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Editorial on the Research Topic

The interconnection between epigenetic modifications and the
tumor microenvironment
In the 1940s, Conrad Waddington coined the term ‘epigenetics’ to explain how the

same combination of genes could produce different phenotypes in certain specific

environments throughout animal development. The term epigenetics was later embraced

by a wider range of disciplines and expanded to include the study of covalent and non-

covalent changes in DNA and histones, as well as general alterations in chromatin structure

in any biological or pathological process. For example, DNA methylation, post-

translational changes in histones, chromatin remodeling, and the effects of non-coding

RNAs on ribosome structure all fall within the field of epigenetic research. These epigenetic

modifications translate environmental input signals into different gene combinations,

allowing a limited number of transcription factors (TFs) to produce more diverse

transcriptional patterns. The expression levels and biological activities of enzymes and

regulators involved in epigenetic modifications may also be altered by environmental

signals. Such heritable epigenetic changes with intertwined DNA/RNA/protein linkages

provide a basis for studying environmental adaptations at the cellular level.

The tumor microenvironment (TME) is composed of cellular and non-cellular

components, including stromal cells, immune cells, and chemokines (1). The biological

importance of the TME as a response platform regulating various aspects of tumor initiation,

development, metastatic progression, altered immune response, fulminant disease, and

cancer recurrence is undeniable and constantly confirmed, as highlighted by numerous

studies. In addition, as epigenetic alterations are associated with the control of the TME, DNA

methylation may influence cancer growth by regulating immune infiltration and immune

checkpoints of the TME (2, 3). In addition, histone acetylation may attenuate the immune

destructive potential of the TME and promote tumor development. The main role of RNA

modifications in tumor formation is to regulate angiogenesis, immune activity, and the

infiltration of immune cells into the TME (4). ncRNAs released by certain cells in the TME

are thought to influence the behavior of cancer cells, including invasion, metastasis, and

treatment resistance (5). Furthermore, ncRNAs in tumor cells may be implicated in the
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immune regulation of the TME and promote tumor formation. In

conclusion, epigenetic alterations hold therapeutic promise in

controlling elements of the tumor microenvironment and may be a

target for cancer therapy.

The objective of the Research Topic titled “The interconnection

between epigenetic modifications and the tumor microenvironment”

is to discuss recent advances in the interaction between epigenetic

modifications and the tumor microenvironment and to identify

potential prognostic markers and specific components that may

affect the efficacy of immunotherapy and other tumor treatments.

Ultimately, a total of 11 papers, contributed by more than 60

authors as experts in the field, were accepted in 30 submissions,

providing new comprehensive insights for future cancer therapies.

Han et al. identified prognostic genes significantly associated

with metabolic changes in hepatocellular subpopulations at the

single-cell level and examined the heterogeneity of the

subpopulation and its interrelationship with other cells in the

tumor microenvironment. A prognostic model for predicting

overall survival (OS) in patients with hepatocellular carcinoma

was established, validated, and found to show good predictive

ability. In addition, differences in chemosensitivity between high-

and low-risk groups were assessed and five drugs were focused on

that could potentially reverse the risk score.

Kahlert et al.’s original research established COL10A1, a short-

chain protein belonging to the collagen family, an important

component of the stromal extracellular matrix, as a diagnostic

marker to predict the development of colorectal cancer,

expanding on previous studies on this protein. The authors found

that the abundance of COL10A1 in CRC tissue predicts the

metastatic and immunogenic potential of CRC and that

COL10A1 transcription may mediate the interaction between

tumor cells and the stromal microenvironment.

Cui et al. investigated the function of cuproptosis-related

lncRNAs in colorectal cancer (COAD). They identified six

cuproptosis-associated prognostic lncRNAs in COAD and

constructed a prognostic model based on cuproptosis-associated

lncRNAs, providing new insight into the risk classification and

possible biomarkers for patients with colorectal cancer. Analysis of

the immune microenvironment, mutations, and sensitivity to

chemotherapy suggests that this signature may serve as a reference

for immunotherapeutic and chemotherapeutic approaches.

Yu et al. constructed a pyroptosis-related lncRNA prognostic

model for predicting prostate cancer using a machine-learning

approach. The researchers explored the association between the

prognostic model and patients’ clinical characteristics, immune

environment, immune checkpoints, gene mutations, and drug

sensitivity, and constructed diagnostic and prognostic biomarkers

for prostate cancer. In vitro experiments showed that silencing

lncRNA AC005253.1 affected the expression of the AIM2 gene in

prostate cancer and inhibited the proliferation, migration, and

invasion of DU145 and PC-3 cells. In addition, silencing of

AC005253.1 promoted the expression of pyroptosis inflammasome

AIM2, and the pyroptosis-related gene AC005253.1 may be a

valuable oncogene related to the prognosis of prostate cancer.

Xu et al. discussed the mechanism of MARCH1 in lung

adenocarcinoma (LUAD). As a member of the E3 family, E3s
Frontiers in Oncology 026
were dysregulated in LUAD and were positively correlated with

most immunological features, suggesting that MARCH1 may

activate inflammatory TME in LUAD. Patients with LUAD with

reduced MARCH1 expression had a poorer prognosis and were not

sensitive to immune checkpoint inhibitors. In pan-cancer studies,

MARCH1 was associated with most immunological features,

suggesting that MARCH1 may be a new and promising

biomarker as an indication of the immune status and effectiveness

of immunotherapy in patients with LUAD.

Zeng et al. used a computational algorithm to screen out the

fatty acid metabolism (FAM)-related genes associated with cervical

cancer (CC) from the public databases. The FAM model (PLCB4,

FBLN5, TSPAN8, CST6, and SERPINB7) risk score was an

independent factor affecting the prognosis of patients with

cervical cancer. This model had a high prognostic value, meaning

that the FAM-related genes can be used as prognostic markers and

potential immunotherapy targets for patients with CC.

The abovementioned Research Topic “The interconnection

between epigenetic modifications and the tumor microenvironment”

gathers studies focusing on the discovery of interactions between

epigenetic modifications and the tumor microenvironment and the

mechanisms of epigenetic modifications in immunotherapy against

cancer. Several prognostic and predictive models have also been

constructed that are useful for clinicians. It is hoped that this

Research Topic will contribute to the understanding of the

mechanisms of tumor development and provide new and broader

insights into future cancer treatment.
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1Department of Gastroenterology, The Second Affiliated Hospital of Nanjing University of Chinese
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Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
Background: Cuproptosis, a newly described method of regulatory cell death

(RCD), may be a viable new therapy option for cancers. Long noncoding RNAs

(lncRNAs) have been confirmed to be correlated with epigenetic controllers

and regulate histone protein modification or DNA methylation during gene

transcription. The roles of cuproptosis-related lncRNAs (CRLs) in Colon

adenocarcinoma (COAD), however, remain unknown.

Methods: COAD transcriptome data was obtained from the TCGA database.

Thirteen genes associated to cuproptosis were identified in published papers.

Following that, correlation analysis was used to identify CRLs. The cuproptosis

associated prognostic signature was built and evaluated using Lasso regression

and COX regression analysis. A prognostic signature comprising six CRLs was

established and the expression patterns of these CRLs were analyzed by qRT-

PCR. To assess the clinical utility of prognostic signature, we performed tumor

microenvironment (TME) analysis, mutation analysis, nomogram generation,

and medication sensitivity analysis.

Results: We identified 49 prognosis-related CRLs in COAD and constructed a

prognostic signature consisting of six CRLs. Each patient can be calculated for a

risk score and the calculation formula is: Risk score =TNFRSF10A-AS1 *

(-0.2449) + AC006449.3 * 1.407 + AC093382.1 *1.812 + AC099850.3 *

(-0.0899) + ZEB1-AS1 * 0.4332 + NIFK-AS1 * 0.3956. Six CRLs expressions

were investigated by qRT-PCR in three colorectal cancer cell lines. In three

cohorts, COAD patients were identified with different risk groups, with the

high-risk group having a worse prognosis than the low-risk group.
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Furthermore, there were differences in immune cell infiltration and tumor

mutation burden (TMB) between the two risk groups. We also identified certain

drugs that were more sensitive to the high-risk group: Paclitaxel, Vinblastine,

Sunitinib and Elescloml.

Conclusions: Our findings may be used to further investigate RCD,

comprehension of the prognosis and tumor microenvironment infiltration

characteristics in COAD.
KEYWORDS

co l on adenoca r c i noma , cup rop to s i s , p rognos i s , t umor immune
microenvironment, bioinformatics
Introduction

Colorectal cancer (CRC) is the third most frequent cancer

and the second major cause of cancer-related death worldwide

(1, 2). In 2018, 1.8 million new instances of CRC were diagnosed,

with over 800,000 deaths (3). The pathogenesis involves a

chronic process, including precancerous lesions, activation of

tumor stem cells, accumulation of genetic and epigenetic

changes (4). CRC is a heterogeneous disease with widespread

chromosomal instability and microsatellite instability (5). CRC

morbidity and mortality are declining in most developed

countries due to early screening and prevention of early risk

factors (6). However, the situation of CRC in developing

countries is still very serious (7). The pathogenesis of CRC

involves a series of multi-step changes, including histological,

morphological, and genetic changes (8, 9). Unhealthy diet,

obesity, smoking and alcohol consumption are considered risk

factors for CRC (10, 11). The 5-year overall survival (OS) rate of

localized and regionalized CRC patients is impressively high, but

decreases to 14% once metastasis occurs (12). In the past decade,

immunotherapy has become a hot topic in refractory solid

tumors due to its long-term response. Immunotherapy

significantly inhibit the progression of advanced malignant

tumors and prolong the survival of patients, which brings

hope to CRC patients (13). Colon adenocarcinoma (COAD) is

the ordinary histological subtype of CRC, therefore, it is of great

value to explore a new prognosis assessment protocol and to

establish a predictive signature for immunotherapy and immune

microenvironment of COAD.

In recent years, regulatory cell death (RCD) plays an

important role in maintaining normal homeostasis of body

development and inhibiting rapid proliferation of tumor cells,

which is considered as a new direction of tumor therapy (14, 15).

In recent years, the most widely studied types of RCD are

apoptosis, pyroptosis, necroptosis and ferroptosis (16, 17).
02
9

Different from the known mechanism of cell death, Tsvetkov

et al. found that cuproptosis is a new form of cell death, namely

the existence of a copper-dependent, regulated cell death in

human cells (18). Cuproptosis relies on the effect of copper ions

on mitochondrial tricarboxylic acid metabolism, resulting in

abnormal aggregation of lipoacylated proteins and loss of iron-

sulfur (Fe-S) cluster proteins, which leads to the proteotoxic

stress response of tumor cells and cell death (18, 19). However,

the mechanism of RCD and its role in tumor microenvironment

have not been thoroughly studied, which may play a double-

edged sword role in tumors (17, 20). On the one hand, inducing

tumor cell death can cure tumors; On the other hand, when the

inflammatory response caused by cell death reaches a certain

level, many signaling pathways can be activated, leading to

tumor progression (21). Therefore, it is of great significance to

explore the role of RCD in tumors, and many studies have

established RCD-associated prognostic models to assess

prognosis and immune microenvironment (22–24). However,

the clinical significance of cuproptosis and cuproptosis-

associated prognostic model have not been reported, especially

in COAD.

Long noncoding RNAs (lncRNAs) can regulate gene

expression through epigenetic regulation, transcriptional

regulation and post transcriptional regulation, so as to

participate in a variety of biological processes such as tumor

cell proliferation, differentiation and apoptosis (25). Therefore,

lncRNAs are considered as promising biomarkers and potential

therapeutic targets for the diagnosis and treatment of various

diseases, including COAD (26). More and more attention has

been paid to the role and molecular mechanism of regulating

RCD-related lncRNAs in tumor pathology (27). Therefore, as a

new type of RCD, the identification of lncRNAs related to

cuproptosis is of great significance for understanding the

pathogenesis of tumor and providing new targets for

prevention and treatment.
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Through bioinformatics research, we investigated the

importance of cuproptosis-related lncRNAs (CRLs) and a

prognostic signature based on CRLs was constructed in

COAD. A risk score for each COAD patient might be

determined based on cuproptosis-associated model, which can

be used for prognosis assessment, immunological prediction,

and mutation analysis. Our findings may be useful in

determining the prognosis and therapy of patients with COAD.
Methods and materials

Download of data

TheTCGAdatabase was used to obtain the data of COADRNA

sequencing and clinical information. We collected data from 473

tumor samples and 41 healthy controls. From the previously

published publications (18, 28), thirteen cuproptosis-related genes

were obtained, including FDX1, LIPT1, LIAS, DLD, DBT, GCSH,

DLST, DLAT, PDHA1, PDHB, SLC31A1, ATP7A, and ATP7B.
Screening lncRNAs associated
with cuproptosis

From the TCGA database, 1053 CRLs were identified using

Pearson correlation analysis and a co-expression network was

created based on the cutoff (Pearson R > 0.4 and P < 0.001) (29).

Then, using univariate Cox regression analysis and forest maps, 49

CRLs with potential prognostic significance for COAD were

identified. The “limma”, “pheatmap”, “reshape2”, and “ggpubr”

programs were used to create heat maps and boxplots to show the

differential expression of CRLs in COAD and normal tissues, with

following criteria: |log2 fold change (FC)| >1 and false discovery rate

(FDR) < 0.05.
Consensus clustering analysis

To preliminarily understand the underlying the mechanism

of the biological function of cuproptosis-related lncRNAs, The

“ConsensusClusterPlus” package was used to construct a

consensus cluster with 49 CRLs (K represents cluster count)

(30). The cluster exhibited the best stability when K = 3 based on

the similarity of expression levels of CRLs and the proportion of

fuzzy clustering measures. As a result, 417 CRC patients were

divided into three clusters: cluster 1 (n = 139), cluster 2 (n =

202), and cluster 3 (n = 76). The variations in survival, CRLs

expression, and clinical characteristics were then compared

among the three clusters. Immune checkpoint inhibitors co-

expression (PD-L1, CTLA-4), immune cell content differences,

and immunological score (including ESTMATE score, immune

score and stromal score) were also investigated.
Frontiers in Oncology 03
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Construction and evaluation of the
prognostic model

All COAD patients were randomly assigned to one of two

groups: training cohort or validation cohort (testing cohort and

entire cohort). No significant difference was observed in three

cohort for the clinical-pathological factors (Supplementary

Table 1). In the training cohort, LASSO and multivariate Cox

regression analysiswere used to identify prognosticmodel based on

CRLs. The risk score was calculated using the following formula:

coef (lncRNA1) × expr (lncRNA1) + coef (lncRNA2) × EXPR

(lncRNA2) +… + coef (lncRNAn) × expr (lncRNAn), coef stands

for coefficient, coef (lncRNAn) stands for coefficient of survival

linked lncRNA, and expr (lncRNAn) stands for lncRNA

expression. Patients in the training set were separated into two

groups based on theirmedian risk score: high-risk and low-risk. For

survival analysis, the R packages “survival” and “survminer” were

used by Kaplan-Meier curve, and a ROC curve was plotted (31).

Finally,we run the aboveanalyses ina validation cohort toverify the

predictive power of the results.
Independent prognostic value
assessment of the prognostic model

When paired with other clinical factors, univariate and

multivariate Cox regression analysis were performed to

determine whether risk score was an independent predictive

factor in COAD patients (32).
Cell culture

Three human colorectal cancer cell lines (Caco-2, HT-29,

HCT116) were all purchased from the China Center for Type

Culture Collection (CCTCC, Wuhan, China). The normal colon

epithelial cell line (FHC) was obtained from the Cell Bank of Type

Culture Collection of the Chinese Academy of Sciences (Shanghai,

China). Caco-2, HT-29 cells, HCT116 and FHC were cultured in

McCoy’s 5A, RPMI-1640, high-glucose DMEM medium (Gibco,

Shanghai, China) respectively, whichwere supplementedwith 10%

fetal bovine serum (FBS, Gibco, Shanghai, China) and 1%

antibiotics. All cells were incubated at 37°C with 5% CO2.
Quantitative RT-PCR

Total RNA from the cell lines was isolated with TRIZOL

reagent (Thermo Fisher Scientific, USA). Complementary DNA

(cDNA) was synthesized and quantitative RT-PCRwas performed

using SYBR qPCR Master Mix (Vazyme, China). The relative

expression of the target gene was analyzed using the 2−DDCT

method and b-actin was chosen as the internal reference. The

primer sequences are listed in Supplementary Table 2.
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Construction and evaluation of the
nomogram

Based on risk scores and patient clinical information, a

nomogram was created to predict 1-year, 3-year, and 5-year

OS (33). The Hosmer-Lemeshow test was used to construct

modified curves to show the agreement between the actual and

anticipated outcomes. The accuracy of the nomogram was

assessed using ROC curves (34).
Gene set enrichment analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathways were identified using gene set enrichment analysis

(GSEA) (35). The GSEA website (http://software.broadinstitute.

org/gsea/index.jsp) was utilized to identify gene-level enrichment.

Based on the risk score model, COAD samples from the entire set

were separated into high-risk and low-risk groups. The underlying

biological functions of the two groups were compared. The

molecular signature database (MSigDB, http://software.

broadinstitute.org/gsea/msigdb/index.jsp) collection of annotated

gene sets was chosen as a reference gene set in the GSEA software.

The cut-off criterion was set at a notional P < 0.05. As a reference

document, we use “c2.cp.kegg.v7.4.symbols.gmt.”
Evaluation of the immune
microenvironment

For immune score, stromal score, estimated score, each

sample was evaluated using a “estimated” R-package. The

proportion of immune to stromal components in the tumor

microenvironment is represented by these scores. Pearson

correlation coefficient approach was used to assess the

correlations between immune score, stromal score, estimated

score, and risk score. Based on TCGA RNA sequencing data, the

CIBERSORT tool was utilized to quantify 22 types of immune

cell components (36). TIMER, CIBERSORT, Cibersort-ABS,

QUANTISEQ, MCPCOUNTER, XCELL, and EPIC databases

were all used to calculate immune cell infiltration. The Pearson

correlation coefficient approach was used to assess the link

between immune cell infiltration and CRLs expression level,

risk score. One-class logistic regression (OCLR) machine-

learning algorithm was used to quantify the stemness of tumor

samples by calculating cancer stem cell indices (37).
Mutation analysis

TCGA provided mutation data (data category = copy

number variation; “Maf” file). The top 20 mutant genes were

visualized using waterfall diagrams created by the R software
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package “MAftools” (38). The tumor mutation burden (TMB),

which is the number of somatic mutations per Megabyte genome

sequence, can be used to identify patients who will respond

better to immune checkpoint inhibitors (ICIs) (39). The

differences of TMB between the two risk groups were

investigated, as well as their correlation with risk score. The

m6A-related genes and human leukocyte antigen (HLA) genes

were compared between the two risk groups using the “limma”

package (40).
Drug sensitivity analysis

We compared the IC50 differences of the four

chemotherapeutic drugs between the two risk groups using the

R software package “PRROPHIC” (41). Using the R package

“ggplot2,” researchers discovered a link between six CRLs and

chemotherapeutic sensitivity (42). The relationship between

CRLs expression and drug susceptibility was investigated using

Pearson correlation analysis.
Statistical analysis

The continuous variables in normal distribution are

analyzed by Student’s t-test, which is presented as mean ±

standard deviation, and the continuous variables in abnormal

distribution are presented as median (range). A p-value less than

0.05 was considered as statistical significance.
Results

Screening of cuproptosis-related
lncRNAs with prognostic value

To identify lncRNAs associated with cuproptosis-related

genes (CRGs), we performed co-expression analysis to reveal

the correlation. Firstly, the co-expression network demonstrated

the interaction between CRGs and CRLs (Figure 1A). Following

that, using univariate COX regression analysis, 49 CRLs with

prognostic value were identified (Figure 1B). The heat map and

box plots indicated the expression difference of 49 CRLs between

COAD and normal tissues (Figures 1C, D).
Consensus clustering analysis

The 49 CRLs were then put through a consensus clustering

analysis to determine whether they might be used to stratify

COAD patients. Based on the “ConsensusClusterPlus” program,

a consensus cluster consisting of 49 CRLs was built (K represents

cluster count, Supplementary Figure 1). The clustering exhibited
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the best stability when K = 3 based on the similarity of CRL

expression levels and the proportion of fuzzy clustering measures

(Figure 2A). As a result, 417 COAD patients were split into three

clusters: cluster 1 (n = 139), cluster 2 (n = 202), and cluster 3 (n =

76). The prognosis of the three clusterswas significantly different in

survival analysis (P=0.020), with Cluster 1 having the worst

prognosis (Figure 2B). In the form of a heatmap, Figure 2C

depicted the differences in CRLs expression and clinical features

between the three groups. The immune checkpoint genes PD-L1

and CTLA-4, as well as these lncRNAs, were found to have a co-

expression relationship (Figures 2C,D). Following that, the analysis

revealed the difference of Stromal score, Immunological score,

ESTIMATE score, as well as the abundance of T cells CD4

memory activated, T cells regulatory, T cells gamma delta and

NK cell resting in three clusters (Figures 2E–L).
Construction and evaluation of the
prognostic model

The 49 CRLs described above were then further examined in

order to reduce the scope and build a predictive model. COAD
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patients were separated into two cohort: training and validation

(testing and entire). Univariate Cox regression analysis was

performed on the training cohort, 12 CRLs (NSMCE1-DT,

AL161729.4, LINC01138, SEPTIN7-DT, TNFRSF10A-AS1,

AC006449.3, AC093382.1, PHC2-AS1, AC099850.3,

AC069281.2, ZEB1-AS1, NIFK-AS1) with prognosis value

were identified in COAD (Table 1). The LASSO Cox

regression model was used to narrow the most robust

lncRNAs for prognosis and build prognostic models in the

training cohort. Ten-fold cross-validation was applied to

overcome the over-fitting. To generate a prognostic CRLs

signature model, multivariate Cox regression analysis was applied to

evaluate the connection between CRLs and OS in the training set. The

model is more stable when LAMDA = 6. (Supplementary Figure 2).

TNFRSF10A-AS1, AC006449.3, AC093382.1, AC099850.3, ZEB1-

AS1, and NIFK-AS1 were included in this model. The calculation

formula is: Risk score =TNFRSF10A-AS1 * (-0.2449) + AC006449.3 *

1.407 + AC093382.1 *1.812 + AC099850.3 * (-0.0899) + ZEB1-AS1 *

0.4332 + NIFK-AS1 * 0.3956. The model was also tested in two

validation cohort: testing, and the entire cohort. To begin, Figure 3A

depicted the patient’s risk score, survival status, and sixCRLs expression

level in the training cohort. Patients were split into high-risk and low-
A
B

DC

FIGURE 1

Cuproptosis-related lncRNAs (CRLs) with prognostic value were screened. (A) Co-expression network of cuproptosis-related genes and CRLs by
Pearson correlation analysis. (B) There were 49 CRLs found to have prognostic value by COX regression analysis with one variable. (C) Heat map
of prognosis-related CRLs expression in COAD and normal tissues. (D) The expression of prognosis-related CRLs in COAD and normal tissues
was shown in box plots. (* P < 0.05, ** P < 0.01, *** P < 0.001).
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risk groups based on median risk score, and survival analysis revealed

that the high-risk group’s prognosis was significantly worse (Figure 3B,

P<0.001). We further validated the expression of six CRLs in colorectal

cancer cell lines. As shown in Supplementary Figure 3, the expressions

of TNFRSF10A-AS1, AC099850.3, ZEB1-AS1 and NIFK-AS1 were

significantly higher in tumor cells compared to those in FHC cells.

Meanwhile, AC006449.3 expression was upregulated in HT-29 cells,

but downregulated in HCT-116 cells. Analogously, AC093382.1
Frontiers in Oncology 06
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expression was significantly higher in Caco-2 and HT-29 cells but

lower in HCT-116 cells (Supplementary Figures 3A–F). The AUC

values for 1, 3, and 5 years in the training cohort were 0.700, 0.691, and

0.807 respectively, according to the results of ROC curve (Figure 3C).

According to the same risk score calculation formula, different risk

scores and survival status of patients in the testing and entire cohort

were identified, and the difference of six CRLs expression level between

the two risk groups was also analyzed (testing cohort, Figure 3D; entire
A B
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FIGURE 2

Clustering analysis via consensus. (A) When K = 3, the clustering was the most stable. (B) Survival analysis of the three clusters. The prognosis of
Cluster 1 is the poorest. (C) A heat map depicting the differences in CRL expression and clinical features between the three clusters. (D, E) The
immune checkpoints genes PD-L1 and CTLA-4, as well as prognosis-related CRLs, have a co-expression relationship. Stromal score (F), Immune
score (G), ESTIMATE score (H), the abundance of T cells CD4 memory activated (I), T cells regulatory (J), T cells gamma delta (K) and NK cell
resting (L) in three clusters were shown.
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cohort Figure 3G). In addition, the outcomes of patients with higher

risk score in the validation cohort were significantly worse (Figure 3E,

H). The 5-year AUC value of testing and entire cohort were 0.683 and

0.748 respectively, according to the ROC curve (Figures 3F, I).

Moreover, risk score was found to be an independent prognostic

factor for COAD patients in the above three cohorts using both

univariate and multivariate COX regression (Supplementary

Figures 4A–F). Survival analysis revealed the prognostic value of risk

score in COAD patients with different ages, different stages, different

genders and different histological types (Supplementary Figures 5A–H).
Construction and evaluation of
the nomogram

Following that, nomogram was utilized to combine risk score

and other clinical parameters to better evaluate the prognosis of

COAD patients. We established a nomogram to assess COAD

patients’ 1-, 3-, and 5-year survival rates (Figure 4A). The

calibration curves revealed that the nomogram was accurate in

predicting 1-, 3-, and 5-years survival rates (Figure 4B). Compared

with the AUC value of the clinical features, risk score could be

used to predict the OS of COAD patients (Figure 4C).
Gene set enrichment analysis

GSEA was used to investigate the variations in pathway

enrichment between high-risk and low-risk groups. Allograft

rejection, asthma, autoimmune thyroid disease, cell adhesion

molecules CAMs, and systemic lupus erythematosus were

among the enriched KEGG pathways in the high-risk group

(Figure 5A). However, aminoacyl tRNA biosynthesis, dna

replication, nucleotide excision repair, O-glycan biosynthesis,

and oocyte meiosis were among the enriched KEGG pathways in

the low-risk group (Figure 5B). GSEA results revealed that
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patients with higher risk score were related to immune-related

pathways while lower risk score patients were associated with

tumor-related pathway, which maybe explained the survival

different in two risk groups.
Analysis of immune microenvironment

The occurrence and development of tumor are affected by

immune microenvironment and the study of immune

microenvironment can provide reference for immunotherapy of

tumor. Stromal, Immune and ESTIMATE scores were significantly

different between high-risk and low-risk groups, and may be higher

in high-risk groups (Figures 5C–E). Pearson correlation analysis

revealed a strong positive correlation between Stromal score,

ESTIMATE score, and Immune score and risk score (Figures 5F–

H).Figure6Adepicted the immunological landscapeofhigh-riskand

low-risk groups as heatmap, using CIBERSORT, QUANTISEQ,

MCPCOUNTER, XCELL, and EPIC algorithms. Between the two

groups, different amounts of immune cell infiltration were detected

and subsequent correlation analysis revealed the relation between six

CRLsexpressionand immunecells.ExceptZEB1-AS1expressionhas

no correlation with immune cells, the other five CRLs have different

degrees of correlationwith immune cells, amongwhichAC099850.3

had the highest positive correlationwith restingNK cells and highest

negative connection between TNFRSF10A-AS1 and Treg cells and

macrophage M0 (Figure 6B). In the shape of a box diagram,

Figure 6C depicted the differences in immune cell infiltration levels

and the levels of infiltration of T cells regulatory and dendritic cells

were found to be substantially different between the high-risk and

low-risk groups (Figure 6C). A Pearson correlation analysis revealed

the correlation between different immune cells and risk scores

(Figures 6D–K). Finally, DNA stem cell score (DNAss) was shown

to be unrelated to risk score (Figure 6L), however, RNA stem cell

score (RNAss) was found to be significantly inversely associated to

risk score (R= -0.38, P = 2.5E-10, Figure 6M).
TABLE 1 Univariate Cox analysis generated 12 CRLs that are significantly related to the overall survival (OS).

lncRNA HR Lower 95% CI Higher 95% CI P value

NSMCE1-DT 18.1956 1.6439 201.3981 0.0180

AL161729.4 1.4211 1.0226 1.9749 0.0363

LINC01138 1.7057 1.0521 2.7654 0.0303

SEPTIN7-DT 13.2654 1.4138 124.4671 0.0236

TNFRSF10A-AS1 0.8024 0.6682 0.9635 0.0184

AC006449.3 7.1223 1.6987 29.8617 0.0073

AC093382.1 9.8668 2.0216 48.1573 0.0047

PHC2-AS1 2.5447 1.0419 6.2149 0.0404

AC099850.3 0.9164 0.8494 0.9886 0.0241

AC069281.2 1.5789 1.0899 2.2873 0.01573

ZEB1-AS1 2.3421 1.4098 3.8907 0.0010

NIFK-AS1 1.7646 1.0950 2.8437 0.0197
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Expression analysis of m6A-related genes
and human leukocyte antigen genes

N6-methyladenosine (m6A) is a type of tumor epigenetics that

plays an important function in tumor progression and human

leukocyte antigen (HLA) has been related to tumor

immunotherapy (43). Therefore, it is necessary to investigate the

differences in expression of m6A-related genes and HLA-related

genes between high-risk and low-risk groups. First, the expression

of methylation-related genes HNRNPC, RBM15, YTHDC1,

YTHDF3, YTHDF2, METTL14, WTAP, HNRNPA2B1, FMR1

was shown to differ between the high-risk and low-risk groups
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(Figure 7A). HLA-related genes including HLA-DQA1, HLA-

DRB6, HLA-DQB1, HLA-DRB1, HLA-DPB1, HLA-L, HLA-

DOA, HLA-DPA1, HLA-J, HLA-DQB2, HLA-DMA, HLA-E,

HLA-DQA2, and HLA-G were shown to have varied levels of

expression in high-risk and low-risk groups (Figure 7B).
Mutation analysis

Mutations in numerous genes are associated with tumor

formation, and the tumor mutation burden (TMB) is thought to

be a helpful signal for evaluating immune checkpoint-related
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FIGURE 3

Prognostic model construction and evaluation. (A) In the training cohort, the patient with different risk score, survival status, and CRLs
expression were shown. (B) Survival analysis of training cohort and the prognosis of high-risk group was significantly worse. (C) ROC curve
revealed that in the training cohort, the AUC values for 1, 3, and 5-years OS were 0.700, 0.691, and 0.807, respectively. (D, G) In the testing and
entire cohort, the patient’s risk score, survival status, and CRLs expression were shown. (E)The high-risk group’s prognosis in the testing cohort
was also significantly worse. (F) In the testing cohort, AUC values of 1, 3, and 5-year OS were 0.606, 0.651, and 0.683, respectively, according to
the ROC curve. (H) In the entire cohort, survival analysis revealed worse outcomes in the high-risk group. (I) In the entire cohort, the AUC
values of the model in 1, 3, and 5-years OS were 0.649, 0.674 and 0.748, respectively.
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therapy. The mutation landscape of the high-risk group was

depicted in Figure 7C. APC has the highest mutation rate, as can

be observed. Figure 7D depicted the mutation landscape of the

low-risk group, with APC having the highest mutation rate.

TMB was also different across the two groups, with TMB being

higher in the low-risk group (Figure 7E). A Pearson correlation

study revealed that TMB and risk score had a substantial

negative correlation (Figure 7F). Next, we focus on the

expression of mismatch repair (MMR) protein, as it plays a

key role in the process of COAD and is a major cause of gene

mutations and microsatellite instability (MSI) (44). The

expressions of MMR-related proteins MLH1, MSH2, MSH6,

and EPCAM were substantially up-regulated in the low-risk

group (P<0.05), while PMS2 expression did not differ statistically

between the two risk groups (Figures 7G–K).
Drug sensitivity analysis

Following the risk classification of COAD patients,

medication sensitivity analysis can be used to identify effective

treatments for different risk groups patients in order to
Frontiers in Oncology 09
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individualized treatment. To begin with, paclitaxel,

Vinblastine, Sunitinib, and Elescloml had lower IC50 values in

the high-risk group, indicating that the patients with higher risk

score were more responsive to these medications (Figure 8A).

Following that, correlation analysis was used to identify

medicines that were significantly correlated with the

expression of CRLs. For instance, the analysis demonstrated

that up-regulated ZEB1-AS1 expression was associated with

increased drug sensitivity of tumor cells to nelarabine,

palbociclib, fluphenazine, asparaginase, LEE-011, ifosfamide,

hydroxyurea and dexrazoxane, while increased ZEB1-AS1

expression was related to the increased resistance to

vemurafenib in COAD patients (Figure 8B).
Discussion

COAD is still one of the most common cancer-related deaths

in the world (45). Screening strategies, such as fecal occult blood

test, screening colonoscopies and fecal immunochemical tests,

can greatly reduce the incidence and mortality of COAD, but

there are still many limitations of screening tests, and a large
A B

C

FIGURE 4

The construction and assessment of prognostic nomogram. (A) A nomogram for assessing 1-, 3-, and 5-year survival rates. (B)The calibration
curves of the nomogram. (C)The ROC curve of risk score and clinical characteristics was investigated based on 1-, 3-, and 5-year OS.
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number of people eligible for screening miss the opportunity of

screening (46, 47). With the innovations of risk stratification and

development of personalized screening, the burden of COAD

might be further reduced. At present, the treatment of advanced

COAD remains a challenge due to stubborn drug resistance,

metastasis and recurrence (48). Therefore, there is an urgent

need to explore novel signatures for patients with COAD to

assess prognosis, identify high-risk populations and guide

personalized treatment. In recent years, regulatory cell death

(RCD) has also been recognized as a promising target for cancers

(49). Among them, cuproptosis is a copper-dependent and

regulated new cell death mode, which is different from other
Frontiers in Oncology 10
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known cell death regulationmechanisms (18). Further research on

copperdependent cell death canprovide a basis for the intervention

of coppermetabolismdysfunctionrelateddiseases and thepotential

application of anti-tumor. Therefore, cuproptosis may have

complex crosstalk with metabolic reprogramming in cancers.

While a number of RCD-related prognostic models have been

developed toassess prognosis and immunemicroenvironment, this

study is mainly report prognostic signature associated with

cuproposis-related lncRNA (CRLs), which helps us understand

the roles of cuproposis and CRLs in COAD.

Here, we performed a comprehensive bioinformatics

analysis to explore the significance of CRLs in COAD, co-
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FIGURE 5

Immune microenvironment analysis and gene set enrichment analysis (GSEA). (A) Allograft rejection, asthma, autoimmune thyroid disease, cell
adhesion molecules CAMs, and systemic lupus erythematosus are among the enriched KEGG pathways in the high-risk group. (B) Aminoacyl
tRNA biosynthesis, dna replication, nucleotide excision repair, O-glycan biosynthesis, and oocyte meiosis are among the enriched KEGG
pathways in the low-risk group. (C–E) The high-risk and low-risk groups had considerably different Stromal, ESTIMATE, and Immune scores,
with the high-risk group having higher scores. (F–H) A Pearson correlation analysis revealed a strong positive relation between Stromal score,
ESTIMATE score, Immune score and risk score.
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expression analysis and COX regression analysis were used to

identify CRLs with prognostic significance. Subsequently,

consensus cluster analysis showed that prognosis-related CRLs

could divide patients with COAD into 3 clusters, which showed

s ign ificant d i ff e rences in prognos i s and immune

microenvironment. Following that, Lasso regression analysis

was used to establish a prognostic signature with six CRLs.

COAD patients could be separated into high-risk and low-risk

groups according to median risk score, with the high-risk group

having a much worse prognosis. This CRLs related signature

gave a strategy of prognostic stratification for COAD patients.

Final ly , immune microenvironment, mutat ion and

chemotherapeutic sensitivity analyses showed that this

predictive signature could be used to provide evidence for

immunotherapy and chemotherapy option.

Although screening and diagnosis of COAD have become

more and more advanced, prognostic typing methods and

sensitive genetic markers are still lacking (46, 50). Our study
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can provide CRLs-based prognostic model for patients with

COAD, with an AUC value greater than 0.7 at 5 years OS,

which can well classify patients into different prognostic groups,

facilitate identification and early intervention of high-risk

groups. There were also disparities in immune cell infiltration

and TMB between high-risk and low-risk groups, providing

some guidance for immunotherapy (51).

Our study identified six COAD prognostic markers

correlated with cuproposis: TNFRSF10A-AS1, AC006449.3,

AC093382.1, AC099850.3, ZEB1-AS1, and NIFK-AS1, which

have been demonstrated to be associated with cancers in

preliminary studies. First, Wei et al. discovered that

TNFRSF10A-AS1 is a novel prognostic marker for colorectal

cancer and may be related to autophagy (52). A regulatory

network of lncRNA-miRNA-mRNA ceRNA was constructed for

squamous cell carcinoma of tongue, and AC099850.3 was found

to be strongly associated with the overall survival rate of patients

(53). AC099850.3 has been confirmed to promote hepatocellular
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FIGURE 6

The immune landscape analysis. (A) The immune landscapes of high-risk and low-risk groups. (B) The correlation between CRLs and different
immune cells, AC099850.3 had the highest positive correlation with resting NK cells, and TNFRSF10A-AS1 had the highest negative relation with
T cells regulatory and macrophages M0. (C) The variations of immune cell infiltration levels between the high-risk and low-risk groups. (D–K)
Analysis of the Pearson correlation between distinct immune cells and risk scores. (L, M) The correlation between DNA stem cell score (DNAss),
RNA stem cell score (RNAss), and risk score. *P < 0.05, **P < 0.01, ***P < 0.001.
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carcinoma (HCC) proliferation and invasion via the PRR11/

PI3K/AKT axis and is a prognostic marker for HCC (54, 55). In

addition, AC099850.3 was discovered as a predictive marker for

non-small cell lung cancer (NSCLC) (56). Zinc finger E-box-

binding homeobox 1 antisense 1 (ZEB1-AS1) facilitates the

growth and metastasis of COAD cells, providing a new target

for the diagnosis and treatment of COAD patients (57).

Furthermore, ZEB1-AS1 can be used as one of the key

lncRNAs in the construction of RCD-related prognostic

signature (58). Consistent with previous studies, our study also

included ZEB1-AS1 as the key lncRNA in RCD-related

prognostic signature, which may reveal the important function

of ZEB1-AS1 in RCD. Upregulation of NIFK-AS1 promote

progression of HCC and Increased resistance to chemotherapy

drugs through m6A methylation (59). Furthermore, NIFK-AS1
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was discovered to suppress M2-like polarization of macrophages

in endometrial cancer (60). However, there are currently few

cancer research on AC006449.3 and AC093382.1, especially in

COAD. In this study, we discovered a possible association

between the six lncRNAs and cuproptosis, and offered

evidences for their importance in the prognosis of COAD.

Among six CRLs, TNFRSF10A-AS1 and AC099850.3 were

protective factors while AC006449.3, AC093382.1, ZEB1-AS1

and NIFK-AS1 were adverse prognostic factors for COAD in

this signature.

Immunotherapy, particularly immune checkpoint

inhibitors, has been utilized to treat colorectal cancer in the

past (61). However, “cold” tumors with low mutation rates and

low microsatellite instability are not sensitive to immune

checkpoint inhibitors (62, 63). As a result, it is critical to
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FIGURE 7

Expression analysis of m6A-related genes and human leukocyte antigen (HLA) related genes, mutation analysis. (A) Differential expression of
m6A-related genes HNRNPC, RBM15, YTHDC1, YTHDF3, YTHDF2, YTHDC2, METTL14, WTAP, HNRNPA2B1, FMR1 were observed between the
high-risk group and the low-risk groups. (B) The human leukocyte antigen gene analysis. HLA-DQA1, HLA-DRB6, HLA-DQB1, HLA-DRB1, HLA-
DPB1, HLA-L, HLA-DOA, HLA-DPA1, HLA-J, HLA-DQB2, HLA-DMA, HLA-E, HLA-DQA2, and HLA-G were observed to be differentially expressed
between high-risk and low-risk groups. (C) The mutation landscape of the high-risk group and draw the results into a waterfall diagram. (D)The
waterfall diagram shows the mutation of patients in the low-risk group, and the mutation rate of APC was also highest. (E) Tumor mutation
burden (TMB) analysis between the two risk groups. (F) Pearson-correlation analysis showed that there was a significant negative correlation
between TMB and risk score. (G–K) Expression analysis of mismatch repair (MMR) protein. The expressions of MLH1, MSH2, MSH6 and EPCAM
were significantly up-regulated in the low-risk group, while the expression of PMS2 showed no statistical difference between the two risk
groups. ns, not significant,*P < 0.05, **P < 0.01, ***P < 0.001.
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investigate the function of the predictive signature we developed

in assessing mutation and expression of immune checkpoint-

related genes in COAD. We discovered considerable disparities

in tumor mutation burden (TMB), immune cell infiltration,

HLA-related genes and mismatch repair proteins expression

between the two risk groups based on signature constructed by

cuproptosis-related lncRNAs, which might guide the

immunotherapy for COAD patients. It also provided reference

for understanding the potential association between tumor

immunity and cuproptosis in colorectal cancer. Not only that,

we identified more certain sensitive drugs for the COAD patients

with higher risk score: Paclitaxel, Vinblastine, Sunitinib and

Elescloml, which was conducive to the early intervention and

precision treatment for COAD.

Previous bioinformatics studies have revealed the role of

other types of CRD in COAD (64, 65). Cuproptosis, novel types

of cell death, has not been explored in COAD and our study is

the first to highlight the function of cuproptosis-related
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lncRNAs. These findings help us understand the interaction of

many regulatory cell death patterns, and provide a reference for

precise treatment of COAD. However, there are some

limitations in our study. Although the mechanism of copper

inducing cell death has similar markers and characteristics of

different forms of RCD, cuproptosis has not been confirmed in

cell death nomenclature (66–68). The AUC value of our

signature is not very high, which is not greater than 0.8, and it

may be limited by the sample size. And we lack relevant

functional experiments to verify the function of cuproptosis-

related genes and CRLs in the model, which will be improved in

the future.
Conclusions

Overall, our study is the first to develop a predictive

signature based on the cuproptosis-associated lncRNA,
A

B

FIGURE 8

Drug sensitivity analysis. (A) Paclitaxel, Vinblastine, Sunitinib and Elescloml were observed to have lower IC50 values in the high-risk group, that
is, the high-risk group was more sensitive to these drugs. (B) Scatter plot of correlation between CRLs expression and drug sensitivity.
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providing a novel approach to risk stratification and potential

biomarkers for COAD patients. This signature is valuable for

assessing prognosis, immune infiltration and chemotherapy

sensitivity, which may help provide guidance for detections

and treatments in patients with COAD.
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Consensus cluster analysis. (A) The cumulative distribution function (CDF)
from k =2 to 9. (B) Relative change in area under CDF curve for k =2 to 9.

(C) Tracking plot from k =2 to 9.

SUPPLEMENTARY FIGURE 2

The results of LASSO analysis. (A) The coefficient profile of 6 Cuproptosis-
related lncRNAs. (B) 10-fold cross-validation of variable selection in

LASSO models.

SUPPLEMENTARY FIGURE 3

The expression level of 6 Cuproptosis-related lncRNAs. (A–F) The
expression level of TNFRSF10A-AS1, AC006449.3, AC093382.1,

AC099850.3, ZEB1-AS1 and NIFK-AS1in colorectal cancer cell lines.

SUPPLEMENTARY FIGURE 4

Independent predictive factor analysis. Univariate and multivariate Cox

regression analyses were used to evaluate whether risk score and clinical
characteristics were independent predictors of COAD patients in

three cohorts.

