related

genes. We then submitted the NET-related genes to

GeneMANIA for exploring their interaction network. The

results revealed the co-expression to be high (62.39%) and the

physical interaction to be 15.79% (Figure 1D).
Identification of NET-related gene
subtypes in the ccRCC cohort

The TCGA-KIRC and GSE29609 datasets were merged, and

PCA demonstrated the before and after batch effects (Figure

S1A). In the merged ccRCC cohort, we performed unsupervised

clustering and classification based on these NET-related genes.

Our results showed that k = 3 appeared to be an optimal

selection (Figures 2A–C). The Kaplan–Meier survival analysis

demonstrated that the prognoses of patients were significantly

different among these subtypes (log-rank test, P <0.001,

Figure 2D). Cluster A exhibited better survival better survival

advantage than other clusters. The PCA results showed

significant differences in NET-related gene expression among

the three clusters (Figure 2E). The clinicopathological features

among the different clusters also revealed significant differences

(Figure 2F). Moreover, most of the NET-related genes were

differentially expressed (Figure 2G).
Characteristics of TME in
different subtypes

Cluster A was significantly associated with cancer-related

and metabolism pathways, such as pancreatic cancer, renal cell

carcinoma, butanoate metabolism, histidine metabolism, fatty

acid metabolism, tryptophan metabolism, and beta-alanine

metabolism (Figure 3A). Cluster C was significantly enriched

in immune-activated pathways, including NK cell-mediated

cytotoxicity, antigen processing and presentation, allograft

rejection, autoimmune thyroid disease, T and B cell receptor

signaling pathways, and Toll-like and NOD-like receptor

signaling pathways (Figure 3A). To explore the roles of NET-

related genes in the TME of ccRCC, we calculated the TME score

using the ESTIMATE method. The results revealed that Cluster

C had higher stromal and immune scores than the other two
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clusters (Figure 3B). Analysis of three critical immune

checkpoints showed significance among three subtypes

(Figure 3C). Then, the ssGSEA method was applied to

calculate the infiltrating status of immune cells and explore the

differential patterns. The results revealed that the infiltration

levels of several cells, such as activated B cells, CD4 T cells, and

CD8 T cells, were significantly higher in Cluster C than in other

clusters (P <0.05, Figure 3D), which agreed with the results of the

TME score.
Identification of gene clusters based
on DEGs

To explore genes associated with our NET-related clusters,

differential gene analyses were performed to select the DEGs

among clusters A–C by using “limma” R packages (|logFC| >1.5

and P-value <0.05, Figure S1B). The DEGs of these results were

then combined, and 94 genes were enrolled for further analysis.

The GO enrichment of DEGs demonstrated that the NET
Frontiers in Oncology 05
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subtype-related genes were significantly enriched in

transmembrane transport and transporter activity (Figure 4A).

The KEGG analysis revealed enrichment of immune response-

related diseases (such as coronavirus disease 2019 and systemic

lupus erythematosus) and cancer-related pathways (Figure 4B),

which indicated that NETs may play a critical role in

immunomodulation. Then, the univariate Cox method was used

to explore the prognostic values, and 89 genes were found to be

related to OS time (Supplementary Table 2). The top ten genes

(SLCA16A12, SLC3A1, TMEM27, GFPT2, NPR3, MAP7,

BBOX1, PDK4, SLC27A2, and CUBN) with the smallest P-

value were selected for further analysis (Figure 4C). Based on

these 10 prognostic genes, patients were divided into two clusters,

namely gene clusters A and B (Figure 4D). The Kaplan–Meier

curves demonstrated that patients in gene cluster B had poor OS,

whereas those in gene cluster A had favorable OS (P-value <0.001,

Figure 4E). In addition, the gene cluster A patterns were closely

related to the late TNM stage (Figure 4F). The expression profiles

of 10 hub genes were significantly different, consistent with the

expected gene clusters (Figure 4G).
A B

C D

FIGURE 1

The landscape of neutrophil extracellular trap-associated genes in the TCGA-KIRC. (A) Volcano plot and (B) heatmap of 69 NET-associated
genes in ccRCC and non-tumor samples. (C) The location of the NET-associated genes on different chromosomes. (D) GeneMANIA gene–gene
interaction network showed the correlation among different genes.
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A B C

D F

E

G

FIGURE 2

NET subtypes and clinicopathological features of three clusters. (A) Consensus matrix of ccRCC samples’ co-occurrence proportion for k = 3.
(B, C) Consensus clustering CDF for k from 2 to 9. (D) The Kaplan–Meier plot showed the overall survival differences among the three subtypes
in the ccRCC cohorts. (E) Principal component analysis of ccRCC samples grouped by clusters. (F) Heatmap showing the association of
subtypes with clinical characteristics and expression of neutrophil extracellular trap-associated genes. (G) The boxplot of neutrophil extracellular
trap-associated genes among different clusters. ns, no significance. *p < 0.05, **p < 0.01, ***p < 0.001.
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A

B C

D

FIGURE 3

The biological characteristics and landscape of immune status among different subtypes. (A) KEGG enrichment analysis of three NET subtypes. (B)
The ESTIMATE proportion of stromal score, immune score, and ESTIMATE score among the three clusters. (C) The gene expression profiles of three
common immune checkpoint genes, PDCD1, LAG3, and CD274. (D) The infiltration levels of 23 immune cell types among three subtypes. **p <
0.01, ***p < 0.001.
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Calculation of the NET scores, and
evaluation of TME and chemokines in
different risk groups

Based on the 10 core genes, we used the ssGSEA method to

calculate the NET scores of each patient in the ccRCC cohort. The
Frontiers in Oncology 08
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patients were then divided into high (n = 337) and low (n = 236)

risk score groups based on the NET scores. Moreover, compared

with the low NET-score group, the high NET-score group had a

favorable OS (Figure 5A), which was also validated in E-MTAB-

1980 (Figures S1D–G). We observed a significant difference in the

NET scores among different subtypes, which are displayed in
A B

C D E

F G

FIGURE 4

The different expression genes (DEGs), enrichment pathways among different clusters, and consensus clustering based on DEGs. (A) The GO and (B)
KEGG enrichment of different subtypes. (C) The forest plot for ten core DEGs based on univariate Cox regression analysis. (D) Consensus matrix of
ccRCC samples’ co-occurrence proportion for k = 2. (E) Kaplan–Meier curves for the two gene clusters of ccRCC patients. The log-rank test shows
an overall p <0.001. (F) Heatmap showing the relationship among the clinicopathological characteristics of the gene clusters. (G) The boxplot of
gene expression of ten core genes between the two subtypes. ***p < 0.001.
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Figures 5B, C. Cluster C had the lowest NET scores, whereas Cluster

A had the highest, revealing that NET scores may be closely

associated with immune-infiltration status (Figure 3B). Figure 5D

shows the plots displaying the distribution of patients in three

clusters: two gene clusters and two risk score groups.

To investigate the relationship between the abundance of

immune cells and NET-scores, we performed the CIBERSORT
Frontiers in Oncology 09
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algorithm to assess. As shown in the correlation matrix, the

NET-scores were positive for NK cells and neutrophils, and

negative for type 2 helper T cells (Figure 5E). The heatmap

showed that several chemokines, interleukins, interferons, and

their receptors were significantly overexpressed in the high

NET-score group (Figure 5F), indicating that NET scores may

provide novel targets for anti-tumor immunity.
A B C

D F

E

FIGURE 5

Construction of the NET-score system and clinical prognosis analysis in ccRCC patients. (A) Kaplan–Meier curves for high and low NET-score
ccRCC patient groups (log-rank test, P <0.001). Differences in NET scores among the three clusters (B) (P <0.001) and two gene clusters
(C) (P <0.001). (D) Alluvial diagram of NET-associated gene clusters in groups with different gene clusters, NET-score groups, and survival
outcomes. (E) The correlation matrix of all infiltrating immune cells. Some fractions of immune cells were positively related and are represented in
red, whereas others were negatively related and are represented in blue. p <0.05 was the cut-off. (F) Heatmap showing the relationship between
scoring groups and chemokines, interferons, and cytokines. *p < 0.05, **p < 0.01, ***p < 0.001.
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Clinical characteristics of the NET-scores
and functional enrichment between
different subtypes

To assess the effect of the NET scores on clinical

characteristics, we investigated the association between the NTE

scores and several critical features (overall survival status, grade,

stage, and TNM stage). The results demonstrated that patients

with higher NET scores were associated with a better survival

status (Figure 6A). Moreover, advanced tumor stages (Grades 3–4,

Stages III–IV) also displayed low NET scores (Figures 6B, C),

which were also observed in tumor size (Figure 6D), regional

lymph node status (Figure 6E), and metastasis (Figure 6F).

To further analyze the specific mechanism, common

functional enrichments were performed between the high and

low NET-score groups using the GSVA method. The hallmark

results indicated that high NET scores were associated with several

metabolisms and oxidative phosphorylation pathways, such as

fatty acid metabolism and xenobiotic metabolism (Figure 6G),

which were also identified in the KEGG enrichment results

(Figure 6H). Furthermore, the hallmark and KEGG enrichment

showed that the high NET-score group was associated with a

series of immune-related pathways, such as allograft rejection and

autoimmune thyroid disease (Figures 6G, H).
Evaluation of checkpoints and
immunotherapeutic benefit between the
high- and low-NET-score groups

We next investigated the expression profiles of three

checkpoints (PDCD1, LAG3, and CD274), immunophenoscores

(IPS), and immune-checkpoint therapy response. The results

demonstrated that PD-1 (PDCD1) and LAG3 were significantly

higher in the low NET-score group than the high NET-score

group, whereas the PD-L1 (CD274) level displayed a reverse

discrepant trend (Figures 7A–C). According to the above

results, we speculated that the PD-1 inhibitor is more reactive in

the low NET-score group and the PDL-1 inhibitor is more

effective in the high NET scores. IPS, as the novel method for

evaluating the potential clinical efficacy of immunotherapy, was

calculated to predict the immunotherapeutic benefit. The results

revealed that the high IPS with a positive CTLA-4 signature was

associated with high NET-scores (Figure 7D).

In the subsequent analysis, we included two public datasets,

GSE135222 and IMvigor210 to predict the immunotherapeutic

efficacy. Patients with low NET scores were more likely to benefit

from immunotherapy (Figures 7E, H). Compared to the high-

risk group, there was an increase in patients with responses in

the low-risk group (Figures 7F, I). Patients with low NET scores

showed significant immunotherapeutic benefits and favorable

survival (Figures 7G, J).
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Pathway activity and drug
sensitivity analysis

As chemotherapy is still a traditional therapy method for

ccRCC, particularly for advanced ccRCC, we investigated the

response of the two NET-score groups to common chemo-

drugs. As shown in Figures 8A–H, compared with the high

NET-score group, sunitinib (P-value = 3.6e−08) and rapamycin

(P-value <0.001) showed lower IC50 values in the low NET-

score group, whereas sorafenib (P-value = 1.2e−14), lapatinib

(P-value= 0.038), erotinib (P-value = 3e−09) and axitinib

(P-value =0.081) showed higher values in the low NET-score

group, suggesting that patients in the low NET-score group were

more likely to respond well to sunitinib, and poorly to sorafenib and

axitinib than those in the high NET-score group. Based on the

GSCA dataset, we first explored the activity pathways in the TCGA-

KIRC. As shown in Figure 8I, the NET scores were negatively

associated with apoptosis, cell cycle, andDNAdamage and positively

associated with PI3K/AKT and RTX pathways. This indicated that

the NET scores were more likely to play roles in apoptosis and cell

cycle by regulating PI3K/AKT and RTX pathways. The drug

sensitivity in the pan-cancer analysis of GDSCs and CTRP is

shown in Figures 8J–K. The results demonstrated that BRD-

A96377914, tubastatin A, BRD-K85133207, WZ8040, afatinib,

canertinib, ibrutinib, cetuximab, gefitinib, TGX221, CCT007093,

and RO-3306 were more likely to function well.
Genetic mutations of two NET-score
groups, landscape, and validation of
core genes

To investigate the mutation status between the two NET-

score groups, genetic mutations were analyzed using the

maftools (29) R package. The results revealed that the high

NET-score group had a higher mutation rate than the low NET-

score group (70.05% vs 58.4%). The top 10 most frequently

mutated genes are displayed in Figure S1C. Subsequently, the

landscape of 10 core genes was explored in the TCGA-KIRC.

The results demonstrated that only four genes (MAP7,

SLC16A12, SLC27A2, and SLC3A1) were DEGs in ccRCC

compared to normal samples (Figure S2A). Four genes had

more than a 1% mutation rate (Figure S2B). The 10 core genes

were significantly associated with DSS, OS, and PFS (Figure

S2C). Several genes were positively correlated with methylation

levels, whereas CUBN, MAP7, and SLC16A12 were closely

associated with copy number variation (CNV) levels (Figure

S2D). Most of the genes (9/10) were positively associated with

PI3K/AKT, RTK, and hormone AR activity and negatively

associated with apoptosis, cell cycle, and DNA damage (Figure

S2E). Considering only four genes were DEGs, we explored these

four genes in the CCLE dataset. The results revealed that the
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basal expression profiles of MAP7, SLC16A12, and SLC3A1

were high in kidney cancer cells (Figure S2F). The RT-PCR

showed that MAP7, SLC16A12, and SLC27A2 were decreased in

786-0 and Caki-1 compared with HK2, while SLC3A1 increased

(Figure S2G), which was consistent with the results of the

TCGA-KIRC (Figure S2A). The protein levels of HPA

demonstrated that MAP7 and SLC27A2 levels were lower, and

SLC3A1 levels were higher, in tumor tissues than in normal
Frontiers in Oncology 11
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samples (Figure S2H), in accordance with the results of the

TCGA-KIRC and RT-PCR.
Discussion

ccRCC, the most common subtype of RCC, is highly

associated with poor clinical outcomes (33). Emerging
A B C

D E F

G H

FIGURE 6

The correlation of NET-scores with clinic-pathological characteristics, hallmark and KEGG enrichment between high- and low-NET-score
groups. The boxplot of different survival status (A), clinical grade (B), clinical stage (C), tumor stage (D), regional lymph node status (E), and
distant metastasis (F). The hallmark (G) and (H) KEGG enrichment between high- and low-NET-score groups.
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treatments such as targeted drugs and immunotherapy have

significantly enhanced the prognosis of patients with advanced

ccRCC; however, the effectiveness of these treatment strategies

still needs to be improved (34). Moreover, ccRCC has strong

immune-associated characteristics (35). Thus, reliable

biomarkers are urgently required to predict recurrence risk

and guide treatments. NETs and immune cell infiltrations
Frontiers in Oncology 12
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have been reported to have critical roles in tumor progression

(36). Sivan et al. first described the association between NETs

and cancer (Ewing sarcoma) (12). Subsequently, there are

increasing studies on NETs and cancer. For example, NETs

drive the process of endothelial-to-mesenchymal transition (37).

Aldabbous et al. identified that NETs promote angiogenesis (38).

Moreover, NETs promote cancer-associated thrombosis via
A B C

D

E F G

H I J

FIGURE 7

The mRNA expression of immune checkpoint genes and immunotherapeutic benefits. The PDCD1 (A), LAG3 (B), and CD274 (C) expression
between different NET-score groups. The association between IPS and NET scores (D). The different immunotherapy responses between high-
and low-NET-score groups in GSE135222 (E–G) and IMvigor210 (H–J) datasets. *p < 0.05, **p < 0.01, ***p < 0.001.
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thrombin generation and the conversion of fibrinogen to fibrin

(39). Additionally, many prognostic signatures based on NETs

have been reported in human cancers (19, 20). However,

whether NETs are also involved in tumor prognosis and play

prognostic values in ccRCC has not been explored. Therefore, we

collected the expression profiles of NET-related genes and
Frontiers in Oncology 13
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cl inical characterist ics from the TCGA, GEO, and

ArrayExpress datasets and comprehensively explored the

NET-related genes in the ccRCC cohort.

In the current study, we first examined the roles of NET-

related genes in the TCGA-KIRC and found that 43 of 69 genes

were significantly differentially expressed in the tumor samples
A B C D

E F G H

I

J K

FIGURE 8

The pathway activity, drug sensitivity in ccRCC cohorts and pan cancer. (A–H) The drug sensitivity of eight common targeted compounds. (I)
The associations of NET scores with activity pathways in the TCGA-KIRC dataset. (J) The correlation between gene expression and the
sensitivity of GDSC drugs in pan-cancer. (K) The correlation between gene expression and the sensitivity of CTRP drugs in pan-cancer.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1094248
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Teng et al. 10.3389/fonc.2022.1094248
compared to non-tumor tissues. Moreover, most of the genes

were prognostic genes. Then, three NET-related subtypes

(Clusters A–C) were identified in the ccRCC cohort by

consensus cluster algorithms. It was found Cluster B had low

levels of NET-related genes and low abundance of immune cells

infiltration, whereas Cluster C had high levels of NET-related

genes and immune cell infiltration. Moreover, the three subtypes

had significantly different overall survival outcomes. The

differences in mRNA expression profiles among the three

subtypes were dramatically correlated with metabolism- and

immune-related biological pathways. We identified two gene

clusters, A and B, based on the DEGs among the three NET-

related subtypes. Our findings suggested that NETs act as a

predictor for clinical survival outcomes, targeted drugs, and the

immunotherapy response of ccRCC. Therefore, we established

the NET scores based on 10 hub genes by using the ssGSEA

method. Patients with low and high NET scores showed

significant discrepancies in clinical characteristics, prognosis,

immune cell infiltrations, immune checkpoints, and activity

signal pathways.

As for the 10 core genes, MAP7, SLC16A12, SLC27A2, and

SLC3A1 were significantly different in patients with ccRCC

when compared to non-tumor samples. MAP7, Microtubule-

associated protein 7, functions as a regulator of microtubule

bundling and dynamics. Several studies had reported MAP7

involved in cell cycle progression (40) and autophagy pathway in

cancers (41). SLC16A12, SLC27A2, and SLC3A1 belonged to the

solute carrier group of membrane transport proteins (42). Liu

et al. reported that decreased expression of SLC16A12 mRNA

levels was associated with a poor prognosis for ccRCC (43).

Upregulation of SLC27A2 could inhibit the proliferation and

invasion of RCC via a CDK3-mediated pathway (44). SLC3A1,

the cysteine carrier, has been reported to promote breast cancer

tumorigenesis via AKT signaling (45). In our study, we found

MAP7, SLC16A12, and SLC27A2 in kidney cancer cells when

compared with normal kidney cells, which agreed with the

results of the TCGA-KIRC. Generally, the results indicated

that MAP7, SLC16A12, SLC27A2, and SLC3A1 could be the

biomarkers for the complement system of ccRCC.

Immunotherapies, particularly immune checkpoint

inhibitors (ICIs), have transformed the treatment of several

advanced carcinomas (46–49). Although clinical benefits have

been achieved when patients with ccRCC receive ICIs, the

responses demonstrated personal heterogeneity (50). Thus,

looking for markers to predict the responses of ICI treatment

is highly important. In our study, we observed higher expression

levels of PD1 and LAG3 in Cluster C and low NET scores.

Moreover, we found that the NET scores were significantly lower

in patients responding to ICIs, which identified their predictive

effects. These results suggested that patients with low NET scores

and higher expression levels of PD1 and LAG3 are more likely to
Frontiers in Oncology 14
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respond to ICI treatment. Considering that targeted therapy

remains the recommended treatment for patients with advanced

ccRCC, we evaluated eight common drugs based on the GDSC

dataset. The results showed that a low-NET-score group might

be likely to acquire benefits from sorafenib, axitinib,

gemcitabine, and lapatinib treatments. The above results

indirectly suggested the use of NET modifications for

predicting clinical benefits from ICI and targeted therapy.

Although in the present study we identified three NET

clusters, established a NET-score system, and provided a novel

perspective for precise immunotherapy and targeted therapy for

ccRCC, several limitations should be addressed. First, all

analyses were performed on data obtained from public

datasets; thus, the analysis results might be influenced by an

intrinsic case selection bias. Large-scale prospective studies and

cell and animal experimental research are necessary to confirm

our findings.

In conclusion, our study expansively displayed the

relationship between NET modification patterns and TME,

clinical characteristics, and prognosis. We also assessed the

treatment sensitivity prediction of NETs in ICI and targeted

treatments. Finally, we constructed a NET-score system for

quantifying the NET patterns of patients with ccRCC and

validated the expression of core genes. Thus, the findings of

the present study might facilitate our understanding of ccRCC

and provide ideal strategies for individual treatment.
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SUPPLEMENTARY FIGURE 1

The PCA differential, mutation analysis in different groups, and validation
of E-MTAB-1980. (A) Principal component analysis of before and after
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removing batch effects in TCGA-KIRC and GSE29609 cohorts. (B) The
volcano plot for differential analysis between different clusters. (C) The
waterfall plot for high and low NET-scores in TCGA-KIRC. (D) Consensus
matrix, (E) consensus clustering CDF, and (F-G) Kaplan–Meier curves for

different clusters, and NET scores for ccRCC samples in E-MTAB-1980.

SUPPLEMENTARY FIGURE 2

The expression profiles, mutation, and survival analysis of cores genes.
The differential analysis (A), mutation (B), survival analysis (C), correlations
between mRNA expression and CNV, methylation (D), pathways activity
(E) based on TCGA-KIRC dataset. ThemRNA expression of four differential

expressed cores in CCLE dataset (F). RT-PCR validated the mRNA

expression of four differential expressed cores (G). The expression
profiles of differential expressed cores in HPA dataset. Notes: SLC16A12

cannot be found in HPA.

SUPPLEMENTARY TABLE 1

The differential expression results of NET-related genes in TCGA-
KIRC dataset.

SUPPLEMENTARY TABLE 2

The results of univariate Cox regression for 94 DEGs in ccRCC cohort.
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Background: Recently studies have identified a critical role for interferon

regulatory factor (IRF) in modulating tumour immune microenvironment (TME)

infiltration and tumorigenesis.

Methods: Based on IRF1-9 expression profiles, we classified all ccRCC samples

into three molecular subtypes (clusters A-C) and characterized the prognosis and

immune infiltration of these clusters. IRFscore constructed by principal

component analysis was performed to quantify IRF-related subtypes in individual

patients.

Results: We proved that IRFscore predicted multiple patient characteristics, with

high IRFscore group having poorer prognosis, suppressed TME, increased T-cell

exhaustion, increased TMB and greater sensitivity to anti- PD-1/CTLA-4 therapies.

Furthermore, analysis of metastatic ccRCC (mccRCC) molecular subtypes and

drug sensitivity proved that low IRFscore was more sensitive to targeted therapies.

Moreover, IRFscore grouping can be well matched to the immunological and

molecular typing of ccRCC. qRT-PCR showed differential expression of IRFs in

different cell lines.

Conclusions: Evaluating IRF-related molecular subtypes in individual ccRCC

patients not only facilitates our understanding of tumour immune infiltration, but

also provides more effective clinical ideas for personalised treatment.

KEYWORDS

ccRCC, IRF family, tumour microenvironment, t cell exhaustion, immunotherapy,
targeted therapy
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Introduction

As the most common pathological subtype of kidney cancer, clear

cell renal cell carcinoma (ccRCC) is the least malignant but has a high

metastatic rate of up to 60% (1). Patients with advanced metastatic

kidney cancer are mostly treated with drug therapy, including

targeted therapy and immunotherapy (2, 3). Targeted therapies

specifically target certain mutated genes or abnormal proteins,

which cause less damage to normal cells (4, 5). Some

immunotherapeutic drugs are widely used and achieve significant

efficacy (2). Actually, researchers found that immunotherapeutic

drugs combined with targeted drugs were more effective than

monotherapy, which represents a gradual shift in treatment options

for kidney cancer towards targeted combination immunotherapy (6).

Interferon regulatory factors (IRFs), can regulate interferons

transcriptional modification to fight pathogenic infections (7). Multiple

studies confirmed that IRFs regulate tumour immune activity and

tumorigenesis. For example, IRF7 high expression potently induces

CD8+ T cell responses and strengthens host immune surveillance to

fight viral infection and restrict tumour metastasis (8); IRF9 effectively

prevents CD8+ T cell exhaustion caused by over-exposure to antigens

(9). These results provide a theoretical basis for future studies on tumour

immune mechanism and therapeutic applications of IRFs.

In this work, three IRF-related clusters were constructed in ccRCC,

and clinical and immune characteristics were assessed between three

clusters. Furthermore, we proposed to calculate IRFscore to quantify IRF

subtypes in individual patients and proved that IRFscore is highly

correlated with patient prognosis, immune infiltration, T-cell

exhaustion and treatment. This work will assist clinicians to better

understand and differentiate ccRCC immunological and molecular

subtypes, and formulate individualised treatment.
Materials and methods

Data sources and pre-processing

Figure S1 illustrated the workflow for this study. We searched and

downloaded ccRCC expression datasets with complete clinical

annotation and mutations from The Cancer Genome Atlas (TCGA)

and Gene Expression Omnibus (GEO) databases. Two datasets

(TCGA-KIRC and GSE36895 datasets) were analysed in this work.

For TCGA-KIRC dataset, we obtained gene expression data from

UCSC website (https://xenabrowser.net/datapages/) and converted

them to kilobase per million values. GSE36895 dataset were

downloaded from GEO (http://www.ncbi.nlm.nih.gov/geo/). “Sva”

package was performed for correcting batch effects in two datasets

(10). Samples lacking complete clinical information and mutation

data were excluded. Clinical information was summarised in Table S1.
Cell culture

Human renal tubular epithelial cells (HK-2) and ccRCC cell lines

(786-O and Caki-1) were obtained from the Cell Bank of the Chinese
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Academy of Sciences (Shanghai, China). These cells were cultured in

DMEM or RPMI-1640 medium containing 10% fetal bovine serum

and 1% streptomycin-penicillin. All cells were incubated in a sterile

incubator at 5% CO2 and 37°C.
RNA isolation and quantitative
real-time PCR

TRIzol reagent (Invitrogen, USA) was applied to isolate and

ex t r a c t t o t a l RNA f rom the c e l l s . NanoDrop 2000

spectrophotometer (Thermo Scientific, USA) was applied for

evaluating of RNA quantity control and concentration. Reverse

Transcription Kit (Takara, China) was applied to reverse transcribe

total cellular RNA into cDNA. ABI 7500 real-time fluorescence

quantitative PCR instrument was designed for carrying out qRT-

PCR process. The cycling threshold (Ct) for each gene was recorded

and 2-DDCt method was applied to calculate gene mRNA expression.

All experiments were repeated 3 times and procedures were carried

out according to reagent instructions. Primer sequences were listed in

Table S2.
Unsupervised clustering of IRF1-9

Unsupervised clustering analysis were applied to identify IRF-related

molecular subtypes. Consensus clustering algorithm was performed for

determining the number of clusters. “ConsensuClusterPlus” package was

employed to perform consistency clustering analysis (11). The process

was repeated a thousand times to ensure consistency of classification.
Gene set variance analysis

GSVA is a non-parametric unsupervised analysis method that

transforms gene expression matrices into gene set expression

matrices to evaluate gene set enrichment results of transcriptome

(12). Based on the “c2.cp.kegg.v6.2.symbols” gene set obtained from

MSigDB database, GSVA analysis was conducted using

“GSVA” package.
Estimation of immune infiltration

Single sample gene set enrichment analysis (ssGSEA) was

performed to assess immune infiltration levels based on immune

cell-specific gene expression. The immune gene set file is derived from

Charoentong et al (13, 14). ESTIMATE algorithm calculates immune

and stroma score to estimate the amount of stroma and immune cells

and compute tumour purity (15). CIBERSORT is designed to

calculate the composition ratio of the 22 immune cells. 22 immune

cell expression data are taken from CIBERSORT website (https://

cibersort.stanford.edu/) (16). Considering that CD4 naive T cells was

0 in all ccRCC samples, CIBERSORT algorithm only analysed

remaining 21 immune cells.
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Identification of DEGs and
functional annotation

“limma” package is applied to filter differentially expressed genes

(DEGs) between clusters (17). Genes with adjusted P-value<0.001

were recognized as DEGs. “ClusterProfiler” package is intended for

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and

Genomes) enrichment analysis of DEGs (18).
Construction of IRFscore

Univariate COX regression screened for prognosis-related DEGs.

Principal component analysis (PCA) was performed for constructing

IRF gene signature. PC1 and PC2 were used as feature scores to

calculate IRFscore for individual samples (19). IRFscore = ∑ (PC1i +

PC2i), where i represented DEGs’ expression.
Validation of the clinical value of IRFscore

The TCGA-KIRP and TCGA-KICH cohorts were used to validate

the clinical performance of the IRFscore. Information on both queues

can be downloaded from the online website (https://portal.gdc.cancer.

gov/).
IPS analysis

The four different immunophenotypic scores (antigen-presenting,

effector, suppressor, checkpoint) are calculated separately by

immunophenoscore (IPS), IPS z-score is the integration of the four,

and the higher the IPS z-score, the more immunogenic the sample

(20). IPS was obtained from The Cancer Immunome Atlas (https://

tcia.at/home).
Drug sensitivity analysis

GDSC (https://www.cancerrxgene.org/) database contains

massive genomic data on tumour therapeutics and drug sensitivity

data (21). We predicted the response of ccRCC patients to five

chemotherapeutic agents, including sunitinib, sorafenib, nilotinib,

temsirolimus and pazopanib. “pRRophetic” package was performed

for quantifying the half maximal inhibitory concentration (IC50).
Statistics analysis

Protein-protein interaction (PPI) network maps between IRFs

was obtained from STRING database (22). Wilcoxon rank sum test

was designed to comparative analysis of two groups, Kruskal-Wallis

and one-way ANOVA was designed to calculate differences between

three and more groups. Spearman correlation analysis was designed
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to determine correlation coefficient. Kaplan-Meier and log-rank test

were performed for plotting survival curves and calculating statistical

differences. Multivariate COX regression analysis was conducted to

detect independent prognostic factors. “maftools” package was

conducted to describe mutations. Statistical analyses were all two-

sided and P<0.05 was considered statistically different. All data were

analysed by R software (version 4.1.1).
Results

Expression pattern and clinical relevance of
IRFs in ccRCC

IRF1-9 were included in this work. First, we analysed mRNA

expression levels of IRFs in TCGA and GSE36895 cohort,

respectively. IRFs were severely imbalanced in expression and the

results of both databases remained largely consistent (Figures 1A, B).

All genes were up-regulated in ccRCC except IRF6. ROC and PCA

analysis indicated that IRFs can distinguish well between ccRCC and

normal samples (Figures 1C-E). We then used two databases, CTPAC

and HPA, to compare differential protein expression. CTPAC

database results were consistent with the above database (Figure

S2A). Figure S2B illustrated that in HPA database, IRF1, IRF3,

IRF7-9 were upregulated in tumour, while the opposite is true for

IRF6. IRF2 was highly expressed in both tissues. IRF4 and IRF5 were

low or undetectable in both tissues. Furthermore, we observed that

IRFs were highly correlated in expression (Figure 1F) and interacted

with each other in PPI network (Figure 1G).

To validate IRFs mRNA expression, we performed qRT-PCR

analysis in three cell lines. Most IRFs were more highly expressed in

tumour cells (Figure 2), which is generally consistent with the results

above. Furthermore, we noted that IRFs were expressed with cell

specificity in different cells (Figure S2C).

We then discussed clinical relevance of IRFs. We found that most

IRFs were correlated with prognosis (Figure 1F and S2D). IRF6

exhibited a tumour suppressive profile and its expression was

positively correlated with prognosis. In contrast, the higher the

expression of other IRFs, the worse the prognosis of patients.
Identification of IRF-related subtypes
in ccRCC

Using an unsupervised clustering approach, we classified ccRCC

patients into different subtypes. We ultimately identified three IRF-

associated molecular subtypes, termed IRF Cluster A-C (Figure 3A

and S3A-C). Heat maps illustrated the relationship between three

subtypes and clinicopathological features (Figure S3D). Prognostic

analysis pointed to a much higher survival advantage for cluster B

(Figure 3B). By analysing IRF expression profiles, we observed higher

expression of protective factors (IRF6) in cluster B, while the opposite

was true for risk factors (e.g. IRF3 and IRF7) (Figure 3C). This

laterally explained why cluster B had a better prognosis.
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Immune characteristics of different IRF-
related subtypes

GSVA analysis was performed to characterise different biological

properties. Multiple immune activation-related pathways, including T

and B cell receptor signalling pathways accumulated in cluster C

(Figures 3D, E and S3E). Cluster B enriched for some matrix

activation pathways, whereas cluster A was mainly associated with

immunosuppression and base excision repair. We then proceeded to

analyse TME immune infiltration. First, we evaluated 23 immune cell

infiltrations using ssGSEA, and almost all immune cells were heavily

infiltrated in cluster C (Figure 3F). We then ran ESTIMATE

algorithm to calculate stromal and immune cell content.

Apparently, cluster C had much higher immune and stromal

scores, signifying that cluster C had lowest tumour purity

(Figure 3G). However, no matching survival advantage was found

for cluster C with this immune profile. Therefore, we counted the

relative proportions of cell subpopulations via CIBERSORT. CD8+ T

cells and M2 macrophages were more predominant (Figures S3F-G).

Typically, the higher the expression of CD8+ T cells, the more positive

the prognosis (23). Interestingly, we observed the greatest proportion

of CD8+ T cells in cluster C and the lowest in cluster B, which is

opposite to the prognosis. Researches have revealed that CD8+ T cells

are exhausted in ccRCC and secrete numerous immune checkpoints,

including PD-1 and CTLA-4. At this point, the higher the intensity of

CD8+ T cell infiltration, the worse the prognosis of ccRCC (24). Here,

we analysed T cell exhaustion-related immune checkpoint expression.

Most checkpoints were highest in cluster C (Figure 3H). Combining

with previous studies, we speculated IRFs may regulate T-

cell exhaustion.
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Comprehensive analysis of IRFs-
related DEGs

To further characterise biological functions of IRF-related

subtypes, we filtered 547 DEGs from three subtypes and performed

functional enrichment analysis (Figure 4A). These DEGs participated

in many immune cell activation and proliferation-related pathways

(Figures 4B, C). This implied that IRF-associated DEGs are actively

engaged in immune processes and modulating immune infiltration.

Subsequently, univariate COX regression analysis was performed to

identify 426 prognosis-related DEGs (Table S3). Similarly, we ran

unsupervised cluster analysis on 426 DEGs and identified three gene

clusters, termed IRF gene Cluster A-C (Figures S4A-D). Similarly, we

compared clinicopathological characteristics and immune infiltration

between different gene clusters and found that gene cluster A had

superior prognostic prospects (p<0.001, Figures 4D and S4E). Except

for IRF6 and IRF8, the remaining risk genes were expressed in gene

clusters in the order C, B and A (Figure 4E). CD8+ T cells and MDSC

had lowest infiltration intensity in Cluster A (Figure 4F). This

accounted for the greatest survival advantage of gene cluster A.

Overall, the concordance of prognostic and immune infiltration

characteristics among gene clusters justified this classification.
Establishment of IRF gene signature and its
clinical characteristics

PCA analysis was conducted on 426 DEGs and IRFscore were

calculated to accurately quantify individual IRF-related molecular

subtypes. The samples were divided into high and low IRFscore
B C
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A

FIGURE 1

Landscape of IRFs expression in ccRCC. (A-B) Boxplot of IRFs expression in ccRCC and normal tissues from TCGA database (A) and GSE36895 (B).
(C) ROC curves demonstrate IRF family ability to differentiate between tumour and normal tissue. (D-E) Principal component analysis for the expression
profiles of IRFs to distinguish tumours from normal samples in TCGA database (D) and GSE36895 (E). (F) The interaction between IRFs in ccRCC. (G) The
PPI network of IRFs. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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groups following the threshold values determined by “survminer”

package. Figures 5A-C exhibited the variation in attributes of

individual patients in different clusters. Figure 5D demonstrated

IRFs expression profiles in two groups. Prognostic analysis revealed

that the higher the IRFscore, the worse the prognosis

(p<0.001, Figure 5E).

Next, we proceeded with a stratified prognostic analysis by

different clinical characteristics. First, we observed a higher

proportion of patients with advanced tumours were in high-
Frontiers in Oncology 05108
IRFscore group (p<0.05, Figure S5A). Patients with VHL, PBRM1

and BAP1 mutations also had higher IRFscore, although not

statistically different (Figure S5B). Stratified prognostic analysis

revealed that low IRFscore consistently showed marked survival

advantages (p<0.05, Figure S5C). Multivariate Cox regression

analysis proved that IRFscore could be independent prognostic

factor (Table S4). ROC curves and nomograms demonstrated the

performance of IRF scores in predicting patients’ rates at 1, 3, 5 and 7

years (AUC≥0.666, Figures 5F, G).
FIGURE 2

RT-PCR analysis of IRF1-9 expression levels in 786-O, Caki-1 and HK-2 cells. *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 3

The IRF-related molecular subtypes in ccRCC and biological and immune characteristic of each pattern. (A) PCA for the transcriptome profiles of three
IRF clusters. (B) Survival analyses of three IRF clusters. (C) The expression of IRF1-9 in three IRF clusters. (D-E) GSVA enrichment analysis showing the
activation states of biological pathways in distinct clusters. (F) The abundance of each TME infiltrating cell in three clusters. (G) Box plot indicated the
correlation between IRF clusters and immune scores, stromal scores and estimate scores. (H) The expression of most immune checkpoints among
distinct IRF clusters. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 4

IRF gene clusters in ccRCC and biological characteristics of each gene cluster. (A) 547 IRF-associated DEGs shown in venn diagram. (B-C) GO (B) and
KEGG (C) enrichment analysis on these DEGs. (D) Survival analyses of three IRF gene clusters. (E) The expression of IRFs in three gene clusters. (F) The
abundance of each TME infiltrating cell in three gene clusters. **p < 0.01; ***p < 0.001
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Further validation of IRFscore’s
prognostic performance using
two independent cohorts

To gain insight into IRFscore’s prognostic value, we further

validated the effectiveness of IRFscore in predicting papillary renal

cell carcinoma (KIRP) and kidney chromophobe (KICH) prognosis.

Based on previous PCA results obtained from 426 DEGs, IRFscore

was re-established and survival analyses were performed. In KICH,

the prognosis was significantly better in low IRFscore group, while the

opposite was true in KIRP (P<0.05, Figures S5D, E). This suggested

that IRFs are responsible for renal cancer progression, but for specific

efficacy, it depended on cancer type.
Association between IRFscore and CD8+ T
cell exhaustion

To uncover how IRFscore works in regulating TME, we examined

immune infiltration in two groups. High IRFscore group had a more

significant immune infiltration (Figures 6A, B). Furthermore, we found

that CD8+ T cells andM2macrophages accounted for largest proportion

in both groups (Figure 6C). Therefore, we speculated that these cells

probably function primarily in ccRCC progression. Previous studies

demonstrated that immune dysregulation occurs in advanced ccRCC

(25), when massive exhausted T cells and M2 macrophages are
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simultaneously enriched in TME and substantial receptor-ligand

interactions exist between two cells leading to worse prognosis (26).

Table S5 listed receptors or ligands expressed by two cells. Expression

analysis revealed that most co-stimulatory receptors, except for HAVCR2

and BTLA, were significantly overexpressed in high IRFscore group

(Figure 6D). This suggested that CD8+ T cells in high IRFscore were

mostly in exhausted state. However, a matching profile of M2

macrophages was not observed in high IRFscore group (Figure S6A).

These results indicated that IRFs may not participate in interaction of

exhausted T cells with M2 macrophages.

Tertiary lymphoid structures (TLS) are ectopic lymphoid tissues that

surround the tumour. The higher the density of its presence, the better

the patient’s prognosis (27). In ccRCC, TLS not only occurs significantly

less frequently than other cancers, but also becomes dysfunctional (28).

Interestingly, when TLS density and mature DCs are increased in ccRCC,

a group of patients with high CD8+ T-cell infiltration and good prognosis

emerges (29). This contradicted previous findings that CD8+ T cells

cause worse prognosis in ccRCC (23). Therefore, scientists assumed that

the emergence of TLS and mature DCs could be one reason for reduced

T-cell exhaustion (30).We extracted TLS-relatedmarkers from published

literatures, including three chemokines (CCL19, CCL21 and CXCL13)

and two TLS-DC-related markers (HLA-DR and CD83). HLA-DR,

CD83 and CCL13 were significantly upregulated in low IRFscore,

while only CCL19 was downregulated (Figure 6E). Thus, we

hypothesized that increased presence of TLS and mature DCs in low

IRFscore may enhance ccRCC prognosis by reducing T-cell exhaustion.
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FIGURE 5

Construction of IRF signatures. (A) Alluvial diagram showing the changes of IRF cluster, gene cluster, IRFscore and patient survival status. (B-C)
Differences in IRFscore among three gene clusters (B) and IRF clusters (C). (D) The expression of IRF1-9 in two IRFscore groups. (E) Kaplan-Meier survival
analysis for two IRFscore groups. (F) ROCs for 1-, 3-, 5-, and 7-year survival time based on IRFscore. (G) Nomograms incorporating IRFscore and clinical
characteristics for predicting patient 1-, 3-, 5-year survival. ns, not significant; ***p < 0.001.
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The role of IRFs in TMB and therapy

Many studies proved that the more genetic mutations a tumour has,

the more abnormal proteins it produces and the more likely the immune

system is to be activated. This implied that tumour mutational burden

(TMB) is somewhat predictive of immunotherapy effects (31).

Furthermore, TMB can accurately predict multiple targeted and

chemotherapeutic drug effects (32). Generally, the higher the TMB, the

better the treatment effect. In this work, quantitative analysis and

correlation analysis confirmed a positive correlation between IRFscore
Frontiers in Oncology 08111
and TMB (Figures S6B-C). Survival analysis proved that lower TMB

predicts a good prognosis (p<0.001, Figure 6F). We further assessed the

synergistic effect of these two scores in prognosis. Stratified survival

analysis indicated that TMB and IRFscore did not interfere with each

other, with IRFscore showing significant survival differences in two TMB

subgroups (p<0.001, Figure 6G). This meant that IRFscore could serve as

a prognostic indicator independent of TMB.

Next, we discussed the performance of IRFscore in predicting

targeted therapy efficacy. We compared estimated IC50 of five drugs

(Figures 7A-E). Except for pazopanib, IC50 levels for remaining drugs
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FIGURE 6

immune characteristics and somatic variants in IRFscore groups. (A) The abundance of each TME infiltrating cell in two IRFscore groups. (B) The immune
scores, stromal scores and estimate score difference in high and low IRFscore groups. (C) The relative fraction of each TME-infiltrated cell in two
IRFscore groups. (D) The differences in the receptors or ligands expressed by exhausted T cells between two IRFscore groups. (E) The differences in TLS-
related markers between two IRFscore groups. (F) Kaplan-Meier survival analysis for two TMB score groups. (G) Kaplan-Meier survival analysis for patients
stratified by IRFscore and TMB score. ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE 7

IRFscore in the role of ccRCC clinical therapies. (A-E) Box plot showing the sensitivity of patients with high and low IRFscore subgroups to
chemotherapy drugs, including sunitinib (A), sorafenib (B), nilotinib (C), temsirolimus (D) and pazopanib (E). (F-I) The association between IPS and
immune checkpoints in ccRCC patients with different IRFscore.
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were significantly higher in low IRFscore, meaning that low IRFscore was

more sensitive to these drugs (p < 0.001). We then investigated the

association between IRFscore and immune checkpoint inhibitor (ICI)

therapy by IPS. Figures 7F-I depicted that four IPS scores were

significantly higher in high IRFscore (p<0.001), signifying that higher

IRFscore may have higher immunogenic phenotypes and be more

sensitive to ICIs. Additionally, the higher the frequency of PBRM1

mutations, the better the outcome of anti-PD-1 treatment was found

(26). Figure S5B demonstrated that PBRM1 mutations were more

frequent in high IRFscore. Above results indicated that low IRFscore

group may be more sensitive to targeted therapies, while high IRFscore

subgroup were more sensitive to immunotherapy.
Degree of matching of IRFscore
groups to ccRCC immunological
and molecular subtypes

Numerous studies indicated that patient response to treatment

options can be predicted by different tumour subtypes (33). We

therefore sought to understand whether ccRCC-related phenotypes

could explain why IRFs influence treatment outcome and analysed the

extent to which IRFscore-related subgroups matched these tumour

phenotypes. First, combining immune infiltration characteristics

(Figures 6A-C), we hypothesized that high IRFscore group matched

immune-inflamed phenotype, whereas low IRFscore group matched

immune-desert phenotype. Generally, immune-inflamed phenotype

was more responsive to anti-PD-L1/PD-1 therapies. In contrast,

immune-desert phenotypes had no or the weakest response (34). This

was consistent with our previous prediction that high IRFscore group was

more sensitive to ICI therapies (Figures 7F-I).

Generally, targeted therapies are more effective in metastatic ccRCC

(mccRCC) than other treatments (2, 3). To accurately predict the

effectiveness of tyrosine kinase inhibitor (TKI) therapy in mccRCC,

Benoit et al. identified four mccRCC molecular subtypes with different

therapeutic effects on sunitinib based on tumour gene mutations, copy

number variants (CNV) and methylation status (35). To determine

whether this typing was applicable to our work, we collated the

distribution of these features across two groups and summarised in

Table S6 and Figures S6D-L. We considered that high IRFscore group

may correspond to mccRCC 1/4 group, characterised by poor prognosis,

low sunitinib sensitivity, increased methylation levels, slightly higher

VHL and PBRM1 mutations, higher CNV, highly inflammatory

immunosuppressive environment and low stem cell differentiation

(Figures S6D-L). In contrast, low IRFscore group corresponded to

mccRCC 2/3 group, which has the opposite characteristics. Although

not all features match exactly, in general we assume that mccRCC

subtypes can be applied to describe IRFscore grouping. These results

pointed that IRFscore groupings can be well matched to ccRCC

immunological and molecular typing, indicating that optimal treatment

can be selected according to each patient’s tumour subtype.
Discussion

Numerous studies highlight the important role of IRFs in

regulating host immune responses and tumorigenesis. To date,
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most studies focused on single IRF and still lack a comprehensive

understanding of how entire IRF family integrally regulates cancer

development and TME. In our research, we focus on the value of

IRF1-9 in modifying ccRCC TME and treatment.

Different ccRCC molecular subtypes and their characteristics

have been identified through transcriptome analysis. In our study,

we identified three distinct IRF-related subtypes, each with different

prognostic and immune characteristics. Combining with previous

studies, we hypothesized that cluster C corresponded to immune-

inflamed phenotype characterised by massive immune cell infiltration

(33). Unlike three immune phenotypes (immune-inflamed, immune-

excluded and immune-desert phenotype) that are widely recognised

in other tumours (33), David et al. argued that immune-excluded

phenotype is rare in ccRCC (25). Thus, combining immune

infiltration, we hypothesized that clusters A and B correspond to

immune-desert phenotype with low immune infiltration (33).

