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Editorial on the Research Topic

The interconnection between epigenetic modifications and the
tumor microenvironment

In the 1940s, Conrad Waddington coined the term ‘epigenetics’ to explain how the
same combination of genes could produce different phenotypes in certain specific
environments throughout animal development. The term epigenetics was later embraced
by a wider range of disciplines and expanded to include the study of covalent and non-
covalent changes in DNA and histones, as well as general alterations in chromatin structure
in any biological or pathological process. For example, DNA methylation, post-
translational changes in histones, chromatin remodeling, and the effects of non-coding
RNAs on ribosome structure all fall within the field of epigenetic research. These epigenetic
modifications translate environmental input signals into different gene combinations,
allowing a limited number of transcription factors (TFs) to produce more diverse
transcriptional patterns. The expression levels and biological activities of enzymes and
regulators involved in epigenetic modifications may also be altered by environmental
signals. Such heritable epigenetic changes with intertwined DNA/RNA/protein linkages
provide a basis for studying environmental adaptations at the cellular level.

The tumor microenvironment (TME) is composed of cellular and non-cellular
components, including stromal cells, immune cells, and chemokines (1). The biological
importance of the TME as a response platform regulating various aspects of tumor initiation,
development, metastatic progression, altered immune response, fulminant disease, and
cancer recurrence is undeniable and constantly confirmed, as highlighted by numerous
studies. In addition, as epigenetic alterations are associated with the control of the TME, DNA
methylation may influence cancer growth by regulating immune infiltration and immune
checkpoints of the TME (2, 3). In addition, histone acetylation may attenuate the immune
destructive potential of the TME and promote tumor development. The main role of RNA
modifications in tumor formation is to regulate angiogenesis, immune activity, and the
infiltration of immune cells into the TME (4). ncRNAs released by certain cells in the TME
are thought to influence the behavior of cancer cells, including invasion, metastasis, and
treatment resistance (5). Furthermore, ncRNAs in tumor cells may be implicated in the
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immune regulation of the TME and promote tumor formation. In
conclusion, epigenetic alterations hold therapeutic promise in
controlling elements of the tumor microenvironment and may be a
target for cancer therapy.

The objective of the Research Topic titled “The interconnection
between epigenetic modifications and the tumor microenvironment”
is to discuss recent advances in the interaction between epigenetic
modifications and the tumor microenvironment and to identify
potential prognostic markers and specific components that may
affect the efficacy of immunotherapy and other tumor treatments.
Ultimately, a total of 11 papers, contributed by more than 60
authors as experts in the field, were accepted in 30 submissions,
providing new comprehensive insights for future cancer therapies.

Han et al. identified prognostic genes significantly associated
with metabolic changes in hepatocellular subpopulations at the
single-cell level and examined the heterogeneity of the
subpopulation and its interrelationship with other cells in the
tumor microenvironment. A prognostic model for predicting
overall survival (OS) in patients with hepatocellular carcinoma
was established, validated, and found to show good predictive
ability. In addition, differences in chemosensitivity between high-
and low-risk groups were assessed and five drugs were focused on
that could potentially reverse the risk score.

Kahlert et al.’s original research established COL10A1, a short-
chain protein belonging to the collagen family, an important
component of the stromal extracellular matrix, as a diagnostic
marker to predict the development of colorectal cancer,
expanding on previous studies on this protein. The authors found
that the abundance of COL10A1l in CRC tissue predicts the
metastatic and immunogenic potential of CRC and that
COLI10A1 transcription may mediate the interaction between
tumor cells and the stromal microenvironment.

Cui et al. investigated the function of cuproptosis-related
IncRNAs in colorectal cancer (COAD). They identified six
cuproptosis-associated prognostic IncRNAs in COAD and
constructed a prognostic model based on cuproptosis-associated
IncRNAs, providing new insight into the risk classification and
possible biomarkers for patients with colorectal cancer. Analysis of
the immune microenvironment, mutations, and sensitivity to
chemotherapy suggests that this signature may serve as a reference
for immunotherapeutic and chemotherapeutic approaches.

Yu et al. constructed a pyroptosis-related IncRNA prognostic
model for predicting prostate cancer using a machine-learning
approach. The researchers explored the association between the
prognostic model and patients’ clinical characteristics, immune
environment, immune checkpoints, gene mutations, and drug
sensitivity, and constructed diagnostic and prognostic biomarkers
for prostate cancer. In vitro experiments showed that silencing
IncRNA AC005253.1 affected the expression of the AIM2 gene in
prostate cancer and inhibited the proliferation, migration, and
invasion of DU145 and PC-3 cells. In addition, silencing of
AC005253.1 promoted the expression of pyroptosis inflammasome
AIM2, and the pyroptosis-related gene AC005253.1 may be a
valuable oncogene related to the prognosis of prostate cancer.

Xu et al. discussed the mechanism of MARCHI in lung
adenocarcinoma (LUAD). As a member of the E3 family, E3s
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were dysregulated in LUAD and were positively correlated with
most immunological features, suggesting that MARCHI1 may
activate inflammatory TME in LUAD. Patients with LUAD with
reduced MARCHL] expression had a poorer prognosis and were not
sensitive to immune checkpoint inhibitors. In pan-cancer studies,
MARCHI1 was associated with most immunological features,
suggesting that MARCH1 may be a new and promising
biomarker as an indication of the immune status and effectiveness
of immunotherapy in patients with LUAD.

Zeng et al. used a computational algorithm to screen out the
fatty acid metabolism (FAM)-related genes associated with cervical
cancer (CC) from the public databases. The FAM model (PLCB4,
FBLN5, TSPANS, CST6, and SERPINB7) risk score was an
independent factor affecting the prognosis of patients with
cervical cancer. This model had a high prognostic value, meaning
that the FAM-related genes can be used as prognostic markers and
potential immunotherapy targets for patients with CC.

The abovementioned Research Topic “The interconnection
between epigenetic modifications and the tumor microenvironment”
gathers studies focusing on the discovery of interactions between
epigenetic modifications and the tumor microenvironment and the
mechanisms of epigenetic modifications in immunotherapy against
cancer. Several prognostic and predictive models have also been
constructed that are useful for clinicians. It is hoped that this
Research Topic will contribute to the understanding of the
mechanisms of tumor development and provide new and broader
insights into future cancer treatment.
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Background: Cuproptosis, a newly described method of regulatory cell death
(RCD), may be a viable new therapy option for cancers. Long noncoding RNAs
(IncRNAs) have been confirmed to be correlated with epigenetic controllers
and regulate histone protein modification or DNA methylation during gene
transcription. The roles of cuproptosis-related IncRNAs (CRLs) in Colon
adenocarcinoma (COAD), however, remain unknown.

Methods: COAD transcriptome data was obtained from the TCGA database.
Thirteen genes associated to cuproptosis were identified in published papers.
Following that, correlation analysis was used to identify CRLs. The cuproptosis
associated prognostic signature was built and evaluated using Lasso regression
and COX regression analysis. A prognostic signature comprising six CRLs was
established and the expression patterns of these CRLs were analyzed by qRT-
PCR. To assess the clinical utility of prognostic signature, we performed tumor
microenvironment (TME) analysis, mutation analysis, nomogram generation,
and medication sensitivity analysis.

Results: We identified 49 prognosis-related CRLs in COAD and constructed a
prognostic signature consisting of six CRLs. Each patient can be calculated for a
risk score and the calculation formula is: Risk score =TNFRSF10A-AS1 *
(-0.2449) + AC006449.3 * 1.407 + AC093382.1 *1.812 + AC099850.3 *
(-0.0899) + ZEB1-AS1 * 0.4332 + NIFK-AS1 * 0.3956. Six CRLs expressions
were investigated by qRT-PCR in three colorectal cancer cell lines. In three
cohorts, COAD patients were identified with different risk groups, with the
high-risk group having a worse prognosis than the low-risk group.
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Furthermore, there were differences in immune cell infiltration and tumor
mutation burden (TMB) between the two risk groups. We also identified certain
drugs that were more sensitive to the high-risk group: Paclitaxel, Vinblastine,

Conclusions: Our findings may be used to further investigate RCD,
comprehension of the prognosis and tumor microenvironment infiltration

colon adenocarcinoma, cuproptosis, prognosis, tumor immune

Cui et al.
Sunitinib and Elescloml.
characteristics in COAD.
KEYWORDS
microenvironment, bioinformatics
Introduction

Colorectal cancer (CRC) is the third most frequent cancer
and the second major cause of cancer-related death worldwide
(1,2).In 2018, 1.8 million new instances of CRC were diagnosed,
with over 800,000 deaths (3). The pathogenesis involves a
chronic process, including precancerous lesions, activation of
tumor stem cells, accumulation of genetic and epigenetic
changes (4). CRC is a heterogeneous disease with widespread
chromosomal instability and microsatellite instability (5). CRC
morbidity and mortality are declining in most developed
countries due to early screening and prevention of early risk
factors (6). However, the situation of CRC in developing
countries is still very serious (7). The pathogenesis of CRC
involves a series of multi-step changes, including histological,
morphological, and genetic changes (8, 9). Unhealthy diet,
obesity, smoking and alcohol consumption are considered risk
factors for CRC (10, 11). The 5-year overall survival (OS) rate of
localized and regionalized CRC patients is impressively high, but
decreases to 14% once metastasis occurs (12). In the past decade,
immunotherapy has become a hot topic in refractory solid
tumors due to its long-term response. Immunotherapy
significantly inhibit the progression of advanced malignant
tumors and prolong the survival of patients, which brings
hope to CRC patients (13). Colon adenocarcinoma (COAD) is
the ordinary histological subtype of CRC, therefore, it is of great
value to explore a new prognosis assessment protocol and to
establish a predictive signature for immunotherapy and immune
microenvironment of COAD.

In recent years, regulatory cell death (RCD) plays an
important role in maintaining normal homeostasis of body
development and inhibiting rapid proliferation of tumor cells,
which is considered as a new direction of tumor therapy (14, 15).
In recent years, the most widely studied types of RCD are
apoptosis, pyroptosis, necroptosis and ferroptosis (16, 17).

Frontiers in Oncology

Different from the known mechanism of cell death, Tsvetkov
et al. found that cuproptosis is a new form of cell death, namely
the existence of a copper-dependent, regulated cell death in
human cells (18). Cuproptosis relies on the effect of copper ions
on mitochondrial tricarboxylic acid metabolism, resulting in
abnormal aggregation of lipoacylated proteins and loss of iron-
sulfur (Fe-S) cluster proteins, which leads to the proteotoxic
stress response of tumor cells and cell death (18, 19). However,
the mechanism of RCD and its role in tumor microenvironment
have not been thoroughly studied, which may play a double-
edged sword role in tumors (17, 20). On the one hand, inducing
tumor cell death can cure tumors; On the other hand, when the
inflammatory response caused by cell death reaches a certain
level, many signaling pathways can be activated, leading to
tumor progression (21). Therefore, it is of great significance to
explore the role of RCD in tumors, and many studies have
established RCD-associated prognostic models to assess
prognosis and immune microenvironment (22-24). However,
the clinical significance of cuproptosis and cuproptosis-
associated prognostic model have not been reported, especially
in COAD.

Long noncoding RNAs (IncRNAs) can regulate gene
expression through epigenetic regulation, transcriptional
regulation and post transcriptional regulation, so as to
participate in a variety of biological processes such as tumor
cell proliferation, differentiation and apoptosis (25). Therefore,
IncRNAs are considered as promising biomarkers and potential
therapeutic targets for the diagnosis and treatment of various
diseases, including COAD (26). More and more attention has
been paid to the role and molecular mechanism of regulating
RCD-related IncRNAs in tumor pathology (27). Therefore, as a
new type of RCD, the identification of IncRNAs related to
cuproptosis is of great significance for understanding the
pathogenesis of tumor and providing new targets for

prevention and treatment.
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Through bioinformatics research, we investigated the
importance of cuproptosis-related IncRNAs (CRLs) and a
prognostic signature based on CRLs was constructed in
COAD. A risk score for each COAD patient might be
determined based on cuproptosis-associated model, which can
be used for prognosis assessment, immunological prediction,
and mutation analysis. Our findings may be useful in
determining the prognosis and therapy of patients with COAD.

Methods and materials
Download of data

The TCGA database was used to obtain the data of COAD RNA
sequencing and clinical information. We collected data from 473
tumor samples and 41 healthy controls. From the previously
published publications (18, 28), thirteen cuproptosis-related genes
were obtained, including FDX1, LIPT1, LIAS, DLD, DBT, GCSH,
DLST, DLAT, PDHAI, PDHB, SLC31A1, ATP7A, and ATP7B.

Screening IncRNAs associated
with cuproptosis

From the TCGA database, 1053 CRLs were identified using
Pearson correlation analysis and a co-expression network was
created based on the cutoff (Pearson R > 0.4 and P < 0.001) (29).
Then, using univariate Cox regression analysis and forest maps, 49
CRLs with potential prognostic significance for COAD were
identified. The “limma”, “pheatmap”, “reshape2”, and “ggpubr”
programs were used to create heat maps and boxplots to show the
differential expression of CRLs in COAD and normal tissues, with
following criteria: |log, fold change (FC)| >1 and false discovery rate
(FDR) < 0.05.

Consensus clustering analysis

To preliminarily understand the underlying the mechanism
of the biological function of cuproptosis-related IncRNAs, The
“ConsensusClusterPlus” package was used to construct a
consensus cluster with 49 CRLs (K represents cluster count)
(30). The cluster exhibited the best stability when K = 3 based on
the similarity of expression levels of CRLs and the proportion of
fuzzy clustering measures. As a result, 417 CRC patients were
divided into three clusters: cluster 1 (n = 139), cluster 2 (n =
202), and cluster 3 (n = 76). The variations in survival, CRLs
expression, and clinical characteristics were then compared
among the three clusters. Immune checkpoint inhibitors co-
expression (PD-L1, CTLA-4), immune cell content differences,
and immunological score (including ESTMATE score, immune
score and stromal score) were also investigated.
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Construction and evaluation of the
prognostic model

All COAD patients were randomly assigned to one of two
groups: training cohort or validation cohort (testing cohort and
entire cohort). No significant difference was observed in three
cohort for the clinical-pathological factors (Supplementary
Table 1). In the training cohort, LASSO and multivariate Cox
regression analysis were used to identify prognostic model based on
CRLs. The risk score was calculated using the following formula:
coef (IncRNA1) x expr (IncRNA1) + coef (IncRNA2) x EXPR
(IncRNA2) +... + coef (IncRNAn) x expr (IncRNAn), coef stands
for coefficient, coef (IncRNAn) stands for coefficient of survival
linked IncRNA, and expr (IncRNAn) stands for IncRNA
expression. Patients in the training set were separated into two
groups based on their median risk score: high-risk and low-risk. For
survival analysis, the R packages “survival” and “survminer” were
used by Kaplan-Meier curve, and a ROC curve was plotted (31).
Finally, we run the above analyses in a validation cohort to verify the
predictive power of the results.

Independent prognostic value
assessment of the prognostic model

When paired with other clinical factors, univariate and
multivariate Cox regression analysis were performed to
determine whether risk score was an independent predictive
factor in COAD patients (32).

Cell culture

Three human colorectal cancer cell lines (Caco-2, HT-29,
HCT116) were all purchased from the China Center for Type
Culture Collection (CCTCC, Wuhan, China). The normal colon
epithelial cell line (FHC) was obtained from the Cell Bank of Type
Culture Collection of the Chinese Academy of Sciences (Shanghai,
China). Caco-2, HT-29 cells, HCT116 and FHC were cultured in
McCoy’s 5A, RPMI-1640, high-glucose DMEM medium (Gibco,
Shanghai, China) respectively, which were supplemented with 10%
fetal bovine serum (FBS, Gibco, Shanghai, China) and 1%
antibiotics. All cells were incubated at 37°C with 5% CO..

Quantitative RT-PCR

Total RNA from the cell lines was isolated with TRIZOL
reagent (Thermo Fisher Scientific, USA). Complementary DNA
(cDNA) was synthesized and quantitative RT-PCR was performed
using SYBR qPCR Master Mix (Vazyme, China). The relative
expression of the target gene was analyzed using the 274"
method and B-actin was chosen as the internal reference. The

primer sequences are listed in Supplementary Table 2.
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Construction and evaluation of the
nomogram

Based on risk scores and patient clinical information, a
nomogram was created to predict 1-year, 3-year, and 5-year
OS (33). The Hosmer-Lemeshow test was used to construct
modified curves to show the agreement between the actual and
anticipated outcomes. The accuracy of the nomogram was
assessed using ROC curves (34).

Gene set enrichment analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were identified using gene set enrichment analysis
(GSEA) (35). The GSEA website (http://software.broadinstitute.
org/gsea/index.jsp) was utilized to identify gene-level enrichment.
Based on the risk score model, COAD samples from the entire set
were separated into high-risk and low-risk groups. The underlying
biological functions of the two groups were compared. The
molecular signature database (MSigDB, http://software.
broadinstitute.org/gsea/msigdb/index.jsp) collection of annotated
gene sets was chosen as a reference gene set in the GSEA software.
The cut-off criterion was set at a notional P < 0.05. As a reference
document, we use “c2.cp.kegg.v7.4.symbols.gmt.”

Evaluation of the immune
microenvironment

For immune score, stromal score, estimated score, each
sample was evaluated using a “estimated” R-package. The
proportion of immune to stromal components in the tumor
microenvironment is represented by these scores. Pearson
correlation coefficient approach was used to assess the
correlations between immune score, stromal score, estimated
score, and risk score. Based on TCGA RNA sequencing data, the
CIBERSORT tool was utilized to quantify 22 types of immune
cell components (36). TIMER, CIBERSORT, Cibersort-ABS,
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC databases
were all used to calculate immune cell infiltration. The Pearson
correlation coefficient approach was used to assess the link
between immune cell infiltration and CRLs expression level,
risk score. One-class logistic regression (OCLR) machine-
learning algorithm was used to quantify the stemness of tumor
samples by calculating cancer stem cell indices (37).

Mutation analysis
TCGA provided mutation data (data category = copy

number variation; “Maf” file). The top 20 mutant genes were
visualized using waterfall diagrams created by the R software
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package “MAftools” (38). The tumor mutation burden (TMB),
which is the number of somatic mutations per Megabyte genome
sequence, can be used to identify patients who will respond
better to immune checkpoint inhibitors (ICIs) (39). The
differences of TMB between the two risk groups were
investigated, as well as their correlation with risk score. The
m®A-related genes and human leukocyte antigen (HLA) genes
were compared between the two risk groups using the “limma”
package (40).

Drug sensitivity analysis

We compared the IC50 differences of the four
chemotherapeutic drugs between the two risk groups using the
R software package “PRROPHIC” (41). Using the R package
“ggplot2,” researchers discovered a link between six CRLs and
chemotherapeutic sensitivity (42). The relationship between
CRLs expression and drug susceptibility was investigated using
Pearson correlation analysis.

Statistical analysis

The continuous variables in normal distribution are
analyzed by Student’s t-test, which is presented as mean +
standard deviation, and the continuous variables in abnormal
distribution are presented as median (range). A p-value less than
0.05 was considered as statistical significance.

Results

Screening of cuproptosis-related
IncRNAs with prognostic value

To identify IncRNAs associated with cuproptosis-related
genes (CRGs), we performed co-expression analysis to reveal
the correlation. Firstly, the co-expression network demonstrated
the interaction between CRGs and CRLs (Figure 1A). Following
that, using univariate COX regression analysis, 49 CRLs with
prognostic value were identified (Figure 1B). The heat map and
box plots indicated the expression difference of 49 CRLs between
COAD and normal tissues (Figures 1C, D).

Consensus clustering analysis

The 49 CRLs were then put through a consensus clustering
analysis to determine whether they might be used to stratify
COAD patients. Based on the “ConsensusClusterPlus” program,
a consensus cluster consisting of 49 CRLs was built (K represents
cluster count, Supplementary Figure 1). The clustering exhibited
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FIGURE 1

Cuproptosis-related IncRNAs (CRLs) with prognostic value were screened. (A) Co-expression network of cuproptosis-related genes and CRLs by
Pearson correlation analysis. (B) There were 49 CRLs found to have prognostic value by COX regression analysis with one variable. (C) Heat map

of prognosis-related CRLs expression in COAD and normal tissues. (D) The
was shown in box plots. (* P < 0.05, ** P < 0.01, *** P < 0.001).

the best stability when K = 3 based on the similarity of CRL
expression levels and the proportion of fuzzy clustering measures
(Figure 2A). As a result, 417 COAD patients were split into three
clusters: cluster 1 (n = 139), cluster 2 (n = 202), and cluster 3 (n =
76). The prognosis of the three clusters was significantly different in
survival analysis (P=0.020), with Cluster 1 having the worst
prognosis (Figure 2B). In the form of a heatmap, Figure 2C
depicted the differences in CRLs expression and clinical features
between the three groups. The immune checkpoint genes PD-L1
and CTLA-4, as well as these IncRNAs, were found to have a co-
expression relationship (Figures 2C, D). Following that, the analysis
revealed the difference of Stromal score, Immunological score,
ESTIMATE score, as well as the abundance of T cells CD4
memory activated, T cells regulatory, T cells gamma delta and
NK cell resting in three clusters (Figures 2E-L).

Construction and evaluation of the
prognostic model

The 49 CRLs described above were then further examined in
order to reduce the scope and build a predictive model. COAD
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expression of prognosis-related CRLs in COAD and normal tissues

patients were separated into two cohort: training and validation
(testing and entire). Univariate Cox regression analysis was
performed on the training cohort, 12 CRLs (NSMCE1-DT,
AL161729.4, LINC01138, SEPTIN7-DT, TNFRSF10A-AS1,
AC006449.3, AC093382.1, PHC2-AS1, AC099850.3,
AC069281.2, ZEB1-AS1, NIFK-AS1) with prognosis value
were identified in COAD (Table 1). The LASSO Cox
regression model was used to narrow the most robust
IncRNAs for prognosis and build prognostic models in the
training cohort. Ten-fold cross-validation was applied to
overcome the over-fitting. To generate a prognostic CRLs
signature model, multivariate Cox regression analysis was applied to
evaluate the connection between CRLs and OS in the training set. The
model is more stable when LAMDA = 6. (Supplementary Figure 2).
TNFRSF10A-AS1, AC006449.3, AC093382.1, AC099850.3, ZEB1-
AS1, and NIFK-AS1 were included in this model. The calculation
formula is: Risk score =TNFRSF10A-AS1 * (-0.2449) + AC006449.3 *
1407 + AC093382.1 *1.812 + AC099850.3 * (-0.0899) + ZEB1-AS1 *
04332 + NIFK-AS1 * 0.3956. The model was also tested in two
validation cohort: testing, and the entire cohort. To begin, Figure 3A
depicted the patient’s risk score, survival status, and six CRLs expression
level in the training cohort. Patients were split into high-risk and low-
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FIGURE 2

Clustert Cluster2 Cluster3 Cluster! Cluster2 Cluster3

Clustering analysis via consensus. (A) When K = 3, the clustering was the most stable. (B) Survival analysis of the three clusters. The prognosis of
Cluster 1 is the poorest. (C) A heat map depicting the differences in CRL expression and clinical features between the three clusters. (D, E) The
immune checkpoints genes PD-L1 and CTLA-4, as well as prognosis-related CRLs, have a co-expression relationship. Stromal score (F), Immune
score (G), ESTIMATE score (H), the abundance of T cells CD4 memory activated (1), T cells regulatory (J), T cells gamma delta (K) and NK cell

resting (L) in three clusters were shown.

risk groups based on median risk score, and survival analysis revealed
that the high-risk group’s prognosis was significantly worse (Figure 3B,
P<0.001). We further validated the expression of six CRLs in colorectal
cancer cell lines. As shown in Supplementary Figure 3, the expressions
of TNFRSF10A-AS1, AC099850.3, ZEB1-AS1 and NIFK-AS1 were
significantly higher in tumor cells compared to those in FHC cells.
Meanwhile, AC006449.3 expression was upregulated in HT-29 cells,
but downregulated in HCT-116 cells. Analogously, AC093382.1
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expression was significantly higher in Caco-2 and HT-29 cells but
lower in HCT-116 cells (Supplementary Figures 3A-F). The AUC
values for 1, 3, and 5 years in the training cohort were 0.700, 0.691, and
0.807 respectively, according to the results of ROC curve (Figure 3C).
According to the same risk score calculation formula, different risk
scores and survival status of patients in the testing and entire cohort
were identified, and the difference of six CRLs expression level between
the two risk groups was also analyzed (testing cohort, Figure 3D; entire
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TABLE 1 Univariate Cox analysis generated 12 CRLs that are significantly related to the overall survival (OS).

IncRNA HR Lower 95% CI Higher 95% CI P value
NSMCEI-DT 18.1956 1.6439 201.3981 0.0180
AL161729.4 14211 1.0226 1.9749 0.0363
LINCO01138 1.7057 1.0521 2.7654 0.0303
SEPTIN7-DT 13.2654 1.4138 124.4671 0.0236
TNFRSF10A-AS1 0.8024 0.6682 0.9635 0.0184
AC006449.3 7.1223 1.6987 29.8617 0.0073
AC093382.1 9.8668 2.0216 48.1573 0.0047
PHC2-AS1 2.5447 1.0419 6.2149 0.0404
AC099850.3 0.9164 0.8494 0.9886 0.0241
AC069281.2 1.5789 1.0899 2.2873 0.01573
ZEB1-AS1 2.3421 1.4098 3.8907 0.0010
NIFK-AS1 1.7646 1.0950 2.8437 0.0197

cohort Figure 3G). In addition, the outcomes of patients with higher
risk score in the validation cohort were significantly worse (Figure 3E,
H). The 5-year AUC value of testing and entire cohort were 0.683 and
0.748 respectively, according to the ROC curve (Figures 3F, I).
Moreover, risk score was found to be an independent prognostic
factor for COAD patients in the above three cohorts using both
univariate and multivariate COX regression (Supplementary
Figures 4A-F). Survival analysis revealed the prognostic value of risk
score in COAD patients with different ages, different stages, different
genders and different histological types (Supplementary Figures 5A-H).

Construction and evaluation of
the nomogram

Following that, nomogram was utilized to combine risk score
and other clinical parameters to better evaluate the prognosis of
COAD patients. We established a nomogram to assess COAD
patients” 1-, 3-, and 5-year survival rates (Figure 4A). The
calibration curves revealed that the nomogram was accurate in
predicting 1-, 3-, and 5-years survival rates (Figure 4B). Compared
with the AUC value of the clinical features, risk score could be
used to predict the OS of COAD patients (Figure 4C).

Gene set enrichment analysis

GSEA was used to investigate the variations in pathway
enrichment between high-risk and low-risk groups. Allograft
rejection, asthma, autoimmune thyroid disease, cell adhesion
molecules CAMs, and systemic lupus erythematosus were
among the enriched KEGG pathways in the high-risk group
(Figure 5A). However, aminoacyl tRNA biosynthesis, dna
replication, nucleotide excision repair, O-glycan biosynthesis,
and oocyte meiosis were among the enriched KEGG pathways in
the low-risk group (Figure 5B). GSEA results revealed that
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patients with higher risk score were related to immune-related
pathways while lower risk score patients were associated with
tumor-related pathway, which maybe explained the survival
different in two risk groups.

Analysis of immune microenvironment

The occurrence and development of tumor are affected by
immune microenvironment and the study of immune
microenvironment can provide reference for immunotherapy of
tumor. Stromal, Immune and ESTIMATE scores were significantly
different between high-risk and low-risk groups, and may be higher
in high-risk groups (Figures 5C-E). Pearson correlation analysis
revealed a strong positive correlation between Stromal score,
ESTIMATE score, and Immune score and risk score (Figures 5F-
H). Figure 6A depicted the immunological landscape of high-risk and
low-risk groups as heatmap, using CIBERSORT, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC algorithms. Between the two
groups, different amounts of immune cell infiltration were detected
and subsequent correlation analysis revealed the relation between six
CRLs expression and immune cells. Except ZEB1-AS1 expression has
no correlation with immune cells, the other five CRLs have different
degrees of correlation with immune cells, among which AC099850.3
had the highest positive correlation with resting NK cells and highest
negative connection between TNFRSF10A-AS1 and Treg cells and
macrophage MO (Figure 6B). In the shape of a box diagram,
Figure 6C depicted the differences in immune cell infiltration levels
and the levels of infiltration of T cells regulatory and dendritic cells
were found to be substantially different between the high-risk and
low-risk groups (Figure 6C). A Pearson correlation analysis revealed
the correlation between different immune cells and risk scores
(Figures 6D-K). Finally, DNA stem cell score (DNAss) was shown
to be unrelated to risk score (Figure 6L), however, RNA stem cell
score (RNAss) was found to be significantly inversely associated to
risk score (R=-0.38, P = 2.5E-10, Figure 6M).
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FIGURE 3

Prognostic model construction and evaluation. (A) In the training cohort, the patient with different risk score, survival status, and CRLs
expression were shown. (B) Survival analysis of training cohort and the prognosis of high-risk group was significantly worse. (C) ROC curve
revealed that in the training cohort, the AUC values for 1, 3, and 5-years OS were 0.700, 0.691, and 0.807, respectively. (D, G) In the testing and
entire cohort, the patient’s risk score, survival status, and CRLs expression were shown. (E)The high-risk group’s prognosis in the testing cohort
was also significantly worse. (F) In the testing cohort, AUC values of 1, 3, and 5-year OS were 0.606, 0.651, and 0.683, respectively, according to
the ROC curve. (H) In the entire cohort, survival analysis revealed worse outcomes in the high-risk group. () In the entire cohort, the AUC
values of the model in 1, 3, and 5-years OS were 0.649, 0.674 and 0.748, respectively.

Expression analysis of m®A-related genes
and human leukocyte antigen genes

N°-methyladenosine (m®A) is a type of tumor epigenetics that
plays an important function in tumor progression and human
leukocyte antigen (HLA) has been related to tumor
immunotherapy (43). Therefore, it is necessary to investigate the
differences in expression of m°A-related genes and HLA-related
genes between high-risk and low-risk groups. First, the expression
of methylation-related genes HNRNPC, RBM15, YTHDCI,
YTHDEF3, YTHDEF2, METTL14, WTAP, HNRNPA2B1, FMR1
was shown to differ between the high-risk and low-risk groups
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(Figure 7A). HLA-related genes including HLA-DQA1, HLA-
DRB6, HLA-DQB1, HLA-DRBI1, HLA-DPB1, HLA-L, HLA-
DOA, HLA-DPA1, HLA-], HLA-DQB2, HLA-DMA, HLA-E,
HLA-DQA2, and HLA-G were shown to have varied levels of
expression in high-risk and low-risk groups (Figure 7B).

Mutation analysis

Mutations in numerous genes are associated with tumor

formation, and the tumor mutation burden (TMB) is thought to

be a helpful signal for evaluating immune checkpoint-related
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The construction and assessment of prognostic nomogram. (A) A nomogram for assessing 1-, 3-, and 5-year survival rates. (B)The calibration
curves of the nomogram. (C)The ROC curve of risk score and clinical characteristics was investigated based on 1-, 3-, and 5-year OS.

therapy. The mutation landscape of the high-risk group was
depicted in Figure 7C. APC has the highest mutation rate, as can
be observed. Figure 7D depicted the mutation landscape of the
low-risk group, with APC having the highest mutation rate.
TMB was also different across the two groups, with TMB being
higher in the low-risk group (Figure 7E). A Pearson correlation
study revealed that TMB and risk score had a substantial
negative correlation (Figure 7F). Next, we focus on the
expression of mismatch repair (MMR) protein, as it plays a
key role in the process of COAD and is a major cause of gene
mutations and microsatellite instability (MSI) (44). The
expressions of MMR-related proteins MLH1, MSH2, MSH6,
and EPCAM were substantially up-regulated in the low-risk
group (P<0.05), while PMS2 expression did not differ statistically
between the two risk groups (Figures 7G-K).

Drug sensitivity analysis
Following the risk classification of COAD patients,

medication sensitivity analysis can be used to identify effective
treatments for different risk groups patients in order to
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individualized treatment. To begin with, paclitaxel,
Vinblastine, Sunitinib, and Elescloml had lower IC50 values in
the high-risk group, indicating that the patients with higher risk
score were more responsive to these medications (Figure 8A).
Following that, correlation analysis was used to identify
medicines that were significantly correlated with the
expression of CRLs. For instance, the analysis demonstrated
that up-regulated ZEB1-AS1 expression was associated with
increased drug sensitivity of tumor cells to nelarabine,
palbociclib, fluphenazine, asparaginase, LEE-011, ifosfamide,
hydroxyurea and dexrazoxane, while increased ZEB1-AS1
expression was related to the increased resistance to
vemurafenib in COAD patients (Figure 8B).

Discussion

COAD is still one of the most common cancer-related deaths
in the world (45). Screening strategies, such as fecal occult blood
test, screening colonoscopies and fecal immunochemical tests,
can greatly reduce the incidence and mortality of COAD, but
there are still many limitations of screening tests, and a large
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Immune microenvironment analysis and gene set enrichment analysis (GSEA). (A) Allograft rejection, asthma, autoimmune thyroid disease, cell
adhesion molecules CAMs, and systemic lupus erythematosus are among the enriched KEGG pathways in the high-risk group. (B) Aminoacyl
tRNA biosynthesis, dna replication, nucleotide excision repair, O-glycan biosynthesis, and oocyte meiosis are among the enriched KEGG
pathways in the low-risk group. (C—E) The high-risk and low-risk groups had considerably different Stromal, ESTIMATE, and Immune scores,
with the high-risk group having higher scores. (F-H) A Pearson correlation analysis revealed a strong positive relation between Stromal score,

ESTIMATE score, Immune score and risk score.

number of people eligible for screening miss the opportunity of
screening (46, 47). With the innovations of risk stratification and
development of personalized screening, the burden of COAD
might be further reduced. At present, the treatment of advanced
COAD remains a challenge due to stubborn drug resistance,
metastasis and recurrence (48). Therefore, there is an urgent
need to explore novel signatures for patients with COAD to
assess prognosis, identify high-risk populations and guide
personalized treatment. In recent years, regulatory cell death
(RCD) has also been recognized as a promising target for cancers
(49). Among them, cuproptosis is a copper-dependent and
regulated new cell death mode, which is different from other
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known cell death regulation mechanisms (18). Further research on
copper dependent cell death can provide a basis for the intervention
of copper metabolism dysfunction related diseases and the potential
application of anti-tumor. Therefore, cuproptosis may have
complex crosstalk with metabolic reprogramming in cancers.
While a number of RCD-related prognostic models have been
developed to assess prognosis and immune microenvironment, this
study is mainly report prognostic signature associated with
cuproposis-related IncRNA (CRLs), which helps us understand
the roles of cuproposis and CRLs in COAD.

Here, we performed a comprehensive bioinformatics
analysis to explore the significance of CRLs in COAD, co-
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FIGURE 6

The immune landscape analysis. (A) The immune landscapes of high-risk and low-risk groups. (B) The correlation between CRLs and different
immune cells, AC099850.3 had the highest positive correlation with resting NK cells, and TNFRSF10A-AS1 had the highest negative relation with
T cells regulatory and macrophages MO. (C) The variations of immune cell infiltration levels between the high-risk and low-risk groups. (D-K)
Analysis of the Pearson correlation between distinct immune cells and risk scores. (L, M) The correlation between DNA stem cell score (DNAss),
RNA stem cell score (RNAss), and risk score. *P < 0.05, **P < 0.01, ***P < 0.001.

expression analysis and COX regression analysis were used to
identify CRLs with prognostic significance. Subsequently,
consensus cluster analysis showed that prognosis-related CRLs
could divide patients with COAD into 3 clusters, which showed
significant differences in prognosis and immune
microenvironment. Following that, Lasso regression analysis
was used to establish a prognostic signature with six CRLs.
COAD patients could be separated into high-risk and low-risk
groups according to median risk score, with the high-risk group
having a much worse prognosis. This CRLs related signature
gave a strategy of prognostic stratification for COAD patients.
Finally, immune microenvironment, mutation and
chemotherapeutic sensitivity analyses showed that this
predictive signature could be used to provide evidence for
immunotherapy and chemotherapy option.

Although screening and diagnosis of COAD have become
more and more advanced, prognostic typing methods and
sensitive genetic markers are still lacking (46, 50). Our study
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can provide CRLs-based prognostic model for patients with
COAD, with an AUC value greater than 0.7 at 5 years OS,
which can well classify patients into different prognostic groups,
facilitate identification and early intervention of high-risk
groups. There were also disparities in immune cell infiltration
and TMB between high-risk and low-risk groups, providing
some guidance for immunotherapy (51).

Our study identified six COAD prognostic markers
correlated with cuproposis: TNFRSF10A-AS1, AC006449.3,
AC093382.1, AC099850.3, ZEB1-AS1, and NIFK-AS1, which
have been demonstrated to be associated with cancers in
preliminary studies. First, Wei et al. discovered that
TNFRSF10A-AS1 is a novel prognostic marker for colorectal
cancer and may be related to autophagy (52). A regulatory
network of IncRNA-miRNA-mRNA ceRNA was constructed for
squamous cell carcinoma of tongue, and AC099850.3 was found
to be strongly associated with the overall survival rate of patients
(53). AC099850.3 has been confirmed to promote hepatocellular
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Expression analysis of m®A-related genes and human leukocyte antigen (HLA) related genes, mutation analysis. (A) Differential expression of
m®A-related genes HNRNPC, RBM15, YTHDC1, YTHDF3, YTHDF2, YTHDC2, METTL14, WTAP, HNRNPA2B1, FMR1 were observed between the
high-risk group and the low-risk groups. (B) The human leukocyte antigen gene analysis. HLA-DQA1, HLA-DRB6, HLA-DQB1, HLA-DRB1, HLA-
DPB1, HLA-L, HLA-DOA, HLA-DPA1, HLA-J, HLA-DQB2, HLA-DMA, HLA-E, HLA-DQAZ2, and HLA-G were observed to be differentially expressed
between high-risk and low-risk groups. (C) The mutation landscape of the high-risk group and draw the results into a waterfall diagram. (D)The
waterfall diagram shows the mutation of patients in the low-risk group, and the mutation rate of APC was also highest. (E) Tumor mutation
burden (TMB) analysis between the two risk groups. (F) Pearson-correlation analysis showed that there was a significant negative correlation
between TMB and risk score. (G—=K) Expression analysis of mismatch repair (MMR) protein. The expressions of MLH1, MSH2, MSH6 and EPCAM
were significantly up-regulated in the low-risk group, while the expression of PMS2 showed no statistical difference between the two risk

groups. ns, not significant,*P < 0.05, **P < 0.01, ***P < 0.001.

carcinoma (HCC) proliferation and invasion via the PRR11/
PI3K/AKT axis and is a prognostic marker for HCC (54, 55). In
addition, AC099850.3 was discovered as a predictive marker for
non-small cell lung cancer (NSCLC) (56). Zinc finger E-box-
binding homeobox 1 antisense 1 (ZEB1-AS1) facilitates the
growth and metastasis of COAD cells, providing a new target
for the diagnosis and treatment of COAD patients (57).
Furthermore, ZEB1-AS1 can be used as one of the key
IncRNAs in the construction of RCD-related prognostic
signature (58). Consistent with previous studies, our study also
included ZEB1-AS1 as the key IncRNA in RCD-related
prognostic signature, which may reveal the important function
of ZEB1-AS1 in RCD. Upregulation of NIFK-AS1 promote
progression of HCC and Increased resistance to chemotherapy
drugs through m6A methylation (59). Furthermore, NIFK-AS1
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was discovered to suppress M2-like polarization of macrophages
in endometrial cancer (60). However, there are currently few
cancer research on AC006449.3 and AC093382.1, especially in
COAD. In this study, we discovered a possible association
between the six IncRNAs and cuproptosis, and offered
evidences for their importance in the prognosis of COAD.
Among six CRLs, TNFRSF10A-AS1 and AC099850.3 were
protective factors while AC006449.3, AC093382.1, ZEB1-AS1
and NIFK-AS1 were adverse prognostic factors for COAD in
this signature.

Immunotherapy, particularly immune checkpoint
inhibitors, has been utilized to treat colorectal cancer in the
past (61). However, “cold” tumors with low mutation rates and
low microsatellite instability are not sensitive to immune
checkpoint inhibitors (62, 63). As a result, it is critical to
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Drug sensitivity analysis. (A) Paclitaxel, Vinblastine, Sunitinib and Elescloml were observed to have lower IC50 values in the high-risk group, that
is, the high-risk group was more sensitive to these drugs. (B) Scatter plot of correlation between CRLs expression and drug sensitivity.

investigate the function of the predictive signature we developed
in assessing mutation and expression of immune checkpoint-
related genes in COAD. We discovered considerable disparities
in tumor mutation burden (TMB), immune cell infiltration,
HLA-related genes and mismatch repair proteins expression
between the two risk groups based on signature constructed by
cuproptosis-related IncRNAs, which might guide the
immunotherapy for COAD patients. It also provided reference
for understanding the potential association between tumor
immunity and cuproptosis in colorectal cancer. Not only that,
we identified more certain sensitive drugs for the COAD patients
with higher risk score: Paclitaxel, Vinblastine, Sunitinib and
Elescloml, which was conducive to the early intervention and
precision treatment for COAD.