SUPPLEMENTARY FIGURE 5

Subgroup analysis of prognostic value of risk score. Survival analysis
revealed the prognostic value of risk score in COAD patients with

different ages (A, B), different stages (C, D), different genders (E, F) and
different histological types (G, H).
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The construction of a hypoxia-
based signature identified CA12
as a risk gene affecting uveal
melanoma cell malignant
phenotypes and immune
checkpoint expression
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1Department of Ophthalmology, The Second Affiliated Hospital of Shandong First Medical
University, Taian, China, 2Department of Ophthalmology, The Shandong Second Rehabilitation
Hospital, Taian, China, 3Department of Medicine, Shandong First Medical University, Taian, China
Uveal melanoma (UM) is a deadly intraocular neoplasm in the adult population

and harbors limited therapeutic effects from the current treatment. Here, we

aimed to investigate the role of hypoxia in UM progress. We adopted the

Cancer Genome Atlas data set as a training cohort and Gene Expression

Omnibus data sets as validating cohorts. We first used consensus clustering

to identify hypoxia-related subtypes, and the C1 subtype predicted an

unfavorable prognosis and exhibited high infiltration of immunocytes and

globally elevated immune checkpoint expression. Besides this, the patients

with the C1 subtype were predicted to respond to the PD-1 treatment. By the

least absolute shrinkage and selection operator algorithm, we constructed a

hypoxia risk score based on the hypoxia genes and identified 10 genes. The risk

score predicted patient survival with high performance, and the high-risk group

also harbored high immunocyte infiltration and immune checkpoint

expression. Furthermore, we confirmed that the risk genes were upregulated

under hypoxia, and knockdown of CA12 inhibited the epithelial–mesenchymal

transition process, clone formation ability, and G1/S phase transformation of

the UM cells. The CD276 was also downregulated when CA12 knockdown was

performed. These results validate the prognostic role of the hypoxia signature

in UM and demonstrate that CA12 is a critical factor for UM cell progression as

well as a target to improve immunotherapeutic effects. We believe our study

contributes to the understanding of hypoxia’s roles in UM and provides a novel

target that will benefit future therapeutic strategy development.
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Introduction

Uveal melanoma (UM) is a rare tumor type among the

population, but it is the most common intraocular neoplasm in

the adult population with high malignancy. UM harbors a

morbidity of approximately five cases per million per year, and

90% of UM originates from the choroid (1). Nearly 50% of UM

metastases to the liver during tumor development, and early

stage intervention, such as chemoembolization and surgical

excision, controls tumor progression, but mostly prognoses of

UM returns unfavorable due to the limited therapeutic strategy

effects. More efficient approaches for improving the therapeutic

effects or prognostic management are urgently required.

Molecular pathogenesis and targeted therapy have been

novel research topics and promising strategies to prevent UM

processes or improve patient survival (2). Currently, many

molecular features have been applied to indicate the patient

prognostic diversity, such as that active mutation of the Ga11/Q
pathway drives the tumorigenesis of UM and BAP1, SF3B1, and

EIF1AX mutant precited metastatic progression (3). Moreover,

various studies are still carried on to discover novel molecular

targets for UM (4–6). Many targeted therapy–based clinical

trials have been conducted, whereas no mature approach has

been proven for application, indicating the urgent need for more

effective strategies for UM treatment (7).

Hypoxia, characterized by insufficient tissue oxygenation, is

a critical risk factor in cancer, for its connection with various

hallmarks of cancers, including angiogenesis, metabolism

programming (8), and immunosuppression (9), contributing

to the progression of cancer and poor prognosis. To overcome

the hypoxia-related signaling in cancers, many hypoxia-targeted

therapies were developed (10). In UM, hypoxia has been

suggested to correlate with angiogenesis, invasion, and

autophagy, indicating its significant role in UM. Besides this,

many drugs were discovered to gain therapeutic effects, mostly

based on HIF and angiogenesis (11). Interestingly, a study has

demonstrated the effects of hypoxia stress on monocyte

migration and characteristics (12); this implies the association

between hypoxia and immunity of UM, whereas their

intercorrelation is far from understood.
Abbreviations: UM, Uveal melanoma; GO, Gene ontology; KEGG, Kyoto

Encyclopedia of Genes and Genomes; TCGA, The Cancer Genomes Atlas;

GEO, Gene Expression Omnibus; TIDE, Tumor Immune Dysfunction and

Exclusion; GSVA, Gene Set Variation Analysis; PCA, Principal component

analysis; GSEA, Gene Set Enrichment Analysis; DEGs, Differentially

expressed genes; BP, biological process;, CC, cellular component;, and MF,

molecular function; LASSO, Least absolute shrinkage and selection operator;

GDSC, Genomics of Drug Sensitivity in Cancer; PI, propidium iodide; ROC,

Receiver operating characteristics curve; MDSC, Myeloid-derived suppressor

cells; ECM-associated, Extracellular matrix; CA12, Carbonic Anhydrase 12.
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In this study, we used a hypoxia-based signature to identify

novel hypoxia-based subtypes and build a prediction model for

patient prognosis, and the biological involvement of hypoxia

in UM was investigated by functional enrichment, and its

correlation with immunocyte, immune checkpoints were

explored. Moreover, we conducted a series of experiments to

validate hypoxia’s effects on tumor cell phenotype and

immune checkpoint expression. We hope this study will

reveal a novel pathological mechanism of hypoxia in UM

and provide alternative therapeutic targets for UM

patient treatment.
Materials and methods

Data acquisition

The UM sample RNA expression and clinical information

were obtained from the Cancer Genomes Atlas and were used

as a training cohort, and UM samples from the Gene

Expression Omnibus, GSE22138 and GSE84976, were

downloaded as validating cohorts. The hypoxia, gene

ontology (GO), and Kyoto Encyclopedia of Genes and

Genomes (KEGG) gene sets were retrieved from the Gene Set

Enrichment Analysis (GSEA) online database. The compounds

used for potential drug identification were obtained from the

GDSC database. The tumor immune dysfunction and

exclusion (TIDE)-related calculation was performed on the

TIDE online web tool.
Consensus clustering of UM samples by
the hypoxia gene sets

We used the hypoxia gene sets to cluster the UM training

cohort by the “ConsensusCluster” R package with the best k

value and visualized the results by a principal component

analysis (PCA) plot. For the clusters obtained, we used

survival analysis to evaluate their prognostic difference. In a

heat map, an expression of the hypoxia genes in all samples

divided by the clusters were also presented. Subsequently, we

investigate the diversity of cancer hallmarks between the clusters

using gene set variation analysis (13) and “Hallmark” gene sets

downloaded from GSEA.
Immune diversity between clusters

To investigate the immune diversity between the clusters of

UM, we analyzed the 28 types of immunocyte infiltration of all

samples using single sample GSEA (ssGSEA). We also compared

the immune checkpoint expression differences between clusters.

The results were presented in heat maps and box plots.
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Drug IC50 calculation and
immunotherapy analyses

To identify novel drugs for hypoxia cluster–based targets, we

downloaded the compound information, cell line expression

matrix, and cell line testing results to predict the drug IC50 for

all samples by the R package “pRRophetic” (14), and the IC50

values were compared between clusters in box plots. Besides this,

we analyzed the immunotherapeutic effects of the samples by

TIDE analyses, including the dysfunction, exclusion, IFNG, and

TIDE score calculation conducted on the TIDE web tool. We

also analyzed the correlation between PD-1, CTLA4 response,

and clusters to explore the immunotherapeutic potential of

the clusters.
Biological diversity comparison
between clusters

To compare the biological diversity between samples in

different clusters, we first used the “limma” R package to filter

the differentially expressed genes (DEGs) between clusters.

Then, the DEGs were annotated according to the gene set

annotation downloaded from GSEA, including KEGG and

biological process (BP), cellular component (CC), and

molecular function (MF) in GO.
Hypoxia Least absolute shrinkage
and selection operator (LASSO)
risk score construction

The hypoxia gene sets were applied to the LASSO regression

(15) to reduce the number of parameters and construct a

prognostic model. The risk score of each sample was

calculated as the sum of the coefficient multiplied by the

expression of each gene. We divided the samples into high-

and low-risk groups according to the median risk score of the

cohort. The survival time and risk score gene expression were

presented in order of the risk scores. We checked the prognostic

value of the risk score by survival analysis and receiver operating

characteristics curve (ROC) and, finally, built a nomogram

integrating risk score, age, gender, and stage, and its

prognostic value was estimated by ROC and calibration curve.
The immune diversity between risk
scores and potential drug identification

To discover the immune diversity between the risk groups,

we used ssGSEA to analyze the immunocyte infiltration

differences as well as the immune checkpoint expression

variation (16), the results were presented by box plots. The
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correlation between CA12 and CD276 was quantified on

GEPIA2.0, an online tool for cancer investigation. Besides this,

we compared the Genomics of Drug Sensitivity in Cancer

(GDSC) (17) compound IC50 values of the two groups, and

the cMap was also utilized to filter potential drugs.
Cell culture and siRNA transfection

The highly aggressive MUM2B cells were cultivated in

DMEM with 10% FBS, maintained under 5% CO2 and 37°C

and digested when they were 80% confluent. For the hypoxia

culture, we cultivated the cells in the hypoxia incubator for 24 h.

Then, the cells were planted into a 12-well plate and transfected

with CA12 siRNAs and lip3000 transfection reagent. After 48 h

transfection, the cells were harvested and counted for further

experiments. The sequence of siRNA1 and siRNA2 was provided

by Zhao et al. and Huang et al, respectively (18, 19).
RT-qPCR detection of the mRNA levels

The cells were washed with PBS and lyzed in trizol for 10

min. The RNA was collected and extracted using chloroform.

After centrifugation and supernatant collection, the RNA was

precipitated with isopropanol, followed by sequential washing

with 80% ethanol and absolute ethanol. When the RNA was

dried naturally, a quantification by a microplate reader was then

conducted. Subsequently, the genomic DNA was removed, and

RNA reverse transcription was performed. Finally, the 10 ml
mixed system per well containing 1ml cDNA, 0.4ml primers, 5ml
SYBP, and 3.2ml RNA-free water was prepared, and the RT-

qPCR was performed.
Transwell migration assay

The harvested cells were resuspended with 200 ml FBS (1%)

and planted into the upper chamber of the transwell with 1×104

cells per well (Corning Incorporated, Corning, NY, USA). The

lower chamber was filled with 500 ml DMEM with FBS (20%).

After cultivation for 24 h, the upper chamber was slightly

washed with PBS three times and fixed with crystal violet.

After 30 min, the unmigrated cells were wiped off using a

cotton swab and left to dry for microscopy.
CCK8 assay

The harvested cells were resuspended using DMEM with

FBS (10%) and seeded in a 96-well plate for the CCK8 assay.

After cell adherence, the previous medium was replaced by

DMEM with a 10% CCK8 reagent (GK3607-500T, GeneView,
frontiersin.org
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DingGuo Company, Changsha, China) containing no FBS. After

2 h of cultivation, the OD value was detected using the

microplate reader. The absorbance was measured at 450 nm.
Clone formation assay

As described, we used DMEM containing FBS (10%) to

resuspend the cells and seeded them in the six-well plate, with

1000 cells per well. After 14 days of cultivation, the medium was

removed and washed with PBS. Subsequently, the cells were

fixed with crystal violet for 30 min.
Flow cytometric analysis

The digested cells were collected in EP tubes. We centrifuged

the cells to remove the medium and washed the cells with

precooled PBS. Then, the cells were fixed using 70% ethanol

under 4°C overnight. Subsequently, the ethanol was removed

and washed by precooled PBS again and stained with propidium

iodide (PI, 20X), RNase (50X), and staining buffer (C1052,

Beyotim Biotechnology Co. Ltd,Nantong, China). The mixed

system was incubated from light under 37°C for 30 min and

detected by the flow cytometer. The data were analyzed by

FlowJ software.
Western blot detection

The cells were lysed using the RIPA lysis buffer and

centrifuged to obtain the protein supernatants. The nuclear in

the samples were then further lysed by ultrasound. After being

mixed with loading buffer, the samples were loaded, and

electrophoresis and membrane transformation were

sequentially performed. The membrane was then blocked with

skim milk powder (5%) and incubated under 4°C overnight with

the primary antibodies (sources listed in Supplementary Table

S1). The next day, the membrane was washed with TBST three

times and incubated with the second antibodies for 1 h. Finally,

the protein bands on the membrane were detected using the

chemiluminescence detection system after TBST washing. The

results were quantified by the ImageJ software.
Statistical analyses

The bioinformatic analyses were performed on the R

software. The Kaplan–Meier curve and log-rank test were used

for survival analyses. Cox regression calculated the HR of each

factor. ROC and the calibration curve estimated the predictive

discrimination and calibration, respectively. Student’s T-test

compared the expression differences between groups. Two-way
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ANOVA tested the CCK8 results. Spearman’s correlation

coefficient was used to quantify expression correlation between

genes. P <.05 was defined as statistically significant.
Results

Unsupervised clustering identified a
cluster with a worse prognosis and
upregulated hallmark features

To identify the hypoxia-associated clusters in UM. We used

“ConsensusCluster” to conduct the unsupervised clustering of

the training cohort. We selected the k value as 2, the samples

were perfectly divided into two clusters (Figure 1A), and the

PCA plot exhibited that the two clusters were separated into two

groups (Figure 1B).

We then performed survival analysis to test the prognostic

differences between the two clusters. As a result, cluster C1

exhibited a worse survival rate (Figure 1C). Moreover, most of

the hypoxia-related genes were highly expressed in cluster C1

(Figure 1D). The ssGSEA results of the “Hallmark” gene sets of

all samples showed that most of the cancer hallmark pathways

were upregulated in cluster C1. Notably, many immune-related

pathways were enriched in cluster C1, including IL6-JAK-

STAT3, IL2-STAT5, TGF-b, interferon-a/g-response, and

TNFA-related signaling pathways (Figure 1E). These results

indicated that hypoxia played a critical role in UM

development, and these were associated with cancer immunity.
Hypoxia-divided clusters presented a
diverse immune status

To investigate the immunological diversity between the

clusters, we ran ssGSEA to analyze the immunocyte infiltration

levels of each sample, and most of the immunocytes were

highly infiltrated in cluster C1 (Figure 2A), including several

immunosuppressive cells, such as regulatory T cells and

myeloid-derived suppressor cells (MDSC). Further, we

compared the expression of the immune checkpoint between

clusters C1 and C2. Surprisingly, most of the immune

checkpoints were upregulated in cluster C1 (Figure 2B).

These results were quantified in box plots (Figures 2C, D)

and demonstrated the immunosuppressive environment in

high-hypoxia UM samples. Hence, we then conducted TIDE

analyses. The results presented that cluster C1 exhibited a

lower TIDE score, indicating that it may respond to

immunotherapy (Figure 3A). We further analyzed the

expression similarity between the training cohort and the

previous immunotherapy cohort, and we noticed that cluster

C1 samples showed similar expression signatures with the

PD1-therapy response cohort though the p-value increased to
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0.055 after Bonferroni correction (Figure 3B). Additionally, we

also sought possible chemotherapeutic drugs for UM patients.

The GDSC drug IC50 was predicted for each sample, and

we obtained two drugs, Methotrexate and Mitomycin
Frontiers in Oncology 05
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C, with lower IC50 in cluster C1 (Figure 3C). The

immunotherapeutic analyses indicated that UM cancer with

high hypoxia harbored immunosuppression and may benefit

from immunotherapy.
A

B
D

E

C

FIGURE 1

Identification of hypoxia-related subtypes of UM. (A) Consensus clustering heat map (left), CDF (middle), and the relative change in area under
CDF curve (right) of the TCGA UM samples. (B) PCA plot showing the division results of consensus clustering. (C) Kaplan–Meier curve indicates
the ability of subtypes to separate patient survival rate. (D) The expression heat map of the genes in hypoxia signature. (E) The enrichment heat
map of the “hallmark” gene sets based on the DEGs between the subtypes.
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A B

D
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FIGURE 2

The association between hypoxia and immunocyte and immune checkpoints. The heat map presents the immunocyte infiltration difference
(A) and the expression variation of the immune checkpoints (B) between subtypes, and their quantification results of immunocyte infiltration
(C) and immune checkpoint expression (D) were exhibited in the box plots, *, **, *** represents p-value < 0.05, 0.01, and 0.001, respectively.
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The clusters mainly differed in immune-
and Extracellular matrix (ECM)-
associated biological activities

To investigate the biological activity differences between

clusters, we first filter the DEGs between them, and many

upregulated genes were identified in cluster C1 (Figures 4A,

B). To annotate their function, we performed functional

enrichment analyses by the KEGG and GO gene sets. The

results exhibited that their DEGs were mainly enriched in

immune-related pathways. For instance, the cytokine–cytokine

receptor interaction, chemokine signaling pathways in KEGG,

cellular response to cytokine in GOBP, MHC protein complex in

GOCC, and GO MHC class II in GOMF were identified, similar

to the immune analyses results. Besides this, ECM-associated

pathways, such as the ECM-receptor interaction in KEGG,

extracellular region in GOCC, and extracellular matrix

structural constituent in GOMF, were also enriched
Frontiers in Oncology 07
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(Figures 4C–F), demonstrating the close correlation between

hypoxia and the microenvironment.
Establishment of a hypoxia-based
risk score

To identify the critical genes in the effects of hypoxia, we

used the hypoxia gene set to establish a risk score. The LASSO

algorithm reduced the gene number to 10, and five risky and

five protective genes were finally obtained with their

coefficients, respectively (Figures 5A, B). The patients were

divided into the high- and low-risk groups according to the

median risk score of the training cohort. The PCA plot showed

that the risk groups separated obviously (Figure 5C). The risk-

survival plot exhibited that the five risk genes’ expression

elevated as the risk score increased, and the opposite trend

was observed for the five protective genes (Figure 5D). For the
A

B

C

FIGURE 3

Hypoxia subtypes correlate with immunosuppression and their chemotherapeutic drugs development. (A) The TIDE estimation showing the
dysfunction, exclusion, IFNG, and TIDE scores of the UM samples. (B) The submap of the expression similarity compared with immunotherapy
response/nonresponse cohort. (C) Box plots present the IC50 differences of GDSC drugs between the subtypes. *, **, ***, and ns represents
p-value<0.05, 0.01, 0.001, and not significant, respectively.
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prognostic value, the high-risk group patients suffered

significantly lower survival rates, and the ROC results

demonstrated the risk score predicted patient overall survival

with a high accuracy (Figures 5E, F). When validated in the

validating cohorts, the same expression trend of the 10 genes

was observed, and the risk score can predict the patient survival

with high accuracy (Supplementary Figures S1A–S1F). We
Frontiers in Oncology 08
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performed univariate and multivariate Cox analysis to select

the prognostic clinical predictors apart from the risk score and

age, and risk score passed the univariate test though it failed in

the multivariate test (Figures 6A,B). When integrating the risk

scores and age to form a nomogram, the nomogram also

presented good performance in predicting patient survival

(Figures 6C–E).
A

B

D

E F

C

FIGURE 4

Functional analysis of DEGs between subtypes. The heat map (A) and volcano plot (B) shows the DEGs between subtypes. The functional
analysis results were presented in bubble plots presenting the enriched KEGG (C), GOBP (D), GOCC (E), and GOMF (F), gene sets.
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The risk groups presented diverse
immunological characteristics and
sensitivity to some newly identified drugs

We performed ssGSEA to compare the differences of

immunocyte infiltration between the risk groups, and we

noticed that many immunocytes were highly infiltrated in

the high-risk group, including the immunosuppressive cells

(regulatory T cell and MDSC) (Figure 7A). Also, the majority

of the immune checkpoints were upregulated in the high-risk

group, including CD276, CTLA4, and PDCD1, et al.

(Figure 7B). We then searched GEPIA2.0 and discovered

that CD276 and CA12 were significantly and positively
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correlated as their correlation coefficient reaches 0.55

(Figure 7C). Finally, we identified two drugs from GSDC

and five drugs from cMap with therapeutic potential for

high-risk patients (Figures 7D, E).
The risky genes were upregulated
under hypoxia and CA12-knockdown
affects EMT, cell cycle, and immune
checkpoint expression

To experimentally validate whether the risky genes were

correlated with hypoxia, we performed hypoxia cultivation, and
A B

D

E F

C

FIGURE 5

|Construction and validation of a hypoxia-based risk score. (A) The LASSO partial likelihood deviance plot and the coefficient profiles of all
hypoxia gene. (B) The coefficients of the finally selected factors were presented in a bar chart. (C) The PCA plot shows the distance between
the high- and low-risk group samples. (D) The risk survival table depicts the risk score gene expression pattern and patient survival status ranged
by their risk score. (E) The Kaplan–Meier curve tests risk score’s ability to predict patient survival. (F) The ROC for estimating the model
prediction accuracy of 1-, 3-, and 5-year survival.
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we noticed that CA12, ARX, MGLL, and MMP9 were

significantly upregulated under hypoxia; S100A13 was not

significantly upregulated but also showed a similar trend

(Figures 8A, B). Subsequently, we analyzed the effects of the

top risky gene CA12 knockdown on cell phenotypes. The RT-

qPCR results validated that the CA12 mRNA levels decreased

significantly in both CA12-knockdown groups (Figure 8C). The

Transwell results demonstrated that knockdown of CA12

significantly inhibited cell migration (Figure 8D), indicating a

depressed EMT processes. Hence, we detected the E-cadherin,

N-cadherin, and Vimentin protein expressions, representing the
Frontiers in Oncology 10
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EMT process; the upregulated Vimentin, N-cadherin, and

downregulated E-cadherin suggested an activated EMT process

of MUM2B cells to enhance their migration though the N-

cadherin upregulation of the siRNA-2 group was not statistically

significant (Figures 8E, F).

Besides this, the clone formation and CCK8 assay results

presented that CA12 knockdown also depressed cell viability and

clone-formation ability (Figures 9A, B). Further, we performed

flow cytometric analysis to investigate whether CA12

knockdown affected the cell cycle cells, and we found that

CA12 knockdown increased the proportion of the G1 phase
A B

D E

C

FIGURE 6

Construction and validation of a clinical nomogram. The univariate (A) and multivariate (B) Cox regression analysis to filter the prognostic
predictors. C: The nomogram integrating the risk score and age to predict patient 1-, 3-, and 5-year survival. The ROC (D) and calibration curve
(E) were used to evaluate the performances of the nomogram for predicting patient survival. **** means p-value < 0.0001.
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and decreased the S phase of cells (Figures 9C, D), implying the

G1 phase arrest in MUM2B cells. The G1 phase–related proteins

(cyclinD1, CDK4, and CDK6) were detected, and the decreased

cyclinD1, CDK4, and CDK6 were observed in the CA12-

knockdown group (Figures 9E, F), demonstrating that CA12

knockdown induced the G1 phase arrest.
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Finally, we explored whether CA12was associated with immune

checkpoints. We detected the protein expression of CD276, and the

results exhibited that knockdown of CA12 significantly decreased

the expression of CD276 (Figures 9G, H). These results manifested

that CA12 was a critical risky factor of UM for its association with

EMT, cell cycle, and immune checkpoint CD276.
A

B

D

E

C

FIGURE 7

The immunological diversity between the risk groups and drug development. The box plots show the infiltration differences of immunocytes (A)
and immune checkpoint differences (B) between the risk groups. (C) The correlation between CD12 and CD276 expression. (D) The IC50 level
differences between the risk groups for the GDSC drugs. (E) Identification of potential effective drugs from the cMap database, *, **, ***
represents p-value < 0.05, 0.01, and 0.001, respectively.
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Discussion

Hypoxia has various effects on cancer progression and

correlates with multiple cancer hallmark features (8). In UM,

hypoxia also affects cancer cell behavior like angiogenesis (11),

but the extensive mechanism remained unknown, such as its

interaction with cancer immunity. Also, hypoxia-based

therapeutic research, except for HIF-targeted treatment, is still

empty. Here, we identified hypoxia-related subtypes and
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constructed a hypoxia-related risk score for patient survival

prediction. The subtypes and the risk score can significantly

separate the patients’ survival rates, and particularly, the risk

score predicted patient overall survival with a high accuracy in

both the training and validating cohorts according to a criteria

for prediction models (20), indicating that our model was well-

designed with critical hypoxia factors in cancer cell fate. To our

knowledge, this is the first model focusing on the hypoxia

signature’s influence on UM patient prognosis.
A B

D

E F

C

FIGURE 8

The risk gene expressions under hypoxia and the role of CA12 in UM cell EMT process. The protein bands of the risk gene expressions under
normal and hypoxia conditions (A) and the quantification of the protein expression results in the box plot (B). (C) The statistical comparison of
the RT-qPCR results. (D) The image of transferred cells in control, CA12 knockdown-siRNA1, and siRNA2 groups. The bands of EMT pathway
protein expressions (E) and their quantification in the box plots (F) between control, siRNA1, and siRNA2 groups, ns, *, **, *** represents not
statistically significant, p-value < 0.05, 0.01, and 0.001, respectively.
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FIGURE 9

Roles of CA12 knockdown in UM cell growth and immune checkpoint expression. The images and the quantification results of clone formation
assay (A) and the results of CCK8 assay (B) for the CA12-knockdown experiments. The cell cycle flow cytomatrix results (C) and the comparison
of G1, S, and G2/M phases proportion (D) between control and siRNA-knockdown groups. The bands of G1 phase protein expressions (E) and
their quantification comparison (F) between control and siRNA-knockdown groups. The bands of CD276 protein expression (G) and its
quantification comparison (H) between control and siRNA-knockdown groups ns, *, *** means not statistically significant, p-value<0.05, and
0.001, respectively.
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During the construction of the hypoxia model, we identified 10

prognostic genes, including five risk and five protective factors.

Among the 10 key genes, CA12, MMP9, SLC44A3, and RNF208

have been reported to associate with UM patient survival. Carbonic

anhydrase 12 (CA12) belongs to the zinc metalloenzymes that

catalyzed the carbon dioxide reversible hydration. The role of CA12

in cancers remained paradoxical for it promoted pancreatic cancer

apoptosis (21) while accelerating the EMT progression of glioma

(22), suggesting its complex effects on cancers. In our study, we

identified it as a risk gene and confirmed that CA12 knockdown

arrests the cell cycle and inhibited the EMT transformation of UM

cells; this is novel in UM study since no reports concerning the role

of CA12 in UM have been reported. MMP9 is a matrix

metalloproteinase, which degrades the extracellular matrix

proteins. MMP9 has been discovered as a risk gene and predicts

a worse prognosis for UM patients (23). SLC44A3 and RNF208

were found to be protective predictors (24); these discoveries are

consistent with our findings in this study. Besides this, the other six

genes (ARX, MGLL, S100A13, MANEALM, MYH14, and PDE4B)

have not been presented in UM so far, and we first identified these

genes as novel prognostic factors in UM tumors.

Hypoxia has been suggested to affect immunotherapy by tumor

cell anaerobic glycolysis; the metabolite adenosine secreted to the

ECM suppressed T cell activation, and thus, excused the tumor cells

from immune attack (25), indicating the promising therapeutic

strategy developed from cancers with hypoxia. Currently, hypoxia

has presented association with immunotherapy response or

immune checkpoint effects in many cancers (26–28), whereas

only a clinical trial consisting of mixed melanoma patients

suggested that the PD-1 blockage responders of immunotherapy

has a reduced hypoxia transcriptomic change (29). In this study, we

observed many upregulated immune checkpoints in the high-risk

group and C1 subtype and transcription similarity with the samples

that responded to the PD-1 therapy, demonstrating the potential of

hypoxia as the target to improve immunotherapeutic effects. Most

importantly, we validated that CD276 was downregulated when

CA12 knockdown was conducted. CD276 was first derived from

dendritic cells and the immune checkpoint in cancers; it impaired T

cell–mediated anticancer immunity in ovarian cancer and

destroyed the anti-PD-1 therapy in non-small cell lung cancer

(30). Whereas in UM, no study has been reported. Hence, we first

identified the relationship between CD276 and hypoxia and

suggested that targeting CA12 may be a potential approach to

restore CD276-mediated immunotherapeutic effects. Moreover,

elevated regulatory T cell and MDSC were observed in the high-

risk group and C1 subtype since CD276 was expressed on

regulatory T cells and MDSC (31, 32); this indicated the

involvement of MDSC or regulatory T cells in CD276-mediated

immunosuppression in UM.

Comprehensively, our study identified hypoxia-related UM

subtypes and risk groups, which accurately predicted the UM

patient prognosis. The subtype or risk group with high hypoxia

signature expression exhibited highly infiltrated immunocytes and
Frontiers in Oncology 14
37
immune checkpoints and presented transcriptional similarity with

those responding to PD-1 therapy. Further, we confirmed the

upregulation of the risk gene under hypoxia and validated that

knockdown of CA12 inhibited UM cell EMT, clone formation, and

G1/S phase transformation. Besides this, the CD276 expression

decreased with CA12 knockdown. This study discovered the

association between hypoxia and cancer immunity in UM and

will shed light on novel therapeutic strategies development.
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Background: Pyroptosis and prostate cancer (PCa) are closely related. The role

of pyroptosis-related long non-coding RNAs (lncRNAs) (PRLs) in PCa remains

elusive. This study aimed to explore the relationship between PRL and

PCa prognosis.

Methods: Gene expression and clinical signatures were obtained from The

Cancer Genome Atlas and Gene Expression Omnibus databases. A PRL risk

prediction model was established by survival random forest analysis and least

absolute shrinkage and selection operator regression. Functional enrichment,

immune status, immune checkpoints, genetic mutations, and drug

susceptibility analyses related to risk scores were performed by the single-

sample gene set enrichment analysis, gene set variation analysis, and copy

number variation analysis. PRL expression was verified in PCa cells. Cell

Counting Kit-8, 5-ethynyl-2′-deoxyuridine, wound healing, transwell, and

Western blotting assay were used to detect the proliferation, migration,

invasion, and pyroptosis of PCa cells, respectively.

Results: Prognostic features based on six PRL (AC129507.1, AC005253.1,

AC127502.2, AC068580.3, LIMD1-AS1, and LINC01852) were constructed,

and patients in the high-score group had a worse prognosis than those in

the low-score group. This feature was determined to be independent by Cox

regression analysis, and the area under the curve of the 1-, 3-, and 5-year

receiver operating characteristic curves in the testing cohort was 1, 0.93, and

0.92, respectively. Moreover, the external cohort validation confirmed the

robustness of the PRL risk prediction model. There was a clear distinction

between the immune status of the two groups. The expression of multiple

immune checkpoints was also reduced in the high-score group. Gene

mutation proportion in the high-score group increased, and the sensitivity to

drugs increased significantly. Six PRLs were upregulated in PCa cells. Silencing

of AC005253.1 inhibited cell proliferation, migration, and invasion in DU145 and
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PC-3 cells. Moreover, silencing of AC005253.1 promoted pyroptosis and

inflammasome AIM2 expression.

Conclusions: Overall, we constructed a prognostic model of PCa with six PRLs

and identified their expression in PCa cells. The experimental verification

showed that AC005253.1 could affect the proliferation, migration, and

invasion abilities of PCa cells. Meanwhile, AC005253.1 may play an important

role in PCa by affecting pyroptosis through the AIM2 inflammasome. This result

requires further research for verification.
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Introduction

Prostate cancer (PCa) is the second most common cancer in

the male population worldwide and is one of the top five causes

of cancer-related death (1). Epidemiological examinations and

clinical studies have found that the incidence of PCa is still rising

(2). The symptoms of patients with early-stage PCa are

non-specific, so PCa is often found in the middle and late

stages, and surgical treatment at this time has a poor

prognosis and a low survival rate (3). With several important

recent discoveries in immune mechanisms and advanced

molecular diagnostic platforms, immunotherapy is emerging

as a viable option for PCa, especially castration-resistant PCa,

to stimulate antitumor immunity (4, 5). Different patient

responses to the same immunotherapy have been observed in

patients with different types and stages of cancer (6). Moreover,

the patient response depends on multiple factors, including

intratumoral heterogeneity and prior treatment history,

suggesting that the need for individualized and combined

therapy is an important direction for future successful

immunotherapy (7, 8). Diagnostic, prognostic, and predictive

biomarkers enable patient-specific management of PCa (9).

Specific biomarkers to facilitate the clinical selection of

immunotherapy patients include programmed death ligand 1

(PD-L1) and prostatic acid phosphatase (PAP), but these

approaches are limited by tumor heterogeneity or small

percentage populations (10, 11). Therefore, there is an urgent

need to identify new and effective biomarkers to establish a

prognostic model of PCa.

Pyroptosis, distinct from apoptosis, is a type of programmed

cell death induced by the inflammasome and carried out by

gasdermin proteins (12). It is characterized by cell rupture and

many pro-inflammatory factors being discharged (13, 14).

Pyroptosis affects tumor cell invasion, multiplication, and

migration, affecting cancer prognosis (15). The association
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between pyroptosis and cancer is highly intricate because as a

way of cell death, pyroptosis could inhibit cancer occurrence and

development. Meanwhile, the release of inflammatory mediators

and various signaling pathways in pyroptosis is associated with

tumorigenesis and resistance to chemotherapy (16, 17). Due to

the close association between pyroptosis and cancer progress

and prognosis, various prognostic biomarker studies based on

pyroptosis genes have been identified and used to construct gene

signatures with predictive power. For example, risk signatures

based on five pyroptosis-related genes (PRGs) were biomarkers

to predict the immunological condition and the outcome of lung

adenocarcinoma (18). Furthermore, the expression of four PRG

features strongly predicted a breast cancer patient’s prognosis

(19). Nonetheless, the predictive merit of pyroptosis gene

signatures in the prostate has not been completely clarified.

Long non-coding RNA (lncRNA) does not have the protein-

coding capacity, and its length exceeds 200 nucleotides (20).

LncRNA has been shown to play key functions in a variety of

biological and disease processes, including cancer (21, 22).

Growing evidence supports the involvement of lncRNA in

PCa progression, including cell proliferation, apoptosis,

metastasis, and invasion (23, 24). For example, overexpression

of lncRNA PCAT14 inhibits the invasion of PCa cells and

correlates with a good prognosis of PCa, which can be a

diagnostic marker (25, 26). However, the role of pyroptosis-

related lncRNAs (PRLs) in PCa still requires further exploration.

Thus, exploring lncRNA biomarkers associated with pyroptosis

in PCa is of clinical importance.

Machine learning is a branch of artificial intelligence that has

been rapidly developed and applied in the field of medicine (27).

Predictive models of diseases based on machine learning have

been extensively mined (28). For example, Wu et al. used an

ensemble of machine learning to develop a novel pyroptosis

scoring system based on six lncRNAs to predict the prognosis of

patients with low-grade glioma (29). In the present study, we
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used a machine learning approach to construct a PRL risk

signature for PCa prognosis. Then, we investigated the

associations of risk score models and clinical features, immune

microenvironment, immune checkpoints, genetic mutations,

and drug sensitivity to provide potential diagnostic and

prognostic biomarkers for PCa. This study may help to

understand the effect of PRL on PCa prognosis.
Materials and methods

Data sets and pretreatments

The Cancer Genome Atlas (TCGA)-PRAD (Prostate

Adenocarcinoma) dataset was downloaded from UCSC Xena

(https://xenabrowser.net/). The data processing was performed

to obtain FPKM data directly from TCGA and convert it into

TPM value, normalized by log2 (TPM+1). The GSE116918

(GPL25318) dataset was from Gene Expression Omnibus

(GEO) (https://www.ncbi.nlm.nih.gov/gds/). For this validation

cohort, 248 localized/locally advanced PCa patients

commencing radical radiotherapy (with androgen deprivation

therapy (ADT)) were included. The Affymetrix platform was

utilized to generate raw data from the GSE116918 (GPL25318)

dataset. The robust multi-chip averaging (RMA) algorithm was

used to achieve background correction and normalization.
Construction of a machine learning
prognostic model for pyroptosis-
related lncRNA

Forty-four pyroptosis genes (AIM2, APIP, CASP1, CASP3,

CASP4, CASP5, CASP6, CASP8, CASP9, DHX9, DDX58,

ELANE, GSDMA, GSDMB, GSDMC, GSDMD, GSDME, IFI16,

IL18, IL1B, MAPK8, MAPK9, NAIP, NFKB1, NFKB2, NLRC3,

NLRC4, NLRP1, NLRP12, NLRP2, NLRP3, NLRP6, NLRP7,

NLRP9, NOD1, NOD2, PJVK, PLCG1, PRKACA, SCAF11,

TIRAP, TNF, GPX4, and IL6) were obtained from the literature

(30–37). The names and abbreviations of the 44 pyroptosis-related

genes are shown in Table 1. Gene set variation analysis (GSVA) was

used to derive the pyroptosis score. LncRNA was then used to do

correlation analysis with pyroptosis score and select the genes with |

correlation coefficient| > 0.3 and p < 0.05. These genes were

subjected to univariate analysis, p < 0.05, and the single-factor

meaningful genes were selected. Then, survival random forest was

used to perform dimensionality reduction analysis to screen

important genes. The screening criteria were rel. importance >

0.2. Next, important gene variables were screened out, and these

important gene variables were used for the least absolute shrinkage

and selection operator (Lasso) regression to construct a risk score

model. The risk score was the sum of gene expression values ×

coefficients. The flowchart of this study is presented in Figure S1.
Frontiers in Oncology 03
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Pathway and immune-infiltration evaluation

The single-sample gene set enrichment analysis (ssGSEA)

algorithm was used to quantify the abundance of 28 immune
TABLE 1 Pyroptosis gene members.

Genes Full names

AIM2 Absent in melanoma 2

CASP1 Cysteine-aspartic acid protease-1

CASP3 Cysteine-aspartic acid protease-3

CASP4 Cysteine-aspartic acid protease-4

CASP5 Cysteine-aspartic acid protease-5

CASP6 Cysteine-aspartic acid protease-6

CASP8 Cysteine-aspartic acid protease-8

CASP9 Cysteine-aspartic acid protease-9

ELANE Elastase, neutrophil expressed

GPX4 Glutathione peroxidase 4

GSDMA Gasdermin A

GSDMB Gasdermin B

GSDMC Gasdermin C

GSDMD Gasdermin D

GSDME Gasdermin E

IL18 Interleukin 18

IL1B Interleukin 1 beta

IL6 Interleukin 6

NLRC4 NLR family CARD domain containing 4

NLRP1 NLR family pyrin domain containing 1

NLRP2 NLR family pyrin domain containing 2

NLRP3 NLR family pyrin domain containing 3

NLRP6 NLR family pyrin domain containing 6

NLRP7 NLR family pyrin domain containing 7

NOD1 Nucleotide-binding oligomerization domain containing 1

NOD2 Nucleotide-binding oligomerization domain containing 2

PJVK Pejvakin/deafness, autosomal recessive 59

PLCG1 Phospholipase C gamma 1

PRKACA Protein kinase cAMP-activated catalytic subunit alpha

SCAF11 SR-related CTD-associated factor 11

TIRAP TIR domain-containing adaptor protein

TNF Tumor necrosis factor

APIP Apoptotic protease activating factor 1-interacting protein

DHX9 DExH-box helicase 9

NLRP9 NLR family pyrin domain containing 9

NAIP NLR family apoptosis inhibitory protein

IFI16 Interferon gamma inducible protein 16

NFKB1 Nuclear factor kappa B subunit 1

DDX58 Retinoic acid-inducible gene I

MAPK8 Mitogen-activated protein kinase 8

NLRC3 NLR family CARD domain containing 3

NLRP12 NLR family pyrin domain containing 12

MAPK9 Mitogen-activated protein kinase 9

NFKB2 Nuclear factor kappa B subunit 2
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cells (38) in PRAD and to compare immune infiltration with

prognostic scores. Stromal score, Immune Score, ESTIMATE

Score, and Tumor Purity were assessed with the ESTIMATE

package, and the relationship between these scores and

prognostic scores was compared. The GSVA package was used

for GSVA analysis of Gene Ontology (GO) and the Kyoto

Encyclopedia of Genes and Genomes (KEGG). The correlation

analysis was performed with prognostic and functional

enrichment pathway scores. Correlation analysis was

performed with prognostic scores and all genes, and then gene

set enrichment analysis (GSEA) was performed by the

clusterProfiler package.
Gene mutation and copy number
variation analysis

The gene mutations of the two groups were compared, and

the gene mutation patterns were checked. The somatic

mutations and somatic copy number variation (CNV) profiles

were gathered from the TCGA-PRAD datasets. The Genomic

Identification of Significant Targets in Cancer (GISTIC) analysis

was performed to evaluate the genomic features. The CNV

landscape based on ITGA5 levels and the copy number gains

or losses at the amplified or deleted peaks were assessed by

GISTIC 2.0 analysis (https://gatk.broadinstitute.org).
Drug prediction

Information on the sensitivity of tumor cell lines to potential

drugs was downloaded from Cancer Therapeutics Response

Portal 2 (CTRP v2) and Profiling Relative Inhibition

Simultaneously in Mixtures (PRISM). The lower the area under

the curve (AUC) of the cell line, the higher the sensitivity to the

potential drug. Expression of cancer cell lines was downloaded

from Cancer Cell Line Encyclopedia (CCLE). Predictions were

made using the R package of pRRophetic.
Cell culture and quantitative reverse
transcription PCR

DU145 cells (BLUEFBIO, Shanghai, China) were grown in

Dulbecco’s modified Eagle’s medium (DMEM) (complemented

with 10% fetal bovine serum (FBS) and 1% penicillin–

streptomycin (P/S)). PC-3 cells (Pricella, Wuhan, China) were

grown in Ham’s F-12Kmedia (complemented with 10% FBS and

1% P/S). RWPE1 cells (Abiowell, Changsha, China) were

cultured in keratinocyte serum-free medium (K-SFM)

(complemented with 50 mg/ml of bovine pituitary extract, 5

ng/ml of epidermal growth factor (EGF), and 1% P/S).
Frontiers in Oncology 04
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Total RNA was obtained using TRIzol reagent (Invitrogen,

Carlsbad, CA, USA) from RWPE1, PC-3, and DU145 cells. RNA

was reverse transcribed into cDNA using an mRNA reverse

transcription kit (CW2569, CWBIO, Beijing, China). LncRNA

expression was detected using the SYBR method (CW2601,

CWBIO, China) and quantitative reverse transcription PCR

(RT-qPCR) analysis with GAPDH as an internal reference.

The primer sequences are shown in Table 2. The relative

expression levels of genes were investigated by 2−DDCt.
Cell transfection

The small interference RNA (siRNA) specifically targeting

AC005253.1 (si-AC005253.1-1: 5′-CCGCAAGAAGAAGU
GUGGUCATT-3′, 5′-UGACCACACUUCUUCUUGCGGTT-3′,
si-AC005253.1-2: 5′-GCGUCCCAAGAAGAAGGUCAATT-3′,
5′-UUGACCUUCUUCUUGGGACGCTT-3′ and si-AC005253.1

-3: 5′-GCGUCUGAUAUUUGCCGGCAATT-3′, 5′-UUGCCGG
CAAAUAUCAGACGCTT-3′) and the corresponding

negative controls (si-NC: 5′-UUCUCCGAACGUGUCACGUTT-
3 ′ , 5 ′ -ACGUGACACGUUCGGAGAATT-3 ′ ) we r e

obtained from Sangon Biotech (Shanghai, China). According to

the manufacturer’s protocol, cells were transfected with

Lipofectamine 3000 reagent (Thermo Fisher, Waltham, MA,

USA) (39).
Cell counting kit-8 assay

Cells were digested, counted, and seeded in a 96-well plate

(5 × 103 cells/well, 100 ml). After adherent cell culture, 10 ml of
Cell Counting Kit-8 (CCK-8) solution (NU679, Dojindo, Tokyo,

Japan) was added. The cells were incubated at 37°C with 5% CO2
TABLE 2 Primer sequences.

Genes Sequences (5′–3′)

GAPDH F: ACAGCCTCAAGATCATCAGC

R: GGTCATGAGTCCTTCCACGAT

AC005253.1 F: AAGCCTTCCCTGATTACTGC

R: CATGGTCAAACAGCCTACCTC

AC068580.3 F: CACAGCCAAAACCAAACTCCT

R: TGGGTTGCCATTCACTGACT

AC127502.2 F: CTTCTGAATCTTTCCGGCGAAC

R: GCGAACAACCTTCCTTGCAAA

AC129507.1 F: CTTCACTCGCACGGAGCAAC

R: CCTCCTTGCTGCCGAGTCA

LIMD1-AS1 F: TTTGATGCCGCTTTGCTCAC

R: TGCCACTTTTCCAGGTGTGT

LINC01852 F: GCCGGAGAACGAATGTGATG

R: TCTTTTTGTTTACCGGAGTTCCA
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for 4 h, and the optical density (OD) value at 450 nm was

measured with a Bio-Tek microplate reader (MB-530,

HEALES) (40).
5-Ethynyl-2′-deoxyuridine assay

The 5-ethynyl-2′-deoxyuridine (EDU) assay kit (Guangzhou
RiboBio, Guangzhou, China) was used to monitor cell

proliferation. The cells were inoculated into 96-well plates (1 ×

104/well) until 80% confluence. Each well was added with 100 ml
of EDU solution and incubated for 2 h. The cells were incubated

with 4% paraformaldehyde at room temperature for 30 min.