Previous studies demonstrated that CD8+ T cells are exhausted in

ccRCC, when the greater the cellular infiltration, the worse the

prognosis (28). By analysing the proportion and degree of immune

cell infiltration, we observed that Cluster C exhibited significant CD8

+ T cell exhaustion characteristics, while Cluster B had relatively few.

Comprehensive analysis of prognostic and immunological features

plausibly explained why Cluster C had the worst prognosis despite

being immunologically activated, while the opposite was true for

Cluster B. This meant that immunophenotypic classification of

different IRF-related subtypes was reasonable and valid.

According to these DEGs, we classified ccRCC into three distinct

gene subtypes, which also have different clinical and immunological

profiles. This reaffirmed IRFs’ potential value in predicting survival

and shaping different TMEs. Given individual heterogeneity in IRFs

expression, we quantified IRF-related molecular subtypes in

individual ccRCC patients accurately by IRFscore. Comprehensive

analysis suggested that IRFscore not only correlated significantly with

clinical features, but also served as an independent prognostic factor.

Besides, several mutation-prone genes in ccRCC, including PBRM1,

VHL and BAP1, were mutated more frequently in high IRFscore

group. It has been well established that these mutations indicate a

poor prognosis for patients (36) and PBRM1 mutations substantially

increase patient susceptibility to targeted therapies and

immunotherapy (37). These results indirectly indicated potential

value of IRFscore in predicting patient prognosis, suggesting that

IRFs may be critical factors in affecting ccRCC treatment efficacy.

During chronic infection or cancer with continuous antigen

stimulation, T cells fail to differentiate effectively into effector and

memory T cells, at which point they gradually lose their original effect

and become exhausted. This process is accompanied by massive

inhibitory receptors (IRS) expression (24). In ccRCC TME,

interactions between exhausted CD8+ T cells and M2-like

macrophages cause immune dysfunctional circuits (25, 26).

However, by analysing two cell infiltrations and corresponding

receptor (ligand) expression in IRFscore groups, we did not find

significant interactions between two cells. This indicated that IRFs

may not regulate this interaction. TLS, existing around the tumour,

consists of a B-cell follicular zone with a germinal centre and a T-cell

zone with DC-Lamp+ mature DCs (27). During TLS formation,

CCL19 and CCL21 recruit immune cells in vicinity of high

endothelial vein to form T, B cell areas. CXCL13 recruits lymphoid
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tissue-inducing factors and initial B cells to inflammatory site and

TLS-B cell area, respectively. A reduced risk of death and recurrence

of ccRCC has been found when increased frequency of TLS is

accompanied by increased CD8+ T-cell infiltration, contradicting

the previous belief that CD8+ T cells cause poorer prognosis (29).

Therefore, researchers pointed that increased mature TLS in ccRCC

may be relevant to reduced T-cell exhaustion (30). In our study, TLS

and mature DCs were more frequent in low IRFscore group (high

prognosis) and accompanied by reduced CD8+ T-cell exhaustion. We

speculated that IRF may improve patient prognosis by influencing

TLS frequency.

Targeted therapy is preferred for mccRCC as it is not effective

against conventional chemotherapy and radiotherapy (3). Widely

recognised kidney cancer targeted agents fall into two categories,

TKI and mTOR inhibitors, acting through VHL/HIF/VEGF and

PI3K/AKT/mTOR signalling pathways respectively (4). Some TKI

drugs, including sorafenib and sunitinib, can slow down neo-

angiogenesis by blocking VEGF (38). Temsirolimus and

everolimus, as mTOR pathway inhibitors, can block mTOR

proteins to exert therapeutic effects (4). Benoit et al. constructed

mccRCC-related molecular markers to predict patient response to

treatment with sunitinib and identified four different molecular

subtypes (mccRCC1-4) (35). Interestingly, we found that high

IRFscore matched mccRCC1/4, while low IRFscore matched

mccRCC2/3. Therefore, we proposed that IRFscore not only

serves as a marker for mccRCC typing, but also predicts targeted

therapeutic efficacy. ICIs restore T-cell anti-tumour activity by

blocking intra-tumour immunosuppressive signalling (6). PBRM1

mutations, TMB and tumour immunophenotypes influence ICI

efficacy to some extent. In this work, we revealed significant

associations between IRFscore and PBRM1 mutations, TMB and

immunotype and confirmed the predictive value of IRFscore in

immunotherapy efficacy.

Due to technical limitations, most conclusions in this paper

were based on information from public databases. In future,

appropriate clinical cohorts and basic trials will be required to

address these issues.
Conclusion

The IRFscore, constructed based on the transcriptomic expression

of the IRF family, has independent prognostic value and can provide

accurate survival prediction for ccRCC patients. Furthermore,

IRFscore can help us to comprehensively assess the IRF-related

immune and molecular subtypes in individual patients and guide

more effective individualised clinical treatment.
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Hang Wang3, Xiaoyi Hu3* and Jianming Guo1,3*

1Department of Urology, Zhongshan Hospital (Xiamen Branch), Fudan University, Xiamen, China,
2Department of Traditional Chinese Medicine, Zhongshan Hospital, Fudan University, Shanghai, China,
3Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
The unpredictable biological behavior and tumor heterogeneity of metastatic renal

cell carcinoma (mRCC) cause significant differences in axitinib efficacy. The aim of

this study is to establish a predictive model based on clinicopathological features

to screen patients with mRCC who can benefit from axitinib treatment. A total of

44 patients with mRCC were enrolled and divided into the training set and

validation set. In the training set, variables related with the therapeutic efficacy of

second-line treatment with axitinib were screened through univariate Cox

proportional hazards regression and least absolute shrinkage and selection

operator analyses. A predictive model was subsequently established to assess

the therapeutic efficacy of second-line treatment with axitinib. The predictive

performance of the model was evaluated by analyzing the concordance index and

time-dependent receiver operating characteristic, calibration, and decision curves.

The accuracy of the model was similarly verified in the validation set. The

International Metastatic RCC Database Consortium (IMDC) grade, albumin,

calcium, and adverse reaction grade were identified as the best predictors of the

efficacy of second-line axitinib treatment. Adverse reaction grade was an

independent prognostic index that correlated with the therapeutic effects of

second-line treatment with axitinib. Concordance index value of the model was

0.84. Area under curve values for the prediction of 3-, 6-, and 12-month

progression-free survival after axitinib treatment were 0.975, 0.909, and 0.911,

respectively. The calibration curve showed a good fit between the predicted and

actual probabilities of progression-free survival at 3, 6, and 12 months. The results

were verified in the validation set. Decision curve analysis revealed that the

nomogram based on a combination of four clinical parameters (IMDC grade,

albumin, calcium, and adverse reaction grade) had more net benefit than adverse

reaction grade alone. Our predictive model can be useful for clinicians to identify

patients with mRCC who can benefit from second-line treatment with axitinib.

KEYWORDS

renal cell carcinoma, tyrosine kinase inhibitor, axitinib, nomogram, receiver
operating characteristic
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1 Introduction

Globally, approximately 85% of renal tumors were renal cell

carcinoma (RCC), which is one of the ten most common cancer types

and characterized by unpredictable biological behavior and

heterogeneity (1, 2). Until recently, surgical resection was the standard

of care, with a favorable overall prognosis for patients with localized

RCC. The 5-year survival rate for patients with early stage I and II/III

RCC are 93% and 72.5%, respectively, whereas those for patients with

stage IV metastatic RCC is 12% (3). Moreover, 17%–30% of patients

present with advanced stage of the disease at primary diagnosis, and

20%–40% of patients with localized disease eventually develop advanced

disease (4, 5), which requires systemic therapies. In the past decades, the

therapeutic strategy for locally advanced and metastatic RCC (mRCC)

has broadened remarkably—from the use of cytokines (interferon-alpha

and interleukin-2) to the administration of molecular-targeted therapies,

such as tyrosine kinase inhibitors (TKIs) (6). Although treatment with

molecular-targeted therapies has improved the prognosis of patientswith

mRCC, first-line therapies fail in most patients because of disease

progression or unacceptable side effects (7).

After first-line therapies fail, a second-line therapeutic strategy is

selected to improve patient prognosis. According to the NCCN

guidelines, axitinib is recommended as a second-line treatment

option. Compared with sorafenib as second-line treatment, axitinib

significantly increased median progression-free survival (PFS) time

and provided a better objective response rate for patients with mRCC

who received sunitinib or cytokine treatment as a first-line therapy in

a randomized phase III study (AXIS trial) (8). Moreover, the results of

subgroup analyses of the AXIS study attested to the efficacy of axitinib

in the Asian population, further supporting the registration of axitinib

in China (8). Axitinib is more cost-effective than sorafenib (9). By

contrast, a retrospective and noncomparative phase II trial indicated

that the 5-year survival rate of patients who received axitinib was

20.6% after failure of prior systemic treatment (10). The differences in

PFS and overall survival were insignificant in patients with mRCC

who received axitinib or everolimus as second-line treatment (11);

however, axitinib had a manageable tolerability profile.

Genomic studies have reported intratumoral and intertumoral

heterogeneity in RCC (8, 12, 13), which leads to differential prognosis

and response to targeted treatment. Consequently, it is imperative to

screen patients with mRCC who can benefit from axitinib therapy

after failure of first-line therapies and improve the cost-effectiveness

of therapy. This study aimed to retrospectively evaluate the

prognostic clinicopathological parameters associated with the

therapeutic effects of second-line treatment with axitinib.
Abbreviations: mRCC, Metastatic renal cell carcinoma; IMDC, The International

Metastatic RCC Database Consortium; RCC, Renal cell carcinoma; TKI, Tyrosine

kinase inhibitor; PFS, Progression-free survival; CPHR, Cox proportional-hazards

regression; ROC, Receiver operating characteristic curve; AUC, Area under the

curve; C-index, Concordance index; DCA, Decision curve analysis; HR, Hazard

rate; VHL, The von Hippel–Lindau; PDGF, Platelet-derived growth factor (PDGF);

CCRCC, Clear cell renal cell carcinoma; nCCRCC, Non-clear cell renal cell

carcinoma; PD, Progressive disease; PR, Partial response; SD, Stable disease; KPS

score, Karnofsky score.
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2 Methods

2.1 Patients and inclusion criteria

The study was conducted in accordance with the Declaration of

Helsinki (revised in 2013). Study approval was given by the Ethics

Committee of ZhongshanHospital, affiliated to FudanUniversity, China

(B2016-030). Data from 44 patients with advanced RCC, who received

axitinib as second-line targeted therapy between December 2014 and

December 2021 at the Department of Urology, Zhongshan Hospital,

Fudan University, were retrospectively collected and analyzed. The

inclusion criteria were as follows: (1) advanced RCC or mRCC verified

histopathologically with surgery or biopsy, (2) advanced RCC

irrespective of pathological type, (3) advanced RCC irrespective of

first-line treatment, and (4) advanced RCC with axitinib as second-line

targeted therapy. Because 14 patients lacked complete

clinicopathological data, 30 patients were finally enrolled in the study

as the training set to evaluate factors related to the therapeutic effects of

second-line treatment with axitinib and construct a predictive model.

Four clinical parameters, namely albumin, calcium, International

Metastatic RCC Database Consortium (IMDC) grade, and adverse

reaction grade, were further identified. Because complete data were

available for the four candidate factors for 14 patients, they were

included in the validation set to verify the model (Figure 1).

Biochemical parameters were collected before patients received axitinib.
2.2 Statistical analysis

Statistical analysis was performed using SPSS v23 and R v4.20.

Continuous variables are presented as the mean and standard deviation,

and categorical variables are presented as frequency or percentage.

Comparisons of continuous variables between two groups were

performed with the t test, and categorical variables were compared

using the chi-square test or Fisher’s exact test. p-Value < 0.05, two-tailed,

was considered statistically significant. Kaplan–Meier survival plots were

generated with the log-rank statistic using the survival package of R.

We first screened the clinicopathological parameters associated with

the therapeutic effects of second-line treatment with axitinib using

univariate Cox proportional-hazards regression (CPHR) analysis.

Because CPHR is not used to analyze multidimensional survival datasets,

the least absolute shrinkage and selectionoperator (LASSO) techniquewas

subsequently performed for variable selection and shrinkage from many

clinical variables identified by univariate CPHR, using the glmnet package

of R (8, 14). Finally, we identified and then established a predictive model

based on four clinical parameters (albumin, calcium, IMDC grade, and

adverse reaction grade) through multivariate CPHR.

To evaluate the predictive accuracy of the model, time-dependent

receiver operating characteristic curve (ROC) and area under curve

(AUC) at 3-, 6-, and 12-month PFS after axitinib treatment were

constructed using the survival package of R. Concordance index (C-

index) is used to evaluate predictive accuracy (15). The consistence

between predicted PFS probability and actual PFS probability was

confirmed using a calibration curve after 1000 bootstrap resampling.

The ROC curve and AUC are not used to make clinical decisions. In

clinical practice, decision curve analysis (DCA) was used to estimate the

net benefit for patients based on threshold from the predictive model.
frontiersin.org
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3 Results

3.1 General characteristics

Based on the inclusion criteria, 44 patients with advanced RCC

received axitinib as a second-line targeted therapy. Thirty patients

were included in the training set and 14 in the validation set. The

clinicopathological features of patients are shown in Table 1. Mean

age at initial diagnosis was 60.25 ± 10.02 years. Most of the patients

were men (79.55%, 35/44) and had received nephrectomy (86.36%,

38/44). The pathologic type of 35 patients (79.55%) was clear cell

carcinoma, of which two tissue samples were associated with

sarcomatous degeneration. The maximum tumor diameter was 2.5–

15.0 cm. The most common metastatic sites were the lungs (63.64%,

28/44), bones (34.10%, 15/44), and liver (15.91%, 7/44). In addition,

the lymph node was a common distant site (40.91%, 18/44). In some

patients, the tumor metastasized to the brain (4.55%, 2/44), adrenal

gland (4.55%, 2/44), and pancreas (9.10%, 4/44). Mean overall follow-

up time was 1485.44 ± 1150.61 days and median survival time was

2071 days for the whole cohort.

Axitinib was introduced as a second-line targeted therapy after the

failure of first-line treatment with drugs, including sorafenib (n = 5),

sunitinib (n = 33), and pazopanib (n = 6). Failure of first-line therapy

was a result of progression (25/44, 56.82%) or intolerable adverse effects

(19/44, 43.18%). Mean therapeutic time and median PFS time of first-

line treatment were 841.68 ± 695.15 days and 1058 days, respectively,

for the whole cohort. Time of disease progression during second-line
Frontiers in Oncology 03117
treatmentwith axitinib was defined as the time from the start of axitinib

treatment to the first documentation of progression. Patients during

treatment comprised the progression (Pro) group (n = 20) or the

progression-free (ProFree) group (n = 24). The mean therapeutic time

of second-line treatment was 446.02 ± 350.21 days for the whole cohort

and 486.30 ± 372.28 days and 359.71 ± 291.11 days for the training and

validation sets, respectively (p = 0.2690).

Statistically significant differences were present between the

training and validation sets within the cohort, including

hemoglobin level (120.77 ± 20.67 vs. 104.33 ± 28.28 g/L, p =

0.0429), C-reactive protein level (4.69 ± 10.72 vs. 38.04 ± 33.40 mg/

L, p = 0.0002), and other metastatic sites (14/30 vs. 11/14, P = 0.0466).

The differences were not statistically significant for the other

clinicopathological features. However, hemoglobin level, C-reactive

protein level, and other metastatic sites were unrelated to the

therapeutic effects of second-line treatment with axitinib.
3.2 Subtype analysis

Results of subtype analysis are shown in Table 2. Albumin

concentration was higher in the Pro group than in the ProFree

group (41.13 ± 4.64 vs. 35.75 ± 6.39 g/L, p = 0.0024), and patients

with mRCC who were malnourished (albumin ≤35 g/L) were more

likely to have disease progression (8/10 vs. 12/34, p = 0.0270). Patients

who were younger (<75 years old) did not benefit more from second-

line treatment with axitinib than patients who were older (≥75 years
FIGURE 1

Flow chart of the data selection and process. IMDC, International Metastatic Renal Cell Carcinoma Database Consortium classification; LASSO, least
absolute shrinkage and selection operator; RCC, renal cell carcinoma.
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TABLE 1 Patient demographics and clinicopathological features.

Variable All patients
(n = 44)

Training set
(n = 30)

Validation set
(n = 14)

p-Value

Age (years) 60.25 ± 10.02 59.37 ± 10.91 62.14 ± 7.77 0.3990

Gender 0.2471

Male (n) 34 25 9

Female (n) 10 5 5

Tumor location 0.5206

Left 21 13 8

Right 23 17 6

Nephrectomy 38/44 25/30 13/14 0.6467

Pathologic type 0.6951

CCRCC 36 25 11

nCCRCC 8 5 3

Sarcomatous change 2/44 1/30 1/14 0.5720

Primary tumor size (cm) 6.91 ± 2.94 6.87 ± 3.13 7.00 ± 2.59 0.8932

Metastasis

Liver 7/44 3/30 4/14 0.1167

Lung 28/44 20/30 8/14 0.5408

Bone 15/44 9/30 6/14 0.4020

Brain 2/44 2/30 0/14 0.3227

Lymph node 18/44 12/30 6/14 0.8575

Other 25/44 14/30 11/14 0.0466

First-line drug 0.5009

Sorafenib 5 3 2

Sunitinib 33 24 9

Pazopanib 6 3 3

Time from first- to second-line treatment (days) 841.68 ± 695.15 647.43 ± 593.93 662.57 ± 712.80 0.9419

Results of first-line treatment 0.7530

PD 25 18 7

SD 17 11 6

PR 2 1 1

Time from second-line treatment (days) 446.02 ± 350.21 486.30 ± 372.28 359.71 ± 291.11 0.2690

Results of second-line treatment 0.5881

PD 21 15 6

SD 17 12 5

PR 6 3 3

KPS score >80 31 21 10 >0.9999

Hemoglobin 116.07 ± 23.94 120.77 ± 20.67 104.33 ± 28.28 0.0429

Platelet 237.31 ± 117.35 241.30 ± 119.25 226.45 ± 116.90 0.7244

Lymphocyte 1.53 ± 0.80 1.59 ± 1.06 1.53 ± 1.12 0.8712

Neutrophil 3.62 ± 2.26 3.22 ± 1.53 4.70 ± 3.46 0.0629

(Continued)
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old, p = 0.5832). Age distribution between the Pro and ProFree groups

was not different (58.10 ± 11.14 vs. 62.04 ± 8.81 years, p = 0.1972).

Higher levels of calcium (≥ 2.55 mmol/L) were related to worse

prognosis than lower levels (<2.55 mmol/L) (9/12 vs. 11/32, p =

0.0212). Nephrectomy in patients with RCC did not affect the

therapeutic effect of second-line treatment with axitinib.

Consistently, significant differences between first-line treatment

settings or metastatic sites and efficacy of second-line treatment

with axitinib were not verified.
3.3 Prognostic model construction

To evaluate the therapeutic effects of second-line treatment with

axitinib, univariate CPHR analysis was used to identify potentially

important factors. Seven parameters were screened, namely, IMDC

grade [hazard rate (HR) = 5.26, p < 0.0001], albumin (HR = 0.82, p <

0.0001), calcium (HR = 172.34, p = 0.0005), adverse reaction grade

(HR = 0.31, p = 0.0169), Karnofsky score (KPS score, HR = 0.92, p =

0.0442), bone metastasis (HR = 2.85, p = 0.0462), and hemoglobin

(HR = 0.97, p = 0.0124) (Table 3). These parameters were

incorporated into LASSO regression analysis to avoid bias from

collinearity between factors (Figure 2). IMDC grade, albumin,

calcium, and adverse reaction grade, with non-zero coefficients,

were further enrolled in multivariate CPHR analysis to construct a

prognostic model. IMDC grade had the highest hazard ratio (HR)

(3.21, p = 0.1370), followed by calcium (2.55, p = 0.6833) (Figure 3

and Table 2). Adverse reaction grade was an independent prognostic

index that correlated with the therapeutic effects of second-line

treatment with axitinib. To construct a quantitative and more

intuitive tool for the individualized prediction of the therapeutic
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effects of second-line treatment with axitinib in patients with

advanced RCC, a novel prognostic nomogram was established

based on the four parameters, and the probability of 3-, 6-, and 12-

month PFS was predicted (Figure 4).
3.4 Predictive performance of the model

The C-index value of the model was 0.84, suggesting that the

predictive model had excellent predictive performance. Time-

dependent ROC curve analysis verified the accuracy of the model;

AUC values for the prediction of 3-, 6-, and 12-month PFS were 0.975,

0.909, and 0.911, respectively (Figure 5A). After 1000 bootstrap

resampling was complete, the predictive model showed excellent

consistency between predicted PFS probability and actual PFS

probability at 3, 6, and 12 months, confirmed by the calibration

curve (Figure 5B). The results were verified in the validation set,

which had a C-index value of 0.776 (Figure 5C). Moreover, DCA

was used to evaluate net benefit and make clinical decisions at 3, 6, and

12 months (Figure 5D). A nomogram (green) based on a combination

of IMDC grade, albumin, calcium, and adverse reaction grade showed

more area than adverse reaction grade alone (purple) (Figure 5D).
4 Discussion

Two primary signaling pathways are involved in RCC

pathogenesis—vascular endothelial growth factor (VEGF) and

mammalian target of rapamycin (mTOR) signaling pathways (16,

17). Loss mutation of the von Hippel–Lindau (VHL) is a common

event in many RCCs, and then causes the abnormal activation of the
TABLE 1 Continued

Variable All patients
(n = 44)

Training set
(n = 30)

Validation set
(n = 14)

p-Value

C-reactive protein 9.59 ± 22.87 4.69 ± 10.72 38.04 ± 33.40 0.0002

Creatinine 127.21 ± 34.43 132.43 ± 35.31 114.17 ± 29.52 0.1218

Albumin 28.68 ± 6.07 38.60 ± 5.57 40.17 ± 5.87 0.3967

Calcium 2.45 ± 0.25 2.47 ± 0.16 2.44 ± 0.43 0.7366

IMDC grade 0.6824

I 6 5 1

II 30 20 10

III 8 6 2

Largest adverse reaction grade 0.8266

0 5 3 2

I 16 12 4

II 22 15 7

III 1 1 0

Follow-up time (days) 1485.44 ± 1150.61 1623.83 ± 1268.75 1166.08 ± 764.94 0.2353

Alive at last follow-up 22/44 16/30 6/14 0.5174
fro
CCRCC, Clear cell renal cell carcinoma; nCCRCC, non-clear cell renal cell carcinoma; PD, Progressive disease; PR, Partial response; SD, Stable disease; KPS score, Karnofsky score; IMDC,
International Metastatic Renal Cell Carcinoma Database Consortium classification.
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TABLE 2 Subtype analysis.

Variable Difference of axitinib efficacy p-Value

Progression Progression-Free

Age (years) 58.10 ± 11.14 62.04 ± 8.81 0.1972

Age ≥75 years 0.5832

Yes 2 1

No 18 23

Gender 0.7344

Male 16 18

Female 4 6

Tumor location >0.9999

Left 10 11

Right 10 13

Nephrectomy >0.9999

Yes 17 21

No 3 3

Pathologic type 0.4361

CCRCC 15 21

nCCRCC 5 3

Sarcomatous change 0.4926

Yes 0 2

No 20 22

Primary tumor size ≤7 cm 0.5385

Yes 11 16

No 9 8

Liver metastasis 0.2172

Yes 5 2

No 15 22

Lung metastasis >0.9999

Yes 13 15

No 7 9

Bone metastasis 0.2097

Yes 9 6

No 11 18

Brain metastasis >0.9999

Yes 1 1

No 19 23

Lymph node metastasis 0.2268

Yes 6 12

No 14 12

Other metastasis sites 0.1151

(Continued)
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above pathways, which is linked to cancer progression and poor

prognosis (18). Currently, many TKIs targeting to VEGF-induced

angiogenesis, including sunitinib, pazopanib, and axitinib, have been

developed and are integral to the treatment (6, 16). However, RCC is

characterized by a wide range of molecular and clinicopathological

heterogeneity. Although considerable efforts have been made in the

past decades to treat mRCC, targeted agents offer limited benefits to

most patients. Compared with 8–9 months in the first-line treatment

setting, the average time of stable disease is 5–6 months in the second-

line treatment setting (19). At second-line treatment setting, axitinib

significantly increased PFS time and improved objective response rate
Frontiers in Oncology 07121
compared with sorafenib (8). Compared to first-line treatment with

TKIs, axitinib not only showed fewer side effects, such as

hepatotoxicity, hematological toxicity, and hypertension (20–22),

but also immunomodulatory effects, where it downregulated the

expression of the immune-suppressor signal transducer and

activator of transcription 3 in patients with RCC (23), indicating

that axitinib is relatively potent and must be further explored in

combination therapy, first- or second-line setting.

However, fewer studies have identified biomarkers, including

clinicopathological features and biochemical indices, to guide

treatment. Biomarkers related to the therapeutic effects of second-
TABLE 2 Continued

Variable Difference of axitinib efficacy p-Value

Progression Progression-Free

Yes 9 16

No 11 6

First-line drug

Sorafenib 0.1605

Yes 4 1

No 16 23

Sunitinib 0.4728

Yes 14 19

No 6 4

Pazopanib 0.6731

Yes 2 4

No 18 20

KPS score >80 0.5220

Yes 13 18

No 7 6

Albumin (g/L) 35.75 ± 6.39 41.13 ± 4.64 0.0024

Albumin ≤35 g/L 0.0270

Yes 8 2

No 12 22

Calcium 2.49 ± 0.22 2.41 ± 0.28 0.3053

Calcium ≥2.55 mmol/L 0.0212

Yes 9 3

No 11 21

IMDC grade I 0.1977

Yes 1 5

No 19 19

Largest adverse reaction grade ≤I >0.9999

Yes 10 11

No 10 13
fro
CCRCC, Clear cell renal cell carcinoma; nCCRCC, Non-clear cell renal cell carcinoma; PD, Progressive disease; PR, Partial response; SD, Stable disease; KPS score, Karnofsky score; IMDC,
International Metastatic Renal Cell Carcinoma Database Consortium classification.
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TABLE 3 Results of the Cox proportional-hazards regression analysis.

Variable Univariate CPHR Multivariate CPHR

HR p-Value HR p-Value

IMDC grade 5.26 <0.0001 3.21 0.1370

Albumin 0.82 <0.0001 0.91 0.1814

Calcium 172.34 0.0005 2.55 0.6833

Adverse reaction 0.31 0.0169 0.28 0.0152

KPS score 0.92 0.044

Bone metastasis 2.85 0.046

Hemoglobin 0.97 0.0124
F
rontiers in Oncology
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CPHR, Cox proportional-hazards regression; HR, hazard ratio; KPS score: Karnofsky score; IMDC: International Metastatic Renal Cell Carcinoma Database Consortium classification.
FIGURE 3

Forest plot of hazard ratios for four clinicopathological features (IMDC grade, albumin, calcium, and adverse reaction) using multivariate Cox
proportional-hazards regression analysis. IMDC: International Metastatic Renal Cell Carcinoma Database Consortium classification.
A B

FIGURE 2

(A) Screening path of the least absolute shrinkage and selection operator (LASSO) regression model. (B) Penalty parameter (log lambda) in the LASSO
regression model.
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line treatment with axitinib should be identified based on precision

medicine or individual treatment.

In this study, anomogram(C-indexvalue=0.84)wasdevelopedbased

on four variables (IMDC grade, albumin, calcium, and adverse reaction

grade) in the test set. AUC values of themodel for the prediction of 3-, 6-,

and 12-month PFS were 0.975, 0.909, and 0.911, respectively. In addition,

the model was internally validated after 1000-bootstrap resampling and

externallyvalidated in thevalidationset.Butneither theROCcurvenor the

calibration curve guides clinical decision. The DCA method was used to

first evaluate the benefit of the predictive model and then help make a

rational clinical decision. To our knowledge, DCA has never been used to

evaluate the therapeutic effects of axitinib. Therefore, the performance of
Frontiers in Oncology 09123
this prognosticmodel is reliable and accurate.Of course, small sample size

is a limitation of this study. Moreover, independent validation sets from

other centers were not enrolled in this study. Thus, further studies must

verify the conclusion made using this prognostic model.

Hypertension is themost frequently documented adverse reaction in

patients who received second-line treatment with axitinib (8); therefore,

hypertension can be an effective predictor of axitinib efficacy. For

instance, diastolic blood pressure ≥ 90 mmHg (23–26) and systolic

blood pressure ≥ 140 mmHg (25, 27) were related to improved outcome

of axitinib. Consistently, the findings of this study indicated that more

adverse reaction grade was as an independent protective biomarker of

axitinib efficacy. Comparedwith variable hypertension alone, the adverse
FIGURE 4

Nomogram based on the logarithm of four clinicopathological features (IMDC grade, albumin, calcium, and adverse reaction) predicting the efficacy of
second-line treatment with axitinib in patients with metastatic renal cell carcinoma after failure of prior systemic treatment. IMDC: International
Metastatic Renal Cell Carcinoma Database Consortium classification, ProFree: progression-free.
A B

D

C

FIGURE 5

(A) Predictive performance of the model is evaluated using receiver operating characteristic curve. (B) Consistency of the model is evaluated using a
calibration curve in the training set. (C) Consistence of the model is evaluated using a calibration curve in the validation set. (D) Decision curve analysis to
evaluate the clinical benefit of 3-, 6-, and 12-month PFS and compare the clinical benefit of the model based on four parameters (IMDC grade, albumin,
calcium, and adverse reaction) with adverse reaction grade.
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reaction grade in this study reflectedmore information about the kinds of

side effects, such as hypertension, fatigue, diarrhea, myelosuppression,

hypothyroidism, and stomatitis. Moreover, blood pressure may be

affected by many factors. In other words, its specificity is worse

compared to our indexer that consists of all adverse reaction grades.

However, it is still unclear for us and other researchers whether the

adverse reaction, when it occurs, should be included into our nomogram,

whichmust be further explored in prospective studies. Generally, 4weeks

is optimal for evaluating the efficacy and adverse reaction grade of

second-line treatment with axitinib. Irrespective of the Memorial Sloan

Kettering Cancer Center risk score or IMDC risk score, hypercalcemia in

patients withmRCCwas considered a risk factor for poor outcome, such

as advanced stages and bone metastasis (28, 29). Consistently, in this

study, IMDC grade and calcium level are included in the nomogram,

confirming that higher IMDC grade and hypercalcemia are associated

with lesser efficacy of axitinib. Albumin is sensitive to the nutritional

state. Many studies have demonstrated that albumin is a risk parameter

for the prognosis of some diseases, such as gastrointestinal stromal

tumors, human immunodeficiency virus, lymphoma, and cutaneous

malignant melanoma (30–35). For example, Datta et al. (31) reported

that low albumin level was common in patients with stage IV cutaneous

malignant melanoma. However, to our knowledge, the relationship

between the prognosis of RCC or efficacy of TKIs and albumin

concentration remains unclear. The findings of this study

demonstrated that second-line axitinib treatment had worse efficacy in

patients with RCC who were malnourished. Thus, improved nutrition

may benefit more during targeted, second-line treatment with axitinib.

Older patients with RCC have often been excluded from receiving

axitinib treatment, owing to safety concerns. According to Hideaki

et al. (36), axitinib therapy was not only effective but also safe in

patients aged >75 years. The results of this study revealed that patients

aged <75 years old did not benefit more than patients aged ≥75 years

(p = 0.5832). Patients in the ProFree group may be older than those in

the Pro group (62.04 ± 8.81 vs. 58.10 ± 11.14 years, p = 0.1972), further

suggesting that treatment with axitinib in older patients is worthy of

attention. According to a phase III AXIS study, there was a significant

difference for the effect size of the PFS benefit in different prior first-line

treatments (37). In this study, differences in axitinib efficacy were not

statistically significant between prior first-line treatment types.

This study has limitations. First, the sample size was small (n = 44),

and the study was retrospective. Although the patients were divided into

the training set and validation set, which was used to validate the

performance of the model, the relatively small sample size and

retrospective nature of the study significantly affected the accuracy and

predictive performance of the study. Second, although patients were

enrolled regardless of the type of first-line therapy, including sorafenib

(n = 5), sunitinib (n = 33), and pazopanib (n = 6), patientswho received a

combination of TKI and immunotherapy as a first-line therapy were not

included in the nomogram. Combined treatment with lenvatinib and

pembrolizumab was related to significantly longer PFS and overall

survival than that with sunitinib (38). Therefore, it is unclear whether

the combination of TKI and immunotherapy as a first-line therapy could

affect the efficacy of second-line treatment with axitinib. In addition,

results from KEYNOTE 426 indicated that patients who received

pembrolizumab–axitinib showed better ORR (59.3% vs. 35.7%) and

median PFS (15.1 vs. 11.1months) compared with patients who received

sunitinib (39). Similarly, whether the model can be used to evaluate the
Frontiers in Oncology 10124
efficacy of first-line treatment with axitinib, with a combination of

pembrolizumab (39) or avelumab (20), is unclear.

Although the included parameters in the model may not only

indirectly reflect plasma exposure of the drug by distinguishing

adverse grade (23, 40) but also directly reflect individualized status,

such as nutrition (albumin) and biochemical level (calcium), those

parameters don’t reflect altered signaling pathways such as VHL,

VEGF, mTOR, platelet-derived growth factor (PDGF), cell cycle, p53

Related Signaling, Ferroptosis, and so on (17, 41, 42). Additionally,

imaging features of tumor during targeted therapy should be considered.

The predictive performance and scope of applicability of the model to

evaluate the efficacy of second-line axitinib treatment should be further

verified in large-sample, multicenter, prospective studies in the future.
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Purpose: The mitogen-activated protein kinase (MAPK) signaling pathway is

often studied in oncology as the most easily mentioned signaling pathway.

This study aims to establish a new prognostic risk model of MAPK pathway

related molecules in kidney renal clear cell carcinoma (KIRC) based on genome

and transcriptome analysis.

Methods: In our study, RNA-seq data were acquired from the KIRC dataset of

The Cancer Genome Atlas (TCGA) database. MAPK signaling pathway-related

genes were obtained from the gene enrichment analysis (GSEA) database. We

used “glmnet” and the “survival” extension package for LASSO (Least absolute

shrinkage and selection operator) regression curve analysis and constructed a

prognosis-related risk model. The survival curve and the COX regression analysis

were used the “survival” expansion packages. The ROC curve was plotted using

the “survival ROC” extension package. We then used the “rms” expansion

package to construct a nomogram plot. We performed a pan-cancer analysis

of CNV (copy number variation), SNV (single nucleotide variant), drug sensitivity,

immune infiltration, and overall survival (OS) of 14 MAPK signaling pathway-

related genes using several analysis websites, such as GEPIA website and TIMER
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database. Besides, the immunohistochemistry and pathway enrichment analysis

used The Human Protein Atlas (THPA) database and the GSEA method. Finally,

the mRNA expression of risk model genes in clinical renal cancer tissues versus

adjacent normal tissues was further verified by real-time quantitative reverse

transcription (qRT-PCR).

Results: We performed Lasso regression analysis using 14 genes and created a

new KIRC prognosis-related risk model. High-risk scores suggested that KIRC

patients with lower-risk scores had a significantly worse prognosis. Based on the

multivariate Cox analysis, we found that the risk score of this model could serve

as an independent risk factor for KIRC patients. In addition, we used the THPA

database to verify the differential expression of proteins between normal kidney

tissues and KIRC tumor tissues. Finally, the results of qRT-PCR experiments

suggested large differences in the mRNA expression of risk model genes.

Conclusions: This study constructs a KIRC prognosis prediction model involving

14 MAPK signaling pathway-related genes, which is essential for exploring

potential biomarkers for KIRC diagnosis.
KEYWORDS

KIRC, tumor biomarkers, MAPK pathway, TCGA, prognostic model
1 Introduction

The mortality rate of kidney cancer ranks first among all

urological malignancies (1). Renal cell carcinoma (RCC) is the

most common type of primary renal malignancy, and about 70%

of RCC patients are diagnosed with KIRC (2). More than one-fifth of

patients with advanced kidney cancer will relapse even after radical

nephrectomy. Besides, kidney cancer patients with distant metastases

have a 1-year survival rate of only 50% and a 5-year survival rate of

only 10% (3, 4). Early diagnosis and treatment are of great

importance to improve the prognosis of kidney cancer. A growing

number of studies confirm that cancer is a human genomic disease (5,

6). Tumor progression is caused by coordinated genetic changes in

multiple signaling pathways (7). Therefore, it is important to explore

the relevant cancer-causing genes and pathways and construct risk

models based on them for early detection and treatment of KIRC.

MAPK (mitogen-activated protein kinase) signaling pathway is

one of the most extensive pathways in tumor pathway research.

Related studies in human cancers have confirmed that most of

cancers are associated with changes in the MAPK pathway. Since

the recognition of Ras small GTPases as the first oncogenes of

sarcoma viruses, research on the MAPK pathway has intensified

over the past 40 years (8). The internal signaling of the MAPK

signaling pathway is complex. Besides, this signaling pathway is

often regulated by related genes or by crosstalk with other signaling

pathways. In the physiological state, intracellular MAPK signaling is

tightly controlled. Growth factors (GFs) bind to and activate

receptor tyrosine kinases (RTKs) on the cell membrane, a critical
02127
first step in initiating the classical MAPK signaling pathway (9).

Activation of RTKs drives phosphorylation of RAS superfamily

proteins represented by HRAS, KRAS, and NRAS, thereby

transducing extracellular signals to the cytoplasm (10). The

subsequent activation of intracellular cascade reactions is also

caused by the phosphorylation of molecules. Activated RAS

further activates MAPKKK (mitogen-activated protein kinase

kinase, represented by RAF and its variants), followed by MAPK

kinase (MAPKK: MEK1/2/3/4/5/6/7), and finally MAPK, resulting

in a cascade activation reaction of the intracellular MAPK signaling

pathway (11). The MAPKs mainly include the following: ERKs

(extracellular signal-regulated kinases, represented by ERK1/2/5),

JNKs(c-Jun N-terminal kinases, represented by JNK1/2/3), and p38

MAPKs(represented by p38a/b/g/d) (12–14). Numerous studies

have confirmed that the progression of most solid tumors is

associated with gene mutations in the RAS/RAF/MEK/ERK

signaling pathway (15). Approximately 30% of human solid

tumors are associated with mutations in the RAS gene (16).

Activation of Ras not only drives the MAPK cascade, but also

acts as an initiator of the PI3k/AKT/mTOR cascade to regulate cell

growth (11). In addition, ERK1/2 can regulate the activation of

transcriptional factors such as c-Myc (transcriptional regulator

Myc-like) through phosphorylation, which has received much

attention in the research of tumor-targeted therapy (12).

In recent years, studies have demonstrated that the MAPK

signaling pathway influences the prognosis of KIRC through the

regulation of HIF-1a (17). In addition, the MAPK signaling

pathway also influences the sensitivity of KIRC patients to
frontiersin.org
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targeted drugs such as sunitinib and sorafenib (17, 18). The

construction of predictive models based on genes related to the

MAPK signaling pathway and the exploration of the mechanisms

by which the MAPK signaling pathway affects prognosis and

targeted therapy resistance will be of great significance in the

future for the diagnosis and treatment of KIRC.
2 Materials and methods

2.1 Data acquisition

The mRNA expression data and clinical datasets of KIRC

patients used in this study were obtained from the TCGA

database (https://portal.gdc.cancer.gov/). The dataset we

downloaded included 539 tumor tissues and 72 normal tissues.

We then downloaded and analyzed the MAPK pathway-related

genes using the GSEA analysis website (https://www.gsea-

msigdb.org/gsea/index.jsp).
2.2 Data processing and analysis

The R language operating platform (https://www.rstudio.com/) is

one of the most influential and widely used bioinformatics operating

platforms. We used Perl and several R packages to analyze and

process data. The “heatmaps” expansion package was used to make

the heatmap. Then we used tbtools (https://github.com/CJ-Chen/

TBtools) to further beautify and process the heatmap to better display

the data. Statistical data analysis was performed using the “limma”

software package to analyze variance. Lasso regression analysis was

mainly performed using “glmnet” expansion packages. The survival

curve was plotted using the “survival” expansion packages, and the

ROC curve was analyzed and plotted using the “survival ROC”

extension package. Finally, based on the risk model, we validated it

with clinical characteristics by univariate Cox analysis and

multivariate Cox analysis using the “survival” and “forestplot”

expansion packages. Finally, we combined the predictive risk model

with various clinical features as independent risk factors to draw a

nomogram using the “rms” expansion package. P <0.05 was

considered a statistically significant difference. We used the “plyr”,

“ggplot2”, “grid” and “gridExtra” extension packages for multi-GSEA

analysis, to explore the biological pathways that risk model genes may

affect in KIRC, and to explore the correlation of the MAPK pathway

with other pathways.
2.3 GEPIA website

GEPIA (http://gepia.cancer-pku.cn/) has a robust data

aggregation function. The analysis tool includes RNA-seq

expression data from more than 9,000 tumors and 8,000 tumor

genome maps based on the TCGA database (19). Based on the

website’s online tool, the CNV and SNV of model genes were

differentially analyzed in different tumors.
Frontiers in Oncology 03128
2.4 ImmuCellAI website

We analyzed the infiltration of 24 types of immune cells in pan-

cance r ba s ed on the ImmuCe l lA I webs i t e ( h t tp : / /

bioinfo.life.hust.edu.cn/ImmuCel lAI/). We used the “pheatmap”

R language to draw and visualize the analysis results in the form of

heat maps. Statistical analysis was performed using the Spearman’s

correlation coefficient.
2.5 Generation of PPI networks

We draw the PPI network based on the online analysis tool

STRING (https://www.string-db.org/). To make the PPI network

more beautiful, we used the visualization software of Cystoscope.

The data in PPI were used to construct a quantization table.
2.6 TIMER website

The Tumor Immune Estimation Resource (TIMER) 2.0s (http://

cistrome.org/TIMER/) has recently been used to analyze immune cell

infiltration in the environment of tumors. This study further judged

the infiltration of immune cells in 14 genes by analyzing the

correlation between 14 genes and immune cells. Heatmaps were

drawn and visualized using the “heatmaps” expansion package.
2.7 GDSC database

Two hundred sixty-six drugs are included in the GDSC

database (20). In this study, we analyzed the relationship between

related drugs and the mRNA expression of MAPK pathway-related

genes based on the GDSC database, and then we drew a heatmap to

visualize the correlation.
2.8 The Human Protein Atlas database

The Human Protein Atlas database (http://www.proteinatlas.org/)

was a proteome analysis website of 27173 antibodies targeting 17268

unique proteins (21). In our study, we used this website to explore the

protein expression of MAPK pathway-related genes in normal kidney

tissues and ccRCC tumor tissues.
2.9 Collection of clinical tissue samples

From March to May 2022, we collected tumor and adjacent

normal kidney samples of 8 KIRC patients from Shandong Provincial

Hospital. This study was approved by the Ethics Committee of

Shandong Affiliated Hospital. Patients provided written informed

consent for all samples and information collected. The research

adhered to the principles of the Declaration of Helsinki and those

of the World Medical Association.
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2.10 Total RNA extraction
and qRT-PCR experiments

We extracted total RNA from collected KIRC tumor tissues and

paracancerous normal tissues using TRIzol reagent (Thermo Fisher

Scientific, Waltham, MA, USA). Next, we reverse-transcribed the

pre-extracted RNA into cDNA using EvoM-MLVRT master mix

(Accurate Biotechnology). We then mixed the reagents for qRT-

PCR detection according to the manufacturer’s instructions of the

SYBR® Green Premix Pro Taq HS qPCR Kit (Accurate

Biotechnology). The above process was carried out in strict

accordance with the manufacturer’s instructions.
2.11 Statistical analyses

Expression of MAPK pathway-related genes in tumor tissues

and adjacent tissues using One-way ANOVA. T-test was used to

compare the expression of MAPK pathway-related genes of

different gender, age, stage, node (N), tumor (T) and metastasis

(M) in KIRC data set. The “survminer” package was used to

determine the cut-off value of each risk score in the tumor group,

and we divided patients into a high-risk group and a low-risk group.

R Studio software package was used for all statistical analysis. P <

0.05 meant statistically significant.
3 Results

3.1 The expression of MAPK signaling
pathway-related genes in KIRC and
univariate Cox analysis

We first drew the flowchart to more conveniently show this

research process (Figure 1). Then, We constructed a heat map of the

mRNA data of the 81 MAPK signaling pathway-related genes in the

KIRC patient dataset based on the TCGA database (Figure 2A). Among

the 81 MAPK signaling pathway-related genes, nearly 80% of the genes

have statistically significant differences in expression between normal

kidney tissue and KIRC tissue, further confirming that the MAPK

signaling pathway plays an essential role in the occurrence and
Frontiers in Oncology 04129
development of KIRC. We then performed the univariate Cox

analysis of MAPK signaling pathway-related genes in KIRC patients,

and drew a forest plot (Figure 2B). The potential role of each signaling

pathway-related gene in the occurrence and development of KIRC was

determined. Using the HR value of 1 as a cutoff, there are 16 genes with

HR values >1, including STAT1(signal transducer and activator of

transcription 1), MAP3K8(mitogen-activated protein kinase kinase 8),

SHC1(SHC adaptor protein 1), MAP3K9(mitogen-activated protein

kinase kinase kinase 9), TRAF2(TNF receptor associated factor 2),

RAC1(Rac family small GTPase 1), MAP3K12(mitogen-activated

protein kinase kinase kinase 12), RPS6KA4(ribosomal protein S6

kinase A4), meaning that these genes are risk factors in disease

progression. whereas 23 genes, including MAPK3(MAPK3: mitogen-

activated protein kinase 3), MAP2K6(MAP2K6: mitogen-activated

protein kinase kinase 6), MAPK13, MAP3K5(mitogen-activated

protein kinase kinase 5), RPS6KA2(ribosomal protein S6 kinase A2),

RPS6KA5(ribosomal protein S6 kinase A5), NFKB1(nuclear factor

kappa B subunit 1), whose HR values are less than 1, are protective

factors. Finally, we used the String database to analyze the PPI protein

interaction to verify the interaction and connection between the proteins

in the MAPK pathway (Figure 2C).
3.2 Construct a novel prognostic-related
survival model in KIRC

After univariate cox analysis of genes related to the MAPK

signaling pathway, we screened out genes with a P value < 0.05 for

LASSO regression analysis, and screened out 14model genes, including

RPS6KA2, MAPK3, RPS6KA5, MAP2K6, MAP3K5, NFKB1, STAT1,

RAC1, MAP3K9, TRAF2, RPS6KA4, SHC1, MAP3K12, andMAP3K8

(Figures 3A, B). A prognostic riskmodel was established based on these

model genes. KIRC patients were divided into high-risk and low-risk

groups with the median level of risk score as the optimal cutoff value.