Previous bioinformatics studies have revealed the role of
other types of CRD in COAD (64, 65). Cuproptosis, novel types
of cell death, has not been explored in COAD and our study is
the first to highlight the function of cuproptosis-related

Frontiers in Oncology

20

IncRNAs. These findings help us understand the interaction of
many regulatory cell death patterns, and provide a reference for
precise treatment of COAD. However, there are some
limitations in our study. Although the mechanism of copper
inducing cell death has similar markers and characteristics of
different forms of RCD, cuproptosis has not been confirmed in
cell death nomenclature (66-68). The AUC value of our
signature is not very high, which is not greater than 0.8, and it
may be limited by the sample size. And we lack relevant
functional experiments to verify the function of cuproptosis-
related genes and CRLs in the model, which will be improved in
the future.

Conclusions

Overall, our study is the first to develop a predictive
signature based on the cuproptosis-associated IncRNA,
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providing a novel approach to risk stratification and potential
biomarkers for COAD patients. This signature is valuable for
assessing prognosis, immune infiltration and chemotherapy
sensitivity, which may help provide guidance for detections
and treatments in patients with COAD.
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Uveal melanoma (UM) is a deadly intraocular neoplasm in the adult population
and harbors limited therapeutic effects from the current treatment. Here, we
aimed to investigate the role of hypoxia in UM progress. We adopted the
Cancer Genome Atlas data set as a training cohort and Gene Expression
Omnibus data sets as validating cohorts. We first used consensus clustering
to identify hypoxia-related subtypes, and the C1 subtype predicted an
unfavorable prognosis and exhibited high infiltration of immunocytes and
globally elevated immune checkpoint expression. Besides this, the patients
with the C1 subtype were predicted to respond to the PD-1 treatment. By the
least absolute shrinkage and selection operator algorithm, we constructed a
hypoxia risk score based on the hypoxia genes and identified 10 genes. The risk
score predicted patient survival with high performance, and the high-risk group
also harbored high immunocyte infiltration and immune checkpoint
expression. Furthermore, we confirmed that the risk genes were upregulated
under hypoxia, and knockdown of CA12 inhibited the epithelial-mesenchymal
transition process, clone formation ability, and G1/S phase transformation of
the UM cells. The CD276 was also downregulated when CA12 knockdown was
performed. These results validate the prognostic role of the hypoxia signature
in UM and demonstrate that CA12 is a critical factor for UM cell progression as
well as a target to improve immunotherapeutic effects. We believe our study
contributes to the understanding of hypoxia’s roles in UM and provides a novel
target that will benefit future therapeutic strategy development.
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Introduction

Uveal melanoma (UM) is a rare tumor type among the
population, but it is the most common intraocular neoplasm in
the adult population with high malignancy. UM harbors a
morbidity of approximately five cases per million per year, and
90% of UM originates from the choroid (1). Nearly 50% of UM
metastases to the liver during tumor development, and early
stage intervention, such as chemoembolization and surgical
excision, controls tumor progression, but mostly prognoses of
UM returns unfavorable due to the limited therapeutic strategy
effects. More efficient approaches for improving the therapeutic
effects or prognostic management are urgently required.

Molecular pathogenesis and targeted therapy have been
novel research topics and promising strategies to prevent UM
processes or improve patient survival (2). Currently, many
molecular features have been applied to indicate the patient
prognostic diversity, such as that active mutation of the Gai11/Q
pathway drives the tumorigenesis of UM and BAPI, SF3B1, and
EIFIAX mutant precited metastatic progression (3). Moreover,
various studies are still carried on to discover novel molecular
targets for UM (4-6). Many targeted therapy-based clinical
trials have been conducted, whereas no mature approach has
been proven for application, indicating the urgent need for more
effective strategies for UM treatment (7).

Hypoxia, characterized by insufficient tissue oxygenation, is
a critical risk factor in cancer, for its connection with various
hallmarks of cancers, including angiogenesis, metabolism
programming (8), and immunosuppression (9), contributing
to the progression of cancer and poor prognosis. To overcome
the hypoxia-related signaling in cancers, many hypoxia-targeted
therapies were developed (10). In UM, hypoxia has been
suggested to correlate with angiogenesis, invasion, and
autophagy, indicating its significant role in UM. Besides this,
many drugs were discovered to gain therapeutic effects, mostly
based on HIF and angiogenesis (11). Interestingly, a study has
demonstrated the effects of hypoxia stress on monocyte
migration and characteristics (12); this implies the association
between hypoxia and immunity of UM, whereas their
intercorrelation is far from understood.

Abbreviations: UM, Uveal melanoma; GO, Gene ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; TCGA, The Cancer Genomes Atlas;
GEO, Gene Expression Omnibus; TIDE, Tumor Immune Dysfunction and
Exclusion; GSVA, Gene Set Variation Analysis; PCA, Principal component
analysis; GSEA, Gene Set Enrichment Analysis; DEGs, Differentially
expressed genes; BP, biological process;, CC, cellular component;, and MF,
molecular function; LASSO, Least absolute shrinkage and selection operator;
GDSC, Genomics of Drug Sensitivity in Cancer; PI, propidium iodide; ROC,
Receiver operating characteristics curve; MDSC, Myeloid-derived suppressor

cells; ECM-associated, Extracellular matrix; CA12, Carbonic Anhydrase 12.
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In this study, we used a hypoxia-based signature to identify
novel hypoxia-based subtypes and build a prediction model for
patient prognosis, and the biological involvement of hypoxia
in UM was investigated by functional enrichment, and its
correlation with immunocyte, immune checkpoints were
explored. Moreover, we conducted a series of experiments to
validate hypoxia’s effects on tumor cell phenotype and
immune checkpoint expression. We hope this study will
reveal a novel pathological mechanism of hypoxia in UM
and provide alternative therapeutic targets for UM
patient treatment.

Materials and methods
Data acquisition

The UM sample RNA expression and clinical information
were obtained from the Cancer Genomes Atlas and were used
as a training cohort, and UM samples from the Gene
Expression Omnibus, GSE22138 and GSE84976, were
downloaded as validating cohorts. The hypoxia, gene
ontology (GO), and Kyoto Encyclopedia of Genes and
Genomes (KEGG) gene sets were retrieved from the Gene Set
Enrichment Analysis (GSEA) online database. The compounds
used for potential drug identification were obtained from the
GDSC database. The tumor immune dysfunction and
exclusion (TIDE)-related calculation was performed on the
TIDE online web tool.

Consensus clustering of UM samples by
the hypoxia gene sets

We used the hypoxia gene sets to cluster the UM training
cohort by the “ConsensusCluster” R package with the best k
value and visualized the results by a principal component
analysis (PCA) plot. For the clusters obtained, we used
survival analysis to evaluate their prognostic difference. In a
heat map, an expression of the hypoxia genes in all samples
divided by the clusters were also presented. Subsequently, we
investigate the diversity of cancer hallmarks between the clusters
using gene set variation analysis (13) and “Hallmark” gene sets
downloaded from GSEA.

Immune diversity between clusters

To investigate the immune diversity between the clusters of
UM, we analyzed the 28 types of immunocyte infiltration of all
samples using single sample GSEA (ssGSEA). We also compared
the immune checkpoint expression differences between clusters.
The results were presented in heat maps and box plots.
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Drug IC50 calculation and
immunotherapy analyses

To identify novel drugs for hypoxia cluster-based targets, we
downloaded the compound information, cell line expression
matrix, and cell line testing results to predict the drug IC50 for
all samples by the R package “pRRophetic” (14), and the IC50
values were compared between clusters in box plots. Besides this,
we analyzed the immunotherapeutic effects of the samples by
TIDE analyses, including the dysfunction, exclusion, IFNG, and
TIDE score calculation conducted on the TIDE web tool. We
also analyzed the correlation between PD-1, CTLA4 response,
and clusters to explore the immunotherapeutic potential of
the clusters.

Biological diversity comparison
between clusters

To compare the biological diversity between samples in
different clusters, we first used the “limma” R package to filter
the differentially expressed genes (DEGs) between clusters.
Then, the DEGs were annotated according to the gene set
annotation downloaded from GSEA, including KEGG and
biological process (BP), cellular component (CC), and
molecular function (MF) in GO.

Hypoxia Least absolute shrinkage
and selection operator (LASSO)
risk score construction

The hypoxia gene sets were applied to the LASSO regression
(15) to reduce the number of parameters and construct a
prognostic model. The risk score of each sample was
calculated as the sum of the coefficient multiplied by the
expression of each gene. We divided the samples into high-
and low-risk groups according to the median risk score of the
cohort. The survival time and risk score gene expression were
presented in order of the risk scores. We checked the prognostic
value of the risk score by survival analysis and receiver operating
characteristics curve (ROC) and, finally, built a nomogram
integrating risk score, age, gender, and stage, and its
prognostic value was estimated by ROC and calibration curve.

The immune diversity between risk
scores and potential drug identification

To discover the immune diversity between the risk groups,
we used ssGSEA to analyze the immunocyte infiltration
differences as well as the immune checkpoint expression
variation (16), the results were presented by box plots. The
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correlation between CA12 and CD276 was quantified on
GEPIA2.0, an online tool for cancer investigation. Besides this,
we compared the Genomics of Drug Sensitivity in Cancer
(GDSC) (17) compound IC50 values of the two groups, and
the cMap was also utilized to filter potential drugs.

Cell culture and siRNA transfection

The highly aggressive MUM2B cells were cultivated in
DMEM with 10% FBS, maintained under 5% CO, and 37°C
and digested when they were 80% confluent. For the hypoxia
culture, we cultivated the cells in the hypoxia incubator for 24 h.
Then, the cells were planted into a 12-well plate and transfected
with CA12 siRNAs and lip3000 transfection reagent. After 48 h
transfection, the cells were harvested and counted for further
experiments. The sequence of siRNA1 and siRNA2 was provided
by Zhao et al. and Huang et al, respectively (18, 19).

RT-gqPCR detection of the mRNA levels

The cells were washed with PBS and lyzed in trizol for 10
min. The RNA was collected and extracted using chloroform.
After centrifugation and supernatant collection, the RNA was
precipitated with isopropanol, followed by sequential washing
with 80% ethanol and absolute ethanol. When the RNA was
dried naturally, a quantification by a microplate reader was then
conducted. Subsequently, the genomic DNA was removed, and
RNA reverse transcription was performed. Finally, the 10 pl
mixed system per well containing 1ul cDNA, 0.4ul primers, 5ul
SYBP, and 3.2ul RNA-free water was prepared, and the RT-
qPCR was performed.

Transwell migration assay

The harvested cells were resuspended with 200 pl FBS (1%)
and planted into the upper chamber of the transwell with 1x10*
cells per well (Corning Incorporated, Corning, NY, USA). The
lower chamber was filled with 500 ul DMEM with FBS (20%).
After cultivation for 24 h, the upper chamber was slightly
washed with PBS three times and fixed with crystal violet.
After 30 min, the unmigrated cells were wiped off using a
cotton swab and left to dry for microscopy.

CCK8 assay

The harvested cells were resuspended using DMEM with
FBS (10%) and seeded in a 96-well plate for the CCK8 assay.
After cell adherence, the previous medium was replaced by
DMEM with a 10% CCKS8 reagent (GK3607-500T, GeneView,
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DingGuo Company, Changsha, China) containing no FBS. After
2 h of cultivation, the OD value was detected using the
microplate reader. The absorbance was measured at 450 nm.

Clone formation assay

As described, we used DMEM containing FBS (10%) to
resuspend the cells and seeded them in the six-well plate, with
1000 cells per well. After 14 days of cultivation, the medium was
removed and washed with PBS. Subsequently, the cells were
fixed with crystal violet for 30 min.

Flow cytometric analysis

The digested cells were collected in EP tubes. We centrifuged
the cells to remove the medium and washed the cells with
precooled PBS. Then, the cells were fixed using 70% ethanol
under 4°C overnight. Subsequently, the ethanol was removed
and washed by precooled PBS again and stained with propidium
iodide (PI, 20X), RNase (50X), and staining buffer (C1052,
Beyotim Biotechnology Co. Ltd,Nantong, China). The mixed
system was incubated from light under 37°C for 30 min and
detected by the flow cytometer. The data were analyzed by
Flow] software.

Western blot detection

The cells were lysed using the RIPA lysis buffer and
centrifuged to obtain the protein supernatants. The nuclear in
the samples were then further lysed by ultrasound. After being
mixed with loading buffer, the samples were loaded, and
electrophoresis and membrane transformation were
sequentially performed. The membrane was then blocked with
skim milk powder (5%) and incubated under 4°C overnight with
the primary antibodies (sources listed in Supplementary Table
S1). The next day, the membrane was washed with TBST three
times and incubated with the second antibodies for 1 h. Finally,
the protein bands on the membrane were detected using the
chemiluminescence detection system after TBST washing. The
results were quantified by the ImageJ software.

Statistical analyses

The bioinformatic analyses were performed on the R
software. The Kaplan-Meier curve and log-rank test were used
for survival analyses. Cox regression calculated the HR of each
factor. ROC and the calibration curve estimated the predictive
discrimination and calibration, respectively. Student’s T-test
compared the expression differences between groups. Two-way
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ANOVA tested the CCK8 results. Spearman’s correlation
coefficient was used to quantify expression correlation between
genes. P <.05 was defined as statistically significant.

Results

Unsupervised clustering identified a
cluster with a worse prognosis and
upregulated hallmark features

To identify the hypoxia-associated clusters in UM. We used
“ConsensusCluster” to conduct the unsupervised clustering of
the training cohort. We selected the k value as 2, the samples
were perfectly divided into two clusters (Figure 1A), and the
PCA plot exhibited that the two clusters were separated into two
groups (Figure 1B).

We then performed survival analysis to test the prognostic
differences between the two clusters. As a result, cluster Cl
exhibited a worse survival rate (Figure 1C). Moreover, most of
the hypoxia-related genes were highly expressed in cluster Cl1
(Figure 1D). The ssGSEA results of the “Hallmark” gene sets of
all samples showed that most of the cancer hallmark pathways
were upregulated in cluster C1. Notably, many immune-related
pathways were enriched in cluster Cl, including IL6-JAK-
STAT3, IL2-STAT5, TGF-B, interferon-o/y-response, and
TNFA-related signaling pathways (Figure 1E). These results
indicated that hypoxia played a critical role in UM
development, and these were associated with cancer immunity.

Hypoxia-divided clusters presented a
diverse immune status

To investigate the immunological diversity between the
clusters, we ran ssGSEA to analyze the immunocyte infiltration
levels of each sample, and most of the immunocytes were
highly infiltrated in cluster C1 (Figure 2A), including several
immunosuppressive cells, such as regulatory T cells and
myeloid-derived suppressor cells (MDSC). Further, we
compared the expression of the immune checkpoint between
clusters C1 and C2. Surprisingly, most of the immune
checkpoints were upregulated in cluster C1 (Figure 2B).
These results were quantified in box plots (Figures 2C, D)
and demonstrated the immunosuppressive environment in
high-hypoxia UM samples. Hence, we then conducted TIDE
analyses. The results presented that cluster C1 exhibited a
lower TIDE score, indicating that it may respond to
immunotherapy (Figure 3A). We further analyzed the
expression similarity between the training cohort and the
previous immunotherapy cohort, and we noticed that cluster
C1 samples showed similar expression signatures with the
PD1-therapy response cohort though the p-value increased to
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0.055 after Bonferroni correction (Figure 3B). Additionally, we
also sought possible chemotherapeutic drugs for UM patients.
The GDSC drug IC50 was predicted for each sample, and
we obtained two drugs, Methotrexate and Mitomycin
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C, with lower IC50 in cluster C1 (Figure 3C). The
immunotherapeutic analyses indicated that UM cancer with
high hypoxia harbored immunosuppression and may benefit
from immunotherapy.
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The clusters mainly differed in immune-
and Extracellular matrix (ECM)-
associated biological activities

To investigate the biological activity differences between
clusters, we first filter the DEGs between them, and many
upregulated genes were identified in cluster C1 (Figures 4A,
B). To annotate their function, we performed functional
enrichment analyses by the KEGG and GO gene sets. The
results exhibited that their DEGs were mainly enriched in
immune-related pathways. For instance, the cytokine-cytokine
receptor interaction, chemokine signaling pathways in KEGG,
cellular response to cytokine in GOBP, MHC protein complex in
GOCC, and GO MHC class II in GOMF were identified, similar
to the immune analyses results. Besides this, ECM-associated
pathways, such as the ECM-receptor interaction in KEGG,
extracellular region in GOCC, and extracellular matrix
structural constituent in GOMF, were also enriched
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(Figures 4C-F), demonstrating the close correlation between
hypoxia and the microenvironment.

Establishment of a hypoxia-based
risk score

To identify the critical genes in the effects of hypoxia, we
used the hypoxia gene set to establish a risk score. The LASSO
algorithm reduced the gene number to 10, and five risky and
five protective genes were finally obtained with their
coefficients, respectively (Figures 5A, B). The patients were
divided into the high- and low-risk groups according to the
median risk score of the training cohort. The PCA plot showed
that the risk groups separated obviously (Figure 5C). The risk-
survival plot exhibited that the five risk genes’ expression
elevated as the risk score increased, and the opposite trend
was observed for the five protective genes (Figure 5D). For the
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prognostic value, the high-risk group patients suffered performed univariate and multivariate Cox analysis to select
significantly lower survival rates, and the ROC results the prognostic clinical predictors apart from the risk score and
demonstrated the risk score predicted patient overall survival age, and risk score passed the univariate test though it failed in
with a high accuracy (Figures 5E, F). When validated in the the multivariate test (Figures 6A,B). When integrating the risk
validating cohorts, the same expression trend of the 10 genes scores and age to form a nomogram, the nomogram also
was observed, and the risk score can predict the patient survival presented good performance in predicting patient survival

with high accuracy (Supplementary Figures SIA-S1F). We (Figures 6C-E).
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prediction accuracy of 1-, 3-, and 5-year survival.

The risk groups presented diverse
immunological characteristics and
sensitivity to some newly identified drugs

We performed ssGSEA to compare the differences of
immunocyte infiltration between the risk groups, and we
noticed that many immunocytes were highly infiltrated in
the high-risk group, including the immunosuppressive cells
(regulatory T cell and MDSC) (Figure 7A). Also, the majority
of the immune checkpoints were upregulated in the high-risk
group, including CD276, CTLA4, and PDCDI, et al.
(Figure 7B). We then searched GEPIA2.0 and discovered
that CD276 and CA12 were significantly and positively
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correlated as their correlation coefficient reaches 0.55
(Figure 7C). Finally, we identified two drugs from GSDC
and five drugs from cMap with therapeutic potential for
high-risk patients (Figures 7D, E).

The risky genes were upregulated
under hypoxia and CA12-knockdown
affects EMT, cell cycle, and immune
checkpoint expression

To experimentally validate whether the risky genes were
correlated with hypoxia, we performed hypoxia cultivation, and
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(E) were used to evaluate the performances of the nomogram for predicting patient survival. **** means p-value < 0.0001.

we noticed that CA12, ARX, MGLL, and MMP9 were
significantly upregulated under hypoxia; SI00A13 was not
significantly upregulated but also showed a similar trend
(Figures 8A, B). Subsequently, we analyzed the effects of the
top risky gene CA12 knockdown on cell phenotypes. The RT-
qPCR results validated that the CA12 mRNA levels decreased
significantly in both CA12-knockdown groups (Figure 8C). The
Transwell results demonstrated that knockdown of CA12
significantly inhibited cell migration (Figure 8D), indicating a
depressed EMT processes. Hence, we detected the E-cadherin,
N-cadherin, and Vimentin protein expressions, representing the
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EMT process; the upregulated Vimentin, N-cadherin, and
downregulated E-cadherin suggested an activated EMT process
of MUM2B cells to enhance their migration though the N-
cadherin upregulation of the siRNA-2 group was not statistically
significant (Figures 8E, F).

Besides this, the clone formation and CCK8 assay results
presented that CA12 knockdown also depressed cell viability and
clone-formation ability (Figures 9A, B). Further, we performed
flow cytometric analysis to investigate whether CA12
knockdown affected the cell cycle cells, and we found that
CA12 knockdown increased the proportion of the GI phase
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FIGURE 7

The immunological diversity between the risk groups and drug development. The box plots show the infiltration differences of immunocytes (A)
and immune checkpoint differences (B) between the risk groups. (C) The correlation between CD12 and CD276 expression. (D) The IC50 level
differences between the risk groups for the GDSC drugs. (E) Identification of potential effective drugs from the cMap database, *, **, ***

represents p-value < 0.05, 0.01, and 0.001, respectively.

and decreased the S phase of cells (Figures 9C, D), implying the
G1 phase arrest in MUM2B cells. The G1 phase-related proteins
(cyclinD1, CDK4, and CDK6) were detected, and the decreased
cyclinD1, CDK4, and CDK6 were observed in the CAI2-
knockdown group (Figures 9E, F), demonstrating that CA12
knockdown induced the G1 phase arrest.
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Finally, we explored whether CA12 was associated with immune
checkpoints. We detected the protein expression of CD276, and the
results exhibited that knockdown of CAI12 significantly decreased
the expression of CD276 (Figures 9G, H). These results manifested
that CA12 was a critical risky factor of UM for its association with
EMT, cell cycle, and immune checkpoint CD276.
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Discussion

Hypoxia has various effects on cancer progression and
correlates with multiple cancer hallmark features (8). In UM,
hypoxia also affects cancer cell behavior like angiogenesis (11),
but the extensive mechanism remained unknown, such as its
interaction with cancer immunity. Also, hypoxia-based
therapeutic research, except for HIF-targeted treatment, is still
empty. Here, we identified hypoxia-related subtypes and
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constructed a hypoxia-related risk score for patient survival
prediction. The subtypes and the risk score can significantly
separate the patients’ survival rates, and particularly, the risk
score predicted patient overall survival with a high accuracy in
both the training and validating cohorts according to a criteria
for prediction models (20), indicating that our model was well-
designed with critical hypoxia factors in cancer cell fate. To our
knowledge, this is the first model focusing on the hypoxia
signature’s influence on UM patient prognosis.
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During the construction of the hypoxia model, we identified 10
prognostic genes, including five risk and five protective factors.
Among the 10 key genes, CA12, MMP9, SLC44A3, and RNF208
have been reported to associate with UM patient survival. Carbonic
anhydrase 12 (CA12) belongs to the zinc metalloenzymes that
catalyzed the carbon dioxide reversible hydration. The role of CA12
in cancers remained paradoxical for it promoted pancreatic cancer
apoptosis (21) while accelerating the EMT progression of glioma
(22), suggesting its complex effects on cancers. In our study, we
identified it as a risk gene and confirmed that CA12 knockdown
arrests the cell cycle and inhibited the EMT transformation of UM
cells; this is novel in UM study since no reports concerning the role
of CA12 in UM have been reported. MMP9 is a matrix
metalloproteinase, which degrades the extracellular matrix
proteins. MMP9 has been discovered as a risk gene and predicts
a worse prognosis for UM patients (23). SLC44A3 and RNF208
were found to be protective predictors (24); these discoveries are
consistent with our findings in this study. Besides this, the other six
genes (ARX, MGLL, S100A13, MANEALM, MYH14, and PDE4B)
have not been presented in UM so far, and we first identified these
genes as novel prognostic factors in UM tumors.

Hypoxia has been suggested to affect immunotherapy by tumor
cell anaerobic glycolysis; the metabolite adenosine secreted to the
ECM suppressed T cell activation, and thus, excused the tumor cells
from immune attack (25), indicating the promising therapeutic
strategy developed from cancers with hypoxia. Currently, hypoxia
has presented association with immunotherapy response or
immune checkpoint effects in many cancers (26-28), whereas
only a clinical trial consisting of mixed melanoma patients
suggested that the PD-1 blockage responders of immunotherapy
has a reduced hypoxia transcriptomic change (29). In this study, we
observed many upregulated immune checkpoints in the high-risk
group and C1 subtype and transcription similarity with the samples
that responded to the PD-1 therapy, demonstrating the potential of
hypoxia as the target to improve immunotherapeutic effects. Most
importantly, we validated that CD276 was downregulated when
CA12 knockdown was conducted. CD276 was first derived from
dendritic cells and the immune checkpoint in cancers; it impaired T
cell-mediated anticancer immunity in ovarian cancer and
destroyed the anti-PD-1 therapy in non-small cell lung cancer
(30). Whereas in UM, no study has been reported. Hence, we first
identified the relationship between CD276 and hypoxia and
suggested that targeting CA12 may be a potential approach to
restore CD276-mediated immunotherapeutic effects. Moreover,
elevated regulatory T cell and MDSC were observed in the high-
risk group and C1 subtype since CD276 was expressed on
regulatory T cells and MDSC (31, 32); this indicated the
involvement of MDSC or regulatory T cells in CD276-mediated
immunosuppression in UM.

Comprehensively, our study identified hypoxia-related UM
subtypes and risk groups, which accurately predicted the UM
patient prognosis. The subtype or risk group with high hypoxia
signature expression exhibited highly infiltrated immunocytes and
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immune checkpoints and presented transcriptional similarity with
those responding to PD-1 therapy. Further, we confirmed the
upregulation of the risk gene under hypoxia and validated that
knockdown of CA12 inhibited UM cell EMT, clone formation, and
G1/S phase transformation. Besides this, the CD276 expression
decreased with CA12 knockdown. This study discovered the
association between hypoxia and cancer immunity in UM and
will shed light on novel therapeutic strategies development.
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Background: Pyroptosis and prostate cancer (PCa) are closely related. The role
of pyroptosis-related long non-coding RNAs (IncRNAs) (PRLs) in PCa remains
elusive. This study aimed to explore the relationship between PRL and
PCa prognosis.

Methods: Gene expression and clinical signatures were obtained from The
Cancer Genome Atlas and Gene Expression Omnibus databases. A PRL risk
prediction model was established by survival random forest analysis and least
absolute shrinkage and selection operator regression. Functional enrichment,
immune status, immune checkpoints, genetic mutations, and drug
susceptibility analyses related to risk scores were performed by the single-
sample gene set enrichment analysis, gene set variation analysis, and copy
number variation analysis. PRL expression was verified in PCa cells. Cell
Counting Kit-8, 5-ethynyl-2’-deoxyuridine, wound healing, transwell, and
Western blotting assay were used to detect the proliferation, migration,
invasion, and pyroptosis of PCa cells, respectively.

Results: Prognostic features based on six PRL (AC129507.1, AC005253.1,
AC127502.2, AC068580.3, LIMD1-AS1, and LINCO01852) were constructed,
and patients in the high-score group had a worse prognosis than those in
the low-score group. This feature was determined to be independent by Cox
regression analysis, and the area under the curve of the 1-, 3-, and 5-year
receiver operating characteristic curves in the testing cohort was 1, 0.93, and
0.92, respectively. Moreover, the external cohort validation confirmed the
robustness of the PRL risk prediction model. There was a clear distinction
between the immune status of the two groups. The expression of multiple
immune checkpoints was also reduced in the high-score group. Gene
mutation proportion in the high-score group increased, and the sensitivity to
drugs increased significantly. Six PRLs were upregulated in PCa cells. Silencing
of AC005253.1 inhibited cell proliferation, migration, and invasion in DU145 and
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PC-3 cells. Moreover, silencing of AC005253.1 promoted pyroptosis and
inflammasome AIM2 expression.

Conclusions: Overall, we constructed a prognostic model of PCa with six PRLs
and identified their expression in PCa cells. The experimental verification
showed that AC005253.1 could affect the proliferation, migration, and
invasion abilities of PCa cells. Meanwhile, AC005253.1 may play an important
role in PCa by affecting pyroptosis through the AIM2 inflammasome. This result
requires further research for verification.

KEYWORDS

prostate cancer, IncRNA, pyroptosis, immunity, tumor biomarkers, machine learning

Introduction

Prostate cancer (PCa) is the second most common cancer in
the male population worldwide and is one of the top five causes
of cancer-related death (1). Epidemiological examinations and
clinical studies have found that the incidence of PCa is still rising
(2). The symptoms of patients with early-stage PCa are
non-specific, so PCa is often found in the middle and late
stages, and surgical treatment at this time has a poor
prognosis and a low survival rate (3). With several important
recent discoveries in immune mechanisms and advanced
molecular diagnostic platforms, immunotherapy is emerging
as a viable option for PCa, especially castration-resistant PCa,
to stimulate antitumor immunity (4, 5). Different patient
responses to the same immunotherapy have been observed in
patients with different types and stages of cancer (6). Moreover,
the patient response depends on multiple factors, including
intratumoral heterogeneity and prior treatment history,
suggesting that the need for individualized and combined
therapy is an important direction for future successful
immunotherapy (7, 8). Diagnostic, prognostic, and predictive
biomarkers enable patient-specific management of PCa (9).
Specific biomarkers to facilitate the clinical selection of
immunotherapy patients include programmed death ligand 1
(PD-L1) and prostatic acid phosphatase (PAP), but these
approaches are limited by tumor heterogeneity or small
percentage populations (10, 11). Therefore, there is an urgent
need to identify new and effective biomarkers to establish a
prognostic model of PCa.

Pyroptosis, distinct from apoptosis, is a type of programmed
cell death induced by the inflammasome and carried out by
gasdermin proteins (12). It is characterized by cell rupture and
many pro-inflammatory factors being discharged (13, 14).
Pyroptosis affects tumor cell invasion, multiplication, and
migration, affecting cancer prognosis (15). The association
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between pyroptosis and cancer is highly intricate because as a
way of cell death, pyroptosis could inhibit cancer occurrence and
development. Meanwhile, the release of inflammatory mediators
and various signaling pathways in pyroptosis is associated with
tumorigenesis and resistance to chemotherapy (16, 17). Due to
the close association between pyroptosis and cancer progress
and prognosis, various prognostic biomarker studies based on
pyroptosis genes have been identified and used to construct gene
signatures with predictive power. For example, risk signatures
based on five pyroptosis-related genes (PRGs) were biomarkers
to predict the immunological condition and the outcome of lung
adenocarcinoma (18). Furthermore, the expression of four PRG
features strongly predicted a breast cancer patient’s prognosis
(19). Nonetheless, the predictive merit of pyroptosis gene
signatures in the prostate has not been completely clarified.

Long non-coding RNA (IncRNA) does not have the protein-
coding capacity, and its length exceeds 200 nucleotides (20).
LncRNA has been shown to play key functions in a variety of
biological and disease processes, including cancer (21, 22).
Growing evidence supports the involvement of IncRNA in
PCa progression, including cell proliferation, apoptosis,
metastasis, and invasion (23, 24). For example, overexpression
of IncRNA PCAT14 inhibits the invasion of PCa cells and
correlates with a good prognosis of PCa, which can be a
diagnostic marker (25, 26). However, the role of pyroptosis-
related IncRNAs (PRLs) in PCa still requires further exploration.
Thus, exploring IncRNA biomarkers associated with pyroptosis
in PCa is of clinical importance.

Machine learning is a branch of artificial intelligence that has
been rapidly developed and applied in the field of medicine (27).
Predictive models of diseases based on machine learning have
been extensively mined (28). For example, Wu et al. used an
ensemble of machine learning to develop a novel pyroptosis
scoring system based on six IncRNAs to predict the prognosis of
patients with low-grade glioma (29). In the present study, we
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used a machine learning approach to construct a PRL risk
signature for PCa prognosis. Then, we investigated the
associations of risk score models and clinical features, immune
microenvironment, immune checkpoints, genetic mutations,
and drug sensitivity to provide potential diagnostic and
prognostic biomarkers for PCa. This study may help to
understand the effect of PRL on PCa prognosis.

Materials and methods
Data sets and pretreatments

The Cancer Genome Atlas (TCGA)-PRAD (Prostate
Adenocarcinoma) dataset was downloaded from UCSC Xena
(https://xenabrowser.net/). The data processing was performed
to obtain FPKM data directly from TCGA and convert it into
TPM value, normalized by log, (TPM+1). The GSE116918
(GPL25318) dataset was from Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/gds/). For this validation
cohort, 248 localized/locally advanced PCa patients
commencing radical radiotherapy (with androgen deprivation
therapy (ADT)) were included. The Affymetrix platform was
utilized to generate raw data from the GSE116918 (GPL25318)
dataset. The robust multi-chip averaging (RMA) algorithm was
used to achieve background correction and normalization.

Construction of a machine learning
prognostic model for pyroptosis-
related IncRNA

Forty-four pyroptosis genes (AIM2, APIP, CASP1, CASP3,
CASP4, CASP5, CASP6, CASPS8, CASPY9, DHX9, DDX58,
ELANE, GSDMA, GSDMB, GSDMC, GSDMD, GSDME, IFI16,
IL18, IL1B, MAPKS, MAPKY9, NAIP, NFKB1, NFKB2, NLRC3,
NLRC4, NLRP1, NLRP12, NLRP2, NLRP3, NLRP6, NLRP7,
NLRP9, NOD1, NOD2, PJVK, PLCG1, PRKACA, SCAF11,
TIRAP, TNF, GPX4, and IL6) were obtained from the literature
(30-37). The names and abbreviations of the 44 pyroptosis-related
genes are shown in Table 1. Gene set variation analysis (GSVA) was
used to derive the pyroptosis score. LncRNA was then used to do
correlation analysis with pyroptosis score and select the genes with |
correlation coefficient| > 0.3 and p < 0.05. These genes were
subjected to univariate analysis, p < 0.05, and the single-factor
meaningful genes were selected. Then, survival random forest was
used to perform dimensionality reduction analysis to screen
important genes. The screening criteria were rel. importance >
0.2. Next, important gene variables were screened out, and these
important gene variables were used for the least absolute shrinkage
and selection operator (Lasso) regression to construct a risk score
model. The risk score was the sum of gene expression values x
coefficients. The flowchart of this study is presented in Figure S1.
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TABLE 1 Pyroptosis gene members.

Genes Full names
AIM2 Absent in melanoma 2

CASP1 Cysteine-aspartic acid protease-1

CASP3 Cysteine-aspartic acid protease-3

CASP4 Cysteine-aspartic acid protease-4

CASP5 Cysteine-aspartic acid protease-5

CASP6 Cysteine-aspartic acid protease-6

CASP8 Cysteine-aspartic acid protease-8

CASP9 Cysteine-aspartic acid protease-9

ELANE Elastase, neutrophil expressed

GPX4 Glutathione peroxidase 4

GSDMA Gasdermin A

GSDMB Gasdermin B

GSDMC Gasdermin C

GSDMD Gasdermin D

GSDME Gasdermin E

IL18 Interleukin 18

IL1B Interleukin 1 beta

IL6 Interleukin 6

NLRC4 NLR family CARD domain containing 4
NLRP1 NLR family pyrin domain containing 1
NLRP2 NLR family pyrin domain containing 2
NLRP3 NLR family pyrin domain containing 3
NLRP6 NLR family pyrin domain containing 6
NLRP7 NLR family pyrin domain containing 7
NOD1 Nucleotide-binding oligomerization domain containing 1
NOD2 Nucleotide-binding oligomerization domain containing 2
PJVK Pejvakin/deafness, autosomal recessive 59
PLCG1 Phospholipase C gamma 1

PRKACA Protein kinase cAMP-activated catalytic subunit alpha
SCAF11 SR-related CTD-associated factor 11
TIRAP TIR domain-containing adaptor protein
TNF Tumor necrosis factor

APIP Apoptotic protease activating factor 1-interacting protein
DHX9 DExH-box helicase 9

NLRP9 NLR family pyrin domain containing 9
NAIP NLR family apoptosis inhibitory protein
IF116 Interferon gamma inducible protein 16
NFKB1 Nuclear factor kappa B subunit 1

DDX58 Retinoic acid-inducible gene I

MAPKS8 Mitogen-activated protein kinase 8
NLRC3 NLR family CARD domain containing 3
NLRP12 NLR family pyrin domain containing 12
MAPK9 Mitogen-activated protein kinase 9
NFKB2 Nuclear factor kappa B subunit 2

Pathway and immune-infiltration evaluation

The single-sample gene set enrichment analysis (ssGSEA)
algorithm was used to quantify the abundance of 28 immune
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cells (38) in PRAD and to compare immune infiltration with
prognostic scores. Stromal score, Immune Score, ESTIMATE
Score, and Tumor Purity were assessed with the ESTIMATE
package, and the relationship between these scores and
prognostic scores was compared. The GSVA package was used
for GSVA analysis of Gene Ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG). The correlation
analysis was performed with prognostic and functional
enrichment pathway scores. Correlation analysis was
performed with prognostic scores and all genes, and then gene
set enrichment analysis (GSEA) was performed by the
clusterProfiler package.

Gene mutation and copy number
variation analysis

The gene mutations of the two groups were compared, and
the gene mutation patterns were checked. The somatic
mutations and somatic copy number variation (CNV) profiles
were gathered from the TCGA-PRAD datasets. The Genomic
Identification of Significant Targets in Cancer (GISTIC) analysis
was performed to evaluate the genomic features. The CNV
landscape based on ITGA5 levels and the copy number gains
or losses at the amplified or deleted peaks were assessed by
GISTIC 2.0 analysis (https://gatk.broadinstitute.org).

Drug prediction

Information on the sensitivity of tumor cell lines to potential
drugs was downloaded from Cancer Therapeutics Response
Portal 2 (CTRP v2) and Profiling Relative Inhibition
Simultaneously in Mixtures (PRISM). The lower the area under
the curve (AUC) of the cell line, the higher the sensitivity to the
potential drug. Expression of cancer cell lines was downloaded
from Cancer Cell Line Encyclopedia (CCLE). Predictions were
made using the R package of pRRophetic.

Cell culture and quantitative reverse
transcription PCR

DU145 cells (BLUEFBIO, Shanghai, China) were grown in
Dulbecco’s modified Eagle’s medium (DMEM) (complemented
with 10% fetal bovine serum (FBS) and 1% penicillin-
streptomycin (P/S)). PC-3 cells (Pricella, Wuhan, China) were
grown in Ham’s F-12K media (complemented with 10% FBS and
1% P/S). RWPEL cells (Abiowell, Changsha, China) were
cultured in keratinocyte serum-free medium (K-SFM)
(complemented with 50 mg/ml of bovine pituitary extract, 5
ng/ml of epidermal growth factor (EGF), and 1% P/S).
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Total RNA was obtained using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) from RWPEIL, PC-3, and DU145 cells. RNA
was reverse transcribed into cDNA using an mRNA reverse
transcription kit (CW2569, CWBIO, Beijing, China). LncRNA
expression was detected using the SYBR method (CW2601,
CWBIO, China) and quantitative reverse transcription PCR
(RT-qPCR) analysis with GAPDH as an internal reference.
The primer sequences are shown in Table 2. The relative

expression levels of genes were investigated by 274",

Cell transfection

The small interference RNA (siRNA) specifically  targeting
AC005253.1 (si-AC005253.1-1: 5'-CCGCAAGAAGAAGU
GUGGUCATT-3', 5-UGACCACACUUCUUCUUGCGGTT-3',
si-AC005253.1-2: 5'-GCGUCCCAAGAAGAAGGUCAATT-3',
5-UUGACCUUCUUCUUGGGACGCTT-3" and si-AC005253.1
-3: 5-GCGUCUGAUAUUUGCCGGCAATT-3', 5'-UUGCCGG
CAAAUAUCAGACGCTT-3’) and the corresponding
negative controls (si-NC: 5-UUCUCCGAACGUGUCACGUTT-
3', 5'-ACGUGACACGUUCGGAGAATT-3") were
obtained from Sangon Biotech (Shanghai, China). According to
the manufacturer’s protocol, cells were transfected with
Lipofectamine 3000 reagent (Thermo Fisher, Waltham, MA,
USA) (39).

Cell counting kit-8 assay

Cells were digested, counted, and seeded in a 96-well plate
(5 x 10° cells/well, 100 ul). After adherent cell culture, 10 pl of
Cell Counting Kit-8 (CCK-8) solution (NU679, Dojindo, Tokyo,
Japan) was added. The cells were incubated at 37°C with 5% CO,

TABLE 2 Primer sequences.

Genes Sequences (5'-3")
GAPDH F: ACAGCCTCAAGATCATCAGC
R: GGTCATGAGTCCTTCCACGAT
AC005253.1 F: AAGCCTTCCCTGATTACTGC
R: CATGGTCAAACAGCCTACCTC
AC068580.3 F: CACAGCCAAAACCAAACTCCT
R: TGGGTTGCCATTCACTGACT
AC127502.2 F: CTTCTGAATCTTTCCGGCGAAC
R: GCGAACAACCTTCCTTGCAAA
AC129507.1 F: CTTCACTCGCACGGAGCAAC
R: CCTCCTTGCTGCCGAGTCA
LIMD1-AS1 F: TTTGATGCCGCTTTGCTCAC
R: TGCCACTTTTCCAGGTGTGT
LINC01852 F: GCCGGAGAACGAATGTGATG

R: TCTTTTTGTTTACCGGAGTTCCA
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for 4 h, and the optical density (OD) value at 450 nm was
measured with a Bio-Tek microplate reader (MB-530,
HEALES) (40).