Then, the cells were treated with 100 ml of 1× Apollo® staining

reaction solution for 30 min. Next, 100 ml of Hoechst 33342

reaction solution was added to each well and incubated for 30

min. A microscope (DSZ2000X, Beijing Cnmicro Instrument

Co., Ltd., Beijing, China) was used to observe and take pictures.
Wound healing assay

Cells (1 × 105/well) were plated in 6-well plates until they

achieved about 90% confluence. A 1-ml pipette tip was used to

create scratch wounds, and photographs of the wounds

(time 0 h) were immediately taken. Then, the cells were

cultured in a serum-free medium. After incubation with 5%

CO2 at 37°C for 48 h, photographs were taken again.
Transwell assay

The invasion ability of cells was evaluated using the transwell

assay. Transwell chambers (3428, Corning, New York, NY, USA)

were pre-cooled overnight at 4°C one day in advance. Then, 100

ml of Matrigel dilute in serum-free medium was added to each

well. The transfected cells were suspended in a serum-free

medium and added to the transwell chamber; 500 ml of 10%
fetal bovine serum complete medium was placed into the lower

chamber. The cells were incubated at 37°C for 48 h. The upper

chamber was removed and washed three times with phosphate-

buffered saline (PBS), and the cells in the upper layer of the

membrane were wiped off with a cotton ball. Cells were fixed

with 4% paraformaldehyde for 20 min and stained with 0.1%

crystal violet solution for 5 min. Cells were observed under an

inverted microscope, and three fields of view were taken. The

number of invasive cells was recorded.
Western blotting

Total prote in was extracted from the cel ls by

radioimmunoprecipitation assay (RIPA) lysate (AWB0136,
Frontiers in Oncology 05
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Abiowell, China). Then, the protein was transferred to the

polyvinylidene fluoride membrane after 10% sodium dodecyl

sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) treatment.

Themembrane was sealed with 5% skimmilk (AWB0004, Abiowell)

at room temperature for 2 h. AIM2 (1:1,500, 20590-1-AP,

proteintech, Chicago, IL, USA), NLRC4 (1:1,000, ab201792,

abcam, Cambridge, UK), NLRP3 (1:1,000, 19771-1-AP,

proteintech), GSDMD-N (1:1,000, ab215203, abcam), ASC

(1:2,000, 10500-1-AP, proteintech), caspase-1 (1:1,000, ab179515,

abcam), IL-18 (1:8,000, 10663-1-AP, proteintech), IL-1b (1:1,000,

16806-1-AP, proteintech), and b-actin (1:5,000, 66009-1-Ig,

proteintech) were incubated with the membrane at 4°C overnight.

Then, the corresponding secondary antibodies were incubated with

the membrane at room temperature for 2 h. The membrane was

incubated with SuperECL Plus (AWB0005, abiowell), and then the

protein bands were visualized by a chemiluminescence imaging

system (ChemiScope 6100, Clinx, Shanghai, China).
Statistical analysis

The data were mainly visualized using the R package

ggplot2. The Shapiro–Wilk normality test was used to evaluate

for normality of variables. For normally distributed variables,

significant quantitative differences were determined by two-

tailed t-tests or one-way ANOVA. For non-normally

distributed variables, significant quantitative differences were

determined by the Wilcoxon test or the Kruskal–Wallis test.

The Benjamini–Hochberg method was used, which converts p-

values to false discovery rate (FDR) to identify significant genes.

The log-rank test was used to determine the statistical differences

in each dataset. The Survminer R package was used to generate

survival curves. Receiver operating characteristic (ROC) curves

were drawn using the pROC package. All heatmaps were

generated based on pheatmap. All statistical analyses were

performed in R (https://www.r-project.org/). p < 0.05 was

considered statistically significant.
Results

Construction of pyroptosis-related
lncRNA signatures

Forty-five pyroptosis genes were obtained from the literature,

and the pyroptosis score was calculated by the GSVA method. The

correlation between lncRNAs and pyroptosis scores was analyzed

by Spearman’s correlation test. The lncRNAs with |correlation

coefficient| > 0.3 and p < 0.05 were selected, and 553 lncRNAs

were obtained. These lncRNAs were subjected to univariate

analysis, and 27 lncRNAs (p < 0.05) were screened (Figure 1A).

The single-factor meaningful genes were selected for survival

random forest analysis, and six important lncRNAs were
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screened (Figure 1B, Figure S2A). These important gene variables

were then used for Lasso analysis to build a risk scoring model

(Figure 1C). The risk score was 0.4242 × AC005253.1 + 0.8249 ×

LIMD1-AS1 − 1.6456 × LINC01852 + 0.3408 × AC127502.2 +

1.5518 × AC068580.3 − 1.7451 × AC129507.1. With the median

risk score as the cutoff value, PCa patients were categorized into

high-score and low-score groups. PCa patients in the high-score

group had poorer overall survival than those in the low-score group

(Figure 1D). Furthermore, the AUC values of the 1-, 3-, and 5-year

ROC curves were 1, 0.93, and 0.92, respectively (Figure 1E). The

clinical characteristic score showed that the risk score of patients

aged ≥45 was higher than that of patients aged <45, but there was

no significant difference (p = 0.15). Patients with stage N1 had a

higher risk score than patients with stage N0 (p = 0.00039). T4 stage

patients had higher risk scores than T3 stage and T2 stage patients,

and T3 stage patients had higher risk scores than T2 stage patients

(p = 0.0014). Moreover, patients with the status alive had a lower

risk score than patients with the status dead (p = 0.001) (Figure 1F).

A publicly available dataset (GSE116918) was used to validate the
Frontiers in Oncology 06
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reliability of the constructed risk scoring model. Consistent with the

findings from the TCGA-PRAD cohort, survival analysis showed

that patients in the high-score group had lower survival rates than

those in the low-score group (Figure S2B). In addition, the AUC

values of the 1-, 3-, and 5-year ROC curves were 0.7, 0.71, and 0.77,

respectively (Figure S2C). To investigate whether the constructed

risk scoring model was independent of clinicopathological

parameters, univariate and multivariate Cox regression analyses

were performed on age, T stage, N stage, and risk score. Risk score

was the parameter independently predicting overall survival

(Figures S2D, E). The predictive model could be considered an

independent prognostic factor in PCa patients.
Correlation of risk scores with pyroptosis
genes and immune infiltration

We surveyed the relationship between model genes and risk

scores. Risk scores were favorably associated with LIMD1-AS1,
A

B

D E

F

C

FIGURE 1

Construction of pyroptosis-related lncRNA signatures. (A) Correlation gene screens for genes of univariate significance. (B, C) Six PRL signatures
were constructed through a random forest and Lasso analysis. (D) Survival curves. (E) ROC curves. (F) Clinical feature scores. lncRNA, long non-
coding RNA; PRL, pyroptosis-related lncRNA; Lasso, least absolute shrinkage and selection operator; ROC, receiver operating characteristic.
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AC127502.2, AC005253.1, and AC06850.3 and negatively

associated with LINC01852 and AC129507.1 (Figures 2A, B).

Next, we constructed a heatmap of risk scores and pyroptosis

gene correlations. The results showed that ARRDC1-AS1, GPX4,

GSDMD, GSDME, and NLRP3 were substantially associated

with the risk score (Figure 2C). We used the ESTIMATE package

and ssGSEA algorithm to evaluate immune infiltration. Among

them, Stromal score, Immune Score, and ESTIMATE Score were

negatively associated with risk score, while Tumor Purity was

positively associated with risk score (Figure 2D). B cell, T cell,

Macrophage, and Natural killer cell were significantly associated

with risk score (Figure 2D). For example, Activated B cell,

Activated CD8 T cell, and Activated dendritic cell were

negatively associated with risk scores. Activated CD4 T cell

was positively associated with risk score.
Immune checkpoint

We determined the expression of seven classes of immune

checkpoint molecules in low- and high-risk-scoring populations.

As shown in the Antigen present classification, HLA-A, HLA-B,
Frontiers in Oncology 07
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HLA-DPA1, HLA-DPB1, HLA-DQB2, HLA-DRB1, and MICA

were expressed at a low level in the high-score group. In Cell

adhesion, SELP was expressed at a high level in the low-score

group. In Ligand, CCL5, CX3CL1, and TGFB1 were expressed at

a high level in the low-score group. In Receptor, CD27, CD40,

EDNRB, and TLR4 were expressed at a high level in the low-

score group. In Co-inhibitor, CD276 was expressed at a low level

in the low-score group, and PDCD1LG2 and VTCN1 were

expressed at a high level in the low-score group. In addition,

HMGB1 was expressed at a low level in the low-score group,

while ENTPD1 and PRF1 were expressed at a high level in the

low-score group (Figure 3).
Functional analysis of risk score

We used the GSVA package for GO and KEGG enrichment

analyses. Most samples were enriched for pathways closely

related to tumorigenesis. Examples included DNA replication,

cell cycle, and mTOR signaling pathway. These pathways were

positively associated with risk scores (Figure 4A). Correlation

analysis with risk score and functional enrichment pathway
A B

DC

FIGURE 2

Correlation of risk scores with pyroptosis genes and immune infiltration. (A) The expression of LIMD1-AS1, AC127502.2, AC005253.1, AC068580.3,
LINC01852, and AC129507.1. (B) Expression correlation plots of risk scores and model genes. (C) Heatmap of risk score associated with pyroptosis
genes. (D) Heatmap of the relationship of the risk score to immune infiltration. *p < 0.05. **p < 0.01. ***p < 0.001 ****p < 0.0001.
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score was performed. In addition to the immune checkpoint, risk

scores were significantly associated with 16 other pathways

(Figure 4B). Risk scores were positively correlated with cell

cycle, DNA replication, DNA damage repair, and WNT target

while negatively correlated with CD8 T effector and antigen

processing machinery. We conducted a relevant analysis with

the risk score and all genes and then performed a GSEA with the

clusterProfiler package (Figure S3). The Hippo signaling

pathway was downregulated.
Copy number variation and mutation
analysis in high- and low-score groups

In this study, we compared the gene mutation status of two

groups. Amplification frequency was mainly concentrated in 2p,

2q, 3p, 3q, 5p, 8p, 8q, 9p, 14p, 19p, and 20p, while deletion

frequency was mainly concentrated in 4p, 4q, 5q, 8p, 8q, 10p,

10q, 12p, 15q, 17p, 17q, 18p, 18q, 21q, and 22q. In addition,

there was a significant difference between the high-risk and low-

score groups at the focal somatic copy number alterations

(SCNA) level (Figure 5A). A waterfall plot was used to

visualize the mutation frequency and type of the top 30 genes

with the highest gene mutation frequency. The results showed

that in the high-risk group, the top five genes with the highest

mutation frequency were TP53 (17%), TTN (16%), FOXA1

(14%), SPOP (11%), and SPTA1 (10%), while in the low-risk

group the top five genes were SPOP (11%), TP53 (10%), TTN

(9%), MUC16 (5%), and KMT2D (5%) (Figure 5B).
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Drug sensitivity analysis of risk scores in
two groups

We downloaded information on the susceptibility of tumor

cell lines to potential drugs from the CTRP v2 and PRISM. The

lower the AUC of the cell line, the higher the sensitivity to the

potential drug. These data revealed that among anticancer drugs,

including ML258, 16-beta-bromoandrosterone, VU0155056,

BRD-K02251932, BRD-K85133207, imiquimod, temoporfin,

SGI-1027, and eptifibatide, the sensitivity of patients in the

high-score group to the drugs was significantly increased than

in the low-score group (Figure 6).
Risk score gene expression identification

Expression of AC129507.1, AC005253.1, AC127502.2,

AC068580.3, LIMD1-AS1, and LINC01852 was verified by

RT-qPCR in RWPE1 cells and PCa cell lines (PC-3 and

DU145). The results showed that AC129507.1, AC005253.1,

AC068580.3, and LIMD1-AS1 were upregulated in PC-3 and

DU145 cells relative to RWPE1 cells. However, AC127502.2 and

LINC01852 were only upregulated in DU145 cells (Figure 7).
Silencing of AC005253.1 affected
prostate cancer cell proliferation,
migration, and invasion

To explore the role of AC005253.1 in the development of

PCa, we transfected si-AC005253.1-1, si-AC005253.1-2, si-

AC005253.1-3, and si-NC in PC-3 and DU145 cells. RT-qPCR

results showed that si-AC005253.1-1, si-AC005253.1-2, and si-

AC005253.1-3 could reduce the expression of AC005253.1 in

PC-3 and DU145 cells, among which si-AC005253.1-2 had a

best silencing effect (Figure 8A). Therefore, si-AC005253.1-2

was used as a follow-up experiment. Silencing of AC005253.1

decreased the cell viability and proliferation of PC-3 and DU145

cells (Figures 8B, C). The wound healing assay and transwell

assay results showed that after silencing AC005253.1, the

migration and invasion abilities of PC-3 and DU145 cells were

reduced (Figures 8D, E).
Silencing of AC005253.1 promoted
pyroptosis of prostate cancer cells

We further tested the effect of AC005253.1 on the pyroptosis

of PC-3 and DU145 cells by Western blotting experiment. The

results showed that after silencing AC005253.1, the expression of

the inflammasomes (AIM2, NLRC4, and NLRP3) was altered

(Figure 9A). Compared with the si-NC group, the expression of
FIGURE 3

Immune checkpoint. Immune checkpoint molecule expression
in low- and high-score groups. *p < 0.05. **p < 0.01. ***p <
0.001 ****p < 0.0001. ns, not significant.
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AIM2 was increased in the si-AC005253.1 group, and the

difference was most obvious (Figure 9A). Furthermore, after

silencing AC005253.1, the expressions of GSDMD-N, ASC,

cleaved caspase-1, IL-18, and IL-1b proteins were increased in

PC-3 and DU145 cells (Figure 9B). These results suggested that

silencing of AC005253.1 promoted pyroptosis in PCa cells.
Discussion

PCa is one of the most common tumors in men. Due to its

heterogeneity and progressive nature, it remains incurable (41).

Valid prognostic models based on specific biomarkers can

accurately predict survival outcomes for the effective

management of PCa patients (42). Pyroptosis-related lncRNA

risk prediction models have been reported to be expected to
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assist in the treatment and management of various tumors (43,

44). Our study used a novel risk model of six PRLs (AC129507.1,

AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1, and

LINC01852) developed using Lasso analysis. AC129507.1,

AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1, and

LINC01852 were identified as PRLs for the first time. The

results showed that the risk score model had the best ability to

distinguish clinical characteristics between the high-risk and

low-score groups significantly. In our proposed model, the

AUC values of the ROC curves for 1-, 3-, and 5-year PCa were

1, 0.93, and 0.92, respectively. In addition, the 1-, 3-, and 5-year

AUC values in the test set also had desirable results. Our risk

model had excellent predictive power compared to other

published pyroptosis-based prognostic models in PCa (45, 46).

Different from the direct use of Lasso to build a prognostic

model of eight pyroptosis-related genes in the study of
A

B

FIGURE 4

Functional analysis of risk score. (A) Heatmap for GO and KEGG analyses using GSVA package. (B) Correlation of risk score with functional
enrichment pathways. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSVA, gene set variation analysis. *p < 0.05.
**p < 0.01. ***p < 0.001 ****p < 0.0001.
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A

B

FIGURE 5

CNV and mutation analysis in high- and low-score groups. (A) CNV maps for groups with high and low score. (B) Top 30 gene mutation
frequencies in two groups. CNV, copy number variation. *p < 0.05
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Wang et al. (47), we used random forest dimensionality

reduction and screening methods and further used Lasso

analysis to build a predictive model. This analytical approach

may help improve the predictive accuracy of the risk

model signature.

It has been reported that pyroptosis is closely related to the

tumor immune microenvironment. The release of inflammatory

factors is caused by pyroptosis triggers powerful antitumor

immunity (48). The infiltration of CD8+ T cells and natural

killer cells in the pyroptosis-activated immune microenvironment

can promote pyroptosis and form a positive feedback loop (49).

Previous studies have shown that increased CD8+ T-cell

infiltration is independently associated with improved survival

after radical prostatectomy (50). Men with more CD4+ T cells in

the prostate tumor environment have an increased risk of dying

from PCa (51). B-cell activation is thought to be a driver of the

PCa immune response and improves postoperative survival (52).

Overall, the poor prognosis and outcome of PCa are closely

related to pyroptosis-triggered immune cell infiltration, which is

consistent with our results. Our results showed that the risk score

was negatively correlated with activated B cells, CD8 T cells, and

dendritic cells while positively correlated with activated CD4 T

cells. Infiltration levels of B cells, CD8 T cells, and dendritic cells

decreased with increasing risk scores, consistent with shorter

survival times in patients with high scores.
FIGURE 6

Drug sensitivity analysis of risk scores in two groups. Information on the sensitivity of tumor cell lines to potential drugs was downloaded from
CTRP v2 and PRISM. Prediction of drug susceptibility in two groups using pRRophetic. The lower the AUC of the cell line, the higher the
sensitivity to the potential drug. AUC, area under the curve. ***p < 0.001
FIGURE 7

Risk score gene expression identification. RT-qPCR to detect the
AC129507.1, AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1,
and LINC01852 expression in RWPE1, PC-3, and DU145 cell. *p <
0.05, vs. RWPE1.
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We compared the expression of immune checkpoints in the

high-risk and low-risk groups and found that some immune

checkpoints such as HLA and MICA were expressed at a high

level in the low-risk group. PCa downregulated the expression of

the HLA-1 antigen processing machinery (APM) and had defects

in the antigen presentation pathway (53). Low expression of MICA

is associated with poorer overall survival in PCa and is associated

with aggressiveness (54). This suggests that our signature could

effectively identify the status of immune checkpoints in different

PCa patients, providing new ideas for their treatment.

CNVs were regions of the genome with integer copy number

changes, including amplifications and deletions of DNA

sequences, that could drive cancer’s rapid adaptive evolution

and progression (55). The CNV results uncovered significant

differences in mutation status between the high-score and low-

score groups. In the high-score group, the gene with the highest

mutation frequency was TP53 (17%), while in the low-risk

group, it was SPOP (11%). TP53 mutation was the most

common genetic alteration that played a major role in the

pathogenesis of PCa (56, 57). SPOP mutations were associated
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with improved overall survival, whereas TP53 mutations were

associated with poorer survival in secondary metastatic

hormone-sensitive PCa (58). These data implicated that the

high-score group might have more tumorigenic gene mutations.

To better assess the risk model’s clinical feasibility, we

analyzed information on the sensitivity of tumor cell lines to

potential drugs. The results showed that the high-risk group cell

lines were significantly less sensitive to drugs such as

importazole and imiquimod. Importazole, a specific inhibitor

that alters the interaction of KPNB1 with RanGTP, has a good

inhibitory effect on PCa progression (59). Imiquimod (also

known as a TLR7 agonist) inhibits the growth of mouse

(TRAMP C2) and human PCa cells and can be used as an

alternative therapy for locally generated PCa (60). Our findings

suggest that the low-risk group is more likely to benefit from

these drugs. Collectively, these findings may provide prospective

treatment options for PCa patients.

Notably, RT-qPCR analysis confirmed high expression of

AC129507.1, AC005253.1, AC127502.2, AC068580.3, LIMD1-

AS1, and LINC01852 in PCa cell lines. AC129507.1,
A
B D

E

C

FIGURE 8

Silencing of AC005253.1 affected PCa cell proliferation, migration, and invasion. (A) RT-qPCR detection of AC005253.1 expression in PC-3 and
DU145 cells. (B) CCK-8 assay was used to measure the cell viability in PC-3 and DU145 cells. (C) EDU assay results showed the effect of si-
AC005253.1 on cell proliferation. (D) Wound healing assay was performed to detect the migration in PC-3 and DU145 cells. (E) Transwell assay
was used to detect the invasion of PC-3 and DU145 cells. #p < 0.05, vs. si-NC group. PCa, prostate cancer; CCK-8, Cell Counting Kit-8.
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FIGURE 9

Silencing of AC005253.1 promoted pyroptosis of PCa cells. (A) AIM2, NLRC4, and NLRP3 levels were identified by Western blotting. (B) GSDMD-
N, ASC, caspase-1, IL-18, and IL-1b proteins were identified by Western blotting in PC-3 and DU145 cells. #p < 0.05, vs. si-NC group. PCa,
prostate cancer.
Frontiers in Oncology frontiersin.org13
51

https://doi.org/10.3389/fonc.2022.991165
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yu et al. 10.3389/fonc.2022.991165
AC068580.3, and LIMD1-AS1 were thought to play important

roles in different cancers, while AC005253.1, AC127502.2, and

LINC01852 were identified for the first time. AC129507.1 was

identified as an on-risk gene in risk models for prognosis patients

with gastric adenocarcinoma (61). AC068580.3 was identified as an

autophagy-related lncRNA as an indication of prognosis for colon

adenocarcinoma (62). LIMD1-AS1 inhibited lung cancer

progression by inhibiting cell multiplication and promoting

apoptosis (63). Our study demonstrated that inhibiting the

expression of AC005253.1 could inhibit cell viability, migration,

and invasion. We further detected the expression of the

inflammasome (AIM2, NLRC4, and NLRP3) and found that

silencing of AC005253.1 could significantly increase the

expression of the AIM2 inflammasome. Activation of the AIM2

inflammasome can promote pyroptosis (64). We also found that

inhibition of AC005253.1 could promote pyroptosis in PCa cells.

Therefore, we speculate that AC005253.1 may affect pyroptosis

through the AIM2 inflammasome in PCa. In the present study, we

report for the first time the relationship between AC005253.1 and

pyroptosis in PCa.

In conclusion, we successfully established an efficient forecast

PCa model based on six PRLs, including AC129507.1,

AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1, and

LINC01852. This well-validated model built on these six PRLs

will provide new insights into identifying PCa prognosis. Through

in vitro experiments, we verified that silencing of AC005253.1

could inhibit the proliferation, migration, and invasion of PCa

cells. In addition, silencing of AC005253.1 might promote

pyroptosis by affecting the expression of AIM2 in PCa.
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A flowchart of the study.

SUPPLEMENTARY FIGURE S2

Analysis of prognostic characteristics of risk score. (A) Univariate analysis

of lncRNAs in TCGA. (B) Survival analysis of GSE116918. (C) ROC curves of
GSE116918. (D, E) Univariate and multivariate Cox analysis.

SUPPLEMENTARY FIGURE S3

Enrichment analysis of risk score-related genes. After risk score

correlation analysis with all genes, GO and KEGG functional enrichment
analysis was performed by GSEA.
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COL10A1 allows stratification
of invasiveness of colon
cancer and associates to
extracellular matrix and
immune cell enrichment
in the tumor parenchyma
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University, Magdeburg, Germany

Background: Treatment options for metastatic colorectal cancer (CRC) are

mostly ineffective. We present new evidence that tumor tissue collagen type X

alpha 1 (COL10A1) is a relevant candidate biomarker to improve this dilemma.

Methods: Several public databases had been screened to observe COL10A1

expression in transcriptome levels with cell lines and tissues. Protein

interactions and alignment to changes in clinical parameters and immune

cell invasion were performed, too. We also used algorithms to build a novel

COL10A1-related immunomodulator signature. Various wet-lab experiments

were conducted to quantify COL10A1 protein and transcript expression levels

in disease and control cell models.

Results: COL10A1 mRNA levels in tumor material is clinical and molecular

prognostic, featuring upregulation compared to non-cancer tissue, increase

with histomorphological malignancy grading of the tumor, elevation in tumors

that invade perineural areas, or lymph node invasion. Transcriptomic alignment

noted a strong positive correlation of COL10A1 with transcriptomic signature of

cancer-associated fibroblasts (CAFs) and populations of the immune

compartment, namely, B cells and macrophages. We verified those findings in
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functional assays showing that COL10A1 are decreased in CRC cells compared to

fibroblasts, with strongest signal in the cell supernatant of the cells.

Conclusion: COL10A1 abundance in CRC tissue predicts metastatic and

immunogenic properties of the disease. COL10A1 transcription may mediate

tumor cell interaction with its stromal microenvironment.

KEYWORDS

colon cancer, biomarker, tumor microenvironment, collagen type 10, prognosis

Introduction

Colorectal cancer remains to be one of the most malignant and

deadliest cancers worldwide, with over 935 thousand deaths and

more than 1.9 million new cases in 2020 (1), despite progressive

scientific efforts. Peritoneal and hepatic distant metastases barely

provide a median survival rate of 5–9 months upon diagnostic

detection (2, 3). Current clinical diagnostics to appreciate the tumor

location and spread involve digital rectal examination (DRE), total

colposcopy with biopsy, abdominal sonography, thoracal X-ray,

carcinoembryonic antigen (CEA) blood levels, and abdominal/

thoracal computer tomography, and for rectum carcinoma, rigid

rectoscopy, pelvic MR/CT, and rectal end sonography in case of

locally limited tumors. One of the major deficiencies in the staging

diagnosis of CRC is the detection of malignant lymph nodes and

stratification of tumor cases with elevated metastatic risk in low and

mediummalignancy staging (II/III) (4) (5). On the one hand, this is

due to inconsistent cutoff limits and on the other hand to poor

sensitivity and specificity of conventional CT (70%, 78%) (6) (71%,

67%) (7) or CT colonography (CTC) (<70%) (8) detecting not only

metastatic enlarged but also micro-metastatic lymph nodes with

normal size, urging the need for improved diagnostics such as

MDCT. Another way is to improve the diagnostic criteria for CT-

diagnosed lymph node changes. As a result, based on recent

consensus data, the largest short diameter of the suspicious tissue

and internal heterogeneity have been identified as the best criteria

for CT-assisted malignancy detection (9). Poor diagnosis is

particularly problematic, as lymph node status determines

whether adjuvant chemotherapy is indicated or not. Colon

carcinomas are treated with adjuvant chemotherapy from the

Union for International Cancer Control (UICC) stage II/III and

rectum carcinoma depending on locality from UICC II in the

middle and lower rectum with neoadjuvant regime (upper rectum

with adjuvant chemotherapy) (10). Currently, neoadjuvant

chemotherapy is not considered the standard of care for CRC

patients; however, recent data indicate significant advantages when

applying pre-surgical chemotherapy over conventional adjuvant

chemotherapy in terms of OS and DSS (11). Contrary to adjuvant

chemotherapy, which is started after the pathological evaluation of

the resected lymph nodes, initiation andmonitoring of neoadjuvant

chemotherapy have so far mostly relied on imaging parameters of

the tumor area alone. Oncologist and radiologist are frequently

confronted with the dilemma of the inability to unequivocally

discriminate false positivity of cancer metastasis from actual

metastasis, meaning that in patients diagnosed with metastatic

disease—and subsequently exposed to adverse-effect-evoking

chemotherapy—the lymphatic system was in fact solely reactive

to the tumor defense but does not represent lymph nodes with

manifested metastasis. Biomarkers that can identify tumor

malignancy such as predicting any possible elevated risk for the

patient’s tumor to enter late stages of metastatic cascades are

needed. Our results enforce a previously described collagen

isoform to possess the potential to do so, meanwhile also opening

a discussion to serve as a direct potential therapeutic target of colon

cancer tumor microenvironment.

COL10A1 is a short-chain protein and member of the

collagen family of proteins, which are major components of

the interstitial extracellular matrix. In addition to the general

structural functions of collagen, COL10A1 has also long been

attributed to cell–cell interaction. Elevated expression levels have

been observed in several malignant tumor types and correlate

with tumor progression, invasion, metastasis , and

vascularization (12). However, its role in CRC, particular in

predicting tumor progression and tumor sub-stratification into

cases that would benefit from neoadjuvant therapy, is

insufficiently understood. Moreover, little information probing

Abbreviations: CRC, colorectal cancer; COL10A1, collagen type X alpha 1;

COLX, Collagen X; CAF, cancer-associated fibroblast; DRE, digital rectal

examination; CEA, carcinoembryonic antigen; OS, overall survival; DFS,

disease-free survival; DSS, disease-specific survival; TCGA, The Cancer

Genome Atlas; TPM, transcripts per million; CCLE, Cell Line

Encyclopedia; DFI, disease-free interval; GAPDH, glycerinealdehyde-3-

phosphate dehydrogenase; CME, complete mesocolic excision; MACC1,

metastasis-associated in colon cancer 1; TRPC, transient receptor potential

channel; CTC, CT colonography; DRE, digital rectal examination; IOBR,

immune-oncology biological research.
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COL10A1 to serve as a micro-environmental niche factor that

supports the progression of CRC is available.

Material and methods

Data obtain and preprocessing

Gene expression information and clinical factors of colon

cancer were resourced from The Cancer Genome Atlas (TCGA)

database. The count data needed to be transferred to transcripts

per million (TPM) data format for the next step of the analysis.

GSE14297, including 7 normal colon epithelium samples and 18

primary colorectal cancer tissues, were used to validate the gene

expression difference between normal and tumor tissues. The

cell line expression data was obtained from the Cancer Cell Line

Encyclopedia (CCLE) database. Immune cell score data for each

sample, according to gene expression, were conducted by

ESTIMATE and immune-oncology biological research

(IOBR) packages.

Validation COL10A1 mRNA expression in
tissues and cell lines

Colon cancer RNA-seq data from TCGA was used to

conduct difference gene expression analysis to identify

COL10A1 expression differences between normal and tumor

tissues. Paired sample validation for COL10A1 was conducted

by the TCGA data. In addition, COL10A1 expression difference

was validated by the external GSE14297 dataset.

Protein to protein interaction
network calculation

Protein to protein interaction network is always used to

identify a novel gene’s potential function and related network

at the protein level. Here, we used the STRING database to

show the interaction network of COL10A1 with STRING

default setting. Cytoscape was used to visualize the

final results.

Association of COL10A1 activation with
clinical variables

Patients’ clinical characteristics were extracted from the

TCGA database. Two groups were formed, namely, one for

baseline characteristics and another for tumor invasion factors,

according to variable names. The next step was to analyze

COL10A1 expression differences in different clinical features.

Association of COL10A1 with consensus
transcriptional markers defining
tumor microenvironment

We calculated stromal, immune, and estimate scores for

each patient based on COL10A1 expression, which was

performed by ESTIMATE package. In addition, we also

evaluated B cells, cancer-associated fibroblasts (CAFs), CD4 T

cells, CD8 T cells, endothelial cells, macrophages, NK cells, and

other cells infiltration scores for each sample using the IOBR

package. In addition, we also explored this gene expression in

single-cell level by an online tool (http://tisch.comp-genomics.

org/home/). The detailed correlation between COL10A1 and

immune cell markers was calculated by the Spearman test.

Considering that immune checkpoints are important for

tumor progression, exploring the relationship between

COL10A1 and famous immune checkpoints (PD1, CD86,

PDL1, CTLA4, LAG3, and TIM3) seemed to be necessary.

Retrieval of COL10A1-related
immunomodulators

TISIDB database (13) integrates the interaction between

multiple immune genes and tumors. By entering the

COL10A1 gene on the website and selecting samples of colon

cancer, immunostimulatory factors and immune inhibitors

significantly associated with COL10A1 expression can

be calculated.

Construction and validation of clinical
prognosis signature

Immunostimulatory factors and immune inhibitors

significantly associated with COL10A1 were selected from the

original expression matrix. Then, we conducted univariate and

multivariate Cox regression models to select candidate genes,

which were combined with coefficient to construct a prognosis

signature. The disease-free interval (DFI) was set as the outcome

endpoint. Forty percent of the samples were randomly selected

as a test dataset to validate the robustness of the model. This

signature also was applied to test OS, PFS, and DSS.

Protein extraction from cell cultures

Cells were lysed and harvested at >80% confluence in the

culture flask using Cell Signaling Technology® lysis buffer. The

buffer was prepared, and 200 ml was added to a T-25 flask. Cells

were scraped with cell scrapers and transferred to a Falcon tube.

Subsequently, the cells were treated with ultrasound to ensure
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complete disruption. Insoluble cellular components in the lysate

were separated by centrifugation (10 min at 14,000×g) in a 4°C

tempered centrifuge. Supernatants were stored in aliquots at −80°C

for further analysis.

Protein extraction of CRC tissue samples

For suspension of the cell pellet, it was diluted 1:10 with

radioimmunoprecipitation (RIPA) buffer. The buffer solution

conta ined 10 ml RIPA buffe r mixed wi th 50 m l
phenylmethylsulfonyl fluoride (PMSF) and 100 m l
protease inhibitor.

Cell lysis was performed using the FastPrep-24TM5G

homogenizer. For this purpose, samples were transferred to

2-ml tubes containing Lysing Matrix E and homogenized

three times for 30 s each at 8 m/s. For foam regression and

final lysis, the samples were incubated on ice for additional 5

min. To separate the samples from the glass beads, a hole was

pierced on the bottom of the matrix tube using a cannula. The

tube was then placed in another 1.5-ml reaction tube and

centrifuged at 3,000×g (3 min). The remaining insoluble

components were removed by a second centrifugation step

at 12,000×g for 5 min. The supernatant obtained was

aliquoted and stored at −80°C.

RNA isolation

Using the ReliaPrepTM miRNA Cell and Tissue Miniprep

System, RNA was obtained directly from the culture flasks. At

90% confluence, the culture supernatant was removed; cells were

washed with PBS and lysed using the kit’s lysis buffer and

processed according to the manufacturer’s instructions.

Subsequently, measurement of the RNA concentration and

first quality control by photometric measurement with the

NanoQuant PlateTM (Tecan) were performed.

Isolation of recombinant COLX from
overexpressing HEK2973-T

To obtain a positive control of ColX, the culture supernatant

of cell line p52 (overexpressing recombinant COLX) was used.

The p52 cells were inoculated into T-75 flasks. In these, the cells

grew to a confluence of 80%. Then, media was changed from 5%

to 0% fecal calf serum (FCS). After 72 h, the culture supernatant

was removed.

The remaining cells were removed by centrifugation at

350×g for 5 min and transferred to a dialysis tube. Dialysis

was performed for 24 h at 0.2 mM Tris, pH 7.5 with solution

change after 8 h. Cells were removed by centrifugation at 350×g

for 5 min. Meanwhile, water was changed twice. The dialysate

was then transferred to glass flasks, frozen, and subsequently

dried by lyophilization. The finished lyophilizate was then

dissolved in water to achieve a 200-fold concentration of the

culture supernatant. Since a yield of 50 mg/ml is expected, after

lyophilization, an approximate final concentration of 10,000 mg/
ml COLX is expected.

Reverse transcription and qPCR

For reverse transcription, LunaScriptTM RT SuperMix

Kit was used. One microgram of RNA was transcribed into

cDNA for each sample, and a non-reverse transcriptase

control was included for each sample for possible non-

specific quantitative PCR (qPCR) reaction as caused by

contamination with genomic DNA. After RT reaction,

samples were diluted at 1:10.

The qPCR was also performed using the LunaScriptTM RT

SuperMix kit, and samples were pipetted accordingly. The

primers are shown in Table 1. All samples were plotted as

triplets and analyzed as mean values. A non-reverse

transcription control was also included from each sample to

check for contamination with genomic DNA.

Protein extraction, SDS-PAGE, and
Western blotting

The protein concentration was determined using the

Bradford assay with Bradford solution from Advanced Protein

Assay Reagent (Cytoskeleton) kit. The absorbance was measured

at 590 nm. A standard curve was generated using bovine serum

albumin (BSA).

An adapted sodium dodecyl sulfate–polyacrylamide gel

electrophoresis (SDS-PAGE) was performed to detect proteins

of interest. The gel was loaded equally with 20 mg protein per gel

well by measured protein concentration with Bradford assay for

every sample guaranteeing a normalized and comparable

standard for every sample. Proteins were denatured in advance

with 4× Laemmli buffer + 8% mercaptoethanol at 95°C for 5

min. SDS-PAGE was run overnight in the refrigerator at 6.5 mA

per gel.

The proteins separated by SDS-PAGE were transferred to a

polyvinylidene difluoride (PVDV) membrane activated with
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TABLE 1 Primers for qPCR of COL10A1 and GAPDH.

Gene Orientation Sequence from 5′ to 3′

COL10A1 F AAA GGC CCA CTA CCC AAC AC

R ACC TTG CTC TCC TCT TAC TGC

GAPDH F CCT GTT CGA CAG TCA GCC GCA T

R GAC TCC GAC CTT CAC CTT CCC C
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methanol. The blotting chamber was filled with Towbin buffer, and

blotting was performed for 90 min at 300 mA. After that, the blot

was washed in 1× TBS buffer + 0.1% Tween 20 (TBS/T) for 15 min

and then blocked in 5% milk powder (dissolved in TBS/T) for 60

min. After another 5-min wash step with TBS/T, incubation with

the primary antibody (dissolved in 5% milk powder—TBS/T) was

performed overnight. The next day, four washing steps with TBS/T

followed once for 15 min and three times for 5 min. This was

followed by incubation with the secondary antibody (dissolved in

5% milk powder—TBS/T) for 60 min. Subsequently, it was washed

again four times with TBS/T (1× 15min, 3× 5min). Finally, the ECL

substrate was added to the blots. After 5-min incubation, the images

were taken.

Results

COL10A1 transcripts are accumulated in
CRC tissue samples but only in a subset
of widely applied in vitro disease models

The differential expression results show that a total of 1,636

different genes, including 797 downregulated genes and 839

upregulated genes, were screened between normal and tumor

tissues (Table 2). Figure 1A indicates that COL10A1 is

significantly upregulated in CRC tissues, supported by paired-

sample expression validation (Figure 1B) and external dataset

GES14297 (Figure 1C).

To verify if widely distributed classical human in vitro

models of CRC recapitulate physiological relevant levels of the

gene, thereby enforcing their use in translational relevant

research, we assessed datasets that retrieve expression data of

standardized maintained cell lines. We found interesting

differences between the cells models, as MDST8, SNU1040,

SNUC2A, SW48, and HCT15 showed a significant

upregulation of COL10A1. whereas HT115, CL40, RCM1,

HCC56, and SW1417 had a very low-level expression

(Figure 1D). Additionally, the STRING database shows that

COL10A1 closely interacts with several proteins, of which some

are famously described as potent promoters of cancer stem cells

and mesenchymal transformation, such as MMP13, SOX9, and

RUNX2. The computed interactome can be seen in Figure 1E.

All the data resource has been shown in Figure 1F.

Diversity-associated variances of
COL10A1 expression

Although baseline characteristics are known to be

determinants for clinical outcome, these characteristics such as

sex, race, and body mass index (BMI) did not differ in their

COL10A1 expression levels significantly. Nonetheless, Asians

had a minimal higher expression level compared to other

ethnicity (Figures 2A–C). To our knowledge, this is the

hitherto first comparative assessment of COL10A1

appreciating different diversity setups.

COL10A1 is increased in tumor with high
invasion properties

To receive further insights in the clinical translation relevance of

COL10A1 in CRC, we performed another screening of COL10A1

activation level with parameters typical describing advanced tumor

cell invasion. A significant increase in COL10A1 expression was

observed not only in stage T3 and T4 but also in N1 andN2 cases of

CRC as compared to low-stage counterparts. Significant

stratification did not occur in low-stage comparisons between T1,

T2, and N0 (Figures 2D, E) nor was there a difference between M1

and M0 stages (Figure 2F). Elevated COL10A1 expression is

associated with advanced tumor stages based on histopathological

and image-based tumor staging. Moreover, tumors featuring

perineural invasion—an established marker for predicting

increased metastatic condition in CRC—have significant elevated

levels of COL10A1 expression (Figures 2G–I).

High COL10A1 levels are associated with
elevated immune cell infiltration and
extracellular matrix score

As a possible mechanism of how malignant cancers enforce

their invasive and metastasis properties, the ability of cancer cells

to modulate interactions with the immune microenvironment are

discussed. In this line, we analyzed COL10A1 transcript in

association with expression signals associated with the existence

of immune cells and other parameters of immune cell infiltration.

In addition to a clear positive correlation of increased COL10A1

Kahlert et al. 10.3389/fonc.2022.1007514
TABLE 2 Multivariate Cox regression of COL10A1 related immunomodulators.

Gene symbol coef HR 95%CI
(Low)

95%CI
(High)

p-Value

CD244 −1.840308381 0.158768457 0.011655813 2.162648294 0.167248274

CD96 1.802432322 6.064380062 0.875891189 41.98775602 0.067889854

HHLA2 −0.459849416 0.631378714 0.447451581 0.890909984 0.008858794

PDCD1LG2 −1.574446309 0.207122203 0.043256938 0.991739331 0.048798872

TMIGD2 −1.242452254 0.288675444 0.055016077 1.514711989 0.141827337
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FIGURE 1

(A) COL10A1 upregulated mRNA levels in CRC tissues in comparison with all present genes; (B, C) paired sample expression validation of
COL10A1 from TCGA and GSE14279; (D) different COL10A1 expression levels in common CRC cell lines; (E) microenvironmental protein–
protein interaction of COL10A1; (F) data resources.
expression with stromal immunity, we identified that the

extracellular matrix score is upregulated in those cases (r=0.84,

r=0.53, r=07, respectively; p<0.001, Figures 3A–C). Moreover, we

found the COL10A1 cases are enriched of expression signals

describing infiltration of B cells, CAFs, and macrophages

(r=0.19, r=0.89, and r=0.66, respectively; p<0.001, Figure 3D).

Further expression analysis confirmed these results, as we reveal a

correlation of COL10A1 activation with respective consensus

markers describing pools of cells such as B-cell markers (CD19,

r=0.135, p=0.004; CD79A, r=0.221, p<0. 001), CAFs markers

(FAP, PDPN, THY1, ACTA2, COL1A1, PDGFRA, and

PDGFRB; p<0.001), and M2 macrophages markers (CD163,

r=0.601, p<0.001; VSIG4 r=0.576, p<0.001) (Figures 3E–I).

Moreover, the single-cell analysis results also demonstrate that

COL10A1 could be expressed in CAF cells (Supplementary Figure

S1). Of particular interest was also the significant correlation with

immune checkpoint surface proteins such as PD1, CD86, PDL1,

CTLA4, LAG3, and TIM3 (p<0.001) (Figures 4A–F), indicating a

poss ib l e mechan i sm of how COL10A1-r i ch CRC

facilitates invasion.

COL10A1 related immunomodulators
and construction of five gene
risk signature to stratify patients’
survival probability

A total of 18 immunoinhibitors and 32 immunostimulators

of COL10A1-expression-related immunomodulators were

identified. Predictive model was built by Cox regression based

on the above genes. Fourteen genes were demonstrated to affect

patients’ outcome (Supplementary Table S1) by univariate

results, and five genes are the main body of the model, which

are inferred from multivariate results (Table 2). According to the

median value of risk score, a high risk score means a poor

outcome, while low-risk patients have a contrary prognosis. The

area under the curve (AUC) was 0.781 (Figures 5A–C), and the

internal validation results also support the above conclusions,

while the AUC was 0.750 in the validation dataset (Figures 5D–

F). In addition, we applied the model to predict OS, PFS, and

DSS, but the model did not accurately predict these new

endpoints (Supplementary Figure S2).
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FIGURE 2

Comparison of different mRNA expression levels on (A) gender, (B) ethnicity, (C) body mass index, (D) TMN T stages, (E) TMN N stages, (F) TMN
M stages, (G) AJCC Classification status, (H) perineural invasion, and (I) lymphatic invasion of CRC patients.
In vivo and in vitro analysis of COL10A1
expression levels in CRC

Microarray analyses by Croner et al. (14) revealed significantly

increased expression levels of COL10A1 in tumor tissue samples

compared with that in normal tissues in CRC patients. Chapman

et al. (15) successfully reproduced these data, but interestingly,

high expression levels could not be found in in vitro cultured CRC

cell lines. To address the question of whether tumor cells

themselves exhibit increased expression of COL10A1, CT values

were compared between tumor, normal tissue, fibroblasts, and

CRC cell lines. This was accomplished by first normalizing the CT

values of COL10A1 to GAPDH and second by comparing those

RNEs (Figures 6A, B). The tumor tissue significantly shows the

highest expression followed by the adjacent normal tissue, which

is still higher than any expression of other cell populations, driving

the hypothesis of COL10A1 overexpression in tumor stroma,

triggered by lateral information transfer between tumor and

stromal cells. Our hypothesis based on the bioinformatics

analysis that CAFS/fibroblasts is the source of COL10A1

overexpression in CRC is strongly supported due to these results.

COLX protein expression in several
cancer and fibroblast cell lines

For PA-597603, the monomeric (∼75 kDa) and multimeric

forms (∼140 kDa) were detected in our recombinant COLX

from HEK2973 T cells. Bands at the level of the multimeric form

were also weakly found in all CRC cell lines and in fibroblasts

and skin sample. Particularly strong bands were detected in the

range of ∼45 and ∼50 kDa and occasionally at ∼20 kDa.