After plotting the survival curves, we found a significant difference in

survival between the two groups (Figure 3C). Subsequently, we

validated this prognostic-related risk model using the ROC curve.

The results showed that the 5-year AUC value was 0.744 (Figure 3D)

and the 10-year AUC value was 0.825 (Figure 3E), suggesting that the

risk model is suitable for prognosis prediction of KIRC patients with

high accuracy.
3.3 The relationship between the risk
model and clinicopathological
characteristics, and draw the
corresponding nomogram in KIRC

We verified the relationship between the prognostic risk model and

the clinical characteristics of patients (Figure 3F). The prognostic risk

model was correlated with clinical characteristics including tumor

volume (T), lymph nodes (N) distant metastasis (M), stage, grade,

gender, and fustat, suggesting that the predictive model has good

clinical prognosis and diagnostic and therapeutic efficacy. Univariate

Cox analysis found that age, stage, grade tumor volume (T), distant
FIGURE 1

The flow chart of this research.
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metastasis (M), and risk score were statistically significant (Figure 4A).

Multivariate Cox analysis showed that age, stage, grade, and risk score

were independent risk factors for KIRC (Figure 4B). Subsequently, we

established a new nomogram based on the four independent risk

factors verified by multivariate Cox analysis (Figure 4C). In this

nomogram, the quantified values of each variable correspond to the

scale axis to obtain a score. Finally, the total score is obtained by

summing the scores corresponding to the four variables, so that the 5-,

7-, or 10-year survival of KIRC patients can be intuitively obtained.
3.4 OS and variation of model genes in
pan-cancer

Wemapped the mRNA expression, CNV and SNV of these genes

in 33 different tumors. First, we observed the extent to which these 14

model genes affect survival and prognosis in pan-cancer (Figure 5A).

When we explored the role of genes in different tumors, we found

that genes such as RAC1 and SHC1 were elevated in most cancers,

suggesting their role as prognostic risk factors in most tumors. For a

specific tumor pathological type, we can observe that most MAPK

signaling pathway model genes are highly expressed in KICH and

LGG, suggesting that they are associated with poor prognosis.

Notably, we found that high expression of MAP2K6, MAP3K5,
Frontiers in Oncology 05130
RPS6KA5, MAPK3, NFKB1, and RPS6KA4 in KIRC tumors

suggested a better prognosis. In contrast, high expression of

MAP3K8 and MAP3K12 suggested a poorer prognosis for KIRC.

The SNV percentage heatmap (Figure 5B) and CNV percentage

(Figure 5C) heatmap show the single nucleotide variation and copy

number variation of different model genes in pan-cancer,

respectively. The SNV percentage heatmap found that MAP3K5,

STAT1, and MAP3K9 have the highest single-nucleotide mutation

rates in pan-cancer. When we explored the single-nucleotide

mutations of pathway-related genes in various pathological types of

tumors, we found that the MAPK signaling pathway prognostic

model genes had the most obvious SNV in uterine corpus

endometrial carcinoma (UCEC), skin cutaneous melanoma

(SKCM), and colon adenocarcinoma (COAD). In particular, the

single-nucleotide mutation rate of MAP3K5 in UCEC and SKCM

tumors was as high as 45% and 46%, respectively, while the single-

nucleotide mutation rate of MAP3K9 in SKCM tumors was 46%.

Nucleotide mutations played an essential role in the development of

these tumors. Next, we found copy number variations of MAP2K6,

SHC1, and RAC1 in most cancer tissues. RPS6KA2, MAP3K5,

MAP3K9, RPS6KA5, and TRAF2 had higher rates of heterozygous

deletion mutations in KIRC tissue, while STAT1, MAPK3,

MAP3K12, SHC1, and RAC1 heterozygous amplification mutations

were more prevalent. Notably, theMAPK pathwaymodel genes had a
B

C

A

FIGURE 2

The expression of genes related to the MAPK signaling pathway in KIRC and univariate Cox regression analysis. (A) The differential expression of 81
MAPK signaling pathway-related genes in cancer and normal tissue in KIRC patients. Red represents the gene that is highly expressed in the tumor.
The darker the color, the higher the expression level; blue represents the gene that is lowly expressed in the tumor, and the color the deeper it is,
the lower the expression level. (B) Perform univariate Cox regression analysis on genes related to the MAPK signaling pathway. (C) The String
database was used to analyze the protein interaction of 81 genes related to the MAPK signaling pathway, and the Cystoscope software platform was
used to visualize the analysis results. *P<0.05, **P<0.01, and ***P<0.001.
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significantly increased mutation rate in KICH, which was one of the

most common pathological types of RCC.
3.5 Immune infiltration and drug sensitivity
of model genes in pan-cancer

We verified the correlation of the risk model genes with the

infiltration of various immune cells in different types of tumors

(Figure 5D). DC, NKT, Tr1, NK, Macrophage, CD4_T, nTreg, Th1,

Tfh, and iTreg show high expression in most types of tumors,

suggesting that their infiltration potentially contributes to tumor

progression. On the contrary, Neutrophil and CD8_naive were

lowly expressed in most types of tumors. Notably, immune cells

such as NKT, Tr1, NK, macrophages, CD4_T, nTreg, Th1, Tfh, and

iTreg were more infiltrated in KIRC tissues, while neutrophils,

CD8_naive, CD4_naive, Th2, and Th17 were less infiltrated. Based

on the establishment of the previous prediction model, we analyzed

the correlation between the mRNA expression of 14 model genes

and drug sensitivity (Figure 5E). Drug sensitivity analysis showed

that MAPK3, RPS6KA4, STAT1, RAC1, RPS6KA2, SHC1 and other

model genes, especially RAC1 and SHC1 genes, were significantly

positively correlated with drug sensitivity. On the contrary, the

higher the expression of RPS6KA5, MAP2K6 and other genes, the

worse the drug sensitivity and the worse the curative effect.
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3.6 Verify the protein expression of
model genes between KIRC tissues
and normal tissues

To further understand the protein expression of 14 model genes in

KIRC tumor and normal tissues, we used the HPA website for further

analysis (Figures 6A–N). We found that MAP2K6, MAP3K5,

MAP3K9, MAP3K12, RPS6KA2, RPS6KA5, and STAT1 were lowly

expressed in tumor tissues; However, NFKB1, RAC1, SHC1, and

TRAF2 are highly expressed compared to normal tissues. The above

results are consistent with our previous verification results.
3.7 GSEA analysis in KIRC for risk
model genes

We performed GSEA pathway analysis on these risk model

genes to explore the role of MAPK-related genes in other

pathways and to establish the connection between the MAPK

pathway and other pathways (Figures 7A–N). We found that risk

model genes play different roles in different pathways, and each

gene is also involved in different signaling pathways. For example,

MAP2K6 is elevated in focal adhesion, adhesion, long-term

potentiation, vascular smooth muscle contraction, GnRH

signaling pathway, pathways in cancer, but its expression
B C

D

E

F

A

FIGURE 3

Construct a prognostic-related risk model in KIRC through LASSO regression analysis. (A, B) Results of LASSO regression analysis and cross-
validation. (C) Kaplan–Meier survival analysis between high-risk and low-risk groups according to the optimal cut-off value; (D) ROC curve for
predicting 5-year survival time; (E) ROC curve for predicting 10-year survival time; (F) Heat map based on the correlation of this risk feature with
clinical features. *P<0.05 and ***P<0.001.
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decreased in Parkinson disease, oxidative phosphorylation,

phenylalanine metabolism.
3.8 Validation of mRNA differential
expression of risk model genes in KIRC
clinical samples based on qRT-PCR

Based on the analysis of public databases, we successfully

screened out 14 risk model genes. To further verify the reliability

of the previous experimental results and evaluate the clinical

application value, we collected 8 pairs of KIRC pathological

tissues and normal control tissues. Based on qRT-PCR

experiments, we verified the samples’ relative mRNA expression

levels of 14 risk model genes (Figures 8A–N). We found that most

genes (including MAP3K5, MAP3K8, MAP3K12, MAPK3, NFKB1,

RAC1, RPS6KA4, SHC1, STAT1 and TRAF2) were increased in

KIRC pathological tissues. In contrast, the mRNA expression levels

of MAP2K6, MAP3K9 and RPS6KA5 in KIRC pathological tissues

were reduced to varying degrees compared with normal control
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tissues. The mRNA expression of RPS6KA2 was not statistically

significant in the difference analysis.
4 Discussion

In 2020, experts estimated 431,288 new kidney tumors

worldwide, and 179,368 patients worldwide died from kidney

cancer in the same year (22). Renal cell carcinoma (RCC)

originates from renal cortical or tubular epithelial cells, of which

KIRC is the most common subtype. The current treatment methods

for early KIRC are mainly limited to surgery, and patients often

have a good prognosis after surgery (23). However, although the

targeted therapies has brought the light of treatment to advanced

stage KIRC patients who are ineligible for surgery, drug resistance

and side effects have resulted in a median survival of less than 3

years (24). Precision medicine has always been the development

trend of current medical diagnosis and treatment, and the

establishment of new predictive models will have a positive effect

on the early diagnosis of cancers. To this end, we comprehensively
B

C

A

FIGURE 4

The comprehensive analysis is based on the clinical information of KIRC patients. (A) Univariate Cox analysis. (B) Multivariate Cox analysis. (C) A new
nomogram was drawn based on this prognostic risk signature. The value of each variable gets a score on the dot scale axis. The total score can be
easily calculated by adding each score and projecting the total score to a lower total score system. We can estimate the risk for predicting 5-, 7- or
10-year survival in KIRC.
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used bioinformatics analysis tools and websites to analyze MAPK

pathway-related genes in pan-cancer and establish a predictive

model in KIRC. In addition, we validated these prognostic genes

in KIRC tissues. We hope that this study will provide guidance for

the early diagnosis and targeted treatment of KIRC.

We used 14 risk model genes in pan-cancer for CNV, SNV, drug

sensitivity, immune infiltration, and overall survival analysis, and

predicted other biological pathways that these 14 MAPK pathway-

related genes may be involved in. Since the main area of focus of this

study is KIRC, we discuss KIRC in more depth. Our study first

analyzed the mRNA expression of 81 MAPK pathway-related genes

in KIRC patients and normal kidney tissues. The results indicated that

nearly 80% of the genes were differentially expressed. Research statistics

show that over 85% of cancers have overactive MAPK signaling, which

is directly caused by genetic changes in its upstream activators or key

molecules (including RTK, RAS, and BRAF) or affected by changes in

other regulatory genes (25). These results also demonstrate that altered

expression of MAPK pathway-related genes may influence KIRC

progression by affecting MAPK signaling pathway transduction.

Precision medicine has always been the development trend of
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current medical diagnosis and treatment, and the establishment of

new predictive models has led the way in the diagnosis and treatment

of cancers. After univariate COX and LASSO regression analysis, we

established a risk model consisting of 14MAPK pathway-related genes,

including RAC1, SHC1, NFKB1, MAPK3, RPS6KA2, RPS6KA4,

RPS6KA5, MAP3K5, MAP3K8, MAP3K9, MAP3K12, STAT1,

TRAF2, MAP2K6.

RAC1 belongs to the RAS superfamily of small GTP-binding

proteins. This molecule often acts as an upstream of the MAPK

signaling pathway and is often used as a target for tumor therapy

(26). RAC1 inhibitors, such as the compound GYS32661 proved to

be effective in tumor therapy. Our investigation further confirmed

that RAC1 is highly expressed in ccRCC at the mRNA and protein

levels. Further investigation of RAC1 may provide a basis for the

therapeutic application of RAC1 inhibitors in ccRCC. The role of

SHC1 in the MAPK signaling pathway is mainly to link activated

receptor tyrosine kinases to the Ras, which in turn participates in

the MAPK signaling cascade. Recent studies have confirmed that

SHC1 interacts to form protein complexes to promote the

progression of lung cancer (27). This is consistent with the trend
B

C

D

E

A

FIGURE 5

Overall survival analysis and variation analysis of this risk model gene in pan-cancer. (A) Overall survival analysis of this risk model gene in pan-
cancer. Red represents this risk model gene as a risk factor, and blue represents this risk model gene as a protective factor. (B) SNV levels of 14
model genes in pan-cancer, where the darker the red color, the higher the probability of SNV. (C) CNV ratio of 14 model genes in pan-cancer, Light
red hete amp represents heterozygous amplification, light green hete del represents heterozygous deletion, dark red Homo amp represents
homozygous amplification, dark green Homo del represents homozygous deletion, and gray represents no CNV. (D) The GSVA method was used to
analyze the level of immune cell infiltration in 33 different types of tumors, and the Spearman correlation coefficient was used to evaluate its
correlation. Red indicates that the level of immune cell infiltration is positively correlated with the tumor. On the contrary, blue indicates a negative
correlation. (*P-value ≤ 0.05; #FDR ≤ 0.05). (E) In a sensitivity analysis of prognostic risk model gene mRNA expression and mainstream anticancer
drugs, red represents a positive correlation, while blue represents a negative correlation.
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of elevated expression of SHC1 in ccRCC in our study. NFKB1, a

common transcription regulator, acts as a transcriptional regulator

and contributes to the infiltration of inflammatory cells by moving

to the nucleus when it is activated. The present study demonstrated

that NFKB1 mRNA was highly expressed in ccRCC. A related study

confirmed that the expression of HIF-1a decreased dramatically in

ccRCC cells due to the reduced movement of NF-kB1 to the

nucleus, which also inhibited the progression of ccRCC (28). The

above results also confirm that the decreased expression of NFKB1

in ccRCC may be associated with the inhibition of tumor

progression. MAPK3 encodes a protein that is an important

member of the MAP kinase family. MAPK3/ERK1 plays a critical

role in the MAPK/ERK cascade. As a recognized oncogene, its role

in promoting cancer progression and influencing drug resistance to

targeted drugs has been demonstrated in a variety of cancers (29,

30). Mutations in BRCA1-associated protein-1 (BAP1) are very

common in ccRCC, and Jin S et al. used PPI network analysis to

confirm that mutations in MAPK3, one of the core genes, regulated

BAP1 (31). Our study also confirmed the increased mRNA

expression of MAPK3 in ccRCC, and whether it could regulate

BAP1 to affect the prognosis of ccRCC needs to be further

investigated. RPS6KA2, RPS6KA4, and RPS6KA5 belong to the

RSK (ribosomal S6 kinase) family of serine/threonine kinases. The
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common characteristics of this family are that they all have kinase

catalytic domains, which can phosphorylate various MAPK

signaling pathway-related molecules. Milosevic N et al. showed

that RPS6KA2 acts downstream of EGFR/RAS/MEK/ERK signaling

and is activated by EGF. Inhibition of its activity could synergize

with erlotinib against pancreatic cancer cell survival (32). RPS6KA5

regulates lung tumor growth by activating the MAPK classical

signaling pathway through phosphorylation, which in turn

phosphorylates TRIM7 protein (33). RPS6KA4 is activated by the

RAS-MAPK or p38-MAPK pathway and activates histone H3 by

phosphorylation, leading to increased transcription of genes such as

proto-oncogene c-fos/FOS and c-jun/JUN (34). MAP3K5,

MAP3K8, MAP3K9, and MAP3K8 all belong to the serine/

threonine protein kinase family. The above four kinases have

been extensively studied in different types. MAP3K8 is a common

oncogene in most tumors. Our study likewise confirmed the high

expression of MAP3K8 in ccRCC. This molecule can mediate the

MAPK signaling pathway by activating MAP kinase and JNK kinase

pathways. Many studies have shown that some striking features of

the tumor microenvironment can promote immunosuppression

and limit the anticancer immune response. Among them,

immune cells infiltrating the physical barrier and causing local

inflammation play an essential role in forming and developing
B C D

E F G H I

J K L M N

A

FIGURE 6

The Results of immunohistochemistry. (A–N) The Human Protein Atlas database was used to verify the proteins’ differential expression of 14 model
genes (MAP2K6, MAP3K5, MAP3K8, MAP3K9, MAP3K12, MAPK3, NFKB1, RAC1, RPS6KA2, RPS6KA4, RPS6KA5, SHC1, STAT1, TRAF2) in KIRC tumor
tissues (T) and adjacent normal tissues (N).
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tumors (35). MAP3K8 also promotes the production of TNF-alpha

and IL-2 during T-lymphocyte activation, which also links the

MAPK signaling pathway to immune cell infiltration (36–38).

STAT1 can be activated by EGF phosphorylation, thus forming a

dimer that is transferred to the nucleus to act as a transcriptional

activator. Most evidence suggests that STAT1 plays an oncogenic

role in tumor cells. However, results from several experimental and

clinical studies suggest that STAT1 also functions as a tumor

promoter under specific conditions. In ccRCC, STAT1 activation

of JAK2/STAT1/IRF-1 signaling drives the expression of PD-L1 in

ccRCC (39). TRAF2 interaction with TNF receptors is required for

TNF-alpha-mediated JNK MAP kinase signaling and NF-kappaB

activation (40). In addition, TRAF2 regulates inflammatory

signaling, thereby affecting the immune response to tumors (41,

42). MAP2K6 is one of the important mitogen-activated protein
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(MAP) kinase kinases in the MAPK signaling pathway. This protein

is involved in cell growth or apoptosis by activating p38 MAP

kinase in response to immune stimulation or stress. Our study

confirmed the differential expression of MAP2K6 in KIRC, which

suggests its possible involvement in the biological processes of

ccRCC. Recent study confirms MAP2K6 as senescence-related

genes in ccRCC may influence the efficacy of anti-PD-1 therapy

and Sunitinib/Everolimus treatment (43). Related studies have

confirmed that activation of the Ras-MAPK pathway promotes

immune evasion of tumor cells, proving that many associated

molecules of the MAPK signaling pathway are significantly

correlated with immune cell infiltration. MAPK pathway-

targeting inhibitors combined with immune drugs can enhance

anti-tumor immunity (44). Meanwhile, this study confirmed the

alteration of multiple immune cell infiltrations including CD4_T,
A B D

E F G IH

J K L M N

C

FIGURE 7

GSEA in KIRC. (A) MAP2K6. (B) MAP3K5. (C) MAP3K8. (D) MAP3K9. (E) MAP3K12. (F) MAPK3. (G) NFKB1. (H) RAC1. (I) RPS6KA2. (J) RPS6KA4.
(K) RPS6KA5. (L) SHC1. (M) STAT1. (N) TRAF2.
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CD4_naive, and CD8_naive in the immune microenvironment of

KIRC. The above studies on the regulation of MAPK signaling-

related genes in different tumors for inflammatory cell infiltration

and for PD-1/PD-L1 expression seem to explain the changes in

immune cell infiltration in ccRCC.

We divided KIRC patients into high-risk and low-risk groups

based on this risk model, and KIRC patients in the high-risk group

had a lower survival rate than KIRC patients in the low-risk group.

The ROC curve calculation results proved the high accuracy of the

risk model. We validated the relationship between the risk model and

the clinical characteristics of the patients and the results suggest that

prognostic model genes influence the tumor volume (T), lymph node

(N) distant metastasis (M) of KIRC patients. After identifying age,

stage, grading and risk score as the four independent risk factors for

KIRC, we drew a nomogram based on these independent risk factors.

We could judge the 5-, 7- or 10-year survival of the KIRC patients

based on this new nomogram. Numerous studies have investigated

the role of MAPK pathway-related genes in different cancers.

In summary, the pathogenesis of KIRC and various cancers are

related to the signal changes of the MAPK signaling pathway. The

development of drugs acting on this pathway may provide new
Frontiers in Oncology 11136
ideas for treating KIRC and cancer. Research in this field has

confirmed that abnormal activation of MAPK is related to tumor

cell invasion, migration, proliferation, apoptosis and degradation of

extracellular matrix (45). A deeper understanding of the mechanism

of action of the MAPK pathway on cancer, especially KIRC, may

become the direction of future basic research.
5 Conclusions

In our research, we used 14 genes related to the MAPK signaling

pathway to establish a new KIRC predictive risk model, and the role

of the ROC curve is to predict the accuracy of the model (5-year

AUC value of 0.744, 10-year AUC value of 0.825), suggesting that

the model has good predictive performance. However, it must be

acknowledged that the specific mechanism of how these 14 genes

function in KIRC is not yet clear. In addition, this prognostic risk

model needs to be further validated using large-scale multi-center

clinical data. However, we firmly believe our study can provide

valuable consultation for future scientific diagnosis and clinical

treatment of KIRC.
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FIGURE 8

Validation of mRNA differential expression of risk model genes between KIRC pathological tissues and normal control tissues based on qRT-PCR.
(A) MAP2K6. (B) MAP3K5. (C) MAP3K8. (D) MAP3K9. (E) MAP3K12. (F) MAPK3. (G) NFKB1. (H) RAC1. (I) RPS6KA2. (J) RPS6KA4. (K) RPS6KA5. (L) SHC1.
(M) STAT1. (N) TRAF2. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, ns means no significance.
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Glossary

RTKs receptor tyrosine kinases

GEFs GTP/GDP exchange factors

CTRP The Cancer Therapeutics Response Portal

GTEx Genotype-Tissue Expression

PPI Protein-protein interaction

ERK extracellular regulated protein kinases

TGFB1 transforming growth factor-beta 1

MKNK1 MAPK interacting serine/threonine kinase 1

MAP3K10 mitogen-activated protein kinase kinase kinase 10

STAT1 signal transducer and activator of transcription 1

MAP3K8 mitogen-activated protein kinase kinase kinase 8

RPS6KB2 ribosomal protein S6 kinase B2

SHC1 SHC adaptor protein 1

TGFB3 transforming growth factor-beta 3

MAP3K9 mitogen-activated protein kinase kinase kinase 9

MAP4K1 mitogen-activated protein kinase kinase kinase kinase 1

TRAF2 TNF receptor associated factor 2

RAC1 Rac family small GTPase 1)

MAP3K12 mitogen-activated protein kinase kinase kinase 12

IKBKB inhibitor of nuclear factor kappa B kinase subunit beta

MAP2K2 mitogen-activated protein kinase kinase 2

RPS6KA4 ribosomal protein S6 kinase A4

MAPK3 mitogen-activated protein kinase 3

MAPK9 mitogen-activated protein kinase 9

MAP3K1 mitogen-activated protein kinase kinase 1

MAPK8 mitogen-activated protein kinase 8

MAPK1 mitogen-activated protein kinase 1

MAP2K6 mitogen-activated protein kinase kinase 6

MAPK13 mitogen-activated protein kinase 13

MAP3K5 mitogen-activated protein kinase kinase 5

MAP3K13 mitogen-activated protein kinase kinase kinase 13

MAP2K5 mitogen-activated protein kinase kinase 5

CHUK component of inhibitor of nuclear factor kappa B kinase complex

RAPGEF2 Rap guanine nucleotide exchange factor 2

RPS6KA2 ribosomal protein S6 kinase A2

RPS6KA5 ribosomal protein S6 kinase A5

MAP2K4 mitogen-activated protein kinase kinase 4

MAP4K1 mitogen-activated protein kinase kinase kinase kinase 1

RPS6KA3 ribosomal protein S6 kinase A3

(Continued)
F
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Continued

MAPK5 mitogen-activated protein kinase 5

MAPK7 mitogen-activated protein kinase 7

MAPK10 mitogen-activated protein kinase 10

ELK1 ETS transcription factor ELK1

CREB1 cAMP responsive element binding protein 1

NFKBIA NFKB inhibitor alpha

ATF2 activating transcription factor 2

NFKB1 nuclear factor kappa B subunit 1

ACC Adrenocortical carcinoma

BRCA Breast invasive carcinoma

BLCA Bladder Urothelial Carcinoma

KICH Kidney Chromophobe

KIRP Kidney renal papillary cell carcinoma
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clear cell renal cell carcinoma
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Yuan Zhu3* and Lingao Ju1,5*

1Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China,
2Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China, 3Human Genetic
Resources Preservation Center of Hubei Province, Wuhan, China, 4Wuhan Research Center for
Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China, 5Medical
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SET domain-containing 2 (SETD2) is a lysine methyltransferase that catalyzes

histone H3 lysine36 trimethylation (H3K36me3) and has been revealed to play

important roles in the regulation of transcriptional elongation, RNA splicing, and

DNA damage repair. SETD2 mutations have been documented in several

cancers, including clear cell renal cell carcinoma (ccRCC). SETD2 deficiency is

associated with cancer occurrence and progression by regulating autophagy

flux, general metabolic activity, and replication fork speed. Therefore, SETD2 is

considered a potential epigenetic therapeutic target and is the subject of

ongoing research on cancer-related diagnosis and treatment. This review

presents an overview of the molecular functions of SETD2 in H3K36me3

regulation and its relationship with ccRCC, providing a theoretical basis for

subsequent antitumor therapy based on SETD2 or H3K36me3 targets.

KEYWORDS

SETD2, clear cell renal cell carcinoma (ccRCC), H3K36me3, epigenetic
regulation, mutation
Abbreviations: AWS, associated with SET; AID, auto-inhibitory domain; ATG, autophagy-related genes;

ATR, Ataxia telangiectasia and Rad3 related; CTD, C terminal dоmain; ccRCC, clear cell renal cell carcinoma;

CC: coiled-coil; CtIP, C-terminal binding protein interacting protein; DAC, 5-aza-2’-deoxycytidine; DDR,

DNA damage response; DSBs, DNA double-strand breaks; DNMT3B, DNA-methyltransferase 3B; emRNA,

exosomal mRNA; FH, Fumarate hydratase; GSEA, Gene set enrichment analysis; hnRNP L, heterogeneous

nuclear ribonucleoprotein L; H3K36me3: histone H3 lysine36 trimethylation; HR, homologous

recombination; HIP1R, HTT-interacting protein 1-related protein; HTT, Huntingtin; LEDGF, Lens

epithelium-derived growth factor; MSI, microsatellite instability; MMR, mismatch repair; MRG15,

MORF4-related gene on chromosome 15; MDSC, myeloid-derived immune suppressive cell; NHEJ, non-

homologous end-joining; PHD, plant homeodomain; PKD, polycystic kidney disease; PTB, polypyrimidine

tract-binding protein; PRR, proline-rich region; PWWP, Pro-Trp-Trp-Pro; RCC, renal cell carcinoma;

PTECs, renal primary tubular epithelial cells; RPA, replication protein A; PHRF1, ring finger domains 1;

RNAPII, RNA polymerase II; RRM2, RNA-recognition motif 2; SAM, S-adenosylmethionine; SDH, Succinate

dehydrogenase; SETD2, SET domain-containing 2; SRI, Set2-Rpb1 interacting; SHI, SETD2-hnRNP

interaction; ssDNA, single-stranded DNA; VHL, von Hippel-Lindau; ZMYND11, zinc finger MYND-

domain containing 11.
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1 Introduction

Renal cell carcinoma (RCC) is one of the most prevalent

malignancies with a case-fatality rate among urinary tract tumors

(1, 2). There are several pathological types of renal cancer, such as

clear cell RCC (ccRCC), papillary RCC (pRCC), and chromophobe

RCC (chRCC). In the WHO classification, with a list of RCC

defined molecularly, including TFE3-rearranged RCC, TFEB-

rearranged RCC, ELOC (TCEB1)-mutated RCC, Fumarate

hydratase (FH)-deficient RCC, Succinate dehydrogenase (SDH)-

deficient RCC, ALK-rearranged RCC, SMARCB1-deficient RCC,

and so on (3), a molecular perspective to define RCC is necessary.

ccRCC is the major type with a high incidence rate and poor

prognosis. Remarkably, several secondary mutations of tumor

suppressor genes and chromatin regulators have been identified

near von Hippel-Lindau (VHL), including PBRM1, BAP1, and

SETD2 (4). Furthermore, metastatic ccRCC occurs in about 30%

of patients, and there are few effective treatment options available

(5). Despite advances in chemotherapeutic drugs, chemotherapy

resistance remains a problem in ccRCC treatment; therefore, there

is an urgent need to understand the regulatory mechanism

underlying the recurrence and metastasis of ccRCC, identify

possible therapeutic targets and develop new therapeutic options.

Epigenetic regulation, including histone modification, plays a

crucial role in maintaining eukaryotic genome stability, gene

expression regulation, and chromatin structure. Histone H3 lysine

36 trimethylation (H3K36me3) is involved in the regulation of

transcriptional activation and RNA splicing, as well as DNA repair

and recombination (6). In mammalian cells, SETD2 is the main

H3K36me3 methyltransferase (7), and genomic profiling of ccRCC

clinical samples revealed high-frequency SETD2 mutations. SETD2

has been reported to accelerate ccRCC progression (4, 8) and is a

potential prognostic and predictive marker in both localized and

metastatic RCC (9). This paper reviews the multiple roles and

functions of SETD2 in the occurrence and progression of ccRCC.
2 Protein structure of SETD2

The human SETD2 gene is located in the p21.31 region of

chromosome 3, where the copy number is frequently lost in many

tumors. Thus, SETD2 is generally considered a tumor suppressor.
Frontiers in Oncology 02141
The human SETD2 protein consists of several conserved functional

domains, containing the AWS (associated with SET)-SET-PS (post-

SET) domains, WW domains, SRI (Set2-Rpb1 Interacting domain),

SETD2-hnRNP interaction (SHI) domains, and a large

unstructured N-terminal domain (Figure 1).
2.1 The AWS-SET-PS domains

The AWS-SET-PS domains are essential as a catalytic

methyltransferase domain for H3K36me3; the AWS and post-SET

domains are flanked onto the SET domain at the N- and C-terminally,

respectively. All methylation of H3K36me2 to H3K36me3 depends on

the SET domain, with S-adenosylmethionine (SAM) as the cofactor,

providing an additional methyl (10). It is reported that the H3K36M

oncohistone mutation inhibits SETD2 methyltransferase activity; the

structure of the SETD2-H3K36M-SAM complex suggests that SAM

indirectly affects the SETD2-H3K36M interaction and maintains the

SET domain in the proper fold state (11). The AWS-SET-PS domains

of SETD2 recognize the a-N helix of histone H3 and bind to the

nucleosome DNA by cryo-EM analyses (12).
2.2 The Set2-Rpb1 interacting domain

The SRI domain of 108 amino acids at the C-terminal end is the

main region that interacts with RNA polymerase II (RNAPII), entering

a transcription elongation phase. The SRI domain binds to RNAPII-C

terminal domain (RNAPII-CTD) Ser5P and Ser2P (13) and promotes

SETD2 activity to modify H3K36me3, particularly along the 3’ end of

the coding sequences of long genes (Figure 2). This association is

crucial for SETD2 activity and stability. In addition, the SRI domain of

SETD2 is also required for microtubule lysine 40 trimethylation (a-
TubK40me3) (14, 15) (Figure 2). Molenaar et al. recently reported that

overexpression of the SRI domain significantly inhibited H3K36me3

and enlarged cell size (16).
2.3 The WW domain

The WW domain comprises two conserved tryptophan (W)

residues in the SETD2 C-terminus. The WW domain interacts with
FIGURE 1

The protein domains of human SETD2. AWS, associated with-SET domain; AID, auto-inhibitory domain; WW, tryptophan-tryptophan domain; CC,
coiled-coil domain; SHI, SETD2-hnRNP interaction domain; SRI, Set2-Rpb1 interacting domain.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1114461
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2023.1114461
proline-rich or proline-containing motifs of other proteins

mediating protein-protein interactions (17). For example, the

WW domain interacts with the Huntingtin (HTT) proline-rich

region (PRR) and the actin-binding adaptor HTT-interacting

protein 1-related protein (HIP1R), leading to SETD2 tri-

methylating actin at lysine 68 (ActK68me3) (Figure 2). The

SETD2-HTT-HIP1R axis modifies actin, which increases actin

polymerization and promotes cell migration (18).
2.4 The SHI domain

The structure of the coiled-coil (CC) domain has been predicted

by in-silico calculations to be a conserved motif that participates in

protein-protein interactions in yeast and promotes protein

homodimerization. In human SETD2, the predicted structure of

the CC domain is much shorter (19). The SHI domain contains the

CC domain and adjacent unstructured sequences in a recently

identified region. The histone mark H3K36me3 is known to

regulate splicing (8). The SHI region interacts with heterogeneous

nuclear ribonucleoprotein L (hnRNP L), RNA-recognition motif 2

(RRM2), as well as other splicing-related factors associated with

RNA processing (20). Crystallographic analysis revealed that the

Leu-Leu in the SHI domain is important for the interaction (21).

Moreover, the double mutant that lacks both the SHI and SRI

domains lost practically all catalyzing H3K36me3 activity,

indicating that these domains are regulators of SETD2 activity.

SETD2 activity toward H3K36me3 modification is similarly

influenced by the SHI domain (20).
2.5 Auto-inhibitory domain

The AID domain in the middle region of Set2 (a yeast ortholog

of human SETD2) suppresses SET domain activity, and the AID
Frontiers in Oncology 03142
domain suppresses its catalytic activity when the SRI domain is lost.

AID mutations usually lead to excessive activity of Set2 in vivo and

promote the abnormal methylation of Set2 to histones (22). The

AID and SRI domains synergistically control the catalytic SET

domain, with AID mutations resulting in changes in Set2 protein

stability and binding to RNAPII-CTD and variable H3K36me3

levels. In summary, Set2 AID exerts repressive effects requiring the

presence of the SRI domain and Set2 SRI to interact with RNAPII

and histones, ensuring that H3K36 methylation occurs explicitly on

the active transcript chromatin. Therefore, under specific growth

conditions, the Set2 autoinhibitory domain may serve as a target for

other regulators (23). It would be intriguing to ascertain whether the

Set2 AID interacts with any proteins and whether this interaction

infuses Set2 activity via the AID-SRI axis (19). All the above studies

are implemented in yeast, but there are no reports about the

structure and function of human AID as yet.
2.6 The large unstructured
N−terminal domain

Human SETD2 has an extended N-terminal region with

unknown function (~1400 amino acids) and is unstructured.

SETD2 is an unstable protein that depends on the degradation of

the proteasome (24). It was recently reported that the N-terminal

region regulates its half-life by the proteasome system, and removal

of the N-terminal region leads to SETD2 stabilization (25), and a

segment (aa 1104-1403) of the N-terminal region contributes to

SETD2 degradation by the proteasome (24). SETD2 is an

intrinsically aggregation-prone protein, and the N-terminal region

contributes to SETD2 droplet formation in vivo, a property that is

enhanced by its reduced degradation. The N-terminal region is

conducive to the liquid-liquid phase separation of the protein, and

the phase separation behavior of SETD2 intensifies with the

removal of the N-terminal fragment (26). Thus, the N-terminal
FIGURE 2

SETD2 catalyzes histone and non-histone substrate methylation. SETD2 has initially identified a methyltransferase that trimethylates H3 histones on
lysine 36, also occurs on the non‐histone substrate, trimethylates a-tubulin at lysine 40 and actin at lysine 68, as well as methylates STAT1 at lysine
525 and EZH2 at lysine 735. RNA Pol II, RNA polymerase II; STAT1, signal transducer and activator of transcription 1; EZH2, enhancer of zeste
homolog 2.
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fragment of SETD2 regulates the amount of SETD2 protein

required in the cell and may contribute to its role in regulating

transcription and splicing.
3 SETD2 and clear cell renal
cell carcinomas

3.1 SETD2 mutation and ccRCC

VHL inactivation occurs in 90% of all ccRCCs, and several

mutations in tumor suppressor genes on chromosome 3p have been

identified: PBRM1, BAP1, and SETD2 (4, 27). SETD2 mutations

occur in about 15% of ccRCC (4). Mono-allelic and bi-allelic

mutations in SETD2 are observed in many cancers, including

ccRCC (28–30). Bi-allelic mutations in SETD2 cause loss of

H3K36me3 in ccRCC (31). SETD2 gene inactivation mutations

are a prevalent molecular feature, and SETD2 deficiency is

associated with ccRCC recurrence and poor prognosis (Tables 1,

2). Moreover, SETD2 mutations are more frequently found in late-

stage ccRCC tumors, which is related to a higher and earlier risk of

relapse and poor survival outcomes (9, 50).

Referenced by cBioPortal database and reported research (31,

32, 34, 36–38, 42), SETD2 mutations were identified in ccRCC

predominantly inactivating, containing nonsense mutations,

missense mutations, frame shift, and fusion, which lead to loss of

function, such as mutations R1625C or R1625G, resulting in a

complete loss of SETD2 enzymatic activity (31, 33) (Table 1). The

presence of intratumor heterogeneity was confirmed in metastatic

renal-cell carcinoma tumors, which demonstrated independent and

different SETD2 mutations in different sections of an individual

tumor (51). Thus, SETD2 plays a critical role in the development

and progression of ccRCC.
3.2 SETD2 serves as a tumor-suppressor
gene in ccRCC

3.2.1 Cryptic transcription
Cryptic transcription initiates transcription from a downstream

“promoter-like” region and produces short and meaningless

transcripts in gene bodies. Previous studies have demonstrated

that SETD2 suppresses cryptic transcription initiation from

within several active gene bodies (52, 53). The histone chaperone

FACT and its subunits SPT16 and SPT6 promote transcriptional

elongation through nucleosome recombination, and deletion of

SETD2 reduces recruitment to FACT and plays a critical role in

repressing cryptic intragenic transcriptional initiation (52). In yeast,

Set2-mediated prevention of cryptic intragenic transcription is

independent on histone deacetylation (54). In mammalian cells,

SETD2-mediated H3K36me3 recruits DNA-methyltransferase 3B

(DNMT3B), resulting in a high density of DNA methylation, and

thus represses transcription from alternate intragenic promoters or

initiation of cryptic transcription (55), protecting RNAPII from

inappropriate transcription re-initiation and enforced silence
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intragenic transcription (53, 56). In conclusion, SETD2 is crucial

in maintaining active gene bodies dormant in mammalian

cells (Figure 3).

3.2.2 RNA splicing
SETD2 is linked to the RNA splicing process. Compared to

controls, SHI domain deletion mutation lost interaction with

hnRNP L and did not affect splicing events (21). SETD2-deficient

ccRCC is susceptible to mis-splicing. Gene set enrichment analysis

(GSEA) shows that SETD2-deficient negatively enriched the gene

related to the mRNA splicing pathway (57). A genome-wide

transcript profile for SETD2-deficient primary ccRCC tumors

demonstrated that altered splicing patterns or splicing defects,

including intron retention and variation in exon utilization, are

widely present in SETD2-deficient cancers. Notably, active genes

also revealed increased chromatin accessibility (39). The increased

chromatin accessibility of upstream abnormally spliced exons and

decreased occupancy of nearby nucleosomes significantly

contribute to the splicing defect in tumors with H3K36me3

deficiency (58).

Proteins containing the Pro-Trp-Trp-Pro (PWWP) domain

play an important role in recognizing H3K36me3. MORF4-

related gene on chromosome 15 (MRG15) can bind to

H3K36me3 (59, 60) and recruit polypyrimidine tract-binding

protein (PTB) to its target alternatively spliced exon sites (61).

Lens epithelium-derived growth factor (LEDGF) binds to

H3K36me3 (62), as well as to both chromatin and multiple

regulators, to modulate alternative splicing events and influence

transcription elongation (63, 64). Zinc finger MYND-domain

containing 11 (ZMYND11) directly binds to H3K36me3 and

H3K36me3-modified chromatin to regulate RNA splicing and Pol

II elongation (65, 66). Furthermore, the deficiency of SETD2-

mediated H3K36me3 reduces the recruitment of readers, resulting

in splicing defects (Figure 3).

3.2.3 DNA damage and repair signaling
SETD2 is vital in the DNA damage response (DDR) by

generating H3K36me3. Cell death occurs if DNA repair fails, and

tumor development may arise from incorrect DNA repair. SETD2

facilitates DNA double-strand breaks (DSBs) repair by homologous

recombination (HR), activating replication protein A (RPA) single-

stranded DNA (ssDNA)-binding protein complex loading and the

formation of RAD51 presynaptic filaments (35, 62, 67, 68). ATM is

activated in DSB, then phosphorylates a variety of downstream

effector proteins, such as p53. SETD2-deficient cancer cells failed to

activate p53 and displayed lower cell survival in DNA damage (62,

67, 68). Ectopic expression of demethylase KDM4A decreased

H3K36me3 levels and resulted in HR (62). Consistent with this,

LEDGF recruits and binds C-terminal binding protein interacting

protein (CtIP), promoting HR by CtIP-dependent DNA end

resection (69). Accordingly, the loss of SETD2 obstructs HR

repair (70, 71). Also, SETD2 promotes DSB repair via

combination with plant homeodomain (PHD) of Ring finger

domains 1 (PHRF1), modulating non-homologous end-joining

(NHEJ) and stabilizing genomic integrity (72). SETD2 has also
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TABLE 1 List of SETD2 mutations reported in ccRCC.

Site Mutation
type Domain Function Ref.

R1625C, R1625H
Missense
Mutation

SET
Oncogenic, inactivate
SETD2 enzymatic
activity

(31–
33)

X2413_splice Splice Site WW Oncogenic
(32,
34,
35)

X2478_splice Splice Site SRI
Oncogenic, lose the
interaction with RNA
polymerase II

(32,
34–
36)

K2545*
Frame Shift
Ins

SRI
Oncogenic, lose the
interaction with RNA
polymerase II

(32,
34,
35)

T2540Sfs*22, D2504*
Frame Shift
Del

SRI
Oncogenic, lose the
interaction with RNA
polymerase II

(32,
34,
35)

K2511=
Splice
Region

SRI
Oncogenic, lose the
interaction with RNA
polymerase II

(32,
34,
35)

Y2489*
Nonsense
Mutation

SRI
Oncogenic, lose the
interaction with RNA
polymerase II

(32,
34,
35)

X2477_splice Splice Site SRI
Oncogenic, lose the
interaction with RNA
polymerase II

(32,
34,
35)

X2475_splice Splice Site SRI
Oncogenic, lose the
interaction with RNA
polymerase II

(32,
34,
35,
37)

Q2207*
Nonsense
Mutation

SHI Oncogenic
(32,
34,
35)

Y1666H
Missense
Mutation

SET
Oncogenic, SETD2
Y1666 interact with
H3K36M

(38)

Y1666*
Nonsense
Mutation

SET Oncogenic
(32,
34,
35)

X1572_splice Splice Site SET Oncogenic
(32,
34,
35)

V1656Efs*11
Frame Shift
Ins

SET Oncogenic
(32,
34,
35)

X1640_splice Splice Site SET Oncogenic
(32,
34,
35)

X1672_splice
Splice
Region

SET Oncogenic
(32,
34,
35)

Y1688_L1689delins*
Nonsense
Mutation

Post-SET Oncogenic
(32,
34,
35)

(Continued)
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TABLE 1 Continued

Site Mutation
type Domain Function Ref.

L2124*
Nonsense
Mutation

CC Oncogenic
(32,
34,
35)

X1529_splice Splice Site AWS Oncogenic
(32,
34,
35)

S203Ifs*33, K1969Nfs*2, P1973Lfs*33, K941Rfs*41, T2372Sfs*54, S708Hfs*54, S595Kfs*3, Y1286Sfs*12,
L1778Cfs*9, R1994Nfs*9, P1822Qfs*16 (Germline), R1694Sfs*17, L2364Cfs*8, K1863Sfs*2 (Germline),
I669*, D289Mfs*12, P1873Nfs*10, D2004Ifs*2, I1194Yfs*42, Y2296Lfs*72, P2380Tfs*31

Frame Shift
Del

– Oncogenic
(32,
34,
35)

Q109*, S185*, Q256*, R368*, R400*, K466*, E505*, K528*, G538*, S543*, Y545*, S560*, S618*, C727*,
E777*, R973*, S996*, Y1113*, W1217*, R1322*, Q1368*, Y1472*, R1492*, E1720*, L1748*, W1782*,
E1964*, Q2277*

Nonsense
Mutation

– Oncogenic
(32,
34,
35)

S2382Lfs*47, S546Ffs*2, D1456Gfs*28, T2443Nfs*3, P2288Ifs*22, P230Tfs*7 (Germline)
Frame Shift
Ins

– Oncogenic
(32,
34,
35)

X1485_splice, X2450_splice, X2037_splice Splice Site – Oncogenic
(32,
34,
35)

X2037_splice
Splice
Region

– Oncogenic
(32,
34,
35)

R2510H
Missense
Mutation

SRI

Globally restore
H3K36me3; loss of
both tubulin binding
and methylation

(15,
31)

G1681fs, Q320fs
Frame Shift
Del

SET
Reduce SETD2
enzymatic activity

(39)

R2510L
Missense
Mutation

SRI
Reduce SETD2
enzymatic activity

(39)

E978*, Q1409*
Nonsense
Mutation

–
Inactivate SETD2
enzymatic activity

(39)

N1734D, S1769P
Missense
Mutation

–

Facilitate localization of
hMSH6 (hMutSa) to
chromatin

(40)

R2132fsX13
Frame Shift
Del

–

Result in a PTC 42
nucleotides
downstream

(41)

D1616N
Missense
Mutation

SET
Influence
methyltransferase
activity of SETD2

(41)

T2354A
Missense
Mutation

–
Affect transcriptional
activation activity

(41)

K2541fs
Frame Shift
Ins

SRI
Oncogenic, lose the
interaction with RNA
polymerase II

(37)

E2120fs
Frame Shift
Del

CC Unknown (37)

F1651Lfs*12
Frame Shift
Del

SET Unknown (42)

Q2131*
Nonsense
Mutation

CC Unknown (42)

(Continued)
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been proven to trigger DNA mismatch repair (MMR). Specifically,

the mismatch recognition protein hMutSa (hMSH2-hMSH6),

hMSH6 contains a PWWP domain that recruits and interacts

with H3K36me3 like many other H3K36me3 effector proteins.

hMSH6 foci are reduced in SETD2 knockdown cancer cells (40).

The crystal structure modeling revealed that H3G34R/V mutations

block the SETD2 catalytic activity and inhibit H3K36me3-MSH6

interaction from inducing tumorigenesis (73). SETD2-deficient cells

exhibit microsatellite instability (MSI) with a high frequency of

spontaneous mutations (40). Compared to introns and non-

transcribed regions, H3K36me3 and MutS are more enriched in

exons as well as active transcriptional regions and transcriptionally

protect against actively transcribed genes (74). Recent studies

suggest that targeting DDR is feasible to achieve immunotherapy

in ccRCC (75, 76) (Figure 3).