5-Ethynyl-2’-deoxyuridine assay

The 5-ethynyl-2’-deoxyuridine (EDU) assay kit (Guangzhou
RiboBio, Guangzhou, China) was used to monitor cell
proliferation. The cells were inoculated into 96-well plates (1 x
10*/well) until 80% confluence. Each well was added with 100 pl
of EDU solution and incubated for 2 h. The cells were incubated
with 4% paraformaldehyde at room temperature for 30 min.
Then, the cells were treated with 100 pl of 1x Apollo® staining
reaction solution for 30 min. Next, 100 ul of Hoechst 33342
reaction solution was added to each well and incubated for 30
min. A microscope (DSZ2000X, Beijing Cnmicro Instrument
Co., Ltd., Beijing, China) was used to observe and take pictures.

Wound healing assay

Cells (1 x 10°/well) were plated in 6-well plates until they
achieved about 90% confluence. A 1-ml pipette tip was used to
create scratch wounds, and photographs of the wounds
(time 0 h) were immediately taken. Then, the cells were
cultured in a serum-free medium. After incubation with 5%
CO, at 37°C for 48 h, photographs were taken again.

Transwell assay

The invasion ability of cells was evaluated using the transwell
assay. Transwell chambers (3428, Corning, New York, NY, USA)
were pre-cooled overnight at 4°C one day in advance. Then, 100
ul of Matrigel dilute in serum-free medium was added to each
well. The transfected cells were suspended in a serum-free
medium and added to the transwell chamber; 500 ul of 10%
fetal bovine serum complete medium was placed into the lower
chamber. The cells were incubated at 37°C for 48 h. The upper
chamber was removed and washed three times with phosphate-
buffered saline (PBS), and the cells in the upper layer of the
membrane were wiped off with a cotton ball. Cells were fixed
with 4% paraformaldehyde for 20 min and stained with 0.1%
crystal violet solution for 5 min. Cells were observed under an
inverted microscope, and three fields of view were taken. The
number of invasive cells was recorded.

Western blotting

Total protein was extracted from the cells by
radioimmunoprecipitation assay (RIPA) lysate (AWBO0136,
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Abiowell, China). Then, the protein was transferred to the
polyvinylidene fluoride membrane after 10% sodium dodecyl
sulfate—polyacrylamide gel electrophoresis (SDS-PAGE) treatment.
The membrane was sealed with 5% skim milk (AWB0004, Abiowell)
at room temperature for 2 h. AIM2 (1:1,500, 20590-1-AP,
proteintech, Chicago, IL, USA), NLRC4 (1:1,000, ab201792,
abcam, Cambridge, UK), NLRP3 (1:1,000, 19771-1-AP,
proteintech), GSDMD-N (1:1,000, ab215203, abcam), ASC
(1:2,000, 10500-1-AP, proteintech), caspase-1 (1:1,000, ab179515,
abcam), IL-18 (1:8,000, 10663-1-AP, proteintech), IL-1B (1:1,000,
16806-1-AP, proteintech), and B-actin (1:5,000, 66009-1-Ig,
proteintech) were incubated with the membrane at 4°C overnight.
Then, the corresponding secondary antibodies were incubated with
the membrane at room temperature for 2 h. The membrane was
incubated with SuperECL Plus (AWB0005, abiowell), and then the
protein bands were visualized by a chemiluminescence imaging
system (ChemiScope 6100, Clinx, Shanghai, China).

Statistical analysis

The data were mainly visualized using the R package
ggplot2. The Shapiro-Wilk normality test was used to evaluate
for normality of variables. For normally distributed variables,
significant quantitative differences were determined by two-
tailed t-tests or one-way ANOVA. For non-normally
distributed variables, significant quantitative differences were
determined by the Wilcoxon test or the Kruskal-Wallis test.
The Benjamini-Hochberg method was used, which converts p-
values to false discovery rate (FDR) to identify significant genes.
The log-rank test was used to determine the statistical differences
in each dataset. The Survminer R package was used to generate
survival curves. Receiver operating characteristic (ROC) curves
were drawn using the pROC package. All heatmaps were
generated based on pheatmap. All statistical analyses were
performed in R (https://www.r-project.org/). p < 0.05 was
considered statistically significant.

Results

Construction of pyroptosis-related
IncRNA signatures

Forty-five pyroptosis genes were obtained from the literature,
and the pyroptosis score was calculated by the GSVA method. The
correlation between IncRNAs and pyroptosis scores was analyzed
by Spearman’s correlation test. The IncRNAs with |correlation
coefficient| > 0.3 and p < 0.05 were selected, and 553 IncRNAs
were obtained. These IncRNAs were subjected to univariate
analysis, and 27 IncRNAs (p < 0.05) were screened (Figure 1A).
The single-factor meaningful genes were selected for survival
random forest analysis, and six important IncRNAs were
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screened (Figure 1B, Figure S2A). These important gene variables
were then used for Lasso analysis to build a risk scoring model
(Figure 1C). The risk score was 0.4242 x AC005253.1 + 0.8249 x
LIMD1-AS1 — 1.6456 x LINC01852 + 0.3408 x AC127502.2 +
1.5518 x AC068580.3 — 1.7451 x AC129507.1. With the median
risk score as the cutoff value, PCa patients were categorized into
high-score and low-score groups. PCa patients in the high-score
group had poorer overall survival than those in the low-score group
(Figure 1D). Furthermore, the AUC values of the 1-, 3-, and 5-year
ROC curves were 1, 0.93, and 0.92, respectively (Figure 1E). The
clinical characteristic score showed that the risk score of patients
aged 245 was higher than that of patients aged <45, but there was
no significant difference (p = 0.15). Patients with stage N1 had a
higher risk score than patients with stage NO (p = 0.00039). T4 stage
patients had higher risk scores than T3 stage and T2 stage patients,
and T3 stage patients had higher risk scores than T2 stage patients
(p = 0.0014). Moreover, patients with the status alive had a lower
risk score than patients with the status dead (p = 0.001) (Figure 1F).
A publicly available dataset (GSE116918) was used to validate the

10.3389/fonc.2022.991165

reliability of the constructed risk scoring model. Consistent with the
findings from the TCGA-PRAD cohort, survival analysis showed
that patients in the high-score group had lower survival rates than
those in the low-score group (Figure S2B). In addition, the AUC
values of the 1-, 3-, and 5-year ROC curves were 0.7, 0.71, and 0.77,
respectively (Figure S2C). To investigate whether the constructed
risk scoring model was independent of clinicopathological
parameters, univariate and multivariate Cox regression analyses
were performed on age, T stage, N stage, and risk score. Risk score
was the parameter independently predicting overall survival
(Figures S2D, E). The predictive model could be considered an
independent prognostic factor in PCa patients.

Correlation of risk scores with pyroptosis
genes and immune infiltration

We surveyed the relationship between model genes and risk
scores. Risk scores were favorably associated with LIMD1-AS]1,
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AC127502.2, AC005253.1, and AC06850.3 and negatively
associated with LINC01852 and AC129507.1 (Figures 2A, B).
Next, we constructed a heatmap of risk scores and pyroptosis
gene correlations. The results showed that ARRDC1-AS1, GPX4,
GSDMD, GSDME, and NLRP3 were substantially associated
with the risk score (Figure 2C). We used the ESTIMATE package
and ssGSEA algorithm to evaluate immune infiltration. Among
them, Stromal score, Immune Score, and ESTIMATE Score were
negatively associated with risk score, while Tumor Purity was
positively associated with risk score (Figure 2D). B cell, T cell,
Macrophage, and Natural killer cell were significantly associated
with risk score (Figure 2D). For example, Activated B cell,
Activated CD8 T cell, and Activated dendritic cell were
negatively associated with risk scores. Activated CD4 T cell
was positively associated with risk score.

Immune checkpoint

We determined the expression of seven classes of immune
checkpoint molecules in low- and high-risk-scoring populations.
As shown in the Antigen present classification, HLA-A, HLA-B,
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HLA-DPA1, HLA-DPBI1, HLA-DQB2, HLA-DRBI, and MICA
were expressed at a low level in the high-score group. In Cell
adhesion, SELP was expressed at a high level in the low-score
group. In Ligand, CCL5, CX3CL1, and TGFB1 were expressed at
a high level in the low-score group. In Receptor, CD27, CD40,
EDNRB, and TLR4 were expressed at a high level in the low-
score group. In Co-inhibitor, CD276 was expressed at a low level
in the low-score group, and PDCD1LG2 and VTCN1 were
expressed at a high level in the low-score group. In addition,
HMGBI was expressed at a low level in the low-score group,
while ENTPD1 and PRF1 were expressed at a high level in the
low-score group (Figure 3).

Functional analysis of risk score

We used the GSVA package for GO and KEGG enrichment
analyses. Most samples were enriched for pathways closely
related to tumorigenesis. Examples included DNA replication,
cell cycle, and mTOR signaling pathway. These pathways were
positively associated with risk scores (Figure 4A). Correlation
analysis with risk score and functional enrichment pathway
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Immune checkpoint. Immune checkpoint molecule expression
in low- and high-score groups. *p < 0.05. **p < 0.01. ***p <
0.001 ****p < 0.0001. ns, not significant.

score was performed. In addition to the immune checkpoint, risk
scores were significantly associated with 16 other pathways
(Figure 4B). Risk scores were positively correlated with cell
cycle, DNA replication, DNA damage repair, and WNT target
while negatively correlated with CD8 T effector and antigen
processing machinery. We conducted a relevant analysis with
the risk score and all genes and then performed a GSEA with the
clusterProfiler package (Figure S3). The Hippo signaling
pathway was downregulated.

Copy number variation and mutation
analysis in high- and low-score groups

In this study, we compared the gene mutation status of two
groups. Amplification frequency was mainly concentrated in 2p,
2q, 3p, 3q, 5p, 8p, 8q, 9p, 14p, 19p, and 20p, while deletion
frequency was mainly concentrated in 4p, 4q, 5q, 8p, 8q, 10p,
10q, 12p, 15q, 17p, 17q, 18p, 18q, 21q, and 22q. In addition,
there was a significant difference between the high-risk and low-
score groups at the focal somatic copy number alterations
(SCNA) level (Figure 5A). A waterfall plot was used to
visualize the mutation frequency and type of the top 30 genes
with the highest gene mutation frequency. The results showed
that in the high-risk group, the top five genes with the highest
mutation frequency were TP53 (17%), TTN (16%), FOXA1
(14%), SPOP (11%), and SPTA1 (10%), while in the low-risk
group the top five genes were SPOP (11%), TP53 (10%), TTN
(9%), MUC16 (5%), and KMT2D (5%) (Figure 5B).

Frontiers in Oncology

46

10.3389/fonc.2022.991165

Drug sensitivity analysis of risk scores in
two groups

We downloaded information on the susceptibility of tumor
cell lines to potential drugs from the CTRP v2 and PRISM. The
lower the AUC of the cell line, the higher the sensitivity to the
potential drug. These data revealed that among anticancer drugs,
including ML258, 16-beta-bromoandrosterone, VU0155056,
BRD-K02251932, BRD-K85133207, imiquimod, temoporfin,
SGI-1027, and eptifibatide, the sensitivity of patients in the
high-score group to the drugs was significantly increased than
in the low-score group (Figure 6).

Risk score gene expression identification

Expression of AC129507.1, AC005253.1, AC127502.2,
AC068580.3, LIMDI1-AS1, and LINC01852 was verified by
RT-qPCR in RWPEL cells and PCa cell lines (PC-3 and
DU145). The results showed that AC129507.1, AC005253.1,
AC068580.3, and LIMDI1-AS1 were upregulated in PC-3 and
DU145 cells relative to RWPE1 cells. However, AC127502.2 and
LINCO01852 were only upregulated in DU145 cells (Figure 7).

Silencing of AC005253.1 affected
prostate cancer cell proliferation,
migration, and invasion

To explore the role of AC005253.1 in the development of
PCa, we transfected si-AC005253.1-1, si-AC005253.1-2, si-
AC005253.1-3, and si-NC in PC-3 and DU145 cells. RT-qPCR
results showed that si-AC005253.1-1, si-AC005253.1-2, and si-
AC005253.1-3 could reduce the expression of AC005253.1 in
PC-3 and DU145 cells, among which si-AC005253.1-2 had a
best silencing effect (Figure 8A). Therefore, si-AC005253.1-2
was used as a follow-up experiment. Silencing of AC005253.1
decreased the cell viability and proliferation of PC-3 and DU145
cells (Figures 8B, C). The wound healing assay and transwell
assay results showed that after silencing AC005253.1, the
migration and invasion abilities of PC-3 and DU145 cells were
reduced (Figures 8D, E).

Silencing of AC005253.1 promoted
pyroptosis of prostate cancer cells

We further tested the effect of AC005253.1 on the pyroptosis
of PC-3 and DU145 cells by Western blotting experiment. The
results showed that after silencing AC005253.1, the expression of
the inflammasomes (AIM2, NLRC4, and NLRP3) was altered
(Figure 9A). Compared with the si-NC group, the expression of
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AIM2 was increased in the si-AC005253.1 group, and the
difference was most obvious (Figure 9A). Furthermore, after
silencing AC005253.1, the expressions of GSDMD-N, ASC,
cleaved caspase-1, IL-18, and IL-1P proteins were increased in
PC-3 and DU145 cells (Figure 9B). These results suggested that
silencing of AC005253.1 promoted pyroptosis in PCa cells.

Discussion

PCa is one of the most common tumors in men. Due to its
heterogeneity and progressive nature, it remains incurable (41).
Valid prognostic models based on specific biomarkers can
accurately predict survival outcomes for the effective
management of PCa patients (42). Pyroptosis-related IncRNA
risk prediction models have been reported to be expected to
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*p < 0.05.

assist in the treatment and management of various tumors (43,
44). Our study used a novel risk model of six PRLs (AC129507.1,
AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1, and
LINC01852) developed using Lasso analysis. AC129507.1,
AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1, and
LINCO01852 were identified as PRLs for the first time. The
results showed that the risk score model had the best ability to
distinguish clinical characteristics between the high-risk and
low-score groups significantly. In our proposed model, the
AUC values of the ROC curves for 1-, 3-, and 5-year PCa were
1, 0.93, and 0.92, respectively. In addition, the 1-, 3-, and 5-year
AUC values in the test set also had desirable results. Our risk
model had excellent predictive power compared to other
published pyroptosis-based prognostic models in PCa (45, 46).
Different from the direct use of Lasso to build a prognostic
model of eight pyroptosis-related genes in the study of
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pRRophetic. The lower the AUC of the cell line, the higher the

Wang et al. (47), we used random forest dimensionality
reduction and screening methods and further used Lasso
analysis to build a predictive model. This analytical approach
may help improve the predictive accuracy of the risk
model signature.

It has been reported that pyroptosis is closely related to the
tumor immune microenvironment. The release of inflammatory
factors is caused by pyroptosis triggers powerful antitumor
immunity (48). The infiltration of CD8+ T cells and natural
killer cells in the pyroptosis-activated immune microenvironment
can promote pyroptosis and form a positive feedback loop (49).
Previous studies have shown that increased CD8+ T-cell
infiltration is independently associated with improved survival
after radical prostatectomy (50). Men with more CD4+ T cells in
the prostate tumor environment have an increased risk of dying
from PCa (51). B-cell activation is thought to be a driver of the
PCa immune response and improves postoperative survival (52).
Opverall, the poor prognosis and outcome of PCa are closely
related to pyroptosis-triggered immune cell infiltration, which is
consistent with our results. Our results showed that the risk score
was negatively correlated with activated B cells, CD8 T cells, and
dendritic cells while positively correlated with activated CD4 T
cells. Infiltration levels of B cells, CD8 T cells, and dendritic cells
decreased with increasing risk scores, consistent with shorter
survival times in patients with high scores.
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We compared the expression of immune checkpoints in the
high-risk and low-risk groups and found that some immune
checkpoints such as HLA and MICA were expressed at a high
level in the low-risk group. PCa downregulated the expression of
the HLA-1 antigen processing machinery (APM) and had defects
in the antigen presentation pathway (53). Low expression of MICA
is associated with poorer overall survival in PCa and is associated
with aggressiveness (54). This suggests that our signature could
effectively identify the status of immune checkpoints in different
PCa patients, providing new ideas for their treatment.

CNVs were regions of the genome with integer copy number
changes, including amplifications and deletions of DNA
sequences, that could drive cancer’s rapid adaptive evolution
and progression (55). The CNV results uncovered significant
differences in mutation status between the high-score and low-
score groups. In the high-score group, the gene with the highest
mutation frequency was TP53 (17%), while in the low-risk
group, it was SPOP (11%). TP53 mutation was the most
common genetic alteration that played a major role in the
pathogenesis of PCa (56, 57). SPOP mutations were associated

Frontiers in Oncology

with improved overall survival, whereas TP53 mutations were
associated with poorer survival in secondary metastatic
hormone-sensitive PCa (58). These data implicated that the
high-score group might have more tumorigenic gene mutations.

To better assess the risk model’s clinical feasibility, we
analyzed information on the sensitivity of tumor cell lines to
potential drugs. The results showed that the high-risk group cell
lines were significantly less sensitive to drugs such as
importazole and imiquimod. Importazole, a specific inhibitor
that alters the interaction of KPNBI with RanGTP, has a good
inhibitory effect on PCa progression (59). Imiquimod (also
known as a TLR7 agonist) inhibits the growth of mouse
(TRAMP C2) and human PCa cells and can be used as an
alternative therapy for locally generated PCa (60). Our findings
suggest that the low-risk group is more likely to benefit from
these drugs. Collectively, these findings may provide prospective
treatment options for PCa patients.

Notably, RT-qPCR analysis confirmed high expression of
AC129507.1, AC005253.1, AC127502.2, AC068580.3, LIMD1-
AS1, and LINCO01852 in PCa cell lines. AC129507.1,
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AC068580.3, and LIMD1-AS1 were thought to play important
roles in different cancers, while AC005253.1, AC127502.2, and
LINC01852 were identified for the first time. AC129507.1 was
identified as an on-risk gene in risk models for prognosis patients
with gastric adenocarcinoma (61). AC068580.3 was identified as an
autophagy-related IncRNA as an indication of prognosis for colon
adenocarcinoma (62). LIMDI1-AS1 inhibited lung cancer
progression by inhibiting cell multiplication and promoting
apoptosis (63). Our study demonstrated that inhibiting the
expression of AC005253.1 could inhibit cell viability, migration,
and invasion. We further detected the expression of the
inflammasome (AIM2, NLRC4, and NLRP3) and found that
silencing of AC005253.1 could significantly increase the
expression of the AIM2 inflammasome. Activation of the AIM2
inflammasome can promote pyroptosis (64). We also found that
inhibition of AC005253.1 could promote pyroptosis in PCa cells.
Therefore, we speculate that AC005253.1 may affect pyroptosis
through the AIM2 inflammasome in PCa. In the present study, we
report for the first time the relationship between AC005253.1 and
pyroptosis in PCa.

In conclusion, we successfully established an efficient forecast
PCa model based on six PRLs, including AC129507.1,
AC005253.1, AC127502.2, AC068580.3, LIMD1-AS1, and
LINCO01852. This well-validated model built on these six PRLs
will provide new insights into identifying PCa prognosis. Through
in vitro experiments, we verified that silencing of AC005253.1
could inhibit the proliferation, migration, and invasion of PCa
cells. In addition, silencing of AC005253.1 might promote
pyroptosis by affecting the expression of AIM2 in PCa.
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cancer and associates to
extracellular matrix and
iImmune cell enrichment

in the tumor parenchyma
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Background: Treatment options for metastatic colorectal cancer (CRC) are
mostly ineffective. We present new evidence that tumor tissue collagen type X
alpha 1 (COL10A1) is a relevant candidate biomarker to improve this dilemma.

Methods: Several public databases had been screened to observe COL10AL
expression in transcriptome levels with cell lines and tissues. Protein
interactions and alignment to changes in clinical parameters and immune
cell invasion were performed, too. We also used algorithms to build a novel
COL10A1-related immunomodulator signature. Various wet-lab experiments
were conducted to quantify COL10A1 protein and transcript expression levels
in disease and control cell models.

Results: COL10A1 mRNA levels in tumor material is clinical and molecular
prognostic, featuring upregulation compared to non-cancer tissue, increase
with histomorphological malignancy grading of the tumor, elevation in tumors
that invade perineural areas, or lymph node invasion. Transcriptomic alignment
noted a strong positive correlation of COL10AL with transcriptomic signature of
cancer-associated fibroblasts (CAFs) and populations of the immune
compartment, namely, B cells and macrophages. We verified those findings in
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functional assays showing that COL10Al are decreased in CRC cells compared to
fibroblasts, with strongest signal in the cell supernatant of the cells.

Conclusion: COL10Al abundance in CRC tissue predicts metastatic and
immunogenic properties of the disease. COL10A1 transcription may mediate
tumor cell interaction with its stromal microenvironment.

KEYWORDS

colon cancer, biomarker, tumor microenvironment, collagen type 10, prognosis

Introduction

Colorectal cancer remains to be one of the most malignant and
deadliest cancers worldwide, with over 935 thousand deaths and
more than 1.9 million new cases in 2020 (1), despite progressive
scientific efforts. Peritoneal and hepatic distant metastases barely
provide a median survival rate of 5-9 months upon diagnostic
detection (2, 3). Current clinical diagnostics to appreciate the tumor
location and spread involve digital rectal examination (DRE), total
colposcopy with biopsy, abdominal sonography, thoracal X-ray,
carcinoembryonic antigen (CEA) blood levels, and abdominal/
thoracal computer tomography, and for rectum carcinoma, rigid
rectoscopy, pelvic MR/CT, and rectal end sonography in case of
locally limited tumors. One of the major deficiencies in the staging
diagnosis of CRC is the detection of malignant lymph nodes and
stratification of tumor cases with elevated metastatic risk in low and
medium malignancy staging (II/III) (4) (5). On the one hand, this is
due to inconsistent cutoft limits and on the other hand to poor
sensitivity and specificity of conventional CT (70%, 78%) (6) (71%,
67%) (7) or CT colonography (CTC) (<70%) (8) detecting not only
metastatic enlarged but also micro-metastatic lymph nodes with
normal size, urging the need for improved diagnostics such as
MDCT. Another way is to improve the diagnostic criteria for CT-
diagnosed lymph node changes. As a result, based on recent
consensus data, the largest short diameter of the suspicious tissue
and internal heterogeneity have been identified as the best criteria
for CT-assisted malignancy detection (9). Poor diagnosis is

Abbreviations: CRC, colorectal cancer; COL10A1, collagen type X alpha 1;
COLX, Collagen X; CAF, cancer-associated fibroblast; DRE, digital rectal
examination; CEA, carcinoembryonic antigen; OS, overall survival; DFS,
disease-free survival; DSS, disease-specific survival; TCGA, The Cancer
Genome Atlas; TPM, transcripts per million; CCLE, Cell Line
Encyclopedia; DFI, disease-free interval; GAPDH, glycerinealdehyde-3-
phosphate dehydrogenase; CME, complete mesocolic excision; MACCI,
metastasis-associated in colon cancer 1; TRPC, transient receptor potential
channel; CTC, CT colonography; DRE, digital rectal examination; IOBR,

immune-oncology biological research.
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particularly problematic, as lymph node status determines
whether adjuvant chemotherapy is indicated or not. Colon
carcinomas are treated with adjuvant chemotherapy from the
Union for International Cancer Control (UICC) stage II/III and
rectum carcinoma depending on locality from UICC II in the
middle and lower rectum with neoadjuvant regime (upper rectum
with adjuvant chemotherapy) (10). Currently, neoadjuvant
chemotherapy is not considered the standard of care for CRC
patients; however, recent data indicate significant advantages when
applying pre-surgical chemotherapy over conventional adjuvant
chemotherapy in terms of OS and DSS (11). Contrary to adjuvant
chemotherapy, which is started after the pathological evaluation of
the resected lymph nodes, initiation and monitoring of neoadjuvant
chemotherapy have so far mostly relied on imaging parameters of
the tumor area alone. Oncologist and radiologist are frequently
confronted with the dilemma of the inability to unequivocally
discriminate false positivity of cancer metastasis from actual
metastasis, meaning that in patients diagnosed with metastatic
disease—and subsequently exposed to adverse-effect-evoking
chemotherapy—the lymphatic system was in fact solely reactive
to the tumor defense but does not represent lymph nodes with
manifested metastasis. Biomarkers that can identify tumor
malignancy such as predicting any possible elevated risk for the
patient’s tumor to enter late stages of metastatic cascades are
needed. Our results enforce a previously described collagen
isoform to possess the potential to do so, meanwhile also opening
a discussion to serve as a direct potential therapeutic target of colon
cancer tumor microenvironment.

COL10A1 is a short-chain protein and member of the
collagen family of proteins, which are major components of
the interstitial extracellular matrix. In addition to the general
structural functions of collagen, COL10A1 has also long been
attributed to cell-cell interaction. Elevated expression levels have
been observed in several malignant tumor types and correlate
with tumor progression, invasion, metastasis, and
vascularization (12). However, its role in CRC, particular in
predicting tumor progression and tumor sub-stratification into
cases that would benefit from neoadjuvant therapy, is
insufficiently understood. Moreover, little information probing
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COLI10A1 to serve as a micro-environmental niche factor that
supports the progression of CRC is available.

Material and methods
Data obtain and preprocessing

Gene expression information and clinical factors of colon
cancer were resourced from The Cancer Genome Atlas (TCGA)
database. The count data needed to be transferred to transcripts
per million (TPM) data format for the next step of the analysis.
GSE14297, including 7 normal colon epithelium samples and 18
primary colorectal cancer tissues, were used to validate the gene
expression difference between normal and tumor tissues. The
cell line expression data was obtained from the Cancer Cell Line
Encyclopedia (CCLE) database. Immune cell score data for each
sample, according to gene expression, were conducted by
ESTIMATE and immune-oncology biological research
(IOBR) packages.

Validation COL10A1 mRNA expression in
tissues and cell lines

Colon cancer RNA-seq data from TCGA was used to
conduct difference gene expression analysis to identify
COL10A1 expression differences between normal and tumor
tissues. Paired sample validation for COL10A1 was conducted
by the TCGA data. In addition, COL10A1 expression difference
was validated by the external GSE14297 dataset.

Protein to protein interaction
network calculation

Protein to protein interaction network is always used to
identify a novel gene’s potential function and related network
at the protein level. Here, we used the STRING database to
show the interaction network of COL10A1 with STRING
default setting. Cytoscape was used to visualize the
final results.

Association of COL10A1 activation with
clinical variables

Patients’ clinical characteristics were extracted from the
TCGA database. Two groups were formed, namely, one for
baseline characteristics and another for tumor invasion factors,
according to variable names. The next step was to analyze
COL10A1 expression differences in different clinical features.
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Association of COL10A1 with consensus
transcriptional markers defining
tumor microenvironment

We calculated stromal, immune, and estimate scores for
each patient based on COL10A1l expression, which was
performed by ESTIMATE package. In addition, we also
evaluated B cells, cancer-associated fibroblasts (CAFs), CD4 T
cells, CD8 T cells, endothelial cells, macrophages, NK cells, and
other cells infiltration scores for each sample using the IOBR
package. In addition, we also explored this gene expression in
single-cell level by an online tool (http://tisch.comp-genomics.
org/home/). The detailed correlation between COL10A1 and
immune cell markers was calculated by the Spearman test.
Considering that immune checkpoints are important for
tumor progression, exploring the relationship between
COL10A1l and famous immune checkpoints (PD1, CD86,
PDL1, CTLA4, LAG3, and TIM3) seemed to be necessary.

Retrieval of COL10A1-related
immunomodulators

TISIDB database (13) integrates the interaction between
multiple immune genes and tumors. By entering the
COLI10A1 gene on the website and selecting samples of colon
cancer, immunostimulatory factors and immune inhibitors
significantly associated with COL10A1 expression can
be calculated.

Construction and validation of clinical
prognosis signature

Immunostimulatory factors and immune inhibitors
significantly associated with COL10A1 were selected from the
original expression matrix. Then, we conducted univariate and
multivariate Cox regression models to select candidate genes,
which were combined with coefficient to construct a prognosis
signature. The disease-free interval (DFI) was set as the outcome
endpoint. Forty percent of the samples were randomly selected
as a test dataset to validate the robustness of the model. This
signature also was applied to test OS, PFS, and DSS.

Protein extraction from cell cultures

Cells were lysed and harvested at >80% confluence in the
culture flask using Cell Signaling Technology® lysis buffer. The
buffer was prepared, and 200 pl was added to a T-25 flask. Cells
were scraped with cell scrapers and transferred to a Falcon tube.
Subsequently, the cells were treated with ultrasound to ensure
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complete disruption. Insoluble cellular components in the lysate
were separated by centrifugation (10 min at 14,000xg) in a 4°C
tempered centrifuge. Supernatants were stored in aliquots at —80°C
for further analysis.

Protein extraction of CRC tissue samples

For suspension of the cell pellet, it was diluted 1:10 with
radioimmunoprecipitation (RIPA) buffer. The buffer solution
contained 10 ml RIPA buffer mixed with 50 ul
phenylmethylsulfonyl fluoride (PMSF) and 100 ul
protease inhibitor.

Cell lysis was performed using the FastPrep-24TM5G
homogenizer. For this purpose, samples were transferred to
2-ml tubes containing Lysing Matrix E and homogenized
three times for 30 s each at 8 m/s. For foam regression and
final lysis, the samples were incubated on ice for additional 5
min. To separate the samples from the glass beads, a hole was
pierced on the bottom of the matrix tube using a cannula. The
tube was then placed in another 1.5-ml reaction tube and
centrifuged at 3,000xg (3 min). The remaining insoluble
components were removed by a second centrifugation step
at 12,000xg for 5 min. The supernatant obtained was
aliquoted and stored at —80°C.

RNA isolation

Using the ReliaPrepTM miRNA Cell and Tissue Miniprep
System, RNA was obtained directly from the culture flasks. At
90% confluence, the culture supernatant was removed; cells were
washed with PBS and lysed using the kit’s lysis buffer and
processed according to the manufacturer’s instructions.
Subsequently, measurement of the RNA concentration and
first quality control by photometric measurement with the
NanoQuant PlateTM (Tecan) were performed.

Isolation of recombinant COLX from
overexpressing HEK2973-T

To obtain a positive control of ColX, the culture supernatant
of cell line p52 (overexpressing recombinant COLX) was used.
The p52 cells were inoculated into T-75 flasks. In these, the cells
grew to a confluence of 80%. Then, media was changed from 5%
to 0% fecal calf serum (FCS). After 72 h, the culture supernatant
was removed.

The remaining cells were removed by centrifugation at
350xg for 5 min and transferred to a dialysis tube. Dialysis
was performed for 24 h at 0.2 mM Tris, pH 7.5 with solution
change after 8 h. Cells were removed by centrifugation at 350xg
for 5 min. Meanwhile, water was changed twice. The dialysate
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was then transferred to glass flasks, frozen, and subsequently
dried by lyophilization. The finished lyophilizate was then
dissolved in water to achieve a 200-fold concentration of the
culture supernatant. Since a yield of 50 pg/ml is expected, after
lyophilization, an approximate final concentration of 10,000 pg/
ml COLX is expected.

Reverse transcription and qPCR

For reverse transcription, LunaScriptTM RT SuperMix
Kit was used. One microgram of RNA was transcribed into
c¢DNA for each sample, and a non-reverse transcriptase
control was included for each sample for possible non-
specific quantitative PCR (qPCR) reaction as caused by
contamination with genomic DNA. After RT reaction,
samples were diluted at 1:10.

The qPCR was also performed using the LunaScriptTM RT
SuperMix kit, and samples were pipetted accordingly. The
primers are shown in Table 1. All samples were plotted as
triplets and analyzed as mean values. A non-reverse
transcription control was also included from each sample to
check for contamination with genomic DNA.

Protein extraction, SDS-PAGE, and
Western blotting

The protein concentration was determined using the
Bradford assay with Bradford solution from Advanced Protein
Assay Reagent (Cytoskeleton) kit. The absorbance was measured
at 590 nm. A standard curve was generated using bovine serum
albumin (BSA).

An adapted sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) was performed to detect proteins
of interest. The gel was loaded equally with 20 pg protein per gel
well by measured protein concentration with Bradford assay for
every sample guaranteeing a normalized and comparable
standard for every sample. Proteins were denatured in advance
with 4x Laemmli buffer + 8% mercaptoethanol at 95°C for 5
min. SDS-PAGE was run overnight in the refrigerator at 6.5 mA
per gel.

The proteins separated by SDS-PAGE were transferred to a
polyvinylidene difluoride (PVDV) membrane activated with

TABLE 1 Primers for qPCR of COL10A1 and GAPDH.

Gene Orientation Sequence from 5’ to 3’
COL10A1 F AAA GGC CCA CTA CCC AAC AC
R ACC TTG CTC TCC TCT TAC TGC
GAPDH F CCT GTT CGA CAG TCA GCC GCA T
R GAC TCC GAC CTT CAC CTT CCC C
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methanol. The blotting chamber was filled with Towbin buffer, and
blotting was performed for 90 min at 300 mA. After that, the blot
was washed in 1x TBS buffer + 0.1% Tween 20 (TBS/T) for 15 min
and then blocked in 5% milk powder (dissolved in TBS/T) for 60
min. After another 5-min wash step with TBS/T, incubation with
the primary antibody (dissolved in 5% milk powder—TBS/T) was
performed overnight. The next day, four washing steps with TBS/T
followed once for 15 min and three times for 5 min. This was
followed by incubation with the secondary antibody (dissolved in
5% milk powder—TBS/T) for 60 min. Subsequently, it was washed
again four times with TBS/T (1x 15 min, 3x 5min). Finally, the ECL
substrate was added to the blots. After 5-min incubation, the images
were taken.

Results

COL10AL1 transcripts are accumulated in
CRC tissue samples but only in a subset
of widely applied in vitro disease models

The differential expression results show that a total of 1,636
different genes, including 797 downregulated genes and 839
upregulated genes, were screened between normal and tumor
tissues (Table 2). Figure 1A indicates that COL10A1 is
significantly upregulated in CRC tissues, supported by paired-
sample expression validation (Figure 1B) and external dataset
GES14297 (Figure 1C).

To verify if widely distributed classical human in vitro
models of CRC recapitulate physiological relevant levels of the
gene, thereby enforcing their use in translational relevant
research, we assessed datasets that retrieve expression data of
standardized maintained cell lines. We found interesting
differences between the cells models, as MDST8, SNU1040,
SNUC2A, SW48, and HCTI15 showed a significant
upregulation of COL10A1l. whereas HT115, CL40, RCM1,
HCC56, and SW1417 had a very low-level expression
(Figure 1D). Additionally, the STRING database shows that
COL10A1 closely interacts with several proteins, of which some
are famously described as potent promoters of cancer stem cells
and mesenchymal transformation, such as MMP13, SOX9, and
RUNZX2. The computed interactome can be seen in Figure 1E.
All the data resource has been shown in Figure 1F.

10.3389/fonc.2022.1007514

Diversity-associated variances of
COL10AL1 expression

Although baseline characteristics are known to be
determinants for clinical outcome, these characteristics such as
sex, race, and body mass index (BMI) did not differ in their
COL10A1 expression levels significantly. Nonetheless, Asians
had a minimal higher expression level compared to other
ethnicity (Figures 2A-C). To our knowledge, this is the
hitherto first comparative assessment of COL10A1l
appreciating different diversity setups.

COL10A1l is increased in tumor with high
invasion properties

To receive further insights in the clinical translation relevance of
COLI10ALI in CRC, we performed another screening of COL10A1
activation level with parameters typical describing advanced tumor
cell invasion. A significant increase in COL10A1 expression was
observed not only in stage T3 and T4 but also in N1 and N2 cases of
CRC as compared to low-stage counterparts. Significant
stratification did not occur in low-stage comparisons between T1,
T2, and NO (Figures 2D, E) nor was there a difference between M1
and MO stages (Figure 2F). Elevated COL10A1l expression is
associated with advanced tumor stages based on histopathological
and image-based tumor staging. Moreover, tumors featuring
perineural invasion—an established marker for predicting
increased metastatic condition in CRC—have significant elevated
levels of COL10A1 expression (Figures 2G-I).

High COL10ALl levels are associated with
elevated immune cell infiltration and
extracellular matrix score

As a possible mechanism of how malignant cancers enforce
their invasive and metastasis properties, the ability of cancer cells
to modulate interactions with the immune microenvironment are
discussed. In this line, we analyzed COL10A1 transcript in
association with expression signals associated with the existence
of immune cells and other parameters of immune cell infiltration.
In addition to a clear positive correlation of increased COL10A1

TABLE 2 Multivariate Cox regression of COL10A1 related immunomodulators.

Gene symbol coef HR

CD244 -1.840308381 0.158768457
CD96 1.802432322 6.064380062
HHLA2 ~0.459849416 0.631378714
PDCDILG2 ~1.574446309 0.207122203
TMIGD2 ~1.242452254 0.288675444
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95%CI 95%CI p-Value
(Low) (High)
0.011655813 2.162648294 0.167248274
0.875891189 41.98775602 0.067889854
0.447451581 0.890909984 0.008858794
0.043256938 0991739331 0.048798872
0.055016077 1.514711989 0.141827337
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expression with stromal immunity, we identified that the
extracellular matrix score is upregulated in those cases (r=0.84,
r=0.53, r=07, respectively; p<0.001, Figures 3A-C). Moreover, we
found the COL10A1 cases are enriched of expression signals
describing infiltration of B cells, CAFs, and macrophages
(r=0.19, r=0.89, and r=0.66, respectively; p<0.001, Figure 3D).
Further expression analysis confirmed these results, as we reveal a
correlation of COL10Al activation with respective consensus
markers describing pools of cells such as B-cell markers (CD19,
r=0.135, p=0.004; CD79A, r=0.221, p<0. 001), CAFs markers
(FAP, PDPN, THYI1, ACTA2, COL1A1, PDGFRA, and
PDGFRB; p<0.001), and M2 macrophages markers (CD163,
r=0.601, p<0.001; VSIG4 r=0.576, p<0.001) (Figures 3E-I).
Moreover, the single-cell analysis results also demonstrate that
COL10A1 could be expressed in CAF cells (Supplementary Figure
S1). Of particular interest was also the significant correlation with
immune checkpoint surface proteins such as PD1, CD86, PDLI,
CTLA4, LAG3, and TIM3 (p<0.001) (Figures 4A-F), indicating a
possible mechanism of how COL10Al-rich CRC
facilitates invasion.
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COL10A1 related immunomodulators
and construction of five gene

risk signature to stratify patients’
survival probability

A total of 18 immunoinhibitors and 32 immunostimulators
of COL10A1l-expression-related immunomodulators were
identified. Predictive model was built by Cox regression based
on the above genes. Fourteen genes were demonstrated to affect
patients’ outcome (Supplementary Table S1) by univariate
results, and five genes are the main body of the model, which
are inferred from multivariate results (Table 2). According to the
median value of risk score, a high risk score means a poor
outcome, while low-risk patients have a contrary prognosis. The
area under the curve (AUC) was 0.781 (Figures 5A-C), and the
internal validation results also support the above conclusions,
while the AUC was 0.750 in the validation dataset (Figures 5D-
F). In addition, we applied the model to predict OS, PES, and
DSS, but the model did not accurately predict these new
endpoints (Supplementary Figure S2).
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In vivo and in vitro analysis of COL10Al
expression levels in CRC

Microarray analyses by Croner et al. (14) revealed significantly
increased expression levels of COL10AI in tumor tissue samples
compared with that in normal tissues in CRC patients. Chapman
et al. (15) successfully reproduced these data, but interestingly,
high expression levels could not be found in in vitro cultured CRC
cell lines. To address the question of whether tumor cells
themselves exhibit increased expression of COL10A1, CT values
were compared between tumor, normal tissue, fibroblasts, and
CRC cell lines. This was accomplished by first normalizing the CT
values of COL10A1 to GAPDH and second by comparing those
RNEs (Figures 6A, B). The tumor tissue significantly shows the
highest expression followed by the adjacent normal tissue, which
is still higher than any expression of other cell populations, driving
the hypothesis of COL10A1 overexpression in tumor stroma,
triggered by lateral information transfer between tumor and
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stromal cells. Our hypothesis based on the bioinformatics
analysis that CAFS/fibroblasts is the source of COLI10A1
overexpression in CRC is strongly supported due to these results.

COLX protein expression in several
cancer and fibroblast cell lines

For PA-597603, the monomeric (~75 kDa) and multimeric
forms (~140 kDa) were detected in our recombinant COLX
from HEK2973 T cells. Bands at the level of the multimeric form
were also weakly found in all CRC cell lines and in fibroblasts
and skin sample. Particularly strong bands were detected in the
range of ~45 and ~50 kDa and occasionally at ~20 kDa.