The C-terminal antibody MA5-32504 was also able to detect the

monomeric form of the recombinant protein at ∼75 kDa, which was
absent in all other cell lines. In contrast, bands in the ∼66-kDa range
and at ∼6.5 kDa (except LoVo and DLD-1) were detected here.
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FIGURE 3

Spearman correlation test of COL10A1 mRNA levels and (A) stromal score, (B) immune score, (C) ESTIMATE score, (E) CD19, (F) CD79A,
(G) different CAF cell markers, (H) CD163, and (I) VSIG4; (D) overview of correlation analysis of COL10A1 expression an several cell types.
The X53 antibody detected the monomeric form at ∼75 kDa
and the multimeric form at ∼140 kDa in recombinant COLX. In

cell lines, the multimeric form was detected at ∼170 kDa. The

antibody PA5-49198 paralleled with PA5-97603, especially in all

CRC cell lines, and in fibroblasts, the ∼50-kDa band was the

most intense. Other bands were noted at ∼45, ∼32, and ∼20 kDa
(Figures 7A–F).

Discussion

Health issues associated with CRC is significant factor of the

oncology-related health burden on the society. As prevalence

directly relates to the socio-economic development of a country,

besides the hotspots Western Europe, Australia, and North

America, an increasing incidence can be observed in South

America and Eastern Europe, mainly due to lifestyle changes,

making CRCs as 1 out of 10 cancer cases in 2020 (CRC total,

1.9×106, 935,000 deaths) (1), expected to reach 3×106 incidences

in 2040 (16). As prevalence rises, drug market size follows with

an estimated size of 10.9 billion dollars in 2022 (17) in five most

prevalent countries, mainly attributed to adjuvant and

neoadjuvant chemotherapy of surgically resectable CRC cancers.

Surgery is the main type of treatment with the strongest positive

clinical prognostic consequences for all CRC combined, featuring a

rising cost of surgery in recent decades (30,000 cases in 2015 in

Germany, CRCs cost of illness ratio reaching roughly 50,000 EUR per

patient). The surgical treatment procedure for confirmed CRC

depends significantly on whether existing metastasis locally in

surrounding lymph nodes exists or not, defining applied resection

technique and resection size and aggressive adjuvant therapy. Thus,

an accurate diagnosis of this status has an immense impact on the

operation procedure and the patient’s rehabilitation after surgery. The

procedure depends mainly on the localization of the arterial

transection, which determines the size of resected colon/rectum

segments. Thus, a lymphogenic metastasis follows the regular

pattern of an initially longitudinal paracolic (maximum of 10 cm)

and then truncal metastasis, which then decides the intestinal
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FIGURE 4

Spearman correlation test of COL10A1 expression levels and expression of immune checkpoint molecules (A) PD1, (B) CD86, (C) PD-L1, (D)
CTLA-4, (E) LAG3, and (F) TIM3.
resection size with possible partial resection of infiltrated neighboring

structures. In colon carcinoma, the spectrum ranges from segmental

or hemicolectomies up to complete mesocolic excision (CME)

depending on infiltration depth and N status. This will also

determine the level of lymphatic resection, i.e., D2—paracolic and

intermediate lymph nodes or D3—main, paracolic and intermediate

lymph nodes, which is comparable to western CME (18). Therefore, it

is becoming increasingly important to improve diagnostic accuracy.

A biomarker in the primary tumor that trustfully predicts actual

tumor spread would impact both types of the treatment decision. Our

project associates to this initiative.

Previous works of others have identified some promising

biomarkers; however, hitherto, there is no consensus marker

established to support clinical decision making in the before-

mentioned manner. Given the economic and clinical importance,

the field of research is relatively large and allows only an insufficient
B

C
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F

A

FIGURE 5

Training and test set model for DSS, PFS, and OS: risk score survival time and immunomodulator expression profiles regarding Col10A1
expression and risk group relation for (A) training set model and (D) test set model; (B, E) Kaplan–Meier curve for training set and test set model;
(C, F) ROC curve for test model validation and optimization of training and test set model.
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FIGURE 6

Relatively normalized expression (RNE) of COL10A1 in solid tumor, adjacent normal colon tissue, and CRC and fibroblast cell lines. For RNE,
the sample with the lowest CT value is set as reference (value: 1) for other tissues and cell lines. CT values were normalized on GAPDH.
(A) Illustration of multiple increased expression levels in CRC tumor stroma compared with in vitro cultured CRC cell lines and fibroblasts.
(B) Enlarged breakdown of COL10A1 expression levels of common fibroblast and CRC cell lines. Fibroblasts (CCL186) were shown to have an
eightfold increased expression compared to the strongest expressing tumor cell SW620.
discussion of the development. The most prominent example has

been initially discovered about a decade ago: Stein et al. (19)

identified the gene metastasis-associated in colon cancer 1

(MACC1) to possess strong predictive potential to distinguish

CRC metastasis risk, and the abundance of the related DNA

string in the blood of patients can help to identify cancer

recurrence and therapy response. The diagnostic value has been

described in independent clinical cohorts, however mostly

fundament on retrospective trials (20). To our knowledge, no

association to surgical decision making or omission of

neoadjuvant treatment in respective MACC1 low-expressing

patients in a prospective manner has been conducted. It would be

interesting to study the correlation of MACC1 and COL10A1

activation in the analysis of bulk tumor specimen and in
B C

D E F

A

FIGURE 7

Western-blot-based assessment of COL10A1 with four different antibodies (antibody with its putative binding target labeled below the individual
membranes, all Thermo Fisher) in extracts from classical CRC cell lines, fibroblast cell line, and skin. Little to low expression of the protein in
cancer cells, elevated levels can be detected in the protein lysates and supernatants retrieved from fibroblasts/skin; positive control (+ ctrl) is
purified recombinant protein from COL10A1 overexpressing HEK2973 T cells, housekeeping protein: GAPDH, antibody MA5-15738 (Thermo
Fisher). (A, B, D, E) Cell lysates; (C) supernatants 20× concentrated by ultrafiltration, and (F) supernatants 70× concentrated by lyophilization.
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functional studies applying genetic COL10A loss of function

models. From the similar historic time span, in the early 2010,

Smith et al. constructed a 34-gene signature that predicts the

metastatic spread of CRC based on the experimental model of

tumor metastasis (21). Although their signature was validated in

prospective clinical trials, Smith signature has not been established

in clinical routine, probably due to the necessity of conducting at

least 34 multiplex analytics hindering simple and rapid

dissemination as POCT. Interestingly, a group at Fudan

University analyzed parts of the same datasets that we assessed in

this project and identified a five-gene signature that predicts

metastasis spread (22). COL10A1 did not come up as their top

candidate suggestion, urging that interrogation of the Fudan

signature in the context of COL10A1-rich CRC is needed. Very

recently, Liu et al. proposed a hub gene signature comprised of four

candidates, and the corresponding protein accumulation in the

tumor material was verified in independent prospective cohort of

patients (23). Importantly, as the new research field of cancer

neuroscience currently emerges, indication from the experimental

field emerges that nerve growth factors mediate liver metastatic

potency of CRC cells (24). Further studies to decipher the

composition and tumor-relevant roles of the neural

microenvironment at the primary tumor site or in the metastasis

site of intestinal tumors are needed and surely will reveal new

insights in the diseases. As such, our group recently identified the

hitherto unrecognized clinical prognostic role activation levels of

sensory nerve chancel of the transient receptor potential channel

(TRPC) class in pancreatic cancer (25), a discovery relevant also for

developing new therapies for this deadly disease, as members of

TRPC are druggable targets with clinical applied inhibitors.

We acknowledge that our work is of a descriptive nature only,

and our assumptions are made based on correlative findings. We

consider our results to be relevant for the field: our study relies on

reusing various publically available, high-quality molecular data

from larger patient population retrieved from different datasets that

all have been quality approved by the scientific community. It

reflects and discriminates regarding gender and ethnic diversity. It is

based on current sequencing technologies and molecular tumor

diagnostic data, and in our data analysis, we appreciate the

importance of the emerging field of intra-tumor spatial

heterogeneity to instruct the biological behavior of the disease. As

COL10A1-enriched tumors feature increased immune cell

infiltration and extracellular matrix components, we assume that

CRC COL10A1 activation might either modulate the tumor

microenvironment, or vice versa; its expression is a downstream

signal of altered immune and stromal environmental interactions.

Of particular interest is the very strong correlation of elevated

COL10A1 transcription with CAFs, as those pool of cell

populations are emerging as modulators of establishing a pro-

invasive tumor microenvironment. Functional studies to address

this questions, particularly using human model systems that

recapitulate cellular and spatial heterogeneity as achieved in

patient-derived organoids (26), are underway in our lab. Of note,

all of our lab-tested classical CRC cell models show a low

abundance of COL10A1 protein expression in Figure 7, which in

part reflects the results of the cell line transcription data. However,

in our view, it urges the assessment of COL10A1 in clinically more

relevant 3Dmodel systems featuring the stroma microenvironment

(27). It will be interesting to compare the mRNA/protein levels of

COL10A1 in the primary tissue with matching personalized 3D in

vitro models and study effects of COL10a1 modulation in such

conditions. Of note, although not retrieved from orthotopic

condition and also resembling high in vitro passage model, the

tested fibroblasts are high in COL10A protein. Confirmatory studies

in patient-matched tumor cell/CAFs co-culture systems are needed

to analyze COL10A1 protein/DNA as component of the lateral

information system between tumor cells and stroma environment.

The described results further established COL10A1 as a

diagnostic marker for predicting progression of colon

carcinogenesis, extending previous reports on this protein in

the context of colon cancer. The first mentioning of COL10A1 to

be specifically upregulated in CRC as compared to normal

mucosa related back to Croner et al. in the year 2005 (14).

After that, the notable report by Huang et al. described the

upregulation of COL10A1 compared to the control tissue in 30

patients (28). Moreover, using protein-based quantification of

COL10A1 in tumor specimens based on histological staining

and semi-quantitative signal quantification in 197 CRC patients,

they identified the significant clinical negative prognostic value

of an elevation of the biomarker. Furthermore, a historic study

has already proposed COL10A1 serum protein levels to be a

minimally invasive and indicative marker for colon cancer

detection as compared to its absence in healthy patients (12).

It would be interesting to investigate if blood serum levels of

COL10A1 protein share a similar prognostic value regarding the

metastatic spread of the primary disease as compared to its

mRNA abundance in tumor specimens, and to perform a

confirmatory study on tumor detection like that reported by

Solé et al. In addition, using machine learning algorithm and

advance materials to discover the potential value of these gene is

also a promising research topic (29, 30). Our data support the

initiation of a relevant prospective clinical study to assess

COL10A1 expression in tumors aiming to improve the

management of colon cancer patients with enlarged lymph

node, either by stratifying patient cohorts who do not need to

receive neoadjuvant chemotherapy or minimizing the number of

patients that require more comprehensive surgical attempt of D3

lymph node resection.
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SUPPLEMENTARY FIGURE 1

COL10A1 expression levels. COL10A1 expression is high in CAF cell cluster
(A, B) as well as in fibroblasts (C).

SUPPLEMENTARY FIGURE 2

Kaplan-Meier curves of COL10A1 expression levels in groups with „high”

and „low” expression on OS (A), PFI(C), DSS(E), ROC curve for validation of
Kaplan-Meier curves for OS (B), PFI (D), DSS (F).
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Identification and validation of
an immune-related lncRNAs
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Nayiyuan Wu2* and Jing Wang2,3*
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Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central
South University, Changsha, China, 3Department of Gynecologic Cancer, Hunan Cancer Hospital
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Ovarian cancer (OC) is the most lethal gynecological cancer in women. Studies

had reported that immune-related lncRNAs signatures were valuable in

predicting the survival and prognosis of patients with various cancers. In our

study, the prognostic value of immune-related lncRNAs was investigated in OC

patients from TCGA-RNA-seq cohort (n=378) and HG-U133_Plus_2 cohort

(n=590), respectively. Pearson correlation analysis was implemented to screen

the immune-related lncRNA and then univariate Cox regression analysis was

performed to explore their prognostic value in OC patients. Five prognostic

immune-related lncRNAs were identified as prognostic lncRNAs. Besides, they

were inputted into a LASSO Cox regression to establish and validate an

immune-related lncRNA prognostic signature in TCGA-RNA-Seq cohort and

HG-U133_Plus_2 cohort, respectively. Based on the best cut-off value of risk

score, patients were divided into high- and low-risk groups. Survival analysis

suggested that patients in the high-risk group had a worse overall survival (OS)

than those in the low-risk group in both cohorts. The association between

clinicopathological feathers and risk score was then evaluated by using

stratification analysis. Moreover, we constructed a nomogram based on risk

score, age and stage, which had a strong ability to forecast the OS of the OC

patients. The influence of risk score on immune infiltration and immunotherapy

response were assessed and the results suggested that patients with high-risk

score might recruit multiple immune cells and stromal cells, leading to

facilitating immune surveillance evasive. Ultimately, we demonstrated that

the risk model was associated with chemotherapy response of multiple

antitumor drugs, especially for paclitaxel, metformin and veliparib, which are

commonly used in treating OC patients. In conclusion, we constructed a novel

immune-related lncRNA signature, which had a potential prognostic value for

OC patients and might facilitate personalized counselling for immunotherapy

and chemotherapy.
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Introduction

Ovarian cancer (OC) is the most lethal gynecological cancer

among women in worldwide, with 313,959 estimated new cases

and 207,252 new deaths in 2020 (1). Due to the ambiguity of

early symptoms and the lack of reliable screening strategies,

more than 60% OC patients are diagnosed with later-stage.

Complete cytoreductive surgery followed by platinum-based

chemotherapy is known as the standard first-line treatment

protocol for OC patients. However, a high proportion patient

will relapse within 2 years of diagnosis (2). Therefore, there is an

urgent need to identify prognostic biomarkers to predict the

outcome of OC patients.

It is being increasingly recognized that immune system plays

vital roles during cancer initiation and progression (3).

Moreover, it is suggested that tumor progression and invasion

is dependent on intratumoural adaptive immunity and the

immunological type, density, and location of immune cells

within the tumor samples are superior to TNM staging in

predicting the natural history of primary cancers (4, 5). It has

been reported that patients whose tumors with more tumor-

infiltrating lymphocytes (TILs) predicted longer survival in OC.

Besides, recruitment of T-regulatory (Treg) cells in OC can

foster immune privilege and predict reduced OS (6, 7). All the

evidence convincingly indicated that OC was an immunogenic

tumor (8). Therefore, the immune-related prognostic signature

might be a potential tool to predict outcome of OC patients.

Long non-coding RNAs (lncRNAs) are a group of RNA

molecules whose transcripts are greater than 200nt but not

translated into proteins. They participate in various biological

progress, such as epigenetic regulation, genetic imprinting,

chromatin organization and protein modification (9, 10).

Moreover, they participate in immune response including antigen

presentation, antigen release, immune cell differentiation and T cells

infiltration (11, 12). Lnc-EGFR stimulates Treg cells differentiation

and promotes immune invasion in hepatocellular carcinoma (13).

Lnc-DC, which is a specific marker of dendritic cells (DCs),

promotes the ability of DCs to active T cells (14). LincR-Ccr2-

5’AS increases the migration ability of Treg cells (15).

In OC, a new lncRNA small nucleolar RNA host gene 12

(SNHG12) was proved to promote immune escape of OC cells

through their crosstalk with M2 macrophages (16). Moreover,

lncRNA HOTTIP was suggested to promote the secretion of IL-6
02
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and up-regulate the expression of PD-L1 in neutrophils, leading to

the inhibition of T cells activity and acceleration immune escape of

OCcells (17).Recently, itwasdemonstrated that lncRNAXISTcould

affect the cell proliferation andmigration viamediatingmacrophage

polarization in both breast cancer andOC (18). In addition, FOXP4-

AS1 and MEG8 were revealed to be associated with immune

infiltration in OC (19, 20). All these evidences indicated that

immune-related lncRNAs played important roles in OC.

Recently, multiple immune-related lncRNA signatures have

been identified to predict the OS in various cancers, including

breast cancer (21–24), hepatocellular cancer (25), lung cancer

(26), cervical cancer (22, 27), colon cancer (28), glioma (29–31),

and bladder cancer (32, 33). However, the immune-related

prognostic lncRNA signature for predicting the prognosis of

OC patients has not been developed. In our study, we aimed to

explore the prognostic value of the immune-related lncRNAs in

OC and validate an immune-related prognostic lncRNA

signature for patients with OC.
Materials and methods

Data acquisition and preprocessing

For TCGA-RNA-Seq training set, mRNA gene expression

profiles and corresponding clinical information were downloaded

from the TCGA data source (https://xena.ucsc.edu). To increase the

statistical power and overcome the systematic errors caused by

small sample size, we combined the datasets (GSE26193, GSE30161,

GSE63885, GSE9891, GSE18520 and GSE19829) with the HG-

U133_Plus_2 platform as the HG-U133_Plus_2 validation set (34–

39). All clinical information and microarray data were captured

from GEO repository (https://www.ncbi.nlm.nih.gov/geo/).

Ultimately, we obtained a TCGA-RNA-seq training cohort with

378 patients and a HG-U133_Plus_2 validation cohort with

590 patients.
Identification of immune-related
lncRNAs

The lncRNA annotation file was acquired from the GENCODE

website for annotation of the lncRNAs. Consequently, 14826
frontiersin.org
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lncRNAs and 2448 lncRNAs were identified from TCGA-RNA-Seq

cohort and HG-U133_Plus_2 cohort, respectively (40). The

immune-related genes were obtained from the ImmPort database

(http://www.immport.org) (41). Pearson correlation analysis was

utilized to screen immune-related lncRNAs. Those lncRNAs with

r>0.3 and p<0.001 were considered as immune-related lncRNAs

(25). To assess the prognostic value of immune-related lncRNAs,

we further conducted univariate Cox regression analysis by using

the “survival” package, and the hazard ratios (HR) with 95%

confidence intervals (CIs) were examined. p < 0.05 was

considered that immune-related lncRNAs were significantly

correlated with OS) and served as prognostic immune-

related lncRNAs.
OS analysis

OS was defined as the time from randomization to death

from any cause. The survival curves were calculated and

illustrated by the KM plot with the long-rank test.
Construction of immune-related
prognostic lncRNA signature

Based on the prognostic immune-related lncRNAs, a risk

signature was constructed by using the “glmnet” package (42).

Through 1000 cross-validation, a panel of genes and their

LASSO coefficients were obtained. The risk scores for the

signature were calculated using the following formula: Risk

score=b1X1+b2X2+⋯+bnXn (b, LASSO coefficient; X, the

expression of each prognostic immune-related lncRNA in each

sample). Based on the best cut-off value of risk score, patients

were divided into high-risk and low-risk groups. Kaplan–Meier

method with the long-rank test were performed to reveal the OS

of the high-risk and low-risk groups by using the “survival”

package. Besides, time-dependent relative operating

characteristic (ROC curve) and area under the curve (AUC)

were applied to assess the prediction ability of the signature. All

the time-dependent ROC curves were calculated and drew by

“SurvivalROC” and “ggplot2” package, respectively.
Decision tree and prognostic
nomogram construction

Decision tree and nomogram model were applied to define

significant clinical predictors. Firstly, univariate and multivariate

COX regression were performed to select important explanatory

variables. Based on the multivariate cox regression results, stage, age

and risk score were identified as predictor variables. After then, the

“rpart”Package (https://cran.r-project.org/web/packages/tree/index.

html) was used to construct decision tree and split patients as
Frontiers in Oncology 03
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different from each other as possible. It was implemented to decide

which of these variables to split and the splitting value in each step of

the tree’s construction (43). Moreover, a nomogrammodel, which is

an individualized risk prediction model to predict the 1, 3, 5-year

survival probability, was constructed using the “RMS” package. The

calibration curves were used to assess the concordance of the

observed and predicted rates of 1, 3, 5-year OS (44).
Estimation of tumor-infiltration,
immunotherapy and
chemotherapy response

Firstly, the ESTIMATE algorithm (https://bioinformatics.

mdanderson.org/public-software/estimate/), which can be applied

for assessment of the presence of stromal cells and the infiltration of

immune cells in tumor samples using gene expression data, was

used to calculate the Estimate score, Immune score, Purity score

and stromal score (45). Briefly, we defined ssGSEA based on the

signatures related to stromal tissue and immune cell infiltration as

Stromal score and Immune score, respectively, and combined the

stromal and immune scores as the ESTIMATE score. Purity score

was calculated as followed: Purity score= cos (0.6049872018 +

0.0001467884*ESTIMATE score). The correlation of risk score

and Estimate score, Immune score, Purity score and stromal

score were analyzed by using Pearson correlation analysis. The

infiltration of 22 subtypes of tumor-infiltrating immune cells

(TIICs) was acquired from CIBERSORT algorithm (http://

cibersort.stanford.edu/) (46). Tumor Immune Disfunction and

Exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/), which

is a method to accurately predict the outcome of patients treating

with immune checkpoint blockade (ICB), were employed to

evaluate the immunotherapy response (47, 48). The

chemotherapy response was evaluated by using the Genomics of

Drug Sensitivity in Cancer database (GDSC, https://www.

cancerrxgene.org). The half-maximal inhibitory concentration

(IC50) of all drugs commonly used to treat tumors were

calculated and represented the drug response. The R package

‘pRRopheticRredic’ was used with 10fold cross-validation and

other parameters by default (49).
Exploration of immune-related
lncRNA function

To further explore the function of the five immune-related

lncRNA, we firstly assessed the association between the five

immune-related lncRNA and immune-related mRNA by using

Pearson correlation analysis. Then, the results were converted

visually and the co-expression network was identified with

Cytoscape software (50). Based on gene expression or the risk

score, patients were divided into two groups. GSEA assay was

utilized to explore whether a series of priori defined pathways were
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enriched in the gene bank derived from DEGs between the two

groups (51, 52). FDR<0.05 was identified as enriched.Moreover, the

absolute immunescores fromgeneexpressiondatasetswereobtained

by LM22 (22 immune cell types) gene signatures of CIBERSORT

algorithm (46). The molecular immune cell subtypes related to the

five lncRNAs expression were captured by using Spearman

correlation analysis (53). Only p<0.05 was considered significant.
Cell culture, RNA extraction and real-
time quantitative PCR

OC cell lines, SKOV3, A2780, OVCAR8 and OVCAR3, were

obtained from Institute of clinical pharmacology, Central South

University. All the cell lines were cultured in RPMI-1640

medium with 10% FBS. All cell lines were cultivated at 37°C

and 5% CO2. Total RNAs were extracted from OC cell lines by

using Trizol reagent (Takara). After extraction, total RNAs were

reverse-transcribed into cDNA using PrimerScript™ RT reagent

Kit (RR047A, Takara). Real-time quantitative PCR was

performed using the SYBER Premix Ex Taq kit (RR420a,

Takara) in Roche-LightCycler 480 system (Roche,USA).

Finally, the relative expression of lncRNAs were calculated

based in the internal reference GAPDH. The primers of

lncRNAs and GAPDH are listed in supplementary Table 1.
Lentivirus infection

The packaged lentivirus vectors of UBXN10-AS1

overexpression (LV-BUXN10-AS1) and empty lentivirus

vectors (LV-NC) were purchased from GenePharm (Shanghai,

China). For UBXN10-AS1 overexpression, the LV-UBXN10-

AS1 or LV-NC were introduced in SKOV3 and A2780 cells at an

MOI OF 50-100. After 72h post-infection, the infection

efficiency was measured by using RT-qPCR.
Cell proliferation assays

Cell proliferation was assessed by using CCK8 kit (MCE,

China). Briefly, cells (1-2 *104 cells/well) infected with LV-

UBXN10-AS1 or LV-NC were seeded into 96-well plates and

cultured in a CO2 incubator for 24,36, 48,72 and 96h.

Subsequently, 10ml of CCK8 reagent was added into the wells

and the plate was incubated for 1h. Finally, the OD value was

measured at 450nm using the microplate reader (54).
Cell migration assay

To detect the cell migration, wounding healing assay was

performed. Firstly, cell infected with LV-UBXN10-AS1 or LV-
Frontiers in Oncology 04
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NC were seeded in 24-well plates. A 200ul pipette tip was used to

scratch the cell layer, when cells reached 70-80% confluence.

Cells were grown for an additional 48h. Microscope images were

captured at 0h and 48h (55).
Annexin V/PI apoptosis assay

Cells were plated in 6-well plate with 1*105 cells/well. After

12 hours, cells were infected with lentivirus vectors. After 48

hours incubation, cells were harvested, washed with PBS and

incubated with Annexin V and PI, using the Annexin V-APC

apoptosis detection kit (KGA1022, KeyGen, China). The flow

cytometry analyses were performed with CytoFLEX instrument

(Beckman Coulter, USA).
Statistical analysis

The two‐tailed Students’ t-test was utilized to analyze the

significant differences between groups, whereas quantitative

differences among groups were analyzed by using the one‐way

ANOVA. Kaplan–Meier curves and log-rank test were

implemented to calculate the OS rate. All statistical analyses

were performed using R software (version 3.6.2). * means

p<0.05, ** means p<0.01, ***means p<0.001. p<0.05 was

considered statistically significant.
Results

Identification of immune-related
prognostic lncRNAs in OC patients

As shown in Figure 1, we firstly identified 14826 lncRNAs in

the TCGA-RNA-seq dataset and 2448 lncRNAs in the HG-

U133_Plus_2 dataset, based on the lncRNA annotation file from

GENCODE website. Then, the immune-related genes were

download from the ImmPort database. Pearson correlation

analysis was performed to screen the immune-related

lncRNAs. The immune-related lncRNAs were identified as

that the expression of lncRNAs were correlated with one or

more of the immune-related genes (| cor | > 0.3 and p < 0.001).

Finally, we obtained 1637 immune-related lncRNAs in TCGA-

RNA-seq dataset and 1814 immune-related lncRNAs in the HG-

U133_Plus_2 dataset, respectively (Supplement Table 2). To

screen immune-related prognostic lncRNAs, the univariate

Cox regression was implemented. The forest plot showed that

5 lncRNAs (UBXN10-AS1, TOPORS-AS1, HIPK1-AS1,

CELSR3-AS1 and CECR5-AS1) were significantly correlated to

prognosis of patients with ovarian cancer. All the lncRNAs were

protective factors with hazard ratio (HR) <1 in both datasets

(Figure 2A). The Kaplan–Meier curves confirmed that higher
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expression of all the five lncRNAs were associated with better OS

in both cohorts (Figure 2B).
Construction and validation of the
immune-related lncRNA signature

In addition, we defined the TCGA-RNA-Seq dataset as

discovery cohort and constructed an immune-related lncRNA

signature. The risk score for each patient was calculated based on

the coefficient for each lncRNA (Supplement Figure 1).

Subsequently, patients were divided into two subgroups

dependent on the best cut-off value of risk score. The

distributions of the risk score and survival status were listed in

the Figure 3A. The heatmap showed that the expression of all the

lncRNAs were higher in the low-risk group than in the high-risk

group (Figure 3B). Kaplan-Meier survival curves indicated that

patients with higher risk score had worse survival rate (p<0.001,

Figure 3C). Furthermore, we validated the prognostic value of the

immune-related lncRNA signature in the HG-U133_Plus_2

cohort. The results were consistent with the findings in the

TCGA-RNA-Seq cohort. It’s suggested that the higher risk score

was associated with shorter OS time and worse survival status

(Figures 3D-F). The ROC curves demonstrated that the immune-

related prognostic lncNRA signature harbored a promising ability

to predict 5-year OS in the TCGA-RNA-Seq cohort and HG-

U133_Plus_2 cohort (Figures 3G, H). All these demonstrated that

the immune-related prognostic lncRNA signature might stably

predict the survival outcome of patients with OC.
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Association between the prognostic
signature and clinicopathological
feathers

We attempted to analyze the association between risk score

and the clinicopathological feathers. It was suggested that

patients with higher age and advanced FIGO stage had higher

risk score, while the risk score was not associated with grade in

both cohort (Figures 4A, B). Besides, we assessed the prognostic

ability of the immune-related prognostic signature by

performing a stratification analysis. Compared to patients with

lower risk, patients with higher risk had worse OS in younger

(<50y), older (≥50y), advanced FIGO stage (III+IV), early grade

(G1+G2) and advanced grade (G3+G4) subgroups in the TCGA-

RNA-Seq cohort (Figure 4C). Likewise, these results were

validated in the HG-U133_Plus_2 cohort (Figure 4D).

Due to the small samples of the early FIGOstage (I+II) subgroup

in TCGA-RNA-Seq cohort, there was no significant difference inOS

between higher risk patients and lower risk patients (p=0.17,

Figure 4C). However, we confirmed that the signature retained the

ability topredictOS forpatientswith early stage inHG-U133_Plus_2

cohort (p=0.0054, Figure 4D). All these results revealed that it could

be served as a potential predictor for OC patients.
Modeling the prognostic nomogram

Firstly, the independent prognostic factors were identified by

using the univariate and multivariant cox regression in the
FIGURE 1

The workflow of this study.
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A

B

FIGURE 2

Forest plot of the prognostic ability of the five immune-related lncRNAs in TCGA-RNA-Seq cohort and HG-U133_Plus_2 cohort (A); Kaplan–
Meier curves suggested that expression of the five immune-related lncRNAs were associated with the OS in both TCGA-RNA-Seq cohort and
HG-U133_Plus_2 cohort (B).
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TCGA-RNA-Seq cohort. The univariate cox regression analysis

indicated that risk score (HR: 2.971; 95% CI: 1.718-5.136;

p<0.001), age (HR: 1.022; 95% CI: 1.010-1.035; p<0.001), stage

(HR: 1.380; 95% CI: 1.032-1.847; p=0.030) but not grade (HR:

1.226; 95% CI: 0.828-1.815; p=0.308) were associated with OS of

patients (Figure 5A). Multivariate cox analysis further proved
Frontiers in Oncology 07
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that risk score (HR: 2.537; 95% CI: 1.443-4.461; p=0.001), age

(HR: 1.019; 95% CI: 1.007-1.032; p=0.003) and stage (HR: 1.377;

95% CI: 1.026-1.849; p=0.033) were independent prognostic

factors for OC patients (Figure 5A). Therefore, age, FIGO

stage and risk score were applied to build a decision tree with

five different risk subgroups (Figure 5B). The split at the top of
A B

D E

F

G H

C

FIGURE 3

The immune-related prognostic signature was established and validated in TCGA-RNA-Seq cohort and HG-U133_Plus_2 cohort, respectively.
Distributions of risk scores and survival status of OC patients in the TCGA-RNA-Seq cohort (A) and HG-U133_Plus_2 cohort (D); Heat map
analysis showed the association between risk score and the expression of the five lncRNAs in TCGA-RNA-Seq cohort (B) and HG-U133_Plus_2
cohort (E); Kaplan–Meier curves showed that the high-risk subgroup had worse OS than the low-risk subgroup in TCGA-RNA-Seq cohort
(C) and HG-U133_Plus_2 cohort (F). ROC curves of the immune-related lncRNAs for predicting 5-year survival in TCGA-RNA-Seq cohort (G)
and HG-U133_Plus_2 cohort (H).
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FIGURE 4

Patients with different clinicopathological features (including age, FIGO stage and Grade) had different levels of risk scores in TCGA-RNA-Seq
cohort (A) and HG-U133_Plus_2 cohort (B). Stratification analysis suggested that the immune-related lncRNAs signature retained its prognostic
value in multiple subgroups in TCGA-RNA-Seq cohort (C) and HG-U133_Plus_2 cohort (D). The younger and older group were divided based
on 50y; FIGO I+II were identified as early stage and FIGO III+IV were identified as advanced stage; G1+G2 were identified as early grade and
G3+G4 were identified as advanced grade.
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the tree resulted in two large branches: the left-hand branch

included patients with early stage; the right-hand branch

corresponded to patients with advanced stage. The right

branch is further subdivided by age, stage and risk score.

Overall, the tree had five terminal nodes, leading to

partitioning OC patients in five subgroups. It worth

mentioning that compared to patients with younger age

(<50y), stage III and high-risk score (31% of overall samples),

patients with younger age (<50y), stage III and low-risk score

(9% of overall samples) showed higher alive probability (44% vs

59%). In order to make the signature more applicable in clinic, a

nomogram based on the predictors (including risk score, age and

FIGO stage) was established in the TCGA-RNA-Seq cohort

(Figure 5C). Calibration plots showed that the observed vs

predicted rates of 1-, 3- and 5-year OS showed perfect

concordance (Figures 5D-F). Moreover, the predictive

performance of the nomogram was evaluated by the ROC

curve. Compared to other predictors (including age and FIGO

stage), the model’s 5-year AUC values were higher in both

TCGA-RNA-Seq cohort and HG-U133_Plus_2 cohort

(Supplement Figure 2). KM survival plot analysis showed that

patients with high-risk had a worse OS than patients with low-

risk subgroup in both TCGA-RNA-Seq cohort and HG-

U133_Plus_2 cohort (p<0.001 , p<0.001 , respectively,

Figures 5G, H). These data confirmed that the nomogram had

a robust and stable ability to predict the OS for OC patients.
Association between the prognostic
signature and immune infiltration and
immunotherapy response

To explore the influence of risk score on immune infiltration

and immunotherapy response, the ESTIMATEscore,

ImmuneScore, PurityScore and StromalScore were calculated

to explain immune cell and stromal cell infiltration situation.

The correlation analysis results indicated that the risk score was

positively correlated with the ESTIMATEscore, ImmuneScore

and StromalScore, but negatively correlated PurityScore in

TCGA-RNA-Seq cohort (Figures 6A-D). The similar results

were validated in the HG-U133_Plus_2 cohort (Supplement

Figures 3A-D). After that, the distribution proportion of 22

immune cells in high-risk group and low-risk group were

analyzed. In TCGA-RNA-Seq cohort, the distribution

proportion of Macrophages cells was higher in high-risk group

than low-risk group, whereas the distribution proportion of

activated dendritic cells were significantly lower (Figure 6E).

In the HG-U133_Plus_2 cohort, not only Macrophages cells and

activated dendritic cells but also memory B cells, plasma cells,

CD4+ T cells, Treg cells, NK cells, activated mast cells and

neutrophils were differently distributed in high-risk group and

low-risk group. (Supplement Figure 3E). Besides, the potential
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response to immunotherapy for each patient was assessed by

using the TIDE algorithm. The results suggested that patients

with low-risk score were more sensitive to immunotherapy than

those with high-risk score in TCGA-RNA-Seq cohort (p<0.001,

Figure 6F). Taken together, these results indicated that patients

with high-risk score might recruit multiple immune cells and

stromal cells and facilitate OC immune surveillance evasive.
Analysis the correlation between the risk
model and chemotherapy response

Until now, chemotherapy is the main treatment method for

OC patients. Therefore, we tried to identify the association

between the risk score and chemotherapy response in both

TCGA-RNA-Seq cohort and HG-U133_Plus_2 cohort

(Supplement Table 3). We revealed that a higher risk score

was associated with a lower IC50 of chemotherapeutics such as

paclitaxel (p<0.01), metformin (p<0.001) and veliparib

(p<0.001) in TCGA-RNA-Seq cohort (Figures 6G-I). In HG-

U133_Plus_2 cohort, the risk score was also confirmed to be

negatively associated with IC50 of paclitaxel (p<0.05),

metformin (p<0.001), and veliparib (p<0.05), whereas it was

positively associated with the IC50 of cisplatin (Supplement

Figures 3F-I), which indicated that the model acted as a potential

predictor for chemosensitivity.
Exploration of the five immune-related
lncRNA function

To further understand the function of the five immune-

related lncRNA, we constructed the co-expression network

between the five immune-related lncRNA and immune-related

mRNA. As shown in Figure 7A, CELSR3-AS1 and HIPK1-AS1

showedmost connections with immune-related mRNAs. Besides,

GSEA analysis was performed to further explore and interpret the

enrichment results. The annotated top20 pathways were listed in

Figures 7B-F. As shown in the bubble charts, all the five lncRNAs,

especially TOPORS-AS1, were significantly associated with

immune-related pathways. UBXN10-AS1, TOPORS-AS1,

CELSR3-AS1 and CECR5-AS1 were significantly associated

with chemokine signaling pathway. Except that, TOPORS-AS1,

CECR5-AS1 and HIPK1-AS1 participate in antigen processing

and presentation. In addition, the associations between lncRNA

expression and individual immune cell subtypes were computed

by Spearman correlation in TCGA-RNA-Seq cohort and HG-

U133_ Plus_2 cohort (Supplement Figures 4A, B). Moreover,

there is a significant difference in actin binding, adaptive of

immune response based on somatic recombination of immune

receptors built from immunoglobulin superfamily domains,

antigen receptor mediated signaling pathway and B cell
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activation between high-risk group and low-risk group in both

TCGA-RNA- seq cohort and the HG-U133_Plus_2 cohort

(Supplement Figures 4C, D). All these results indicated that the

five lncRNAs might affect immune infiltration and facilitate

ovarian cancer immune surveillance evasive by regulating

immune-related pathways in OC.
Frontiers in Oncology 10
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Overexpression of UBXN10-AS1
suppressed cell proliferation and
migration in OC cell lines

To figure out the function of LncRNAs in OC, the expression

of lncRNAs in OC cell lines were detected. Due to the low
A B
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C

FIGURE 5

Univariate and multivariate analyses revealed that risk score was an independent prognostic predictor in the TCGA-RNA-Seq cohort (A).
Construction of decision tree based on risk score, age and stage. The younger and older subgroup were divided based on the median value of
age (B). Construction of nomogram based on risk score, age and stage (C). Calibration plots of the nomogram for predicting the probability of
OS at 1, 3, and 5-years in the TCGA-RNA-Seq cohort (D–F); KM survival plot analysis showed that patients with high-risk had a worse OS than
patients with low-risk subgroup in both TCGA-RNA-Seq cohort and HG-U133_Plus_2 cohort (G, H).
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FIGURE 6

Difference between high-risk score group and low-risk score group in immune infiltration, immunotherapy and chemotherapy response
prediction in TCGA-RNA-Seq cohort. The risk score was positively correlated with EstimateScore, ImmuneScore, StromalScore and negatively
correlated with PurityScore (A-D); The different infiltrated fraction of 22 immune cells between high-risk group and low-risk group (E); The
immunotherapy response of patients with OC in high- and low-risk subgroups (F); Estimated IC50 values indicated the chemotherapy response
of paclitaxel, metformin and veliparib in TCGA-RNA-Seq cohort (G-I). *p < 0.05; **p < 0.01; ***p < 0.001.
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abundance of CELSR3-AS1, CECR5-AS1 and HIPK1-AS1, they

were not detected in A2780, SKOV3, OVCAR8 and OVCAR8

cell lines. UBXN10-AS1 were more highly expressed in SKOV3

and A2780 cell lines (Figure 8A). Thus, the function of

UBXN10-AS1, as the candidate gene, were further studies in

A2780 and SKOV3 cell lines (Figures 8B, C). CCK8 assay

revealed that overexpression of UBXN10-AS1 significantly

suppressed cell proliferation (Figure 8D). Besides, it could also

inhibit the cell migration of SKOV3 and A2780 (Figure 8E).

However, UBXN10-AS1 overexpression had no influence on cell

apoptosis (Figure 8F). All these results indicated that UBXN10-

AS1 might serve as a tumor suppressor in OC.
Discussion

Due to the heterogeneity of OC, it is difficult to blame it on a

single specific issue (56). Recently, gene signatures developed by

the combination of high-throughput sequencing technology and

bioinformatics have been widely used in individualized therapy

and prognosis evaluation, which have the better prediction

ability than a single biomarker (57). Multiple evidence

demonstrated that immune systems made an important

contribution to cancer initiation, development, metastasis, and

immune escape (58–60). Furthermore, more and more immune-

related lncRNAs signatures had been successfully developed and

had a perfect prediction accuracy for survival and prognosis in
Frontiers in Oncology 12
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various tumors (61, 62). However, the prediction value of

immune-related lncNRAs signature in OC has not

been explored.

In our study, we firstly screened immune-related lncRNAs in

OC patients from the TCGA-RNA- seq dataset (n = 378) and the

HG-U133_Plus_2 dataset (n = 590) by using Pearson correlation

analysis. Afterwards, the prognostic significance of immune-

related lncRNAs were identified by using univariate cox

regression analysis. Finally, five immune-related lncRNAs

(including UBXN10-AS1, TOPORS-AS1, HIPK1-AS1,

CELSR3-AS1 and CECR5-AS1) were demonstrated to serve as

prognostic biomarkers in both TCGA-RNA-seq dataset and the

HG-U133_Plus_2 dataset. Recently, it was reported that

overexpression of TOPORS-AS1 suppressed cell proliferation

and inhibited aggressive cell behaviors, including migration,

invasion, and colony formation via inhibiting the Wnt/b-
catenin pathway in ovarian cancer cells. Moreover, OC

patients with high TOPORS-AS1 expression had favorable OS

compared to low expression, which was consistent with our

study (63). In gastric cancer, it was also proved that the

expression of TOPORS-AS1 and its associated gene, NDUFB6

in gastric cancer tissues were significantly lower than that in

adjacent tissues (64). All the evidence indicated that TOPORS-

AS1 might play important roles in carcinogenesis.

Unfortunately, the function of UBXN10-AS1, HIPK1-AS1,

CELSR3-AS1 and CECR5-AS1 in OC have not been reported.

In colon adenocarcinoma, UBXN10-AS1 was expressed with low
A B

D E F

C

FIGURE 7

Exploration of the five immune-related lncNRAs function. Construction of the co-expression network of the five immune-related lncRNAs and
immune-related mRNA (A). GSEA assay to explore the pathways associated with the five immune-related lncRNAs (B-F).
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level and overexpression of UBXN10-AS1 suppressed tumor

growth in vivo and in vitro (65). The function of UBXN10-AS1

in OC has not been reported. Therefore, we explored the

function of UBXN10-AS1 in cell proliferation and migration

in SKOV3 and A2780 cell lines. The results indicated that

UBXN10-AS1 could significantly reduce cell proliferation and

migration in OC.

Furthermore, we constructed an immune-related lncRNA

prognostic signature to predict the OS. Based on the best cutoff

value of risk score, all patients were divided into high- and low-risk

groups. There was significantly different in OS between both high-

risk group and low-risk group. Stratified analysis results revealed

that the risk score was associated with age and FIGO stage. By using

multivariate cox regression, we demonstrated that risk score was an

independent prognostic factor for OC patients. In order tomake the

signature more applicable in clinic, a nomogram was established.

Besides, the potential role of the immune-related signature in

immune infiltration and immunotherapy response were

investigated. The results indicated that various immune cells,

especially tumor associated macrophages (TAMs), were differently

distributed in high-risk group and low-risk group. Previous study

reported that M2-like TAMs accelerated tumor growth, promoted

tumor cell invasion and metastasis, and inhibited immune killing to

promote tumor progression, which was consistent with our study

(66). Accumulating evidence demonstrated that immune systems

make a crucial contribution to the antitumor effects of conventional

chemotherapy-based and radiotherapy-based cancer treatments
Frontiers in Oncology 13
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(67, 68). Furthermore, the association between risk model and

chemotherapy response were investigated. Our results suggested

that the risk model might serve as potential predictor for

chemosensitivity of various antitumor drugs, especially for

paclitaxel, metformin, and veliparib, which are commonly used in

treating OC patients.

In our study, both TCGA-RNA- seq datasets and HG-

U133_Plus_2 datasets were included. The sample size is much

larger than the studies before, which makes it more robust and

reliable. However, there are some limitations. Due to different

platforms, gene expression values are subject to sampling bias.

Additionally, the roles of the lncRNAs and their interactions

with immune-related genes are not confirmed using in vitro and

in vivo experiments.

In summary, we have constructed a novel immune-related

lncRNA signature, which have a potential prognostic value for

ovarian cancer patients and might facilitate personalized

counsell ing for immunotherapy and chemotherapy.

Prospective studies are needed to further validate its predictive

accuracy for estimating prognoses of ovarian cancer.
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FIGURE 8

UBXN10-AS1 significantly suppressed cell proliferation and inhibited cell migration in SKOV3 and A2780 cell lines. Expression of UBXN10-AS1 in
SKOV3, A2780, OVCAR3 and OVCAR8 cell lines (A); Overexpression of UBXN10-AS1 in SKOV3 and A2780 cell lines (B, C); Overexpression of
UBXN10-AS1 significantly suppressed cell proliferation in SKOV3 and A2780 cell lines (D); Overexpression of UBXN10-AS1 significantly inhibited
cell migration in SKOV3 and A2780 cell lines (E); Overexpression of UBXN10-AS1 had no influence on apoptosis in SKOV3 and A2780 cell lines
(F). *p<0.05; **p<0.01; ***p<0.001.
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SUPPLEMENTARY FIGURE 1

Least absolute shrinkage and selection operator (LASSO) regression was

performed, calculating the minimum criteria (A, B) and coefficients (C).

SUPPLEMENTARY FIGURE 2

Time-dependent receiver operating characteristic (ROC) curves to

predict the 5-year OS for the risk score, age and stage in TCGA-RNA-

Seq cohort (A) and HG-U133_Plus_2 cohort (B).