3.2.4 Autophagy
Autophagy is involved in physiological and pathological

processes and tightly regulated by a network of autophagy-related

genes (ATG). Also, the actin cytoskeleton regulates autophagy

dynamics (77). Autophagy is an intracellular degradation system

procedure associated with cytoplasmic events, and key epigenetic

events are recognized to be significant for this progression. De facto,

histone post-translational modification plays a central role in
Frontiers in Oncology 07146
regulating transcriptional programs and epigenetic networks

during autophagy (78–83).

Autophagy is an important regulatory process in ccRCC (84–

86). The deficiency of SETD2 in ccRCC cells reduces LC3-II

expression, which is linked with abnormal cumulative ATG12 in

free and complexes containing ATG12, except for the ATG5-

ATG12 complex. Furthermore, SETD2-loss deregulates alternative

splicing, which is related to increased ATG12 short isoform and

reduced conventional ATG12 long isoform (43). Another research

confirms that SETD2 knockdown causes a decreased expression of

ATG14 long isoform in HeLa cells (87). Whether ATG14 long

isoforms expression is down-regulated in ccRCC cells with a high-

frequency mutation in SETD2 remains to be further investigated.

Autophagy also involves the actin cytoskeleton. As mentioned

before, SETD2 trimethylates actin (ActK68me3), cells lacking

SETD2 have decreased interaction of the actin nucleation-

promoting factor WHAMM with its target actin, actin filaments

are required for initiation of autophagy in ccRCC, and autophagy

markers LC3-II and p62 are decreased (44).

Recent studies display that the components of the autophagic

system play a central role in regulating the innate immune system

(88, 89). In pancreatic ductal adenocarcinoma cells, autophagy

deficiency results in increased MHC-I expression and increased

infiltration of CD8+ T cells. Inhibition of autophagy or lysosomal
TABLE 1 Continued

Site Mutation
type Domain Function Ref.

E2128*
Nonsense
Mutation

SHI Unknown (42)

T2513I
Missense
Mutation

SRI Unknown (42)

W2417Lfs*7
Frame Shift
Del

WW Unknown (42)

C1516S
Missense
Mutation

AWS Unknown (42)

SETD2-QRICH1 Fusion – Oncogenic
(32,
34,
35)
frontier
Frame Shift Ins, Frame Shift Insertion; Frame Shift Del, Frame Shift Deletion; PTC, Premature Termination Codons. The asterisk (*) indicates the stop codon.
TABLE 2 Effects and mechanisms of SETD2 deficiency in ccRCC.

Effect Mechanism Cell type Ref.

Decreased autophagic flux
Increase ATG12 short isoform ACHN, Caki-1 (43)

Inhibit the actin-WHAMM interaction 786-O (44)

Metabolic alterations
Enhance oxidative phosphorylation 786-O (45)

Inhibit multiple metabolic-related genes 293T (46)

Promotes metastases Induce the recruitment of histone chaperone ASF1A/B and SPT16, increase MMP1 chromatin accessibility JHRCC12, Caki-2 (47)

Cell cycle arrest RRM2 expression reduction, dNTP depletion, S-phase arrest A498 (48)

PKD conversion to ccRCC Activate the Wnt/b-catenin signaling pathway PETC, 293T (49)
ATG12, autophagy-related gene 12; WHAMM, WAS Protein Homolog Associated with Actin, Golgi Membranes, and Microtubules; ASF1A/B, anti-silencing function 1 A/B; SPT16, suppressor
of Ty 16; MMP1, matrix metalloproteinase-1; RRM2, Ribonucleotide reductase (RNR) small subunit M2; PKD, Polycystic Kidney Disease.
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production increases MHC-I expression, enhances the adaptive

immune response, and inhibits the generation of tumors (90).

Thus, tumor-autonomous autophagy can alter tumor growth by

regulating immune responses. SETD2 promotes autophagy flux.

Therefore, further understanding the pathways inhibited by SETD2

deficiency in ccRCC may help identify immunotherapy targets.

3.2.5 Cancer metabolism
ccRCC is considered a metabolic disease and involves several

inactivated genes (91), such as VHL, controlled tumor energetics

and biosynthesis, and the hypoxia pathway (92). The KEGG

pathway-based study identified compounds that were present in

varied abundance in tumor and normal kidney tissues. Remarkably,

most of the upregulated pathways in tumor tissues were engaged in

carbohydrate metabolism, whereas the deregulated pathways

involved amino acid metabolism (93).

However, the influence of inactivated SETD2 on metabolic

reprogramming is unclear. Compared to parental 786-O cells,

SETD2-deficient cells promote PGC1a, increase oxidative

phosphorylation, and elevate mitochondrial oxidative metabolism.
Frontiers in Oncology 08147
Acetyl-CoA is a pivotal substance in biochemical metabolism,

which enters the TCA cycle for oxidation and catabolism, and

also as a source of fatty acid synthesis, given fatty acid metabolism is

always associated with metastasis. Liu et al., hypothesized that

enhanced TCA metabolite acetyl-CoA may shunt fatty acid

synthesis, resulting in cancer metastasis (45). Compared to wild-

type cells, SETD2 knockout cells inhibit multiple metabolic-related

genes in the various metabolic pathways (46). Therefore, tumor

metastasis accompanied by metabolic alterations and further

metabolic pathways analysis of SETD2 inactivated in ccRCC will

have the potent ia l to discover new therapeut ics for

precision medicine.

3.2.6 Metastases
Previous studies identified an association between SETD2

mutations and the prognosis of patients with localized ccRCC.

The mono-allelic mutant of SETD2 is insignificant in H3K36me3

modification. SETD2 loss-of-function mutations were revealed in

10%~20% of primary ccRCC tumors, increasing to 30%~60% of

metastatic ccRCC tumors. A significant reduction in H3K36
FIGURE 3

Schematic overview of SETD2 functions. SETD2-mediated H3K36me3 plays important biological roles in ccRCC. Cryptic transcription: SETD2-
mediated H3K36me3 recruits DNMT3B to target intragenic DNA methylation. RNA splicing: SETD2-mediated H3K36me3 recruits splice factors
MRG15, LEDGF and ZMYND11 to modulate alternative splicing events. DNA damage repair: SETD2-mediated H3K36me3 recruits LEDGF, and LEDGF
binds CtIP at the break site to promote HR repair. SETD2-mediated H3K36me3 recruits PHRF1 to modulate NHEJ repair. SETD2-mediated
H3K36me3 recruits hMutSa (hMSH2-hMSH6) to MMR repair. DNMT3B, DNA-methyltransferase 3B; MRG15, MORF4-related gene on chromosome
15; LEDGF, lens epithelium-derived growth factor; ZMYND11, Zinc finger MYND-domain containing 11; HR, Homologous recombination; CtIP, C-
terminal binding protein interacting protein; RPA, replication protein A; NHEJ, non-homologous end-joining; PHRF1, plant homeodomain of Ring
finger domains 1; MMR, mismatch repair; MSH2, MutSa homolog 2; MSH6, MutSa homolog 6.
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methylation was also found in both ccRCC cell lines and patient

samples, suggesting the potential involvement of SETD2 in driving

ccRCC metastatic progression (8, 9). In the TCGA cohort, SETD2

mutations were correlated with poorer cancer-specific survival in

ccRCC patients (50). Immunohistochemical staining displayed a

gradually decreasing H3K36me3 modification with distant

metastases from primary ccRCC tumors. During the progression

of ccRCC, H3K36me3 is reduced in distant metastases, and regional

H3K36me3 alterations influence alternative splicing in ccRCC (94–

97). The H3K36me3 dysregulation axis is linked to an increased risk

of death from RCC. Specifically, this connection is substantial,

especially for patients with low-risk malignancies (98); however,

the mechanism by which SETD2 causes cell metastasis has not been

fully elucidated.

The activation of enhancer elements that promote metastatic

carcinoma progression has been proven in several cancers,

including ccRCC (99–101). Increased chromatin accessibility

containing activating enhancers is regulated by aberrant histone

chaperone recruitment and activity (102, 103). A recent study has

shown that SETD2 deficiency mediated reduction of H3K36me3

induced the recruitment of histone chaperone ASF1A/B and SPT16,

increased MMP1 chromatin accessibility, and activated enhancers

to drive genes involved in metastasis, promoted ccRCC

metastasis (47).

3.2.7 Cell proliferation and cell cycle regulation
SETD2 stabilization increases cell proliferation contrary to its

canonical role as a tumor suppressor (25). According to Li et al.,

decreased SETD2 reduces cell proliferation and can be restored by

CDK1 knockdown. Multiple SETD2-regulated cellular pathways

suppress cancer development and uncover mechanisms

underlying aberrant cell cycle regulation in SETD2-depleted cells

(46). SETD2 is a tumor suppressor in renal primary tubular

epithelial cells (PTECs). The proliferative capacity of SETD2-

knockdown PTECs was higher than that of SETD2 wild-type

PTECs, indicating that SETD2 inactivation enables PTECs to

facilitate a malignant transformation toward ccRCC (67).

Generally, DNA damage could cause cell cycle arrest. The

abundance of H3K36me3 ensures the recruitment of DNA

damage repair key proteins during DNA replication to restore

genome integrity in G1 and early S phase (40, 104). Replication

fork speed is also decreased in ccRCC cells when SETD2 is depleted

(35). Throughout the cell cycle, the SETD2 protein level is minimal

in G1 and maximal in G2/M. Both H3K36me3 and WEE1 are

critical in DNA replication and promote ribonucleotide reductase

subunit (RRM2) expression, respectively. In SETD2-deficient cells,

WEE1 inhibition reduces dNTP and RRM2 with higher sensitivity,

resulting in S-phase arrest (48).

In recent studies, Helena et al. and Zhu et al. found SETD2 can

also catalyze H3K37me1 and H3K14me3, H3K14me3 recruits the

RPA complex to active Ataxia telangiectasia and Rad3 related

(ATR) during replication stress, which plays a crucial role in the

DNA replication stress response and negatively regulates

replication initiation, the deletion of SETD2 reduces replication

stress in the absence of H3K37me1 and H3K14me3 (105, 106). In
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conclusion, SETD2 controls the proper course of the S-phase, and

catalyzes H3K37me1 and H3K14me3 to regulate the replication

progress. However, the detailed correlation between SETD2 and cell

cycle regulation is still incomplete and requires further exploration.

3.2.8 Non-histone substrates of SETD2
SETD2 is the main H3K36me3 methyltransferase in

mammalian cells. Recent studies have suggested that SETD2

could also catalyze non-histone substrate methylation. During

ccRCC mitosis, SETD2 trimethylates a-TubK40me3 and

maintains genomic stability. Mono-allelic mutation of SETD2

results in a-TubK40me3 deficiency, leading to chromosome

abnormalities and genomic instability exhibiting multipolar

spindle formation, chromosome bridges, micronuclei, polyploidy,

and multiple nuclei (14). SETD2, as a chromatocytoskeletal

remodeler, trimethylates ActK68me3. The SETD2-HTT-HIP1R

axis modifies actin, which increases actin polymerization and

promotes ccRCC migration (18). In addition, SETD2 methylates

STAT1 on lysine 525 promotes IFNa-dependent antiviral

immunity (107), and methylates EZH2 on lysine 735 inhibits

prostate cancer metastasis (33). Since SETD2 and EZH2

commonly occur abnormally in urological cancers, the SETD2-

EZH2 axis may also be promising targets for pharmacological

intervention in ccRCC. In order to search the specificity substrate

sequence of SETD2, the amino acid specificity profile of the SETD2

substrate sequence was determined by the peptide SPOT arrays and

find the super-matching methylation site on K666 of FBN-1 (108).

Further cytological work is still needed to demonstrate that FBN1 is

a methylated substrate of SETD2.

A recent study reported that SETD2 could indirectly methylate

non-histone substrates, loss of SETD2 increases protein translation-

related gene expression and decreases eEF1A1 K165me3 and

K318me1 in ccRCC, but SETD2 is associated with eEF1A1

methylation indirectly, SET domain of SETD2 regulated the

expression of EEF1AKMT2 and EEF1AKMT3, EEF1AKMT3

methylates eEF1A1 on lysine 165 and EEF1AKMT2 methylates

eEF1A1 on lysine 318 (109). Finally, the discovery of SETD2 for

non-histone substrates is particularly crucial for a more in-depth

understanding of its biological role (Figure 2).
3.2.9 Other functions
Recent research has depicted that multiple chromatin

remodeling enzymes are genetically inactive in ccRCC. Even

though there is emerging evidence that epigenetic changes are

important in cancer, only DNA methylation changes have been

identified (92). Widespread DNA hypomethylation correlates to the

mutation of the H3K36 methyltransferase SETD2 (94).

Patients with polycystic kidney disease (PKD) have a high

probability of converting to RCC. However, there is a paucity of

knowledge regarding how PKD can develop into RCC, necessitating

further research into genetic alterations or the regulation of

signaling pathways. Li et al. found that SETD2 deletion can lead

to increased activation of the Wnt/b-catenin signaling pathway and

promote epithelial-mesenchymal transition and tumor formation.
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SETD2 plays an essential role in the process of the conversion of

PKD to ccRCC (49).

Emerging evidence suggests that exosomal circRNAs might be

potential cancer biomarkers (110–112). He et al. reported that

circulating exosomal mRNA (emRNA) is a potential diagnostic

biomarker of ccRCC; thus, an emRNA-based screening signature

could be developed to provide noninvasive indicators for

ccRCC (113).
4 Conclusion

SETD2-mediated H3K36me3 enhances transcriptional

elongation and is also involved in DNA damage repair and

alternative splicing (Figures 2, 3). SETD2 mutations have been

identified in ccRCC (41), but further research should focus on the

association with the function of SETD2 and ccRCC. Loss of SETD2

in ccRCC is related to decreased autophagy processing, greater

levels of general metabolic activity, poorer cancer-specific survival

in ccRCC patients, and slower replication fork speed.

As a tumor suppressor, SETD2 may serve as a biomarker to

reduce drug resistance to targeted therapy and as a potential

therapeutic target to promote individualized treatment and

improve patient survival. The TCGA pan-cancer cohort shows

that patients with SETD2 mutations have a higher immune-

related gene expression and MSI. Clinical data analysis of cancer

patients treated with immune checkpoint inhibitors demonstrated

that SETD2 mutation is a potential biomarker (114). 5-aza-2’-

deoxycytidine (DAC) is used clinically to treat tumors with

mutations in chromatin regulators, which competitively inhibits

DNA methyltransferase activity and demethylates DNA.

H3K36me3 is reduced in SETD2-deficient tumor cells, decreasing

the recruitment of DNMT3B and the methylation of DNA,

increasing interferon immune responses and the expression of

transposable elements, therefore improving the sensitivity to

DAC. In wild-type tumors, the number of myeloid-derived

immune suppressive cell (MDSC) increased with DAC treatment.

In the SETD2-knockdown tumor model, increased CD8+ T cell

infiltration and fewer MDSC following combined treatment with

DAC and anti-PD-L1. ccRCC with altered SETD2 gene provides

preclinical support for a therapeutic target for DAC and anti-PD-L1

(57). A case report about advanced HCC showed that

immunotherapy could be effective, leading to long-term survival,

and they focused on two mutated genes, SETD2 and LRP1B, to

further explore (115). Thus, the hypermutated SETD2 in ccRCC is

worthy of attention.

With current innovations in genome engineering and

proteomics, the role of SETD2 in normal cells and cancer will be

better understood at the molecular level. Nonetheless, it is urgent to

explore whether and how SETD2 regulates the molecular

mechanisms of recurrence and ccRCC metastasis.
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Furthermore, SMYD5 and SETD5 were also demonstrated to

catalyze H3K36me3 (7, 116). A growing number of enzymes were

initially discovered for methylating additional amino acid residues

of histones and other proteins (117), so a reanalysis of known

histone methyltransferases is necessary.

In conclusion, the in-depth study of SETD2 during tumor

formation and development is warranted for diagnosing, treating,

and preventing tumors. It is anticipated that further epigenetics

studies will reveal the regulatory pathway of SETD2 expression.
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Background: Clear cell renal cell carcinoma (ccRCC) patients with venous tumor

thrombus (VTT) have poor prognosis. We aimed to reveal features of ccRCC with

VTT and develop a urine-based prognostic classifier to predict ccRCC prognosis

through integrative analyses of transcriptomic landscape and urinary signature.

Methods: RNA sequencing was performed in five patients with ccRCC

thrombus-tumor-normal tissue triples, while mass spectrometry was

performed for urine samples from 12 ccRCC and 11 healthy controls. A urine-

based classifier consisting of three proteins was developed to predict patients’

survival and validated in an independent cohort.

Results: Transcriptomic analysis identified 856 invasion-associated differentially

expressed genes (DEGs). Furthermore, proteomic analysis showed 133

differentially expressed proteins (DEPs). Integration of transcriptomic landscape

and urinary signature reveals 6 urinary detectable proteins (VSIG4, C3, GAL3ST1,

TGFBI, AKR1C3, P4HB) displaying abundance changes consistent with

corresponding genes in transcriptomic profiling. According to TCGA database,

VSIG4, TGFBI, and P4HBwere significantly overexpressed in patients with shorter

survival and might be independent prognostic factors for ccRCC (all p<0.05). A

prognostic classifier consisting of the three DEPs highly associated with survival

performed satisfactorily in predicting overall survival (HR=2.0, p<0.01) and

disease-free survival (HR=1.6, p<0.001) of ccRCC patients. The ELISA analysis

of urine samples from an independent cohort confirmed the satisfied predictive

power of the classifier for pathological grade (AUC=0.795, p<0.001) and stage

(AUC=0.894, p<0.001).

Conclusion: Based on integrative analyses of transcriptomic landscape and

urinary signature, the urine-based prognostic classifier consisting of VSIG4,

TGFBI, and P4HB has satisfied predictive power of ccRCC prognosis and may

facilitate ccRCC molecular subtyping and treatment.
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frontiersin.org01153

https://www.frontiersin.org/articles/10.3389/fonc.2023.1102623/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1102623/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1102623/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1102623/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1102623/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1102623&domain=pdf&date_stamp=2023-03-24
mailto:neilsxl@foxmail.com
mailto:huamm19@163.com
https://doi.org/10.3389/fonc.2023.1102623
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1102623
https://www.frontiersin.org/journals/oncology


Zhang et al. 10.3389/fonc.2023.1102623
Introduction

Renal cell carcinoma (RCC) is a frequently diagnosed cancer

originating from the renal epithelium, with an estimated 431,280

new incidences globally in 2020 (1). RCC comprises a

heterogeneous group of malignant tumors, of which the most

common (~70%) and aggressive histological subtype is clear cell

RCC (ccRCC) (2). ccRCC is prone to metastasis, as about 30% of the

patients have metastasis at the first visit, and one-third of the

remaining patients have recurrence and metastasis after surgery (3,

4). In addition, 4%-15% of the patients have their primary tumor

invading the venous system to form venous tumor thrombus

(VTT). The ccRCC patients with VTT exhibit poor prognosis if

left untreated, with a 5-year disease-specific survival rate of 10% (2,

5). The current first-line regimen for metastatic and locally

advanced ccRCC is immune checkpoint inhibitor combined with

tyrosine kinase inhibitor (6). Although it has greatly improved the

survival of ccRCC patients, the acquired resistance after receiving

treatment or even original drug resistance are still challenges (7–9).

Timely identification of these cases would improve the overall

survival (OS) of ccRCC patients.

At present, the risk stratification and prognosis prediction

models in current clinical practice are mainly pathological

characteristics including WHO/ISUP grades and TNM stages (6).

However, patients with similar clinical and pathological features

may have different prognosis in that ccRCC exhibited extensive

functional and genomic intratumoral heterogeneity (10, 11).

Therefore, it is urgent to discover those molecular markers related

to prognosis, so as to develop a prognostic classifier to facilitate

ccRCC molecular subtyping and treatment. As an important

method of liquid biopsy, urine is the ideal biological matrix for
Frontiers in Oncology 02154
discovery of cancer biomarkers, in particular for kidney-related

diagnostics (12). In addition, its non-invasive and cost-effective

natures make it suitable for providing a personalized snapshot of

disease during active surveillance or postoperative follow-up (13).

In the study, we first reveal features of ccRCC with VTT

through integrative analyses of transcriptomic landscape and

urinary signature. Second, a urine-based prognostic classifier

consisting of the prognosis-related proteins was developed to

predict ccRCC prognosis. Finally, the predictive efficiency of this

prognostic classifier was further validated by ELISA analysis of

urine samples from an independent cohort to facilitate ccRCC

molecular subtyping.
Materials and methods

Patient selection and sample collection

For RNA sequencing, patients were included if they had

histologically confirmed ccRCC with VTT. The ccRCC thrombus-

tumor-normal tissue triples of 5 cases were obtained following

nephrectomy and tumor thrombus resection (Supplementary

Table 1). For mass spectrometry, 12 patients with histological-

type ccRCC undergoing nephrectomy and 11 healthy donor

volunteers from the same period were included (Supplementary

Table 2). Their samples of the second urine in the morning were

collected before surgery in sterile tubes containing 1 mM of

phenylmethanesulfonyl fluoride (Sigma, St. Louis, MO) to inhibit

proteases. In addition, 54 urine samples from an independent

cohort of consecutive ccRCC patients were also collected for

ELISA analysis (Supplementary Table 3). Figure 1 shows a
FIGURE 1

Flowchart of RNA sequencing in ccRCC patients with thrombus-tumor-normal tissue triples and mass spectrometry in urine samples from ccRCC
patients and healthy controls to develop a urine-based prognostic classifier for predicting ccRCC prognosis.
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workflow summary of the transcriptomic and proteomic research

that revealed characteristics of ccRCC with VTT and developed a

urine-based prognostic classifier to predict ccRCC prognosis. The

study was approved by the ethics committee of Changhai Hospital,

Naval Medical University, and written informed consent was

obtained from all participants prior to study enrollment.
RNA sequencing

Total RNA of thrombus, tumor and normal tissue from ccRCC

patients was extracted using the mirVana miRNA Isolation Kit

(Ambion, TX, USA) following the manufacturer’s instructions.

RNA pur i ty was checked us ing a NanoPhotomete r

spectrophotometer (IMPLEN, CA, USA). The TruSeq Stranded

mRNA LTSample Prep Kit (Illumina, CA, USA) was used to

build the libraries. Then these libraries were sequenced on the

Illumina sequencing platform (HiSeqTM 2500 or Illumina HiSeq X

Ten) and 150 bp paired-end reads were generated.
Mass spectrometry

The urine samples were centrifugated to collect the supernatant,

and then the protein extract in urine supernatant was digested into

peptides with trypsin. The peptides were subjected to capillary

source followed by the timsTOF Pro (Bruker Daltonics) mass

spectrometry. The electrospray voltage applied was 1.60 kV.

Precursors and fragments were analyzed at the TOF detector,

with a MS/MS scan range from 100-1700 m/z. The timsTOF Pro

was operated in parallel accumulation serial fragmentation (PASEF)

mode. Precursors with charge states 0 to 5 were selected for

fragmentation, and 10 PASEF-MS/MS scans were acquired per

cycle. The dynamic exclusion was set to 30s.
Analyses of differentially expressed
genes/proteins

The analyses of differentially expressed genes (DEGs) and

differentially expressed proteins (DEPs) were performed using the

“limma” package of R statistical software.

DEGs were divided among three groups: RCC vs. normal renal

tissue (NRT), VTT vs. NRT, VTT vs. RCC. The DEGs which co-

expressed in RCC vs. NRT and VTT vs. NRT and those in VTT vs.

RCC were defined as thrombus invasion-associated genes.

Furthermore, DEPs were selected based on their different levels

between urinary samples of ccRCC patients and healthy controls.

DEGs/DEPs were defined by |log2 FC|>2 and P<0.05. For the public

single-cell RNA sequencing data, the transcriptional profiles from

all ccRCC patients and samples were visualized via uniform

manifold approximation and projection. Then, the normalized

expressions of DEGs were presented in all single-cell clusters and

compared among tissues of ccRCC tumor, adjacent normal kidney,

and lymph node. Gene Ontology (GO) functional annotation and

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
Frontiers in Oncology 03155
enrichment were performed using the “clusterProfiler” package of

R statistical software.
Screening of prognostic proteins
for survival

Using the survival package, the univariate Cox regression analysis

was carried out to targetedproteins linked toOS. (version3.3.1; https://

github.com/therneau/survival). The optimal prognostic protein set for

OS was further screened on the basis of SVM-RFE method using the

e1071 (version 1.7.1; https://cran.r-project.org/web/packages/e1071)

and caret packages (version 6.0.76; https://cran.r-project.org/web/

packages/caret). The SVM classifier was then built to predict OS

according to the expression levels of optimal prognostic protein set.

Additionally, the results of the SVM classification analysis were

validated using data from The Cancer Genome Atlas-Kidney Renal

Clear Cell Carcinoma (TCGA-KIRC) dataset.
Development and validation of prognostic
classifier for survival

Themultivariate Cox regression analysis was performed to extract

independent prognostic genes for OS using survival package (version

3.3.1; https://github.com/therneau/survival). Afterwards, a risk score

model of prognostic makers was established according to following

formula: risk score = ∑bDEPs × ExpDEPs. ThebDEPs represented the
estimated contribution coefficient of independent prognostic proteins

inmultivariate Cox regression analysis and ExpDEPsdenoted the level

of independent prognostic genes. Then, all patients were divided into

high- or low-risk groups with the median of risk scores as the cutoff.
Statistical analysis

All data processing and statistical tests were performed using R

4.1.2 and further visualized using GraphPad Prism 6. The

continuous parametric variables were displayed as mean ±

standard deviation and compared using Student’s t-Test. The

hazard ratios (ORs) and corresponding 95% confidence intervals

(CIs) of the selected predictors of survival were also presented. The

difference in survival between two groups was shown with Kaplan-

Meier curves, and the receiver operating characteristic curve (ROC)

for pathological grades and stages were drawn to obtain the area

under the curve (AUC) values. Statistically significant P value was

set at 0.05 with two sides.
Results

Transcriptomic landscape and urinary
signature of ccRCC patients with VTT

The transcriptomic analysis of 5 matched RCC, VTT and NRT

tissues found 1131, 1258, and 63 transcripts differentially expressed
frontiersin.org
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in RCC vs. NRT, VTT vs. NRT, and VTT vs. RCC groups,

respectively. Among them, 856 DEGs were obtained as thrombus

invasion-associated genes, of which there were 382 up-regulated

and 474 down-regulated genes (Figure 2A). In addition, mass

spectrometry analysis of urinary samples between 12 ccRCC

patients and 11 healthy subjects showed 133 DEPs, with 85 up-

regulated and 48 down-regulated proteins (Figure 2B).

The integrative analysis of transcriptomic landscape and

urinary signature reveals six urinary detectable proteins (VSIG4,

C3, GAL3ST1, TGFBI, AKR1C3, P4HB) displaying upregulated

abundance changes consistent with corresponding genes in

transcriptomic profiling (Figure 2C). Among them, expressions of

TGFBI, AKR1C3, and P4HB increased consecutively from NRT to

RCC and then to VTT, indicating that they had a consistent

promoting effect in the processes of tumorigenesis and thrombus

invasion (Figure 2D). The expressions of the targeted proteins in

urine samples of ccRCC patients were over 1.5-time higher than

those of healthy controls. However, only the expressions of C3,

GAL3ST1, TGFBI, and P4HB achieved statistically significant

difference between two groups (Figure 2E).
The upregulated DEPs indicate poor
survival in ccRCC patients

We obtained the transcriptional and follow-up data from

TCGA and evaluated the correlation between expressions of

targeted proteins and prognosis of ccRCC patients. First, the

significant higher mRNA levels of all the six proteins in tumor

compared to matched normal renal tissue were verified (Figure 3A;

Supplementary Figure 1A). Second, in the TCGA cohort of ccRCC

patients, increased mRNA levels of VSIG4, TGFBI, P4HB were

associated with higher pathological grades (all p<0.01) and later

pathological stages (all p<0.05) (Figures 3B-E). While mRNA levels

of C3, AKR1C3, GAL3ST1 were not completely correlated with

tumor pathological grades and stages (Supplementary Figures 1B-

E). Third, significant expression differences of VSIG4, TGFBI, and

P4HB could be seen between patients with different OS events (366

alive vs. 173 dead). They were significantly overexpressed in

patients with shorter survival and might be independent

prognostic factors for ccRCC patients (all p<0.05) (Figure 3F).

However, the expression differences of C3, AKR1C3, and

GAL3ST1 were not seen in ccRCC patients with different

prognosis (Supplementary Figure 1F).
A urine-based prognostic classifier to
predict ccRCC prognosis

The qRT-PCR and immunohistochemistry (IHC) experiments

were respectively conducted to evaluate the mRNA and protein

expression levels of VSIG4, TGFBI, and P4HB in ccRCC thrombus-

tumor-normal tissue triples. The qRT-PCR analysis showed that

mRNA levels of these three molecules were the highest in VTT, and

then their levels in RCC were significantly higher than those in NRT
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(Figure 4A). The IHC assay further confirmed that protein

expressions of VSIG4, TGFBI, and P4HB increased consecutively

from normal kidney to renal tumor and then to tumor

thrombus (Figure 4B).

The three proteins highly associated with survival (VSIG4,

TGFBI, and P4HB) were used to establish a prognostic classifier

(Figure 4C). We calculated the risk score of survival in each case

from TCGA database according to expression levels of these three

proteins, and then divided patients into high- or low-risk groups

(Figure 4D). It demonstrated that ccRCC patients in high-risk

group had shorter OS time (HR=2.0, p<0.01) and disease-free

survival (DFS) time (HR=1.6, p<0.001) (Figure 4E).

The ELISA analysis was conducted in 54 urine samples from an

independent cohort of ccRCC patients. As for the tumor

pathological characteristics, the WHO/ISUP grade was I in two

cases, II in 41 cases, III in nine cases, and IV in two cases. Urinary

detectable TGFBI and P4HB, but not VSIG4, were demonstrated to

be higher expressed in patients with III-IV grade tumor than those

with I-II grade tumor (Figure 4F). The T stage was T1a in 36 cases,

T1b in nine cases, T2 in three cases, and T3-4 in six cases. Urinary

detectable VSIG4 and TGFBI, but not P4HB, were demonstrated to

be higher expressed in patients with pathological T2-4 stage than

those with pathological T1 stage (Figure 4G). Finally, it confirmed

the satisfactory predictive power of the prognostic classifier for

pathological grade (AUC=0.795, p<0.001) (Figure 4H) and stage

(AUC=0.894, p<0.001) (Figure 4I) in ccRCC patients.
Effects of DEPs on tumor
microenvironment and thrombus invasion

To determine the key roles of selected proteins in processes of

tumorigenesis and thrombus invasion, we analyze the single-cell

RNA-sequencing data obtained from research by Krishna et al (14).

Louvain clustering revealed 31 clusters across tissues spanning

lymphoid, myeloid, epithelial cells, and cancer cells based on the

single-cell RNA-sequencing of 167,283 cells from multiple tumor

regions, lymph node, normal kidney of ccRCC patients (Figure 5A).

VSIG4 was indicated to be a characteristic marker for tumor-

associated macrophage populations, while TGFBI and P4HB were

showed to be broadly expressed in ccRCC tumor and its immune

microenvironment. Furthermore, the average expression level of

P4HB in ccRCC tumor and renal epithelium was the highest among

31 single-cell clusters (Figure 5B). After dividing single-cell

transcriptomes into ccRCC tumor, adjacent normal kidney, and

lymph node subgroup according to the different sources of each cell.

As we can see, the macrophage-expressed VSIG4 in lymph node

was higher than that in ccRCC tumor and adjacent normal kidney

(Figure 5C), whereas the epithelium-expressed TGFBI and P4HB in

ccRCC tumor were higher than those in adjacent normal kidney

(Figures 5D, E). In addition, the GO and KEGG enrichment

analyses disc losed that those se lected proteins were

predominantly related to the central carbon metabolism,

ferroptosis, ECM-receptor interaction, and platinum drug

resistance (Supplementary Figure 2).
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Discussion

The omics-based analytical approaches are becoming available

to enhance the understanding of the tumor pathophysiology (15,

16). Transcriptomic technique focuses on coding and noncoding

sequences to identify differentially expressed genes. While
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proteomic approach makes it an ideal strategy to study the

molecular mechanism of RCC. However, given the complexity

and variability of the pathophysiological processes involved in

RCC, independent analysis from each omics level may miss

crosstalk between different molecular entities and biological

relevant information (17, 18). In this context, integrated analysis
B

C

D

E

A

FIGURE 2

The integrative analysis data of transcriptomic landscape and urinary signature in ccRCC patients. (A) Heatmap of DEGs in transcriptome analysis of
normal, tumor and thrombus tissue showing the top up-regulated thrombus invasion-associated genes. (B) Heatmap of DEPs in proteome analysis
of urine samples from ccRCC patients and healthy controls showing the top up-regulated proteins. (C) Venn diagram to illustrate the six urinary
detectable proteins (VSIG4, C3, GAL3ST1, TGFBI, AKR1C3, P4HB) displaying abundance changes consistent with corresponding genes in
transcriptomic profiling. (D) Regulative expression trends of DEGs among normal, tumor and thrombus tissue indicating expressions of TGFBI,
AKR1C3, P4HB increase consecutively from NRT to RCC and then to VTT. (E) Different expressions of DEPs in urine between ccRCC patients and
healthy controls indicating expressions of VSIG4, C3, GAL3ST1, TGFBI, AKR1C3, P4HB in ccRCC patients are over 1.5-time higher than those in
healthy controls. *p < 0.05, ns, no significance.
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has emerged as a novel approach that facilitate interpretation of

multidimensional data and insights into extensive functional and

genomic intratumoral heterogeneity in RCC. The ccRCC patients

with/without VTT show distinct molecular characteristics in that

tumors from ccRCC patients with VTT showed a higher mutational

burden and genomic instability (19). Furthermore, macrophages,

malignant cells, endothelial cells and myofibroblasts in VTT

exhibited enhanced remodeling of the extracellular matrix

pathways compared to matched primary cancer cells, providing

evidence of phenotypic heterogeneity between primary tumors and
Frontiers in Oncology 06158
tumor thrombus (20). To our knowledge, there have been few

studies depicting RCC infiltration into the renal vein by tumor

thrombus-related multi-omics analysis (21).

As the number of prognostic biomarkers for ccRCC has been

increasing regularly over the last decade, Petitprez et al. (22)

performed a review of the relevant studies and found that the

predictive methods have evolved from single markers to multiple-

marker models. Interestingly, the main genes involved in ccRCC

carcinogenesis such as VHL, PBRM1, BAP1, and SETD2, were not

the most relevant for predicting survival. Our results suggest that in
B

C

D

E

F

A

FIGURE 3

The selection of prognosis-related molecules based on TCGA database. (A) Different expressions of the prognosis-related genes between ccRCC
tumor and normal renal tissue indicating higher mRNA levels of VSIG4, TGFBI, P4HB in tumor compared to matched normal tissue. (B–E) Different
expressions of the prognosis-related genes between ccRCC patients with different pathological characteristics including WHO/ISUP grades and TNM
stages indicating increased mRNA levels of VSIG4, TGFBI, P4HB are associated with higher pathological grades and later pathological stages. (F) The
Kaplan-Meier curves of OS for ccRCC patients with different expressions of the prognosis-related genes showing VSIG4, TGFBI, P4HB are
overexpressed in patients with shorter survival. *p < 0.05, **p < 0.01, ***p < 0.001.
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addition to body biofluid samples including plasma and urine,

thrombosis may also contain biomarker information related to the

prognosis of ccRCC patients, which can provide new ideas for the

discovery of biomarkers. In addition, the constructed prognostic

classifier in our study can be detected in urinary specimens. The

urine carries a variety of set of soluble proteins and peptides that are
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primarily derived from kidney, bladder and prostate (23). Chinello

et al. (24) conducted integrative proteomic analyses of the urine and

blood in ccRCC patients and found that urine carried specific

“biofluid functional signature”, which provided a landscape of

RCC dynamic system of processes in venous infiltration. One

major advantage of urinary biomarkers is that the detection of
B

C

D E

F

G

H

I

A

FIGURE 4

The development and validation of a urine-based prognostic classifier for survival. (A) qRT-PCR analysis of the selected prognosis-related molecules
in ccRCC thrombus-tumor-normal tissue triples showing mRNA levels of VSIG4, TGFBI, P4HB are the highest in VTT, followed by those in RCC and
NRT. (B) IHC analysis of the selected prognosis-related molecules in ccRCC thrombus-tumor-normal tissue triples showing protein expressions of
VSIG4, TGFBI, P4HB increase consecutively from NRT to RCC and then to VTT. (C) Forest plot of hazard ratios for the genes in prognostic classifier
showing expressions of VSIG4, TGFBI, P4HB are highly associated with survival. (D) Distributions of risk score and expression profile of the genes in
prognostic classifier in patients with different survival time and status. (E) The Kaplan-Meier curves of OS and DFS for ccRCC patients in high-risk and
low-risk groups by prognostic classifier in TCGA database showing patients in high-risk group had shorter OS and DFS time. (F, G) Different urinary
expressions of the proteins in prognostic classifier between ccRCC patients with different pathological grades and stages indicating urinary TGFBI
and P4HB are overexpressed in patients with higher grade tumors while urinary VSIG4 and TGFBI are overexpressed in patients with later
pathological stages. (H, I) The ROCs for the prognostic classifier predicting pathological grade and stage of ccRCC patients by ELISA showing AUC
value of 0.795 for pathological grade and AUC value of 0.894 for pathological stage. *p < 0.05, **p < 0.01, ***p < 0.001, NS, no significance.
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these markers is noninvasive, convenient, high-volume, and easy to

evaluate. Thus, this liquid biopsy method can be scheduled

frequently to provide a personalized snapshot of disease to

actively monitor disease progression. Such narrow control also

allows a rapid switch in the case for therapy by any changes (13).

In our study, satisfactory predictive power of the urine-based

prognostic classifier for pathological grade and stage of ccRCC

was finally verified through ELISA analysis of 54 urine samples

from an independent cohort.
Frontiers in Oncology 08160
The review of 341 reported prognostic biomarkers in ccRCC

found that 20% of these biomarkers were involved in four biological

pathways: hypoxia, angiogenesis, cell cycle, and immune response

(22). In terms of the biological activities of the dysregulated

thrombus invasion-associated genes in our study, several in vitro

experiments showed that TGFBI promoted adhesion, migration,

and invasion in ccRCC cells (25, 26). Recent study further showed

that TGFBI were ubiquitinated and downregulated by VHL

restoration and upregulated in human ccRCC (27). M2-related
B

C

D

E

A

FIGURE 5

The expression analysis of the genes in prognostic classifier through single-cell RNA sequencing public database. (A) Visualized map of
transcriptional profiles from all ccRCC patients and samples showing 31 single-cell clusters including lymphoid, myeloid, epithelial cells, and cancer
cells. (B) Normalized expressions of the genes in prognostic classifier among 31 single-cell clusters indicating VSIG4 is uniquely expressed in tumor-
associated macrophages while TGFBI and P4HB are broadly expressed. (C–E) Comparison of gene expressions among ccRCC tumor, adjacent
normal kidney, and lymph node indicating macrophage-expressed VSIG4 is higher in lymph node than tumor while epithelium-expressed TGFBI and
P4HB are higher in tumor than normal kidney.
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factor frequencies were regarded as robust biomarkers for

predicting the renal clear cell carcinoma patient clinical

phenotype and immune microenvironment. Wang et al. explored

M2 macrophage-related factors of ccRCC and found that VSIG4, as

a co-expressed gene of M2 macrophages, was correlated with

infiltration of M2 macrophages and predicted outcomes of ccRCC

(28). As an autophagy-related gene, P4HB was proposed to be one

potential novel ccRCC diagnostic and prognostic biomarker at both

mRNA and protein levels (29, 30). Furthermore, P4HB could be

used to construct prognostic models with other autophagy-related

genes or clinicopathological parameters (31). However, the role of

P4HB in occurrence and invasion processes of ccRCC has not been

reported. Further studies on biological processes associated with

these molecules would expand applications of our prognostic

classifier including prediction of patient response to targeted

therapy or immunotherapy and d iscovery of nove l

therapeutic targets.

We do acknowledge some limitations of the study. First, the

independent cohort applied to validate the performance of our

prognostic classifier lacked survival information of patients. Second,

the study was conducted in a single-center with limited sample size,

further multicenter studies for validation are needed. Last, the

biological functions of these proteins in tumorigenesis and

invasion processes of ccRCC need to be revealed in the future.
Conclusion

Based on integrative analyses of transcriptomic landscape and

urinary signature, the urine-based prognostic classifier consisting of

VSIG4, TGFBI, and P4HB has satisfied predictive power of survival

time, pathological grade and stage in ccRCC patients, which

facilitate ccRCC molecular subtyping and treatment.
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SUPPLEMENTARY FIGURE 1

The exclusion of prognosis-unrelated molecules based on TCGA database.

(A) Different expressions of the prognosis-unrelated genes between ccRCC
tumor and normal renal tissue indicating higher mRNA levels of C3, AKR1C3,

GAL3ST1 in tumor compared to matched normal tissue. (B-E) Different
expressions of the prognosis-unrelated genes between ccRCC patients

with different pathological characteristics including WHO/ISUP grades and
TNM stages indicating mRNA levels of C3, AKR1C3, GAL3ST1 are not

completely correlated with tumor pathological grades and stages. (F) The
Kaplan-Meier curves of OS for ccRCC patients with different expressions of
the prognosis-unrelated genes showing no difference exists in expressions of

C3, AKR1C3, GAL3ST1 between ccRCC patients with different survivals. *p <
0.05, **p < 0.01, ***p < 0.001.

SUPPLEMENTARY FIGURE 2

GO and KEGG analyses of the transcriptome. (A) The GO functional

annotation of the genes in prognostic classifier. (B) KEGG pathway
annotation of the genes in prognostic classifier.
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Integrated bioinformatic analysis
and cell line experiments reveal
the significant role of the novel
immune checkpoint TIGIT in
kidney renal clear cell carcinoma

Qi-Dong Xia †, Bo Li †, Jian-Xuan Sun, Chen-Qian Liu,
Jin-Zhou Xu, Ye An, Meng-Yao Xu, Si-Han Zhang,
Xing-Yu Zhong, Na Zeng, Si-Yang Ma, Hao-Dong He,
Yu-Cong Zhang, Wei Guan*, Heng Li* and Shao-Gang Wang*

Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of
Science and Technology, Wuhan, China
Background: T cell immunoglobulin and ITIM domain (TIGIT) is a widely

concerned immune checkpoint, which plays an essential role in

immunosuppression and immune evasion. However, the role of TIGIT in

normal organ tissues and renal clear cell carcinoma is unclear. We aim to

identify the critical role of TIGIT in renal clear cell carcinoma and find potential

targeted TIGIT drugs.

Materials and methods: Data retrieved from the GTEX database and TCGA

database was used to investigate the expression of TIGIT in normal whole-body

tissues and abnormal pan-cancer, then the transcriptome atlas of patients with

kidney renal clear cell carcinoma (KIRC) in the TCGA database were applied to

distinguish the TIGIT related features, including differential expression status,

prognostic value, immune infiltration, co-expression, and drug response of

sunitinib an anti-PD1/CTLA4 immunotherapy in KIRC. Furthermore, we

constructed a gene-drug network to discover a potential drug targeting TIGIT

and verified it by performing molecular docking. Finally, we conducted real-time

polymerase chain reaction (PCR) and assays for Transwell migration and CCK-8

to explore the potential roles of TIGIT.

Results: TIGIT showed a moderate expression in normal kidney tissues and was

confirmed as an essential prognostic factor that was significantly higher

expressed in KIRC tissues, and high expression of TIGIT is associated with poor

OS, PFS, and DSS in KIRC. Also, the expression of TIGIT was closely associated

with the pathological characteristics of the tumor, high expression of TIGIT in

KIRC was observed with several critical functions or pathways such as apoptosis,

BCR signaling, TCR signaling et al. Moreover, the expression of TIGIT showed a

strong positive correlation with infiltration of CD8+ T cells and Tregs and a

positive correlation with the drug sensitivity of sunitinib simultaneously. Further

Tide ips score analysis and submap analysis reveal that patients with high TIGIT

expression significantly show a better response to anti-PD1 immunotherapy.

Following this, we discovered Selumetinib and PD0325901 as potential drugs
frontiersin.org01163
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targeting TIGIT and verified the interaction between these two drugs and TIGIT

protein by molecular docking. Finally, we verified the essential role of TIGIT in the

proliferation and migration functions by using KIRC cell lines.

Conclusions: TIGIT plays an essential role in tumorigenesis and progression in

KIRC. High expression of TIGIT results in poor survival of KIRC and high drug

sensitivity to sunitinib. Besides, Selumetinib and PD0325901 may be potential

drugs targeting TIGIT, and combined therapy of anti-TIGIT and other treatments

show great potential in treating KIRC.
KEYWORDS

KIRC, TIGIT, targeted therapy, immunotherapy, molecular docking
Introduction

T cell immunoglobulin and ITIM domain (TIGIT), first

introduced by Yu et al. (1), is a member of the poliovirus

receptor (PVR)/nectin family and a subset of the immunoglobulin

superfamily. The protein encoded by TIGIT contained an

extracellular immunoglobulin variable-set (IgV) domain, a type I

transmembrane domain, an intracellular immune receptor tyrosine

inhibitory motif (ITIM), and an Immunoglobulin tyrosine tail

(ITT) motif (1, 2). Interestingly, once introduced, TIGIT was

discovered to inhibit T cell activity (1, 3, 4). Moreover, the

expression level of TIGIT on the surface of tumor-infiltrating T

cells was discovered to increase fourfold than that on peripheral

blood mononuclear cells (PBMC), and further studies reveal that

only the expression of TIGIT in CD8+ T cell exhaustion increased

significantly, and changed synchronously with that of PD-1 (5),

indicating that TIGIT and PD1/PD-Ll pathway had a synergistic

inhibitory effect on tumor-infiltrating T cells. Furthermore,

compared with CD8+ T cells that less expressed TIGIT, CD8+ T

cells expressing TIGIT showed a significantly low expression of

TNF a, IFN g, and IL-2. However, the expression of Annexin V and

CD95, which represent apoptosis markers, was significantly

increased simultaneously (6). Also, when knocked down the

expression of TIGIT in CD8+ T cells by siRNA, the expression of

Annexin V and CD95 decreased significantly, and the level of TNF

a, IFN g, and IL-2 increased significantly (6). Thus, the expression

of TIGIT was considered closely related to the apoptosis of CD8+ T

cells, and once blocking TIGIT signaling pathway, the apoptosis of

CD8+ T cells can be reversed to some extent. More importantly, it
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not only plays a significant inhibitory role in CD8+ T cells, but

TIGIT was also found combating anti-tumor immunity by

influencing nature kill cells (7, 8), antigen-presenting dendritic

cells (1, 9), and T regulatory cells (Tregs) (10, 11). Thus, TIGIT

has been considered one of the most critical immune checkpoints

that more and more researchers and scientists devoted to

investigating and developing a novel drug for TIGIT, such as

TIGIT monoclonal antibody tiragolumab (12). However, our

standing of the TIGIT expression in normal organs and tissues is

still unclear because we only focused on the immune cell’s

expression in TIGIT.