The C-terminal antibody MA5-32504 was also able to detect the
monomeric form of the recombinant protein at ~75 kDa, which was
absent in all other cell lines. In contrast, bands in the ~66-kDa range
and at ~6.5 kDa (except LoVo and DLD-1) were detected here.

frontiersin.org


https://doi.org/10.3389/fonc.2022.1007514
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Kahlert et al. 10.3389/fonc.2022.1007514
A P . B P Cc P N
[ r \; | \
o 4000
1,000 4 )
o g 20001 (/8> 2,000
8 o § w
1] @ 1,000 4 <
© c = 0 4
£ -1,000 g IS
o 0 4
= Spearman £ Spearman m ~5 000+ Spearman
@ _5 0004 r=0.84 - =053 ? r=074
p <0.001 -1,000 p <0.001 p <0.001
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
COL10A1 Expression COL10A1 Expression COL10A1 Expression
6
E B cells F B cells
8
2 51 $
a ~
O 41 S= .
S5
o2 o=
S g ] s
1= 2t
£S o0&
83 1 - 8-
é’ 14 S Spedrman| 2 21 ? .. -Spearman
. r=0.135| F e r=0221
0- w “* b =0004 I g p <0.001
T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8
The expression of COL10A1 The expression of COL10A1
ogy (TPM+1) og (TPM+1)
8
M2 Macrophages acrophages
G CAFs Markers R p Value H s | . h
3 3
FAP 0.901 <0.001 o %)
O= >
PDPN 0.738 <0.001 "6% 6 "o-é
THY1 0.819 <0001 SR _§&
n_ —
ACTA2 0.724 <0001 BT IS
58 ) s -
COL1A1 0.838 <0001 F- . s >
PDGFRA 0.442 <0001 £ 27 Spearman [ & Spearman
= s r=o0601| r=0576
PDGFRB 0.790 <0.001 ol p <0.001 ol p <0.001
) ) 0 2 4 6 8 0 g 4 6 8
Correlation With CAFs Markers The expression of COL10A1 The expression of COL10A1
Spearman test Log, (TPM+1) og, (TPM+1)
FIGURE 3
Spearman correlation test of COL10A1 mRNA levels and (A) stromal score, (B) immune score, (C) ESTIMATE score, (E) CD19, (F) CD79A,
(G) different CAF cell markers, (H) CD163, and (I) VSIG4; (D) overview of correlation analysis of COL10A1 expression an several cell types.

The X53 antibody detected the monomeric form at ~75 kDa
and the multimeric form at ~140 kDa in recombinant COLX. In
cell lines, the multimeric form was detected at ~170 kDa. The
antibody PA5-49198 paralleled with PA5-97603, especially in all
CRC cell lines, and in fibroblasts, the ~50-kDa band was the
most intense. Other bands were noted at ~45, ~32, and ~20 kDa
(Figures 7A-F).

Discussion

Health issues associated with CRC is significant factor of the
oncology-related health burden on the society. As prevalence
directly relates to the socio-economic development of a country,
besides the hotspots Western Europe, Australia, and North
America, an increasing incidence can be observed in South
America and Eastern Europe, mainly due to lifestyle changes,
making CRCs as 1 out of 10 cancer cases in 2020 (CRC total,
1.9x10°, 935,000 deaths) (1), expected to reach 3x10° incidences
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in 2040 (16). As prevalence rises, drug market size follows with
an estimated size of 10.9 billion dollars in 2022 (17) in five most
prevalent countries, mainly attributed to adjuvant and
neoadjuvant chemotherapy of surgically resectable CRC cancers.

Surgery is the main type of treatment with the strongest positive
clinical prognostic consequences for all CRC combined, featuring a
rising cost of surgery in recent decades (30,000 cases in 2015 in
Germany, CRCs cost of illness ratio reaching roughly 50,000 EUR per
patient). The surgical treatment procedure for confirmed CRC
depends significantly on whether existing metastasis locally in
surrounding lymph nodes exists or not, defining applied resection
technique and resection size and aggressive adjuvant therapy. Thus,
an accurate diagnosis of this status has an immense impact on the
operation procedure and the patient’s rehabilitation after surgery. The
procedure depends mainly on the localization of the arterial
transection, which determines the size of resected colon/rectum
segments. Thus, a lymphogenic metastasis follows the regular
pattern of an initially longitudinal paracolic (maximum of 10 cm)
and then truncal metastasis, which then decides the intestinal
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resection size with possible partial resection of infiltrated neighboring
structures. In colon carcinoma, the spectrum ranges from segmental
or hemicolectomies up to complete mesocolic excision (CME)
depending on infiltration depth and N status. This will also
determine the level of lymphatic resection, ie., D2—paracolic and
intermediate lymph nodes or D3—main, paracolic and intermediate
lymph nodes, which is comparable to western CME (18). Therefore, it
is becoming increasingly important to improve diagnostic accuracy.

A biomarker in the primary tumor that trustfully predicts actual
tumor spread would impact both types of the treatment decision. Our
project associates to this initiative.

Previous works of others have identified some promising
biomarkers; however, hitherto, there is no consensus marker
established to support clinical decision making in the before-
mentioned manner. Given the economic and clinical importance,
the field of research is relatively large and allows only an insufficient
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discussion of the development. The most prominent example has
been initially discovered about a decade ago: Stein et al. (19)
identified the gene metastasis-associated in colon cancer 1
(MACCI1) to possess strong predictive potential to distinguish
CRC metastasis risk, and the abundance of the related DNA
string in the blood of patients can help to identify cancer
recurrence and therapy response. The diagnostic value has been
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described in independent clinical cohorts, however mostly
fundament on retrospective trials (20). To our knowledge, no
association to surgical decision making or omission of
neoadjuvant treatment in respective MACCI1 low-expressing
patients in a prospective manner has been conducted. It would be
interesting to study the correlation of MACC1 and COLI10A1
activation in the analysis of bulk tumor specimen and in
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functional studies applying genetic COL10A loss of function
models. From the similar historic time span, in the early 2010,
Smith et al. constructed a 34-gene signature that predicts the
metastatic spread of CRC based on the experimental model of
tumor metastasis (21). Although their signature was validated in
prospective clinical trials, Smith signature has not been established
in clinical routine, probably due to the necessity of conducting at
least 34 multiplex analytics hindering simple and rapid
dissemination as POCT. Interestingly, a group at Fudan
University analyzed parts of the same datasets that we assessed in
this project and identified a five-gene signature that predicts
metastasis spread (22). COL10A1 did not come up as their top
candidate suggestion, urging that interrogation of the Fudan
signature in the context of COL10Al-rich CRC is needed. Very
recently, Liu et al. proposed a hub gene signature comprised of four
candidates, and the corresponding protein accumulation in the
tumor material was verified in independent prospective cohort of
patients (23). Importantly, as the new research field of cancer
neuroscience currently emerges, indication from the experimental
field emerges that nerve growth factors mediate liver metastatic
potency of CRC cells (24). Further studies to decipher the
composition and tumor-relevant roles of the neural
microenvironment at the primary tumor site or in the metastasis
site of intestinal tumors are needed and surely will reveal new
insights in the diseases. As such, our group recently identified the
hitherto unrecognized clinical prognostic role activation levels of
sensory nerve chancel of the transient receptor potential channel
(TRPC) class in pancreatic cancer (25), a discovery relevant also for
developing new therapies for this deadly disease, as members of
TRPC are druggable targets with clinical applied inhibitors.

We acknowledge that our work is of a descriptive nature only,
and our assumptions are made based on correlative findings. We
consider our results to be relevant for the field: our study relies on
reusing various publically available, high-quality molecular data
from larger patient population retrieved from different datasets that
all have been quality approved by the scientific community. It
reflects and discriminates regarding gender and ethnic diversity. It is
based on current sequencing technologies and molecular tumor
diagnostic data, and in our data analysis, we appreciate the
importance of the emerging field of intra-tumor spatial
heterogeneity to instruct the biological behavior of the disease. As
COL10A1-enriched tumors feature increased immune cell
infiltration and extracellular matrix components, we assume that
CRC COLI0ALI activation might either modulate the tumor
microenvironment, or vice versa; its expression is a downstream
signal of altered immune and stromal environmental interactions.
Of particular interest is the very strong correlation of elevated
COLI10A1 transcription with CAFs, as those pool of cell
populations are emerging as modulators of establishing a pro-
invasive tumor microenvironment. Functional studies to address
this questions, particularly using human model systems that
recapitulate cellular and spatial heterogeneity as achieved in
patient-derived organoids (26), are underway in our lab. Of note,
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all of our lab-tested classical CRC cell models show a low
abundance of COL10AL1 protein expression in Figure 7, which in
part reflects the results of the cell line transcription data. However,
in our view, it urges the assessment of COL10A1 in clinically more
relevant 3D model systems featuring the stroma microenvironment
(27). It will be interesting to compare the mRNA/protein levels of
COLI10ALI in the primary tissue with matching personalized 3D in
vitro models and study effects of COL10al modulation in such
conditions. Of note, although not retrieved from orthotopic
condition and also resembling high in vitro passage model, the
tested fibroblasts are high in COL10A protein. Confirmatory studies
in patient-matched tumor cell/CAFs co-culture systems are needed
to analyze COL10A1 protein/DNA as component of the lateral
information system between tumor cells and stroma environment.

The described results further established COL10Al as a
diagnostic marker for predicting progression of colon
carcinogenesis, extending previous reports on this protein in
the context of colon cancer. The first mentioning of COL10AL1 to
be specifically upregulated in CRC as compared to normal
mucosa related back to Croner et al. in the year 2005 (14).
After that, the notable report by Huang et al. described the
upregulation of COL10A1 compared to the control tissue in 30
patients (28). Moreover, using protein-based quantification of
COL10A1 in tumor specimens based on histological staining
and semi-quantitative signal quantification in 197 CRC patients,
they identified the significant clinical negative prognostic value
of an elevation of the biomarker. Furthermore, a historic study
has already proposed COL10A1 serum protein levels to be a
minimally invasive and indicative marker for colon cancer
detection as compared to its absence in healthy patients (12).
It would be interesting to investigate if blood serum levels of
COL10A1 protein share a similar prognostic value regarding the
metastatic spread of the primary disease as compared to its
mRNA abundance in tumor specimens, and to perform a
confirmatory study on tumor detection like that reported by
Solé et al. In addition, using machine learning algorithm and
advance materials to discover the potential value of these gene is
also a promising research topic (29, 30). Our data support the
initiation of a relevant prospective clinical study to assess
COL10A1 expression in tumors aiming to improve the
management of colon cancer patients with enlarged lymph
node, either by stratifying patient cohorts who do not need to
receive neoadjuvant chemotherapy or minimizing the number of
patients that require more comprehensive surgical attempt of D3
lymph node resection.
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Ovarian cancer (OC) is the most lethal gynecological cancer in women. Studies
had reported that immune-related IncRNAs signatures were valuable in
predicting the survival and prognosis of patients with various cancers. In our
study, the prognostic value of immune-related IncRNAs was investigated in OC
patients from TCGA-RNA-seq cohort (n=378) and HG-U133_Plus_2 cohort
(n=590), respectively. Pearson correlation analysis was implemented to screen
the immune-related IncRNA and then univariate Cox regression analysis was
performed to explore their prognostic value in OC patients. Five prognostic
immune-related INncRNAs were identified as prognostic IncRNAs. Besides, they
were inputted into a LASSO Cox regression to establish and validate an
immune-related INncRNA prognostic signature in TCGA-RNA-Seq cohort and
HG-U133_Plus_2 cohort, respectively. Based on the best cut-off value of risk
score, patients were divided into high- and low-risk groups. Survival analysis
suggested that patients in the high-risk group had a worse overall survival (OS)
than those in the low-risk group in both cohorts. The association between
clinicopathological feathers and risk score was then evaluated by using
stratification analysis. Moreover, we constructed a nomogram based on risk
score, age and stage, which had a strong ability to forecast the OS of the OC
patients. The influence of risk score on immune infiltration and immunotherapy
response were assessed and the results suggested that patients with high-risk
score might recruit multiple immune cells and stromal cells, leading to
facilitating immune surveillance evasive. Ultimately, we demonstrated that
the risk model was associated with chemotherapy response of multiple
antitumor drugs, especially for paclitaxel, metformin and veliparib, which are
commonly used in treating OC patients. In conclusion, we constructed a novel
immune-related IncRNA signature, which had a potential prognostic value for
OC patients and might facilitate personalized counselling for immunotherapy
and chemotherapy.
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Introduction

Ovarian cancer (OC) is the most lethal gynecological cancer
among women in worldwide, with 313,959 estimated new cases
and 207,252 new deaths in 2020 (1). Due to the ambiguity of
early symptoms and the lack of reliable screening strategies,
more than 60% OC patients are diagnosed with later-stage.
Complete cytoreductive surgery followed by platinum-based
chemotherapy is known as the standard first-line treatment
protocol for OC patients. However, a high proportion patient
will relapse within 2 years of diagnosis (2). Therefore, there is an
urgent need to identify prognostic biomarkers to predict the
outcome of OC patients.

It is being increasingly recognized that immune system plays
vital roles during cancer initiation and progression (3).
Moreover, it is suggested that tumor progression and invasion
is dependent on intratumoural adaptive immunity and the
immunological type, density, and location of immune cells
within the tumor samples are superior to TNM staging in
predicting the natural history of primary cancers (4, 5). It has
been reported that patients whose tumors with more tumor-
infiltrating lymphocytes (TILs) predicted longer survival in OC.
Besides, recruitment of T-regulatory (Treg) cells in OC can
foster immune privilege and predict reduced OS (6, 7). All the
evidence convincingly indicated that OC was an immunogenic
tumor (8). Therefore, the immune-related prognostic signature
might be a potential tool to predict outcome of OC patients.

Long non-coding RNAs (IncRNAs) are a group of RNA
molecules whose transcripts are greater than 200nt but not
translated into proteins. They participate in various biological
progress, such as epigenetic regulation, genetic imprinting,
chromatin organization and protein modification (9, 10).
Moreover, they participate in immune response including antigen
presentation, antigen release, immune cell differentiation and T cells
infiltration (11, 12). Lnc-EGFR stimulates Treg cells differentiation
and promotes immune invasion in hepatocellular carcinoma (13).
Lnc-DC, which is a specific marker of dendritic cells (DCs),
promotes the ability of DCs to active T cells (14). LincR-Ccr2-
5’AS increases the migration ability of Treg cells (15).

In OC, a new IncRNA small nucleolar RNA host gene 12
(SNHG12) was proved to promote immune escape of OC cells
through their crosstalk with M2 macrophages (16). Moreover,
IncRNA HOTTIP was suggested to promote the secretion of IL-6
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and up-regulate the expression of PD-L1 in neutrophils, leading to
the inhibition of T cells activity and acceleration immune escape of
OCcells (17). Recently, it was demonstrated that IncRNA XIST could
affect the cell proliferation and migration via mediating macrophage
polarization in both breast cancer and OC (18). In addition, FOXP4-
AS1 and MEG8 were revealed to be associated with immune
infiltration in OC (19, 20). All these evidences indicated that
immune-related IncRNAs played important roles in OC.

Recently, multiple immune-related IncRNA signatures have
been identified to predict the OS in various cancers, including
breast cancer (21-24), hepatocellular cancer (25), lung cancer
(26), cervical cancer (22, 27), colon cancer (28), glioma (29-31),
and bladder cancer (32, 33). However, the immune-related
prognostic IncRNA signature for predicting the prognosis of
OC patients has not been developed. In our study, we aimed to
explore the prognostic value of the immune-related IncRNAs in
OC and validate an immune-related prognostic IncRNA
signature for patients with OC.

Materials and methods
Data acquisition and preprocessing

For TCGA-RNA-Seq training set, mRNA gene expression
profiles and corresponding clinical information were downloaded
from the TCGA data source (https://xena.ucsc.edu). To increase the
statistical power and overcome the systematic errors caused by
small sample size, we combined the datasets (GSE26193, GSE30161,
GSE63885, GSE9891, GSE18520 and GSE19829) with the HG-
U133_Plus_2 platform as the HG-U133_Plus_2 validation set (34—
39). All clinical information and microarray data were captured
from GEO repository (https://www.ncbi.nlm.nih.gov/geo/).
Ultimately, we obtained a TCGA-RNA-seq training cohort with
378 patients and a HG-U133_Plus_2 validation cohort with
590 patients.

Identification of immune-related
IncRNAs

The IncRNA annotation file was acquired from the GENCODE
website for annotation of the IncRNAs. Consequently, 14826
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IncRNAs and 2448 IncRNAs were identified from TCGA-RNA-Seq
cohort and HG-U133_Plus_2 cohort, respectively (40). The
immune-related genes were obtained from the ImmPort database
(http://www.immport.org) (41). Pearson correlation analysis was
utilized to screen immune-related IncRNAs. Those IncRNAs with
r>0.3 and p<0.001 were considered as immune-related IncRNAs
(25). To assess the prognostic value of immune-related IncRNAs,
we further conducted univariate Cox regression analysis by using
the “survival” package, and the hazard ratios (HR) with 95%
confidence intervals (CIs) were examined. p < 0.05 was
considered that immune-related IncRNAs were significantly
correlated with OS) and served as prognostic immune-
related IncRNAs.

OS analysis

OS was defined as the time from randomization to death
from any cause. The survival curves were calculated and
illustrated by the KM plot with the long-rank test.

Construction of immune-related
prognostic IncRNA signature

Based on the prognostic immune-related IncRNAs, a risk
signature was constructed by using the “glmnet” package (42).
Through 1000 cross-validation, a panel of genes and their
LASSO coefficients were obtained. The risk scores for the
signature were calculated using the following formula: Risk
score=B1X1+PB2X2+---+BnXn (B, LASSO coefficient; X, the
expression of each prognostic immune-related IncRNA in each
sample). Based on the best cut-off value of risk score, patients
were divided into high-risk and low-risk groups. Kaplan-Meier
method with the long-rank test were performed to reveal the OS
of the high-risk and low-risk groups by using the “survival”
package. Besides, time-dependent relative operating
characteristic (ROC curve) and area under the curve (AUC)
were applied to assess the prediction ability of the signature. All
the time-dependent ROC curves were calculated and drew by
“SurvivalROC” and “ggplot2” package, respectively.

Decision tree and prognostic
nomogram construction

Decision tree and nomogram model were applied to define
significant clinical predictors. Firstly, univariate and multivariate
COX regression were performed to select important explanatory
variables. Based on the multivariate cox regression results, stage, age
and risk score were identified as predictor variables. After then, the
“rpart” Package (https://cran.r-project.org/web/packages/tree/index.
html) was used to construct decision tree and split patients as
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different from each other as possible. It was implemented to decide
which of these variables to split and the splitting value in each step of
the tree’s construction (43). Moreover, a nomogram model, which is
an individualized risk prediction model to predict the 1, 3, 5-year
survival probability, was constructed using the “RMS” package. The
calibration curves were used to assess the concordance of the
observed and predicted rates of 1, 3, 5-year OS (44).

Estimation of tumor-infiltration,
immunotherapy and
chemotherapy response

Firstly, the ESTIMATE algorithm (https://bioinformatics.
mdanderson.org/public-software/estimate/), which can be applied
for assessment of the presence of stromal cells and the infiltration of
immune cells in tumor samples using gene expression data, was
used to calculate the Estimate score, Immune score, Purity score
and stromal score (45). Briefly, we defined ssGSEA based on the
signatures related to stromal tissue and immune cell infiltration as
Stromal score and Immune score, respectively, and combined the
stromal and immune scores as the ESTIMATE score. Purity score
was calculated as followed: Purity score= cos (0.6049872018 +
0.0001467884*ESTIMATE score). The correlation of risk score
and Estimate score, Immune score, Purity score and stromal
score were analyzed by using Pearson correlation analysis. The
infiltration of 22 subtypes of tumor-infiltrating immune cells
(THCs) was acquired from CIBERSORT algorithm (http://
cibersort.stanford.edu/) (46). Tumor Immune Disfunction and
Exclusion (TIDE) algorithm (http://tide.dfci.harvard.edu/), which
is a method to accurately predict the outcome of patients treating
with immune checkpoint blockade (ICB), were employed to
evaluate the immunotherapy response (47, 48). The
chemotherapy response was evaluated by using the Genomics of
Drug Sensitivity in Cancer database (GDSC, https://www.
cancerrxgene.org). The half-maximal inhibitory concentration
(IC50) of all drugs commonly used to treat tumors were
calculated and represented the drug response. The R package
‘pRRopheticRredic’ was used with 10fold cross-validation and
other parameters by default (49).

Exploration of immune-related
IncRNA function

To further explore the function of the five immune-related
IncRNA, we firstly assessed the association between the five
immune-related IncRNA and immune-related mRNA by using
Pearson correlation analysis. Then, the results were converted
visually and the co-expression network was identified with
Cytoscape software (50). Based on gene expression or the risk
score, patients were divided into two groups. GSEA assay was
utilized to explore whether a series of priori defined pathways were
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enriched in the gene bank derived from DEGs between the two
groups (51, 52). FDR<0.05 was identified as enriched. Moreover, the
absolute immune scores from gene expression datasets were obtained
by LM22 (22 immune cell types) gene signatures of CIBERSORT
algorithm (46). The molecular immune cell subtypes related to the
five IncRNAs expression were captured by using Spearman
correlation analysis (53). Only p<0.05 was considered significant.

Cell culture, RNA extraction and real-
time quantitative PCR

OC cell lines, SKOV3, A2780, OVCARS8 and OVCAR3, were
obtained from Institute of clinical pharmacology, Central South
University. All the cell lines were cultured in RPMI-1640
medium with 10% FBS. All cell lines were cultivated at 37°C
and 5% CO,. Total RNAs were extracted from OC cell lines by
using Trizol reagent (Takara). After extraction, total RNAs were
reverse-transcribed into cDNA using PrimerScript' ' RT reagent
Kit (RR047A, Takara). Real-time quantitative PCR was
performed using the SYBER Premix Ex Taq kit (RR420a,
Takara) in Roche-LightCycler 480 system (Roche,USA).
Finally, the relative expression of IncRNAs were calculated
based in the internal reference GAPDH. The primers of
IncRNAs and GAPDH are listed in supplementary Table 1.

Lentivirus infection

The packaged lentivirus vectors of UBXNI10-ASI
overexpression (LV-BUXN10-AS1) and empty lentivirus
vectors (LV-NC) were purchased from GenePharm (Shanghai,
China). For UBXN10-AS1 overexpression, the LV-UBXN10-
AS1 or LV-NC were introduced in SKOV3 and A2780 cells at an
MOI OF 50-100. After 72h post-infection, the infection
efficiency was measured by using RT-qPCR.

Cell proliferation assays

Cell proliferation was assessed by using CCK8 kit (MCE,
China). Briefly, cells (1-2 *10* cells/well) infected with LV-
UBXN10-AS1 or LV-NC were seeded into 96-well plates and
cultured in a CO, incubator for 24,36, 48,72 and 96h.
Subsequently, 10ul of CCK8 reagent was added into the wells
and the plate was incubated for 1h. Finally, the OD value was
measured at 450nm using the microplate reader (54).

Cell migration assay

To detect the cell migration, wounding healing assay was
performed. Firstly, cell infected with LV-UBXN10-AS1 or LV-
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NC were seeded in 24-well plates. A 200ul pipette tip was used to
scratch the cell layer, when cells reached 70-80% confluence.
Cells were grown for an additional 48h. Microscope images were
captured at Oh and 48h (55).

Annexin V/PI apoptosis assay

Cells were plated in 6-well plate with 1*10° cells/well. After
12 hours, cells were infected with lentivirus vectors. After 48
hours incubation, cells were harvested, washed with PBS and
incubated with Annexin V and PI, using the Annexin V-APC
apoptosis detection kit (KGA1022, KeyGen, China). The flow
cytometry analyses were performed with CytoFLEX instrument
(Beckman Coulter, USA).

Statistical analysis

The two-tailed Students’ t-test was utilized to analyze the
significant differences between groups, whereas quantitative
differences among groups were analyzed by using the one-way
ANOVA. Kaplan-Meier curves and log-rank test were
implemented to calculate the OS rate. All statistical analyses
were performed using R software (version 3.6.2). * means
p<0.05, ** means p<0.01, **means p<0.001. p<0.05 was
considered statistically significant.

Results

Identification of immune-related
prognostic IncRNAs in OC patients

As shown in Figure 1, we firstly identified 14826 IncRNAs in
the TCGA-RNA-seq dataset and 2448 IncRNAs in the HG-
U133_Plus_2 dataset, based on the IncRNA annotation file from
GENCODE website. Then, the immune-related genes were
download from the ImmPort database. Pearson correlation
analysis was performed to screen the immune-related
IncRNAs. The immune-related IncRNAs were identified as
that the expression of IncRNAs were correlated with one or
more of the immune-related genes (| cor | > 0.3 and p < 0.001).
Finally, we obtained 1637 immune-related IncRNAs in TCGA-
RNA-seq dataset and 1814 immune-related IncRNAs in the HG-
U133_Plus_2 dataset, respectively (Supplement Table 2). To
screen immune-related prognostic IncRNAs, the univariate
Cox regression was implemented. The forest plot showed that
5 IncRNAs (UBXN10-AS1, TOPORS-AS1, HIPK1-ASl1,
CELSR3-AS1 and CECR5-AS1) were significantly correlated to
prognosis of patients with ovarian cancer. All the IncRNAs were
protective factors with hazard ratio (HR) <1 in both datasets
(Figure 2A). The Kaplan-Meier curves confirmed that higher
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FIGURE 1
The workflow of this study.

expression of all the five IncRNAs were associated with better OS
in both cohorts (Figure 2B).

Construction and validation of the
immune-related IncRNA signature

In addition, we defined the TCGA-RNA-Seq dataset as
discovery cohort and constructed an immune-related IncRNA
signature. The risk score for each patient was calculated based on
the coefficient for each IncRNA (Supplement Figure 1).

Subsequently, patients were divided into two subgroups
dependent on the best cut-off value of risk score. The
distributions of the risk score and survival status were listed in
the Figure 3A. The heatmap showed that the expression of all the
IncRNAs were higher in the low-risk group than in the high-risk
group (Figure 3B). Kaplan-Meier survival curves indicated that
patients with higher risk score had worse survival rate (p<0.001,
Figure 3C). Furthermore, we validated the prognostic value of the
immune-related IncRNA signature in the HG-U133_Plus_2
cohort. The results were consistent with the findings in the
TCGA-RNA-Seq cohort. It’s suggested that the higher risk score
was associated with shorter OS time and worse survival status
(Figures 3D-F). The ROC curves demonstrated that the immune-
related prognostic IncNRA signature harbored a promising ability
to predict 5-year OS in the TCGA-RNA-Seq cohort and HG-
U133_Plus_2 cohort (Figures 3G, H). All these demonstrated that
the immune-related prognostic IncRNA signature might stably
predict the survival outcome of patients with OC.
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Association between the prognostic
signature and clinicopathological
feathers

We attempted to analyze the association between risk score
and the clinicopathological feathers. It was suggested that
patients with higher age and advanced FIGO stage had higher
risk score, while the risk score was not associated with grade in
both cohort (Figures 4A, B). Besides, we assessed the prognostic
ability of the immune-related prognostic signature by
performing a stratification analysis. Compared to patients with
lower risk, patients with higher risk had worse OS in younger
(<50y), older (=250y), advanced FIGO stage (III+1V), early grade
(G1+G2) and advanced grade (G3+G4) subgroups in the TCGA-
RNA-Seq cohort (Figure 4C). Likewise, these results were
validated in the HG-U133_Plus_2 cohort (Figure 4D).

Due to the small samples of the early FIGO stage (I+1I) subgroup
in TCGA-RNA-Seq cohort, there was no significant difference in OS
between higher risk patients and lower risk patients (p=0.17,
Figure 4C). However, we confirmed that the signature retained the
ability to predict OS for patients with early stage in HG-U133_Plus_2
cohort (p=0.0054, Figure 4D). All these results revealed that it could
be served as a potential predictor for OC patients.

Modeling the prognostic nomogram

Firstly, the independent prognostic factors were identified by
using the univariate and multivariant cox regression in the
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TCGA-RNA-Seq cohort. The univariate cox regression analysis
indicated that risk score (HR: 2.971; 95% CI: 1.718-5.136;
p<0.001), age (HR: 1.022; 95% CI: 1.010-1.035; p<0.001), stage
(HR: 1.380; 95% CI: 1.032-1.847; p=0.030) but not grade (HR:
1.226; 95% CI: 0.828-1.815; p=0.308) were associated with OS of
patients (Figure 5A). Multivariate cox analysis further proved
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that risk score (HR: 2.537; 95% CI: 1.443-4.461; p=0.001), age
(HR: 1.019; 95% CI: 1.007-1.032; p=0.003) and stage (HR: 1.377;
95% CI: 1.026-1.849; p=0.033) were independent prognostic
factors for OC patients (Figure 5A). Therefore, age, FIGO
stage and risk score were applied to build a decision tree with
five different risk subgroups (Figure 5B). The split at the top of
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the tree resulted in two large branches: the left-hand branch
included patients with early stage; the right-hand branch
corresponded to patients with advanced stage. The right
branch is further subdivided by age, stage and risk score.
Overall, the tree had five terminal nodes, leading to
partitioning OC patients in five subgroups. It worth
mentioning that compared to patients with younger age
(<50y), stage III and high-risk score (31% of overall samples),
patients with younger age (<50y), stage III and low-risk score
(9% of overall samples) showed higher alive probability (44% vs
59%). In order to make the signature more applicable in clinic, a
nomogram based on the predictors (including risk score, age and
FIGO stage) was established in the TCGA-RNA-Seq cohort
(Figure 5C). Calibration plots showed that the observed vs
predicted rates of 1-, 3- and 5-year OS showed perfect
concordance (Figures 5D-F). Moreover, the predictive
performance of the nomogram was evaluated by the ROC
curve. Compared to other predictors (including age and FIGO
stage), the model’s 5-year AUC values were higher in both
TCGA-RNA-Seq cohort and HG-U133_Plus_2 cohort
(Supplement Figure 2). KM survival plot analysis showed that
patients with high-risk had a worse OS than patients with low-
risk subgroup in both TCGA-RNA-Seq cohort and HG-
U133_Plus_2 cohort (p<0.001, p<0.001, respectively,
Figures 5G, H). These data confirmed that the nomogram had
a robust and stable ability to predict the OS for OC patients.

Association between the prognostic
signature and immune infiltration and
immunotherapy response

To explore the influence of risk score on immune infiltration
and immunotherapy response, the ESTIMATEscore,
ImmuneScore, PurityScore and StromalScore were calculated
to explain immune cell and stromal cell infiltration situation.
The correlation analysis results indicated that the risk score was
positively correlated with the ESTIMATEscore, ImmuneScore
and StromalScore, but negatively correlated PurityScore in
TCGA-RNA-Seq cohort (Figures 6A-D). The similar results
were validated in the HG-U133_Plus_2 cohort (Supplement
Figures 3A-D). After that, the distribution proportion of 22
immune cells in high-risk group and low-risk group were
analyzed. In TCGA-RNA-Seq cohort, the distribution
proportion of Macrophages cells was higher in high-risk group
than low-risk group, whereas the distribution proportion of
activated dendritic cells were significantly lower (Figure 6E).
In the HG-U133_Plus_2 cohort, not only Macrophages cells and
activated dendritic cells but also memory B cells, plasma cells,
CD4" T cells, Treg cells, NK cells, activated mast cells and
neutrophils were differently distributed in high-risk group and
low-risk group. (Supplement Figure 3E). Besides, the potential
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response to immunotherapy for each patient was assessed by
using the TIDE algorithm. The results suggested that patients
with low-risk score were more sensitive to immunotherapy than
those with high-risk score in TCGA-RNA-Seq cohort (p<0.001,
Figure 6F). Taken together, these results indicated that patients
with high-risk score might recruit multiple immune cells and
stromal cells and facilitate OC immune surveillance evasive.

Analysis the correlation between the risk
model and chemotherapy response

Until now, chemotherapy is the main treatment method for
OC patients. Therefore, we tried to identify the association
between the risk score and chemotherapy response in both
TCGA-RNA-Seq cohort and HG-U133_Plus_2 cohort
(Supplement Table 3). We revealed that a higher risk score
was associated with a lower IC50 of chemotherapeutics such as
paclitaxel (p<0.01), metformin (p<0.001) and veliparib
(p<0.001) in TCGA-RNA-Seq cohort (Figures 6G-I). In HG-
U133_Plus_2 cohort, the risk score was also confirmed to be
negatively associated with IC50 of paclitaxel (p<0.05),
metformin (p<0.001), and veliparib (p<0.05), whereas it was
positively associated with the IC50 of cisplatin (Supplement
Figures 3F-I), which indicated that the model acted as a potential
predictor for chemosensitivity.

Exploration of the five immune-related
IncRNA function

To further understand the function of the five immune-
related IncRNA, we constructed the co-expression network
between the five immune-related IncRNA and immune-related
mRNA. As shown in Figure 7A, CELSR3-AS1 and HIPK1-AS1
showed most connections with immune-related mRNAs. Besides,
GSEA analysis was performed to further explore and interpret the
enrichment results. The annotated top20 pathways were listed in
Figures 7B-F. As shown in the bubble charts, all the five IncRNAs,
especially TOPORS-AS1, were significantly associated with
immune-related pathways. UBXN10-AS1, TOPORS-ASI,
CELSR3-AS1 and CECR5-AS1 were significantly associated
with chemokine signaling pathway. Except that, TOPORS-ASI,
CECR5-AS1 and HIPK1-ASI participate in antigen processing
and presentation. In addition, the associations between IncRNA
expression and individual immune cell subtypes were computed
by Spearman correlation in TCGA-RNA-Seq cohort and HG-
U133_ Plus_2 cohort (Supplement Figures 4A, B). Moreover,
there is a significant difference in actin binding, adaptive of
immune response based on somatic recombination of immune
receptors built from immunoglobulin superfamily domains,
antigen receptor mediated signaling pathway and B cell
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Univariate and multivariate analyses revealed that risk score was an independent prognostic predictor in the TCGA-RNA-Seq cohort (A).
Construction of decision tree based on risk score, age and stage. The younger and older subgroup were divided based on the median value of
age (B). Construction of nomogram based on risk score, age and stage (C). Calibration plots of the nomogram for predicting the probability of
OS at 1, 3, and 5-years in the TCGA-RNA-Seq cohort (D—F); KM survival plot analysis showed that patients with high-risk had a worse OS than
patients with low-risk subgroup in both TCGA-RNA-Seq cohort and HG-U133_Plus_2 cohort (G, H).

activation between high-risk group and low-risk group in both
TCGA-RNA- seq cohort and the HG-U133_Plus_2 cohort
(Supplement Figures 4C, D). All these results indicated that the
five IncRNAs might affect immune infiltration and facilitate

ovarian cancer immune surveillance evasive by regulating

immune-related pathways in OC.
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Overexpression of UBXN10-AS1
suppressed cell proliferation and
migration in OC cell lines

To figure out the function of LncRNAs in OC, the expression
of IncRNAs in OC cell lines were detected. Due to the low
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abundance of CELSR3-AS1, CECR5-AS1 and HIPK1-AS1, they
were not detected in A2780, SKOV3, OVCARS and OVCARS8
cell lines. UBXN10-AS1 were more highly expressed in SKOV3
and A2780 cell lines (Figure 8A). Thus, the function of
UBXN10-AS]1, as the candidate gene, were further studies in
A2780 and SKOV3 cell lines (Figures 8B, C). CCKS8 assay
revealed that overexpression of UBXN10-ASI significantly
suppressed cell proliferation (Figure 8D). Besides, it could also
inhibit the cell migration of SKOV3 and A2780 (Figure 8E).
However, UBXN10-AS1 overexpression had no influence on cell
apoptosis (Figure 8F). All these results indicated that UBXN10-
AS1 might serve as a tumor suppressor in OC.

Discussion

Due to the heterogeneity of OC, it is difficult to blame it on a
single specific issue (56). Recently, gene signatures developed by
the combination of high-throughput sequencing technology and
bioinformatics have been widely used in individualized therapy
and prognosis evaluation, which have the better prediction
ability than a single biomarker (57). Multiple evidence
demonstrated that immune systems made an important
contribution to cancer initiation, development, metastasis, and
immune escape (58-60). Furthermore, more and more immune-
related IncRNAs signatures had been successfully developed and
had a perfect prediction accuracy for survival and prognosis in
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various tumors (61, 62). However, the prediction value of
immune-related IncNRAs signature in OC has not
been explored.

In our study, we firstly screened immune-related IncRNAs in
OC patients from the TCGA-RNA- seq dataset (n = 378) and the
HG-U133_Plus_2 dataset (n = 590) by using Pearson correlation
analysis. Afterwards, the prognostic significance of immune-
related IncRNAs were identified by using univariate cox
regression analysis. Finally, five immune-related IncRNAs
(including UBXN10-AS1, TOPORS-AS1, HIPK1-ASl1,
CELSR3-AS1 and CECR5-AS1) were demonstrated to serve as
prognostic biomarkers in both TCGA-RNA-seq dataset and the
HG-U133_Plus_2 dataset. Recently, it was reported that
overexpression of TOPORS-ASI suppressed cell proliferation
and inhibited aggressive cell behaviors, including migration,
invasion, and colony formation via inhibiting the Wnt/j3-
catenin pathway in ovarian cancer cells. Moreover, OC
patients with high TOPORS-ASI1 expression had favorable OS
compared to low expression, which was consistent with our
study (63). In gastric cancer, it was also proved that the
expression of TOPORS-AS1 and its associated gene, NDUFB6
in gastric cancer tissues were significantly lower than that in
adjacent tissues (64). All the evidence indicated that TOPORS-
AS1 might play important roles in carcinogenesis.
Unfortunately, the function of UBXN10-AS1, HIPK1-ASl1,
CELSR3-AS1 and CECR5-AS1 in OC have not been reported.
In colon adenocarcinoma, UBXN10-AS1 was expressed with low
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(F). *p<0.05; **p<0.01; ***p<0.001.

level and overexpression of UBXN10-AS1 suppressed tumor
growth in vivo and in vitro (65). The function of UBXN10-AS1
in OC has not been reported. Therefore, we explored the
function of UBXN10-AS1 in cell proliferation and migration
in SKOV3 and A2780 cell lines. The results indicated that
UBXN10-AS1 could significantly reduce cell proliferation and
migration in OC.

Furthermore, we constructed an immune-related IncRNA
prognostic signature to predict the OS. Based on the best cutoff
value of risk score, all patients were divided into high- and low-risk
groups. There was significantly different in OS between both high-
risk group and low-risk group. Stratified analysis results revealed
that the risk score was associated with age and FIGO stage. By using
multivariate cox regression, we demonstrated that risk score was an
independent prognostic factor for OC patients. In order to make the
signature more applicable in clinic, a nomogram was established.
Besides, the potential role of the immune-related signature in
immune infiltration and immunotherapy response were
investigated. The results indicated that various immune cells,
especially tumor associated macrophages (TAM:s), were differently
distributed in high-risk group and low-risk group. Previous study
reported that M2-like TAMs accelerated tumor growth, promoted
tumor cell invasion and metastasis, and inhibited immune killing to
promote tumor progression, which was consistent with our study
(66). Accumulating evidence demonstrated that immune systems
make a crucial contribution to the antitumor effects of conventional
chemotherapy-based and radiotherapy-based cancer treatments
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(67, 68). Furthermore, the association between risk model and
chemotherapy response were investigated. Our results suggested
that the risk model might serve as potential predictor for
chemosensitivity of various antitumor drugs, especially for
paclitaxel, metformin, and veliparib, which are commonly used in
treating OC patients.

In our study, both TCGA-RNA- seq datasets and HG-
U133_Plus_2 datasets were included. The sample size is much
larger than the studies before, which makes it more robust and
reliable. However, there are some limitations. Due to different
platforms, gene expression values are subject to sampling bias.
Additionally, the roles of the IncRNAs and their interactions
with immune-related genes are not confirmed using in vitro and
in vivo experiments.

In summary, we have constructed a novel immune-related
IncRNA signature, which have a potential prognostic value for
ovarian cancer patients and might facilitate personalized
counselling for immunotherapy and chemotherapy.
Prospective studies are needed to further validate its predictive
accuracy for estimating prognoses of ovarian cancer.
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E3 ubiquitin ligases (E3s), the second most common cancer-related functional
protein family, play vital roles in multiple tumors. However, their importance in
prognosis and immunotherapy of lung adenocarcinoma (LUAD) is not clear.
First, utilizing the data from The Cancer Genome Atlas (TCGA), we
comprehensively assessed the expression profile and immunological
association of 13 E3s in LUAD patients. Consequently, MARCH1 was
considered a candidate for further study. Second, several algorithms were
applied to assess the correlation between MARCH1 and immunological
characteristics in the LUAD tumor microenvironment. Third, an immune risk
score (IRS) was developed to predict the prognosis. Finally, the immunological
relationship of MARCH1 in pan-cancer was also estimated. We found that E3s
were disordered in LUAD. Among them, MARCH1 was positively correlated with
most immunological characteristics, indicating that MARCH1 designed an
infamed TME in LUAD. Coincidently, LUAD with low MARCH1 expression
had a poor prognosis and was not sensitive to immune checkpoint blockers.
In addition, the IRS could accurately predict the prognosis. In pan-cancer,
MARCH1 was also positively correlated with most immunological
characteristics. In conclusion, MARCH1 could be a novel and promising
biomarker for immune status and effectiveness of immunotherapy for
LUAD patients.
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Introduction

Lung adenocarcinoma (LUAD) is the dominating
pathological subtype of lung cancer, which is the deadliest and
second most prevalent cancer. Its incidence is still increasing
worldwide (1). Moreover, the therapeutic outcome is far from
satisfactory due to delayed diagnosis and limitation of
traditional treatments.

