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Editorial on the Research Topic

Cell network in antitumor immunity of pediatric and adult solid tumors
The tumor microenvironment (TME) is a highly structured ecosystem composed of

cancer cells and a variety of non-cancer cells embedded in an altered and vascularized

extracellular matrix. A rich diversity of immune cells, cancer-associated fibroblasts (CAFs),

and endothelial cells, previously considered only bystanders in tumorigenesis, are now

recognized as key players in neoplasms and thus represent attractive targets for prognostic

and therapeutic purposes (1). Tumor progression, for example, is associated with a

decrease in cytotoxic T and NK cells, an increase in exhausted CD8+ T cells (2),

immunosuppressive CD4+ FOXP3+ Tregs (3), and regulatory B cells (4). In contrast,

dendritic cells (DCs) show defective maturation and function (5). Along with immune

populations, CAFs are a dominant component of many cancer types. The activation of

CAFs in the TME can be the result of several mechanisms, including exposure to

inflammatory mediators, changes in extracellular matrix (ECM) composition and

stiffness, and altered metabolites (6). In this regard, the crucial role of deregulated

metabolic demands in generating a TME supportive of neoplastic progression is

becoming increasingly clear (7). Importantly, all these aspects have implications for the

efficacy of immunotherapy (as well as chemotherapy and radiotherapy), and a major effort

is underway to identify combinatorial therapeutic strategies that take advantage of

inhibitors and/or modulators of the various TME components.

This Research Topic was devised to update our current knowledge on the complex

interconnectedness of the TME and its influence on disease progression and response to

therapy. We have collected a series of articles that provide us with in-depth evaluations of

the role of different types of immune and stromal cells in the control of solid tumors, novel

immunotherapeutic strategies, and multi-omics approaches that offer further insights into

this field. In brief, this Research Topic includes seven original research papers, three case

reports, one perspective and two reviews of the current literature.

In recent years, a growing number of studies have investigated the key characteristics of

NK and T cells in different disease settings. In this context, the work of Caforio et al. has

identified Che1 as a key protein able to promote the viability of tumor cells, but also the

expression of the Nectin-1 ligand, resulting in an impaired killing activity of NK cells.
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These results suggest how the identification of targets with a dual

function, i.e., cancer promoter, and modulator of the immune

response, could lead to much more potent therapeutic strategies

for eradicating a malignancy. In line with this, Bergantini et al.

better explored the pathogenesis of sarcoidosis by analyzing the

frequency and phenotype of NK and T cells in two different

districts: bronchoalveolar lavage (BAL) and peripheral blood

(PB). The authors showed that compared to PB, BALs were

mainly infiltrated by a subset of CD56brightCD16neg NK cells

and of memory effector T cells. In addition, the more mature BAL-

NK cell subset (CD56dim/negCD16+) expressed higher levels of

PD1 and activation markers, such as NKp44, CD69 and CD25.

The partially unsuccessful use of immune checkpoint inhibitors

(ICIs) in patients with poorly immunogenic neoplasms and highly

immunosuppressive TME (8) has led to a growing interest in better

characterizing the role of DCs, heterogeneous population playing a

central role in the activation and regulation of all immune

responses. A detailed evaluation of glioma infiltrating DC

subpopulations and their activating/tolerogenic profile was

performed by Carenza et al. Their results showed a significant

reduction of circulating DCs and a concomitant intratumoral

recruitment of all DC subpopulations, which were however

functionally impaired. Their drastic functional impairment was

even more evident in glioma patients undergoing perioperative

steroid treatment, usually administered to control peritumoral

edema. This suggests the use of alternative therapeutic strategies

to control this symptom.

It is well known that also the intratumoral spatial organization

of immune cells and their crosstalk with other cellular components

play a crucial role in determining prognosis and response to

immunotherapy in cancer patients (9). Timperi et al. reviewed the

suppressive crosstalk between newly identified macrophages and

CAF subpopulations in a variety of solid tumors and proposed

targets that could be used as potential novel therapeutic approaches.

Concurrently, the importance of tertiary lymphoid structures (TLS)

is another area of great interest (10). Two articles in our Research

Topic addressed their role in breast and lung cancers, respectively.

A first remarkable observation concerns the differential impact of

TLSs maturation status on tumour progression. Indeed, a high

number of mature TLSs, as shown by Wang et al., is associated with

a better prognosis of breast cancer patients, suggesting that TLSs are

privileged sites for local lymphocyte differentiation and antigen

presentation. In contrast, Zhao et al. associated the abundance of

immature TLS with lack of response to immunotherapy in a lung

adenocarcinoma (LUAD) patient, characterized by high FOXP3+

regulatory T cells and increasing levels of the circulating checkpoint

proteins BTLA, TIM-3, LAG-3, PD-1, PD-L1, and CTLA4.

Consistent with previous findings, Cai et al., in evaluating the

efficacy of neoadjuvant chemo-immunotherapy compared with

chemotherapy alone, showed that only patients with increased

TLS and concomitant infiltration of B and T cells were able to

undergo major pathologic response (MPR) when treated with

chemotherapy alone. In the remaining cases, the addition of ICIs

to chemotherapy was associated with a significantly higher rate of

MPR together with a major abundance of CD8+ T cells in the tumor
Frontiers in Immunology 026
stroma and M1 macrophage density in the tumor center.

Interestingly, the importance of adding ICIs has been

demonstrated not only in the neoadjuvant setting, but also after

multiple lines of adjuvant treatment, as reported by Zhang et al., in a

patient with small cell lung cancer.

In cancer immunotherapy, in addition to ICIs designed to

augment natural immune responses, other types of neoplasms are

being treated with chimeric antigen receptors (CARs), designed to

induce new immune responses directed against tumor-expressed

targets (11). For CAR T cells to be effective, bridging therapy is often

required (12). Saldi et al. demonstrated that an extended

radiotherapy approach is an excellent strategy to enhance the

effect of CD19-directed CAR T-cell therapy, leading to a complete

remission of the disease in a patient with relapsed/refractory diffuse

large B-cell lymphoma. However, since the use of CAR T cells can

lead to graft-versus-host disease (GvHD) and cytokine release

syndrome, there is increasing interest in the engineering of NK

cells, which have a higher safety profile. To date, NK cells have been

engineered against various CARs or the chimeric NKG2D receptor

and have shown promising results in preclinical and clinical models.

In addition to NKG2D, other activating receptors may also yield

encouraging responses. For example, Cifaldi et al. proposed the use

of the never-before-explored DNAM-1 chimeric receptor

engineered-NK cells. The authors provide a rationale predicting

that this therapeutic tool has several strengths to consider: first and

foremost, the fact that, unlike other constructs, NK cells engineered

for DNAM-1 are able to specifically target tumor cells that express

high levels of PVR and Nectin-2, while tolerating normal cells that

usually express low levels of these ligands.

These latest studies highlight another important need: quickly

identifying patients who may respond to one treatment over

another. Many factors influence for example the effectiveness of

immunotherapy, and few biomarkers have been developed so far to

assess its benefit accurately (11). In this context, Huang et al.

applied integrated analysis to develop a four genes-prognostic

signature, called LATPS, for LUAD patients. The LATPS-low

subgroup had better survival, and a greater chance of benefiting

from immunotherapy, thus representing a promising prognostic

tool with clinical utility. Similarly, by studying the role of lactate in

LUAD TME, Shang et al. established a gene signature called “LaSig”

that can predict survival and response to immunotherapy as well as

to cisplatin, erlotinib, gemcitabine and vinblastine in these patients.

Using single cell RNAseq data, Xie et al. showed that immune,

stromal, and tumor cells of colorectal cancer patients share similar

lipid metabolism during their terminal differentiation, that confers

an immunosuppressive microenvironment. In addition, through

the integration of scRNA-seq and mass-RNA-seq data, they built an

immune and clinical risk model with high prognostic power.

Finally, Rozenberg et al. reviewed the pathological mechanisms

directly involved in the formation and pathogenesis of circulating

heterotypic tumor cells (CTCs) emerging as prognostic and

therapeutic markers in metastatic malignancies.

In summary, the papers included in this Research Topic

represent the latest advances in the field of immuno-oncology.

Based on these studies, we can believe and trust that in-depth
frontiersin.org
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exploration of the TME promises to advance tumor treatment

research in the next decade.
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Immune checkpoint inhibitor-induced sarcoid-like reactions and tertiary lymphoid
structures (TLSs) are increasingly recognized but rarely reported in the same patient.
We report a patient with lung adenocarcinoma who displayed sarcoid-like reactions in
intrathoracic lymph nodes and tertiary lymphoid structures in surgical tumor after
neoadjuvant therapy with nivolumab plus ipilimumab. Pathological examination revealed
50% residual tumor cells after treatment, and the CT evaluation of the primary tumor
showed a stable disease. The patient experienced a recurrence eight months after
surgery. To identify immune correlates of the limited response to immunotherapy, we
conducted genomic and transcriptional assays, multiplex immunoassay, and multiplex
immunohistochemistry on the pre- and post-immunotherapy tumor, lymph node, and
plasma samples. TP53 R181C, KRAS G12C and SMAD4 R361H were identified as driver
mutations of the tumor. In addition to abundant infiltrated lymphocytes, immunotherapy
induced high levels of inhibitory components in post-treatment tissue samples, especially
the FOXP3+ regulatory T cells in tumor and PD-L1 expression in the lymph node. Despite
abundant TLSs in the post-treatment tumor, most TLSs were immature. Moreover,
increasing levels of circulating checkpoint proteins BTLA, TIM-3, LAG-3, PD-1, PD-L1,
and CTLA4 were observed during immunotherapy. Collectively, our observations revealed
that high levels of immunosuppressive molecules in tumor, lymph nodes and/or in
peripheral blood might indicate poor outcomes after immunotherapy, even in the
setting of a patient with concurrent sarcoid-like reactions and tertiary lymphoid structures.

Keywords: sarcoid-like reaction, tertiary lymphoid structure, immune checkpoint inhibitor, tumor immune
microenvironment, non-small cell lung cancer
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INTRODUCTION

Immune checkpoint inhibitors (ICIs), while significantly
improving survival in patients with multiple advanced cancers,
are associated with a unique set of immune-related adverse
events, including sarcoid-like reactions (SLRs). ICI-induced
SLRs have been reported most commonly in patients with
melanoma and lung cancer, and occur in intrathoracic
locations (lung and/or mediastinal lymph nodes) and the skin
(1). SLRs are histologically characterized as non-caseating
granulomas without malignant cells. Patients may be
asymptomatic or may have no severe manifestations, and the
reactions can spontaneously resolve without specific treatment
or ICI discontinuation (2, 3). The incidence of ICI-induced SLRs
remains unclear as the reaction is easily mistaken for disease
progression and clinicians usually have low awareness (4).
However, SLRs are attracting increasing attention in the
neoadjuvant setting for non-small cell lung cancer (NSCLC)
due to their influence on clinical treatment planning of curative
surgery. In NEOSTAR study, SLR, which was defined as nodal
immune flare, was found in 16% (7/44) of patients with early-
stage NSCLC after neoadjuvant ICI therapy (5). Another phase II
trial reported that 13% of 15 patients with resectable NSCLC
developed SLRs after inductive pembrolizumab monotherapy
(6). ICI-induced SLRs have been reported to associate with
favorable therapeutic response in patients with melanoma (7,
8), while there is little known about the association of SLRs with
immunotherapy outcomes in lung cancer patients.

Tertiary lymphoid structures (TLSs) are ectopic lymphoid
aggregates that developed at chronic inflammatory sites in
non-lymphoid tissues including tumors (9). Mature TLSs are
characterized by a T-cell zone and a germinal center with
proliferating B cells. Across a variety of tumors, the presence
of TLSs is associated with favorable clinical outcomes, despite
several reports describing negative prognostication of TLSs
(10, 11). The prognostic value of TLSs in NSCLC has been
reported in several studies since a decade ago. The high density of
follicular B cells or mature dendritic cells in TLSs, and high
density of TLSs, were associated with favorable prognosis in
NSCLC patients (12–15). Moreover, B cells and mature TLSs are
demonstrated to predict therapeutic efficacy of immunotherapy
across different tumor types (16–19), arousing the interest in the
artificial induction of TLSs in tumor therapy. And in the post-
treatment samples of non-small cell lung cancer, the presence of
TLSs with a germinal center was shown to correlate with the
pathological response to neoadjuvant anti-PD-1 therapy (20).
However, the formation mechanism and antitumor effect of
TLSs deserve further exploration, and standardized evaluation
Abbreviations: ICI, immune checkpoint inhibitor; SLR, sarcoid-like reaction;
TLS, tertiary lymphoid structure; NSCLC, non-small cell lung cancer; PET-CT,
positron emission tomography-computed tomography; MAF, mutant allele
frequency; mIHC, multiplex immunohistochemistry; NK cell, natural killer cell;
Treg cell, regulatory T cell; PD-1, programmed cell death 1; PD-L1, programmed
cell death ligand 1; CTLA-4, cytotoxic T-lymphocyte antigen 4; TIM-3, T cell
immunoglobulin and mucin domain-containing protein 3; BTLA, B and T
lymphocyte attenuator; LAG-3, lymphocyte-activation gene 3; GC,
germinal center.
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methods need to be established before TLSs can be used to guide
clinical decisions.

Here we report a stage IB NSCLC patient with SLRs and TLSs
induced by neoadjuvant nivolumab plus ipilimumab. We
examined the immune microenvironment of the tumor and
lymph nodes, as well as the dynamics of immune-related
proteins in peripheral blood, to reveal the immune features of
the patient and explore correlates of the limited response
to immunotherapy.

Case Presentation
A 54-year-old non-smoking Chinese woman was referred to our
hospital because of a mass which was incidentally discovered by
radiological examination during a routine medical checkup. She
had no cough, chest tightness or chest pain, and no other
abnormalities were found. The patient reported no history of
autoimmune disease or family history of tumor. Positron emission
tomography-computed tomography (PET-CT) revealed a 39
mm×45 mm×45 mm mass with abnormally increased intake of
18F-fluorodeoxyglucose. And CT-guided biopsy confirmed
adenocarcinoma. The patient was diagnosed with stage IB
(cT2N0M0) lung adenocarcinoma in August 2018 (Figure 1A).
Then she started to receive neoadjuvant immune checkpoint
inhibitors (ICIs) nivolumab (3 mg/kg, days 1, 15, 29) plus
ipilimumab (1 mg/kg, day 1). No immune-related adverse
events were found during immunotherapy. One month after the
last dose of nivolumab, CT scan revealed enlargement of the
primary tumor and multiple lymph nodes (Figure 1B). PET-CT
showed that the primary lesion diameter increased by
approximately 5% compared with that at baseline, and the
standard uptake value (SUV) increased from 7.6 to 10.5.
Increased hypermetabolic activity was observed in the superior
mediastinal vascular space, mediastinal right brachial vein and
posterior vena cava, right pulmonary artery, para-aortic arch,
subcarina and both pulmonary hila. Preoperative examination
showed that the patient’s cardiopulmonary function was normal
and suitable for surgery. One week later, the patient underwent left
upper lobectomy and radical lymph node dissection through
video-assisted thoracic surgery (VATS). The size of the excised
tumor was 45 mm×43 mm×37 mm, and a total of 16 lymph nodes
were removed. One month after surgery, the patient started to
receive two cycles of routine chemotherapy, pemetrexed plus
carboplatin, every 3 weeks. During chemotherapy, the patient
experienced persistent radiating and dull pain in the left posterior
chest. Aortic dissection (Stanford B) was found on the first
postoperative CT scan after chemotherapy and then the patient
underwent endovascular stent-graft placement. However, another
aortic dissection in the abdominal aorta was found on the second
follow-up CT scan three month later and the patient refused
surgery. Eight months after surgery, the patient developed a lung
metastasis (Figure S1) and began to receive treatment at a
local hospital.

Histopathological examination of the resected tumor revealed
advanced lung adenocarcinoma, a relatively low ratio of viable
tumor cells (50%) and large numbers of infiltrating lymphocytes
(Figure 1B); all resected lymph nodes were negative for
metastases but with extensive histiocytic nodular hyperplasia
January 2022 | Volume 13 | Article 794217
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(Figure 1C). A diagnosis of sarcoid-like reaction in lymph nodes
was made for this patient. Driver mutations associated with
tumorigenesis were examined by next-generation sequencing
(NGS) (Supplementary Methods). TP53 R181C, KRAS G12C
and SMAD4 R361H were identified, with the mutant allele
frequency (MAF) of 6.9%, 5.5% and 6.2% in the resected
tumor and 26%, 23.4% and 34.4% in the tissue obtained by
tumor biopsy prior to the onset of immunotherapy. EGFR L858R
Frontiers in Immunology | www.frontiersin.org 310
was found in the baseline tumor, but the MAF was 0.59%. ALK
and ROS1 rearrangements were not found.

Profiling of Local and Peripheral
Immune Characteristics
The local immune microenvironment was explored by multiplex
immunohistochemistry (mIHC) assay using the Opal seven-
color IHC Kit (PerkinElmer, USA). With three staining panels,
D

B

A

C

E

FIGURE 1 | Treatment course of the patient with lung adenocarcinoma. (A) Time line of clinical events, along with the time points of sample collection and analyses.
(B) CT images showed the primary tumor (red circle) and lymph node (red arrow), and the pathological images of the tumor pre- and post-immunotherapy treatment.
Red dotted line: fibrosis in the tumor stroma; blue solid line: cancer nest; green solid line: lymphocytes infiltrating into the cancer nest. Magnification: 100×, 200×.
(C) Pathological image of the post-treatment lymph node showed non-caseating granulomas. Magnification: 100×. (D, E) Quantitative results of immune cell markers
(D) and regulatory or inhibitory markers (E) in the baseline biopsy tumor (pre-treatment), resected tumor and resected lymph node (post-treatment) by mIHC assay. For bar
graph: error bar represents SEM. CT, computed tomography; NGS, next-generation sequencing; mIHC, multiplex immunochemistry; LN, lymph node; NA, not available.
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we analyzed the multiple immune components in the pre- and
post- immunotherapy tissue samples, including T lymphocytes
(CD3, CD4, CD8), B lymphocytes (CD19), macrophages
(CD68), natural killer cells (NK cells, CD56) and a series of
regulatory (FOXP3, CD163) or inhibitory (PD1, PD-L1, TIM-3,
LAG-3) markers (Figure S2). For surgical specimens, more than
10 fields of view in 200× magnification of each tissue slide were
selected to calculate percentage of the positive cells in all
nucleated cells. The average density of positive cells was shown
in Table S1. Detailed methods were provided in the
Supplementary Material (Supplementary Methods). The
quantitative results showed that the post-treatment tumor and
lymph node were infiltrated with a large number of lymphocytes
(Figure 1D) and rich in high levels of inhibitory molecules or
checkpoint proteins (Figure 1E). Of note, among the inhibitory
markers, the FOXP3+ regulatory T cells (Treg) accounted for
one-third of helper T cells in tumor tissue (Figures 1D, E).
Obviously, immunotherapy induced an inflammatory
environment in the primary tumor compared to baseline
(Figure 2A). According to the high infiltration of B
lymphocytes, we further observed tertiary lymphoid structures
(TLSs) in the post-treatment tumor, characterized by a dense
aggregation of CD3+ T lymphocytes and CD19+ B lymphocytes
(Figure 2B). We scanned the whole tissue section on a
hematoxylin and eosin-stained slide and counted the TLSs
(Figure 2C). A total of 31 TLSs were found, with a density of
0.27 TLS per mm2, accounting for 3.3% of the whole tissue area.
However, there were very few TLSs with a germinal center (GC),
suggesting that most TLSs were immature. And we observed
high expression of checkpoint proteins, especially PD-L1, in
lymph node tissue after immunotherapy (Figures 2D, E). The
expression of PD-L1 in baseline tumor and post-treatment
tumor was relatively low, but was abnormally high in the post-
treatment lymph node. Based on the immune microenvironment
of the tumor and lymph node, it seems difficult to infer whether
immunosuppressive factors predominated in the intense combat
between immune system and tumor triggered by ICIs.

Then we explored the changes of peripheral immune factors.
Blood sampleswere collected prior to each cycle of immunotherapy
and the radical surgery, and one month after surgery as shown in
Figure 1A. A total of plasma 59 proteins, including cytokines,
chemokines, growth factors, and checkpoint proteins, were
simultaneous detected by two ProcartaPlex panels with sandwich
ELISAbasedmultiplex immunoassays (SupplementaryMethods).
The results show that all detectable checkpoint proteins were
increased during the neoadjuvant immunotherapy (Figure S3),
such as B and T lymphocyte attenuator (BTLA), T cell
immunoglobulin and mucin domain-containing protein 3 (TIM-
3), lymphocyte-activation gene 3 (LAG-3), programmed cell death
1 (PD-1), programmed cell death ligand 1 (PD-L1), cytotoxic T-
lymphocyte antigen 4 (CTLA4) (Figures 3A–F). As accumulating
evidence shows that these circulating immune checkpoints are
associated with a poor response to immune checkpoint blockade,
the ascending concentrations of the checkpoint proteins during
treatment might suggest activation of alternative immune evasion
tactics of tumor. Moreover, we also examined the expression of
Frontiers in Immunology | www.frontiersin.org 411
these proteins in tumor tissue pre- and post- neoadjuvant
immunotherapy by RNA sequencing. In consistent with the
findings about plasma proteins, RNA expression of the
checkpoint proteins was upregulated in the tumor after
immunotherapy (Figure 3G).
DISCUSSION

We report the tumor-immune features of an early-stage NSCLC
patient with SLRs and TLSs after neoadjuvant nivolumab plus
ipilimumab. In addition to abundant infiltrating immune cells, we
also found high levels of inhibitory components in post treatment
tissue samples, especially the Treg cells in tumor and PD-L1
expression in the lymph node. Despite high number of TLSs, most
of them were immature and might not have efficient anti-tumor
activity. Moreover, extensively increasing immune checkpoint
proteins were found during immunotherapy treatment. Hence, it is
suggested that theeffectof immunosuppression in thispatient is equal
or superior to the beneficial antitumor effect induced by ICIs, leading
to the limited response to immunotherapy.

It is interesting to find SLRs and TLSs in the same patient treated
with ICIs. Although an association of them in immunotherapy
setting was suspected, the similar case has not been reported yet.
Collectively, the two resections are associated with an inflammatory
immune environment, and assumed to correlate with favorable
outcomes of melanoma patients treated with immunotherapy (7, 8,
17). However, the patient here didn’t benefit from immunotherapy,
with a stable disease evaluated by radiology and 50% residual tumor
cells by histology after treatment, and had a recurrence 8 months
after surgery. According to the previous case reports of 8 SLR
patients with NSCLC (21–28), 4 achieved partial response, 2 had
progressive disease, and 2 had stable disease after immunotherapy.
The association between SLRs and immunotherapy outcomes in
lung cancer seems not clear. On the other hand, although total TLS
and germinal center-positive (GC+) TLS subset scores were
demonstrated to predict survival in resected NSCLC patients (29),
most studies suggested that only TLSs with GC were functional, and
B cells in immature TLSs could adopt a regulatory phenotype and
inhibit immune reactions (30). Moreover, we noted the
predominant inhibitory Treg cells in post treatment tumor and
PD-L1 expression in the lymph node for their crucial roles in
immunosuppression. Treg cells are one of the well-known cell types
that can suppress anti-tumor immune response (31). And tumor-
infiltrating follicular regulatory T cells, which are primarily located
within TLSs and exhibit superior suppressive capacity and in vivo
persistence as compared with Treg cells, could impair the survival of
patients and impede the efficacy of immunotherapy treatment by
regulating TLS (32). Nevertheless, a retrospective study showed that
high TLS-B cell density could counterbalance the deleterious impact
of high Treg cell density on survival of untreated NSCLC patients
(33). It is difficult to fully assess TLSs and Treg cells by biopsy before
neoadjuvant immunotherapy, while Treg cells in the posttreatment
tumor tissue of this patient were deemed to impair anti-tumor
immune response. As for the high level of PD-L1 expression in
lymph nodes, which has not been reported in ICI-induced SLR
January 2022 | Volume 13 | Article 794217

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Zhao et al. SLRs and TLSs Following Immunotherapy
cases, a recent study showed that lymphatic endothelia PD-L1
expression reduced tumor immunity, inducing apoptosis
in tumor-specific CD8+ central memory cells in tumor-
draining lymph nodes (34). Therefore, we highlight the
importance of investigating inhibitory immune components in
microenvironment of tumor and lymph nodes when assessing
local immune status.

There is accumulating evidence indicating that high levels of
circulating immune checkpoint proteins were associated with
poor prognosis in a variety of cancers, such as BTLA and TIM-3
Frontiers in Immunology | www.frontiersin.org 512
in clear cell renal cell carcinoma (35) and PD-1, PD-L1 and
BTLA in pancreatic adenocarcinoma (36). The circulating
checkpoint proteins also showed a predictive value in ICI-
treated patients. LAG-3 expression on pretreatment peripheral
blood cells could identify patients with melanoma who may not
benefit from immune checkpoint blockade (37). High levels of
LAG-3 and PD-1 in pre-treatment serum samples of melanoma
patients may predict resistance to anti-PD-1 treatment and anti-
PD-1 plus anti-CTLA4 respectively (38). Moreover, increased
tumor infiltrated TIM3+ or LAG3+ T cells also correlated with a
A

B

D

E

C

FIGURE 2 | Images of tertiary lymphoid structures and immune cell markers. (A) Images showed the abundant CD3+, CD4+, CD8+ and FOXP3+ cells in post-treatment
tumor on the same slide, with the markers stained on baseline tumor as a contrast. (B) TLS in the post-treatment tumor stained by multiplex immunohistochemistry.
(C) TLSs on a hematoxylin and eosin-stained section, yellow arrow indicates a mature TLS with a pale area, red arrow indicates immature TLSs. (D) PD-L1 expression in the
baseline tumor, post-treatment tumor and post-treatment lymph node tissue. (E) Immune checkpoint proteins PD-1, LAG-3, TIM3 in the post-treatment lymph node tissue.
Original magnification of fluorescence image: 200×. TLS, tertiary lymphoid structure; LN, lymph node; mIHC, multiplex immunohistochemistry.
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shorter progression free survival or adaptive resistance to anti-
PD-1 therapy (38, 39).

There are several limitationsof this study. First,weonlyhaveone
patient with co-occurrent SLRs and TLSs who did not respondwell
to neoadjuvant immunotherapy, so the association between the
reactions and inhibitory immune components and clinical
outcomes remain to be explored in more patients. Second, we did
not determine the comprehensive cellular composition of tertiary
lymphoid structures in tumor tissue or the main cell types
expressing PD-L1 in lymph nodes due to lack of enough sample.

This report presents the special reactions SLR and TLS and
immune characteristics of a NSCLC patient during the treatment
with neoadjuvant immune checkpoint inhibitors, which may
provide a new perspective for exploring the mechanism of
immunotherapy and looking for new predictive markers.
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Background: Tertiary lymphoid structures (TLSs) have been proven to be predictive
biomarkers of favorable clinical outcomes and response to immunotherapies in several solid
malignancies. Nevertheless, the effect of TLSs in patients with breast cancer (BC) remains
controversial. The objective of the current study is to investigate the clinicopathological and
prognostic significance of TLSs in BC. Given the unique difficulties for detecting and
quantifying TLSs, a TLS-associated gene signature based on The Cancer Genome Atlas
(TCGA) BC cohort was used to validate and supplement our results.

Methods: Electronic platforms (PubMed, Web of Science, EMBASE, the Cochrane
Library, CNKI, and Wanfang) were searched systematically to identify relevant studies
as of January 11, 2022. We calculated combined odds ratios (ORs) with 95% confidence
intervals (CIs) to determine the relationship between clinicopathological parameters and
TLSs. The pooled hazard ratios (HRs) and 95% CIs were also calculated to evaluate the
prognostic significance of TLSs. The TLS signature based on the TCGA BC cohort was
applied to validate and supplement our results.

Results: Fifteen studies with 3,898 patients were eligible for enrollment in our study. The
combined analysis indicated that the presence of TLSs was related to improved disease-
free survival (DFS) (HR = 0.61, 95%CI: 0.41–0.90, p < 0.05) and overall survival (OS) (HR =
1.66, 95% CI: 1.26–2.20, p < 0.001). Additionally, the presence of TLSs was positively
correlated with early tumor TNM stage and high tumor-infiltrating lymphocytes. TLS
presence was positively related to human epidermal growth factor receptor 2 (HER-2) and
Ki-67 but inversely correlated with the status of estrogen and progesterone receptor.
Simultaneously, our study found that tumor immune microenvironment was more
favorable in the high-TLS signature group than in the low-TLS signature group.
Consistently, BC patients in the high-TLS signature group exhibited better survival
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outcomes compared to those in the low-TLS signature group, suggesting that TLSs might
be favorable prognostic biomarkers.

Conclusions: TLS presence provides new insight into the clinicopathological features
and prognosis of patients with BC, whereas the factors discussed limited the evidence
quality of this study. We look forward to consistent methods to define and characterize
TLSs, and more high-quality prospective clinical trials designed to validate the value of
TLSs alone or in combination with other markers.
Keywords: tertiary lymphoid structures, breast cancer, prognosis, survival, clinicopathological parameters, signature
INTRODUCTION

Breast cancer (BC) has been the most frequently diagnosed
malignancy worldwide, and is the main cause of tumor-
associated mortality in women (1, 2). Originating from
mammary epithelial cells, BC as a kind of heterogeneous
disease has divergent histological subtypes and biological
characteristics, thus leading to distinct clinical behaviors and
treatment sensitivity profiles (3). Although the recent success of
immunotherapy has paved the way for various solid or
hematological malignancies, most subtypes of BC exhibit little
efficacy to immunotherapy with immune checkpoint inhibitors
only approved in combination therapy for PD-L1-positive
metastatic triple-negative breast cancer (TNBC) (4). Poor
immunogenicity, lack of T-cell infi l tration, and an
immunosuppressive tumor microenvironment (TME) have
been identified as major barriers to the success of
immunotherapy in BC (4). The interaction between tumor
cells and the immune TME is a complex, dynamic, and
evolving process; thus, conventional tumor characteristics and
biomarkers may not be adequate to predict immunotherapy
effectiveness and prognostication. Data across large BC clinical
trials supported that the high levels of tumor-infiltrating
lymphocytes (TILs) are predictive biomarkers for favorable
prognosis and of the response to immunotherapy, particularly
in HER-2+ BC and TNBC (5). Besides TILs, recent evidence
revealed that spatial organization plays a crucial role in
determining prognosis and response to immunotherapy, with
tertiary lymphoid structures (TLSs) attracting widespread
attention (6, 7).

TLSs are ectopic cellular aggregates in nonlymphoid tissues
under conditions of chronic inflammation including tumors, and
share similar architectural and functional characteristics with
secondary lymphoid organs (SLOs) (8). The architecture of
mature TLSs is characterized by B-cell-enriched zones that
consists of B-cell follicles surrounded by a network of follicular
helper T cells and follicular dendritic cells, T-cell-enriched
regions with dendritic cells (DCs), high endothelial venules
(HEVs), as well as lymphatic vessels (6, 7). In addition to the
relevant number of immune cells, TLSs emphasize the spatial
proximity of specialized subsets of immune cells within TLSs. In
contrast to SLOs, TLSs represent privileged sites for local
lymphocyte differentiation and antigen presentation, which
provide an important milieu for both cellular and humoral
org 217
antitumor immunity (7). Accumulating research has indicated
that TLS presence was deeply associated with positive
immunoreactivity and favorable clinical outcomes in most
types of solid tumors (6). However, some studies evaluated the
prognostic value of TLSs limited to small study numbers and
subsets of BC, with inconsistent and conflicting results. Although
a previous meta-analysis by Zhang et al. suggested that TLSs
were related to better prognosis, their result was based on a
limited number of studies, with only two or three studies
providing survival outcomes (9). Furthermore, all included
studies in their meta-analysis showed that TLSs were beneficial
for prognosis, but opposite conclusions have been reported in the
recent study (10).

Hence, with the publication of new studies regarding this
topic, further evaluation of the role of TLSs in BC is necessary.
This study including more than 15 articles aimed to
comprehensively assess clinicopathological and prognostic
values of TLSs in BC, providing higher-level medical evidence
for clinical practice. Simultaneously, given the unique difficulties
in the detection and quantification of TLSs, the TLS-related gene
signature based on the TCGA BC cohort was further used to
validate and supplement our results.
MATERIALS AND METHODS

The present study was performed in accordance with the
Preferred Reporting Items for Systematic Review and Meta-
Analysis (PRISMA) criteria (11). The protocol of this meta-
analysis was registered in the PROSPERO (registration
number: CRD42022302921).

Search Strategies
Six electronic platforms (PubMed, Web of Science, EMBASE, the
Cochrane Library, CNKI, and Wanfang) were searched
systematically to identify eligible studies as of January 2022,
regardless of any restrictions in the region or language. Random
combinations of the following items were applied in our search:
“Tertiary Lymphoid Structure OR tertiary lymphoid organ OR
Ectopic Lymphoid Tissue OR Ectopic Lymphoid-Like
Structure”, and “breast neoplasm OR breast cancer OR breast
tumor OR breast carcinoma”. Additionally, references cited in
relevant studies and reviews were manually searched to identify
potential studies for inclusion. Two researchers independently
May 2022 | Volume 13 | Article 868155
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reviewed the literature, and any differences were addressed via
discussion with a third researcher.

Inclusion and Exclusion Criteria
The eligible studies were selected in accordance with the
following criteria: (1) the patients were definitively diagnosed
with BC by histopathological examination; (2) TLSs were
determined by the hematoxylin and eosin (H&E) staining
method or immunohistochemistry (IHC) method based on BC
tissues; and (3) studies reported the association of TLS presence
with clinicopathological parameters or survival outcomes,
including disease-free survival/overall survival (DFS/OS).
Exclusion criteria included the following: (1) reviews,
editorials, letters, conference abstracts, case reports, or
unpublished articles; (2) studies involving animal models or
cell lines; (3) studies with unavailable data or insufficient data
for analyses; and (4) studies composed of an overlapping
patient population.

Data Extraction
All required data were extracted from eligible studies by two
investigators independently, which were as follows: (1) first
author, publication date, country, sample size, detection
methods, TLS location, cutoff criteria, and study design; (2)
clinicopathological parameters, including the association
between TLSs and age, tumor size, lymph node status,
lymphovascular invasion (LVI), histological grade, TNM stage,
estrogen receptor (ER) status, progesterone receptor (PR) status,
human epidermal growth factor receptor 2 (HER-2) status, and
the cell proliferation marker Ki-67 index; and (3) hazard ratios
(HRs) and 95% confidence intervals (CIs) of DFS and OS. If
survival outcomes were not given explicitly, the HR with 95% CI
was retrieved from Kaplan–Meier curves through Engauge
Digitizer (version 4.1) software and Tierney’s reported
method (12).

Quality Evaluation
The quality of the selected studies was independently evaluated
by two researchers using the Quality in Prognosis Studies
(QUIPS) tool of the Cochrane Prognosis Methods Group,
which considers the following domains: (1) study participation,
(2) study attrition, (3) prognostic factor measurement, (4)
outcome measurement, (5) study confounding, and (6)
statistical analysis and reporting (13). Each domain was scored
low, moderate, or high risk of bias by answering three to six more
detailed questions (Supplementary Table 1) (14). Studies were
considered of high quality when risk of bias was rated low in at
least four of the six domains, and low in both study attrition and
study confounding. Any disagreements were resolved by
consultation with a third researcher.

Bioinformatics Analysis
The mRNA expression and clinical information of BC patients
in this study were downloaded from the TCGA database
(https://portal.gdc.cancer.gov/). We applied single-sample
Gene Set Enrichment Analysis (ssGSEA) to quantify the
enrichment scores of TLS signature-related genes (CCR6,
Frontiers in Immunology | www.frontiersin.org 318
CD1D, CD79B, CETP, EIF1AY, LAT, PTGDS, RBP5, and
SKAP1) (15). We separated patients into three groups equally
according to the tertile of the TLS score. The ESTIMATE
algorithm was used to analyze the immune score, stromal
score, ESTIMATE score, and tumor purity to test the effect of
the high- and low-TLS signature groups. The enrichment levels
of the 29 immune-associated gene sets were quantified by the
ssGSEA score (16), and the relative fractions of 22 human
immune cell infiltration were accurately calculated by the
CIBERSORT deconvolution algorithm (17), further testing
the difference between the high- and low-TLS signature
groups using Mann–Whitney U test. Correlation analysis
between TLS scores and major immune checkpoint genes was
performed using Spearman’s algorithm, and the difference in
immune checkpoint genes between these two groups was
explored by Mann–Whitney U test. The survival differences
between two groups were compared using a log-rank test, and
visualized by Kaplan–Meier curves.

Statistical Analysis
All calculations were conducted using STATA version 17.0 and R
version 4.1.1 with corresponding packages. The pooled
odds ratios (ORs) and the corresponding 95% CIs were
calculated to assess the association between TLS presence and
clinicopathological parameters. The merged HRs with 95% CIs
were adopted to evaluate the correlation between TLS presence
and prognosis. Heterogeneity between studies was assessed using
Cochran’s Q and Higgins I2 tests. I2 > 50% and p < 0.10 were
defined as significant heterogeneity, and the random-effect
model was applied; otherwise, the fixed-effect model was
utilized. We conducted a subgroup analysis to investigate the
heterogeneity cause. Moreover, sensitivity analysis was employed
to assess the stability of the pooled outcomes by dropping each
study individually. Meanwhile, both Begg’s funnel plots and
Egger’s tests were adopted to evaluate potential publication
bias. Statistical significance was defined as a p-value of less
than 0.05.
RESULTS

Study Characteristics
As shown in the PRISMA flowchart (Figure 1), a total of 494
articles were identified from electronic databases according to
the initial search strategy. After preliminary screening and full-
text review, 15 studies with a total of 3,898 patients (10, 18–31)
were fully in conformity with the screening criteria and were
included in this study. The baseline characteristics of the
eligible studies are summarized in Table 1. The fifteen
included studies were retrospective studies published between
2015 and 2021, with a patient population ranging from 60 to
769. Seven studies were performed in Korea (18, 20, 23–25, 27,
28), five in China (19, 22, 29–31), two in Greece (10, 26), and
one in Belgium (21). Ten of the 15 included studies reported the
correlation between clinicopathological features and TLSs
(TNM stage, 4 studies; age, 5 studies; tumor size, 4 studies;
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lymph node status, 7 studies; LVI, 4 studies; histological grade,
7 studies; TILs, 3 studies; ER, 3 studies; PR, 3 studies; HER-2, 6
studies; Ki-67, 2 studies). Ten of the 15 included studies
investigated the prognostic role of TLS presence, with eight
assessing DFS and four assessing OS. The study quality
assessment results of each study using the QUIPS tool
suggested that the methodology of the studies was relatively
reliable, and only two studies harbored a high overall risk of
bias (Figure 2).

Correlation Between TLS Presence and
Clinicopathological Parameters
To evaluate the value of TLSs as an effective biomarker, we
investigated the relationship between the TLS presence and
certain clinicopathological parameters in patients with BC. The
results of this analysis are shown in Figure 3 and Supplementary
Table 2. The pooled OR revealed that TLS presence was more
prevalent in BC patients with earlier tumor TNM stage (OR =
0.17, 95% CI: 0.07–0.46, p < 0.001; I2 = 68.3%, p = 0.024)
(Figure 3A). However, the correlation between TLS presence
Frontiers in Immunology | www.frontiersin.org 419
and age (OR = 0.96, 95% CI: 0.68–1.35, p = 0.802; I2 = 0%, p =
0.800), tumor size (OR = 1.08, 95% CI: 0.77–1.51, p = 0.680;
I2 = 0%, p = 0.760), lymph node status (OR = 0.64, 95% CI: 0.31–
1.30, p = 0.215; I2 = 86.6%, p < 0.001), LVI (OR = 2.25, 95% CI:
0.59–8.54, p = 0.236; I2 = 92.4%, p < 0.001), and histological
grade (OR = 1.75, 95% CI: 0.55–5.60, p = 0.346; I2 = 92.7%, p <
0.001) was not statistically significant (Figures 3B–F). TLSs have
recently drawn attention as markers for TILs. The pooled results
from three included studies showed that TLS presence was
positively associated with TILs in tumors (OR = 8.054, 95% CI:
3.94–16.46, p < 0.001; I2 = 66.3%, p = 0.051) (Figure 3G). Moreover,
a total of 8 studies investigated the correlation of TLS presence with
the expression of immunohistochemical markers (ER, PR, HER-2,
and Ki-67) (Figures 3H–K). The pooled results showed that TLS
presence was negatively associated with the expression of ER (OR =
0.28, 95% CI: 0.14–0.54, p < 0.001; I2 = 55.8%, p = 0.104) and PR
(OR = 0.318, 95% CI: 0.22–0.47, p < 0.001; I2 = 0%, p = 0.757). In
addition, TLS was correlated with high expression of HER-2 (OR =
3.27, 95% CI: 1.66–6.47, p = 0.001; I2 = 72.8%, p = 0.002) and Ki-67
(OR =2.14, 95% CI: 1.27–3.59, p < 0.004; I2 = 7.5%, p = 0.299).
FIGURE 1 | Study search and selection process flow diagram (PRISMA 2020).
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TABLE 1 | Main characteristics of the eligible studies.

Eligible
study

Year Country Sample
size

Median
age

(range)

Cohort Detected
method

TLS markers TLS location Cutoff
criteria

Survival
outcome

Source
of HR

Study
design

Lee HJ
et al. (25)

2015 Korea 447 NR HER2+ BC H&E NA Within 5 mm
from the
invasive or in
situ carcinoma

None,
minimal,
moderate,
or
abundant

DFS Reported Retrospective

Figenschau
SL et al.
(26)

2015 Greece 167 NR PBC H&E/IHC CD3, CD4, CD8,
CD20, CD21,
BCL-6, and
PNAd

Global Very low,
low,
medium,
and high

DFS, OS Reported Retrospective

Lee HJ
et al. (27)

2016 Korea 769 47 (23–
76)

TNBC H&E/IHC MECA-79 In tumor
adjacent tissue

None, little,
moderate,
or
abundant

DFS, OS Reported Retrospective

Kim A et al.
(18)

2016 Korea 204 48 (27–
76)

Ductal BC H&E/IHC CD3 and CD20 Near to or
remote from
the invasive or
in situ
carcinoma

Absent,
low,
moderate,
or
abundant

NR Reported Retrospective

Zhou Z
et al. (30)

2016 China 100 49.3
(31–72)

PBC H&E/IHC CD3, CD20,
CD21, BCL-6,
and CD62L

Global Positive vs.
negative

NR Reported Retrospective

Song IH
et al. (23)

2017 Korea 108 42 (23–
70)

TNBC H&E/IHC CD3, CD8, and
CD20

Global No, little,
moderate,
or
abundant

DFS Reported Retrospective

Park IA
et al. (20)

2017 Korea 681 47.4
(23–76)

TNBC H&E NA In the adjacent
area of the
invasive and in
situ carcinoma

Absent,
low,
moderate,
or
abundant

DFS Reported Retrospective

Liu X et al.
(19)

2017 China 248 NR Invasive BC H&E/IHC CD3, CD20, and
CD23

Within 5 mm
from the
invasive or in
situ carcinoma

Positive vs.
negative

DFS, OS Survival
curve

Retrospective

Buisseret L
et al. (28)

2017 Belgium 189 NR PBC H&E/IHC CD3, CD4, CD8,
CD20, and CD23

Global Positive vs.
negative

NR Reported Retrospective

Gao S et al.
(29)

2017 China 150 48.5
(34–75)

Invasive
ductal BC

H&E/IHC CD3, CD4, CD8,
CD20, CD21,
CD62L, and,
BCL-6

Global Positive vs.
negative

NR Reported Retrospective

Lee M et al.
(24)

2019 Korea 335 NR Metastatic
BC

H&E NA Primary and
metastatic
sites

Present vs.
absent

OS Reported Retrospective

Sofopoulos
M et al. (10)

2019 Greece 167 53 (26–
78)

Invasive
ductal BC

H&E/IHC CD3, CD4, CD8,
CD20, CD23,
CD31, CD163,
and, FOXP3

Within 5 mm
from the
infiltrative
tumor border

Negative,
low to
moderate,
and high

DFS/OS Survival
curve

Retrospective

Chao X
et al. (22)

2020 China 60 50 (25–
81))

Metaplastic
BC

H&E/IHC CD3 and CD20 Within the
invasive border

Absent and
present

DFS Reported Retrospective

Zhang Y
et al. (31)

2020 China 105 52 (30–
79)

Invasive
ductal BC

H&E/IHC CD3, CD10,
CD20, and CD21

Within 5 mm
from the
invasive or in
situ carcinoma

Absent and
present

NR Reported Retrospective

Noël G
et al. (21)

2021 Belgium 168 NR Invasive
ductal BC

H&E/IHC CD3 and CD20 Global No,
inactive,
and active

DFS Survival
curve

Retrospective
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BC, breast cancer; TNBC, triple-negative breast cancer; DFS, disease-free survival; OS, overall survival; NR, not reported; NA, not applicable; H&E, hematoxylin and eosin staining; IHC,
immunohistochemistry.
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Effect of TLS on Survival Outcomes of
Patients With Breast Cancer
To deeply assess the prognostic effect of TLSs in BC patients, a
meta-analysis was performed on HRs for DFS and OS. Eight
studies with 572 patients examined the relationship between TLS
presence and DFS (Figure 4A). Because of moderate
heterogeneity between included studies (I2 = 62.3%, p = 0.010),
a random-effect model was performed to evaluate the pooled HR
and 95% CI of DFS. The merged results suggested that TLS
presence was obviously related to a better DFS (HR = 0.61, 95%
CI: 0.41–0.90, p < 0.05). Four studies including 1,666 patients
assessed the association between TLS presence and OS
(Figure 4B). Since heterogeneity across studies was I2 = 52.9%,
p = 0.038, a random-effect model was adopted for analysis. The
merged results indicated that TLS presence was correlated with
longer OS (HR = 1.66, 95% CI: 1.26–2.20, p < 0.001).
Frontiers in Immunology | www.frontiersin.org 621
Subgroup Analyses
Limited to the number of studies included, we only performed
subgroup analysis for DFS and stratified by median age,
ethnicity, sample size, source of data, and detection method
(Table 2). The DFS rate did not differ between patients with a
median age below 50 years and those over 50 years and between
sample sizes greater than or less than 300. Subgroup analysis
stratified by ethnicity and source of data showed that TLS
expression in both Asian and univariate analyses was more
prone to be correlated with better DFS (HR = 0.63, 95% CI:
0.54–0.73, p < 0.001) with low heterogeneity (I2 = 43.2%, p =
0.117). Nevertheless, for two studies in Caucasians, the pooled
data reached the opposite conclusion (HR = 1.67, 95% CI: 0.29–
9.80, p = 0.924) with significant heterogeneity. For subgroup
analyses based on the detection method, the results suggested
that TLS presence predicted better DFS with detection using
A

B

FIGURE 2 | Risk of bias graph of included studies. (A) Assessment regarding each risk of bias item for each included study. (B) Each bias risk item was presented
as a percentage for all included studies.
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H&E staining (HR = 0.61, 95% CI: 0.45–0.82, p < 0.001), while
TLS detected by H&E staining combined with IHC had no
statistically significant correlation for DFS (HR = 0.29, 95% CI:
0.26–1.37, p = 0.224). Thus, ethnicity, source of data, and/or
detection method might be a source of heterogeneity. Moreover,
the heterogeneity among studies might be caused by the complex
subtypes of BC.
Sensitivity Analysis
Sensitivity analysis was employed to investigate the stability of
the pooled survival outcomes by sequentially dropping each
study individually (Figures 5A, B). The final result indicated
that no significant influence of the merged survival outcomes was
observed after removing any of the included studies,
demonstrating that our results were stable and reliable.
Frontiers in Immunology | www.frontiersin.org 722
Publication Bias
Both Begg’s funnel and Egger’s tests were conducted to estimate
the potential publication bias. Begg’s funnel plots appeared
symmetrical (Begg’s: p = 0.386 for DFS; p = 0.734 for OS), and
the p-values in Egger’s test were 0.701 for DFS and 0.529 for OS,
As shown in Figures 5C, D. Thus, there was no significant
publication bias in studies on TLSs with respect to
survival analysis.

Validation Results of the TLS Signature
Based on The Cancer Genome Atlas
At present, the major research dilemma for TLSs is lack of
standards for detection and quantification. Detecting TLSs
through H&E staining and IHC is susceptible to subjective bias
and inconvenient for quantifying TLSs. Recently, several gene
signatures detecting TLSs identified from transcriptomic analysis
A

B

D

E

F

G

I

H

J

K

C

FIGURE 3 | Meta-analysis for the association of TLSs with clinicopathological parameters. Forest plots showed the correlation between TLS presence and (A) TNM
stage, (B) age, (C) tumor size, (D) lymph node status, (E) lymphovascular invasion, (F) histological grade, (G) TILs, (H) ER, (I) PR, (J) HER-2, and (K) Ki-67. Each
result was shown by the OR with 95% CI. Diamonds indicated pooled OR with their corresponding 95% CIs.
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were proven to be feasible in the quantification of TLSs. The 9-
gene TLS signature mainly represented the B cells and T cells in
TLSs, which was thought to be more representative of TLS-
associated gene expression than the 12-chemokine signature
(32). The 9-gene signature has been used for TLS
quantification in a variety of solid tumors such as lung
adenocarcinoma and melanoma, conveying significant
prognostic and predictive value (15, 32). First , we
comparatively assessed the differential expression of 9 genes
between tumor and normal tissues in the TCGA BC cohort
(Figure S1). Based on the 9-gene enrichment score, BC patients
were separated into a high-TLS signature group (top tertile) and
a low-TLS signature group (bottom tertile). We then investigated
correlations between the expression of the 9-gene signature and
the TME. In the ESTIMATE algorithm, patients in the high-TLS
signature group had higher immune, stromal, and ESTIMATE
scores and lower tumor purity than patients in the low-TLS
signature group (Figures 6A, B). As shown in Figure 6A, the
infiltration degree of immune cell subsets in the high-TLS
signature group was significantly higher than that in the low-
TLS signature group. The CIBERSORT analysis indicated that
the relative proportions of immune cells including B cells, plasma
cells, CD8 T cells, CD4 T cells, follicular helper T cells, regulatory
Frontiers in Immunology | www.frontiersin.org 823
T cells (Tregs), NK cells, monocytes, macrophages, activated
dendritic cells, mast cells, neutrophils, and eosinophils were
significantly different between the high- and low-TLS signature
groups (Figure 6C). The differences in immune cell proportion
indicated that the 9-gene signature can efficiently reflect the
enrichment of TLSs in the TME. We next evaluated the
correlation between the TLS signature and the expression of
immune-related checkpoint genes. Pearson correlation analysis
revealed that the TLS signature score was positively correlated
with immune-related checkpoint expression. Notably, compared
with the low-TLS signature group, the expression of all major
checkpoint genes was significantly upregulated in the high-TLS
signature group. We then further assessed the prognostic value of
the TLS signature in patients with BC. The Kaplan–Meier curve
revealed the high-TLS signature group was significantly
associated with improved OS.
DISCUSSION

As a complex network composed of a variety of immune subsets,
the tumor immune microenvironment exerts a great impact on
immunotherapeutic efficacy and prognosis (33). TLSs have
A

B

FIGURE 4 | Meta-analysis of the prognostic value of TLS presence in BC patients. (A) Forest plots of the association between the TLS presence and disease-free
survival. (B) Forest plots of the association between the TLS presence and overall survival. An HR <1 suggested that the presence of TLSs was associated with
favorable prognosis. Diamonds indicated overall HR with their corresponding 95% CIs.
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attracted increasing attention as a unique structure of the TME.
TLSs not only are prognostic biomarkers of improved clinical
outcome among cancer patients but also shape a local and
favorable site for generating antitumor humoral and cellular
immune responses (6, 8). However, several studies exploring the
impact of TLS on prognosis and tumor progression were limited
to small study numbers and subsets of BCs, of which the results
are conflicting and lack more comprehensive evaluations. To the
best of our knowledge, this is the most comprehensive meta-
Frontiers in Immunology | www.frontiersin.org 924
analysis including 15 articles to assess the clinicopathological and
prognostic value of TLSs in BC.

The prognosis of BC is well recognized to be influenced by
host- and tumor-associated factors (age, tumor size, histological
grade, lymph node, hormone and growth receptor status, etc.)
(19). First, we synthesized eleven pieces of research to evaluate
the correlation between TLSs and clinicopathological parameters
in BC (Figure 3). Our results suggested that the presence of TLSs
was correlated with early TNM stage. Consistent with this, the
A B

DC

FIGURE 5 | (A) Sensitivity analysis between TLS presence and DFS. (B) Sensitivity analysis between TLS presence and OS. (C) Begg’s funnel plot for publication
bias of TLS presence on DFS. (D) Begg’s funnel plot for publication bias of TLS presence on OS.
TABLE 2 | Subgroup analysis of the prognostic value of TLSs for DFS in patients with breast cancer.

Subgroup analysis No. of studies Effect model Pooled HR (95%CI) p Heterogeneity

I2(%) p

DFS
Total 8 Random 0.61 (0.41, 0.90) 0.013 62.3 0.010
Median age
<50 3 Fixed 0.64 (0.55, 0.75) <0.001 13.8 0.314
≥50 3 Random 0.54 (0.08, 3.57) 0.524 87.6 0.000
Ethnicity
Asian 6 Fixed 0.63 (0.54, 0.73) <0.001 43.2 0.117
Caucasian 2 Random 1.67 (0.29, 9.80) 0.568 57.0 0.127
Sample size
<300 5 Random 0.62 (0.35, 1.10) 0.104 75.2 0.003
≥300 3 Fixed 0.64 (0.53, 0.77) <0.001 15.8 0.305
Source of data
Univariate 6 Fixed 0.63 (0.54, 0.73) <0.001 43.2 0.117
K-M curves 2 Random 1.67 (0.29, 9.80) 0.568 57.0 0.127
Detected method
H&E 3 Random 0.61 (0.45, 0.82) 0.001 56.9 0.128
H&E and IHC 5 Random 0.29 (0.26, 1.37) 0.224 69.2 0.006
May 2022 | V
olume 13 | Article
HR, hazard ratio; CI, confidence interval; H&E, hematoxylin and eosin staining; IHC, immunohistochemistry.
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density of TLSs was also found to be obviously increased in early
TNM stage in oral squamous cell carcinoma and NSCLC (34,
35). A positive association was found between the presence of
TLSs and TIL levels in our study, which might be associated with
TLS function. Being nonencapsulated and close to tumor tissues
compared to draining lymph nodes, TLSs facilitate rapid
migration of APCs to TLSs and presentation of antigen
peptides to T-cell APCs at the site of the tumor (36). Indeed,
some studies also reported that TILs were the strongest
independent factor predicting TLSs, but not all cases with high
TILs showed TLS formation (37). We also found that TLSs were
negatively related to ER and PR status, but were correlated with
high expression of HER-2 and Ki-67. These results were in line
with previous studies, which revealed that increased TILs are
inversely related to the expression of ER or PR, and are positive
with HER-2 status, the pathologic complete response rate, and
improved survival outcomes (25, 38). In the current study, we
Frontiers in Immunology | www.frontiersin.org 1025
did not find the relationship between TLSs and age, tumor size,
LVI, or histologic grade.

We then systematically evaluated the prognostic impact of
TLS presence on BC patients (Figure 4). Our meta-analysis
describes that HR = 0.68 for OS and HR = 0.54 for DFS, both of
which were statistically significant. The study revealed that
patients with TLS presence had better survival outcomes
regarding DFS and OS. It was worth noting that that
sensitivity analyses revealed that our results were reliable and
robust, but moderate heterogeneity between included studies was
observed in survival outcomes, which can be caused by different
baseline characteristics of individual studies. Therefore,
subgroup analyses were performed using median age, ethnicity,
sample size, source of data, and detection method to explore the
potential heterogeneity (Table 2). The results revealed that
ethnicity, source of data, and/or detection method may be a
source of heterogeneity. Therefore, it is worth noting that TLSs
A B

D

E F

C

FIGURE 6 | (A) Relationship between TLS signature and tumor immune microenvironment. Twenty-nine immune-associated gene sets were quantified by ssGSEA.
Tumor purity, estimate scores, stromal scores, and immune scores were evaluated by ESTIMATE. (B) Comparison of stromal scores, immune scores, and ESTIMATE
scores between the high- and low-TLS signature groups (Mann–Whitney U test). (C) The relative fractions of 22 human immune cell infiltration in the high- and low-TLS
signature groups (Mann–Whitney U test). (D) The correlation between TLS signature scores and immune-related checkpoint gene expression (Spearman’s test).
(E) Comparison of immune-related checkpoint genes between the high- and low-TLS signature groups (Mann–Whitney U test). (F) Comparison of OS between the high-
and low-TLS signature groups (log-rank test). *p < 0.05, **p < 0.01, ***p < 0.001.
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are hardly accurately identified by H&E staining alone, and IHC
with TLS markers is typically necessary to evaluate TLS
characteristics. Moreover, the heterogeneity among studies
might be due to the complex subtyping of BC. Recent studies
have suggested that maturation degrees and distribution of TLSs
are critical to determine the impact of TLSs on prognosis.
However, due to a lack of data, subgroup analysis could not be
conducted to assess the impact of different maturation degrees
and distributions of TLSs on survival outcomes. A high
proportion of mature TLSs containing GCs was associated with
better prognostic outcome than total TLSs, and the prognostic
value of TLSs was lost while GC formation was impaired (39, 40).
TLSs could localize to the core of tumor tissues called intratumor
TLSs and/or the invasive margin of tumor tissues, known as
peritumor TLSs (41). Several studies have indicated that the
density of peritumor TLSs is associated with improved
prognoses, whereas there are a few opposite results. Sofopoulos
et al. described that patients with invasive ductal carcinoma
having peritumoral TLSs exhibited worse DFS and OS than
patients lacking TLSs (10). High levels of tumor-infiltrating
Treg cells observed at the peritumoral areas were demonstrated
to be correlated with relapse and death in BC patients (42).