Kidney cancer is the 6th most common cancer in both sexes and

the most common urogenital tumor, accounting for approximately

2-3% of all malignancies and 90% of all diagnosed renal

parenchymal malignancies1 (13, 14), claiming 14,830 lives with

73,750 new confirmed cases in the USA in 2020 (13). Kidney renal

clear cell carcinoma (KIRC) is the predominant pathological

subtype of all kidney cancer, accounting for approximately 85%

of renal cancer (15, 16), also considered to be one of the most

invasive diseases, which is associated with a high mortality rate in

the form of metastasis (17). Although surgical intervention is still

the main treatment considering that it is not sensitive to radiation,

hormone, and cytotoxic therapy. Besides, tyrosine kinase inhibitors

(TKIs) such as sunitinib targeting vascular endothelial growth

factor (VEGF) pathway also play an essential role in the current

clinical treatment as the first-line targeted therapy (18, 19).

Moreover, immunotherapy consisting of anti-PD1/PDL1 or anti-

CTLA4 therapy have also shown great performance in the therapy

of KIRC (20), especially in combination with VEGF-directed

therapy (21). Interestingly, immunotherapy combined therapy has

replaced TKI’s first-line targeted therapy as a first-line treatment in

the latest 2020 European Association of Urology (EAU) guidelines

for clear cell metastatic renal cell carcinoma (cc-mRCC) (22).

KIRC has long been categorized as an immunotherapy-

responsive cancer type that belongs to ‘hot tumor’ (18). However,

the efficacy of Nivolumab monotherapy in advanced renal cell

carcinoma was reported as 16% to 29% (23, 24), and the effective

rate of Atezolizumab monotherapy was 15% (25–27). It seems only

a small part of patients can benefit from immunotherapy,
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suggesting that other mechanisms must limit anti-tumor immunity.

Whether the TIGIT signaling pathway is the significant

immunosuppression and immune evasion mechanism in KIRC is

unclear. Thus, we wonder what role TIGIT plays in KIRC and

whether it could be a potential therapeutic target in the future. In

this study, we first systematically explored the expression of TIGIT

in various normal organs of the body, especially in the kidney, and

then investigated the differential expression of TIGIT between

normal tissues and KIRC tissues, explored the prognostic value

and clinical correlation of TIGIT in KIRC, further focused on the

TIGIT related functions and pathways, investigate the correlation

between TIGIT and tumor-infiltrating immune cells, as well as drug

sensitivity, and considered TIGIT as a novel therapeutic target and

discovered two potential drugs targeting TIGIT by applying

molecular docking technology, which referred to the process that

a small molecular is spatially docked into a macromolecular and can

evaluate the complementary energy at the binding sites, used for

structure-based drug design (28) and finally performed a series of in

vitro experiments to validate our results.
Materials and methods

Data acquisition and sources

The transcriptional expression data of normal tissues from the

whole-body’s organs and systems, including both male and female,

were retrieved from the GTEX database (29). The expression status

of TIGIT between the tumor and normal tissues of whole-body was

acquired from the GEPIA database (30). The transcriptional data

and corresponding survival information of pan-cancer were

downloaded from the UCSC Xena (http://xena.ucsc.edu/). The

transcriptome profiles of kidney clear cell carcinoma patients and

their corresponding clinical characteristics were downloaded from

the TCGA database (https://portal.gdc.cancer.gov/) (31). The

different expression status of TIGIT in pan-cancer and the

corresponding immune infiltration of each sample emphasized by

multiple acknowledged methods was acquired from TIMER 2.0

database (http://timer.cistrome.org/) (32).
TIGIT in normal tissues between organs
and genders or between tumor and
normal tissues

The expression of TIGIT in normal tissues from the whole-body

was extracted and sorted according to the expression value. Then we

visualized it as a boxplot to show the ranking of TIGIT’s expression.

Besides, we compared the expression of TIGIT in the same organ

tissues but between different genders by performing Wilcoxon

rank-sum test. Following this, we visualized the expression of

TIGIT in whole-body including male and female by applying R

program package ‘gganatogram’. We would also like to investigate

the expression status of TIGIT between tumor and normal tissues in

the whole-body, especially in the kidney. Thus, we searched TIGIT
Frontiers in Oncology 03165
in pan-cancer from the GEPIA database and acquired the

differential expression plot.
TIGIT in KIRC: Differential expression,
prognostic value, and clinical correlation

The fragments per kilobase of per million formats (FPKM) of

kidney clear cell carcinoma (KIRC) transcriptome profiles were

sorted and normalized. The expression of TIGIT in the KIRC tumor

and normal adjacent tumor tissues was extracted. Wilcoxon rank-

sum test was performed to compare the differential expression of

TIGIT between tumor and normal tissues in KIRC (including both

paired and non-paired samples). Following this, samples were

divided into high or low TIGIT expression groups by the

expression of TIGIT that was higher/lower than the medium

value was considered high/low TIGIT expression groups. Then

Kaplan-Meier methods survival curves were plotted that including

overall survival (OS), progression-free survival (PFS), disease-

specific survival (DSS), and disease-free survival (DFS). The log-

rank test was also carried out to examine these survival interval

differences between high and low TIGIT expression patients.

Further univariate and multivariate cox regression was applied to

check whether TIGIT could serve as an independent prognostic

factor and the differential expression status of TIGIT between

different clinicopathological subgroups containing age (<=65 or

>65). gender (male or female), grade (G1, G2, G3, G4), grade (G1-2

or G3-4), stage (stage I, stage II, stage III, stage IV), stage (stage I-II

or stage III-IV), pathological T stage (T1, T2, T3, T4), pathological

N stage (N0 or N1), and pathological M stage (M0 or M1) were

compared by Wilcoxon rank-sum test.
TIGIT in KIRC: Differential enhanced
pathways, differential immune infiltration,
and differential drug response

Same as above, samples were grouped as high or low TIGIT

expression, and the transcriptome profiles were merged, proceeded,

and exported as ‘gct’ and ‘cls’ format files prepared for the following

gene set enrichment analysis (GSEA). The GSEA version 4.0.3 was

applied to perform the enrichment analysis, and here we focused on

the HALLMARK gene sets and KEGG pathway gene sets.

Discovered the enhanced pathways were associated with

immunity, and as TIGIT was an immune checkpoint, we were

interested in the association between TIGIT and immune

infiltration in KIRC. However, there were several acknowledged

methods to estimate the immune infiltration of samples according

to their transcriptional expression atlas. Thus, here we performed

seven different methods to precisely investigate the immune

infiltration status of KIRC patients, including XCELL, TIMER,

QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, and

CIBERSORT. We then applied the SPEARMAN correlation test

to explore the significant TIGIT-related immune cells with p < 0.05,

we explored the differential immune infiltration between the high-/

low-TIGIT group by the Wilcox test. Besides, we were also
frontiersin.org
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interested in the drug response of the first-line targeted therapy for

renal clear cell carcinoma, applying R program package

‘pRRophetic’ to predict each sample’s drug sensitivity to the

targeted therapy of sunitinib. Then compared the different drug

sensitivity between high-TIGIT and low-TIGIT patients by using

Wilcoxon signed-rank test and explored the correlation between

TIGIT and the drug sensitivity by applying the SPEARMAN

correlation test to discover the association between expression of

TIGIT and drug sensitivity of the targeted therapy. Furthermore,

Tide ips scores analysis and submap algorithm were applied to

predict the treatment response to anti-PD1 or anti-CTLA4

immunotherapy between KIRC patients with high-/low-

TIGIT expression.
TIGIT in KIRC: Novel potential targeted
drug and molecular docking

Interested in the TIGIT and targeted therapy, we searched

TIGIT in the IGMDR database (33), acquired the gene-drug

network, and discovered two potential targeted therapy drugs for

TIGIT. Subsequently, molecular docking was applied to verify the

interaction between these two drugs and TIGIT. The 2D structure

of these two drugs was acquired from the PubChem database (34),

and ChemBio 3D software was used to calculate the 3D structure

with minimizing energy. The receptor protein encoded by TIGIT

was searched in the Uniprot database (35), and then the 3D

structure of the protein was downloaded from the RCSB PDB

database (36). PyMOL 2.4.0 software was applied to conduct the

dehydration of the receptor protein, and Autodock software was

used to carry out further hydrogenation and charge calculation of

proteins. Parameters of the receptor protein docking site were set to

include the active pocket sites where small-molecule drugs bind.

Finally, Autodock Vina was used to conduct docking the receptor

protein encoded by TIGIT with the small molecule drugs.
Cell culture

The human ccRCC cell lines (786-O), the human embryonic

kidney 293T (HEK-293T) cell and the human renal tubular

epithelial cell lines (HK2) were purchased from the Shanghai Cell

Bank Type Culture Collection Committee (Shanghai, China). The

786-O and HK2 cells were cultured in RPMI-1640 (Gibco, Thermo

Fisher Scientific, Waltham, MA, United States) supplemented with

10% FBS and 100 U/mL Penicillin/Streptomycin in a 5% CO2

incubator. While the HEK-293T cells were cultured in high-glucose

DMEM media supplemented with 10% FBS. Cells were collected at

90% confluence, and the medium was changed every 48–72 h.
Cell transfection

Relative target fragments were inserted into lentiviral vectors

PCDH-CMV-MCS-EF1-copGFP. Together with pGC-LV,

pHelper1.0, pHelper2.0, pHelper3.0, and recombinant lentiviral
Frontiers in Oncology 04166
vectors, plasmids were co-transfected into HEK-293T cells using

Lipofectamine 3,000 (Invitrogen, United States).
RNA extraction and quantitative real-time
polymerase chain reaction

Total RNAs of cells or tissues were extracted using the TRIzol

reagent (Vazyme, R401-01), and then cDNA was synthesized by

reverse transcription using the HiScript III RT SuperMix for qPCR

(Vazyme, R323-01). RT-PCR was conducted using Taq Pro

Universal SYBR qPCR Master Mix (Vazyme, Q712-02). GAPDH

was used as an internal control. Supplementary Table S1 displayed

the sequences of all primers.
CCK-8 assay

1,500 of 786-O cells were seeded into 96-well plates per well for

the CCK-8 assay. Then 10 mL CCK-8 (MCE, HY-K0301) was added

to each well for 1-h incubation, and the absorbance of each well was

measured at 450 nm every day for 5 times.
Transwell migration assay

For migration assays, about 5 × 104 of 786-O cells were

suspended and seeded in the upper chambers of 24-well transwell

plates (Corning, United States) with 250ml FBS-free medium. Then,

500ml RPMI-1640 with 10% FBS was added to the lower chamber.

After 12h incubation, the chambers were fixed and stained with

crystal violet for 30 min. Finally, imaging was performed under an

inverted microscope
Results

Basic characteristics

The study flow was displayed in the Figure 1. A total of 611

transcriptome profile (72 normal tissue and 539 tumor tissue) from

530 TCGA_KIRC patients were downloaded and sorted, for those

samples sequenced multiple time, we took the average of them as

their transcriptional data. and the characteristic of the samples were

shown in Table 1, c2 test or Fisher’s exact test were performed to

explore the heterogeneity between high or low expression of TIGIT.
TIGIT in normal tissues and tumor tissues

We first systematically analyze the relationship between TIGIT

and a variety of cancers, especially kidney cancer, and discovered

that the expression of TIGIT was quite high in KIRC, but not KICH

and KIRP, and was associated with poor prognosis (Figures 2A–C).

We also found that there is a positive correlation between the

expression level of TIGIT and objective response rate (ORR) in
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TABLE 1 Detailed clinicopathological characteristics of the KIRC patients.

Overall High TIGIT Low TIGIT P-value

Number 530 265 265

Age (mean (SD)) 60.56 (12.14) 60.42 (11.81) 60.71 (12.47) 0.789

Gender = FEMALE/MALE (%) 186/344 (35.1/64.9) 81/184 (30.6/69.4) 105/160 (39.6/60.4) 0.036

Grade (%) <0.001

G1 14 (2.6) 4 (1.5) 10 (3.8)

G2 227 (42.8) 91 (34.3) 136 (51.3)

G3 206 (38.9) 117 (44.2) 89 (33.6)

G4 75 (14.2) 52 (19.6) 23 (8.7)

GX 5 (0.9) 0 (0.0) 5 (1.9)

unknow 3 (0.6) 1 (0.4) 2 (0.8)

Stage (%) <0.001

Stage I 265 (50.0) 106 (40.0) 159 (60.0)

Stage II 57 (10.8) 34 (12.8) 23 (8.7)

Stage III 123 (23.2) 73 (27.5) 50 (18.9)

Stage IV 82 (15.5) 50 (18.9) 32 (12.1)

unknow 3 (0.6) 2 (0.8) 1 (0.4)

T (%) <0.001

T1 21 (4.0) 6 (2.3) 15 (5.7)

(Continued)
F
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FIGURE 1

The study flow.
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various cancers (Figure 2D). And the first three organs with the

highest expression of TIGIT were the spleen, blood, and small

intestine. The lowest three were pancreas, skeletal muscle, and bone

marrow, and TIGIT showed a moderate expression in normal

kidney (Figure 3A). Interestingly, the expression of TIGIT in

females’ brains, lungs, breasts, and small intestine was

significantly higher than that in males (Figure 3B). TIGIT was the

highest expression in the spleen in males and females (Figures 3C,

D). Here we focused on the kidney and discovered a higher

expression of TIGIT in kidney tumor with a mean expression of

0.24 in normal kidney and that of 1.47 in kidney tumor (Figure 3E).
TIGIT in KIRC: Differential expression,
prognostic value, and clinical correlations

TIGIT showed a significantly higher expression in KIRC tissues

than normal tissues in both non-paired and paired samples

(Figures 4A, B). Following this, we wondered whether high

expression of TIGIT resulted in poor clinical outcomes and

discovered the high expression of TIGIT was associated with poor

overall survival (Figure 4C), poor progression survival (Figure 3D),

and poor disease-specific survival (Figure 4E). There was no difference

in disease-free survival (Figure 4F). This showed that TIGIT played an

essential role in the tumorigenesis, progression, and clinical outcomes

of KIRC. Besides, we performed univariate and multivariate cox
Frontiers in Oncology 06168
regression and found TIGIT as a significant risk factor with a

hazard ratio (HR) of 1.344 (1.098 to 1.646) for KIRC patients in

univariate Cox regression (Figure 4G). Subsequently, after correction

from other clinical features, the HR of TIGIT was 1.009 (0.822 to

1.238), showing no significant difference (Figure 4H). This suggested

that the expression of TIGIT was significant associated with clinical

characteristics, so we conducted further exploration about the clinical

correlation of TIGIT. There were no significant differences between

age (Figure 5A) and gender (Figure 5B). However, TIGIT showed

great association with pathological characteristics as expected. TIGIT

showed a gradually increasing trend from G1 to G4 (Figure 5C), and

significantly higher expressed in G3-4 than G1-2 (Figure 5D). Also

showed the same trend from Stage I to Stage IV (Figure 5E), and

significantly higher expressed in Stage III-IV than Stage I-II

(Figure 5F). Besides, TIGIT was significantly lowest expressed in T1

than T2 to T4 (Figure 5G), and significantly higher expressed in N1

than N0 (Figure 5H), in M1 than M0 (Figure 5I), which showed the

significant role of TIGIT in the tumor metastasis.
TIGIT in KIRC: Differential enhanced
pathways, differential immune infiltration,
and differential drug response

Having identified TIGIT as an essential prognostic factor and

explored its association between expression and clinical
TABLE 1 Continued

Overall High TIGIT Low TIGIT P-value

T1a 140 (26.4) 45 (17.0) 95 (35.8)

T1b 110 (20.8) 60 (22.6) 50 (18.9)

T2 55 (10.4) 29 (10.9) 26 (9.8)

T2a 10 (1.9) 7 (2.6) 3 (1.1)

4 (0.8) 4 (1.5) 0 (0.0)

T3 5 (0.9) 4 (1.5) 1 (0.4)

T3a 120 (22.6) 68 (25.7) 52 (19.6)

T3b 52 (9.8) 35 (13.2) 17 (6.4)

T3c 2 (0.4) 0 (0.0) 2 (0.8)

T4 11 (2.1) 7 (2.6) 4 (1.5)

M (%) 0.002

M0 420 (79.2) 206 (77.7) 214 (80.8)

M1 78 (14.7) 50 (18.9) 28 (10.6)

MX 30 (5.7) 8 (3.0) 22 (8.3)

unknow 2 (0.4) 1 (0.4) 1 (0.4)

N (%) 0.107

N0 239 (45.1) 121 (45.7) 118 (44.5)

N1 16 (3.0) 12 (4.5) 4 (1.5)

NX 275 (51.9) 132 (49.8) 143 (54.0)
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characteristics, we were interested in the functions and pathways

influenced by TIGIT. Subsequent KEGG enrichment analysis

showed high expression of TIGIT was associated with

significantly enhanced pathways such as B cell receptor signaling

pathway, cell adhesion molecular cams, cytokine-cytokine receptor

interaction, JAK-STAT signaling pathway, nature kill cell-mediated

cytotoxicity, T cell receptor signaling pathway, and Toll-like

receptor signaling pathway, also associated with significantly

attenuated functions such as glutathione metabolism and

glycerolipid metabolism (Figure 6A). HALLMARK gene set

enrichment analysis suggested high expression of TIGIT was

associated with significantly enhanced functions and pathways

such as apoptosis, IL2-STAT5 signaling pathways, IL6-JAK-
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STAT3 signaling, inflammatory response, interferon-a response,

interferon-L response, P53 pathway, PI3K-AKT-mTOR signaling,

and TNF-a signaling via NF-kB, and significantly attenuated

functions such as estrogen response and TGF beta signaling

(Figure 6B). It was interesting that TIGIT was associated with so

many essential pathways and functions in KIRC.

As TIGIT is one of the most important immune checkpoints

associated with so many immunity-related functions and pathways,

we further investigated the association between its expression and

patients’ immune infiltration. The SPEARMAN correlation test

suggested the expression of TIGIT was significant negative

correlated with NK resting cell, endothelial cell, neutrophil, M2

macrophages, and significant positive correlated with M1
A B

D

C

FIGURE 2

Analysis of TIGIT in pan-cancer. (A) Univariate Cox regression showed the OS of TIGIT in pan-cancer. (B) Univariate Cox regression showed the
disease specific survival of TIGIT in pan-cancer. (C) Differential expression status of TIGIT in pan-cancer. (D) The potiential association between the
expression level of TIGIT and objective response rate in various cancers. *: p<0.05, **: p<0.01, ***: p<0.001
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macrophages, CD8+ T cells, T regulatory cells (Tregs), Th1 cells,

Th2 cells et al. (Figure 7A). All these seven emphasized methods

suggested TIGIT a strong positive correlation with CD8+ T cells,

which should have resulted in a great clinical outcome. So, we

focused on the Tregs, and discovered TIGIT was significantly

positively correlated with the infiltration of Tregs (Figure 7A),

and significant-high infiltration with Tregs was observed in high

TIGIT expression samples emphasized by CIBESORT (Figure 7B),

CIBESORT-ABS (Figure 7C), and QUANTISEQ (Figure 7D).

Observed TIGIT as a significant correlation with immune

infiltration in KIRC, we were interested in the correlation

between TIGIT and other common immune checkpoints such as

PD1(PDCD1), PD-L1 (CD274), and CTLA4. As expected, we found

TIGIT significant positive correlated with PDCD1 (R =0.87, p<

0.001), CD274 (R=0.38, p< 0.001), CTLA4 (R=0.81, p< 0.001) as

Figures 8A–C. This may explain the poor response for the existing

immunotherapy in KIRC that although we inhibit some immune

checkpoints like PD1, PD-L1, or CTLA4, their associated

expression of TIGIT still plays a role in immunosuppression and

immune evasion. Besides, we further explored the correlation

between the expression of TIGIT and the drug response of

sunitinib, the most used targeted therapy drug in KIRC.

Discovered high expression of TIGIT was associated with a
Frontiers in Oncology 08170
significantly higher response for sunitinib (Figure 8D), and TIGIT

showed a significant positive correlation with the drug sensitivity of

sunitinib (R= -0.31, p< 0.001) as Figure 8E. Further Tide ips scores

analysis showed that KIRC patients with high TIGIT expression

may response better to anti-PD1 immunotherapy (Figure 9A), anti-

CTLA4 immunotherapy (F igure 9B) , and combined

immunotherapy (Figure 9C). Also, the submap analysis reaches a

consistent result that KIRC patients with high TIGIT expression

showed a significant better response to anti-PD1 immunotherapy

(p=0.001, Bonferroni corrected p=0.008, Figure 9D).
TIGIT in KIRC: Novel potential targeted
drug and molecular docking

After revealing the important role of TIGIT in immunotherapy

and targeted therapy of KIRC, we believe that TIGIT is an

important therapeutic target for KIRC and intend to discover a

new drug or a new use targeting TIGIT in conventional drugs. Thus,

we constructed the gene-drug network (Figure 10A) and found two

potential therapeutic drugs targeting TIGIT, and they were

Selumetinib and PD0325901. To verify our discovery, we

performed molecular docking technology to examine the
A B

D EC

FIGURE 3

Comprehensive analysis of TIGIT in whole-body’s normal tissues. (A) The expression status of TIGIT in normal organs sorted by the expression value.
(B) The differential expression status of TIGIT between males and females. (C) The expression atlas of TIGIT in males. (D) The expression atlas of
TIGIT in females. (E) The expression of TIGIT in tumor organ tissues (red) and normal organ tissues (green). *: p<0.05, **: p<0.01, ***: p<0.001
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interaction between these two drugs and TIGIT protein. The 3D

structure of the TIGIT protein was shown in Figure 10B, the 2D

structure and 3D structure of Selumetinib were shown in

Figures 10C, D, that of PD0325901 was shown in Figures 10F, G.

Both molecular dockings for Selumetinib and PD0325901 showed

that these two drugs could enter into the active pocket of TIGIT

(Figures 10E, H), which suggested they could serve as potential

drugs targeting TIGIT.
TIGIT enhanced the progression of 786-O
clear cell renal carcinoma cells

Finally, we validated the potential physiological role of TIGIT in

in vitro experiments. We explored the expression of TIGIT in renal

carcinoma cells (786-O) and normal cells (HK2) and found that the

level of TIGIT in tumor cells was significantly increased compared
Frontiers in Oncology 09171
to normal cells (Figure 11A). To investigate the biological functions

of TIGIT in renal carcinoma, TIGIT was overexpressed in 786-O

cells by lentiviral infection, and its expression was validated by qRT-

PCR (Figure 11B). CCK8 assay demonstrated that TIGIT promoted

cellular viability of 786-O cells by contrast with control groups

(Figure 11C). Furthermore, we explored whether TIGIT was

involved in cell metastasis and discovered that the overexpression

of TIGIT remarkably increased migration ability in 786-O cells

(Figure 11D). Taken together, these findings indicated that TIGIT

enhanced carcinogenesis of renal carcinoma cells in vitro.
Discussion

The present study conducted a comprehensive analysis of

TIGIT in KIRC, confirmed TIGIT as an essential prognostic

factor significantly higher expressed in KIRC tissues, and high
A B

D E F

G H

C

FIGURE 4

Differential expression and prognostic value of TIGIT in KIRC. (A) TIGIT shows a significantly higher expression in non-paired KIRC tissues compared
to the normal tissues. (B) TIGIT shows a significantly higher expression in paired KIRC tissues compared to the normal tissues. (C) High expression of
TIGIT was associated with significantly poor overall survival in KIRC. (D) High expression of TIGIT was associated with significantly poor progression-
free survival in KIRC. (E) High expression of TIGIT was associated with significantly poor disease-specific survival in KIRC. (F) There were no
significant differences between patients with high or low expression of TIGIT in disease-free survival in KIRC. (G) Univariate Cox regression showed
TIGIT a significant prognostic factor in KIRC. (H) Multivariate Cox regression of TIGIT in KIRC.
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FIGURE 5

Clinical correlation of TIGIT expression. (A) clinical correlation between age and TIGIT. (B) clinical correlation between gender and TIGIT. (C) clinical
correlation between grade and TIGIT. (D) clinical correlation between grade and TIGIT. (E) clinical correlation between stage and TIGIT. (F) clinical
correlation between stage and TIGIT. (G) clinical correlation between T stage and TIGIT. (H) clinical correlation between N stage and TIGIT. (I)
clinical correlation between M stage and TIGIT.
A

B

FIGURE 6

Differential enriched functions or pathways correlated with the expression of TIGIT. (A) Differential enriched KEGG pathways associated with the
expression of TIGIT in KIRC. (B) Differential enriched HALLMARK pathways associated with the expression of TIGIT in KIRC.
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FIGURE 7

The correlation between immune infiltration and the expression of TIGIT in KIRC. (A) Spearman correlation test showed TIGIT was significantly
associated with several types of immune infiltration cells. (B) Differential infiltration of Tregs between high or low TIGIT expression patients
calculated by the CIBESORT. (C) Differential infiltration of Tregs between high or low TIGIT expression patients calculated by the CIBESORT-ABS.
(D) Differential infiltration of Tregs between high or low TIGIT expression patients calculated by the QUANTISEQ.
A B

D E

C

FIGURE 8

The co-expression between TIGIT and other common immune checkpoints and the drug response of sunitinib between high or low TIGIT
expression patients. (A) TIGIT was significantly positive co-expression with PDCD1. (B) TIGIT was significantly positive co-expression with CD247.
(C) TIGIT was significantly positive co-expression with CTLA4. (D) High expression of TIGIT was associated with a significantly higher drug sensitivity
of sunitinib in KIRC. (E) TIGIT was significantly positively correlated with the drug sensitivity of sunitinib in KIRC.
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FIGURE 9

TIGIT and response of immunotherapy. (A) Prediction of immunotherapy in CTLA4 negative PD1 positive patients with high/low TIGIT expression.
(B) Prediction of immunotherapy in CTLA4 positive PD1 negative patients with high/low TIGIT expression. (C) Prediction of immunotherapy in CTLA4
positive PD1 positive patients with high/low TIGIT expression. (D) Prediction of response to anti-PD1 or anti-CTLA4 immunotherapy by submap in
KIRC patients with high/low TIGIT expression.
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FIGURE 10

Gene-drug network and molecular docking. (A) The potential gene-drug networks target TIGIT. (B) The 3D structure of the TIGIT protein. (C) The
2D structure of Selumetinib. (D) The 3D structure of Selumetinib. (E) The molecular docking between Selumetinib and TIGIT showed Selumetinib
could enter into the active pocket of TIGIT protein. (F) The 2D structure of PD0325901. (G) The 3D structure of PD0325901. (H) The molecular
docking between PD0325901and TIGIT showed PD0325901could enter into the active pocket of TIGIT protein.
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expression of TIGIT is associated with a poor OS, PFS, and DSS in

KIRC. Also, the expression of TIGIT was closely associated with the

pathological characteristics of the tumor, high expression of TIGIT

in KIRC was observed with several critical functions or pathways

such as apoptosis, BCR signaling, TCR signaling et al. Moreover, the

expression of TIGIT shows a strong positive correlation with

infiltration of CD8+ T cells and Tregs, and shows a positive

correlation with the drug sensitivity to sunitinib and anti-PD1

immunotherapy at the same time. Furthermore, we constructed a

gene-drug network, discovered Selumetinib and PD0325901 as

potential drugs targeting TIGIT, and verified the interaction

between these drugs and TIGIT protein by molecular docking.

Finally, in-vitro experiments verified the essential role of TIGIT

in KIRC.

Hong et al. reported a significant positive observation of TIGIT

expression in renal cell carcinoma (RCC) tissues than adjacent

normal tissues by immunohistochemistry in their cohorts (37),

which was consistent with our results TIGIT showed a significantly

higher expression in KIRC tissues than normal tissues. Also, Yin

et al. reported the prognostic value of TIGIT in KIRC and

constructed a survival-predicting model based on this (38). All

these studies confirmed the significant role TIGIT played in

tumorigenesis, progression, and clinical outcomes of KIRC.

Interestingly, not only KIRC, Duan et al. reported TIGIT as an

effective tumor biomarker in human hepatocellular carcinoma

(HCC) that the expression levels of TIGIT were upregulated in

the cancerous tissues with the degree of cancerous differentiation

from high to low from patients with HCC, and TIGIT showed
Frontiers in Oncology 13175
positive correlation with the level of a-fetoprotein (AFP), which

reveals the potential of TIGIT as a cancer biomarker in HCC (39).

Thus, Whether TIGIT is differentially expressed in the pan-cancer

spectrum and whether TIGIT can be used as a tumor marker of

pan-cancer is still questionable and needs more exploration in

the future.

Another interesting result is the TIGIT-related functions and

pathways. Our work shows that high TIGIT was associated with an

enhanced function of apoptosis. This is consistent with the previous

study. Kong et al. focused on TIGIT expression in T cells in patients

with acute myelogenous leukemia (AML) (6). They confirmed the

correct correlations between apoptosis and exhaustion of CD8+ T

cells and the TIGIT, and the enhanced apoptosis or exhaustion

could be reversed after the knockdown of TIGIT (6). Also, Song

et al. demonstrated the significant role of TIGIT in aging CD8+ cells

in aged mice (40), found that TIGIT was associated with high levels

of expression of other inhibitory receptors, including PD-1 and

showed features of exhaustion such as downregulation of the key

costimulatory receptor CD28, the representative internal

transcriptional regulation, the low production of cytokines, and

high susceptibility to apoptosis. Importantly, their functional

defects associated with aging could be reversed by TIGIT

knockdown (40). Thus, TIGIT has great potential as a therapeutic

target that several significant functions, such as apoptosis, could be

reversed after targeting TIGIT.

Studies of TIGIT in NK cells can better show the important role

of TIGIT in inhibiting anti-tumor immunity. Previous studies have

shown that PVR molecules expressed on the surface of tumor cells
A B
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C

FIGURE 11

TIGIT affected the proliferation and migration of cells in renal carcinoma. (A) qRT-PCR was used to detect expression levels of TIGIT in tumor cells
and normal cells. (B) The overexpression of TIGIT in 786-O cells was confirmed by qRT-PCR. (C) CCK8 assay: TIGIT could increase the viability of
786-O cells. (D) Transwell migration assay: TIGIT could promote the migration of 786-O cells. *p < 0.05; **p < 0.01.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1096341
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xia et al. 10.3389/fonc.2023.1096341
can bind to TIGIT on the surface of NK cells, which lead to

inhibitory signals in NK cells, and then reduce the function of

NK cells to kill tumor cells (8, 41, 42). These results indicate that

TIGIT is also an inhibitory molecule on the surface of NK cells.

Moreover, exhaustion NK cells highly express TIGIT rather than

PD1, and whether it is to knock out the TIGIT gene or to inhibit

TIGIT with anti TIGIT antibody can increase the expression of

CD107a, tumor necrosis factor (TNF), and other tumor suppressor

factors in NK cells, enhance the tumor-killing ability of NK cells and

prolong the survival time of tumor-bearing mice (8). Also, it is

surprising that the specific knockout of the TIGIT gene in NK cells

can reverse the depletion of NK cells and significantly reduce the

expression of PD1 in tumor-infiltrating cytotoxic T cells (8).

Manieri et al. systematically summarized the important

mechanisms of TIGIT in inhibiting anti-tumor immunity (43),

which mainly includes the following three mechanisms: first, the

PVR of tumor cells or dendritic cells binds to the TIGIT on the

surface of tumor-infiltrating CD8+T cells or NK cells, directly

inhibiting the activity of these two immune cells. Second, TIGIT

can also be used as a ligand. TIGIT ligands on the surface of tumor-

infiltrating CD8+T cells or Tregs can bind to PVR receptors of

tumor cells or dendritic cells, promote the production of anti-

inflammatory cytokines such as IL-10 and inhibit the immune

response. Third, the TIGIT on the surface of tumor-infiltrating

CD8+T cells competitively binds to the PVR on the surface of tumor

cells or dendritic cells, resulting in the failure of T cell-activated

receptor CD226 to bind to PVR, thus inhibiting the activity of T

cells (43).

These results indicate that targeting TIGIT can play a role in

multiple ways and relieve the immunosuppression. This also

inspires the combination therapy of PD1/PD-L1 and TIGIT

monoclonal antibody. Johnston et al. reported that the combined

use of TIGIT antibody and PD-L1 antibody at the same time is far

better than blocking TIGIT or PD1/PD-L1 pathway alone, which

can more significantly reduce the tumor volume and the survival

time of tumor-bearing mice (5). Besides, CITYSCAPE (44), a

randomized, double-blind, placebo-controlled phase II clinical

trial of anti-TIGIT antibody tiragolumab combined with

atezolizumab in the first-line treatment of patients with PD-L1

positive non-small cell lung cancer, demonstrated that the objective

response rate (ORR) of combination therapy was 31.3%. In

comparison, that of PD-L1 antibody monotherapy combined with

placebo was 16.2%. Besides, in patients with high expression of PD-

L1, ORR of combination therapy was 55.2%, while ORR of PD-L1

antibody monotherapy combined with placebo group was 17.2%

(44). This is quite encouraging. As a result, Roche TIGIT

monoclonal antibody tiragolumab has been recognized by FDA as

a breakthrough therapy designation and combined with PD-L1

monoclonal antibody atezolizumab for the first-line treatment of

metastatic non-small cell lung cancer with high expression of PD-

L1 and non-EGFR nor ALK mutation patients.

TIGIT antibody showed huge potential in futural

immunotherapy, and our works also identified TIGIT as an

essential prognosis related and immune suppressive factor in

KIRC. We discovered a significant correlation between PD1, PD-
Frontiers in Oncology 14176
L1, and CTLA4 expression and TIGIT expression, which might give

the explanation on the low response for the common immune

monotherapy and might contribute to the combined therapy of

PD1/PD-L1 or CTLA4 antibody therapy with TIGIT antibody in

KIRC in the future. Besides, we found the expression of TIGIT was

positive associated with the drug sensitivity of sunitinib, which

might contribute to the combined therapy of the TIGIT antibody

with sunitinib in KIRC in the future. More importantly, we

discovered two potential drugs targeting TIGIT: Selumetinib and

PD0325901. Interestingly, Selumetinib, a selective MEK1 inhibitor,

was reported to enhance the antitumor activity of everolimusa

against renal cell carcinoma by decreasing p-RPS6 and p-4E-BP1

dramatically, which caused G1 cell cycle arrest and preventing

reactivation of AKT and ERK (45). Besides, Zeng et al. reported

everolimus-induced autophagy involves activation of the ERK,

which could impair the cytotoxicity of everolimus in RCC cells

and inhibit the activation of ERK pathway-mediated autophagy like

combined use of Selumetinib, which contributed to overcoming

chemoresistance to everolimus (46). As for PD0325901, Diaz-

Montero has claimed the combined use of PD0325901

contributes to abrogating the sunitinib resistance and leading to

improved anti-tumour efficacy renal cell carcinoma (47). Thus,

based on these studies and our discoveries, combined therapy of

TKIs with Selumetinib or PD0325901 also shows great potential in

treating KIRC in the future. More in-depth cohort studies were

urgently needed in the future.

There are several limitations in this study. Firstly, our analysis

were based on the bulk RNA-seq. However, the results would be

more precise if the data were acquired by single-cell sequencing,

which could contribute to our understanding of TIGIT in different

cell types. Secondly, we suggested several novel therapeutic

strategies for KIRC in this research, such as the application of

Selumetinib or PD0325901 monotherapy as targeting TIGIT,

combined therapy of PD1/PD-L1 antibody with TIGIT antibody,

combined therapy of sunitinib with Selumetinib or PD0325901,

et al. They were all hypotheses, and we need carrying out further

studies including laboratory experiments and real-world cohort

studies in the future.
Conclusion

TIGIT plays an essential role in tumorigenesis, progression in

KIRC. High expression of TIGIT results in poor survival of KIRC

and higher drug sensitivity to sunitinib and anti-PD1

immunotherapy. Besides, Selumetinib and PD0325901 may be

potential drugs targeting TIGIT, and combined therapy of anti-

TIGIT and other treatments show great potential in treating KIRC.
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Background: Ferroptosis is a newly defined cell death process triggered by

increased iron load and tremendous lipid reactive oxygen species (ROS).

Oxidative stress-related ferroptosis is of great important to the occurrence and

progression of clear cell renal cell carcinoma (ccRCC), which is particularly

susceptibility to ferroptosis agonist. Therefore, exploring the molecular features

of ferroptosis and oxidative stress might guide the clinical treatment and

prognosis prediction for ccRCC patients.

Methods: The differentially expressed ferroptosis and oxidative stress-associated

genes (FPTOSs) between normal renal and ccRCC tissues were identified based on

The Cancer Genome Atlas (TCGA) database, and those with prognostic

significances were applied to develop a prognostic model and a risk scoring

system (FPTOS_score). The clinical parameter, miRNA regulation, tumor mutation

burden (TMB), immune cell infiltration, immunotherapy response, and drug

susceptibility between two FPTOS-based risk stratifications were determined.

Results: We have identified 5 prognosis-associated FPTOSs (ACADSB, CDCA3,

CHAC1, MYCN, and TFAP2A), and developed a reliable FPTOS_socre system to

distinguish patients into low- and high-risk groups. The findings implied that

patients from the high-risk group performed poor prognoses, even after

stratified analysis of various clinical parameters. A total of 30 miRNA-FPTOS

regulatory pairs were recognized to identify the possible molecular mechanisms.

Meanwhile, patients from the high-risk group exhibited higher TMB levels than

those from the low-risk groups, and the predominant mutated driver genes were

VHL, PBRM1 and TTN in both groups. The main infiltrating immune cells of high-

and low-risk groups were CD8+ T cells and resting mast cells, respectively, and

patients from the high-risk groups showed preferable drug responsiveness to

anti-PD-1 immunotherapy. Eventually, potential sensitive drugs (cisplatin, BI-

D1870, and docetaxel) and their enrichment pathways were identified to guide

the treatment of ccRCC patients with high-risk.
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Conclusion:Our study comprehensively analyzed the expression profiles of FPTOSs

and constructed a scoring system with considerable prognostic value, which would

supply novel insights into the personalized treatment strategies and prognostic

evaluation of ccRCC patient.
KEYWORDS

clear cell renal cell carcinoma, ferroptosis, oxidative stress, prognostic model, bioinformatics
1 Introduction

Renal cell carcinoma (RCC) is one of the most common

malignant genitourinary tumors. There are 431,288 newly

diagnosed cases and 179,368 newly dead cases worldwide in 2020

(1), and it is estimated that there are 81,800 new cases and 14,890

dead cases in the United States in 2023 (2). The incidence of RCC

continued increasing at a rate of approximately 1% annually, while

mortality rates have decreased by about 2% annually from 2016 to

2020, which might be attributed to advancements in diagnostic

tools and early treatment (2). Clear cell renal cell carcinoma

(ccRCC) represents the predominant pathological subtype,

accounting for almost 70% of all RCC (3). Although 70% of early

localized RCC tumor can be completely surgery resection by radical

nephrectomy, there is still up to 30% of patients will eventually

progress to distant metastasis (3, 4). The ccRCC patients with

advanced stage are likely to experience poor outcomes, and the 5-

year overall survival (OS) rate is only 11.7% (5). Despite there are

occasional reports of durable responses, most advanced RCC

patients will develop resistance to targeted drugs such as first-line

VEGFR inhibitor (sunitinib, pazopanib) and second-line mTOR

inhibitor (everolimus) (6, 7). Therefore, seeking for molecular

biomarkers with accurate predictive capacity and therapeutical

potential has attract the concerns of many scholars.

Crosstalk between ferroptosis and oxidative stress has been

demonstrated in many diseases, such as ischemic stroke (8),

inflammation (9), and cancer (10). Ferroptosis is a newly defined

nonapoptotic programmed cell death type, characterized by active

iron overload, excessive lipid reactive oxygen species (ROS)

generation and membrane phospholipid peroxidation (11). In

brief, when the redox homeostasis is impaired, iron generates

active hydroxyl radical (·OH) via Fenton reaction, which then

promotes the production of phospholipid hydroperoxides

(PLOOH). Meanwhile, blocking of cystine/glutamate antiporter

system Xc- decreases the synthesis of glutathione (GSH) and the

only intracellular PLOOH-neutralizing enzyme glutathione

peroxidase 4 (GPX4), and eventually contributes to the

accumulation of ROS and ferroptosis (12). Oxidative stress is

occurred due to the breakdown of the redox homeostasis,

characterized by an increase of ROS and a decrease of antioxidant

enzymes (13). ROS at physiological level is essential to maintain the

function of cellular biology, however, excessive ROS generation

under oxidative stress condition is a double-edged sword for cancer
02180
(14). For one thing, ROS-caused oxidative damage promotes cell

death (apoptosis, ferroptosis) and triggers anti-tumor immune cells

(M1 macrophages, T cells) infiltration to function as a tumor

suppressor (15). Besides, high level of ROS causes detrimental

damages of DNA, protein, and lipid, and induces genomic

instability to function as a tumor promoter (16). In general,

exacerbating ROS generation and undermining antioxidant

system are sufficient to trigger oxidative stress and ferroptosis in

tumor cells (17).

Sensitivity analysis of ferroptosis agonist erastin on 177 cancer

cell lines indicated that RCC and diffuse large B cell lymphoma were

extremely susceptible to GPX4-dependent ferroptosis (18). Hence,

targeting ferroptosis and oxidative stress may challenge the current

treatment paradigm of RCC. Previous studies usually consider the

impact of a single gene or variable on the ccRCC development.

However, a widely accepted consensus is that tumorigenesis and

progression were affected by the interaction of multiple factors in a

sequential and coordinated manner. Thus, it is urgent to develop an

integrative and efficient utility to reflect the features of ferroptosis

and oxidative stress in ccRCC. With the advances in multiomic

sequencing, it is possible to comprehensively explore the genomic

profiles of ccRCC. Here, we had identified differentially expressed

ferroptosis and oxidative stress-associated genes (FPTOSs), and 5

genes with independent prognostic values were incorporated into

the prognostic model. Subsequently, all ccRCC patients were

allocated into low- and high-risk groups according to the

FPTOS_score, and the prognostic significance of FPTOS-based

risk stratification was assessed in both the TCGA-KIRC and E-

MTAB-1980 cohorts. The miRNA regulation, mutation pattern,

immune cell population, immunotherapy responsiveness, and drug

susceptibility were also examined.
2 Materials and methods

2.1 Data collection and preprocessing

Transcriptome data, clinical parameters and prognosis data,

miRNA sequencing data, and somatic mutation data of ccRCC

patients were extracted from The Cancer Genome Atlas (TCGA)

database (https://portal.gdc.cancer.gov/). E-MTAB-1980 cohort

was acquired from ArrayExpress database (https://www.ebi.ac.uk/

arrayexpress/) and served as the external validation dataset. The raw
frontiersin.org
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data from TCGA-KIRC cohort were preprocessed through

averaging the expression levels of same genes, removing the genes

with low expression levels below 1, and normalizing the expression

profiles using trimmed mean of M-values (TMM) method based on

the edgeR package. As for the microarray data from E-MTAB-1980

cohort, we performed background adjustment and normalization

using the robust multiarray analysis (RMA) method based on Affy

package. Furthermore, the expression values were log2 transformed,

and the probes were converted into corresponding gene symbols.
2.2 Preparation of ferroptosis and oxidative
stress-associated gene set

Ferroptosis-associated genes were gained from the FerrDb

database (http://www.zhounan.org/ferrdb/current/). To obtain

oxidative stress-associated genes, we applied “oxidative stress” as

search term to acquire genes that were involved in the process of

ox ida t ive s t re s s f rom the OMIN database (ht tps : / /

www.oncomine.org/resource/), NCBI gene function module

(https://www.ncbi.nlm.nih.gov/gene/) and GeneCard database

(https://www.genecards.org/). We then acquired the integrative

gene set from the TCGA-KIRC cohort. After that, ferroptosis and

oxidative stress-associated gene set was prepared by selecting the

intersecting genes among above gene sets using Venn diagram.
2.3 Development and validation of a
FPTOS-based prognostic model

Differentially expressed FPTOSs of ccRCC patients were

identified through R package “EdgeR” referring to screening

criteria of |log2 fold change (FC)| > 1 and adjusted P < 0.05.

Subsequently, univariate Cox regression, least absolute shrinkage

and selection operator (LASSO) regression, and multivariate Cox

regression analyses were utilized to investigate the FPTOSs with

prognostic significance of ccRCC. The individualized risk score of

each ccRCC patient, named FPTOS_score, was measured using the

formula: FPTOS−score =on
i=1Expibi. Of that, Exp denoted the

expression level of specific gene, while b represented the

corresponding regression coefficient. On basis of the median

value of FPTOS_score, all ccRCC patients were allocated into

low- and high-risk groups. Subsequently, Kaplan-Meier method

was used to explore the prognosis difference between two risk

groups, and receiver operating characteristic (ROC) curve was

plotted to estimate the power and accuracy of FPTOS-based

prognostic model. The external validation cohort (E-MTAB-1980)

was applied to assess the predictive performance and stability of the

prognostic model. Meanwhile, the prognostic values of the FPTOSs

were verified separately based on the GEPIA database (http://

gepia.cancer-pku.cn/index.html).

We first compared the difference in the number of deaths

between two risk stratifications, and calculated the FPTOS_score

of alive and dead patients, so as to reveal whether FPTOS-based risk

stratification could distinguish patients with poor prognosis. In
Frontiers in Oncology 03181
order to discover independent prognostic factors of ccRCC,

FPTOS_score and various clinical parameters including age,

gender, grade, stage, T stage, N stage, M stage were subjected to

univariate and multivariate Cox regression analyses. Furthermore,

stratified analyses of various clinical parameters were conducted to

determine whether FPTOS-based risk stratification still performed a

considerable prognostic value.
2.4 Construction of miRNA-FPTOS
regulatory network

miRNA sequencing data were extracted from TCGA-KIRC

cohort, and the differentially expressed miRNAs were determined

via comparing the expression differences between the normal and

tumor samples with the setting criteria of |log2 FC| > 1 and P < 0.05.