Tumor cells could be identified as abnormal substances and
eliminated by immune cells. Meanwhile, they have special
mechanisms to evade host immune surveillance (2).
Immunotherapy, with fewer off-target effects and longer-lasting
responses, could restore the patient’s immune system to kill tumor
cells through natural mechanisms and is rapidly becoming a focus
of oncology research (3). Recent cancer treatment applications of
immunotherapy include chimeric antigen receptor T cells, vaccine
therapy, and immune checkpoint blockers (ICBs) targeting
programmed cell death-ligand 1/programmed death protein 1
(PD-L1/PD-1) and cytotoxic T lymphocyte-associated protein 4
(CTLA-4) (4). In clinical application, the US Food and Drug
Administration (FDA) has approved several ICBs to treat non-
small cell lung cancer (NSCLC), melanoma, and some other
malignant tumors (5). Despite these encouraging results,
immunotherapy is only effective for a minority. Accumulated
evidence revealed that sensitivity to ICBs was strongly related to
tumor immune phenotypes, which were classified as inflamed/
infiltrated, immune-excluded, and immune-desert phenotypes
based on the T cells’ spatial distribution in the tumor
microenvironment (TME) (6). An inflamed TME always made
immunotherapy more effective than the other two phenotypes. It
was characterized by a high PD-L1 and PD-1 expression and a
high prevalence of tumor-infiltrating immune cells (TIICs) (7).
Consequently, the amount of TIILs and factors regulating the
immune cell infiltration, such as cytokines, chemokines, and other
components, is crucial for immunotherapy. Meanwhile, elements
of inflamed tumors included microsatellite instability (MSI) and
tumor mutational burden (TMB) (6, 8). Taken together, these
immunologic characteristics within the TME were vital to
immunotherapy. Therefore, a biomarker indicating the status of
the TME could predict the immunotherapy response.

Ubiquitination, one of the posttranslational modifications, is a
cascade that regulates protein degradation by ligating ubiquitin to
the target protein. Ubiquitin is activated by binding to ubiquitin-
activating enzymes (Els), subsequently transmitted to ubiquitin-
conjugating enzymes (E2s), and finally covalently ligated to a target
protein regulated by ubiquitin ligases (E3s) (9). Ubiquitination is an
essential system that regulates the stability of numerous pivotal
regulatory factors and cellular processes, covering cell cycle,
proliferation, apoptosis, and neurotransmission (10). It has been
observed to be dysregulated in many cancers (11).

E3s, of which there are about 1,000 members in Homo sapiens,
can be divided into four categories according to their functional
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domains: HECT domain-containing type, PHD-finger type, U-box
type, and RING-finger type proteins (12). Because of their
specificity for substrates, E3s are key regulators in the
ubiquitination process. Several immune processes have been
linked to their regulation, including immune evasion and antigen
presentation, T cell-mediated tolerance, and lymphocyte activation
and differentiation (13). Furthermore, ubiquitination of PD-1/PD-
L1 via E3s seriously alters the protein stabilization and dynamics of
PD-1/PD-LI in cancer immunotherapy (14). However, the
relationship between E3s and immunologic signatures in the
TME as well as their predictive value in prognosis and
immunotherapy efficacy in LUAD remains unknown.

Herein, we obtained 13 E3s, of which the significance in
immunity has been uncovered, and demonstrated the relationship
between the 13 E3s and immunologic characteristics in the TME.
Of interest, MARCH]1 was found to have a strong association with
the TME. To gain sufficient insight into the role of MARCHI in
LUAD and pan-cancer, we conducted a comprehensive analysis
on multiple levels containing mRNA expression, immune
signature, patient survival, and chemical compounds. We also
established a risk model to predict prognosis and immunotherapy
response. Collectively, our systematic analysis provides a
comprehensive insight on the biology of MARCHI, which has
greater potential value on immunotherapy targets than other E3s.

Materials and methods
Data acquisition

All data, including the pan-cancer RNA sequencing data,
somatic mutation data, and detailed clinical data, were acquired
from The Cancer Genome Atlas (TCGA) database using UCSC
Xena. TMB was calculated with somatic mutation data. MSI data
were collected from the study of Bonneville et al. (15).

Expression profiles of E3 ligases

First, the expression profiles of the 13 E3s in tumor tissues
and paracarcinoma tissues from LUAD patients were analyzed
using the RNA sequencing data. Then, in pan-cancer, differences
in MARCH]1 level between tumor and paracarcinoma tissues
were computed via “limma” R package (false discovery rate
<0.05, [log,FC| >1).

Correlation between MARCH1 and the
immunological characteristics in the TME

The characteristics contain the expression level of

immunomodulators (16), the expression of immune checkpoints,
the infiltration level of TIICs, and the cancer immunity cycle’s
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activity. The activities of these cancer immunity cycle steps were
evaluated by single sample gene set enrichment analysis (17). The
association between MARCHI1 and immune checkpoints,
mismatch repair (MMR) protein was analyzed via the Spearman
correlation coefficients pan-cancer.

Association between MARCH1 and
therapeutic signatures

We summarized the therapeutic signatures from previous
studies. Then, their enrichment scores (ESs) were computed via
the gene set variation analysis R package. The LUAD-linked
drug-target genes were filtered out in the DrugBank database.
Their levels were compared between low- and high-
MARCHTI group.

Screening of immune-related
differentially expressed RNAs

Considering the median of MARCH1 mRNA expression,
immune score, and stromal score, the latter two computed via
the ESTIMATE R package, LUAD cohorts were parted into
corresponding low and high groups. Differentially expressed
RNAs (DERs) were identified via the limma R package. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGQG) analyses were calculated by ClusterProfiler R package.

Establishment of an immune risk score

With a ratio of 7:3, TCGA-LUAD patients were separated
into training and validation sets. Univariate Cox analysis was
executed in the training set to identify the correlation between
DERs and survival. Then, the immune risk score (IRS) was
developed via least absolute shrinkage and selector operation
(LASSO)-multivariate Cox regression (IRS = ¥ ffi = RNAi Bi: the
coefficient of the T'th IRS RNA expression profile). Referring to
the median IRS, patients fell into low and high groups, and their
overall survival (OS) was compared by the Kaplan-Meier
method and the log-rank test. Furthermore, the IRS was
validated in the validation set.

Survival analysis in pan-cancer
To demonstrate the links between MARCH1 expression and

OS, survival analysis was carried out in TCGA using the
“survival” package in R (18).
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Statistical analysis

All statistical analyses were executed utilizing the R software
v4.0.3. Correlation between certain variables was gauged using
Pearson coefficients. Statistical significance was computed by the
log-rank test and defined as p < 0.05.

Results

Landscape, prognostic value, and
immunological correlation of E3s
in LUAD

We obtained the expression of the 13 E3s in LUAD from
TCGA database. After a comprehensive analysis, we found that
the expressions of CBLB, FBXW7, HUWEI, ITCH, SIAH2,
STUBI, SYVNI1, TRM2B, and UBR5 were significantly
upregulated; MARCHI1, RNF128, and TRAF6 were significantly
downregulated; and ASB2 had no obvious difference between
tumor and paracarcinoma (Figure 1A).

Our goal was to determine the immunological roles of E3s in
LUAD. The results uncovered that E3s had a negative or positive
correlation with most immunomodulators and TIICs. Among
them, MARCH]1 and ASB2 were positively correlated with most
immunomodulators and all of the TIICs in this analysis
(Figures 1B, C). ASB2 expression was correlated with PD-L1,
PD-1, CTLA-4, and LAG-3. Simultaneously, MARCH1
expression was correlated with PD-L1, PD-1, and CTLA-4
(Figures 1D-G).

These factors, which are crucial for immunotherapy, were
positively linked to MARCHI1 expression and were more potent
than those of other E3s. Moreover, tumor tissue showed a
downregulation of MARCHI1. We concluded that the
downregulation pattern of MARCHI may be TME specific,
indicating the potential of MARCH] to be a target to improve
LUAD immunotherapy. Hence, MARCHI1 was regarded as a
candidate gene for further study based on its significance in
determining prognosis and immune response.

MARCH1 shapes an inflamed TME
in LUAD

As shown in Figure 2A, MARCHI was positively related to
plenty of immunomodulators. Specifically, many major
histocompatibility complex molecules (MHCs) were repressed
in the low-MARCH1 group. C-X-C motif chemokine ligand
(CXCL)9 and CXCLI10, two key chemokines promoting the
infiltration of CD8+ T, were downregulated in the low-
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FIGURE 1

MARCH]1 group. In addition, chemokines, such as C-C motif
chemokine ligand (CCL)2-5, CCL19, CXCL11, and their
corresponding receptors were positively related to MARCHI.
In the low-MARCHI1 group, activities of most of the steps (Steps
1-5) of the cycle were significantly decreased, indicating a
reduced level of TIICs. Of interest, the activities of Steps 6 and
7 were downregulated in the high-MARCH1 group (Figure 2B).
Furthermore, the infiltration level of TIICs was assessed. As
anticipated, MARCH1 had a positive correlation with the
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Correlation between E3 ligases (E3s) expression and immunological status in lung adenocarcinoma (LUAD). (A) The expression pattern of E3s in
tumor and paracarcinoma tissues from TCGA database. (B) Relation between E3s and immunomodulators. (C) Relation between E3s and tumor-
infiltrating immune cells (TIICs). (D—G) Relation between E3s and four immune checkpoints. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

effector genes of T helper 1 cells, natural killer cells,
macrophages, dendritic cells, and CD8+ T cells (Figure 2C).
The results also showed that MARCH1 was positively related to
numerous immune checkpoints (Figure 2D).

In the IMvigor210 cohort, MARCHI expression was
gradually increased from the desert, excluded, to inflamed
tumor immune phenotypes. Moreover, in the groups classified
based on PD-L1 (TC0, TC1, TC2) or PD-1 expression (IC0, ICI,
IC2), MARCH]I expression was highest in the groups with the
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FIGURE 2

MARCH]1 created an infiltrated tumor microenvironment (TME) in LUAD. (A) Expression of four types of immunomodulators in low- and high-
MARCHT1 groups. (B) Activity of cancer immunity cycle in low- and high-MARCH1 groups. (C) Expression of TIICs' effector genes in low- and
high-MARCH1 groups. (D) Relevance between the expression of MARCH1 and immune checkpoints. (E) MARCH1 expression in the three immune
phenotypes. (F) Expression of MARCHL1 in four types of clinical outcome of immunotherapy. (G, H) Expression of MARCHL in different cohorts
grouped by PD-L1 or PD-1 expression. (I) The ESs of pathways for immunotherapy prediction in low- and high-MARCH1 groups. *p < 0.05; **p <

0.01; ***p < 0.001. ns, no significance.

highest PD-L1/PD-1 expression (TC2 and IC2, respectively)
(Figures 2E, G, H). Taken together, MARCHI was strongly
linked with the immune phenotype of the TME.

MARCH1 predicts the clinical response to
ICB and other therapeutic options
in LUAD

From the results above, MARCHI1 shaped an inflamed TME

in LUAD patients, so patients with higher MARCHI1 expression
ought to be more sensitive to ICBs. Therefore, we further
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compared the outcome of LUAD patients with distinct
MARCHI expressions. The result showed that MARCHI1
expression was significantly higher in patients with complete
response to immunotherapy compared to those patients with
progressive and stable disease (Figure 2F). Positive correlation
also existed between MARCHI1 and the ESs of three
immunotherapy-positive gene signatures: IFN-y signature,
APM signal, and proteasome signal (Figure 2I). In addition,
MARCH]1 had a positive correlation with most individual genes
of the T cell inflamed signature (Figure 3A). However, there was
no discernible difference in the ESs of the therapeutic targets
between low- and high-MARCHI1 groups, except for the
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peroxisome proliferator-activated receptor gamma (PPARG)
network and WNT-[-catenin network, which were both
higher in the former group (Figure 3B). Analysis of the
association between MARCHI and drug-targeted genes
unveiled an obviously higher sensitivity to specific targeted
therapies and immunotherapies in the high-MARCHI1 group
(Figure 3C). In a word, ICB could apply to LUAD patients with a
high MARCH]1 level but not those with a low MARCH1 level.

Immune-related DER identification

In total, 246 common DERs with prognostic significance
were screened out (Figure 4A). Notably, there was no overlap
among downregulated DERs in the low-MARCHLI, high-stromal
score, and immune score group. Likewise, no intersection was
found among downregulated DERs in the high-MARCH1, low-
stromal score, and immune score group (Figures 4D, E). It
indicated that MARCHI expression positively related to stromal
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score and immune scores in the LUAD TME. Furthermore, GO
and KEGG analyses revealed that these DERs were involved in
immune-related processes (Figure 4).

IRS establishment and validation

According to univariate Cox analysis, 102 DERs had
prognostic values. Among them, seven DERs with minimal A
(0.04141) were considered as the best candidates via the LASSO
algorithm (Figures 5A-C). Then, a multivariate Cox regression
analysis was performed to develop an IRS according to the seven
DERs. Considering the IRS median, 350 patients from TCGA
training set were sorted into low- (n = 175) and high-IRS groups
(n = 175). The result showed that patients from the low-IRS
group had remarkably longer OS than those from the high-IRS
group. At 1, 3, and 5 years, the AUCs of the IRS were all more
than 0.6 (Figure 5D). Furthermore, verification of the prediction
accuracy in TCGA validation set displayed that the AUCs of the
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Immune-related differentially expressed RNAs (DERs). (A—E) Intersection between DERs in different immune/stromal score groups and different

MARCH]1 groups. (F-1) GO and KEGG analyses of the DERs.

IRS in the validation and training sets were very similar
(Figure 5E). Taken together, this model could steadily predict

the prognosis.

MARCHL1 expression profiles and
the correlation with prognosis in
pan-cancers

To clarify the expression profile of MARCHI in pan-cancer,
MARCHLI levels between tumor and paracarcinoma tissue were
compared in 33 cancers. MARCH1 expression was significantly
upregulated in breast cancer (BRCA), cervical squamous cell
carcinomas (CESC), cholangiocarcinoma (CHOL), esophageal
carcinoma (ESCA), head and neck squamous cell carcinoma
(HNSC), kidney chromophobe (KICH), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma
(KIRP), and stomach adenocarcinoma (STAD). Meanwhile,
MARCH]1 expression was significantly decreased in colon
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adenocarcinoma (COAD), LUAD, lung squamous cell
carcinoma (LUSC), prostate adenocarcinoma (PAAD), and
rectum adenocarcinoma (READ) (Figure 6A).

In pan-cancer, the significance of MARCHI in prognosis
was analyzed. The result revealed that a high expression of
MARCH]1 was always linked with a better OS in lower grade
glioma (LGG), LUAD, and skin cutaneous melanoma (SKCM)
(Figure 6B). OS curves in different cancers showing significant
differences between high- and low-MARCHI1 groups are
exhibited in Figures 6C-E.

Genome-wide relation of MARCH1
expression in pan-cancer

The association between MARCH]1 and genomic signatures

(DNA methylation, somatic copy number, somatic mutation,
protein level) was explored via the Regulome Explorer web tool.
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FIGURE 6

Expression profile and prognosis in pan-cancer. (A) MARCH1 expression levels in different types of cancer. (B) Relation between MARCH1 expression
and prognosis in pan-cancers. (C—E) OS curves with significance in three types of cancer (LGG, LUAD, and SKCM). *p < 0.05; **p < 0.01; ***p < 0.001.

Circus plots illustrated that genome-wide correlations existed in
many cancers. Figure 7 displays the particulars.

Correlation between MARCH1
and immunological characteristics
in pan-cancer

We analyzed the associations between MARCHI1 expression
and immunomodulators, the abundance of TIICs in pan-cancer.
The result displayed that MARCHI had a positive correlation
with most immunomodulators and TIICs in pan-cancer, except
in KICH and LGG (Figures 8A, D). Furthermore, we found
correlations between MARCHI1 expression and confirmed
immune checkpoints. MARCHI was also discovered to have a
significant positive correlation with large numbers of immune
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checkpoints in pan-cancer excluding KICH and LGG
(Figure 8B). The correlations between MARCHI expression
and five vital MMR signatures, EPCAM, MLH1, MSH2, MutS
MSH®6, and PMS2, were also detected. The result revealed that
MMR signatures, except EPCAM, were positively associated
with MARCHI1 expression. MARCHI1 expression and TMB
also had a significant positive association in COAD and
ovarian serous cystadenocarcinoma (OV) and a significant
negative association in CHOL (Figure 8E). MARCHI1
expression was non-significantly correlated with MSI in most
types of cancer. However, in COAD, acute myeloid leukemia
(LAML), and READ, a higher level of MARCHI meant
significantly higher MSI, while in diffuse large B-cell
lymphoma (DLBC), KIRP, LUAD, LUSC, SKCM, and
testicular germ cell tumors (TGCT), the opposite trend was
observed (Figure 8F).
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Circus plots displayed the relationship between MARCH1 and other genomic signatures.

Discussion

Accumulating evidence shows that E3s are strongly related
to cancer immunity (19-22). Nonetheless, their value in
prognosis and immunological prediction remains unclear.
Hence, we selected 13 E3s that have been reported to be
related to the immune system to identify a novel and robust
marker that could predict the immunotherapy response.

Dysregulation of E3s is frequently observed in numerous
cancers and aids tumor cells evading the immune system (13,
22). Consistently, in this study, 12 out of the 13 E3s were
significantly upregulated or downregulated in tumor tissue
from LUAD patients (Figure 1A). This situation further
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implied that E3s play crucial roles in cancer. Considering their
function in cancer immunity, the associations between E3s and
immunomodulators, immune cells, and immune checkpoints in
the TME were analyzed. The results revealed correlations
between E3s and most of these immune-related factors.
Among those E3s, MARCHI1 expression had a positive
correlation with most of the immunomodulators, immune
cells, and checkpoints in LUAD and many other cancers
(Figures 1B, C; 8A, B, D). Therefore, MARCH1 was regarded
as a candidate gene for immunotherapy response prediction.
Accurate prediction of the immunotherapy sensitivity could
guide the clinical treatment of cancer. Some recognized
biomarkers, such as TMB and MMR defects, have been used
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to predict immunotherapy sensitivity (23, 24). Previous studies
have discovered that MMR is essential for identifying and
repairing mismatched bases during DNA replication (25).
Therefore, DNA MMR deficiency typically generated high
TMB (26) and MSI (27). They contribute to tumor initiation
and are independent predictors of ICB efficacy (25). Recent
studies concentrated on discovering more precise, convenient,
and economical molecular techniques for clinical applications
through the development of personalized medicine in a variety
of solid tumors. Consequently, there is an urgent need to search
for additional biomarkers that can aid clinical immunotherapy.
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However, there are still no signatures to accurately predict
immunotherapy sensitivity.

In this study, we separated the LUAD patients into two
groups depending on their level of MARCHI expression: low-
and high-MARCHI1 groups. Interestingly, the expression of
most immunomodulators, activities of cancer immunity cycle
steps, and ESs of some predictable pathways were elevated in the
high-MARCH1 group (Figures 2A, B; 3D). The cancer immunity
cycle is the procedure of the immune response to tumor cells.
The activities of these steps comprehensively determine the
antitumor effect of the complicated immunomodulatory
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interplays in the TME (16). In this study, we discovered that
MARCHLI was positively associated with nearly all steps (except
killing of cancer cells) of the cancer immunity cycle.
Upregulation of immune checkpoints, including PD-L1/PD-1,
is also an important characteristic of the inflamed TME, which is
triggered by preexisting TIICs in the TME (28). ICBs that target
these immune checkpoints have provided LUAD patients with
the potential for therapeutic effect and survival. Interestingly, we
found that the MARCHI expression level was positively
correlated with the expression of immune checkpoints and
TIICs. Moreover, there is relevance between MARCH]1
expression level and tumor immunotype. The MARCH]I
mRNA level ranged from low to high in desert, excluded, and
inflamed immune phenotypes (Figure 2E). We also established
an IRS for prognosis prediction on the basis of immune-related
DERs. Moreover, the IRS model was validated well in the
internal validation cohort. In summary, both MARCHI1 and
IRS may serve as prognostic biomarkers, which robustly
illustrate the importance of MARCHI in prognosis.
Furthermore, MARCHI can also predict the ICB response and
define an inflamed TME. High MARCHI expression always
meant that LUAD patients were sensitive to ICBs. However,
MARCHI was negatively correlated with TMB and MSI in
LUAD (Figure 8C). This contradictory relationship may
interpret why TMB and MSI could not always predict the
response to ICBs properly. Therefore, we reckoned that the
combination of several signatures to predict the sensitivity to
ICBs might be a more accurate way. MARCHI1 has displayed its
powerful modulation in the immune system via controlling
stability and transforming of some key immunoreceptors, such
as the antigen presenting molecule MHC II and costimulatory
molecule CD86 (29). Researchers are currently focusing little on
the cancer biology of MARCHI in certain cancers. MARCHI
could inhibit tumor cell growth in vivo and in vitro in bladder
cancer. Meanwhile, ciRs-6 could increase the expression of
MARCHLI via sponging miR-653 (30). However, Ying Meng
et al. discovered that tumor tissue overexpressed MARCHI
relative to paracarcinoma tissues in ovarian cancer (31).
Furthermore, the silencing of MARCHI1 could restrain the
proliferation, migration, and invasion of tumor cells via Wnt/
[-catenin and nuclear factor-kB pathways (31). Xie L et al. (32,
33) declared that MARCHI1 could also provoke tumor
progression in hepatocellular carcinoma via PI3K-AKT
pathway. Collectively, MARCHI1 functions differently
depending on the type of cancer. This study revealed that
MARCHI1 was upregulated in some types of cancer and
downregulated in others. In most cancers, excluding LGG and
KICH, MARCHI expression was positively associated with most
immunomodulators, checkpoints, and infiltrating immune cells
(Figures 8A, B, D). Therefore, the role of MARCHI in pan-
cancer requires further investigation. In LUAD, we found that
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MARCH1 expression was positively correlated with the
abundance of different kinds of TIICs, including activated
CD4+ and CD8+ cells. Activated CD4+ and CD8+ T cells
could kill tumor cells. In addition, CXCL9 and CXCL10, two
key chemokines, could recruit CD8+ T cells into the TME (16)
and were upregulated in the high-MARCHI1 group (Figure 2A).
Collectively, we speculated that MARCH1 may regulate CD8+ T
cell recruitment to shape an inflamed TME.

As demonstrated previously, MARCHI1 expression is
essential for immunotherapy responses. However, MARCHI is
suppressed in LUAD tumor tissue, while the factors that regulate
MARCH] transcription are unknown (34). Therefore, the
mechanism by which MARCHI affects cancer immunity and
regulation of MARCHI expression merit additional research. In
addition, LUAD with low MARCH]1 expression was insensitive
to ICBs. Therefore, it is imperative to seek superior treatment
options for LUAD patients expressing low levels of MARCHI.

The research on MARCHI in cancer immunity is poor. This
study firstly demonstrated the role of MARCHI in prognosis
and TME shaping. It also revealed the overall correlation
between MARCHI1 and immunological characteristics and
filled up the gap in this field. MARCHI is a novelty and
robust biomarker to predict the response to immunotherapy
and some targeted therapy. It provides a theoretical basis for
combined therapy. Additionally, MARCH1 may promote
infiltration of CD8+ T cells to shape an inflamed TME and
further affect immunotherapy sensitivity. It provides a direction
for future research.

There were also limitations in this study. Firstly, clinical and
animal studies are necessary to validate the expression profiles of
MARCH1 and the correlation between MARCHI1 and
immunological characteristics. Secondly, the optimal cutoff
value for grouping the MARCHI1 expression must be
determined. Thirdly, more cohorts should be used to validate
the results to reduce the batch effects.

Conclusions

This study demonstrated that MARCHI1 could shape an
inflamed TME and predict the prognosis and immunotherapy
sensitivity in LUAD. Therapies that target its regulator to
upregulate the expression of MARCHI1 may be an efficient

means of improving immunotherapy.
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Background: Accumulating evidence has highlighted the significance of
chromatin regulator (CR) in pathogenesis and progression of cancer.
However, the prognostic role of CRs in LUAD remains obscure. We aim to
detect the prognostic value of CRs in LUAD and create favorable signature for
assessing prognosis and clinical value of LUAD patients.

Methods: The mRNA sequencing data and clinical information were obtained
from TCGA and GEO databases. Gene consensus clustering analysis was
utilized to determine the molecular subtype of LUAD. Cox regression
methods were employed to set up the CRs-based signature (CRBS) for
evaluating survival rate in LUAD. Biological function and signaling pathways
were identified by KEGG and GSEA analyses. In addition, we calculated the
infiltration level of immunocyte by CIBERSORT algorithm. The expressions of
model hub genes were detected in LUAD cell lines by real-time polymerase
chain reaction (PCR).

Results: KEGG analysis suggested the CRs were mainly involved in histone
modification, nuclear division and DNA modification. Consensus clustering
analysis identified a novel CRs-associated subtype which divided the combined
LUAD cohort into two clusters (C1 = 217 and C2 = 296). We noticed that a
remarkable discrepancy in survival rate among two clusters. Then, a total of 120
differentially expressed CRs were enrolled into stepwise Cox analyses. Four hub
CRs (CBX7, HMGA2, NPAS2 and PRC1) were selected to create a risk signature
which could accurately forecast patient outcomes and differentiate patient risk.
GSEA unearthed that mTORC1 pathway, PIZK/Akt/mTOR and p53 pathway
were greatly enriched in CRBS-high cohort. Moreover, the infiltration
percentages of macrophage MO, macrophage M2, resting NK cells, memory
B cells, dendritic cells and mast cells were statistically significantly different in
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the two groups. PCR assay confirmed the differential expression of four model

biomarkers.

Conclusions: Altogether, our project developed a robust risk signature based
on CRs and offered novel insights into individualized treatment for LUAD cases.

KEYWORDS

lung adenocarcinoma, chromatin regulator, prognosis, risk signature, immune

microenvironment

Introduction

Lung cancer (LC) is the major cause of death for men and women
with tumor, representing approximately 18% of all cancer deaths
worldwide (1). Up to 90% of LC cases are non-small cell lung cancer
(NSCLC), including both lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC) histological subtypes, with LUAD
occurring most frequently (2). Despite recent advances in clinical
treatment, the prognosis for LUAD remains dismal, with a 5-year
survival rate of only 19%. With the advent of aging and air pollution
in developing countries, the incidence of LUAD remains high and
early diagnosis of LUAD becomes essential (3). Unfortunately, we
still have limited availability of accurate biomarkers for early
diagnosis and individualized treatment of LUAD.

Tumor microenvironment (TME) is the internal environment
for tumor cell production and survival, and its cellular components
include resident stromal cells and recruited immunocytes in
addition to tumor cells (4). TME plays an important role in the
tumor growth, metastasis, angiogenesis and treatment resistance
and has also a crucial impact on prognosis (5). Therefore,
systematic exploration of TME is helpful to clarify the
mechanism of tumor occurrence and individualized treatment.

Epigenetic modification is a reversible and heritable process
of gene expression in the absence of DNA sequence changes. It is
one of the critical regulatory mechanisms at the post-
transcriptional level of genes by chromatin regulators (CRs),
mainly including DNA methylation, histone modifications,
chromatin remodeling and RNA regulation (6). CRs-mediate
epigenetic modification regulates the activation of heterozygous
promoters or the activity of repressors and trigger changes in
gene transcription levels, resulting in cell differentiation,
abnormal proliferation and tumorigenesis (7).

Numerous studies have demonstrated that CRs are tightly bound
up to the patient outcomes of LC HMGAL1, a chromatin remodeler,
has been reported to be involved in DNA transcription, replication
and repair. Saed and his colleagues have observed that HMGA1
presented higher expression in lung cancer specimens and
overexpressed HMGALI lead to dismal prognosis of LUAD (8).
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Moreover, HMGA1 was proved to facilitate LUAD cell
proliferation and migration through GRP75-induced JNK pathway
(9). EZH2, belonging to the polycomb-group (PcG) family, has been
reported to be greatly overexpressed in lung specimens, and
upregulation of EZH2 predicts dismal survival of NSCLC (10).
Geng and his colleagues indicated EZH2 enhances the growth and
metastasis of lung cell by Akt pathway (10). RAD51 is well known for
its important role in homologous recombination. RAD51 has shown
tobe upregulated in KRAS mutant lung cancer and could regulate cell
survival by enhancing DNA damage repair (11). However, the
expression patterns and prognostic value of CRs in LUAD remain
largely unknown.

In this academic research, we determined CRs with powerful
prognostic values in LUAD and created a risk signature for clinical
outcome assessment and immune status prediction of LUAD cases.

Methods
Data collection and processing

We obtained the RNA sequencing (RNA-seq) data of 535
LUAD patients and 59 normal controls and their corresponding
clinical features from TCGA database (https://portal.gdc.cancer.
gov/) to construct the prognostic signature. The transcription
profiling data was downloaded from GEO dataset and was
utilized as the validate set.

Determination of differentially expressed
CRs

A total of 870 CRs were retrieved from previous research (6).
The gene information of all CRs summarized in Supplementary
Table S1. The differentially expressed genes (DEGs) between
normal and LUAD tumor tissues were determined using the
limma R package with a criteria P value<0.05 (12). The generated
DEGs and CRs gene sets were subsequently intersected to obtain
differentially expressed CRs (DECRs).
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Function and pathways enrichment
analyses

GO and KEGG enrichment analysis was conducted to obtain
the insight into the biological functions and potential pathways
of DECRs. Terms with p< 0.05 were listed and visualized using
the “clusterProfiler” R packages (13).

Integration of protein—protein
interaction (PPI) network

A protein-protein interaction network (PPI) was developed
and visualized using the STRING online database (https://cn.
string-db.org/) and the Cytoscape (https://cytoscape.org/),
respectively (14, 15). Further, the cubHubba plugin in
Cytoscape software was used to filter hub genes of the PPI.

Gene consensus cluster analysis

The consensus cluster analysis was conducted using the
“ConsensusClusterPlus” R package, based on the combined
LUAD cohort (16). To identify the optimal cluster value, we
calculated the Delta area and the cumulative distribution function
(CDF). Survival analysis was carried out to compare clinical
prognoses between different subtypes using “survival” R package.

Construction of the risk signature

Subsequently, Cox regression analyses were performed to
obtain candidate CR with remarkable prognostic value. The
n
formula was set up: Risk score = >'(coef x Exp;). “Coef” was
i=1
defined as the corresponding regression coefficient value, and
“Exp” was the expression level of genes in the prognostic model.
All patients were divided into low- and high-risk groups
according to the median score.

Gene set enrichment analysis (GSEA)

We performed GSEA analysis, including GO and KEGG
analysis based on CR related DEGs to identify the potential
biological and functional differences of different hierarchical

clustering (17). A function term with an adjusted p-value<0.05
and a false discovery rate (FDR)<0.25 was considered enriched.

Estimate of immune infiltrating status

CIBERSORT tool (https://cibersortx.stanford.edu/index.
php) was employed to quantify the infiltration status of 22
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types of immunocyte fractions in the two LUAD subgroups.
P< 0.05 was defined as statistically significant.

Single-cell sequencing analysis

We utilized the Seurat clustering to analyze the single-cell data
acquired from the GEO databases. The UMAP dimensional
reduction and the t-Distributed Stochastic Neighbor Embedding
(tSNE) method, were employed to visualize the gene expression and
distribution in dataset GSE131907. Next, the cells were re-clustered
with the “SingleR” packages to demonstrate the feature genes of
different cell types.

Validation of the model CRs

To detect the expression pattern of a model gene at the
mRNA level, GEPIA2 tool was applied. Human Protein Atlas
(HPA, https://www.proteinatlas.org/) database was utilized to
confirm the protein level of our model genes between LUAD and
normal control (18).

Somatic mutation and stem cell
characteristics analyses

The somatic mutation data were obtained from TCGA
Portal and processed to compare the tumor mutation burden
(TMB) in two groups. The mRNAsi is a quantitative index
reflecting cancer cells calculated based on gene profiles; The
mRNAsi and TMB differences in two subgroups were compared
using the independent-samples t-test.

Cell culture

Two human LUAD cell lines (A549 and NCI-H460) and a
normal human lung epithelial cell line (BEAS-2B) were
purchased from American Type Culture Collection. All cell
lines were cultured in RPMI 1640 medium (Sigma) containing
10% fetal bovine serum (Gibco) and 1% antibiotics (100 U/ml
penicillin G and 100mg/ml streptomycin) at 37°C in a
humidified chamber containing 5% CO?2.

RNA extraction and quantitative real-
Time PCR

Total cell RNA was extracted by RNA isolation reagent
(Takara), then reversed into cDNA by PrimeScript Mix
reagent (Takara). SYBR Green Premix (Vazyme biotech) was
utilized for PCR reaction system. The value of individual genes
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was standardized to GAPDH expression level. Supplementary
Table S2 displays primer sequences of all genes.

Statistical analysis

All statistical data in the present project was analyzed by R
version 4.0.5 and GraphPad Prism 9. The Kaplan-Meier (KM)
analysis was employed to assess the prognostic value of the
signature. Moreover, we plotted the receiver operating
characteristic (ROC) curve over time to evaluate the prognostic
efficacy of the signature.

Results

Characterization of chromatin regulators
in LUAD

We first collected 4846 DEGs between LUAD samples and
normal cases. A total of 120 DECRs were obtained by taking the
intersection of CRs and DEGs gene lists (Figure 1A). Then, GO
analysis was employed to detect the underlying function of

CRs

DEGs

FIGURE 1

genes of DECRs-based PPl network.
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DECRs. The result disclosed that these genes were mainly
enriched in histone modification and DNA modification
(Figure 1B). Next, we generated a PPI network to explore the
protein interaction among 120 DECRs (Figure 1C). Based on the
MCC algorithm, the top ten hub genes were selected to set up a
hub network, including CHEKI1, CDK1, TOP2A, CDCé,
UHRF1, AURKB, PBK, BUBI, TTK and RAD54L (Figure 1D).

Chromatin regulators-based consensus
cluster analysis

TCGA-LUAD and GSE14520 were combined into one
LUAD cohort (n
analysis to develop a CR-related molecular subtype of LUAD.

609). We applied consensus cluster

The result suggested the entire dataset could be well divided
into two subtypes based on the 120 DECRs when k = 2 by
increasing the clustering variable (k) from 2 to 9 (Figures 2A-C).
PCA analysis shows that DECRs can clearly distinguish two
subgroups for clustering analysis (Figure 2D). There were
remarkable discrepancies in survival rates among the two
clusters (Figure 2E). To evaluate the TME status of two
clusters, ESTIMATE algorithm was conducted. As suggested in
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Figure 2F, cluster A presented higher stromal score and immune
score than that cluster B. In addition, we observed that B cells, T
cells, NK cells, dendritic cells and Macrophages showed the most
notable difference among the two clusters (Figure 2G).

Construction of the CRBS

To develop an optimal prognostic signature, TCGA-LUAD
cohort was selected as the training set. Univariate Cox regression
was first employed to determine possible CRs with significant

consensus CDF

Delta area

10.3389/fonc.2022.1031728

prognostic values (Figure 3A). Subsequently, 12 candidate genes
were enrolled into multivariate Cox analysis to create a CRBS
that included four risk CRs (Figure 3B). The risk formula was
shown as follows: (0.1082 x HMGA2) + (0.3525 x NPAS2) +
(0.1909 x PRC1) + (-0.2416 x CBX7). Survival curves illustrated
that CBX7 was a potential favorable indicator, and HMGA2,
NPAS2 and PRC1 were risky candidate indicators (Figure 3C).
Then, we detect the expression differences of four CRs according
to TCGA-LUAD dataset. All four CRs were greatly dysregulated
between LUAD cases and control samples (Figure 3D).
Furthermore, we validated the expression patterns of four
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model genes by qRT-PCR in cell lines. Consistent with the above
bioinformatics analysis results, we noticed that CBX7 was
downregulated in LUAD cell lines (A549 and HCI-H1975),
and HMGA2, NPAS2 and PRC1 were overexpressed in LUAD
cell lines compared to BEAS-2B (Figure 3E). Consistent with the
above results, we detected the expression patterns of four CRs at
IHC level based on HPA database (Figure 3F).

Verification of the CRBS

Figure 4A demonstrated that survival rates are lower in CRBS-
high group compared to CRBS-low group in the training set. The
AUC (area under the curve) values of 1-, 3-, and 5-year survival
rates assessed by the CRBS were 0.729, 0.662, and 0.634, respectively
(Figure 4B). Figure 4C summarizes the positive correlation between
surviving cases and risk score. Moreover, we observed a similar
trend of results in the test set, suggesting the favorable prediction
ability of the CRBS (Figures 4D-F). To further unearth the
independence of our model, univariate and multivariate Cox
regression analyses were employed. Univariate analysis indicated
that the risk score was an independent indicator for prognosis in
both two datasets (Figures 4G, I). The multivariate method
disclosed that risk score was independently associated with the
dismal outcome of LUAD cases (Figures 4H, J). At the same time,
we explore the performance of the CRBS based on a diversity of
clinical subgroups. The results revealed that low risk score was
correlated with favorable outcomes in different ages, genders, T
stage and N stage cohorts (Figures 5A-D). Similarly, the good
prediction capability of the CRBS was confirmed in the T stage and
N stage subgroups (Figures 5E, F).

Single-cell sequencing analysis

To decipher the single-cell transcriptome dataset
GSE131907, Seurat package was performed. The UMAP
analysis suggested the distribution of the 22 LUAD samples
(N = 11 and T = 11) with no remarkable batch effects
(Figure 6A). All the cells were divided into 12 clusters the
through k- Nearest Neighbor (KNN) clustering algorithm
(Figure 6B). After performing cell annotation by different cell
surface markers, we obtained eight cell subtypes, including B
lymphocytes, endothelial cells, epithelial cells, fibroblasts, mast
cells, myeloid cells, NK cells and T lymphocytes (Figure 6C).
Next, we investigate the location of four CRs at single-cell
transcriptome level. In Figure 6D,

HMGA?2 and NPAS2 are mainly located in endothelial cells,
and PRCI and CBX7 are mainly located in NK cells and T
lymphocytes. In addition, we noticed that the expression of CBX7
was negatively correlated with endothelial cells, whereas NPAS2 was
positively correlated with endothelial cells (Figure 6E).
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GSEA determines CRBS-associated
pathways

In Figure 7A, the top six cancer hallmarks were remarkably
enriched in the CRBS-high group, including glycolysis, hypoxia,
mTORCI pathway, MYC target, PI3K/Akt/mTOR and unfolded
protein response. In terms of the KEGG analysis, we observed
that CRBS-high group was involved in the cell cycle, p53
pathway and ubiquitination response (Figure 7B).

Immune environment analysis

To depict the immune landscape of LUAD, we evaluated the
immunocyte infiltration of each case. Figure 8A summarizes the
correlation between the 22 immunocyte types. As suggested in
Figure 8B, CBX7 was greatly positively associated with memory
B cells and resting mast cells. PRC1 was positively associated
with activated memory T cells and negatively correlated with
resting mast cells. Moreover, macrophage M0, macrophage M2
and resting NK cells were enriched in the CRBS-high group.
Cases in CRBS-low group had greatly higher proportions of
memory B cells, dendritic cells and mast cells (Figures 8C-H).

Additionally, some immune functions displayed differences
between the two groups, including APC co-stimulation,
checkpoint, HLA, MHC class I, T cell co-stimulation, and type
IT IFN response (Figure 9A). Also, we observed that four
immune responses (checkpoint, HLA, MHC class I and type II
IFN response) had significant differences in the outcome of
patients with LUAD (Figures 9B-E).

Clinical potency analysis of the CRBS

TMB has been demonstrated to be useful as an indicator of
the efficacy of immunotherapy. We calculated the TMB of each
LUAD sample and found that CRBS-high group had a higher
TMB than the CRBS-low group (Figures 10A). Moreover, CRBS-
high group presented a high level of mRNAsi (Figure 10B). In
Figure 10C, most of the immune checkpoint markers were
upregulated in the CRBS-high group. The comparison in the
expression of m6A markers between the two groups indicated
that the expression of ALKBH5, FTO, METTL14, HNRNPC,
YTHDF1, YTHDF2, METTL3, RBM15 and WTAP were
significant (Figure 10D).

Discussion

LUAD is the most common pathological subtype of lung
cancer, which is composed of approximately 40% of lung cancer
cases (19). Despite the various efforts in improve, the five-year
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FIGURE 4

Prognostic powerful of the CRBS. (A, D) Survival analysis in the TCGA-LUAD and the GSE68465 cohorts. (B, E) ROC curves of the CRBS. (C, F)
The risk distribution plots in two datasets. (G=J) Cox relevant regression assessing the independence of the CRBS

survival rate for LUAD patients remains shabby. Recent studies
have suggested that patients with the same histology and TNM
stages may have very distinct clinical outcomes, mainly due to
their genetic heterogeneities (20). With the rapid development of
the next-generation sequencing, a growing number of prognostic
signatures based on transcriptome data were established to
depict the individual differences, and to forecast the prognosis
in various cancers (21-23). Therefore, a more reliable prognostic
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model based on genetic alterations is urgently needed to provide
early detection and personalized treatment for LUAD patients.