Moreover, given the unique difficulties in TLS detection and
quantification, we validated and supplemented the results of our
analysis by TLS-related gene signature in BC patients (Figure 6).
Accumulating evidence has confirmed that TLSs are highly
associated with immune cell infiltration, which closely have an
impact on the development, progression, and prognosis as well
as the treatment of BC (43). Hence, the immune score, stromal
score, and ESTIMATE score of BC samples were estimated via
the ESTIMATE algorithm. Higher immune, stromal, or
ESTIMATE scores and lower tumor purity were found in
patients of the high-TLS signature group than those in the
low-TLS signature group. Simultaneously, we observed that
most of the 29 immune subsets, which represented immune
cell types, functions, and pathways, in the high group were more
abundant compared to the low group. Interestingly, the
immunosuppressive subsets like Treg cells, which might lead to
poor outcomes, were also higher in the high group. Indeed,
immunosuppressive cells are also components of TLSs, and
associations of TLSs with immunosuppressive cells have been
reported in various solid tumors including BC, lung cancer, and
melanoma (15, 42, 44). There was evidence that TLSs in
combination with “immunoscore” defined by intratumoral
immune cells might provide a comprehensive and most
powerful prognosticator. Li et al. found that TLSs combined
with CD8+ T cells and CD57+ NK cells provided a higher
predictive prognostic accuracy (45). It was still noteworthy that
all major checkpoint genes were obviously upregulated in the
high-TLS signature group compared with the low-TLS signature
group, suggesting that patients with high expression of TLS
signature were more likely to benefit from immunotherapy. A
study by Cabrita et al. observed that TLS-rich tumors in
particular were related to significantly increased survival after
CTLA4 inhibitor on the basis of the TLS signature (15). TLS-rich
tumors were more infiltrated by CD8+ T cells, and these T cells
Frontiers in Immunology | www.frontiersin.org 1126
might be depleted, explaining the correlation between immune
checkpoint expression and TLSs and why checkpoint inhibitor
might result in productive anti-tumor immunity in TLS-rich
tumors (46). Intriguingly, checkpoint inhibitor therapy might
also promote the formation of TLSs. Analysis of on-treatment
tumor biopsies of urothelial carcinoma and melanoma has
shown that tumors of responding patients showed a higher
number of TLS-associated B cells relative to matched
pretherapy samples after neoadjuvant immune checkpoint
blockade (8). All these results demonstrated the significant
correlations with TLS signature representing the major
component of TLSs, which revealed that the 9-gene signature
can efficiently reflect TLS enrichment in the TME. Our study also
demonstrated that BC patients with a high TLS signature
expression displayed improved survival, which showed that
TLS signature could act as a favorable prognostic factor for BC
patients. Based on the above results and discussion, multiple
measures including chemotherapy, immunostimulants,
vaccination, and TLS-associated cytokines and chemokines
have been applied to explore the induction of TLS formation
(40, 47). Considering some immunosuppressive factors such as
regulatory T and B cells that impaired the antitumor of TLSs
reported from recent studies, therapeutic strategies to induce
TLS fo rma t ion and matura t i on wh i l e inh ib i t i ng
immunosuppressive factors might create bright prospects for
enhancing tumor immunotherapeutic response (48).

This present study as the most comprehensive meta-analysis
provides more substantial evidence for clinicopathological and
prognostic significance of TLSs in BC. However, important
considerations should be emphasized while interpreting the
conclusions of this study. The cellular components, locations,
and maturation degrees of TLSs might dictate treatment efficacy,
tumor recurrence, and patient survival. The heterogeneity of the
means used to quantify TLSs further confound their use in the
clinic. Because the number of retrieved studies was not sufficient
to be analyzed depending on the detection methods, no
restriction was placed on the detection methods. Different
scoring methods, scoring systems, and thresholds might lead to
different results. Other limitations of our study were also
noteworthy. First, partial survival data unavailable in the
original article were extracted from Kaplan–Meier curves,
which are less reliable than data directly acquired from
research. Secondly, compared to multivariate analysis, data
from univariate analysis may overestimate the effect sizes.
Third, all the research data were derived from Asian and
Caucasian patients. Accordingly, the global representation of
data is insufficient and lacking. Finally, all studies included were
retrospectively conducted and might have inherent structural
biases. Therefore, prospective randomized trials are required to
validate our results in the future.

In conclusion, TLS presence provides new insight into the
clinicopathological features and prognosis of patients with BC.
The presence of TLSs might have the potential to predict
prognosis of BC patients, whereas factors discussed above
limited the evidence quality of this study. We look forward to
consistent methods to define and characterize TLSs, and more
May 2022 | Volume 13 | Article 868155
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high-quality prospective clinical trials designed to validate the
prognostic and predictive value of TLSs alone or in combination
with other markers.
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Case Report: Subtotal Lymphoid and
Total Marrow Irradiation as Bridge
Therapy to CD19-Directed CAR T
Cells in a Chemorefractory DLBCL
With Leukemic Involvement
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CAR T cell therapy has transformed the salvage approach for relapsed/refractory diffuse
large B-cell lymphoma (R/R DLBCL). Maintaining disease control before CAR T cell
infusion during product manufacturing (so-called bridging therapy) is an important step to
optimizing outcome. Among possible bridging therapies, radiation therapy (RT) represents
a valuable option, particularly when the disease is limited. Here, we report for the first time
on a patient with chemorefractory-transformed DLBCL showing nodal, extranodal, and
massive bone marrow (BM) lymphoma infiltration associated with leukemic involvement, a
successful bridge therapy to CD19-directed CAR T cell therapy by subtotal lymphoid/total
marrow irradiation plus thiothepa followed by reinfusion of CD34+ autologous
hematopoietic stem cells. Such a novel bridging regimen allowed a significant reduction
of nodal and BM tumor volume while improving blood cell count before CAR T cell
infusion. The PET-CT scan and BM evaluation performed at 1, 3, and 6 months after
treatment showed complete remission of the disease. A relapse occurred at almost 1 year
in lymph nodes because of CD19 antigen escape while the BM remained free of disease.
This extended radiotherapy approach may be an effective bridging therapy for
chemorefractory DLBCL patients eligible for CAR T cells who present with a high tumor
burden, including massive BM involvement associated with leukemic involvement. This
preliminary evidence is worth confirming in additional patients.

Keywords: CAR (chimeric antigen receptor) T cells, radiotherapy, diffuse large B-cell lymphoma, bridge therapy,
gene therapy
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INTRODUCTION

Chimeric antigen receptor (CAR) T cells directed against the
CD19 B-cell molecule (tisagenlecleucel, axicabtagene, and
lisocabtagene) induce long-term complete responses (CRs) in
about 40% of relapsed/refractory (R/R) diffuse large B-cell
lymphoma (DLBCL) patients (1–3). However, about 60% of
cases show no or only temporary response to anti-CD19 CAR
T cells because of several factors, including immune escape due
to CD19 loss (4) or insufficient CAR T cell expansion/persistence
in vivo (5).

Another major obstacle to the success of this adoptive T-cell
therapy is the inability to control disease progression before CAR
T cell infusion, particularly in patients with very high tumor
burden, including massive bone marrow (BM) involvement.
Bridging approaches to CAR T cells in chemorefractory
DLBCL include polatuzumab vedotin (drug-conjugated anti-
CD79b monoclonal antibody)-bendamustine-rituximab (6),
drug-conjugated monoclonal antibodies directed against CD19
(7), bispecific antibodies (anti CD3/CD20) (7), or radiotherapy
(RT) (8–10).

Here, we report on a 49-year-old woman with nodal, left
iliopsoas muscle, BM, and subsequent leukemic involvement by
chemorefractory DLBCL who was successfully bridged to CAR T
cell therapy using subtotal lymphoid irradiation (sTLI) followed
by total marrow irradiation (TMI) plus thiothepa and reinfusion
of CD34+ autologous hematopoietic stem cells. To our
knowledge, this is the first time sTLI/TMI has been adopted as
a bridge therapy to allow the infusion of CAR T cells.
CASE PRESENTATION

A 49-year-old woman presented in 2019 because of low back pain,
fever, and night sweats. A BM biopsy revealed a massive infiltration
by CD5+ DLBCL, probably secondary to low grade B-cell
lymphoma not otherwise specified. The FISH analysis showed
monoallelic deletion of TP53 and amplification of the MYC gene
(range 4–9 signals) in virtually all tumor cells; no rearrangements of
BCL2 and BCL6 were detected. A positron emission tomography/
computed tomography (PET/CT) showed a hypermetabolic uptake
by multiple supra- and sub-diaphragmatic lymph nodes, spleen, left
iliopsoas muscle and BM. The patient received 5 cycles of R-CHOP
(rituximab, cyclophosphamide, doxorubicin, and vincristine) plus 1
cycle of high-dose methotrexate (as prophylaxis for central nervous
system involvement) that only led to a partial remission (PR) at
PET/CT scan. She then underwent two cycles of salvage
chemotherapy with R-DHAOX (rituximab, cytarabine, and
oxaliplatin) followed by collection of CD34+ peripheral
hematopoietic stem cells. After a FEAM conditioning regimen
(fotemustine, etoposide, cytarabine, and melphalan), she
underwent an autologous hematopoietic stem cell transplantation
(auto-HSCT) without significant response (Figure 1A). Therefore,
the patient was regarded as eligible for CAR T cell therapy and
underwent an apheresis collection of lymphocytes. We opted for
sTLI as a bridge to CAR T cells instead of polatuzumab-based
Frontiers in Immunology | www.frontiersin.org 230
regimens because polatuzumab was not yet available from the
Italian Drug Agency (AIFA). Moreover, the disease appeared
chemorefractory and the patient was radiotherapy-naïve raising
the opportunity to obtain a certain degree of response. In particular,
20 Gy was delivered in 10 fractions over 5 days in all PET/TC
positive tumor sites (i.e., the left iliopsoas muscle and all the main
nodal stations, minus the mediastinum) except for the spleen, which
received 11.5 Gy (Figures 1B, C). One month later, the disease
evolved to leukemia (WBC 3,900/ml [normal: 4,000–9,000/ml], 70%
tumor lymphoid cells) and the patient became transfusion
dependent due to marked anemia (Hb 7.9 gr/dl [normal: 13 to 17
g/dl]) and thrombocytopenia (platelets, 10,000/ml [normal:
140,000–400,000/ml]). A BM biopsy showed massive involvement
by DLBCL expressing CD19 (Figures 1D–G). For this reason, the
patient received TMI (18 Gy; 1.8 Gy × 2/die for 5 days)
(Figures 1H, I), followed by thiotepa (5 mg/kg) and an infusion
of residual, previously collected autologous CD34+ hematopoietic
stem cells (5.5 × 106/kg). Side effects included grade 4 mucositis
limited to the mouth and requiring opioids, fever due to
Staphylococcus haemolyticus sepsis (detected at blood cultures)
that was successfully treated with daptomycin, and an
asymptomatic increase of HHV6 copies in the peripheral blood
for which she received ganciclovir.

After sTLI and TMI therapy, the PET/CT showed the
disappearance of all metabolic positive lymphadenopathy but
persistence of uptake in the left iliopsoas muscle (Figure 2A),
while BM biopsy revealed about a 50% reduction of tumor
cells. The residual lymphoma B cells expressed CD19 by
immunohistochemistry. The blood cell count (BCC) showed:
WBC 3,440/ml with the disappearance of circulating lymphoma
cells, Hb 8.2 and an increase in platelet number (132,000/ml).

Given the good response to bridging therapy, the patient
underwent lymphocyte depletion with fludarabine and
cyclophosphamide, followed by a tisagenlecleucel infusion. She
received a total of 130 × 106 CD3+ cells, with a 33% CD19-CAR-
transduced T cell and a 2:1 CD4:CD8 ratio. After CAR T cell
infusion, she experienced a grade 3 cytokine release syndrome
(CRS) characterized by fever and hypotension that was
successfully treated with tocilizumab (four doses), single dose
dexamethasone (20 mg), and supportive therapy. Indeed, PET/CT
scans performed 1, 3, and 6 months after tisagenlecleucel showed
CR (Figure 2B). A prolonged neutropenia was observed with BCC
returning to normal at 6 months (WB 4.970/ml, N 45%, L 41%, M
10%, Hb 11 g/dl, PLT 274,000/ml). Notably, despite previous
TMI, the patient did not experience prolonged anemia or
thrombocytopenia after CAR T cell therapy. CAR T cell
expansion, monitored by flow cytometry every week after CAR T
infusion, showed high CAR T cell levels in peripheral blood 14 days
after infusion (276 CAR T positive cells/microliter) (Figures 2F, G).
At 3 and 6 months after CAR T cell therapy, very low counts of
normal B lymphocytes were detected by flow cytometry (B-cell
aplasia), supporting the evidence of long-term CAR T cell
persistence. At 11 months of follow-up, PET-CT showed a relapse
in the left laterocervical and several retroperitoneal lymph nodes
(Figure 2C) due to CD19 antigen escape (Figure 2D), while the BM
biopsy showed a markedly hypocellular marrow without infiltration
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FIGURE 1 | (A) FDG-PET/CT coronal maximum intensity projection (MIP) image before sTLI showing avid uptake of BM, multiple lymph nodes and iliopsoas muscle.
(B, C) sTLI dose distribution color wash (B), coronal view (C), sagittal view. (D) Massive BM involvement by DLBCL. The asterisk * indicates a large area of necrosis.
T indicates a BM trabecula (Hematoxylin–Eosin; × 100). (E) An area from the same section as (D) showing infiltration by low grade B-cell lymphoma and occasional
large cells (arrows) (Hematoxylin–Eosin; ×400). (F) The same section as (D) showing another area infiltrated by DLBCL cells (Hematoxylin–Eosin; ×400), that express
the CD19 molecule (G) (Leica immunoperoxidase staining; ×400). (H, I) Total marrow irradiation (TMI) dose distribution color wash (H), coronal view (I), axial and
sagittal view.
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FIGURE 2 | (A–C) FDG-PET/CT coronal maximum intensity projection (MIP) image after sTLI/TMI and before CAR T cells; white arrow in (A) indicates metabolic uptake in
the iliopsoas muscle (A) FDG-PET/CT after CD19-directed CAR T cell therapy showing metabolic complete response at 6 months (B) and DLBCL relapse at 11 months (C).
(D) Imprint of latero-cervical lymph node at relapse immunostained for the CD19 CAR target (detected in red). Almost all large lymphoma cells appear CD19-negative (single
arrows); the double arrow points to a CD19-negative tumor cell in mitosis. The red arrow indicates a CD19 positive (red) large tumor cell while the arrowhead indicates a CD19
positive (red) normal small B lymphocyte (Alkaline Phosphatase Anti-Alkaline Phosphatase (APAAP) technique; ×400). Negativity of >95% of tumor cells for CD19 was also
confirmed in frozen and paraffin sections of the lymph node (not shown). (E) BM biopsy taken 11 months after CAR T cell infusion showing a markedly hypocellular marrow
without lymphoma infiltration. T indicated BM trabecula. (Hematoxylin–Eosin; ×400). (F) Flow cytometry plots showing CAR T cells detected in the CD3+ T-cell subsets in the
peripheral blood every week the first month after CAR T cell infusion and in bone marrow aspirate at day 28-disease assessment (top). Comparison of CAR T cell absolute
count expansion between the patient in subject and mean of the other treated patients in our center (n = 12) at indicated time points after CAR T cell infusion (bottom). CAR T
cells were detected staining anti-CD19 CARs by the biotinylated CD19 CAR detection reagent (Miltenyi) together with anti-biotin-APC. (G) Immunofluorescence image stained
by biotinylated CD19 CAR detection reagent (Miltenyi) together with anti-FC FITCH conjugated secondary antibody (Thermo-Fisher, green) and DAPI (for cell nuclei, blue)
performed on cytospin preparation from the peripheral blood of the patient obtained 14 days after CAR T cell infusion. The white arrow indicates a CAR T cell probably
embracing a leukemic B cell.
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by lymphoma (Figure 2E). Because of her young age and good
performance status, she is now being considered for haploidentical
HSCT (Figure 3, timeline of events).
DISCUSSION AND CONCLUSIONS

Patients with R/R DLBCL frequently require bridge therapy to
decrease the tumor burden before CAR T cell infusion (10). In fact,
low tumor burden has been associated with improved overall
response rate, durability of response at 1 year (2, 11, 12) and
lower treatment-related toxicity, mainly CRS (9). Moreover, an
increased LDH (13) or a high metabolic tumor volume-MTV on
PET/CT (14) in R/R DLBCL treated with axicabtagene, correlated
with shorter PFS and OS. Similarly, a high tumor burden was
predictive of lower event-free survival in adult B-ALL patients
treated with CD19-directed CAR T cells (15). Thus, optimal
tumor debulking before CAR T cell infusion can potentially
improve the outcome.

To our knowledge, this is the first time that sTLI and TMI have
been used as bridging therapies to CAR T cell infusion in a
chemorefractory leukemic DLBCL. In general, RT appears
particularly attractive as bridging therapy to CAR T cells,
especially in patients with highly chemorefractory (10, 16–18) and
high tumor burden (19). In one study, bridging RT was superior to
bridging chemo-immunotherapy in terms of PFS (10), allowing all
Frontiers in Immunology | www.frontiersin.org 533
patients to receive CAR T cells (axicabtagene) versus 74 and 67% of
patients who underwent other forms of bridging therapy. So far,
bridging RT has been mainly delivered to limited target volumes,
independently of disease extension (10). However, in the present
patient, sTLI to all involved areas was used to reduce out-of-field
disease progression (10, 20). Although CD19 CAR T cells can
eradicate substantial tumor cell infiltration in B-ALL in progressive
disease settings, data in DLBCL are limited. Our patient had a high-
burden progressive disease (including massive BM and peripheral
blood involvement) that in DLBCL has been associated with a lower
response to CAR T cells and higher rates of CRS and ICANS. Thus,
going ahead with CAR T cell therapy would have probably
increased the risk of severe CAR-related toxicities. Based on these
considerations, we decided to deliver TMI followed by an infusion
of autologous CD34+ hematopoietic stem cells before CAR T cells.
Slight B-cell lymphoma contamination of the CD34+ purified
hematopoietic stem cells of the patient was disregarded because
contaminated cells were expected to be killed by CAR T cells.
Despite the fact that the treatment in our patient was very active
resulting in a CR of almost one year duration, she unfortunately
relapsed because of CD19 escape.

The optimal RT dose and fractionation schedule for CAR T cells
remain unclear. Commonly used doses are 30 Gy (3 Gy fraction) or
20 Gy (4 Gy fraction), which have been associated with local control
in about 80% of patients (8). In a retrospective assessment, diverse
schedules (median total dose of 35 Gy in a median of 2.5 Gy
fraction) had no impact on PFS (10). Large irradiated volumes in
our patient dictated the fractionation schedule, which was derived
from our conditioning regimen for haploidentical HSCT with
regulatory and effector T cells in AML using TLI plus TMI (21).
This “comprehensive” RT allowed bridging to CAR T cells and
achieving almost 1 year of CR in an otherwise incurable case. TLI +
TMI sculpts radiation doses to lymph nodes, spleen, and bones
while reducing them to visceral organs (22, 23). Further clinical and
laboratory assessments will help determine whether using this RT
approachmay be of benefit in patients with high burden disease and
improving blood cell count, as in the present case. On the other
hand, it remains unclear whether bridging “comprehensive” RT
provides better outcomes than irradiating small volumes in
candidates for CAR T cell therapy. In fact, the benefits of
localized bridging RT may extend beyond the irradiated area by
inducing systemic immune-mediated anti-tumor responses, the so-
called abscopal effect (24). Local irradiation has been reported to
sensitize tumor cells to adoptive T-cell therapy through a number of
mechanisms (25–27), including: i) the release of tumor-associated
antigens, facilitating their cross-presentation by dendritic cells and
antigen-specific T-cell priming; ii) enhancing migration of cytotoxic
T lymphocytes to irradiated areas via increased release of
chemokines; and iii) improving their proliferation and effector
function in irradiated sites. Robust CAR T cell expansion and
long-time persistence have been associated with enhanced responses
and prolonged survival, while poor in vivo proliferation has been
closely correlated with failure (28).

In conclusion, salvage treatments of R/R DLBCL are rapidly
evolving with novel approaches such as bispecific and drug-
conjugated antibodies, including polatuzumab combinations. In
the near future, the main challenge will be to find the best bridge
FIGURE 3 | Timelines of events.
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therapy for CAR T cells according to patient and disease features.
Bridging therapy may not have only the role of controlling the
disease during CAR T cell manufacturing but should be part of the
treatment, with the aim of further improving the expansion and
persistence of adoptive T-cell therapy and, consequently, the
outcome. For patients at increased risk of non response/relapse
following CD19-directed CAR T cell therapy, as the patient
presented here, the role of bridging “comprehensive” radiotherapy,
including TLI ± TMI approaches and potentially consolidative
allogeneic SCT, should be further evaluated in clinical trials.
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Tumor microenvironment
features decipher the
outperformance of neoadjuvant
immunochemotherapy over
chemotherapy in resectable
non-small cell lung cancer
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This study evaluated the efficacy of neoadjuvant immunochemotherapy (Io+

Chemo) versus chemotherapy alone (Chemo) in resectable non–small cell

lung cancer (NSCLC) in a real-world setting. The association of tumor immune

microenvironment (TIME) with pathologic response to different neoadjuvant

therapies was also explored.Stage I−III NSCLC patients who received Io+

Chemo or Chemo alone followed by surgery were included in the study.

Tumor tissues collected during surgery were subjected to TIME evaluation

using multiplex immunohistochemistry to measure immune cell subsets,

including T cells, B cells, NK cells, and macrophages. Fifty-five patients were

included, including 24 treated with neoadjuvant Io+Chemo and 31 with Chemo

alone. Io+Chemo induced significantly higher major pathologic response

(MPR) (75.0% vs. 38.7%, P = 0.0133) and numerically better pathologic

complete response (pCR) (33.3% vs. 12.9%, P = 0.1013) than Chemo.

Compared with tumors with Chemo, tumors with Io+Chemo demonstrated

a significantly higher ratio of M1 macrophage density in the tumor to that in the

stroma (P = 0.0446), more abundant CD8+ cells in the stroma (P = 0.0335), and

fewer PD-L1+CD68+ cells in both tumor and stroma. pCR/MPR patients

displayed significantly higher density of CD3+, CD3+CD4+, CD20+, CD56

bright cell subsets and more tertiary lymphoid structures and significantly

lower density of PD-L1+CD68+ and CD3+CD4+Foxp3+cells in the tumor or

stroma. This study favored neoadjuvant Io+Chemo over Chemo and revealed

the TIME features underlying the outperformance of Io+Chemo over Chemo.

KEYWORDS

non-small cell lung cancer, PD-(L) 1 blockade, tumor immune microenvironment,
neoadjuvant therapy, immunochemotherapy
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Introduction

Immunotherapies targeting cytotoxic T lymphocyte-associated

protein 4 (CTLA4) and the axis of programmed death 1 (PD-1)/

programmed death ligand-1 (PD-L1) have ushered the modern era

of oncology. Following the approval of pembrolizumab as the

frontline treatment for advanced and metastatic non-small cell

lung cancers (NSCLC) patients who are PD-L1 positive,

neoadjuvant use of anti-PD-L1/PD-1 antibody has been exploited

(1). Increasing trials are currently underway to evaluate the

preoperative utility of anti-PD-L1/PD-1 antibody in multiple

malignancies, including lung cancer. CheckMate 159

(NCT02259621), a phase II trial, reported a major pathologic

response (MPR) rate of 45% in stage I−III NSCLC with

nivolumab (2). That rate from other studies of anti-PD-L1/PD-1

antibody decreased, ranging from 13.8% to 40.0% (3–8). More

recently, the NADIM trial, which examined the combination of

nivolumab with chemotherapy, has reported superior pathologic

complete response (pCR) and MPR rates of 82.9% and 63.4%,

respectively, and 36-month progression-free survival (PFS) and

overall survival (OS) of 81.1% and 91.0%, respectively, among

patients with stage IIIA NSCLC, showing great promise of PD-

(L)1 blockade plus chemotherapy in shifting the paradigm of

NSCLC (9, 10). Similarly, CheckMate 816 showed that

neoadjuvant nivolumab plus chemotherapy increased MPR and

pCR rate to 36.9% and 24.0%, respectively, in stage IB-IIIA NSCLC,

and other trials (clinical trial NO. NCT02572843, NCT02716038,

NCT04304248) released remarkably consistent MPR rate running

the gamut between ~62% and ~67% and favorable pCR rate as well

(11–14).

As a newcomer of “common dominator” for cancer therapy,

immunotherapy of PD-(L)1 blockade exerts a distinct

mechanism in comparison with chemotherapy. Whereas

neoadjuvant chemotherapy aims to preoperatively “debulk”

tumors to resectable ones, neoadjuvant PD-(L)1 blockades,

termed normalization cancer immunotherapy, exploit strategy

based on immune evasion mechanisms to restore antitumor

immunity to defend tumor antigens. Anti-PD-(L)1 recovers the

functional tumor-specific cytotoxic T cells in the tumor immune

microenvironment (TIME). Moreover, neoadjuvant PD-(L)1

blockade leverages the high levels of tumor antigen in the

primary tumor to enhance T cell priming (15). At present,

extensive studies are unmet to better understand the

mechanism actions for these two distinct therapeutic

treatments. Particularly, the mechanisms underlying the

outperformance of PD-(L)1 blockade plus chemotherapy were

poorly studied. The co-effects of this combination on immune

response and TIME could be illuminated by analyzing tumor

specimens obtained after neoadjuvant treatment, which offered a

rich source for in-depth interrogations. Findings from that

studies may uncover pathways, mechanisms, and biomolecules
Frontiers in Immunology 02
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that could be co-targeted in new treatment combinations to

increase the efficacy of anti–PD-(L)1 drugs (15).

Except for CheckMate 816, few studies evaluated PD-(L) 1

blockade plus chemotherapy and chemotherapy alone in a head-

to-head manner. This study investigates the treatment response

to neoadjuvant treatment with Io+Chemo in comparison with

Chemo alone in a real-world cohort of patients with resectable

NSCLC. The associations of post-NAT TIME with treatment

and treatment response were also explored, attempting to

elucidate the mechanism underlying the effects of neoadjuvant

immunotherapy plus chemotherapy.
Materials and methods

Participants and study design

NSCLC patients who received neoadjuvant immunotherapy

combined with chemotherapy (Io+Chemo) or chemotherapy

alone (Chemo), followed by surgery between October 5, 2018

and June 30, 2021 at the First Medical Center of Chinese PLA

General Hospital were retrospectively included if they were aged

over 18 years and had resectable stage I−III NSCLC, at least one

radiologically measurable target lesion, and an Eastern

Cooperative Oncology Group (ECOG) performance status

(PS) of 0~1. Patients were excluded for having driver

mutations (EGFR 19 deletion/L858R and ALK fusion), anti-

tumor pretreatment, previous exposure to immunosuppressive

drugs, autoimmune disease, and organ transplantation. All

surgical specimens were subjected to pathologic response and

TIME evaluation. This study aimed to investigate the effects of

neoadjuvant Io+Chemo and Chemo on NSCLC patients and

TIME. The association of post-NAT TIME with pathologic

response was also explored (Fig. 1). The research protocol,

standard operating procedure (SOP) of data collection, and

case report form (CRF) were prospectively designed before the

beginning of the study to guarantee the data quality. All

procedures performed involving human participants were

conducted in accordance with Declaration of Helsinki (as

revised in 2013). This study was approved by the ethics

committee of the First Medical Center of Chinese PLA

General Hospital, and written informed consent was obtained

from each patient.
Assessment

Hematoxylin and eosin (H&E) staining was performed on

the surgical resection to access pathologic responses to

neoadjuvant therapy. An MPR was defined as having less than

10% residual viable tumor cells, and a pCR referred to no
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residual tumor cells. Computed tomography (CT) scans were

conducted before and after neoadjuvant therapy to access

radiologic responses of primary tumors.
Multiplex immunofluorescence staining

Surgical tissue specimens were subjected to the examination

of the TIME, which was performed as previously described by

3D Medicines, Inc., a College of American Pathologists (CAP)-

accredited and Clinical Laboratory Improvement Amendments

(CLIA)-certified laboratory (16). The Akoya OPAL Polaris 7-

Color Automation IHC kit (NEL871001KT) was applied to

conduct multiplex immunofluorescence (mIF) staining

following manufacturer’s instructions. Primary antibodies

targeting CD163 (Abcam, ab182422, 1:500), CD68 (Abcam,

ab213363, 1:1000), PD-1 (CST, D4W2J, 86163S, 1:200), PD-L1

(CST, E1L3N, 13684S, 1:400), CD3 (Dako, A0452, 1:1), CD4

(Abcam, ab133616, 1:100), CD8 (Abcam, ab178089, 1:200),

CD56 (Abcam, ab75813, 1:1000), CD20 (Dako, L26, IR604,

1:1), Foxp3 (Abcam, ab20034, 1:100) and pan-CK (Abcam,

ab7753, 1:100) or S100 (Abcam, ab52642, 1:200) were

sequentially applied to FFPE tissue slides, followed by

incubation with secondary antibodies and horseradish

peroxidase and tyramide signal amplifying reagent. Nuclei

acids were stained with DAPI. Multiplex stained slides were

scanned using a Vectra Polaris Quantitative Pathology Imaging

System (Akoya Biosciences), which was configured to capture

fluorescent spectra at 20 nm wavelength intervals from 440 nm

to 780 nm with a fixed exposure time and an absolute

magnification of ×200. All scans for each slide were then

superimposed to obtain a single image. Unstained and

monoplex stained slide images were applied to extract tissue

autofluorescence and the spectrum of each fluorophore,

respectively. Fluorescence images were imported and analyzed

using the AP-TIME image analysis software (3D Medicines Inc.)

(17). Tumor parenchyma and stroma were differentiated

according to CK staining. The CK positive area with DAPI

staining was defined as tumor region, and the CK negative area

with DAPI staining was considered as stroma region. The

quantities of various cell subsets were expressed as the count

number of positively stained cells per square millimeter (cells per

mm2) and as the percentage of positively stained cells in all

nucleated cells (%). Total density = (tumor cell counts + stroma

cell counts)/(tumor area + stroma area). Total percentage =

(tumor cell counts + stroma cell counts)/(tumor total cells +

stroma total cells) ×100%. The density and percentage of

immune cell subsets in tumor and stroma regions were figured

out by detecting signal channel or multiple-channel, namely

CD3+, CD3+CD4+, CD8+, Foxp3+, PD-1+CD8+, CD4+Foxp3+

(Treg), CD68+CD163- (M1 macrophage), CD68+CD163+ (M2

macrophage), PD-L1+ CD68+, CD56 bright (NK cell), CD56 dim
Frontiers in Immunology 03
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(NK cell). The co-occurrence of CD3+ T cells and CD20+ B cells

indicates the formation of tertiary lymphoid structures (TLS).
Statistical analysis

The statistical analyses were performed using the Graphpad

Prism 9.2 software. Fisher’s exact test was used to analyze

categorical variables (including NAT efficacy, age, sex, stage,

pathology, smoking, and diabetes) between treatment groups.

Comparisons between continuous variables with (i.e. BMI)

normal distribution were performed using the unpaired t test,

and the data with non-normal distribution (i.e. immune cell

density) was analyzed by Mann−Whitney U test. P < 0.05 was

considered statistically significant. The forest plots were built

using ggplot2 package (R version 3.6.3). Logistic regression was

used to investigate the association between baseline

characteristics and pathologic response.
Results

Baseline characteristics

A total of 55 NSCLC patients who received Io+Chemo or

Chemo alone before surgery and met the eligibility criteria were

included in the study (Figure 1 and Table 1), including 24 in the

Io+Chemo group and 31 in the Chemo alone group. Baseline

characteristics were balanced between the two treatment groups.

The median age of the entire cohort was 61 years (range, 38−72

years). Most patients were male (51/55, 92.73%) and smokers

(46/55, 83.64%). Half of the patients had a stage III disease, and

lung squamous cell carcinomas (39/55, 70.91%) was the

predominant pathologic type.
Addition of immunotherapy
to chemotherapy increased
the NAT efficacy

Pathologic response of primary tumor from each patient was

evaluated for neoadjuvant efficacy. 12 patients achieved a pCR

and thirty obtained an MPR. No association was found between

pathologic response and baseline characteristics (Supplementary

Figure S1). Patients who received Io+Chemo displayed

significantly higher MPR rate (75.0% vs. 38.7%, P = 0.0133)

and numerically increased pCR rate (33.3% vs 12.9%, P =

0.1013) than those with Chemo alone (Figure 2). The above

data were comparable to the results from the trials, which

eva lua ted the combinat ion o f chemotherapy and

immunotherapy in resectable NSCLC patients (Supplementary

Figure S2) (11–14).
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Distinct immune cell infiltration upon
neoadjuvant immunochemotherapy and
chemotherapy alone

Surgical tissue specimens were subjected to mIF to

examine the TIME upon NAT. Of the 55 tissue samples, 11

were identified as tumor-free for a complete absence of

tumor cells according to the results of CK and DAPI

staining. Thus, immune cell infiltration was evaluated in

all 55 cases of tumor stroma and in 44 cases of tumor. The

density and percentage of immune cell subsets in TIME were

quantified. The CD8+ cell was significantly more abundant

in the stroma of the Io+Chemo group than that in the Chemo

alone (P = 0.0335, Figure 3A). Compared with the Chemo
Frontiers in Immunology 04
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group, the Io+Chemo group demonstrated a significantly

higher M1 macrophage density (CD68+CD163- cell subset)

ratio in the tumor to that in the stroma (P = 0.0446;

Figure 3B). A lower degree of infiltration of PD-L1+CD68+

cells was seen in both tumor and stroma in the Io+Chemo

over in the Chemo (density: tumor, P = 0.0462, stroma, P =

0.0147, total, P = 0.0248; percentage: tumor, P = 0.0537,

stroma, P =0.0171, total, P = 0.0156; Figure 3C). Such a

decrease in the abundance of PD-L1+CD68+ cells could be

explained by the fact that the PD-L1 on the surface of

macrophages was thoroughly blocked by anti-PD-L1

antibodies upon immunotherapy. No difference was found

in the infiltration of other immune cell subsets between the

two NAT groups (Tables S1, S2).
B

A

FIGURE 1

Study design examining effects of neoadjuvant therapies on resectable NSCLC patients. (A) Study flow chart depicting the study protocol. (B)
The endpoints explored and sample details in each analyses. NSCLC, non-small cell lung cancer; TIME, tumor immune microenvironment; NAT,
neoadjuvant therapy; pCR, pathological complete response; MPR, major pathological response; Io+Chemo, immunochemotherapy; Chemo,
chemotherapy; CTL, cytotoxic T lymphocytes. Figure was created with Motifolio Toolkit (Motifolio Inc, Ellicott City, USA). *P <0.05; ns, no
statistical significance.
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The association between pathologic
response and TIME upon NAT

We sought to analyze whether pathologic responses were

associated with TIME upon NAT and found that patients who
Frontiers in Immunology 05
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achieved pCR showed a significantly lower infiltration of PD-

L1+CD68+ (total, P = 0.018) and CD3+CD4+ Foxp3+ cells

(stroma, P = 0.0288) and a higher density of CD56+ (stroma

CD56 bright, P = 0.0135; stroma CD56 dim, P = 0.0136) and

CD20+ cells (stroma, P = 0.0488) in the TIME over the non-pCR
TABLE 1 Baseline characteristics of NSCLC patients with neoadjuvant therapy.

Characteristics Io+Chemo vs. Chemo
All (n = 55) Io+Chemo (n = 24) Chemo (n = 31) P value

Age, years 0.558

Median (range)
≥65, n (%)
<65, n (%)

61 (38~72)
17 (30.91%)
38 (69.09%)

58.5 (38~72)
6 (25.00%)
18 (75.00%)

62 (43~72)
11 (35.48%)
20 (64.52%)

Sex, n (%) 1.000

Male
Female

51 (92.73%)
4 (7.27%)

22 (91.67%)
2 (8.33%)

29 (93.55%)
2 (6.45%)

Stage, n (%) before NAT 0.844

I
II
III

13 (23.64%)
12 (21.82%)
30 (54.55%)

5 (20.83%)
6 (25.00%)
13 (54.17%)

8 (25.81%)
6 (19.35%)
17 (54.84%)

Pathology, n (%) 0.565

Sq
Non-Sq

39 (70.91%)
16 (29.09%)

16 (66.67%)
8 (33.33%)

23 (74.19%)
8 (25.81%)

Smoking, n (%) 0.716

Yes
No

46 (83.64%)
9 (16.36%)

21 (87.50%)
3 (12.50%)

25 (80.65%)
6 (19.35%)

Diabetes, n (%) 0.643

Yes
No

5 (9.09%)
50 (90.91%)

3 (12.50%)
21 (87.50%)

2 (6.45%)
29 (93.55%)

BMI, (kg/m2) 0.677

Mean ± SD 24.97 ± 3.01 25.17 ± 3.42 24.82 ± 2.71
Sq, lung squamous cell carcinomas; NAT, neoadjuvant therapy.
B

C

A

FIGURE 2

The pathologic response in NSCLC patients with different neoadjuvant therapy. (A) pCR rate among NSCLC patients with neoadjuvant Io+Chemo or
Chemo alone therapy. (B) MPR rate among NSCLC patients with neoadjuvant Io+Chemo or Chemo alone therapy. (C) Concordance between
pathologic and radiologic response. pCR, pathological complete response; MPR, major pathological response; Io+Chemo, immunochemotherapy;
Chemo, chemotherapy. CT, computed tomography. *P < 0.05; ns, no statistical significance.
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counterparts (Figures 4A–D). CD3+ (tumor, P = 0.0491; total, P =

0.0218), CD3+CD4+ (tumor, P = 0.0201; total, P = 0.0305), and

CD20+ cells (tumor, P = 0.0425; stroma, P = 0.0214; total, P =

0.0176) and TLS (P = 0.0433) were more abundant in the TIME of

MPR patients (Figures 4E–H) over that of the non-MPR patients.

No difference was found in the infiltration of other immune cell

subsets between the different responding groups (Tables S3–S5).

In patients who received Io+Chemo, no difference was found

in immune cell infiltration between the responders and non-

responders. A numerically higher density of TLS was observed in

the TIME of MPR patients (Figure S3A and Tables S6–S8). While

in the patients treated with Chemo, patients who achieved pCR
Frontiers in Immunology 06
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were found to have a significantly lower density of Foxp3+ cells

over the non-pCR patients (stroma, P = 0.038). MPR patients

showed a significantly higher infiltration of CD3+ cells (Total, P =

0.0448), CD20+ cells (stroma, P = 0.0254), and TLS (P= 0.0063)

(Figures S3B−E and Tables S9–S11).
Discussion

In this real-world cohort of stage I-III resectable NSCLC

patients, we report that the addition of PD-(L)1 blockade to

chemotherapy was associated with an significantly increased
B

C

A

FIGURE 3

The immune cell biomarkers of tumor tissue samples from patients treated with neoadjuvant immunochemotherapy and chemotherapy alone.
Multiplex immunofluorescence staining was performed for immune cell biomarkers, as denoted by different colors, in specimens of NSCLC
patients treated with neoadjuvant therapy (surgical resection after NAT). The density and percentage of CD8+ (A), CD68+CD163- (B), and PD-
L1+CD68+ (C) immune cells in the tumor center or stroma were analyzed. Representative images showing the multiplex immunofluorescence
staining for identifying the immune cell subsets in the tumor immune microenvironment. Io+Chemo, immunochemotherapy; Chemo,
chemotherapy; *P <0.05; ns, no statistical significance.
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MPR rate and a numerically higher pCR rate in comparison to

chemotherapy alone (MPR, 75.0% vs. 38.7%; pCR, 33.3% vs.

12.9%), which favored PD-(L)1 blockade plus chemotherapy

over chemotherapy alone. mIF analysis of surgical resection

specimens revealed that compared with patients subjected to

NAT of Chemo alone, patients treated with Io+Chemo showed

more abundant CD8+ cells in tumor stroma and a higher ratio of

M1 macrophage density in the tumor center to that in the tumor

stroma, suggesting the potential mechanism underlying a better

response to Io+Chemo than Chemo alone. Among the entire

cohort, patients who obtained MPR or pCR displayed

significantly increased infiltration of CD20+ B cells, CD3+ T

cells, CD3+CD4+ T cells, CD56+ NK cells, TLS, and lower

density of CD3+CD4+Foxp3+ nTreg cells and PD-L1+CD68+

cells compared with their non-MPR or non-pCR counterparts.

In the Chemo alone group, increased infiltrations of CD20+ B

cells, CD3+ T cells, and TLS were observed in MPR tumors over

non-MPR ones, and a lower degree of infiltration of Foxp3+ cells

was seen in the pCR tumors than that in the non-pCR tumors. In

the Io+Chemo subgroup, no significant difference was found in

the density of immune cell subsets between groups based upon

response (Figure 5).

Most recently, CheckMate 816 has reported a significantly

increased pathologic response induced by neoadjuvant

nivolumab + chemotherapy over chemotherapy alone in stage

IB to IIIA resectable NSCLC (11), which was slightly lower than

that observed in our real-world cohort. Similarly, multiple

single-arm trials released drastically increased MPR and pCR

rates achieved from PD-(L)1 blockade plus chemotherapy (11–

14). It is getting clear that the combinational strategy

incorporat ing immune checkpoint inhib i tor s and
Frontiers in Immunology 07
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chemotherapy is becoming the “primary actor” in the

neoadjuvant NSCLC scenario. While cellular and molecular

mechanism of PD-(L)1 blockade therapy has been studied,

little is known about the mechanism underlying the

outperformance of the combination of PD-(L)1 blockade with

chemotherapy over chemotherapy alone. Our study evaluated

the infiltration of immune cell subsets in the TIME utilizing the

tumor tissue specimens collected after NAT (surgical specimen).

A significantly higher degree of CD8+ T cell infiltration was

observed in Io+Chemo than that in Chemo alone, suggesting

PD-(L)1 blockade more robustly restored antitumor immunity

by promoting cytotoxic T cell activation and proliferation.

Consistently, Forde P et al. observed an increased number of

T-cell clones in both the tumor and peripheral blood after

preoperative treatment of nivolumab, and other research

groups also reported similar evidence across multiple tumor

types, including lung cancer, ovarian cancer, colorectal cancer,

and esophageal squamous cell carcinoma (2, 8, 18, 19).

Moreover, compared with those with Chemo alone, tumors

upon Io+Chemo showed a higher ratio of M1 macrophage

density in the tumor center to that in the tumor stroma,

making it rational to speculate that PD-(L)1 blockade

improved the polarization of M1-TAMs and promoted the

infiltration of M1-TAMs from tumor stroma to tumor center.

This observation was consistent with previous reports that M1-

TAMs may elevate antitumor immunity by producing immune-

activating cytokines, rendering the patients responsive to

immunotherapy (19, 20). Interestingly, we observed a decrease

in the abundance of PD-L1+CD68+ macrophages in the Io

+Chemo-treated tumor stroma over that of Chemo alone. The

potential reasons that might give explanations for this
B C D

E F G H

A

FIGURE 4

The association between immune cell infiltration in the TIME and pathologic response. The scatter plot was shown as median with interquartile
range. pCR, pathological complete response; MPR, major pathological response; *P <0.05; *P <0.01; ns, no statistical significance. The density
and percentage of PD-L1+CD68+ (A), CD3+CD4+FoxP3+(B), CD56+(C), CD20+(D, G), CD3+(E), CD3+CD4+(F) immune cells and TLS (H) were
statistical different in responders and non-responders. **p<0.01.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.984666
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cai et al. 10.3389/fimmu.2022.984666
phenomenon are the followings. First, PD-L1 that on the surface

of microphages might be pre-blocked by anti-PD-L1 antibody

(the immunotherapy regimen applied) before performing mIF.

Second, we assumed that the immune-chemotherapy enhanced

(or restored, if the PD-1/PD-L1 pathway is upregulated)

antitumor immunity by altering the molecular characteristics

of immune cell subsets to activate antitumor immune pathways,

which involved the regulation of PD-L1 expression on

macrophages. If the case was the second, it suggests that PD-

(L)1 expression might not be the major hurdle for cancer

patients who are less responsive to PD-(L)1 blockade. Perhaps

the most novel look herein was that the combination of PD-(L)1

blockade with chemotherapy exerted similar effects on the

TIME, such as increased infiltrations of CD8+ T cells and

promoted polarization of M1 TAMs, as reported in studies

investigating mono-immunotherapy of PD-(L)1 blockade. At

least, chemotherapy, as a component of the combinatorial

therapy regimen, might not have played a rogue role for efficacy.

Based on the ev idence that both neoadjuvant

immunotherapy and chemotherapy can induce immune

responses fine-tuned by stimulation and inhibitory signals

pathways (2, 21–24), we further examined the association

between pathologic response and TIME regardless of the

therapy strategy. In the entire cohort, patients who obtained

MPR or pCR displayed significantly increased infiltration of

CD20+ B cells, CD3+ T cells, CD3+CD4+ T cells, CD56+ NK cells,

TLS, and decreased infiltration of CD3+CD4+Foxp3+ Treg cells
Frontiers in Immunology 08
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and PD-L1+CD68+ cells. Thus, we envision that the tumors

achieving pathologic response should display an enhanced

antitumor immune response by regulating T lymphocytes and

B lymphocytes through multiple immune pathways, either

induced by chemotherapy or immunotherapy.

We further examined the association between pathologic

response and TIME in treatment subgroups. In the Io+Chemo

population, no difference was found in immune cell

infiltration between the responders and non-responders,

which might resulted from a small sample size. A

numerically higher density of TLS was observed in the

TIME of MPR patients. While in the patients who were

treated with Chemo, MPR patients showed a significantly

higher infiltration of TLS, CD3+ cells and CD20+ cells.

Patients who achieved pCR were found to have a

significantly lower density of FoxP3+ cells, which was

consistent with previous reports that neoadjuvant

chemotherapy increased cytotoxic T Cell, and B cell

infiltration and decreased the density of Foxp3+ T cells (23)

in the tumor of resectable NSCLC patients (21, 22).

This study was primarily limited by the small size and its

retrospective design. Prospective studies with larger sample sizes

are warranted to confirm the findings. Another limitation was

that pre-surgery biopsy samples were not available, for which the

exploration of the predictive value of pre-surgery TIME for

efficacy and the comparison of TIME before and after NAT were

not feasible.
FIGURE 5

Summary of tumor microenvironment in patients with neoadjuvant therapy (NAT). TIME, tumor immune microenvironment; Io+Chemo,
immunochemotherapy; Chemo, chemotherapy; pCR, pathological complete response; MPR, major pathological response. TLS, tertiary
lymphoid structures; CTL, cytotoxic T lymphocytes; T/S, the ratio of tumor to stroma; M1, CD68+CD163- macrophage. No significance means
no difference at a given significance value (P <0.05). Figure was created with Motifolio Toolkit (Motifolio Inc, Ellicott City, USA).
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Conclusions

This real-world study favored neoadjuvant PD-(L)1

blockade plus chemotherapy over chemotherapy alone. We

revealed for the first time that compared with chemo alone, Io

+Chemo therapy was associated with increased infiltration of

CD8+ T cells, and promoted polarization of M1 macrophages.

Our findings provided new insights of understanding the

mechanisms underlying the outperformance of Io+Chemo

over Chemo alone.
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LATPS, a novel prognostic
signature based on tumor
microenvironment of lung
adenocarcinoma to better
predict survival and
immunotherapy response

Jihong Huang1†, Lu Yuan1†, Wenqi Huang1†, Liwei Liao1,
Xiaodi Zhu1, Xiaoqing Wang2, Jiaxin Li1, Wenyu Liang1,
Yuting Wu3, Xiaocheng Liu1, Dong Yu1, Yunna Zheng1,
Jian Guan2*, Yongzhong Zhan1* and Laiyu Liu1*

1Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine,
Nanfang Hospital, Southern Medical University, Guangzhou, China, 2Department of Radiation
Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China, 3Department of
Blood Transfusion, Ganzhou People’s Hospital, Ganzhou, China
Background: Clinically, only a minority of patients benefit from

immunotherapy and few efficient biomarkers have been identified to

distinguish patients who would respond to immunotherapy. The tumor

microenvironment (TME) is reported to contribute to immunotherapy

response, but details remain unknown. We aimed to construct a prognostic

model based on the TME of lung adenocarcinoma (LUAD) to predict the

prognosis and immunotherapy efficacy.

Methods: We integrated computational algorithms to describe the immune

infiltrative landscape of LUAD patients. With the least absolute shrinkage and

selection operator (LASSO) and Cox regression analyses, we developed a LUAD

tumor microenvironment prognostic signature (LATPS). Subsequently, the

immune characteristics and the benefit of immunotherapy in LATPS-defined

subgroups were analyzed. RNA sequencing of tumor samples from 28 lung

cancer patients treated with anti-PD-1 therapy was conducted to verify the

predictive value of the LATPS.

Results:We constructed the LATPS grounded on four genes, including UBE2T,

KRT6A, IRX2, and CD3D. The LATPS-low subgroup had a better overall survival

(OS) and tended to have a hot immune phenotype, which was characterized by

an elevated abundance of immune cell infiltration and increased activity of

immune-related pathways. Additionally, tumor immune dysfunction and

exclusion (TIDE) score was markedly decreased in the LATPS-low subgroup,

indicating an enhanced opportunity to benefit from immunotherapy. Survival

analysis in 28 advanced lung cancer patients treated with an anti-PD-1 regimen
frontiersin.org01
46

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1064874/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1064874/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1064874/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1064874/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1064874/full
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1064874/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2022.1064874&domain=pdf&date_stamp=2022-11-24
mailto:guanjian5461@163.com
mailto:171290466@qq.com
mailto:liulaiyu@sina.com
https://doi.org/10.3389/fimmu.2022.1064874
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2022.1064874
https://www.frontiersin.org/journals/immunology


Huang et al. 10.3389/fimmu.2022.1064874

Frontiers in Immunology
at Nanfang hospital revealed that the LATPS-low subgroup had better

immunotherapy benefit.

Conclusion: LATPS is an effective predictor to distinguish survival, immune

characteristics, and immunotherapy benefit in LUAD patients.
KEYWORDS

immunotherapy, prognosis, immune infiltration, tumor microenvironment, LUAD
Introduction

Immunotherapy has dramatically revolutionized the

landscape of non-small cell lung cancer (NSCLC) treatment

(1). Among the various immunotherapy, immune checkpoint

inhibitors (ICIs) reactivate the immune system to eliminate

cancer cells, exhibiting a durable anti-tumor response in

NSCLC patients (2, 3). However, not all NSCLC patients

respond to ICIs treatment. The overall response rate (ORR)

was only about 40% in PD-L1 > 50% cases (4, 5). Multiple

reported factors including PD-L1, TMB, and MSI can’t

efficiently predict immunotherapy response (6). Thus, new

biomarkers are urgently needed.

Recently, the tumor microenvironment (TME) was

demonstrated to exhibit a strong influence on the response to

ICIs treatment (7, 8). Jiang P et al. constructed a tumor immune

dysfunction and exclusion (TIDE) model based on the status of

T cell dysfunction and exclusion. The TIDE model had a higher

accuracy for predicting the immunotherapy response of

advanced NSCLC compared with traditional PD-L1 expression

and TMB (9). However, the TIDEmodel needs to conduct whole

transcriptome sequencing of the tumor samples. Besides, the

TIDE model only focused on the T cells’ status, which may not

be insufficient to reflect the complexity of the TME in patients

with NSCLC.

NSCLC accounts for nearly 85% of lung cancer and lung

adenocarcinoma (LUAD) is the most common pathological type,

making up approximately 40% of lung cancers (1). Thus, a deeper

understanding of the TME might help to discover novel

biomarkers for immunotherapy in LUAD. In the present study,

we sought to explore the immune landscape in LUAD using the

CIBERSORT and ESTIMATE algorithms, screen out differently

expressed genes and construct a LUAD tumor microenvironment

prognostic signature (LATPS). Subsequently, we explored the

clinical value of the LATPS in predicting survival and

immunotherapeutic benefits in LUAD patients.
02
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Materials and methods

Patients and data collection

The RNA sequencing data and corresponding clinical

annotations were retrieved from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov/). Microarray

profiles were downloaded from Gene Expression Omnibus

(GEO) (https://www.ncbi.nlm.nih.gov/geo/). We collected 1088

LUAD patients (GSE42127, GSE72094, and TCGA-LUAD) and

combined them into a meta cohort after normalization (10) to

generate the LATPS.

To evaluate the predictive value of the LATPS for

immunotherapy benefits, three independent immunotherapy

cohorts, including two NSCLC cohorts who received anti-PD-1

treatment (GSE135222, GSE126044), 28 advanced NSCLC

patients with intervention of anti-PD-1 therapy at Nanfang

Hospital (Guangzhou, China) from January 2019 to June 2021,

were chosen to verify the predictive value of the constructed

LATPS for immunotherapy benefits. The detailed clinical

characteristics are presented in Supplementary Table 1. In

Nanfang Hospital cohort, Patients were eligible for enrolment if

they were aged ≥18 years, diagnosed with advanced NSCLC, had

an Eastern Cooperative Oncology Group (ECOG) performance

status score of 0 or 1. Exclusion criteria included: unstable or

untreated central nervous system metastases, uncontrolled

infection, ongoing corticosteroid therapy over 10 mg prednisone

per day, active autoimmune disease within the past 2 years,

discontinued to received ICIs due to serious ICIs-related adverse

events (IRAs), and those who lost of follow-ups. The patients were

treated with anti-PD-1 therapy every 3 weeks as a cycle. Tumor

response was assessed every 2 cycles according to the Response

Evaluation Criteria in Solid Tumors (RECIST), version 1.1 (11).

Archived formalin-fixed, paraffin embedded (FFPE) tumor

samples of the 28 NSCLC patients were collected prior to

receiving immunotherapy. Before sample collection, it was
frontiersin.org
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approved by the Ethics Committee of Nanfang Hospital. To

validate the survival classification and predictive capability of

the LATPS, other four independent LUAD cohorts, including

GSE29016 (n=38), GSE31210 (n=226), GSE41271 (n=182), and

GSE50081 (n=127) were applied as external validation cohorts.
RNA sequencing and data processing

The RNA was first extracted from FFPE samples and

quantified on a Qubit 3.0/4.0, then it was assessed on a 2100

Bioanalyzer. Next, a part of total RNA (50 ng) was used with the

SMARTer Stranded Total RNA-Seq Kit v2 according to the low-

throughput protocol. We applied the Illumina NovaSeq 6000

Sequencing System to conduct RNA-seq libraries paired-end

sequencing after PCR enrichment and purification. To ensure

data quality, we used Trimmomatic (12), RSeQC (13), and

bowtie2 (14) to preprocess the raw reads and obtain clean

reads, which were used for subsequent analyses. Based on

default parameters, we used FeatureCounts (15) to evaluate the

expression level of each gene. All the sequencing data used in

this study passed the quality control, with the data screening

threshold set at greater than 3 G, and a uniquely mapping rate

greater than 60%.
Identification of differentially expressed
genes and functional enrichment analysis

The abundance of infiltrated immune cells in LUAD samples

was evaluated based on the LM22 gene signature with the

“CIBERSORT” package (16). We used the “ESTIMATE”

package to assess the immune and stromal contents of each

LUAD sample, which further generated TME scores, including

ImmuneScore, StromalScore, and ESTIMATEScore. The

ESTIMATEScore was calculated as the sum of ImmuneScore

and StromalScore. Higher ESTIMATEScore refers to lower

tumor purity (17). According to the CIBERSORT results, we

performed consensus clustering with the “ConsensusClusterPlus”

package (18). We applied the “km” algorithm based on

“euclidean” distance of ConsensusClusterPlus package.

Subsequently, an empirical cumulative distribution function

(CDF) diagram and a delta area diagram were generated to

visualize the clustering results, in which k represented the

number of subgroups. We chose k = 3 as the optimal value for

the delta area showed a significant reduction and CDF plateaued

when k > 3, which classified LUAD patients into three TME

subgroups. A consensus matrix was generated to demonstrate the

clustering stability of the hierarchical clustering results. Principal

component analysis (PCA) was used to visualize the clustering

pattern. DEGs among different TME subgroups were identified

using the “Limma” package with the screening threshold set at a

p-value< 0.05 and an absolute log2FoldChange > 1. “Boruta”
Frontiers in Immunology 03
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package was applied to reduce superfluous genes. We conducted

gene ontology (GO) enrichment analysis utilizing the

“clusterProfiler” package (19). GO terms with p-value< 0.05

were considered statistically significant.
Constructing the LATPS for patients
with LUAD

We screened out 1035 LUAD patients (the total cohort) with

matched survival information from the meta cohort. Then, the

total cohort was randomly divided into a training cohort and a

test cohort at a ratio of 1:1. We used the training cohort to

identify prognostic genes and construct the LATPS. Firstly, we

used univariate Cox regression analysis to screen out the

significant prognostic genes from the DEGs (p-value< 0.01).

Secondly, to minimize overfitting (20), we performed LASSO

analysis using the “glmnet” package. Finally, after filtration using

LASSO analysis, we established the LATPS based on four hub

genes filtered by Multivariate Cox regression analysis.

Subsequently, we calculated the LATPS score as follows:

LATPS score 

=oiCoefficient   of   gene(i)  �   Expression   of   gene   (i)

Coefficient of gene (i) represents the regression coefficients of

the four hub genes in the Cox model and Expression of gene (i)

means the expression value of the four hub genes for patients

with LUAD. Thereafter, we classified the patients into a LATPS-

high subgroup and a LATPS-low subgroup according to the

median LATPS scores. Moreover, we conducted survival analysis

using “survival” and “survminer” packages. To evaluate the

predictive power and capability of the LATPS, Time-

dependent receiver operating characteristic (ROC) in the

“timeROC” package was analyzed. Furthermore, we performed

a prognostic meta-analysis to evaluate the comprehensive

predictive significance of LATPS in four validation cohorts

(n=573) using the “meta” R package.
Analyzing the predictive value of the
LATPS for immunotherapy response

We applied single sample gene set enrichment analysis

(ssGSEA) algorithm to quantify the relative abundance of the

immune cell infiltration in each LUAD sample using the gene set

variation analysis (GSVA) package. Twenty eight immune cell

subpopulations gene signatures were obtained from a previous

study (21) and the other 24 types of tumor-infiltrating immune

cells (TIICs) gene signatures were downloaded from the

Immune Cells Abundance Identifier (ImmuCellAI) database.

We then performed GSVA to estimate the variation of pathway

activity over a sample population in an unsupervised manner
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based on the “GSVA” package (22). We obtained the twenty five

immune-related pathways gene signatures from a previous study

(23). The Spearman method was utilized to analyze the

correlation between LATPS score and immune-related

pathways or immune cell infiltration level. Results were filtered

by setting a p-value< 0.05 as a threshold and were visualized

using lollipop plots. Thereafter, we scored LUAD patients using

the TIDE algorithm online (http://tide.dfci.harvard.edu/).