SUPPLEMENTARY FIGURE 3

Difference between high-risk score group and low-risk score group in

immune infiltration, immunotherapy and chemotherapy response
prediction in HG-U133_Plus_2 cohort. The risk score was positively

correlated with EstimateScore, ImmuneScore, StromalScore and

negatively correlated with PurityScore (A-D); The Association of the
signature and the distribution of 22 immune cells (E); Estimated IC50

values indicated the chemotherapy response of paclitaxel, metformin,
veliparib and Cisplatin in TCGA-RNA-Seq cohort (F–I). *p < 0.05; **p <

0.01; ***p < 0.001.

SUPPLEMENTARY FIGURE 4

Molecular immune cell subtypes related to the five immune-related
lncRNAs in HG-U133_Plus_2 cohort (A) and TCGA-RNA-Seq cohort (B),
respectively. GSEA identify the different pathways between high-risk
group and low-risk group in HG-U133_Plus_2 cohort (C) and TCGA-

RNA-Seq cohort (D), respectively.

SUPPLEMENTARY TABLE 1

The primers in the study.

SUPPLEMENTARY TABLE 2

The immune-related lncRNAs identified in TCGA-RNA-seq dataset and

HG-U133_Plus_2 dataset.

SUPPLEMENTARY TABLE 3

The chemotherapy response to anticancer drugs commonly used to
treating cancers in TCGA-RNA-seq dataset and HG-U133_Plus_2 dataset.
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E3 ubiquitin ligases (E3s), the second most common cancer-related functional

protein family, play vital roles in multiple tumors. However, their importance in

prognosis and immunotherapy of lung adenocarcinoma (LUAD) is not clear.

First, utilizing the data from The Cancer Genome Atlas (TCGA), we

comprehensively assessed the expression profile and immunological

association of 13 E3s in LUAD patients. Consequently, MARCH1 was

considered a candidate for further study. Second, several algorithms were

applied to assess the correlation between MARCH1 and immunological

characteristics in the LUAD tumor microenvironment. Third, an immune risk

score (IRS) was developed to predict the prognosis. Finally, the immunological

relationship of MARCH1 in pan-cancer was also estimated. We found that E3s

were disordered in LUAD. Among them, MARCH1was positively correlated with

most immunological characteristics, indicating that MARCH1 designed an

inflamed TME in LUAD. Coincidently, LUAD with low MARCH1 expression

had a poor prognosis and was not sensitive to immune checkpoint blockers.

In addition, the IRS could accurately predict the prognosis. In pan-cancer,

MARCH1 was also positively correlated with most immunological

characteristics. In conclusion, MARCH1 could be a novel and promising

biomarker for immune status and effectiveness of immunotherapy for

LUAD patients.
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Introduction
Lung adenocarcinoma (LUAD) is the dominating

pathological subtype of lung cancer, which is the deadliest and

second most prevalent cancer. Its incidence is still increasing

worldwide (1). Moreover, the therapeutic outcome is far from

satisfactory due to delayed diagnosis and limitation of

traditional treatments.

Tumor cells could be identified as abnormal substances and

eliminated by immune cells. Meanwhile, they have special

mechanisms to evade host immune surveillance (2).

Immunotherapy, with fewer off-target effects and longer-lasting

responses, could restore the patient’s immune system to kill tumor

cells through natural mechanisms and is rapidly becoming a focus

of oncology research (3). Recent cancer treatment applications of

immunotherapy include chimeric antigen receptor T cells, vaccine

therapy, and immune checkpoint blockers (ICBs) targeting

programmed cell death-ligand 1/programmed death protein 1

(PD-L1/PD-1) and cytotoxic T lymphocyte-associated protein 4

(CTLA-4) (4). In clinical application, the US Food and Drug

Administration (FDA) has approved several ICBs to treat non-

small cell lung cancer (NSCLC), melanoma, and some other

malignant tumors (5). Despite these encouraging results,

immunotherapy is only effective for a minority. Accumulated

evidence revealed that sensitivity to ICBs was strongly related to

tumor immune phenotypes, which were classified as inflamed/

infiltrated, immune-excluded, and immune-desert phenotypes

based on the T cells’ spatial distribution in the tumor

microenvironment (TME) (6). An inflamed TME always made

immunotherapy more effective than the other two phenotypes. It

was characterized by a high PD-L1 and PD-1 expression and a

high prevalence of tumor-infiltrating immune cells (TIICs) (7).

Consequently, the amount of TIILs and factors regulating the

immune cell infiltration, such as cytokines, chemokines, and other

components, is crucial for immunotherapy. Meanwhile, elements

of inflamed tumors included microsatellite instability (MSI) and

tumor mutational burden (TMB) (6, 8). Taken together, these

immunologic characteristics within the TME were vital to

immunotherapy. Therefore, a biomarker indicating the status of

the TME could predict the immunotherapy response.

Ubiquitination, one of the posttranslational modifications, is a

cascade that regulates protein degradation by ligating ubiquitin to

the target protein. Ubiquitin is activated by binding to ubiquitin-

activating enzymes (E1s), subsequently transmitted to ubiquitin-

conjugating enzymes (E2s), and finally covalently ligated to a target

protein regulated by ubiquitin ligases (E3s) (9). Ubiquitination is an

essential system that regulates the stability of numerous pivotal

regulatory factors and cellular processes, covering cell cycle,

proliferation, apoptosis, and neurotransmission (10). It has been

observed to be dysregulated in many cancers (11).

E3s, of which there are about 1,000 members in Homo sapiens,

can be divided into four categories according to their functional
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domains: HECT domain-containing type, PHD-finger type, U-box

type, and RING-finger type proteins (12). Because of their

specificity for substrates, E3s are key regulators in the

ubiquitination process. Several immune processes have been

linked to their regulation, including immune evasion and antigen

presentation, T cell-mediated tolerance, and lymphocyte activation

and differentiation (13). Furthermore, ubiquitination of PD-1/PD-

L1 via E3s seriously alters the protein stabilization and dynamics of

PD-1/PD-L1 in cancer immunotherapy (14). However, the

relationship between E3s and immunologic signatures in the

TME as well as their predictive value in prognosis and

immunotherapy efficacy in LUAD remains unknown.

Herein, we obtained 13 E3s, of which the significance in

immunity has been uncovered, and demonstrated the relationship

between the 13 E3s and immunologic characteristics in the TME.

Of interest, MARCH1 was found to have a strong association with

the TME. To gain sufficient insight into the role of MARCH1 in

LUAD and pan-cancer, we conducted a comprehensive analysis

on multiple levels containing mRNA expression, immune

signature, patient survival, and chemical compounds. We also

established a risk model to predict prognosis and immunotherapy

response. Collectively, our systematic analysis provides a

comprehensive insight on the biology of MARCH1, which has

greater potential value on immunotherapy targets than other E3s.
Materials and methods

Data acquisition

All data, including the pan-cancer RNA sequencing data,

somatic mutation data, and detailed clinical data, were acquired

from The Cancer Genome Atlas (TCGA) database using UCSC

Xena. TMB was calculated with somatic mutation data. MSI data

were collected from the study of Bonneville et al. (15).
Expression profiles of E3 ligases

First, the expression profiles of the 13 E3s in tumor tissues

and paracarcinoma tissues from LUAD patients were analyzed

using the RNA sequencing data. Then, in pan-cancer, differences

in MARCH1 level between tumor and paracarcinoma tissues

were computed via “limma” R package (false discovery rate

<0.05, |log2FC| ≥1).
Correlation between MARCH1 and the
immunological characteristics in the TME

The characteristics contain the expression level of

immunomodulators (16), the expression of immune checkpoints,

the infiltration level of TIICs, and the cancer immunity cycle’s
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activity. The activities of these cancer immunity cycle steps were

evaluated by single sample gene set enrichment analysis (17). The

association between MARCH1 and immune checkpoints,

mismatch repair (MMR) protein was analyzed via the Spearman

correlation coefficients pan-cancer.
Association between MARCH1 and
therapeutic signatures

We summarized the therapeutic signatures from previous

studies. Then, their enrichment scores (ESs) were computed via

the gene set variation analysis R package. The LUAD-linked

drug-target genes were filtered out in the DrugBank database.

Their levels were compared between low- and high-

MARCH1 group.
Screening of immune-related
differentially expressed RNAs

Considering the median of MARCH1 mRNA expression,

immune score, and stromal score, the latter two computed via

the ESTIMATE R package, LUAD cohorts were parted into

corresponding low and high groups. Differentially expressed

RNAs (DERs) were identified via the limma R package. Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) analyses were calculated by ClusterProfiler R package.
Establishment of an immune risk score

With a ratio of 7:3, TCGA-LUAD patients were separated

into training and validation sets. Univariate Cox analysis was

executed in the training set to identify the correlation between

DERs and survival. Then, the immune risk score (IRS) was

developed via least absolute shrinkage and selector operation

(LASSO)-multivariate Cox regression (IRS = ∑ bi ∗ RNAi bi: the
coefficient of the ‘i’th IRS RNA expression profile). Referring to

the median IRS, patients fell into low and high groups, and their

overall survival (OS) was compared by the Kaplan–Meier

method and the log-rank test. Furthermore, the IRS was

validated in the validation set.
Survival analysis in pan-cancer

To demonstrate the links between MARCH1 expression and

OS, survival analysis was carried out in TCGA using the

“survival” package in R (18).
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Statistical analysis

All statistical analyses were executed utilizing the R software

v4.0.3. Correlation between certain variables was gauged using

Pearson coefficients. Statistical significance was computed by the

log-rank test and defined as p < 0.05.
Results

Landscape, prognostic value, and
immunological correlation of E3s
in LUAD

We obtained the expression of the 13 E3s in LUAD from

TCGA database. After a comprehensive analysis, we found that

the expressions of CBLB, FBXW7, HUWE1, ITCH, SIAH2,

STUB1, SYVN1, TRM2B, and UBR5 were significantly

upregulated; MARCH1, RNF128, and TRAF6 were significantly

downregulated; and ASB2 had no obvious difference between

tumor and paracarcinoma (Figure 1A).

Our goal was to determine the immunological roles of E3s in

LUAD. The results uncovered that E3s had a negative or positive

correlation with most immunomodulators and TIICs. Among

them, MARCH1 and ASB2 were positively correlated with most

immunomodulators and all of the TIICs in this analysis

(Figures 1B, C). ASB2 expression was correlated with PD-L1,

PD-1, CTLA-4, and LAG-3. Simultaneously, MARCH1

expression was correlated with PD-L1, PD-1, and CTLA-4

(Figures 1D–G).

These factors, which are crucial for immunotherapy, were

positively linked to MARCH1 expression and were more potent

than those of other E3s. Moreover, tumor tissue showed a

downregulation of MARCH1. We concluded that the

downregulation pattern of MARCH1 may be TME specific,

indicating the potential of MARCH1 to be a target to improve

LUAD immunotherapy. Hence, MARCH1 was regarded as a

candidate gene for further study based on its significance in

determining prognosis and immune response.
MARCH1 shapes an inflamed TME
in LUAD

As shown in Figure 2A, MARCH1 was positively related to

plenty of immunomodulators. Specifically, many major

histocompatibility complex molecules (MHCs) were repressed

in the low-MARCH1 group. C-X-C motif chemokine ligand

(CXCL)9 and CXCL10, two key chemokines promoting the

infiltration of CD8+ T, were downregulated in the low-
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MARCH1 group. In addition, chemokines, such as C-C motif

chemokine ligand (CCL)2–5, CCL19, CXCL11, and their

corresponding receptors were positively related to MARCH1.

In the low-MARCH1 group, activities of most of the steps (Steps

1–5) of the cycle were significantly decreased, indicating a

reduced level of TIICs. Of interest, the activities of Steps 6 and

7 were downregulated in the high-MARCH1 group (Figure 2B).

Furthermore, the infiltration level of TIICs was assessed. As

anticipated, MARCH1 had a positive correlation with the
Frontiers in Oncology 04
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effector genes of T helper 1 cells, natural killer cells,

macrophages, dendritic cells, and CD8+ T cells (Figure 2C).

The results also showed that MARCH1 was positively related to

numerous immune checkpoints (Figure 2D).

In the IMvigor210 cohort, MARCH1 expression was

gradually increased from the desert, excluded, to inflamed

tumor immune phenotypes. Moreover, in the groups classified

based on PD-L1 (TC0, TC1, TC2) or PD-1 expression (IC0, IC1,

IC2), MARCH1 expression was highest in the groups with the
B

C

DA E

F G

FIGURE 1

Correlation between E3 ligases (E3s) expression and immunological status in lung adenocarcinoma (LUAD). (A) The expression pattern of E3s in
tumor and paracarcinoma tissues from TCGA database. (B) Relation between E3s and immunomodulators. (C) Relation between E3s and tumor-
infiltrating immune cells (TIICs). (D–G) Relation between E3s and four immune checkpoints. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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highest PD-L1/PD-1 expression (TC2 and IC2, respectively)

(Figures 2E, G, H). Taken together, MARCH1 was strongly

linked with the immune phenotype of the TME.
MARCH1 predicts the clinical response to
ICB and other therapeutic options
in LUAD

From the results above, MARCH1 shaped an inflamed TME

in LUAD patients, so patients with higher MARCH1 expression

ought to be more sensitive to ICBs. Therefore, we further
Frontiers in Oncology 05
88
compared the outcome of LUAD patients with distinct

MARCH1 expressions. The result showed that MARCH1

expression was significantly higher in patients with complete

response to immunotherapy compared to those patients with

progressive and stable disease (Figure 2F). Positive correlation

also existed between MARCH1 and the ESs of three

immunotherapy-positive gene signatures: IFN-g signature,

APM signal, and proteasome signal (Figure 2I). In addition,

MARCH1 had a positive correlation with most individual genes

of the T cell inflamed signature (Figure 3A). However, there was

no discernible difference in the ESs of the therapeutic targets

between low- and high-MARCH1 groups, except for the
B
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A

FIGURE 2

MARCH1 created an infiltrated tumor microenvironment (TME) in LUAD. (A) Expression of four types of immunomodulators in low- and high-
MARCH1 groups. (B) Activity of cancer immunity cycle in low- and high-MARCH1 groups. (C) Expression of TIICs’ effector genes in low- and
high-MARCH1 groups. (D) Relevance between the expression of MARCH1 and immune checkpoints. (E) MARCH1 expression in the three immune
phenotypes. (F) Expression of MARCH1 in four types of clinical outcome of immunotherapy. (G, H) Expression of MARCH1 in different cohorts
grouped by PD-L1 or PD-1 expression. (I) The ESs of pathways for immunotherapy prediction in low- and high-MARCH1 groups. *p < 0.05; **p <
0.01; ***p < 0.001. ns, no significance.
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peroxisome proliferator-activated receptor gamma (PPARG)

network and WNT-b-catenin network, which were both

higher in the former group (Figure 3B). Analysis of the

association between MARCH1 and drug-targeted genes

unveiled an obviously higher sensitivity to specific targeted

therapies and immunotherapies in the high-MARCH1 group

(Figure 3C). In a word, ICB could apply to LUAD patients with a

high MARCH1 level but not those with a low MARCH1 level.
Immune-related DER identification

In total, 246 common DERs with prognostic significance

were screened out (Figure 4A). Notably, there was no overlap

among downregulated DERs in the low-MARCH1, high-stromal

score, and immune score group. Likewise, no intersection was

found among downregulated DERs in the high-MARCH1, low-

stromal score, and immune score group (Figures 4D, E). It

indicated that MARCH1 expression positively related to stromal
Frontiers in Oncology 06
89
score and immune scores in the LUAD TME. Furthermore, GO

and KEGG analyses revealed that these DERs were involved in

immune-related processes (Figure 4).
IRS establishment and validation

According to univariate Cox analysis, 102 DERs had

prognostic values. Among them, seven DERs with minimal l
(0.04141) were considered as the best candidates via the LASSO

algorithm (Figures 5A–C). Then, a multivariate Cox regression

analysis was performed to develop an IRS according to the seven

DERs. Considering the IRS median, 350 patients from TCGA

training set were sorted into low- (n = 175) and high-IRS groups

(n = 175). The result showed that patients from the low-IRS

group had remarkably longer OS than those from the high-IRS

group. At 1, 3, and 5 years, the AUCs of the IRS were all more

than 0.6 (Figure 5D). Furthermore, verification of the prediction

accuracy in TCGA validation set displayed that the AUCs of the
B

CA

FIGURE 3

MARCH1 predicts the therapeutic sensitivity in LUAD. (A) Relevance between MARCH1 and the T cell inflamed gene signature. (B) Relevance
between MARCH1 and therapeutic targets. (C) Relevance between MARCH1 and LUAD-related drug-target genes.
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IRS in the validation and training sets were very similar

(Figure 5E). Taken together, this model could steadily predict

the prognosis.
MARCH1 expression profiles and
the correlation with prognosis in
pan-cancers

To clarify the expression profile of MARCH1 in pan-cancer,

MARCH1 levels between tumor and paracarcinoma tissue were

compared in 33 cancers. MARCH1 expression was significantly

upregulated in breast cancer (BRCA), cervical squamous cell

carcinomas (CESC), cholangiocarcinoma (CHOL), esophageal

carcinoma (ESCA), head and neck squamous cell carcinoma

(HNSC), kidney chromophobe (KICH), kidney renal clear cell

carcinoma (KIRC), kidney renal papillary cell carcinoma

(KIRP), and stomach adenocarcinoma (STAD). Meanwhile,

MARCH1 expression was significantly decreased in colon
Frontiers in Oncology 07
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adenocarcinoma (COAD), LUAD, lung squamous cell

carcinoma (LUSC), prostate adenocarcinoma (PAAD), and

rectum adenocarcinoma (READ) (Figure 6A).

In pan-cancer, the significance of MARCH1 in prognosis

was analyzed. The result revealed that a high expression of

MARCH1 was always linked with a better OS in lower grade

glioma (LGG), LUAD, and skin cutaneous melanoma (SKCM)

(Figure 6B). OS curves in different cancers showing significant

differences between high- and low-MARCH1 groups are

exhibited in Figures 6C–E.
Genome-wide relation of MARCH1
expression in pan-cancer

The association between MARCH1 and genomic signatures

(DNA methylation, somatic copy number, somatic mutation,

protein level) was explored via the Regulome Explorer web tool.
B
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FIGURE 4

Immune-related differentially expressed RNAs (DERs). (A–E) Intersection between DERs in different immune/stromal score groups and different
MARCH1 groups. (F–I) GO and KEGG analyses of the DERs.
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FIGURE 5

IRS development and verification. (A, B) LASSO coefficient of the DERs with prognostic value. (B) Cross-validation for turning parameter
selection. (C) IRS markers displayed as forest plot. OS curves of the low and high IRS and AUCs in the training set (D, E) validation set.
Frontiers in Oncology frontiersin.org08
91

https://doi.org/10.3389/fonc.2022.1008753
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.1008753
Circus plots illustrated that genome-wide correlations existed in

many cancers. Figure 7 displays the particulars.
Correlation between MARCH1
and immunological characteristics
in pan-cancer

We analyzed the associations between MARCH1 expression

and immunomodulators, the abundance of TIICs in pan-cancer.

The result displayed that MARCH1 had a positive correlation

with most immunomodulators and TIICs in pan-cancer, except

in KICH and LGG (Figures 8A, D). Furthermore, we found

correlations between MARCH1 expression and confirmed

immune checkpoints. MARCH1 was also discovered to have a

significant positive correlation with large numbers of immune
Frontiers in Oncology 09
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checkpoints in pan-cancer excluding KICH and LGG

(Figure 8B). The correlations between MARCH1 expression

and five vital MMR signatures, EPCAM, MLH1, MSH2, MutS

MSH6, and PMS2, were also detected. The result revealed that

MMR signatures, except EPCAM, were positively associated

with MARCH1 expression. MARCH1 expression and TMB

also had a significant positive association in COAD and

ovarian serous cystadenocarcinoma (OV) and a significant

negative association in CHOL (Figure 8E). MARCH1

expression was non-significantly correlated with MSI in most

types of cancer. However, in COAD, acute myeloid leukemia

(LAML), and READ, a higher level of MARCH1 meant

significantly higher MSI, while in diffuse large B-cell

lymphoma (DLBC), KIRP, LUAD, LUSC, SKCM, and

testicular germ cell tumors (TGCT), the opposite trend was

observed (Figure 8F).
B C D

E

A

FIGURE 6

Expression profile and prognosis in pan-cancer. (A) MARCH1 expression levels in different types of cancer. (B) Relation between MARCH1 expression
and prognosis in pan-cancers. (C–E) OS curves with significance in three types of cancer (LGG, LUAD, and SKCM). *p < 0.05; **p < 0.01; ***p < 0.001.
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Discussion

Accumulating evidence shows that E3s are strongly related

to cancer immunity (19–22). Nonetheless, their value in

prognosis and immunological prediction remains unclear.

Hence, we selected 13 E3s that have been reported to be

related to the immune system to identify a novel and robust

marker that could predict the immunotherapy response.

Dysregulation of E3s is frequently observed in numerous

cancers and aids tumor cells evading the immune system (13,

22). Consistently, in this study, 12 out of the 13 E3s were

significantly upregulated or downregulated in tumor tissue

from LUAD patients (Figure 1A). This situation further
Frontiers in Oncology 10
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implied that E3s play crucial roles in cancer. Considering their

function in cancer immunity, the associations between E3s and

immunomodulators, immune cells, and immune checkpoints in

the TME were analyzed. The results revealed correlations

between E3s and most of these immune-related factors.

Among those E3s, MARCH1 expression had a positive

correlation with most of the immunomodulators, immune

cells, and checkpoints in LUAD and many other cancers

(Figures 1B, C; 8A, B, D). Therefore, MARCH1 was regarded

as a candidate gene for immunotherapy response prediction.

Accurate prediction of the immunotherapy sensitivity could

guide the clinical treatment of cancer. Some recognized

biomarkers, such as TMB and MMR defects, have been used
FIGURE 7

Circus plots displayed the relationship between MARCH1 and other genomic signatures.
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to predict immunotherapy sensitivity (23, 24). Previous studies

have discovered that MMR is essential for identifying and

repairing mismatched bases during DNA replication (25).

Therefore, DNA MMR deficiency typically generated high

TMB (26) and MSI (27). They contribute to tumor initiation

and are independent predictors of ICB efficacy (25). Recent

studies concentrated on discovering more precise, convenient,

and economical molecular techniques for clinical applications

through the development of personalized medicine in a variety

of solid tumors. Consequently, there is an urgent need to search

for additional biomarkers that can aid clinical immunotherapy.
Frontiers in Oncology 11
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However, there are still no signatures to accurately predict

immunotherapy sensitivity.

In this study, we separated the LUAD patients into two

groups depending on their level of MARCH1 expression: low-

and high-MARCH1 groups. Interestingly, the expression of

most immunomodulators, activities of cancer immunity cycle

steps, and ESs of some predictable pathways were elevated in the

high-MARCH1 group (Figures 2A, B; 3D). The cancer immunity

cycle is the procedure of the immune response to tumor cells.

The activities of these steps comprehensively determine the

antitumor effect of the complicated immunomodulatory
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FIGURE 8

Associations between MARCH1 and immunological status in pan-cancer. Correlation between MARCH1 and (A) immunomodulators, (B) immune
checkpoints, (C) MMR signatures, (D) TIICs, (E) TMB, and (F) MSI. *p < 0.05; **p < 0.01; ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1008753
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.1008753
interplays in the TME (16). In this study, we discovered that

MARCH1 was positively associated with nearly all steps (except

killing of cancer cells) of the cancer immunity cycle.

Upregulation of immune checkpoints, including PD-L1/PD-1,

is also an important characteristic of the inflamed TME, which is

triggered by preexisting TIICs in the TME (28). ICBs that target

these immune checkpoints have provided LUAD patients with

the potential for therapeutic effect and survival. Interestingly, we

found that the MARCH1 expression level was positively

correlated with the expression of immune checkpoints and

TIICs. Moreover, there is relevance between MARCH1

expression level and tumor immunotype. The MARCH1

mRNA level ranged from low to high in desert, excluded, and

inflamed immune phenotypes (Figure 2E). We also established

an IRS for prognosis prediction on the basis of immune-related

DERs. Moreover, the IRS model was validated well in the

internal validation cohort. In summary, both MARCH1 and

IRS may serve as prognostic biomarkers, which robustly

illustrate the importance of MARCH1 in prognosis.

Furthermore, MARCH1 can also predict the ICB response and

define an inflamed TME. High MARCH1 expression always

meant that LUAD patients were sensitive to ICBs. However,

MARCH1 was negatively correlated with TMB and MSI in

LUAD (Figure 8C). This contradictory relationship may

interpret why TMB and MSI could not always predict the

response to ICBs properly. Therefore, we reckoned that the

combination of several signatures to predict the sensitivity to

ICBs might be a more accurate way. MARCH1 has displayed its

powerful modulation in the immune system via controlling

stability and transforming of some key immunoreceptors, such

as the antigen presenting molecule MHC II and costimulatory

molecule CD86 (29). Researchers are currently focusing little on

the cancer biology of MARCH1 in certain cancers. MARCH1

could inhibit tumor cell growth in vivo and in vitro in bladder

cancer. Meanwhile, ciRs-6 could increase the expression of

MARCH1 via sponging miR-653 (30). However, Ying Meng

et al. discovered that tumor tissue overexpressed MARCH1

relative to paracarcinoma tissues in ovarian cancer (31).

Furthermore, the silencing of MARCH1 could restrain the

proliferation, migration, and invasion of tumor cells via Wnt/

b-catenin and nuclear factor-kB pathways (31). Xie L et al. (32,

33) declared that MARCH1 could also provoke tumor

progression in hepatocellular carcinoma via PI3K-AKT

pathway. Collectively, MARCH1 functions differently

depending on the type of cancer. This study revealed that

MARCH1 was upregulated in some types of cancer and

downregulated in others. In most cancers, excluding LGG and

KICH, MARCH1 expression was positively associated with most

immunomodulators, checkpoints, and infiltrating immune cells

(Figures 8A, B, D). Therefore, the role of MARCH1 in pan-

cancer requires further investigation. In LUAD, we found that
Frontiers in Oncology 12
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MARCH1 expression was positively correlated with the

abundance of different kinds of TIICs, including activated

CD4+ and CD8+ cells. Activated CD4+ and CD8+ T cells

could kill tumor cells. In addition, CXCL9 and CXCL10, two

key chemokines, could recruit CD8+ T cells into the TME (16)

and were upregulated in the high-MARCH1 group (Figure 2A).

Collectively, we speculated that MARCH1 may regulate CD8+ T

cell recruitment to shape an inflamed TME.

As demonstrated previously, MARCH1 expression is

essential for immunotherapy responses. However, MARCH1 is

suppressed in LUAD tumor tissue, while the factors that regulate

MARCH1 transcription are unknown (34). Therefore, the

mechanism by which MARCH1 affects cancer immunity and

regulation of MARCH1 expression merit additional research. In

addition, LUAD with low MARCH1 expression was insensitive

to ICBs. Therefore, it is imperative to seek superior treatment

options for LUAD patients expressing low levels of MARCH1.

The research on MARCH1 in cancer immunity is poor. This

study firstly demonstrated the role of MARCH1 in prognosis

and TME shaping. It also revealed the overall correlation

between MARCH1 and immunological characteristics and

filled up the gap in this field. MARCH1 is a novelty and

robust biomarker to predict the response to immunotherapy

and some targeted therapy. It provides a theoretical basis for

combined therapy. Additionally, MARCH1 may promote

infiltration of CD8+ T cells to shape an inflamed TME and

further affect immunotherapy sensitivity. It provides a direction

for future research.

There were also limitations in this study. Firstly, clinical and

animal studies are necessary to validate the expression profiles of

MARCH1 and the correlation between MARCH1 and

immunological characteristics. Secondly, the optimal cutoff

value for grouping the MARCH1 expression must be

determined. Thirdly, more cohorts should be used to validate

the results to reduce the batch effects.
Conclusions

This study demonstrated that MARCH1 could shape an

inflamed TME and predict the prognosis and immunotherapy

sensitivity in LUAD. Therapies that target its regulator to

upregulate the expression of MARCH1 may be an efficient

means of improving immunotherapy.
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Integrated single-cell and
transcriptome sequencing
analyses determines a chromatin
regulator-based signature for
evaluating prognosis in
lung adenocarcinoma
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Background: Accumulating evidence has highlighted the significance of

chromatin regulator (CR) in pathogenesis and progression of cancer.

However, the prognostic role of CRs in LUAD remains obscure. We aim to

detect the prognostic value of CRs in LUAD and create favorable signature for

assessing prognosis and clinical value of LUAD patients.

Methods: The mRNA sequencing data and clinical information were obtained

from TCGA and GEO databases. Gene consensus clustering analysis was

utilized to determine the molecular subtype of LUAD. Cox regression

methods were employed to set up the CRs-based signature (CRBS) for

evaluating survival rate in LUAD. Biological function and signaling pathways

were identified by KEGG and GSEA analyses. In addition, we calculated the

infiltration level of immunocyte by CIBERSORT algorithm. The expressions of

model hub genes were detected in LUAD cell lines by real-time polymerase

chain reaction (PCR).

Results: KEGG analysis suggested the CRs were mainly involved in histone

modification, nuclear division and DNA modification. Consensus clustering

analysis identified a novel CRs-associated subtype which divided the combined

LUAD cohort into two clusters (C1 = 217 and C2 = 296). We noticed that a

remarkable discrepancy in survival rate among two clusters. Then, a total of 120

differentially expressed CRs were enrolled into stepwise Cox analyses. Four hub

CRs (CBX7, HMGA2, NPAS2 and PRC1) were selected to create a risk signature

which could accurately forecast patient outcomes and differentiate patient risk.

GSEA unearthed that mTORC1 pathway, PI3K/Akt/mTOR and p53 pathway

were greatly enriched in CRBS-high cohort. Moreover, the infiltration

percentages of macrophage M0, macrophage M2, resting NK cells, memory

B cells, dendritic cells and mast cells were statistically significantly different in
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the two groups. PCR assay confirmed the differential expression of four model

biomarkers.

Conclusions: Altogether, our project developed a robust risk signature based

on CRs and offered novel insights into individualized treatment for LUAD cases.
KEYWORDS

lung adenocarcinoma, chromatin regulator, prognosis, risk signature, immune
microenvironment
Introduction

Lungcancer (LC) is themajorcauseofdeath formenandwomen

with tumor, representing approximately 18% of all cancer deaths

worldwide (1). Up to 90% of LC cases are non-small cell lung cancer

(NSCLC), including both lung adenocarcinoma (LUAD) and lung

squamous cell carcinoma (LUSC) histological subtypes, with LUAD

occurring most frequently (2). Despite recent advances in clinical

treatment, the prognosis for LUAD remains dismal, with a 5-year

survival rate of only 19%.With the advent of aging and air pollution

in developing countries, the incidence of LUAD remains high and

early diagnosis of LUAD becomes essential (3). Unfortunately, we

still have limited availability of accurate biomarkers for early

diagnosis and individualized treatment of LUAD.

Tumor microenvironment (TME) is the internal environment

for tumor cell production and survival, and its cellular components

include resident stromal cells and recruited immunocytes in

addition to tumor cells (4). TME plays an important role in the

tumor growth, metastasis, angiogenesis and treatment resistance

and has also a crucial impact on prognosis (5). Therefore,

systematic exploration of TME is helpful to clarify the

mechanism of tumor occurrence and individualized treatment.

Epigenetic modification is a reversible and heritable process

of gene expression in the absence of DNA sequence changes. It is

one of the critical regulatory mechanisms at the post-

transcriptional level of genes by chromatin regulators (CRs),

mainly including DNA methylation, histone modifications,

chromatin remodeling and RNA regulation (6). CRs-mediate

epigenetic modification regulates the activation of heterozygous

promoters or the activity of repressors and trigger changes in

gene transcription levels, resulting in cell differentiation,

abnormal proliferation and tumorigenesis (7).

Numerous studieshavedemonstrated thatCRsare tightlybound

up to the patient outcomes of LC HMGA1, a chromatin remodeler,

has been reported to be involved in DNA transcription, replication

and repair. Saed and his colleagues have observed that HMGA1

presented higher expression in lung cancer specimens and

overexpressed HMGA1 lead to dismal prognosis of LUAD (8).
02
99
Moreover, HMGA1 was proved to facilitate LUAD cell

proliferation and migration through GRP75-induced JNK pathway

(9). EZH2, belonging to the polycomb-group (PcG) family, has been

reported to be greatly overexpressed in lung specimens, and

upregulation of EZH2 predicts dismal survival of NSCLC (10).

Geng and his colleagues indicated EZH2 enhances the growth and

metastasis of lung cell byAkt pathway (10). RAD51 iswell known for

its important role in homologous recombination. RAD51 has shown

tobeupregulated inKRASmutant lungcancerandcould regulate cell

survival by enhancing DNA damage repair (11). However, the

expression patterns and prognostic value of CRs in LUAD remain

largely unknown.

In this academic research, we determined CRs with powerful

prognostic values in LUAD and created a risk signature for clinical

outcome assessment and immune status prediction of LUAD cases.

Methods

Data collection and processing

We obtained the RNA sequencing (RNA-seq) data of 535

LUAD patients and 59 normal controls and their corresponding

clinical features from TCGA database (https://portal.gdc.cancer.

gov/) to construct the prognostic signature. The transcription

profiling data was downloaded from GEO dataset and was

utilized as the validate set.
Determination of differentially expressed
CRs

A total of 870 CRs were retrieved from previous research (6).

The gene information of all CRs summarized in Supplementary

Table S1. The differentially expressed genes (DEGs) between

normal and LUAD tumor tissues were determined using the

limma R package with a criteria P value<0.05 (12). The generated

DEGs and CRs gene sets were subsequently intersected to obtain

differentially expressed CRs (DECRs).
frontiersin.org
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Function and pathways enrichment
analyses

GO and KEGG enrichment analysis was conducted to obtain

the insight into the biological functions and potential pathways

of DECRs. Terms with p< 0.05 were listed and visualized using

the “clusterProfiler” R packages (13).
Integration of protein–protein
interaction (PPI) network

A protein–protein interaction network (PPI) was developed

and visualized using the STRING online database (https://cn.

string-db.org/) and the Cytoscape (https://cytoscape.org/),

respectively (14, 15). Further, the cubHubba plugin in

Cytoscape software was used to filter hub genes of the PPI.
Gene consensus cluster analysis

The consensus cluster analysis was conducted using the

“ConsensusClusterPlus” R package, based on the combined

LUAD cohort (16). To identify the optimal cluster value, we

calculated the Delta area and the cumulative distribution function

(CDF). Survival analysis was carried out to compare clinical

prognoses between different subtypes using “survival” R package.
Construction of the risk signature

Subsequently, Cox regression analyses were performed to

obtain candidate CR with remarkable prognostic value. The

formula was set up: Risk score = o
n

i=1
(coef � Expi). “Coef” was

defined as the corresponding regression coefficient value, and

“Exp” was the expression level of genes in the prognostic model.

All patients were divided into low- and high-risk groups

according to the median score.
Gene set enrichment analysis (GSEA)

We performed GSEA analysis, including GO and KEGG

analysis based on CR related DEGs to identify the potential

biological and functional differences of different hierarchical

clustering (17). A function term with an adjusted p-value<0.05

and a false discovery rate (FDR)<0.25 was considered enriched.
Estimate of immune infiltrating status

CIBERSORT tool (https://cibersortx.stanford.edu/index.

php) was employed to quantify the infiltration status of 22
Frontiers in Oncology 03
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types of immunocyte fractions in the two LUAD subgroups.

P< 0.05 was defined as statistically significant.
Single-cell sequencing analysis

We utilized the Seurat clustering to analyze the single-cell data

acquired from the GEO databases. The UMAP dimensional

reduction and the t-Distributed Stochastic Neighbor Embedding

(tSNE) method, were employed to visualize the gene expression and

distribution in dataset GSE131907. Next, the cells were re-clustered

with the “SingleR” packages to demonstrate the feature genes of

different cell types.
Validation of the model CRs

To detect the expression pattern of a model gene at the

mRNA level, GEPIA2 tool was applied. Human Protein Atlas

(HPA, https://www.proteinatlas.org/) database was utilized to

confirm the protein level of our model genes between LUAD and

normal control (18).
Somatic mutation and stem cell
characteristics analyses

The somatic mutation data were obtained from TCGA

Portal and processed to compare the tumor mutation burden

(TMB) in two groups. The mRNAsi is a quantitative index

reflecting cancer cells calculated based on gene profiles; The

mRNAsi and TMB differences in two subgroups were compared

using the independent-samples t-test.
Cell culture

Two human LUAD cell lines (A549 and NCI-H460) and a

normal human lung epithelial cell line (BEAS-2B) were

purchased from American Type Culture Collection. All cell

lines were cultured in RPMI 1640 medium (Sigma) containing

10% fetal bovine serum (Gibco) and 1% antibiotics (100 U/ml

penicillin G and 100mg/ml streptomycin) at 37°C in a

humidified chamber containing 5% CO2.
RNA extraction and quantitative real-
Time PCR

Total cell RNA was extracted by RNA isolation reagent

(Takara), then reversed into cDNA by PrimeScript Mix

reagent (Takara). SYBR Green Premix (Vazyme biotech) was

utilized for PCR reaction system. The value of individual genes
frontiersin.org

https://cn.string-db.org/
https://cn.string-db.org/
https://cytoscape.org/
https://cibersortx.stanford.edu/index.php
https://cibersortx.stanford.edu/index.php
https://www.proteinatlas.org/
https://doi.org/10.3389/fonc.2022.1031728
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shi et al. 10.3389/fonc.2022.1031728
was standardized to GAPDH expression level. Supplementary

Table S2 displays primer sequences of all genes.
Statistical analysis

All statistical data in the present project was analyzed by R

version 4.0.5 and GraphPad Prism 9. The Kaplan-Meier (KM)

analysis was employed to assess the prognostic value of the

signature. Moreover, we plotted the receiver operating

characteristic (ROC) curve over time to evaluate the prognostic

efficacy of the signature.
Results

Characterization of chromatin regulators
in LUAD

We first collected 4846 DEGs between LUAD samples and

normal cases. A total of 120 DECRs were obtained by taking the

intersection of CRs and DEGs gene lists (Figure 1A). Then, GO

analysis was employed to detect the underlying function of
Frontiers in Oncology 04
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DECRs. The result disclosed that these genes were mainly

enriched in histone modification and DNA modification

(Figure 1B). Next, we generated a PPI network to explore the

protein interaction among 120 DECRs (Figure 1C). Based on the

MCC algorithm, the top ten hub genes were selected to set up a

hub network, including CHEK1, CDK1, TOP2A, CDC6,

UHRF1, AURKB, PBK, BUB1, TTK and RAD54L (Figure 1D).
Chromatin regulators-based consensus
cluster analysis

TCGA-LUAD and GSE14520 were combined into one

LUAD cohort (n = 609). We applied consensus cluster

analysis to develop a CR-related molecular subtype of LUAD.

The result suggested the entire dataset could be well divided

into two subtypes based on the 120 DECRs when k = 2 by

increasing the clustering variable (k) from 2 to 9 (Figures 2A–C).

PCA analysis shows that DECRs can clearly distinguish two

subgroups for clustering analysis (Figure 2D). There were

remarkable discrepancies in survival rates among the two

clusters (Figure 2E). To evaluate the TME status of two

clusters, ESTIMATE algorithm was conducted. As suggested in
B

C D

A

FIGURE 1

Determination of DECRs in LUAD. (A) Venn diagram of DECRs. (B) KEGG analysis of DECRs. (C) PPI network for 120 DECRs. (D) The top ten hub
genes of DECRs-based PPI network.
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Figure 2F, cluster A presented higher stromal score and immune

score than that cluster B. In addition, we observed that B cells, T

cells, NK cells, dendritic cells and Macrophages showed the most

notable difference among the two clusters (Figure 2G).
Construction of the CRBS

To develop an optimal prognostic signature, TCGA-LUAD

cohort was selected as the training set. Univariate Cox regression

was first employed to determine possible CRs with significant
Frontiers in Oncology 05
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prognostic values (Figure 3A). Subsequently, 12 candidate genes

were enrolled into multivariate Cox analysis to create a CRBS

that included four risk CRs (Figure 3B). The risk formula was

shown as follows: (0.1082 × HMGA2) + (0.3525 × NPAS2) +

(0.1909 × PRC1) + (-0.2416 × CBX7). Survival curves illustrated

that CBX7 was a potential favorable indicator, and HMGA2,

NPAS2 and PRC1 were risky candidate indicators (Figure 3C).

Then, we detect the expression differences of four CRs according

to TCGA-LUAD dataset. All four CRs were greatly dysregulated

between LUAD cases and control samples (Figure 3D).

Furthermore, we validated the expression patterns of four
B C

D E

F G

A

FIGURE 2

CRs-associated clustering analysis. (A, B) The CDF value of consensus index. (C) Consensus matrix for k=2. (D) Principal component analysis of
the entire LUAD set. (E) The Kaplan–Meier survival analysis. (F) Comparison of immunocyte proportions of the CRs-based clusters. (G) The
differences of TME score 22 the two clusters. ns, no significance; 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.
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model genes by qRT-PCR in cell lines. Consistent with the above

bioinformatics analysis results, we noticed that CBX7 was

downregulated in LUAD cell lines (A549 and HCI-H1975),

and HMGA2, NPAS2 and PRC1 were overexpressed in LUAD

cell lines compared to BEAS-2B (Figure 3E). Consistent with the

above results, we detected the expression patterns of four CRs at

IHC level based on HPA database (Figure 3F).
Verification of the CRBS

Figure 4A demonstrated that survival rates are lower in CRBS-

high group compared to CRBS-low group in the training set. The

AUC (area under the curve) values of 1-, 3-, and 5-year survival

rates assessed by the CRBS were 0.729, 0.662, and 0.634, respectively

(Figure 4B). Figure 4C summarizes the positive correlation between

surviving cases and risk score. Moreover, we observed a similar

trend of results in the test set, suggesting the favorable prediction

ability of the CRBS (Figures 4D–F). To further unearth the

independence of our model, univariate and multivariate Cox

regression analyses were employed. Univariate analysis indicated

that the risk score was an independent indicator for prognosis in

both two datasets (Figures 4G, I). The multivariate method

disclosed that risk score was independently associated with the

dismal outcome of LUAD cases (Figures 4H, J). At the same time,

we explore the performance of the CRBS based on a diversity of

clinical subgroups. The results revealed that low risk score was

correlated with favorable outcomes in different ages, genders, T

stage and N stage cohorts (Figures 5A–D). Similarly, the good

prediction capability of the CRBS was confirmed in the T stage and

N stage subgroups (Figures 5E, F).
Single-cell sequencing analysis

To decipher the single-cell transcriptome dataset

GSE131907, Seurat package was performed. The UMAP

analysis suggested the distribution of the 22 LUAD samples

(N = 11 and T = 11) with no remarkable batch effects

(Figure 6A). All the cells were divided into 12 clusters the

through k- Nearest Neighbor (KNN) clustering algorithm

(Figure 6B). After performing cell annotation by different cell

surface markers, we obtained eight cell subtypes, including B

lymphocytes, endothelial cells, epithelial cells, fibroblasts, mast

cells, myeloid cells, NK cells and T lymphocytes (Figure 6C).

Next, we investigate the location of four CRs at single-cell

transcriptome level. In Figure 6D,

HMGA2 and NPAS2 are mainly located in endothelial cells,

and PRC1 and CBX7 are mainly located in NK cells and T

lymphocytes. In addition, we noticed that the expression of CBX7

was negatively correlated with endothelial cells, whereas NPAS2 was

positively correlated with endothelial cells (Figure 6E).
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GSEA determines CRBS-associated
pathways

In Figure 7A, the top six cancer hallmarks were remarkably

enriched in the CRBS-high group, including glycolysis, hypoxia,

mTORC1 pathway, MYC target, PI3K/Akt/mTOR and unfolded

protein response. In terms of the KEGG analysis, we observed

that CRBS-high group was involved in the cell cycle, p53

pathway and ubiquitination response (Figure 7B).
Immune environment analysis

To depict the immune landscape of LUAD, we evaluated the

immunocyte infiltration of each case. Figure 8A summarizes the

correlation between the 22 immunocyte types. As suggested in

Figure 8B, CBX7 was greatly positively associated with memory

B cells and resting mast cells. PRC1 was positively associated

with activated memory T cells and negatively correlated with

resting mast cells. Moreover, macrophage M0, macrophage M2

and resting NK cells were enriched in the CRBS-high group.