It is well known that epigenetic alterations play a
considerable role in mediating the tumor progression (24). As
indispensable regulatory elements of epigenetics, CRs are
involved in the onset and development of various cancer types
including multiple myeloma, prostate cancer, hepatocellular
carcinoma, and LUAD (25-28). In our current work, a total of

frontiersin.org

105


https://doi.org/10.3389/fonc.2022.1031728
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Shi et al. 10.3389/fonc.2022.1031728

Patients with age>65 Patients with age<=65 Patients with FEMALE Patients with MALE
Rk g = b Rk nn o Rk g o Rk g = o

100 100 e 100
§n7s §u7§ gms §n7§
gm Bow| il . - gm Rin
H H H :
2°%| p0001 5°%] p=0.008 2°%] pe0001 $°%| pe000t

aco oo aco oco.

RS R IR EEREERER IR I Ia RN IEEEREERERE LR TITI AT T
Timelyears) Tmelyears)

Risk

I e B e

Tevayers)
Patients with T1-T2 Patints with T3-Ta Patiens with NO Patiens with N1-N3
[ [ —- R o = i = fom
o0 s o 120
fuol fuol foo 24,
] ] ]

0251 peo.001 207 p=0.003 207 peooot 2051 peo00t
ao oo ao ool

IREEREERER N TEITEIIET TS LI R S T S S T T IREERERRER R IRATIIIETES ERLELRE O

Timetyears Timetyenrs) Timetyears

groups groups

(EEitLs 10443%)  116(48%) 17(7%) lowrisk

(n=244) (n=238) 174(73%) 42(18%) 22(9%) 0(0%)

high risk
(n=243)

= low risk = high risk = low risk = high risk
FIGURE 5

Subgroup survival analysis. (A) Age subgroup. (B) Gender subgroup. (C) T stage subgroup. (D) N stage subgroup. (E, F) Table presenting the
distribution of T and N stage subgroups between two risk groups.

four CRs including HMGA2, NPAS2, PRCI, and CBX7, were expressions are correlated with dismal outcomes of LUAD
identified as effective prognostic biomarkers for predicting the samples, whereas CBX7 is candidate protective factor given
prognosis of LUAD. Survival analysis indicated that HMGA2, that its high expression is associated with favorable outcomes
NPAS2 and PRCI are potential risky genes since their high of LUAD samples. The pro-tumor role of HMGA2 has been
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FIGURE 6
Single cell sequencing analysis. (A) The integration effect of 22 samples is favorable. (B) All cells in 22 samples were divided into 13 subgroups.
(C) The cells were divided into 8 types of cell subgroups, namely B lymphocytes, endothelial cells, epithelial cells, fibroblasts, mast cells, myeloid
cells, NK cells and T lymphocytes. (D) Cell location of four model CRs. (E) Correlation analysis of four model CRs and 8 types of cell subgroups.
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FIGURE 7

Gene Set Enrichment Analysis. (A) Hallmark analysis of the CRBS. (B) KEGG analysis of the CRBS.

widely reported in multiple cancers including LUAD (29).
HMGA2 was found highly expressed in the LUAD tissues
compared with normal lung tissues, and HMGA2 silencing
notably reduced the growth and metastasis of LUAD cell lines
(30). In addition, a mechanistic study revealed that HMGA2
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could induce epithelial-mesenchymal transition by activating
MAPK/extracellular receptor kinase signaling in LUAD (31).
Npas2 has been identified in peripheral tissues, possibly as a
modulator of circadian rhythms (32). Qiu et al. once reported
that in LUAD, the elevated expression level of NPAS2 is
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Immune infiltration analysis. (A) Correlation analysis of 22 immunocyte types. (B) Heatmap showing the relationship between four model CRs
and immune cells. (C—H) The infiltration level differences of memory B cells, dendritic cells, macrophage MO, macrophage M2, mast cells and

NK cells among two groups (*p< 0.05; **p< 0.01; ***p< 0.001).

significantly related to poor prognosis (33). Conversely, it has
been indicated that LUAD cases with low NPAS2 expression
displayed a favorable clinical outcome by another team (34).
Therefore, more basic researches are needed to elucidate the
exact role of NPAS2 in LUAD. PRCI has received widespread
attention considering its diverse regulatory roles in a number of
diseases, especially tumorigenesis (35). It has been suggested that
overexpression of PRCI triggers the onset of various cancers yet
its potential roles in LUAD have not been fully understood (36).
An ever-growing series of reports has demonstrated the aberrant
expression of CBX7 in a variety of tumors (37). Mechanically,
CBX7 may exert its tumor suppressor role by inhibiting the Wnt
pathway and subsequently restrain the malignant character in
LUAD (38).

Frontiers in Oncology

GSEA unearthed that CRBS-high group were involved in
glycolysis signaling, PI3K/AKT/mTOR signaling, and p53
signaling pathway using GSEA. Suppressed oxidative
phosphorylation along with enhanced glycolysis, which is
called the Warburg phenotype, is considered as metabolic
marker of cancers (39). Vaupel et al. once reported that
enhanced glycolysis accelerates lactic acid accumulation to
impair the immune functions in TME and finally promote
malignant progression (40). The PI3K/AKT/mTOR pathway
plays a crucial role in diverse biological behaviors including
cell growth, migration, metabolism, and death (41). In LUAD,
the aberrant activation in this signaling has been indicated to
induce uncontrolled growth, drug resistance, sustained
angiogenesis, as well as distant metastasis (42). P53 protein
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is a transcription factor known as the “guardian gene”
because of its significant role in preserving genomic
integrity. The mutation of the p53 gene can be detected in a
wide spectrum of human malignancies, including the breast,
cervical, lung, and prostate cancer (43). More recently, Vokes
and his colleagues provided the evidence that p53 alterations
were involved in faster resistance evolution and may
cooperate with other genomic events to gain resistance to
EGER tyrosine kinase inhibitors (44).

Immunotherapy that emerged recently has achieved
promising results in the treatment of LUAD (45). In our
work, a comprehensive analysis of tumor-infiltrating
immune cells was further conducted to help to clarify the
immune infiltration status between the two different risk
groups. As a result, the infiltration level of HLA as well as
the type 2 IFN was found downregulated remarkably in
CRBS-high group. Also, the expression level of the immune

Frontiers in Oncology

109

checkpoint markers was validated to be correlated with the
risk score. CD273, also named B3-H7, is overexpressed in
various solid malignancies which serve as a potential
therapeutic target (46, 47). Yu and his colleagues disclosed
CD273 was upregulated in LUAD, and was correlated with
lymph node metastasis (48). Likewise, accumulating studies
have indicated the close association between the efficacy of
immunotherapy and the CD274 expression (49). VICNI1,
also named B7-H4, belongs to the co-stimulatory B7 family
molecules and is associated with a poor prognosis in
multiple cancer types (50-52). As revealed by a recent
study, the elevation of VTCN1 expression is associated
with LUAD with EGFR-activating mutations, which can
ultimately cause resistance to immunotherapy in LUAD
patients (53).

In view of the essential effect of m6A methylation
modification in LUAD progression, we unearthed the
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Clinical potency analysis. (A) TMB analysis of the CRBS. (B) Cancer stem cells index analysis the CRBS. Comparison of differential expression of
(C) immune checkpoints and (D) m6A markers (*p< 0.05; **p< 0.01; ***p< 0.001). ns, no significance.

expression patterns of m6A regulators between two risk groups.
The results indicated that HNRNPC, YTHDF1, RBM15 and
WTAP were enriched in the high-risk group. Lou and his
colleagues demonstrated that YTHDF1 could facilitate LUAD
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growth and survival by enhancing Cyclin B1 translation (54). In
addition, YTHDF1 has also been confirmed to have carcinogenic
effects in many digestive system tumors including gastric cancer,
hepatocellular carcinoma and colorectal cancer (55-57). Cheng

frontiersin.org


https://doi.org/10.3389/fonc.2022.1031728
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Shi et al.

et al. found that overexpression of WTAP correlate with dismal
outcome of LC cases. In NSCLC, PCGEM1 could boost cancer
cells proliferation by improving WTAP expression (58, 59).

There are still several limitations of the present study that
need to be considered. Only expression data in gene level was
analyzed to construct the prognostic model, and large-sample
clinical data are still needed, as an external cohort, to evaluate
the predictive value of our model. Additionally, although
we have proven the reliable prognostic capacity of the
four CR related genes, fundamental experiments are still
needed to validate their precise functions in mediating
LUAD progression.

Conclusion

Taken together, our data may help provide opportunities for
the development of new therapeutic strategies and elucidate the
mechanism of tumor immune escape in LUAD. Our proposed
model may usher in novel approaches to predicting prognosis of
patients with LUAD.
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A growing attention has been attached to the role of fatty acid metabolism (FAM)
in the development of cancer, and cervical cancer (CC) is still the primary cause
of cancer-associated death in women worldwide. Therefore, it is imperative to
explore the possible prognostic significance of FAM in CC. In this study, CC
samples and corresponding normal samples were acquired from the Cancer
Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx). Single sample
gene set enrichment analysis (ssGSEA) was conducted for calculating FAM-
related scores (FAMRs) to screen FAM-related genes (FAMRGs). Two subtypes
related to FAM were identified by consistent clustering. Among them, subtype C2
had a poor prognosis, and C1 had a high level of immune cell infiltration, while C2
had a high possibility of immune escape and was insensitive to chemotherapy
drugs. Based on the differentially expressed genes (DEGs) in the two subtypes, a
5-gene signature (PLCB4, FBLN5, TSPANS8, CST6, and SERPINB7) was generated
by the least absolute shrinkage and selection operator (LASSO) and Akaike
information criterion (AIC). The model demonstrated a high prognostic
accuracy (area under the curve (AUC)>0.7) in multiple cohorts and was one
independent prognostic factor for CC patients. Accordingly, FAMRGs can be
adopted as a biomarker for the prediction of CC patients’ prognosis and help
guide the immunotherapy of CC.

KEYWORDS

prediction, immunological and prognostic value, five signatures, acid metabolism,
cervical cancer
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Introduction

Since the World Health Organization (WHO) called for the
worldwide elimination of cervical cancer (CC) in 2018, various
preventive measures for CC have emerged one after another,
among which human papillomavirus (HPV) vaccine and
cervical screening are the two most effective interventions (1).
However, such prevention and treatment schemes are extremely
limited by resources and basic health facilities, and the coverage
of them in low-and middle-income countries is less than one
tenth of that in developed countries, so CC is still the primary
cause of cancer-associated death in poor countries over the globe
(2, 3). At present, there is still a need to develop a brand-new
screening technology that can identify the symptoms in the
incubation period and early stage of CC, and is affordable in
most regions, thus reducing the difference in the incidence of CC
worldwide due to the gap in resources and infrastructure by
greatly lowering the incidence of CC in developing countries (4,
5). Therefore, a faster and more cost-effective screening method
for CC is still wanted worldwide (6).

As the next-generation sequencing technology and the
accumulation of CC sequencing data develop, it becomes clear
and cost-effective to find biomarkers for prognosis assessment
and treatment of CC through genome-wide analysis (7).
Valuable decision-making guidance can be provided for
clinicians by unbiased synthesis of various data, screening of
molecular characteristics of cancer-causing subgroups of CC,
and re-classification of them, so that more medical resources can
be concentrated on high-risk CC patients who really have disease
progression, and the economic and psychological burden caused
by HPV vaccination and cervical screening can be greatly
reduced (7-9).

Compared with normal cells, tumor cells often have different
cell metabolic phenotypes to meet the energy needs of rapid cell
proliferation and growth (10, 11). Recently, a growing number of
studies have found that lipid metabolism disorder often occurs
in the development of various human malignant tumors
including prostate cancer (12) and colon cancer (13), and the
change of FAM has greatly promoted the energy conversion of
cancer cells (14). All the activities of tumor cells are inseparable
from the intake and synthesis of fatty acids (15). The gradually
accumulated fatty acids seem to be bound up with the disease
recurrence and unfavorable prognosis of patients, and the
metabolic characteristics of fatty acids may become a new
target of anti-cancer therapy (12, 14, 15).

Zhang et al. (16) have found that fatty acid-binding protein 5
induces lymphatic metastasis of CC through metabolic
reprogramming, but the clinical significance of FAM-related
characteristics in CC is still under investigation, and it is still a
challenge to identify stable fatty acid-related signature. This
study comprehensively analyzed the expression, immune and
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prognostic characteristics of fatty acid metabolism-related genes
(FAMRGs) in CC, identified two different CC subtypes
associated with FAM and their immune characteristics, and
verified the FAM-associated prognosis model by multiple
cohorts, which provided a theoretical basis for forecasting the
survival risk of CC patients.

Methods

Variation analysis acquisition and
pre-processing of data sets

From the Cancer Genome Atlas (TCGA, https://www.
cancer.gov/about-nci/organization/ccg/research/structural-
genomics/tcga) (17) and Genotype-Tissue Expression (GTEx)
(https://commonfund.nih.gov/gtex) (18), the data about
expression profile of CC tissues and normal cervical tissues
were downloaded. Their batch effect was eliminated by the
remove batch effect function of limma in the R package, and
two data sets were corrected by the normalize between arrays
function. Principal Component Analysis (PCA) was used for
evaluating the degree of batch effect removal. Totally 300 data of
CC expression profiles were downloaded from the GSE44001
dataset of Gene Expression Omnibus (GEO) as a verification set
(19), and files of the probe platform were downloaded. The
probe ID numbers were annotated to gene symbols. Probes
corresponding to multiple genes meantime were removed, and
the value of probes with the same gene expression was averaged.

In addition, the 272 tumour samples in TCGA were assigned
to a training set and a verification set in the random manner
based on the proportion of 1:1 after 100 times of random
grouping with replacement to facilitate the subsequent
model construction.

Limma in the R package was adopted in the variation
analysis of different groups, and the differentially expressed
genes (DEGs) were screened with the absolute value of log,
(fold change) > log, (1.2) and FDR< 0.05.

Single-sample gene-set
enrichment analysis

The fatty acid metabolism-related scores (FAMRs) were
calculated through ssGSEA and R package GSVA after
downloading the FAMRGS sets in the molecular signature
database (MSigDb, c2.cp.kegg. v7.4.symbols) (20). The rcorr
function in Hmisc in the R package was adopted for
determining the correlation of FAMRs with DEGs. The
correlation with FAMRGs was found with cor > 0.2 and
FDR<0.05 as the filter condition.
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Survival analysis

Univariate Cox analysis was carried out by the coxph
function of Survival in the R package to screen the genes
associated with CC patients’ prognosis, with p<0.05 as the
filter condition. The log rank test was adopted for analyzing
the survival differences between groups and corresponding
Kaplan-Meier (K-M) curves were drawn.

Construction of FAM-related subtypes

272 CC samples were consistently clustered using
ConsensusClusterPlus in the R package, and 500 times of
bootstraps were performed by the pam algorithm and
“Pearson” as the measurement distance. Each bootstrap
process covered 80% of patients in the training set. With the
number of clusters set to 2 to 10, the consistency matrix and
consistency cumulative distribution function were calculated for
determining the optimal classification.

Analysis of immune escape characteristics

According to the previous research (21, 22), the molecular
characterization of aneuploid score, nosilent mutation rate,
fraction altered, number of segments, and homologous
recombination defects were collected to evaluate tumour
immunogenicity among different subtypes, and maftools in the
R package was used for visually analyzing the mutation data of
the top 10 genes with significant differences in expression.

Calculation of the difference in
immune microenvironment
among different subtypes

The CIBERSORT algorithm in IOBR of the R package was
adopted for calculating the relative abundance of 22 kinds of
immune cells in CC (23), and the ESTIMATE algorithm was
adopted for calculating the matrix score and immune score of
each sample of CC (24).

Prediction of clinical efficacy

With the Tumour Immune Dysfunction and Exclusion
(TIDE) algorithm developed by Jiang et al. (25), TIDE, IFNG,
Dysfunction, Exclusion, and TAM.M2 scores were downloaded
from TIDE (http://tide.dfci.harvard.edu) for predicting the
clinical treatment response of different subtypes, and the
Wilcox.test was used for comparing the scores among different
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subtypes. Additionally, the half-maximum inhibitory
concentration (IC50) of traditional drugs was downloaded
from Genomics of Drug Sensitivity in Cancer (GDSC, https://
www.cancerrxgene.org/) (26), and pRRophetic in the R packet
was used for predicting the chemotherapy response of
CC samples.

Construction of prognosis-related
signature based on FAMRGs

The glmnet in the R package was used for further feature
selection by the least absolute shrinkage and selection operator
(LASSO), and a risk model was built by 10-fold cross-validation.
According to Akaike information criterion (AIC), the
complexity of the model was evaluated, and the number of
parameters was gradually deleted to acquire the optimal model.
The RiskScore of patients with different subtypes was calculated
(RiskScore = E?:1Coef (1)*Exp(i) ), and Coef was taken as the
characteristic coefficient of each signature. Exp presented the
expression of each signature in CC samples. The samples of
RiskScore with Z score and RiskScore > 0 were assigned to a
high-risk group and those with scores<0 to a low-risk group, and
the timerROC in the R package was used to evaluate the
prediction accuracy of different risk levels. The rms in the R
package was adopted for establishing nomograms to predict
thel-year, 3-year and 5-year overall survival rates and calculate
the prognosis risk of individual patients. The Decision Curve
Analysis (DCA) curve was drawn by ggDCA in the R-packet for
evaluating the clinical predictive performance of the model.

Clinical sample collection and
qPCR validation

100 cases of cervical cancer tissues and 100 cases of adjacent
tissues in our hospital were collected, and qPCR verification of
PLCB4, FBLN5, TSPANS, CST6, and SERPINB7 genes was
performed. The tissue samples were fully ground with liquid
nitrogen, 1 ml of Trizol (Invitrogen) solution was added, mixed
well, and placed at room temperature for 5 minutes to fully lyse;
(the sample name should be marked on the tube cover and tube
wall) gPCR verification was carried out according to the specific
operation steps of qPCR. Primers: PLCB4, F:ACAG
ATACGAGGAGGAATCC, R: TCCATGTCAGAAAGAAGCG;
FBLN5, F: CATCAATACTGAAGGCGGG, R: TCATCAAT
GTCTAAGCACTGG; TSPANS, F: CAAGAAGAGTTTAA
ATGCTGCG, R: AGGCACATAATTCAGGATAGTG; CSTé,
F: TACTACTTCCGAGACACGC, R: AGGAAGTACTTG
ATGCCGG; SERPINB7, F: TCCCACAAGGATTATGATC
TCAG, R: CTCAATGTAGTCCTTATGAAAGCC. The relative
expression levels of PLCB4, FBLN5, TSPANS, CST6 and
SERPINB7 genes were calculated by 2y AACT,
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Results

Screening of FAMRGs

The working route of this study is shown in Figure 1.
According to PCA, two data sets were clustered together
mainly according to their sources (Figure 2A), but after the
integration of these data sets, the samples in the two data sets
were mixed, and the batch effect between the data sets was
eliminated (Figure 2B).

As shown in Figure 3A, 487 DEGs were selected from tumor
samples of CC and corresponding normal samples, of which 120
DEGs were up-regulated and 367 DEGs were down-regulated.
Furthermore, ssGSEA results revealed notably fewer FAMRGs in
tumor samples than those in normal samples (Figure 3B) and
also revealed differences in FAM between CC tissues and normal
tissues. Among them, 48 DEGs were greatly associated with
FAM (Figure 3C). Univariate Cox analysis showed that 7
FAMRGs including S100A11 were bound up with the
prognosis of CC patients (Figure 3D; Supplementary Table 1).

Identification of two different FAM-
related subtypes based on FAMRG

Based on the cumulative distribution function (CDF) and
CDF Delta area curve, the optimal number of clusters
(Figures 4A, B) was determined. When k=2, there was a
comparatively stable clustering result, and two subtypes (Cl1,
and C2) were obtained (Figure 4C). Further analysis of the
prognosis of these two CC subtypes revealed a notably lower
survival rate in patients from the C2 group that that in patients
from the C1 group at the same time (p<0.05, Figure 4D).
Similarly, the same difference in GSE44001 was found. The
same method was adopted for processing the CC samples
from GSE44001. Patients in Group C2 still had an unfavorable
prognosis (Figure 4E), which was similar to the results of the
data set from TCGA. The findings indicate that the two subtypes
based on FAMRG can be transplanted in different research
cohorts. The Chi-square test was used for comparing the
distribution of different clinicopathological features between
the two subtypes, and the results revealed notable differences
in the living conditions of CC patients in the TCGA cohort
between the two groups (Figure 5, p<0.05).

Immune characteristics of FAM-
related subtypes

The results revealed a notably higher fraction altered in C1
than that in C2 (Figure 6A), and also showed that genes with
significant differences in CC such as TTN and PIK3CA had
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higher mutation frequency in C1 (Figure 6B). The potential
function of FAM-related subtypes in CC was further analyzed,
and the proportion of 22 immune cell types between the two
subtypes was evaluated by CIBERSORT. Compared with C2, the
proportion of B cells navie, Plasma cells, T cells memory resting
and T cells regulatory (Tregs) in C1 was significantly lower,
while T cells memory activated, Macrophages M1 and Dendritic
cells activated were significantly enriched (Figure 7A). C1 got
higher immune score and estimate score than C2, and C1 had a
higher level of immune cell infiltration (Figure 7B). As shown in
Figure 7D, the TIDE score of subtype C2 in the TCGA cohort
was higher than that of C1, suggesting that subtype C2 was more
likely to escape and less likely to benefit from immunotherapy.
The IC50 of 6 traditional chemotherapeutic drugs in Cl was
significantly lower than that in C2, and these drugs were more
effective in C1 patients (Figure 7E).

Construction and verification of
prognosis-related model of FAMRGs

Totally 558 DEGs of the two-fatty acid-related subtypes were
screened by variation analysis (Figure 8A), and 58 DEGs related
to prognosis were further filtered by univariate Cox analysis in
the training set (Supplementary Table 2). When lambda=
0.0385, the model reached the optimal state (Figures 8B, C),
and the parameters were further compressed to obtain a model
composed of five genes: Riskscores = 0.48 x PLCB4 + 0.49 x
FBLNS5 + 0.15 x TSPANS + 0.38 x CST6 + 0.30 x SERPINB7
(See Supplementary Table 3 for detailed descriptions of
the genes.)

The Risk Score of each sample was calculated. As shown in
Figures 8D and E, the training set and validation set of TCGA
both revealed a shorter survival time in CC patients from the
high-risk group than that from the low-risk one (p<0.05).
Moreover, this model had high accuracy in the prediction and
classification of CC in one year, three years and five years (area
under the curve (AUC)>0.7). For further verifying the
generalization ability of the model, all TCGA data and the
independent data set GSE44001 were verified. The results, as
shown in Figures 8F and G, were in agreement with those of the
training set of TCGA. FAMRGs prognosis-associated model was
a prognosis scoring system with high precision (AUC>0.7), and
the high-risk group had an unfavorable prognosis.

Association of RiskScore with other
clinicopathological features and its
prognostic value

The associations of RiskScore with subtype, T. Stage, N.
Stage, M. Stage, Stage, age, Event and Grade were tested. As
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Graphical abstract of the construction of a prognostic index associated with fatty acid metabolism in cervical cancer.
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FIGURE 2

Evaluation of sample clustering by the principal component analysis (PCA) (A) PCA diagram between two data sets before the batch effect was
removed; (B) PCA diagram between two data sets after the batch effect was removed. TCGA, The Cancer Genome Atlas; GTEx, Genotype-
Tissue Expression.
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Screening of fatty acid metabolism-related genes (FAMRGs) (A)Volcano map of variation analysis between CC samples and normal samples;

(B) Comparison of fatty acid metabolism-related scores (FAMRs) between CC samples and corresponding normal samples; (C) FAMRGs-related
Heat map, (D) Forest map of prognosis-related FAMRGs. * vs p<0.05. *p<0.05,**p<0.01,***p<0.001.
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FIGURE 5

Distribution of clinicopathological features between two fatty acid metabolism-related subtypes in the TCGA cohort.

shown in Figure 9A, the proportion of subtype C2 and dead
population in the high-risk group was higher (p<0.05). Further
comparison of the difference in RiskScore among people with
different clinicopathological features revealed higher RiskScore
in people with subtype C2, age < 50 and death (Figure 9B).
Univariate and multivariate Cox regression analysis was
used for evaluating the prognostic value of RiskScore and
other clinicopathological characteristics in CC. As shown in
Figures 10A, B, T. Stage and RiskScore were independent
prognostic factors of CC patients, and RiskScore was the most
significant prognostic factor. Then, a nomogram composed of T.
Stage and RiskScore was constructed. According to Figure 10C,
RiskScore made the greatest contribution to the survival
prediction of CC patients. The nomogram correction map and
DCA curve showed that RiskScore had higher predictive
performance than other clinicopathological features.

Biological pathway of potential
regulation of FAMRGs prognosis-
related model

For better studying the potential function of the FAMRGs
prognosis-related model, the score of each KEGG pathway in CC

Frontiers in Oncology

patients was calculated by GSVA package, and 90 significant
pathways were calculated in the high-and low-risk groups (p<
0.05, Supplement Table 3), as shown in Figure 11A. Among
them, there were 53 significant pathways in high and low risk
groups (p< 0.001). The association of enrichment score with
RiskScore was analyzed (Figure 11B; Supplementary Table 4).
The FAMRGs prognosis-related model was significantly bound
up with signals including O GLYCAN BIOSYNTHESIS, CELL
CYCLE, BASAL TRANSCRIPTION FACTORS, and
P53_SIGNALING_PATHWAY, which was similar to our
previous research results (Figure 7C). There were significant
differences in FAM-related subtypes among 10 classic oncogenic
pathways (27), and FAMRGs prognosis-related model was
strongly bound up with these signals.

Clinical cohort gPCR validation

100 cervical cancer tissues and 100 paracancerous tissues
were collected from our hospital for qPCR verification of
PLCB4, FBLNS5, TSPANS, CST6, and SERPINB7. The results
showed that PLCB4, FBLN5, TSPANS, CST6, and SERPINB7
were highly expressed in cervical cancer tissues (Figure 12,
p<0.05).
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Score, Fraction Altered, Number of Segments and Tumor mutation burden in molecular subtypes in the TCGA cohort; (B) Somatic mutation

landscape in two molecular subtypes. ** p<0.01, ns, P>0.05.

Discussion

Compared with sugar metabolism and amino acid
metabolism, FAM has received less attention, but the
importance of fatty acids in the development of cancer is
increasingly recognized (28, 29). As a crucial component of the
membrane matrix, the fatty acid is a crucial messenger and fuel
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source for energy production (30). Compared with normal cells,
tumour cells are more likely to rely on de novo synthesis to
synthesize fatty acids for energy metabolism and membrane
formation for the maintenance of the rapid growth and
proliferation of cells (31). It is worth noting that there are many
fatty acids and metabolic by-products of them, each of which has
different feedback mechanisms and regulation nodes and affects
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Construction and verification of prognostic correlation model of FamRGS (A)Volcanic map of the variation analysis of molecular subtypes;

(B) The changing trajectory of each independent variable, with the horizontal axis representing the log value of the independent variable
lambda, and the vertical axis representing the coefficient of the independent variable; (C) Confidence interval under each lambda; (D) AUC
curve and KM curve of the risk model of the training set data from TCGA; (E) AUC curve and KM curve of the risk model of the verification set
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significant differences in TCGA data sets and RiskScores (*p<0.05,**p<0.01,***p<0.001).

many ways of disease behavior through extremely complex
regulatory networks (32). Different tumor subtypes may drive
specific lipid phenotypes (28, 31). Therefore, identifying a
potential subtype related to FAM helps predict the CC
patients’ prognosis.

By integrating cervical sample data from TCGA and
GTEx, DEGs related to FAMRs were searched and molecular
subtypes related to FAM (C1 and C2) were constructed. C2
showed poor prognosis in both TCGA cohort and GSE44001
cohort, independent verification set, and the proportion of
deaths in subtype C2 was notably higher than that in subtype
Cl1. In addition, a high Fraction of Altered was found in ClI,
and TTN and PIK3CA, common drivers in CC, have a high
mutation frequency (14). C1 shows a higher proportion of T
cells, macrophages and dendritic cells activated, and immune
score and estimate score than C2, which means a lower level of
tumor purity (24). The proportion of immune cells is high in
the samples with lower tumor purity (33), and the
inflammatory reaction caused by immune cells will increase
the cell mutation rate and activate stronger anti-tumor
characteristics and faster reaction speed (34, 35). The
samples with higher tumor mutation load often show better
immunotherapy effects (34, 36). These results were in
agreement with our research results. The IC50 of traditional
chemotherapeutic drugs in subtype C1 was notably lower than

Frontiers in Oncology

that in subtype C2, and subtype C1 was less likely to escape
from immune surveillance than C2 and was more sensitive
to immunotherapy.

Then, a prognostic model related to FAM was constructed
for CC based on the two subtypes of DEGs, and the
generalization and prediction accuracy of the model was
repeatedly verified by multiple cohorts. Patients with subtype
C2 and dead ones accounted for a higher proportion in the
high-risk group, and these patients had a higher RiskScore.
Consistent with our expectations, RiskScore can serve as one
independent prognostic factor to predict the CC patients’
prognosis and contributes greatly to the prediction of the
survival of CC. The accuracy of the model prediction has
been further confirmed.

As we described above, the up regulation of FAM
contributes to cell membrane production and signal
transmission, including activation signals (4, 37). The
enrichment of multiple signals is significantly different in
different risk levels. Research has pointed out that one of the
key mechanisms of signal transduction in CC cells is the
glycosylation of proteins (38). As a glycoprotein on the cell
surface, N-Glycon directly affects cell signal transduction and is
the diagnostic target of malignant transformation in the early
stage of CC (39-41). O-glycan can be used as a biological marker
of proliferation, senescence and metastasis of CC cells by
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Clinical cohort gPCR validationClinical cohort gPCR validation for PLCB4, FBLN5, TSPANS8, CST6, and SERPINB7 (**p<0.01,*** p<0.001).

regulating immune response and controlling cell metabolism
(42, 43). In addition, in the G2 phase, de novo synthesis is
enhanced to synthesize lipids, which ensures the membrane
material needed for mitosis and promotes cell proliferation (44).
Subtype C1 had a higher score on cell cycle than subtype C2, and
RiskScore and cell cycle enrichment showed a significantly
negative correlation. The high-risk group and patients with
subtype C2 may escape from the control of the cell cycle and
fails, leading to continuous cell division and promoting cancer
progress (45, 46).

Although some studies have explored biomarkers related to
FAM in clear cell renal cell carcinoma (47) and bladder cancer
(48), this study has revealed molecular subtypes related to FAM
in CC for the first time and constructed a FAM-related
prognostic model with strong predictive ability. It provides
some new insights for accurate screening of CC, which is
helpful to guide clinical treatment and prognosis prediction.
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Background: This study aimed to explore the clinical significance of cellular
senescence in uterine corpus endometrial carcinoma (UCEC).

Methods: Cluster analysis was performed on GEO data and TCGA data based
on cellular senescence related genes, and then performed subtype analysis on
differentially expressed genes between subtypes. The prognostic model was
constructed using Lasso regression. Survival analysis, microenvironment
analysis, immune analysis, mutation analysis, and drug susceptibility analysis
were performed to evaluate the practical relevance. Ultimately, a clinical
nomogram was constructed and cellular senescence-related genes
expression was investigated by gRT-PCR.

Results: We ultimately identified two subtypes. The prognostic model divides
patients into high-risk and low-risk groups. There were notable discrepancies
in prognosis, tumor microenvironment, immunity, and mutation between the
two subtypes and groups. There was a notable connection between drug-
sensitive and risk scores. The nomogram has good calibration with AUC values
between 0.75-0.8. In addition, cellular senescence-related genes expression
was investigated gRT-PCR.

Conclusion: Our model and nomogram may effectively forecast patient
prognosis and serve as a reference for patient management.
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Introduction

Uterine corpus endometrial carcinoma (UCEC) is one of the
three major gynecological malignancies, second only to cervical
cancer in incidence (1, 2). Hypertension, diabetes, obesity,
infertility, and family history are risk factors for UCEC (3).
However, because of the scarcity of effective timely detection of
UCEC, many patients have progressed to advanced stages by the
time they are diagnosed (4). At the same time, the poor prognosis
for patients who develop metastases despite treatment is now a
pressing issue (5). Treatment options other than first-line
chemotherapy drugs remain limited (6). Studies show that the
treatment and prognosis of patients can be assessed through
predictive models and biomarkers (7). However, there are no
credible biomarkers to assess the outcome for UCEC.

Cellular senescence is the central process of aging, bringing the
cell cycle to a permanent standstill (8). Cellular senescence can
promote repair and prevent tumorigenesis. Meanwhile, some
degenerative diseases and cancers are associated with abnormal
accumulation of senescent cells (9, 10). Senescent tumor cells can
modulate the tumor microenvironment (TME), transform
surrounding unsenescent cells into senescent cells, and recruit
and activate immune cells to produce anti-tumor and pro-tumor
effects (8, 9). Cellular senescence is capable of limiting tumor growth
progression and is considered a potential therapeutic target (11).
Adriamycin and bleomycin can induce senescence and thus exert
anti-tumor effects. Therefore, studying the effects of cellular
senescence in tumors can help develop new approaches to tumor
therapy (12). However, the role of cellular senescence in UCEC and
the relationship with UCEC prognosis remains unclear.

Materials and methods
Data collection

From TCGA and GEO databases, the gene expression and
clinical data of UCEC were downloaded. The GEO cohort
GSE119041 and TCGA cohort were acquired (13). Among
them, patients in the integrated cohort of the TCGA cohort
and the GEO cohort were randomly divided into training cohort
and testing cohort at the ratio of 1:1, the integrated cohort was
also defined as validation cohort. We normalized the expression
of the genes by using “ComBat” algorithm from the “sva”
package (14). Patients with inadequate clinical data and
survival information were eliminated.

The clustering analysis
We collected 307 cellular senescence related genes from the

previous study (15). Full details of these genes were shown in
Table S1. The “ConsensusClusterPlus” package was used to
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perform consistent unsupervised cluster analysis to classify
patients into different subtypes. We screened out clusters with
high intra-type correlation and low inter-type correlation for
subsequent analysis (16).

Multi-omics analysis of UCEC subtypes
based on senescence genes

First, to validate the categorization of patient subtypes, we
used principal component analysis (PCA). We investigated the
link with the subtypes and patient clinical characteristics. We then
performed a survival analysis using the “survival” package to draw
Kaplan-Meier curves to assess differences in survival between
subtypes. Next, we explored the differences in the TME between
different subtypes. Violin plots were used to show the distribution
of TME scores for each sample across subtypes. a score of 22
immune cells was obtained by the CIBERSORT method (17). To
measure the amount of immune cell infiltration, the single sample
gene set enrichment analysis (ssGSEA) technique was utilized
(18). Finally, we explored differences in PD-L1 and PD-L2
expression among different subtypes.

Enrichment analysis

Using the “clusterProfiler” software package, we performed
Gene Ontology (GO) analysis to identify functions for these
genes, and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) analysis to identify enriched pathways for these genes
(19). We retained analysis results with p-values less than 0.05
and displayed them in bar graphs.

Difference analysis

Based on gene expression between the two subtypes, we
screened for genes that differed between the two subtypes (20).
In addition, we analyzed the pathways that differed between the
two subtypes by means of KEGG enrichment analysis.

The differential genes clustering analysis
and multi-omics analysis

First, we used the same method as above for cluster analysis.
Then, we explored the association of this subtype with clinical

factors and performed survival analysis. Besides, we performed
TMB analysis and checkpoint analysis of PD-L1 and PD-L2.

Model construction and evaluation

In the training cohort, we performed the least absolute and
selection operator (LASSO) regression analysis to select cellular
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senescence related genes to connect to the prognosis. The
model’s predictive performance was tested using test and
validation cohorts. Based on the median risk score, we
classified the patients into two groups: high-risk and low-risk.
Between the two groups, we investigated variations in clinical
features and patient outcomes. The time-dependent receiver
operating characteristic (ROC) curve was utilized to assess the
model’s accuracy. Besides, univariate and multivariate cox
analyses were also performed (21).

Multi-omics analysis for the model

First, the link between risk scores and clinical factors was
investigated. We then explored the TME based on the model.
One-class logistic regression (OCLR) machine-learning
algorithm was used to quantify the stemness of tumor samples
by calculating cancer stem cell indices (22). Pearson analysis was
used to reveal the correlation of risk score and RNAss. Between
the two groups, the GSEA analysis was carried out to evaluate
variations in enriched pathways. Besides, we also performed
immune microenvironment (IME) analysis. We immunotyped
the patients and investigated the association with both risk score
and immunotyping to learn more about the based on risk score
and immunity.

Studies showed that tumor mutational burden (TMB)
correlates with IME (23). Therefore, we calculated TMB for
each sample by somatic mutation profiles and investigated the
link between risk score and TMB. Based on the median TMB, we
separated patients into high-TMB and low-TMB groups and
performed survival analysis. In addition, we combined TMB
with risk scores for survival analysis. Besides, we analyzed the
relationship among riskscores and microsatellite instability
(MSI) and immunophenoscore (IPS).

The “PRROPHOPIC” pack includes hundreds of medicines
(24). From it, we calculated the half inhibitory concentration
(IC50) value of the drug and screened out the drugs with
significant differences in the two risk groups.

Nomogram construction and evaluation
We created a nomogram using the riskscores and clinical

data. The nomogram’s accuracy was assessed using the C-index,
ROC curve, and calibration curve.

Quantitative RT-PCR

A total of 12 UCEC tissues from patients in the Nantong
Maternal and Child Health Hospital Affiliated to Nantong
University were paired with normal tissues. The Ethics
Committee of the Nantong Maternal and Child Health
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Hospital Affiliated to Nantong University approved the study.
All patients signed the informed consent form. Use TRIZOL
reagent (Thermo Fisher Scientific, USA) to separate total RNA
from the sample, then use Revert Aid first strand cDNA
synthesis kit (Thermo Fisher Scientific, USA) to reverse
transcribe it into ¢cDNA, and use SYBR Green PCR kit
(Takara, Tokyo, Japan) for real-time quantitative PCR (qRT-
PCR) analysis. GAPDH was used to regulate the relative
expression of genes. The sequence is listed in Supplementary
Table S3.

Results

Establishment and assessment of
senescence subtypes

We included 593 patients from both TCGA and GEO
cohorts in our study for further analysis. Based on cellular
senescence related gene expression, we classified patients using
a consensus clustering approach(Figure S1). The results of the
analysis show that k=2 is the optimal number of groups
(Figure 1A). We then divided them into subtype A and
subtype B based on the above results. PCA analysis indicated
that subtypes A and B successfully distinguished patients
(Figure 1B). Survival analysis incidated that our subtype
successfully stratified the survival of patients, and the survival
time of subtype A was longer (Figure 1C). However, after
comparing the clinical factors of the patients, we found no
difference in the expression of pyroptotic genes with age, stage,
grade, survival status, and histological type (Figure 1D).

Multi-omics analysis of different
senescence subtypes

TME plays a key role in tumorigenesis and progression.
Therefore, we first analyzed the TME. Violin plots showed
significant differences in stromal, immune, and ESTIMATE
scores between the two subtypes (Figure 2A). We further
analyzed the immune-related functions and infiltration of
immune cells of two subtypes based on the above results. A
subtype had higher infiltration levels of NK cells activated, T
cells regulatory, and T cells CD8, while B cells naive, T cells
follicular helper, and Macrophages M1 had greater levels of
infiltration in the B subtype (Figure 2B). ssGSEA analysis further
confirmed that immune cell infiltration levels differed
significantly between the two subtypes (Figure 2C). Besides,
the expression of HLA-A, HLA-DMA, and HLA-F was higher
in subtype A, while the expression of HLA-DMB and HLA-DOA
in subtype B was higher (Figure 2D). The results of the
checkpoint analysis indicated B subtype showed greater levels
of PD-L1 and PD-L2 expression (Figures 2E, F).
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between the two subtypes.

We also analyzed gene function and enriched pathways. GO
enrichment analysis revealed these genes were primarily associated
with cell mitosis, metabolism of genetic material, and ATP
metabolism (Figure 2G). KEGG enrichment analysis revealed
these genes were primarily associated with cell cycle, protein
processing, transport, and DNA replication (Figure 2H). Besides,
it also revealed subtype A was substantially more concentrated in
lipid metabolism, and subtype B had considerable cell cycle, cell
division, and tumor enrichment (Figure 2I).

Differential genes subtypes

Through differential analysis, we identified 1219 differential
genes. Based on these genes, we used the same cohort and
method to further subtype the patients (Figure S2A). We found
dividing patients into two subtypes (A and B) was optimal
(Figure S2B). Besides, the survival time of the two subtypes
was significantly different (Figure S2C). However, the heatmap
showed no differences in clinical factors between the two
subtypes (Figure S2D).

Then, we performed TME analysis. The results showed that
subtype A had higher stromalscore, immunescore, and
estimatescore, while subtype B had higher tumorpurity
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(Figures 3A-D). In addition, the A subtype of NK cells
activated, T cells regulatory (Tregs), and T cells CD8 have a
higher degree of infiltration, and the B subtype of Macrophages
M1, T cells follicular helper, and B cells naive have a higher
degree of infiltration (Figure 3E). The results of ssGSEA analysis
further confirmed that immune cell infiltration differed
significantly between the two subtypes (Figure 3F). At the
same time, the PD-L1 and PD-L2 genes of subtype B are
highly expressed (Figures 3G, H). Figure 3I showed that the
expression of HLA-related genes of the two subtypes was
significantly different. This is basically consistent with the
analysis of cellular senescence subtypes.