Additionally, we performed survival and ROC analyses in

three independent cohorts who received immunotherapy to

investigate the potential value of the LATPS to predict

immunotherapy benefits.
Establishing a nomogram signature

We collected clinicopathological factors integrated with

transcriptome profile of LUAD patients. Then we performed

univariate and multivariate Cox regressions to determine

whether the LATPS model was an independent prognostic

factor. We employed the “rms” and “foreign” packages to

establish a predictive nomogram on the basis of the

clinicopathological factors and LATPS score. Subsequently,

calibration curve and ROC curve analyses were used to assess

the predictive precision of the nomogram.
Statistical analysis

The Mann-Whitney U test was employed to compare

continuous variables between two groups. Kruskal–Wallis tests

were used to conduct difference comparisons of three or more

groups (24). The Chi-squared test was carried out to compare

categorical variables between two groups. Survival curve analysis

was conducted using the Kaplan–Meier method and log-rank tests

were used to identify significant differences among subgroups. A p-

value< 0.05 was considered statistically significant. All analyses were

processed with R version 4.0.2 and its appropriate packages.
Results

Characterization of immune cell
landscape in LUAD

The workflow chart of our study is shown in Figure 1. LUAD

samples (n = 1088) from GSE72094, GSE42127, and TGCA-

LUAD were combined into one meta-cohort after

normalization. Table 1 summarizes the baseline information of

the patients with LUAD in different datasets. PCA was applied to

visualize the overall expression pattern of the three LUAD

cohorts before and after normalization (Supplementary

Figures 1A, B). The ESTIMATE algorithm then generated
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TME scores, including StromalScore, ImmuneScore, and

ESTIMATEScore. Survival analyses showed that TME score-

high patients had better OS, indicating that the TME may

influence the OS of LUAD patients (Figures 2A-C).

To further analyze the immune cell landscape of LUAD

patients, we first calculated the abundance of 22 immune cell

subpopulations of each LUAD sample using the CIBERSORT

algorithm. We then performed unsupervised clustering to

categorize LUAD patients into three TME subgroups according

to the CIBERSORT results. (Supplementary Figures 2A, B). The

consensus matrix showed that when k = 3, there was little

crossover between LUAD samples (Supplementary Figure 2C).

In addition, PCA indicated a marked difference in immune cell

infiltration levels among the TME subgroups (Figure 2D). To

explore the clinical significance of the TME subgroups, we

performed a survival analysis. As a result, the three TME

subgroups showed a significant difference in OS (log-rank test,

P<0.001) (Figure 2E).

We next aimed to investigate the distribution of tumor-

infiltrating immune cells (TIICs) among TME subgroups. A

heatmap was generated to visualize the distribution of TIICs

(Figure 2F). TME subgroup A was marked by higher-level

infiltration of monocytes, M2 macrophages, activated dendritic

cells, resting dendritic cells, resting mast cells, memory B cells,

and memory resting CD4+ T cells. TME subgroup B was

characterized by higher-level infiltration of plasma cells, CD8+ T

cells, memory activated CD4+ T cells, follicular helper T cells,

gamma delta T cells, activated natural killer cells, and M1

macrophages. TME subgroup C was featured by a notable

elevated regulatory T cell (Treg) and M0 macrophage infiltration.

A boxplot further revealed the different distribution of TIICs in the

three TME subgroups (Figure 2G). Additionally, we observed a

higher StromalScore in TME subgroup A (P<0.05) (Figure 2H), a

greater ImmuneScore in TME subgroup B (P<0.05) (Figure 2I), and

a lower ESTIMATEScore in TME subgroup C (P<0.05) (Figure 2J),

suggesting differences in tumor purity among the three

TME subgroups.
Construction of the LATPS

To obtain quantitative indexes of immune cell landscape in

LUAD patients, differential expression analysis to identify the

transcriptome variations among the TME subgroups was

performed using the Limma package, which identified 149 DEGs.

Volcano plots were constructed to show the results of pairwise

comparison between the TME subgroups (Supplementary

Figures 2D-F). We then performed the Boruta method to reduce

redundant genes, leaving 146 candidate DEGs. By using the

clusterProfiler package, GO enrichment analysis of the DEGs was

carried out, and it was found that they were significantly enriched in

humoral immune response, T cell activation, and extracellular

organization (Supplementary Figures 2G).
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FIGURE 1

The workflow chart of this study.
TABLE 1 Clinical characteristics of patients with LUAD in each dataset.

Characteristics Dataset

GSE42127 GSE72094 TCGA

Platform (%) GPL6884 GPL15048 IlluminaHiSeq

Patients (n) 133 442 513

Age (%) ≤65 65 (48.9) 127 (28.7) 238 (46.4)

>65 68 (51.1) 294 (66.5) 256 (49.9)

NA 0 (0.0) 21 (4.8) 19 (3.7)

Sex (%) Female 65 (48.9) 240 (54.3) 276 (53.8)

Male 68 (51.1) 202 (45.7) 237 (46.2)

Stage (%) I 89 (66.9) 265 (60.0) 274 (53.4)

II 22 (16.5) 69 (15.6) 121 (23.6)

III 20 (15.0) 63 (14.3) 84 (16.4)

IV 1 (0.8) 17 (3.8) 26 (5.1)

NA 1 (0.8) 28 (6.3) 8 (1.6)

Survival (%) Alive 90 (67.7) 298 (67.4) 326 (63.5)

Dead 43 (32.3) 122 (27.6) 187 (36.5)

NA 0 (0.0) 22 (5.0) 0 (0.0)
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Next, LUAD patients with complete prognostic information

(the total cohort) were randomly divided into a training cohort

(n = 519) and a test cohort (n = 516). There was no statistical

difference in clinicopathological parameters between the training

and test cohorts (Table 2). Univariate Cox regression analysis

was conducted in the training cohort to further explore the
Frontiers in Immunology 06
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prognostic value of the 146 candidate DEGs, which identified 93

genes that were associated significantly with survival

(Supplementary Table 2). The top 30 significant genes were

shown in Figure 3A.

To avoid overfitting of the candidate genes, LASSO analysis

was performed and 12 genes were retained (Figure 3B, C).
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FIGURE 2

Analysis of the immune cell infiltration and TME scores of patients with LUAD. Kaplan–Meier curve analysis of the OS for different levels of (A)
StromalScore, (B) ImmuneScore, and (C) ESTIMATEScore. (D) PCA for the immune cell infiltration level of the three TME subgroups, showing a
remarkable difference in immune cell infiltration levels between different subgroups. (E) Kaplan–Meier curve analysis for the OS of patients with
LUAD in different TME subgroups. (F) Heatmap of the 22 TIICs in different LUAD cohorts. Rows represent TIICs, and columns indicate LUAD
samples. (G) The fraction of 22 TIICs, StromalScore, and ImmuneScore were compared between different TME subgroups using the Kruskal-
Wallis test. The Kruskal–Wallis test was used to compare the statistical difference of (H) StromalScore, (I) ImmuneScore and (J) ESTIMATEScore
of the three TME subgroups. *p< 0.05; **p< 0.01; ***p< 0.001; ****p< 0.0001; ns, no significance. LUAD, lung adenocarcinoma; TME, tumor
microenvironment; OS, overall survival; PCA, principal component analysis; TIIC, tumor infiltrating immune cell.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1064874
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2022.1064874
Multivariate Cox regression analysis was used to establish the

prognostic signature and four hub genes, including UBE2C

(encoding ubiquitin conjugating enzyme E2 C), KRT6A

(encoding keratin 6A), IRX2 (encoding iroquois homeobox 2),

and CD3D (encoding CD3d molecule) were identified

(Figure 3D). We scored each patient with LUAD with following

formula: LATPS score = UBE2C*0.177738 + KRT6A*0.110354 +

IRX2*(-0.112574) + CD3D*(-0.250127).

Moreover, PCA revealed markedly different distribution patterns

of the four hub genes between the LATPS-high and LATPS-low

subgroups in the training (Figure 3E and Supplementary Figure 3A),

test (Figure 3F and Supplementary Figure 3B), and total cohorts

(Figure 3G and Supplementary Figure 3C).
Correlation between the LATPS and
the TME

We then sought to explore the immune characteristics of the

LATPS-defined subgroups. The ESTIMATE algorithm was used to

estimate tumor purity in LUAD samples. Boxplots showed distinct

distributions of StromalScore, ImmuneScore, and ESTIMATEScore

between the LATPS subgroups (Supplementary Figure 3D-F).

Notably, the ImmuneScore was significantly higher in the

LATPS-low subgroup (Mann-Whitney U test, P<2.2e−16)

(Supplementary Figure 3E). Immune activation and immune

infiltration are pivotal components of the immune system;

therefore, we evaluated the abundance of immune cells and the

activation of immune-related pathways using the GSVA package.

The heatmap showed that the LATPS-low patients had a higher

infiltration level for most TIICs (Figure 4A). For further validation,

a lollipop plot was constructed, which revealed that the LATPS
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score correlated negatively with the infiltration of most immune

cells (Figure 4B).

Additionally, a heatmap showed that the majority of

immune-related pathways were significantly enriched in the

LATPS-low subgroup, comprising antigen processing and

presentation, CTLA4 Signalling, and PDL1 Signalling

(Figure 4C). The LATPS score was correlated negatively with

the majority of immune-related pathways (Figure 4D).

Collectively, these results suggested that the LATPS-low

subgroup tended to be a hot immune phenotype and might

benefit more from immunotherapy (23).
The role of the LATPS in predicting
immunotherapeutic benefits

To further explore whether the LATPS could distinguish

potential immunotherapeutic benefits for different subgroups,

we scored each LUAD sample using TIDE algorithm and

visualized the distribution of the results as waterfall plots

(Supplementary Figure 3G-I). A higher TIDE score represents

a greater possibility of immune dysfunction and immune

evasion, indicating that the patients would receive less benefit

from immunotherapy (9). Notably, the LATPS-low patients had

a lower TIDE score, suggesting that these patients might achieve

a better immunotherapy response (Figure 5A-C).

To verify the above speculation, we assessed the predictive value

in NSCLC cohorts receiving anti-PD-1 treatment, including

GSE135222, GSE126044 and Nanfang Hospital cohorts. As a

result, we could find that LATPS-low patients had better

progression-free survival (PFS) in GSE135222 cohort (log-rank

test, P=0.017) (Figure 5D) and Nanfang Hospital cohort (log-rank
frontiersin
TABLE 2 Clinical characteristics of patients with LUAD in different dataset.

Characteristics Dataset p value

Training cohort Test cohort

n 519 516

Age (%) <=65 207 (39.9) 214 (41.5) 0.736

>65 306 (59.0) 298 (57.8)

NA 6 (1.2) 4 (0.8)

Sex (%) Female 270 (52.0) 287 (55.6) 0.272

Male 249 (48.0) 229 (44.4)

Stage (%) I 318 (61.3) 295 (57.2) 0.102

II 94 (18.1) 114 (22.1)

III 72 (13.9) 86 (16.7)

IV 27 (5.2) 15 (2.9)

NA 8 (1.5) 6 (1.2)

Survival (%) Alive 355 (68.4) 341 (66.1) 0.467

Dead 164 (31.6) 175 (33.9)
NA, not available.
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test, P=0.005) (Figure 5F). The AUC of LATPS for predicting

immunotherapy benefits was 0.643 at 6 months, 0.702 at 12

months, and 0.858 at 18 months follow-up in GSE135222 cohort

(Figure 5E). As for NanfangHospital cohort, the AUCwas 0.548 at 6

months, 0.656 at 12 months, and 0.700 at 18 months follow-up,

respectively (Figure 5G). Moreover, the LATPS score had the

potential to distinguish patients with different anti-PD-1 responses

(Mann-Whitney U test, P=0.052) (Supplementary Figure 4A). ROC

analysis revealed that the LATPS had a promising accuracy to

predict immunotherapy response in the GSE126044 cohort, with
Frontiers in Immunology 08
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an AUC of 0.818. (Supplementary Figure 4B). These findings

strongly suggested that the LATPS is a promising prognostic

biomarker that can predict immunotherapy benefits.
Exploring and validating the prognostic
value of the LATPS

To further explore the prognostic value of the LATPS in

patients with LUAD, we performed survival analysis in the
B
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A

FIGURE 3

Construction of the LATPS. (A) Forest plot presenting the top 30 significant genes from the univariate Cox analysis results. (B) A coefficient
profile plot was generated against the log (lambda) sequence. Selection of the optimal parameter (lambda) in the LASSO model. (C) LASSO
coefficient profiles of the 93 candidate prognostic genes. (D) Forest plot illustrating the multivariate Cox model results. PCA showing the
distribution differences between the LATPS-high and LATPS-low subgroups of the (E) training, (F) test, and (G) total cohorts. LATPS, LUAD tumor
microenvironment prognostic signature; LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis.
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training cohort. As it revealed that patients in the LATPS-low

subgroup had a significantly better OS (log-rank test, P<0.001)

(Figure 6A). We then performed a Time-dependent ROC

analysis to evaluate the accuracy of the LATPS. The areas

under the curves (AUCs) of this signature for 1-, 3-, and 5-

year OS were 0.736, 0.722, and 0.698, respectively (Figure 6B).

We then aimed to interrogate whether the prognostic predictive

power of the LATPS is of robustness, the patients were divided into

LATPS-high and LATPS-low subgroups in the test cohort

according to the median LATPS score used in the training

cohort. Consistent with the results in the training cohort, survival

analysis showed that the LATPS-low subgroup experienced a better

outcome than the LATPS-high subgroup in the test cohort (log-

rank test, P< 0.001) (Figure 6C) and the AUC at 1, 3, and 5 years
Frontiers in Immunology 09
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was 0.679, 0.683, and 0.656 in the test cohort (Figure 6D).

Meanwhile, we assessed the predictive value of LATPS in internal

independent datasets, including the TCGA dataset, GSE42127

dataset, and GSE72094 dataset. The results from the above

datasets showed the same trend in OS, with great significance

(log-rank test, P< 0.001, P = 0.021, P< 0.001), and the AUC at 1, 3,

and 5 years was 0.704, 0.688, and 0.638 in TCGA dataset; 0.800,

0.705, 0.705 in GSE42127 dataset; 0.697, 0.724, and 0.788 in

GSE72094 dataset, respectively (Figure 6E-J). Moreover, we

performed a prognostic meta-analysis to assess the integrated

predictive significance of LATPS. The selected fixed effects model

of the meta-analysis showed that the LATPS is a significant

predictor of OS in external LUAD patients (HR: 1.86, 95%CI:

1.51-2.30, P< 0.001) (Figure 6K).
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FIGURE 4

The LATPS score is associated with immune cell infiltration and immune activation. (A) Heatmap showing the LATPS score and relative
abundance of 24 TIICs. (B) Lollipop plot showing the correlation between the LATPS score and the ssGSEA scores of 24 TIICs. (C) Heatmap
presenting the LATPS score and GSVA scores of 25 immune-related pathway gene sets. (D) Lollipop plot presenting the correlation between the
LATPS score and GSVA scores of 25 immune-related pathway gene sets. LATPS, LUAD tumor microenvironment prognostic signature; TIIC,
tumor infiltrating immune cell; ssGSEA, single sample gene set enrichment analysis; GSVA, gene set variation analysis.
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The association between the LATPS and
clinical characteristics

Next, univariate and multivariate Cox regression analyses

were conducted to assess whether the LATPS score could predict

patients’ prognoses independently. The results indicated that

both the stage and LATPS score can independently predict

patients’ prognoses (Table 3). Time-dependent ROC curves

analysis to further compare the predictive capacity between

the LATPS score and clinicopathological factors revealed that
Frontiers in Immunology 10
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the LATPS score had a higher AUC than the other factors

(Figures 7A-C). This implied that the LATPS can more precisely

predict the patient’s prognosis than the other clinicopathological

factors. Boxplots were generated to describe the distribution of

the LATPS score via stratification of patients based on age, sex,

and stage. Results showed that the LATPS score was notably

elevated in males, patients aged below 65 years, and in stage III–

IV (Figures 7D-F). Moreover, stratified survival analysis revealed

that LATPS-low patients were linked to better OS (Figures 7G-

L), which agreed with our result in the training cohort.
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FIGURE 5

The role of the LATPS in the prediction of immunotherapeutic benefits. The relative distribution of TIDE was compared between the LATPS-high and
LATPS-low subgroups in the (A) training, (B) test, and (C) total cohorts. (D, E) Kaplan–Meier curve and ROC curve analyses of the LATPS for predicting
immunotherapy benefits in GSE135222 cohort. (F, G) Kaplan–Meier curve and ROC curve analyses of the LATPS for predicting immunotherapy benefits
in Nanfang Hospital cohort. LATPS, LUAD tumor microenvironment prognostic signature; ROC, receiver operating characteristic.
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FIGURE 6

Identification of the LATPS in the training, test, and external validation cohorts. (A, B) Kaplan–Meier curve and the ROC curve for training cohort.
(C, D) Kaplan–Meier curve and the ROC curve for test cohort. (E, F) Kaplan–Meier curve and the ROC curve for TCGA dataset. (G, H) Kaplan–
Meier curve and the ROC curve for GSE42127 dataset. (I, J) Kaplan–Meier curve and the ROC curve for GSE72094 dataset. (K) Results of the
prognostic meta-analysis on the basis of four external LUAD cohorts. LATPS, LUAD tumor microenvironment prognostic signature; ROC,
receiver operating characteristic.
TABLE 3 Univariate and multivariate Cox regression analysis in training, test, and total cohorts.

Variables Univariate analysis Multivariate analysis

HR HR.95L HR.95H P value HR HR.95L HR.95H P value

Training cohort

Age 1.004 0.989 1.020 0.574 1.002 0.986 1.018 0.841

Sex 1.256 0.921 1.715 0.150 1.081 0.781 1.497 0.637

Stage 1.863 1.615 2.149 0.000 1.745 1.506 2.022 0.000

LATPS score 1.866 1.617 2.153 0.000 1.820 1.559 2.125 0.000

Test cohort

Age 1.018 1.002 1.034 0.031 1.019 1.004 1.035 0.015

Sex 1.362 1.008 1.839 0.044 1.144 0.837 1.566 0.399

Stage 1.448 1.241 1.690 0.000 1.462 1.248 1.711 0.000

LATPS score 1.570 1.350 1.826 0.000 1.550 1.319 1.822 0.000

Total cohort

Age 1.011 1.000 1.022 0.056 1.012 1.001 1.023 0.039

Sex 1.296 1.045 1.609 0.018 1.070 0.859 1.332 0.547

Stage 1.655 1.491 1.838 0.000 1.608 1.445 1.788 0.000

LATPS score 1.711 1.542 1.897 0.000 1.700 1.524 1.897 0.000
Frontiers in Immuno
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Comparison with other published LUAD
signatures and construction of a
nomogram signature

To further evaluate the survival classification and predictive

capacity of LATPS. We not only compared the LATPS with

clinicopathological factors but also compared the predictive
Frontiers in Immunology 12
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performance of two TME-based LUAD signatures. Wu signature

was an 8-gene signature (25). Yue signature was a signature

consisting of 3 genes (26). We applied Kaplan–Meier curve and

the ROC curve analyses to assess the predictive efficacy of the above

signatures. As a result, (LATPS, Wu signature, and Yue signature)

had the same significant trend in survival, for patients in the low-risk

group had better OS (log-rank test, P<0.001,p<0.001, p<0.001), and
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FIGURE 7

Confirmation of the LATPS via stratification of patients based on specific demographic and clinical features. Time-dependent ROC curve analysis of
the LATPS score and clinicopathological factors to assess the predictive capacity of the LATPS in the (A) training, (B) test, and (C) total cohorts. (D-F)
Boxplot showing the relationships between the LATPS score and clinicopathologic factors for all patients with LUAD. (G-L) Kaplan–Meier curve
analysis for patients of (G) age > 65, (H) age ≤ 65, (I) Male, (J) Female, (K) Stage I–II, (L) Stage III–IV in the LATPS-high and LATPS-low subgroups.
LATPS, LUAD tumor microenvironment prognostic signature; LUAD, lung adenocarcinoma; ROC, receiver operating characteristic.
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the AUC was 0.704, 0.715, 0.636 at 1 year; 0.688, 0.692, 0.651 at 3

years; and 0.638, 0.627, 0.569 at 5 years, respectively (Figures 8A-C).

Next, to assess the clinical utility of LATPS, a nomogram

signature was established according to the clinicopathological

factors and LATPS score in the training cohort. Each patient was

scored according to their clinical features and LATPS score to

predict survival probability (Figure 8D). Calibration curve analysis

revealed that actual and nomogram-predicted OS corresponded
Frontiers in Immunology 13
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well (Figure 8E). ROC curve analysis showed that the nomogram

signature had more favorable predictive accuracy than other

clinicopathological signatures (Figures 8F-H). Moreover,

Calibration curve and ROC curve analyses of the nomogram

signature in internal cohorts indicated that the nomogram

signature was of favorable predictive capacity for OS

(Supplementary Figures 5A-H). Collectively, these results

suggested that the LATPS had clinical utility as a prognostic tool.
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FIGURE 8

Comparison of the LATPS with other published gene signatures and construction of a nomogram. Kaplan–Meier curve and the ROC curve of (A)
LATPS, (B) Wu signature, and (C) Yue signature. (D) Nomogram based on the LATPS and clinical information of patients with LUAD. (E)
Calibration curve of the nomogram used for predicting OS at 1, 3, and 5 years. Time-dependent ROC curves analysis of the nomogram and
clinicopathological factors in predicting (F) 1-, (G) 3-, and (H) 5-year OS. LATPS, LUAD tumor microenvironment prognostic signature; LUAD,
lung adenocarcinoma; OS, overall survival; ROC, receiver operating characteristic.
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Discussion

ICIs treatment only benefits a fraction of NSCLC patients with

PD-L1 > 1% (5). Nevertheless, the IMpower132 study showed an

OS benefit in PD-L1-negative patients treated with ICI therapy (27).

Moreover, a previous study revealed that the accuracy of TMB in

predicting the immunotherapy response for NSCLC is only about

60% (9). Therefore, conventional PD-L1 expression and TMB may

not be enough to distinguish patients who would benefit from ICIs.

Jiang P and Daniela ST pointed out that the status of T cells and the

infiltration of T cells may be promising biomarkers for NSCLC

treated with immunotherapy (9, 28). However, the TME of NSCLC

is complicated and heterogeneous, which consists of various

immune cells apart from T cells. Furthermore, taking into

consideration that LUAD and lung squamous carcinoma (LUSC)

were different in the tumor immune landscape (29), a deeper

mining of the TME of LUAD may provide new insights for

predicting immunotherapy response.

We analyzed the immune landscape in LUAD samples and

identified three distinct TME subgroups. Notably, TME

subgroup A was associated with the best OS and exhibited a

significant increase in the infiltration of memory B cells, memory

resting CD4+ T cells, monocytes, M2 macrophages, dendritic

cells, and resting mast cells. Besides, TME subgroup B was

associated with better prognosis, featured by an elevated

infiltration of plasma cells, CD8+ T cells, gamma delta T cells,

activated NK cells, M1 macrophages, and a higher ImmuneScore

compared with TME subgroup C. Conversely, TME subgroup C

was associated with the worst OS and was marked by a greater

density of Tregs and M0 macrophages infiltration. Previous

studies have shown a high Treg density was associated with

poor prognosis in a variety of cancers, including lung cancer (30,

31). Higher infiltration of CD8+ T cells and M1 macrophages

was related to better survival outcomes, which agrees with

previous studies (32, 33). Thus, the immune cell infiltration

pattern played an important role in patient’s prognosis, which

would provide guidance to predict clinical outcomes.

Clinically, it is difficult to obtain the immune infiltration

pattern of each LUAD patient. It needs to perform whole

transcriptome sequencing (detect approximately 20,000 genes)

of LUAD tumor samples to identify the TME subgroups, which

would be expensive and impractical in clinical practice. Thus, we

aim to construct a simple and efficient signature to reflect the

immune infiltration pattern and predict the survival of LUAD

patients based on the identified TME subgroups. Besides, we

wanted to unravel the underlying biological characteristics of the

three TME subgroups and screen out the key genes that may

influence the OS of the distinct TME subgroups. Therefore, we

explored the transcriptome variation among the TME

subgroups. Subsequently, we identified 146 TME-related DEGs

after performing differential expression analysis. GO functional

enrichment analysis revealed that the DEGs were mainly

associated with immune-related GO terms, including humoral
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immune response, regulation of cell killing and T cell activation.

Studies have demonstrated the abundance and dysfunction of

immune cells might affect antitumor immunity and

immunotherapy response (9, 34, 35). Thus, our results

indicated that imbalances in these immune-related functions

or pathways might result in diverse clinical outcomes in patients

with LUAD. Based on the expression of the 146 DEGs may help

to distinguish different infiltration patterns and provide

personalized treatment.

However, in the clinic, it would be impractical to determine

the mRNA expression of the 146 TME-related DEGs. Therefore,

we utilized computational algorithms to select hub genes and

established a LUAD TME prognostic signature (LATPS),

comprising four hub prognostic genes (UBE2C, KRT6A, IRX2,

and CD3D). Reportedly, these four genes correlated with patient

survival. Overexpression of UBE2C was reported as an

independent risk factor associated with dismal outcomes in

patients with lung cancer (36, 37). Reportedly, KRT6A is

associated with cell proliferation and invasion, which drives

cancer progression by upregulating glucose-6-phosphate

dehydrogenase (G6PD) through MYC signaling pathway (38).

Consistent with previous studies, our results revealed that both

UBE2C and KRT6A were LUAD risk factors. Elevated expression

of IRX2 was linked with shorter OS in nasopharyngeal

carcinoma (NPC) (39). Interestingly, we identified IRX2 as a

protective factor in LUAD; however, limited studies have

focused on the role of IRX2 in LUAD. For CD3D, its higher

expression is related to a better outcome in colon cancer (40).

Previous studies discovered that CD3D correlates highly with

lymphocyte infiltration and is regarded as a promising

therapeutic target (41, 42). In addition, PCA revealed that the

mRNA expression pattern of the four hub genes could categorize

patients with LUAD into two different subgroups, implying that

there may be a difference in immune infiltration pattern and

survival between the LATPS-defined subgroups.

ICIs have revolutionized the treatment of NSCLC and

improved outcomes (43, 44). Therefore, understanding the

response to immunotherapy may help to predict patients’

prognoses. Studies revealed that TIICs of the TME play a

crucial role in immunotherapy response (7, 8). Besides,

patients with an inflammatory phenotype or an immunity-

high phenotype have a better prognosis and are thought to be

more likely to benefit from immunotherapy (23, 45). Therefore,

we further explored the immune infiltration landscape in the

LATPS-defined subgroups. Interestingly, similar to previous

studies, patients in the LATPS-low subgroup tended to be a

hot immune phenotype, characterized by elevated immune cell

infiltration and hyperactivated immune-related pathways. Thus,

our results suggested that the LATPS is of potential predictive

value in assessing immunotherapy response. Cancer

immunotherapy using ICIs functions by blocking inhibitory

signaling and reactivating cytotoxic T lymphocytes to attack

cancer cells (46). Multiple factors affect immunotherapy
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effectiveness and few biomarkers have been developed to

accurately assess the benefit of immunotherapy. Jiang P et al.

identified the TIDE score, which quantifies two different

mechanisms of tumor immune escape, including T cell

dysfunction and exclusion. A patient with a lower TIDE score

is likely to benefit from immunotherapy. The accuracy of the

TIDE score for predicting immunotherapy response in NSCLC

was about 80% (9). While the TIDE score was based on small

samples of 21 NSCLC patients treated with immunotherapy and

it was complicated to calculate, limiting its clinical application.

We observed a lower TIDE score in the LATPS-low subgroup,

which indicated that the LATPS might be useful for patient

selection before ICI treatment.

To verify the predictive value of the LATPS in elevating ICI

treatment benefits, we performed survival analysis in

immunotherapy cohorts. In the GSE135222 cohort, 27

advanced NSCLC patients received anti-PD-1 therapy. As

shown in Figure 5D, patients with lower LATPS score

obtained longer PFS (log rank test, p = 0.017). In addition, we

collected FFPE tumor samples of NSCLC patients treated with

anti-PD-1 based therapy at Nanfang Hospital for RNA

sequencing analysis. Among them, 20 patients with available

survival information. Consistently, the LATPS-low subgroup got

longer PFS than the LATPS-high subgroup (log rank test, p =

0.005), suggesting that the LATPS could distinguish different

outcomes in patients who received immunotherapy. The AUC of

LATPS for predicting immunotherapy benefits was higher in the

GSE135222 cohort compared with the Nanfang Hospital cohort.

Considering the sample size of Nanfang Hospital is smaller than

the GSE135222 cohort, which may explain the lower ACU in the

Nanfang Hospital cohort. Thus, further large scale

immunotherapy cohorts are needed to verify our results.

Moreover, ROC curves of the above two cohorts revealed that

the LATPS is a potential predictor to predict immunotherapy

benefits with an AUC of 0.548 to 0.858. Besides, it was evident

that LATPS has better predictive accuracy at longer follow-ups

according to the ROC curve analysis.

Subsequently, we further evaluated the clinical value of the

LATPS for predicting immunotherapy response. In the

GSE126044 NSCLC immunotherapy cohort, patients who

responded to anti-PD-1 therapy had lower LATPS scores

compared with none responders (Mann-Whitney U test, p =

0.052). Although it was not statistically significant, there was a

trend that lower LATPS scores were more likely to benefit from

immunotherapy. Besides, the GSE126044 was grounded on small

numbers of samples, consisting of only 16 patients. Further large

immunotherapy cohorts are needed to verify this hypothesis. The

TIDE model has been reported to predict the outcome of NSCLC

treated with first-line anti-PD1 or anti-CTLA4 antibodies with an

AUC of about 0.80 (9). In the GSE126044 cohort, the AUC of

LATPS for predicting immunotherapy response was 0.818, which

was comparable with the TIDE model. Therefore, our results

showed that the LATPS model could serve as a promising
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biomarker, which would facilitate the development of new

avenues for personalized immune-intervention strategies. In

addition, The TIDE model mainly focuses on the T cell status,

whichmight be insufficient to reflect the complexity of the TME in

LUAD. Besides, whole transcriptome sequencing of tumor

samples is needed to generate the TIDE score, which is

inconvenient to conduct in the clinic. Our LATPS model

comprises only four genes, making it easier than the TIDE

model to apply in clinical practice.

Next, we aimed to assess the survival classification and

predictive efficacy of LATPS. Survival analysis revealed that

LATPS-low patients had better prognoses than the LATPS-

high subgroup in the training cohort, indicating that the

LATPS was closely linked to LUAD survival. Furthermore,

validation of the predictive accuracy of the LATPS using

internal cohorts and stratification survival analysis

demonstrated that the LATPS can more precisely predict the

prognosis of LUAD compared with other clinicopathological

factors. Moreover, univariate and multivariate Cox regression

analyses identified the LATPS as an independent risk factor to

predict patient prognosis, which was confirmed by the

prognostic meta-analysis. Collectively, our results showed that

the LATPS is a robust and generalizable predictor for survival

in LUAD.

We also compared the LATPS with other previously

published signatures (Wu signature (25) and Yue signature

(26)), which were based on the TME of LUAD patients. ROC

analysis demonstrated that the LATPS has a better predictive

ability than Yue signature. Meanwhile, LATPS has a lower AUC

for predicting OS at 1 and 3 years, but a higher AUC at 5 years

compared with Wu signature. However, LATPS is a 4-gene

signature, which is easier to conduct than the 8-gene signature

(Wu signature) in the clinic. These results indicate that the

overall performance of our LATPS is superior to others.

Several studies have constructed prognostic models to

predict patients’ OS; however, few of them have been applied

clinically (33, 47, 48). Nomograms can conveniently and

efficiently estimate cancer prognosis, and are used widely in

clinical cancer research (49). Thus, we established a nomogram

according to the LATPS score and clinicopathological factors,

which can be conveniently obtained in the clinic. Calibration

curve analysis showed favorable accordance between

nomogram-predicted and actual OS in the training cohort.

Additionally, ROC curve analysis showed that the nomogram

signature had an AUC of 0.791, which was higher than other

clinicopathological models. Thus, our results suggested that the

LATPS is a promising prognostic tool with clinical utility.

Conclusively, we applied integrated analysis to explore the

TME of LUAD and constructed a LATPS, which can serve as a

reliable tool to predict the prognosis and immunotherapy

benefits of LUAD patients; however, further large scale studies

are needed to validate the signature in LUAD cohorts treated

with immunotherapy.
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SUPPLEMENTARY FIGURE 1

(A) Principal component analysis showing the distribution differences of
different LUAD cohorts before removing batch effects using the ComBat

algorithm. (B) Principal component analysis showing the distribution
differences of different LUAD cohorts after removing batch effects using

the ComBat algorithm. LUAD, lung adenocarcinoma.

SUPPLEMENTARY FIGURE 2

(A) Empirical cumulative distribution function diagram and (B) delta area
diagram showing the results of consistent clustering based on the

CIBERSORT results, where k represents the number of subgroups. (C)
Consensus matrix presenting the clustering stability of hierarchical

clustering for k = 3. (D-F) Volcano plots showing the DEGs between

different TME subgroups. Red dots represent upregulated genes and
green dots represent downregulated genes. (G) GO enrichment analysis

of the 146 DEGs derived from the three TME subgroups. DEGs,
differentially expressed genes. TME, tumor environment. GO,

gene ontology.

SUPPLEMENTARY FIGURE 3

Principal component analysis showing the distribution differences
between the LATPS-high and LATPS-low subgroups of the (A) training,
(B) test, and (C) total cohorts. The distribution of (D) StromalScore, (E)
ImmuneScore, and (F) ESTIMATEScore between the LATPS-high and

LATPS-low subgroups. Statistical significance was assessed using the
Mann-Whitney U test. The distribution of TIDE of patients with LUAD

patients in the (G) training, (H) test, and (I) total cohorts. LATPS, LUAD
tumor microenvironment prognostic signature; TIDE, tumor immune
dysfunction and exclusion; LUAD, lung adenocarcinoma.

SUPPLEMENTARY FIGURE 4

(A) Distribution of the LATPS score in patients with different response
status to anti-PD-1 therapy of NSCLC in GSE126044. (B) ROC analysis of

the LATPS to predict an anti-PD-1 response. NSCLC, non-small cell lung

cancer ; PD-1 , p rogrammed ce l l dea th 1 ; ROC, rece i ve r
operating characteristic.

SUPPLEMENTARY FIGURE 5

Calibration curve for predicting overall survival at 1, 3, and 5 years in (A)
test and (B) total cohorts. (C-H) Time-dependent ROC curves analysis of

the nomogram and clinicopathological factors to predict 1-, 3-, and 5-

year overall survival in (C-E) test and (F-H) total cohorts. ROC, receiver
operating characteristic.
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Lactate regulators contribute to
tumor microenvironment
and predict prognosis in
lung adenocarcinoma

Shipeng Shang1, Mi-zhou Wang1,2, Zhiyuan Xing1,3,
Ningning He1* and Shangyong Li1*

1School of Basic Medicine, Qingdao University, Qingdao, China, 2Anesthesia Operating Department,
The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China, 3Department of
Abdominal Tumor Surgery, Qingdao Central Hospital to Qingdao University, Qingdao, China
Background: Lactic acid, as a product of glycolysis, increases tumor cell

migration and the invasion of tumor cells in the tumor microenvironment.

Besides this, lactic acid promotes the expression of programmed death-1

expression (PD-1) in regulatory T cells, which could cause the failure of PD-1

blockade therapy. However, the implications of lactic acid in the tumor

microenvironment of lung adenocarcinoma (LUAD) remain largely unclear.

Methods: We performed unsupervised consensus clustering to identify lactic-

associated subtypes using expression profile of lactate regulators in LUAD.

Differentially expressed genes (DEGs) associated with lactic-associated

subtypes was used to construct lactate signature (LaSig) using LASSO

regression algorithm. Immune infiltration analysis was conducted by

ESTIMATER and drug sensitivity was estimated by R package called

“pRRophetic”. The difference between two groups was calculated using

Wilcox rank sum test and correlation analysis was calculated using Pearson

correlation coefficient.

Results: In this study, we evaluated DNA methylation and the mutation

frequency of lactate regulators and found lactate regulators showed low

mutation frequency in the TCGA-LUAD cohort, except TP53. At the RNA

level, the expression level of lactate regulators was significantly associated

with the immune cell component. In particular, expression of LDHA was

positively correlated with CD4 T cell, CD8 T cell, M1 macrophages, and the

enrichment score of multiple immune pathways. Two clusters were defined

using the gene expression level of lactate regulators, and LDHA was

significantly upregulated in cluster 1 with poor overall survival. A lactate

signature (LaSig) had a robust performance in predicting the survival rate and

immunotherapy response of LUAD patients. Moreover, patients in the high
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LaSig groupmay bemore likely to benefit from these drugs (Cisplatin, Erlotinib,

Gemcitabine, and Vinblastine) than those in the low LaSig group.

Conclusion: In summary, our study explores the role of lactate regulators in

guiding the clinical treatment of lung adenocarcinoma and provides additional

help to supplement traditional molecular subtypes.
KEYWORDS

lactate regulator, lung adenocarcinoma, cancer prognosis, risk model, immunotherapy
Introduction

The Warburg effect is an important metabolic feature of

tumors, and it rapidly generates energy through aerobic

glycolysis (1, 2). Unlike normal cells, tumor cells can produce

lactic acid with sufficient oxygen to fuel tumor cells, which

contributes to the tumor invasion and metastasis (3). In previous

studies, lactate production is demonstrated to be closely

associated with the growth of a variety of cancers, including

lung (4), breast (5), and gastric cancer (6). The lactate

dehydrogenase-A (LDHA) enzyme is found to play an

essential role in the survival and proliferation of cancer cells

(7). Besides this, the antiviral and antitumor functions of natural

killer cells were enhanced by LDHA (8).

Lung adenocarcinoma (LUAD) is the most common type of

lung cancer and a deadly malignant tumor with high mortality

(9). Immunotherapy has become an important therapeutic

strategy for LUAD with low response rates because of tumor

heterogeneity and adverse events (10, 11). Identifying

effectiveness biomarkers is essential to improve the effect of

immunotherapy. Currently, a variety of biomarkers are used to

evaluate the response of immunotherapy, including tumor

mutation burden (12), PD-1, PD-L1, CTLA-4 (13), TIGIT

(14), MSI (15), and Neoantigen (16). The complex immune

microenvironment is an important factor that leads to the

different immunotherapy responses of cancer patients. The

significant characteristic of the tumor microenvironment is

hypoxia, leading to an elevated level of lactic acid produced by

cancer cells. The establishment of an immunosuppressive

environment is closely related to metabolites (such as lactic

acid), which can promote immune escape in the tumor

microenvironment (17). In addition, lactic acid plays a vital

role in the tumor microenvironment by regulating T cells and

can promote the expression of PD-1, which is of great

significance for immunotherapy (18). The increase of lactic

acid can promote the activity of myeloid-derived suppressor
02
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cells and promote the activity of tumor cells (6). However, the

study of lactic acid–related in the tumor environment is still

limited. The regulating effect of lactic regulators needs to be

analyzed in LUAD.

In this study, we aimed to analyze the relationship between

the lactic regulator and the immune environment. The established

LaSig scoring tool was used to predict prognosis and

immunotherapy response in LUAD. LaSig had robust predictive

performance and robustness in prognosis of LUAD and played a

role in predicting drug sensitivity. In addition, LaSig can be used

as a potential marker to predict prognosis of pan-cancer patients.

Our results indicate that the lactic regulator may serve as

biomarker of prognosis and immunotherapy response of LUAD.
Methods

Data collection and processing

Lactate-associated genes were collected from GO terms in

the Molecular Signatures Database (MiSigDB). TCGA gene

expression data, DNA methylation data, somatic mutation

data, copy number variation (CNV) data, and clinical

information were downloaded from Xena public data hubs

(https://xenabrowser.net/).

Gene expression data of the additional LUAD samples were

obtained from the Gene Expression Omnibus (GEO) database

(including GSE31210 and GSE19188). Ensemble ID was

converted to a gene symbol, and expression levels of genes

containing more than one ensemble ID were represented by

the average value. The gene expression level of TCGA-LUAD

was expressed in transcripts per million (TPM). The probes were

converted to gene symbols based on the annotation file of the

Affymetr ix Human Genome U133 Plus 2.0 Array.

Immunotherapy-associated data of LUAD samples were

downloaded from GSE126044 and GSE135222 (Table 1).
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Unsupervised consensus clustering

To identify lactic-associated subtypes, unsupervised

clustering was performed to cluster tumor samples into

subtypes according to the expression matrix of lactic-

associated genes. A consistency clustering algorithm was

performed by using the “ConsensusClusterPlus” R package,

and it was repeated 1000 times (19).
Generation of the LaSig score

First, differentially expressed genes (DEGs) between clusters 1

and 2 were identified using the “limma” R package with a

threshold of |log2FC|>1 and adjusted p value<.01. Second,

LUAD samples were randomly divided into training and testing

sets according to a ratio of 2:1. Univariate Cox regression analysis

of these genes was performed to look for the survival-associated

signatures in LUAD, and genes with p-value<.05 were selected for

further analysis. Then, the LASSO regression model and 10-fold

cross-validation were performed to reduce the dimensionality and

select representative genes by using the “glmnet” R package.

Finally, we selected 25 genes, and their coefficients were used to

generated the LaSig score by the following formula:

LaSig Score  =  o
n

i
Genei ∗Coefi

where Genei and Coefi represent the expression level and

LASSO coefficient of each selected gene, respectively.
Gene set enrichment analysis

GO and KEGG enrichment analysis of DEGs were

performed using the “clusterProfiler” R package (20).

Seventeen immune pathway–associated genes were collected

from The Immunology Database and Analysis Portal

(ImmPort) database (https://www.immport.org/). The immune

pathway score of LUAD samples was calculated by the “GSVA”

R package.
Frontiers in Immunology 03
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Tumor microenvironment estimation

Subpopulations of 22 immune cells were estimated by using

CIBERSORTx (http://cibersort.stanford.edu/) with the gene

expression profile of LUAD samples (21). The samples with

p<.05 were employed for further analysis.
Analysis of drug sensitivity

An R package called “pRRophetic” was used to estimate drug

sensitivity. Fifty percent of cellular growth inhibition (IC50) was

used as an indicator of drug sensitivity.
Statistical analysis

The Pearson correlation coefficient was used for correlation

analysis. The Wilcox rank sum test was used to calculate the

difference between the two groups. The Kaplan–Meier method

was used to compare the overall survival of LUAD patients. All

statistical analyses were conducted using R (R 4.1.2) software

and p<.05 was considered significant.
Result

Multi-omics feature of lactic in LUAD

To evaluate the influence of lactic acid on LUAD, 25 lactic

regulators were summarized by KEGG pathway. First, the

mutation profiles of LUAD patients were studied, and we

found that, except the TP53, mutations in 21 lactic regulators

were rare in LUAD, ranging from 0% to 3% (Figure 1A). Next,

the co-occurrence feature of lactic regulators was analyzed,

SLC5A12 and LDHB, PNKD and LDHAL6A have a co-

occurrence relationship (Figure 1B). Besides this, ACTN3,

HAGH, LDHA, and LDHAL6A were more likely to have copy

number gains. Conversely, TP53, LDHAL6B, and MIR210 were

more likely to have copy number deletions (Figure 1C).
TABLE 1 Relevant information for all data sets in this study.

Dataset Platform Number of Samples (Numbers of Cancer tissue)

TCGA-LUAD Illumina HiSeq 585 (526)

GSE31210 GPL570 246 (246)

GSE19188 GPL570 156 (36)

GSE126044 GPL16791 16 (16)

GSE135222 GPL16791 27 (16)
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The difference in lactic regulators between LUAD and

normal lung tissue were studied. Compared with normal tissue

samples, 18 of 25 lactic regulators were aberrantly expressed in

tumor samples (Figure 1D). To analyze the effect of DNA

methylation on gene expression of lactic regulators, correlation

between DNA methylation and gene expression was calculated.

DNA methylation was negatively correlated with the gene

expression level of ACTN3, HAGH, LDHA, LDHAL6A, LDHC,
Frontiers in Immunology 04
67
LDHD, PER2, PNKD, SLC16A1, SLC16A3, SLC16A7, and

SLC5A8 (Figure 1E).

These results reveal the multi-omics characteristics of the

lactate regulatory factor in LUAD. At the RNA and epigenetic

levels, most of the lactic regulators showed an abnormal

pattern in tumor tissue compared with normal tissue, and

DNA methylation may affect the gene expression of

lactic regulators.
A

B

D

E

C

FIGURE 1

Multi-platform features of lactic regulators in LUAD. (A) Mutation of lactic regulators in TCGA-LUAD cohort. (B) Co-occurrence feature of lactic
regulators in TCGA-LUAD cohort. (C) Copy number variation frequency of lactic regulators in TCGA-LUAD cohort. Yellow stripe represents copy
number gain, and blue stripe represents copy number deletion. (D) Comparison of gene expression of lactic regulators between LUAD and
normal tissue. (E) Correlation of DNA methylation and gene expression of lactic regulators in TCGA-LUAD cohort. Yellow represents positive
correlation, and blue represents negative correlation (*P<.05; **p<.01; ***p<.001; ****p<.0001).
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Prognosis and immune characteristics of
lactic regulators

To further study the role of lactic regulators in LUAD, a

univariate Cox regression model was used to estimate the

prognosis value of these lactic regulators. High expression of

LDHA, SLC16A1, SLC16A3, and MIR210 were risk factors of
Frontiers in Immunology 05
68
overall survival for LUAD; on the contrary, high expression of

HAGH and LDHD were protective factors (Figure 2A). In

addition, HAGH and LDHD had a relatively strong positive

correlation in RNA level.

Recent studies show that lactic acid plays an important

regulatory role for immune cells in tumors (22, 23). Therefore,

we investigated the relationship between lactic regulators and the
A B

C

FIGURE 2

Prognosis and immune characteristics of lactic regulators. (A) Correlations and prognosis value of DNA lactic regulators in TCGA-LUAD cohort.
(B) Correlation heat map between lactic regulators and 22 immune cells. Red indicates positive correlation; blue indicates negative correlation;
cross indicates p>=.05. (C) The correlation between expression level of lactic regulators and immune-associated pathway.
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immune cell. The expression level of PFKFB2 and PARK7 were

associated with the abundance of 2/3 immune cells (Figure 2B).

Moreover, lactic regulators were significantly correlated with

multiple immune pathways (Figure 2C). The expression level of

EMB and SLC16A3 were positively correlated with interferon

receptors and members of the TNF family of receptors,

respectively. In summary, the expression of PARK7, LDHD,

PNKD, HAGH, MIR210, PFKFB2, PER2, SLC5A12, and

SLC16A8 had a negative correlation with the pathway activity

of the T cell receptor signaling pathway. The expression of

HIF1A, TIGAR, EMB, SLC5A8, MYC, SLC16A1, and SLC16A7

was positively correlated with the enrichment score of the T-cell

receptor signaling pathway
Construction of lactate-associated
signatures

Lactic regulators may have important contributions to

tumor heterogeneity due to their close links with the immune

cell and immune pathway. LUAD samples were clustered into

two categories using unsupervised clustering (Figure 3A). There

were 13 genes with high expression levels in cluster 1 and 12

genes with high expression levels in cluster 2 (Figure 3B). As

shown in Figure 3C, there is a significant difference in survival

rate between the two groups. This result suggests that lactic

regulators may further influence patient survival by mediating

immune pathways.

We collected costimulatory and coinhibitory molecules from

the work of Kim et al (24) and compared differences of their

expression levels between the two clusters. Multiple

costimulatory molecules, such as CD86, CD80, CD28, CD40,

CD70, TNFSF4, TNFRSF9, ICOS, and TRBV20OR9-2, showed a

higher expression level in cluster 1 (Figure 3D). Multiple

coinhibitory molecules, such as HAVCR2, CD274, PDCD1LG2,

PDCD1, VSIR, CD276, TMIGD2, PVR, CD226, TIGIT, and

CD96, also showed a higher expression level in cluster

1 (Figure 3E).

The impact of lactic regulators for tumor heterogeneity was

further explored, and we identified 4318 DEGs between clusters

1 and 2. These genes were enriched in immune-related terms by

using GO analysis and cancer-related terms by using KEGG

pathway analysis (including immune response−activating cell

surface receptor signaling pathway, neutrophil activation

involved in immune response, and Salmonella infection;

Figures 4A, B). Univariate Cox regression analysis was used to

select a prognosis-associated gene, and expression levels of 1007

genes were found to be significantly associated with survival.

Twenty-five key genes were selected to construct LaSig by using

a LASSO regression model and tenfold cross-validation in the

training set (Figure S1). The formula of LaSig was:
Frontiers in Immunology 06
69
(-0 .179)*CLEC7A+(0.008)*AP1S3+(0.044)*KRAS+(-

0.067)*ATP6V1B2+(0.023)*EXT1+(0.014)*ADM+(0.078)*

TLE1+(0.057)*DKK1+(0.011)*SLC16A4+(8.37e-6)*FLNC+

(-0.04)*BEX4+(-0.008)*SEC14L4+(-0.023)*AKTIP+(0.084)*

PLEK2+(-0.073)*PGS1+(-0.014)*SLC47A1+(-0.112)*MYLIP+

(-0.067)*FAM117A+(0.139)*C1QTNF6+(0.143)*MESDC2+

(-0.005)*MPEG1+(-0.042)*OSCP1+(0.296)*LDLRAD3+

(-0.075)*LRRC10B+(0.011)*FAM83A. In the low LaSig group,

the high expression of 12 genes is a risk factor for LUAD, and the

high expression of 13 genes is a protective factor. The high LaSig

and low risk groups were divided according to the median value

of LaSig (cutoff of training and testing sets: 0.117 and 0.007).

There was a significant difference in survival between high and

low risk groups in the training set, validation set, and GSE19188

(Figures 4E–G). This suggests the role of LaSig in predicting

survival of LUAD patients.

To assess the relationship between LaSig and clinical

features, we compared the age, gender, and stage of LUAD

patients in the high LaSig and low risk groups. We found that

T4, N2, M1, and stage have higher LaSig scores (Figure S2). This

suggests LaSig may reflect the malignancy degree of the tumor.
Drug sensitivity between high and low
LaSig group patients

Chemotherapy is widely used in the treatment of LUAD.

However, cancer patients have different drug sensitivity due to

tumor heterogeneity. We compared IC50 of high and low LaSig

group patients to find out whether LaSig score is applicable to

personalized treatment strategies. The patients in the high LaSig

group were sensitive to Cisplatin, Gemcitabine, and Vinblastine,

and the patients in the low LaSig group was more sensitive to

Erlotinib in the TCGA, GSE31210, and GSE19188 cohorts

(Figure 5). This may provide help in determining therapeutic

strategies for LUAD patients.
The role of LaSig in predicting
immunotherapy response of LUAD

The above results reveal the close relationship between lactic

regulators and the immune microenvironment. We further

explored the role of LaSig score in guiding immunotherapy

response. First, the human leukocyte antigen had higher

expression level in low LaSig than high LaSig (Figure 6A).

Second, tumor purity and the immune score of LUAD patients

were calculated. LaSig was negatively correlated with tumor

purity and positively correlated with immune score in LUAD

(Figures 6B, C). Second, to evaluate the role of LaSig score in

predicting immunotherapy response, the LaSig score of non–
frontiersin.org
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small cell lung cancer patients treated with anti-PD-1/PD-L1

was calculated. We found that LaSig scores of nonresponders

were significantly higher than those of responders (Figure 6D).

Besides this, the patients were divided into two groups by using

the LaSig score cutoff, and the low LaSig score group had a better

prognosis (Figure 6E). These results reveal the potential role of

LaSig in predicting immunotherapy.
Frontiers in Immunology 07
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Exploring the role of LaSig in the pan-
cancer cohort

We next studied the role of LaSig in predicting the prognosis

of the pan-cancer cohort. LaSig was significantly associated with

prognosis in 11 cancer types (Figure 7), including adrenocortical

cancer (ACC), bladder cancer (BLCA), cervical cancer (CESC),
frontiersin.org
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FIGURE 3

Prognosis and immune characteristics of lactic regulators. (A) Consensus clustering analysis of lactic regulators for optimal k = 2. (B) Kaplan–
Meier curves of OS for two clusters of patients. (C) Heat map of 25 lactic regulators between the two distinct subtypes. (D, E) Differential
analysis of costimulatory and coinhibitory molecules two clusters (*p<.05; **p<.01; ***p<.001; ****p<.0001).
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kidney clear cell carcinoma (KIRC), kidney papillary cell

carcinoma (KIRP), mesothelioma (MESO), pancreatic cancer

(PAAD), sarcoma (SARC), melanoma (SKCM), thymoma

(THYM), and ocular melanomas (UVM). Moreover, LaSig also

represented the expression of PD-1, which is significantly
Frontiers in Immunology 08
71
positively correlated with the expression of PD-1, including

BLCA, kidney chromophobe (KICH), acute myeloid leukemia

(LAML), lower grade glioma (LGG), liver cancer (LIHC),

LUAD, pancreatic cancer (PAAD), testicular cancer (TGCT)

and UVM (Figure S3).
A B

D

E F G

C

FIGURE 4

Construction of LaSig to predict the prognosis of LUAD patients. (A, B) GO and KEGG pathway enrichment analysis of differential expression
genes. (C) The forest plot of key lactic signatures using univariate Cox regression analysis. (D) The distributions of risk scores, OS status, and
gene expression of key lactic signatures. (E–G) Kaplan–Meier curves of high and low risk groups in training set €, test set (F), and GSE19188-
cohort (G).
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Discussion

Lactic acid has long been considered as metabolic waste of

highly proliferating cells. Nevertheless, lactic acid recently has

been found to be an important product affecting tumor

proliferation and metastasis (25, 26). Lactic acid could regulate

T cell migration and effector function and promote the

expression of PD-1 (27). However, the impact of lactic acid in

the immune microenvironment of LUAD has not been identified

clearly. To explore the role of lactate regulators in the immune

microenvironment of LUAD can help us understand the effect of

lactic acid on LUAD and guide immunotherapy.

In this study, 25 lactate regulators were collected and

analyzed in LUAD. The expression level of a large number of

lactate regulators in LUAD samples changed. DNA methylation

of lactate regulators has a significant negative correlation with

the expression of genes, which demonstrates that DNA

methylation regulates expression of those genes that were

associated with abnormal metabolism of the tumor. The

acidification of the tumor microenvironment is an important
Frontiers in Immunology 09
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cause of carcinogenesis processes, including metastasis and

immune escape (28). The increase in lactate in the tumor is

more consistent with tumor growth and migration.

Lactate regulators are also significantly correlated with

immune cells, and PARK7 was negatively correlated with

resting memory CD4+ T cell. In addition, the increased levels

of extracellular lactate are closely associated with the Notch1/

TAZ axis, which can inhibit the activity of cytotoxic T cells and

lead to the proliferation and migration of lung cancer cells (29).

Thus, PARK7 as a redox-sensitive chaperone may affect the

status of the CD4+ T cell.

Two groups were obtained by unsupervised cluster analysis of

gene expression levels of lactic acid regulators, which can

distinguish prognosis. DEGs were identified between two

clusters and mainly enriched in immune- and cancer-related

pathways. These results suggest that molecular subtypes based

on the expression level of lactate regulators may be an important

prognostic feature in cancer patients. We constructed and

validated a prognosis risk signature with 25 lactate regulator–

related genes, named LaSig, which divided LUAD patients into
frontiersin.org
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FIGURE 5

Drug sensitivity comparison between LaSig groups. (A–C) Difference comparison of IC50 of Cisplatin, Erlotinib, Gemcitabine, and Vinblastine
between high and low LaSig groups in the TCGA (A), GSE19188 (B), and GSE31210 cohorts (C).

https://doi.org/10.3389/fimmu.2022.1024925
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shang et al. 10.3389/fimmu.2022.1024925
high and low LaSig groups. The level of HLA gene expression and

immune score in the low LaSig group were higher than those in

the high LaSig control group. Hence, the immunotherapy data set

is further used to verify the predictive value of LUAD

immunotherapy response. Heterogeneity of the tumor
Frontiers in Immunology 10
73
microenvironment is an important factor affecting the treatment

of cancer patients, including chemotherapy and immunotherapy.

The difference of lactate metabolism is one of the reasons for the

heterogeneity of the tumor microenvironment. Alteration of the

tumor metabolism may be a potential solution to improve the
A

B
D

E

C

FIGURE 6

Correlation analysis between LaSig and anti-PD-L1 immunotherapy. (A) The expression level of human leukocyte antigen in high and low LaSig
groups. (B) Correlation between LaSig and tumor purity. (C) Correlation between LaSig and stromal score. (D) LaSig score of patients with
different immunotherapy responses. (E) Survival analysis of patients with different LaSig groups (*p<.05; **p<.01; ***p<.001; ****p<.0001).
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efficacy of immunotherapy. In addition, LaSig also has predictive

ability of prognosis in many types of cancer.

Conclusion

In this study, we analyzed the association between lactate

regulators and immune cells. The LaSig score was constructed to

predict prognosis and immunotherapy response of LUAD. LaSig

may become a valuable signature to guide the treatment of

LUAD patients. The expression level of lactate regulators is

associated with immune cells and the immune checkpoint in the

tumor environment. The prognostic risk model based on

multiple lactate signature genes provides a new perspective for

predicting prognosis and immunotherapy response.
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Background: Extensive-stage small-cell lung cancer (ES-SCLC) is highly

malignant, is highly prone to recurrence, and has a short survival period. It is

very difficult to achieve long-term survival in ES-SCLC, which has not been

significantly improved in the last 20 years. For a long time, platinum-based

chemotherapy has occupied the core position in the treatment of small-cell

lung cancer (SCLC), but there are few options for treatment drugs or regimens,

and if disease progression occurs, the options for follow-up regimens are

obviously limited. The advent of immunotherapy has changed this situation to

some extent, and immunotherapy has shown some effects in improving

efficiency and prolonging survival, whether in first- or third-line therapy, but

it is still unsatisfactory.

Case presentation: A 57-year-old patient with ES-SCLC experienced disease

progression after four lines of treatment including synchronous radiotherapy,

chemotherapy, and antiangiogenesis. However, the patient still benefited when

switching to the programmed cell death receptor-1 (PD-1) inhibitor toripalimab

in combination with chemotherapy in the fifth line. Even after the development

of immune resistance, the patient still benefited after switching to tislelizumab

in combination with different chemotherapy regimens or alone in the sixth and

seventh lines. Following the progression of tislelizumab in combination with

chemotherapy, the patient again profited after switching to durvalumab in

combination with anlotinib and again achieved a progressive-free survival (PFS)

of 11 months. Overall, the patient achieved a total of 45 months of PFS and 50

months of overall survival (OS), with a shocking and exciting 30 months of PFS

achieved in the immune combination phase alone.

Conclusion: We report a patient with ES-SCLC who achieved long-term

survival after at least eight lines of therapy including chemotherapy,
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antiangiogenesis, and different immune checkpoint inhibitors (ICIs). This

suggests that long-term survival in SCLC is possible with aggressive,

combined, and standardized treatment. Otherwise, immunotherapy postline

enablement can still benefit patients, rechallenge after immune resistance is

also possible in SCLC, and combination with chemotherapy or antiangiogenic

therapy can improve the efficacy and prolong the survival. This will provide new

ideas and options for the selection of treatment options for SCLC.
KEYWORDS

ES-SCLC, long-term survival, ICIs, re-challenge, combined regimens
Introduction

Lung cancer, accounting for about 18% of cancer-related

deaths, remains the leading cause of cancer-related deaths

worldwide (1), of which small-cell lung cancer (SCLC)

accounts for only 15% of lung cancer (2). However, SCLC is

the most malignant type of lung cancer and has the worst

prognosis, with an average overall survival (OS) of only 2–4

months in the natural course (3). On the one hand, due to its

rapid proliferation rate and easy early metastasis, two-thirds of

patients are in the extensive stage at the initial diagnosis, leading

to its high mortality rate (4).