Then we investigated the co-expression patterns between miRNAs

and prognostic-associated FPTOSs, and mapped miRNA-FPTOS

regulatory pairs on the basis of filtering criteria (|cor| > 0.25, P

< 0.001).
2.5 Tumor mutation burden (TMB) analysis

R package “Maftool” was applied to determine the TMB levels

using somatic mutation data from the TCGA database. Survival

analysis was applied to determine the influence of TMB on the

outcome of ccRCC patients. The TMB levels in two risk

stratifications and their correlations with FPTOS_score were also

measured. TMB was estimated via counting the overall number of

mutations per coding in the tumor sample. Moreover, waterfall

diagrams were plotted to display the landscape of gene mutation

profiles in two risk stratifications. We then evaluated the predictive

capacities of risk stratification on the ccRCC patients’ prognosis

when the mutation of driver genes such as VHL, PBRM1 and TNN

were considered.
2.6 Exploration of immune
microenvironment and response
to immunotherapy

The abundances of immune cell types between two risk

stratifications was evaluated by the CIBERSORT approach and

LM22 signature matrix (19). We performed 1000 permutation

tests to ensure the stability of the outputs. The immune

microenvironment was investigated using ESTIMATE algorithm

according to the predictive results of immune score, estimate score

and tumor purity (20).

In order to determine the immunotherapy responsiveness, we

subsequent analyzed the expression profiles of immune checkpoint

inhibitor (ICI)-targeted genes (PD-1, CTLA-4) between two risk

stratifications. Taken the mutation profiles of ICI-targeted genes

into account, the influence of FPTOS_score on the patients’

prognosis was explored. Since the lack of available ccRCC cohorts
frontiersin.org
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receiving immunotherapy, we employed the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm to predict the

responsiveness towards immunotherapy (21). Applying an open-

access immunotherapy-treated melanoma cohorts, unsupervised

subclass mapping (SubMap) method was utilized to indirectly

predict the immunotherapy responsiveness in the two risk

stratifications according to the similarity of gene expression

profile (22). Additionally, adopting expression and survival data

from a metastatic melanoma cohort who receiving PD-1

immunotherapy, we further conducted survival analysis to

evaluate the progression-free survival (PFS) rates of different

risk groups.
2.7 Identification of sensitive drugs based
on FPTOS_score

The transcriptional data, drug susceptibility data, and

corresponding drug targets or pathways of various tumor cell lines

were extracted from a pharmacogenomic dataset Genomics of Drug

Sensitivity in Cancer (GDSC, https://www.cancerrxgene.org/). The

relationship between the drug susceptibility and the FPTOS_score

was evaluated by Person correlation analysis according to the criteria

(|correlation coefficient (R) | > 0.15 and P < 0.05). The targets or

pathways of these drugs were also screened out to estimate the

underlying mechanisms.
2.8 Real-time PCR (RT-PCR) analysis

To examine the expression level of the identified FPTOSs in

ccRCC sample, we further carried out RT-PCR experiments to

compare the mRNA expression difference between human ccRCC

tumor specimen and adjacent normal specimen. Moreover, the

mRNA expression of FPTOSs in human normal renal proximal

tubular cell line (HK2), human renal clear cell carcinoma cell lines

(786-O, OS-RC-2) were also evaluated. Cells was purchased from

Shanghai Cell Bank Type Culture Collection Committee (Shanghai,

China) and incubated in RPMI-1640 medium containing 10% fetal

bovine serum (FBS). The total RNA was extracted using Trizol

reagent and then transcribed into cDNA using 1st Strand cDNA

Synthesis Kit (Vazyme, China). RT-PCRmethod was performed via

qPCR SYBR Green Master Mix (Vazyme, China) in a

QuantStudio™ 6 Flex Real-Time PCR System. The result was

normalized to housekeeping gene GAPDH, and the selected

primers for the FPTOSs were listed in Table S1.
2.9 Statistical analysis

The statistical analysis and result presentation were realized via

R version 4.0.5 and GraphPad Prism version 8.0. Unpaired

student’s t test or Mann-Whitney U test was utilized to

investigate the differences between two groups with or without

normally distributed variables, respectively. Log-rank test was
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applied to compare different survival outcomes between two

groups. Correlation analysis between two continuous variables

was realized by either Pearson or Spearman test as appropriate.

Contingency table variables were processed with Chi-squared (c2)
test or Fisher’s exact test. Unless otherwise stated, P < 0.05 was

regarded as statistically significant for all analysis.
3 Results

3.1 Identification of FPTOS gene signature

Figure 1 depicted the selection procedures of FPTOS-based

prognostic signature. Specifically, we first obtained transcriptome

data of ccRCC patients from the TCGA-KIRC cohort, which

included 72 normal renal specimens and 539 ccRCC tumor

specimens. A Venn diagram was plotted to identify all genes of

interest that was closely associated with ferroptosis and oxidative

stress, and a total of 437 FPTOSs were output for further analysis

(Figure 2A). Subsequently, the differentially expressed FPTOSs

between normal and tumor specimens were screened out based

on the filtering criteria (|log2 FC| > 1.0, P < 0.05), and 50

downregulated genes and 81 upregulated genes met the

requirement. The expression and distribution profiles of these

FPTOSs were presented in Figures 2B, C.

We then carried out GO and KEGG enrichment analyses to

determine the biological functions and involved pathways of the

FPTOSs. The biological processes were enriched in the responses to

hypoxia, oxygen levels, chemical stress and oxidative stress. The cell

components lied in apical part of cell, apical plasma membrane, and

basolateral plasma membrane. With regard to molecular functions,

these genes were involved in iron ion binding, oxidoreductase

activity, acting on single donors with incorporation of molecular

oxygen, and dioxygenase activity (Figure 2D). Additionally, KEGG

analysis indicated that the identified genes were related with

miRNAs in cancer, HIF-1 signaling pathway, carcinogenesis-

reactive oxygen species, human cytomegalovirus infection, and

ferroptosis (Figure 2E). The findings revealed that the
FIGURE 1

Flowchart depicts the searching procedures to develop a FPTOS-
based prognostic model in ccRCC.
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differentially expressed FPTOSs were primarily implicated in

hypoxia, oxidative stress, ferroptosis and oxygen level regulation,

confirming that the filtering criteria could accurately recognize the

FPTOSs of interest.
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3.2 Development and validation of a
FPTOS-based prognostic model

We identified 131 FPTOS-related prognostic genes by

univariate Cox regression analysis (Table S2). LASSO regression

analysis was carried out to search the predominant prognostic

FPTOSs. The trajectory variations in regression coefficients of

above 131 genes were presented in Figure S1A, and the cross-

validation results of LASSO model construction were presented in

Figures S1B. Finally, 6 output genes (ACADSB, BID, CDCA3,

CHAC1, MYCN and TFAP2A) were identified and subjected for

further study. Applying multivariate Cox regression analysis, 5

genes (ACADSB, CDCA3, CHAC1, MYCN, TFAP2A) with

independent prognostic significances were incorporated into the

prognostic model (Table 1; Figure 3A). Among them, ACADSB and

MYCN were considered as the protective factors, while CDCA3,

CHAC1, and TFAP2A were considered as the detrimental factors.

Furthermore, we examined the prognostic values of the identified

FPTOSs in the ccRCC patients. Based on the expression profiles and

outcome data in the GEPIA database, we found that ACADSB and

MYCN are the favorable prognostic marker of ccRCC, while

CDCA3, CHAC1, and TFAP2A are the unfavorable prognostic

marker of ccRCC (Figure S2). The above findings further

highlighted the considerable prognostic capacities of the FPTOSs

in monitoring ccRCC progression.

The FPTOS_score of each ccRCC patient was computed applying

the following formula: FPTOS_score = (-0.2832 × Exp ACADSB) +

(0.2549 × Exp CDCA3) + (0.1523 × Exp CHAC1) + (-0.1508 × Exp

MYCN) + (0.0672 × Exp TFAP2A). To assess the model applicability,

the ccRCC patients were allocated into the low- and high-risk groups

on the basis of the median value of FPTOS_score. The difference of

OS between two risk stratifications from the TCGA-KIRC cohorts

was measured by Kaplan-Meier method, and the results suggested

that patients from the high-risk group performed a worse prognosis

than those from the low-risk group (P = 4.432e-12, Figure 3B). The

ROC curve was also plotted to evaluate the prediction power and

accuracy of FPTOS-based risk stratification. As presented in

Figure 3C, the area under the ROC curve (AUC) values were 0.751

at 1-year, 0.724 at 3-year, and 0.734 at 5-year. Furthermore, external

validation was applied to evaluate whether the prognostic model

showed stable performance in the E-MTAB-1980 cohort. As a result,

a poor prognosis was observed in the high-risk group (P = 0.003,

Figure 3D), and the AUC values of 1-year, 3-year, and 5-year OS rates

were 0.807, 0.797, and 0.804 (Figure 3E). Generally, these findings

indicated a preferable predictive power and stability of the FPTOS-

based prognostic model.
3.3 Independence of the FPTOS_score
from clinical parameters of ccRCC

We then investigated the survival outcomes between two

FPTOS-based risk stratifications, and it is shown that ccRCC

patients with high-risk exhibited lower OS rates than those with

low-risk (c2= 84.130, P < 0.001) (Figure 4A). Similarly, the dead
B

C

D

E

A

FIGURE 2

Identification of the differentially expressed FPTOSs of ccRCC in
TCGA database. (A) Searching for FPTOS-associated genes in
ccRCC patients using Venn diagram. (B) Visualization of differentially
expressed FPTOSs between normal renal tissues (N = 72) and
ccRCC tissues (N = 539) using volcano plot based on the
transcriptional data in TCGA-KIRC cohort. (C) Visualization of
differentially expressed FPTOSs using heatmap based on
transcriptional data in TCGA-KIRC cohort. (D) GO enrichment
analysis of differentially expressed FPTOSs to determine involved
gene function. (E) KEGG enrichment analysis of differentially
expressed FPTOSs to determine involved pathway.
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patients performed a higher FPTOS_score than the alive patients (P

≤ 2e-16) (Figure 4B), indicating a positive correlation between

FPTOS_score and poor prognosis. To further confirm the

independence of FPTOS_score on the prognostic evaluation of

ccRCC, the crucial clinical parameters (age, gender, grade, stage,

T stage, N stage, M stage) and FPTOS_score were subjected to

univariate and multivariate Cox regression analyses (Table S3;

Figures 4C, D). The findings suggested that FPTOS_score could

serve as an independent prognostic variable of ccRCC patients (HR

= 2.028, 95% CI: 1.640-2.507, P < 0.001).

We next investigated the feasibility of the FPTOS-based risk

stratification in predicting the prognosis of ccRCC patient

subgroups stratified by above clinical parameters. As the results

acquired from the Kaplan-Meier survival analyses, the survival

prognosis of ccRCC patients with high-risk were significantly

worse than those with low-risk, regardless of the clinical variable

stratifications (All P < 0.001) (Figures S3A–S3N). Such results

implied that FPTOS-based risk stratification could distinguish

patients with poor outcomes without considering the influence of

other clinical parameters.
3.4 Construction of miRNA-FPTOS
regulatory network

miRNAs are implicated in multiple cellular processes including

redox homeostasis regulation (23). Therefore, it is valuable to map

the miRNA-FPTOS regulatory network, which may underlie the

upstream regulatory mechanism of FPTOSs. We first extracted the

miRNA sequencing data from the TCGA database. Abnormally

expressed miRNAs were identified according to filtering criteria (|

log2 FC| > 1.0, P < 0.05), and were displayed in heatmap (Figure 5A).

Then the co-expression analysis between prognostic FPTOSs and

abnormally expressed miRNAs was conducted in reference to the

inclusion criteria (|cor| > 0.25, P < 0.001). A total of 30 miRNA-

FPTOS regulatory pairs were screened out (Table S4), and a Sankey

diagram was plotted to exhibit the regulatory network (Figure 5B).
3.5 Association between FPTOS_score and
mutation profiles

The occurrence and progression of ccRCC were partially

attributed to the mutation of driver genes. At present, we
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extracted the somatic mutation data of ccRCC patients from

TCGA-KIRC cohort to reveal the association between

FPTOS_score and mutation profiles. We found that patients with

high TMB levels experienced worse outcomes than patients with

low levels (P = 0.002) (Figure 6A), and elevated TMB levels were

observed in the patients from high-risk group (Figure 6B).

Moreover, correlation analysis suggested that FPTOS_score was

positively correlated with TMB level (R = 0.20, P = 3e-

4) (Figure 6C).

Subsequently, the genes mutated in at least 5% of the tumor

specimens from two risk stratifications were illustrated via

waterfall plot. A significant abundant mutation events was

existed in the specimens from high-risk group, accompanying

by an increased dead population (Figures 6D, E). We employed

the top 3 mutated driver genes (VHL, PRBM1, TNN) to investigate

whether the FPTOS_score still had prognostic value when the

driver gene mutations were taken into account. The results

revealed that VHL-mutated patients with low-risk performed

significant survival advantages than those with high-risk,

meanwhile, VHL-wild patients with low-risk also performed

significant survival advantages than those with high-risk

(Figure 6F). Consistent with the performance of different VHL

phenotype groups, patients with low-risk still experienced better

outcomes than those with high-risk, no matter whether the

mutation of PRBM1 and TNN occurred (Figures 6G, H).

Collectively, these findings implied that FPTOS-based risk

stratification was positively correlated with TMB level and gene

mutation frequency, and patients with relatively low FPTOS_score

exhibited favorable prognosis even when the mutation of driver

genes were considered.
3.6 Determination of immune cell
infiltration and immune microenvironment

RCC is recently regarded as an immunogenic tumor, which is

partly caused by the immune dysfunction with the infiltration of

suppressive immune cell subtypes such as regulatory T cells (Tregs)

and myeloid-derived suppressor cells (MDSCs) (24). Currently, the

components of immune cells were measured using CIBERSORT

method. Correlation matrix was plotted to depict all the 22 immune

cell proportions, and a strong relevance was existed between CD8+

T cells and Tregs in the TCGA-KIRC cohort (Figure 7A). It was

shown that abundant populations of CD8+ T cells, M0
TABLE 1 Multivariate Cox regression analysis to identify prognosis-related FPTOSs.

Gene Coef Exp (coef) se (coef) z Pr (>|z|)

ACADSB -0.2832 0.7534 0.1130 -2.5057 0.0122

CDCA3 0.2549 1.2904 0.0868 2.9370 0.0033

CHAC1 0.1523 1.1645 0.0603 2.5261 0.0115

MYCN -0.1508 0.8600 0.0587 -2.5688 0.0102

TFAP2A 0.0672 1.0695 0.0405 1.6575 0.0974
fro
Coef, coefficient.
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macrophages, and Tregs existed in the patient specimens from

high-risk group, while predominant populations of resting mast

cells, M2 macrophages, and monocytes accumulated in the

specimens from low-risk group (Figure 7B).

What else, the immune microenvironment properties of

ccRCC specimens were quantified, and the output values of
Frontiers in Oncology 07185
immune score and estimate score in the high-risk group (1152.85

± 793.65, 1796.53 ± 1239.89, respectively) were significantly

higher than those in the low-risk group (860.65 ± 565.16, 1504.52

± 943.08, respectively), while the output values of tumor purity in

the high-risk group (0.6348 ± 0.1311) were significantly lower than

those in the low-risk group (0.6712 ± 0.0956) (Figures 7C–E).
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FIGURE 3

Construction and validation of a FPTOS-based prognostic model. (A) Multivariate Cox regression analysis to evaluate the prognostic values of 5
FPTOSs. (B) Kaplan-Meier survival curve analysis to compare overall survival (OS) difference between low- and high-risk groups in the TCGA-KIRC
cohort. (C) Time-dependent ROC curve analysis to evaluate the predictive power of the FPTOS-based risk stratification in the TCGA-KIRC cohort.
(D) Kaplan-Meier survival curve analysis to compare OS difference between low and high-risk groups in the validated E-MTAB-1980 cohort.
(E) Time-dependent ROC curve analysis to evaluate the predictive power of the FPTOS-based risk stratification in the validated E-MTAB-1980
cohort. Log-rank test was applied to compare the statistical differences in the Kaplan-Meier curves.
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3.7 Evaluation of immunotherapy
responsiveness based on FPTOS
risk stratification

Immunotherapy, especially immune checkpoint inhibitor (ICI),

has witnessed a tremendous development and revolutionized the
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treatment of various tumors (25). Therefore, we next measured the

changes of ICI targeted genes (PD-1, CTLA-4) in different risk

stratifications. Compared with the low-risk patients, the expression

of PD-1 and CTLA-4 in the high-risk patients were dramatically

upregulated (all P < 0.001) (Figures 8A, B). Subsequently, we

measured the survival prognosis of ccRCC patients between two
B

C

D

A

FIGURE 4

Independence of the FPTOS_score from clinical parameters of ccRCC. (A) Survival status of low- and high-risk groups stratified by FPTOS_score in
ccRCC patients. The categorical variables were analyzed with the Chi-squared (c2) test. (B) FPTOS_score of ccRCC patients stratified by survival
status. (C, D) Univariate or multivariate Cox regression analysis to confirm the independent prognostic significance of FPTOS_score and clinical
parameters for ccRCC patients.
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risk stratifications when the expression of ICI-targeted genes was

taken into consideration. As a result, patients with high-risk and

high PD-1/CTLA-4 expression experienced worse outcomes when

compared with patients with low risk and high PD-1/CTLA-4 level,

and patients with high-risk and low PD-1/CTLA-4 level experienced

worse outcomes when compared with patients with low-risk and

low PD-1/CTLA-4 level (Figures 8C, D).

Since the absence of easily-accessible ccRCC cohort treated with

immunotherapy, the TIDE algorithm, which integrated T cell

dysfunction and exclusion on the basis of the expression profiles,

was applied to predict the response to immunotherapy. When

compared with the low-risk group, the high-risk group presented

significantly elevated TIDE prediction scores (P = 0.00047)

(Figure 8E). Meanwhile, patients in different risk stratifications

exhibited different immunotherapy responsiveness, while the

response ratio of high-risk to low risk was 46.77% to 35.21% (c2

= 7.325, P = 0.007) (Figure 8F).
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Subsequently, the SubMap analysis was conducted to compare

the expression characteristics of FPTOS_score acquired from the

TCGA and GEO databases with an open-access metastatic

melanoma cohort who receiving anti-PD-1 or anti-CTLA-4

treatment. The results revealed that patients with high-risk might

respond positively to anti-PD-1 immunotherapy in both TCGA and

GEO cohorts (adjusted P = 0.049 and 0.012, respectively),

conversely, patients with low-risk might respond poorly to anti-

CTLA-4 immunotherapy (adjusted P = 0.0033 and 0.011,

respectively) (Figures 8G, H). Furthermore, we evaluated the

predictive efficacy of FPTOS_score in the Riaz’s cohort who

receiving anti-PD-1 immunotherapy, and discovered that patients

with high-risk experienced worse outcomes in PFS when compared

with those with low-risk (P = 0.015) (Figure 8I). These results had

provided guidance for the immunotherapy strategy of ccRCC

patients, for instance, a feasibility of anti-PD-1 treatment for

high-risk patients.
B

A

FIGURE 5

Construction of miRNA-FPTOS regulatory network for ccRCC patients. (A) Heatmap of differentially expressed miRNAs between normal renal
samples and ccRCC tumor samples. (B) Sankey plot to visualize the potential regulatory relationship between differentially expressed miRNAs and
prognostic FPTOSs.
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3.8 Relationship between FPTOS_score
and drug susceptibility

To explore available drugs for high-risk patients, we further

investigated the relevance between FPTOS_score and IC50 values of

corresponding drugs in the ccRCC cell l ines via the

pharmacogenomics database GDSC. In the light of inclusion
Frontiers in Oncology 10188
criteria (|R| >0.15, P < 0.05), 18 drugs (including cisplatin, BI-

D1870 and docetaxel) performed sensitive responses towards high

FPTOS_score, while 21 drugs (including AS601245, AKT Inhibitor

VIII and AZD8055) performed resistant responses towards high

FPTOS_score (Figure 9A). What else, the drug-involved pathways

were analyzed. As shown in the Figure 9B, the sensitive drugs were

enriched in the pathways associated with genome integrity,
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FIGURE 6

Exploring association between FPTOS_score and mutation profiles. (A) Kaplan-Meier survival analysis to explore the influence of TMB levels on the
prognosis of ccRCC patients. (B) Differences of TMB levels between the two FPTOS-based risk stratifications. (C) Person’s correlation analysis
between FPTOS_score and TMB level. (D, E) Waterfall plot to exhibit the mutation landscape in the low- or high-risk group, respectively. The high-
frequency mutated genes and events were illustrated. (F–H) Kaplan-Meier survival analysis among four groups stratified by the FPTOS-based risk
stratifications and mutation profiles of driver genes VHL, PBRM1, or TTN, respectively.
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metabolism, p53 pathway, protein stability and degradation, while

the resistant drugs were involved in the pathways such as WNT

signaling, RTK signaling, hormone-related, EGFR signaling,

apoptosis regulation and Other. The above findings indicated that

the FPTOS_score might influence the drug responsiveness of

ccRCC cell lines, which might provide insights into the

cancer treatment.
3.9 Exploring the expression pattern of the
identified FPTOSs

The mRNA expression of prognostic FPTOSs in both renal

tissue and cell samples was determined by RT-PCR method. As the

results indicated, the expressions of CDCA3,MYCN and TFAP2A in

ccRCC tumor tissue were significantly upregulated compared with

those in adjacent normal kidney tissue, while the expressions of

ACADSB and CHAC1 were significantly downregulated

(Figures 10A–E). Additionally, the mRNA expression of

ACADSB , CHAC1 , and TFAP2A were also significantly

upregulated in ccRCC cell line 786-O, while the CHAC1 was

downregulated but ACADSB and TFAP2A were upregulated in

another ccRCC cell line OS-RC-2 (Figures 10F–J).
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4 Discussion

Resistance to cell death, genome instability and mutation are the

basic hallmarks of cancer (26). Interestingly, RCC cells were more

sensitive to erastin-induced ferroptosis than others tumor cell types,

which might be attributed to the dependence of GSH content and

GPX4 activity to regulate redox homeostasis (18). Mechanistically,

peroxisomes promoted the biosynthesis of polyunsaturated ether

phospholipids (PUFA-ePLs), substrates of lipid peroxidation, and

triggered the occurrence of ferroptosis. A decrease of PUFA-ePLs

will promote the conversion of ferroptosis-sensitive state to

ferroptosis-resistant state of RCC cells (27). Chemerin, a hypoxia-

inducible factor (HIF)-dependent adipokine, suppressed fatty acid

oxidation and thus mediated ferroptosis resistance in ccRCC (28).

Moreover, one analysis revealed that ccRCC patients occurred a 2-

82% mutation frequency among 36 ferroptosis-related genes (29).

The multi-kinase inhibitors sorafenib is recommended to be the

first-line strategy for treating advanced ccRCC patients (30, 31).

Interestingly, it can block the system Xc- function, induce GSH

consumption and lipid ROS accumulation, and thus trigger

ferroptosis in RCC cells (32–34). Therefore, comprehensive

exploration of the FPTOSs expression profiles could deepen the

understanding of occurrence and progression of ccRCC.
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FIGURE 7

Determining immune cell infiltration and immune microenvironment between two risk stratifications. (A) Correlation matrix of all 22 immune cell
populations. (B) Exploring the differentially infiltration of immune cell populations between low- and high-risk groups. (C–E) Comparison of immune
score, estimate score or tumor purity using ESTIMATE algorithm between two risk stratifications.
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In the current study, using univariate Cox regression, LASSO

regression, and multivariate Cox regression analyses, 5 FPTOSs

with crucial prognostic significances were identified, including

ACADSB, CDCA3, CHAC1, MYCN, and TFAP2A. Among them,

ACADSB and MYCN were discovered as the protective factors,

while CDCA3, CHAC1 and TFAP2A were discovered as the

detrimental factors. ACADSB is a member of acyl-CoA

dehydrogenase family, and is predominantly involved in the

processes of fatty acid metabolism, branch-chained amino acid

metabolism and ferroptosis (35, 36). It was reported that

ACADSB expression was positively associated with the expression

of ferroptosis driving genes. Suppression of ACADSB was observed

in ccRCC samples, which was accompanied with advanced grade

and stage, and might function as an independent prognostic factor

of ccRCC patients (37). CDCA3 engaged in cell cycle regulation

through mediating ubiquitin degradation of mitosis-inhibitory

kinase WEE1 (38). It was considered to be a prognostic factor of

RCC, and the upregulation of CDCA3 was associated with advanced

TNM stage, tumor grade and immune cell infiltration (39). In

addition, lncRNA SNHG12 increased CDCA3 expression and thus

mediated tumor progression and sunitinib resistance in RCC

patients (40). CHAC1 was implicated in the processes of

endoplasmic reticulum (ER) stress and ferroptosis (41). It could

serve as a biomarker to independently forecast the prognostic

outcomes of ccRCC patients, and was positively associated with

the expression signatures of various immune cells (memory B cell,

NK cell and Th1 cell) and ICI genes (ADORA2A, CD200, CD44)

(42). Aberrant MYCN amplification was previously considered as a

driving event of high-risk neuroblastoma (43). However, inhibition

of MYCN contributed to the drug resistance of cisplatin through

repressing apoptosis in epithelial ovarian cancer (44). The specific

roles of MYCN in ccRCC progression still requires further

verification. Transcriptional factor TFAP2A controlled the

expression of various tumor-related genes including VEGF, BCL-

2, c-Kit and c-Myc, and was reported to be widely upregulated in

tumor samples (45). Additionally, suppression of TFAP2A

inhibited cell proliferation, migration and invasion via initiating

oxidative stress and ferroptosis in gallbladder carcinoma (46).

These 5 FPTOS genes were then included into a prognostic

model, which was utilized to develop a risk scoring system, named

FPTOS_score. All patients were allocated into low- and high-risk

groups on the basis of the median value of FPTOS_score. The

results indicated a poor prognosis existed in the high-risk group,

and the prognostic model presented preferable predictive sensitivity

and accuracy. What else, the FPTOS-based risk stratification was

able to distinguish patients with undesirable outcomes, and the

results were robust even after considering the influence of various

clinical parameters.

miRNAs served as a class of crucial molecules that regulate gene

expression in a post-transcriptional modification manner. It was

reported that miRNAs were responsible for regulating ROS

generation and thus promoting ferroptosis occurrence in ccRCC

(47). Hence, we carried out a co-expression analysis to explore the

crosstalk between differentially expressed miRNAs and prognostic

FPTOSs, and a total of 30 miRNA-FPTOS regulatory pairs were
B

C D

E F

G H

I

A

FIGURE 8

Evaluation of immunotherapy responsiveness based on FPTOS risk
stratification. (A, B) Expression patterns of ICI targeted gene PD-1 or
CTLA-4 in two FPTOS-based risk stratifications. (C, D) Kaplan-Meier
survival analysis for OS among four groups stratified by the FPTOS-
based risk stratifications and PD-1 or CTLA-4 expression level,
respectively. (E) Difference of TIDE prediction score between the
low- and high-risk groups. (F) Comparison of immunotherapy
responsiveness between low- and high-risk groups. (G, H) SubMap
analysis to predict the immunotherapy responsiveness in the low-
and high-risk groups from the TCGA cohort or GEO cohort,
respectively, according to the anti-PD-1 or anti-CTLA-4
responsiveness from the open-access metastatic melanoma cohort.
(I) Kaplan-Meier survival analysis of progression-free survival (PFS)
between the low- and high risk groups in the Riaz’s cohort who
have received anti-PD-1 immunotherapy.
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obtained, which might bring novel insights into the gene regulation

patterns in ccRCC.

Emerging evidences demonstrated that accumulation of

somatic mutation events is responsible for the tumorigenesis and

progression (48). TMB is newly considered as a substitute for

neoantigen load to act as a prognostic biomarker for cancer (49).

Therefore, identification of mutated genes especially driver genes of

ccRCC may provide promising opportunities for personalized

therapy and prognosis prediction. The findings indicated that

patients from high-risk group performed elevated TMB level,

which was accompanied with a poor prognosis. Abundance

mutation events were existed in patients with high-risk, and the

well-defined driver genes VHL, PRBM1 and TTN occupied the most

frequent mutation sites in both the low- and high-risk groups.

Interestingly, patients from the high-risk groups experienced a

worse prognosis than those from the low-risk groups when the

mutation of these diver genes was taken into account. A recently

accepted notion of RCC progression is that VHLmutation function

as an initial event to drive tumorigenesis, while PBRM1, BAP1 and

SETD2 subsequent trigger defects in DNA repair system and

abnormal tumor growth (50). TTN mutation has been reported to

be correlated with myopathy and cancer, and one study showed that

lncRNA TTN-AS1, which is transcribed in the opposite direction of
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TTN, was upregulated in ccRCC samples and positive associated

with poor clinicopathological performances (51).

The infiltration of immune cell was predicted using

CIBERSORT algorithm. Herein, the tumor samples from high-

risk group were infiltrated with CD8+ T cells, whereas those from

low-risk group were infiltrated with resting mast cells. Unlike other

solid tumors, there is a generally accepted viewpoint that increased

CD8+ T cells infiltration in RCC samples was positively associated

with weak outcome (52). This phenomenon might owe to a relative

lack of tertiary lymphoid structures, which suppressed the mature

process of dendritic cell, and thus prevented CD8+ T cells from

recognizing tumor antigen (52, 53). Conversely, ccRCC tumor

samples with abundant mast cell population performed better OS

and PFS than those with scare mast cell population (54).

Meanwhile, the immune score and estimate score were increased

but the tumor purity was decreased in the high-risk group. The

diversities of immune microenvironment might confer distinct drug

susceptibilities to chemotherapy and immunotherapy. When

compared with the low-risk group, the expression of ICI targeted

genes (PD-1, CTLA-4) were significantly increased in the high-risk

group. Patients with advanced or metastatic RCC have exhibited a

desirable response rate to FDA-approved ICI drugs, such as anti-

PD-1 antibody (nivolumab, pembrolizumab, atezolizumab) and/or
B

A

FIGURE 9

Identification of sensitive drugs for ccRCC patients based on FPTOS_score. (A) Person correlation analysis between FPTOS_score and drug
susceptibility in the GDSC database. (B) Screening for involved pathways of identified drugs.
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anti-CTLA-4 antibody (ipilimumab) (55–58). Despite these

advantages, most patients could not gain a durable response to

immunotherapy. Encouragingly, the current study demonstrated

that patients with high-risk performed a better response probability

to anti-PD-1 immunotherapy than those with low-risk. Therefore,

applying the FPTOS-based risk stratification might bring great

benefits to metastatic RCC patients through distinguishing

patients who respond positively to immunotherapy. Finally,

correlation analysis indicated that cisplatin, BI-D1870 and

docetaxel might serve as sensitive drugs to treat patients with

high FPTOS_score.

Generally, the present study had mapped a ferroptosis and

oxidative stress-associated landscape of ccRCC, and developed a

prognostic model with a preferable predictive accuracy and stability.

However, limitations should not be ignored. First, the transcriptome

data were extracted from a retrospective cohort, and thus the

prognostic model should be revaluated by a prospective cohort.

Second, although robust results from bioinformatic analysis, the

molecular functions and pathological mechanisms of the identified

FPTOSs in ccRCC were still required experimental verification. Third,

despite ICI-based immunotherapy and easily accessible drugs have

shown the therapeutic potential for high-risk group, how to choose the

optimum treatment protocol deserve further exploration.
5 Conclusion

Overall, we identified the FPTOSs with potential prognostic

significance in ccRCC patients. A reliable score system to

distinguish high-risk patients was established and performed a

preferable predictive accuracy and stability. Subsequently, the
Frontiers in Oncology 14192
miRNA-FPTOS regulatory network, driver gene mutation status,

immune cell population, immunotherapy responsiveness, and drug

susceptibility were examined. The results supply novel insights into

the expression profiles of FPTOSs in ccRCC, and provide

opportunities to identify therapeutical targets or prognostic

biomarkers for ccRCC.
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Background: Interferon regulatory factors (IRFs) played complex and essential

roles in progression, prognosis, and immunemicroenvironment in clear cell renal

cell carcinoma (ccRCC). The purpose of this study was to construct a novel IRFs-

related risk model to predict prognosis, tumor microenvironment (TME) and

immunotherapy response in ccRCC.

Methods: Multi-omics analysis of IRFs in ccRCC was performed based on bulk

RNA sequencing and single cell RNA sequencing data. According to the

expression profiles of IRFs, the ccRCC samples were clustered by non-

negative matrix factorization (NMF) algorithm. Then, least absolute shrinkage

and selection operator (LASSO) and Cox regression analyses were applied to

construct a risk model to predict prognosis, immune cells infiltration,

immunotherapy response and targeted drug sensitivity in ccRCC. Furthermore,

a nomogram comprising the risk model and clinical characteristics was

established.

Results: Twomolecular subtypes with different prognosis, clinical characteristics

and infiltration levels of immune cells were identified in ccRCC. The IRFs-related

risk model was developed as an independent prognostic indicator in the TCGA-

KIRC cohort and validated in the E-MTAB-1980 cohort. The overall survival of

patients in the low-risk group was better than that in the high-risk group. The risk

model was superior to clinical characteristics and the ClearCode34 model in

predicting the prognosis. In addition, a nomogramwas developed to improve the

clinical utility of the risk model. Moreover, the high-risk group had higher

infiltration levels of CD8+ T cell, macrophages, T follicular helper cells and T

helper (Th1) cells and activity score of type I IFN response but lower infiltration

levels of mast cells and activity score of type II IFN response. Cancer immunity

cycle showed that the immune activity score of most steps was remarkably

higher in the high-risk group. TIDE scores indicated that patients in the low-risk

group were more likely responsive to immunotherapy. Patients in different risk
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groups showed diverse drug sensitivity to axitinib, sorafenib, gefitinib, erlotinib,

dasatinib and rapamycin.

Conclusions: In brief, a robust and effective risk model was developed to predict

prognosis, TME characteristics and responses to immunotherapy and targeted

drugs in ccRCC, which might provide new insights into personalized and precise

therapeutic strategies.
KEYWORDS

interferon regulatory factors, clear cell renal cell carcinoma, tumor microenvironment,
immunotherapy, drug sensitivity
Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common

histological subtype of renal cell carcinoma and accounts for

approximately 80%-90% of cases (1). Radical nephrectomy

remains the effective option for localized ccRCC, however, nearly

30% of patients develop distant metastatic or recurrence after

surgery (2, 3). TKIs-targeted and mTOR-targeted therapies have

been widely adopted, but the clinical benefits are limited (4). In

recent years, immune checkpoint inhibitors (ICIs) therapy targeting

PD-1/PD-L1 and/or CTLA-4 has made significant breakthroughs in

ccRCC (5, 6). However, the therapeutic response rate of ICIs in

ccRCC remains poor (7). Despite the combination treatment of ICIs

and targeted therapeutic drugs may improve the response rate,

these patients receiving the combination therapy often suffer from

adverse events (5, 8, 9). Moreover, ccRCC exhibits extremely high

heterogeneity , so the responses and prognoses after

immunotherapy in patients with the same degree of progression

vary extensively (10). Therefore, it is essential to explore the

heterogeneity of the ccRCC patients and develop novel

biomarkers or therapeutic targets to predict the prognosis and

improve ICIs therapeutic efficacy, thereby optimizing

immunotherapy for ccRCC.

Interferon regulatory factors (IRFs), which comprise nine gene

family members (IRF1, IRF2, IRF3, IRF4, IRF5, IRF6, IRF7, IRF8 and

IRF9), are a family of transcription factors that regulate the

transcription process of interferons by acting at their gene sites

(11). Cumulative evidences revealed IRFs played critical roles in the

regulation of cell cycle, cell differentiation, cell apoptosis and cancer

immune responses (11). Multiple studies suggested that IRFs played

complex and essential roles in progression, prognosis, and immune

microenvironment in ccRCC. Kong et al. reported that PD-L1

expression in ccRCC cells was induced by IFNg stimulation through

activation of JAK2/STAT1/IRF1 signaling (12). In addition, the high

expression of IRF3 and IRF4 was found to be significantly associated

with the advanced clinical stage and poor prognosis in ccRCC (13,

14). Moreover, Bai et al. found high expression of IRF5 was

significantly associated with poor overall survival (OS) and

recurrence free survival (RFS) in ccRCC (15). Furthermore, Ma
02196
et al. revealed that IRF6 overexpression could attenuate

proliferation, migration and invasion of ccRCC cells by

downregulating the KIF20A expression (16). IRF8 expression by

tumor-associated macrophages (TAMs) was negatively associated

with tumor stage and positively correlated with prognosis in ccRCC

patients (17). As a component of IFN-stimulated gene factor 3

(ISGF3), IRF9 expression in ccRCC cells was negatively associated

with tumor growth (18). The above results indicated that IRFs played

a diverse regulatory role in the oncogenesis and progression of ccRCC.

Cumulative evidences showed that carcinogenesis and progression of

cancer was the consequence of the interaction of multiple genes and/

or signal pathways (19). A single gene as biomarkers may be not

sufficient to accurately predict prognosis and estimate immune status

in ccRCC. Hence, we utilized all IRF family members to construct a

novel risk model to provide new insights into predicting prognosis

and promoting the individualized immunotherapy.

In our study, we classified ccRCC patients into different

molecular subtypes based on IRFs and constructed a novel risk

model. Moreover, we estimated the clinical performance of this risk

model in terms of prognosis, immune microenvironment, response

to immunotherapy and targeted drug sensitivity.
Materials and methods

Ethical statement

This study was approved by the Ethical Committee of Shandong

Provincial Hospital Affiliated to Shandong First Medical University

(SWYX: NO.2021-277). Written informed consent was obtained

from all patients.
Data preparation

Transcriptomic RNA (HTseq-FPKM) including 539 ccRCC

tissues and 72 adjacent nontumor tissues with clinical

information were acquired from The Cancer Genome Atlas

(TCGA) database. The gene annotation of the gene transfer
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format (GTF, release 37, GRCh38.p13) file downloaded from

GENECODE (http://gencodegenes.org) was used to annotate gene

symbols. Somatic mutation data and copy number variation (CNV)

data of TCGA-KIRC patients were downloaded from the USUC

Xena (https://xena.ucsc.edu). In addition, three gene expression

profiles of the GSE40435, GSE53757 and GSE66272 datasets with a

total of 400 samples were downloaded from the Gene Expression

Omnibus (GEO) database. After the batch effects were corrected

using “sva” R package, the three datasets (GSE40435, GSE53757 and

GSE66272) were merged into a single dataset. The single-cell RNA-

sequencing (scRNA-seq) raw count files of the GSE156632 dataset

was also obtained from the GEO database. The E-MTAB-1980

cohort comprising 101 ccRCC patients with clinical data was

obtained from the EMBL-EBI database (https://www.ebi.ac.uk/).
scRNA-seq data analysis

The 10× scRNA-seq data was converted to Seurat object using

“Seurat” R package. The clusters with cells less than 3, cells that were

detected less than 50 genes and cells that expressed more than 5% of

mitochondrial genes were removed. Principal component analysis

(PCA) was performed using the top 1500 most variable genes. The

“FindNeighbors” and “FindClusters” functions were used for cell

clustering analysis based on the top 15 principal components (PCs).

The “FindAllMarkers” function was applied to identify marker genes

of different cell clusters based on the threshold of FDR< 0.01 and |

log2FC| > 1. Furthermore, cluster annotation was performed to

recognize different cell type using “SingleR” package.
Differential expression analysis of the
IRF family members and gene-gene
interaction network

The mRNA expression levels of the IRF family members in

non-paired samples and paired samples were analyzed using

Wilcoxon rank-sum test and Wilcoxon signed-rank test

respectively based on the TCGA-KIRC dataset. The mRNA

expression levels of the IRF family members between ccRCC

samples and normal samples were validated based on the GEO

dataset using the Wilcoxon signed-rank test. In addition, UALCAN

(http://ualcan.path.uab.edu) was used to analyze the protein

expression levels of IRF family members between ccRCC samples

and normal samples according to data from the Clinical Proteomic

Tumor Analysis Consortium (CPTAC). P< 0.05 was considered

statistically significant. The correlation analysis of the IRF family

members was performed on basis of their mRNA expression data

from the TCGA-KIRC dataset.
Prognostic values of the IRF family
members

Kaplan-Meier (KM) survival curves were plotted to evaluate OS

of the IRF family members in ccRCC based on the optimal cutoff
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value using “survival” R package. A receiver operating-

characteristic (ROC) curve was plotted using the “pROC” R

package, and the area under curve (AUC) was calculated to

evaluate diagnostic capability of the IRF family members.
Identification of molecular subtypes based
on IRF family members

Based on the expression profiles of IRF family members, non-

negative matrix factorization (NMF) with “brunet” method for 10

iterations was performed to cluster the TCGA-KIRC samples. The

number of clusters was set as 2 to 10 and the average contour width

of the common member matrix was determined using the “NMF” R

package. The minimum number of each subset was set as 10. Then,

the optimal number of clusters was determined according to

cophenetic, dispersion and silhouette indexes. KM survival curve

was used to explore the difference of OS between the different

molecular subtypes. Besides, the difference in mRNA expression of

IRF family members between the different molecular subtypes was

analyzed. Differentially expressed genes (DEGs) between different

molecular subtypes were identified using the “limma” R package

with the threshold of FDR< 0.05 and |log2FC| > 1.
Gene set variation analysis (GSVA) and
functional enrichment analysis

GSVA was applied to explore the difference in biological

pathways between the different molecular subtypes through

“GSVA” R package. The gene sets of “c2.cp.kegg.v2022.

1.Hs.symbols.gmt” were obtained from the MSigDB database.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were performed

with the “clusterprofiler”, “org.Hs.eg.db”, “enrichplot” and

“circlize” R packages. The enrichment categories were considered

as statistically significant if a false discovery rate (FDR)< 0.05.
Construction and validation of an IRFs-
related prognostic model

Subsequently, the prognostic-related DEGs were identified by

univariate Cox regression analysis based on the TCGA-KIRC

cohort (p<0.01). To avoid the overfitting risk, least absolute

shrinkage and selection operator (LASSO) Cox regression analysis

was performed to narrow down the candidate genes using the

“glmnet” R package. Finally, multivariate Cox regression analysis

was conducted to determine the target genes for constructing an

IRFs-related prognostic model. The risk score was calculated as

follows: risk score = o
n

i=1
 Expi � coefi(where n, Expi and coefi represent

the number of genes, the expression of each gene, and risk

coefficient of each gene, respectively). According to the median

value of the risk score, patients were divided into the high-risk and

low-risk groups. Survival analysis was conducted to explore

differences in the OS between the high-risk and low-risk groups.
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Additionally, time-dependent ROC curve using “timeROC” R

package was plotted, and the 1-, 3- and 5-year AUCs were

calculated to evaluate the sensitivity and specificity of the

prognostic model. PCA and t-distributed stochastic neighbor

embedding (t-SNE) were performed to explore the distribution of

the two risk groups. The E-MTAB-1980 cohort was used as an

external independent cohort to validate the prognostic model.

Furthermore, we evaluated the relationships between the risk

score and clinical characteristics. Univariate and multivariate Cox

regression analyses were used to evaluate whether the risk score

could serve as an independent prognostic biomarker. A nomogram

combining the risk score and clinical characteristics (age, gender

and stage) was constructed to predict the 1-, 3- and 5-year OS of

ccRCC patients. To evaluate the predictive accuracy of the

nomogram, the calibration curve and concordance index (C-

index) curve were plotted. Decision curve analysis (DCA) was

performed to evaluate the clinical utility and net benefit of

the nomogram.
Evaluation of immune characteristics

To explore the immune status in ccRCC, the ESTIMATE

algorithm was used to calculate the stromal score and immune

score of each sample. The abundance of 22 immune cells was

estimated using the CIBERSORT algorithm. The infiltration levels

of 16 immune cells and activity scores of 13 immune-related

pathways were calculated by the single sample gene set

enrichment analysis (ssGSEA). The cancer immunity cycle

including seven steps could reflect anticancer immune response in

tumor microenvironment (TME) (20). Therefore, we compared the

differences in the immune activity scores of the seven steps between

the high-risk and low-risk groups based on the Tracking Tumor

Immunophenotype (TIP; http://biocc.hrbmu.edu.cn/TIP/index.jsp)

database. Furthermore, tumor mutation burden (TMB) of each

patient in the TCGA-KIRC cohort was calculated. The difference in

TMB between the high-risk and low-risk groups was compared, and

the correlation between the risk score and TMB was also analyzed.
Assessment of immunotherapy response

To evaluate the immunotherapy response between the high-risk

and low-risk groups, the tumor immune dysfunction and exclusion

(TIDE; http://tide.dfci.atherard.edu/) was used to calculate the

TIDE score of each patient according to myeloid-derived

suppressor cell (MDSC), macrophage M2, T cell Dysfucntion and

Exclusion (21). Moreover, the T-cell inflammatory signature (TIS)

score was calculated based on the mean value of a log2-scaled

normalized expression of 18 signature genes (22). The ROC curve

was conducted to compare the predictive ability of risk model,

TIDE and TIS using “timeROC” R package.
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Drug sensitivity analysis

Based on the Genomics of Drug Sensitivity in Cancer (GDSC;

https://www.cancerrxgene.org/) database, the half-maximal

inhibitory concentration (IC50) of chemotherapeutic drugs was

estimated using the “oncoPredict” R package. Thereafter, the

difference in IC50 between the high-risk and low-risk groups was

analyzed by Wilcoxon signed-rank test.
RNA extraction and quantitative real-time
polymerase chain reaction (qRT-PCR)

20 pairs of ccRCC tissues and adjacent normal tissues were

collected and stored at -80°C for qRT-PCR. Total RNA was

extracted from 20 pairs of ccRCC tissues and adjacent normal

tissues using TRIzol (TaKaRa, Japan) in accordance with the

manufacturer’s instructions. The T100 Thermal Cycler (Bio-Rad,

USA) was used to reverse-transcribe RNA into cDNA. qPCR

reactions were performed using Fast Start Universal SYBR Green

Master (Roche, Switzerland) in the LightCycler 480 (Roche,

Switzerland). The qPCR conditions were as follows: (1) 30 s at

95°C; (2) 5 s at 95°C, and 30 s at 60°C for 45 cycles; and (3) melt

curve analysis. The sequences of primers are shown in

Supplementary Table S1. The relative mRNA expression levels of

IRF family members were calculated by the 2-△△CT method.
Immunohistochemistry (IHC)

In addition, ccRCC tissues and adjacent normal tissues were

fixed in formalin and embedded in paraffin for IHC analysis. Tissue

sections (4 mm in thickness) were cut from the clinical samples

(ccRCC tissues and normal tissues). The sections were placed in an

oven at 72°C for two hours to prevent the tissues from falling out.