Model construction and evaluation

After LASSO analysis, a total of 4 genes were screened
(Figures 4A, B). The model’s calculating formula was as
follows: riskscore = BZW2*0.44481118 - NRIP1*0.38695576 +
ARHGAP29%0.22408622 + SIX1*0.18719355. Based on the
median risksocre in the training cohorts, patients in the three
cohorts were separated into high- and low-risk groups.
Figure 4C showed the distribution of patients grouped by two
cellular senescence subtypes, two differential gene subtypes, high
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Multi-omics analysis based on senescence cluster. (A) TME analysis. Subtype A has a higher TME score. (B, C) Differences in immune cell
infiltration levels. (D) Differences in HLA-related gene expression levels. (E, F) The PD-L1 and PD-L2 genes of subtype B are highly expressed. (G,
H) The GO (G) and KEGG (H) enrichment analysis. (I) Differential KEGG enriched pathways between the two subtypes. Adjusted p-values were

shown as ns, not significant; *p < 0.05; **p < 0.01; ***p < 0.001.

and low-risk groups, and survival status. We also observed that
both the cellular senescence subtype and the differential gene
subtype had a higher risk score for the B subtype (Figures 4D, E).
Figure 4F shows that RNAss values are positively correlated with
risk scores. Furthermore, the risk score was linked to patient’s
clinical factors. The higher risk score, the more advanced and
poorly differentiated tumors, and the greater the likelihood of
death (Figures S3A-D). We also found a lower risk score for
tumors originating from endometrial tissue and a higher risk for
mixed and serous tissue (Figure S3E).

We then analyzed the relationship of the model to patient
survival. Patients were separated into high-risk and low-risk
groups based on the median (Figures S4A-C). At the same time,
the number of patient deaths was proportional to the risk score
(Figures S4D-F). Furthermore, in the high-risk group, BZW2,
ARHGAP?29, and SIX1 were overexpressed, whereas NRIP1 was
overexpressed in the low-risk group (Figures S4G-I).

Then, we evaluated the accuracy of the model. The high-risk
group had the worst prognosis among the three groups
(Figures 5A-C). Figures S4A-H showed the results of survival
analysis for clinical factors. The AUC of the training cohort at 1,
3, and 5 years was 0.652, 0.722, and 0.771, respectively
(Figure 5D). The AUC of the test cohort at 1, 3, and 5 years
was 0.621, 0.619, and 0.645, respectively (Figure 5E). The AUC
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of the validation cohort at 1, 3, and 5 years was 0.644, 0.671, and
0.697, respectively (Figure 5F).

Independent prognostic analysis

For independent prognostic analysis, univariate and
multivariate COX regression models were utilized. The results
of the univariate COX analysis are as follows (Table S1). In the
training cohort, histological type, stage, riskscore were
independent prognostic factors. The grade was also an
independent prognostic factor in the testing cohort and
validation cohort. In the three cohorts, multivariate COX
analysis demonstrated riskscore and stage were independent
predictive variables (Table S2).

The model’'s multi-omics analysis

First, GSEA analysis revealed the high-risk group was mostly
associated with cardio-renal diseases (Figure 6A). The low-risk
group was mostly associated with immunity and rejection
(Figure 6B). Then, we analyzed the relationship between the
TME and the model. StromalScore, ImmuneScore, and
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Prognostic model construction. (A, B) LASSO regression analysis. 4 genes were screened to build a prognostic model. (C) Distribution of
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ESTIMATEScore were greater in low-risk group (Figure 6C). In
addition, riskScore is inversely proportional to StromalScore,
ImmuneScore, and ESTIMATEScore, and proportional to
TumorPurity (Figures 6D-G). Figure S5A illustrated the
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distribution of immune cell in two groups per patient. We
then investigated the model’s connection to immune cell
infiltration. Besides, T cells CD4 memory activated, T cells
follicular helper, T cells regulatory, NK cells resting,
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Macrophages M1, and Dendritic cells activated were distinct in
the two groups (Figures 6H, I). SSGSEA analysis also confirmed
that in the high-risk group, most immune cells had higher
infiltration levels (Figure 6]). The risk score was significantly
associated with immune cells, model genes (Figures 6K, L). We
found that T cell regulatory were negatively correlated with
riskscore, and all the rest of cells had a positive correlation to risk
score. (Figures S5B-F). Figure 6K showed the relationship
between model genes and immune cells. Then, we divided
patients into four subtypes based on their immunity (Figure
S5G). Different types of immune infiltration correspond to
tumor promotion and tumor inhibition, including C1 (wound
healing), C2 (INF-g dominance), C3 (inflammation) and C4
(lymphocyte depleted) (25). The risk score for the C2 subtype
was the greatest, while the risk score for the C3 subtype was the
lowest (Figure S5H). In addition, significant variations between
the two groups were also seen in the expression of
immunological checkpoint genes (Figure S5I). Among them,
CTLA4, PDCDILG2, and PDCD1 were most associated with
risk scores (Figure S5]). Risk scores were inversely correlated
with PDCD1LG2, CTLA4, and PDCD], and favorably correlated
with PDCD1LG2 (Figures S5K-M).

Studies have demonstrated that TMB can serve as an
important component of composite predictors to guide tumor
immunotherapy (26). We found that the three genes with the
greatest mutation probability in the high-risk group were TP53,
PIK3CA, and PTEN, while the three genes with the highest
mutation probability in the low-risk group were PTEN,

10.3389/fonc.2022.1054564

ARID1A, and PIK3CA (Figures 7A, B). We then performed
survival analysis. The prognosis of patients with high-TMB
scores and high risk score was greater (Figures 7C, D). The
research by Ganesh et al. illustrated MSI is closely related to the
sensitivity to immunotherapy (27). The low MSI accounted for
the least, and the high MSI group had the lowest risk score
(Figures 7E, F). To further guide the patient’s treatment, we
performed a drug sensitivity analysis. First, we screened out
drugs related to model genes, including Tamoxifen, Dasatinib,
Panobinostat, etc (Figure 8A). Next, we further screened drugs
sensitive to the high-risk group, including Gemcitabine,
Doxorubicin, Docetaxel, Cisplatin, Vinorelbine, Paclitaxel,
Vinblastine (Figures 8B-H).

Nomogram construction and validation

We built a nomogram by combining riskscore and clinical
factors. According to the nomogram, the 1-, 3-, and 5-year
mortality rates for the patients were 0.0104, 0.0445, and 0.0644,
respectively (Figure 9A). The calibration curve showed the
nomogram had an excellent calibration (Figure 9B). The C-
index showed that the nomogram performed better than the risk
score and clinical factors (Figure 9C). The same conclusion was
drawn from the ROC curve, with the AUC of 0.751, 0766, and
0.786 in the nomogram at years 1, 3, and 5, respectively
(Figures 9D-F).
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Validating gene expression level of
cellular senescence-related genes in
UCEC samples

To validate the expression levels of cellular senescence-
related genes, we used qQRT-PCR to detect the expression levels
of six cellular senescence-related genes in 12 UCEC samples and
12 normal tissues. The results indicated that ARHGAP29
expression was significantly higher in tumor samples, while
GNLY and NRIPlexpression was significantly lower in UCEC
samples. There was no significant difference in BATF, BZW2
and SIX1 expression (Figure S6).

Discussion

In this study, to evaluate the involvement of senescence
genes in UCEC, we did a complete bioinformatics analysis.
Based on the senescence gene, we began by categorizing the
patients into two groups. Subtype B has a worse prognosis. TME,
immune checkpoint gene expression, and immune function also
differed significantly between the two subtypes. We further
discovered two gene subtypes based on the differential genes.
The results of correlation analysis showed that different genes
can be used as indicators of patient prognosis and TME.
Therefore, the prognostic model was built using differential
genes. The model’s predictive ability was proven using survival
analysis and ROC curves. Furthermore, this prognostic model
was significantly associated with clinical factors, TME, immune-
related markers, TMB, MSI, and drug sensitivity. Finally, we
built a nomogram by combining riskscore and clinical factors.
The results showed that the nomogram was successful in
stratifying patients and guiding them in prognostic assessment
and treatment selection.

In this study, we verified the expression levels of cell
senescence-related genes in tumor tissues and normal tissues.
Perhaps due to the small sample size, there was no difference in
BATF, BZW2 and SIX1 expression between tumor and normal
tissues. It is necessary to expand the sample size to further verify
this result. Senescence is a steady state that removes sick cells
and stabilizes the collective internal environment (11). It is also
thought to prevent tumor development (28). However, recent
studies have found that tumor progression can also be caused by
cellular senescence (29). Senescent cells secrete signaling
molecules that affect tumor proliferation, invasion and
metastasis, and angiogenesis (30). In addition, the senescence
of some tumor cells is reversible and they can escape cellular
senescence and re-enter the cell cycle, which is an important
cause of tumor recurrence and progression (31). As a result, it is
critical to thoroughly investigate the clinical importance of
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cellular senescence in malignancies. However, there are
currently no studies on the role of cellular senescence in UCEC.

Four genes have been identified as being involved in illness
development and progression. BZW?2 is a protein that has a role
in cell adhesion (32). Huang et al. showed that BZW2 promoted
colorectal cancer progression (33). NRIP1 is a nuclear receptor
protein, and Its high expression is linked to a bad prognosis of
gastric cancer (34). ARHGAP29 is a GTPase that stimulates
prostate cancer development and metastasis (35). SIX1 is a
transcription factor with an important role in tumorigenesis
(36, 37). Our prognostic model combines these four genes,
which will give us a better understanding for cancer cells.

The function of programmed cell death in tumor therapy
and TME are receiving increasing attention (38, 39). Tumor
growth must evade tumor immunity, which is also considered an
important marker of tumor progression (40, 41). Despite
breakthroughs in the treatment of aggressive malignancies
with immunotherapy, a large minority of patients still have no
impact on treatment (42, 43). The immune microenvironment
of UCEC can predict patient survival (44). In this study, GSEA
analysis revealed that the low-risk group was mostly associated
to immunity. In addition, our study also found the riskscore was
inversely related to the patient’s stromalscore, immunescore,
estimatescore and proportional to tumorpurity. At the same
time, we also found that major immune checkpoint genes were
up-regulated in the low-risk group. This means that patients
with low-risk scores are more immunogenic and may benefit
from immunotherapy. Therefore, our study may guide the
immunotherapy of UCEC patients.

Studies have shown that immunotherapy is more effective in
people with a high TMB (45). Tissue TMB can also predict
patient response to immune checkpoint therapy (46). TP53
mutation is an independent marker of poor prognosis (47).
There is also evidence that human carcinogens can induce TP53
mutations (48). Our study also reached similar conclusions. The
mutation rate of TP53 is substantially greater in the high-risk
group than in the low-risk group. This helps us explore the
causes of tumorigenesis and the choice of treatment options for
patients. Besides, drug resistance of tumors has always been one
of the challenges of UCEC treatment (49). It is also difficult to
effectively treat advanced cases (50). To this end, our study
screened drug candidates for relevanche to prognostic models.

Our study has some limitations. First, our studies are all
from public databases. Due to the limited access to public data
sets and the limited amount of data, the clinicopathological
parameters analyzed in this study were not comprehensive, and
there were errors or biases. In the future, we will conduct basic
experiments in vivo or in vitro to confirm our findings. Second,
our study was a retrospective study. Future prospective clinical
validation is needed.
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This is the first prognostic model of UCEC based on cellular
senescence genes to our knowledge. Our analyses reveal a broad
range of regulatory regulatory mechanisms that facilitate
individualized treatment and prognosis prediction in patients.

Conclusion

We constructed a UCEC prognostic model based on cellular
senescence genes and combined with clinical factors to construct
nomograms, which showed good predictive performance. Using
this model, the prognosis and TME of UCEC patients can be
accurately estimated. Furthermore, our findings may lead to new
approaches for UCEC treatment.
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SUPPLEMENTARY FIGURE 1
Cluster analysis. Cluster analysis heatmap of cellular senescence genes
(k = 3-9).

SUPPLEMENTARY FIGURE 2

Cluster analysis. (A) Cluster analysis heatmap of differential genes (k = 3-
9). (B) Dividing patients into two subtypes was optimal. (C) Survival
analysis. Subtype B has a poorer prognosis. (D) There were no
differences in clinical factors between the two subtypes.

SUPPLEMENTARY FIGURE 3
Association of clinical factors with risk score. (A-E) Risk score in patients
with different age, grade, fustat, and histological_type.

SUPPLEMENTARY FIGURE 4

Model evaluation. (A-C) Patients were divided into high- and low-risk
groups based on the median risk score. (D-F) As the risk value increased,
the proportion of UCEC patients who died increased. (G-1) in the high-risk
group, BZW2, ARHGAP29, and SIX1 were highly expressed, whereas, in the
low-risk group, NRIP1 was highly expressed.

SUPPLEMENTARY FIGURE 5

Immunoassay of the model. (A) The distribution of immune cells for each
sample in the two groups. (B-F) The relationship between risk scores and
immune cells. T cell regulatory (Tregs) were negatively correlated with risk
score, and the remaining cells were all positively correlated with
risk score. (G, H) The relationship between immunophenotyping and
risk score. (I, J) Immune checkpoint analysis. There were also significant
differences in the expression of immune checkpoint genes between the
two groups. (K-M) PDCD1LG2 was positively associated with risk scores,
CTLA4, and PDCD1 were negatively associated with risk scores.

SUPPLEMENTARY FIGURE 6

The cellular senescence-related genes expression was investigated by
qPT-PCR.
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The BMP inhibitor follistatin-like
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Follistatin-like 1 (FSTL1) is a cancer-related matricellular secretory protein with
contradictory organ-specific roles. Its contribution to the pathogenesis of cervical
carcinoma is still not clear. Meanwhile, it is necessary to identify novel candidate
genes to understand cervical carcinoma’s pathogenesis further and find potential
therapeutic targets. We collected cervical carcinoma samples and matched
adjacent tissues from patients with the locally-advanced disease and used
cervical carcinoma cell lines HelLa and C33A to evaluate the effects of FSTL1 on
CC cells. The mRNA transcription and protein expression of FSTL1 in cervical
carcinoma tumor biopsy tissues were lower than those of matched adjacent
tissues. Patients with a lower ratio of FSTLI mRNA between the tumor and its
matched adjacent tissues showed a correlation with the advanced cervical
carcinoma FIGO stages. High expression of FSTL1 markedly inhibited the
proliferation, motility, and invasion of HelLa and C33A. Regarding mechanism,
FSTL1 plays its role by negatively regulating the BMP4/Smad1/5/9 signaling. Our
study has demonstrated the tumor suppressor effect of FSTL1, and these findings
suggested a potential therapeutic target and biomarker for cervical carcinoma.

KEYWORDS

FSTL1, tumor suppressor, cervical cancer, FIGO stages, BMP4/Smad1/5/9 signaling.

Introduction

Cervical carcinoma (CC) is the fourth most pervasive female malignancy in the world,
with over 500,000 diagnosed cases and over 300,000 deaths each year (1). During the past
decade, the incidence of CC has effectively reduced profit from the introduction of organized
screening programs and human papilloma virus (HPV) vaccination programs (2). However,
about 90% of CC deaths occur in non-developed countries, where morbidity and disease-
specific mortality continue to increase (1). China has the most significant number of CC
patients, with about 110,000 new cases and 60,000 mortality in the single year of 2020, which
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is equivalent to 18.2% of newly diagnosed CC cases and 17.3% of
deaths worldwide (3). After chemoradiotherapy, patients with failing
or recurring metastatic CC still suffer a poor prognosis, even
incorporating the anti-VEGF medication bevacizumab and novel
immunotherapeutic approaches (4). Therefore, it is essential to
identify novel target genes for in-depth understanding the
pathogenesis of CC and predicting the prognosis of CC.

Follistatin-like 1 (FSTL1), a matricellular protein which initially
discovered as a TGF-Bl-inducible protein (5), belongs to the Fst-
SPARC family (6). As a protein widely present in mammalian tissues,
ESTLI plays significant roles in the extracellular matrix and regulates
cellular proliferation, survival, differentiation, and migration
associated with development and disease, including cardiovascular
diseases, arthritis, and organ fibrosis (7). The carcinogenesis of FSTL1
(previously named TSC-36) was first discovered when researchers
found that FSTL1 was reduced and even undetectable in various v-
myc/v-ras-transformed cells and human cancer cells (8). Recently,
more and more works have identified the potential of FSTLI as a
tumor suppressor because of its ability to negatively regulate the
motility and invasion of ovarian (9), renal (10), lung (11), and
nasopharyngeal cancer cells (12). However, controversial data have
reported that FSTL1 is riched in astrocytic brain tumors with high
expression (13) and enhances the metastasis of cancer cells via
activating diverse signaling pathway in breast (integrin P3/Wnt)
(14), esophageal (NFKkB-BMP) (15), hepatocellular (TGF-B1) (16),
gastric (AKT) (17), and colorectal cancers (FAK) (18).

FSTL1 plays a role in development and disease to a large extent by
regulating the TGF-B/BMP4 signaling (8, 19). Our previous studies on
lung development also showed that FSTL1 interferes with alveolar
differentiation mediated by the BMP4-Smad1/5/8 signaling (20). BMP4
is associated with many aspects of carcinogenesis but has different
effects on different cancer types (11, 21). Recently, researchers have
reported that FSTL1 up-regulates the BMP4-Smad signaling in lung
adenocarcinoma (11), while in glioblastoma, FSTL1 down-regulates the
same signaling (21). Therefore, the effect and mechanism of FSTL1 in
cancer progression remain to be explored to a large extent.

The clinical significance of FSTLI in CC is rarely reported, and
the signaling of FSTL1 driving cervical carcinogenesis is not
elucidated. In this study, the FSTL1 expression was found to be
reduced, whereas BMP4/Smad signaling was more activated in
biopsies of CC tumors than in matched adjacent tissues. The low
ratio of FSTLI mRNA expression between the tumor and its matched
adjacent tissue was associated with the poor prognosis in CC. The
characterization of the function of FSTL1 in cervical carcinogenesis
was also carried out in cultured human CC cells (HeLa and C33A).
Our data demonstrated the tumor suppressor effect of FSTLI,
suggesting its potential role as a therapeutic target and a prognostic
marker for CC.

Materials and methods
Subjects
We collected the samples of CC tumors and matched adjacent tissues

(2 cm from the tumor) from 15 patients with locally-advanced disease
from 2018 to 2021 at Tianjin Medical University Cancer Institute and
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Hospital (TMUCIH). The pathological diagnose of each patient was
assigned using the established criterion (22). The levels of FSTLI in
patients’ cervical tissues were detected separately using qRT-PCR (No.1-
11), western blot (No.12-15), and immunohistochemistry (No.15). We
also collected the blood samples of eight patients and eight normal
control individuals with matched age, sex, and weight. ELISA was used to
detect FSTL1 level of peripheral blood samples The clinical information
of CC patients is presented in Table 1, and the characteristics of normal
control individuals are summarized in Table 2.

This study followed the principles of the Declaration of Helsinki.
Approval was authorized by the Ethics Committee of TMUCIH
(approval number: Ek2018137; date of approval: 20 November
2018). All sample donors in the study confirmed and signed the
informed consent to publish this article.

Methods of data analysis
and manu-experiments

The detailed methods were described in Supplementary Materials.
The judgment of significance of all experimental results followed by
consistent standard: ***p < 0.001, **p < 0.01, *p < 0.05 and ns: p >
0.05. Data were expressed as mean + SE.

Results

The expression of FSTL1 is lower
in CC patients

To confirm the broad significance of FSTLI in CC, we first
analyzed FSTLI mRNA expression in a CESC cohort (CC, n = 306;
adjacent, n = 3) that was collected from the TCGA database. We
observed a 3.2-fold reduction in FSTLI mRNA level (Alog, = -1.67) in
CC tumors compared with adjacent tissues (Figure 1A). We also
obtained tumors and the matched adjacent tissues from an
independent cohort of patients with locally-advanced CC and
measured similar declines in FSTLI expression. As shown in
Figure 1B, among the 11 pairs of biopsies (Table 1, patient No. 1-
11) examined, the FSTLI mRNA transcription level in each tumor
was markedly lower than that in the matched adjacent tissue using
qRT-PCR. The reduction of FSTLI protein expression was further
detected through densitometric analysis of western blot (Table 1,
patient No. 12-15, Figure 1C) and immunohistochemistry staining
(Table 1, patient No. 15, Figure 1D). These data indicated the reduced
FSTL1 expression in CC. Unfortunately, the circulating levels of
FSTL1 CC patients’ serum were comparable to those of healthy
controls (Tables 1, 2, patient No. 13-20, Figure 1E).

Low FSTL1 expression ratio in CC is
connected to advanced FIGO stage and
poor prognosis

We further investigated the association between decreased FSTLI

levels and poor prognosis of CC. In the CESC cohort, CC patients
with low FSTLI mRNA expression tended to have a poor prognosis
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TABLE 1 Clinical characteristics of CC patients.

10.3389/fonc.2023.1100045

Pat. Age Pathology FIGO stage Follow-up Ratio (Tumor/Adjacent)
1 45 Nee 1B2 CR -1.45
2 56 Nee 1B CR -2.88
3 60 scc 1B CR -2.08
4 67 Nee A1 CR -1.99
5 55 scc IC2 PR -2.46
6 45 Nee TIC1 PR -4.81
7 51 SCC 1IB CR 213
8 58 sce A1 CR -1.93
9 48 scc IC1 PD 235
10 29 scce TIC1 uT -2.65
11 59 scce IVB uT -3.52
12 69 oo 1IIB / /
13 49 scc 111B / /
14 55 scc 1B / /
15 48 scc 1B / /
16 61 oo 1B / /
17 57 sce 1I1B / /
18 67 sce B / /
19 41 sce IIC1 / /
20 63 Neo 1B / /

Patient and treatment characteristics. The detailed descriptions of all abbreviations in the column “FIGO stage” are listed in (22). In the column “Follow-up”, CR, Complete response; PR, Partial

response; PD, Progressive disease; UT, Under-treatment. *Discontinued therapy due to myocardial infarction.

(FIGO stage: 0, Log,FSTL1 = 9.11 + 0.46; I/TI, Log,FSTL1 = 7.14 +
0.09; M-IV, Log,FSTL1 = 6.84 + 0.15), but the difference was not
significant (Figure 2A). Similarly, no prognostic significance of the
FSTLI mRNA expression was observed in our patient cohort (Table 1,
patient No. 1-11; Figure 2B). Besides, no significant difference
between the expression level of FSTL1 and the survival probability
of patients shared on the TCGA database (Figure S1). However,
interestingly, when calculating the FSTLI mRNA expression ratio
between the tumor and matched adjacent tissues (Table 1), the
reduced ratio was positively correlated with FIGO stage (I-II, A=

TABLE 2 Characteristics of normal control individuals.

-2.08 £ 0.19; IIT-1V, A= -3.16 * 0.46, Figure 2C), which suggested that
CC patients with relatively lower FSTLI mRNA transcription might
tend to have a poor prognosis, including pelvic or retroperitoneal
lymph node metastasis. We further followed up with these 11 CC
patients who received standard chemoradiotherapy. As expected, six
FIGO stage I-1I patients showed complete response (CR) and were in
stable condition. In contrast, two FIGO stage III patients (No. 5,
IIIC2r; No. 6, ITIC1r) showed partial response (PR) and one patient
(No. 9) with IIIC1r developed progressive disease (PD) at a median of
22 months (range, 18-31 months) follow-up. More seriously, patient

Normal control Age (year) Weight (kg)
1 49 66
2 55 61
3 48 65
4 61 63
5 57 58
6 67 75
7 41 78
8 63 60
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FIGURE 1

The level of FSTL1 frequently decreased in CC, which was related to the poor prognosis. (A) FSTLI mRNA transcription level of was analyzed using TCGA
database containing 306 CC samples and 3 adjacent tissue samples. The mRNA (B) and protein (C) expression levels in CC tissues were lower than those
in adjacent tissues. (D) The FSTL1 IHC staining in CC tissues was weaker than adjacent tissues. Scale bar, 150 um. (E) ELISA showed no significant
differences in serum FSTL1 levels between cervical cancer patients and healthy controls (n = 8). **p < 0.01. ***p < 0.001.

No.9 developed multiple distant metastases, including liver, bone and
lymph nodes metastasis, and died eight months after standard
chemoradiotherapy, bevacizumab and checkpoint inhibitors. The
newly recruited patients with FIGO stage ITI-IV (No. 10, IIIC1; No.
11, IVB) are still under treatment. In conclusion, clinical data
suggested that a low FSTLI expression ratio could predict advanced
CC stages to a certain extent.

FSTL1 inhibits CC cell proliferation

Before evaluating the regulatory effect of FSTLI on CC cell
proliferation, we first tested the levels of mRNA transcription and
protein expression of FSTL1 in two CC cell lines, HeLa and C33A.
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And both levels in HeLa were significantly lower than those in C33A
and the normal cervical epithelial cell line (H8) (Figures 3A, B).
Overexpression of FSTL1 with transient transfection of pcFstll into
HeLa cells significantly increased FSTL1 protein expression when
compared with HeLa cells transfected with the empty vector
(pcDNA3.1) (Figure 3C). Parallelly, the knockdown of FSTL1 by
siRNA in C33A significantly decreased FSTL1 protein expression
(Figure 3D). The overexpression of FSTL1 inhibited HeLa cell
proliferation, as determined by cell number counting (Figure 3E),
MTT assay (Figure 3F), and EdU staining (Figure 3G). Moreover, the
deficiency of FSTL1 enhanced the proliferation of C33A (Figures 3E—~
G). In summary, the results indicated that FSTL1 might play the role
as a tumor suppressor, and its high expression in CC cells can inhibit
cell growth in vitro.
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FIGURE 2

Low expression of FSTL1 in CC was connected to the poor prognosis. (A) Based on the cases from the TCGA database, FSTLI transcription decreased
with the development of a poor prognosis. (B) FSTLI mRNA transcription of 11 CC tumor tissues showed no significant correlation between FSTLI and
the FIGO stage. (C) With the development of a poor prognosis, the ratio of FSTLI mRNA transcription between the tumors and their matched adjacent

tissues was reduced. *p < 0.05. **p < 0.01.
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FIGURE 3

FSTL1 inhibited CC cell proliferation. (A) The comparison of FSTLI mRNA transcription level in cell lines Hela, C33A and H8. (B) FSTL1 protein expression in
cell extracts (labeled as “Cell") of HelLa, C33A and H8 cells and in the medium (labeled as “supernatant [SN]"). (C) FSTL1 protein expression in HeLa undergone
the transfection of pcDNA3.1 or pcFstll. (D) FSTL1 protein expression in C33A undergone the interference of siRNA. (E) The number of proliferating cells after
overexpression of FSTL1 in Hela (left) and knockdown in C33A (right). (F) The formazan production in HelLa and C33A cells for diverse time duration. (G) The
nucleuses of Hela and C33A cells were stained in blue by Hoechst, which represented the total number of cells. The cells in active proliferation were stained
in green by EdU. Then the percentage of cell proliferation was calculated. Scale bar, 50 um. *p < 0.05. **p < 0.01. ***p < 0.001.

FSTL1 has little effect on CC cell apoptosis

The impact of FSTL1 on the survival of HeLa and C33A cells was
also tested. Overexpression of FSTL1 in HeLa or knockdown FSTL1
in C33A slightly changed the level of the cleaved form of Caspase-3,
the marker of Caspase-3 activation in apoptotic signaling. Besides, the
overexpression or deficiency of FSTL1 had little effect on the

Frontiers in Oncology

expression of Bcl-2, an anti-apoptotic protein that is often used as a
marker showing apoptotic activity (Figure 4A). Consistently, FACS
analysis also showed slightly changing but insignificant proportions
of apoptotic cells in HeLa cells with FSTL1 overexpression and C33A
cells with FSTL1 deficiency (Figure 4B). The data above suggested that
FSTL1 slightly affected CC cells’ apoptosis in vitro, but
not significantly.

144

frontiersin.org


https://doi.org/10.3389/fonc.2023.1100045
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Zhao et al.

FSTL1 suppresses the motility and invasion
of CC cell

The motility and invasion in vitro of CC cells with the
overexpression and knockdown of FSTL1 were also detected.
Compared with HeLa cells transfected with pcDNA3.1, the
transwell migration assay showed significant reductions of
migratory cells with the high expression level of FSTL1 (H8 and
HeLa transfected with pcFstll) was identified (Figure 5A).
Consistently, the deficiency of FSTL1 in C33A cells resulted in a
significant increase of migratory cells (Figure 5B). Moreover, the
invasion of HeLa and C33A cells through Matrigel was significantly
inhibited when FSTL1 was high-expressed (Figures 5C, D).
Meanwhile, the overexpression of FSTLI also caused a decrease in
MMP2 expression which is related to tumor metastasis. And

10.3389/fonc.2023.1100045

unsurprisingly, MMP2 expressed higher when FSTL1 was knocked
down in C33A cells (Figure 5E). These data further demonstrated that
FSTLL1 is a tumor suppressor, and its high expression can significantly
inhibit the motility and invasion of CC cells in vitro.

FSTL1 inhibits BMP4-Smad signaling in CC

The FSTL1-BMP4-Smad signaling has been reported in lung
adenocarcinoma (11) and glioblastoma (21), but the role of FSTLI
in BMP4-Smad signaling remains controversial. To determine the
molecular basis of the anti-tumor activity of FSTL1 in CC, we first
examined the Smad-mediated BMP4 signaling. Compared with the
matched adjacent tissues, the phosphorylation level of Smad1/5/9 in
tumor biopsy tissues was higher in patients with the locally-advanced
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FIGURE 5

FSTL1 inhibited the mobility and invasion of CC cells. Representative images of crystal violet-stained HelLa migratory cells transfected with an empty
plasmid or a pcFstll plasmid after the motility (A) and invasion (C) assay compared with H8 cells. The same experiments of cell mobility (B) and invasion
(D) were also performed using C33A cells. Quantification of the migratory (A, B) and invading (C, D) cells by solubilizing the crystal violet and
spectrophotometric reading at OD 570 nm. (E) The expression of the invasion-related protein MMP2 in Hela cells transfected with either an empty
control vector or pcFstll (left) and in C33A cells undergone the knockdown of FSTL1 (right). *p < 0.05. **p < 0.01 ***p < 0.001

disease (Patient No. 12; Figure 6A). This corresponded to a lower level
of FSTLI protein in the tumor than in its matched adjacent tissues
(Figures 1C and 6A). These findings implied that FSTL1 might
function in the negative control of BMP4-Smad signaling in CC.

To further examine the inhibiting effect of FSTL1 on BMP4-Smad
signaling in CC, we overexpressed FSTL1 in HeLa and knocked down
FSTL1 in C33A. As shown in Figure 6B, BMP4-induced activation of
Smad1/5/9 signaling was suppressed by the high expression of FSTL1
in CC cells. Moreover, FSTL1 high-expression inhibited the BMP4-
induced CC cell proliferation as detected by EAU assay (Figure 6C)
and CC cell metastases as detected by MMP2 expression (Figure 6D).
Therefore, the results supported the involvement of the FSTLI-
BMP4-Smad signaling in CC and demonstrated the negative effect
of FSTLI on regulating the BMP4-Smad signaling in CC progression.

Discussion

The worldwide gynecological malignancy, cervical carcinoma (CC),
is a primary cause of female tumor-related deaths in non-developed
countries (23). Despite advances in treatments, little progress has been
made in treating patients with progressing CC, and the prognosis is
poor. One of the hurdles to improving the effectiveness of treatment
and developing precise treatment strategies is short of an in-depth
study of the molecular mechanisms of cervical carcinogenesis. Here we
provided new insights into the pathogenesis of CC and demonstrated
the tumor suppressor effect of FSTL1 in CC. We analyzed the clinical
samples as well as conducted in vitro experiments to validate that
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FSTL1 holds the potential to be a promising therapeutic target and
possible biomarker for CC prognosis prediction.

We found evidence to prove the tumor suppressor function of
FSTLI in cervical carcinogenesis. FSTL1 expression decreased in the
CC tumor tissues compared with its matched adjacent tissues. High
expression of FSTL1 suppressed the proliferation, motility, and
invasion, but affected little on HeLa and C33A cells’ apoptosis.
However, the same experiments demonstrated that a normal
cervical epithelial cell line (like H8) could not be affected by
changing the FSTL1 expression level (Figure S2). In summary,
FSTL1 in CC shows a similar carcinogenesis suppressor function as
in ovarian (9), renal (10), lung (11), and nasopharyngeal cancers (12).

Recent studies have reported that the tumor suppressor function
of FSTLI can further predict the prognosis of patients. For example,
the THC analysis and survival analysis of the public data both reveal a
positive correlation between FSTLI level and overall survival in lung
adenocarcinoma patients (11). Liu et al. further found an SNP
(rs1259293) in the genomic coding region of FSTLI, which is
connected with a rising risk and poor postoperative prognosis of
renal cell carcinoma (24). Here, we found that the decreased FSTLI
mRNA expression ratio between the tumor and its matched adjacent
tissues, instead of the expression of FSTL1 mRNA itself, is correlated
with the FIGO stage. Our data suggest a novel calculation method to
highlighting the prognostic value of FSTL1 in CC.

The critical role of BMP4 in cancer pathogenesis has been
reported (25). The expression level of BMP4 is usually varied in
diverse types of tumors, and BMP4 inhibits cancer growth and
metastasis in most types of tumors, although contradictory or
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FSTL1 negatively regulated the BMP4/Smad1/5/9 signaling in CC. (A) p-Smad1/5/9, Smad1/5/9, FSTL1, and B-tubulin expression in CC tissues and
matched adjacent tissues. (B) p-Smad1/5/9, Smad1/5/9, FSTL1, and GAPDH expression in Hela transfected with pcDNA3.1 or pcFstll (left), and in C33A
with knockdown of FSTL1 (right). Both cell lines were treated with BMP4 and/or dorsomorphin to prove that the BMP4-Smad signaling can be normally
activated or blocked in the CC cells. (C) The proliferation of Hela cells undergone 16 h BMP4 treatment after the Fstll-transfected for 24 h (left) and of
C33A cells undergone the same BMP4 treatment after FSTL1 knockdown for 48 h (right). The cell nucleuses were stained in blue by Hoechst, and the
cells in active proliferation were stained in green by EdU. Then the proportion of cell proliferation was calculated. Scale bar, 50 um. (D) The expression of
protein MMP2 after 16 h BMP4 treatment in Hela cells transfected with a plasmid pcFstll (left) and C33A undergone FSTL1 knockdown (right). *p < 0.05.

**p < 0.01. ***p < 0.001.

conflicting results have been reported as well (21, 26). Jin and
colleagues reported the high expression of FSTL1 in high-grade
gliomas, and it facilitates glioma growth by negatively regulating
the BMP4-Smad signaling (21). Chiou and colleagues showed low
expression of FSTL1 and BMP4 in lung adenocarcinoma (11). They
found that FSTL1 prevents the nicotine-induced proliferation of lung
cancer cell lines. Different from the above studies, we observed low
FSTL1 expression and high BMP4-Smad1/5/9 signaling activity in CC
and found that FSTL1 high expression may attenuate the BMP4-
promoted migration of CC cells. The precise mechanisms by which
the FSTL1-BMP4-Smad axis plays its role in the pathogenesis of CC
need further study.

Conclusions

In summary, our study has demonstrated that FSTL1 has a tumor
suppressor effect in CC. The low expression of FSTLI calculated based
on the mRNA expression ratio between the tumor and its matched
adjacent tissues can predict the poor prognosis of CC to a certain
extent. High expression of FSTL1 suppressed the proliferation,
motility, and invasion of CC cells in vitro. The mechanism of this
action was through the negative control of the BMP4/Smad1/5/9
signaling. This study puts forward novel insights into the molecular
mechanisms of FSTL1 in CC and suggests that FSTLI is a potential
therapeutic target and possible biomarker for CC.
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Background: The development of HCC is often associated with extensive
metabolic disturbances. Single cell RNA sequencing (scRNA-seq) provides a
better understanding of cellular behavior in the context of complex tumor
microenvironments by analyzing individual cell populations.

Methods: The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
data was employed to investigate the metabolic pathways in HCC. Principal
component analysis (PCA) and uniform manifold approximation and projection
(UMAP) analysis were applied to identify six cell subpopulations, namely, T/NK cells,
hepatocytes, macrophages, endothelial cells, fibroblasts, and B cells. The gene set
enrichment analysis (GSEA) was performed to explore the existence of pathway
heterogeneity across different cell subpopulations. Univariate Cox analysis was
used to screen genes differentially related to The Overall Survival in TCGA-LIHC
patients based on scRNA-seq and bulk RNA-seq datasets, and LASSO analysis was
used to select significant predictors for incorporation into multivariate Cox
regression. Connectivity Map (CMap) was applied to analysis drug sensitivity of
risk models and targeting of potential compounds in high risk groups.

Results: Analysis of TCGA-LIHC survival data revealed the molecular markers
associated with HCC prognosis, including MARCKSL1, SPP1, BSG, CCT3, LAGES,
KPNA2, SF3B4, GTPBP4, PON1, CFHR3, and CYP2C9. The RNA expression of 11
prognosis-related differentially expressed genes (DEGs) in normal human
hepatocyte cell line MIHA and HCC cell lines HCC-LM3 and HepG2 were

149 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fonc.2023.1104262/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1104262/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1104262/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1104262/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1104262/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1104262/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1104262/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1104262&domain=pdf&date_stamp=2023-01-31
mailto:hancuifang@gdmu.edu.cn
mailto:hbyu@gdmu.edu.cn
mailto:hezhiwei@gdmu.edu.cn
https://doi.org/10.3389/fonc.2023.1104262
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1104262
https://www.frontiersin.org/journals/oncology

Han et al.

10.3389/fonc.2023.1104262

compared by gPCR. Higher KPNA2, LAGE3, SF3B4, CCT3 and GTPBP4 protein
expression and lower CYP2C9 and PONL1 protein expression in HCC tissues from
Gene Expression Profiling Interactive Analysis (GEPIA) and Human Protein Atlas
(HPA) databases. The results of target compound screening of risk model showed
that mercaptopurine is a potential anti-HCC drug.

Conclusion: The prognostic genes associated with glucose and lipid metabolic
changes in a hepatocyte subpopulation and comparison of liver malignancy cells
to normal liver cells may provide insight into the metabolic characteristics of HCC
and the potential prognostic biomarkers of tumor-related genes and contribute to
developing new treatment strategies for individuals.

KEYWORDS

cancer metabolism, hepatocellular carcinoma, malignant hepatocytes, prognostic
biomarker, single-cell RNA sequencing

1 Introduction

The mortality rate for liver cancer is the third highest among all
cancers, and it is the sixth most frequent cancer overall (1). Hepatocellular
carcinoma (HCC) is a tumour of hepatocellular origin. HCC is the
predominant pathological type of primary liver cancer (PLC), as it
represents 75-85% of all instances of PLC (2). A vast majority of HCCs
are caused by chronic disease, and most of these cases reportedly evolve
from chronic liver disease. This is primarily because of viral infections,
including hepatitis B virus (HBV) and hepatitis C virus (HCV), and
alcohol misuse (3). It is recommended that patients diagnosed with HCC
in the early stages receive surgical resection, liver transplantation, and local
resection (radiofrequency ablation) according to the Barcelona Clinic
Liver Cancer (BCLC) staging system. Those in the intermediate stage are
widely treated with trans-arterial chemoembolization (TACE), whereas
systemic therapies are mainly considered for advanced-stage patients.
Advanced-stage patients are often symptomatic, although they exhibit
some degree of impaired liver function (4, 5). Notably, few or no
treatments are available to improve survival rates for patients in
advanced stages.

The development of treatment modalities for advanced HCC has
dramatically expanded recently. To date, the FDA has approved several
oral tyrosine kinase inhibitors (lenvatinib, regorafenib and cabozantinib),
immune checkpoint inhibitors (nivolumab and pembrolizumab) and

Abbreviations: HCC, hepatocellular carcinoma; PCA, Principal component
analysis; UMAP, Uniform Manifold Approximation and Projection; KEGG,
Kyoto Encyclopedia of Genes and Genomes; PONI, paraoxonase 1; TNM,
tumor-node-metastasis; GSEA, gene set enrichment analysis; CNV, Copy number
variation; DEDs, Differentially Expressed Genes; OS, Overall Survival; LASSO, least
absolute shrinkage and selection operator; MARCKSL1, MARCKS Like 1; SPP1,
Secreted Phosphoprotein 1; BSG, Basigin, also called CD147 or EMMPRIN; CCT3,
chaperonin containing TCP1 subunit 3; LAGE3, L antigen family member 3;
KPNA2, karyopherin subunit alpha 2; SF3B4, Splicing Factor 3b Subunit 4;
GTPBP4, GTP Binding Protein 4; PON1, Paraoxonase 1; CFHR3, Complement
factor H-related 3; CYP2C9, cytochrome P450 family 2 subfamily C member 9.
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immunotherapies, such as monoclonal antibodies (6-8). These therapies
have steadily improved the overall survival (OS) of HCC patients.
However, the prognosis for HCC patients continues to be poor
because of recurrence and elevated metastasis rates (9). HCC features
have been attributed to a small subpopulation of tumour cells that carry
more aggressive genetic or phenotypic alterations that allow them to
escape conventional detection methods (10).