For extensive-stage small-cell lung cancer (ES-SCLC),

comprehensive medical treatment is top ranked. SCLC is

extremely sensitive to chemotherapy, and chemotherapy has

excellent efficacy (2, 5). However, SCLC is very easy to relapse,

and the recurrence rate within 1 year after first-line treatment is

more than 80% (6). After relapse, the therapeutic effect is

limited, and despite years of exploration, no more effective

therapeutic drugs have emerged. Even with the advent of

immunotherapy in recent years (7–10), there has been a

modest improvement in the efficiency and survival of SCLC

treatment with an objective response rate (ORR) of only 10% for

single-agent immunotherapy in third-line treatment. Even in

combination with ipilimumab, the ORR is only 33% and the

maximum median progressive-free survival (PFS) is only 2.6

months (9). While in first-line treatment, the median OS was

prolonged by less than 3 months compared to chemotherapy,

despite an ORR of 68% for immune combination chemotherapy

(11). If the disease progresses again after immunotherapy, the

follow-up treatment options will also be significantly limited.

Here, we reported a case of a patient with ES-SCLC who

received three different immune checkpoint inhibitors (ICIs) in

combination with chemotherapy or antiangiogenic targeted

therapy after progressing on fourth-line chemotherapy and

achieved a total of 45 months of PFS and 50 months of high-
02
77
quality OS. Such treatment results were very different from

clinical reports and brought us a very great surprise.
Case presentation

In January 2018, a 57-year-old Chinese woman was admitted

to our hospital for hemoptysis. The patient was in good health

and had no history of smoking, a family history of hereditary

disease, or tumor. However, the current chest computed

tomography (CT) and positron emission tomography (PET)-

CT suspected left-sided advanced central-type lung cancer with

multiple lymph node metastases in the mediastinum and hilar

and pleural effusion (Figure 1). Blood tests show a significant

elevation of tumor markers including neuron-specific enolase

(NSE) (Figure 2A) and pro-gastrin-releasing peptide (Pro-GRP)

(Figure 2B) than the normal. Fortunately, the brain magnetic

resonance imaging (MRI) showed no brain metastases. Then,

she accepted the fiberoptic bronchoscopy and biopsy at the same

time (Figure 2C). Eventually, the diagnosis of ES-SCLC,

cT2bN3M1a, stage IVa was given. Immunohistochemical

analyses suggested “CD56 (+), CgA (±), Syn (+), CK (AE1/

AE3) (perinuclear punctate +), CK5/6 (–), CK7 (-), NapsinA (-),

TTF-1 (+), Ki-67 (80%+), and programmed cell death receptor

ligand-1 (PD-L1) <5%.” The genetic testing demonstrated the

tumor mutational burden (TMB) of 1.82 and microsatellite

stabilization (MSS).

She was administered four-line systematic chemotherapies

including etoposide and carboplatin (EC) (Figure 3), vinorelbine

and ifosfamide (NI) followed by anlotinib (Figure 3), irinotecan

and pobaplatin (IP) (Figure 3), and albumin paclitaxel combined

with cisplatin (TC) (Figure 3). Otherwise, she also got

radiotherapy during the initial treatment period. Her disease

ultimately progressed while on these systematic therapies,

although some lesions shrank or were even partially relieved

within a short period.
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FIGURE 1

(A) CT image at the time of initial diagnosis. (B) Image after first-line treatment. (C) Image after second-line treatment. (D) Image after third-line
treatment. (E) Image after fourth-line treatment. (F) Image after fifth-line treatment. (G) Image after sixth-line treatment. (H) Image after
seventh-line treatment. (I) Image after eighth-line treatment.
A

B

C1 C2

FIGURE 2

(A) Change in neuron-specific enolase (NSE) (ng/ml) during the treatment period. (B) Change in pro-gastrin-releasing peptide (Pro-GRP) (pg/ml)
during the treatment. (C) The microscopic image of the tumor: ×200 (C1), ×400 (C2).
FIGURE 3

The treatment progress of the patient. The first stage includes the first to fourth lines of treatment; the fifth to eighth lines of treatment are the
second stage. PR, partial response; PD, progressive disease; SD, stable disease. The efficacy evaluation was judged according to the Response
Evaluation Criteria in Solid Tumours (RECIST) (Version 1.1).
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Notably, the levels of NSE (Figure 2A) and Pro-GRP

(Figure 2B) were rising, and the ultrasonography and CT scan

showed that the left clavicle lymph nodes were enlarged. Then, she

received the fifth-line treatment with albumin paclitaxel plus

programmed cell death receptor-1 (PD-1) inhibitor toripalimab

(Figure 3). In January 2020, she received radiofrequency ablation

treatment for her metastatic supraclavicular fossa lymph node

lesion. However, albumin paclitaxel had to be suspended for high

brain natriuretic petide (BNP) level and cardiac toxicity.

Afterward, she continued receiving toripalimab alone as the

maintenance treatment (Figure 3).

In March 2020, the touchable swollen lymph nodes on the left

side of the neck revealed that the disease may have progressed.

Immediately afterward, she completed ultrasound examination of

neck lymph nodes and blood tumor markers, and the disease was

judged to have progressed again. Thus, she started the sixth-line

treatment with etoposide plus carboplatin and tislelizumab

(Figure 3). The following CT scan revealed that the lesion has

slightly progressed and she newly acquired pleural and pericardial

effusion. Additionally, the bone scan of the body showed multiple

bone metastases.

From that time, she received the seventh-line gemcitabine plus

tislelizumab (Figure 3). Unfortunately, owing to the coronary

heart disease and percutaneous coronary intervention, she delayed

receiving the tislelizumab monotherapy then (Figure 3).

With aPFS of 5months, her left supraclavicular lymphnodewas

evaluated tobe larger thanbefore revealedby theCTscan.As a result,

a change toPD-L1agentswasdeterminedconsidering thedemandof

the patient and her family. Fortunately, she benefited from the

eighth-line anlotinib plus durvalumab therapy for up to 11 months

(Figure 3). In March 2022, she died of acute heart attack.
Discussion

Although this patient has passed away, it is still exciting to review

the complete treatment of this case (Figure 3). To summarize, this

patient has several very distinctive features. First, this patient

experienced eight lines of treatment and achieved a very long

survival without a significant impact on quality of life despite being

initially diagnosed with ES-SCLC. Furthermore, this patient could

benefit from postline combination immunotherapy despite having

received four lines of chemotherapy up front. Even after the

development of immune resistance, the benefit continued after

switching to a different ICI, with the patient gaining a total of 30

months of PFS during the immunotherapy phase.

In terms of ES-SCLC, the prognosis is poor and survival is short,

with a median OS of only 6–10 months even after aggressive and

standardized treatment (12), anda5-year survival rateof less than2%

(13). However, this patient achieved a high-quality long-term

survival of almost 50 months after multiple lines of therapy, which
Frontiers in Immunology 04
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is exceedingly rare. A review of the literature revealed that patients

with ES-SCLC with better physical status (14, 15), sensitivity to

platinum-based drugs and the absence of liver or brain metastases

(16), and adherence to active close follow-up may have a better

prognosis with the possibility of achieving long-term survival. In

these respects, the present patient is in accordance, and this may be

oneof the reasons for her long-termsurvival.However, data on long-

term survival in ES-SCLC are relatively scarce (17) and are mostly

single case reports (18–24), and the specificmechanisms still need to

be further explored.

The infiltration of immune cells in the tumormicroenvironment

(25,26)and theexpressionofPD-L1(27)maybeclosely related to the

efficacyof immunotherapy.Meanwhile, a cohort study found that the

infiltration of immune cells in the tumormicroenvironment may be

crucial for the long-term survival of SCLC, especially the apparent

increase in the number of CD3+ T cells, CD4+ T cells, CD14+ T cells,

and tumor-infiltrating monocytes and the decrease in suppressor

immune cells (28). However, this patient has not been tested for

lymphocytes in the immunemicroenvironment, so there is no direct

evidence to support this. However, by reviewing the entire treatment

course and outcome of this case, we may be able to refute this

hypothesis as well.

Firstly, this patient had excellent efficacy during the

immunotherapy phase, although the ICI was only started from the

fifth line of treatment. After progressing on fourth-line therapy,

thepatientfirst switched to toripalimab incombinationwithalbumin

paclitaxel and obtained a PFS of 7months, with a significantly longer

effective time compared to the literature, whichmay be related to the

induction of apoptosis of tumor cells by prior chemotherapeutic

agents, increased release of tumor antigenic substances, removal of

immunosuppression, modulation of immune response, and

remodeling of the immune microenvironment, resulting in

immune potentiation (29–34).

After progressing through the fifth line of treatment, the patient

switched to the PD-1 inhibitor tislelizumab in combination with

different chemotherapy regimens as the sixth and seventh lines of

treatment and achieved another 12 months of PFS, again surprising

us with such efficacy. A previous study found that after progression

on one PD-1 inhibitor in non-small-cell lung cancer (NSCLC),

patients can still benefit from swapping to another PD-1 inhibitor

(35). As far as we know, however, this is the first report in SCLC. In

the case of this patient, we can attribute to the difference in the

mechanism of the different drugs. Although both are humanized

immunoglobulin G4 (IgG4) monoclonal antibodies that block the

bindingofPD-1 toPD-L1orprogrammedcell death receptor ligand-

2 (PD-L2), there are still subtle differences in themechanismbetween

toripalimab and tislelizumab. Toripalimab binds to PD-1 on the

surface of T cells via the FG loop (36) while tislelizumab through the

CC’ loop (37), and the dissociation rate from PD-1 is slower (37),

resulting in a higher targeting affinity. In terms of pharmacokinetics,

the half-life of tislelizumab is longer than that of toripalimab (38, 39).
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In addition, the role of combination chemotherapy cannot be

ignored (40–42), as in this case after progression of the tislelizumab

combined with EC regimen, seventh-line therapy in combination

with gemcitabine resulted in a renewed benefit for the patient and a

significantlyprolongedPFScompared tochemotherapyalone (43)or

immunotherapy. It is also suggested that different chemotherapeutic

agents can modify the tumor microenvironment through different

mechanisms and add to the effectiveness of immunotherapy (44, 45).

Unfortunately, despite the seven lines of treatment, the disease

still progressed.

It is reported that when blocking the PD-1/PD-L1 signaling

pathway, PD-L1 inhibitors are more effective than PD-1 inhibitors

(46). In NSCLC, switching to PD-L1 inhibitor therapy after

progression on PD-1 inhibitor therapy still results in disease

control rate (DCR) of more than 30% and PFS can be extended by

about 3or4months (47–49); patient benefit has alsobeen reported in

triple-negative breast cancer (50). This suggests to us that the choice

of PD-L1 inhibitor after PD-1 inhibitor progressionmight be a valid

option. However, there are no similar reports in SCLC. In this case,

after switching to PD-L1 inhibitor therapy in combination with

anlotinib as eighth-line therapy, the patient again benefited with a

significant prolongation of PFS for a total of approximately 11

months, which provides clinical evidence for the replacement in

SCLC with PD-L1 inhibitors after progression with PD-1 inhibitors.

As for the specific grounds for the benefit, we speculate that it ismost

likely due to the discrepancy in the modes of action between PD-1

and PD-L1 (51, 52).

However,whatwestill cannot ignore is the combinedeffectof the

antiangiogenic drug anlotinib. ICIs combined with antiangiogenic

therapy have been shown to improve the efficacy and prolong PFS

andOS (53–56), whichmay be related to the fact that antiangiogenic

drugs can inhibit tumor angiogenesis, reduce the blood supply to the

tumor, andalter the tumormicroenvironment, thus inhibiting tumor

growth. Anlotinib, an essential antiangiogenic agent, has clinically

proven efficacy and safety in SCLC (57, 58). The patient achieved a

long PFS in this line treatment, significantly longer than reported in

the literature (9, 59),whichmust be attributed to the synergistic effect

of the immune combination with antiangiogenesis.

Reviewing the entire course of this patient’s treatment, we

can observe that the patient obtained a very long and high-

quality survival. Especially in the immunotherapy phase, the

sequential application of different ICIs and the combination of

different regimens brought the possibility of long-term survival

for the patient.

In the era of chemotherapy for SCLC, switching to another

chemotherapy regimen after progression has become a routine

option. While entering the era of immunotherapy, whether it is

possible to sequentially apply different ICIs after the progress of

one or more ICI therapies has not been reported. However, this

case provides objective evidence for the efficacy and safety of

immune rechallenge in SCLC.
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Conclusion

First, after aggressive and standardized treatment and close

follow-up, long-term benefit is still possible, even in SCLC. In

addition, immunotherapy remains effective in the later line of

treatment. Even if immune resistant, the patient could still

benefit again after changing ICIs; and the efficacy could be

further improved by combining different treatment regimens.

This provides new ideas and options for the treatment process of

clinically ES-SCLC.
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Characterization of natural killer
and T cells in bronchoalveolar
lavage and peripheral blood
of sarcoidosis patients

Laura Bergantini1*†, Miriana d’Alessandro1†, Genny Del Zotto2,
Emanuela Marcenaro3,4 and Elena Bargagli 1

1Respiratory Diseases Unit, Department of Medical Science, Surgery and Neurosciences, University
of Siena, Siena, Italy, 2Department of Research and Diagnostics, IRCCS Istituto Giannina Gaslini,
Genova, Italy, 3Dipartimento di Medicina Sperimentale (DIMES), Università degli Studi di Genova,
Genova, Italy, 4IRCCS Ospedale Policlinico San Martino, Genova, Italy
The characterization of frequency and phenotypes of natural killer (NK) cells

and T cells in BAL and peripheral blood of patients with sarcoidosis was

evaluated, to discriminate the differential status of these cells in these two

compartments. The analysis revealed that CD56brightCD16neg resulted higher in

BAL than PB of sarcoidosis and healthy subjects, while CD56dimCD16+ showed

a different proportion between BAL and PB of both Sarcoidosis patients and

HC. Moreover, in comparison with autologous PB, BAL was characterized by a

higher expression of activated NK cell markers NKp44, CD69 and CD25.

Significantly increased levels of PD-1+ NK cells in the BAL of patients were

detected. Regarding the maturation of CD4 and CD8, an increase of Effector

Memory T cells (TEM) was reported in BAL compared to PB. A better

characterization of NK and T cells may lead to an improvement of the

pathogenetic mechanisms in sarcoidosis.

KEYWORDS

sarcoidosis, bronchoalveolar lavage, interstitial lung diseases (ILD), natural killer (NK),

T cells
Abbreviations: BAL, Bronchoalveolar lavage; ILD, interstitial lung diseases; NK, natural killer; ILCs, Innate

lymphoid cells; PB, peripheral blood; HC, Healthy controls; KIRs, killer Ig-like receptors; NCRs, natural

cytotoxicity receptors; FVC, forced vital capacity; PFTs, pulmonary function tests; FEV1, forced expiratory

volume in the first second; DLco, diffuse lung carbon monoxide; mAbs, monoclonal antibodies; PCA,

principal component analysis; TEM, T effector memory; TEMRA, T effector memory RA; TCM, T

central Memory.
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Introduction

Among Interstitial lung diseases of unknown origin, Sarcoidosis

is classified as a chronic multisystemic disease that mainly involves

the lung of adults and rarely in children (aged 13–15 years), with

several clinical presentations and prognosis, characterized by non-

necrotizing granulomatous inflammation (1–3).

The pathogenesis of sarcoidosis is already not fully

understood due to the heterogeneity of its clinical characteristics

and the unpredictable outcome that can be asymptomatic or can

evolve into fibrosis with an irreversible process (4). Granulomas

comprise several cellular lineages belonging to both innate and

adaptive immune responses (5). Among these cell subsets,

macrophages that differentiate into epithelioid cells play a key

role in the formation and development of granuloma together

with CD4+ T helper cells that are interspersed within the

granuloma, while other cells such as CD8+ T cells surround the

periphery (6, 7). CD4+ and CD8+ T cells characterize granuloma,

however, only few studies characterized their functions and

subsets at the periphery and into the lung (8, 9).

Bronchoalveolar lavage (BAL) is considered a standard

diagnostic procedure in patients with suspicion of interstitial

lung diseases (ILD) (10). It involves different cells from the lower

respiratory tract, mainly represented by macrophages,

lymphocytes, eosinophils, and neutrophils (11). Lymphocytes

present in the interstitium of the lung represent the most easily

accessible lymphocytes of the human lung (about 5% of the total

circulating lymphocyte pool in humans) (11). By clinical data

and chest X-ray, the presence of elevated lymphocytes (more

than 15%) and CD4/CD8 ratio >3.5 support diagnosis of

pulmonary sarcoidosis (12).

The knowledge regards Natural killers (NK) with the other

Innate lymphoid cells (ILCs) was recently improved (13, 14).

The understanding of NK cell biology has enhanced in terms of

maturation, diversity, and adaptive capacities (15).

NK cells provide a first line of defense against infection and

cancer (16). They express both inhibitory and activatory

receptors. Among inhibitory receptors, killer Ig-like receptors

(KIRs), and the CD94/NKG2A heterodimer, recognize major

histocompatibility complex (MHC) class I molecules (17).

Immune checkpoint PD-1 also belongs to the inhibitory

receptors expressed of NK cell surfaces. PD-has recently

described on a subset of peripheral blood (PB) NK cells from

healthy HCMV+ individuals and NK cells from tumor patients

(18–21).

When target cells lack expression of MHC-I molecules, NK

cells start their activation with the expression of the natural

cytotoxicity receptors (NCRs), i.e. NKp30, NKp44, and NKp46,

NKG2D, DNAM-1 and NKG2C (the activating counterpart of

NKG2A) (16, 18).

In the last years, the number of studies on NK cell features in

the lung increased, showing that the lung contains a high
Frontiers in Immunology 02
84
reservoir of NK cells (15). The distribution of the various NK

cell populations is similar to that of peripheral blood, with a

majority of the more mature NK cells (CD56dimCD16+) and a

minority of the immature CD56brightCD16neg NK cells (22, 23).

Only a few works investigated NK cells in Sarcoidosis, and

they were mainly focalized on their percentages at a peripheral

and alveolar level in comparison with other ILDs for differential

diagnosis (1, 24).

In the present study, we analyzed the frequency of NK and T

cells and the expression of different NK and T surface markers in

BAL and PB samples from sarcoidosis patients, to discriminate the

differential status of NK and T cells in these two compartments.
Materials and methods

Study population

BALF and PB cells for each subject were obtained from 13

sarcoidosis patients (mean age 52 ± 14 years). The final diagnosis

was performed by a multidisciplinary team at Siena University

Hospital, following international criteria.

PB samples from a group of Healthy controls (HCs) were

collected. They had no history of autoimmune, cancer, or other

relevant diseases that can alter immunologic pathways. All the

available variables of HCs were recorded in an electronic database.

The most relevant clinical characteristics are reported in

Table 1. At the moment of time sampling, patients were not

undergoing any treatments. All subjects gave their informed

consent, and the study was approved by the local ethics

committee (markerlung 17431).
BAL procedure and handling of cells

BAL and PBMC collection were performed in the laboratory

of the Respiratory Diseases Unit, Siena University Hospital

(Italy) from January 2019 to December 2020.

BAL was performed as previously described (25). BAL was

filtered through sterile gauze. Cytocentrifuge smear was obtained

for differential cell count with a Fast Quick - May Grunwald-

Giemsa rapid (cat. Nr. 010253, DiaPath, Italy); Remaining cells

were centrifuged at 406xg for 10 min at 4°C and resuspended in

RPMI 1640 medium (Gibco, Paisley, UK). BALF cells were

counted and trypan blue exclusion criteria were used for

determining cell viability.

PB samples were drawn into a tube containing EDTA

anticoagulant (BD Vacutainer® EDTA tubes, BD Biosciences,

CA, USA) and processed within eight hours. PBMC was

obtained by gradient centrifugation separation (Ficoll

Histopaque®-1077, Sigma-Aldrich). Cells obtained from BAL

and PB were washed twice, resuspended in 80% RPMI1640, 10%
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FBS, and 10% Dimethyl sulfoxide (DMSO) at 2x106 cells per vial,

and stored in liquid nitrogen until analysis.
Lung function tests

The following lung function parameters were recorded

following standards international recommendation using a

Jaeger body plethysmograph with corrections for temperature

and barometric pressure. Forced vital capacity (FVC), forced

expiratory volume in the first second (FEV1) and diffuse lung

carbon monoxide (DLco) were performed and collected as

volume (ml) and percentages of predicted values.
Flow cytometry

All mAbs used in flow cytometry for the detection of surface

markers are described in Supplementary Table 1. For

multiparametric flow cytometric analysis, a standard staining

protocol for extracellular markers was used (16). Cells were

washed with Wash buffer (HBSS–/– with 2% of FBS), and

incubated with antibodies mixed for 30 minutes in the dark at

RT. Samples were detected using BD FACS Canto II (BD

Biosciences). Titration experiments were defined for

determining the optimal concentration. Fluorescence minus one

(FMO) controls were used to determine accurate cytofluorimetric

analysis following guidelines (26). For the analysis of cells, the

total NK cell population was identified based on FSC vs SSC and

negative for CD3, CD14, and CD19. CD56 was plotted against

CD16 to obtain immature (CD56brightCD16neg) and mature

(CD56dim/negCD16+) phenotypes of NK cells. On the CD56dim/

negCD16+ population a series receptor was evaluated, including

NKG2A, NKG2C, CD57, KIR, PD-1, CD25, CD69 and NKp44.

For the detection of T Cell maturation, a panel including anti-CD3

APC-Cy7, CD4 FITC, CD62L PE, CD8 Vioblue, and CD45RA

PE-Vio770 was used.
Statistical analysis

Means and standard deviations (M ± SD) or medians and

quartiles (25th and 75th percentiles) for continuous variables

were used. A one-way ANOVA non-parametric test (Kruskal–

Wallis test) and Dunn test were performed for the comparison of

more than 2 groups. To identify the normal distribution of the

variables, the Shapiro–Wilk test was applied. The Chi-squared

test was used for categorical variables. Statistical analysis and

graphic representation of data were performed by GraphPad

Prism 9.0 software (Graphpad Holdings, LLC, San Diego,

CA, USA).
TABLE 1 Demographic, immunologic and functional data of the
cohort.

Subjects (n) 13

Male/female 3/10

Age (year) 52 ± 14

Ex Smoker/never smoker (n) 6/7

Chest X-ray stages (n)

0 4

I 0

II 6

III, IV 3

Lesions other than lung (n)

Heart 1

Skin 3

Eye 1

Brain 1

Liver 1

BALF cell count (mean ± SD)

Cellular concentration (×106 cells) 5.8 ± 2.3

Cell/ml (x103) 96.4 ± 36.5

% of macrophages (%) 77 ± 16

% of lymphocytes (%) 19 ± 15

% of neutrophils (%) 3.3 ± 3.7

% of eosinphils (%) 0.4 ± 0.65

Peripheral cell count (mean ± SD)

% of monocytes (%) 10.4 ± 2.5

% of lymphocytes (%) 24.2 ± 8.3

% of neutrophils (%) 61.3 ± 8.2

% of eosinphils (%) 3.5 ± 1.7

Biomarkers (mean ± SD)

ACE (U/l) 62 ± 21

Lysozyme (mg/l) 5.3 ± 1.6

Pulmonary function tests (mean ± SD)

FEV1% 92.7 ± 17.2

FEV1 ml 2383 ± 640

FVC % 94.4 ± 15

FVC ml 2998 ± 848

DLco (%) 71 ± 13
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A p-value of less than 0.05 was considered statistically significant.

Supervised principal component analysis (PCA) was

employed to reduce the dimensionality of data hyperspace and

for clusterization of the samples based on their cellular subsets.

For the multivariate analysis, the % of differential surface

markers in the overall cohort was used to perform a supervised

heatmap analysis; this analysis visualizes the percentages of the

differential cellular markers in each enrolled patient. Clusterization

was performed based on Spearman rank correlation and K means.

The above analyses and corresponding figures were obtained using

MORPHEUS (https://software.broadinstitute.org/morpheus/) and

ClustVis (http://biit.cs.ut.ee/clustvis) software.
Results

Study population

No statistically significant differences were reported in terms

of Sex distribution, age, and smoking habits for HC when

compared with sarcoidosis patients. Demographic data

(including sex, age, and smoking habits) of sarcoidosis patients

are reported in Table 1. As expected, patients were young,

prevalently female who had never smoked. At the chest X-ray,

three patients report stage III or IV, four patients stage 0, and

four patients stage II. Regarding BAL cell count, an increased

percentage of lymphocytes was reported, while biomarkers and

PFTs values were unaltered.
NK cell analysis of PB and BAL of
patients affected by sarcoidosis

As above mentioned, we analyzed a wide number of surface

markers on peripheral blood (Sarc-PB) and BAL fluid (Sarc-

BAL) NK cells of the selected patients. The results were

compared with the peripheral blood of healthy controls (HC-

PB). CD56brightCD16neg showed an increased level in BAL than

PB of sarcoidosis and healthy subjects. CD56dim/negCD16+ at the

same time showed a different proportion between BAL and PB of

both Sarcoidosis patients and HC (Figure 1A). Moreover, from

the analysis of CD56dim/neg/CD56bright ratio, BAL samples

reported significantly lower values of the ratio than PB of HC

and Sarcoidosis (2,5 ± 2,4 Sarc-BAL, 26,1 ± 22,9 Sarc-PB, and

14,5 ± 10,6 HC-PB; p=0,0003) (Figure 1A).

In comparison with autologous PB, BAL was characterized

by a higher expression of the activation NK cell markers NKp44,

CD69, and CD25. In addition, NKG2A was decreased, and its

activating counterpart (NKG2C) was increased (Figure 1B).

The levels of markers characterizing terminally differentiated

NK cells, such as CD57 and KIRs, were higher in BAL than in the

peripheral blood of both patients and HC (Figure 1B).
Frontiers in Immunology 04
86
The inhibitory checkpoint PD-1 showed a similar trend, as it

was negative on almost all HD-NK cells, highly positive on a

small percentage of Sarc-PB while a highly expressed on a large

fraction of BAL-NKs.
T-cell analysis of peripheral blood and
Bronchoalveolar lavage of patients
affected by sarcoidosis

Due to the crucial immune-pathogenetic role of lymphocytes

in granuloma formation of sarcoidosis, analysis of T cell subsets

resulted in fundamental to improve the knowledge of pathogenic

mechanisms of this disorder.

Interestingly, as expected, a predominance of CD4+ T cells

was reported in BAL compared to patients’ PB, typical of the

recruitment of helper T cells into the granuloma. Regarding the

maturation of CD4 and CD8, an increase of Effector Memory T

cells (TEM) was reported in BAL compared to PB. On the other

hand, CD4 and CD8 TEMRA showed decreased percentages in

BAL than PB. A decreased level of CD4+ naïve T cells was

reported. CD8+ naive T cells showed the same trend however

without reaching significance. Concerning Central Memory T

lymphocytes (TCM), only CD8 showed an increased level in BAL

than PB (Figures 2A, B).
PCA and Heatmap analysis revealed the
same biological behavior among groups

Based on the flow cytometry data, we performed a PCA

analysis on all the different cell subgroups detected on the NK

and T cell surfaces in BAL and PB. The PCA plot shows that

samples with the same biological behavior clustered together,

corroborating that the differential cell subsets were characteristic

for each condition.

Furthermore, the PB of sarcoidosis patients clusters close to

the PB of HC. On the other hand, the BAL samples were located

on the opposite side of the PB samples (Figure 3A).

In particular, Unit Variance Scaling is applied to rows

and SVD is used to calculate principal components. PC1 and

PC2 explain 39.2% and 12.5% of the total variance,

respectively (Figure 3A).

Figure 3B showed heatmap analysis performed on cell

surface markers of NK and T cells in PB and BAL of

sarcoidosis patients and PB of HC based on hierarchical

clusterization based on spearman rank correlation. Similar to

PCA analysis, the general trend separates samples into three

principal groups as indicated by the dendrogram on the top of

the matrix and indicated as A, B, and C.

Of note, group A is mainly composed of CD56 cell surface

markers, including CD57, NKG2C, and KIR. The B group
frontiersin.org
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includes mainly subsets of T cells as T central memory and Naïve

T cells.

K means was also applied to detect clusters based on the

expression of surface markers (Figure 3B).

The analysis revealed an inverted trend in the expression of

several surface markers on the BAL samples with respect to PB

of both sarcoidosis and HC group.
Discussion

In this study, an evaluation of different surface cell markers,

phenotypically and functionally characterizing NK and T cells,

was performed in the BAL and PB of sarcoidosis patients and

HCs. Moreover, the lung microenvironment typical of patients

affected by sarcoidosis was explored through the analysis of BAL

cell subsets. These biological data play an important role in
Frontiers in Immunology 05
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diagnosis and they provide interesting information on the cells

in the interstitial space of the lung. From the clinical point of

view, the selected patients can be considered representative of a

typical sarcoidosis patients’ cohort in terms of age and gender

distribution as well as of predominance of stage 2 at chest X-ray.

In multivariate analysis, a clear division of the three groups

(Sarc-BA, Sarc-PB, and HC-PB) emerged. This result showed

that the analyzed NK and T cell subsets greatly differentiate

among the three groups, as clearly reported in Figure 3.

Different studies reported that, upon in vitro stimulation,

there is an increase of IFN-g and TNF-a produced by immature

CD56bright NK cells in BALF of sarcoidosis patients, and this

may suggest the involvement of NK cells in granuloma

formation (27, 28). Moreover, these studies seem to suggest

that the more immature NK cells (CD56brightCD16neg)

producing a large amount of Th1 cytokines (IFN-g and TNF-

a) may be involved in the pathogenesis of sarcoidosis (28, 29).
B

A

FIGURE 1

(A) Histograms and flow cytometric dot plot of CD56brightCD16dim and CD56dim/negCD16+ cell subsets in BAL of sarcoidosis patients and PB of
sarcoidosis patients and healthy controls. (B) Histograms and flow cytometric dot plot of CD56dim/negCD16+ cell subsets expressing CD57, KIR,
NKG2A, NKG2C, CD69, PD-1, CD25, and NKp44 in BAL of sarcoidosis patients and PB of sarcoidosis patients and healthy controls. **p<0,01
***p<0,001 ****p<0,0001.
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In line with the literature, we observed an increased fraction of

the immature CD56bright CD16neg NK cell subset and a decrease

of the more mature CD56dim/negCD16+ NK phenotype in BAL of

patients compared to their PB. Importantly, deep characterization

of the CD56dim/negCD16+ NK cell subset in BAL compared to

autologous PB showed a large fraction of this more mature NK

cell subset expressing KIR and a small percentage of NKG2A+ NK

subpopulation. Furthermore, in BAL-NK cells were characterized

by a high amount of CD57 (a marker of terminal differentiation)

and NKG2C, the activating counterpart of NKG2A, generally

upregulated during HCMV infection/reactivation. Unfortunately,

our study lacks information on patients’HCMV status. Moreover,

CD56dim/negCD16+ BAL-NK cells expressed activation markers,

such as CD69 (which also represents a tissue-resident marker),

NKp44, and CD25.

Regarding CD25, the soluble form “sCD25” was widely used

as a serum marker of sarcoidosis active status. Recently it was
Frontiers in Immunology 06
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demonstrated that, in the context of inflammation, CD56dim NK

cells expressing CD25 can be activated by IL-2-producing T cells

during adaptive immune responses (30, 31). After stimulation

with IL-2, NK cells can acquire NKp44, an activating NK cell

receptor, involved in the triggering of NK cell cytotoxicity

against target cells expressing the relative ligands. NKp44 has

never been analyzed before in sarcoidosis patients and it could

deserve further investigation.

It is interesting to note that we first described an

overexpression of PD-1 in NK cells of BAL samples when

compared to the PB of the same patient. In this regard, it has

recently been shown that the expression of PD-1 induces an

impairment of the function of NK cells towards the target cells

expressing the relative ligands (PD-L1/2) thus demonstrating its

role as an immune checkpoint also in NK cells (21).

Upregulation of PD-1 was also present in PB CD4+ T cells of

sarcoidosis patients (32, 33).
B

A

FIGURE 2

(A) Histograms and flow cytometric dot plot of CD4 and CD8 T cell subsets in BAL of sarcoidosis patients and PB of sarcoidosis patients and
healthy controls. (B) Histograms and flow cytometric dot plot of T Naive, TCM, TEM, and TEMRA of BAL of sarcoidosis patients and in PB of
sarcoidosis patients and healthy controls. **p<0,01 ***p<0,001 ****p<0,0001.
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Braun et al. showed that spontaneous clinical resolution of

sarcoidosis corresponds to a reduced percentage of PD-1+ CD4+

T cells, whereas clinical progression to an increase of PD-

1+CD4+ T cells suggesting that the blockade of the PD-1

pathway may contribute to the restoration of CD4+ T-Cell

Proliferative Capacity in Sarcoidosis patients (32). Moreover,

in the same study, an increase in PD-1 levels in BAL compared

to PB was also reported exactly as in our cohort of patients. In

chronic beryllium diseases, another lung granulomatosis, PD-1

expression on CD4+ T cells directly correlated with the severity

of T-cell alveolitis (34).

Although in sarcoidosis the exact role of PD-1 on NK cells

was poorly investigated, in other granulomatosis of the lung it

has been demonstrated that the PD-1 pathway impaired NK cell

functions reducing IFN-g production and lytic degranulation

(35). Further investigation to unravel the role of PD-1 in

controlling inflammation in sarcoidosis pathogenesis will

be necessary.

In this study, we also evaluated the T cell compartment, in

particular: naive, central memory, effector memory, and RA+

effector memory subsets of both CD4+ and CD8+ T cells.

In our study, BAL samples of sarcoidosis patients largely

consisted of TEM lymphocytes, belonging both to the helper and

the cytotoxic compartment TEM cells represent an immediate

defense, whereas TCM cells support the response by proliferating
Frontiers in Immunology 07
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in the secondary lymphoid organs and producing a supply of

new effectors (35).

In many studies, it has been shown that lung resident TEM

cells can mediate early control of respiratory viral infections but

they are inefficient at mediating recall responses in terms of

proliferation and accumulation at inflammatory sites (36, 37). In

other studies focused on lung malignancies, upregulation of both

TEM and TCM was reported with a higher amount of cytokine

released compared to TEMRA and T naïve, thus demonstrating

their activity in the site of inflammation (38, 39).

In conclusion, in this study, a different NK cell subset

distribution was observed at the site of inflammation compared

to the PB of sarcoidosis patients (a higher proportion of

CD56bright as compared to CD56dim/neg was observed in BAL).

In addition, the more mature NK cell subset present in BAL is

characterized by overexpression of activation markers, such as

CD69, CD25, as well as NKp44, and a large fraction of fully

mature NK cells, characterized by the NKG2A-, KIRs+ phenotype.

Interestingly, these cells also express high levels of NKG2C and

PD-1, as previously described in adult HCMV+ HC (21). The lack

of prior research on specific aspects makes our research of interest

and useful for further investigation. In this study, the

characterization of NK and T- cell subsets in sarcoidosis

revealed a distinct phenotype between the bloodstream and

lung. Elevated levels of PD-1+ NK cells in the BAL of patients
B CA
BA

FIGURE 3

(A) For PCA analysis, Unit Variance Scaling is applied to rows; SVD is used to calculate principal components. X and Y axis show principal
component 1 (PC1) and principal component 2 (PC2) that explain 39.2% and 12.5% of the total variance, respectively. Prediction ellipses are such
that with probability 0.95. (B) Heatmap analysis performed on cell surface markers of NK and T cells in PB and BAL of sarcoidosis patients and
PB of HC based on hierarchical clusterization based on spearman rank correlation. K means was also applied to detect clusters based on the
expression of surface markers.
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were observed. Other studies need to determine the functions of

these cells. A deeper characterization of these cells can lead to a

better understanding of the pathogenetic mechanisms

of sarcoidosis.
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Introduction: Colorectal cancer (CRC) ranks second for mortality and third for

morbidity among the most commonly diagnosed cancers worldwide. We

aimed to investigate the heterogeneity and convergence of tumor

microenvironment (TME) in CRC.

Methods:We analyzed the single-cell RNA sequencing data obtained from the

Gene Expression Omnibus (GEO) database and identified 8major cell types and

25 subgroups derived from tumor, para-tumor and peripheral blood.

Results: In this study, we found that there were significant differences in

metabolic patterns, immunophenotypes and transcription factor (TF)

regulatory patterns among different subgroups of each major cell type.

However, subgroups manifested similar lipid metabolic patterns,

immunosuppressive functions and TFs module at the end of the differentiation

trajectory in CD8+ T cells, myeloid cells and Fibroblasts. Meanwhile, TFs

regulated lipid metabolism and immunosuppressive ligand-receptor pairs were

detected by tracing the differentiation trajectory. Based on the cell subgroup

fractions calculated by CIBERSORTx and bulk RNA-sequencing data from The

Cancer Genome Atlas (TCGA), we constructed an immune risk model and

clinical risk model of CRC which presented excellent prognostic value.

Conclusion: This study identified that the differentiation was accompanied by

remodeling of lipid metabolism and suppression of immune function, which

suggest that l ipid remodeling may be an important tr igger of

immunosuppression. More importantly, our work provides a new perspective

for understanding the heterogeneity and convergence of the TME and will aid

the development of prognosis and immunotherapies of CRC patients.
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ScRNA-seq, colorectal cancer, tumor microenvironment, CIBERSORTx, prognosis
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1 Introduction

Colorectal cancer (CRC) accounts for about 10% of all

malignant neoplasms in humans which is the third most

common cancer worldwide and its mortality rate (9.4%) was the

second highest among malignancies, only after lung cancer. As of

2020, more than 935,000 people worldwide died from CRC or its

complications (1). The traditional mode of surgery combined with

chemoradiotherapy has not achieved the ideal curative effect (2).

In this context, immunotherapy emerged and quickly became the

main treatment mode for a variety of tumors, including CRC, and

achieved long-term and sustained remission in a small number of

patients, however, the majority of patients did not achieve long-

term tumor control after a temporary immune response. This

indicates that although immunotherapy has great prospects in

tumor treatment, there are still considerable deficiencies at

present. We believe that the fundamental solution is to improve

the understanding of the tumor microenvironment (TME).

TME plays an important role in the occurrence, development

and metastasis of tumors, including not only tumor cells, but also

immune cells, stromal cells, cytokines, extracellular matrix and

other extracellular components (3). There have been extensive

studies on the heterogeneity of TME, most of which focus on the

heterogeneity of tumor cells, but the heterogeneity of immune cells

and stromal cells is still insufficient. In recent years, more and more

studies have confirmed that tumor Infiltrating T lymphocytes

(TILs) will gradually differentiate into a dysfunctional state

which is known as exhaustion under long-term antigen

stimulation, which is one of the main obstacles to anti-tumor

immunotherapy in the process of tumor development. The

exhausted CD8+ T cells (Tex) were characterized by progressive

and hierarchical loss of cytokine production, high co-expression of

inhibitory receptors (programmed cell death 1 (PD-1), lymphocyte

activation gene 3 protein (LAG3), T cell immunoreceptor with

immunoglobulin and ITIM domain (TIGIT), etc.), altered

expression of key transcription factors and metabolic

derangement (4). Meanwhile, immune checkpoint inhibitor

therapy has achieved unprecedented clinical success in a variety

of cancers particularly PD-1 antibodies (5). T-cell receptor (TCR)

persistent activation, transcription factors (including Signal

transducer and activator of transcription 3 (STAT3), STAT4,

Nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) and

Blimp-1) and epigenetic components (including DNA

methylation) were reported to regulate the expression of

immune checkpoints (6–8). However, the metabolic

reprogramming was associated with the development and

maintenance of Tex while the detailed mechanism remained

unclear. In addition, tumor associated macrophages (TAMs) and

cancer associated fibroblasts (CAFs) have also been reported as

potential targets of tumor immunotherapy. They are

heterogeneous cell types which contributed to malignancy

through production of angiogenic growth factors, extracellular

matrix (ECM) remodeling, and immunosuppression (9, 10). The
Frontiers in Immunology 02
93
immunotherapy targeted TAMs has been applied in clinic while

the minimal monotherapy efficacy was observed (11). Similarly,

altered metabolism in the development of TAMs and CAFs has

also been reported while the specific mechanism remains

unknown. Notably, investigation of heterogeneity and

convergence of above cell types in TME may contribute to

clarify the relationship between immunosuppression and

metabolic remodeling and find potential therapeutic targets.

Single-cell RNA sequencing (scRNA-seq) is a huge

innovation and technological progress in the field of life

science. It provides us with gene expression information at the

level of individual cells and is an indispensable tool to unravel

cellular heterogeneity (12). In this study, we obtained scRNA-seq

data from the public database, re-identified and annotated cell

populations and constructed cell differentiation tracks, identified

multiple cell subpopulations, and found that different types of

cells always showed similar phenotypes at the end of their

differentiation tracks, which was called convergence. While

recent studies have attempted to fully elucidate the TME

heterogeneity identified by scRNA-seq in human cancers,

there are significant deficiencies in the elucidations of

convergence in TME. In this study, we not only focus on the

heterogeneity of TME, but also identified the convergence and

detected common targets of different cell types which may be

potential therapeutic targets and help improve the treatment

strategy and clinical prognosis of patients with CRC.
2 Materials and methods

2.1 Data acquisition

The scRNA-seq profiles included 10,398 cells from 10

human CRC samples (accession number GSE146771) (13),

which were obtained from the Gene Expression Omnibus

(GEO, http://www.ncbi.nlm.nih.gov/geo/) database. This

dataset contains 5169 cells from tumor cores, 2400 cells from

paratumor tissues and 2829 cells from peripheral blood,

performed using the SMART-seq2 platform. Normalized

matrix files for the dataset were downloaded. The bulk RNA-

seq data of CRC samples, including 398 tumor samples and 39

normal samples, were obtained from the The Cancer Genome

Atlas (TCGA) database (https://portal.gdc.cancer.gov/). We

excluded samples with an overall survival (OS) time< 7 days

or insufficient clinical information regarding age, gender, or

TNM stage.
2.2 Processing of the CRC
scRNA-seq data

The Seurat package in R 4.0.3 was used for quality control

(QC) (14). The quality standards were as follows: 1) genes
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detected in< 3 cells were excluded; 2) cells with< 50 total

detected genes were excluded; 3) cells with ≥ 5% of

mitochondria-expressed genes were excluded. For the

remaining cells, cell-cycle scores were calculated using Seurat’s

CellCycleScoring function since the cell cycle phase effect was

observed. Batch effects among the patients had already been

eliminated by the data donator. The gene expression matrices

were further normalized to RNA counts, mitochondrial

percentages, and cell cycle scores using the top 3000 variable

genes. PCA was used to calculate the significantly available

principal components (PCs). We then applied the t-distributed

stochastic neighbor-embedding (tSNE) algorithm for

dimensionality reduction with 20 initial PCs to perform cluster

classification analyses across all cells (15).
2.3 Cell type recognition

We performed differential expression analysis among all

genes within cell clusters using Seurat’s FindAllMarkers

function to identify the marker genes in each cluster (16). An

adjusted P-value< 0.05, expression percentage > 0.25, and | log2

[fold change (FC)] | > 0.25 were considered as cutoff criteria for

identifying marker genes (Table S1). Subsequently, different cell

clusters were determined and annotated by the singleR package

according to the composition patterns of the marker genes and

were then manually verified and corrected with the CellMarker

database. The malignant cells were annotated by correlation with

the data donator’s cell annotation.
2.4 Pseudotime trajectory analysis

Single-cell pseudotime trajectories were constructed using the

Monocle 2 algorithm, an R package designed for single-cell

trajectories by Qiu et al (17). This algorithm applies a machine

learning technique to reduce the high-dimensional expression

profile to a low-dimensional space, visualized as a tSNE plot.

Single cells were projected onto this space and ordered into a

trajectory with branch points. The dynamic expression heatmap

was constructed using the plot_pseudotime_heatmap function. In

addition, differential expression analysis between branches was

performed using the plot_genes_branched_heatmap function.
2.5 Functional enrichment analysis

Differentially expressed genes (DEGs) analysis was

performed using Seurat’s FindMarkers function. The following

cutoff threshold values were used: adjusted P-value< 0.05 and |

log2 [FC]| >1. The DEGs were loaded into Metascape (http://

metascape.org), a tool for gene list enrichment analysis (18).
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The Gene Set Variation Analysis (GSVA) algorithm was

performed to explore the activity variation of biological process

and pathways in each cell types. Gene Oncology gene sets

“c2.all.v7.4.symbols.gmt” and Kyoto Encyclopedia of Genes and

Genomes sets “c5.all.v7.4.symbols.gmt” from Molecular Signatures

Database (MSigDB, http://www.gsea-msigdb.org), which were used

for functional analyses. The GSVA analysis was performed in R

4.0.3 to calculate the enrichment score of the pathways in each cell

and when the P-value was less than 0.05, the enriched gene set was

considered to be statistically significant.
2.6 Cell-cell communication analysis

CellChat is a novel toolkit used to infer intercellular

communication networks from scRNA-seq data quantitatively

(19). Based on the ligand-receptor interactions database for

human and pattern recognition approaches, CellChat can

predict major signaling inputs and outputs for cells and

establish how those cells and signals coordinate their

functions. Ligand-receptor pairs with a P-value< 0.05 were

filtered to evaluate the relationship between different cell types.
2.7 Gene regulatory network analysis

We used SCENIC (Aibar et al., 2017) (20), an algorithm that

can reconstruct transcriptional states and regulatory networks

from scRNA-seq data, to evaluate the gene regulatory networks

relating to TFs and regulons in individual cells. The gene

expression matrix was input into SCENIC and a co-expression

matrix was constructed using GENIE3. Direct binding by DNA-

motif analysis was identified based on a motif dataset (hg19-

500bp-upstream-7species.mc9nr.feather, hg19-tss-centered-

10kb-7species.mc9nr.feather) to construct regulons for each

TF. Finally, regulon activity was analyzed using AUCell (Area

under the Curve), where a default threshold was applied to

binarize the specific regulons. Regulon modules were then

identified based on the Connection Specificity Index (CSI) to

confirm specific associating partners (21). Hierarchical

clustering with Euclidean distance was then performed to

identify different regulon modules. We then used 0.65 as a

cutoff to construct the regulon association network, to

investigate the relationship between different regulons.
2.8 Correlation with bulk RNA-seq data

CIBERSORTx is a new machine learning method developed

from CIBERSORT for estimating the abundance of cell clusters

in bulk RNA-seq data (22). This tool was used to digitally purify

the transcriptome of individual cell clusters from the bulk data
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without isolating single cells. We extracted the transcripts per

million (TPM) normalization datasets of selected cell types

including CD8+ T cells, myeloid cells, fibroblasts and

epithelial cells to create the signature matrix in 1000

permutations and without batch correction. Then we separated

the CRC patients from TCGA database into training and testing

cohorts according to a 1:1 ratio using a randomization method

based on survival status and used CIBERSORTx to estimate the

fraction of each cell cluster in training and testing cohorts

respectively. Notably, the bulk RNA-seq data from TCGA was

first normalized to TPM values. Furthermore, stepwise

multivariate Cox regression was applied to select the optimal

coefficient for each cell cluster to construct the risk model in

training cohort. The riskscore were then divided into “high

risktype” and “low risktype” according to the median risk

score which equaled 1.263 in the training cohort. The formula

for the model is as follows:

Riskscore =o
n

i=1
Coefi*Fractioni

Finally, we incorporated the riskscore, TNM stage, gender,

and age to construct a clinical risk model using stepwise

multivariate Cox regression to construct clinical risk model in

the training cohort. The clinical riskscores was then divided into

“high clinical risktype” and “low clinical risktype” according to

the median risk score which equaled 0.900 in the training cohort.

The formula for the model is as follows:

Clinical Riskscore =o
n

i=1
Coefi*Factori

The associations of immune risktype and clinical risk type

with OS were analyzed using Kaplan-Meier (KM) survival

analysis, with receiver operating characteristic (ROC) curve

analysis used to verify the sensitivity and specificity of the

model for the training cohort. The immune risk model and

clinical risk model was then applied to the testing cohort, and the

reliability of the model was verified by KM curve and ROC

curve analyses.
2.9 Statistical analyses

Statistical analyses were conducted using R software (version

4.0.3; R Foundation for Statistical Computing, Vienna, Austria).

All statistical tests were two-sided, with P-values< 0.05

considered statistically significant.
3 Results

The samples, including tumor, Para-tumor and blood from

10 treatment-naive CRC patients were involved in this study.
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According to the annotation of SingleR package and CellMarker

database, we finally identified 8 major cell types including CD4+

T cells, CD8+ T cells, B cells, myeloid cells, innate lymphoid cells

(ILCs), fibroblast cells, endothelial cells, and epithelial cells

(Figure 1A). Each cell type was extracted and further grouped

for annotation, and finally 25 cell subtypes were identified

(Figure 1B). The top five markers identified by the differences

in the main cell types were visualized as a bubble plot

(Figure 1E). Interestingly, when we traced the tissue origins, it

was noted that immune cells, especially Tex, TAMs, dendritic

cells (DCs) and fibroblast cells were highly enriched in tumor

tissues (Figures 1C). To investigate the network of interactions in

the TME, we used CellChat to calculate potential ligand-receptor

pairs. Network visualization was performed to visualize the

interactions (Figure 1D). Notably, Tex, macrophages, TAMs,

and DCs possessed the most interaction pairs with cells from

other lineages, revealing the dominant roles in the TME.
3.1 CD8+ T cells

The CD8+ T cells were divided into nine sub-clusters and

annotated into four cell types; naïve CD8+ T cells, effector

memory CD8+ T cells (Tem), effector CD8+ T cells (Teff) and

Tex (Figure 2A). To clarify the function of each cell type, we

extracted the marker genes (Table S1) and loaded these into the

Metascape (http://metascape.org/) (Figure 2B, C). The

pseudotime trajectory revealed that CD8+ T cells became

exhausted (Figure 2D), and inhibitory receptors (IRS)

expression increased in a stepwise manner (Table S2). We

clustered all the transcription factors surrounding the CD8+ T

cells by single-cell regulatory network inference and clustering

(SCENIC) analysis and divided them into nine modules using a

clustering algorithm (Figure 3E; Table S3). Notably, Module 1

transcription factors including Nuclear receptor ROR-gamma

(RORC), Nuclear receptor subfamily 1 group D member 1

(NR1D1), Peroxisome proliferator-activated receptor gamma

(PPARG) and Sterol regulatory element-binding protein 2

(SREBF2) were significantly activated in Tex (Figure 3F).
3.1.1 Loss of effector function during
exhaustion of CD8+ T cells

The loss of Tex effector function is classed into three major

categories: (1) upregulation of cell surface IRS, (2) inhibitory

soluble factors and environmental factors such as interleukin10

(IL10), IL4, transforming growth factor-beta (TGF-b), and
interferon alpha/beta (IFNa/b), and (3) immunosuppressive

cells (11). We examined the immune checkpoints in different

cell types (Table S1). Notably, IRS, including the inhibitory

receptor T-cell immunoglobulin and mucin domain 3 (TIM3),

lymphocyte activation gene 3 protein (LAG3), programmed cell

death protein 1 (PDCD1), TIGIT, CD27, cytotoxic T-
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lymphocyte protein 4 (CTLA-4), and tumor necrosis factor

receptor superfamily member 9 (TNFRSF9), were upregulated

in Tex. Enrichment analysis showed that Teff was enriched in

numerous proinflammatory pathways such as the IL-2, -3, -17,

and -18 signaling pathways, whereas Tex was enriched in IL-4

and -10 immunosuppressive pathways and PD-1 signaling

pathways (Figures 2B, C). GSVA analysis confirmed these

results (Figure 2G). At the same time, the pseudotime analysis
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revealed that genes related to IRS were significantly upregulated

along with the differentiation such as PD-1 and CTLA-4 (Table

S2). The expression of immunosuppressive-related genes such as

IL4, IL1RN, and IL4I1 were enhanced, whereas expression of

immune activation-related genes such as IL18BP and IL5RA

were reduced. This finding agrees with previous results where T

cell exhaustion usually manifests as a stepwise loss of effector

functions. CellChat analysis was undertaken to determine
B

C D

E

A

FIGURE 1

Overview of single cells derived from tumors, adjacent tumor tissues, and peripheral blood of CRC patients. (A–C) tSNE plots of all the single
cells color-coded for (A) eight major cell types, (B) 25 sub-cell types, (C) tissue origins (tumor, adjacent to tumor or blood). (D) Interaction
network among major cell types constructed by CellChat; circle sizes represent interaction weights; the thicker line indicates more weight and
strength of the interactions between variable major cell types. (E) Bubble heatmap showing top five marker genes of eight major cell types. Dot
size indicates fraction of expressing cells, colored according to expression levels.
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further the interaction between Tex and other cells in the TME.

First, we analyzed the immunosuppressive receptors expressed

by Tex, including TIGIT, CTLA-4, ICOS, and PDCD1, and

found that different cells produced different ligand-receptor

modes (Figure 3A). Endothelial and tumor cells mainly

secreted poliovirus receptor (PVR) and NECTIN2, which

acted on the TIGIT receptor on the surface of Tex. CD80 and

CD86 secreted by DCs and TAMs interacted with CTLA-4.

Regulatory T cells (Tregs) mainly secreted CD274 to act on

PDCD1. Furthermore, analysis of the PD-L1 pathway regulatory

network showed that Tregs were the main senders of PD-L1,

with Tex being the main receivers (Figure 3B). Besides, cytokines

such as PVR and NECTIN2 also participate in building the

tumor immunosuppressive microenvironment. Analysis of the

PVR pathway regulatory network showed that tumor and
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e n d o t h e l i a l c e l l s w e r e t h e ma i n s e n d e r s , a n d

immunosuppressive cells such as Tex were the receivers

(Figure 3D). More interestingly, the fibroblast subgroup served

as a mediator in this regulatory network, and this implies that

this subgroup could be a potential target for new drugs. The

NECTIN2 pathway regulatory network also showed multiple

ligand-receptor modes; DCs, endothelial cells, fibroblasts, and

TAMs were the main senders, and Tregs, Teff, and Tex were the

main receivers (Figure 3C). Because PVR and NECTIN2 can

both act on TIGIT, compared to the currently popular PDL1/

PDLD1 blockers, TIGIT may not only reverse the exhaustion

state of CD8 T cells but may also improve the tumor

immunosuppressive microenvironment to a certain extent.

Hence, we hypothesized that inhibition of TIGIT could be a

new treatment for CRC. Our analyses showed that Tex play
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FIGURE 2

CD8+ T cells tend to exhaust in the tumor microenvironment. (A) tSNE plots showing 4 sub-cell types of CD8+ T cells (upper) and their tissue
origins (lower). (B) GO and (C) KEGG pathway enrichment analyses of marker genes of Tex (blue color) and Teff (green color). The height of
each barplot shows the log10 of P-value calculated using the Metascape database. (D) Differentiation trajectory of CD8+ T cells in CRC, color-
coded for pseudotime (upper) and sub-cell types (lower). (E) Pseudo-heatmap of genes altered in the differentiation process of CD8+ T cells in
CRC, divided into four clusters. (F) The bubble plot shows the GO and KEGG pathway enrichment analysis of genes in cluster 1 identified in
Pseudo-heatmap using the Metascape database. (G) The heatmap illustrates the activity of biological process and signaling pathway in each cell
type by GSVA.
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major roles in the immunosuppressive microenvironment, and

the depletion of CD8+ T cells is an inevitable outcome in TME.

3.1.2 Metabolic remodeling in the CD8+ T cell
exhaustion process

We constructed the differentiation trajectory of CD8+ T cells

using pseudotime analysis, in which effector memory CD8+ T

cells were present at the initial location of the differentiation

trajectory, gradually differentiated into Teff and finally convert
Frontiers in Immunology 07
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into Tex which located at the end of the differentiation trajectory

(Figure 2D). As we all know, under chronic inflammation such

as during cancer, autoimmunity, and chronic infections, Teff

transform into Tex (23). Thus, we identified the DEGs (Table

S1) among the Teff and Tex and performed enrichment analysis

(Figures 2B, C). It was found that the metabolic patterns of Teff

and Tex were significantly different. The glucose metabolic

process was enriched in Teff while lipid metabolism processes

such as lipid biosynthesis and the cholesterol metabolic pathway
B
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FIGURE 3

The interaction network and transcription regulatory network of CD8+ T cells. (A) Summary of selected ligand-receptor interactions between CD8+ T
cells and TME-infiltrated cell types detected by CellChat. P-values are represented by the size of each circle. The color gradient indicates the level of
interaction; blue and red colors correspond to the smallest and largest values respectively. (B–D) Hierarchical plot showing the inferred intercellular
communication networks for PD-L1 (B), NECTIN2 (C), and PVR (D) signaling, respectively. The interactions are divided into sources and targets and were
labeled by solid circle and hollow circle, respectively. The circle sizes in the hierarchical plot are proportional to the number of each cell type and the
edge width represents the communication probability. (E) Heatmap of 9 identified regulon modules based on the regulon CSI matrix. (F) t-SNE map for
all CD8+ T cells based on the regulon activity scores (RAS) of the respective regulon modules.
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were highly enriched in Tex. GSVA also support this finding

(Figure 2G). We extracted genes whose expression increased in

the differentiation trajectory and then conducted enrichment

analysis. The pathways such as fatty acid biosynthesis and

omega-3, -6, and -9 fatty acids (FAs) synthesis were all

enriched (Figure 2E). These results implied that the

differentiation of T cells was related to lipid metabolism

remodeling, and abnormal lipid accumulation may be the

energy source for Tex. The DEGs analysis, Pseudotime

analysis and GSVA all showed that the PPARG pathway was

highly expressed in Tex. A previous study showed activation of

the PPAR pathway in the metabolic regulation of lipid and

lipoprotein levels (24). Based on these results, we suspect that the

lipid metabolism remodeling in Tex is attributed to the

activation of the PPARG pathway. To verify this hypothesis,

we performed SCENIC analysis to reveal the abnormal

transcriptional regulatory network of Tex. Without

suspension, PPARG was significantly enriched in Tex. This

further demonstrates that the PPARG transcription factor may

play an important role in lipid reprogramming in Tex. In

addition, we also enriched the RORC, NR1D1, and SREBF2

transcription factors in the M1 module, which are also closely

associated with lipid metabolism (25–27). Our results suggested

that transcription factors (TFs) such as PPARG and SREBF2

may participate in the metabolic remodeling in Tex and act as

latent targets to reverse this process.
3.2 Myeloid cells

Myeloid cells are abundant critical components of the TME

which are heterogeneous mixture of cell types having both

tumor stimulating and suppressing activities. Analysis of the

myeloid cells revealed five distinct sub-clusters: monocytes,

macrophages, TAMs, DCs, and mast cells (Figure 4A). Among

them, macrophages and TAMs can be activated and polarized

into M1 (classically activated) and M2 (selectively activated)

phenotypes under the influence of external conditions and

stimulus factors. M1 cells usually show pro-inflammatory

activity, while M2 cells exhibit tumor-promoting phenotypes

characterized by high levels of immunosuppressive markers and

anti-inflammatory factors (28).