Then, the sections were deparaffinized with xylene, rehydrated with

ethanol and placed in sodium citrate buffer in a pressure cooker for

antigen retrieval. Next, the sections were immersed into 3%

hydrogen peroxide solution for 4 min at room temperature to

inactivate endogenous peroxidase, and then they were rinsed in

phosphate-buffered saline (PBS). The sections were incubated with

primary antibodies against IRF1 (Abclonal, Wuhan, China), IRF2

(Abclonal), IRF3 (Abclonal), IRF4 (Abcam, Cambridge, UK), IRF5

(Abclonal), IRF6 (HUABIO, Hangzhou, China), IRF7 (Proteintech,

Wuhan, China), IRF8 (Abcam) and IRF9 (Proteintech) at 4°C

overnight. Then, the sections were incubated with secondary

antibodies at room temperature for 40 min. Subsequently, the

sections were stained with 3,3’-diaminobenzidine (DAB) and

counterstained with hematoxylin. We examined three fields of

view (200x) selected randomly from each section. The average

optical density (AOD) value of each image was measured by

Image J software, and the difference in AOD value between
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ccRCC tissues and normal tissues was compared using

Wilcoxon test.
Results

Multi-omics landscape of IRF family
members in ccRCC

Based on the TCGA-KIRC dataset, the mRNA expression levels

of IRF1/2/3/4/5/7/8/9 in 539 ccRCC samples were significantly

higher than those in 72 normal samples, whereas the mRNA

expression level of IRF6 in 539 ccRCC samples was significantly

lower than that in 72 normal samples (Figure 1A). Moreover, the

mRNA expression trends of the IRF family members, except for

IRF5, in paired samples were consistent with those in non-paired

samples (Supplementary Figure S1). The result in the GEO dataset

showed that the expression levels of IRF1/2/3/4/5/7/8/9 in ccRCC

samples were significantly upregulated compared with those in the

normal samples, whereas the expression level of IRF6 in ccRCC

samples was significantly downregulated compared with that in the

normal samples (Figure 1B). On basis of the scRNA-seq data, we

further validated the expression of the IRF family members in

different types of cells in the TME. Eight cell clusters, namely
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endothelial cells, macrophage, monocyte, tissue stem cells, T cells,

hepatocytes, epithelial cells and DC, were identified (Figure 1C) and

the expression levels of the IRF family members in different types of

cell clusters were shown in Figure 1D. Furthermore, we found that

the protein levels of IRF2/3/4/7/8/9 in ccRCC samples were higher

than those in the normal samples, while the protein level of IRF6 in

ccRCC samples was lower than that in the normal samples

(Supplementary Figure S2). The incidence of somatic mutation

and CNVs of IRFs were also estimated. Among the 336 samples,

only 5 samples (1.49%) had mutations in IRF family members

(Figure 2A). We also found IRF1 and IRF9 had copy number

amplification, while IRF2 had copy number deletion (Figure 2B).

The location of CNV alterations of IRF family members on the

chromosomes were shown in Figure 2C. A correlation network of

IRF family members was constructed to show the whole landscapes

of their interactions and prognostic values (Figure 2D). KM survival

curves showed that the high expression of IRF1 (p = 0.049), IRF3

(p< 0.001), IRF4 (p< 0.001), IRF5 (p< 0.001), IRF7 (p< 0.001) and

IRF9 (p< 0.001), and the low expression of IRF2 (p = 0.049) and

IRF6 (p< 0.001) were significantly associated with poor OS

(Supplementary Figure S3). We also found that IRF1, IRF3, IRF4,

IRF5 and IRF7 were significantly higher in tumor stage III/IV or

grade 3/4 compared with tumor stage I/II or grade 1/2, whereas the

expression level of IRF6 was lower in tumor stage III/IV or grade 3/
D
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C

FIGURE 1

The expression levels of the IRF family members between ccRCC samples and normal samples. (A) The mRNA expression levels of the IRF family
members in the TCGA-KIRC dataset. (B) The mRNA expression levels of the IRF family members in the GEO dataset. (C) The cell types were
identified by single-cell RNA-sequencing analysis. (D) The expression levels of the IRF family members in different types of cell clusters.
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4 (Supplementary Figure S4). These findings suggested that IRF

family members might serve an important role in the oncogenesis

and progression of ccRCC. Subsequently, multivariate Cox

regression analysis identified that IRF9 (HR: 1.174; 95% CI:

1.051-1.311; p = 0.004) was an independent prognostic risk factor

(Supplementary Figures S5A, B). ROC curve revealed that IRF9

(AUC = 0.826) had good diagnostic value for ccRCC

(Supplementary Figure S5C). Nonetheless, time-dependent ROC

curves indicated that IRF9 (1-, 3-, 5-year AUC: 0.581, 0.581 and

0.656, respectively) had low predictive capability for the OS

(Supplementary Figure S5D).
Validation of the IRF family members by
qRT-PCR and IHC

We performed qRT-PCR to examine the mRNA expression

levels of the IRF family members in clinical specimens. As shown in

Figure 3A, the relative mRNA expression levels of IRF1/2/3/7/8/9 in

ccRCC tissues were significantly higher than those in the normal

tissues, whereas the relative mRNA expression levels of IRF4/5/6 in

ccRCC tissues were significantly lower than those in the normal

tissues. The mRNA expression trends of the IRF family members,

except for IRF4/5, were consistent with the results of the above

bioinformatics analysis. Meanwhile, IHC was conducted to validate

the protein expression levels of the IRF family members between
Frontiers in Oncology 06200
ccRCC tissues and normal tissues (Figures 3B, C). The result

revealed that the protein levels of IRF1/2/3/7/8/9 in ccRCC tissues

were higher than those in the normal tissues, while the protein level

of IRF6 in ccRCC tissues was lower than that in the normal tissues.
Identification of IRFs-related molecular
subtypes

According to the expression profile of IRF family members,

unsupervised NMF algorithm was performed to identify novel IRF-

related molecular subtypes in ccRCC. The optimal number of the

clusters was identified as two (k =2). Consequently, the TCGA-

KIRC cohort was divided into C1 (n = 62) and C2 (n = 468)

subtypes (Figure 4A). PCA showed diverse clustering of the two

molecular subtypes (Figure 4B). Survival analysis showed that the

patients in C2 subtype had a worse OS than those in C1 subtype

(Figure 4C). The distribution of clinical characteristics between the

two molecular subtypes was illustrated in Supplementary Figure S6.

As expected, all IRF family members showed significant differences

between the two molecular subtypes (Figure 4D). In addition,

GSVA enrichment analysis showed that C1 subtype was enriched

in Wnt signaling pathway, thyroid cancer, colorectal cancer,

regulation of autophagy and fatty acid metabolism, while C2

subtype was enriched in cytosolic DNA-sensing pathway,

cytokine-cytokine receptor in terac t ion and pr imary
D
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FIGURE 2

Somatic mutation and CNVs frequencies of the IRF family members in ccRCC. (A) Mutation frequency of the IRF family members in 336 patients with
ccRCC. (B) CNVs of the IRF family members. (C) Locations of the CNV alterations of the IRF family members on 23 chromosomes. (D) Correlations
and prognosis of the IRF family members in ccRCC patients.
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immunodeficiency (Figure 4E). Simultaneously, we estimated the

differences in immune score, stromal score and immune infiltrating

cells between the two molecular subtypes. The result revealed that

immune score and stromal score in C2 subtype were significantly

higher than those in C1 subtype. Additionally, naïve B cells, M2

macrophages, activated dendritic cells, resting mast cells and

eosinophils were remarkably higher in C1 subtype, whereas

plasma cells, CD8 T cells, T follicular helper cells (Tfh) and T

regulatory cells (Tregs) were significantly higher in C2 subtype

(Figure 4F). These results all indicated that there was a significant

difference in immune microenvironment between the two

molecular subtypes.

To further explore the heterogeneity between the two molecular

subtypes, 1425 DEGs were identified with the threshold of FDR<

0.05 and |log2FC| > 1. GO and KEGG pathway enrichment analyses

for these DEGs were performed. GO analysis revealed that these

DEGs were mainly concentrated on biological processes related to

immune regulatory processes, such as positive regulation of

lymphocyte activation, B cell mediated immunity, T cell receptor

complex, and chemokine activity (Figure 4G). Moreover, KEGG

pathway analysis showed that these DEGs were mainly enriched in

cytokine-cytokine receptor interaction, Th17 cell differentiation,

Th1 and Th2 cell differentiation, T cell receptor signaling pathway,

TNF signaling pathway, NF-kB signaling pathway, and PD-L1

expression and PD-1 checkpoint pathway in cancer (Figure 4H).

Hence, it is supposed that IRFs might be closely involved in
Frontiers in Oncology 07201
regulating immune cells and immune responses in the TME

of ccRCC.
Construction and validation of an IRFs-
related prognostic model

By performing univariate Cox regression analysis, 421

prognostic-related DEGs were identified based on TCGA-KIRC

cohort (Supplementary Table S2). To avoid overfitting risk and

narrow down the range of candidate genes, LASSO Cox regression

analysis was conducted to further filter out 19 candidate genes

(Figure 5A). Finally, 9 genes (NPNT, BCL3, KISS1, PABPC1L,

DBH-AS1, PYCR1, BACE2, MELTF, and TOX3) were retained to

construct an IRFs-related prognostic model using the multivariate

Cox regression analysis (Figure 5B). The risk score of each patient in

both TCGA-KIRC and E-MATB-1980 cohorts was calculated using

the following formula: risk score = expression of NPNT*(-0.12142)

+ expression of BCL3*(0.278869) + expression of KISS1*(0.3112) +

expression of PABPC1L*(0.193679) + expression of DBH-AS1*

(0.225393) + expression of PYCR1*(0.156245) + expression of

BACE2*(0.208868) + expression of MELTF*(0.155669) +

expression of TOX3*(-0.21914). Then, we examined the

expression levels of the nine genes based on the TCGA-KIRC

cohort and found that the expression levels of BCL3, PABPC1L

and PYCR1 in ccRCC samples were higher than those in normal
A
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FIGURE 3

QRT-PCR and IHC analyses of the IRF family members. (A) The relative mRNA expression levels of the IRF family members between ccRCC and
normal tissues were validated by qRT-PCR. (B) The AOD values of the IRF family members between ccRCC and normal tissues were compared.
(C) Representative IHC staining of the IRF family members between ccRCC and normal tissues were shown. * p<0.05, ** p<0.01, *** p<0.001.
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samples, while the expression levels of NPNT, BACE2, MELTF and

TOX3 in ccRCC samples were lower than those in normal

samples (Figure 5C).

Patients were stratified into low-risk and high-risk groups

according to the median value of risk score. PCA and t-SNE

revealed that patients in the two risk groups were distributed in

diverse directions in both TCGA-KIRC and E-MTAB-1980

cohorts (Supplementary Figures S7A–D). Additionally, there

were remarkably differences in expression levels of IRF1/3/4/5/

6 / 7 / 9 b e twe en th e h i gh - r i s k and l ow - r i s k g r oup s

(Supplementary Figure S7E). Meanwhile, we found that IRF

family members were positively or negatively correlated with

risk score and target genes in the risk model (Figure 5D).

Survival analysis indicated that the patients in the low-risk

group had a better OS than those in the high-risk group whether

in the TCGA-KIRC (Figure 5E) or E-MTAB-1980 cohorts

(Figure 5F). Furthermore, time-dependent ROC curves were

plotted to explore the predictive capability of the prognostic

model. The 1-, 3- and 5-year AUCs in TCGA-KIRC cohort were

0.807, 0.776 and 0.809, respectively (Figure 5G). Similarly, the

1-, 3- and 5-year AUCs in E-MTAB-1980 cohort were 0.773,

0.807 and 0.867, respectively (Figure 5H).
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Correlation between risk score and clinical
characteristics

To evaluate the independent prognostic value of the IRFs-

related prognostic model, univariate and multivariate Cox

regression analyses were performed in both TGCA-KIRC and E-

MTAB-1980 cohorts. Univariate Cox regression analysis revealed

that the risk score in both the TCGA-KIRC (Figure 6A; HR = 1.127,

95% CI:1.100-1.154, p< 0.001) and E-MTAB-1980 (Figure 6B; HR =

1.559, 95% CI:1.306-1.860, p< 0.001) cohorts was significantly

associated with OS. After adjusting for confounding factors by

multivariate Cox regression analysis, the risk score was confirmed

to be an independent prognostic indicator in ccRCC patients

(TCGA-KIRC: Figure 6C, HR = 1.098, 95% CI: 1.066-1.130, p<

0.001; E-MTAB-1980: Figure 6D, HR = 1.251, 95% CI: 1.024-1.528,

p = 0.028). According to the TCGA-KIRC cohort, the relationships

between clinical characteristics and risk score were explored, and

the result revealed a significant difference in age, grade and TNM

stage (Figure 6E). Furthermore, Figure 6F showed that there were

more ccRCC patients with stage I-II in the low-risk group, but there

were more ccRCC patients with stage III-IV in the high-risk group

(p< 0.001). Besides, the C-index and ROC curve were conducted to
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FIGURE 4

Identification of IRFs-related molecular subtypes. (A) Consensus map of NMF clustering (k = 2). (B) PCA plot of the expression profiling of IRFs.
(C) KM analysis of OS between the two molecular subtypes. (D) The differences in the expression levels of IRF family members between the two
molecular subtypes. (E) Heatmap of biological pathways between the two molecular subtypes. Activated and inhibited pathways are colored by red
and blue, respectively. (F) The differences in immune score, stromal score and immune infiltrating cells between the two molecular subtypes. (G) GO
enrichment analysis of DEGs between the two molecular subtypes. (H) KEGG pathway enrichment analysis of DEGs between the two molecular
subtypes. * p<0.05, ** p<0.01, *** p<0.001.
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evaluate the predictive performance of the risk model. We found

that the C-index of the risk score was higher than those of other

clinical characteristics (Figure 7D), suggesting the risk score could

better predict the prognosis of ccRCC patients. Similarly, ROC

curves also revealed that the AUC of the risk score was higher than

those of other clinical characteristics, indicating that the risk score

had higher sensitivity and specificity in predicting prognosis of

ccRCC patients (Figures 7A–C). As reported, the robust predictive

power of a ClearCode34 model has been validated in clinical

cohorts (23, 24). We performed the 1-, 3-, and 5-year ROC

curves of the ClearCode34 model (Figure 7E), and found that the

1-, 3-, and 5-year AUCs of IRFs-related risk model were higher than

those of the ClearCode34 model, indicating that IRFs-related risk

model was superior to the ClearCode34 model in predicting the

prognosis of ccRCC.
Construction and evaluation of the
prognostic nomogram

A nomogram scoring system comprising age, gender, stage and

risk score was constructed to predict the 1-, 3- and 5-year OS of

ccRCC patients based on the TCGA-KIRC cohort (Figure 7G). The
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excellent consistency of the calibration curve suggested that the

nomogram had a high accuracy to predict the 1-, 3- and 5-year OS

in ccRCC patients (Figure 7F). ROC curves revealed that the 1-, 3-

and 5-year AUCs of the nomogram were 0.866, 0.822 and 0.793,

indicating the nomogram showed satisfactory predictive ability,

which was superior to other clinical characteristics (Supplementary

Figures S8A–C). Furthermore, DCA revealed that the nomogram

had better net benefit than other clinical characteristics (Figure 7H).
Evaluation of immune characteristics and
immunotherapeutic response

To further explore the correlation between immune landscape

and the risk score, the ESTIMATE algorithm was used to calculate

the immune score, stromal score and ESTIMATE score. The high-

risk group had a higher ESTIMATE score and immune score than

the low-risk group (Figure 8A), indicating that ccRCC patients in

the high-risk group might present more active immune status.

Subsequently, the ssGSEA was used to explore the infiltration

levels of 16 immune cells and activity scores of 13 immune-

related pathways between the two risk groups. We found that the

high-risk group had higher infiltration levels of CD8+ T cell, CD4+
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FIGURE 5

Construction and validation of an IRFs-related prognostic model. (A) The LASSO Cox regression analysis was performed to filter out the candidate
genes. (B) 9 genes were retained to construct a prognostic model using the multivariate Cox regression analysis. (C) The mRNA expression levels of
the nine genes between ccRCC samples and normal samples in the TCGA-KIRC dataset. (D) Correlations between IRF family members and risk
score. (E, F) KM curves of OS between the low- and high-risk groups in TCGA-KIRC and E-MTAB-1980 datasets. (G, H) ROC curves of the IRFs-
related prognostic model in predicting the 1-, 3- and 5-year OS in the TCGA-KIRC and E-MTAB-1980 datasets. * p<0.05, ** p<0.01, *** p<0.001.
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T cell, macrophages, T helper (Th) cells, Tfh, Type 1 T helper (Th1)

cells and Type 2 T helper (Th2) cells, whereas the low-risk group

had higher infiltration levels of immature dendritic cells (iDCs) and

mast cells (Figure 8B). Moreover, the activity scores of APC co-

stimulation, CCR, check point, cytolytic activity, inflammation

promoting, parainflammation, T cell co-inhibition, T cell co-

stimulation and type I IFN response were higher in the high-risk

group, whereas the activity score of type II IFN response was lower

in the high-risk group (Figure 8B). Thorsson et al. (25) have

identified six cancer immune subtypes (IS) including IS1 (wound

healing), IS2 (IFN-g dominant), IS3 (inflammatory), IS4

(lymphocyte depleted), IS5 (immunologically quiet), and IS6

(TGF-b dominant). As shown in Supplementary Figure 8D, there

was significant difference in immune subtypes between the two risk

groups and there were more patients with IS3 immune subtype in

both the high-risk and low-risk groups (p< 0.001). To further

explore the activity of immune cells in ccRCC, we calculated the

immune activity score of each step based on TIP database. We

discovered that the immune activity scores of most steps in the
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high-risk group were remarkably higher than those in the low-risk

group (Figure 8D). Furthermore, we found that the high-risk group

presented a more extensive TMB level than the low-risk group, and

TMB level was positively associated with the risk score (Figure 8C).

However, clinical researches have demonstrated that TMB could

not predict the therapeutic response to ICIs in ccRCC (26, 27).

To evaluate the value of the risk model in immunotherapy, the

relationships between risk score and TIDE, T-cell dysfunction, T-

cell exclusion score and MSI score were explored. The result showed

that TIDE score in the high-risk group was higher than that in the

low-risk group, indicating patients in the low-risk group were more

likely to benefit from ICIs therapy than those in the high-risk group

(Figure 9A). Besides, we found that high-risk group showed a

higher T-cell dysfunction and lower MSI score than low-risk

group (Figures 9B–D). Meanwhile, ROC curve showed that the

AUC of IRF-related risk model was remarkably higher than that of

TIS and TIDE (Figure 9E), which suggested that the risk model

displayed better predictive value for prognosis in ccRCC than TIS

and TIDE.
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FIGURE 6

Correlation between risk score and clinical characteristics. (A, C) Univariate and multivariate Cox regression analyses showed that risk score was an
independent prognostic indicator in the TCGA-KIRC dataset. (B, D) Univariate and multivariate Cox regression analyses showed that risk score was
an independent prognostic indicator in the E-MTAB-1980 dataset. (E) Differences in clinical characteristics between the low- and high-risk groups in
the TCGA-KIRC dataset. (F) Distribution of tumor stages between the low- and high-risk groups. * p<0.05, *** p<0.001.
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FIGURE 7

Assessment of the IRFs-related prognostic model and construction of a nomogram to predict the OS. (A-C) ROC curves of the nomogram in
predicting the 1-,3- and 5-year OS in the TCGA-KIRC dataset. (D) C-indexes of the risk score and clinical characteristics. (E) ROC curves of the
ClearCode34 model in predicting the 1-, 3- and 5-year OS. (F) The calibration curve of the nomogram in predicting the 1-, 3- and 5-year OS. (G)
Construction of a nomogram based on age, gender, stage and risk score. (H) DCA curve of the nomogram. * p<0.05, *** p<0.001
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FIGURE 8

Immune landscape between the low- and high-risk groups. (A) Differences in the stromal score, immune score and ESTIMATE score. (B) Differences
in the 16 immune cells and 13 immune-related pathways between the low- and high-risk groups. (C) Correlation between TMB and risk score.
(D) Differences in the immune activity score of cancer-immunity cycle steps between the low- and high-risk groups. * p<0.05, ** p<0.01, ***
p<0.001.
Frontiers in Oncology frontiersin.org11205

https://doi.org/10.3389/fonc.2023.1131191
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pan et al. 10.3389/fonc.2023.1131191
Drug sensitivity analysis

To explore the correlation between the risk score and response

to targeted drugs of ccRCC, we compared the differences in IC50 of

these drugs between the high-risk and low-risk groups. We

observed that the IC50 of axitinib, sorafenib, dasatinib, and

rapamycin in the high-risk group were lower than those in the

low-risk group, while the IC50 of erlotinib and gefitinib in the high-

risk group were higher than those in the low-risk group (Figure 9F).

Thus, we proposed that IRFs-related risk model could serve as a

potential predictive factor for the sensitivity of targeted drugs.
Discussion

ccRCC is a heterogeneous tumor with high infiltration levels of

immune cells, high aggressiveness and poor prognosis (28, 29).

Intratumor heterogeneity in ccRCC is considered to be related to

patterns of metastatic spread and prognosis, which makes it

complex to predict prognosis and determine the appropriate

therapeutic strategies (30). Moreover, the heterogeneity of tumor

microenvironment (TME) might be responsible for the distinct

therapeutic responses to ICIs in ccRCC patients (10). Cumulative

evidences showed that IRFs participated in regulating immune cells

and immune-related pathways in cancers (11), which suggested that

IRFs might play an essential role in TME. Hence, identifying IRFs-

related risk model is naturally significant to stratify ccRCC patient

heterogeneity, predict prognosis and develop the individualized

immunotherapeutic strategies.

Herein, multi-omic analysis of IRF family members in ccRCC

indicated that IRFs might play an important role in oncogenesis and

progression of ccRCC. Subsequently, the NMF algorithm was used

to classify ccRCC patients into two distinct molecular subtypes

based on the expression profile of IRF family members. We
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discovered that the patients in C2 subtype showed a worse OS

than those in C1 subtype. In addition, there were differences in

immune score, stromal score and abundance of various immune

cells between the two molecular subtypes. Furthermore, GO and

KEGG pathway enrichment analyses showed enrichment of

immune-related pathways, such as positive regulation of

lymphocyte activation, B cell mediated immunity, chemokine

activity, cytokine-cytokine receptor interaction, Th17 cell

differentiation, Th1 and Th2 cell differentiation, T cell receptor

signaling pathway, TNF signaling pathway, NF-kB signaling

pathway, and PD-L1 expression and PD-1 checkpoint pathway in

cancer. It was evidenced that regulatory B cells could attenuate

antitumor immune responses by suppressing the T-cell immune

response (31). Cytokines and chemokines were found to play a

crucial role in cancer-related inflammation and immune escape

(32). Qu et al. revealed that the TNF-a/TNFR2 pathway was

activated to enhance the immunosuppressive phenotype and

function of Tregs in TME of gastric cancer (33). Overexpression

of miR-210-3p could promote epithelial-mesenchymal transition,

invasion, migration and bone metastasis in prostate cancer by

activating NF-kB signaling pathway (34). IFNg could promote

tumor immune escape by regulating the PD-L1 expression via the

JAK/STAT and PI3K-AKT signaling pathways (35). Taken

together, it is reasonable to propose that IRFs were significantly

involved in oncogenesis and progression of ccRCC through

regulating immune responses and/or immune-related pathways.

We identified 9 target genes (NPNT, BCL3, KISS1, PABPC1L,

DBH-AS1, PYCR1, BACE2, MELTF, and TOX3) to construct an

effective and robust prognostic model in the TCGA-KIRC cohort,

and validated the performance of the prognostic model in the E-

MTAB-1980 cohort. Some target genes in the prognostic model

have been explored in ccRCC. For instance, Braga et al. revealed

that p50 together with Bcl-3 played an important role in the

regulation of gene transcription in RCC (36). The invasiveness
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FIGURE 9

Evaluation the value of the IRFs-related prognostic model in immunotherapy and drug sensitivity. (A-D) Differences in TIDE, MSI, T cell dysfunction
and T cell exclusion between the low- and high-risk groups. (E) ROC curve of IRFs-related prognostic model, TIDE and TIS in predicting the OS. (F)
Correlation between risk score and drug sensitivity. *** p<0.001. ns, no significance.
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and colonized ability in RCC cells were inhibited through the

activation of KISS1/KISS1R signaling by honokiol (37).

Bioinformatic analysis showed that PYCR1 may contribute to

create an immunosuppressive microenvironment in the TME,

and thus it could be as potential target in the immunotherapy for

ccRCC (38). Jiang et al. found that TOX3 overexpression could

inhibit the epithelial-mesenchymal transition (EMT) to reduce cell

migration and invasion via transcriptionally repressing SNAI1 and

SNAI2 in ccRCC cells (39). However, the other genes were revealed

for the first time, which remains to be further explored in ccRCC.

Survival analysis demonstrated that patients in the low-risk group

had a remarkably better prognosis. Multivariate Cox regression

analysis indicated that the risk model was an independent

prognostic indicator. Moreover, IRFs-related risk model was

superior to the ClearCode34 model in predicting the prognosis.

To improve the predictive performance of the risk model, we then

constructed a nomogram comprising risk score and clinical

characteristics to accurately predict prognosis for ccRCC, which

was superior to conventional clinical characteristics.

The ccRCC is reported to be one of the cancers with highly

immune infiltration by pan-cancer analysis (40). In the TME,

immune cells serve a critical role in cancer growth, invasion,

migration and regulating anticancer immunity (41). Recent

studies revealed that high infiltration of CD8+ T cells was

observed in ccRCC, which was closely correlated with the poor

prognosis (42, 43). In addition, overexpression of immune escape

markers and enhanced the infiltration levels of immunosuppressive

cells were related to the high infiltration of CD8+ T cells in ccRCC

(44, 45). Similarly, it was evidenced that the infiltration of Tregs and

Tfh in ccRCC indicated a poor prognosis (46, 47). Moreover, high

infiltration of tumor-associated macrophages (TAMs) correlated

with the poor prognosis and tumor metastasis of cancers (48, 49).

Şenbabaoğlu et al. found that the infiltration of mast cells was

significantly negatively associated with OS and progression-free

survival (PFS) in ccRCC (46). Consistent with these studies, we

discovered that high infiltration of CD8+ T cells, macrophages and

Tfh but low infiltration of mast cells in the high-risk group were

associated with a worse prognosis. Interestingly, we also found

higher activity scores of inflammation promoting and type I IFN

response were in the high-risk group. Type I IFNs could be induced

by IRF1/3/5/7/8 through Toll-like receptor (TLR) signaling and

cGAS-STING pathways (50, 51). Meanwhile, evidences showed that

type I IFNs offered proinflammatory mediators that contribute to

tumor progression and increased negative regulatory cells and

factors to promote immune escape (52). However, patients in the

high-risk group presented lower activity of type II IFN response and

showed higher expression of IRF1, which seemed to contradict the

theory that activation of IFN-g can induce IRF1 expression (51). In

fact, IRF1 transcription can be driven not only by IFN-g but also by
proinflammatory NF-kB (51, 53). Previous studies showed that the

excessive activation of NF-kB was closely associated with increased

resistance to chemotherapy or cytokine therapy and a worse

prognosis in ccRCC patients (54). Combined with KEGG

enrichment analysis showing that NF-kB signaling pathway had a

close relationship with IRFs-related molecular subtypes, it is
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supposed that NF-kB rather than IFN-g played a major role in

the regulation of IRF1 expression in ccRCC patients with high-risk.

Additionally, IRF4 expression was excessively elevated in exhausted

T cells that reduced IFN-g production, which was in accordance

with our results (55). To summarize, the reciprocal crosstalk

between IRFs and IFNs might be responsible for the immune

evasion and poor outcome in ccRCC patients. Furthermore, we

also found that patients in high-risk group had higher immune

scores and ESTIMATE scores. In accordance with the above

findings, we believed that IRFs-related risk model could be an

effective indicator for predicting prognosis and reflecting immune

cells infiltration in the TME of ccRCC.

In recent years, ICIs have been widely used in immunotherapy

for ccRCC. However, ccRCC patients exhibited diverse therapeutic

responses to ICIs, which might be due to the heterogeneity of TME

(10). Thus, it is extremely important to predict which patients can

respond to ICIs. TIDE scores were associated with the potential of

anticancer immune evasion, thereby predicting the therapeutic

response to anti-PD1 and anti-CTLA4 (21). Moreover, high MSI

showed a better response to immunotherapy (56). Our analysis

showed that patients in low-risk group had lower TIDE score and

T-cell dysfunction but a higher MSI than those in high-risk group,

indicating that patients in low-risk group had a better response to

ICIs. At the moment the combination of immunotherapy with

targeted therapy have been deemed to be the first-line treatment for

advanced ccRCC (57, 58). Thus, we next explored the response to

targeted drugs in different risk groups. As expected, patients in

different risk groups showed diverse drug sensitivity to axitinib,

sorafenib, gefitinib, erlotinib, dasatinib and rapamycin. To

summarize, the IRF-related risk model may be a valid tool to

evaluate the response to both immunotherapy and targeted

therapy, which can promote the development of personalized

therapy for ccRCC patients.

In conclusion, we explored the different molecular subtypes of

ccRCC based on IRF family members and evaluated the clinical

prognosis, immune cell infiltration and signaling pathways of

different molecular subtypes. Furthermore, we developed a

robust and effective risk model to predict prognosis and

responses to ICIs and targeted drugs and reflect the TME

characteristics in ccRCC. These findings might provide new

insights into personalized and precise therapeutic strategies.

However, there were several limitations in our study. First, the

public TCGA-KIRC and E-MTAB-1980 retrospective cohorts

were used to construct and validate the risk model. Prospective

research with a larger sample size is required to verify the clinical

performance of the risk model. Besides, more functional

experiments are needed to explore the potential biological

mechanisms of IRFs in ccRCC.
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SUPPLEMENTARY FIGURE 1

The expression levels of the IRF family members between paired ccRCC
samples and normal samples in the TCGA-KIRC dataset.

SUPPLEMENTARY FIGURE 2

The protein expression levels of the IRF family members between ccRCC
samples and normal samples based on CPTAC using UALCAN database.

SUPPLEMENTARY FIGURE 3

Prognostic value of the IRF family members in ccRCC in the TCGA-

KIRC dataset.

SUPPLEMENTARY FIGURE 4

The correlation between the IRF family members and clinical stage/

histological grade.

SUPPLEMENTARY FIGURE 5

Prognostic and diagnostic values of the IRF family members in ccRCC. (A, B)
Univariate and multivariate Cox regression analyses showed that IRF9 was an

independent prognostic indicator in the TCGA-KIRC dataset. (C) ROC curve
of IRF9 in evaluating diagnostic value for ccRCC. (D) ROC curve of IRF9 in

predicting the 1-, 3- and 5-year OS.

SUPPLEMENTARY FIGURE 6

The dist r ibut ion of cl in ical character is t ics between the two
molecular subtypes.

SUPPLEMENTARY FIGURE 7

PCA and t-SNE showed the distribution of the two risk groups in the TCGA-

KIRC (A, C) and E-MTAB-1980 (B, D) datasets. (E) Differences in the
expression levels of IRF family members between the low- and high-risk

groups. * p<0.05, ** p<0.01, *** p<0.001.

SUPPLEMENTARY FIGURE 8

(A–C) ROC curves of the nomogram in predicting the 1-, 3-, and 5-year OS.

(D) Distribution of the immune subtypes between the low- and high-

risk groups.
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The chromosomal instability 25
gene signature is identified in
clear cell renal cell carcinoma
and serves as a predictor for
survival and Sunitinib response

Chang Wang1,2†, Xin Qin2†, Wei Guo2, Jing Wang3, Li Liu4,
Zhiqing Fang2, Huiyang Yuan2*, Yidong Fan2* and Dawei Xu 5*

1Department of Emergency, The Second Hospital of Shandong University, Jinan, China, 2Department
of Emergency, Qilu Hospital of Shandong University, Jinan, China, 3Department of Urologic
Oncology, Division of Life Sciences and Medicine, University of Science and Technology of China,
The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China,
4School of Nursing, Beijing University of Chinese Medicine, Beijing, China, 5Department of Medicine,
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Karolinska University Hospital Solna, Stockholm, Sweden
Background: Chromosomal instability (CIN) is a cancer hallmark and it is difficult

to directly measure its phenotype, while a CIN25 gene signature was established

to do so in several cancer types. However, it is currently unclear whether there

exists this signature in clear cell renal cell carcinoma (ccRCC), and if so, which

biological and clinical implications it has.

Methods: Transcriptomic profiling was performed on 10 ccRCC tumors and

matched renal non-tumorous tissues (NTs) for CIN25 signature analyses. TCGA

and E-MBAT1980 ccRCC cohorts were analyzed for the presence of CIN25

signature, CIN25 score-based ccRCC classification, and association with

molecular alterations and overall or progression-free survival (OS or PFS).

IMmotion150 and 151 cohorts of ccRCC patients treated with Sunitinib were

analyzed for the CIN25 impact on Sunitinib response and survival.

Results: The transcriptomic analysis of 10 patient samples showed robustly

upregulated expression of the CIN25 signature genes in ccRCC tumors, which

were further confirmed in TCGA and E-MBAT1980 ccRCC cohorts. Based on

their expression heterogeneity, ccRCC tumors were categorized into CIN25-C1

(low) and C2 (high) subtypes. The CIN25-C2 subtype was associated with

significantly shorter patient OS and PFS, and characterized by increased

telomerase activity, proliferation, stemness and EMT. The CIN25 signature

reflects not only a CIN phenotype, but also levels of the whole genomic

instability including mutation burden, microsatellite instability and homologous

recombination deficiency (HRD). Importantly, the CIN25 score was significantly

associated with Sunitinib response and survival. In IMmotion151 cohort, patients

in the CIN25-C1 group exhibited 2-fold higher remission rate than those in the

CIN25-C2 group (P = 0.0004) and median PFS in these two groups was 11.2 and

5.6 months, respectively (P = 7.78E-08). Similar results were obtained from the

IMmotion150 cohort analysis. Higher EZH2 expression and poor angiogenesis,
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well characterized factors leading to Sunitinib resistance, were enriched in the

CIN25-C2 tumors.

Conclusion: The CIN25 signature identified in ccRCC serves as a biomarker for

CIN and other genome instability phenotypes and predicts patient outcomes

and response to Sunitinib treatment. A PCR quantification is enough for the

CIN25-based ccRCC classification, which holds great promises in clinical

routine application.
KEYWORDS

ccRCC, chromosomal instability, CIN25, prognosis, Sunitinib, telomere
Introduction

Sporadic clear cell renal cell carcinoma (ccRCC) is the major

subtype of renal cell carcinoma (RCC) (up to 80% of all RCCs) and

originates from the epithelial cells in the nephron (1–3). Most

patients are diagnosed early when tumors are localized, and thus

successfully removed via nephrectomy, but the disease will

eventually recur in about 30% of them post-surgery (2, 4).

Clinical and pathological variables have been traditionally applied

to stratify recurrence risk and survival, however, there exist certain

limitations (4). To further improve the robustness of ccRCC

prognostication, molecular biomarkers, such as multigene

expression signature models, have recently been established to

make molecular classifications or to combine with clinic-

pathological factors for stratifications (5–11). Despite so, a

substantial gap remains between all the models currently applied

in the clinic and the prediction accuracy. Therefore, looking for

more reliable prognostic factors is an unmet demand.

Metastasis readily occurs in approximately 1/3 of ccRCC patients

at diagnosis, which requires adjuvant treatments (4, 12, 13). These

same interventions are also requisite for patients with recurrent

ccRCC or even patients with localized ccRCC (12, 14, 15).

However, ccRCC tumors are intrinsically insensitive to

conventional chemo- and radio-therapies (12, 14). Fortunately,

over the last decades, targeted therapies, immunotherapies, and

other multi-therapeutic modalities have been developed, which has

revolutionized ccRCC treatment landscapes (14). For instance,

immune checkpoint inhibitors (ICIs) are used to target immune

checkpoint proteins PD-1/PDL-1 and/or CTLA4, thereby boosting

anti-cancer immune response and showing a great efficacy in ccRCC

(14, 16). Targeted therapeutic drugs, which mainly includes tyrosine

kinase receptor inhibitors (TKRis), such as the small molecule

Sunitinib, have been approved for the first-line treatment of

metastatic ccRCC (13–15, 17). However, subsets of patients do not

respond or develop resistance to ICI and/or TKRi treatments (6, 13–

15, 17). Distinguishing responders from non-responders should be

clinically important for personalized interventions of ccRCC.

It has long been documented that aneuploidies, or somatic copy

number alterations (SCNAs), are associated with ccRCC outcomes,
02211
including recurrence, and metastasis, survival and drug resistance

(4, 18–21). Therefore, aneuploidies and SCNAs have been used as

genomic prognostic biomarkers in ccRCC (19–21). Mechanistically,

aneuploidies or SCNAs are primarily driven by chromosomal

instability (CIN), the cancer hallmark event resulting from

persistent high-rates of chromosome mis-segregations during

mitosis (22–25). The direct assessment of the CIN phenotype is

difficult, and Carter et al. identified a 25 gene expression signature

of CIN, so-called CIN25, for the CIN measurement (22). The genes

included in the CIN25 are involved in spindle assembly checkpoint

signaling, proliferation, and DNA replication and repair

(Figure 1A) (22). By calculating their expression score, the

authors showed a strong correlation between the CIN25 score

and levels of CIN (22). The CIN25 was further observed to serve

as a prognostic factor in breast, lung and several other cancers (22,

26). It is currently unclear whether this CIN25 signature is present

in ccRCC, and if so, whether it has any clinical implications.

Moreover, because CIN plays an important part in the cancer

evolution, progression, and drug resistance (23), it is warranted to

elucidate the relationship between CIN25 and targeted therapies of

ccRCC. The present study is thus designed to address these issues.

To this end, we performed the transcriptomic profiling in ccRCC

tumors together with their matched renal tissues and analyzed

TCGA and other cohorts of ccRCC.
Materials and methods

Primary ccRCC tumor specimens and their
matched renal noncancerous tissues

Nineteen patients with ccRCC, diagnosed at Qilu Hospital of

Shandong University, were randomly recruited and their clinical

information was listed in Table S1. Tumors and their matched NT

specimens were collected from these patients who underwent

nephrectomy. All the samples were stored in nitrogen tanks until

use. The study was approved by the Institutional review board of

Qilu Hospital of Shandong University (#KYLL-2021(KS)-192) and

the signed informed consent was obtained from all patients.
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RNA extraction and RNA sequencing

RNA was extracted from primary tissues and cells using a

RNAfast2000 kit (Fastagen) and quality control was performed

using NanoDrop ND-1000 (Thermo Fisher Scientific). RNA

sequencing was performed on 10 paired specimens. Sequencing

libraries were generated using NEBNextR Ultra™ RNA Library
Frontiers in Oncology 03212
Prep Kit (New England Biolabs) according to the manufacturer’s

recommendation. RNA sequencing was carried out using Illumina

HiSeq 4000 sequencer at Metware Biotechnology (Wuhan, China).

Paired-end reads were quality controlled by Q30 and Cutadapt

software (v 1.9.3) was used to remove low-quality reads and 3’

adaptor-trimming. Hisat2 (v 2.0.4) was further used to align clean

reads from sequencing, and sequencing depth and gene length were
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FIGURE 1

Upregulation of CIN25 genes in ccRCC tumors. (A) The CIN25 signature genes and their function. (B) Upregulated expression of 25 genes included
in the CIN25 signature in primary ccRCC tumors. Tumors and matched non-tumorous tissues (NTs) from 10 patients were analyzed for
transcriptomic profile and expression levels of CIN25 genes were expressed as Transcripts Per Million (TPM) counts. (C) The heatmap showing CIN25
ssGSEA scores between 10 ccRCC tumors and their matched NTs. (D) The qPCR validation of upregulated CIN25 gene expression in primary ccRCC
tumors. Paired specimens from 9 ccRCC patients were analyzed for mRNA levels of CIN25 genes. mRNA levels of target genes were based on 2
(−DDCT) values and normalized by b-actin expression. (E) Differences in expression of 25 CIN25 signature genes between 530 ccRCC tumors and
72 NTs in the TCGA cohort. TPM was used for expression level. *, **, *** and **** indicate P values <0.05, 0.01, 0.001 and 0.0001, respectively.
ns, Not significant.
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adjusted by Fragments Per Kilobase of transcript per Million (TPM)

fragments mapped. The sequencing data were deposited in the GEO

database (GSE217386).
Reverse transcription and qPCR analysis

The qPCR evaluation of CIN25 gene expression was performed

on paired specimens from 9 patients with ccRCC. cDNA was

synthesized using a PrimeScript™ RT reagent Kit (TAKARA).

qPCR was carried out using SYBR Green of RT Master Mix

(TAKARA) to assess mRNA levels of target genes based on 2

(−DDCT) values. b-actin mRNA levels were used as the internal

control for normalization of target gene expression. All the primers

were synthesized at Wuhan Genecreate Biotech (Wuhan, China)

and primer sequences are listed in Table S2.
Data collection and processing of
ccRCC tumors

The TCGA cohort of ccRCCs included 530 tumor samples with

survival information available and 72 renal NTs. Patient clinical

data were summarized in Table S3 (27). Transcriptome, mutation,

copy number variations (CNAs) and clinical-pathological data were

downloaded from https://gdc.cancer.gov/. One hundred and one

patients with ccRCC were in the E-MTAB-1980 cohort (28), and

RNA array and clinical information were downloaded from http://

www.ebi.ac.uk. Patient clinical characteristics were listed in Table

S4. For RNA sequencing data, mRNA abundances were expressed

as TPM. For array results (determined by 4×44K v2 microarray kit)

from the E-MTAB-1980 cohort, probe-set values were used to

quantify mRNA levels. ccRCC patients receiving Sunitinib

treatments were contained in IMmotion150 (Table S5) (29, 30)

and IMmotion151 (Table S6) trials (31, 32). Expression differences

in CIN25-containing 25 genes were compared between ccRCC

tumors and NTs in the TCGA cohort. For RNA expression, log2

(TPM+1) based on RNA sequencing data was from https://

gdc.cancer.gov/ as stated above. Protein expression data was

obtained from Clinical Proteomic Tumor Analysis Consortium

(http://ualcan.path.uab.edu/index.html).
CIN25 signature

The CIN25 gene signature includes the following genes

responsible for spindle assembling/checkpoint, DNA damage

checkpoint and cell cycle regulation: NCAPD2, ESPL1, CDK1,

MELK, PRC1, KIF20A, TOP2A, TTK, TPX2, UBE2C, MCM7,

MCM2, RFC4, FEN1, CDC45, FOXM1, RAD51AP1, H2AFZ,

MAD2L1, PCNA, RNASEH2A, TGIF2, CCT5, TRIP13 and

CCNB2 (22) (Figure 1A). The CIN25 score for each sample were

expressed as mean Z-scores based on the Z-normalized mRNA level

of 25 CIN-related genes above. We also calculated the CIN25 score

based on single sample gene set enrichment analysis (ssGSEA) to

confirm the accuracy of the Z-score method and other purposes.
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Copy number alterations and aneuploidy
score analysis

Somatic CNAs were downloaded from https://xenabrowser.net/.

CNA plots were made using R package ‘oncoPrint ’ in

‘ComplexHeatmap’. Aneuploidy scores were the sum total of

altered (amplified or deleted) chromosome arms. TMB is defined

as the number of non-silent mutations per million bases and the data

were downloaded from https://xenabrowser.net/.
Analyses for proliferation, cancer stemness,
Epithelial–mesenchymal transition,
angiogenesis and telomerase score

Proliferation statuses were estimated using expression levels of

Ki-67 mRNA and cell cycle scores, respectively. ccRCC cell cycle,

stemness, EMT and angiogenesis signature scores were calculated

based on ssGSEA or as the median z-score of genes included in each

signature for each sample. These signatures are as follow:

Angiogenesis: VEGFA, KDR, ESM1, PECAM1, ANGPTL4 and

CD34 (33). Cell Cycle: CDK2, CDK4, CDK6, BUB1B, CCNE1,

POLQ, AURKA, KI-67 and CCNB2 (34, 35). EMT: VIM, CDH2,

FOXC2, SNAI1, SNAI2, TWIST1, FN1, ITGB6, MMP2, MMP3,

MMP9, SOX10, GCS, CDH1, DSP and OCLN (36).
Telomere length and telomerase
activity assessments

Telomere length data in the TCGA cohort of ccRCCs were from

Bartheal et al. (37). Telomerase activity was evaluated using the

telomerase score based on expression levels of the following 10

telomerase factors: TERT, TERC, DKC1, NHP2, NOP10, TCAB1,

GAR1, NVL, RUVBL1 and RUVBL2 (38).
GSEA analysis

GSEA (http://www.gsea-msigdb.org/) analyses were performed

to enrich KEGG pathways and hallmarks in two CIN25 subtypes of

ccRCC tumors. P <0.05 and False discovery rate (FDR) <0.05 was

considered statistically significant.
Nomograms for survival prediction

Cox regression analysis was conducted to assess the effect of the

CIN25 cluster and clinical variables on survival. Then according to

multivariate Cox regression analysis results, we constructed

predictive nomograms including CIN25 and stage to predict 1-,

3-, and 5-year OS and/or PFS). Predicted survival of the nomogram

against observed ones was plotted using the calibration curve. All

nomograms and assessments of their predicative powers were made

using R package regplot. Time-dependent Receiver Operator

Characteristic (ROC) curves were used to determine sensitivity
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and specificity of OS and PFS predictions. Time-dependent ROCs

and AUCs were made using Rpackage timeROC.
Statistical analysis

All statistical analyses were carried out using R package version

4.0.5. Wilcox and K-W sum tests were used for analysis of differences

between two groups and among multi groups, respectively.