Cases in CRBS-low group had greatly higher proportions of

memory B cells, dendritic cells and mast cells (Figures 8C–H).

Additionally, some immune functions displayed differences

between the two groups, including APC co-stimulation,

checkpoint, HLA, MHC class I, T cell co-stimulation, and type

II IFN response (Figure 9A). Also, we observed that four

immune responses (checkpoint, HLA, MHC class I and type II

IFN response) had significant differences in the outcome of

patients with LUAD (Figures 9B–E).
Clinical potency analysis of the CRBS

TMB has been demonstrated to be useful as an indicator of

the efficacy of immunotherapy. We calculated the TMB of each

LUAD sample and found that CRBS-high group had a higher

TMB than the CRBS-low group (Figures 10A). Moreover, CRBS-

high group presented a high level of mRNAsi (Figure 10B). In

Figure 10C, most of the immune checkpoint markers were

upregulated in the CRBS-high group. The comparison in the

expression of m6A markers between the two groups indicated

that the expression of ALKBH5, FTO, METTL14, HNRNPC,

YTHDF1, YTHDF2, METTL3, RBM15 and WTAP were

significant (Figure 10D).
Discussion

LUAD is the most common pathological subtype of lung

cancer, which is composed of approximately 40% of lung cancer

cases (19). Despite the various efforts in improve, the five-year
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FIGURE 3

Construction of a CRs-based signature (CRBS). (A, B) Univariate and multivariate Cox analyses for signature establishment. (C) Survival analysis
of four model CRs. (D) Comparison of differential expression of four model CRs based on GEPIA2 online portal. (E) The expression of four model
CRs in BEAS-2B, A549 and HCI-H1975 cells line. (F) Immunohistochemistry of the CGs according to the HPA database. *p < 0.05; **p < 0.01;
***p < 0.001.
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survival rate for LUAD patients remains shabby. Recent studies

have suggested that patients with the same histology and TNM

stages may have very distinct clinical outcomes, mainly due to

their genetic heterogeneities (20). With the rapid development of

the next-generation sequencing, a growing number of prognostic

signatures based on transcriptome data were established to

depict the individual differences, and to forecast the prognosis

in various cancers (21–23). Therefore, a more reliable prognostic
Frontiers in Oncology 08
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model based on genetic alterations is urgently needed to provide

early detection and personalized treatment for LUAD patients.

It is well known that epigenetic alterations play a

considerable role in mediating the tumor progression (24). As

indispensable regulatory elements of epigenetics, CRs are

involved in the onset and development of various cancer types

including multiple myeloma, prostate cancer, hepatocellular

carcinoma, and LUAD (25–28). In our current work, a total of
B C
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A

FIGURE 4

Prognostic powerful of the CRBS. (A, D) Survival analysis in the TCGA-LUAD and the GSE68465 cohorts. (B, E) ROC curves of the CRBS. (C, F)
The risk distribution plots in two datasets. (G–J) Cox relevant regression assessing the independence of the CRBS.
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four CRs including HMGA2, NPAS2, PRC1, and CBX7, were

identified as effective prognostic biomarkers for predicting the

prognosis of LUAD. Survival analysis indicated that HMGA2,

NPAS2 and PRC1 are potential risky genes since their high
Frontiers in Oncology 09
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expressions are correlated with dismal outcomes of LUAD

samples, whereas CBX7 is candidate protective factor given

that its high expression is associated with favorable outcomes

of LUAD samples. The pro-tumor role of HMGA2 has been
frontiersin.org
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FIGURE 5

Subgroup survival analysis. (A) Age subgroup. (B) Gender subgroup. (C) T stage subgroup. (D) N stage subgroup. (E, F) Table presenting the
distribution of T and N stage subgroups between two risk groups.
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FIGURE 6

Single cell sequencing analysis. (A) The integration effect of 22 samples is favorable. (B) All cells in 22 samples were divided into 13 subgroups.
(C) The cells were divided into 8 types of cell subgroups, namely B lymphocytes, endothelial cells, epithelial cells, fibroblasts, mast cells, myeloid
cells, NK cells and T lymphocytes. (D) Cell location of four model CRs. (E) Correlation analysis of four model CRs and 8 types of cell subgroups.
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widely reported in multiple cancers including LUAD (29).

HMGA2 was found highly expressed in the LUAD tissues

compared with normal lung tissues, and HMGA2 silencing

notably reduced the growth and metastasis of LUAD cell lines

(30). In addition, a mechanistic study revealed that HMGA2
Frontiers in Oncology 10
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could induce epithelial-mesenchymal transition by activating

MAPK/extracellular receptor kinase signaling in LUAD (31).

Npas2 has been identified in peripheral tissues, possibly as a

modulator of circadian rhythms (32). Qiu et al. once reported

that in LUAD, the elevated expression level of NPAS2 is
B

A

FIGURE 7

Gene Set Enrichment Analysis. (A) Hallmark analysis of the CRBS. (B) KEGG analysis of the CRBS.
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significantly related to poor prognosis (33). Conversely, it has

been indicated that LUAD cases with low NPAS2 expression

displayed a favorable clinical outcome by another team (34).

Therefore, more basic researches are needed to elucidate the

exact role of NPAS2 in LUAD. PRC1 has received widespread

attention considering its diverse regulatory roles in a number of

diseases, especially tumorigenesis (35). It has been suggested that

overexpression of PRC1 triggers the onset of various cancers yet

its potential roles in LUAD have not been fully understood (36).

An ever-growing series of reports has demonstrated the aberrant

expression of CBX7 in a variety of tumors (37). Mechanically,

CBX7 may exert its tumor suppressor role by inhibiting the Wnt

pathway and subsequently restrain the malignant character in

LUAD (38).
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GSEA unearthed that CRBS-high group were involved in

glycolysis signaling, PI3K/AKT/mTOR signaling, and p53

signaling pathway using GSEA. Suppressed oxidative

phosphorylation along with enhanced glycolysis, which is

called the Warburg phenotype, is considered as metabolic

marker of cancers (39). Vaupel et al. once reported that

enhanced glycolysis accelerates lactic acid accumulation to

impair the immune functions in TME and finally promote

malignant progression (40). The PI3K/AKT/mTOR pathway

plays a crucial role in diverse biological behaviors including

cell growth, migration, metabolism, and death (41). In LUAD,

the aberrant activation in this signaling has been indicated to

induce uncontrolled growth, drug resistance, sustained

angiogenesis, as well as distant metastasis (42). P53 protein
B

C D E
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A

FIGURE 8

Immune infiltration analysis. (A) Correlation analysis of 22 immunocyte types. (B) Heatmap showing the relationship between four model CRs
and immune cells. (C–H) The infiltration level differences of memory B cells, dendritic cells, macrophage M0, macrophage M2, mast cells and
NK cells among two groups (*p< 0.05; **p< 0.01; ***p< 0.001).
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is a transcription factor known as the “guardian gene”

because of its significant role in preserving genomic

integrity. The mutation of the p53 gene can be detected in a

wide spectrum of human malignancies, including the breast,

cervical, lung, and prostate cancer (43). More recently, Vokes

and his colleagues provided the evidence that p53 alterations

were involved in faster resistance evolution and may

cooperate with other genomic events to gain resistance to

EGFR tyrosine kinase inhibitors (44).

Immunotherapy that emerged recently has achieved

promising results in the treatment of LUAD (45). In our

work, a comprehensive analysis of tumor-infiltrating

immune cells was further conducted to help to clarify the

immune infiltration status between the two different risk

groups. As a result, the infiltration level of HLA as well as

the type 2 IFN was found downregulated remarkably in

CRBS-high group. Also, the expression level of the immune
Frontiers in Oncology 12
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checkpoint markers was validated to be correlated with the

risk score. CD273, also named B3-H7, is overexpressed in

various solid malignancies which serve as a potential

therapeutic target (46, 47). Yu and his colleagues disclosed

CD273 was upregulated in LUAD, and was correlated with

lymph node metastasis (48). Likewise, accumulating studies

have indicated the close association between the efficacy of

immunotherapy and the CD274 expression (49). VTCN1,

also named B7-H4, belongs to the co-stimulatory B7 family

molecules and is associated with a poor prognosis in

multiple cancer types (50–52). As revealed by a recent

study, the elevation of VTCN1 expression is associated

with LUAD with EGFR-activating mutations, which can

ultimately cause resistance to immunotherapy in LUAD

patients (53).

In view of the essential effect of m6A methylation

modification in LUAD progression, we unearthed the
B C D E

A

FIGURE 9

Immune function analysis. (A) Boxplot showing the relationship between four model CRs and 13 immune functions. (B–E) Survival analysis for
checkpoint, HLA, MHC class I and type II IFN response (*p< 0.05; ***p< 0.001).
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expression patterns of m6A regulators between two risk groups.

The results indicated that HNRNPC, YTHDF1, RBM15 and

WTAP were enriched in the high-risk group. Lou and his

colleagues demonstrated that YTHDF1 could facilitate LUAD
Frontiers in Oncology 13
110
growth and survival by enhancing Cyclin B1 translation (54). In

addition, YTHDF1 has also been confirmed to have carcinogenic

effects in many digestive system tumors including gastric cancer,

hepatocellular carcinoma and colorectal cancer (55–57). Cheng
B
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A

FIGURE 10

Clinical potency analysis. (A) TMB analysis of the CRBS. (B) Cancer stem cells index analysis the CRBS. Comparison of differential expression of
(C) immune checkpoints and (D) m6A markers (*p< 0.05; **p< 0.01; ***p< 0.001). ns, no significance.
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et al. found that overexpression of WTAP correlate with dismal

outcome of LC cases. In NSCLC, PCGEM1 could boost cancer

cells proliferation by improving WTAP expression (58, 59).

There are still several limitations of the present study that

need to be considered. Only expression data in gene level was

analyzed to construct the prognostic model, and large-sample

clinical data are still needed, as an external cohort, to evaluate

the predictive value of our model. Additionally, although

we have proven the reliable prognostic capacity of the

four CR related genes, fundamental experiments are still

needed to validate their precise functions in mediating

LUAD progression.
Conclusion

Taken together, our data may help provide opportunities for

the development of new therapeutic strategies and elucidate the

mechanism of tumor immune escape in LUAD. Our proposed

model may usher in novel approaches to predicting prognosis of

patients with LUAD.
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4. Bejarano L, Jordāo MJC, Joyce JA. Therapeutic targeting of the tumor
microenvironment. Cancer Discov (2021) 11:933–59. doi: 10.1158/2159-
8290.CD-20-1808

5. Jin M-Z, Jin W-L. The updated landscape of tumor microenvironment and
drug repurposing. Signal Transduct Target Ther (2020) 5:166. doi: 10.1038/s41392-
020-00280-x

6. Lu J, Xu J, Li J, Pan T, Bai J, Wang L, et al. FACER: Comprehensive molecular
and functional characterization of epigenetic chromatin regulators. Nucleic Acids
Res (2018) 46:10019–33. doi: 10.1093/nar/gky679

7. Plass C, Pfister SM, Lindroth AM, Bogatyrova O, Claus R, Lichter P.
Mutations in regulators of the epigenome and their connections to global
chromatin patterns in cancer. Nat Rev Genet (2013) 14:765–80. doi: 10.1038/
nrg3554
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Prediction of the immunological
and prognostic value of five
signatures related to fatty
acid metabolism in patients
with cervical cancer

Qiongjing Zeng1†, Huici Jiang1†, Fang Lu1, Mingxu Fu1,
Yingying Bi1, Zengding Zhou2*, Jiajing Cheng1*

and Jinlong Qin1*

1Department of Obstetrics and Gynecology, Shanghai Fourth People’s Hospital, School of Medicine,
Tongji University, Shanghai, China, 2Department of Burn Surgery, Ruijin Hospital, School of
Medicine, Shanghai Jiao Tong University, Shanghai, China
A growing attention has been attached to the role of fatty acid metabolism (FAM)

in the development of cancer, and cervical cancer (CC) is still the primary cause

of cancer-associated death in women worldwide. Therefore, it is imperative to

explore the possible prognostic significance of FAM in CC. In this study, CC

samples and corresponding normal samples were acquired from the Cancer

Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). Single sample

gene set enrichment analysis (ssGSEA) was conducted for calculating FAM-

related scores (FAMRs) to screen FAM-related genes (FAMRGs). Two subtypes

related to FAMwere identified by consistent clustering. Among them, subtype C2

had a poor prognosis, andC1 had a high level of immune cell infiltration, while C2

had a high possibility of immune escape and was insensitive to chemotherapy

drugs. Based on the differentially expressed genes (DEGs) in the two subtypes, a

5-gene signature (PLCB4, FBLN5, TSPAN8, CST6, and SERPINB7) was generated

by the least absolute shrinkage and selection operator (LASSO) and Akaike

information criterion (AIC). The model demonstrated a high prognostic

accuracy (area under the curve (AUC)>0.7) in multiple cohorts and was one

independent prognostic factor for CC patients. Accordingly, FAMRGs can be

adopted as a biomarker for the prediction of CC patients’ prognosis and help

guide the immunotherapy of CC.

KEYWORDS

prediction, immunological and prognostic value, five signatures, acid metabolism,
cervical cancer
frontiersin.org01
113

https://www.frontiersin.org/articles/10.3389/fonc.2022.1003222/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1003222/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1003222/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1003222/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.1003222/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.1003222&domain=pdf&date_stamp=2022-11-03
mailto:xueshengz@qq.com
mailto:chengjiajing1963@gmail.com
mailto:qinjinlong121074@163.com
https://doi.org/10.3389/fonc.2022.1003222
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.1003222
https://www.frontiersin.org/journals/oncology


Zeng et al. 10.3389/fonc.2022.1003222
Introduction

Since the World Health Organization (WHO) called for the

worldwide elimination of cervical cancer (CC) in 2018, various

preventive measures for CC have emerged one after another,

among which human papillomavirus (HPV) vaccine and

cervical screening are the two most effective interventions (1).

However, such prevention and treatment schemes are extremely

limited by resources and basic health facilities, and the coverage

of them in low-and middle-income countries is less than one

tenth of that in developed countries, so CC is still the primary

cause of cancer-associated death in poor countries over the globe

(2, 3). At present, there is still a need to develop a brand-new

screening technology that can identify the symptoms in the

incubation period and early stage of CC, and is affordable in

most regions, thus reducing the difference in the incidence of CC

worldwide due to the gap in resources and infrastructure by

greatly lowering the incidence of CC in developing countries (4,

5). Therefore, a faster and more cost-effective screening method

for CC is still wanted worldwide (6).

As the next-generation sequencing technology and the

accumulation of CC sequencing data develop, it becomes clear

and cost-effective to find biomarkers for prognosis assessment

and treatment of CC through genome-wide analysis (7).

Valuable decision-making guidance can be provided for

clinicians by unbiased synthesis of various data, screening of

molecular characteristics of cancer-causing subgroups of CC,

and re-classification of them, so that more medical resources can

be concentrated on high-risk CC patients who really have disease

progression, and the economic and psychological burden caused

by HPV vaccination and cervical screening can be greatly

reduced (7–9).

Compared with normal cells, tumor cells often have different

cell metabolic phenotypes to meet the energy needs of rapid cell

proliferation and growth (10, 11). Recently, a growing number of

studies have found that lipid metabolism disorder often occurs

in the development of various human malignant tumors

including prostate cancer (12) and colon cancer (13), and the

change of FAM has greatly promoted the energy conversion of

cancer cells (14). All the activities of tumor cells are inseparable

from the intake and synthesis of fatty acids (15). The gradually

accumulated fatty acids seem to be bound up with the disease

recurrence and unfavorable prognosis of patients, and the

metabolic characteristics of fatty acids may become a new

target of anti-cancer therapy (12, 14, 15).

Zhang et al. (16) have found that fatty acid-binding protein 5

induces lymphatic metastasis of CC through metabolic

reprogramming, but the clinical significance of FAM-related

characteristics in CC is still under investigation, and it is still a

challenge to identify stable fatty acid-related signature. This

study comprehensively analyzed the expression, immune and
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prognostic characteristics of fatty acid metabolism-related genes

(FAMRGs) in CC, identified two different CC subtypes

associated with FAM and their immune characteristics, and

verified the FAM-associated prognosis model by multiple

cohorts, which provided a theoretical basis for forecasting the

survival risk of CC patients.
Methods

Variation analysis acquisition and
pre-processing of data sets

From the Cancer Genome Atlas (TCGA, https://www.

cancer.gov/about-nci/organization/ccg/research/structural-

genomics/tcga) (17) and Genotype-Tissue Expression (GTEx)

(https://commonfund.nih.gov/gtex) (18), the data about

expression profile of CC tissues and normal cervical tissues

were downloaded. Their batch effect was eliminated by the

remove batch effect function of limma in the R package, and

two data sets were corrected by the normalize between arrays

function. Principal Component Analysis (PCA) was used for

evaluating the degree of batch effect removal. Totally 300 data of

CC expression profiles were downloaded from the GSE44001

dataset of Gene Expression Omnibus (GEO) as a verification set

(19), and files of the probe platform were downloaded. The

probe ID numbers were annotated to gene symbols. Probes

corresponding to multiple genes meantime were removed, and

the value of probes with the same gene expression was averaged.

In addition, the 272 tumour samples in TCGA were assigned

to a training set and a verification set in the random manner

based on the proportion of 1:1 after 100 times of random

grouping with replacement to facilitate the subsequent

model construction.

Limma in the R package was adopted in the variation

analysis of different groups, and the differentially expressed

genes (DEGs) were screened with the absolute value of log2
(fold change) > log2 (1.2) and FDR< 0.05.
Single-sample gene-set
enrichment analysis

The fatty acid metabolism-related scores (FAMRs) were

calculated through ssGSEA and R package GSVA after

downloading the FAMRGs sets in the molecular signature

database (MSigDb, c2.cp.kegg. v7.4.symbols) (20). The rcorr

function in Hmisc in the R package was adopted for

determining the correlation of FAMRs with DEGs. The

correlation with FAMRGs was found with cor > 0.2 and

FDR<0.05 as the filter condition.
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Survival analysis

Univariate Cox analysis was carried out by the coxph

function of Survival in the R package to screen the genes

associated with CC patients’ prognosis, with p<0.05 as the

filter condition. The log rank test was adopted for analyzing

the survival differences between groups and corresponding

Kaplan-Meier (K-M) curves were drawn.
Construction of FAM-related subtypes

272 CC samples were consistently clustered using

ConsensusClusterPlus in the R package, and 500 times of

bootstraps were performed by the pam algorithm and

“Pearson” as the measurement distance. Each bootstrap

process covered 80% of patients in the training set. With the

number of clusters set to 2 to 10, the consistency matrix and

consistency cumulative distribution function were calculated for

determining the optimal classification.
Analysis of immune escape characteristics

According to the previous research (21, 22), the molecular

characterization of aneuploid score, nosilent mutation rate,

fraction altered, number of segments, and homologous

recombination defects were collected to evaluate tumour

immunogenicity among different subtypes, and maftools in the

R package was used for visually analyzing the mutation data of

the top 10 genes with significant differences in expression.
Calculation of the difference in
immune microenvironment
among different subtypes

The CIBERSORT algorithm in IOBR of the R package was

adopted for calculating the relative abundance of 22 kinds of

immune cells in CC (23), and the ESTIMATE algorithm was

adopted for calculating the matrix score and immune score of

each sample of CC (24).
Prediction of clinical efficacy

With the Tumour Immune Dysfunction and Exclusion

(TIDE) algorithm developed by Jiang et al. (25), TIDE, IFNG,

Dysfunction, Exclusion, and TAM.M2 scores were downloaded

from TIDE (http://tide.dfci.harvard.edu) for predicting the

clinical treatment response of different subtypes, and the

Wilcox.test was used for comparing the scores among different
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subtypes. Additionally, the half-maximum inhibitory

concentration (IC50) of traditional drugs was downloaded

from Genomics of Drug Sensitivity in Cancer (GDSC, https://

www.cancerrxgene.org/) (26), and pRRophetic in the R packet

was used for predicting the chemotherapy response of

CC samples.
Construction of prognosis-related
signature based on FAMRGs

The glmnet in the R package was used for further feature

selection by the least absolute shrinkage and selection operator

(LASSO), and a risk model was built by 10-fold cross-validation.

According to Akaike information criterion (AIC), the

complexity of the model was evaluated, and the number of

parameters was gradually deleted to acquire the optimal model.

The RiskScore of patients with different subtypes was calculated

(RiskScore =on
i=1Coef (i)*Exp(i) ), and Coef was taken as the

characteristic coefficient of each signature. Exp presented the

expression of each signature in CC samples. The samples of

RiskScore with Z score and RiskScore > 0 were assigned to a

high-risk group and those with scores<0 to a low-risk group, and

the timerROC in the R package was used to evaluate the

prediction accuracy of different risk levels. The rms in the R

package was adopted for establishing nomograms to predict

the1-year, 3-year and 5-year overall survival rates and calculate

the prognosis risk of individual patients. The Decision Curve

Analysis (DCA) curve was drawn by ggDCA in the R-packet for

evaluating the clinical predictive performance of the model.
Clinical sample collection and
qPCR validation

100 cases of cervical cancer tissues and 100 cases of adjacent

tissues in our hospital were collected, and qPCR verification of

PLCB4, FBLN5, TSPAN8, CST6, and SERPINB7 genes was

performed. The tissue samples were fully ground with liquid

nitrogen, 1 ml of Trizol (Invitrogen) solution was added, mixed

well, and placed at room temperature for 5 minutes to fully lyse;

(the sample name should be marked on the tube cover and tube

wall) qPCR verification was carried out according to the specific

operation steps of qPCR. Primers: PLCB4, F:ACAG

ATACGAGGAGGAATCC, R: TCCATGTCAGAAAGAAGCC;

FBLN5, F: CATCAATACTGAAGGCGGG, R: TCATCAAT

GTCTAAGCACTGG; TSPAN8, F: CAAGAAGAGTTTAA

ATGCTGCG, R: AGGCACATAATTCAGGATAGTG; CST6,

F: TACTACTTCCGAGACACGC, R: AGGAAGTACTTG

ATGCCGG; SERPINB7, F: TCCCACAAGGATTATGATC

TCAG, R: CTCAATGTAGTCCTTATGAAAGCC. The relative

expression levels of PLCB4, FBLN5, TSPAN8, CST6 and

SERPINB7 genes were calculated by 2-△△CT.
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Results

Screening of FAMRGs

The working route of this study is shown in Figure 1.

According to PCA, two data sets were clustered together

mainly according to their sources (Figure 2A), but after the

integration of these data sets, the samples in the two data sets

were mixed, and the batch effect between the data sets was

eliminated (Figure 2B).

As shown in Figure 3A, 487 DEGs were selected from tumor

samples of CC and corresponding normal samples, of which 120

DEGs were up-regulated and 367 DEGs were down-regulated.

Furthermore, ssGSEA results revealed notably fewer FAMRGs in

tumor samples than those in normal samples (Figure 3B) and

also revealed differences in FAM between CC tissues and normal

tissues. Among them, 48 DEGs were greatly associated with

FAM (Figure 3C). Univariate Cox analysis showed that 7

FAMRGs including S100A11 were bound up with the

prognosis of CC patients (Figure 3D; Supplementary Table 1).
Identification of two different FAM-
related subtypes based on FAMRG

Based on the cumulative distribution function (CDF) and

CDF Delta area curve, the optimal number of clusters

(Figures 4A, B) was determined. When k=2, there was a

comparatively stable clustering result, and two subtypes (C1,

and C2) were obtained (Figure 4C). Further analysis of the

prognosis of these two CC subtypes revealed a notably lower

survival rate in patients from the C2 group that that in patients

from the C1 group at the same time (p<0.05, Figure 4D).

Similarly, the same difference in GSE44001 was found. The

same method was adopted for processing the CC samples

from GSE44001. Patients in Group C2 still had an unfavorable

prognosis (Figure 4E), which was similar to the results of the

data set from TCGA. The findings indicate that the two subtypes

based on FAMRG can be transplanted in different research

cohorts. The Chi-square test was used for comparing the

distribution of different clinicopathological features between

the two subtypes, and the results revealed notable differences

in the living conditions of CC patients in the TCGA cohort

between the two groups (Figure 5, p<0.05).
Immune characteristics of FAM-
related subtypes

The results revealed a notably higher fraction altered in C1

than that in C2 (Figure 6A), and also showed that genes with

significant differences in CC such as TTN and PIK3CA had
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higher mutation frequency in C1 (Figure 6B). The potential

function of FAM-related subtypes in CC was further analyzed,

and the proportion of 22 immune cell types between the two

subtypes was evaluated by CIBERSORT. Compared with C2, the

proportion of B cells navie, Plasma cells, T cells memory resting

and T cells regulatory (Tregs) in C1 was significantly lower,

while T cells memory activated, Macrophages M1 and Dendritic

cells activated were significantly enriched (Figure 7A). C1 got

higher immune score and estimate score than C2, and C1 had a

higher level of immune cell infiltration (Figure 7B). As shown in

Figure 7D, the TIDE score of subtype C2 in the TCGA cohort

was higher than that of C1, suggesting that subtype C2 was more

likely to escape and less likely to benefit from immunotherapy.

The IC50 of 6 traditional chemotherapeutic drugs in C1 was

significantly lower than that in C2, and these drugs were more

effective in C1 patients (Figure 7E).
Construction and verification of
prognosis-related model of FAMRGs

Totally 558 DEGs of the two-fatty acid-related subtypes were

screened by variation analysis (Figure 8A), and 58 DEGs related

to prognosis were further filtered by univariate Cox analysis in

the training set (Supplementary Table 2). When lambda=

0.0385, the model reached the optimal state (Figures 8B, C),

and the parameters were further compressed to obtain a model

composed of five genes: Riskscores = 0:48� PLCB4 + 0:49�
FBLN5 + 0:15� TSPAN8 + 0:38� CST6 + 0:30� SERPINB7

(See Supplementary Table 3 for detailed descriptions of

the genes.)

The Risk Score of each sample was calculated. As shown in

Figures 8D and E, the training set and validation set of TCGA

both revealed a shorter survival time in CC patients from the

high-risk group than that from the low-risk one (p<0.05).

Moreover, this model had high accuracy in the prediction and

classification of CC in one year, three years and five years (area

under the curve (AUC)>0.7). For further verifying the

generalization ability of the model, all TCGA data and the

independent data set GSE44001 were verified. The results, as

shown in Figures 8F and G, were in agreement with those of the

training set of TCGA. FAMRGs prognosis-associated model was

a prognosis scoring system with high precision (AUC>0.7), and

the high-risk group had an unfavorable prognosis.
Association of RiskScore with other
clinicopathological features and its
prognostic value

The associations of RiskScore with subtype, T. Stage, N.

Stage, M. Stage, Stage, age, Event and Grade were tested. As
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FIGURE 1

Graphical abstract of the construction of a prognostic index associated with fatty acid metabolism in cervical cancer.
BA

FIGURE 2

Evaluation of sample clustering by the principal component analysis (PCA) (A) PCA diagram between two data sets before the batch effect was
removed; (B) PCA diagram between two data sets after the batch effect was removed. TCGA, The Cancer Genome Atlas; GTEx, Genotype-
Tissue Expression.
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B

C D
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FIGURE 3

Screening of fatty acid metabolism-related genes (FAMRGs) (A)Volcano map of variation analysis between CC samples and normal samples;
(B) Comparison of fatty acid metabolism-related scores (FAMRs) between CC samples and corresponding normal samples; (C) FAMRGs-related
Heat map, (D) Forest map of prognosis-related FAMRGs. * vs p<0.05. *p<0.05,**p<0.01,***p<0.001.
B C

D

A

E

FIGURE 4

Construction of fatty acid metabolism-related subtypes and prognosis (A) Consensus clustering samples between each category number k in
the TCGA cohort; (B) Delta area curve of cumulative distribution function (CDF) of TCGA cohort sample; (C) Heat map of sample clustering
when k=2; (D) Kaplan-Meier curve of two subtypes in the TCGA cohort; (E) The prognostic Kaplan-Meier curves of the two subtypes in the
GSE44001 cohort.
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shown in Figure 9A, the proportion of subtype C2 and dead

population in the high-risk group was higher (p<0.05). Further

comparison of the difference in RiskScore among people with

different clinicopathological features revealed higher RiskScore

in people with subtype C2, age ≤ 50 and death (Figure 9B).

Univariate and multivariate Cox regression analysis was

used for evaluating the prognostic value of RiskScore and

other clinicopathological characteristics in CC. As shown in

Figures 10A, B, T. Stage and RiskScore were independent

prognostic factors of CC patients, and RiskScore was the most

significant prognostic factor. Then, a nomogram composed of T.

Stage and RiskScore was constructed. According to Figure 10C,

RiskScore made the greatest contribution to the survival

prediction of CC patients. The nomogram correction map and

DCA curve showed that RiskScore had higher predictive

performance than other clinicopathological features.
Biological pathway of potential
regulation of FAMRGs prognosis-
related model

For better studying the potential function of the FAMRGs

prognosis-related model, the score of each KEGG pathway in CC
Frontiers in Oncology 07
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patients was calculated by GSVA package, and 90 significant

pathways were calculated in the high-and low-risk groups (p<

0.05, Supplement Table 3), as shown in Figure 11A. Among

them, there were 53 significant pathways in high and low risk

groups (p< 0.001). The association of enrichment score with

RiskScore was analyzed (Figure 11B; Supplementary Table 4).

The FAMRGs prognosis-related model was significantly bound

up with signals including O GLYCAN BIOSYNTHESIS, CELL

CYCLE, BASAL TRANSCRIPTION FACTORS, and

P53_SIGNALING_PATHWAY, which was similar to our

previous research results (Figure 7C). There were significant

differences in FAM-related subtypes among 10 classic oncogenic

pathways (27), and FAMRGs prognosis-related model was

strongly bound up with these signals.
Clinical cohort qPCR validation

100 cervical cancer tissues and 100 paracancerous tissues

were collected from our hospital for qPCR verification of

PLCB4, FBLN5, TSPAN8, CST6, and SERPINB7. The results

showed that PLCB4, FBLN5, TSPAN8, CST6, and SERPINB7

were highly expressed in cervical cancer tissues (Figure 12,

p<0.05).
FIGURE 5

Distribution of clinicopathological features between two fatty acid metabolism-related subtypes in the TCGA cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1003222
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zeng et al. 10.3389/fonc.2022.1003222
Discussion

Compared with sugar metabolism and amino acid

metabolism, FAM has received less attention, but the

importance of fatty acids in the development of cancer is

increasingly recognized (28, 29). As a crucial component of the

membrane matrix, the fatty acid is a crucial messenger and fuel
Frontiers in Oncology 08
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source for energy production (30). Compared with normal cells,

tumour cells are more likely to rely on de novo synthesis to

synthesize fatty acids for energy metabolism and membrane

formation for the maintenance of the rapid growth and

proliferation of cells (31). It is worth noting that there are many

fatty acids and metabolic by-products of them, each of which has

different feedback mechanisms and regulation nodes and affects
B

A

FIGURE 6

Differences in genome mutation between two fatty acid-related subtypes (A) Differences of Homologous Recombination Defects, Aneuploidy
Score, Fraction Altered, Number of Segments and Tumor mutation burden in molecular subtypes in the TCGA cohort; (B) Somatic mutation
landscape in two molecular subtypes. ** p<0.01, ns, P>0.05.
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FIGURE 7

Immunological characteristics, immunotherapy, chemotherapy and target therapy responses of two fatty acid-related subtypes (A) Difference of
22 immune cell scores between different molecular subtypes in the TCGA cohort; (B) Difference of ESTIMATE immune infiltration between
different molecular subtypes in the TCGA cohort; (C) Difference in the score of 10 pathways related to tumor abnormality between different
subgroups in the TCGA cohort; (D) Difference of TIDE analysis results between different groups in the TCGA cohort; (E) The box plots of the
estimated IC50 for drug in TCGA-CECS. *p<0.05,**p<0.01,***p<0.001, ****p<0.0001, ns, P>0.05.
B C

D E

F G

A

FIGURE 8

Construction and verification of prognostic correlation model of FamRGS (A)Volcanic map of the variation analysis of molecular subtypes;
(B) The changing trajectory of each independent variable, with the horizontal axis representing the log value of the independent variable
lambda, and the vertical axis representing the coefficient of the independent variable; (C) Confidence interval under each lambda; (D) AUC
curve and KM curve of the risk model of the training set data from TCGA; (E) AUC curve and KM curve of the risk model of the verification set
data from TCGA; (F) AUC curve and KM curve of the risk model of all data sets from TCGA; (G) AUC curve and KM curve of the risk model of
data set from GSE44001.
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B

A

FIGURE 9

Relationship between RiskScore and different clinicopathological features of CC patients (A) Comparison in terms of the distribution of different
clinical characteristics between high-and low-risk groups in TCGA data sets; (B) Differences in RiskScore of different clinical characteristics in
TCGA data sets. **p<0.01, ****p<0.001, ns, P>0.05.
B

CA

FIGURE 10

Compared with other clinicopathological features, RiskScore has higher prognostic value. (A) Forest map of clinical phenotype in the TCGA
cohort and univariate Cox analysis of RiskScore; (B) Forest map of clinical phenotype in the TCGA cohort and multivariate Cox analysis of
RiskScore; (C) Anomogram, nomogram alignment map and DCA curve constructed by TCGA data set.
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many ways of disease behavior through extremely complex

regulatory networks (32). Different tumor subtypes may drive

specific lipid phenotypes (28, 31). Therefore, identifying a

potential subtype related to FAM helps predict the CC

patients’ prognosis.

By integrating cervical sample data from TCGA and

GTEx, DEGs related to FAMRs were searched and molecular

subtypes related to FAM (C1 and C2) were constructed. C2

showed poor prognosis in both TCGA cohort and GSE44001

cohort, independent verification set, and the proportion of

deaths in subtype C2 was notably higher than that in subtype

C1. In addition, a high Fraction of Altered was found in C1,

and TTN and PIK3CA, common drivers in CC, have a high

mutation frequency (14). C1 shows a higher proportion of T

cells, macrophages and dendritic cells activated, and immune

score and estimate score than C2, which means a lower level of

tumor purity (24). The proportion of immune cells is high in

the samples with lower tumor purity (33), and the

inflammatory reaction caused by immune cells will increase

the cell mutation rate and activate stronger anti-tumor

characteristics and faster reaction speed (34, 35). The

samples with higher tumor mutation load often show better

immunotherapy effects (34, 36). These results were in

agreement with our research results. The IC50 of traditional

chemotherapeutic drugs in subtype C1 was notably lower than
Frontiers in Oncology 11
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that in subtype C2, and subtype C1 was less likely to escape

from immune surveillance than C2 and was more sensitive

to immunotherapy.

Then, a prognostic model related to FAM was constructed

for CC based on the two subtypes of DEGs, and the

generalization and prediction accuracy of the model was

repeatedly verified by multiple cohorts. Patients with subtype

C2 and dead ones accounted for a higher proportion in the

high-risk group, and these patients had a higher RiskScore.

Consistent with our expectations, RiskScore can serve as one

independent prognostic factor to predict the CC patients’

prognosis and contributes greatly to the prediction of the

survival of CC. The accuracy of the model prediction has

been further confirmed.

As we described above, the up regulation of FAM

contributes to cell membrane production and signal

transmission, including activation signals (4, 37). The

enrichment of multiple signals is significantly different in

different risk levels. Research has pointed out that one of the

key mechanisms of signal transduction in CC cells is the

glycosylation of proteins (38). As a glycoprotein on the cell

surface, N-Glycon directly affects cell signal transduction and is

the diagnostic target of malignant transformation in the early

stage of CC (39–41). O-glycan can be used as a biological marker

of proliferation, senescence and metastasis of CC cells by
BA

FIGURE 11

Biological pathway for potential regulation of FAMRGs prognosis-related model (A) Heat map in which GSVA analysis of TCGA dataset pathway
showed significant enrichment scores of related pathways in high and low risk groups, and (B) Heat map of correlation analysis of pathways with
significant differences in TCGA data sets and RiskScores (*p<0.05,**p<0.01,***p<0.001).
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regulating immune response and controlling cell metabolism

(42, 43). In addition, in the G2 phase, de novo synthesis is

enhanced to synthesize lipids, which ensures the membrane

material needed for mitosis and promotes cell proliferation (44).

Subtype C1 had a higher score on cell cycle than subtype C2, and

RiskScore and cell cycle enrichment showed a significantly

negative correlation. The high-risk group and patients with

subtype C2 may escape from the control of the cell cycle and

fails, leading to continuous cell division and promoting cancer

progress (45, 46).

Although some studies have explored biomarkers related to

FAM in clear cell renal cell carcinoma (47) and bladder cancer

(48), this study has revealed molecular subtypes related to FAM

in CC for the first time and constructed a FAM-related

prognostic model with strong predictive ability. It provides

some new insights for accurate screening of CC, which is

helpful to guide clinical treatment and prognosis prediction.
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Background: This study aimed to explore the clinical significance of cellular

senescence in uterine corpus endometrial carcinoma (UCEC).

Methods: Cluster analysis was performed on GEO data and TCGA data based

on cellular senescence related genes, and then performed subtype analysis on

differentially expressed genes between subtypes. The prognostic model was

constructed using Lasso regression. Survival analysis, microenvironment

analysis, immune analysis, mutation analysis, and drug susceptibility analysis

were performed to evaluate the practical relevance. Ultimately, a clinical

nomogram was constructed and cellular senescence-related genes

expression was investigated by qRT-PCR.

Results: We ultimately identified two subtypes. The prognostic model divides

patients into high-risk and low-risk groups. There were notable discrepancies

in prognosis, tumor microenvironment, immunity, and mutation between the

two subtypes and groups. There was a notable connection between drug-

sensitive and risk scores. The nomogram has good calibration with AUC values

between 0.75-0.8. In addition, cellular senescence-related genes expression

was investigated qRT-PCR.

Conclusion: Our model and nomogram may effectively forecast patient

prognosis and serve as a reference for patient management.
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Introduction

Uterine corpus endometrial carcinoma (UCEC) is one of the

three major gynecological malignancies, second only to cervical

cancer in incidence (1, 2). Hypertension, diabetes, obesity,

infertility, and family history are risk factors for UCEC (3).

However, because of the scarcity of effective timely detection of

UCEC, many patients have progressed to advanced stages by the

time they are diagnosed (4). At the same time, the poor prognosis

for patients who develop metastases despite treatment is now a

pressing issue (5). Treatment options other than first-line

chemotherapy drugs remain limited (6). Studies show that the

treatment and prognosis of patients can be assessed through

predictive models and biomarkers (7). However, there are no

credible biomarkers to assess the outcome for UCEC.

Cellular senescence is the central process of aging, bringing the

cell cycle to a permanent standstill (8). Cellular senescence can

promote repair and prevent tumorigenesis. Meanwhile, some

degenerative diseases and cancers are associated with abnormal

accumulation of senescent cells (9, 10). Senescent tumor cells can

modulate the tumor microenvironment (TME), transform

surrounding unsenescent cells into senescent cells, and recruit

and activate immune cells to produce anti-tumor and pro-tumor

effects (8, 9). Cellular senescence is capable of limiting tumor growth

progression and is considered a potential therapeutic target (11).

Adriamycin and bleomycin can induce senescence and thus exert

anti-tumor effects. Therefore, studying the effects of cellular

senescence in tumors can help develop new approaches to tumor

therapy (12). However, the role of cellular senescence in UCEC and

the relationship with UCEC prognosis remains unclear.
Materials and methods

Data collection

From TCGA and GEO databases, the gene expression and

clinical data of UCEC were downloaded. The GEO cohort

GSE119041 and TCGA cohort were acquired (13). Among

them, patients in the integrated cohort of the TCGA cohort

and the GEO cohort were randomly divided into training cohort

and testing cohort at the ratio of 1:1, the integrated cohort was

also defined as validation cohort. We normalized the expression

of the genes by using “ComBat” algorithm from the “sva”

package (14). Patients with inadequate clinical data and

survival information were eliminated.
The clustering analysis

We collected 307 cellular senescence related genes from the

previous study (15). Full details of these genes were shown in

Table S1. The “ConsensusClusterPlus” package was used to
Frontiers in Oncology 02
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perform consistent unsupervised cluster analysis to classify

patients into different subtypes. We screened out clusters with

high intra-type correlation and low inter-type correlation for

subsequent analysis (16).
Multi-omics analysis of UCEC subtypes
based on senescence genes

First, to validate the categorization of patient subtypes, we

used principal component analysis (PCA). We investigated the

link with the subtypes and patient clinical characteristics. We then

performed a survival analysis using the “survival” package to draw

Kaplan–Meier curves to assess differences in survival between

subtypes. Next, we explored the differences in the TME between

different subtypes. Violin plots were used to show the distribution

of TME scores for each sample across subtypes. a score of 22

immune cells was obtained by the CIBERSORT method (17). To

measure the amount of immune cell infiltration, the single sample

gene set enrichment analysis (ssGSEA) technique was utilized

(18). Finally, we explored differences in PD-L1 and PD-L2

expression among different subtypes.
Enrichment analysis

Using the “clusterProfiler” software package, we performed

Gene Ontology (GO) analysis to identify functions for these

genes, and the Kyoto Encyclopedia of Genes and Genomes

(KEGG) analysis to identify enriched pathways for these genes

(19). We retained analysis results with p-values less than 0.05

and displayed them in bar graphs.
Difference analysis

Based on gene expression between the two subtypes, we

screened for genes that differed between the two subtypes (20).

In addition, we analyzed the pathways that differed between the

two subtypes by means of KEGG enrichment analysis.
The differential genes clustering analysis
and multi-omics analysis

First, we used the same method as above for cluster analysis.

Then, we explored the association of this subtype with clinical

factors and performed survival analysis. Besides, we performed

TMB analysis and checkpoint analysis of PD-L1 and PD-L2.
Model construction and evaluation

In the training cohort, we performed the least absolute and

selection operator (LASSO) regression analysis to select cellular
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senescence related genes to connect to the prognosis. The

model’s predictive performance was tested using test and

validation cohorts. Based on the median risk score, we

classified the patients into two groups: high-risk and low-risk.

Between the two groups, we investigated variations in clinical

features and patient outcomes. The time-dependent receiver

operating characteristic (ROC) curve was utilized to assess the

model’s accuracy. Besides, univariate and multivariate cox

analyses were also performed (21).
Multi-omics analysis for the model

First, the link between risk scores and clinical factors was

investigated. We then explored the TME based on the model.

One-class logistic regression (OCLR) machine-learning

algorithm was used to quantify the stemness of tumor samples

by calculating cancer stem cell indices (22). Pearson analysis was

used to reveal the correlation of risk score and RNAss. Between

the two groups, the GSEA analysis was carried out to evaluate

variations in enriched pathways. Besides, we also performed

immune microenvironment (IME) analysis. We immunotyped

the patients and investigated the association with both risk score

and immunotyping to learn more about the based on risk score

and immunity.

Studies showed that tumor mutational burden (TMB)

correlates with IME (23). Therefore, we calculated TMB for

each sample by somatic mutation profiles and investigated the

link between risk score and TMB. Based on the median TMB, we

separated patients into high-TMB and low-TMB groups and

performed survival analysis. In addition, we combined TMB

with risk scores for survival analysis. Besides, we analyzed the

relationship among riskscores and microsatellite instability

(MSI) and immunophenoscore (IPS).

The “PRROPHOPIC” pack includes hundreds of medicines

(24). From it, we calculated the half inhibitory concentration

(IC50) value of the drug and screened out the drugs with

significant differences in the two risk groups.
Nomogram construction and evaluation

We created a nomogram using the riskscores and clinical

data. The nomogram’s accuracy was assessed using the C-index,

ROC curve, and calibration curve.
Quantitative RT-PCR

A total of 12 UCEC tissues from patients in the Nantong

Maternal and Child Health Hospital Affiliated to Nantong

University were paired with normal tissues. The Ethics

Committee of the Nantong Maternal and Child Health
Frontiers in Oncology 03
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Hospital Affiliated to Nantong University approved the study.

All patients signed the informed consent form. Use TRIZOL

reagent (Thermo Fisher Scientific, USA) to separate total RNA

from the sample, then use Revert Aid first strand cDNA

synthesis kit (Thermo Fisher Scientific, USA) to reverse

transcribe it into cDNA, and use SYBR Green PCR kit

(Takara, Tokyo, Japan) for real-time quantitative PCR (qRT-

PCR) analysis. GAPDH was used to regulate the relative

expression of genes. The sequence is listed in Supplementary

Table S3.
Results

Establishment and assessment of
senescence subtypes

We included 593 patients from both TCGA and GEO

cohorts in our study for further analysis. Based on cellular

senescence related gene expression, we classified patients using

a consensus clustering approach(Figure S1). The results of the

analysis show that k=2 is the optimal number of groups

(Figure 1A). We then divided them into subtype A and

subtype B based on the above results. PCA analysis indicated

that subtypes A and B successfully distinguished patients

(Figure 1B). Survival analysis incidated that our subtype

successfully stratified the survival of patients, and the survival

time of subtype A was longer (Figure 1C). However, after

comparing the clinical factors of the patients, we found no

difference in the expression of pyroptotic genes with age, stage,

grade, survival status, and histological type (Figure 1D).
Multi-omics analysis of different
senescence subtypes

TME plays a key role in tumorigenesis and progression.