Interestingly, when traced back to the tissue source,

monocytes were present primarily in the blood, while

macrophages and TAMs occurred in most tumor tissues

(Figure 4A). Pseudotime analysis showed that monocytes

differentiated into macrophages when they entered the TME

from the blood and finally differentiated into TAMs (Figure 4D).

3.2.1 TAMs are engaged in constructing the
immunosuppressive microenvironment

Enrichment analysis revealed that Pathways associated with

proinflammation were enriched in macrophages, such as IL-1,
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-2, -3, -11, -17, -18, -21, TNF alpha and interferon alpha/beta

signaling pathways while macrophages also exhibit few M2-like

function such as IL-4, -10, and TGF-beta receptor signaling

(Figure 4B). In contrast, pathways associated with tumor

promotion and immunosuppression were enriched in TAMs

such as arachidonic acid metabolism, matrix metalloproteinase

(MMP), the vascular endothelial-derived growth factor (VEGF),

IL-4, -10, -13 and PD-1 signaling. Few M1-like functional

pathways were also present in TAMs such as interferon

gamma and TNF signaling pathways. GSVA analysis also

disclosed that IFN alpha/beta signaling was enriched in TAMs,

while IL-5, -6, -7 and -17 were enriched in macrophages

(Figure 4C). In conclusion, macrophages and TAMs exhibit

mixed M1 and M2 phenotypes among which macrophages

mainly exhibit M1 phenotype, whereas TAMs mainly exhibit

M2 phenotype. Combined above results with tissue origination

and pseudotime analysis, we speculated that once monocytes

from the peripheral blood entered the tumor tissues, they

initially differentiated into M1-type macrophages and finally

differentiated into M2-type TAMs, alongside enhanced

immunosuppressive effects.

SCENIC analysis was performed to determine the changes in

TFs during the transformation of macrophages into TAMs

(Figures 4F, G). We found that STAT4, NFkB1, NFkB2 and

RUNX1 were enriched in macrophages (Table S5) in which

STAT4 has been proved to mediates the JAK-STAT-related

pathways and participates in the conduction of the IL-12, -21,

-23 and -35 signaling pathways (29). NFkB1 and NFkB2 can

promote the polarization of macrophages to M1 type (30).

Conversely, MAF, ETV5 and EGR2 were highly expressed in

TAMs in which MAF regulates the activation of IL-4 pathway

and ETV5 is related to blood vessel growth and activation of the

IL-10 pathway (31–33). The expression of EGR2 was found to be

related to the activation of the IL-4 and TGF-b functional

pathways (34, 35).

Finally, we utilized CellChat to investigate the interactions

between TAMs and other cell subtypes in TME (Figure 5D).

Compared to macrophages, TAMs participated more in

constructing the immunosuppressive microenvironment.

The immunosuppressive ligands secreted by TAMs, such as

CD80, CD86, CD274, ICOSL and NECTIN2 showed evident

interactions with other receptors such as CTLA-4, PD-1, ICOS

and TIGIT expressed by other cells, especially T cells

(Figure 5E–G). In addition to IRS, TAMs also secreted

immunosuppressive soluble cytokines such as IL-10 and

SPP1 (Figure 5A). Interestingly, TAMs were the main

secretors of IL-10, whereas macrophages were the main

receivers of IL-10 (Figure 5B). This suggested a possible

positive feedback loop between macrophages and TAMs.

Once macrophages had differentiated into TAMs, TAMs

possibly secrete IL-10 acting on macrophages to promote the

differentiation process (Figure 5B). TAMs also secreted SPP1

which have been found mediating macrophage polarization
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and facilitates immune escape in lung adenocarcinoma (36).

SPP1 secreted by TAMs could interact with almost all cells in

TME, including DCs, Tregs, Tex, fibroblasts, and malignant

cells (Figure 5C). Interestingly, TAMs were not only the main

secretors of SPP1 but also the main receivers. It may be

attributable to the M2 phenotype of TAMs in this study.
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3.2.2 Lipid metabolism reprogramming
in TAMs

Lipid metabolism associated genes such as PPARA were

highly expressed in the TAMs. In order to explore whether there

was lipid metabolism remodeling in TAMs similar to that in T

cell exhaustion, marker genes of macrophages and TAMs were
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FIGURE 4

Macrophages resulted from M1 polarization, whereas TAMs resulted from M2 polarization in CRC. (A) tSNE plots showing 4 sub-cell types of
CD8+ T cells (upper) and their tissue origins (lower). (B) GO and KEGG pathway enrichment analyses of marker genes of TAMs (blue color), Teff
(green color) and DCs (orange color). The height of each barplot shows the log10 of P-value calculated using the Metascape database. (C) The
heatmap illustrates the activity of biological process and signaling pathway in each cell type by GSVA. (D) Differentiation trajectory of
monocytes, macrophages and TAMs in CRC, color-coded for pseudotime (upper) and sub-cell types (lower). (E) Pseudo-heatmap of genes
altered in the differentiation process of monocytes, macrophages, and TAMs in CRC, grouped into four clusters. (F) Heatmap of 12 identified
regulon modules based on the regulon CSI matrix. (G) Selected regulon models which upregulated in TAMs (M1) and Macrophages (M2, M7)
showed in t-SNE map for myeloid cells.
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extracted for functional enrichment analysis. The results showed

that, compared to macrophages, TAMs are enriched in more

lipid metabolic pathways such as cholesterol biosynthesis and

fatty acid metabolism, such as the “PPAR Alpha Pathway”.
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“Regulation of cholesterol biosynthesis by sterol regulatory-

element binding proteins (SREBP)” and “ Oxysterols receptor

LXR-beta (NR1H2) and Oxysterols receptor LXR-alpha

(NR1H3) Mediated signaling “(Figure 4B). GSVA also further
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FIGURE 5

The interaction network of macrophages and TAMs. (A) Summary of selected soluble factor-receptor interactions among macrophages, TAMs
and TME-infiltrated cell types. (G) Summary of selected immune checkpoints-receptor interactions between TAMs and TME-infiltrated cell
clusters. P-values are represented by the size of each circle. The color gradient indicates the level of interaction; blue and red colors
correspond to the smallest and largest values respectively. (B, C, E–G) The heatmap plot showed the inferred intercellular communication
network for SPP1 (B) and IL-10 (C), CD80 (E), CD86 (F), and ICOSL (G) signaling of myeloid cells and TME-infiltrated cell clusters, respectively.
The interactions are divided into sources (labeled on y-axis) and targets (labeled on x-axis). The color gradient represents the communication
probability; white and red colors correspond to the smallest and largest values respectively.
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confirmed enhanced synthesis of cholesterol and lipid droplets

in TAMs (Figure 4C). Pseudotime analysis showed that the

expression of genes related to lipid output, such as ABCA1 and

ABCG1, was gradually enhanced during macrophage

differentiation (Table S4). It is reasonable to speculate that the

differentiation of macrophages into TAMs is accompanied by

lipid metabolism remodeling.

Among the functional pathways enriched in TAMs, three

transcription factors attracted our attention, namely SREBF,

NR1H2 and NR1H3. Further SCENIC analysis reported the

abnormal transcriptional regulatory network in TAMs (Table

S5). As shown in Figure 4G, transcription factors in module 1

were significantly activated in TAMs, which include the SREBF

and NR1H3. Among them, SREBF functions in the transcriptional

regulation of genes involved in the biosynthesis and uptake of

lipids, promoting fatty acid synthesis and inducing M2 phenotype

of TAMs (37, 38). NR1H2 and NR1H3 act as transcription factors

engaged in lipid metabolism synthesis and are important

modulators of the SREBP-1c pathway at the transcription level,

where they regulate gene expression linked to cholesterol transport

and efflux in hepatic lipogenic cells (39). We were particularly

interested in the cholesterol efflux function mediated by NR1H2

and NR1H3. Increased cholesterol outflow increased lipid content

in the TME to provide nutrition for tumor cell growth and

destroyed the lipid raft of TAMs to weaken the Toll-like

Receptor 4 (TLR4) signaling pathway (39). It also enhanced the

IL-4 pathway, weakened the interferon pathway (40), and has an

unexpected role in the polarization of TAMs to M2.We speculated

that reprogramming of lipid metabolism in TAMs is involved in

the remodeling of immune functions, to a certain extent.

Therefore, SREBF and NR1H3 play important roles in lipid

metabolism reprogramming in TAMs. TAMs and Tex have both

undergone lipid metabolism remodeling, reflecting the

important role of lipid metabolism in the process of T cell

exhaustion and TAMs polarization to M2 type. However, there

are significant differences between these two kinds of cells, which

are mainly manifested in the differences in the transcription

regulatory factors. Hence, we suspect that SREBF and NR1H3

may be important targets to prevent or reverse the polarization

from TAMs to M2.

3.2.3 DCs exhibit a similar pattern to
TAMs in metabolism remodeling and
construction of the
immunosuppressive microenvironment

DCs are the most potent antigen-presenting cells in the

immune system and are central players in the adaptive immune

response. DEGs analysis revealed that DCs exhibited highly

expressed immunosuppressive cytokines, such as IL-4, -10, and

IFNa/b (Table S1). Further enrichment analysis showed that IL-4,

-10, and -13, interferon alpha/beta, PD-1, and CTLA-4 inhibitory

signaling pathways were enriched in DCs (Figure 4B). CellChat

analysis foundDCs exhibited a similar pattern to TAMs in secreting
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immunosuppressive cytokines, especially ICSO (Figure 5E), CD80

(Figure 5F) and CD86 (Figure 5G). These heatmaps indicated that

DCs and TAMs were the main secretors participating in the

exhaustion process of CD8+ T cells, synergistically promoting the

construction of the immunosuppressive microenvironment.

At the same time, enrichment analysis showed that lipid

metabolism, fatty acid metabolism, and PPARA signaling

pathways were highly enriched in DCs (Figure 4B). Except for

aberrant lipid storage, the PPARs pathway also enhances TCA

cycle, resulting in citric acid accumulation. These conditions

provide the substrate for the de novo synthesis of fatty acids and

intracellular lipid droplets. Other pathways were also enriched,

including Wnt signaling and CDK-beta-catenin activity. Wnt5

has been proved to act on Frizzled (FZD) family receptors on

DCs and trigger the activation of downstream PPAR pathways

through activation of b-catenin signals to remodel lipid

metabolism in melanoma (41) (Figure 4B). Transcriptional

regulation by RUNX2 and RUNX3, regulating Wnt signaling

was enriched in DCs. SCENIC analysis demonstrated that

RUNX2 was highly expressed in DCs (Figure S3D). These

results implied that lipid metabolism remodeling in DCs

might also depend on the core Wnt/b-catenin/PPAR signaling

pathway regulated by the RUNX family.

Based on the above analysis, we speculate that lipid

metabolism reprogramming in DCs is involved in

reconstructing the immunosuppressive microenvironment.
3.3 Fibroblast cells

We extracted 145 fibroblast cells classified into two clusters:

fibroblast-1 and fibroblast-2 (Figures 6A, B). Pseudotime

analysis revealed that fibroblast-1 was present at the initial

stage of the differentiation trajectory, and fibroblast-2 was

present at the end. Interestingly, fibroblast_2 also differentiated

into two distinct subtypes, state2 and state3 (Figure 6C).

3.3.1 Similar metabolic and functional
remodeling in fibroblasts

Enrichment analysis showed that compared to fibroblast-1,

fibroblast-2 is more involved in extracellular matrix (ECM)

degradation and promotion of cell motility regulated by MET

signaling pathway (Figure 6D). Interestingly, the metabolic

patterns between the two clusters are totally different. The

pathways related to lipid cholesterol and fatty acid metabolism

were significantly enriched in fibroblast-2. In contrast,

fibroblast-1 exhibited carbohydrate metabolism pattern

(Figure 6E). Furthermore, the two subgroups of fibroblast-2

both exhibited patterns of ECM regulation and lipid

metabolism, while the state2 subgroup showed stronger

patterns of lipid metabolism remodeling, ECM degradation

and promotion of cell motility regulated by MET signaling

pathway compared to state3 (Figure 6F). Among these, several
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pathways highly enriched in fibroblast-2 aroused our attention,

such as”NR1H2&NR1H3 regulate gene expression linked to

cholesterol transport and efflux”, “NR1H2 and NR1H3

Mediated signaling” and “transcriptional regulation by

RUNX2”. SCENIC analysis also showed that NR1H2,

NR1H3and RUNX were upregulated in fibroblast-2 (Figure

S3D). It was highly consistent with that of TAMs. Above

results revealed that enhanced lipid metabolism and abnormal

lipid accumulation may also occur in the differentiation from

fibroblast-1 to fibroblast-2.
3.4 The infiltration of tumor-educated
immune cells is associated with a worse
prognosis in CRC

We performed digital cytometry analyses using

CIBERSORTx to evaluate the abundance of tumor stromal and
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immune cell subsets analyzed previously in patients from The

Cancer Genome Atlas-Colon Adenocarcinoma (TCGA-COAD)

data. We established a new risk model using stepwise regression

to evaluate the association between cell fractions and prognostic

outcomes and identify the optimal coefficient for each subgroup

in the training cohort. Finally, we selected sixteen subgroups to

construct the model. The formula for the risk model is as follows:

Riskscore=-2.373*Fibroblast_cells.0+9.172*Fibroblast_cells.1

+6.570*Myeloid.cell.0+5.484*Myeloid.cell.1-827.566*Myeloid.cell.2

+9.532*Myeloid.cell.5+18.344*Myeloid.cell.6-.645*Myeloid.cell.7

+16.412*CD8_T_cells.0-0.766*CD8_T_cells.1+7.595*CD8_T_cells.

2+40.164*CD8_T_cells.3+7.233*CD8_T_cells.4-28.620

*CD8_T_cells.5+8.862*CD8_T_cells.7+4.852*CD8_T_cells.8 (The

correspondence between each subgroup and sub cell type was

applied in Supplementary Table 9).

Then, we evaluated the prognostic value of the risk model for

overall survival (OS). Patients in the high-risk group had a

significantly worse OS than the low-risk group both in training
B

C D

E F

A

FIGURE 6

Similar metabolic and functional remodeling in fibroblasts. (A) tSNE plots showing 2 sub-cell types of fibroblasts. (B) The volcano plot illustrated
the DEGs of each sub cluster, statistically significant DEGs were defined with p< 0.05 and [logFC] > 1 as the cut-off criterion. (C) Differentiation
trajectories of fibroblasts color-coded for pseudotime (upper) and sub-cell types (median) and states (lower). (D) The heatmap illustrates the
activity of biological process and signaling pathway in each cell type by GSVA. (E) GO and KEGG pathway enrichment analyses of marker genes
of fibroblast-2 (blue) and fibroblast-1 (green). (F) Enrichment analyses of marker genes of state2 (blue) and state3 (green) cluster. The height of
each barplot shows the log10 of P-value calculated using the Metascape database.
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and testing cohort (p<0.001 and p=0.03, respectively)

(Figures 7A, B). The model’s accuracy was verified using time-

dependent receiver operating characteristic (ROC) curves, which

confirmed the reliability of the prognoses for both cohorts. The

area under the ROC curve for the risk score was 0.823, 0.774, and

0.696 for 1-, 2- and 3-year OS in the training cohort, versus

0.709, 0.709, 0.711 in the testing cohort. (Figures 7C, D).

Furthermore, we used a stepwise multivariate Cox regression

to construct a new clinical model incorporating riskscore, TNM

stage, gender, and age in the training cohort and selected

riskscore and TNM stage to construct the model. The formula

for the clinical risk model is as follows:

Clinical riskscore = 0:472*riskscore + 0:582*stage

Interestingly, riskscore and TNM stage were both

independent prognosis factors (p<0.001 and p=0.038,

respectively). The patients were separated into two subgroups

according to the median clinical riskscore. KM survival analysis

revealed that high clinical risktype had a significantly worse OS

than low clinical risktype both in training cohort and testing

cohort (p<0.001 and p=0.0012, respectively) (Figures 7E, F). The

areas under the ROC curve for 1-, 2-, and 3-year OS was 0.885,

0.746, and 0.734 for 1-, 2- and 3-year OS in the training cohort,

versus 0.827, 0.780, 0.780 in the testing cohort. (Figures 7G, H),

which was better than the immune risk model.

We also applied other immune risk model that have been

reported and TNM stage for validation. Patients in the high-risk/

high-stage (III-IV) group showed a significantly worse OS than

the low-risk/low-stage (I-II) group (p<0.001 and p=0.015,

respectively) (Figures S6B, S6A). The area under the ROC

curve for the risk score was 0.758, 0.760, and 0.717 for 1-, 2-

and 3-year OS for the immune risk model, versus 0.726, 0.636,

0.650 for the TNM stage model (Figures S6D, S6C).
4 Discussion

Currently, the treatment of CRC, especially advanced CRC,

still remains challenging. Although ICB has made some

progress, only a small number of people benefit from it due to

low efficiency, high drug resistance, severe toxicity and potential

for relapse. A recent study found that both tumor cells and

tumor-infiltrating cells are involved in the development of drug

resistance (42). As for the other defects are due to insufficient of

systematic cognization of immunotherapy. Recent studies

related the heterogeneity identified by scRNA-seq in human

cancers to cell types found in murine tumor models and

identified many functional sub clusters responsible for the

poor immunotherapy response such as CXCL13+BHLHE40+

Th1-like cell population (43), C1QC+SPP1+TAMs (13), XCR1

+CADM1+cDC, CD1A+ CD172A+cDC (44), which provides
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many valuable insights for the development of clinical strategies.

Although recent studies have made significant progress in

resolving the problem of heterogeneity, there are obvious

shortcomings in elucidating the common features of newly

defined immunosuppressive cells such as Tex and TAMs.

In this study, we leverage the advantage of integrated

scRNA-seq and bulk RNA-seq as well as a variety of

bioinformatics analyses to clarify the heterogeneity and

convergence of TME in CRC. Eight main cell types were

identified preliminarily and 25 sub cell types were further

distinguished after improving the resolution. It was found that

the metabolic patterns and immunophenotypes displayed by

each cell type were extremely different. However, we were

surprised to find that multiple sub cell types manifest similar

metabolic patterns and immunosuppressive functions at the end

of differentiation trajectory. Meanwhile, we found similar

immunosuppressant ligand-receptor pairs in Tex, TAMs, and

fibroblast-2 sub cell types by intercellular communication

network analysis, and similar TFs regulating lipid metabolic

remodeling were found in transcription factor regulatory

network analysis.

Since it is impossible to adequately characterize the tumor

microenvironment in CRC, we selected several specific cell types,

such as CD8+ T cells, myeloid cells and fibroblasts representing

the main components of the TME, to illustrate its heterogeneity

and convergence. Our key conclusions are as follows:

First, we identified that the immunosuppressive

microenvironment of CRC was co-shaped by immune cells,

stromal cells and tumor cells. Meanwhile, for each cell type the

cells closer to the end of their differentiation trajectory showedmore

immunosuppressive characteristics, such as exhaustion in CD8+ T

cells and polarization to the M2 phenotype in TAMs. In this

process, proinflammatory functions were inhibited, whereas

immunosuppression functions were enhanced. In addition, the

intercellular communication network showed more active

secretion of immunosuppressive cytokines by cells closer to the

end of their differentiation trajectory. For example, in the regulation

of IRS, exhaustion was the inevitable outcome of CD8+ T cells

mediated by various cells in the TME. At the same time, different

cells manifested different ligandmodes. Tumor cells mainly secreted

PVR and NECTIN2 to act on the TIGIT receptor. CD80 and CD86

secreted by DCs and TAMs interacted with CTLA-4 and Tregs

mainly secreted CD274 to act on PDCD1. Soluble cytokines such as

IL-10 and SPP1 were secreted by TAMs. More importantly, there

are multiple positive feedback loops among intercellular subgroups.

For example, the network analysis of IL-10 implied a potential

positive feedback loop between macrophages and TAMs to

promote the differentiation process. The positive feedback loop

may equally be applied to SPP1 in TAMs to maintain the M2

phenotype. Therefore, we speculate that these inhibitory ligand-

receptor pairs and positive feedback loops of cytokines are involved
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in the construction and maintenance of the immunosuppressive

microenvironment, and are also important potential targets for our

immunotherapy and targeted therapy.

As mentioned above, we mapped the differentiation

pathways of each cell type and found that different subgroups
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of each cell type had different metabolic patterns. Interestingly,

although the metabolic patterns of each subgroups within the

certain cell types were diverse, those cells close to their terminal

differentiation trajectory showed similar metabolic patterns,

namely enhanced l ip id metabol ism and abnormal
B

C D

E F

G H

A

FIGURE 7

Infiltration of tumor-educated immune cells is associated with a worse prognosis in CRC. (A, B) Kaplan–Meier survival curves of immune risk
model for the training (A) and testing cohorts(B), respectively. (C, D) The time-dependent ROC curves of immune risk model for 1-, 2- and 3-
OS year in the training (C) and testing cohorts (D), respectively. The areas under the ROC curve for 1-, 2- and 3- year OS were 0.823, 0.774, and
0.696 in the training cohort and 0.709, 0.709 and 0.711 for 1-, 2- and 3- year OS in the testing cohort. (E, F) Kaplan–Meier survival curves of
clinical risk model for the training (E) and testing cohorts(F), respectively. (G, H) The time-dependent ROC curves of clinical risk model for 1-, 2-
and 3- OS year in the training (G) and testing cohorts (H), respectively. The areas under the ROC curve for 1-, 2- and 3- year OS were 0.823,
0.774, and 0.696 in the training cohort and 0.709, 0.709 and 0.711 for 1-, 2- and 3- year OS in the testing cohort.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1003419
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2022.1003419
accumulation of intracellular lipid. SCENIC analysis revealed

that the transcription factors that regulate lipid metabolism

remodeling in each cell type partially overlapped. The most

representative transcription factors are PPARG, SREBF, NR1H2,

and NR1H3. The genes regulated by NR1H2 and NR1H3 were

linked to cholesterol transport and efflux, and the outflow of

cholesterol could destroy the lipid rafts on cell membranes,

attenuating the TLR4 signaling pathway. Furthermore, increased

cholesterol outflow also enhanced the IL-4 pathway and attenuated

the IFN pathway. This phenomenon implied that enhanced

intracellular lipid metabolism might be an important factor in the

transformation of immune function, and transcription factors

involved in lipid metabolism remodeling in cells may be potential

therapeutic targets to reverse immunosuppression.

We applied CIBERSORTx algorithm to quantitatively

assess the association between the proportion of cell

subgroups in TME and prognosis in CRC. KM survival

analysis and ROC curve analysis suggest that our immune

risk model is an effective clinical prediction tool, which can

improve the accuracy of survival prediction in CRC patients.

Furthermore, the clinical risk model constructed by

incorporating immune risk type and TNM stage could not

only predict the survival prognosis of colorectal cancer

patients, but also had significantly better AUC values at 1, 2

and 3 years than immune risk model both in training and

testing cohorts. In addition, validation prognostic model

showed similar prognostic value to our immune risk model

whereas worse than our clinical risk model. This indicates that

the risk prognosis model based on cell proportion in TME can

supplement the existing clinical prognosis criteria and is a

method with great prospects in clinical practice applications.

Currently, conventional RNA sequencing is the mainstream

sequencing technology, but its gene expression level is the mixed

expression of all cells in the tissue after lysis. Although simple

and intuitive, it cannot reflect the gene expression of a single cell

or a single cell group. With the further analysis, the accuracy of

sequencing is required to be higher and higher. With its high-

precision sequencing analysis, scRNA-seq has become a

powerful technology in modern medical research, but this

technology cannot be applied to most preserved tissue samples

and is expensive, so it cannot be used as a routine clinical

treatment project. The deconvolution algorithm CIBERSORTx

can not only deconstruct ordinary RNA-seq to achieve the

secondary utilization of data, but also to some extent make up

for the shortcomings of scNA-SEQ tissue samples, such as high

requirements, high price and insufficient sample size. More

importantly, with the progress of sequencing technology, the

cost of ordinary RNA-SEQ will gradually decrease, while the

accuracy and data volume of scRNA-seq will continue to
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improve. Meanwhile, deconvolution algorithms like

CIBERSORTx will also continue to improve, which means that

in the near future, more and more patients with colorectal cancer

can benefit from the high-precision analysis of scRNA-seq while

enjoying the low cost of ordinary RNA-seq.

Although the heterogeneity and convergence of CRC

microenvironment were further analyzed by using scRNA-seq and

constructed an immune risk prognostic model based on

CIBERSORTx algorithm and bulk RNA-seq data in this study,

there are still some limitations. First of all, our data sources are all

public databases, so we cannot obtain all clinical information that is

meaningful for the study, such as tumor size, location, differentiation

degree, pathological classification, immunohistochemical results,

surgical methods, postoperative radiotherapy and chemotherapy,

and patients’ underlying diseases, etc. This will inevitably lead to the

introduction of confounding factors in the construction of the

prognostic model, and cause certain deviations in the final results.

Secondly, although our single-celled sequencing analysis at the

cellular level to reveal the gene expression, and through a variety of

biological information analysis method to predict and infer the

trajectory, regulation and control of transcription factors, cell

differentiation and intercellular communication network, but has

not been experimental verification, the follow-up still need further

perfect the related experiments in vivo and in vitro in order to

strengthen the reliability of conclusions.
9 Conclusion

This study further revealed the heterogeneity and

convergence in TME, especially the high consistent lipid

metabolism remodeling and immunosuppressive phenotype

during the differentiation of each cell subpopulation, providing

a new perspective for the targeted therapy and immunotherapy

of colorectal cancer. Meanwhile, CIBERSORTx algorithm was

used to integrate scRNA-seq and bulk RNA-seq data to

construct immune risk model and clinical risk model,

providing reference value for prognostic analysis of colorectal

cancer patients. In conclusion, this study provides a new

perspective for understanding the heterogeneity and

convergence of the TME and will aid the development of

immunotherapies to treat CRC.
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Glossary

CRC colorectal cancer

SCENIC single-cell regulatory network inference and clustering

TCGA The Cancer Genome Atlas

HER2 human epidermal growth factor receptor 2

EGFR epidermal growth factor receptor

TME tumor microenvironment

Tex exhausted CD8 T cell

TAM tumor-associated macrophages

CAF cancer-associated fibroblasts

ICB Immune checkpoint blockade

PD-1 programmed cell death 1

CTLA-4 cytotoxic T lymphocyte-associated protein 4

dMMR mismatch-repair-deficient

MSI-H microsatellite instability-high

MSI microsatellite instability

IRS inhibitory receptors

scRNA-seq single-cell RNA sequencing

TNM the tumor

nodes and metastasis

QC quality control

ILC innate lymphoid cell

DC dendritic cells

BEAM branch expression analysis modeling

Teff T effector cell

DEG differentially expressed genes

AMPK Adenosine 5&rsquo;-monophosphate -activated protein
kinase

GSVA gene set variation analysis

FA fatty acid

SREBP Sterol regulatory element binding protein

FASN atty acid synthase

ACC Acetyl-CoA Carboxylase

HMG-CoA 3-hydroxy-3methylglutary-coenzyme A

ACLY ATP-citrate lyase

PPAR peroxisome proliferator-activated receptor

TF transcription factors

TGF-&beta; transforming growth factor-beta

(Continued)
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CONTINUED

IFNa/b interferons alpha and beta

TNF tumor necrosis factor

IL interleukin

Treg regulatory T cells

PVR poliovirus receptor

TIGIT T cell immunoreceptor with immunoglobulin and ITIM
domain

ICOSL/
ICOS

Inducible Co-Stimulator Ligand/Inducible Co-Stimulator

TIM3 the inhibitory receptor T-cell immunoglobulin and mucin
domain 3

LAG3 lymphocyte activation gene 3 protein

MSI-L microsatellite instability-low

VEGF vascular endothelial-derived growth factor

ZEB1 zinc finger E-box binding homeobox 1

MMP matrix metalloproteinase

TLR4 Toll-like Receptor 4

TCA tricarboxylic acid

FZD Frizzled

GPCR G-protein-coupled receptor

BMP bone morphogenetic protein

Dvl Disheveled

AhR aryl hydrocarbon receptor

EMT epithelial&ndash;mesenchymal transition

TCGA-
COAD

The Cancer Genome Atlas-Colon Adenocarcinoma

OS overall survival

ROC receiver operating characteristic

KM Kaplan-Meier

GEO Gene Expression Omnibus

PC principal component

tSNE t-distributed stochastic neighbor-embedding

CSI Connection Specificity Index

TPM transcripts per million

NR1H3 Liver X receptors alpha

NR1H2 Liver X receptors beta
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Introduction: Adult-type diffuse gliomas are malignant primary brain tumors

characterized by very poor prognosis. Dendritic cells (DCs) are key in priming

antitumor effector functions in cancer, but their role in gliomas remains poorly

understood.

Methods: In this study, we characterized tumor-infiltrating DCs (TIDCs) in adult

patients with newly diagnosed diffuse gliomas by using multi-parametric flow

cytometry and single-cell RNA sequencing.

Results: We demonstrated that different subsets of DCs are present in the

glioma microenvironment, whereas they are absent in cancer-free brain

parenchyma. The largest cluster of TIDCs was characterized by a

transcriptomic profile suggestive of severe functional impairment. Patients

undergoing perioperative corticosteroid treatment showed a significant

reduction of conventional DC1s, the DC subset with key functions in

antitumor immunity. They also showed phenotypic and transcriptional

evidence of a more severe functional impairment of TIDCs.
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Discussion: Overall, the results of this study indicate that functionally impaired

DCs are recruited in the glioma microenvironment. They are severely affected

by dexamethasone administration, suggesting that the detrimental effects of

corticosteroids on DCs may represent one of the mechanisms contributing to

the already reported negative prognostic impact of steroids on glioma

patient survival.
KEYWORDS

dendritic cells, brain tumors, perioperative corticosteroids, immune suppressive
tumor microenvironment, single cell-RNA sequencing
Introduction

Gliomas represent 75% of malignant primary brain tumors

in adults, and still remain among the most difficult cancers to

treat (1). Their severity relies on a combination of histological

features and signature molecular genetic alterations. According

to the increasingly recognized role of molecular markers in

predicting clinical behavior, the classification of gliomas is

rapidly changing. The 2021 WHO classification of central

nervous system tumors subdivides adult-type diffuse gliomas

into isocitrate dehydrogenase (IDH)-mutant astrocytoma, IDH-

mutant and 1p/19q codeleted oligodendroglioma, and IDH-

wildtype glioblastoma (2). Although all diffuse gliomas are

highly infiltrative and resistant to therapy, IDH-wildtype

glioblastomas are characterized by the worst prognosis, with

most patients not surviving beyond a year despite standard of

care treatment, which consists of maximal safe surgical resection

followed by chemoradiation (3).

The urgent need for more efficacious treatments for patients

with gliomas, together with the recent progresses of anticancer

immunotherapies (4), has renewed the interest in developing

novel immunotherapeutic approaches also for gliomas. In this

regard, the use of immune checkpoint inhibitors and peptide

vaccination have so far failed to improve the survival in these

patients, likely because of the low immunogenicity and the

highly immunosuppressive tumor microenvironment (TME)

th a t cha r a c t e r i z e g l i oma s ( 5 , 6 ) . Among o th e r

immunotherapeutic approaches, dendritic cell (DC)-based

immunotherapy represents a promising strategy to better

control the clinical progression of gliomas (7, 8). Indeed,

recent clinical trials demonstrated the ability of DC

vaccination protocols to generate potent tumor-specific

immune responses in vivo and partial benefit on overall and

progression-free-survival rates (8). In order to further improve

the efficacy of these immunotherapeutic protocols, next

generation DC-based vaccines aim at exploiting specific DC

subsets able to infiltrate gliomas and to prime/boost cytotoxic T

cell-driven anti-cancer immunity (9, 10). Other developing
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strategies aimed at potentiating the effects of DCs in cancer

immunotherapy include the use of DC vaccines in combination

with other anticancer therapies, and the reprogramming of

tumor-infiltrating DCs towards the promotion of tumor

rejection (9, 11, 12). In order to achieve these goals for the

treatment of gliomas, a precise characterization of glioma-

infiltrating DC subsets, their activatory/tolerogenic profile, and

the molecular mechanisms involved in glioma-induced DC

tolerogenicity is needed.

DCs are a heterogenous population of professional antigen

presenting cells (APCs) that play a central role in the activation

and regulation of all immune responses (13). DC-lineage DCs

are subdivided into plasmacytoid DCs (pDCs) and conventional

DCs (cDCs), which are further divided into cDC1 and cDC2

subsets. pDCs are endowed with the ability to produce high

amounts of type I interferon (IFN) in response to viral

infections, but in resting conditions they are mainly

tolerogenic. Therefore, pDCs in the TME can contribute to

tumor-specific tolerance and are associated with a bad

prognosis (14). cDC1s are the most efficient DCs in priming

cytotoxic T cells due to their high cross-presentation properties,

and their presence in the TME is associated with better survival

across several types of human cancers (15). cDC2s are mainly

specialized in the activation of helper T cells that can be

differentially polarized depending on the environmental

conditions that sustain cDC2 activation (16). Further subsets

of inflammatory DCs can also contribute to the overall shaping

of antitumor immune responses exerted by DCs (13). They

include monocyte-derived DCs (moDCs), which are rare in

human peripheral tissues at the steady-state but rapidly

increase during inflammation (13); and 6-sulfo-LacNAc (slan)

DCs, which in the blood have a transcriptional profile

overlapping with CD16+ non-classical monocytes but in

peripheral tissues can acquire typical DC functions (17).

Beyond their belonging to one of these subsets, the

behaviour of DCs depends also on their state of activation

that is in turn affected by stimuli provided by the tissue

microenvironment where DCs reside or are recruited. Upon
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exposure to inflammatory stimulation, DCs up-regulate the

expression of MHC and costimulatory molecules, secrete pro-

inflammatory cytokines, and present antigens to T cells in fully

stimulatory conditions. On the other hand, DCs exposed to

immunosuppressive environment express low levels of MHC

and costimulatory molecules, up-regulate the expression of

inhibitory molecules, secrete immunosuppressive cytokines,

and present antigens to T cells in tolerogenic conditions (18).

Accordingly, in cancer patients DCs are affected by the TME

that undergoes profound changes during cancer progression

(19, 20). While in the initial stages of cancer DCs activate

robust tumor-specific cytotoxic T cells (11), during cancer

progression DCs contribute to the tumor escape from

immune surveillance by promoting tumor-specific immune

tolerance and the development of an immunosuppressive

TME (20).

The identification of DC subsets in the TME, together with

the characterization of their activatory/tolerogenic profile, has

been hampered so far by the low number of DCs in the TME

and the lack of DC-spec ific markers . The recent

implementation of high-dimensional single-cell technologies

is making possible to define DC features at an unprecedented

definition, both at the phenotypic and transcriptomic levels.

Accordingly, DCs have started to be deeply characterized in the

TME of different types of tumors, providing evidence that

tumor immune evasion involves crippling normal DC

functions, and that DC heterogeneity and states are

conserved across various solid human cancers (21, 22). In the

present study, we characterized peripheral blood DCs (PBDCs)

and tumor-infiltrating DCs (TIDCs) in newly diagnosed adult-

type diffuse glioma patients by using high-dimensional flow

cytometry and single cell-RNA sequencing (scRNA-seq)

approaches. Our results provide evidence that PBDCs are

reduced in glioma patients, and that all subsets of DCs are

recruited in the core lesions of glioma but they are functionally

impaired. We also observed that the most dramatic reduction

and functional impairment of DCs is evident in glioma patients

undergoing perioperative steroid treatment to control

peritumoral edema.
Methods

Study participants and ethics approval

The study was conducted on 27 newly diagnosed, non-

relapsing adult patients with diffuse glioma undergoing

surgical resection at the unit of Neuro-Oncology of Humanitas

Research Hospital, Rozzano, Milan, Italy. Clinical patient

information is provided in Supplementary Table 1. The study

protocol was approved by the Institutional Review Boards of

Humanitas Research Hospital (ONC-OSS-04-2017; 29/19), and

written informed consents were provided by all participants
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before inclusion in the study in compliance with the Declaration

of Helsinki. Twelve age- and sex-matched healthy volunteers

were included as controls.
Sample processing and staining

Peripheral blood samples were collected from patients and

controls in K2 EDTA BD vacutainer tubes (BD Diagnostics,

Franklin Lakes, NJ, USA) and stained with an 18-color DC-

dedicated flow cytometry panel of monoclonal antibodies

(mAbs) as previously reported (23). 500 mL of whole blood

were incubated with ammonium chloride (ACK, Ammonium

chloride 0.83% w/v, Potassium Bicarbonate 0.1% w/v, Titriplex

0.004% w/v, Merck KGaA) to lyse erythrocytes and samples were

stained with Fixable Viability Stain 780 (BD Biosciences), then

washed and stained with the combination of mAbs listed in

Supplementary Table 2. Staining conditions for each mAb were

preliminarily determined in titration assays, as previously

described (24).

Brain tissue samples obtained during surgery were collected,

stored at 4°C in supplemented Dulbecco’s Modified Eagle

Medium (DMEM) high glucose (Lonza) added with 1%

Penicillin/Streptomycin and 1% L-Glutamine and digested

within 2 hours from excision with type IV Collagenase (1.6

mg/mL) (Merck KGaA) and type I DNase (0.4 mg/mL) (Merck

KGaA) in Roswell Park Memorial Institute (RPMI) 1640

medium (Euroclone SpA) at 37°C for 1 hour. Homogenates

were then smashed on a 70 mm filter (BD Biosciences), washed

with RPMI with the addition of 2% fetal bovine serum (FBS)

(Lonza), and collected in 50 mL collection tubes. Samples were

then centrifuged at 290 rcf for 7 min, and the pelleted cells were

incubated for 2 min with 1 mL of ACK 1X to lyse erythrocytes.

Samples were then washed with FACS buffer (Hank’s Balanced

Salt Solution, HBSS, w/o Ca2+ and Mg2+, Lonza, with the

addition of 2% FBS), and centrifuged at 290 rcf for 7 min. The

samples were then incubated with FACS buffer and Myelin

Removal Beads II (Milteny Biotec) and passed through LS

Columns (Milteny Biotec) according to manufacturer’s

instructions. The samples were stained with the same DC-

dedicated flow cytometry panel used for peripheral

blood samples.
Flow cytometry data acquisition
and analysis

All data were acquired on a FACSymphony™ A5 flow

cytometer (BD Biosciences). Flow Cytometry Standard (FCS)

3.0 files were imported into FlowJo software version 9.9.6

(FlowJo LLC), and data were compensated by using single-

stained antibody-capture beads (CompBeads, BD Biosciences)

as previously described (23–25). These data were analyzed by
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standard gating strategy, as previously reported (14, 23). Briefly,

gated on single, live CD45+ (PB samples) or CD45br (tissue

samples) mononuclear cells, DC-lineage DCs were identified

within the gate of lineage (CD3, CD19, CD20, CD56)−/CD14−/

CD16−/HLA-DR+ cells. Gated on these cells, pDCs were

identified as CD123+/CD11c− cells; cDCs were identified as

CD11c+/CD123− cells, and further divided into cDC1s and

cDC2s based on the expression of CD141 and CD1c,

respectively. Inflammatory DCs were identified as lin−/HLA-

DR+/CD11c+ cells that could be positive or negative for CD14

and CD16 expression. They included slanDCs that expressed M-

DC8, and moDCs that expressed CD1a. The activation state of

each DC subset was examined by assessing the expression of the

activatory molecules CD40, CD80 and CD86, and the inhibitory

molecules PD-L1, ILT2 and TIM-3. The compensated data were

further imported into FlowJo software version 10.7.1 and

visualised with a uniform manifold approximation and

projection (UMAP). For the UMAP analysis, 2 different

concatenated files were created, containing the same number

of live CD45+/lin-/HLA-DR+ cells derived respectively from

whole blood of untreated patients (n=12) and whole blood of

dex-treated patients (n=11). A unique computational barcode

was assigned to each concatenated file. These files were then

concatenated in a single file for further visualization in UMAP

dot plots (distance function: Euclidean; nearest neighbours: 15;

minimum distance: 0.5), based on the expression of the

following markers: CD45, CD14, CD16, HLA-DR, CD11c,

CD123, CD141, CD1c, M-DC8, CD1a, CD40, CD80, CD86,

PD-L1, ILT2, TIM-3. The same analysis was applied also to the

cells derived from the tumor, where 2 different concatenated files

were created, containing the same number of live CD45br/lin-/

HLA-DR+ cells derived respectively from tumour tissue of

untreated patients (n=5) and tumor tissue of dex-treated

patients (n=3).
ScRNA-seq data processing and analysis

Feature-barcode matrices generated by Savino et al. were

down-loaded from Zenodo Repository, where the original data

have been deposited (https://zenodo.org/record/6046299#.

YgZ6bpbSKN4) and analyzed with R (v3.5.1) toolkit Seurat

(v3.0.2). For each sample, Seurat objects were created from

feature-barcode matrices. Cells containing > 200 genes and ≤

10% mitochondrial genes were kept for downstream analysis.

Gene expression matrices were then log-normalized with a scale

factor of 10,000.

Datasets of each sample were integrated by Seurat data

integration pipeline and CD45+ cells were subjected re-

clustering, resulting in a total of 28 clusters (resolution level =

1.1). Cluster annotation was performed in silico using SingleR.

The cell cluster enriched in DCs (cluster 19) was manually

identified based on literature data obtained with scRNA-seq
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analyses of sorted DC subsets (26) and confirmed by using The

Human Protein Atlas database (v20.1). The first 50 DEGs

(padj<0.05) of cluster 19 were then identified by using the

‘FindAllMarkers’ function in Seurat, with the parameter

‘test.use=wilcox’ used by default. The aggregated expression

scores of these DEGs were calculated on single-cell base using

the ‘AddModuleScore’ function in Seurat. The distribution of

DC subsets across different clusters at resolution 0.5 was

invest igated by analyzing the express ion of genes

characteristics of classical DC subsets and other subsets

recently described on the basis of their transcriptomic profile,

including preDCs, migDCs, cDC2A and cDC2B (21, 27–32).
Ingenuity pathway analysis

In order to investigate whether the cluster distribution of

TIDCs may reflect DC functional state, we analyzed cell clusters

at resolution 0.3 using IPA software program (Qiagen), which

analyzes gene expression patterns using a built-in scientific

literature-based database. DEGs that were characterized by

padj<0.01, and |log2FC|>0.58 were used for IPA analysis in the

comparison between clusters 0 and 1, and between clusters 2 and

0. The core analysis function included in the software was

performed on each cluster, applying the immune cell filter.

DEGs were interrogated by Diseases and Functions (DFs) and

Canonical Pathways (CPs) tools on IPA software. Only

statistically significant DFs and CPs characterized by p<0.05

and |z-score|>1.5 were considered. Each gene identifier was

mapped to its corresponding gene object in the Ingenuity

Pathway Knowledge Base (IPKB).
Statistical analysis

Statistical analysis of flow cytometric results was performed

using GraphPad Prism software, version 9.0.0. The normal

distribution of data was tested by using Shapiro-Wilk’s test.

The t-test was used for comparisons between samples. All

statistical analyses assumed a two-sided significance level of 0.05.
Results

DC-lineage DC subsets are decreased in
the blood of patients with diffuse glioma.

We first analysed PBDCs by using a high-dimensional flow

cytometry panel that allows the identification of five distinct DC

subsets, namely pDCs, cDC1s, cDC2s, slanDCs, and moDCs (20,

23). Our results showed that the frequency of all subsets of DC-

lineage PBDCs were significantly decreased in glioma patients

compared with controls (Figure 1A). Among inflammatory DCs,
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slanDCs did not significantly differ in glioma patients compared

with controls. moDCs were almost undetectable in all blood

samples, as expected (23). Similar results were observed when

the absolute count of PBDC subsets was considered.

In order to investigate whether the reduction of PBDCs was

associated with perioperative steroid treatment, we analysed

PBDC subsets in our glioma patients stratified according to

dexamethasone administration (dex-treated vs untreated

patients). The frequency of all circulating DC subsets, including

pDCs, cDC1s, cDC2s and slanDCs, was significantly lower in dex-

treated compared with untreated patients (Figure 1B). Similar

results were observed when the absolute count of PBDC subsets

was considered. PBDC reduction in dex-treated patients was even
Frontiers in Immunology 05
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more evident when DC subsets were visualized in UMAP plots of

viable CD45+/lin-/HLA-DR+ cells obtained from down-sampled

and concatenated files of all blood samples of dex-treated and

untreated glioma patients (Figure 1C).

According to the WHO 2021 classification of primary brain

tumors, the majority of our patients subjected to PBDC

investigation were affected by glioblastoma IDH-wildtype, the

glioma group that accounts for all IDH-wildtype gliomas

independently from histopathological diagnosis, and all

labelled as WHO grade 4. However, a certain proportion of

our patients belonging to this group had a histopathological

diagnosis of anaplastic astrocytoma, which in the previous

classification (WHO 2016) was labelled as WHO grade 3. In
A
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FIGURE 1

Flow cytometric analysis of PBDC subsets showing a reduction of circulating DCs in glioma patients. (A) Frequency of PBDC subsets in healthy
donors (HDs, n=12) and glioma patients (Glioma pts, n=23). (B) Frequency of PBDC subsets in glioma patients either untreated (Untreated, n=12)
or treated with dexamethasone (Dex-treated, n=11). Data expressed as per-thousand (‰) of CD45+ cells. Each symbol represents a single
sample. In each series, the mean is shown. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001, calculated using the t-test. (C) UMAP plots showing
the clustering of PBDC subsets in untreated and dex-treated glioma patients. Each plot shows a single DC subset as identified with manual
gating strategy. Viable circulating CD45+/lin−/HLA-DR+ cells of down-sampled, concatenated files obtained from all glioma patients are shown
in gray. pDCs are highlighted in dark turquoise, cDC1s in brown, cDC2s in orange, slanDCs in red. (D) Frequency of PBDC subsets in untreated
IDH-wildtype glioma patients stratified based on histopathological diagnosis (anaplastic astrocytoma: AA, n=4; glioblastoma: GBM, n=6).
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order to investigate whether the reduction of PBDCs was

associated with the histopathological diagnosis of gliomas, we

analysed PBDC subsets in untreated patients (to avoid the

confounding effect of dexamethasone) further stratified

according to their histopathology and observed that, among

patients with IDH-wildtype gliomas, the frequency of circulating

pDCs, cDC1s and cDC2s was significantly lower in patients with

a histopathological diagnosis of glioblastoma compared with

those with anaplastic astrocytoma (Figure 1D).

Finally, we investigated the state of activation of PBDCs, and

observed that the expression of the activation markers HLA-DR,

CD40, CD80 and CD86, and inhibitory molecules PD-L1, ILT2

and TIM-3 on DC subsets did not differ between glioma patients

and healthy donors, nor among patients stratified according to

dex-treatment or histological diagnosis (data not shown).
All subsets of myeloid DCs infiltrate
glioma lesions, whereas they are absent
in tumor-free brain parenchyma

We then investigated the presence of TIDCs in glioma lesions

by using the same flow cytometric approach used for their

circulating counterparts. Three samples of healthy brain tissues

obtained from patients affected by gliomas were included as

controls. Our results showed that whereas the presence of all DC

subsets was negligible in tumour-free brain parenchyma, cDC1s,

cDC2s and the inflammatory slanDCs and moDCs, were abundant

in the tumor infiltrate of glioma patients, without differences related

to tumor histomolecular features. pDCs were detected only in one

untreated glioblastoma, IDH-wildtype patient (Figure 2A). When

assessing the impact of perioperative steroid treatment on TIDCs,

we observed that dex-treated patients showed an overall reduction

of TIDCs that was significant in the case of cDC1s, the DC subset

with a prominent role in anti-tumor immunity (15) (Figure 2B).

These results were even more evident in the UMAP plots of viable

CD45br/lin-/HLA-DR+ cells obtained from down-sampled and

concatenated files of all tissue samples (Figure 2C).

Because DCs were negligible in tumor-free brain tissue, a

comparison of DC phenotype between tumor and healthy brain

was not possible. In order to investigate whether the state of

activation of TIDCs was affected by perioperative steroid

treatment, we also compared the expression of HLA-DR, the

costimulatory molecules CD40, CD80 and CD86, and the

immune checkpoints PD-L1 and ILT2 on each DC subset

between dex-treated and untreated patients. Because of the low

number of TIDCs, the analysis was performed on concatenated

files of glioma samples. As shown in Figure 2D, we observed that

tumor-infiltrating cDC1s, cDC2s, slanDCs and moDCs obtained

from dex-treated patients showed a lower expression of HLA-

DR and CD40 compared with untreated patients. Dex-induced

immunophenotypic changes of pDCs could not be assessed
Frontiers in Immunology 06
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because, as reported above, pDCs were negligible in the tumor

infiltrate of dex-treated patients. The expression of the inhibitory

molecule TIM-3 could not be assessed on TIDCs, because TIM-3

is cleaved by the collagenase treatment used for glioma tissue

processing, as already reported (20).
ScRNA-seq analysis reveals distinct
clusters of TIDCs in glioma lesions

After having demonstrated the presence of DCs in glioma

core lesions, we characterized their molecular and functional

features by analyzing their transcriptomic profile. To this aim,

we analyzed scRNA-seq data generated from CD45+ cells

isolated from 7 core glioma lesions and 2 healthy brain tissue

samples obtained from 8 different adult-type diffuse glioma

patients, available in Zenodo Repository (https://zenodo.org/

record/6046299#.YgZ6bpbSKN4). The Seurat integration

procedure was used to remove batch effects. Based on their

transcriptomes, unsupervised graph-based clustering

partitioned 36,237 cells into 28 distinct clusters. Clusters 25,

26 and 27 were filtered-out because of their small size (less than

20 cells) and excluded from the analysis. We identified cluster

19 as the putative cluster of DCs based on previously reported

DC transcriptomic signatures (27). In order to confirm the DC

annotation of cluster 19, we selected the first 50 differentially

expressed genes (DEGs) between cells included in this cluster

and all the others (padj<0.05) (Figure 3A). Based on the

information available in the human Blood Atlas (www.

proteinatlas.org), we verified that all the 50 DEGs composing

the signature were expressed by human DCs and, in particular,

22 of them were enriched in myeloid and/or plasmacytoid DCs

(Supplementary Table 3). We then applied to the 50-gene

signature the AddModuleScore function from Seurat

package, which allows to compare the expression of a specific

set of genes among different clusters, and we visualized the

expression of this signature on a violin plot (Figure 3B). Taken

together, these data confirmed that cluster 19 was the one

containing DCs.

To investigate TIDC heterogeneity, we then performed a

reclustering of cluster 19, and compared different clustering

results for each resolution parameter, from 0 to 0.5. At

resolution 0.1, we observed the formation of three main

branches, one of which continuing to split up to the resolution

0.5 (Figure 3C). The smallest cluster, stable at resolutions from

0.1 to 0.5, was filtered-out because of its small size and excluded

from subsequent analyses. We then focused our analyses on the

remaining 4 clusters observed at resolution 0.5. In particular, in

order to investigate whether they reflected the distribution of

DCs in different subsets, we examined the expression of genes

characteristic of DC subsets recently described on the basis of

their transcriptomic profiles. Beyond the DC subsets that we
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investigated by flow cytometry (namely, pDCs, cDC1s, cDC2s,

slanDCs, moDCs), they include preDCs, migratory DCs

(migDCs) and the cDC2 subclusters A and B endowed with

regulatory and pro-inflammatory properties, respectively (27).

Our results confirmed that genes belonging to the gene signature

of all DC subsets were indeed expressed by glioma TIDCs

(Figure 3D). However, the expression of the genes

characteristic of each DC subset was widely spread among the

4 clusters, indicating that none of the clusters of TIDCs

corresponded to any defined DC subset. Notably, according to

the lack of DCs observed by flow cytometry in healthy brain

tissues, cells obtained from healthy brain samples were

negligible, indicating that all DCs analysed for transcriptome

profiling were derived from core glioma lesions.
Frontiers in Immunology 07
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The largest cluster of TIDCs has a
transcriptomic signature indicative of
functional impairment

We further investigated whether the distribution of TIDC

clusters in glioma may reflect different DC functional states, as

similarly reported in human hepatocarcinoma (33). To this aim,

we analysed cell clusters at resolution 0.3 by using the Ingenuity

Pathway Analysis (IPA) software, an advanced bioinformatic

tool that analyzes gene expression patterns using a built-in

scientific literature-based database. We focused on the analysis

of DEGs between the two largest clusters, namely clusters 0 and

1. Among 2309 DEGs between the two clusters, 2216 were

down-regulated and 93 were up-regulated. By further setting a
A
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C

FIGURE 2

Flow cytometric analysis of TIDC subsets showing that perioperative corticosteroid treatment inhibits intratumoral DC recruitment and
activation. (A) Frequency of DC subsets in healthy tissues (heathy controls: HCs, n=3) and tumor tissues (Gliomas, n=10) obtained from glioma
patients. (B) Frequency of TIDC subsets in glioma patients either untreated (Untreated, n=5) or treated with dexamethasone (Dex-treated, n=5).
Data expressed as per-thousand (‰) of CD45br cells. Each symbol represents a single sample. In each series, the mean is shown. *p<0.05,
**p<0.01, ***p<0.001, calculated using the t-test. (C) UMAP plots showing the clustering of TIDC subsets in untreated and dex-treated glioma
patients. Each plot shows a single DC subset as identified with manual gating strategy. Viable tumor-infiltrating CD45br/lin−/HLA-DR+ cells of
down-sampled, concatenated files obtained from all glioma patients are shown in gray. pDCs are highlighted in dark turquoise, cDC1s in brown,
cDC2s in orange, slanDCs in red, and moDCs in green. (D) Expression of HLA-DR, activatory molecules (CD40, CD80, CD86), and inhibitory
molecules (PD-L1, ILT2) on each DC subset, expressed as MFI measured on concatenated files, and compared between untreated and dex-
treated glioma patients.
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threshold on |log2FC|>0.58, corresponding to a 1.5-fold change,

we selected 1935 down-regulated and 80 up-regulated DEGs in

cluster 0 compared with cluster 1 (Figure 4A). These genes were

used for IPA functional annotation, applying a filter on immune

cells. In particular, we applied the Diseases and Functions (DFs)

analytics tool to define cellular processes and biological

functions predicted to be affected on the basis of relative gene

expression changes, and the Canonical Pathways (CPs) tool to

predict which pathways were affected. The directional changes in

both analyses were predicted by z-score. The analysis of DEGs

categorized by DFs indicated that 502 processes and functions

were differentially regulated (p<0.05) between cluster 0 and 1.

Among these processes and functions, 173 were down-regulated

in cluster 0 (as defined based on z-score <-1.5) and only 3 were

up-regulated (as defined based on z-score >1.5); the remaining

functions lacked z-score, or had a z-score between -1.5 and +1.5

(Supplementary Table 4). The analysis of DEGs categorized by

CPs indicated that 191 pathways were differentially regulated

(p<0.05) between cluster 0 and 1. Among these pathways, 141

were down-regulated in cluster 0 and 5 were up-regulated

(Supplementary Table 5). The results of IPA functional

annotation most relevant to TIDC functions in glioma

microenvironment are summarized in Figures 4B–E. In

particular, the analysis of DEGs categorized by DFs indicated
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that, based on gene expression, a relevant number of processes

and functions relative to cellular migration, adhesion and

homing were down-regulated in cluster 0 compared with

cluster 1 (Figure 4B). Consistent with this observation, CPs

involved in cellular motility, cytoskeleton rearrangement and

cell-to-cell interactions were similarly down-regulated in cluster

0 (Figure 4C). In order to gain more insights into the DEGs

underlying the down-regulation of these functions and pathways

in glioma TIDCs, we examined the DEGs composing the

processes and functions reported in Figure 4B and the

pathways reported in Figure 4C, and obtained a list of 163

genes (reported in Supplementary Table 6). Supporting the

impairment of functions relevant to DC migration and

homing, DEGs in this group included genes encoding

chemokine receptors or other chemotactic receptors (e.g.,

CXCR4, SLAMF1, ADGRE5, PTGER4), molecules involved in

cytoskeleton rearrangement relevant to cell motility (e.g., S1PR1,

MYH9, AKIRIN1, FGD3), metalloproteinases (e.g., MMP7),

integrins (e.g., ITGA1, ITGA4, ITGAL), and other adhesion

molecules involved in cell-to-cell interactions (e.g., F11R,

CD44). Moreover, the analysis of DEGs categorized by DFs

also indicated that a high number of processes and functions

involved in immune cell activation were down-regulated in

cluster 0 compared with cluster 1 (Figure 4D). Consistent with
A B
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FIGURE 3

scRNAseq confirms the presence and heterogeneity of TIDCs. (A) Dot plot showing the first 50 DEGs (padj<0.05) between cluster 19 and all the
other clusters that compose CD45+ cells obtained from 7 tumor tissues and 2 healthy brain tissues from 8 glioma patients. All 50 genes are
known to be enriched or expressed by human DCs, thus indicating that cluster 19 is the cluster of DCs. Color scale indicates the average
expression level of genes; dot size indicates the percentage of gene-expressing cells in each cluster. (B) By applying the AddModuleScore
function that allows to compare the expression of a specific set of genes among clusters, the expression of the 50-gene signature
characterizing cluster 19 was visualized in a violin plot. (C) Reclustering of cluster 19 represented in a clustering tree based on kk-means. Nodes
colored according to the value of k and sized according to the number of cells they represent. Edges colored according to the number of cells
(from blue representing few to yellow representing many). Cluster labels are randomly assigned by the kk-means algorithm. (D) Heatmaps
showing the mean expression of genes characteristic of pDCs, cDC1s, cDC2As, cDC2Bs, preDCs, migDCs, slanDCs, and moDCs, in clusters
from 0 to 3 at resolution 0.5. Expression values are zero-centered and scaled for each gene. Each gene name is reported on the bottom of
each heatmap.
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these observations, CPs relative to receptor signalling, signal

transduction, and cytokine-induced responses were significantly

down-regulated in cluster 0 (Figure 4E). We then examined the

DEGs composing the processes and functions reported in

Figure 4D and the pathways reported in Figure 4E and

obtained a list of 304 genes (reported in Supplementary

Table 7). They included transcripts encoding molecules

playing key roles in different steps of DC activation, including

signal transduction pathways (e.g., JAK1, STAT4, and several

molecules belonging to MAPK, PI and NF-kB pathways),

endocytosis and phagocytosis (e.g., FNBP1, CLTC, RAB27A),

antigen processing and presentation (e.g., ISG15, AKAP11,

ATG5, HLA-DRB5), cytokines and cytokine receptors (e.g.,

TNFSF14, LTB, IL18R1), molecules involved in DC

interactions with other immune cells (e.g., SLAMF6, LY9,

CYTIP). These 304 DEGs also included genes involved in cell

metabolism and cell proliferation (e.g., BRAF, PIM1, KRAS).
Frontiers in Immunology 09
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A cluster of TIDCs mainly derived from
dex-treated patients has a transcriptomic
signature suggestive of further
functional impairment

We then focused on the analysis of DEGs between clusters 0

and 2, both originating from the splitting of one single cluster.