Spearman’s Rank-Order Correlation coefficient was applied to

determine correlation coefficients r between two variables. Survival

analyses were made using log-rank test. The Survival and Survminer

packages were employed to draw Kaplan–Meier survival curves for

visualization of OS and PFS. Univariate and multivariate Cox

regression analyses were used to determine the effect (HR and 95%

CI) of various quantitative predictor variables on OS and PFS. P <

0.05 were considered as statistically significant.
Results

Robust upregulation of the CIN25
signature genes in primary ccRCC tumors

Although aneuploidies and SCNAs have been well documented

in ccRCCs, it remains unclear whether there exists the CIN25

signature as identified in other tumor types. We thus probed this

issue first. RNA sequencing was performed on primary ccRCC

tumors and their matched NTs from 10 patients who underwent

nephrectomy. Expression levels of 25 genes in the CIN25 signature

were evaluated in both tumors and NTs. As shown in Figure 1B,

tumors exhibited significantly upregulated expression of 21/25

genes. The analysis of CIN25 ssGSEA in these samples further

unraveled enhanced CIN25 levels in tumors (Figure 1C). For

validation, we did qPCR-based expression analyses of these 25

genes in paired tumors and NTs from 9 patients, and largely similar

results were obtained (Figure 1D). To confirm this finding obtained

from our small patient cohorts, we analyzed the TCGA ccRCC

sequencing data for their CIN25 signature expression. The

comparison between 530 tumors and 72 NTs revealed

significantly higher mRNA levels of 22/25 genes in tumors than

in NTs (Figure 1E). Protein information was available in 20 of 25

genes, and protein levels were similarly higher in tumors, which is

consistent with the transcriptomic analysis data (Figure S1).
CIN25 expression-based classification
of ccRCCs

The results above demonstrate highly upregulated expression of

almost all CIN25 genes in ccRCC tumors, however, a significant

heterogeneity was observed among them. To determine whether

ccRCC tumors could be classified based on the CIN25 expression

score, we performed consensus cluster analyses of the TCGA

cohort. Nonnegative matrix factorization clustering of CIN25

mRNA data showed consistency K = 2, indicating that a two-
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cluster classification was optimal (Figure 2A). In a total of 530

tumors, CIN25-cluster 1 (CIN25-C1, low CIN level) and cluster 2

(CIN25-C2, high CIN level) were 350 (66%) and 180 (34%),

respectively (Figure 2B). Because the CIN phenotype is

characterized by the presence of aneuploidy, we further compared

global CNAs, and calculated aneuploidy, amplified and deleted

scores between two CIN25 clusters (Figures 2C, D). Indeed, the

aneuploidy score was significantly higher in CIN25-C2 tumors

(CIN25-C1 vs CIN25-C2, P = 1.78E-04) (Figures 2C, D).

Interestingly, the amplified score was more robustly higher in the

CIN25-C2 tumors than in CIN25-C1 ones (CIN25-C1 vs CIN25-

C2, the amplified and deleted scores, P = 2.86E-18 and 4.95E-02,

respectively) (Figure 2D). Moreover, we also calculated CIN25

ssGSEA score of each tumor based on the expression of 25 genes

and observed a drastically higher CIN25 ssGSEA score in CIN25-

C2 tumors (Figure 2E). To validate the CIN25 clustering

classification of ccRCC tumors, we carried out the same analysis

of the E-MTAB1980 ccRCC cohort, and tumors were readily

categorized into two distinct CIN25 clusters, with higher CIN25

ssGSEA scores in CIN25-C2 tumors (Figures 2F, G).
Association between CIN25 subtypes and
clinic-pathological variables

We next determined the potential association between CIN25

subtypes and clinic-pathological variables in ccRCC tumors. We

first examined the distribution of two clusters between two genders

and different age groups (≥60 and <60 years) in the TCGA cohort

and did not observe significant differences, although male patients

had a slightly higher frequency of CIN25-C2 than did females

(38.6% vs 29.4%, P = 0.055) (Figure 3A). CIN25-C2 was more

frequently observed in higher-stage (P = 5E-06) and higher-grade

tumors (P = 0.007) (Figure 3B). Very similar results were obtained

from the analysis of the E-MTAB1980 cohort (Figures 3C, D).

We further performed the same analysis of 10 ccRCC patients

whose tumors were with transcriptomic profiling. Because 10

tumors were too few to make a CIN classification, we calculated

ssGSEA score to express CIN25 levels in each tumor. The CIN25

ssGSEA score was significantly increased in higher-stage (III/IV vs

I/II, P = 0.019) and grade (III/IV vs I/II, P = 0.032) tumors

(Figure 3E), which was consistent with the result obtained from

the TCGA patient analysis.
Telomere length, telomerase and
genomic aberrations in CIN25
subtypes of ccRCC tumors

It is well established that telomere dysfunction drives CIN in

oncogenesis (39). We thus sought to determine whether telomere

length was altered in the TCGA ccRCC cohort. Telomeres were

significantly shorter in tumors than in matched NTs (Figure 4A),

but there was no statistically significant difference in telomere

length between CIN25-C1 and C2 subtypes (Figure 4A). Because

telomeric DNA is synthesized by telomerase, while telomerase
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activity is primarily governed by its catalytic component telomerase

reverse transcriptase (TERT) (40), we further compared TERT

expression and telomerase activity between CIN-C1 and C2

tumors. As shown in Figure 4B, TERT mRNA levels were

significantly higher coupled with the increased frequency of
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TERT copy number gain in CIN25-C2 tumors (C2 vs C1 for

TERT mRNA and copies: P = 1.84E-08, and 0.018, respectively).

Telomerase activity, as determined using telomerase score (38),

increased markedly in the CIN25-C2 tumors compared with that in

CIN25-C1 tumors (P = 2.15E-05) (Figure 4C). Moreover, there was
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FIGURE 2

CIN25 signature-based classification of ccRCCs. (A) Consensus clustering of ccRCC tumors according to expression of CIN25 genes. A two-cluster
classification of ccRCC tumors was optimal CIN25 signature-based clustering based on the K value from nonnegative matrix factorization. CDF:
Cumulative distribution function. (B) TCGA ccRCC tumor clustering. Tumors were categorized into two clusters: CIN25-C1 (low) and CIN25-C2
(high). (C) Global copy number alterations (CNAs) in CIN25-C1 and CIN25-C2 tumors. The plots show frequencies of gain/amplification (Red) and
deletion (Green) in 22 chromosomes. Top and bottom: CIN25-C1 and CIN25-C2, respectively. (D) Differences in the total aneuploidy score, and
amplified and deleted scores between CIN25-C1 and CIN25-C2 tumors. (E) Differences in CIN25 ssGSEA score between CIN25-C1 and CIN25-C2
tumors. (F) CIN25 signature-based clustering of ccRCC tumors in the E-MTAB1980 cohort. (G) Differences in CIN25 ssGSEA score between CIN25-
C1 and CIN25-C2 tumors in the E-MTAB1980 cohort.
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a significantly positive correlation between telomerase and CIN25

ssGSEA scores (R = 0.43, P <2.22E-16) (Figure 4C).

CIN is one subtype of genomic instability, whereas the later also

includes several other forms of genomic aberrations such as

nucleotide instability (NIN), microsatellite instability (MSI),

homologous recombination deficiency (HRD), etc. (41). Thus, we

further addressed the association of CIN25 clusters with the following

important alterations: (i) Tumor mutation burden (TMB) (P = 0.034)
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(Figure 4D). Moreover, we compared the top 10 mutated genes

between two subtypes. As expected, VHL, PBRM1, BAP1, MTOR

and SETD2 are among the top mutated genes in both subtypes,

however, significantly higher mutated frequencies of BAP1 and

SETD2 were observed in the CIN25-C2 tumors (BAP1 and SETD2:

P = 0.0003 and 0.018, respectively (Figure S3). In addition, KDM5C
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FIGURE 4

Association between CIN25 subtypes and telomere length,
telomerase and other genomic alterations in ccRCCs. The TCGA
cohort of ccRCCs were analyzed. Telomere length data were from
reference 33. (A) Telomere shortening occurred in ccRCC tumors
independently of CIN25 subtypes. Left panel: ccRCC tumors had
significantly shorter telomeres than did renal nontumorous tissues
(NTs). Right panel: Both CIN25-C1 and C2 tumors had similar
telomere length, shorter than NTs. (B) Robustly higher TERT
expression (left) and increased TERT copy numbers (right) in CIN25-
C2 tumors. (C) Left panel: Significantly higher levels of telomerase
activity, as assessed using the telomerase score in CIN25-C2
tumors. Right panel: The strong correlation between telomerase
score and CIN25 ssGSEA score in ccRCC tumors. (D–G) CIN25-C2
tumors coupled with higher levels of other types of genomic
instability. Higher tumor mutation burden (TMB) (D), intratumoral
heterogeneity (ITH) (E), homologous recombination deficiency
(HRD) (F) and microsatellite instability (MSI) (G) in CIN25-C2 tumors.
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FIGURE 3

Association between CIN25 subtypes and clinic-pathological
characteristics in ccRCCs. (A, B) The TCGA cohort. CIN25
subtypes were associated with stages and grades, but not age and
gender. (C, D) The E-MTAB1980 cohort. CIN25 subtypes were
associated with stages and grades but not age. More female
patients were in the CIN25-C1 group. (E) The present cohort of 10
patients. Advanced stages and grades of ccRCC tumors exhibited
significantly higher CIN25 ssGSEA scores. The CIN25 ssGSEA score
was calculated as described in the Method.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1133902
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1133902
mutation was more frequent in the CIN25-C1 tumors (P = 0.04). (ii)

Intratumor genetic heterogeneity (P = 0.01) (Figure 4E). (iii) HRD (P

= 0.0002) (Figure 4F). (iv) MSI (P = 0.00004) (Figure 4G). CIN25-C2

tumors exhibited significantly higher levels or frequencies of all the

aberrations analyzed above.

CIN25 clusters for prediction of ccRCC
patient survival

We then wanted to assess whether this CIN25 classification

system could predict patient survival. The TCGA cohort of 530

ccRCC patients was first evaluated as the discovery set. Log-rank

test analysis unravelled that those patients in the CIN25-C2 group

had significantly shorter OS and PFS, as shown by Kaplan–Meier

survival curves (P = 7.57E-06 and 4.83-07 for OS and PS,

respectively) (Figure 5A). We further performed univariate COX

regression analyses by including patient age, gender, stage, and

grade together with the CIN25 clustering system. Advanced Stages,

higher grades and CIN25-C2 were all associated with shorter OS

and PFS (Figures 5B, C). Multivariate COX regression analyses

showed that all three of them were independent prognostic factors

for shorter OS and PFS (Figures 5B, C).

The E-MTAB-1980 ccRCC cohort as the validation set were

further analyzed in the same manner. There was no PFS information

available, and we only evaluated OS. Kaplan–Meier survival analysis

showed that CIN25-C2 was associated with significantly shorter OS

(P = 0.0003) (Figure 5D), and the CIN25 subtype and stages were

independent OS predictors, as assessed using univariate (Figure 5E)

and multivariate COX regression analyses (Figure 5F).

The data above consistently show that CIN25-C2 subtype and

advanced stages are independent prognostic variables for OS and/or

PFS in both TCGA and E-MTAB-1980 cohorts. We thus established

a prognostic nomogram composed of CIN25 subtypes and stages.

For the TCGA cohort, the nomograms exhibited a highly accurate

estimation of OS and PFS possibilities at 1-, 3- and 5-years (Figures

S2A, B). Similar results were obtained for OS prediction in the E-

MTAB-1980 cohort (Figure S2C). To further evaluate the sensitivity

and specificity of their prediction, we did time-dependent ROC

analyses. In the TCGA cohort, Area under ROC curves (AUCs) for

1-, 3- and 5-year OS were 0.799, 0.767 and 0.740, respectively, while

the AUCs for 1-, 3- and 5-year PFS were 0.825, 0.797 and 0.798,

respectively (Figures S2D, E). For 1-, 3- and 5-year OS in the E-

MTAB-1980 cohort, AUCs were 0.886, 0.871 and 0.838, respectively

(Figure S2F). Separate analyses of these two variables showed that

AUCs were largely between 0.6 and 0.7, between 0.7 and 0.8 for all

CIN25- and stage-based predictions of 1-, 3- and 5-year survival

(Figures S2G, H). AUCs obtained from stage-prediction were bigger

in all the estimations.
The CIN25 cluster as a predictor for patient
response to Sunitinib treatment

Sunitinib has long been applied for advanced ccRCC treatment

as the first line drug (14), however, reliable biomarkers to predict its

efficacy or patient response are few (6, 8). We thus determined
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whether the CIN25 cluster classification could help distinguish

responders from non-responders in patients treated with Sunitinib.

Toward this end, the IMmotion151 cohort of 416 ccRCC patients

treated with Sunitinib was first analyzed as the discovery set (31, 32).

Patient response to Sunitinib was categorized into complete

remission (CR), partial remission (PR), stable disease (SD) and

progressive disease (PD), respectively. A total of 416 patients were

classified into CIN25-C1 (273 patients) and C2 (143 patients)

groups. The CR and PR (CRPR) rate was 42% and 26% in CIN25-

C1 and C2 groups, respectively (P = 0.0004) (Figure 6A). The disease

progression during the Sunitinib treatment occurred in 14.9% and

30.9% for CIN25-C1 and C2 patients, respectively. The median PFS

for C1 and C2 patients was 5.6 and 11.2 months, respectively (P =

7.78E-08; HR, 1.90 (95% CI: 1.45 – 2.47) (Figure 6B). We then

analyzed the IMmotion150 cohort (29, 30) to validate the findings

obtained from IMmotion151 cohort. In a total of 85 available

patients, CIN25-C1 and C2 were 58 and 27, respectively. The total

CRPR rate was 41.4% and 14.8% in CIN25-C1 and C2 groups,

respectively (P = 0.002) (Figure 6C). Almost the half of CIN25-C2

patients (48.1%) underwent progression during the treatment, while

only 13.8% of CIN25-C1 patients did so (Figure 6C). Higher CRPR

rates in CIN25-C1 group led to longer PFS, and the median PFS for

C1 and C2 patients was 4.4 and 9.8 months, respectively (P = 0.002;

HR, 2.13 (95% CI: 1.18 – 3.84) (Figure 6D).
Signaling pathways enriched in CIN25-C2
tumors and phenotypic association

We next performed the GSEA analysis to probe differences in

signaling pathways between two tumor groups. Figures 7A, B

showed significantly enriched KEGG and hallmark pathways in

CIN25-C2 tumors, and almost all of them are oncogenic and play

key parts in ccRCC development and progression, such as G2/M

checkpoint, E2F and MYC targets, IL6-JAK-STAT3, glycolysis,

EMT and others (Figure 7C). Consistent with these enriched

pathways, CIN25-C2 tumors had robustly strong proliferation

activity compared to CIN25-C1 tumors, as assessed using

proliferation marker Ki-67 and cell cycle score, and stemness

score (Figure 7D); furthermore, an established EMT 16 gene

signature (36) was further used to evaluate EMT between CIN25-

C1 and C2 tumors and significantly increased EMT scores were

observed in the CIN25-C2 group (Figure 7D) (P = 0.035).
Increased EZH2 expression and diminished
angiogenesis in CIN25-C2 tumors

EZH2, a histone methyltransferase catalyzing H3K27

trimethylation (H3K27me3), has been shown to promote

stemness, EMT and Sunitinib resistance in ccRCC and other

tumors (42–44). Given the results above, we set out to determine

whether EZH2 expression differed between CIN25-C1 and C2

tumors. The analysis of both TCGA and E-MTAB1980 ccRCC

cohorts showed robustly higher EZH mRNA levels in CIN25-C2

than in C1 tumors (CIN25-C1 vs C2: P = 2.21E-38 and 3.12E-06,
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respectively) (Figure 8A). In the Sunitinib-treated IMmotion150

and IMmotion151 cohorts, similar results were obtained (CIN25-

C1 vs C2: P = 9.40E-08 and 1.71E-27 for IMmotion150 and 151,

respectively) (Figure 8B). We further compared differences in EZH2
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expression between responders and non-responders to Sunitinib.

As expected, tumors from resistant patients expressed significantly

higher levels of EZH2 than did those from responders (P = 0.021

and 0.004, respectively) (Figure 8C).
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FIGURE 5

The CIN25 subtypes for survival prediction in ccRCCs. (A–C) The TCGA cohort analysis and (D, E) The E-MTAB1980 cohort analysis. (A) Significantly
shorter overall and progression-free survival (OS and PFS) in the CIN25-C2 group. Left and right panel: OS and PFS, respectively. (B) Univariate and
multivariate COX regression analyses of OS for the TCGA ccRCCs. (C) Univariate and multivariate COX regression analyses of PFS for the TCGA
ccRCCs. (D) Significantly shorter OS in the CIN25-C2 group in the E-MTAB1980 cohort. (E, F) Univariate and multivariate COX regression analyses of
OS for the E-MTAB1980 cohort.
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In addition to higher EZH2 expression, poor angiogenesis is

also a well characterized predictor for Sunitinib resistance (34, 35),

and we thus analyzed the angiogenesis score in CIN25 subtypes of

ccRCC tumors. As shown in Figure 8D, a significantly lower

angiogenesis score was observed in the CIN-C2 tumors from the

IMmotion151 (CIN25-C1 vs C2: P = 9.78E-17) and IMmotion150

(P = 0.0096) cohorts of ccRCC patients treated with Sunitinib. The

TCGA and E-MTAB1980 ccRCC analyses showed similar results,

which validated the observations above (Figure 8E).
Discussion

CIN is an important cancer hallmark (23–25). Because of the

difficulty in directly assessing a CIN phenotype, a CIN25 signature
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has been developed, and the CIN25 expression-based score system

roughly reflected levels of CIN in several cancer types (22). By

analyzing primary ccRCC tumors and TCGA ccRCC cohort, we

observed that expression of genes included in the CIN25 signature

was robustly upregulated but significantly heterogenous. Based on

CIN25 scores calculated from their mRNA levels, we categorized

ccRCC patients into two clusters: CIN25-C1 (CIN25-low) and

CIN25-C2 (CIN25-high), respectively. Our findings demonstrate

that the CIN25 signature is present in ccRCC and this cluster

system is useful in predicting patient outcomes and therapeutic

response to TKR inhibitors.

CIN has been shown as a key driver of chromosomal alterations

in human malignancies and primarily characterized by aneuploidy

or SCNAs (23–25). Consistent with this, we observed that CIN25-

C2 ccRCC tumors exhibited robustly increased aneuploidy. CIN-
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FIGURE 6

The CIN25 subtypes for prediction of Sunitinib response in ccRCCs. (A, B) IMmotion151 cohort of ccRCC patients treated with Sunitinib. Poor
response to Sunitinib and shorter patient PFS in the CIN25-C2 group. (C, D) IMmotion150 cohort of ccRCC patients treated with Sunitinib. Poor
response to Sunitinib and shorter patient PFS in the CIN25-C2 group.
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triggered aneuploidy creates intratumour genetic heterogeneity,

thereby promoting phenotypic adaptation during cancer

evolution and progression. On the other hand, aneuploidy or

SCNAs further accelerate CIN rates. Thus, CIN and aneuploidy

affect each other, establishing positive feedback.

CIN underpins much of the intratumoural heterogeneity

observed in cancers and drives phenotypic adaptation during
Frontiers in Oncology 11220
tumor evolution (23–25). It has been shown that the CIN

phenotype is associated with resistance to chemo- and radio-

therapies, however, it remains to be defined whether it has

impacts on targeted therapeutic drugs. Sunitinib, a TKR inhibitor,

has been applied as the first-line drug for advanced ccRCC

treatment (12–14). Clinical studies showed that the intrinsic

resistance to Sunitinib occurred in approximately 1/3 of patients,
A B

D

C

FIGURE 7

The enriched oncogenic pathways and aggressive phenotypes in the CIN25-C2 subtype of ccRCC tumors. The TCGA cohort analysis. (A, B)
Enrichments of overrepresented KEGG (A) and hallmark (B) pathways in CIN25-C2 tumors. (C) Representative enriched pathways in CIN25-C2
tumors: Cell cycle, E2F targets, EMT and IL6-JAK-STAT3. (D) Higher EMT, proliferation and stemness scores in CIN-C2 tumors.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1133902
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2023.1133902
FIGURE 8

Differences in EZH2 expression and angiogenesis between CIN25-C1 and C2 subtypes of ccRCC tumors. (A, B) CIN25-C2 tumors expressed significantly
higher levels of EZH2 mRNA. (A) TCGA (left) and E-MTAB1980 (right) ccRCC cohorts. (B) IMmotion150 (left) and 151 (right) cohorts. (C) Differences in
EZH2 expression in tumors from CRPR, SD and PD patients (left and right: IMmotion150 and 151 cohorts, respectively). (D) Lower angiogenesis scores in
CIN25-C2 tumors (left and right: TCGA and E-MTAB1980 ccRCC cohorts, respectively). (E) Lower angiogenesis scores in CIN25-C2 tumors (left and
right: IMmotion150 and 151 cohorts, respectively).
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while many of them initially responded to Sunitinib but the

treatment failure developed eventually (6, 12, 15). Several

molecules and signaling pathways have been implicated in

Sunitinib irresponsiveness, however, the development of reliable

biomarkers that distinguish Sunitinib responders from non-

responders remains challenging. Our present findings suggest that

the CIN25 signature serves as a useful stratifier to predict the

therapeutic efficacy of Sunitinib and PFS in ccRCC patients. EZH2

upregulation and poor angiogenesis are likely the mechanism

underlying lower efficacy observed in CIN25-C2 patients. Further

studies are required to elucidate how CIN25 signature affects EZH2

expression and angiogenesis.

A link between telomere dysfunction and CIN has been well

characterized in human malignancies and animal carcinogenesis

models (39). Telomeric DNA repeats, when sufficient long, together

with their binding-factors or sheltering proteins, form protective

structures at the ends of linear chromosomes that prevent

CIN (39, 45). Telomeric DNA is synthesized by telomerase, an

RNA-dependent DNA polymerase activated in most human

malignancies for telomere length maintenance (40). However,

telomerase activation usually occurs at the late stage during a

stepwise malignant transformation (45). Therefore, telomeres

already become shortened in precursor lesions, which leads to

telomere dysfunction as a driving event for CIN in early

carcinogenesis (39, 45, 46). Shorter or dysfunctional telomere-

bearing chromosomes are prone to fusion, thereby triggering the

dicentric chromosome formation that missegregate or break in

mitosis during anaphase (39). The resultant chromosomal breaks

are fusogenic, through which a cycle of chromosome fusion and

breakage is propagated. In the present study, we observed

significantly shorter telomeres in ccRCC tumors than in their

matched renal tissues. There were no differences in telomere

length between CIN25-C1 and C2 tumors, but TERT expression

and telomerase activity was noticeably higher in CIN25-C2 tumors.

Likely, increased telomerase activity attenuates or compensates for

telomere attrition in CIN25-C2 tumors.

CIN is one subtype in the genomic instability category that

encompasses a variety of DNA alterations, including single

nucleotide to whole chromosome changes (41). Interestingly, we

observed that CIN25-C2 tumors also had increased genomic

alterations reflecting all other aspects of genomic instability. In

addition, HRD has been implicated in genomic instability including

CIN, and consistently, HRD scores were significantly higher in

CIN25-C2 tumors. Thus, the CIN25 clustering system help measure

not only the CIN phenotype, but also the whole genomic instability

level. From this point of a view, assessment of CIN25 signature may

have broader implications both biologically and clinically. For

instance, HRD occurs frequently in breast and ovarian cancer,

and those patients are in general sensitive to PARP inhibitors.

Conceivably, the CIN25 assessment may also be useful to stratify

patients who respond to PARP inhibitor treatment. A PCR method

is sufficient to quantify expression levels of 25 CIN genes, which is

cost- and time-friendly, and easily applied for clinical routine.
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In conclusion, the CIN25 clustering model can categorize

ccRCC tumors into CIN25-C1 and C2 subtypes, and this

classification hold great promises in predicting patient survival

and response to Sunitinib. CIN25-C2 tumors are characterized by

active proliferation, stemness and EMT phenotypes. EZH2

overexpression and poor angiogenesis may drive all these

aggressive phenotypes, shorter survival and drug resistance.

Importantly, the CIN25 clustering model not only represents a

CIN phenotype, but also is strongly associated with other genomic

instability-related alterations. Thus, the assessment of CIN25

reflects levels of CIN and whole genomic instability. Moreover, a

PCR quantification is enough for the CIN25-based tumor

classification, which is suitable for clinical routine application.

Taken together, the present findings will contribute to improved

personalized management of ccRCCs.
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Objectives: Our aim was to describe the molecular characteristics of Renal Cell

Carcinoma (RCC) and develop a small panel of RCC-associated genes from a

large panel of cancer-related genes.

Materials and methods: Clinical data of 55 patients with RCC diagnosed in four

hospitals from September 2021 to August 2022 were collected. Among the 55

patients, 38 were diagnosed with clear cell RCC (ccRCC), and the other 17 were

diagnosed with non-clear cell RCC (nccRCC), including 10 cases of papillary

renal cell carcinoma, 2 cases of hereditary leiomyomatosis and RCC syndrome

(HLRCC), 1 eosinophilic papillary RCC, 1 tubular cystic carcinoma, 1 TFE3 gene

fusion RCC, and 2 RCC with sarcomatoid differentiation. For each patient, 1123

cancer-related genes and 79 RCC-associated genes were analyzed.

Results: the most frequent mutations in a large panel of 1123 cancer-related

genes in the overall population of RCC patients were VHL (51%), PBRM1 (35%),

BAP1 (16%), KMT2D (15%), PTPRD (15%), and SETD2 (15%). For ccRCC patients,

mutations in VHL, PBRM1, BAP1, and SERD2 can reach 74%, 50%, 24%, and 18%,

respectively, while for nccRCC patients, the most frequent mutation was FH

(29%), MLH3 (24%), ARID1A (18%), KMT2D (18%), and CREBBP (18%). The germline

mutation rate in all 55 patients reached 12.7% (five with FH, one with ATM, and

one with RAD50). The small panel containing only 79 RCC-associated genes

demonstrated that mutations of VHL, PBRM1, BAP1, and SETD2 in ccRCC

patients were 74%, 50%, 24%, and 18% respectively, while for the nccRCC

cohort, the most frequent mutations were FH (29%), ARID1A (18%), ATM (12%),

MSH6 (12%), BRAF (12%), and KRAS (12%). For ccRCC patients, the spectrum of

mutations by large and small panels was almost the same, while for nccRCC

patients, the mutation spectrum showed some differences. Even though the

most frequent mutations (FH and ARID1A) in nccRCC were both demonstrated

by large panels and small panels, other less frequent mutations such as MLH3,

KMT2D, and CREBBP were not shown by the small panel.
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Conclusion: Our study revealed that nccRCC is more heterogeneous than

ccRCC. For nccRCC patients, the small panel shows a more clear profile of

genetic characteristics by replacing MLH3, KMT2D, and CREBBP with ATM,

MSH6, BRAF, and KRAS, which may help predict prognosis and make clinical

decisions.
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1 Introduction

In 2020, 4.3 million patients were diagnosed with kidney cancer,

accounting for 1.79 million deaths worldwide (1). There were 75800

newly diagnosed kidney cancer cases and 27800 patients who died of

kidney cancer in China (2). Renal cell carcinoma (RCC) is the most

common renal tumor in adults, including clear cell RCC (ccRCC),

type 1 and type 2 papillary RCC (pRCC), chromophobe carcinoma,

and other rare RCCs. ccRCC is the most common subtype,

accounting for 75–85% of all cases. Early-stage renal cell carcinoma

can be cured by surgical resection. However, recurrent, unresectable,

and metastatic RCCs (mRCCs) have a high mortality rate, with a 5-

year survival rate of only 12% (3). With the development of targeted

therapy and immunotherapy, mRCC survival has been significantly

prolonged; however, cancer progression and resistance to therapy

need to be resolved, and comprehensive genomic profiles are

important for RCC management.

Previous genetic characterization of RCC has significantly increased

our knowledge of tumor biology and disease progression. The Cancer

Genome Atlas (TCGA) accrued flash-frozen samples of tumor

resections and adjacent normal kidneys (or an aliquot of blood if no

normal kidney was available) for whole exome sequencing and analyzed

the genomic information and related clinical and pathological patient

data (4). This project revealed that ccRCC had a specific deletion on

chromosome 3 in approximately 90% of patients and most ccRCCs

harbored VHL gene mutations. Besides the 3p deletion, TCGA analysis

confirmed a frequent occurrence in chromosome 5 (67%) and

chromosome 14q (45%) deletions, and the top ten mutated genes in

ccRCC were VHL, PBRM1, BAP1, SETD2, KDM5C, TP53, mTOR,

SMARCA, PTEN, and ARID1A (5, 6). Numerous epigenomic-related

genes are mutated in ccRCC, suggesting that epigenetic regulation plays

an important role in the molecular pathways underlying ccRCC leading

to the development of possible epigenetic therapies. pRCC is a

heterogeneous RCC subtype in which the unifying feature is the

presence of papillae in the tumor, which is most commonly separated

into type 1 pRCC that has basophilic cytoplasm and type 2 pRCC that

has abundant eosinophilic cytoplasm. Genomic profiles have also been

described in TCGA studies. Type 1 pRCC is associated with frequent

concurrent gains in chromosomes 7 and 17, and numerous potential

oncogenes are encoded on chromosome 7, including MET, EGFR, and

BRAF. Type 2 papillary RCC was the only loss of chromosome 22 that
02226
occurred consistently as a specific copy number alteration (frequency,

30.4%) (7, 8). Compared with type 1 pRCC, type 2 pRCC had low-

frequency mutations, and the FH gene (encoding fumarate hydratase)

germline and/or somatic mutations were discovered in type 2 pRCC.

TCGA has characterized somatic genetic and genomic alterations in

RCC; however, these databases are based onWestern patients, and only

1.8% of Asian patients were included. Therefore, it is necessary to

elucidate Chinese RCC genomic symbols and clinical characteristics of

Chinese RCC.

We enrolled 55 patients with RCC from multiple hospitals and

performed a panel of 1123 genes sequence, focusing on 79 RCC cancer-

related gene target sequences. This study aimed to describe the genomic

map of Chinese renal cell cancer and explore the differences between

ccRCC and nccRCC, achieving precision medicine for RCC.
2 Methods

2.1 Patients

Patients were enrolled in three hospitals between November 1,

2021, and August 31, 2022. The pathologist confirmed the diagnosis

of renal cell cancer, including ccRCC and pRCC. All participants

provided signed informed consent. The specimens used were

formalin fixed paraffin-embedded (FFPE) and fresh tumor

specimens and were tested by DNA NGS. Clinical demographic

parameters, cancer stage using the American Joint Committee on

Cancer guidelines, and pathological data including tumor stage and

lymph node status were collected.
2.2 Next-generation sequence

Tumor samples were collected, and next-generation sequencing

tests of all samples were performed at ChosenMed Technology

(Beijing) Co., Ltd., Beijing, China). Genomic DNA extraction and

library preparation with TruSight™Oncology 500 (TSO 500) Library

Preparation Kit (Illumina, San Diego, CA, United States) were

performed following the manufacturer’s protocols. The library was

sequenced on an Illumina NextSeq 550Dx platform with a paired-end

run of 150 base pairs. Sequence alignment to the human genome
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(hg19) (9) was completed using the BWA-MEM (version 0.7.11)

alignment algorithm. SAMtools (version 1.3) (10) was used to

perform the bam-sam conversions. We used the Genome Analysis

Toolkit (GATK, version 3.6) (11) module IndelRealigner to perform

local realignment of indels. Germline variants were filtered using an

in-house built database, and all parameters were set according to the

standard protocol (12). Copy number variants (CNVs), including

amplification and deletion, were identified using CRAFT copy-

number callers from the TSO500 pipeline. Manta (version 1.6.0)

(13) was employed to detect large-scale structural variations (SVs) in

the RNA library, and only fusions with at least three unique

supporting reads, one of which is a split read crossing the fusion

breakpoint, were considered candidate fusions. The process of SNVs

and indel mutation calling, TMBmeasurement, and read filtering was

performed as described in a previous study. Germline variants were

filtered using an in-house built database, and all parameters were set

according to the previous workflow. We finally obtained two R

packets with 1,123 genes named ChosenOne® and 79 genes

named ChsenFocus®.
2.3 Statistical analysis

The assessment of clinical characteristics between different

cohorts, including age, sex, histological subtype, location, and

TNM stage, was performed using SPSS 20.0. The R package

“maftools package” (Mayakonda et al., 2018) was applied to

perform the mutation analysis and provide a visualized process of

variant analysis results. All statistical analyses were performed using

R version 3.6.3. All the p-values presented are for a two-tailed test,

and p <0.05 represents statistical significance.
3 Results

3.1 Patients summary

A total of 55 patients diagnosed with renal cell cancer were

enrolled from the First Affiliated Hospital of Anhui Medical

University, the First Affiliated Hospital of Wenzhou Medical

University, and the General Hospital of Eastern Theater Command

between November 1, 2021, and August 31, 2022. Among the 55

patients, 78.2% were men and 21.8% were women, with a median age

of 57 years. Approximately 69.1% of the patients had ccRCC and

30.9% had nccRCC, including eight with type 2 pRCC and two with

type 1 pRCC. Of the tumors, 40.0% were localized to the left kidney,

and 58.2% were located on the right side. Of the patients, 52.7% were

diagnosed with TNM stage I, and 10% had distant metastases

(Table 1; Table S1).
3.2 Somatic mutation of RCC in 1123
gene panel

All the samples were sequenced in an 1123 gene panel. VHL

(51%), PBRM1 (35%), BAP1 (16%), KMT2D (15%), PTPRD (15%),
Frontiers in Oncology 03227
and SETD2 (15%) were the most common mutations in all RCC

patients (Figure 1). The mutation frequency in ccRCC was higher

than that in nccRCC. Common gene mutations in ccRCC patients

were VHL (74%), PBRM1(50%), BAP1(24%), SETD2 (18%), and

ARID1B (16%) (Figure S1). The mutation copies were lower in

nccRCC than in ccRCC, and the most frequent mutations in

nccRCC were MLH3(24%), ARID1B (18%), CREBBP (18%), and

KMT2D (18%) (Figure S2). Missense mutations accounted for the

most prevalent mutation in ccRCC, while the most common genetic

variation in nccRCC was Fram_Shift. Furthermore, Frame Shift Del

and Frame Shift Ins have higher rates of mutation in nccRCC.

Specifically, missense mutations in KRAS, NKX2-1, BRAF, CUL3,

PRSS1, ABCC6, CYLD, ANKRD11, and BLM only have Frame Shift

Ins, whereas BCL10 and MSH6 only have frameshift delay. KMT2D

had the highest mutation rate in all three groups when the results of
TABLE 1 Clinical characteristics of 55 RCCs.

Age, median (range) 57 (10~79)

Sex, n (%)

Men 43 (78.2%)

Women 12 (21.8%)

Histological subtype, n (%)

ccRCC 38 (69.1%)

nccRCC 17 (30.9%)

Tumor location, n (%)

Right 22 (40.0%)

Left 32 (58.2%)

Unknown 1(1.8%)

TNM, n (%)

I 29 (52.7%)

II 5 (9.1%)

III 10 (18.2%)

IV 11 (10.0%)
FIGURE 1

Genomic landscape of 55 RCC patients with 1123 gene.
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the three groups were examined, and the mutation results of ccRCC

were equivalent to those of all RCC patients.
3.3 Somatic mutation of RCC in 79 gene
small panel

Based on an analysis of 79 genes associated with renal cancer, we

found that VHL, PBRM1, BAP1, SETD2, and TSC1 mutation rates

were higher in all RCCs at 51%, 35%, 16%, 15%, and 13%, respectively

(Figure 2). VHL (74%), PBRM1 (50%), BAP1 (24%), SETD2 (18%),

and TSC1 (16%) were the most frequently mutated genes in ccRCC

(Figure S3). nccRCC mutations are highly specific, with high rates of

mutations in FH, ARID1A, ATM, BRAF, and KRAS. nccRCC was

more heterogeneous than ccRCC (Figure S4). The most common

type of mutation in both groups of patients was missense mutation,

and many genes had only missense mutations. Splice site, Frame Shift

Del, Nonsense Mutation, and In Frame Del have all shown

independent mutations in nccRCC patients. It seems that ccRCC

has a clear driver gene mutation, and patients with ccRCC have a

higher mutation rate than those with nccRCC. For ccRCC patients,

the mutation profiles in the 1123 gene panel and 79 gene panels were

nearly identified, whereas for nccRCC patients, the mutation profiles

showed some differences. The most frequent mutations (FH and

ARID1A) in nccRCCwere both demonstrated by the 1123 gene panel

and 79 gene panel; other less frequent mutations such as MLH3,

KMT2D, and CREBBP were not detected in the 79 gene panel.
3.4 germline mutation of RCC

In 55 patients, we discovered six germline mutations in five (5/

55, 9.1%) patients, including four FH genes, one ATM gene, and

one RAD50 gene (Figure S4); it’s important to note that all six of

these germline mutations were discovered in nccRCC (5/17, 29.4%),

and no germline mutations were discovered in ccRCC. Four of the

five germline mutation patients were diagnosed with type 2 pRCC,

three with FH germline mutations, and one with FH mutation

concurrent with ATM germline mutation. Patients with a TFE3

fusion have a RAD50 germline mutation.
Frontiers in Oncology 04228
4 Discussion

Since kidney cancer is the most common cancer in urology, we

report a comprehensive genomic analysis of 55 RCCs including 38

ccRCCs and 17 nccRCCs to reveal the genomic characteristics of a

small Chinese RCC cohort. We discovered that the VHL gene is the

most frequent mutation in ccRCC, which was similar to the

conclusion that the VHL mutation is the most common mutation

of ccRCC according to the TCGA project. Some Chinese

researchers have reported that approximately 50% of ccRCC

patients have VHL mutations (14), and our results show that

VHL is approximately 51% in all RCCs and 78% in ccRCCs,

which is similar to that in previous reports. VHL is a key

component of the VHL E3 ubiquitin ligase complex that

recognizes and binds hydroxylated target proteins in an oxygen-

dependent manner. Loss of VHL stabilizes the protein levels of

hypoxia-inducible factors HIF1a and HIF2a, which results in a loss

of oxygen sensing, induces cellular proliferation, and promotes

angiogenesis (15). Besides, VHL, PBRM1, BAP1, and SETD2 are

regarded as driver mutations in ccRCC, which also act as

biomarkers for ccRCC treatment and prognosis. The PBRM1

gene codes for BAF180, a subunit of the PBAF subtype of the

SWI/SNF chromatin remodeling complex, and the PBAF complex

suppress the hypoxic transcriptional signature. A study has

reported that loss-of-function mutations in the PBRM1 gene were

associated with the clinical benefit of using PD-1 inhibitor because

PBAF loss shows that RCC is more sensitive to T-cell-mediated

cytotoxicity than its PBAF-intact counterparts. Some clinical trials

have shown that PBRM1 is a biomarker for immunotherapy (16,

17), but the results are still controversial. Some researchers have

reported that PBRM1 loss defines a non-immunogenic tumor

phenotype associated with checkpoint inhibitor resistance in

renal carcinoma (17). Therefore, more evidence is required to

reveal the relationship between PBRM1 mutation and

immunotherapy response. In our study, mutations in VHL,

PBRM1, BAP1, and SERD2 can reach 74%, 50%, 24%, and 18%,

respectively, for ccRCC patients; while for nccRCC patients, the

most frequent mutation was FH (29%), MLH3 (24%), ARID1A

(18%), KMT2D (18%) and CREBBP (18%). As we know, the

inactivation of the Von Hippel–Lindau (VHL) gene is by far the

most common oncogenic driver event in ccRCC. Gene mutations in

RCC patients were revealed by next-generation sequencing

techniques, and the altered genes were then utilized to predict

patients’ prognosis and develop therapeutic drugs. The molecular

fingerprints described by next-generation sequencing techniques

categorize ccRCC into different subtypes that are clinically and

therapeutically important. Specific mutations that seem to influence

immune cell populations can be discovered in ccRCC tumors

because of the interaction between these subtypes and the tumor

microenvironment. Opportunities for illness prevention, early

identification, prognosis, and therapy have been presented in

these studies (18). PBRAM1, BAP1, and SETD2 are chromatin-

remodeling genes that are present in the commonly lost region of

chromosome arm 3p, which is critical for chromosome stability and

remodeling. A lot of studies have revealed that the mutation of

BAP1 is associated with poor prognosis (19, 20) even though how
FIGURE 2

Genomic landscape of 55 RCC patients with 79 gene.
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PBRM1 gene mutations promote carcinogenesis and tumor

progression is still unknown. PBRM1 is considered a tumor

suppressor gene by in vitro experiments in ccRCC-derived cell

lines, which show that PBRM1 gene silencing results in increased

proliferation, migration, and colony formation (21).

Joseph RWet al. found that the loss of PBRM1 expression in 1330

ccRCC tumor samples was associated with an increased risk of

metastasis without affecting the overall survival (22). The gene

mutation of FH was the driving cause of hereditary leiomyomatosis

and renal cell carcinoma (HLRCC). The median relapse-free survival

for patients with FH gene mutation was only 9 months, so the 2022

WHO classification of renal cell carcinoma has changed the term

from HLRCC to FH-deficient RCC which represents a new subtype

in nccRCC. FH gene mutation of RCC was the golden standard for

FH-deficient RCC, which requires more active treatment.

NccRCC is a rare subtype of RCC, accounting for 15–20% of RCCs,

and it is a heterogeneous disease that comprises various types of renal

cancer. We recruited 17 nccRCCs to perform the next-generation

sequencing techniques, and the results showed that nccRCC has

distinct genomic characteristics compared to ccRCC. There were no

major mutated genes in nccRCC, and the highest mutated genes were

MLH3(24%), ARID1B (18%), CREBBP (18%), and KMT2D (18%),

which were lower than those in ccRCC. Numerous potential oncogenes

of type 1 pRCC have been reported, including MET, EGFR, and BRAF,

and somatic or germline activating mutations of MET has been found in

a subset of type 1 pRCC; however, our study did not observe MET

mutations due to the small sample size. Nevertheless, we found a higher

frequency of FH mutations in type 2 pRCC, which is consistent with a

previous report. Some research found that Cabozantinib plus nivolumab

is effective in most non-clear cell variants of RCCS, especially those with

prominent papillary features, but limited in chromophobe RCCS (23).

Over the past two decades, a variety of options have been recognized as

the dominant treatment for metastatic renal cell carcinoma (mRCC),

including angiogenesis inhibitors, vascular endothelial growth factor

receptor inhibitors, other tyrosine kinase inhibitors (TKIs), as well as

MET inhibitors and mammalian targeted rapamycin (mTOR)

inhibitors. More recently, immunotherapy or combination targeting

agents have been shown to significantly improve outcomes in patients

with mRCC compared to TKI alone (24).

For all solid tumor gene tests, an 1123 gene panel was designed;

however, some genes were not frequently mutated in RCC. We

searched for literature and clinical trials and then constructed a

panel of 79 genes that were significantly associated with RCC

tumorigenesis. Compared to the COSMIC and TCGA databases,

the mutation of ccRCC by 79 gene panels is more consistent with

the RCC driver mutation. For example, BLM and LRP1B are not

significantly associated with the prognosis of ccRCC, but in the

1123 panel, we observed that the frequency exceeded 10%, so the 79

gene panel may be more suitable for profiling RCC gene mutation.

Kidney cancer is an inherited cancer. Several well-known

hereditary RCC syndromes account for 5-9% of all RCC cases,

including VHL disease, BHD syndrome, and HLRCC. Patients with

a family history of RCC have an approximated two-fold increased risk

of RCC. Early onset RCC diagnosed before the age of 46 years was
Frontiers in Oncology 05229
reported to be associated with hereditary RCC. In a study of 190

Chinese patients under the age of 45 years who presented with renal

tumors, 9.5% had a pathogenic/likely pathogenic (P/LP) germline

mutation (25). Our study of 55 RCC patients revealed six germline

mutations in five patients (5/55, 9.1%), which was consistent with

previous reports. Interestingly, all germline mutations were found in

nccRCC, indicating that nccRCC is associated with a high risk of

hereditary diseases. We enrolled only seven cases of type 2 pRCC;

surprisingly, four of them had FH pathogenic/likely pathogenic

germline mutations and one had FH somatic loss. This could be

higher than that reported in previous studies of the pRCC germline.

FH-deficient RCC is a new WHO 2022 category with more aggressive

habits and poor prognosis. A large study cohort including 77 FH-

deficient RCC patients observed in the real world has been reported in

China (26), with a median progression time of only 21 months, among

which 70 patients were confirmed with FH germline mutation and the

other 7 patients confirmed with somatic mutation. Therefore, it is

necessary to test for germline mutations in nccRCC patients.

Furthermore, we found two DDR genes (ATM and BRIP1) germline

mutations. Although the DDR germline mutation is not an inherited

gene of RCC, some publications have reported DDR germline

mutations in kidney cancer in approximately 5% of cases (27, 28);

however, the clinical and biological aspects of DDR germline kidney

cancer are unknown. There are also differences in genetic mutations

between Chinese and Western populations due to ethnic differences.

Researchers have found that the five genes with the most mutations in

the Chinese population are TP53, KRAS, ARID1A, PBRM1, and

SMAD4, while the five most mutated genes in western populations

were IDH1, ARID1A, BAP1, TP53, and KRAS. VHL (59.7%), PBRM1

(18.0%), SETD2 (12.2%), BAP1 (10.2%), and TP53 (9.4%) were the

most common somatic cell alteration sites in our study. Compared

with the TCGA database, the mutation frequency of VHL (59.7% vs.

50.0%, p< 0.001) and TP53 (9.4% vs. 3.5%, p <0.001) in our cohort

were higher, while themutation frequency of PBRM1was lower (18.0%

vs. 31.0%, p < 0.001) in the Chinese cohort (14). Therefore, we believe

that racial disparities influence the emergence and progression of RCC.

Thus, clinicians would greatly benefit from our work in the prognosis

and clinical treatment counseling for RCC in the Chinese population.

Our results described the genomic characteristics of Chinese

RCC, revealing that nccRCC has a higher frequency of germline

mutations. However, our study had some limitations. First, the

study’s limited sample size of Chinese participants raises the

possibility that not all RCC genomic alterations are present. This

is because, in general, we only performed genetic testing on patients

who have reached stage 3 or above. Moreover, genetic testing is still

inaccessible for most patients as a result of the price, and some

patients cannot afford the entire process. To further enhance our

study, we will continue to gather sequencing information from

kidney cancer patients in the follow-up study. Second, the gene

panel of 1123 and 79 genes could not avoid selection bias. Finally,

the mean follow-up time was not long enough; we did not explore

the relationship between gene mutations and recurrence.

In conclusion, the present study described commonly mutated

genes associated with RCC in a small Chinese cohort and revealed
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that nccRCC was more heterogeneous than ccRCC, which may help

to predict the prognosis and make clinical decisions.
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