Therefore, we first analyzed the TME. Violin plots showed

significant differences in stromal, immune, and ESTIMATE

scores between the two subtypes (Figure 2A). We further

analyzed the immune-related functions and infiltration of

immune cells of two subtypes based on the above results. A

subtype had higher infiltration levels of NK cells activated, T

cells regulatory, and T cells CD8, while B cells naive, T cells

follicular helper, and Macrophages M1 had greater levels of

infiltration in the B subtype (Figure 2B). ssGSEA analysis further

confirmed that immune cell infiltration levels differed

significantly between the two subtypes (Figure 2C). Besides,

the expression of HLA-A, HLA-DMA, and HLA-F was higher

in subtype A, while the expression of HLA-DMB and HLA-DOA

in subtype B was higher (Figure 2D). The results of the

checkpoint analysis indicated B subtype showed greater levels

of PD-L1 and PD-L2 expression (Figures 2E, F).
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We also analyzed gene function and enriched pathways. GO

enrichment analysis revealed these genes were primarily associated

with cell mitosis, metabolism of genetic material, and ATP

metabolism (Figure 2G). KEGG enrichment analysis revealed

these genes were primarily associated with cell cycle, protein

processing, transport, and DNA replication (Figure 2H). Besides,

it also revealed subtype A was substantially more concentrated in

lipid metabolism, and subtype B had considerable cell cycle, cell

division, and tumor enrichment (Figure 2I).
Differential genes subtypes

Through differential analysis, we identified 1219 differential

genes. Based on these genes, we used the same cohort and

method to further subtype the patients (Figure S2A). We found

dividing patients into two subtypes (A and B) was optimal

(Figure S2B). Besides, the survival time of the two subtypes

was significantly different (Figure S2C). However, the heatmap

showed no differences in clinical factors between the two

subtypes (Figure S2D).

Then, we performed TME analysis. The results showed that

subtype A had higher stromalscore, immunescore, and

estimatescore, while subtype B had higher tumorpurity
Frontiers in Oncology 04
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(Figures 3A–D). In addition, the A subtype of NK cells

activated, T cells regulatory (Tregs), and T cells CD8 have a

higher degree of infiltration, and the B subtype of Macrophages

M1, T cells follicular helper, and B cells naive have a higher

degree of infiltration (Figure 3E). The results of ssGSEA analysis

further confirmed that immune cell infiltration differed

significantly between the two subtypes (Figure 3F). At the

same time, the PD-L1 and PD-L2 genes of subtype B are

highly expressed (Figures 3G, H). Figure 3I showed that the

expression of HLA-related genes of the two subtypes was

significantly different. This is basically consistent with the

analysis of cellular senescence subtypes.
Model construction and evaluation

After LASSO analysis, a total of 4 genes were screened

(Figures 4A, B). The model’s calculating formula was as

follows: riskscore = BZW2*0.44481118 - NRIP1*0.38695576 +

ARHGAP29*0.22408622 + SIX1*0.18719355. Based on the

median risksocre in the training cohorts, patients in the three

cohorts were separated into high- and low-risk groups.

Figure 4C showed the distribution of patients grouped by two

cellular senescence subtypes, two differential gene subtypes, high
B

C D

A

FIGURE 1

Cellular senescence subtypes and clinical assessment. (A) Two subtypes and their associated regions. (B) PCA analysis. There are significant
differences between the two subtypes. (C) Survival analysis. Subtype B has a poorer prognosis. (D) There were no differences in clinical factors
between the two subtypes.
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and low-risk groups, and survival status. We also observed that

both the cellular senescence subtype and the differential gene

subtype had a higher risk score for the B subtype (Figures 4D, E).

Figure 4F shows that RNAss values are positively correlated with

risk scores. Furthermore, the risk score was linked to patient’s

clinical factors. The higher risk score, the more advanced and

poorly differentiated tumors, and the greater the likelihood of

death (Figures S3A–D). We also found a lower risk score for

tumors originating from endometrial tissue and a higher risk for

mixed and serous tissue (Figure S3E).

We then analyzed the relationship of the model to patient

survival. Patients were separated into high-risk and low-risk

groups based on the median (Figures S4A–C). At the same time,

the number of patient deaths was proportional to the risk score

(Figures S4D–F). Furthermore, in the high-risk group, BZW2,

ARHGAP29, and SIX1 were overexpressed, whereas NRIP1 was

overexpressed in the low-risk group (Figures S4G–I).

Then, we evaluated the accuracy of the model. The high-risk

group had the worst prognosis among the three groups

(Figures 5A–C). Figures S4A–H showed the results of survival

analysis for clinical factors. The AUC of the training cohort at 1,

3, and 5 years was 0.652, 0.722, and 0.771, respectively

(Figure 5D). The AUC of the test cohort at 1, 3, and 5 years

was 0.621, 0.619, and 0.645, respectively (Figure 5E). The AUC
Frontiers in Oncology 05
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of the validation cohort at 1, 3, and 5 years was 0.644, 0.671, and

0.697, respectively (Figure 5F).
Independent prognostic analysis

For independent prognostic analysis, univariate and

multivariate COX regression models were utilized. The results

of the univariate COX analysis are as follows (Table S1). In the

training cohort, histological type, stage, riskscore were

independent prognostic factors. The grade was also an

independent prognostic factor in the testing cohort and

validation cohort. In the three cohorts, multivariate COX

analysis demonstrated riskscore and stage were independent

predictive variables (Table S2).
The model’s multi-omics analysis

First, GSEA analysis revealed the high-risk group was mostly

associated with cardio-renal diseases (Figure 6A). The low-risk

group was mostly associated with immunity and rejection

(Figure 6B). Then, we analyzed the relationship between the

TME and the model. StromalScore, ImmuneScore, and
B C

D E F

G H I

A

FIGURE 2

Multi-omics analysis based on senescence cluster. (A) TME analysis. Subtype A has a higher TME score. (B, C) Differences in immune cell
infiltration levels. (D) Differences in HLA-related gene expression levels. (E, F) The PD-L1 and PD-L2 genes of subtype B are highly expressed. (G,
H) The GO (G) and KEGG (H) enrichment analysis. (I) Differential KEGG enriched pathways between the two subtypes. Adjusted p-values were
shown as ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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B C

D E F

A

FIGURE 4

Prognostic model construction. (A, B) LASSO regression analysis. 4 genes were screened to build a prognostic model. (C) Distribution of
different subtypes, risk groups, and survival outcomes. (D, E) Distribution of risk scores for different subtypes. (F) RNAss values are positively
correlated with risk scores.
B C

D E F

G H I

A

FIGURE 3

Multi-omics analysis based on differential genes cluster. (A-D) TME analysis. Subtype A has higher TME scores and subtype B has higher tumor
purity. (E, F) The amount of immune cell infiltration differed significantly. (G) PD-L1, PD-L2 expression levels are higher in subtype (B-H) The A
subtype has higher expression levels of HLA-related genes. Adjusted p-values were shown as ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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ESTIMATEScore were greater in low-risk group (Figure 6C). In

addition, riskScore is inversely proportional to StromalScore,

ImmuneScore, and ESTIMATEScore, and proportional to

TumorPurity (Figures 6D–G). Figure S5A illustrated the
Frontiers in Oncology 07
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distribution of immune cell in two groups per patient. We

then investigated the model’s connection to immune cell

infiltration. Besides, T cells CD4 memory activated, T cells

follicular helper, T cells regulatory, NK cells resting,
B C D

E F G H

I J K L

A

FIGURE 6

Model multi-omics analysis. (A, B) GSEA enrichment analysis. (C-F) TME analysis. the low-risk group had higher StromalScore, ImmuneScore, and
ESTIMATEScore. Risk Score is inversely proportional to StromalScore, ImmuneScore, and ESTIMATEScore, and proportional to TumorPurity. (G-I) The
amount of immune cell infiltration differed significantly. (J) Immune cell infiltration and risk score were linked. (K) immune cells and Risk score were
linked. (L) immune cells and model genes were linked. Adjusted p-values were shown as ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.
B C

D E F

A

FIGURE 5

Prognostic model evaluation. (A-C) survival analysis. the high-risk group had a worse prognosis in training (A), test (B), and validation (C)
cohorts. (D-F) ROC curves. The AUC value of the model is basically between 0.6 and 0.7 in three cohorts.
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Macrophages M1, and Dendritic cells activated were distinct in

the two groups (Figures 6H, I). SsGSEA analysis also confirmed

that in the high-risk group, most immune cells had higher

infiltration levels (Figure 6J). The risk score was significantly

associated with immune cells, model genes (Figures 6K, L). We

found that T cell regulatory were negatively correlated with

riskscore, and all the rest of cells had a positive correlation to risk

score. (Figures S5B–F). Figure 6K showed the relationship

between model genes and immune cells. Then, we divided

patients into four subtypes based on their immunity (Figure

S5G). Different types of immune infiltration correspond to

tumor promotion and tumor inhibition, including C1 (wound

healing), C2 (INF-g dominance), C3 (inflammation) and C4

(lymphocyte depleted) (25). The risk score for the C2 subtype

was the greatest, while the risk score for the C3 subtype was the

lowest (Figure S5H). In addition, significant variations between

the two groups were also seen in the expression of

immunological checkpoint genes (Figure S5I). Among them,

CTLA4, PDCD1LG2, and PDCD1 were most associated with

risk scores (Figure S5J). Risk scores were inversely correlated

with PDCD1LG2, CTLA4, and PDCD1, and favorably correlated

with PDCD1LG2 (Figures S5K–M).

Studies have demonstrated that TMB can serve as an

important component of composite predictors to guide tumor

immunotherapy (26). We found that the three genes with the

greatest mutation probability in the high-risk group were TP53,

PIK3CA, and PTEN, while the three genes with the highest

mutation probability in the low-risk group were PTEN,
Frontiers in Oncology 08
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ARID1A, and PIK3CA (Figures 7A, B). We then performed

survival analysis. The prognosis of patients with high-TMB

scores and high risk score was greater (Figures 7C, D). The

research by Ganesh et al. illustrated MSI is closely related to the

sensitivity to immunotherapy (27). The low MSI accounted for

the least, and the high MSI group had the lowest risk score

(Figures 7E, F). To further guide the patient’s treatment, we

performed a drug sensitivity analysis. First, we screened out

drugs related to model genes, including Tamoxifen, Dasatinib,

Panobinostat, etc (Figure 8A). Next, we further screened drugs

sensitive to the high-risk group, including Gemcitabine,

Doxorubicin, Docetaxel, Cisplatin, Vinorelbine, Paclitaxel,

Vinblastine (Figures 8B–H).
Nomogram construction and validation

We built a nomogram by combining riskscore and clinical

factors. According to the nomogram, the 1-, 3-, and 5-year

mortality rates for the patients were 0.0104, 0.0445, and 0.0644,

respectively (Figure 9A). The calibration curve showed the

nomogram had an excellent calibration (Figure 9B). The C-

index showed that the nomogram performed better than the risk

score and clinical factors (Figure 9C). The same conclusion was

drawn from the ROC curve, with the AUC of 0.751, 0766, and

0.786 in the nomogram at years 1, 3, and 5, respectively

(Figures 9D–F).
B C

D E F

A

FIGURE 7

Multi-omics analysis of the model. (A, B) Gene mutation frequencies in both groups. (C, D) Survival analysis. H-TMB has a better prognosis. (E, F)
MSI analysis. The low MSI accounted for the least, and the high MSI group had the lowest risk score.
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B C

D E F
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FIGURE 9

Nomogram construction and evaluation. (A) According to the nomogram, the 1-, 3-, and 5-year mortality rates for the patients were 0.0104,
0.0445, and 0.0644, respectively. (B) Calibration curve for nomogram. (C) C-index curve. (D-F) ROC curves.
B C D E

F G H
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FIGURE 8

Drug sensitivity analysis. (A) Relationship between model genes and sensitive drugs. (B-H) Sensitive drugs in high-risk group.
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Validating gene expression level of
cellular senescence-related genes in
UCEC samples

To validate the expression levels of cellular senescence-

related genes, we used qRT-PCR to detect the expression levels

of six cellular senescence-related genes in 12 UCEC samples and

12 normal tissues. The results indicated that ARHGAP29

expression was significantly higher in tumor samples, while

GNLY and NRIP1expression was significantly lower in UCEC

samples. There was no significant difference in BATF, BZW2

and SIX1 expression (Figure S6).
Discussion

In this study, to evaluate the involvement of senescence

genes in UCEC, we did a complete bioinformatics analysis.

Based on the senescence gene, we began by categorizing the

patients into two groups. Subtype B has a worse prognosis. TME,

immune checkpoint gene expression, and immune function also

differed significantly between the two subtypes. We further

discovered two gene subtypes based on the differential genes.

The results of correlation analysis showed that different genes

can be used as indicators of patient prognosis and TME.

Therefore, the prognostic model was built using differential

genes. The model’s predictive ability was proven using survival

analysis and ROC curves. Furthermore, this prognostic model

was significantly associated with clinical factors, TME, immune-

related markers, TMB, MSI, and drug sensitivity. Finally, we

built a nomogram by combining riskscore and clinical factors.

The results showed that the nomogram was successful in

stratifying patients and guiding them in prognostic assessment

and treatment selection.

In this study, we verified the expression levels of cell

senescence-related genes in tumor tissues and normal tissues.

Perhaps due to the small sample size, there was no difference in

BATF, BZW2 and SIX1 expression between tumor and normal

tissues. It is necessary to expand the sample size to further verify

this result. Senescence is a steady state that removes sick cells

and stabilizes the collective internal environment (11). It is also

thought to prevent tumor development (28). However, recent

studies have found that tumor progression can also be caused by

cellular senescence (29). Senescent cells secrete signaling

molecules that affect tumor proliferation, invasion and

metastasis, and angiogenesis (30). In addition, the senescence

of some tumor cells is reversible and they can escape cellular

senescence and re-enter the cell cycle, which is an important

cause of tumor recurrence and progression (31). As a result, it is

critical to thoroughly investigate the clinical importance of
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cellular senescence in malignancies. However, there are

currently no studies on the role of cellular senescence in UCEC.

Four genes have been identified as being involved in illness

development and progression. BZW2 is a protein that has a role

in cell adhesion (32). Huang et al. showed that BZW2 promoted

colorectal cancer progression (33). NRIP1 is a nuclear receptor

protein, and Its high expression is linked to a bad prognosis of

gastric cancer (34). ARHGAP29 is a GTPase that stimulates

prostate cancer development and metastasis (35). SIX1 is a

transcription factor with an important role in tumorigenesis

(36, 37). Our prognostic model combines these four genes,

which will give us a better understanding for cancer cells.

The function of programmed cell death in tumor therapy

and TME are receiving increasing attention (38, 39). Tumor

growth must evade tumor immunity, which is also considered an

important marker of tumor progression (40, 41). Despite

breakthroughs in the treatment of aggressive malignancies

with immunotherapy, a large minority of patients still have no

impact on treatment (42, 43). The immune microenvironment

of UCEC can predict patient survival (44). In this study, GSEA

analysis revealed that the low-risk group was mostly associated

to immunity. In addition, our study also found the riskscore was

inversely related to the patient’s stromalscore, immunescore,

estimatescore and proportional to tumorpurity. At the same

time, we also found that major immune checkpoint genes were

up-regulated in the low-risk group. This means that patients

with low-risk scores are more immunogenic and may benefit

from immunotherapy. Therefore, our study may guide the

immunotherapy of UCEC patients.

Studies have shown that immunotherapy is more effective in

people with a high TMB (45). Tissue TMB can also predict

patient response to immune checkpoint therapy (46). TP53

mutation is an independent marker of poor prognosis (47).

There is also evidence that human carcinogens can induce TP53

mutations (48). Our study also reached similar conclusions. The

mutation rate of TP53 is substantially greater in the high-risk

group than in the low-risk group. This helps us explore the

causes of tumorigenesis and the choice of treatment options for

patients. Besides, drug resistance of tumors has always been one

of the challenges of UCEC treatment (49). It is also difficult to

effectively treat advanced cases (50). To this end, our study

screened drug candidates for relevanche to prognostic models.

Our study has some limitations. First, our studies are all

from public databases. Due to the limited access to public data

sets and the limited amount of data, the clinicopathological

parameters analyzed in this study were not comprehensive, and

there were errors or biases. In the future, we will conduct basic

experiments in vivo or in vitro to confirm our findings. Second,

our study was a retrospective study. Future prospective clinical

validation is needed.
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This is the first prognostic model of UCEC based on cellular

senescence genes to our knowledge. Our analyses reveal a broad

range of regulatory regulatory mechanisms that facilitate

individualized treatment and prognosis prediction in patients.
Conclusion

We constructed a UCEC prognostic model based on cellular

senescence genes and combined with clinical factors to construct

nomograms, which showed good predictive performance. Using

this model, the prognosis and TME of UCEC patients can be

accurately estimated. Furthermore, our findings may lead to new

approaches for UCEC treatment.
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SUPPLEMENTARY FIGURE 1

Cluster analysis. Cluster analysis heatmap of cellular senescence genes

(k = 3-9).

SUPPLEMENTARY FIGURE 2

Cluster analysis. (A) Cluster analysis heatmap of differential genes (k = 3-
9). (B) Dividing patients into two subtypes was optimal. (C) Survival

analysis. Subtype B has a poorer prognosis. (D) There were no
differences in clinical factors between the two subtypes.

SUPPLEMENTARY FIGURE 3

Association of clinical factors with risk score. (A-E) Risk score in patients

with different age, grade, fustat, and histological_type.

SUPPLEMENTARY FIGURE 4

Model evaluation. (A-C) Patients were divided into high- and low-risk

groups based on the median risk score. (D-F) As the risk value increased,
the proportion of UCEC patients who died increased. (G-I) in the high-risk

group, BZW2, ARHGAP29, and SIX1 were highly expressed, whereas, in the

low-risk group, NRIP1 was highly expressed.

SUPPLEMENTARY FIGURE 5

Immunoassay of the model. (A) The distribution of immune cells for each

sample in the two groups. (B-F) The relationship between risk scores and
immune cells. T cell regulatory (Tregs) were negatively correlated with risk

score, and the remaining cells were all positively correlated with

risk score. (G, H) The relationship between immunophenotyping and
risk score. (I, J) Immune checkpoint analysis. There were also significant

differences in the expression of immune checkpoint genes between the
two groups. (K-M) PDCD1LG2 was positively associated with risk scores,

CTLA4, and PDCD1 were negatively associated with risk scores.

SUPPLEMENTARY FIGURE 6

The cellular senescence-related genes expression was investigated by

qPT-PCR.
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The BMP inhibitor follistatin-like
1 (FSTL1) suppresses
cervical carcinogenesis
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Jiasen Guo1, Zhiyong Yuan2, Ping Wang2, Lian Li1*

and Wen Ning1*

1State Key Laboratory of Medical Chemical Biology, Tianjin Key Laboratory of Protein Sciences, College
of Life Sciences, Nankai University, Tianjin, China, 2Department of Radiation Oncology, Tianjin Medical
University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory
of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,
3Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
Follistatin-like 1 (FSTL1) is a cancer-related matricellular secretory protein with

contradictory organ-specific roles. Its contribution to the pathogenesis of cervical

carcinoma is still not clear. Meanwhile, it is necessary to identify novel candidate

genes to understand cervical carcinoma’s pathogenesis further and find potential

therapeutic targets. We collected cervical carcinoma samples and matched

adjacent tissues from patients with the locally-advanced disease and used

cervical carcinoma cell lines HeLa and C33A to evaluate the effects of FSTL1 on

CC cells. The mRNA transcription and protein expression of FSTL1 in cervical

carcinoma tumor biopsy tissues were lower than those of matched adjacent

tissues. Patients with a lower ratio of FSTL1 mRNA between the tumor and its

matched adjacent tissues showed a correlation with the advanced cervical

carcinoma FIGO stages. High expression of FSTL1 markedly inhibited the

proliferation, motility, and invasion of HeLa and C33A. Regarding mechanism,

FSTL1 plays its role by negatively regulating the BMP4/Smad1/5/9 signaling. Our

study has demonstrated the tumor suppressor effect of FSTL1, and these findings

suggested a potential therapeutic target and biomarker for cervical carcinoma.

KEYWORDS

FSTL1, tumor suppressor, cervical cancer, FIGO stages, BMP4/Smad1/5/9 signaling.
Introduction

Cervical carcinoma (CC) is the fourth most pervasive female malignancy in the world,

with over 500,000 diagnosed cases and over 300,000 deaths each year (1). During the past

decade, the incidence of CC has effectively reduced profit from the introduction of organized

screening programs and human papilloma virus (HPV) vaccination programs (2). However,

about 90% of CC deaths occur in non-developed countries, where morbidity and disease-

specific mortality continue to increase (1). China has the most significant number of CC

patients, with about 110,000 new cases and 60,000 mortality in the single year of 2020, which
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is equivalent to 18.2% of newly diagnosed CC cases and 17.3% of

deaths worldwide (3). After chemoradiotherapy, patients with failing

or recurring metastatic CC still suffer a poor prognosis, even

incorporating the anti-VEGF medication bevacizumab and novel

immunotherapeutic approaches (4). Therefore, it is essential to

identify novel target genes for in-depth understanding the

pathogenesis of CC and predicting the prognosis of CC.

Follistatin-like 1 (FSTL1), a matricellular protein which initially

discovered as a TGF-b1-inducible protein (5), belongs to the Fst-

SPARC family (6). As a protein widely present in mammalian tissues,

FSTL1 plays significant roles in the extracellular matrix and regulates

cellular proliferation, survival, differentiation, and migration

associated with development and disease, including cardiovascular

diseases, arthritis, and organ fibrosis (7). The carcinogenesis of FSTL1

(previously named TSC-36) was first discovered when researchers

found that FSTL1 was reduced and even undetectable in various v-

myc/v-ras-transformed cells and human cancer cells (8). Recently,

more and more works have identified the potential of FSTL1 as a

tumor suppressor because of its ability to negatively regulate the

motility and invasion of ovarian (9), renal (10), lung (11), and

nasopharyngeal cancer cells (12). However, controversial data have

reported that FSTL1 is riched in astrocytic brain tumors with high

expression (13) and enhances the metastasis of cancer cells via

activating diverse signaling pathway in breast (integrin b3/Wnt)

(14), esophageal (NFkB–BMP) (15), hepatocellular (TGF-b1) (16),

gastric (AKT) (17), and colorectal cancers (FAK) (18).

FSTL1 plays a role in development and disease to a large extent by

regulating the TGF-b/BMP4 signaling (8, 19). Our previous studies on

lung development also showed that FSTL1 interferes with alveolar

differentiation mediated by the BMP4-Smad1/5/8 signaling (20). BMP4

is associated with many aspects of carcinogenesis but has different

effects on different cancer types (11, 21). Recently, researchers have

reported that FSTL1 up-regulates the BMP4-Smad signaling in lung

adenocarcinoma (11), while in glioblastoma, FSTL1 down-regulates the

same signaling (21). Therefore, the effect and mechanism of FSTL1 in

cancer progression remain to be explored to a large extent.

The clinical significance of FSTL1 in CC is rarely reported, and

the signaling of FSTL1 driving cervical carcinogenesis is not

elucidated. In this study, the FSTL1 expression was found to be

reduced, whereas BMP4/Smad signaling was more activated in

biopsies of CC tumors than in matched adjacent tissues. The low

ratio of FSTL1mRNA expression between the tumor and its matched

adjacent tissue was associated with the poor prognosis in CC. The

characterization of the function of FSTL1 in cervical carcinogenesis

was also carried out in cultured human CC cells (HeLa and C33A).

Our data demonstrated the tumor suppressor effect of FSTL1,

suggesting its potential role as a therapeutic target and a prognostic

marker for CC.
Materials and methods

Subjects

We collected the samples of CC tumors andmatched adjacent tissues

(2 cm from the tumor) from 15 patients with locally-advanced disease

from 2018 to 2021 at Tianjin Medical University Cancer Institute and
Frontiers in Oncology 02141
Hospital (TMUCIH). The pathological diagnose of each patient was

assigned using the established criterion (22). The levels of FSTL1 in

patients’ cervical tissues were detected separately using qRT-PCR (No.1-

11), western blot (No.12-15), and immunohistochemistry (No.15). We

also collected the blood samples of eight patients and eight normal

control individuals with matched age, sex, and weight. ELISA was used to

detect FSTL1 level of peripheral blood samples The clinical information

of CC patients is presented in Table 1, and the characteristics of normal

control individuals are summarized in Table 2.

This study followed the principles of the Declaration of Helsinki.

Approval was authorized by the Ethics Committee of TMUCIH

(approval number: Ek2018137; date of approval: 20 November

2018). All sample donors in the study confirmed and signed the

informed consent to publish this article.
Methods of data analysis
and manu-experiments

The detailed methods were described in Supplementary Materials.

The judgment of significance of all experimental results followed by

consistent standard: ***p < 0.001, **p < 0.01, *p < 0.05 and ns: p >

0.05. Data were expressed as mean ± SE.
Results

The expression of FSTL1 is lower
in CC patients

To confirm the broad significance of FSTL1 in CC, we first

analyzed FSTL1 mRNA expression in a CESC cohort (CC, n = 306;

adjacent, n = 3) that was collected from the TCGA database. We

observed a 3.2-fold reduction in FSTL1mRNA level (Dlog2 = -1.67) in

CC tumors compared with adjacent tissues (Figure 1A). We also

obtained tumors and the matched adjacent tissues from an

independent cohort of patients with locally-advanced CC and

measured similar declines in FSTL1 expression. As shown in

Figure 1B, among the 11 pairs of biopsies (Table 1, patient No. 1-

11) examined, the FSTL1 mRNA transcription level in each tumor

was markedly lower than that in the matched adjacent tissue using

qRT-PCR. The reduction of FSTL1 protein expression was further

detected through densitometric analysis of western blot (Table 1,

patient No. 12-15, Figure 1C) and immunohistochemistry staining

(Table 1, patient No. 15, Figure 1D). These data indicated the reduced

FSTL1 expression in CC. Unfortunately, the circulating levels of

FSTL1 CC patients’ serum were comparable to those of healthy

controls (Tables 1, 2, patient No. 13-20, Figure 1E).
Low FSTL1 expression ratio in CC is
connected to advanced FIGO stage and
poor prognosis

We further investigated the association between decreased FSTL1

levels and poor prognosis of CC. In the CESC cohort, CC patients

with low FSTL1 mRNA expression tended to have a poor prognosis
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(FIGO stage: 0, Log2FSTL1 = 9.11 ± 0.46; I/II, Log2FSTL1 = 7.14 ±

0.09; III-IV, Log2FSTL1 = 6.84 ± 0.15), but the difference was not

significant (Figure 2A). Similarly, no prognostic significance of the

FSTL1mRNA expression was observed in our patient cohort (Table 1,

patient No. 1-11; Figure 2B). Besides, no significant difference

between the expression level of FSTL1 and the survival probability

of patients shared on the TCGA database (Figure S1). However,

interestingly, when calculating the FSTL1 mRNA expression ratio

between the tumor and matched adjacent tissues (Table 1), the

reduced ratio was positively correlated with FIGO stage (I-II, D=
Frontiers in Oncology 03142
-2.08 ± 0.19; III-IV, D= -3.16 ± 0.46, Figure 2C), which suggested that

CC patients with relatively lower FSTL1 mRNA transcription might

tend to have a poor prognosis, including pelvic or retroperitoneal

lymph node metastasis. We further followed up with these 11 CC

patients who received standard chemoradiotherapy. As expected, six

FIGO stage I-II patients showed complete response (CR) and were in

stable condition. In contrast, two FIGO stage III patients (No. 5,

IIIC2r; No. 6, IIIC1r) showed partial response (PR) and one patient

(No. 9) with IIIC1r developed progressive disease (PD) at a median of

22 months (range, 18-31 months) follow-up. More seriously, patient
TABLE 2 Characteristics of normal control individuals.

Normal control Age (year) Weight (kg)

1 49 66

2 55 61

3 48 65

4 61 63

5 57 58

6 67 75

7 41 78

8 63 60
TABLE 1 Clinical characteristics of CC patients.

Pat. Age Pathology FIGO stage Follow-up Ratio (Tumor/Adjacent)

1 45 SCC IB2 CR -1.45

2 56 SCC IIB CR -2.88

3 60 SCC IIB CR -2.08

4* 67 SCC IIA1 CR -1.99

5 55 SCC IIIC2 PR -2.46

6 45 SCC IIIC1 PR -4.81

7 51 SCC IIB CR -2.13

8 58 SCC IIA1 CR -1.93

9 48 SCC IIIC1 PD -2.35

10 29 SCCC IIIC1 UT -2.65

11 59 SCCC IVB UT -3.52

12 69 SCC IIIB / /

13 49 SCC IIIB / /

14 55 SCC IIIB / /

15 48 SCC IIB / /

16 61 SCC IIB / /

17 57 SCC IIIB / /

18 67 SCC IIB / /

19 41 SCC IIIC1 / /

20 63 SCC IIB / /
Patient and treatment characteristics. The detailed descriptions of all abbreviations in the column “FIGO stage” are listed in (22). In the column “Follow-up”, CR, Complete response; PR, Partial
response; PD, Progressive disease; UT, Under-treatment. *Discontinued therapy due to myocardial infarction.
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No.9 developed multiple distant metastases, including liver, bone and

lymph nodes metastasis, and died eight months after standard

chemoradiotherapy, bevacizumab and checkpoint inhibitors. The

newly recruited patients with FIGO stage III-IV (No. 10, IIIC1; No.

11, IVB) are still under treatment. In conclusion, clinical data

suggested that a low FSTL1 expression ratio could predict advanced

CC stages to a certain extent.
FSTL1 inhibits CC cell proliferation

Before evaluating the regulatory effect of FSTL1 on CC cell

proliferation, we first tested the levels of mRNA transcription and

protein expression of FSTL1 in two CC cell lines, HeLa and C33A.
Frontiers in Oncology 04143
And both levels in HeLa were significantly lower than those in C33A

and the normal cervical epithelial cell line (H8) (Figures 3A, B).

Overexpression of FSTL1 with transient transfection of pcFstl1 into

HeLa cells significantly increased FSTL1 protein expression when

compared with HeLa cells transfected with the empty vector

(pcDNA3.1) (Figure 3C). Parallelly, the knockdown of FSTL1 by

siRNA in C33A significantly decreased FSTL1 protein expression

(Figure 3D). The overexpression of FSTL1 inhibited HeLa cell

proliferation, as determined by cell number counting (Figure 3E),

MTT assay (Figure 3F), and EdU staining (Figure 3G). Moreover, the

deficiency of FSTL1 enhanced the proliferation of C33A (Figures 3E–

G). In summary, the results indicated that FSTL1 might play the role

as a tumor suppressor, and its high expression in CC cells can inhibit

cell growth in vitro.
A B

D

E

C

FIGURE 1

The level of FSTL1 frequently decreased in CC, which was related to the poor prognosis. (A) FSTL1 mRNA transcription level of was analyzed using TCGA
database containing 306 CC samples and 3 adjacent tissue samples. The mRNA (B) and protein (C) expression levels in CC tissues were lower than those
in adjacent tissues. (D) The FSTL1 IHC staining in CC tissues was weaker than adjacent tissues. Scale bar, 150 mm. (E) ELISA showed no significant
differences in serum FSTL1 levels between cervical cancer patients and healthy controls (n = 8). **p < 0.01. ***p < 0.001.
A B C

FIGURE 2

Low expression of FSTL1 in CC was connected to the poor prognosis. (A) Based on the cases from the TCGA database, FSTL1 transcription decreased
with the development of a poor prognosis. (B) FSTL1 mRNA transcription of 11 CC tumor tissues showed no significant correlation between FSTL1 and
the FIGO stage. (C) With the development of a poor prognosis, the ratio of FSTL1 mRNA transcription between the tumors and their matched adjacent
tissues was reduced. *p < 0.05. **p < 0.01.
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FSTL1 has little effect on CC cell apoptosis

The impact of FSTL1 on the survival of HeLa and C33A cells was

also tested. Overexpression of FSTL1 in HeLa or knockdown FSTL1

in C33A slightly changed the level of the cleaved form of Caspase-3,

the marker of Caspase-3 activation in apoptotic signaling. Besides, the

overexpression or deficiency of FSTL1 had little effect on the
Frontiers in Oncology 05144
expression of Bcl-2, an anti-apoptotic protein that is often used as a

marker showing apoptotic activity (Figure 4A). Consistently, FACS

analysis also showed slightly changing but insignificant proportions

of apoptotic cells in HeLa cells with FSTL1 overexpression and C33A

cells with FSTL1 deficiency (Figure 4B). The data above suggested that

FSTL1 slightly affected CC cells ’ apoptosis in vitro , but

not significantly.
A B

D

E

F

G

C

FIGURE 3

FSTL1 inhibited CC cell proliferation. (A) The comparison of FSTL1 mRNA transcription level in cell lines HeLa, C33A and H8. (B) FSTL1 protein expression in
cell extracts (labeled as “Cell”) of HeLa, C33A and H8 cells and in the medium (labeled as “supernatant [SN]”). (C) FSTL1 protein expression in HeLa undergone
the transfection of pcDNA3.1 or pcFstl1. (D) FSTL1 protein expression in C33A undergone the interference of siRNA. (E) The number of proliferating cells after
overexpression of FSTL1 in HeLa (left) and knockdown in C33A (right). (F) The formazan production in HeLa and C33A cells for diverse time duration. (G) The
nucleuses of HeLa and C33A cells were stained in blue by Hoechst, which represented the total number of cells. The cells in active proliferation were stained
in green by EdU. Then the percentage of cell proliferation was calculated. Scale bar, 50 mm. *p < 0.05. **p < 0.01. ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1100045
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhao et al. 10.3389/fonc.2023.1100045
FSTL1 suppresses the motility and invasion
of CC cell

The motility and invasion in vitro of CC cells with the

overexpression and knockdown of FSTL1 were also detected.

Compared with HeLa cells transfected with pcDNA3.1, the

transwell migration assay showed significant reductions of

migratory cells with the high expression level of FSTL1 (H8 and

HeLa transfected with pcFstl1) was identified (Figure 5A).

Consistently, the deficiency of FSTL1 in C33A cells resulted in a

significant increase of migratory cells (Figure 5B). Moreover, the

invasion of HeLa and C33A cells through Matrigel was significantly

inhibited when FSTL1 was high-expressed (Figures 5C, D).

Meanwhile, the overexpression of FSTL1 also caused a decrease in

MMP2 expression which is related to tumor metastasis. And
Frontiers in Oncology 06145
unsurprisingly, MMP2 expressed higher when FSTL1 was knocked

down in C33A cells (Figure 5E). These data further demonstrated that

FSTL1 is a tumor suppressor, and its high expression can significantly

inhibit the motility and invasion of CC cells in vitro.
FSTL1 inhibits BMP4-Smad signaling in CC

The FSTL1-BMP4-Smad signaling has been reported in lung

adenocarcinoma (11) and glioblastoma (21), but the role of FSTL1

in BMP4-Smad signaling remains controversial. To determine the

molecular basis of the anti-tumor activity of FSTL1 in CC, we first

examined the Smad-mediated BMP4 signaling. Compared with the

matched adjacent tissues, the phosphorylation level of Smad1/5/9 in

tumor biopsy tissues was higher in patients with the locally-advanced
A

B

FIGURE 4

FSTL1 had little effect on the apoptosis of CC cells. (A) The expression of four proteins, including total Caspase-3, cleaved Caspase-3, Bcl-2, and GAPDH.
GAPDH was selected as a loading control. (B) FACS showed HeLa cells with overexpression of FSTL1 and C33A cells with knockdown of FSTL1. The
graph illustrates the induction of apoptosis in HeLa cells (up) and C33A cells (down). Percentages for each quadrant were pooled together and each
column showed the average of three independent experiments. The Q4-LL represented the normal live cells. The Q1-UL represented necrotic cells. The
Q2-UR represented the cells undergone late apoptosis. And the Q3-LR represented the cells undergone early apoptosis. ns: p > 0.05.
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disease (Patient No. 12; Figure 6A). This corresponded to a lower level

of FSTL1 protein in the tumor than in its matched adjacent tissues

(Figures 1C and 6A). These findings implied that FSTL1 might

function in the negative control of BMP4-Smad signaling in CC.

To further examine the inhibiting effect of FSTL1 on BMP4-Smad

signaling in CC, we overexpressed FSTL1 in HeLa and knocked down

FSTL1 in C33A. As shown in Figure 6B, BMP4-induced activation of

Smad1/5/9 signaling was suppressed by the high expression of FSTL1

in CC cells. Moreover, FSTL1 high-expression inhibited the BMP4-

induced CC cell proliferation as detected by EdU assay (Figure 6C)

and CC cell metastases as detected by MMP2 expression (Figure 6D).

Therefore, the results supported the involvement of the FSTL1-

BMP4-Smad signaling in CC and demonstrated the negative effect

of FSTL1 on regulating the BMP4-Smad signaling in CC progression.
Discussion

The worldwide gynecological malignancy, cervical carcinoma (CC),

is a primary cause of female tumor-related deaths in non-developed

countries (23). Despite advances in treatments, little progress has been

made in treating patients with progressing CC, and the prognosis is

poor. One of the hurdles to improving the effectiveness of treatment

and developing precise treatment strategies is short of an in-depth

study of the molecular mechanisms of cervical carcinogenesis. Here we

provided new insights into the pathogenesis of CC and demonstrated

the tumor suppressor effect of FSTL1 in CC. We analyzed the clinical

samples as well as conducted in vitro experiments to validate that
Frontiers in Oncology 07146
FSTL1 holds the potential to be a promising therapeutic target and

possible biomarker for CC prognosis prediction.

We found evidence to prove the tumor suppressor function of

FSTL1 in cervical carcinogenesis. FSTL1 expression decreased in the

CC tumor tissues compared with its matched adjacent tissues. High

expression of FSTL1 suppressed the proliferation, motility, and

invasion, but affected little on HeLa and C33A cells’ apoptosis.

However, the same experiments demonstrated that a normal

cervical epithelial cell line (like H8) could not be affected by

changing the FSTL1 expression level (Figure S2). In summary,

FSTL1 in CC shows a similar carcinogenesis suppressor function as

in ovarian (9), renal (10), lung (11), and nasopharyngeal cancers (12).

Recent studies have reported that the tumor suppressor function

of FSTL1 can further predict the prognosis of patients. For example,

the IHC analysis and survival analysis of the public data both reveal a

positive correlation between FSTL1 level and overall survival in lung

adenocarcinoma patients (11). Liu et al. further found an SNP

(rs1259293) in the genomic coding region of FSTL1, which is

connected with a rising risk and poor postoperative prognosis of

renal cell carcinoma (24). Here, we found that the decreased FSTL1

mRNA expression ratio between the tumor and its matched adjacent

tissues, instead of the expression of FSTL1 mRNA itself, is correlated

with the FIGO stage. Our data suggest a novel calculation method to

highlighting the prognostic value of FSTL1 in CC.

The critical role of BMP4 in cancer pathogenesis has been

reported (25). The expression level of BMP4 is usually varied in

diverse types of tumors, and BMP4 inhibits cancer growth and

metastasis in most types of tumors, although contradictory or
frontiersin.o
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FIGURE 5

FSTL1 inhibited the mobility and invasion of CC cells. Representative images of crystal violet-stained HeLa migratory cells transfected with an empty
plasmid or a pcFstl1 plasmid after the motility (A) and invasion (C) assay compared with H8 cells. The same experiments of cell mobility (B) and invasion
(D) were also performed using C33A cells. Quantification of the migratory (A, B) and invading (C, D) cells by solubilizing the crystal violet and
spectrophotometric reading at OD 570 nm. (E) The expression of the invasion-related protein MMP2 in HeLa cells transfected with either an empty
control vector or pcFstl1 (left) and in C33A cells undergone the knockdown of FSTL1 (right). *p < 0.05. **p < 0.01 ***p < 0.001.
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conflicting results have been reported as well (21, 26). Jin and

colleagues reported the high expression of FSTL1 in high-grade

gliomas, and it facilitates glioma growth by negatively regulating

the BMP4-Smad signaling (21). Chiou and colleagues showed low

expression of FSTL1 and BMP4 in lung adenocarcinoma (11). They

found that FSTL1 prevents the nicotine-induced proliferation of lung

cancer cell lines. Different from the above studies, we observed low

FSTL1 expression and high BMP4-Smad1/5/9 signaling activity in CC

and found that FSTL1 high expression may attenuate the BMP4-

promoted migration of CC cells. The precise mechanisms by which

the FSTL1-BMP4-Smad axis plays its role in the pathogenesis of CC

need further study.
Conclusions

In summary, our study has demonstrated that FSTL1 has a tumor

suppressor effect in CC. The low expression of FSTL1 calculated based

on the mRNA expression ratio between the tumor and its matched

adjacent tissues can predict the poor prognosis of CC to a certain

extent. High expression of FSTL1 suppressed the proliferation,

motility, and invasion of CC cells in vitro. The mechanism of this

action was through the negative control of the BMP4/Smad1/5/9

signaling. This study puts forward novel insights into the molecular

mechanisms of FSTL1 in CC and suggests that FSTL1 is a potential

therapeutic target and possible biomarker for CC.
Frontiers in Oncology 08147
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Single-cell transcriptome analysis
reveals the metabolic changes
and the prognostic value of
malignant hepatocyte
subpopulations and predict new
therapeutic agents for
hepatocellular carcinoma

Cuifang Han1†*, Jiaru Chen1,2†, Jing Huang1, Riting Zhu1,2,
Jincheng Zeng3, Hongbing Yu1* and Zhiwei He1*

1Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated
Hospital, Guangdong Medical University, Dongguan, China, 2School of Pharmacy, Guangdong Medical
University, Dongguan, China, 3Dongguan Key Laboratory of Medical Bioactive Molecular Developmental
and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics,
Guangdong Medical University, Dongguan, China
Background: The development of HCC is often associated with extensive

metabolic disturbances. Single cell RNA sequencing (scRNA-seq) provides a

better understanding of cellular behavior in the context of complex tumor

microenvironments by analyzing individual cell populations.

Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)

data was employed to investigate the metabolic pathways in HCC. Principal

component analysis (PCA) and uniform manifold approximation and projection

(UMAP) analysis were applied to identify six cell subpopulations, namely, T/NK cells,

hepatocytes, macrophages, endothelial cells, fibroblasts, and B cells. The gene set

enrichment analysis (GSEA) was performed to explore the existence of pathway

heterogeneity across different cell subpopulations. Univariate Cox analysis was

used to screen genes differentially related to The Overall Survival in TCGA-LIHC

patients based on scRNA-seq and bulk RNA-seq datasets, and LASSO analysis was

used to select significant predictors for incorporation into multivariate Cox

regression. Connectivity Map (CMap) was applied to analysis drug sensitivity of

risk models and targeting of potential compounds in high risk groups.

Results: Analysis of TCGA-LIHC survival data revealed the molecular markers

associated with HCC prognosis, including MARCKSL1, SPP1, BSG, CCT3, LAGE3,

KPNA2, SF3B4, GTPBP4, PON1, CFHR3, and CYP2C9. The RNA expression of 11

prognosis-related differentially expressed genes (DEGs) in normal human

hepatocyte cell line MIHA and HCC cell lines HCC-LM3 and HepG2 were
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compared by qPCR. Higher KPNA2, LAGE3, SF3B4, CCT3 and GTPBP4 protein

expression and lower CYP2C9 and PON1 protein expression in HCC tissues from

Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas

(HPA) databases. The results of target compound screening of risk model showed

that mercaptopurine is a potential anti-HCC drug.