We observed that cluster 2 was mainly composed of cells

deriving from dex-treated patients (78%), whereas these cells

were a minority (11%) in cluster 0. Among 967 DEGs between

the two clusters, 576 were down-regulated and 391 were up-

regulated. By further setting a threshold on |log2FC|>0.58

(corresponding to a 1.5-fold change), we selected 531 down-

regulated and 362 up-regulated DEGs in cluster 2 compared

with cluster 0 (Figure 4F). These genes were used for IPA

functional annotation. The analysis of these genes, categorized

by DFs, indicated that 81 processes were differentially regulated
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FIGURE 4

Functional annotation of TIDC clusters by IPA analysis reveals impairment of the largest cluster of DCs. (A) Volcano plot showing DEGs between
cluster 0 (the largest cluster of TIDCs) and cluster 1, at resolution 0.3. Grey dots indicate genes that were not statistically significant (padj>0.01);
orange dots indicate significantly up-regulated genes (with log2FC>0.58), and blue dots indicate significantly down-regulated genes (with
log2FC<-0.58). (B) Bar plot showing DFs of sub-categories related to cell migration, adhesion and homing that were significantly down-
regulated in cluster 0 compared with cluster 1. (C) Bar plot showing CPs related to DFs shown in b that were significantly down-regulated in
cluster 0 compared with cluster 1. (D) Bar plot showing DFs related to immune cell activation that were significantly down-regulated in cluster 0
compared with cluster 1. (E) Bar plots showing CPs related to DFs shown in D that were significantly down-regulated in cluster 0 compared
with cluster 1. (F) Volcano plot showing DEGs between cluster 2 (mostly composed of cells deriving from dex-treated patients) and cluster 0, at
resolution 0.3. Grey dots indicate genes that were not statistically significant (padj>0.01); orange dots indicate significantly up-regulated genes
(with log2FC>0.58), and blue dots indicate significantly down-regulated genes (with log2FC<-0.58). (G) Bar plot showing DFs of sub-categories
related to cell motility, cell-to-cell interactions, and immune cell activation that were significantly down-regulated in cluster 2 compared with
cluster 0. (H) Bar plots showing CPs related to DFs shown in G that were significantly down-regulated in cluster 2 compared with cluster 0. In
all the bar plots, the functions or pathways, listed on the left side of the plot, are ranked according to the z-score that predicts a down-
regulation (blue, z-score <-1.5).
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between cluster 2 and 0 (Supplementary Table 8). Among these

processes, 8 were down-regulated in cluster 2 compared with

cluster 0, whereas the remaining processes lacked z-score, or had

a z-score between -1.5 and +1.5. Relevant to TIDC functions in

glioma microenvironment, DFs down-regulated in cluster 2

included processes related to cellular motility and cell-to-cell

interactions (Figure 4G). The analysis of DEGs categorized by

CPs indicated that 83 pathways were differentially regulated

between cluster 2 and cluster 0 (Supplementary Table 9).

Relevant to TIDC functions in glioma microenvironment,

down-regulated CPs in cluster 2 included pathways crucial to

signalling, cell-to-cell interactions and phagocytosis (Figure 4H).

According to the functions and pathways down-regulated in

cluster 2, the 74 DEGs composing the processes and functions

reported in Figure 4G and the pathways reported in Figure 4H

included transcripts encoding molecules crucially involved in:

DC activation and migration pathways (e.g. S100A10, CD63),

endocytosis and phagocytosis (e.g. AP2S1, MYO1G, LRP1,

FCER1G), antigen processing and presentation (e.g. CTSZ,

CALR, LITAF, RAC1), cytokines and cytokine receptors (e.g.

TNFSF12, IL4R), cytoskeleton rearrangement relevant to cell

motility (e.g. PFN1, ARPC1A, ARPC1B), adhesion molecules

involved in cell-to-cell interactions (e.g. ADAM9, GAS6)

(Supplementary Table 10). They also included genes involved

in cell metabolism and cell proliferation (e.g. G6PC3, SMPD2,

CREB3L4, RPS6KB2). As expected, taking into consideration

that cluster 2 was mainly composed of cells deriving from dex-

treated patients, genes involved in stabilization of glucocorticoid

receptor (HSPA1A, HSPA1B) were up-regulated in cluster 2

compared with cluster 0.
Discussion

In this study, we performed a deep characterization of

PBDCs and TIDCs in patients with newly diagnosed adult-

type diffuse glioma and demonstrated that both the tumor and

corticosteroid therapy have profound effects on DCs.

We observed that both cDCs and pDCs are reduced in the

blood of glioma patients. These results are in partial

agreement with previous studies that reported discordant

results, indeed, including reduced, unchanged and increased

cDCs and/or pDCs in glioma patients, likely related to

different criteria used for patient selection (34, 35). As

suggested in other types of cancer, the reduction of PBDCs

in our patients may be sustained partly by DC recruitment

into the tumor microenvironment, and partly by tumor-

derived cytokines, such as VEGF and IL-6 that are produced

by glioma cells (26, 36) and inhibit DC maturation in the bone

marrow (37). Because only part of the patients enrolled in our

study underwent perioperative dexamethasone treatment, we

had the opportuni ty to invest igate the impact of

corticosteroids on PBDCs in glioma patients. We observed
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indeed that, compared with untreated patients, dex-treated

patients had a significant and marked reduction of all PBDC

subsets, thus confirming the high sensitivity of circulating DCs

to systemic corticoid administration reported in other settings

(38, 39). Notably, we further observed that, among untreated

patients with IDH-wildtype gliomas, the reduction of

circulating DC-lineage DCs was more marked in patients

with a histopathological diagnosis of glioblastoma compared

with patients with a histopathological diagnosis of anaplastic

astrocytoma. This observation is relevant to the consideration

that in several human cancers a more marked PBDC reduction

has been described in patients with more advanced disease,

possibly related to higher tumor secretion of soluble factors

affecting DC generation and distribution (40–44). Although

the 2021 WHO classification of central nervous system tumors

include all IDH-wildtype diffuse gliomas in the most severe

group of g l ioblas tomas independent ly f rom thei r

histopathological features2, it is not yet clear if astrocytomas

with molecular but not histopathological features of

glioblastomas have exactly the same overall biology and

response to treatment as IDH-wildtype gliomas with overt

necrosis and/or microvascular proliferation (45). Indeed,

our results demonstrating that PBDC counts differ in IDH-

wildtype glioma patients stratified based on histopathological

diagnosis may suggest that the histopathological grade of these

tumors still affects their overall impact on the immune system.

When we moved to the characterization of tissue DCs, first

of all we observed that DCs were negligible in healthy brain

samples, thus demonstrating the lack of parenchymal DCs in

healthy human brain. This finding represents a novelty because

the current knowledge on the role of DCs in the central nervous

system has been acquired in murine models, so far, showing that

DCs in healthy mouse brains are present only in the

choroid plexus and in the meninges but not in the brain

parenchyma (46).

In our study we further observed that all subsets of DCs

were recruited in the core lesions of diffuse gliomas. Notably,

this was observed in all patients independently from tumor

histomolecular features, indicating that also the most severe

type of gliomas retains the ability to recruit DCs in the TME.

This observation may provide a possible explanation to the

high susceptibility of gliomas to DC vaccines (7, 8), and may

suggest the feasibility of targeting TIDCs in these patients with

DC reprogramming immunotherapeutic strategies. Notably,

the presence of several DC subsets in IDH-wildtype

glioblastoma lesions has also been reported by Pombo

Antunes and colleagues in a recent study addressing single-

cell profiling of myeloid cells by scRNA-seq and cellular

indexing of transcriptomes and epitopes (CITE)-seq

approaches (47). Indeed, patients with either newly

diagnosed or recurrent disease were enrolled, and this fact

allowed the observation that TIDCs were far more abundant in

recurrent patients. As a consequence, the analysis of TIDCs in
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Pombo Antunes’ study was performed primarily on recurrent

tumors, demonstrating the presence not only of cDC1s, cDC2s

and pDCs, but also of more recently identified DC subsets,

including cDC2A and cDC2B subtypes, migDCs, and preDCs

(47). In this respect, our study confirms and extends these

observations, by demonstrating the presence of these same DC

subsets in primary tumors, at the immunophenotypic and/or

transcriptomic level. In our study we further investigated the

functional state of TIDCs. By performing IPA functional

annotation that predicts affected cellular functions and

pathways based on gene expression, we demonstrated that

the most abundant cluster of TIDCs in gliomas was

characterized by a transcriptomic signature suggestive of

functional impairment. In particular, cellular processes

crucial to the primary function of DCs in cancer immunity,

namely capturing tumor antigens, migrating to lymph nodes,

and activating T cell responses, all resulted down-regulated in

the largest cluster of TIDCs. Among the down-regulated genes

most relevant to DC functions, we identified CLTC that

encodes clathrin, and RAB27A that encodes Rab27a, two

molecules that play a key role in DC endocytosis and

phagocytosis, respectively (48, 49). The same negative

regulation was observed for SLAMF1, a gene encoding the

polyfunctional molecule SLAM that, by triggering Nox2

activation, positively regulates DC migration to draining

lymph nodes (50). The most abundant cluster of TIDCs was

also characterized by a down-regulation of ITGA4 and

ITGAL, encoding the integrin-a4 and integrin-aL chains,

respectively. These two molecules had been reported as

positive prognostic factors in breast cancer (51), likely

because of their ability to sustain immune cell infiltration in

the tumor, and their role in the formation of the

immunological synapses needed for T cell activation. Also

AKAP11, member of A-kinase anchoring proteins required

for optimal antigen presentation by DCs (52) and ATG5, a key

autophagy gene needed for optimal phagosome-to-lysosome

fusion and subsequent antigen processing and loading on

MHC molecules (53), resulted down-regulated in the largest

cluster of glioma TIDCs. Although the list of relevant down-

regulated genes may be extended to a huge number of other

genes controlling essential DC functions, it is evident from our

study that, based on gene expression, a relevant proportion of

DCs infiltrating glioma lesions are likely impaired in their

ability to efficiently present tumor antigens and activate

effective anti-tumor immune responses.

Notably, when we assessed the impact of perioperative

corticosteroid treatment on TIDCs, we observed indeed that,

compared with untreated glioma patients, dex-treated patients

had a significant and marked reduction of tumor-infiltrating

cDC1s, the subset most relevant to antitumor immune

responses. According to the tolerogenic DC profile induced
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by dexamethasone in vitro (54), dex-treated patients showed

an overall reduction in TIDC expression of HLA-DR and

CD40 molecules. Moreover, the transcriptomic profile of the

cluster enriched in TIDCs obtained from dex-treated patients

was characterized by down-regulation of pathways and

functions crucial to sustain the role of DCs in cancer

immunity, including signal transduction pathways involved

in cell activation, and processes involved in antigen

presentation and cell migration. These findings are in line

with previous studies that characterized the transcriptomic

profile of tolerogenic DCs differentiated in vitro in the

presence of dexamethasone, reporting a down-regulation of

DEGs spanning functional families relevant to the ability of

DCs to stimulate adaptive immune responses (55). Taken

together , our experimental evidence indicates that

perioperative steroid treatment reduces the amount and

impairs the activity of TIDCs in glioma patients, thus

suggesting that these detrimental effects of steroids on DCs

may represent one of the mechanisms contributing to the

already reported negative prognostic impact of steroids on

glioma patient survival (56).

In conclusion, in this study we demonstrated that gliomas

have the potential to recruit different DC subsets into the tumor

site, but these cells undergo phenotypic and transcriptomic

profile changes suggestive of functional DC impairment. This

evidence paves the way to the development of new therapeutic

strategies aimed at reactivating in situ TIDCs and switching their

behavior towards promotion of tumor rejection. Moreover, by

demonstrating the detrimental effects of perioperative

dexamethasone treatment on circulating and glioma-

infiltrating DCs, the results of this study support previous

clinical evidence that discourages the use of steroids in these

patients, suggesting the use of alternative therapeutic strategies

for the control of symptomatic peritumoral vasogenic cerebral

edema (57).
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51. Rojas K, Baliu-Piqué M, Manzano A, Saiz-Ladera C, Garcıá-Barberán V,
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Treatment of metastatic disease remains among the most challenging tasks in

oncology. One of the early events that predicts a poor prognosis and precedes

the development of metastasis is the occurrence of clusters of cancer cells in the

blood flow. Moreover, the presence of heterogeneous clusters of cancerous and

noncancerous cells in the circulation is even more dangerous. Review of

pathological mechanisms and biological molecules directly involved in the

formation and pathogenesis of the heterotypic circulating tumor cell (CTC)

clusters revealed their common properties, which include increased

adhesiveness, combined epithelial-mesenchymal phenotype, CTC-white blood

cell interaction, and polyploidy. Several molecules involved in the heterotypic

CTC interactions and their metastatic properties, including IL6R, CXCR4 and

EPCAM, are targets of approved or experimental anticancer drugs. Accordingly,

analysis of patient survival data from the published literature and public datasets

revealed that the expression of several molecules affecting the formation of CTC

clusters predicts patient survival in multiple cancer types. Thus, targeting of

molecules involved in CTC heterotypic interactions might be a valuable strategy

for the treatment of metastatic cancers.
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1 Introduction

One of the cancer hallmarks is cancer cells dissemination and

metastasis which is a leading cause of cancer associated death (1).

Metastasis develops as a consequence of changes within cancer cells

that lead to an ability to move through the tissue, survive in the

circulation, attach and grow in the distal site, meanwhile escaping

immune surveillance (2). Research of the last decades revealed that

a key factor which determines the ability of cancer cells to

metastasize is pathological interactions with neighboring non-

cancerous cells such as fibroblasts, mesenchymal and immune

cells, so called cells of tumor microenvironment (TME).

Therefore, development of drugs targeting key molecules

involved in the TME interactions that can suppress metastasis is a

hot theme of current investigations (3–7).

Cancer associated stromal cells as well as circulating exosomes

migrate from the primary tumor to distal sites and change local

microenvironment forming so-called pre-metastatic niche permissive

for the cancer cells recruitment and growth (8–12). At the same time,

cancer cells might disseminate from the primary tumor in the

circulation in clusters with cancer associated cells (13–15). These

clusters are thought to be relatively rare in the cancer patient

population (14, 16, 17), although they have strong metastatic

potential (16, 18), and their presence is associated with metastasis

and worse prognosis in breast (13, 14, 19), lung cancers (20–22), renal

cell carcinoma (23), colorectal cancer (24–26), and others (27).
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Our review of current literature revealed that cells involved in

the metastasis-promoting heterotypic CTC interactions include

platelets, cancer associated fibroblast (CAFs), white blood cells

(WBCs), specific population of tumor-associated macrophages,

neutrophils and polymorphonuclear myeloid-derived suppressor

cells (PMN-MDSCs).

A number of investigations identified several key molecules

involved in the heterotypic cell interactions such as IL1R1 (16),

IL6, NODA, NOTCH1 (17), CD44 (14), CXCR4 (4), TGFBR2

(4), CDH1 (4, 28), EPCAM (29), ICAM1 (30), CCR1 (31)

(Table 1). Their expression promotes formation of CTC

clusters and metastasis by inducing adhesion (4, 30, 33),

proliferation (16), by metabolic adaptation to oxidative stress

(17, 34), and through the epithelial-mesenchymal transition (31,

35). Quite intriguing, in lung cancer most CTCs interacting with

WBCs were polyploid (21) thus, implying repression of the

mitotic checkpoint, induction of cell survival and migration

(36–38).

The analysis of literature and public databases revealed that

expression of some genes affecting CTC clusters and metastasis

predicts prognosis in many cancer types. Some of these molecules

are targeted by the approved or experimental anti-cancer drugs

(such as plerixafor for CXCR4 or tocilizumab for IL6R). Altogether,

our review suggests the existence of common and cancer tissue

specific mechanisms of CTC complex formation with implication

for drug development and cancer treatment.
TABLE 1 Genes involved in cancer cell-stromal cell interaction promoting CTC clustering and metastasis.

Cancer
type

Target Target ligand(s) Interacting cells Source tissue Reference

Breast IL6ST IL6 neutrophils Peripheral blood (16)

Breast IL1R1 IL1 neutrophils Peripheral blood (16)

Breast VCAM1 ITGA4
ITGB1

neutrophils Peripheral blood (16)

Breast NODAL CFC1B PMN-MDSCs Spheroid cell co-culture (17)

Breast NOTCH1 JAG1 PMN-MDSCs Spheroid cell co-culture (17)

Breast CD44 Hyaluronic acid CAFs MDA-MB-231 and CD44 positive MCF-7 cells (14)

Breast CXCR4 CXCL12 CAFs MCF10DCIS (4, 32)

Breast TGFBR2 TGFB1 CAFs MCF10DCIS (4)

Hepatocellular EPCAM CAMs NA Huh7 organoids in xenograft model (29)

Lung ICAM1 ITGAM PMNs and neutrophils Lewis lung carcinoma H-59 cells, A549 cells
expressing ICAM-1

(30)

Colorectal IL6R IL6 Tumor-associated macrophages
(TAMs)

Patient blood (31)

Colorectal CCR1 CCL2 Tumor-associated macrophages
(TAMs)

Patient blood (31)

Colorectal CDH1 CDH1, adherent junction
protein

NA Human CRC organoids in xenograft model (28)
f
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2 Tumor microenvironment
promotes formation of the CTC
clusters and metastasis

2.1 Interactions with white blood cells

The CTCs can interact with a variety of WBCs in the circulation

such as neutrophils (39), PMN-MDSC (17, 40, 41), platelets (31),

macrophages (35), and lymphocytes (16).
2.1.1 Interaction with neutrophils
One of the mechanisms of neutrophil mediated metastasis is

formation of the neutrophil extracellular traps (NETs) consisting of

neutrophil DNA (39). As NETs interact with and provide a niche

for CTCs, blocking NET formation by DNAse, e.g. coated with

nanoparticles inhibits lung metastasis (39).

Using in vivometastasis models, Spicer et al. have demonstrated

a novel role of neutrophils in the early adhesive steps of liver

metastasis in the Lewis lung carcinoma mice model (30). Their

findings suggest that neutrophils promote cancer cell adhesion

within liver sinusoids, thus influencing metastasis. The neutrophil

ITGAM/ICAM-1 mediated the adhesion of lipopolysaccharide-

activated neutrophils to the cancer cells (30).

In breast cancer, CTCs interact with WBCs and in out of 70

investigated patients with invasive disease, CTCs were found in 34

(49%) patients. Among them, homotypic CTC clusters were found

in 14 (20%) patients, out of which 6 (9%) also had CTC-WBC

clusters and 4 (6%) had CTC-WBC clusters only (16). On average,

about 2 CTCs were found in the CTC-WBC clusters that

represented about 10% of all circulating CTCs (16). Most of these

WBCs (75%) were myeloid cells, specifically neutrophils and

T-cells.

The neutrophil-CTC interactions detected in blood were

associated with worse prognosis of patients (16). Neutrophil-CTC

clusters promoted cancer cell proliferation in vitro and were

characterized by higher metastatic potential in mice upon tail

vein injection. Analysis of gene expression from either CTC alone

or in a complex with neutrophils revealed 41 upregulated genes

involved in the DNA replication and cell cycle progression. Further

analysis of genes dysregulated in cancer associated neutrophils

revealed that TNF-a, Oncostatin M (OSM), IL-1b and IL-6

cytokines are expressed in the neutrophils with corresponding

expression of their receptors in CTCs. Reciprocal experiment

detected cytokines granulocyte colony-stimulating factor (G-CSF),

TGF-b3 and IL-15 in the CTCs with corresponding expression of

the receptors in neutrophils. CRISPR-Cas9 mediated knockout of

IL6ST and IL1R1 in cancer cells suppressed the growth advantage of

the neutrophil-CTC clusters without effect on their frequency (16).

In addition, vascular cell adhesion molecule (VCAM1) was

identified in a CRISPR-Cas9 screen in the CTC as a molecule

required for formation of the neutrophil-CTC clusters (16).

Neutrophil recruitment to the primary site and metastasis was

dependent on expression of CXCL1/2 in 4T1 breast cancer cells.

Among molecules that block cancer cell invasion mediated by
Frontiers in Immunology 03125
neutrophils were also NADPH oxidase, neutrophil elastase

inhibitors, and DNAse (39).

2.1.2 Interaction with PMN-MDSCs
Another type of myeloid cell - PMN-MDSCs normally function

as suppressors of the immune response and have profound pro-

carcinogenic properties promoting angiogenesis, formation of the

pre-metastatic niche and cell proliferation (42–45),

It was predicted that PMN-MDSCs interact with CTCs and it

was hypothesized (yet to be proven) that PMN-MDSCs shield CTCs

from the T-cell mediated destruction (46). At that time, CTCs were

usually isolated as CD45 negative cells, thereby clusters of CTC with

leukocytes (including PMN-MDSCs) were missed from

the analysis.

Indeed, PMN-MDSC clusters with circulating tumor cells were

detected in patients with melanoma or breast cancer (17). It was

reported that the ratio of cancer and non-cancerous cells in the

clusters varied in the range 1:1 to 1:4 in six out of eight patients

tested (17).

Interestingly, a previous paper from the same group revealed

that aggressive triple negative breast and melanoma cancers

overexpress Nodal, an embryonic morphogen of the TGF-b
family (47) and a a putative Notch/RBPJ signaling pathway target

(48). The patients with aggressive breast cancer had higher levels of

Nodal in serum and PMN-MDSCs could promote survival of the

CTCs in culture by activating reactive oxygen species (ROS) and

Jagged2 response (17). Accordingly, CTCs promote differentiation

of the PMN-MDSCs in pro-cancerous “type-2” phenotype by the

Nodal signaling (17).

Arnoletti et al. investigated the effect of interactions between the

CTCs, MDSCs and T-cells extracted from the portal blood of

pancreatic adenocarcinoma patients on CTC and T-cell

proliferation, apoptosis and activation. It was demonstrated that

MDSCs tended to cooperate with CTCs by repressing T-cells

proliferation, although no significant effects on activation and

anergy were reported (49).

The mathematical modeling and direct measurements of

genomic aberrations in breast cancer CTC clusters isolated by

filtration revealed that the fraction of cancer cells in the clusters is

in the range of 8%-48% (50). In contrast, isolation of multicellular

clusters from the blood of breast cancer patients followed by single

cell RNA-seq analysis identified genes associated specifically with

clusters, in comparison to single cells, but failed to identify other cell

types except platelets (18). In agreement with other studies, cell

clusters contributed to metastasis 23 times more actively than the

single cells and the presence of clusters in breast and prostate

cancers was associated with significantly worse prognosis (18).

The differences in CTC isolation protocols might lead to the

differences in cell populations detected within CTC clusters. The

latter study (18) utilized HBCTC-Chip coated with cocktail of

EPCAM, EGFR and HER2 antibodies (18), whereas Parsortix

microfluidic device using Cell Separation Cassettes (GEN3D6.5,

ANGLE) was used in the subsequent study that characterized

neutrophils-CTC (16), whereas PMN-MDSC-CTCs clusters were

isolated by FACS (17, 40, 41).
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2.1.3 Interaction with tumor
associated macrophages

Interaction of CTCs with tumor associated macrophage

(TAMs) seems to promote metastasis. Nanomechanical

characterization of tumor associated macrophage-CTC clusters

isolated from blood of prostate cancer patients revealed that

contact with the macrophages softens and promotes adhesiveness

of CTCs, which corresponds to mixed epithelial - mesenchymal

phenotype (35). Notably, previous publication of the same group

reported softness, deformability, and adhesiveness of single CTCs as

markers of aggressive metastatic prostate cancer (51). The presence

of TAMs in the invasive front was associated with the mesenchymal

phenotype of CTCs and poor prognosis in colorectal cancer (31).

Mechanistically, the Il-6 produced by the TAMs induced JAK2/

STAT3/miR-506-3p/FoxQ1 signaling in cancer cells, thus

promoting epithelial mesenchymal transition (EMT), metastasis

and further attraction of macrophages by secretion of CCl2 (31).
2.1.4 Interaction with lymphocytes
We found only one report that mentions interaction of CTCs

with lymphocytes (16). However, CTCs are associated with

impairments of adaptive immunity. The quantity of CTCs

correlates with the presence in peripheral blood of the CD95

(FAS)-positive T-helper cells and stage 3 breast cancer as well as

with lower percentage of the CD8+ T-cells with activated T-cell

receptor (52, 53), the absence of tumor associated antigen specific

TCRs and low TCR heterogeneity (54), and positively associated

with intratumoral populations of T-regs (55).
2.2 Interactions with cancer
associated fibroblasts

Aside from single CTCs and cancer associated fibroblasts

(CAFs), the presence of homotypic and heterotypic clusters of

CTCs and CAFs was reported in patients with stages 1-4 of breast

cancer (14). In their study, Sharma et al. detected CTCs in 90% and

circulating CAFs (cCAFs) in 80% of patients; homotypic CTC

clusters were found in 50% and heterotypic - in 25% of patients

in treatment naive stages 2-3. Interestingly, only 25% of patients in

stage 4 had homotypic clusters and 25% had heterotypic CTC-CAF

clusters. The number of cCAFs and CTCs was much higher in

patient blood with metastatic breast cancer in comparison to

localized cancers whereas nothing was detected in the control

group. The effect of cancer treatment on these clusters was not

yet addressed (14).

Using MDA-MB-231 cells and CD44-enriched MCF7 cells,

authors have been able to demonstrate involvement of the stem

cell marker CD44 in the heterotypic clustering and that heterotypic

clusters metastasize more efficiently (14). Accordingly, it was shown

that tumor suppressor Rb represses CD44 dependent collective

invasion, release of breast cancer cells in circulation and lung

metastasis (3).

Circulating CAFs and CTCs were also detected in small groups

of colorectal and prostate cancer patients (13). Consistent with
Frontiers in Immunology 04126
others, the paper shows images of the distinct multicellular CTC

clusters with CAF and with leukocytes, which were obtained by the

negative filtration through 10 µm filter (13).
2.3 Interaction with platelets

Activation of the coagulation cascade and formation of platelet-

rich thrombus around tumor cells in the vasculature have both been

proposed to play major roles in physically shielding CTCs from the

stress of blood flow and from lysis by the Natural killer cells (56–

58). One of the mechanisms is substitution of cancer cell MHC1 by

platelets-derived MHC1 carrying normal peptides thereby

protecting cancer cells from both NK and T-cell recognition (59).

Analysis of the single cell gene expression of the CTCs in the

pancreatic cancer mouse model revealed that 32% of the circulating

cells interact with platelets leading to suppression of epithelial

markers and expression changes of many other genes (60).

Accordingly, direct interaction with platelets promotes EMT in

cancer cells and either inhibition of NF-kB in cancer cells or inhibition

of TGF-b in platelets was sufficient to protect against lung metastasis

(61). In turn, disruption of platelets interactions with cancer cell by S-

nitrosocaptopril (CapNO) inhibits adhesion to endothelial cells and

lung cancer metastasis in immunocompetent mouse models through

multiple mechanisms including reduction of Sialyl-Lewis X (Slex) levels

in cancer cells and ADP-induced P-selectin in platelets, IL-1b induced

VCAM1, ICAM-1, and E-selectin by HUVECs (33).
3 Polyploidy and epithelial-to-
mesenchymal transition in
CTC clusters

As it is discussed in the previous sections, interaction with TAM

(31) or platelets (61) induced metastasis promoting EMT in cancer

cells (62). EMT is associated with cancer progression and metastasis

(63). During EMT epithelial cells lose contact with epithelial or

endothelial cells, change their cytoskeleton and consequentially,

become less rigid, acquiring an ability to move (51, 64). In addition,

EMT induces stem cell properties in cancer, regulates and is

regulated by immunosuppressive cancer microenvironment (65,

66). Notably, cancer stem cells are characterized by mixed epithelial

– mesenchymal phenotype (67).

Interestingly, interaction with white blood cells also correlates

with mixed Epithelial-mesenchymal phenotype and cancer cells

polyploidy (21, 68, 69) that play a key role in cancer resistance to

treatment and metastasis (37, 70–72).

The presence of CTC-WBC clusters was associated with worse

prognosis in lung (21, 22), breast cancers (19), and hepatocellular

carcinoma (73, 74). Remarkably, in lung cancer, CTCs in complex

with WBCs were exclusively polyploid (21).

In turn, in glioblastoma, examination of ploidy together with

expression of endothelial marker CD31 revealed that pre-operative

small triploid CD31 negative CTCs were predictive of inferior

prognosis (68).
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A recent paper employed the iFISH method combining FISH

DNA staining and immunofluorescence (21, 22) to create Atlas of

Circulating Rare Cells (69). High throughput imaging analysis of

circulating rare cells (CRCs) purified by WBC subtraction

categorized cells into 71 subtypes based on the CD45 leukocyte

staining, cell size, chromosome 8 ploidy and the presence of a few

tumor cell markers including PD-L1 (EPCAM/CK18/PD-L1/AFP/

HER2/CA19-9), endothelial CD31, mesenchymal Vimentin and

stem cell CD133 markers (69).

Authors presented a set of cell images with polyploid

chromosome 8. There were cells double positive for CD31 and

Vimentin staining with abnormal chromosomes which can coincide

with cytokeratin CK18, and even CD45-/EPCAM+/CD31+/Vim+

“aneuploid mesenchymal epithelial-endothelial fusion clusters”

were detected. These observations are consistent with the

previous data generated by iFISH linking polyploidy with EMT

(21, 75, 76). The presence of CD45 positive cells was detected in the

clusters with polyploid or multinuclear cancer cells (21, 69).

Quite importantly, comparison of the total count of CTCs and/or

circulating tumor endothelial cells between 31 conditions revealed that

CTCs are present in multiple cancers, however, the highest frequency

of “CTCs” is observed within the group of non-neoplastic infectious

diseases, suggesting that the pure presence of cells with these markers

could not be used as a diagnostic test itself (69).

Consistent with the Atlas of Circulating Rare Cells (69),

sequencing of CTC clusters and individual circulating cancer cells

revealed the mixed epithelial-mesenchymal markers in

hepatocellular carcinoma (Vimentin, epithelial: CDH1, EPCAM,

ASGR2, Keratin 8, stemness: CD133, POU5F1, NOTCH1 and

STAT3) (62) prostate cancer (EPCAM, keratins, E-cad, Vimentin,

CD44) (77) and Vimentin in lung cancer (78).

However, two major conceptual questions here currently

remain not sufficiently addressed:
Fron
(i) How heterotypic interactions of cancer cells with WBCs

promote polyploidy?

(ii) How does the combination of ploidy and mesenchymal

phenotype enhance metastasis?
Mechanisms of how heterotypic interactions promote mobility and

mesenchymal phenotype are described in the subsequent section.
4 Heterotypic interactions within
tumor microenvironment are pivotal
for CTC cluster formation

Interactions with cells of cancer microenvironment promote

EMT, formation of CTC clusters and metastasis (4, 31). Classically,

EMT is accompanied by decrease of E-cadherin/N-cadherin ratio

(79). A recent publication highlighted a novel role of the E-cadherin

(E-cad, encoded by CDH1 gene) expressing cells in breast cancer

metastasis (80, 81). It turned out that when cancer cells grow in the

presence of CAFs there is a gradient of the E-cad from low at the

trailing edge of the invading cancer cells to high E-cad behind it (4).
tiers in Immunology 05127
Furthermore, another paper demonstrated that in breast cancer

spheroid model stem cells lead the collective invasion co-expressing

mesenchymal and epithelial marks (82).

Dermal implants of CAFs with MCF10 cells with low intrinsic

metastatic potential promoted this low-high E-cad gradient, the CTC

cell clustering and metastasis (4). High throughput RNA expression

profiles revealed induction of carcinoembryonic antigen-related cell

adhesion molecule 5 (CEACAM5; CAM5) and CEACAM6 (CAM6)

in the presence of CAFs. This experiment revealed overexpression of

44 CAF-induced genes, whose expression is associated with poor

prognosis in breast cancer. Mechanistically, E-cad, CAM5 and CAM6

interact with each other forming an adherent junction complex on

the cell surface. Functional shRNA studies revealed attenuation of

lung metastasis upon E-cad, CAM5, or CAM6 depletion. Other

excellent functional investigations reported in this paper revealed

that CAF produced SDF-1(encoded by CXCL12 gene) and TGF-b
that through their cognate receptors CXCR4 and TGFBRII activate

SRC kinase phosphorylation/Zeb1 axis altogether mediating tumor

cell cluster formation that are also detected as CTC clusters. The

caveat of this report for our purposes is that we do not know if

fibroblasts travel in the bloodstream with cancer cells. However, this

paper clearly demonstrates stromal-cancer cell molecular interactions

that regulate the ability of cancer to metastasize (4). Importantly,

CRCX4 mediates immunosuppressive tumor microenvironment not

only in cancer cells, but also in the SMA positive stromal cells

including myofibroblasts and pericytes (32). CRE-Lox mediated

knockout of CRCX4 in SMA expressing cells improved survival in

mice with breast cancer, and pharmacological inhibition of CRCX4

potentiated activity of immune checkpoint inhibitors in the nude

mice bearing human metastatic breast cancer (32).

Similarly, to observation in breast cancer, cells of the collective

invasion packs were E-cad positive in lung adenocarcinoma (5). The

role of CAFs in the metastasis was demonstrated by the fact that only

surrounding CAFs express vimentin and in the vimentin knockout

mice, the CAFs motility decreases in vitro and in vivo. Vimentin was

required for the heterotypic cancer cell - CAFs interaction, collective

invasion, and lung adenocarcinoma metastasis (5).

Thus, formation of Epithelial-mesenchymal gradient during

collective invasion is mediated by cancer cell – stromal cell

interaction and pivotal for CTC formation and metastasis (4, 5).

We schematized major findings on CTC interactions and their

molecular physiological effects on Figures 1, 2.
5 Expression of molecules involved
in the CTC cluster formation
and metastasis correlate with
cancer survival

As it is discussed in the previous sections, the formation of the

CTC clusters and metastasis in particular cancers depend on IL1R1

(16), IL6, NODAL, NOTCH1 (17), CD44 (14), CXCR4 (4),

TGFBR2 (4), CDH1 (4, 28), EPCAM (29), ICAM1 (30), and

CCR1 (31). Theoretically, these molecules can impact cancer

metastasis with little to no information on the mechanisms
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involved in CTC cluster formation. To address this possibility, we

interrogated a publicly available The Cancer Genome Atlas project

(TCGA) database and research papers to examine if high or low

expression of molecules that are functionally important for the

formation of CTC clusters may characterize patient survival in

multiple cancers. For example, it was demonstrated that IL1R1

protein induces CTC proliferation in breast cancer (BRCA) (16),

and high IL1R gene expression corresponds to inferior prognosis in

the TCGA-BRCA cohort (Figure 3A) as well as in many other

cancers (Figures 3B, C; Table 2). In turn, high expression of CXCR4

in BRCA corresponds to better prognosis, smaller yet significant

difference between Kaplan-Meier curves predicting better prognosis

was observed for lung adenocarcinoma (LUAD) and thyroid cancer

(THCA) (Figure 3B, Table 2), whereas no difference was observed in

lung squamous cell carcinoma (LUSC).

The clustering analysis separated CTC marker genes into two

major groups: (i) CD44, CXCR4, ICAM1, CCR1, and IL1R1 where

high expression correlated with poor survival for low grade gliomas

(LGG), kidney renal clear cell carcinoma (KIRC), for glioblastoma

(GBM), kidney renal papillary cell carcinoma (KIRP) or lung

squamous cell carcinoma (LUSC) (Figure 3C).

The second gene cluster (ii) includes TGFBR2, IL6ST, IL6R,

CDH1, and IGFBP5. In this group we observed a correlation

between high expression and better prognosis in KIRC and worse

prognosis in KIRP and LGG.
Frontiers in Immunology 06128
As discussed in the previous sections, molecules included in the

analysis promote CTC cluster formation or metastasis in functional

studies. Indeed, the results of clustering analysis suggest that high

expression of genes from the first cluster predicts a rapid disease

progression in multiple cancers. Conversely, the second cluster

contains more genes whose expression promotes cancer

progression in a cancer specific manner.

However, in some cases focused investigations contradict

prediction of patient survival based on the TCGA dataset

(Table 3, upper right triangles in Figure 3B depict approximates

for HR collected from the literature). Specifically, high expression of

stem cell marker CD44 corresponded to poor prognosis in kidney

cancers (KIRC, KIRP) in TCGA data and, accordingly, high CD44

and b-catenin immunostaining correlated with advanced stage,

although no significant correlation with survival could be

observed in a specific focused study (117). However, other reports

communicated a correlation between high CD44 levels and decrease

of progression free survival in renal cell carcinoma after treatment

with multi-targeted tyrosine kinase inhibitor (84). Consistent with

the literature, high CD44 expression predicts inferior prognosis in

LGG and GBM TCGA cohorts (85, 86). The only case of association

between CD44 expression and positive thyroid cancer prognosis

contradicts to the literature (87) (Figure 3B).

It was reported that high CXCR4 expression corresponds to bad

prognosis for breast (88), lung (90) and colorectal (118) cancers
FIGURE 1

Mechanisms of circulating tumor cells (CTC) cluster formation and their properties. Highlighted in green, the process of CTC clusters formation;
Tumor cells can separate from adjacent cells with more mobile mesenchymal cells at the leading edge of the invasion and cells with more epithelial
properties behind (4, 5). Accordingly, mixed epithelial mesenchymal phenotype and polyploidy are frequently observed in the CTC clusters (21, 22).
CTCs and CTC clusters are able to withstand the shear stress in the blood circulation and escape natural killer (NK). CTCs can form homotypic
clusters or interact with CAFs, neutrophils, PMN-MDSCs, Tumor associated macrophages (TAM) or platelets forming heterotypic clusters (14, 16, 17).
CAFs circulate in the bloodstream in heterotypic CTC clusters and promote cancer cell clustering by secreting CXCL12 and TGF-b (4, 13, 20). During
transit and metastasis, platelet-rich thrombus form around CTCs providing protection from shear stress and against lysis by NK cells (56–58). CTC-
associated neutrophils express TNF-a, OSM, IL-1b and IL-6 cytokines and their receptors are expressed correspondingly in CTCs. The interaction
between CTCs and neutrophils is mediated by VCAM1, whereas TNF-a, OSM, IL-1b, and IL-6 promote proliferation of CTCs (16). In addition,
neutrophils promote metastasis by releasing their DNA forming neutrophil extracellular traps (NET) (39). In turn, interaction with polymorphonuclear
myeloid derived suppressor cells promote survival of the CTC clusters (17).
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contradicting TCGA-based findings (Figures 3B, C). It was recently

reported that in advanced CD8 negative thyroid cancer, high

expression of CXCR4 and its ligand CXCL12 (SDF-1) correlates

with bad prognosis, thus contradicting to TCGA data (89).

In contrast, ICAM1 expression is associated with favorable

prognosis in the breast cancer TCGA cohort, consistent with

similar survival analysis of NCBI GEO dataset and repression of

the lung metastasis in spontaneous breast cancer metastasis model

(91) and contradicting another paper reporting pivotal role of the

ICAM1 in the CTC cluster formation, trans-endothelial migration

and metastasis in breast cancer (92).

Thus, the positive associations between expression of CD44,

CXCR4 and ICAM1 for thyroid, lung and breast cancers in TCGA

dataset are not consistent with the literature suggesting that the first

cluster is indeed represents genes whose high expression correlates

with inferior prognosis consistent with their role in the

CTCs biology.

Further we compared TCGA prediction with the literature for a

few genes from the second cluster to address the question if they

have more tissue specific roles in cancer metastasis.
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One of such genes is CDH1 (E-cad protein) whose high

expression was a predictor of better prognosis for colorectal

cancer in agreement with TCGA data (93, 94). Again, consistent

with TCGA data, high protein staining of E-cad in kidney renal

papillary cell carcinoma was associated with worse prognosis, and

no association was detected for kidney renal clear cell carcinoma

(96). Recent analysis of E-cad in the cohort of NSCLC with 66%

cases representing squamous cell carcinoma identifies E-cad as a

positive prognostic factor consistent with TCGA data (97).

When astrocytomas, oligodendrogliomas and oligoastrocytomas were

analyzed, the loss of E-cad immunostaining and hypermethylation of its

promoter were associated with worse prognosis contradicting TCGA data,

although, gene expression analysis was not performed (95). In contrast,

consistent with TCGA data, a positive association between higher E-cad

expression andworse prognosis was reported in the low-grade gliomas and

in glioblastoma (119, 120).

IL6 receptors IL6ST and IL6R are involved in the CTC heterotypic

interactions in breast (16) and colorectal cancers (31). Consistent with

the literature, expression of IL6R has strong prognostic value in

glioblastoma (98) and in lung adenocarcinoma (99, 100). In contrast,
FIGURE 2

Overview of signaling pathways involved in the heterotypic cancer cell interactions pivotal for circulating tumor cells complex formation and
metastasis. Specifically, PMN-MDSC-cancer cell interaction promotes ROS-induces Jagged1/Notch1/Nodal signaling that induces CTC cluster
formation and metastasis (17), In turn, neutrophil interact with cancer cells via ITGAM/ICAM-1 adhesion facilitating interaction with liver sinusoids and
metastasis (30). In addition, VCAM1 is required for the neutrophil-CTC cluster formation (29). Neutrophils produce IL1 and IL-6 that promote growth
of neutrophils-CTC clusters via IL6ST and IL1R1 receptors (16), The Il-6 is also produced by the tumor associated macrophages which induce JAK2/
STAT3/miR-506-3p/FoxQ1 signaling in cancer cells promoting epithelial mesenchymal transition (EMT), metastasis and further attraction of
macrophages by the CCl2 secretion (31). A similar positive feedback loop is organized by the cancer-associated fibroblasts (CAFs) and cancer cells
interactions. The CAFs produce TGF-b and CXCL12 that interact with TGFBR2 and CXCR4 receptors, inducing cancer cell EMT, CTC clusters and
metastasis (4). In turn, cancer cells produce TGF-b and induce CAFs myofibroblast differentiation (83).
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in kidney clear cell carcinoma we found a contradiction between the

literature and TCGA data concerning the biomarker potential of IL6R

expression: good predictor according to the literature (101, 102), and

poor predictor according to TCGA data. Thus, the role of IL6R

expression in cancer can be considered tissue specific.

The member of TGFb receptor family - TGFBR2 is a tumor

suppressor in lung cancer, and the loss of TGFBR2 expression is

associated with worse prognosis of both squamous cell cancer and

adenocarcinoma (107, 108). Accordingly, TGFBR2 mutation

predicts lung cancer resistance to checkpoint inhibitors (121).

Thus, the literature supports prediction of TCGA dataset

regarding the role of TGFBR2 in LUAD progression and

contradicts association of high TGFBR2 with negative prognosis

in LUSC. In breast cancer, reduced expression of TGFBR2 is

associated with worse prognosis contradicting the TCGA data

(109) especially in ER positive patients (110), while the report by

Gao and coauthors is in line with the TCGA data (111).

Theoretically, these contradictions might be connected with the

presence of TGFBR2mutations which were not investigated in these

published reports. Little is known about the influence of the

TGFBR2 on glioma survival, however TCGA prediction of the

negative association might be valuable since TGBFR2 compensates

for inhibition of PDGFR, thereby promoting survival (122).

NOTCH1 activation as measured by the immunostaining

against NOTCH intracellular domain correlates with poor

prognosis of kidney renal clear cell carcinoma (KIRC) (123). In

turn, high total NOTCH1 immunostaining is associated with
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progression of kidney renal clear cell carcinoma contradicting

TCGA prediction (103, 104). Likewise, in contrast to TCGA data,

literature suggests association of NOTCH1 expression and glioma

progression by modulating CXCL12/CXCR4 (105, 124).

In contrast, a recentmeta-analysis revealed thatNOTCH1 expression

does not correlate with overall survival in adenocarcinoma, although

DLL4 and HES1 were associated with worse prognosis (125).

Measurements of VCAM1 in KIRC revealed association of high

expression with good prognosis consistent with TCGA data analysis

(115, 116). In turn, for KIRP we found no published data that can

validate the association of VCAM1 high expression with good

prognosis observed for the TCGA dataset.

EPCAM expression was associated with favorable prognosis of

breast cancer in TCGA data, however immunohistochemical analysis

has shown that it is associated with worse prognosis specifically in the

basal-like and luminal BHER2+ subtypes (113). However, in the HER2

+ subtype, EPCAM was also reported to be associated with worse

prognosis (112). Again, in LGG the protein level of EPCAM was

associated with poor prognosis, which contradicts to the TCGA trends

(113). In thyroid cancers, the presence of EPCAM cleavage product

was associated with more aggressive disease progression, although gene

expression was not measured in this report (126). Finally, in agreement

with the TCGA dataset, high EPCAM expression was associated with

better prognosis in kidney cancers (114).

Overall, after comparison of TCGA data with the literature, it is

possible to conclude that genes of the first cluster (top, Figure 3B)

are mostly predictors of poor prognosis, whereas genes of the
A

C

B

FIGURE 3

Set of selected CTC-associated genes differentially predict survival in several human cancer types. (A) An example of Kaplan-Meier curve for breast
cancer (BRCA) patients stratified by high or low IL1R1 expression in tumors. Shaded areas represent 95% confidence intervals. Time is shown in days.
(B) Hazard ratios (HR) and significance of the differences between Kaplan-Meier curves for patients stratified by the expression of indicated genes for
the panel of solid tumors in TCGA database. Only genes with p<0.05 are shown. Note that log2(HR)<0 for good prognosis corresponding to high
gene expression and log2(HR)>0 for bad prognosis. (C) Hazard ratio clustering for gene - cancer combinations revealed two major gene clusters.
Top-right triangles depict approximations of the HR collected from the literature. Blue colors represent genes or gene products whose expression is
associated with worse prognosis, pink colors represent genes or gene products whose expression is associated with good prognosis while white
colors represent cases where the data is controversial.
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TABLE 2 p-values and Hazard ratio (HR) levels for survival of patients with high gene expression in tumors depicted in Figures 3B, C.

Gene name TCGA project ID p-value HR log2(HR)

CCR1 TCGA-KIRC 0.0283 0.65 -0.61

CCR1 TCGA-LGG 0.0035 0.59 -0.77

CCR1 TCGA-LUSC 0.0047 0.67 -0.59

CD44 TCGA-GBM 0.0408 0.64 -0.64

CD44 TCGA-KIRC 0.0000 0.44 -1.18

CD44 TCGA-KIRP 0.0143 0.46 -1.12

CD44 TCGA-LGG 0.0000 0.43 -1.22

CD44 TCGA-THCA 0.0181 3.10 1.63

CDH1 TCGA-COAD 0.0070 1.89 0.92

CDH1 TCGA-KIRC 0.0000 1.88 0.91

CDH1 TCGA-KIRP 0.0014 0.38 -1.40

CDH1 TCGA-LGG 0.0255 0.65 -0.63

CDH1 TCGA-LUSC 0.0240 1.40 0.48

CXCR4 TCGA-BRCA 0.0044 1.70 0.76

CXCR4 TCGA-KIRC 0.0001 0.55 -0.86

CXCR4 TCGA-LGG 0.0020 0.59 -0.76

CXCR4 TCGA-LUAD 0.0129 1.47 0.56

CXCR4 TCGA-THCA 0.0266 2.99 1.58

EPCAM TCGA-BRCA 0.0269 1.54 0.63

EPCAM TCGA-KIRC 0.0021 1.90 0.93

EPCAM TCGA-LGG 0.0015 1.77 0.83

EPCAM TCGA-THCA 0.0217 z3.47 1.80

ICAM1 TCGA-BRCA 0.0493 1.43 0.52

ICAM1 TCGA-GBM 0.0017 0.58 -0.80

ICAM1 TCGA-KIRC 0.0000 0.51 -0.97

ICAM1 TCGA-KIRP 0.0214 0.48 -1.06

ICAM1 TCGA-LGG 0.0003 0.55 -0.87

ICAM1 TCGA-LUSC 0.0066 0.66 -0.60

IL1R1 TCGA-BRCA 0.0000 0.47 -1.09

IL1R1 TCGA-GBM 0.0186 0.63 -0.67

IL1R1 TCGA-KIRC 0.0084 0.67 -0.58

IL1R1 TCGA-KIRP 0.0047 0.38 -1.41

IL1R1 TCGA-LGG 0.0004 0.55 -0.86

IL1R1 TCGA-LUSC 0.0226 0.71 -0.49

IL6R TCGA-BRCA 0.0014 0.57 -0.82

IL6R TCGA-GBM 0.0415 0.69 -0.53

IL6R TCGA-KIRC 0.0001 1.91 0.93

IL6R TCGA-KIRP 0.0050 0.44 -1.19

IL6R TCGA-LGG 0.0088 0.61 -0.72

(Continued)
F
rontiers in Immunology
 09131
 fro
ntiersin.org

https://doi.org/10.3389/fimmu.2023.1099921
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Rozenberg et al. 10.3389/fimmu.2023.1099921
second cluster (bottom, Figure 3B) predict survival in a cancer type-

specific manner (Figure 3B).

For interrogation of TCGA expression and survival data, we used

standard analytic tools from the TCGA project portal GDC (127, 128).

The discrepancies between results of TCGA data analysis and the

literature could originate from different experimental methods used to

assess gene expression, or different cohorts of patients and different

treatment regimens among others. Thus, results of positive or negative

gene association with patient survival require independent verification

to identify or to confirm reliable biomarkers of disease progression and

potential targets for drug development.

6 Molecules involved in the CTC
heterotypic interaction and known
drug targets

Analysis of the TCGA data and the literature revealed that high

expression of molecules involved in the CTC heterotypic interactions

predicts survival inmany cancer types. Accordingly, as it is discussed in

the previous sections, these molecules are pivotal for metastasis and
Frontiers in Immunology 10132
therefore sometimes represent targets of clinically approved or

experimental cancer drugs. Specifically, results of TCGA dataset

analysis suggest poor prognosis for IL6 overexpressing low grade

gliomas and glioblastomas. Indeed, pre-clinical data demonstrated

that IL6 blockade combined with CD40 stimulation sensitized

glioblastoma to immune checkpoint inhibitors and improved

survival (129, 130). Likewise, pre-clinical investigations revealed that

targeting of the IL6 signaling might be beneficial for other cancers as

well, where bad prognosis is associated with high IL6 level such as renal

cell carcinoma (131, 132), non-small cell lung cancer (133), and breast

cancer (134).We found a single, currently suspended clinical trial of the

IL6R antibody tocilizumab for gliomas and glioblastoma treatment

(NCT04729959), trials for metastatic breast cancer (NCT03135171),

non-small lung cancer among others (NCT04940299, Table 4).

Targeting of IL-6 improves immunotherapy outcome in mice models

(155, 156). However, IL6-specific antibody siltuximab demonstrated no

efficiency against renal cell carcinoma (157) and prostate cancer (158).

IL1R1 expression predicts poor survival in nearly the same set

of cancer types as IL6R. There are multiple clinical trials testing

IL1R agonist an anti-rheumatoid arthritis drug anakinra against

multiple myeloma (136), metastatic breast cancer, and colorectal
TABLE 2 Continued

Gene name TCGA project ID p-value HR log2(HR)

IL6R TCGA-LUAD 0.0166 1.53 0.62

IL6R TCGA-LUSC 0.0148 0.70 -0.50

IL6ST TCGA-KIRC 0.0001 1.91 0.93

IL6ST TCGA-KIRP 0.0474 0.55 -0.86

IL6ST TCGA-LGG 0.0422 0.71 -0.50

IL6ST TCGA-LUAD 0.0067 1.54 0.62

NOTCH1 TCGA-BRCA 0.0060 0.62 -0.69

NOTCH1 TCGA-KIRC 0.0013 2.08 1.06

NOTCH1 TCGA-KIRP 0.0021 0.40 -1.33

NOTCH1 TCGA-LGG 0.0292 1.45 0.54

NOTCH1 TCGA-LUAD 0.0033 1.59 0.67

NOTCH1 TCGA-LUSC 0.0074 0.65 -0.62

NOTCH1 TCGA-THCA 0.0275 0.35 -1.53

TGFBR2 TCGA-BRCA 0.0271 0.66 -0.59

TGFBR2 TCGA-KIRC 0.0000 2.60 1.38

TGFBR2 TCGA-LGG 0.0004 0.53 -0.91

TGFBR2 TCGA-LUAD 0.0350 1.41 0.50

TGFBR2 TCGA-LUSC 0.0050 0.67 -0.58

VCAM1 TCGA-KIRC 0.0121 1.49 0.58

VCAM1 TCGA-KIRP 0.0050 2.28 1.19

VCAM1 TCGA-LGG 0.0012 0.56 -0.84

VCAM1 TCGA-LUSC 0.0392 0.74 -0.44

VCAM1 TCGA-THCA 0.0187 0.32 -1.62
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cancer (159), listed in Table 4. However, we didn’t find any specific

records for gliomas, lung or kidney cancers. Still, several preclinical

investigations have shown that targeting of IL1 signaling in GBM

(137, 138), LGG (139) kidney (140) and lung cancer (141) suggest

its potential clinical usefulness.
Frontiers in Immunology 11133
Expression of adhesion molecule ICAM1 also predicts poor

prognosis for several cancer types, closely mimicking the effects

observed for the IL1R1 and IL6R genes. Specifically, low ICAM1

expression corresponds to better survival in GBM. Indeed, bispecific

CAR-T cells against EPCAM and ICAM1 elicited good response in
TABLE 3 Comparison between prediction of patient survival based on TCGA dataset and review of published literature.

Gene
ID

Cancer type Literature reported HR for patients with high level of
gene or corresponding protein in the tumors.

TCGA calculated HR for patients
with high expression of gene in

the tumors

Reference

CD44 Renal cell
carcinoma

high high (84)

CD44 Low grade glioma high high (85, 86)

CD44 Thyroid high low (87)

CXCR4 Breast high low (88)

CXCR4 Thyroid
(CD8 low)

high low (89)

CXCR4 Lung high low (90)

ICAM1 Breast low low (91)

ICAM1 Breast high low (92)

CDH1 Colorectal low low (93, 94)

CDH1 Low grade glioma high high (95)

CDH1 Kidney renal
papillary cell
carcinoma

high high (96)

CDH1 Squamous cell
carcinoma

low low (97)

IL6R Glioblastoma high high (98)

IL6R Lung
adenocarcinoma

low low (99, 100)

IL6R Kidney renal clear
cell carcinoma

high low (101, 102)

NOTCH1 Kidney renal clear
cell carcinoma

high low (103, 104)

NOTCH1 Low grade glioma high low (105, 106)

TGFBR2 Lung
adenocarcinoma

low low (107, 108)

TGFBR2 Lung squamous
cell carcinoma

low high (107, 108)

TGFBR2 Breast cancer low high (109, 110)

TGFBR2 Breast cancer high high (111)

EPCAM Breast cancer high low (112)

EPCAM Low grade glioma high low (113)

EPCAM Kidney renal clear
cell carcinoma

low low (114)

EPCAM Kidney renal
papillary cell
carcinoma

low low (114)

VCAM1 Kidney renal clear
cell carcinoma

low low (115, 116)
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GBM mice model (153), consistent with other preclinical studies

(160, 161). Similarly, CAR-T cells targeted against ICAM1 were

successfully tested in mice models of gastric (162), thyroid (163,

164), and triple negative breast cancer (165).

ICAM-1 conjugated with a cytotoxic drug was extensively tested

for multiple myeloma (166) and another bispecific anti-CD38-

ICAM-1 drug for multiple myeloma is under development (167).

The vaccine targeting ICAM-1 is also at the early stage of clinical

investigation against ICAM-1 overexpressing bladder cancers (168)

or lung cancer (NCT02043665). However, so far, we did not find

reports on ICAM-1 targeted therapies clinically tested against

gliomas and kidney cancers.

A stem cell marker CD44 predicts poor prognosis in renal cancers

and in gliomas. The CD44-specific antibody RG7356 in clinical trials

showed moderate efficiency in solid tumors (142) and in acute myeloid

leukemia (169). There is also multiple evidence suggesting potential

efficiency of CD44 targeting for the treatment of GBM, although

additional clinical validation is clearly needed (143–145).

Catumaxomab (genetically engineered bivalent anti-EPCAM

and anti-CD3 antibody) is approved for the treatment of

malignant ascites (150) and it has been also used experimentally

for the treatment of bladder (151) and ovarian (152) cancers.

Bispecific CAR-T simultaneously targeting EPCAM and ICAM-1
Frontiers in Immunology 12134
demonstrated promising results in mice models of gastric and

pancreatic cancers (153).

Anti-CXCR4 antibody demonstrated efficiency in multiple

myeloma in combination with lenalidomide or bortezomib plus

dexamethasone (146), and several related clinical trials are ongoing.

A CXCR4 inhibitor AMD3100/Plerixafor was approved by FDA as

a hematopoietic stem cell mobilizer and it was recently tested in

humans against pancreatic and colorectal cancers as the potential

inducer of the immune response (147). Also, preclinical studies

showed that inhibition of the CXCR4 might be potentially efficient

against other cancers including GBM (170, 171), and the first

human clinical trial of plerixafor as an adjunct to combined

chemoradiotherapy was conducted in newly diagnosed GBM

patients (172) achieving median overall survival of ~21 months.

This is a significant improvement over ~17 months period

characteristic for the standard chemoradiotherapy (173).

Finally, gamma secretase inhibitors showed therapeutic effects

only in CNS tumors and desmoids (174). Targeting of TGF-b
receptor is also in development and in clinical trials (148). In

turn, anti-VCAM antibodies dramatically reduced pancreatic

ductal adenocarcinoma progression in mice models (175, 176).

In Table 4, we summarized drugs targeting molecules involved

in the CTC heterotypic interactions.
TABLE 4 Potential off-label applications of drugs targeting molecules involved in the heterotypic CTCs interactions.