Although conventional bulk RNA sequencing (bulk RNA-seq) can
provide sufficient gene expression profiles of large blocks of tissue, it does
not effectively distinguish between different cell lineages and cellular
interactions (11). Recently, the emergence of single-cell sequencing
technology has bridged the gap between traditional high-throughput
sequencing technologies and microarray data to provide genomic,
transcriptomic, and epigenetic information from individual cells (12).
Tumours consist of three major cell types, namely, malignant, immune
and stromal cells, whose spatiotemporal interactions constitute a complex
ecosystem (13). Unravelling the interactions between these types involves
understanding tumour development and prognosis and therapeutic
options. Since the advent of single-cell sequencing, various researchers
have produced a relatively complete picture of human cell atlas, which has
subsequently provided a great reference for understanding the complex
composition of the organs of the body (14). Additionally, single-cell
sequencing has been extensively employed to reveal the molecular
mechanisms underlying HCC. For instance, studies have mapped the
single-cell landscape of the early recurrent HCC ecosystem by relying on
the high recurrence and low survival rates of HCC patients to advance the
immunotherapy guidelines for HCC (13). Numerous studies have utilized
single-cell sequencing techniques to elucidate the heterogeneity of
malignant tumour cells, stromal cells, and immune cells. The large scale
single-cell omics study targeting tumor-associated T cells published by
Zhang et al. sketched the tumor immune landscape and laid the
groundwork for a multifaceted understanding of T-cell characteristics
associated with liver cancer (15). Single-cell technology can also identify
rare subpopulations that were previously undetected by bulk RNA
sequencing techniques, and these cell types are pivotal in determining
tumor characteristics, including stemness-associated malignant cells and
cancer-associated fibroblasts (16-18).
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The reprogramming of energy metabolism characterizes tumour
cells and causes rapid cell growth and proliferation. Thus, it is one of
the hallmarks of cancer. Tumour cells actively take up glucose
through the uncommon process of anaerobic glycolysis (Warburg
effect). Studies have shown that this process provides energy to
tumour cells, permitting intermediates to enter the anabolic bypass
to maintain the de novo synthesis of nucleotides, lipids, and amino
acids needed for cell proliferation (19). HCC is closely linked to
metabolic abnormalities, as the liver is the primary metabolic organ.
Most previous studies concerned with liver cancer have focused on
sequencing at the tissue level to reveal the overall metabolic
alterations. Single-cell sequencing technology can compensate for
the shortcomings of bulk sequencing, thereby allowing one to
pinpoint the cell groups most significantly associated with
metabolic alterations from a large number of cell types. This also
allows researchers to comprehensively describe the overall changes in
gene expression patterns and reveal changes across specific cell
groups. Therefore, scRNA-seq and bulk RNA-seq integration are
important techniques for studying tumour development and
heterogeneity. We analysed published single-cell transcriptome
sequencing data to identify metabolically relevant HCC
subpopulations, namely, hepatic epithelial cells. We then used the
identified differentially expressed genes to designate a prognostic
model for HCC patients.

2 Materials and methods
2.1 Data collection

The scRNA-seq data for HCC patients were acquired from GEO
(https://www.ncbinlm.nih.gov/geo/, accession number GSE149614)
and TCGA (https://portal.gdc.cancer.gov/) databases, respectively.
TCGA-LIHC samples with complete clinical information were
utilized as the model training set, and HCC samples from the GEO
database (GSE76427) were utilized as the external validation set.

We first constructed a human liver cell atlas by performing cell
classification and marker gene identification relying on Seurat.
There were 17 samples in total from 10 HCC patients. These
included 8 tumour samples (PT), 8 normal paraneoplastic samples
(NTL), and one metastatic lymph node sample (MLN). The data for
these samples were obtained from the GSE149614 project.

2.2 Identification of HCC cell subtypes

The scRNA-seq data were assessed by the Seurat package
implemented in R software (4.1.1), with the exclusion of samples
with more than 30% mitochondrial genes. The data were normalized
using the Normalize Data function, and 2,000 genes with high
intercellular coefficients of variation were subsequently extracted.
Principal component analysis (PCA) was then performed, with 15
PCs selected for subsequent uniform manifold approximation and
projection (UMAP) analysis. Cell types within the obtained clusters
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were annotated by the reported cell marker genes, and the expression
matrix was generated for further analysis.

2.3 Analysis of intercellular communications

To investigate the potential interactions between tumor and
paracancerous normal HCC samples, we employed the CellChat (1.5.0)
package to analyse intercellular communication. We performed CellChat
analysis of the annotated cellular gene expression profile data according
to the official workflow. This package mimics intercellular
communication by assessing the binding ligands and receptors along
with their cofactors (20). Depending on receptor expression in one cell
type and ligand expression in the other, enriched receptor-ligand
interactions between the two cell types were inferred. Signaling
pathways were visualized using the “netVisual aggregate” function,
where ligands were defined as efferent signals and receptors were
defined as afferent signals.

2.4 |dentification of important metabolic
pathways at the single-cell level

Next, we employed the ‘scMetabolism’ package (0.2.1) to calculate
the metabolic state between different cell types in the HCC dataset.
This package combines published gene sets from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database and the
Reactome database to easily quantify single-cell metabolic activity.
(21). Here, we used the authors’ integrated list of metabolism-related
gene sets from the Reactome database to explore metabolic pathway
changes among six cell subpopulations and further looked at
metabolic changes in epithelial cell subpopulations between tumor
and paracancerous normal HCC samples.

2.5 Copy number variation analysis

To identify malignant cells in HCC patients, we compared patterns
of chromosomal gene expression across cancer cells to those of their
putative noncancerous counterparts using the infercnv package (version
1.12.0). First, we downloaded the human genome annotation file from
the gencode database (https://www.gencodegenes.org/human/),
converting it into a genomic location file. We used paracancerous
epithelial tissue expression profiles from HCC patients as a reference
group. Because our data were 10x scRNA-seq data, we set 0.1 as the cut-
oft value, and the denoise = T. Referring to the two indicators used by Itay
Tirosh et al. to determine benign versus malignant cells, here we used the
overall copy number variant (CNV) and the correlation with the average
CNV of the top 5% of cells from the same tumor to estimate the
malignancy or non-malignancy of the cells (22). The following
correlation reference thresholds for determining the malignancy or not
of cells were given: malignant cells: overall CNV > 0.2 & CNV correlation
of the top 5% of tumors > 0.2; non-malignant cells: overall CNV < 0.2 &
CNV correlation of the top 5% of tumors < 0.2.
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2.6 Identification of significantly related
pathways across different epithelial
cell types

After scoring individual cells using a variety of enrichment
methods, we derived multiple gene set enrichment score matrixes
using the 'irGSEA" package (https://github.com/chuiqin/irGSEA/).
Next, we calculated the differentially expressed gene sets for every
single cell subpopulation within the enrichment score matrix for
every gene set using the Wilcoxon test. Employing heat maps, certain
specific enrichment pathways were labelled and then visualized.

2.7 Generation and validation of
prognostic features

Univariate Cox analysis was used to screen genes associated with
OS in TCGA-LIHC patients based on scRNA-seq and bulk RNA-seq
datasets, and then, LASSO analysis was used to select significant
predictors for incorporation into multivariate Cox regression. Next,
we selected and used prognostic characteristics to generate polygenic
risk scores and stratify TCGA-LIHC samples into either low- or high-
risk groups. We also generated time-dependent receiver operating
characteristic (ROC) curves to assess the predictive power of the
prognostic features. The GSE76427 dataset was used to validate the
prognostic value of the prognostic features. The entire analysis and
visualization processes were performed by the survival, survminer,
rms, and time ROC packages in R.

2.8 Gene expression of prognostic genes

Total RNA from cells was extracted with TRIzol reagent (Thermo
Fisher Scientific, 15596026) following the manufacturer’s
instructions. Complementary DNA (cDNA) was synthesized and
PCRs with cDNA as template were performed using a real-time
detector (The Applied Biosystems QuantStudio 5 Real-Time PCR
System) using Hieff QPCR SYBR Green Master Mix. The primer
sequences are shown in Supplementary Table S1. Transcript levels
were normalized against beta-actin levels as an internal reference and
were evaluated using the 2- A ACt method. All experiments were
repeated three times.

The Human Protein Atlas (HPA) tool was used to visually display
the protein expression of prognostic genes in the form of
immunohistochemical staining. The Gene Expression Profiling
Interaction Analysis (GEPIA) database was applied to further
demonstrate the credibility of the results.

2.9 Cell culture and western blot
An immortalized nontumorigenic normal human hepatocyte cell

line MTHA and HCC cell lines HCC-LM3 and HepG2 were purchased
from the Fenghui Biotech Co., Ltd. (Hunan, China) with STR report.
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The MIHA cells were cultured in RPMI-1640 and HCC-LM3 and
HepG2 were cultured in Dulbecco’s modified Eagle medium (Gibco,
Gaithersburg, MD, USA) with 10% fetal bovine serum (FBS, Sigma),
100 pg/mL penicillin and 100 pg/mL streptomycin (Solarbio,
Shanghai, China) at 37°CC and 5% CO>~

Total protein was extracted by using Takara kit. The Protein
concentration was detected by BCA assay. The primary antibodies
used in this study were anti-CYP2C9 (1:1000, Abcam), anti-PON1
(1:1000, Abcam) anti-beta-Actin (1:1000, Cell Signaling Technology).

2.10 Drug sensitivity analysis

Genomics of Drug Sensitivity in Cancer (GDSC, https://www.
cancerrxgene.org/) is the largest pharmacogenomic database that is
freely accessible for predicting responses to anticancer drugs. GDSC
comprises 2 databases, namely, GDSC1, which contains 958 cell lines
and 367 drugs, and GDSC2, which contains 805 cell lines and 198
drugs (23). To explore the differences in drug treatment effects among
HCC patients, drug inferred sensitivity scores were assessed in
GDSC2 by the ‘oncoPredict’ package.

2.11 Connective map analysis

The Connective Map (CMap) database stores a large-scale
resource of expression profile data of cell lines under different drug
treatments, which allows rapid targeting of drug candidates for the
treatment of target diseases based on aberrant transcriptomic features
in tumor cells (24). These drugs have an inverse relationship with
tumor-promoting factors and may regulate aberrantly expressed
genes in the opposite direction.

Recently, Yang et al. used the Library of Integrated Network-based
Cellular Signatures (LINCS) database to demonstrate that using the
eXtreme Sum (XSum) algorithm is most likely to yield optimal results in
matching compounds and disease features, demonstrating better drug
retrieval performance than the other five available methods, and
obtaining practical targets with desirable results in liver cancer (25). In
addition, the parameters for achieving the best prediction performance in
this study were set at a number of disease molecular features of 100.
Considering the significant difference in dimensionality between CMap
data and LINCS, we incorporate more query signatures using top300
genes for XSum analysis for potential drug prediction.

2.12 Statistical analysis

All statistical analyses were carried out using packages
implemented in R version 4.2.0 (https://www.r-project.org/).
Student’s t test was used to perform comparisons of continuous
variables between two groups, and the Wilcoxon rank sum test was
used to compare more than two groups. Kaplan—-Meier curves with
log-rank statistics were used to compare differences in OS between the
two groups. Statistical significance was represented by p < 0.05.
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3 Results

3.1 Single-cell gene expression profiles
reveal six major cell types in the TME of
primary HCC tumours

We performed descending and unsupervised cell clustering to
recognize cell types based on their expression profiles. The raw dataset
was read using the Seurat package. Then, an initial screening of genes
and cells was performed using the following criteria: a gene had to be
expressed in at least 3 cells, and at least 200 genes were measured in
this cell. This was followed by further quality control to extract cells
with >200 and <8000 expressed genes and <30% of mitochondrial
genes. Next, the data were normalized to obtain 2000 highly variable
genes for subsequent downscaling. Removal of the cell cycle effect
resulted in an expression matrix comprising 58,475 cells and 24,746
genes. Next, we employed known marker genes to define broad cell
categories and obtained the following six major cell subpopulations:
T/NK cells, hepatocytes, macrophages, endothelial cells, fibroblasts,
and B cells (Figures 1A, B). Cells from tumours and normal
paracancerous tissues from different patients were classified into six
categories (Figure 1C). Because proliferation is a hallmark of tumour
cells, we employed the cell cycle scoring method to analyse the cell
cycle. This image shows the results indicated that most of the cells
were in the G1 phase, and a small number of cells were in the G2/M
and S phases (Figure 1D).
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3.2 Genes associated with the glucose and
lipid metabolic pathway are upregulated in
hepatocytes

To explore the existence of pathway heterogeneity across different
cell subpopulations, we performed pathway activity and GSEA using
signature genomes. Numerous pathways associated with cancer were
upregulated in the hepatocyte subpopulation; these pathways
included oxidative phosphorylation, glycolysis, and the metabolism
of fatty acids, bile acids, and xenobiotics (Figure 2A). Next, we used
the scMetabolism package to calculate scores for each metabolic
pathway in each cell. We found that the epithelial cell
subpopulation was enriched in most metabolic pathways, mainly
those regulating pyruvate metabolism, the citrate tricarboxylic acid
cycle, and the metabolism of triglycerides, pyruvates, lipids,
carbohydrates, amino acids and their derivatives, ketone bodies,
glucose, and fatty acids, and FoxO-mediated oxidative stress
(Figure 2B). The genes of glucose metabolism and lipid metabolism
pathways were also upregulated in epithelial cells (Figures 2C, D). To
determine the differences in metabolic pathways of hepatic epithelial
cells between tumor and paracancerous tissues, we extracted a
separate subpopulation of hepatocytes and analysed the enrichment
of metabolic pathways. Strikingly, we found an opposite trend
between the glucose metabolism and lipid metabolism pathways in
tumour and paracancerous cells (Figure 2E). Consequently, we
subjected this cell subpopulation to more in-depth analysis.

Average Expression
20

Percent Expressed
.25
® 50
®75

I
&

tients -
paten cell_type

| R
N
[ Mecrophage

W Fiobiast

Endothelial
I Hepatooyte

patient? -
patients -
§ patens-
S patenta-
patint -
patintz-
patientt -

count

cell_type

| RS
B

B Vacrophage
[l Firobiast
|| Endothelial

I Hepatocyte

050
count

075

FIGURE 1

Profiles of single cells isolated from 8 primary liver cancer lesions with matching adjacent samples. (A) Uniform manifold approximation and projection
(UMAP) plot of the analysed single cells. Each colour reflects one cell type. (B) Expression of marker genes for Hepatocytes, Macrophage cells,
Endothelial cells, Fibroblasts, Mast cells, B cells, and T/NK cells. (C) Distribution of cells derived from either different patients or different sample origins.
(D) UMAP clustering of 58,475 cells. Every colour represents a distinct cell cycle stage.
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3.3 Pattern of intercellular communication
between tumour and normal
paracancerous tissues

We constructed a communication network between tumour
samples and normal paracancerous samples to characterize
alterations in signalling pathways (Figure 3A). A total of 642 and
499 significant ligand-receptor (LR) interactions were identified
between the cell types present in tumour and normal paracancerous
tissues, respectively (Supplementary Table S2). Differences between
the number of communications among all cell populations between
tumour and normal samples are illustrated in Figure 3B. In summary,
tumour samples exhibited more cellular interactions than their
normal counterparts, a phenomenon that was even more
pronounced in the overall signalling pattern (Supplementary Figure
S1). Next, we investigated the potential efferent and afferent signals
among these six cell types and the specific molecular pairs. We found
that the tumour samples consistently had more signal pairs than
normal samples regardless of efferent or afferent signalling. The
potential signalling pathways specific to tumour samples included
SPP1, VIN, OCLN, CD46, GDF, EPHA, AGRN, PERIOSTIN, and
HSPG. In normal samples, endothelial cells and T/NK cells were the
main signalling providers and receptors, respectively, whereas in
tumour samples, fibroblasts and macrophages represented the main
signalling providers and receptors, respectively (Figures 3C, D). The
overall communication probabilities of cells from tumour samples
and normal sample sources were significantly different. Among the

ligand receptors for intercellular communication in the normal

10.3389/fonc.2023.1104262

sample sources, multiple pathways take part in inflammatory and
immune responses, including pathways involving MHC-I, MHC-II,
CXCL, complement, CCL, and TNF. In tumour samples, the
intercellular interactions were mainly active in signalling pathways,
including pathways involving SPP1, VIN, NOTCH, THYI, and
CD46 (Figure 3E). To further elucidate the relationship between
hepatocytes and other cell subpopulations, we generated a network
plot of differences in number and strength. We found that
hepatocytes had significantly higher interactions with endothelial
cells and fibroblasts but a weaker association with immune cells
(Figure 3F-G).

Differential analysis of all ligand—receptor pairs in hepatocytes
and other cell types revealed significantly different patterns between
tumour and adjacent normal tissues (Figures 3H-I). Studies have
shown that CD74 promotes tumour cell growth by interacting with
MIF (26). Remarkably, MIF-(CD74"CD44) signalling between
hepatocytes and T/NK and macrophages, which mediates
immunosuppressive effects that have previously been illustrated for
promoting cancer progression (27). Blocking MIF-CD74 signalling
not only inhibits the proliferation of HCC cells but also exerts
antitumour effects. Therefore, MIF/CD74 axis inhibition could be
an effective treatment for HCC (28). SPP1 encodes osteopontin
(OPN), a phosphorylated glycoprotein expressed in various tissues
and cells associated with human diseases (29, 30). Notably, OPN is
crucial in tumour progression, including HCC metastasis and
prognosis, since it drives the evolutionary adaptation of tumour
cells in the tumour microenvironment. Strikingly, SPP1-CD44
signaling was present between hepatocytes and T/NK cells,
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macrophages, and fibroblasts in tumor samples, but not in normal
samples adjacent to cancer, further supporting the critical role of
SPP1 in the tumor ecosystem.

3.4 Transcriptome heterogeneity of
hepatocytes in HCC

Despite previous batch effects, tumour cells continued to show
patient-specific expression patterns. This suggests a high degree of
heterogeneity, which could possibly be caused by CNVs. Six major
cell subpopulations were identified after the entire malignant and
normal hepatocytes reclustering (Figure 4A). In addition, UMAP
plots revealed distinct clusters of malignant cells that corresponded to
the sample origin (Figure 4B). Figure 4C illustrates the marker genes
for each cell subpopulation. Next, the irGSEA package was employed
to perform scRNA-seq gene set enrichment analysis and found that
these subpopulations have unique activation signals. These signals
include the Hedgehog signalling pathway (subpopulation 0), the early
oestrogen response (subpopulation 1), the IL6/STAT3 and TNF
signalling pathways (subpopulation 2), the xenobiotic metabolism
and reactive oxygen species signalling pathways (subpopulation 3),
and the KRAS signalling pathway (subpopulation 4). Moreover,
multiple cell proliferation-related pathways were upregulated in
subpopulation 5; these pathways included those involving the MYC
targets V1 and V2, G2M checkpoints, E2F targets, WNT signalling,
and P53 targets (Figure 4D). Activated KRAS is a major driver of
cancer stem cell (CSC) proliferation and tumour metastasis (31). The
results of the present study revealed that the KRAS signalling pathway

10.3389/fonc.2023.1104262

was significantly upregulated in subpopulation 4, and the
marker genes for CSCs were also distributed in this
subpopulation (Figure 4E).

3.5 Profiles of chromosomal CNV in
hepatocytes subpopulations

Next, we determined the chromosomal CNVs in each sample
based on transcriptomic data to understand the malignancy of the
epithelial cell subpopulation. This image shows the results revealed
low and high CNV in adjacent normal epithelial cell subpopulations
(control samples) and tumour epithelial cells, respectively.
Chromosome amplification primarily occurs within chromosomes
1, 3, 5, 6, 7, 8 12, 15, 17, 20, 21, and 22, with deletions most
commonly observed in chromosomes 4, 9, 10, 11, 13, 14, 16 and 18
(Figure 5A). First, the copy value (CNV value) was calculated based
on the sum of squares for all genes in each sample. Next, we ranked
the CNV values of the tumour cells, using the top 5% as a reference,
and then calculated correlation coefficients between other epithelial
and reference cells. The determination of tumour cells was achieved at
a threshold CNV >0.2 and a correlation coefficient >0.2. With CNV
value as the horizontal coordinate and correlation coefficient as the
vertical coordinate, black dots represent tumor cells and blue dots
represent normal cells (Figure 5B). Finally, 13,502 tumor cells and
1,718 normal cells were identified and projected on the UMAP
map (Figure 5C).

Thereafter, we employed the FindAllMarkers function and set the
screening conditions logfc = 0.25 (difference multiplicity), min. pct =
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FIGURE 3

Comparison of cellular interactions between samples from tumour and adjacent normal tissues. (A) Cellular interaction number and strength. (B) Bar graph
illustrating the total number (left) and weight (right) of ligand—receptor interactions between samples from tumour and adjacent normal tissues. (C, D)
Heatmap showing possible afferent or efferent signalling pathways between cells. (E) Comparative profiles of pathway signal intensities indicating conserved
and specific signalling pathways in tumour and normal tissue samples. (F, G) Communication quantity and intensity differences network. Red and blue
colours represent upregulated and downregulated pathways, respectively, relative to normal tissues. (H, I) Dot plots show the variation in the signalling action

of hepatocytes relative to other cell types.
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FIGURE 4

Transcriptome heterogeneity of malignant cells in HCC tissues. (A) UMAP plots of six different epithelial cell subpopulations. (B) UMAP plots
demonstrating the heterogeneity among patients. (C) Heatmap of the top 10 differentially expressed genes(DEGs) across six epithelial cell clusters. (D)
Single-cell pathway analysis of six subpopulations. (E) Scatter plot showing marker genes for cancer stem cells.

0.25 (minimum differential gene expression ratio) and pct. diff >0.1
(pct.1-pct.2) to identify marker genes in the hepatic malignant and
normal epithelial cell subsets. The results revealed a total of 564
marker genes (Supplementary Table S3). We hypothesize that their
function in HCC differs from that in normal epithelial cells, although
further research exploration is needed.

3.6 Malignant hepatocyte subpopulations
are associated with HCC prognosis

Next, we explored the prognostic role of hepatocyte
subpopulations in HCC patients. Analysis of the mRNA expression
data from HCC samples across the TCGA database yielded 2,900
differentially expressed genes (Figure 6A). Marker genes from
malignant and nonmalignant cells of hepatocyte subpopulations
intersected with DEGs related to HCC development in the TCGA
database. Notably, 2,900 DEGs overlapped with 564 marker genes,
resulting in 203 differentially expressed marker genes in HCC. These
were subsequently named hepatocyte differential genes (HDGs)
(Figure 6B). Univariate Cox regression analysis revealed 101
differentially expressed marker genes that were significantly related
to the prognosis of HCC patients. To obtain a more robust prognostic
profile, we employed the LASSO regression algorithm at 10-fold
cross-validation with a lambda-min of 0.06321515 to designate a
prognostic model consisting of 11 genes, namely, MARCKSLI
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(MARCKS Like 1), SPP1 (Secreted Phosphoprotein 1), BSG
(Basigin, also called CD147 or EMMPRIN), CCT3 (chaperonin
containing TCP1 subunit 3), LAGE3 (L antigen family member 3),
KPNA2 (karyopherin subunit alpha 2), SF3B4 (Splicing Factor 3b
Subunit 4), GTPBP4 (GTP Binding Protein 4), PON1 (Paraoxonase
1), CFHR3 (Complement factor H-related 3) and CYP2C9
(cytochrome P450 family 2 subfamily C member 9) (Figures 6C, D).

Next, the median risk score was used to stratify the patients into
high- and low-risk groups. Patients in the low-risk group showed
significantly higher OS rates than their counterparts in the high-risk
group (p<0.001) (Figure 6E). Application of the 11-gene signature in
the validation cohort also indicated that patients in the low-risk group
had longer OS rates than their counterparts in the high-risk group
(p<0.001) (Figure 6F). To test the prognostic performance of the 11-
gene signature, time-dependent ROC curves were generated targeting
TCGA-LIHC samples. The results revealed area under the curve
(AUC) values of 0.8, 0.7, and 0.7 for 1-, 3- and 5-year survival,
respectively, in the testing cohort (Figure 6G) and 0.8, 0.8, and 0.87,
respectively, in the validation cohort (GSE76427) (Figure 6H). These
findings suggest that the 11-gene signature had good prognostic value
in both cohorts. For the association analysis between the
clinicopathological characteristics and the prognostic model, we
analysed gender, TNM, stage, and risk scores in the TCGA-LIHC
sample. The multivariate Cox regression analysis results revealed that
the risk score was a significant independent prognostic factor for
patients with LTHC (p<0.001) (Figure 6I). Moreover, we generated a
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nomogram encompassing gender, stage, age, grade, risk score and 1-,
2- and 3-year survival. Next, we employed a one-sample GSEA
approach to calculate scores for each sample across 175 pathways
based on the risk score to identify relevant regulatory pathways.
Thereafter, the correlation between each pathway and the risk score
was no less than 0.3 for the evaluation. The results revealed 39 positive
and 50 negative correlations with the sample risk score. Pathways that
were positively correlated with the risk score included those related to
cancer development, whereas the negatively correlated pathways
included those regulating glycolysis/glycogenesis, glycine, and the
metabolism of fatty acids, serine, threonine, glyoxylate and
dicarboxylate (Figures 6K, L).

3.7 The relative RNA expression level and
protein expression level of MARCKSL1, SPP1,
BSG, CCT3, LAGE3, KPNA2, SF3B4, GTPBP4,
PON1, CFHR3 and CYP2C9

Based on the initial trend of differentially up- and down-regulated
genes (Supplementary Table S4), To further investigate the gene
expression characteristics of 11 prognosis-related differentially
expressed genes (MARCKSLI, SPP1, BSG, CCT3, LAGE3, KPNA2,
SE3B4, GTPBP4, PON1, CFHR3 and CYP2C9) in the high-risk and
low-risk groups of HCC patients, we performed a correlation analysis
between gene expression levels and risk scores. The results showed
that all eight genes were positively correlated with risk scores, except
for PON1, CFHR3 and CYP2C9, whose mRNA expression levels were
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significantly negatively correlated with risk scores (Supplementary
Figure S3A). Meanwhile, in order to classify the high and low risk
genes, we could see from the forest plot of 11 prognostic genes that the
hazard ratio of MARCKSLI, SPP1, BSG, CCT3, LAGE3, KPNA2,
SE3B4 and GTPBP4 were all greater than 1, suggesting that these 8
genes might be poor prognostic factors and belong to high risk genes,
while PON1, CFHR3 and CYP2C9 were all less than 1, suggesting
that these three genes may be factors with a better prognosis
(Supplementary Figure S3B).

The RNA expression of MARCKSLLI, SPP1, BSG, CCT3, LAGE3,
KPNA2, SF3B4, GTPBP4, PONI1, CFHR3 and CYP2C9 in normal
human hepatocyte cell line MIHA and HCC cell lines HCC-LM3
(high metastatic HCC cells) and HepG2(low metastatic HCC cells)
were compared by qPCR. It was found that CYP2C9, PON1 and
CFHR3 were low expressed and MARCKSL1, SPP1, BSG, CCT3,
LAGE3, KPNA2, SF3B4, GTPBP4 were over expressed in human
hepatoma cells compared with normal human hepatocyte cells
(Unpaired t-test, p<0.01) (Figure 7A). Figure 7B shows the results
of the protein expression levels of CYP2C9 and PON1 were down
regulated in HepG2 and HCC-LM3 compared to MIHA. At the same
time, CPTAC database analysis results showed that the protein
expression of PON1, CFHR3 and CYP2C9 were low expressed in
tumor tissues compared with paracancer normal tissue, while other
genes were over expressed (Figure 7C).

Furthermore, immunohistochemical analysis from HPA database
confirmed higher KPNA2, LAGE3, SF3B4, CCT3 and GTPBP4
protein expression and lower CYP2C9 and PONI1 protein
expression in HCC tissues (Figures 7D-J).
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FIGURE 5

CNV analysis of HCC patient epithelial cells. (A) Heatmap showing CNV patterns in epithelial cells across 17 HCC samples. (B) Epithelial cells were
classified as either malignant or nonmalignant. The horizontal coordinate represents the CNV value of the cell, whereas the vertical coordinate denotes
the correlation coefficient of the top 5% of CNV values of tumour cells. (C) Distribution of tumour versus normal epithelial cells on the UMAP plot based

on copy number variation.

Frontiers in Oncology

157

[]
UMAP_1

frontiersin.org


https://doi.org/10.3389/fonc.2023.1104262
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Han et al.

3.8 Drug sensitivity analysis of risk models
and targeting of potential compounds in
high risk groups using connectivity

map (CMap)

To determine the impact of risks on clinical practice, we evaluated
the IC50 values of several chemotherapeutic agents in the high- and
low-risk groups using the “oncoPredict” package. This analysis
identified 123 drugs that were statistically significant (p < 0.0I)
(Supplementary Table S5). The results showed that afatinib,
dasatinib, 5-fluorouracil, lapatinib, SCH772984, and cediranib had
lower IC50 values in the high-risk group than in the low-risk group,
suggesting that patients in the high-risk group may benefit more from
these drugs. In contrast, JQ1, AT13148, axitinib, AZ960, AZD1208,
and irinotecan had lower IC50 values in the low-risk group,
suggesting that low-risk patients may benefit more from the above
chemotherapeutic agents (Figure 8A).

While single-cell sequencing strategies are powerful tools for
constructing disease signatures specific to individual cell types,
CMap provides unprecedented convenience for researchers to
tightly link the triad of drug, gene and disease in a context where

10.3389/fonc.2023.1104262

deep understanding is lacking, as this method does not require the
detailed mechanism of action or drug target to be provided in advance
to predict therapeutic potential. Therefore, by combining a high-
resolution single-cell sequencing strategy with CMap, we have been
able to directly target effective therapeutic agents based on individual
cell-level expression signatures and thus provide a more accurate
prediction for screening potential drugs for disease.

We used a computational drug discovery strategy based on
“signature reversion” (32) to identify drugs with a high risk of
reversion using the large amount of data in the CMap database
(Figure 8B). The top 300 genes with the highest fold change in the
high- and low-risk groups were extracted for XSum analysis
(Supplementary Table S6). The results of the CMap analysis
revealed several compounds with gene expression patterns opposite
to those specific to the high-risk group, with lower CMap scores
indicating a higher perturbation ability. PHA.00816795,
mercaptopurine, W.13, NU.1025 and arachidonyltrifluoromethane
were the five potentially valuable small molecule drug candidates, as
they were ranked as the top 5 candidates (Figure 8C). Among the top
three of these candidates is mercaptopurine, which is a common
chemotherapeutic drug that produces anticancer effects by interfering
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with cell division or DNA synthesis (33). Yu et al. obtained five drugs
associated with HCC by integrating multiple data to define the types
of genes, considering the effect of genetic changes on HCC and the
positive and negative relationships between drugs and HCC (34).
Among these drugs, mercaptopurine is a potential anti-HCC drug.

4 Discussion

The liver is a major site for many metabolic processes, and
metabolic dysregulation is vital for HCC progression and
development (35). Evidence from numerous studies has shown that
HCC originates from adult hepatocytes (36, 37). In this study, we
found that HCC occurs in adult hepatocytes. Moreover, there were
metabolic changes in the hepatic epithelial cells. While normal
hepatocytes produce energy primarily through oxidative
phosphorylation, malignant hepatocytes convert glucose into lactate
through glycolysis to generate energy, a phenomenon known as the
Warburg effect (38). The dysregulation of oxidative phosphorylation
is related to elevated HCC tumorigenicity (39, 40). The liver
synthesizes lactic acid and can store and breakdown lipids.
Therefore, in HCC, aberrant lipid metabolism generates the lipids
required for membrane formation and energy production, and
posttranslational modifications support tumorigenesis (41). In our
study, the gluconeogenic pathway (aerobic gluconeogenesis) was
found to be enhanced in normal hepatic epithelial cells adjacent to
cancerous cells, whereas the lipid metabolism pathway was enriched
in malignant hepatocytes (Figure 2E).

HCC is a heterogeneous disease influenced by multiple factors,
which makes it difficult to diagnose and perform individualized
treatment. HCC patients are often diagnosed after curative surgical
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approaches are no longer possible because these patients are at an
advanced stage of the disease. Traditional sequencing methods often
mask the underlying heterogeneity in phenotypically defined cell
subpopulations. In contrast, sScRNA-seq allows the in-depth
exploration of tumour heterogeneity and the analysis of tumour
development, drug resistance, intercellular communication and
immune infiltration patterns (12). Thus, this technique was
employed to comprehensively analyse the HCC landscape at single-
cell resolution.

To understand the interactions among hepatocytes and stromal
cells and immune cells, we conducted intercellular communication
analysis. This revealed enhanced interactions between hepatic
epithelial cells and fibroblasts and reduced contact with immune
cells, macrophages and endothelial cells in tumour samples compared
to normal adjacent samples (Supplementary Figure S2). Cancer-
associated fibroblasts (CAFs) are a major part of the tumour stroma
and contribute to HCC progression. Furthermore, CAFs interact with
tumour cells, immune cells, or vascular endothelial cells in the TME
through direct intercellular contacts or indirect paracrine interactions
to promote HCC (42-44). Similarly, Wang et al. performed a single-
cell level analysis of samples from normal and malignant livers and
found that in HCC, the most significant alteration was the expansion
of ACTA2+ fibroblast populations and malignant cells. This suggests
that the transition of hepatocytes from normal to malignant is
accompanied by alterations in intercellular contact with other cells
in the tumour microenvironment, which produce the complex intra-
and intertumoral heterogeneity of HCC (45).

Differentially expressed genes between malignant and normal
hepatocytes were identified by analysing copy number variations in
single-cell transcriptome data and isolating malignant and
nonmalignant cells from hepatocytes. In addition, analysis of
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TCGA-LIHC survival data revealed the molecular markers associated
with HCC prognosis,including MARCKSL1, SPP1, BSG, CCT3,
LAGE3, KPNA2, SF3B4, GTPBP4, PON1, CFHR3, and CYP2C9.
The identified prognostic risk factors showed good prediction
performance in both HCC cohorts. Based on this, we also
constructed a nomogram risk assessment model, which combines
risk scores with clinical characteristics to facilitate the clinical
application of HCC. It has been reported that CYP2C9 is involved
in the metabolism of many carcinogens and drugs, and is down-
regulated in HCC (46). Wang et al. used time serial transcriptome to
reveal that Cyp2c29 is a key gene in the development of hepatocellular
carcinoma in the mouse model, and its overexpression enhances the
production of 14,15-EET and inhibits inflammation induced
hepatocellular proliferation by inhibiting the IKK-NF-kB pathway
during liver injury (47). Meanwhile, the expression of the human
homologous of Cyp2c29 gene in mice was positively correlated with
the survival time of HCC patients, further suggesting that CYP2C
epoxygenases may be a potential therapeutic target for liver disease.
Chen and others have revealed IncZic2/depletion/MARCKS/
MARCKSLI pathways can eliminate the liver tumor-initiating cells
(TICs) (48). The overexpression of myristoylated alanine-rich protein
kinase C substrate (MARCKS) and MARCKS like 1(MARCKSL1) can
drive the self-renewal of TICs. Yang et al. demonstrated that BSG may
be a tumor-promoting factor in HCC (49). The potential diagnostic
role of BSG in differentiating HCC specimens from non-tumor
specimens was demonstrated by analysis of multiple cohorts. BSG
mRNA expression levels were significantly upregulated in both HCC
specimens and HCC cell lines, and significantly shorter Overall
Survival (OS) (P = 0.0014) and Disease Free Survival (DFS) (P =
0.0097) were observed in patients with high BSG expression relative
to those with low BSG expression. Han et al. revealed that CCT3 is a
new complementary biomarker for HCC screening and diagnosis
(50). Several studies have shown that CCT3 is overexpressed in HCC
patients by quantitative RT-PCR and western blotting. CCT3 can
influence the progression of HCC by affecting phosphorylation
signaling and translocation of STAT3/STAT3 into the nucleus of
HCC cells (51, 52). The study of Li et al. showed that LAGE3 has
prognostic value in HCC, which may affect the progression path of
HCC tumor by promoting the proliferation, survival, migration,
invasion and anti-apoptosis of HCC cells through the PI3K/AKT/
mTOR and Ras/RAF/MAPK pathways (53). Guo et al. identified
KPNA2 as a potential diagnostic and prognostic biomarker for HCC,
which may affect HCC cell proliferation and migration by regulating
cell cycle and DNA replication (54). Splicing factor 3b subunit 4
(SE3B4) has been revealed to be associated with the diagnosis and
prognosis of HCC (55, 56). Liu et al. further demonstrated that SF3B4
drives cell proliferation and metastasis in HCC (57). Deng et al.
further studied the mechanism and revealed the interaction between
SE3B4 and ENAH in HCC, that is, SF3B4-regulated ENAH promotes
the development of HCC by activating Notch signaling (58). It has
been reported that Guanosine triphosphate binding protein 4
(GTPBP4) is associated with poor prognosis in HCC patients (59).
Additional reports have explored the role of GTPBP4 in metabolic
regulation and the potential mechanisms involved in HCC
development and metastasis (60). GTPBP4 induces the dimer
conformation of PKM2 through the SUMOylation to promote the
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aerobic glycolysis of HCC, thus promoting the progression and
metastasis of HCC (61). Serum Paraoxonase 1 (PON1) has been
reported as a biomarker for evaluating microvascular infiltration in
hepatocellular carcinoma. Complement factor H related 3 (CFHR3)
can be used to predict the prognosis of HCC. Overexpression of
CFHR3 can affect the proliferation and apoptosis of hepatocellular
carcinoma (62). Recent reports suggest that overexpression of CFHR3
may be a potential strategy for overcoming hypoxia and treating HCC
(63). These studies confirm the significance and plausibility of these
prognostic signatures.

Currently, liver transplantation and resection are efficient
treatment options for early-stage disease; however, these treatments
are appropriate for only 20-30% of HCC patients (64). Chemotherapy
is another viable treatment option for advanced HCC. Recently, there
has been significant progress in the development of molecularly
targeted treatments for liver cancer (65). These include sorafenib,
levatinib, and regorafenib, which have been approved as first- and
second-line treatments for HCC. In this study, the sensitivities of
HCC to various treatments were predicted. Low-risk patients showed
higher sensitivity to afatinib, dasatinib, 5-fluorouracil, lapatinib,
SCH772984, and cediranib than high-risk patients, which may be
attributed to their higher metabolic activity. Various drugs were
suggested for low-risk group patients, such as JQI, AT13148,
axitinib, AZ960, AZD1208, and irinotecan. Cancerous cells have the
potential to evade the immune system (66). Immune escape can be
achieved through a variety of mechanisms. Thus, therapeutic
strategies that block checkpoint inhibitors of the PD-1/PD-L1 and
CTLA-4 pathways can promote tumour-reactive T-cell aggregation,
thereby improving the antitumour response (67, 68).

To the best of our knowledge, the 11-gene signature is the first to
explore the overall molecular prognostic feature of subpopulations
associated with metabolic disorders from single-cell sequencing
data. This risk model exhibited excellent ability to predict the
prognosis of HCC patients, and the AUC values at year 1, year 3 and
year 5 were all greater than 0.7, with the optimal value of
0.8. Meanwhile, a novel XSum algorithm was used to predict
potential drugs targeting high-risk groups from the Cmap database,
and 5 drugs were finally obtained, including PHA.00816795,
mercaptopurine, W.13, NU. 1025 and arachidonyl trifluoromethane.
Small molecule drugs, serving as candidates, embrace potential value
conducive to providing medication strategies for accurate treatment of
HCC patients.

This research also has certain drawbacks. First, more perspective
data with larger sample size should be collected to validate the
accuracy of our established prognostic model. Second, the
characteristics of different fractionated epithelial cells have not been
generated and validated. Further in-depth analysis from specific
epithelial cell subtypes closely related to metabolic changes will be
conducive to obtaining more accurate and valid prognostic
characteristics. Nevertheless, sScRNA-seq analysis sheds new light on
the metabolic characteristics of individual cell subsets in HCC, and
anchors the survival and prognosis of relevant cell subsets with the
most significant metabolic changes, which is a key step forward in
clinical practice.

In conclusion, the present study identified prognostic genes
significantly associated with metabolic changes in a hepatocyte
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subpopulation at the single-cell level, and explored the heterogeneity
of this subpopulation and its interrelationships with other cells in the
tumor microenvironment. A prognostic model for OS prediction in
HCC patients was established and validated and the results
demonstrated favourable predictive ability. Additionally, differences
in chemosensitivity between high-risk and low-risk groups were
evaluated, and five potential drugs that might reverse the risk score
were forecasted. These results provided an in-depth understanding of
the metabolic characteristics of HCC. Furthermore, the characteristics
of potential prognostic biomarker can be clarified through the
comparison of tumor-related genes constructed by liver malignant
cells and normal hepatocytes. The above may be conducive to new
strategies of individualized therapy.
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