Conclusion: The prognostic genes associated with glucose and lipid metabolic

changes in a hepatocyte subpopulation and comparison of liver malignancy cells

to normal liver cells may provide insight into the metabolic characteristics of HCC

and the potential prognostic biomarkers of tumor-related genes and contribute to

developing new treatment strategies for individuals.
KEYWORDS

cancer metabolism, hepatocellular carcinoma, malignant hepatocytes, prognostic
biomarker, single-cell RNA sequencing
1 Introduction

The mortality rate for liver cancer is the third highest among all

cancers, and it is the sixth most frequent cancer overall (1). Hepatocellular

carcinoma (HCC) is a tumour of hepatocellular origin. HCC is the

predominant pathological type of primary liver cancer (PLC), as it

represents 75-85% of all instances of PLC (2). A vast majority of HCCs

are caused by chronic disease, and most of these cases reportedly evolve

from chronic liver disease. This is primarily because of viral infections,

including hepatitis B virus (HBV) and hepatitis C virus (HCV), and

alcohol misuse (3). It is recommended that patients diagnosed with HCC

in the early stages receive surgical resection, liver transplantation, and local

resection (radiofrequency ablation) according to the Barcelona Clinic

Liver Cancer (BCLC) staging system. Those in the intermediate stage are

widely treated with trans-arterial chemoembolization (TACE), whereas

systemic therapies are mainly considered for advanced-stage patients.

Advanced-stage patients are often symptomatic, although they exhibit

some degree of impaired liver function (4, 5). Notably, few or no

treatments are available to improve survival rates for patients in

advanced stages.

The development of treatment modalities for advanced HCC has

dramatically expanded recently. To date, the FDA has approved several

oral tyrosine kinase inhibitors (lenvatinib, regorafenib and cabozantinib),

immune checkpoint inhibitors (nivolumab and pembrolizumab) and
Principal component
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immunotherapies, such as monoclonal antibodies (6–8). These therapies

have steadily improved the overall survival (OS) of HCC patients.

However, the prognosis for HCC patients continues to be poor

because of recurrence and elevated metastasis rates (9). HCC features

have been attributed to a small subpopulation of tumour cells that carry

more aggressive genetic or phenotypic alterations that allow them to

escape conventional detection methods (10).

Although conventional bulk RNA sequencing (bulk RNA-seq) can

provide sufficient gene expression profiles of large blocks of tissue, it does

not effectively distinguish between different cell lineages and cellular

interactions (11). Recently, the emergence of single-cell sequencing

technology has bridged the gap between traditional high-throughput

sequencing technologies and microarray data to provide genomic,

transcriptomic, and epigenetic information from individual cells (12).

Tumours consist of three major cell types, namely, malignant, immune

and stromal cells, whose spatiotemporal interactions constitute a complex

ecosystem (13). Unravelling the interactions between these types involves

understanding tumour development and prognosis and therapeutic

options. Since the advent of single-cell sequencing, various researchers

have produced a relatively complete picture of human cell atlas, which has

subsequently provided a great reference for understanding the complex

composition of the organs of the body (14). Additionally, single-cell

sequencing has been extensively employed to reveal the molecular

mechanisms underlying HCC. For instance, studies have mapped the

single-cell landscape of the early recurrent HCC ecosystem by relying on

the high recurrence and low survival rates of HCC patients to advance the

immunotherapy guidelines for HCC (13). Numerous studies have utilized

single-cell sequencing techniques to elucidate the heterogeneity of

malignant tumour cells, stromal cells, and immune cells. The large scale

single-cell omics study targeting tumor-associated T cells published by

Zhang et al. sketched the tumor immune landscape and laid the

groundwork for a multifaceted understanding of T-cell characteristics

associated with liver cancer (15). Single-cell technology can also identify

rare subpopulations that were previously undetected by bulk RNA

sequencing techniques, and these cell types are pivotal in determining

tumor characteristics, including stemness-associated malignant cells and

cancer-associated fibroblasts (16–18).
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The reprogramming of energy metabolism characterizes tumour

cells and causes rapid cell growth and proliferation. Thus, it is one of

the hallmarks of cancer. Tumour cells actively take up glucose

through the uncommon process of anaerobic glycolysis (Warburg

effect). Studies have shown that this process provides energy to

tumour cells, permitting intermediates to enter the anabolic bypass

to maintain the de novo synthesis of nucleotides, lipids, and amino

acids needed for cell proliferation (19). HCC is closely linked to

metabolic abnormalities, as the liver is the primary metabolic organ.

Most previous studies concerned with liver cancer have focused on

sequencing at the tissue level to reveal the overall metabolic

alterations. Single-cell sequencing technology can compensate for

the shortcomings of bulk sequencing, thereby allowing one to

pinpoint the cell groups most significantly associated with

metabolic alterations from a large number of cell types. This also

allows researchers to comprehensively describe the overall changes in

gene expression patterns and reveal changes across specific cell

groups. Therefore, scRNA-seq and bulk RNA-seq integration are

important techniques for studying tumour development and

heterogeneity. We analysed published single-cell transcriptome

sequencing data to identify metabolically relevant HCC

subpopulations, namely, hepatic epithelial cells. We then used the

identified differentially expressed genes to designate a prognostic

model for HCC patients.
2 Materials and methods

2.1 Data collection

The scRNA-seq data for HCC patients were acquired from GEO

(https://www.ncbi.nlm.nih.gov/geo/, accession number GSE149614)

and TCGA (https://portal.gdc.cancer.gov/) databases, respectively.

TCGA-LIHC samples with complete clinical information were

utilized as the model training set, and HCC samples from the GEO

database (GSE76427) were utilized as the external validation set.

We first constructed a human liver cell atlas by performing cell

classification and marker gene identification relying on Seurat.

There were 17 samples in total from 10 HCC patients. These

included 8 tumour samples (PT), 8 normal paraneoplastic samples

(NTL), and one metastatic lymph node sample (MLN). The data for

these samples were obtained from the GSE149614 project.
2.2 Identification of HCC cell subtypes

The scRNA-seq data were assessed by the Seurat package

implemented in R software (4.1.1), with the exclusion of samples

with more than 30% mitochondrial genes. The data were normalized

using the Normalize Data function, and 2,000 genes with high

intercellular coefficients of variation were subsequently extracted.

Principal component analysis (PCA) was then performed, with 15

PCs selected for subsequent uniform manifold approximation and

projection (UMAP) analysis. Cell types within the obtained clusters
Frontiers in Oncology 03151
were annotated by the reported cell marker genes, and the expression

matrix was generated for further analysis.
2.3 Analysis of intercellular communications

To investigate the potential interactions between tumor and

paracancerous normal HCC samples, we employed the CellChat (1.5.0)

package to analyse intercellular communication. We performed CellChat

analysis of the annotated cellular gene expression profile data according

to the official workflow. This package mimics intercellular

communication by assessing the binding ligands and receptors along

with their cofactors (20). Depending on receptor expression in one cell

type and ligand expression in the other, enriched receptor−ligand

interactions between the two cell types were inferred. Signaling

pathways were visualized using the “netVisual_aggregate” function,

where ligands were defined as efferent signals and receptors were

defined as afferent signals.
2.4 Identification of important metabolic
pathways at the single-cell level

Next, we employed the ‘scMetabolism’ package (0.2.1) to calculate

the metabolic state between different cell types in the HCC dataset.

This package combines published gene sets from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database and the

Reactome database to easily quantify single-cell metabolic activity.

(21). Here, we used the authors’ integrated list of metabolism-related

gene sets from the Reactome database to explore metabolic pathway

changes among six cell subpopulations and further looked at

metabolic changes in epithelial cell subpopulations between tumor

and paracancerous normal HCC samples.
2.5 Copy number variation analysis

To identify malignant cells in HCC patients, we compared patterns

of chromosomal gene expression across cancer cells to those of their

putative noncancerous counterparts using the infercnv package (version

1.12.0). First, we downloaded the human genome annotation file from

the gencode database (https://www.gencodegenes.org/human/),

converting it into a genomic location file. We used paracancerous

epithelial tissue expression profiles from HCC patients as a reference

group. Because our data were 10x scRNA-seq data, we set 0.1 as the cut-

off value, and the denoise = T. Referring to the two indicators used by Itay

Tirosh et al. to determine benign versus malignant cells, here we used the

overall copy number variant (CNV) and the correlation with the average

CNV of the top 5% of cells from the same tumor to estimate the

malignancy or non-malignancy of the cells (22). The following

correlation reference thresholds for determining the malignancy or not

of cells were given: malignant cells: overall CNV > 0.2 & CNV correlation

of the top 5% of tumors > 0.2; non-malignant cells: overall CNV < 0.2 &

CNV correlation of the top 5% of tumors < 0.2.
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2.6 Identification of significantly related
pathways across different epithelial
cell types

After scoring individual cells using a variety of enrichment

methods, we derived multiple gene set enrichment score matrixes

using the 'irGSEA' package (https://github.com/chuiqin/irGSEA/).

Next, we calculated the differentially expressed gene sets for every

single cell subpopulation within the enrichment score matrix for

every gene set using the Wilcoxon test. Employing heat maps, certain

specific enrichment pathways were labelled and then visualized.
2.7 Generation and validation of
prognostic features

Univariate Cox analysis was used to screen genes associated with

OS in TCGA-LIHC patients based on scRNA-seq and bulk RNA-seq

datasets, and then, LASSO analysis was used to select significant

predictors for incorporation into multivariate Cox regression. Next,

we selected and used prognostic characteristics to generate polygenic

risk scores and stratify TCGA-LIHC samples into either low- or high-

risk groups. We also generated time-dependent receiver operating

characteristic (ROC) curves to assess the predictive power of the

prognostic features. The GSE76427 dataset was used to validate the

prognostic value of the prognostic features. The entire analysis and

visualization processes were performed by the survival, survminer,

rms, and time ROC packages in R.
2.8 Gene expression of prognostic genes

Total RNA from cells was extracted with TRIzol reagent (Thermo

Fisher Scientific, 15596026) following the manufacturer ’s

instructions. Complementary DNA (cDNA) was synthesized and

PCRs with cDNA as template were performed using a real-time

detector (The Applied Biosystems QuantStudio 5 Real-Time PCR

System) using Hieff qPCR SYBR Green Master Mix. The primer

sequences are shown in Supplementary Table S1. Transcript levels

were normalized against beta-actin levels as an internal reference and

were evaluated using the 2- D DCt method. All experiments were

repeated three times.

The Human Protein Atlas (HPA) tool was used to visually display

the protein expression of prognostic genes in the form of

immunohistochemical staining. The Gene Expression Profiling

Interaction Analysis (GEPIA) database was applied to further

demonstrate the credibility of the results.
2.9 Cell culture and western blot

An immortalized nontumorigenic normal human hepatocyte cell

line MIHA and HCC cell lines HCC-LM3 and HepG2 were purchased

from the Fenghui Biotech Co., Ltd. (Hunan, China) with STR report.
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The MIHA cells were cultured in RPMI-1640 and HCC-LM3 and

HepG2 were cultured in Dulbecco’s modified Eagle medium (Gibco,

Gaithersburg, MD, USA) with 10% fetal bovine serum (FBS, Sigma),

100 mg/mL penicillin and 100 mg/mL streptomycin (Solarbio,

Shanghai, China) at 37°CC and 5% CO2.

Total protein was extracted by using Takara kit. The Protein

concentration was detected by BCA assay. The primary antibodies

used in this study were anti-CYP2C9 (1:1000, Abcam), anti-PON1

(1:1000, Abcam) anti-beta-Actin (1:1000, Cell Signaling Technology).
2.10 Drug sensitivity analysis

Genomics of Drug Sensitivity in Cancer (GDSC, https://www.

cancerrxgene.org/) is the largest pharmacogenomic database that is

freely accessible for predicting responses to anticancer drugs. GDSC

comprises 2 databases, namely, GDSC1, which contains 958 cell lines

and 367 drugs, and GDSC2, which contains 805 cell lines and 198

drugs (23). To explore the differences in drug treatment effects among

HCC patients, drug inferred sensitivity scores were assessed in

GDSC2 by the ‘oncoPredict’ package.
2.11 Connective map analysis

The Connective Map (CMap) database stores a large-scale

resource of expression profile data of cell lines under different drug

treatments, which allows rapid targeting of drug candidates for the

treatment of target diseases based on aberrant transcriptomic features

in tumor cells (24). These drugs have an inverse relationship with

tumor-promoting factors and may regulate aberrantly expressed

genes in the opposite direction.

Recently, Yang et al. used the Library of Integrated Network-based

Cellular Signatures (LINCS) database to demonstrate that using the

eXtreme Sum (XSum) algorithm is most likely to yield optimal results in

matching compounds and disease features, demonstrating better drug

retrieval performance than the other five available methods, and

obtaining practical targets with desirable results in liver cancer (25). In

addition, the parameters for achieving the best prediction performance in

this study were set at a number of disease molecular features of 100.

Considering the significant difference in dimensionality between CMap

data and LINCS, we incorporate more query signatures using top300

genes for XSum analysis for potential drug prediction.
2.12 Statistical analysis

All statistical analyses were carried out using packages

implemented in R version 4.2.0 (https://www.r-project.org/).

Student’s t test was used to perform comparisons of continuous

variables between two groups, and the Wilcoxon rank sum test was

used to compare more than two groups. Kaplan−Meier curves with

log-rank statistics were used to compare differences in OS between the

two groups. Statistical significance was represented by p < 0.05.
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3 Results

3.1 Single-cell gene expression profiles
reveal six major cell types in the TME of
primary HCC tumours

We performed descending and unsupervised cell clustering to

recognize cell types based on their expression profiles. The raw dataset

was read using the Seurat package. Then, an initial screening of genes

and cells was performed using the following criteria: a gene had to be

expressed in at least 3 cells, and at least 200 genes were measured in

this cell. This was followed by further quality control to extract cells

with >200 and <8000 expressed genes and <30% of mitochondrial

genes. Next, the data were normalized to obtain 2000 highly variable

genes for subsequent downscaling. Removal of the cell cycle effect

resulted in an expression matrix comprising 58,475 cells and 24,746

genes. Next, we employed known marker genes to define broad cell

categories and obtained the following six major cell subpopulations:

T/NK cells, hepatocytes, macrophages, endothelial cells, fibroblasts,

and B cells (Figures 1A, B). Cells from tumours and normal

paracancerous tissues from different patients were classified into six

categories (Figure 1C). Because proliferation is a hallmark of tumour

cells, we employed the cell cycle scoring method to analyse the cell

cycle. This image shows the results indicated that most of the cells

were in the G1 phase, and a small number of cells were in the G2/M

and S phases (Figure 1D).
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3.2 Genes associated with the glucose and
lipid metabolic pathway are upregulated in
hepatocytes

To explore the existence of pathway heterogeneity across different

cell subpopulations, we performed pathway activity and GSEA using

signature genomes. Numerous pathways associated with cancer were

upregulated in the hepatocyte subpopulation; these pathways

included oxidative phosphorylation, glycolysis, and the metabolism

of fatty acids, bile acids, and xenobiotics (Figure 2A). Next, we used

the scMetabolism package to calculate scores for each metabolic

pathway in each cell. We found that the epithelial cell

subpopulation was enriched in most metabolic pathways, mainly

those regulating pyruvate metabolism, the citrate tricarboxylic acid

cycle, and the metabolism of triglycerides, pyruvates, lipids,

carbohydrates, amino acids and their derivatives, ketone bodies,

glucose, and fatty acids, and FoxO-mediated oxidative stress

(Figure 2B). The genes of glucose metabolism and lipid metabolism

pathways were also upregulated in epithelial cells (Figures 2C, D). To

determine the differences in metabolic pathways of hepatic epithelial

cells between tumor and paracancerous tissues, we extracted a

separate subpopulation of hepatocytes and analysed the enrichment

of metabolic pathways. Strikingly, we found an opposite trend

between the glucose metabolism and lipid metabolism pathways in

tumour and paracancerous cells (Figure 2E). Consequently, we

subjected this cell subpopulation to more in-depth analysis.
A B

D
C

FIGURE 1

Profiles of single cells isolated from 8 primary liver cancer lesions with matching adjacent samples. (A) Uniform manifold approximation and projection
(UMAP) plot of the analysed single cells. Each colour reflects one cell type. (B) Expression of marker genes for Hepatocytes, Macrophage cells,
Endothelial cells, Fibroblasts, Mast cells, B cells, and T/NK cells. (C) Distribution of cells derived from either different patients or different sample origins.
(D) UMAP clustering of 58,475 cells. Every colour represents a distinct cell cycle stage.
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3.3 Pattern of intercellular communication
between tumour and normal
paracancerous tissues

We constructed a communication network between tumour

samples and normal paracancerous samples to characterize

alterations in signalling pathways (Figure 3A). A total of 642 and

499 significant ligand−receptor (LR) interactions were identified

between the cell types present in tumour and normal paracancerous

tissues, respectively (Supplementary Table S2). Differences between

the number of communications among all cell populations between

tumour and normal samples are illustrated in Figure 3B. In summary,

tumour samples exhibited more cellular interactions than their

normal counterparts, a phenomenon that was even more

pronounced in the overall signalling pattern (Supplementary Figure

S1). Next, we investigated the potential efferent and afferent signals

among these six cell types and the specific molecular pairs. We found

that the tumour samples consistently had more signal pairs than

normal samples regardless of efferent or afferent signalling. The

potential signalling pathways specific to tumour samples included

SPP1, VTN, OCLN, CD46, GDF, EPHA, AGRN, PERIOSTIN, and

HSPG. In normal samples, endothelial cells and T/NK cells were the

main signalling providers and receptors, respectively, whereas in

tumour samples, fibroblasts and macrophages represented the main

signalling providers and receptors, respectively (Figures 3C, D). The

overall communication probabilities of cells from tumour samples

and normal sample sources were significantly different. Among the

ligand receptors for intercellular communication in the normal
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sample sources, multiple pathways take part in inflammatory and

immune responses, including pathways involving MHC-I, MHC-II,

CXCL, complement, CCL, and TNF. In tumour samples, the

intercellular interactions were mainly active in signalling pathways,

including pathways involving SPP1, VTN, NOTCH, THY1, and

CD46 (Figure 3E). To further elucidate the relationship between

hepatocytes and other cell subpopulations, we generated a network

plot of differences in number and strength. We found that

hepatocytes had significantly higher interactions with endothelial

cells and fibroblasts but a weaker association with immune cells

(Figure 3F-G).

Differential analysis of all ligand−receptor pairs in hepatocytes

and other cell types revealed significantly different patterns between

tumour and adjacent normal tissues (Figures 3H–I). Studies have

shown that CD74 promotes tumour cell growth by interacting with

MIF (26). Remarkably, MIF-(CD74+CD44) signalling between

hepatocytes and T/NK and macrophages, which mediates

immunosuppressive effects that have previously been illustrated for

promoting cancer progression (27). Blocking MIF-CD74 signalling

not only inhibits the proliferation of HCC cells but also exerts

antitumour effects. Therefore, MIF/CD74 axis inhibition could be

an effective treatment for HCC (28). SPP1 encodes osteopontin

(OPN), a phosphorylated glycoprotein expressed in various tissues

and cells associated with human diseases (29, 30). Notably, OPN is

crucial in tumour progression, including HCC metastasis and

prognosis, since it drives the evolutionary adaptation of tumour

cells in the tumour microenvironment. Strikingly, SPP1-CD44

signaling was present between hepatocytes and T/NK cells,
A B

D EC

FIGURE 2

Distribution of glucose and lipid metabolic pathways in cellular subpopulations. (A) Functional annotation of six cellular subpopulations. (B) Dot plots
show the specific metabolic pathways that were enriched in each cell subpopulation. (C, D) Scatter plots demonstrating highly expressed glucose and
lipid metabolic pathways in hepatocytes cells. (E) Metabolic pathways comparison in hepatocytes cells from tumour versus paracancerous tissue.
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macrophages, and fibroblasts in tumor samples, but not in normal

samples adjacent to cancer, further supporting the critical role of

SPP1 in the tumor ecosystem.
3.4 Transcriptome heterogeneity of
hepatocytes in HCC

Despite previous batch effects, tumour cells continued to show

patient-specific expression patterns. This suggests a high degree of

heterogeneity, which could possibly be caused by CNVs. Six major

cell subpopulations were identified after the entire malignant and

normal hepatocytes reclustering (Figure 4A). In addition, UMAP

plots revealed distinct clusters of malignant cells that corresponded to

the sample origin (Figure 4B). Figure 4C illustrates the marker genes

for each cell subpopulation. Next, the irGSEA package was employed

to perform scRNA-seq gene set enrichment analysis and found that

these subpopulations have unique activation signals. These signals

include the Hedgehog signalling pathway (subpopulation 0), the early

oestrogen response (subpopulation 1), the IL6/STAT3 and TNF

signalling pathways (subpopulation 2), the xenobiotic metabolism

and reactive oxygen species signalling pathways (subpopulation 3),

and the KRAS signalling pathway (subpopulation 4). Moreover,

multiple cell proliferation-related pathways were upregulated in

subpopulation 5; these pathways included those involving the MYC

targets V1 and V2, G2M checkpoints, E2F targets, WNT signalling,

and P53 targets (Figure 4D). Activated KRAS is a major driver of

cancer stem cell (CSC) proliferation and tumour metastasis (31). The

results of the present study revealed that the KRAS signalling pathway
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was significantly upregulated in subpopulation 4, and the

marker genes for CSCs were a lso dis tr ibuted in this

subpopulation (Figure 4E).
3.5 Profiles of chromosomal CNV in
hepatocytes subpopulations

Next, we determined the chromosomal CNVs in each sample

based on transcriptomic data to understand the malignancy of the

epithelial cell subpopulation. This image shows the results revealed

low and high CNV in adjacent normal epithelial cell subpopulations

(control samples) and tumour epithelial cells, respectively.

Chromosome amplification primarily occurs within chromosomes

1, 3, 5, 6, 7, 8, 12, 15, 17, 20, 21, and 22, with deletions most

commonly observed in chromosomes 4, 9, 10, 11, 13, 14, 16 and 18

(Figure 5A). First, the copy value (CNV value) was calculated based

on the sum of squares for all genes in each sample. Next, we ranked

the CNV values of the tumour cells, using the top 5% as a reference,

and then calculated correlation coefficients between other epithelial

and reference cells. The determination of tumour cells was achieved at

a threshold CNV >0.2 and a correlation coefficient >0.2. With CNV

value as the horizontal coordinate and correlation coefficient as the

vertical coordinate, black dots represent tumor cells and blue dots

represent normal cells (Figure 5B). Finally, 13,502 tumor cells and

1,718 normal cells were identified and projected on the UMAP

map (Figure 5C).

Thereafter, we employed the FindAllMarkers function and set the

screening conditions logfc = 0.25 (difference multiplicity), min. pct =
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FIGURE 3

Comparison of cellular interactions between samples from tumour and adjacent normal tissues. (A) Cellular interaction number and strength. (B) Bar graph
illustrating the total number (left) and weight (right) of ligand−receptor interactions between samples from tumour and adjacent normal tissues. (C, D)
Heatmap showing possible afferent or efferent signalling pathways between cells. (E) Comparative profiles of pathway signal intensities indicating conserved
and specific signalling pathways in tumour and normal tissue samples. (F, G) Communication quantity and intensity differences network. Red and blue
colours represent upregulated and downregulated pathways, respectively, relative to normal tissues. (H, I) Dot plots show the variation in the signalling action
of hepatocytes relative to other cell types.
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0.25 (minimum differential gene expression ratio) and pct. diff >0.1

(pct.1-pct.2) to identify marker genes in the hepatic malignant and

normal epithelial cell subsets. The results revealed a total of 564

marker genes (Supplementary Table S3). We hypothesize that their

function in HCC differs from that in normal epithelial cells, although

further research exploration is needed.
3.6 Malignant hepatocyte subpopulations
are associated with HCC prognosis

Next, we explored the prognostic role of hepatocyte

subpopulations in HCC patients. Analysis of the mRNA expression

data from HCC samples across the TCGA database yielded 2,900

differentially expressed genes (Figure 6A). Marker genes from

malignant and nonmalignant cells of hepatocyte subpopulations

intersected with DEGs related to HCC development in the TCGA

database. Notably, 2,900 DEGs overlapped with 564 marker genes,

resulting in 203 differentially expressed marker genes in HCC. These

were subsequently named hepatocyte differential genes (HDGs)

(Figure 6B). Univariate Cox regression analysis revealed 101

differentially expressed marker genes that were significantly related

to the prognosis of HCC patients. To obtain a more robust prognostic

profile, we employed the LASSO regression algorithm at 10-fold

cross-validation with a lambda-min of 0.06321515 to designate a

prognostic model consisting of 11 genes, namely, MARCKSL1
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(MARCKS Like 1), SPP1 (Secreted Phosphoprotein 1), BSG

(Basigin, also called CD147 or EMMPRIN), CCT3 (chaperonin

containing TCP1 subunit 3), LAGE3 (L antigen family member 3),

KPNA2 (karyopherin subunit alpha 2), SF3B4 (Splicing Factor 3b

Subunit 4), GTPBP4 (GTP Binding Protein 4), PON1 (Paraoxonase

1), CFHR3 (Complement factor H-related 3) and CYP2C9

(cytochrome P450 family 2 subfamily C member 9) (Figures 6C, D).

Next, the median risk score was used to stratify the patients into

high- and low-risk groups. Patients in the low-risk group showed

significantly higher OS rates than their counterparts in the high-risk

group (p<0.001) (Figure 6E). Application of the 11-gene signature in

the validation cohort also indicated that patients in the low-risk group

had longer OS rates than their counterparts in the high-risk group

(p<0.001) (Figure 6F). To test the prognostic performance of the 11-

gene signature, time-dependent ROC curves were generated targeting

TCGA-LIHC samples. The results revealed area under the curve

(AUC) values of 0.8, 0.7, and 0.7 for 1-, 3- and 5-year survival,

respectively, in the testing cohort (Figure 6G) and 0.8, 0.8, and 0.87,

respectively, in the validation cohort (GSE76427) (Figure 6H). These

findings suggest that the 11-gene signature had good prognostic value

in both cohorts. For the association analysis between the

clinicopathological characteristics and the prognostic model, we

analysed gender, TNM, stage, and risk scores in the TCGA-LIHC

sample. The multivariate Cox regression analysis results revealed that

the risk score was a significant independent prognostic factor for

patients with LIHC (p<0.001) (Figure 6I). Moreover, we generated a
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FIGURE 4

Transcriptome heterogeneity of malignant cells in HCC tissues. (A) UMAP plots of six different epithelial cell subpopulations. (B) UMAP plots
demonstrating the heterogeneity among patients. (C) Heatmap of the top 10 differentially expressed genes(DEGs) across six epithelial cell clusters. (D)
Single-cell pathway analysis of six subpopulations. (E) Scatter plot showing marker genes for cancer stem cells.
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nomogram encompassing gender, stage, age, grade, risk score and 1-,

2- and 3-year survival. Next, we employed a one-sample GSEA

approach to calculate scores for each sample across 175 pathways

based on the risk score to identify relevant regulatory pathways.

Thereafter, the correlation between each pathway and the risk score

was no less than 0.3 for the evaluation. The results revealed 39 positive

and 50 negative correlations with the sample risk score. Pathways that

were positively correlated with the risk score included those related to

cancer development, whereas the negatively correlated pathways

included those regulating glycolysis/glycogenesis, glycine, and the

metabolism of fatty acids, serine, threonine, glyoxylate and

dicarboxylate (Figures 6K, L).
3.7 The relative RNA expression level and
protein expression level of MARCKSL1, SPP1,
BSG, CCT3, LAGE3, KPNA2, SF3B4, GTPBP4,
PON1, CFHR3 and CYP2C9

Based on the initial trend of differentially up- and down-regulated

genes (Supplementary Table S4), To further investigate the gene

expression characteristics of 11 prognosis-related differentially

expressed genes (MARCKSL1, SPP1, BSG, CCT3, LAGE3, KPNA2,

SF3B4, GTPBP4, PON1, CFHR3 and CYP2C9) in the high-risk and

low-risk groups of HCC patients, we performed a correlation analysis

between gene expression levels and risk scores. The results showed

that all eight genes were positively correlated with risk scores, except

for PON1, CFHR3 and CYP2C9, whose mRNA expression levels were
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significantly negatively correlated with risk scores (Supplementary

Figure S3A). Meanwhile, in order to classify the high and low risk

genes, we could see from the forest plot of 11 prognostic genes that the

hazard ratio of MARCKSL1, SPP1, BSG, CCT3, LAGE3, KPNA2,

SF3B4 and GTPBP4 were all greater than 1, suggesting that these 8

genes might be poor prognostic factors and belong to high risk genes,

while PON1, CFHR3 and CYP2C9 were all less than 1, suggesting

that these three genes may be factors with a better prognosis

(Supplementary Figure S3B).

The RNA expression of MARCKSL1, SPP1, BSG, CCT3, LAGE3,

KPNA2, SF3B4, GTPBP4, PON1, CFHR3 and CYP2C9 in normal

human hepatocyte cell line MIHA and HCC cell lines HCC-LM3

(high metastatic HCC cells) and HepG2(low metastatic HCC cells)

were compared by qPCR. It was found that CYP2C9, PON1 and

CFHR3 were low expressed and MARCKSL1, SPP1, BSG, CCT3,

LAGE3, KPNA2, SF3B4, GTPBP4 were over expressed in human

hepatoma cells compared with normal human hepatocyte cells

(Unpaired t-test, p<0.01) (Figure 7A). Figure 7B shows the results

of the protein expression levels of CYP2C9 and PON1 were down

regulated in HepG2 and HCC-LM3 compared to MIHA. At the same

time, CPTAC database analysis results showed that the protein

expression of PON1, CFHR3 and CYP2C9 were low expressed in

tumor tissues compared with paracancer normal tissue, while other

genes were over expressed (Figure 7C).

Furthermore, immunohistochemical analysis from HPA database

confirmed higher KPNA2, LAGE3, SF3B4, CCT3 and GTPBP4

protein expression and lower CYP2C9 and PON1 protein

expression in HCC tissues (Figures 7D–J).
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FIGURE 5

CNV analysis of HCC patient epithelial cells. (A) Heatmap showing CNV patterns in epithelial cells across 17 HCC samples. (B) Epithelial cells were
classified as either malignant or nonmalignant. The horizontal coordinate represents the CNV value of the cell, whereas the vertical coordinate denotes
the correlation coefficient of the top 5% of CNV values of tumour cells. (C) Distribution of tumour versus normal epithelial cells on the UMAP plot based
on copy number variation.
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3.8 Drug sensitivity analysis of risk models
and targeting of potential compounds in
high risk groups using connectivity
map (CMap)

To determine the impact of risks on clinical practice, we evaluated

the IC50 values of several chemotherapeutic agents in the high- and

low-risk groups using the “oncoPredict” package. This analysis

identified 123 drugs that were statistically significant (p < 0.01)

(Supplementary Table S5). The results showed that afatinib,

dasatinib, 5-fluorouracil, lapatinib, SCH772984, and cediranib had

lower IC50 values in the high-risk group than in the low-risk group,

suggesting that patients in the high-risk group may benefit more from

these drugs. In contrast, JQ1, AT13148, axitinib, AZ960, AZD1208,

and irinotecan had lower IC50 values in the low-risk group,

suggesting that low-risk patients may benefit more from the above

chemotherapeutic agents (Figure 8A).

While single-cell sequencing strategies are powerful tools for

constructing disease signatures specific to individual cell types,

CMap provides unprecedented convenience for researchers to

tightly link the triad of drug, gene and disease in a context where
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deep understanding is lacking, as this method does not require the

detailed mechanism of action or drug target to be provided in advance

to predict therapeutic potential. Therefore, by combining a high-

resolution single-cell sequencing strategy with CMap, we have been

able to directly target effective therapeutic agents based on individual

cell-level expression signatures and thus provide a more accurate

prediction for screening potential drugs for disease.

We used a computational drug discovery strategy based on

“signature reversion” (32) to identify drugs with a high risk of

reversion using the large amount of data in the CMap database

(Figure 8B). The top 300 genes with the highest fold change in the

high- and low-risk groups were extracted for XSum analysis

(Supplementary Table S6). The results of the CMap analysis

revealed several compounds with gene expression patterns opposite

to those specific to the high-risk group, with lower CMap scores

indicating a higher perturbation ability. PHA.00816795,

mercaptopurine, W.13, NU.1025 and arachidonyltrifluoromethane

were the five potentially valuable small molecule drug candidates, as

they were ranked as the top 5 candidates (Figure 8C). Among the top

three of these candidates is mercaptopurine, which is a common

chemotherapeutic drug that produces anticancer effects by interfering
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FIGURE 6

HDG identification and validation in the training (TCGA-LIHC) and validation cohorts (GSE76427). (A) The volcano plot of DEGs in the TCGA-LIHC dataset.
(B) The intersection of DEGs of TCGA-LIHC cohort with marker genes of epithelial cell subpopulation of HCC. (C, D) Coefficient distribution plots of log(l)
sequences (C) and selection of optimal parameters (lambda) in the LASSO model (D). (E, F) Kaplan−Meier survival curves illustrate the prognostic value of the
11-gene signature in the training cohort (E) and validation cohort (F). (G, H) Distribution of the 11-gene signature risk scores and survival status of HCC
patients in the training cohort (G) and validation cohort (H). ROC curves showing the value of the 11-gene signature in predicting the OS rates of HCC
patients at 1, 3, and 5 years in both cohorts. (I) Forest plot showing multivariate Cox analysis results. (J) Nomogram showing the prediction of OS at 1, 2, and
3 years. (K, L) Regulatory pathways potentially related to risk score.
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FIGURE 7

The Relative RNA Expression Level and Protein Expression Level of prognosis-related differentially expressed genes. (A) The Relative RNA Expression
Level of MARCKSL1, SPP1, BSG, CCT3, LAGE3, KPNA2, SF3B4, GTPBP4, PON1, CFHR3 and CYP2C9. (B) Expression of CYP2C9 and PON1 in normal
human hepatocyte cell line MIHA and HCC cell lines HCC-LM3 and HepG2 through western blot analysis. (C) Box plots showed the differential protein
expression of 11 hub genes in the CPTAC dataset in HCC tumor tissue and adjacent normal. (D-J) Immunohistochemical analysis of the CYP2C9, KPNA2,
LAGE3, SF3B4, CCT3, PON1 and GTPBP4 in HCC and liver tissues from the HPA database. HCC, hepatocellular carcinoma; CPTAC, The National Cancer
Institute’s Clinical Proteomic Tumor Analysis Consortium. HPA, Human Protein Atlas. (Unpaired t-test, **P < 0.01, ***P < 0.001, ****p < 0.0001 and ns,
no significance).
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with cell division or DNA synthesis (33). Yu et al. obtained five drugs

associated with HCC by integrating multiple data to define the types

of genes, considering the effect of genetic changes on HCC and the

positive and negative relationships between drugs and HCC (34).

Among these drugs, mercaptopurine is a potential anti-HCC drug.
4 Discussion

The liver is a major site for many metabolic processes, and

metabolic dysregulation is vital for HCC progression and

development (35). Evidence from numerous studies has shown that

HCC originates from adult hepatocytes (36, 37). In this study, we

found that HCC occurs in adult hepatocytes. Moreover, there were

metabolic changes in the hepatic epithelial cells. While normal

hepatocytes produce energy primarily through oxidative

phosphorylation, malignant hepatocytes convert glucose into lactate

through glycolysis to generate energy, a phenomenon known as the

Warburg effect (38). The dysregulation of oxidative phosphorylation

is related to elevated HCC tumorigenicity (39, 40). The liver

synthesizes lactic acid and can store and breakdown lipids.

Therefore, in HCC, aberrant lipid metabolism generates the lipids

required for membrane formation and energy production, and

posttranslational modifications support tumorigenesis (41). In our

study, the gluconeogenic pathway (aerobic gluconeogenesis) was

found to be enhanced in normal hepatic epithelial cells adjacent to

cancerous cells, whereas the lipid metabolism pathway was enriched

in malignant hepatocytes (Figure 2E).

HCC is a heterogeneous disease influenced by multiple factors,

which makes it difficult to diagnose and perform individualized

treatment. HCC patients are often diagnosed after curative surgical
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approaches are no longer possible because these patients are at an

advanced stage of the disease. Traditional sequencing methods often

mask the underlying heterogeneity in phenotypically defined cell

subpopulations. In contrast, scRNA-seq allows the in-depth

exploration of tumour heterogeneity and the analysis of tumour

development, drug resistance, intercellular communication and

immune infiltration patterns (12). Thus, this technique was

employed to comprehensively analyse the HCC landscape at single-

cell resolution.

To understand the interactions among hepatocytes and stromal

cells and immune cells, we conducted intercellular communication

analysis. This revealed enhanced interactions between hepatic

epithelial cells and fibroblasts and reduced contact with immune

cells, macrophages and endothelial cells in tumour samples compared

to normal adjacent samples (Supplementary Figure S2). Cancer-

associated fibroblasts (CAFs) are a major part of the tumour stroma

and contribute to HCC progression. Furthermore, CAFs interact with

tumour cells, immune cells, or vascular endothelial cells in the TME

through direct intercellular contacts or indirect paracrine interactions

to promote HCC (42–44). Similarly, Wang et al. performed a single-

cell level analysis of samples from normal and malignant livers and

found that in HCC, the most significant alteration was the expansion

of ACTA2+ fibroblast populations and malignant cells. This suggests

that the transition of hepatocytes from normal to malignant is

accompanied by alterations in intercellular contact with other cells

in the tumour microenvironment, which produce the complex intra-

and intertumoral heterogeneity of HCC (45).

Differentially expressed genes between malignant and normal

hepatocytes were identified by analysing copy number variations in

single-cell transcriptome data and isolating malignant and

nonmalignant cells from hepatocytes. In addition, analysis of
A B

C

FIGURE 8

Drug sensitivity analysis and target compound screening for risk models. (A) Sensitivity analysis of chemotherapeutic agents between different risk
groups. (B) How the “signature reversion”-based calculation method works. (C) The top 5 drugs with the lowest CMap scores.
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TCGA-LIHC survival data revealed the molecular markers associated

with HCC prognosis,including MARCKSL1, SPP1, BSG, CCT3,

LAGE3, KPNA2, SF3B4, GTPBP4, PON1, CFHR3, and CYP2C9.

The identified prognostic risk factors showed good prediction

performance in both HCC cohorts. Based on this, we also

constructed a nomogram risk assessment model, which combines

risk scores with clinical characteristics to facilitate the clinical

application of HCC. It has been reported that CYP2C9 is involved

in the metabolism of many carcinogens and drugs, and is down-

regulated in HCC (46). Wang et al. used time serial transcriptome to

reveal that Cyp2c29 is a key gene in the development of hepatocellular

carcinoma in the mouse model, and its overexpression enhances the

production of 14,15-EET and inhibits inflammation induced

hepatocellular proliferation by inhibiting the IKK-NF-kB pathway

during liver injury (47). Meanwhile, the expression of the human

homologous of Cyp2c29 gene in mice was positively correlated with

the survival time of HCC patients, further suggesting that CYP2C

epoxygenases may be a potential therapeutic target for liver disease.

Chen and others have revealed lncZic2/depletion/MARCKS/

MARCKSL1 pathways can eliminate the liver tumor–initiating cells

(TICs) (48). The overexpression of myristoylated alanine-rich protein

kinase C substrate (MARCKS) and MARCKS like 1(MARCKSL1) can

drive the self-renewal of TICs. Yang et al. demonstrated that BSG may

be a tumor-promoting factor in HCC (49). The potential diagnostic

role of BSG in differentiating HCC specimens from non-tumor

specimens was demonstrated by analysis of multiple cohorts. BSG

mRNA expression levels were significantly upregulated in both HCC

specimens and HCC cell lines, and significantly shorter Overall

Survival (OS) (P = 0.0014) and Disease Free Survival (DFS) (P =

0.0097) were observed in patients with high BSG expression relative

to those with low BSG expression. Han et al. revealed that CCT3 is a

new complementary biomarker for HCC screening and diagnosis

(50). Several studies have shown that CCT3 is overexpressed in HCC

patients by quantitative RT-PCR and western blotting. CCT3 can

influence the progression of HCC by affecting phosphorylation

signaling and translocation of STAT3/STAT3 into the nucleus of

HCC cells (51, 52). The study of Li et al. showed that LAGE3 has

prognostic value in HCC, which may affect the progression path of

HCC tumor by promoting the proliferation, survival, migration,

invasion and anti-apoptosis of HCC cells through the PI3K/AKT/

mTOR and Ras/RAF/MAPK pathways (53). Guo et al. identified

KPNA2 as a potential diagnostic and prognostic biomarker for HCC,

which may affect HCC cell proliferation and migration by regulating

cell cycle and DNA replication (54). Splicing factor 3b subunit 4

(SF3B4) has been revealed to be associated with the diagnosis and

prognosis of HCC (55, 56). Liu et al. further demonstrated that SF3B4

drives cell proliferation and metastasis in HCC (57). Deng et al.

further studied the mechanism and revealed the interaction between

SF3B4 and ENAH in HCC, that is, SF3B4-regulated ENAH promotes

the development of HCC by activating Notch signaling (58). It has

been reported that Guanosine triphosphate binding protein 4

(GTPBP4) is associated with poor prognosis in HCC patients (59).

Additional reports have explored the role of GTPBP4 in metabolic

regulation and the potential mechanisms involved in HCC

development and metastasis (60). GTPBP4 induces the dimer

conformation of PKM2 through the SUMOylation to promote the
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aerobic glycolysis of HCC, thus promoting the progression and

metastasis of HCC (61). Serum Paraoxonase 1 (PON1) has been

reported as a biomarker for evaluating microvascular infiltration in

hepatocellular carcinoma. Complement factor H related 3 (CFHR3)

can be used to predict the prognosis of HCC. Overexpression of

CFHR3 can affect the proliferation and apoptosis of hepatocellular

carcinoma (62). Recent reports suggest that overexpression of CFHR3

may be a potential strategy for overcoming hypoxia and treating HCC

(63). These studies confirm the significance and plausibility of these

prognostic signatures.

Currently, liver transplantation and resection are efficient

treatment options for early-stage disease; however, these treatments

are appropriate for only 20-30% of HCC patients (64). Chemotherapy

is another viable treatment option for advanced HCC. Recently, there

has been significant progress in the development of molecularly

targeted treatments for liver cancer (65). These include sorafenib,

levatinib, and regorafenib, which have been approved as first- and

second-line treatments for HCC. In this study, the sensitivities of

HCC to various treatments were predicted. Low-risk patients showed

higher sensitivity to afatinib, dasatinib, 5-fluorouracil, lapatinib,

SCH772984, and cediranib than high-risk patients, which may be

attributed to their higher metabolic activity. Various drugs were

suggested for low-risk group patients, such as JQ1, AT13148,

axitinib, AZ960, AZD1208, and irinotecan. Cancerous cells have the

potential to evade the immune system (66). Immune escape can be

achieved through a variety of mechanisms. Thus, therapeutic

strategies that block checkpoint inhibitors of the PD-1/PD-L1 and

CTLA-4 pathways can promote tumour-reactive T-cell aggregation,

thereby improving the antitumour response (67, 68).

To the best of our knowledge, the 11-gene signature is the first to

explore the overall molecular prognostic feature of subpopulations

associated with metabolic disorders from single-cell sequencing

data. This risk model exhibited excellent ability to predict the

prognosis of HCC patients, and the AUC values at year 1, year 3 and

year 5 were all greater than 0.7, with the optimal value of

0.8. Meanwhile, a novel XSum algorithm was used to predict

potential drugs targeting high-risk groups from the Cmap database,

and 5 drugs were finally obtained, including PHA.00816795,

mercaptopurine, W.13, NU. 1025 and arachidonyl trifluoromethane.

Small molecule drugs, serving as candidates, embrace potential value

conducive to providing medication strategies for accurate treatment of

HCC patients.

This research also has certain drawbacks. First, more perspective

data with larger sample size should be collected to validate the

accuracy of our established prognostic model. Second, the

characteristics of different fractionated epithelial cells have not been

generated and validated. Further in-depth analysis from specific

epithelial cell subtypes closely related to metabolic changes will be

conducive to obtaining more accurate and valid prognostic

characteristics. Nevertheless, scRNA-seq analysis sheds new light on

the metabolic characteristics of individual cell subsets in HCC, and

anchors the survival and prognosis of relevant cell subsets with the

most significant metabolic changes, which is a key step forward in

clinical practice.

In conclusion, the present study identified prognostic genes

significantly associated with metabolic changes in a hepatocyte
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subpopulation at the single-cell level, and explored the heterogeneity

of this subpopulation and its interrelationships with other cells in the

tumor microenvironment. A prognostic model for OS prediction in

HCC patients was established and validated and the results

demonstrated favourable predictive ability. Additionally, differences

in chemosensitivity between high-risk and low-risk groups were

evaluated, and five potential drugs that might reverse the risk score

were forecasted. These results provided an in-depth understanding of

the metabolic characteristics of HCC. Furthermore, the characteristics

of potential prognostic biomarker can be clarified through the

comparison of tumor-related genes constructed by liver malignant

cells and normal hepatocytes. The above may be conducive to new

strategies of individualized therapy.
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