CTC
cancer
type

Target Target
ligand(s)

Drug Current therapeutic
applications

Potential therapeutic
applications

References and
clinical trials

Breast,
Colorectal

IL6ST
IL6R

IL6 Siltuximab,
tocilizumab

Castleman disease,
Rheumatoid arthritis,

GBM, LGG, LUSC, BRCA

(129, 130, 133–135)
NCT04729959
NCT04940299
NCT03135171

Breast IL1R1 IL1 anakinra rheumatoid arthritus,
MM, BRCA, colorectal

cancer

GBM, LGG, KIRP, KIRC
LUSC

(136–141)
NCT00635154
NCT01802970
NCT02090101

Breast IL1R1 IL1 isoanakinra Solid cancers GBM, LGG, KIRP, KIRC
LUSC

NCT04121442
NCT00072111

Breast CD44 Hyaluronic
acid

RG7356 NA Solid cancers, AML, GBM (142–145)

Breast CXCR4 CXCL12 Ulocuplumab Multiple myeloma THCA (146)

Breast CXCR4 CXCL12 AMD3100/Plerixafor
X4P-001

hematopoietic stem cell
(HSC) mobilizer,
colorectal cancer,
glioblastoma

THCA (147)

Breast CXCR4 CXCL12 X4P-001 Triple negative Breast
cancer

THCA NCT05103917

Breast CXCR4 CXCL12 MB1707 Advanced cancers,
NSCLC, breast cancer

THCA NCT05465590

Breast TGFBR2 TGFB1 Vactosertib Solid cancers LGG, LUSC, BRCA (148, 149)

Hepatocellular EPCAM CAMs catumaxomab (anti-EpCAM x anti-
CD3), bladder, ovarian cancers

malignant ascites GBM (150–153)

Lung ICAM1 ITGAM Lifitegrast LFA-1/ICAM-1
antagonists

dry eye disease GBM, LGG, KIRP, KIRC (153, 154)
MM, multiple myeloma; AML, acute myeloid leukemia.
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7 Conclusions

Analysis of the literature describing factors leading to formation

of CTC clusters revealed three major features. First - the presence of

either heterotypic or homotypic CTC aggregates often means

unfavorable prognosis and predicts metastasis in many cancer

types. Targeting the formation of such clusters is a valuable

strategy for metastasis suppression (4, 6, 17). Second - cells carry

mesenchymal (Vimentin) and epithelial (E-cad) markers together,

which is a hallmark of intermediate epithelial associated with

stemness of cancer cells (177, 178). Third - in turn, intermediate

Mesenchymal- Epithelial state frequently coincides with polyploidy

as it was shown in lung and colorectal cancers (179, 180). In lung

cancer, polyploidy was accompanied by the interaction with WBCs,

which were identified as neutrophils or PMN-MDSCs.

It is well established that both polyploidy/mixed EMT phenotype

and immunosuppressive PMN-MDSC and TAM contribute to cancer

progression, however, how the interaction between them mediates

metastatic advantage is yet to be investigated.

Taken together, these findings highlight common mechanisms

of metastasis with implication for drug development and

cancer treatment.
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The tumor associated macrophages (TAM) represent one of most abundant

subpopulations across several solid cancers and their number/frequency is

associated with a poor clinical outcome. It has been clearly demonstrated that

stromal cells, such as the cancer associated fibroblasts (CAFs), may orchestrate

TAM recruitment, survival and reprogramming. Today, single cell-RNA sequencing

(sc-RNA seq) technologies allowed a more granular knowledge about TAMs and

CAFs phenotypical and functional programs. In this mini-review we discuss the

recent discoveries in the sc-RNA seq field focusing on TAM and CAF identity and

their crosstalk in the tumor microenvironment (TME) of solid cancers.

KEYWORDS

cancer associated fibroblasts (CAF), tumor associated macrophages (TAM), solid
tumors, single cell RNA analysis, monocytes
1 Introduction

The advent of sc-technologies has fast-revolutionized our understanding about

macrophage phenotype, function, and plasticity in several diseases, including cancer.

The binary view of macrophage states: M1 and M2, has dominated the field until recently.

M1 (pro-inflammatory) versus M2 (alternative or anti-inflammatory) profiles were derived

by in vitro observations in human and mice (1). M1- macrophages, obtained in vitro by

type 1 cytokines such as IFN-g (and/or TNF-a) showed efficient phagocytosis, high levels of
pro-inflammatory cytokines (i.e. IFN-g, IL-12, TNF-a) and chemokines (i.e. CCL2,

CXCL10). Conversely, the generation of M2-macrophages, was mainly induced by type

2 cytokines like IL-4 and/or IL-13 (1). M2-like macrophages are characterized by increased

wound healing activity, reduced phagocytosis and T cell antigen presentation capacity (2,

3). Recent sc- discoveries revealed that human macrophages are highly heterogeneous at

the steady state and in pathological conditions, suggesting the importance of a context- and

tissue-dependent approach to appreciate their biological properties.
Abbreviations: sc, single cell; TAM, tumor associated macrophages; TR, tissue resident; TRM, tissue resident

macrophages; CAF, cancer associated fibroblasts; CSF-1, colony stimulating growth factor 1; ECM,

extracellular matrix.
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2 TAM: tissue resident macrophages
and monocyte-derived TAM in
tumor niches

TAM are one of the most abundant population in solid cancers

(4). TAM density is linked to poor patient outcome in prostate

(PCA), breast (BC), bladder, head and neck (HN), glioma,

melanoma, thyroid, lung (NSCLC), hepatocellular (HCC) cancers,

and non-Hodgkin lymphoma (5–10). Collectively, TAM may

originate from tissue-resident macrophages (TRM) and

circulating monocytes (mono)-derived cells. This review will

describe recent discoveries on the aspects linked to the TAM origin.

All the organs in the body are populated by (TRM), key players

in mounting the first-line of defense against pathogens, preserving

vascular tone and integrity, in addition to clearance foreign bodies

(11). Embryonically generated-TRM preserve the organ

homeostasis at steady state. In response to inflammation, TRM

may be originated by circulating monocytes. The contribution by

peripheral monocytes could be driven by the inability of TRM to

generate macrophages with specific effector functions in the tissue,

because of the limited TRM self-renewal intrinsic capacity (11).

Upon infections or inflammation, bone-marrow- adult derived cells

could be recruited at the tissue and replaced embryonic-TRM.

Among many inflammatory triggers (i.e. infections), cancer-

associated inflammation may be considered a key perturbator of

the frequency of TRM across multiple cancer subtypes. Indeed,

circulating monocytes may be recruited by the engagement of

various chemoattractant pathway by the interplay of stromal

components like CCL2-CCR2, CCL20-CCR6, CCL5-CCR5,

CCL8- CXCR4-CXCL12 etc (12). At the tumor site, monocytes

undergo gene reprogramming and acquire similar properties of

embryonically originated macrophages, depending on specific

tissue factors (2, 13–15). Chronic inflammation of different

etiology can give rise to the differentiation of recently recruited

monocytes towards TAM at the tissue site.

So far, sc-RNA seq technologies have contributed to defining i)

the theoretical origin of TAM; ii) TAM heterogeneity; iii) TAM

molecular features iv) TAM functional and metabolic states. This

large effort has contributed to understand which molecular

programs are conserved among cancer types and which programs

could be tumor tissue-specific.
3 TAM in the era of single cell
RNA-sequencing technology

Most of the sc-datasets showed the APOE (apolipoprotein) gene

as a TAM marker. Numerous studies, including our, demonstrated

the selective APOE expression by TAM from tumor lesions

compared with macrophages from normal-tissue (NT)

counterparts (16–18). Despite tissue resident (TR) or monocytic

origin of TAM, they may collectively share a core transcriptomic

signature comprising: APOE, complement component genes (i.e.

C1QA, C1QB, C1QC), and cathepsin (CTSB, CTSD) across several

cancer types (16, 18–21).
Frontiers in Immunology 02141
3.1 TR-derived TAM

TAM derived from TRMwere described in several cancer tissues.

In human colorectal cancer (CRC), C1QC+ TR-TAMs were

identified, showing high complement components (C1QA, C1QC

etc.), high levels of HLA-DR molecules and high phagocytic score

(20). Importantly, Cheng et al, collecting sc-RNA data from 15

different cancer subtypes, reported that C1QC+ TAM showed a

lower connectivity with CD14+ monocytes suggesting their TR

origin (19). Of note, the folate receptor-b (FOLR2) has been

recently discovered and described as TR marker. In HCC FOLR2+

TAM exhibited fetal-liver features and displayed onco-fetal

reprogramming (22), supporting their resident origin. TR FOLR2+

macrophages have been also identified (16) in breast cancer (BC)

lesions and in healthy mammary tissues; they were associated with

high CD8+ T cell infiltration and better prognosis. Additionally,

mannose receptor C, type 1 (MRC1) and perivascular markers like

Lymphatic Vessel Endothelial Hyaluronan Receptor 1 (LYVE1) and

stabilin-1 (STAB1) were expressed by the FOLR2+ TR-TAMs. In

agreement with the expression of perivascular markers, fetal-derived

mammary gland macrophages display periductal and perivascular

localization (23). In accordance, Cheng et al, demonstrated highest

similarities between LVYE1+ TRM and FOLR2+ TR-TAMs. Since

LYVE1+ macrophages were identified in multiple cancers and

preferentially enriched in NT counterpart (19), the authors

suggested that the enrichment of LVYE1+ TRM in adjacent NT

may function as the potential pool for the FOLR2+ TAMs. Many

observations suggested therefore a protective role for TRM in some

cancers, however, other findings proposed that in lung and pancreas

lesions, TRM played a key role in tumor initiation (24, 25). In non-

small lung cancer TR alveolar TAM may induce epithelial-

mesenchymal transition (EMT), regulatory T cell activation and

promoting pro-tumorigenic fibroblast-TRM crosstalk, finally

fostering tumor progression and invasiveness (25).
3.2 Mono-derived TAM

Tumor-infiltrating mono-derived TAM were described in a

variety of human and murine cancer models. Müller and

collaborators have been pioneers in dissecting the transcriptomic

properties of mono-derived TAMs in gliomas. They demonstrated

the co-existence of CX3C motif chemokine receptor 1 (CX3CR1)-

blood-derived TAM, CX3CR1+ blood-derived TAM and lastly

CD11b+CX3CR1+HLADRlow as TR microg l i a (26) .

Corroborating studies by Friebel and collaborators have defined

TAM heterogeneity in primary gliomas and brain-derived

metastasis. They demonstrated a mono-derived TAM cluster

expressing CD163, CD206 and one expressing high level of Cell

Adhesion Molecule 1 (CADM1) and CX3CR1 (27). In line, a study

in BC identified CADM1 as marker of mono-derived TAM (16).

Collectively, all these studies proposed CX3CR1 and CADM1 as

mono-derived TAM markers (28).

The lipid-associated TREM2 (Triggering Receptor Expressed

on Myeloid Cells 2) receptor has been recently associated to mono-
frontiersin.org
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derived TAM in many cancer subtypes (17, 28–32). Its expression

was detected together with APOE, APOC1 (apolipoprotein C1),

FABP5 (fatty acid binding protein) and LIPA (Lipase A), genes

involved in lipid transport and metabolism and highly detected in

breast, sarcoma, colon, lung and other cancers (17, 28–31). Our

work and that of others (17, 33) suggested that TREM2+ TAMs

bear close transcriptomic profile to a Lipid Associated Macrophage

(LAM) subpopulation, highly enriched in the adipose tissue of

obese patients and in mice fed with high fat diet (34). These LAM

were described as mono-derived cells (17, 33). Lipid-associated

molecular profiles were highly enriched in several tumors and

associated with a detrimental role in cancer progression. For

example, Masetti et al, have demonstrated that MARCO+ TAM

expressed high lipid-content and lipid-associated molecular

signatures in prostate cancer, similarly lipid-laden TAMs have

been discovered by Di Conza et al. (35, 36). Lipid loaded TAM

or/and LAM were associated with poor prognosis and outcome (17,

33, 35, 36) suggesting a protumor role for lipids. Intriguingly,

several groups have demonstrated that the abrogation of TREM2

activity in mice, by Trem2 KO models or by Trem2 antibody-based

blocked therapies, induced tumor growth delay and synergistic

effect on T cell restoration functions concomitantly with anti-PD-

1 blockade in many mouse models (CRC, sarcoma) (28). Although

the mechanism of Trem2-/- KO or blockade activity seems to be T

cell dependent, it remains to be elucidated the blocking effect of

Trem2 as lipid marker in cancers. Overall these studies

demonstrated a pro-tumoral role for mono-derived TREM2 TAM.

Another mono-derived marker commonly identified is the

SPP1 (Osteopontin) gene (37). Of note, Zhang and colleagues

demonstrated that a subset of SPP1+ TAMs may be developed
Frontiers in Immunology 03142
from tumor-infiltrating mono-like precursors in CRC lesions (20).

SPP1+ TAMs were described in 8 cancer subtypes: BC, PCA, Lung,

CRC, Uterine corpus endometrial, Nasopharyngeal, Ovarian and

Thyroid carcinoma, preferentially expressing an angiogenic

signature (19). Some of them expressed high levels of MARCO

gene, and Zhang et al, demonstrated that IL-1b and VEGF were able
to upregulate its expression under hypoxic conditions (20).

Collectively, SPP1 mono-derived TAM were associated with

protumor and M2-like signatures, proposing a protumor role for

these cells. Conversely to the observations above, mono-derived

SPP1+ TAM have been recently identified associated to protective

CXCL13+ T cell responses and highly correlated with plasma B

cells, indicating a protective SPP1+ TAM role in human lung cancer

(30). The large contribution of sc-datasets in identifying several

TAM clusters highlighted the importance of having a consensus

annotation. A big effort has been done by Mulder et al, in providing

a robust online-available platform with the aim to harmonize the

annotations of macrophages in healthy and pathological states. The

authors have generated a monocyte-macrophage compendium

widely distributed across multiple tissues. Some TAMs were

exclusively expanded in cancer and inflamed tissues and generally

enriched in neoplastic lesions (37). In pursuing the effort of

collecting shared TAM features, Cheng and colleagues have

demonstrated that - in a large cohort of 15 different cancer

subtypes - TAM subsets could be concomitantly identified across

cancer subtypes. However, the similarity analysis failed to exactly

cluster TAMs with the same identity. These observations indicated

that TAM exhibited high levels of complexity and heterogeneity,

highlighting the crucial role for the local tissue microenvironment

in shaping the TAM phenotype (14, 22) (Figure 1).
FIGURE 1

TAM heterogeneity in the sc-RNAseq era. Thanks to sc-RNAseq studies TAM heterogeneity has been revised. Key factors described to shape the
TAM identity are: i) tissue signals, mediated by epithelial, endothelial and fibroblast cells represented in each organ of interest, ii) ontogeny, TAM may
derive from tissue resident macrophages (TRM) or blood monocytes (Blood mono), iii) inflammation, it may influence and balance the recruitment of
blood mono at tumor site perturbing TRM/blood monocyte ratio in the tumor.
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4 Introduction to CAFs

The TME is a complex ecosystem where the malignant cells

coexist with immune and stromal cells (fibroblasts and endothelial

cells). CAFs represent the predominant cell type. CAFs play

tumorigenic roles by promoting cancer cell survival and

proliferation, inducing angiogenesis and extracellular matrix

(ECM) remodeling. CAF subsets have been described to modulate

immune responses, inducing regulatory T cell programs, T cell

suppressive activities and recruiting myeloid cells at the tumor site

(38). The peptidase inhibitor 16 (PI16) gene is considered a

universal fibroblast marker, mostly expressed by normal

fibroblasts (NFs) from NT areas (39). Conversely, CAFs expressed

specific markers, less or not expressed by NFs, such as alfa-SMA (a-

SMA), fibroblast activated protein (FAP), fibroblast specific

protein-1 (FSP1), platelet derived growth factor receptor

(PDGFR-a-b and podoplanin (PDPN) (40–44).
4.1 CAF in the era of single cell
RNA-sequencing technology

FAP+ CAFs showed an activated phenotype compared to NFs

and they were strongly enriched in tumor lesions compared with

NT (38). Activated FAP+ CAF expressed pathways involved in

collagen activation, ECM, metalloproteinase-related genes,

adhesion and wound-healing signatures (45).

Thanks to the sc-RNA studies FAP+ CAFs have been deeply

phenotyping, and different groups have observed highly

heterogeneity of this subpopulation in NSCLC (30, 46–49),

bladder (50), pancreas (51, 52), BC (53), liver (54) and HN

(55) tumors.

Öhlund and colleagues have described that FAPhigh CAFs

comprised matrix-producing myo-fibroblastic phenotype

(myCAF) and immunomodulatory secretome or inflammatory

CAFs (iCAF) in human PCA and pancreatic mouse model. iCAF

were able to produce high levels of IL-6, IL-11, leukemia

inhibitory factor (LIF), and chemokines (CXCL1, CXCL2) while

myCAF, detected closer to the tumor lesions, expressed high levels

of a-SMA and ACTA2 genes, CTGF and COL1A1 (TGF-b-
response genes) (51). Kieffer at al., have corroborated these

observations in BC, distinguishing ANTRX1+ myCAF from

ANTXR1- iCAFs. myCAF comprised ecm-myCAF, TGFb-
myCAF, and wound-myCAF involved respect ively in

extracellular matrix organization pathway, TGF-b pathway,

collagen fibril organization and wound healing pathway. Whilst

iCAF included subsets deputized to cytokine/chemokines

production: detoxCAF (closer to NFs phenotype), IL-iCAF

(deputized to cytokine/chemokines productions) and IFN-iCAF

(involved in cytokine-mediated response to interferon-gamma

genes) (53). The authors demonstrated that myCAFs correlated

with non-responder patients to immune checkpoint blockade

(ICB) therapies, demonstrating a role of FAP+ CAF in

contributing to primary resistance to immunotherapy. Another

study demonstrated the presence of leucine-rich-repeat-
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containing protein 15 (LRRC15+) myCAFs able to directly

suppress CD8 T cell function and limit responsiveness to ICB

(52). myCAF and iCAF subsets were accordingly identified in

triple negative breast cancer (TNBC) and CRC (56, 57). Generally,

these data suggested iCAF distal from the tumor lesion and with

secretory ability, while myCAF, described in close proximity to the

tumor site, showed activated and contractility genes (51, 56, 57).

Of interest, Grout et al, dissected NSCLC stromal TME. They

identified alcohol dehydrogenase 1B (ADH1B) positive CAFs,

carrying low activation state and highly producing CCL19, they

were spread throughout the stroma and supported a T-cell

permissive TME. In contrast, MYH11+aSMA+ CAFs expressing

myosin heavy chain 11 (MYH11) gene, ACTA2, and intermediate

levels of CD34 were localized as a single layer encapsulating the

tumor nest and orchestrating T-cell exclusion. Both ADH1B+ and

MYH11+aSMA+ and CAFs characterized early stage of the

disease. At advanced stages other two clusters were identified:

FAP+ CAFs expressed high levels of periostin (POSTN), Leucine

Rich Repeat Containing 15 (LRRC15), and Gremlin1 (GREM1)

genes and FAP+ aSMA+ CAFs. Intriguingly, while FAP+ aSMA+

orchestrated T-cell exclusion, FAP+ CAF showed T-cell

permissive TME (47). This study has elucidated the importance

of different CAF subpopulations at displaying T-cell permissive or

excluding TME. Still remains to understand which factors

influence CAF subtypes. Of remarkable interest for the

immunologists was the discovery of antigen-presenting CAFs

(apCAFs) in mouse and human PCA ductal adenocarcinoma.

Elyada et al, showed that apCAFs expressed high levels of MHC-

class II genes (H2-Ab1) and CD74 gene, however they did not

express classic costimulatory molecules. They expressed markers

regulating the immune system like BCAM (CD239), F11R

(member of Immunoglobulin genes), IRF5 (interferon

stimulating factor 5) and STAT1, known to mediate MHC

expression in response to IFN-g. These MHC class II–expressing

CAFs showed the capacity to activate CD4+ T cells in an antigen-

specific manner, corroborating their putative immune-

modulatory aptitude (58). Rapidly, our view about CAFs and

their heterogeneity has changed. The coexistence of myCAF and

iCAF in the TME suggests a compartmentalization, both in terms

of localization (close or distant to the tumor nest) and functions

that may dictate the localization and the phenotype/function of

tumor-infiltrating immune cells. Due to the availability of

numerous sc-RNA seq datasets and given the deep-phenotyping

of CAFs and TAM in many cancer studies, CAF-TAM

interactions and their cross-talks has been reviewed.
4.2 CAF and TAM crosstalk in the TME

At steady-state the connection between fibroblasts and

macrophages is documented by the ability of NFs to produce

colony stimulating growth factor 1 (CSF-1), lineage-specific

growth factor, crucial for the proliferation and survival of

macrophages . Zhou e t a l . , have demons t ra t ed tha t

microenvironmental sensing by fibroblasts may control

macrophage population size by producing CSF-1 (59). CAFs and
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TAMs may interact via the CSF1-CSF1R axis also in the TME (60).

So far, it has been collectively demonstrated that CAFs may secrete

several factors well-known to influence the recruitment and

activation state of myeloid cells including: IL-1b, IL-8, IL-6, IL-
33, IL-10, Chi3L1, CXCL1, CXCL2, CXCL5, CXCL6, CXCL8,

CXCL9, CXCL10, CXCL16, CXCL12/SDF1, CCL2/MCP-1, CCL3,

CCL5/Rantes, CCL7, CCL20, CCL26, TGF-b, prostaglandin

(PGE2), indoleamine-2,3-dioxygenase (IDO), LIF, VEGF, tumor

necrosis factor (TNF), and nitric oxide (NO) (61–63). CAFs may

recruit monocyte at the tumor site by CCL2-CCR2 pathway. FAP+

CAFs were identified as a major source of CCL2 in intrahepatic

cholangiocarcinoma (64). The CCL2-CCR2 axis was also linked to

tumor progression in a spontaneous model of lymphoma;

accordingly, genetic ablation of Ccr2 inhibited tumor growth (65).

CAFs may promote skin carcinogenesis by maintaining CCL2

mediated monocyte/macrophage infiltration and chronic

inflammation (66). CAF derived-CXCL16 chemokine may also

recruit mono promoting stromal activation and then tumor

progression in TNBC (67). CXCL14 may be produced by CAFs,

therefore amplifying mono recruitment at tumor site and acting as

stimulator of prostate tumor growth (68). Among the pathways

involved in the mono recruitment, CXCL12 is well studied. CAFs

produce high levels of CXCL12 in the TME and CXCL12-CXCR4

CAF-TAM axis is responsible for mono recruitment at the tissue

(69). In line, targeting the CXCL12 pathway from FAP+ CAFs

synergized with anti–PD-L1 immunotherapy in PCA (70). In

bladder cancer CXCL12-CXCR4 iCAF-TAM crosstalk was

described (50). Our study, in accordance with other studies,

demonstrated that iCAF, highly enriched in TNBC, were the

major source of CXCL12, resulting the key cells sustaining the

recruitment of CXCR4+ monocyte in TNBC (17). In keeping with

our observations in TNBC, Wu and colleagues demonstrated that

iCAF-TAM crosstalk strongly associated with cytotoxic T-

lymphocyte dysfunction in TNBC (57). Overall, the recruitment

of monocytes via the CXCL12-CXCR4 axis was associated with

tumor progression. iCAF-TAM axis mainly involved the

complement cascade activation pathway by the interactions of

complement C5-C5AR1. C5 pathway is an important chemotactic

factor for the recruitment of immunosuppressive myeloid cells

ultimately suppressing T-cell activities (71). A cross-talk between

C3-C3aR iCAF-TAM axis has been additionally elucidated in

melanoma, HN and BC (60). These data suggested that CD34+

PDPN+ and PDGFR-a+ iCAFs were highly producers of C3, C2,

and C4b complement components, additionally to CXCL12, CSF-1

and CCL8 factors. CD34+ CAFs, by producing C3 and by the C3a

conversion into an activated form in the TME, allowed the

recruitment of C3aR+ circulating monocytes. By confocal

microscopy analysis, C3aR+ TAMs were proximally located to

CD34+ CAFs, indicative of a generation of supportive protumor

niche by iCAF-TAM interactions (60). Globally these data

suggested a pro-tumoral role for the complement components in

recruiting circulating monocytes and favor immune suppression.

These data supported a recent hypothesis that iCAF, rather than

myCAF, may play a fundamental role in promoting tumor

progression by recruiting monocytes at the tumor site via local
Frontiers in Immunology 05144
inflammation. Among the pathways responsible of CAF monocyte

reprogramming IL-6/STAT3 is well studied. CAF-derived IL6 leads

to myeloid immunosuppression phenotype by STAT3 activation.

Inhibiting IL-6 pathway or STAT3 activation by blocking CAF-

TAM interactions decreased immunosuppression in PCA (72) and

HCC (73) was observed. STAT3 activation is also mediated by LIF

and IL-11. LIF pathway leaded to immunosuppressive signature on

TAMs by decreasing CXCL9 expression and preventing cytotoxic

CD8+ T-cell recruitment, impairing anti-PD1 response (74). In a

model of BC CAF-derived Chi3L1 induced mono recruitment and

M2-like TAM reprogramming by inducing CD206 and

ARG1 expression.

Cytokines as IL-8, IL-33, IL-10, TGF-b and CCL2 secreted by

CAFs promoted the recruitment of monocytes at tumor site and

the M2-like protumor phenotype (66, 75, 76). Collectively, many

studies have demonstrated CAF-mediated mechanisms inducing

M2-like TAM phenotype (17, 77–80). Of note, Mazur et al.,

explained the mechanisms by which the FAP protein could

interact with TAM. The authors have demonstrated that FAP is

crucial for the CAF interaction with class A scavenger receptor

(SR-A or CD204) expressed by TAM, mainly by cleaving type I

collagen resulting in increased TAM adhesion (81). A protumor

niche generated by the interactions between FAP+ CAF and SPP1

+ TAM has been identified in CRC. The abundance of both FAP+

CAFs and SPP1+ TAMs was correlated with worst patient

survival. Interestingly, FAP+ CAFs and SPP1+ TAMs were

found in close proximity in the TME communicating by TGFb-
ACVRL1/ACVR1/B pathway, CCL3-CCR5 axis and RARRES2-

CMKLR1 pathway. The latter involved in the recruitment of

CMKLR1+ monocyte/TAM at the tumor site. These were

described as pro-tumoral pathways in the tumor promotion

and progression.

Since both FAP+ CAFs and SPP1+ TAMs were enriched in

genes linked to ECM the authors suggested that this myCAF-TAM

axis may facilitate the generation of desmoplastic structures in

CRC (82). In agreement, a positive correlation between FAP+

CAF and SPP1+ mono-derived TAM was found in NSCLC cohort

(47). Our study in TNBC demonstrated also a protumor niche

between FAP+ CAF and mono-derived LAM. We have

demonstrated by in vitro assays that FAP+ CAF were able to

induce a LAM-like suppressive phenotype characterized by the

induction of APOE, APOC1, FABP5, ACP5 and TREM2 genes.

LAM-differentiated cells were able to inhibit T cell proliferation

and activation state orchestrating suppressive functions (17). In

keeping with these studies, a work collecting 10 cancer subtypes

has demonstrated the existence of CAFs generated from

endothelial cells by endothelial-mesenchymal transition

(EndMT) (CAF-EndMT). They exhibited concomitant

expression of CD44+CD31+ and ACTA2, in addition to

regulator of G Protein Signaling 5 (RGS5), plasmalemmal

vesicle-associated protein (PLVAP) and von willebrand factor

(VWF) genes. The authors identified CD44+ CAF EndMT -

Spp1+ TAM interactions in promoting EndMT process and

angiogenesis leading to poor prognosis in cancer patients

(45) (Figure 2).
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5 Discussion

This review gathers evidence from key studies that highlight the

suppressive crosstalk between newly identified TAM and CAF

subpopulations across different solid cancers and explores the

suppressive modules that could provide potential targets of new

therapeutic approaches.
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FIGURE 2

CAF-TAM interactions in the TME. Inflammatory CAF (iCAF), myofibroblasts CAF (myCAF) and antigen presenting CAF (apCAF) have been described
by several sc-studies and across cancer subtypes. iCAF produces inflammatory cytokines and chemokines and they produce complement
components. They play key roles in monocyte recruitment, inflammation, complement activation and in the induction of suppressive functions of
myeloid cells. myCAF are involved in extracellular matrix remodeling, wound healing, endothelial-to-mesenchymal transition, and produce TGF-b.
They induce M2-like phenotype, differentiation and polarization of suppressive TAM and the induction of lipid metabolism. apCAF have been
described, however, no specific functions associated to TAM biology have been reported to date.
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DNAM-1 is a major NK cell activating receptor and, together with NKG2D and

NCRs, by binding specific ligands, strongly contributes to mediating the killing of

tumor or virus-infected cells. DNAM-1 specifically recognizes PVR and Nectin-2

ligands that are expressed on some virus-infected cells and on a broad spectrum

of tumor cells of both hematological and solid malignancies. So far, while NK

cells engineered for different antigen chimeric receptors (CARs) or chimeric

NKG2D receptor have been extensively tested in preclinical and clinical studies,

the use of DNAM-1 chimeric receptor-engineered NK cells has been proposed

only in our recent proof-of-concept study and deserves further development.

The aim of this perspective study is to describe the rationale for using this novel

tool as a new anti-cancer immunotherapy.

KEYWORDS

CAR-NK cells, solid tumors, DNAM-1, NK cell-based immunotherapy, NK cell engineering
Introduction

NK cells are cytotoxic lymphocytes belonging to innate immunity that, by a complex

array of activating and inhibitory receptors, are tolerant versus healthy cells and can

recognize and kill virus-infected and transformed cells through the release of cytolytic

granules and cytotoxic cytokines (1). The peculiar ability to elicit a potent response against

target cells is due to the expression by NK cells of a repertoire of activating receptors such as

NKG2D, the accessory molecule DNAX (DNAM-1, CD226), and natural cytotoxicity

receptors (NCRs) including NKp30, NKp44, and NKp46 (2, 3). Of note, ligands for

NKG2D and DNAM-1 are poorly expressed in normal cells [proteinatlas.org, Genotype-

Tissue Expression (GTEx) from The Cancer Genome Atlas (TCGA) database and (4)] and

highly expressed in virus-infected and transformed cells (5, 6). Furthermore, NK cells,

through the expression of FcgRIIIA (CD16) receptor, are responsible for the antibody-
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dependent cellular cytotoxicity (ADCC) (7), which is a crucial

function in the clinical context of all immunotherapies involving

monoclonal antibodies (mAb) (8).

In addition to their cytotoxic function, NK cells play a crucial

role in regulating the maturation and activation state of other

immune cells, through sophisticated cross-talks and biological

mechanisms that further support their use in immunotherapy (9).

In contrast, it is noteworthy that NK cells in cancer patients

show impaired functions accompanied by a poor ability to infiltrate

the tumor microenvironment (TME), as tumor cells adopt different

various immune evasion mechanisms (10–17). Therefore, the

adoptive transfer of ex vivo expanded and activated allogeneic NK

cells for immunotherapy turns out to be a strategic clinical adoption

to help cancer patients to fight tumor cells, thus attracting

increasing interest in the past decade (18).

Primary allogeneic and alloreactive NK cells, from healthy

donors with a favorable immunoglobulin-like receptor (KIR)-

human leukocyte antigen (HLA) mismatch (19), can be harvested

from several sources such as peripheral blood (20), umbilical cord

blood (21) or be derived by induced pluripotent stem cells (iPSC)

(22, 23). Compared with the therapeutic use of T cells, that of

allogeneic NK cells has several advantages: this has progressively

stimulated the improvement of previously limited ex vivo

amplification methods of NK cells and designs for the expression

of various chimeric antigen receptors (CARs) and NKG2D chimeric

receptor (24, 25) suitable for clinical use (ClinilTrial.gov and

Supplementary Table S1).

In this context, one should consider that T and NK cells are

often dysfunctional in cancer patients, limiting the use of

autologous cells for engineered manipulation (26). Noticeably,

NK cells display greater antitumor effects in allogeneic settings

than in autologous ones (20, 27). However, the use of allogeneic T

or CAR-T cells presents limitations related to severe haploidentical

mismatch conditions necessary to reduce the risk of graft-versus-

host disease (GvHD) and cytokine release syndrome (28–30). In

contrast, allogeneic NK cells do not cause GvHD (31–33) and

display a low risk of proliferation in transfused patients and, thus a

major safety, as compared with infused T cells. Finally, the high

availability of allogeneic NK cells, their low cost compared to CAR-

T cells, and the possibility of cryopreserving them for further

administration allowing the treatment of many patients from a

single NK cell donor, entitles their clinical use for several types of

cancers (34, 35).

So far, the successful use of NK cells engineered for several

CARs and for NKG2D chimeric receptor in the hematological and

solid tumor settings has been widely reported (ClinicalTrial.gov

Supplementary Table S1). Based on the success of CD19-targeted

CAR-T cells (36), approved by U.S. Food and Drug Administration

(FDA), the first CAR-NK cells were engineered with chimeric anti-

CD19 single chain fragment variable (scFv) for the cure of

hematologic malignancies (21). Currently, the use of CAR- or

NKG2D chimeric receptor-engineered NK cells has been

extended to different type of cancers; however, the number of

clinical trials evaluating their efficacy against solid tumors is far
Frontiers in Immunology 02150
lower than against hematologic malignancies (14 versus 29, as

reported in Supplementary Table S1). This represents a clinical

gap that needs to be filled. CAR-T or CAR-NK cells have generally

shown greater efficacy in hematologic malignancies than in solid

tumors, mainly for the following reasons: (i) firstly, the accessibility

of CAR-T or CAR-NK cells to tumor cells is significantly different

between solid and hematological tumors, depending on cell

morphology (absence or presence of cell-cell adhesions) and body

distribution; (ii) secondly, solid tumor cells are less sensitive to

cytotoxic lymphocytes, as the immune suppression mechanisms

occurring in TME constitute a barrier to lymphocyte infiltration.

Therefore, in order to improve the efficacy of the adoptive transfer

of CAR-NK cells for immunotherapy of solid tumors, the search for

more specific tumor target molecules, accompanied by mechanisms

that overcome the barriers of TME, still needs to be extensively

explored (37).

Aiming to fill this gap, recently we have provided promising in

vitro results on the efficacy of never before explored DNAM-1-

chimeric receptor-engineered NK cells against neuroblastoma (NB)

(38). This proof-of-concept study is prompting us at optimizing the

DNAM-1-based chimeric construct with the aim of developing

highly efficient DNAM-1 chimeric receptor-engineered NK cells to

be employed in preclinical studies and prospective clinical trials

primarily directed against solid tumors.
DNAM-1

Human DNAX accessory molecule-1 (DNAM-1, CD226) is

constitutively expressed in T, NK cells, and some myeloid cells. It is

a type I transmembrane glycoprotein containing a leader sequence

of 18 amino acid (aa), two extracellular Ig-like C2-set domains of

230 aa, a transmembrane domain of 28 aa and a cytoplasmic region

of 60 aa. Together with other activating receptors, such as NKG2D

and NCRs (39), DNAM-1 triggers powerful activating signals that

promote NK cell-mediated cytotoxicity and cytokine secretion (40,

41). DNAM-1 mediates activation signals through the engagement

with two ligands such as PVR (poliovirus receptor, CD155) and

Nectin-2 (poliovirus receptor-related 2 protein, PVRL2, also known

as CD112) (5). Furthermore, through cis-binding to the integrin

LFA-1 upon the engagement of LFA-1 with ICAM-1 (42), DNAM-1

undergoes phosphorylation at conserved amino acid residues in its

cytoplasmic domain such as tyrosine 322 [Y322 in human and Y319

in mouse, (42)] and serine 326 (40) via Src family kinase Fyn and

protein kinase C, respectively (43). The coordinated expression of

DNAM-1 and LFA-1 is also crucial for NK cell education (44).

Adequate expression of DNAM-1 enables NK cells to recognize

and kill hematopoietic malignancies such as acute myeloid leukemia

(AML) (45), multiple myeloma (MM) (39), and solid tumor cells

such as melanoma (46) and NB (47), thus contributing to a

favorable prognosis (45, 48). In contrast, DNAM-1 expression is

impaired in AML cancer patients and its loss has been correlated

with the tumor severity (49).
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PVR and Nectin-2 in cancer patients

Both PVR and Nectin-2 ligands are closely linked to

tumorigenesis. Indeed, in addition to being expressed in virus-

infected cells (43), these ligands are overexpressed in several

hematological and solid tumors (5, 50–52). Noticeably, these

ligands, in particular PVR, are potential prognostic markers in

AML (53, 54), MM (55), hepatocellular carcinoma (56), and bladder

urothelial carcinoma (BLCA) (57). As we have previously reported,

PVR expression is directly under the control of p53 at promoter

level (47), whilst the transcriptional regulation of Nectin-2 remains

more widely to be explored (58). Furthermore, PVR and Nectin-2

are both upregulated by Toll-like receptors agonists in dendritic

cells (59, 60) and by DNA-damage response in multiple myeloma

cells (61) or in Ag-activated T lymphocytes (62). In addition, PVR is

upregulated by IFN-g in NB cell lines (63) and epigenetic

modulations in malignant lymphocytes (64), while it is

downregulated by the human immunodeficiency virus type 1 Nef

and Vpu proteins (65) and the human cytomegalovirus UL141

protein (66).

The activating signal mediated by DNAM-1 following the

engagement of the ligands PVR or Nectin-2 is counteracted by

the competing binding of inhibitory receptors such as TIGIT (T-cell

immunoglobulin and ITIM domain) (67), TACTILE (T cell

activation, increased late expression, also known as CD96) (68)

and PVRIG (69) for the same ligands. In particular, PVR is

recognized by TIGIT and TACTILE (70, 71), while Nectin-2 is

recognized by TIGIT and PVRIG (69, 70). For this reason, TIGIT,

TACTILE and PVRIG have been considered targets for checkpoint

blockade immunotherapy (72). Of note, the high expression levels

of PVR, typical of various tumor types, revealed its hypothetical

proto-oncogenic role, leading researchers to develop therapeutic

strategies that directly target PVR (73).
DNAM-1 chimeric receptor-
engineered NK cells

Adoptive transfer of activated NK cells expressing higher and

more stable levels of DNAM-1, might be a useful clinical approach

to help cancer patients to fight tumor cells. The DNAM-1 chimeric

receptor could confer a dual advantage to NK cells: (i) specific

recognition of ligands such as PVR and Nectin-2, which are highly

expressed in tumor cells, but importantly absent or poorly

expressed in normal cells, and (ii) its overexpression, which

should result in a favorable molecular imbalance with respect to

the normal expression of competing receptors (TIGIT, TACTILE,

PVRIG), leading to its increased binding to PVR and Nectin-2. In

addition, its function could be strategically improved by in-frame

expression of costimulatory molecules that support cytotoxic

activity and overcome TME immune escape mechanisms. We

previously reported a proof-of-concept study on the activity of

DNAM-1-chimeric receptor-engineered NK cells obtained by

transient transfection of primary human NK cells for a DNAM-1-

chimeric receptor (38). Specifically, we compared four different
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constructs, including the full-length DNAM-1 receptor, and three

different DNAM-1-based chimeric receptors providing the

expression of DNAM-1 in frame with costimulatory molecules

such as 2B4 and CD3z, and we showed that the DNAM-1-CD3z
construct, which recapitulates a first generation of DNAM-1

chimeric receptor, yielded the best results in terms of expression

of DNAM-1 chimeric receptor and NK cell functions. Furthermore,

DNAM-1-CD3z engineered NK cells were particularly more

effective to recognize and kill two NB cell lines, LAN-5 and SMS-

KCNR, treated with Nutlin-3a, an MDM2 targeting drug with

immunomodulatory effects on the upregulation of ligands for NK

cell-activating receptors, including PVR and Nectin-2 (47).

Therefore, the combined use of DNAM-1-CD3z engineered NK

cells with Nutlin-3a in tumors that retain p53-wt, such as most

forms of NB, with the exception of some cases of relapse (74), may

represent a novel therapeutic approach for solid tumors.
In-silico analysis of PVR and Nectin-2
in solid tumor patients

The widely reported high expression of both PVR and Nectin-2

in solid tumor cells and very low expression in normal cells

[protein.atlas.gov and GTEx from TCGA database], was the main

reason for choosing to engineer NK cells with a DNAM-1 chimeric

receptor. In order to further explore the expression of both PVR and

Nectin-2 in solid tumors, and to prospectively propose the adoptive

transfer of DNAM-1 chimeric receptor-engineered NK cells also in

adult solid malignancies, we performed an in-silico bioinformatic

analysis by using GEPIA2 (www.gepia2.cancer-pku.cn, Figure 1).

Specifically, we queried this online tool providing data concerning

gene expression and tumor stage/grade, to compare the expression

of selected genes between tumor and normal tissues, based on

TCGA. Interestingly, we found that the expression profile of both

PVR and Nectin-2 resulted higher in several tumor samples than in

paired normal tissues across a broad spectrum of solid tumors. In

particular, the expression of PVR was significantly higher in colon

adenocarcinoma (COAD), esophageal carcinoma (ESCA), head and

neck squamous ce l l carc inoma (HNSC) , pancrea t i c

adenocarcinoma (PAAD), rectum adenocarcinoma (READ),

stomach adenocarcinoma (STAD) and thymoma (THYM), while

that of Nectin-2 was significantly higher in bladder urothelial

carcinoma (BLCA), breast invasive carcinoma (BRCA), COAD,

lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),

glioblastoma multiforme (GBM), brain lower grade glioma

(LGG), ovarian serous cystadenocarcinoma (OV), PAAD, READ,

STAD, THYM and uterine corpus endometrial carcinoma (UCEC)

(Figure 1A). In addition, the higher expression of PVR or Nectin-2

correlated with the advanced stage of different forms of solid

tumors. In particular, PVR higher expression correlated with the

advanced stage of adrenocortical carcinoma (ACC), BLCA, liver

hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD),

lung squamous cell carcinoma (LUSC) (Figure 1B), while that of

Nectin-2 correlated with the advanced stage of ACC, BLCA, HNSC,

testicular germ cell tumors (TGCT), skin cutaneous melanoma
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(SKCM) and UCEC (Figure 1C). These data indicate that the high

expression of PVR and Nectin-2 in tumor cells compared to normal

cells affects several solid tumors, supporting the hypothesis of a

wide prospective clinical use of DNAM-1 chimeric receptor-

engineered NK cells.

Furthermore, we used the R2 Genomics Analysis and

Visualization Platform (https://hgserver1.amc.nl/cgi-bin/r2/

main.cgi?open_page=login) to investigate the prognostic value of

PVR and Nectin-2 ligands in a variety of tumor types. We found

that higher expression of PVR significantly correlated with lower

patient overall survival in ACC, BLCA, COAD, ESCA, HNSC,

kidney renal clear cell carcinoma (KIRC), kidney renal papillary

cell carcinoma (KIRP), LUAD, LUSC, mesothelioma (MESO), OV,

prostate adenocarcinoma (PRAD), SKCM, STAD and uveal

melanoma (UVM) (Supplementary Figure 1A). By contrast, the

lower expression of PVR significantly correlated with lower patient

survival in BRCA, PAAD, READ and THYM (Supplementary

Figure 1B), in agreement with published data from a cohort of
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patients with a pediatric form of solid tumor such as NB (75).

Similarly, the higher expression of Nectin-2 correlated with lower

patient overall survival in KIRC, KIRP, GBM, HNSC, LIHC, LUAD,

LUSC, MESO, OV, READ, SKCM, UCEC and uterine

carcinosarcoma (UCS) (Supplementary Figure 2A). By contrast,

the lower expression of Nectin-2 correlated with lower patient

overall survival in BRCA, COAD, ESCA, PRAD, STAD and

UVM (Supplementary Figure 2B). These data suggest that the

expression levels of both PVR and Nectin-2 can correlate

differently with patient overall survival, depending on the kind of

solid tumors.
Clinical perspective

With a view to finding an optimized off-the-shelf product for

cellular immunotherapeutic approaches, we foresee that DNAM-1

chimeric receptor engineered-NK cells have several strengths that
A

B C

FIGURE 1

In-silico bioinformatics analysis of PVR and NECTIN2 gene expression by GEPIA2 web-tool based on The Cancer Genome Atlas (TCGA) database.
(A) Dot plot profiling of PVR (top) and Nectin-2 (down) differential expression levels in 33 cancer types, derived from TCGA database, compared to the
normal, derived from TCGA or Genotype-Tissue Expression (GTEx). Each dot represents a distinct tumor (red) or normal sample (green) while each
column represents a different tumor type (tumor labels and sample sizes are reported in Supplementary Table 2). The transcript per million (TPM) value,
shown in ordinate, is used to display the relative gene expression. Tumor labels are indicated in red when there is a significant difference between tumor
(T) versus normal (N) tissues. Data were analyzed by ANOVA test. |log2FC| > 1 and FDR < 0.05 were considered as differentially expressed. (B, C) Violin
plots showing the expression level of PVR (B) and Nectin-2 (C) among different pathologic stages (S) of indicated solid tumors. F-value indicates the
statistical value of the F test; Pr (> F) indicates p value. A p value of < 0.05 was considered statistically significant.
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should be taken into account. NK cells engineered for a chimeric

form of an activating receptor such as DNAM-1 are likely to

specifically target tumor cells which express high levels of PVR

and Nectin-2 (Figure 1), while should be tolerant of normal cells

expressing low levels of PVR and Nectin-2 [protein.atlas.org, GTEx

from TCGA database and (4)]. This represents an advantage over

many types of single-chain antibody-based CAR-engineered

lymphocytes designed to target proteins expressed not only by

tumor cells but also, at high physiological levels, by various normal

cells such as CD19 and B220 (B lymphocytes and follicular

dendritic cells), disialoganglioside or GD2 (neurons, skin

melanocytes and peripheral nerves), human epidermal growth

factor receptor 2 or HER2 (many tissues), prostate-specific

membrane antigen or PSMA (kidneys, small intestine and

salivary glands), etc. This non-selective tumor specificity is often

the cause of high toxicity and adverse effects due to the cytotoxic

reaction mediated by CAR-lymphocytes against normal tissues. So

far, with a restricted expression in normal tissues and

overexpression in many types of solid tumors, B7-H3 resulted a

more promising therapeutic target compared to the others (76).

DNAM-1 ligands PVR and Nectin-2 have been described to be

absent or very scarcely expressed in normal tissue [proteinatlas.org

and (73, 77)], so their targeting should hypothetically not be toxic;

however, the differential expression of DNAM-1 ligands in cancer

versus normal cells does not exclude a possible toxicity mediated by
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DNAM-1 chimeric receptor-engineered NK cells, which should be

carefully explored by preclinical studies.

For a hypothetic good manufacturing practice (GMP)

production and clinical use of DNAM-1 chimeric receptor-

engineered NK cells, primary NK cells should be isolated through

leukapheresis by the blood of a HLA-matched unrelated healthy

donor, ex vivo expanded and activated, engineered for the

expression of DNAM-1 chimeric receptor, expanded to be infused

in cancer patients or be cryopreserved for future use (Figure 2).

Different modes of administration should be considered, depending

on the type and location of the tumor in the body, such as

intravenous or local injection. DNAM-1 chimeric receptor,

expressed at stable and high levels, should strongly compete for

the binding of PVR and Nectin-2 with the agonist receptors TIGIT,

TACTILE and PVRIG, thus favoring activating cytotoxic signals

over inhibitory ones. The high expression of PVR and Nectin-2 in

tumor cells could make them strongly susceptible to DNAM-1

chimeric receptor-engineered NK cell-mediated recognition and

killing. Within days after the injection of DNAM-1 chimeric

receptor-engineered NK cells, tumor cell death could occur at the

tumor site and lead the patient to an objective clinical response,

depending on the aggressiveness and size of primary or secondary

tumor masses. To avoid recurrence, the number of administrations

of DNAM-1 chimeric receptor-engineered NK cells should be

carefully planned, depending on the characteristics of the tumor,
FIGURE 2

Clinical perspective of the GMP manufacturing and clinical use of DNAM-1 chimeric receptor-engineered NK cells. After leukapheresis of a healthy
HLA-related donor, mature alloreactive NK cells can be isolated to be firstly ex vivo expanded and activated and then engineered for the expression
of DNAM-1 chimeric receptor. Large quantities of DNAM-1 chimeric receptor-engineered NK cells can be obtained to be infused in cancer patient
or cryopreserved for future use. The high expression of PVR and Nectin-2 specifically in tumor cells should facilitate their recognition mainly by
DNAM-1 chimeric receptor compared to competing receptors (TIGIT, TACTILE and PVRIG), thus promoting tumor cell death. The figure was created
with Biorender (https://biorender.com/).
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such as location, extent, stage, or presence of metastasis. To enhance

the anticancer efficiency, the use of DNAM-1 chimeric receptor-

engineered NK cells could be combined with that of current

anticancer cytotoxic drugs (78, 79), activating cytokines or mAbs

recognizing immune checkpoint molecules (80). Ideally, the

administration of DNAM-1 chimeric receptor-engineered NK

cells should be also considered after surgical removal of solid

tumor masses to avoid the risk of developing the minimal

residual disease (MRD).
Conclusion

The adoptive transfer of DNAM-1 chimeric receptor-

engineered NK cells is expected to represent an innovative

strategic clinical tool to help cancer patients in fighting solid

tumors. Therefore, the development of preclinical and clinical

studies aimed at obtaining stable, nontoxic, highly antitumor

cytotoxic DNAM-1 chimeric receptor-engineered NK cells, in

high quantities for cryopreservation and immediate future use,

applicable to a broad spectrum of solid tumors, deserves

further exploration.
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SUPPLEMENTARY FIGURE 1

Overall survival probability of patients with the indicated solid tumor type

(tumor labelling is explained in Supplementary Table 2) in each graph carrying
high (blue line) or low (red line) PVR gene expression. High PVR gene

expression can correlate with a worse (A) or favorable overall survival (B).
Statistically significant p values are indicated.

SUPPLEMENTARY FIGURE 2

Overall survival probability of patients with the indicated solid tumor type

(tumor labelling is explained in Supplementary Table 2 in each graph carrying
high (blue line) or low (red line) NECTIN2 gene expression. High NECTIN2

gene expression can correlate with a worse (A) or favorable overall survival (B).
Statistically significant p values are indicated.
References
1. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat
Immunol (2008) 9:495–502. doi: 10.1038/ni1581

2. Lanier LL. NK cell receptors. Annu Rev Immunol (1998) 16:359–93. doi: 10.1146/
annurev.immunol.16.1.359

3. Biassoni R, Cantoni C, Pende D, Sivori S, Parolini S, Vitale M, et al. Human
natural killer cell receptors and co-receptors. Immunol Rev (2001) 181:203–14.
doi: 10.1034/j.1600-065x.2001.1810117.x

4. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A,
et al. Proteomics. tissue-based map of the human proteome. Science (2015)
347:1260419. doi: 10.1126/science.1260419

5. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, et al.
Identification of PVR (CD155) and nectin-2 (CD112) as cell surface ligands for the
human DNAM-1 (CD226) activating molecule. J Exp Med (2003) 198:557–67.
doi: 10.1084/jem.20030788

6. Xiong P, Sang HW, Zhu M. Critical roles of co-activation receptor DNAX
accessory molecule-1 in natural killer cell immunity. Immunology (2015) 146:369–78.
doi: 10.1111/imm.12516
7. WangW, Erbe AK, Hank JA, Morris ZS, Sondel PM. NK cell-mediated antibody-
dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol (2015)
6:368. doi: 10.3389/fimmu.2015.00368

8. Li F, Liu S. Focusing on NK cells and ADCC: a promising immunotherapy
approach in targeted therapy for HER2-positive breast cancer. Front Immunol (2022)
13:1083462. doi: 10.3389/fimmu.2022.1083462

9. Lucarini V, Melaiu O, Tempora P, D’Amico S, Locatelli F, Fruci D. Dendritic
cells: behind the scenes of T-cell infiltration into the tumor microenvironment. Cancers
(Basel) (2021) 13(3):433. doi: 10.3390/cancers13030433

10. Melaiu O, Lucarini V, Cifaldi L, Fruci D. Influence of the tumor
microenvironment on NK cell function in solid tumors. Front Immunol (2019)
10:3038. doi: 10.3389/fimmu.2019.03038

11. Cozar B, Greppi M, Carpentier S, Narni-Mancinelli E, Chiossone L, Vivier E.
Tumor-infiltrating natural killer cells. Cancer Discovery (2021) 11:34–44. doi: 10.1158/
2159-8290.CD-20-0655

12. Demaria O, Cornen S, DaeronM,Morel Y,Medzhitov R, Vivier E. Harnessing innate
immunity in cancer therapy. Nature (2019) 574:45–56. doi: 10.1038/s41586-019-1593-5
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1197053/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1197053/full#supplementary-material
https://doi.org/10.1038/ni1581
https://doi.org/10.1146/annurev.immunol.16.1.359
https://doi.org/10.1146/annurev.immunol.16.1.359
https://doi.org/10.1034/j.1600-065x.2001.1810117.x
https://doi.org/10.1126/science.1260419
https://doi.org/10.1084/jem.20030788
https://doi.org/10.1111/imm.12516
https://doi.org/10.3389/fimmu.2015.00368
https://doi.org/10.3389/fimmu.2022.1083462
https://doi.org/10.3390/cancers13030433
https://doi.org/10.3389/fimmu.2019.03038
https://doi.org/10.1158/2159-8290.CD-20-0655
https://doi.org/10.1158/2159-8290.CD-20-0655
https://doi.org/10.1038/s41586-019-1593-5
https://doi.org/10.3389/fimmu.2023.1197053
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cifaldi et al. 10.3389/fimmu.2023.1197053
13. Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, et al. Innate
immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell
(2017) 169:750–765 e717. doi: 10.1016/j.cell.2017.04.014

14. Tumino N, Nava Lauson CB, Tiberti S, Besi F, Martini S, Fiore PF, et al. The
tumor microenvironment drives NK cell metabolic dysfunction leading to impaired
antitumor activity. Int J Cancer (2023) 152:1698–706. doi: 10.1002/ijc.34389

15. Gemelli M, Noonan DM, Carlini V, Pelosi G, Barberis M, Ricotta R, et al.
Overcoming resistance to checkpoint inhibitors: natural killer cells in non-small cell
lung cancer. Front Oncol (2022) 12:886440. doi: 10.3389/fonc.2022.886440

16. Albini A, Noonan DM. Decidual-like NK cell polarization: from cancer killing to
cancer nurturing. Cancer Discov (2021) 11:28–33. doi: 10.1158/2159-8290.CD-20-0796

17. Bruno A, Mortara L, Baci D, Noonan DM, Albini A. Myeloid derived suppressor
cells interactions with natural killer cells and pro-angiogenic activities: roles in tumor
progression. Front Immunol (2019) 10:771. doi: 10.3389/fimmu.2019.00771

18. Davis ZB, Felices M, Verneris MR, Miller JS. Natural killer cell adoptive transfer
therapy: exploiting the first line of defense against cancer. Cancer J (2015) 21:486–91.
doi: 10.1097/PPO.0000000000000156

19. Velardi A, Ruggeri L. Alessandro; moretta; moretta, l. NK cells: a lesson from
mismatched hematopoietic transplantation. Trends Immunol (2002) 23:438–444.
doi: 10.1016/s1471-4906(02)02284-6

20. Veluchamy JP, Kok N, van der Vliet HJ, Verheul HMW, de Gruijl TD, Spanholtz
J. The rise of allogeneic natural killer cells as a platform for cancer immunotherapy:
recent innovations and future developments. Front Immunol (2017) 8:631.
doi: 10.3389/fimmu.2017.00631

21. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of
CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med
(2020) 382:545–53. doi: 10.1056/NEJMoa1910607

22. Goldenson BH, Hor P, Kaufman DS. iPSC-derived natural killer cell therapies -
expansion and targeting. Front Immunol (2022) 13:841107. doi: 10.3389/fimmu.2022.841107

23. Maddineni S, Silberstein JL, Sunwoo JB. Emerging NK cell therapies for cancer
and the promise of next generation engineering of iPSC-derived NK cells. J
Immunother Cancer (2022) 10(5):e004693. doi: 10.1136/jitc-2022-004693

24. Lapteva N, Szmania SM, van Rhee F, Rooney CM. Clinical grade purification
and expansion of natural killer cells. Crit Rev Oncog (2014) 19:121–32. doi: 10.1615/
critrevoncog.2014010931

25. Kundu S, Gurney M, O’Dwyer M. Generating natural killer cells for adoptive
transfer: expanding horizons. Cytotherapy (2021) 23:559–66. doi: 10.1016/
j.jcyt.2020.12.002

26. Zhang W, Zhao Z, Li F. Natural killer cell dysfunction in cancer and new
strategies to utilize NK cell potential for cancer immunotherapy. Mol Immunol (2022)
144:58–70. doi: 10.1016/j.molimm.2022.02.015

27. Liang S, Xu K, Niu L, Wang X, Liang Y, Zhang M, et al. Comparison of
autogeneic and allogeneic natural killer cells immunotherapy on the clinical outcome of
recurrent breast cancer. Onco Targets Ther (2017) 10:4273–81. doi: 10.2147/
OTT.S139986

28. Sanber K, Savani B, Jain T. Graft-versus-host disease risk after chimeric antigen
receptor T-cell therapy: the diametric opposition of T cells. Br J Haematol (2021)
195:660–8. doi: 10.1111/bjh.17544

29. Lu H, Zhao X, Li Z, Hu Y, Wang H. From CAR-T cells to CAR-NK cells: a
developing immunotherapy method for hematological malignancies. Front Oncol
(2021) 11:720501. doi: 10.3389/fonc.2021.720501

30. Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era
of synthetic biology. Immunity (2013) 39:49–60. doi: 10.1016/j.immuni.2013.07.002

31. Asai O, Longo DL, Tian ZG, Hornung RL, Taub DD, Ruscetti FW, et al.
Suppression of graft-versus-host disease and amplification of graft-versus-tumor effects
by activated natural killer cells after allogeneic bone marrow transplantation. J Clin
Invest (1998) 101:1835–42. doi: 10.1172/JCI1268

32. Gill S, Olson JA, Negrin RS. Natural killer cells in allogeneic transplantation:
effect on engraftment, graft- versus-tumor, and graft-versus-host responses. Biol Blood
Marrow Transplant (2009) 15:765–76. doi: 10.1016/j.bbmt.2009.01.019

33. Geller MA, Miller JS. Use of allogeneic NK cells for cancer immunotherapy.
Immunotherapy (2011) 3:1445–59. doi: 10.2217/imt.11.131

34. Heipertz EL, Zynda ER, Stav-Noraas TE, Hungler AD, Boucher SE, Kaur N, et al.
Current perspectives on “Off-The-Shelf” allogeneic NK and CAR-NK cell therapies.
Front Immunol (2021) 12:732135. doi: 10.3389/fimmu.2021.732135

35. Kennedy PR, Felices M, Miller JS. Challenges to the broad application of
allogeneic natural killer cell immunotherapy of cancer. Stem Cell Res Ther (2022)
13:165. doi: 10.1186/s13287-022-02769-4

36. Davila ML, Brentjens RJ. CD19-targeted CAR T cells as novel cancer
immunotherapy for relapsed or refractory b-cell acute lymphoblastic leukemia. Clin
Adv Hematol Oncol (2016) 14:802–8.

37. Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, et al.
CAR-cell therapy in the era of solid tumor treatment: current challenges and emerging
therapeutic advances. Mol Cancer (2023) 22:20. doi: 10.1186/s12943-023-01723-z

38. Focaccetti C, Benvenuto M, Pighi C, Vitelli A, Napolitano F, Cotugno N, et al.
DNAM-1-chimeric receptor-engineered NK cells, combined with nutlin-3a, more
Frontiers in Immunology 07155
effectively fight neuroblastoma cells in vitro: a proof-of-concept study. Front
Immunol (2022) 13:886319. doi: 10.3389/fimmu.2022.886319

39. El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan
AW, et al. The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer
cell-mediated killing of myeloma cells. Cancer Res (2007) 67:8444–9. doi: 10.1158/
0008-5472.CAN-06-4230

40. Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T,
et al. DNAM-1, a novel adhesion molecule involved in the cytolytic function of T
lymphocytes. Immunity (1996) 4:573–81. doi: 10.1016/s1074-7613(00)70060-4

41. Tahara-Hanaoka S, Shibuya K, Onoda Y, Zhang H, Yamazaki S, Miyamoto A,
et al. Functional characterization of DNAM-1 (CD226) interaction with its ligands
PVR(CD155) and nectin-2 (PRR-2/CD112). Int Immunol (2004) 16:533–8.
doi: 10.1093/intimm/dxh059

42. Shibuya K, Lanier LL, Phillips JH, Ochs HD, Shimizu K, Nakayama E, et al.
Physical and functional association of LFA-1 with DNAM-1 adhesion molecule.
Immunity (1999) 11:615–23. doi: 10.1016/s1074-7613(00)80136-3

43. Cifaldi L, Doria M, Cotugno N, Zicari S, Cancrini C, Palma P, et al. DNAM-1
activating receptor and its ligands: how do viruses affect the NK cell-mediated immune
surveillance during the various phases of infection? Int J Mol Sci (2019) 20(15):3715.
doi: 10.3390/ijms20153715

44. Enqvist M, Ask EH, Forslund E, Carlsten M, Abrahamsen G, Beziat V, et al.
Coordinated expression of DNAM-1 and LFA-1 in educated NK cells. J Immunol
(2015) 194:4518–27. doi: 10.4049/jimmunol.1401972

45. Chashchina A, Marklin M, Hinterleitner C, Salih HR, Heitmann JS, Klimovich
B. DNAM-1/CD226 is functionally expressed on acute myeloid leukemia (AML) cells
and is associated with favorable prognosis. Sci Rep (2021) 11:18012. doi: 10.1038/
s41598-021-97400-6

46. Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L, et al. NCRs
and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma
cell lines in vitro and in vivo. J Clin Invest (2009) 119:1251–63. doi: 10.1172/JCI36022

47. Veneziani I, Infante P, Ferretti E, Melaiu O, Battistelli C, Lucarini V, et al.
Nutlin-3a enhances natural killer cell-mediated killing of neuroblastoma by restoring
p53-dependent expression of ligands for NKG2D and DNAM-1 receptors. Cancer
Immunol Res (2021) 9:170–83. doi: 10.1158/2326-6066.CIR-20-0313

48. Guillamon CF, Martinez-Sanchez MV, Gimeno L, Mrowiec A, Martinez-Garcia
J, Server-Pastor G, et al. NK cell education in tumor immune surveillance: DNAM-1/
KIR receptor ratios as predictive biomarkers for solid tumor outcome. Cancer Immunol
Res (2018) 6:1537–47. doi: 10.1158/2326-6066.CIR-18-0022

49. Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R, et al.
Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients.
Immunol Cell Biol (2012) 90:109–15. doi: 10.1038/icb.2011.15

50. Sloan KE, Eustace BK, Stewart JK, Zehetmeier C, Torella C, Simeone M, et al.
CD155/PVR plays a key role in cell motility during tumor cell invasion and migration.
BMC Cancer (2004) 4:73. doi: 10.1186/1471-2407-4-73

51. Gao J, Zheng Q, Xin N, Wang W, Zhao C. CD155, an onco-immunologic
molecule in human tumors. Cancer Sci (2017) 108:1934–8. doi: 10.1111/cas.13324

52. Casado JG, Pawelec G, Morgado S, Sanchez-Correa B, Delgado E, Gayoso I, et al.
Expression of adhesion molecules and ligands for activating and costimulatory
receptors involved in cell-mediated cytotoxicity in a large panel of human melanoma
cell lines. Cancer Immunol Immunother (2009) 58:1517–26. doi: 10.1007/s00262-009-
0682-y

53. Stamm H, Klingler F, Grossjohann EM, Muschhammer J, Vettorazzi E, Heuser
M, et al. Immune checkpoints PVR and PVRL2 are prognostic markers in AML and
their blockade represents a new therapeutic option. Oncogene (2018) 37:5269–80.
doi: 10.1038/s41388-018-0288-y

54. Hattori N, Kawaguchi Y, Sasaki Y, Shimada S, Murai S, Abe M, et al. Monitoring
TIGIT/DNAM-1 and PVR/PVRL2 immune checkpoint expression levels in allogeneic
stem cell transplantation for acute myeloid leukemia. Biol Blood Marrow Transplant
(2019) 25:861–7. doi: 10.1016/j.bbmt.2019.01.013

55. Lee BH, Kim JH, Kang KW, Lee SR, Park Y, Sung HJ, et al. PVR (CD155)
expression as a potential prognostic marker in multiple myeloma. Biomedicines (2022)
10(5):1099. doi: 10.3390/biomedicines10051099

56. Liu WF, Quan B, Li M, Zhang F, Hu KS, Yin X. PVR-a prognostic biomarker
correlated with immune cell infiltration in hepatocellular carcinoma. Diagnostics
(Basel) (2022) 12(12):2953. doi: 10.3390/diagnostics12122953

57. Luo C, YeW, Hu J, Othmane B, Li H, Chen J, et al. Poliovirus receptor (CD155)-
related risk signature predicts the prognosis of bladder cancer. Front Oncol (2021)
11:660273. doi: 10.3389/fonc.2021.660273

58. Molfetta R, Zingoni A, Santoni A, Paolini R. Post-translational mechanisms
regulating NK cell activating receptors and their ligands in cancer: potential targets for
therapeutic intervention. Front Immunol (2019) 10:2557. doi: 10.3389/
fimmu.2019.02557

59. Kamran N, Takai Y, Miyoshi J, Biswas SK, Wong JS, Gasser S. Toll-like receptor
ligands induce expression of the costimulatory molecule CD155 on antigen-presenting
cells. PloS One (2013) 8:e54406. doi: 10.1371/journal.pone.0054406

60. Pende D, Castriconi R, Romagnani P, Spaggiari GM, Marcenaro S, Dondero A,
et al. Expression of the DNAM-1 ligands, nectin-2 (CD112) and poliovirus receptor
frontiersin.org

https://doi.org/10.1016/j.cell.2017.04.014
https://doi.org/10.1002/ijc.34389
https://doi.org/10.3389/fonc.2022.886440
https://doi.org/10.1158/2159-8290.CD-20-0796
https://doi.org/10.3389/fimmu.2019.00771
https://doi.org/10.1097/PPO.0000000000000156
https://doi.org/10.1016/s1471-4906(02)02284-6
https://doi.org/10.3389/fimmu.2017.00631
https://doi.org/10.1056/NEJMoa1910607
https://doi.org/10.3389/fimmu.2022.841107
https://doi.org/10.1136/jitc-2022-004693
https://doi.org/10.1615/critrevoncog.2014010931
https://doi.org/10.1615/critrevoncog.2014010931
https://doi.org/10.1016/j.jcyt.2020.12.002
https://doi.org/10.1016/j.jcyt.2020.12.002
https://doi.org/10.1016/j.molimm.2022.02.015
https://doi.org/10.2147/OTT.S139986
https://doi.org/10.2147/OTT.S139986
https://doi.org/10.1111/bjh.17544
https://doi.org/10.3389/fonc.2021.720501
https://doi.org/10.1016/j.immuni.2013.07.002
https://doi.org/10.1172/JCI1268
https://doi.org/10.1016/j.bbmt.2009.01.019
https://doi.org/10.2217/imt.11.131
https://doi.org/10.3389/fimmu.2021.732135
https://doi.org/10.1186/s13287-022-02769-4
https://doi.org/10.1186/s12943-023-01723-z
https://doi.org/10.3389/fimmu.2022.886319
https://doi.org/10.1158/0008-5472.CAN-06-4230
https://doi.org/10.1158/0008-5472.CAN-06-4230
https://doi.org/10.1016/s1074-7613(00)70060-4
https://doi.org/10.1093/intimm/dxh059
https://doi.org/10.1016/s1074-7613(00)80136-3
https://doi.org/10.3390/ijms20153715
https://doi.org/10.4049/jimmunol.1401972
https://doi.org/10.1038/s41598-021-97400-6
https://doi.org/10.1038/s41598-021-97400-6
https://doi.org/10.1172/JCI36022
https://doi.org/10.1158/2326-6066.CIR-20-0313
https://doi.org/10.1158/2326-6066.CIR-18-0022
https://doi.org/10.1038/icb.2011.15
https://doi.org/10.1186/1471-2407-4-73
https://doi.org/10.1111/cas.13324
https://doi.org/10.1007/s00262-009-0682-y
https://doi.org/10.1007/s00262-009-0682-y
https://doi.org/10.1038/s41388-018-0288-y
https://doi.org/10.1016/j.bbmt.2019.01.013
https://doi.org/10.3390/biomedicines10051099
https://doi.org/10.3390/diagnostics12122953
https://doi.org/10.3389/fonc.2021.660273
https://doi.org/10.3389/fimmu.2019.02557
https://doi.org/10.3389/fimmu.2019.02557
https://doi.org/10.1371/journal.pone.0054406
https://doi.org/10.3389/fimmu.2023.1197053
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cifaldi et al. 10.3389/fimmu.2023.1197053
(CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood
(2006) 107:2030–6. doi: 10.1182/blood-2005-07-2696

61. Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V,
et al. ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on
multiple myeloma cells by therapeutic agents results in enhanced NK-cell
susceptibility and is associated with a senescent phenotype. Blood (2009) 113:3503–
11. doi: 10.1182/blood-2008-08-173914

62. Ardolino M, Zingoni A, Cerboni C, Cecere F, Soriani A, Iannitto ML, et al.
DNAM-1 ligand expression on Ag-stimulated T lymphocytes is mediated by ROS-
dependent activation of DNA-damage response: relevance for NK-T cell interaction.
Blood (2011) 117:4778–86. doi: 10.1182/blood-2010-08-300954

63. Marrella A, Dondero A, Aiello M, Casu B, Olive D, Regis S, et al. Cell-laden
hydrogel as a clinical-relevant 3D model for analyzing neuroblastoma growth,
immunophenotype, and susceptibility to therapies. Front Immunol (2019) 10:1876.
doi: 10.3389/fimmu.2019.01876

64. Wang W, Gao L, Wang X, Kang H, Li Y, Wang L, et al. Modulation of the
poliovirus receptor expression in malignant lymphocytes by epigenetic alterations. J
Immunother (2011) 34:353–61. doi: 10.1097/CJI.0b013e3182188017

65. Matusali G, Potesta M, Santoni A, Cerboni C, Doria M. The human
immunodeficiency virus type 1 nef and vpu proteins downregulate the natural killer
cell-activating ligand PVR. J Virol (2012) 86:4496–504. doi: 10.1128/JVI.05788-11

66. Tomasec P, Wang EC, Davison AJ, Vojtesek B, Armstrong M, Griffin C, et al.
Downregulation of natural killer cell-activating ligand CD155 by human
cytomegalovirus UL141. Nat Immunol (2005) 6:181–8. doi: 10.1038/ni1156

67. Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, et al. Blockade of the
checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor
immunity. Nat Immunol (2018) 19:723–32. doi: 10.1038/s41590-018-0132-0

68. Georgiev H, Ravens I, Papadogianni G, Bernhardt G. Coming of age: CD96
emerges as modulator of immune responses. Front Immunol (2018) 9:1072.
doi: 10.3389/fimmu.2018.01072

69. Zhu Y, Paniccia A, Schulick AC, Chen W, Koenig MR, Byers JT, et al.
Identification of CD112R as a novel checkpoint for human T cells. J Exp Med (2016)
213:167–76. doi: 10.1084/jem.20150785
Frontiers in Immunology 08156
70. Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, et al. The
interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc
Natl Acad Sci U.S.A. (2009) 106:17858–63. doi: 10.1073/pnas.0903474106

71. Fuchs A, Cella M, Giurisato E, Shaw AS, Colonna M. Cutting edge: CD96
(tactile) promotes NK cell-target cell adhesion by interacting with the poliovirus
receptor (CD155). J Immunol (2004) 172:3994–8. doi: 10.4049/jimmunol.172.7.3994

72. Sanchez-Correa B, Valhondo I, Hassouneh F, Lopez-Sejas N, Pera A, Bergua JM,
et al. DNAM-1 and the TIGIT/PVRIG/TACTILE axis: novel immune checkpoints for
natural killer cell-based cancer immunotherapy. Cancers (Basel) (2019) 11(6):877.
doi: 10.3390/cancers11060877

73. Kucan Brlic P, Lenac Rovis T, Cinamon G, Tsukerman P, Mandelboim O, Jonjic
S. Targeting PVR (CD155) and its receptors in anti-tumor therapy. Cell Mol Immunol
(2019) 16:40–52. doi: 10.1038/s41423-018-0168-y

74. Carr-Wilkinson J, O’Toole K, Wood KM, Challen CC, Baker AG, Board JR, et al.
High frequency of p53/MDM2/p14ARF pathway abnormalities in relapsed
neuroblastoma. Clin Cancer Res (2010) 16:1108–18. doi: 10.1158/1078-0432.CCR-09-
1865

75. Dondero A, Morini M, Cangelosi D, Mazzocco K, Serra M, Spaggiari GM, et al.
Multiparametric flow cytometry highlights B7-H3 as a novel diagnostic/therapeutic
target in GD2neg/low neuroblastoma variants. J Immunother Cancer (2021) 9(4):
e002293. doi: 10.1136/jitc-2020-002293

76. Li G, Wang H, Wu H, Chen J. B7-H3-targeted CAR-T cell therapy for solid
tumors. Int Rev Immunol (2022) 41:625–37. doi: 10.1080/08830185.2022.2102619

77. Oshima T, Sato S, Kato J, Ito Y, Watanabe T, Tsuji I, et al. Nectin-2 is a potential
target for antibody therapy of breast and ovarian cancers. Mol Cancer (2013) 12:60.
doi: 10.1186/1476-4598-12-60

78. Cifaldi L, Locatelli F, Marasco E, Moretta L, Pistoia V. Boosting natural killer
cell-based immunotherapy with anticancer drugs: a perspective. Trends Mol Med
(2017) 23:1156–75. doi: 10.1016/j.molmed.2017.10.002

79. Miyazato K, Hayakawa Y. Pharmacological targeting of natural killer cells for
cancer immunotherapy. Cancer Sci (2020) 111:1869–75. doi: 10.1111/cas.14418

80. Khan M, Arooj S, Wang H. NK cell-based immune checkpoint inhibition. Front
Immunol (2020) 11:167. doi: 10.3389/fimmu.2020.00167
frontiersin.org

https://doi.org/10.1182/blood-2005-07-2696
https://doi.org/10.1182/blood-2008-08-173914
https://doi.org/10.1182/blood-2010-08-300954
https://doi.org/10.3389/fimmu.2019.01876
https://doi.org/10.1097/CJI.0b013e3182188017
https://doi.org/10.1128/JVI.05788-11
https://doi.org/10.1038/ni1156
https://doi.org/10.1038/s41590-018-0132-0
https://doi.org/10.3389/fimmu.2018.01072
https://doi.org/10.1084/jem.20150785
https://doi.org/10.1073/pnas.0903474106
https://doi.org/10.4049/jimmunol.172.7.3994
https://doi.org/10.3390/cancers11060877
https://doi.org/10.1038/s41423-018-0168-y
https://doi.org/10.1158/1078-0432.CCR-09-1865
https://doi.org/10.1158/1078-0432.CCR-09-1865
https://doi.org/10.1136/jitc-2020-002293
https://doi.org/10.1080/08830185.2022.2102619
https://doi.org/10.1186/1476-4598-12-60
https://doi.org/10.1016/j.molmed.2017.10.002
https://doi.org/10.1111/cas.14418
https://doi.org/10.3389/fimmu.2020.00167
https://doi.org/10.3389/fimmu.2023.1197053
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Ombretta Melaiu,
University of Rome Tor Vergata, Italy

REVIEWED BY

Emanuela Marcenaro,
University of Genoa, Italy
Emilie Narni-Mancinelli,
INSERM U1104 Centre d’immunologie de
Marseille-Luminy (CIML), France

*CORRESPONDENCE

Paola Vacca

paola.vacca@opbg.net

Valentina Folgiero

valentina.folgiero@opbg.net

†These authors share last authorship

RECEIVED 22 March 2023

ACCEPTED 06 June 2023
PUBLISHED 26 June 2023

CITATION

Caforio M, Tumino N, Sorino C, Manni I,
Di Giovenale S, Piaggio G, Iezzi S,
Strimpakos G, Mattei E, Moretta L,
Fanciulli M, Vacca P, Locatelli F and
Folgiero V (2023) AATF/Che-1 RNA
polymerase II binding protein
overexpression reduces the anti-tumor
NK-cell cytotoxicity through activating
receptors modulation.
Front. Immunol. 14:1191908.
doi: 10.3389/fimmu.2023.1191908

COPYRIGHT

© 2023 Caforio, Tumino, Sorino, Manni,
Di Giovenale, Piaggio, Iezzi, Strimpakos,
Mattei, Moretta, Fanciulli, Vacca, Locatelli and
Folgiero. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 26 June 2023

DOI 10.3389/fimmu.2023.1191908
AATF/Che-1 RNA polymerase II
binding protein overexpression
reduces the anti-tumor NK-cell
cytotoxicity through activating
receptors modulation
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Simona Iezzi3, Georgios Strimpakos4, Elisabetta Mattei5,
Lorenzo Moretta6, M. Fanciulli 3, Paola Vacca2*,
Franco Locatelli 1,7† and Valentina Folgiero1*†

1Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù
Children’s Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy,
2Immunology Research Area, Innate Lymphoid Cells Unit, Bambino Gesù Children’s Hospital Istituto
di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy, 3Stabilimento Allevamento Fornitore e
Utilizzatore (SAFU) Laboratory, Department of Research, Advanced Diagnostic, Technological
Innovation, Regina Elena National Cancer Institute Istituto di Ricerca e Cura a Carattere Scientifico
(IRCCS), Rome, Italy, 4National Research Council (CNR), Institute of Biochemistry and Cell Biology,
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Introduction: AATF/Che-1 over-expression in different tumors is well known and

its effect on tumorigenicity is mainly due to its central role demonstrated in the

oncogenic pathways of solid tumors, where it controls proliferation and viability.

The effect exerted by tumors overexpressing Che-1 on the immune response has

not yet been investigated.

Methods: Starting from ChIP-sequencing data we confirmed Che-1 enrichment

on Nectin-1 promoter. Several co-cultures experiments between NK-cells and

tumor cells transduced by lentiviral vectors carrying Che-1-interfering sequence,

analyzed by flow-cytometry have allowed a detailed characterization of NK

receptors and tumor ligands expression.

Results: Here, we show that Che-1 is able to modulate the expression of Nectin-

1 ligand at the transcriptional level, leading to the impairment of killing activity of

NK-cells. Nectin-1 down-modulation induces a modification in NK-cell ligands

expression able to interact with activating receptors and to stimulate NK-cell

function. In addition, NK-cells from Che-1 transgenic mice, confirming a

reduced expression of activating receptors, exhibit impaired activation and a

preferential immature status.

Discussion: The critical equilibrium between NK-cell ligand expression on tumor

cells and the interaction with NK cell receptors is affected by Che-1 over-
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expression and partially restored by Che-1 interference. The evidence of a new

role for Che-1 as regulator of anti-tumor immunity supports the necessity to

develop approaches able to target this molecule which shows a dual tumorigenic

function as cancer promoter and immune response modulator.
KEYWORDS

Che-1, Nectin 1, NK cells, immune response, NK killing activity
Introduction

Strategies aimed at affecting the ability of tumor cells to escape

from the immune surveillance represent a promising approach in

support of current therapies (1–3). Acute lymphoblastic leukemia

(ALL) exploits various mechanisms to avoid immune recognition

and destruction by the immune system, affecting the phenotypic

and functional characteristics of innate and adaptive immune cells

(4, 5). A developing leukemia impairs key components of the

immune system responsible for anticancer response, particularly

in patients poorly responding to treatment or experiencing relapse

(6). Among the interactions between leukemia cells and immune

system cell populations, the one involving natural killer (NK)-cells

is emerging as central in ALL immune-surveillance (7–11). NK-cells

are innate lymphoid cells that recognize and kill virus-infected or

malignant target cells (12, 13). The NK-cells ability to lyse

transformed cells in the absence of antigen-specificity makes

them important candidates for treatment of different cancers (14).

The ability of NK-cells to kill ALL blasts depends on the balance

between the activating and inhibitory receptors on NK-cells, as well

as on the presence of their corresponding ligands on ALL cells (8,

15). Many studies have reported down-regulation of activating

receptors in peripheral blood NK-cells of patients with

hematological malignancies (16–19). NKG2D is an activating

immune-receptor expressed on NK-cells able to bind MHC class

I-related proteins (MICA and MICB) and ULBP proteins poorly

expressed by normal cells, but frequently upregulated in tumor cells

(20–22). DNAM-1 receptor has a major costimulatory function

exerted through the binding with PVR and Nectin-2 (CD112)

ligands on target cells (23–25). ALL blasts escape from NK-cell-

mediated killing, predominantly by downregulating the ligands of

NK-cell-activating receptors. However, it is of note that also

inhibitory receptors act as essential immune check-points (8, 15,

20, 26, 27). Among the NK-cell ligands, Nectins belong to a family

of cell-adhesion molecules that can also serve as virus receptors (28,

29). Their expression could represent a potential cancer biomarker,

since they are overexpressed on a variety of tumor cells of different

origin and can be recognized by activating and inhibitory paired-

receptors expressed on NK-cells (30, 31). Tumor cell survival can

benefit from modulation of the expression levels of Nectins, thereby

influencing subsequent Nectin-mediated signaling, leading to

dampened immune response (28, 32). In particular, Nectin-1

(CD111), normally expressed in various epithelial tissues, shows
02158
lower expression in tumors of epithelial origin, suggesting a role in

reduced cell-cell adhesion, which favors both invasiveness and

metastasis (33, 34). In different tumor contexts, such as that of

pediatric and adult brain tumors, Nectin-1 was found upregulated

(35). A similar modulation was observed also for Nectin-2 (CD112)

that, when overexpressed, facilitates tumor cell proliferation,

increases invasiveness and migration (36, 37). Thus, the

expression of Nectin family proteins can be exploited by tumor

cells to evade tumor immune surveillance (28).

Whether an RNA polymerase II binding protein can be

involved in immune response is still an unexplored field. AATF/

Che-1 (Che-1) has a consolidated role in tumorigenesis of solid

tumors and is now clearly involved in the c-Myc-directed

oncogenesis in pediatric B-Cell ALL (BCP-ALL) (38). Although

ubiquitously expressed, Che-1 overexpression in tumor cells exerts

a different contribution in specific oncogenic transcriptional

machineries, inducing the expression of cancer genes or

upregulating the expression of genes controlling survival

functions as cell proliferation (39–42). Che-1-dependent

modulation of genes expressing ligands involved in stimulation of

the immune system is a field still poorly investigated, although it

could offer clues for the identification of new mechanisms of action

explaining the meaning of its overexpression in the tumor context.

In cancer therapy, it is now evident that targeting pathways of

tumorigenesis has limited efficacy, while targeting the cross-talk

between tumor and immune cells can strongly improve the current

therapies. In this context, we hypothesized that Che-1 could favor

tumorigenesis by controlling the expression of membrane-located

ligands able to inactivate the anti-tumor immune response. Here,

we show that the modulation of Che-1 expression in tumor cells

affects the NK-cell-mediated anti-tumor activity by influencing the

Nectin-mediated tumor immune surveillance pathways.
Materials and methods

Cell lines

LAL-B cell line was obtained by Epstein barr transduction of

bone marrow mononuclear cells derived by BCP-ALL patient (Aut.

N. 495 11/04/2019). NALM-6 cell line was bought from ATCC

(CRL-3273);. NALM-18 cell line was kindly provided by Dr Pende

D. (IRCCS San Martino, Genoa, Italy). All cell lines were cultured in
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1191908
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Caforio et al. 10.3389/fimmu.2023.1191908
RPMI-1640 medium supplemented with 10% FBS (Euroclone, IT),

1% penicillin/streptomycin (Euroclone, IT) and 1% L-glutamine

(Euroclone, IT).

All cell lines were tested for mycoplasma contamination by PCR

with the following primers:

Forward 5’-ACTCCTACGGGAGGCAGCAGTA-3’

Reverse 5’-TCGACCATCTGTCACTCTGTTAAC-3’
Antibodies
Fron
- Rabbit anti-human AATF/Che-1 antibody (Cat# A301-031A

Bethyl, USA)

- Rabbit anti-human Che-1 antibody (43)

- Rabbit anti-P-Erk 1/2 antibody (#9101 Cell Signaling,

Euroclone, IT)

- Rabbit anti-Erk 1/2 antibody (#9102 Cell Signaling,

Euroclone, IT)

- Rabbit anti-p21 antibody (#2947 Cell Signaling, Euroclone,

IT)

- Mouse anti-b-actin antibody (clone AC-15, Sigma – Aldrich,

Merck, IT)

- HRP-conjugated anti-Gapdh antibody (MAB-10578,

Immunological Sciences, SIC, IT)

- PE-Vio615-conjugated anti-human CD111 antibody (Clone

# REA1210, Miltenji Biotech, DE)

- PE-Vio770-conjugated mouse anti-human CD19 antibody

(Clone# LT19, Milteniyi Biotec, DE)

- BV421-conjugated mouse anti-human CD19 antibody

(Clone# HIB19, BD Biosciences, CA-USA)

- BUV395-conjugated mouse anti-human CD3 antibody

(Clone SP34-2, BD Biosciences, CA-USA)

- BV605-conjugated mouse anti-human CD314 (NKG2D)

antibody (Clone# 1D11, BD Biosciences, CA-USA)

- FITC-conjugated mouse anti-human CD19 antibody (Clone#

CB19, Immunological Science, SIC, IT

- PE-Cy7-conjugated mouse anti-human CD226 (DNAM)

antibody (Clone# 11A8, BioLegend, CA-USA)

- APC-conjugated rat anti-human CD96 (TACTILE) antibody

(Clone# 3.3, BioLegend, CA-USA)

- PE-Vio615-conjugated anti-human CD111 (Nectin-1)

antibody (Clone# REA1210, Milteniyi Biotec, DE)

- APC-conjugated mouse anti-human CD112 (CD112)

(Clone# R2.477, Invitrogen, IT)

- AlexaFluor-647-conjugated mouse anti-human CD155

(PVR) antibody (Clone# TX24, BD Biosciences, CA-USA)

- eFluor450-conjugated anti-human CD336 (NKp44) antibody

(Clone # 44.189 eBioscience Thermo FIsher Scientific, IT)

- BV510-conjugated mouse anti-human CD337 (NKp30)

antibody (Clone# p30-15, BD Biosciences, CA- USA)

- APC-conjugated mouse anti-human CD335 (NKp46)

antibody (Clone# 9E2, Milteniyi Biotec, DE)
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- APC-conjugated mouse anti-human ULBP4 antibody

(Clone# 709116, R&D biosystems, BioTechne, IT)

- PE-conjugated mouse anti-human ULBP2-5-6 antibody

(Clone# 165903, R&D biosystems, BioTechne, IT)

- PE-conjugated mouse anti-human ULBP1 antibody (Clone#

170818, R&D biosystems, BioTechne, IT)

- BV421-conjugated mouse anti-CD107a antibody (Clone#

H4A3, BD Biosciences, CA- USA)

- PE-conjugated anti-human IFNg antibody (Clone# REA600,

Milteniyi Biotec, DE)

- PE-Vio770-conjugated anti-human TNFa antibody (Clone#

cA2, Milteniyi Biotec, DE)

- BUV786-conjugated mouse anti-human CD16 (Clone# 3G8,

BD Biosciences, CA-USA)

- APC-conjugated mouse anti-human CD45 antibody (Clone#

HI30, Immunological Sciences, SIC, IT)

- FITC-conjugated anti-mouse CD19 (MAB-519F,

Immunological Science, SIC, IT)

- BUV395-conjugated anti-mouse CD3 (Clone#17A2, BD

Biosciences, CA-USA)

- APC-vio770-conjugated anti-mouse NK1.1 antibody (Clone#

PK136, Milteniyi Biotec, DE).

- APC-conjugated anti-mouse CD314 (NKG2D) antibody

(Clone# REA1175, Milteniyi Biotec, DE)

- BV711-conjugated rat anti-mouse CD155 (DNAM) antibody

(Clone# TX56, BioLegend, CA-USA)

- PE-conjugated hamster anti-mouse CD27 (Clone# LG.3A10,

BioLegend, CA-USA)

- PE-cy7-conjugated anti-mouse CD11b (Clone# M1/70,

eBioscience, ThermoFIsher scientific, IT)

- Anti-human CD314 (NKG2D) antibody, pure (Clone#

BAT221, Miltenji Biotec, DE)

- Anti-human CD226 (DNAM) IgM F5, kindly provided by Dr

D. Pende
Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) experiments

were performed as previously described by Bruno T. et al.,

2006 (44) using anti-AATF/Che-1 antibody (Bethyl, USA).

Immunoprecipitations with no specific immunoglobulins (Santa

Cruz Biotechnology) were performed as negative controls. For

quantitative ChIP analysis (ChIP-qRT), 1 ml of purified DNA was

used for amplification on a 7500 Fast Real-Time PCR System

(Applied Biosystems) using a SYBER Green 2× qPCR Master Mix

(Primerdesign, UK). The following human promoter‐specific

primers were employed in RT–PCR amplifications:

Nectin 1 promoter forward 5’ – TGCCGGCGATCCGCAACA

ATG – 3’

Nectin 1 promoter reverse 5’ – TTAACGCTAACCCCTCC

CCTC – 3’
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Che-1 interference

siRNA experiments of Che‐1 expression were performed by

transfecting a specific pool of three double–stranded RNA

oligonucleotides targeting Che-1 (cat. n. 1299003– HSS120157

HSS120158 and HSS120159) or a control sequence (siControl,

cat. n. 12935300), purchased from Thermo Fisher Scientific.

Transfections were carried out by nucleofection of NALM‐6 and

LAL‐B cells using Amaxa 4D‐Nucleofector X Kit L (Lonza, IT) by

following the manufacturer’s instructions.
Western blotting

Cells were treated as described in Bruno T. et al., 2006 (44).

Samples were separated by electrophoresis and transferred onto

nitrocellulose membranes. After a blocking step in 5% non-fat-

dried milk in 0.1% Tween-PBS, membranes were incubated with

primary antibodies overnight at 4°C. After three washes in 0.1%

Tween-PBS, membranes were incubated with the appropriate HRP-

linked secondary antibodies (Bio-Rad, IT) at room temperature for

45 min, washed with 0.1% Tween-PBS and analyzed by chemi-

luminescence (GE Healthcare Life Science, IT). Images were

acquired using Alliance Mini HD6 system by UVITEC Ltd,

Cambridge, equipped with UVI1D Software (UVITEC, 14–

630275). The primary antibodies used were: anti-Che-1 (43), and

anti-b-actin (Sigma – Aldrich, Merck, IT).
RNA isolation and quantitative
real-time PCR

Total RNA from NALM‐6 and LAL‐B cells was isolated using

EuroGOLD TriFast reagent (Euroclone, IT) according to the

manufacturer ’s instructions. The first‐strand cDNA was

synthesized with random primers and M‐MLV reverse

transcriptase (Life Technologies, MA). The cDNA was used for

quantitative real‐time PCR (qRT–PCR) experiments carried out in

a 7500 Fast Real‐Time PCR System (Applied Biosystems, CA).

DDCt values were normalized with those obtained from the

amplification of the endogenous b‐actin gene. The following

human‐specific primers were employed in RT–PCR amplifications:

Nectin 1 forward 5’- GGATGACAAGGTCCTGGTGG- 3’

Nectin 1 reverse 5’- ACTGCACGTTGAGAGTGAGG- 3’

b - actin forward 5’ - GACAGGATGCAGAAGGAGATTACT - 3’

b - actin reverse 5’ - TGATCCACATCTGCTGGAAGGT - 3’
Lentiviral transduction

Lentiviral vectors pLV-TH (shControl), pLV-shChe-1 TH (45)

were produced as previously described (shChe-1 sequence:

nucleotides 824–842). Lentiviral stocks were titrated following

standard protocols (45), and, routinely, a viral titer of 106

transducing units per ml (TU/ml) was achieved. Supernatants

were collected and employed to infect NALM-6 cells (1x106 cells)
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in retronectin (Takara Shuzo, JP) pre-coated (7mg/ml) non-tissue

culture 24-well plates. Samples were centrifuged at 2000g for 90

minutes. Infection proceeded for 48 hours. Infected cells were

harvested and tested for GFP-expression through flow-

cytometry analysis.
Flow-cytometry

Infected NALM-6 and NALM-18 cells lines were collected and

analyzed by flow cytometry with PE-Vio615-conjugated anti-

CD111 antibody (Miltenji Biotech, DE).
Human NK-cell isolation

Human NK-cells were isolated from PBMC of healthy donors

with the RosetteSep NK-cell enrichment mixture method (Stem-

Cell Technologies, IT). NK-cells with purity greater than 90% were

stimulated with 100 IU/mL of recombinant human IL2 (PeproTech,

FR) for 48 hours at 37°C. NK-cells were maintained in culture with

NK MACS medium supplemented with 5% human serum and 1%

NK MACS supplement (Miltenyi Biotech, DE).
NK cells cytotoxicity assay

Cell cytotoxicity assays were performed using as target NALM-

6 cell line or K562 cell line and as effector cells NK-cells at different

Effector/Target (E/T) cell ratios. Killed cells were evaluated after 4

hours. At the end of the co-culture, the assay was stopped by

chilling cells on ice, and Propidium Iodide (PI) was added to each

sample immediately before acquisition in order to identify the

percentage of target cell lysis, as previously described (Ingegnere

T Front Immunol 2019). For each set of experiments, all the

acquisitions (5,000 target cells/sample) were performed within

20 min. Experiments aimed to study the involvement of DNAM-

1 and NKG2D in NK-cell cytotoxicity against NALM-6 siChe-1

cells were performed after 30 minutes inoculation of NK-cells with

F5 anti DNAM-1 or anti- NKG2D (BAT221) antibodies.
NK-cells co-culture assay

For NK receptors expression detection, NK-cells were plated at

1×105 cells in 96-well plates. NALM-6 cells were added at the

indicated ratios. Following 16 hours of incubation at 37°C, NK and

NALM-6 cells were collected and assessed by flow-cytometry.

BV421 or PE-Vio770-conjugated anti-CD19 with GFP expression

were used for target cells exclusion. NK-cells (CD19-/GFP-) were

evaluated by BV605-conjugated anti-CD314 (NKG2D), PE-Cy7-

conjugated anti-CD226 (DNAM), APC-conjugated anti-CD96

(TACTILE). For Ligands expression detection, NALM-6 cells

were plated at 1×105 cells in 96-well plates. NK-cells were added

at the indicated ratios. Following 16 hours of incubation at 37°C,

NK and NALM-6 cells were collected and assessed by flow-
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cytometry. BV421 or PE-Vio770-conjugated anti-CD19 with GFP

expression were used for target cells selection. NALM-6 siCtrl or

siChe-1 (CD19+/GFP+) were evaluated by PE-Vio615-conjugated

anti-CD111 (Nectin-1), APC-conjugated anti-CD112 (Nectin-2)

and AlexaFluor-647-conjugated anti-CD155 (PVR).
NK-cells degranulation assay

For degranulation assay NK-cells were plated at 1×105 cells/well

in 96-wells plates. NALM-6 cells were added at the indicated ratio

and incubated for 3 hours. After one hour the cells were treated with

Golgi Stop (BD Biosciences, CA-USA). Thereafter, cells were labeled

with PE-Vio770-conjugated anti-CD19, and BV421-conjugated anti-

CD107a antibody (BD Biosciences, California, USA) for 20 min at

4°C, followed by flow-cytometric analysis. For intra-cytoplasmatic

evaluation of IFNg and TNFa, cells were fixed and permeabilized

with Fix/perm buffer (eBioscience, ThermoFisher scientific, IT) and

then labeled with PE-Conjugated anti-IFNg and PE-Vio770-

conjugated anti-TNFa, BUV786-conjugated anti-CD16, APC-

conjugated anti-CD45 for 20min at 4°C.
Transgenic mouse strain generation

All animal studies were approved by the Institutional Animal Care

of the Regina Elena National Cancer Institute and by the Government

Committee of National Minister of Health and were conducted

according with EU Directive 2010/63/EU for animal experiments.

To generate Em-Che-1 transgenic mice (C57Bl/6xDBA2 strain)

Che-1 was fused to an immunoglobulin enhancer Em. After genomic

DNA extraction of tail biopsies, the positive founder animals were

identified by PCR using the following primers specific for

the transgenes:

oligonucleotide up: 5’-CTTCATACCATCCTCTGTGCTTC-3’

ol igonucleot ide down: 5 ’-GCTTTTCTAGAGGTGG

TTTTGC -3’

Em-Che-1 transgenic mice were interbred with MITO-Luc

reporter mice (46) to obtain Em-Che-1/MITO-Luc (MITO/

Che1+/+).

After genomic DNA extraction of tail biopsies, the positive

founder animals were identified by PCR using the following primers

specific for the transgenes:

oligonucleotide up: 5’-TGTAGACAAGGAAACAACAAA-

GCCTGGTGGCC-3’

oligonucleotide down: 5 ’-GGCGTCTTCCATTTTACC

AACAG-TACCGG-3’

MITO/Che+/+ and MITO/Che1+/- used as negative control

were subjected to longitudinal in vivo imaging sessions at 11 weeks

of age.
In vivo imaging

For in vivo Bioluminescence imaging (BLI), mice were

anesthetized and 75 mg/kg of d-luciferin (Caliper Life Sciences,
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PerkinElmer, USA) was injected intra-peritoneally. Ten minutes

later, quantification of light emission was acquired for 5 min. Signal

was detected using the IVIS Lumina II CCD camera system and

analyzed with the Living Image2.20 software package (Caliper Life

Sciences, PerkinElmer, USA). Photon emission was measured in

specific regions of interest (ROIs). Data were expressed as photon/

second/cm2/steradiant (p/s/cm2/sr) . The intensity of

bioluminescence was color coded for imaging purposes; the scale

used in each experiment is reported in each figure.
NK-cells extraction from murine spleen

Murine spleen cells were extracted from MITO/Che1+/+ and

MITO/Che1+/- mouse models, and mononuclear cells were

obtained from murine spleen cells using FICOLL method. The

expression of Murine NK receptors were evaluated through flow-

cytometric analysis. We analyzed NK-cells selecting CD3-/CD19-

using FITC-conjugated anti-CD19 and BUV395-conjugated anti-

CD3. Then from CD3-/CD19- cells we selected NK1.1 positive cells

using APC-vio770-Conjugated anti-NK1.1. Murine NK cells were

evaluated for NKG2D and DNAM expression using APC-

conjugated anti-NKG2D and BV711-conjugated anti-DNAM.

For murine NK activity we selected NK-cells through the same

gating strategy used for NK receptor evaluation. NK-cells activity

was evaluated using CD27 and CD11b expression using PE-

conjuga ted ant i -CD27 and PE-cy7-con juga ted ant i -

CD11b antibodies..
Statistical analysis

All statistical tests were carried out using GraphPad Prism

version 5.0 for Windows, GraphPad Software, San Diego

California, USA (www.graphpad.com). Probability values

generated by Student’s t‐test considered to be statistically

significant are *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001
Results

Che-1 transcriptionally controls
Nectin-1 expression

In order to find evidence of Che-1 involvement in anti-tumor

immune response, we analyzed the Chromatin immune-

precipitation-sequencing (ChIP-seq) data (38) obtained in the

primary BCP-ALL cell line (LAL-B), to identify a possible

enrichment of Che-1 on the promoter sequence of genes

belonging to immune check-point regulation. Data analysis

revealed the presence of Che-1 on Nectin-1 promoter (Figure 1A)

as confirmed by ChIP-assay performed in LAL-B cell line and in

NALM-6, another BCP-ALL cell line (Figure 1B). To understand

the mechanism of regulation between the two molecules, we down-

modulated the expression of Che-1 for 72 hours in the LAL-B and

NALM-6 cell lines (Figure 1C left panel) and evaluated Nectin-1
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gene modulation. We found that Nectin-1 resulted down-regulated

upon 72 hours of Che-1 interference (Figure 1C right panel). In

NALM-6 cell line, by lentiviral transduction, we inhibited Che-1

expression (NALM-6 siChe-1)as shown in Supplementary

Figure 1A, and analyzed the surface expression of Nectin-1
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protein by flow-cytometry analysis. We show that Che-1

interference resulted in Nectin-1 down-modulation, when

compared with the controls in which cells were transduced with

non-target lentiviral vector (NALM-6 siCtrl). The same result was

obtained in NALM-18 BCP-ALL cell line (Figure 1D). These data
A

B

D

C

FIGURE 1

Che-1 transcriptionally controls Nectin-1 (CD111) expression. (A) Genome Browser screenshot of ChIP-seq signal on Nectin-1 promoter extracted by
ChIP-seq assay previously performed in LAL-B cell line (38). (B) ChIP assay performed in LAL-B and NALM-6 cell lines showing Che1 enrichment on
Nectin-1 promoter. (C) Left: Western Blot for Che-1 expression in LAL-B and NALM-6 cell lines upon Che-1 interference. Right: Real-time-PCR for
Nectin-1 sequence in LAL-B and NALM-6 cells interfered with Che-1 expression. (D) Nectin-1 (CD111) evaluation by flow cytometry in NALM-6 and
NALM-18 cell lines transduced with siChe-1 or siCTRL lentiviral vector (n=3); Graph: flow-cytometry of CD111 expression in one representative plot
of CD111 expression out of 3 performed. (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001).
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confirm that Che-1 sustains its tumorigenic function also by

controlling the immune check-point ligands expression on blast

cell membrane.
Che-1 overexpression impairs NK-cell
killing activity

Since Nectin-1 appears to play an increasing role in tumor

immune response (47), we studied its mechanism of action by

analyzing NK-cell function. We performed co-culture experiments

of NK-cells obtained from peripheral blood of healthy donors with

NALM-6 siChe-1 cells or NALM-6 siCtrl cells, as negative control.

Cytotoxicity assay demonstrated that NK-cells showed a reduced

killing activity when in co-culture with Che-1-overexpressing

NALM-6 cell line that is rescued when in co-culture with Che-1-

depleted cell line (Figure 2A). Degranulation assay, performed by

evaluating CD107a expression on NK-cells, confirmed that Che-1

silenced cells resulted more susceptible to NK-cell degranulation

activity when compared with the control condition. Of note, this

occurred also at 5:1 and 2,5:1 Effector: Target (E:T) ratio in which

NK-cells are quantitatively favored (Supplementary Figure 2A). We

further investigated whether this phenomenon reflected an

increased capability of NK-cells of releasing effector molecules

(IFNg and TNFa) under the same experimental conditions. Flow-

cytometry analysis revealed that the intracellular amount of these

two cytokines was significantly increased after co-culture with Che-

1 down-regulated cells as compared to the control one (Figure 2B).

To deeper understand the effect exerted by Che-1 on NK-cell

function, we measured NK proliferation by p-Erk1/2 expression.

After a 24-hour co-culture with NALM-6-siCtrl, NK-cell

proliferation was strongly reduced if compared with siChe-1

condition where p-Erk1/2 comes-back to the level expressed by

NK-cell cultured alone. In addition p21, used as marker of cell cycle

arrest, showed high expression level in NK-cells co-cultured with

NALM-s siCtrl if compared with siChe condition, confirming the

control exerted by Che-1 overexpressing cells on NK-cells

proliferation (Figure 2C). In order to better understand the

mechanism of action responsible of this functional effect, we

performed longer co-culture experiments (16 hours), to study the

expression of ligands either in the presence or in the absence of

Che-1.

As shown in Figure 2D, in siChe-1 experimental condition, we

confirmed that Nectin-1 expression was reduced after 16h of co-

culture. Conversely, Nectin-2 expression was increased (Figure 2E),

suggesting a possible mechanism of compensation in the blast cells.

This is supported by the known trans-interaction mechanism

occurring among the Nectin family members (48). Our

hypothesis was that up-regulation of Nectin-2 could result in

binding of DNAM-1 receptor on NK-cells leading to their

activation. This hypothesis is also supported by the lower

expression of PVR on siChe-1 cells (Figure 2F). A second

interesting effect was observed in the modulation of ULBP

molecules on siChe-1 cells. In particular, among the members of

ULBP family, we observed in NALM-6 siChe-1 cells an increase of

ULBP4 expression (Figure 2G) (49), while ULBP1, 2, 5, 6 were
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down-modulated (Supplementary Figures 2B, C). Therefore, data

on ligand modulation revealed that Che-1 can re-modulate ligand

expression on blast cell membrane through the transcriptional

inhibition of Nectin-1.
NKG2D and DNAM-1 receptors are
involved in Che-1-driven NK-cells
inhibition

The modulation of ligand expression due to Che-1 interference

prompted us to investigate also the possible effect exerted on NK-

cell receptor expression and function. Starting from the paired

Nectin-1 receptor, TACTILE, we observed an increase in the level of

expression of TACTILE on NK-cells co-cultured with siChe-1 cells

probably due to siChe-1-dependent reduced expression of its

preferred ligand, Nectin-1 (Figure 3A).

In addition, based on the previous result (Figure 2E) in which

PVR expression was impaired in NK-cells co-cultured with siChe-1

NALM-6, we also assessed DNAM-1 expression on NK-cells.

Notably, DNAM-1 expression was not modified by Che-1

expression modulation (Figure 3B). This result could be due to a

strong up-regulation of Nectin-2 (Figure 2E) occurring upon siChe-

1-mediated Nectin-1 inhibition. Similarly to TACTILE, also

NKG2D expression was increased on NK-cells upon 16 hours of

co-culture with NALM-6 siChe-1 as compared to control cells

(Figure 3C). The others NK receptors belonging to the NCR

family (NKp30, NKp44 and NKp46) are not affected as shown in

Supplementary Figures 3A–C.

To further understand whether these two pathways could be

responsible of NK-cell re-activation after Che-1 depletion, we

evaluated the NK-cell cytolytic activity under the same previous

experimental conditions, either in the presence or in the absence of

NKG2D and DNAM-1 monoclonal antibodies (mAbs). These

masking mAbs are able to block the interactions between NK

activating receptors and their ligands (20, 50). As shown in

Figure 3D, mAb-mediated masking of DNAM-1 or NKG2D

inhibited NK-cell degranulation against siChe-1 NALM-6 cell

line. These results suggest that Che-1 exerts its inhibitory

function on the immune response by affecting the two principal

pathways sustaining NK-cell cytolytic activity.
Che-1-dependent NKG2D and DNAM-1
down-modulation in vivo

In order to investigate the physiological effect of Che-1 over-

expression, we generated a transgenic model where Che-1 was fused

with an immunoglobulin enhancer (Em), to select the B-cell

compartment. Figure 4A shows that Che-1 is expressed in two

out of nine clones. Taking advantage of the MITO-luc reporter

mouse model, previously generated in our lab (46), we crossed them

with the EmChe-1 transgenic model with the aim to obtain mice

over-expressing Che-1 in the lymphoid organs using a system that

allows to monitor cellular proliferation. As expected, MITO/Che-

1+/+ mice showed high proliferation rate monitored as spleen
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FIGURE 2

Che-1-dependent Nectin-1 down-modulation modifies NK-cell ligand expression. (A) Citotoxicity assay of NK-cells (CD19-/GFP-) after a 4-hours-culture with
NALM-6 siCtrl or siChe-1 at different Effector : Target (E:T) ratio (10:1, 5:1, 2,5:1, 1,25:1, 0,6:1) (n=3). K562 cell line used as positive control condition (B) Graph:
flow-cytometry of intra-cytoplasmatic IFNg and TNFa % of expression in NK-cells co-cultured for 4 hours with NALM-6 siCtrl or siChe-1 E:T 1:1 (n=3). NK-cells
alone, stimulated with PMA/Ionomycin (PMA 25ng/ml; Ionomycin 1mg/ml) and co-cultured with K562 were used as control conditions. One representative plot of
IFNg and TNFa expression out of 3 performed. (C) One representative p-Erk 1/2 and p21 WB of 3 performed in NK-cells sorted upon 24 hours of co-culture with
NALM-6 siCtrl and siChe-1. NK-cell alone sample was used as p-Erk 1/2 basal level. Anti-Erk 1/2 Total (TOT) and anti Actin antibodies were used as loading
control. (D) Graph: flow cytometry of CD111 (CD19+/GFP+) after a 16-hour co-culture with NK-cells at different E:T ratio (5:1, 2,5:1, 1:1) (n=3). One representative
plot of CD111 expression out of 3 performed. Basal CD111 expression was measured in w/o NK cell condition (E) Graph: CD112 evaluation by flow-cytometry of
NALM-6 siCtrl and siChe-1 (CD19+/GFP+) after a 16-hour co-culture with NK-cells at different E:T ratio (5:1, 2,5:1, 1:1) (n=3). One representative plot of CD112
expression out of 3 performed. Basal CD112 expression was measured in w/o NK cell condition (F) Graph: flow-cytometry of NALM-6 siCtrl and siChe-1 (CD19
+/GFP+) after a 16-hour co-culture with NK-cells at different E:T ratio (5:1, 2,5:1, 1:1) (n=3). One representative plot of PVR expression out of 3 performed. Basal
PVR expression was measured in w/o NK cell condition (G) Graph: flow-cytometry of ULBP4 of NALM-6 siCtrl and siChe-1 (CD19+/GFP+) after a 16-hour co-
culture with NK-cells at different E:T ratio (5:1, 2,5:1, 1:1) (n=3). One representative plot of ULBP4 expression out of 3 performed. Basal ULBP4 expression was
measured in w/o NK cell condition. (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ns, not significant).
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FIGURE 3

NKG2D and DNAM-1 NK receptors are induced when in co-culture with Che-1 interfered cells. (A) Graph: flow-cytometry of TACTILE expression,
measured as Fold of Induction (FI), of NK-cells (CD19-/GFP-) after a 16-hour co-culture with NALM-6 siCtrl and siChe-1 NK-cells at different E:T
ratio (5:1, 2,5:1, 1:1) (n=3). One representative plot of TACTILE expression out of 3 performed. Basal TACTILE expression was measured in NK alone
condition (B) Graph: of DNAM-1 expression, measured as FI of in flow-cytometry NK-cells (CD19-/GFP) after a 16-hour co-culture with NALM-6
siCtrl and siChe-1 NK-cells at different E:T ratio (5:1, 2,5:1, 1:1) (n=3). One representative plot of DNAM-1 expression out of 3 performed. Basal
DNAM-1 expression was measured in NK alone condition (C) Graph: NKG2D expression by flow-cytometry measured as FI in NK-cells (CD19-/GFP-)
after 16-hour of co-culture with NALM-6 siCtrl and siChe-1 NK-cells at different E:T ratio (5:1, 2,5:1, 1:1) (n=3). One representative plot of NKG2D
expression out of 3 performed. Basal NKG2D expression was measured in NK alone condition (D) Graph: CD107a evaluation by flow-cytometry of
NK-cells (CD19-/GFP-) after a 4 hours of co-culture with NALM-6 siCtrl or siChe-1 at 1:1 E:T ratio in presence of anti-NKG2D or anti-DNAM-1
masking antibodies, respectively, to block interaction with their ligands. (n=3). One Representative plot of CD107a expression of 3 performed.
(*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ns, not significant).
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luminescence demonstrating that Che-1 is strongly involved in B-

cell proliferation even in a non-tumoral context. Conversely,

MITO/Che-1+/- mice, not carrying Che-1 overexpression, showed

a sharply reduced proliferation rate and were used as negative
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control (Figure 4B). In addition, we evaluated the relation between

Che-1 over-expression and NK-cells in this in vivo setting where the

MITO-Luc system allows to monitor the hyper-proliferative status

due to Che-1 overexpression. Figure 4C shows that spleen-derived
A
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C

FIGURE 4

In vivo evaluation of Che-1-dependent NK inactivation. (A) PCR showing genotyping of Em-Che-1 transgenic mice. (B) Left: Bio-imaging of MITO/
Che-1+/+ and MITO/Che-1+/- mice at 11 weeks of age (n=6). Right: graph quantifies spleen luminescence at week 11 (n=6). (C). % of expression of
NKG2D and DNAM-1 in NK-cells extracted from spleens of MITO/Che-1+/+ and MITO/Che-1+/- mice at week 11 by flow-cytometry (n=3). One
representative plot of both receptors out of 3 performed. (D) CD27/CD11b evaluation in spleen-derived NK cells: CD27-/CD11b+ used to detect
cytolytic compartment; CD27+/CD11b- and CD27+/CD11b+ for the cytokine production compartment; CD27-/CD11b+ to measure the maturation
status (n=3). One representative plot of the 3 subgroups out of three performed. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001.
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NK-cells fromMITO/Che-1+/- display higher NKG2D and DNAM-

1 expression as compared with MITO/Che-1+/+ mice, thus

confirming the in vitro data using human NK-cells. Furthermore,

assessment of the murine NK-cell activation status through the

analysis of CD27/CD11b expression (51) revealed that in the

MITO/Che-1+/+ mice the NK-cells were poorly activated as

compared to MITO/Che-1+/- mice (Figure 4D). Indeed, both

CD27-/CD11b+ cytolytic NK-cells and CD27+ CD11b+ or CD11b-

NK-cells (mainly releasing cytokines) were reduced in MITO/Che-

1+/+ mice. These data confirm the in vitro data, showing a reduced

NK-cell activation when co-cultured with Che-1 overexpressing

cells. In conclusion, the population of immature NK-cells identified

by CD27-/CD11b- is higher in MITO/Che-1+/+ mice than in MITO/

Che-1+/- mice, suggesting that Che-1 overexpression exerts a

control on NK-cell development and function.
Discussion

There is increasing evidence regarding the Che-1 over-

expression in tumors and its pivotal role in the transcriptional

machinery to cooperate in tumorigenic pathways (39, 41). Che-1

characterization in hematological tumors of adults like multiple

myeloma, and of pediatric ones such as BCP-ALL was recently

defined. In a previous work (38) we demonstrated that Che-1 over-

expression is a crucial inducer of blast cell proliferation. We showed

that Che-1 is a member of the c-Myc controlled oncogenic pathway

and its down-regulation can interfere with c-Myc-dependent

regulation of BCP-ALL tumorigenesis. Despite the numerous

experimental evidences of the tumorigenic role of Che-1, the

effect of its over-expression on the tumor microenvironment has

not been investigated. Data obtained by ChIP-seq experiments in a

primary BCP-ALL cell line captured our attention showing Che-1

connection with molecules involved in immune response. The

discovery of Che-1 enrichment on Nectin-1 promoter suggested

to further investigate its mechanism of action. Since NK-cells

represent a first line of defenses against tumor growth and

metastasis, it is important to study mechanisms which may

interfere with anti-tumor immune responses to allow the

development of new immunotherapeutic strategies able to rescue

anti-tumor function.

This study demonstrates a new mechanism through which

tumor cells may increase their ability to escape immune

surveillance by modifying the interactions between ligands on

tumor cells and the corresponding receptors on NK-cells. The

role of Nectin-1 in the tumor context is still poorly investigated;

however, we demonstrated that silencing of Che-1 on tumor cells

resulted in down-regulation of Nectin-1, while inducing Nectin-2

overexpression as a result of the heterophilic trans-interaction

occurring among Nectin family members. We speculate that this

effect may be the starting point of a recalibrated ligand expression

pattern able to modulate activating NK receptors and, as a

consequence, NK-cell anti-tumor activity. The recruitment

of NK-cells is attractive in cancer treatment and a key function of

NK-cell therapy is widely appreciated as the therapeutic targeting of

NK-cell ligands. In addition, regarding the paucity in healthy
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tissues, ligands for activating NK receptors may represent valid

target antigens on malignant cells for antibody-based approaches.

The blockade of the interactions between NKG2D and its

ligands could lead to reduced anti-tumor response. In support of

these results, our in vivo experiments confirm a reduced expression

of activating receptors on NK-cells from Che-1 transgenic mice.

These cells exhibit an impaired activation and a preferential

immature status.

Our study demonstrates that Che-1 is upstream of the

mechanism orchestrating the re-modulation of NK-ligand

expression, thus proposing Che-1 as an efficient bi-specific

target able to affect tumor cell viability and, at the same time, to

favor NK-mediated immune responses. The difficulty encountered

in the last years to develop an approach able to target Che-1 in

view of its nuclear localization could now be overcome by the

delivery of CRISPR/Cas-9 RNP complex to down-regulate its

expression (52). Delivery through gold-nanoparticles is able to

guarantee tumor cell entrance in solid and hematological cancers

allowing the validation of the system’s efficacy in pre-clinical

murine tumor models.
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SUPPLEMENTARY FIGURE 1

Che-1 depletion by lentiviral transduction. (A) WB analysis of NALM-6 and

NALM-18 cell lines transduced with siCtrl or siChe-1 sequences-carrying

lentiviral plasmids to inhibit Che-1 expression. Gapdh antibody was used as
loading control.

SUPPLEMENTARY FIGURE 2

siChe-1-dependent CD107a and ULBP family members modulation. (A)
CD107a expression of NK-cells (CD19-/GFP-) by flow cytometry after a 4-

hours-culture with NALM-6 siCtrl or siChe-1 at different Effector : Target (E:T)
ratio (n=3). One Representative plot of CD107a expression of 3 performe. NK

alone, Nk-cells stimulated with PMA/Ionomycyn and co-cultured were used

as control cinditions (Left) (B Graph: flow-cytometry of ULBP1 expression of
NALM-6 siCtrl and siChe-1 (CD19+/GFP+) after 16 hours of co-culture with

NK-cells at different E:T ratio (n=3). One representative plot of ULBP1
expression out of 3 performed. Basal ULBP1 expression was measured in

w/o NK cell condition (C)Graph: flow-cytometry of ULBP2-5-6 expression of
NALM-6 siCtrl and siChe-1 (CD19+/GFP+) after 16-hour co-culture with NK-

cells at different E:T ratio (n=3). One representative plot of ULBP2-5-6

expression out of 3 performed. Basal ULBP2-5-6 expression was measured
in w/o NK cell condition.

SUPPLEMENTARY FIGURE 3

Natural Citotoxicity Receptors (NCR) expression. (A) NKp30, (B) NKp44 and
(C) NKp46 evaluation by flow cytometry of NK-cells(CD19-/GFP-) after a 16-

hour co-culture with NALM-6 siCtrl and siChe-1 at different E:T ratio.
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